
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Regular Expression Pocket Reference

By Tony Stubblebine

Publisher: O'Reilly

Pub Date: August 2003

ISBN: 0-596-00415-X

Pages: 100

Ideal as an introduction for beginners and a quick reference for advanced programmers, Regular
Expression Pocket Reference is a comprehensive guide to regular expression APIs for C, Perl, PHP,
Java, .NET, Python, vi, and the POSIX regular expression libraries. This handy book offers
programmers a complete overview of the syntax and semantics of regular expressions, which are at
the heart of every text-processing application. When you've reached a sticking point and need to get
to a solution quickly, the new Regular Expression Pocket Reference is the book you'll want to have.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Regular Expression Pocket Reference

By Tony Stubblebine

Publisher: O'Reilly

Pub Date: August 2003

ISBN: 0-596-00415-X

Pages: 100

 Copyright

 Chapter 1. Regular Expression Pocket Reference

 Section 1.1. About This Book

 Section 1.2. Introduction to Regexes and Pattern Matching

 Section 1.3. Perl 5.8

 Section 1.4. Java (java.util.regex)

 Section 1.5. .NET and C#

 Section 1.6. Python

 Section 1.7. PCRE Lib

 Section 1.8. PHP

 Section 1.9. vi Editor

 Section 1.10. JavaScript

 Section 1.11. Shell Tools

 Index

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Copyright

Copyright © 2003 O'Reilly & Associates, Inc.

Portions of this book are based on Mastering Regular Expressions, by Jeffrey E. F. Friedl, Copyright ©
2002, 1997 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. Java is a trademark of Sun Microsystems, Inc. Microsoft Internet Explorer and .NET are
registered trademarks of Microsoft Corporation. Spider-Man is a registered trademark of Marvel
Enterprises, Inc. The association between the image of owls and the topic of regular expressions is a
trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 1. Regular Expression Pocket
Reference
Regular expressions (known as regexps or regexes) are a way to describe text through pattern
matching. You might want to use regular expressions to validate data, to pull pieces of text out of
larger blocks, or to substitute new text for old text.

Regular expression syntax defines a language you use to describe text. Today, regular expressions
are included in most programming languages as well as many scripting languages, editors,
applications, databases, and command-line tools. This book aims to give quick access to the syntax
and pattern-matching operations of the most popular of these languages.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.1 About This Book

This book starts with a general introduction to regular expressions. The first section of this book
describes and defines the constructs used in regular expressions and establishes the common
principles of pattern matching. The remaining sections of the book are devoted to the syntax,
features, and usage of regular expressions in various implementations.

The implementations covered in this book are Perl, Java, .NET and C#, Python, PCRE, PHP, the vi
editor, JavaScript, and shell tools.

1.1.1 Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Used for emphasis, new terms, program names, and URLs
Constant width

Used for options, values, code fragments, and any text that should be typed literally
Constant width italic

Used for text that should be replaced with user-supplied values

1.1.2 Acknowledgments

The world of regular expressions is complex and filled with nuance. Jeffrey Friedl has written the
definitive work on the subject, Mastering Regular Expressions (O'Reilly), a work on which I relied
heavily when writing this book. As a convenience, this book provides page references to Mastering
Regular Expressions, Second Edition (MRE) for expanded discussion of regular expression syntax and
concepts.

This book simply would not have been written if Jeffrey Friedl had not blazed a trail ahead of me.
Additionally, I owe him many thanks for allowing me to reuse the structure of his book and for his
suggestions on improving this book. Nat Torkington's early guidance raised the bar for this book.
Philip Hazel, Ron Hitchens, A.M. Kuchling, and Brad Merrill reviewed individual chapters. Linda Mui
saved my sanity and this book. Tim Allwine's constant regex questions helped me solidify my
knowledge of this topic. Thanks to Schuyler Erle and David Lents for letting me bounce ideas off of
them. Lastly, many thanks to Sarah Burcham for her contributions to Section 1.11 and for providing
the inspiration and opportunity to work and write for O'Reilly.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.2 Introduction to Regexes and Pattern Matching

A regular expression is a string containing a combination of normal characters and special
metacharacters or metasequences. The normal characters match themselves. Metacharacters and
metasequences are characters or sequences of characters that represent ideas such as quantity,
locations, or types of characters. The list in Section 1.2.1 shows the most common metacharacters
and metasequences in the regular expression world. Later sections list the availability of and syntax
for supported metacharacters for particular implementations of regular expressions.

Pattern matching consists of finding a section of text that is described (matched) by a regular
expression. The underlying code that searchs the text is the regular expression engine. You can
guess the results of most matches by keeping two rules in mind:

The earliest (leftmost) match wins

Regular expressions are applied to the input starting at the first character and proceeding
toward the last. As soon as the regular expression engine finds a match, it returns. (See MRE
148-149, 177-179.)

1.

Standard quantifiers are greedy

Quantifiers specify how many times something can be repeated. The standard quantifiers
attempt to match as many times as possible. They settle for less than the maximum only if this
is necessary for the success of the match. The process of giving up characters and trying less-
greedy matches is called backtracking. (See MRE 151-153.)

2.

Regular expression engines have subtle differences based on their type. There are two classes of
engines: Deterministic Finite Automaton (DFA) and Nondeterministic Finite Automaton (NFA). DFAs
are faster but lack many of the features of an NFA, such as capturing, lookaround, and non-greedy
quantifiers. In the NFA world there are two types: Traditional and POSIX.

DFA engines

DFAs compare each character of the input string to the regular expression, keeping track of all
matches in progress. Since each character is examined at most once, the DFA engine is the
fastest. One additional rule to remember with DFAs is that the alternation metasequence is
greedy. When more than one option in an alternation (foo|foobar) matches, the longest one

is selected. So, rule #1 can be amended to read "the longest leftmost match wins." (See MRE
155-156.)

Traditional NFA engines

Traditional NFA engines compare each element of the regex to the input string, keeping track
of positions where it chose between two options in the regex. If an option fails, the engine
backtracks to the most recently saved position. For standard quantifiers, the engine chooses
the greedy option of matching more text; however, if that option leads to the failure of the
match, the engine returns to a saved position and tries a less greedy path. The traditional NFA
engine uses ordered alternation, where each option in the alternation is tried sequentially. A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

longer match may be ignored if an earlier option leads to a successful match. So, rule #1 can
be amended to read "the first leftmost match after greedy quantifiers have had their fill." (See
MRE 153-154.)

POSIX NFA engines

POSIX NFA Engines work similarly to Traditional NFAs with one exception: a POSIX engine
always picks the longest of the leftmost matches. For example, the alternation cat|category

would match the full word "category" whenever possible, even if the first alternative ("cat")
matched and appeared earlier in the alternation. (See MRE 153-154.)

1.2.1 Regex Metacharacters, Modes, and Constructs

The metacharacters and metasequences shown here represent most available types of regular
expression constructs and their most common syntax. However, syntax and availability vary by
implementation.

1.2.1.1 Character representations

Many implementations provide shortcuts to represent some characters that may be difficult to input.
(See MRE 114-117.)

Character shorthands

Most implementations have specific shorthands for the alert, backspace, escape character,
form feed, newline, carriage return, horizontal tab, and vertical tab characters. For
example, \n is often a shorthand for the newline character, which is usually LF (012 octal) but

can sometimes be CR (15 octal) depending on the operating system. Confusingly, many
implementations use \b to mean both backspace and word boundary (between a "word"
character and a non-word character). For these implementations, \b means backspace in a

character class (a set of possible characters to match in the string) and word boundary
elsewhere.

Octal escape: \num

Represents a character corresponding to a two- or three- octal digit number. For example,
\015\012 matches an ASCII CR/LF sequence.

Hex and Unicode escapes: \x num, \x{ num}, \u num, \U num

Represents a character corresponding to a hexadecimal number. Four-digit and larger hex
numbers can represent the range of Unicode characters. For example, \x0D\x0A matches an

ASCII CR/LF sequence.
Control characters: \c char

Corresponds to ASCII control characters encoded with values less than 32. To be safe, always
use an uppercase char-some implementations do not handle lowercase representations. For
example, \cH matches Control-H, an ASCII backspace character.

1.2.1.2 Character classes and class-like constructs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character classes are ways to define or specify a set of characters. A character class matches one
character in the input string that is within the defined set. (See MRE 117-127.)

Normal classes: [...] and [^...]

Character classes, [...], and negated character classes, [^...], allow you to list the

characters that you do or do not want to match. A character class always matches one
character. The - (dash) indicates a range of characters. To include the dash in the list of
characters, list it first or escape it. For example, [a-z] matches any lowercase ASCII letter.

Almost any character: dot (.)

Usually matches any character except a newline. The match mode can often be changed so
that dot also matches newlines.

Class shorthands: \w, \d, \s, \W, \D, \S

Commonly provided shorthands for digit, word character, and space character classes. A word
character is often all ASCII alphanumeric characters plus the underscore. However, the list of
alphanumerics can include additional locale or Unicode alphanumerics, depending on the
implementation. For example, \d matches a single digit character and is usually equivalent to
[0-9].

POSIX character class: [:alnum:]

POSIX defines several character classes that can be used only within regular expression
character classes (see Table 1-1). For example, [:lower:], when written as [[:lower:]], is
equivalent to [a-z] in the ASCII locale.

Unicode properties, scripts, and blocks: \p{ prop} , \P{ prop}

The Unicode standard defines classes of characters that have a particular property, belong to a
script, or exist within a block. Properties are characteristics such as being a letter or a number
(see Table 1-2). Scripts are systems of writing, such as Hebrew, Latin, or Han. Blocks are
ranges of characters on the Unicode character map. Some implementations require that
Unicode properties be prefixed with Is or In. For example, \p{Ll} matches lowercase letters
in any Unicode supported language, such as a or .

Unicode combining character sequence: \X

Matches a Unicode base character followed by any number of Unicode combining characters.
This is a shorthand for \P{M}\p{M}. For example, \X matches è as well as the two characters
e'.

Table 1-1. POSIX character classes

Class Meaning

alnum Letters and digits.

alpha Letters.

blank Space or tab only.

cntrl Control characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Meaning

digit Decimal digits.

graph Printing characters, excluding space.

lower Lowercase letters.

print Printing characters, including space.

punct Printing characters, excluding letters and digits.

space Whitespace.

upper Uppercase letters.

xdigit Hexadecimal digits.

Table 1-2. Standard Unicode properties (continued)

Property Meaning

\p{L} Letters.

\p{Ll} Lowercase letters.

\p{Lm} Modifier letters.

\p{Lo} Letters, other. These have no case and are not considered modifiers.

\p{Lt} Titlecase letters.

\p{Lu} Uppercase letters.

\p{C} Control codes and characters not in other categories.

\p{Cc} ASCII and Latin-1 control characters.

\p{Cf} Non-visible formatting characters.

\p{Cn} Unassigned code points.

\p{Co} Private use, such as company logos.

\p{Cs} Surrogates.

\p{M} Marks meant to combine with base characters, such as accent marks.

\p{Mc} Modification characters that take up their own space. Examples include "vowel signs."

\p{Me} Marks that enclose other characters, such as circles, squares, and diamonds.

\p{Mn} Characters that modify other characters, such as accents and umlauts.

\p{N} Numeric characters.

\p{Nd} Decimal digits in various scripts.

\p{Nl} Letters that are numbers, such as Roman numerals.

digit Decimal digits.

graph Printing characters, excluding space.

lower Lowercase letters.

print Printing characters, including space.

punct Printing characters, excluding letters and digits.

space Whitespace.

upper Uppercase letters.

xdigit Hexadecimal digits.

Table 1-2. Standard Unicode properties (continued)

Property Meaning

\p{L} Letters.

\p{Ll} Lowercase letters.

\p{Lm} Modifier letters.

\p{Lo} Letters, other. These have no case and are not considered modifiers.

\p{Lt} Titlecase letters.

\p{Lu} Uppercase letters.

\p{C} Control codes and characters not in other categories.

\p{Cc} ASCII and Latin-1 control characters.

\p{Cf} Non-visible formatting characters.

\p{Cn} Unassigned code points.

\p{Co} Private use, such as company logos.

\p{Cs} Surrogates.

\p{M} Marks meant to combine with base characters, such as accent marks.

\p{Mc} Modification characters that take up their own space. Examples include "vowel signs."

\p{Me} Marks that enclose other characters, such as circles, squares, and diamonds.

\p{Mn} Characters that modify other characters, such as accents and umlauts.

\p{N} Numeric characters.

\p{Nd} Decimal digits in various scripts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Meaning

\p{Nl} Letters that are numbers, such as Roman numerals.

\p{No} Superscripts, symbols, or non-digit characters representing numbers.

\p{P} Punctuation.

\p{Pc} Connecting punctuation, such as an underscore.

\p{Pd} Dashes and hyphens.

\p{Pe} Closing punctuation complementing \p{Ps}.

\p{Pi} Initial punctuation, such as opening quotes.

\p{Pf} Final punctuation, such as closing quotes.

\p{Po} Other punctuation marks.

\p{Ps} Opening punctuation, such as opening parentheses.

\p{S} Symbols.

\p{Sc} Currency.

\p{Sk} Combining characters represented as individual characters.

\p{Sm} Math symbols.

\p{So} Other symbols.

\p{Z} Separating characters with no visual representation.

\p{Zl} Line separators.

\p{Zp} Paragraph separators.

\p{Zs} Space characters.

1.2.1.3 Anchors and zero-width assertions

Anchors and "zero-width assertions" match positions in the input string. (See MRE 127-133.)

Start of line/string: ̂ , \A

Matches at the beginning of the text being searched. In multiline mode, ̂ matches after any
newline. Some implementations support \A, which only matches at the beginning of the text.

End of line/string: $, \Z, \z

$ matches at the end of a string. Some implementations also allow $ to match before a string-
ending newline. If modified by multiline mode, $ matches before any newline as well. When
supported, \Z matches the end of string or before a string-ending newline, regardless of match
mode. Some implementations also provide \z, which only matches the end of the string,

regardless of newlines.
Start of match: \G

In iterative matching, \G matches the position where the previous match ended. Often, this

\p{Nl} Letters that are numbers, such as Roman numerals.

\p{No} Superscripts, symbols, or non-digit characters representing numbers.

\p{P} Punctuation.

\p{Pc} Connecting punctuation, such as an underscore.

\p{Pd} Dashes and hyphens.

\p{Pe} Closing punctuation complementing \p{Ps}.

\p{Pi} Initial punctuation, such as opening quotes.

\p{Pf} Final punctuation, such as closing quotes.

\p{Po} Other punctuation marks.

\p{Ps} Opening punctuation, such as opening parentheses.

\p{S} Symbols.

\p{Sc} Currency.

\p{Sk} Combining characters represented as individual characters.

\p{Sm} Math symbols.

\p{So} Other symbols.

\p{Z} Separating characters with no visual representation.

\p{Zl} Line separators.

\p{Zp} Paragraph separators.

\p{Zs} Space characters.

1.2.1.3 Anchors and zero-width assertions

Anchors and "zero-width assertions" match positions in the input string. (See MRE 127-133.)

Start of line/string: ̂ , \A

Matches at the beginning of the text being searched. In multiline mode, ̂ matches after any
newline. Some implementations support \A, which only matches at the beginning of the text.

End of line/string: $, \Z, \z

$ matches at the end of a string. Some implementations also allow $ to match before a string-
ending newline. If modified by multiline mode, $ matches before any newline as well. When
supported, \Z matches the end of string or before a string-ending newline, regardless of match
mode. Some implementations also provide \z, which only matches the end of the string,

regardless of newlines.
Start of match: \G

In iterative matching, \G matches the position where the previous match ended. Often, this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

spot is reset to the beginning of a string on a failed match.
Word boundary: \b, \B, \<, \>

Word boundary metacharacters match a location where a word character is next to a non-word
character. \b often specifies a word boundary location, and \B often specifies a not-word-

boundary location. Some implementations provide separate metasequences for start- and end-
of-word boundaries, often \< and \>.

Lookahead: (?=...), (?!...)
Lookbehind: (?<=...), (?<!...)

Lookaround constructs match a location in the text where the subpattern would match
(lookahead), would not match (negative lookahead), would have finished matching
(lookbehind), or would not have finished matching (negative lookbehind). For example, foo(?
=bar) matches foo in foobar but not food. Implementations often limit lookbehind constructs

to subpatterns with a predetermined length.

1.2.1.4 Comments and mode modifiers

Mode modifiers are a way to change how the regular expression engine interprets a regular
expression. (See MRE 109-112, 133-135.)

Multiline mode: m

Changes the behavior of ̂ and $ to match next to newlines within the input string.
Single-line mode: s

Changes the behavior of . (dot) to match all characters, including newlines, within the input
string.

Case-insensitive mode: i

Treat as identical letters that differ only in case.
Free-spacing mode: x

Allows for whitespace and comments within a regular expression. The whitespace and
comments (starting with # and extending to the end of the line) are ignored by the regular

expression engine.
Mode modifiers: (?i) , (?-i) , (? mod:...)

Usually, mode modifiers may be set within a regular expression with (?mod) to turn modes on

for the rest of the current subexpression; (?-mod) to turn modes off for the rest of the current

subexpression; and (?mod:...) to turn modes on or off between the colon and the closing
parentheses. For example, "use (?i:perl)" matches "use perl", "use Perl", "use PeRl", etc.

Comments: (?#...) and #

In free-spacing mode, # indicates that the rest of the line is a comment. When supported, the
comment span (?#...) can be embedded anywhere in a regular expression, regardless of
mode. For example, .{0,80}(?#Field limit is 80 chars) allows you to make notes about
why you wrote .{0,80}.

Literal-text span: \Q...\E

Escapes metacharacters between \Q and \E. For example, \Q(.*)\E is the same as \(\.*\).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2.1.5 Grouping, capturing, conditionals, and control

This section covers the syntax for grouping subpatterns, capturing submatches, conditional
submatches, and quantifying the number of times a subpattern matches. (See MRE 135-140.)

Capturing and grouping parentheses: (...) and \1, \2, ...

Parentheses perform two functions: grouping and capturing. Text matched by the subpattern
within parentheses is captured for later use. Capturing parentheses are numbered by counting
their opening parentheses from the left. If backreferences are available, the submatch can be
referred to later in the same match with \1, \2, etc. The captured text is made available after
a match by implementation-specific methods. For example, \b(\w+)\b\s+\1\b matches
duplicate words, such as the the.

Grouping-only parentheses: (?:...)

Groups a subexpression, possibly for alternation or quantifiers, but does not capture the
submatch. This is useful for efficiency and reusability. For example, (?:foobar) matches
foobar, but does not save the match to a capture group.

Named capture: (?< name>...)

Performs capturing and grouping, with captured text later referenced by name. For example,
Subject:(?<subject>.*) captures the text following Subject: to a capture group that can be
referenced by the name subject.

Atomic grouping: (?>...)

Text matched within the group is never backtracked into, even if this leads to a match failure.
For example, (?>[ab]*)\w\w matches aabbcc but not aabbaa.

Alternation: ...|...

Allows several subexpressions to be tested. Alternation's low precedence sometimes causes
subexpressions to be longer than intended, so use parentheses to specifically group what you
want alternated. For example, \b(foo|bar)\b matches either of the words foo or bar.

Conditional: (? if then | else)

The if is implementation dependent, but generally is a reference to a captured subexpression

or a lookaround. The then and else parts are both regular expression patterns. If the if part

is true, the then is applied. Otherwise, else is applied. For example, (<)?foo(?(1)>|bar)
matches <foo> and foobar.

Greedy quantifiers: * , + , ? , { num,num }

The greedy quantifiers determine how many times a construct may be applied. They attempt to
match as many times as possible, but will backtrack and give up matches if necessary for the
success of the overall match. For example, (ab)+ matches all of ababababab.

Lazy quantifiers: *? , +? , ?? , { num,num }?

Lazy quantifiers control how many times a construct may be applied. However, unlike greedy
quantifiers, they attempt to match as few times as possible. For example, (an)+? matches only
an of banana.

Possessive Quantifiers: *+ , ++ , ?+ , { num,num }+

Possessive quantifiers are like greedy quantifiers, except that they "lock in" their match,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

disallowing later backtracking to break up the sub-match. For example, (ab)++ab will not
match ababababab.

1.2.2 Unicode Support

Unicode is a character set that gives unique numbers to the characters in all the world's languages.
Because of the large number of possible characters, Unicode requires more than one byte to
represent a character. Some regular expression implementations will not understand Unicode
characters, because they expect one-byte ASCII characters. Basic support for Unicode characters
starts with being able to match a literal string of Unicode characters. Advanced support includes
character classes and other constructs that contain characters from all Unicode-supported languages.
For example, \w might match è as well as e.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.3 Perl 5.8

Perl provides a rich set of regular-expression operators, constructs, and features, with more being
added in each new release. Perl uses a Traditional NFA match engine. For an explanation of the rules
behind an NFA engine, see Section 1.2.

This reference covers Perl Version 5.8. Unicode features were introduced in 5.6, but did not stabilize
until 5.8. Most other features work in Versions 5.004 and later.

1.3.1 Supported Metacharacters

Perl supports the metacharacters and metasequences listed in Table 1-3 through Table 1-7. For
expanded definitions of each metacharacter, see Section 1.2.1.

Table 1-3. Character representations

Sequence Meaning

\a Alert (bell).

\b Backspace; supported only in character class.

\e ESC character, x1B.

\n Newline; x0A on Unix and Windows, x0D on Mac OS 9.

\r Carriage return; x0D on Unix and Windows, x0A on Mac OS 9.

\f Form feed, x0C.

\t Horizontal tab, x09.

\octal Character specified by a two- or three-digit octal code.

\xhex Character specified by a one- or two-digit hexadecimal code.

\x{hex} Character specified by any hexadecimal code.

\cchar Named control character.

\N{name}
A named character specified in the Unicode standard or listed in
PATH_TO_PERLLIB/unicode/Names.txt. Requires use charnames ':full'.

Table 1-4. Character classes and class-like constructs (continued)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Meaning

[...] A single character listed or contained in a listed range.

[^...] A single character not listed and not contained within a listed range.

[:class:] POSIX-style character class valid only within a regex character class.

. Any character except newline (unless single-line mode, /s).

\C One byte; however, this may corrupt a Unicode character stream.

\X Base character followed by any number of Unicode combining characters.

\w Word character, \p{IsWord}.

\W Non-word character ,\P{IsWord}.

\d Digit character, \p{IsDigit}.

\D Non-digit character, \P{IsDigit}.

\s Whitespace character, \p{IsSpace}.

\S Non-whitespace character, \P{IsSpace}.

\p{prop} Character contained by given Unicode property, script, or block.

\P{prop} Character not contained by given Unicode property, script, or block.

Table 1-5. Anchors and zero-width tests

Sequence Meaning

^ Start of string, or after any newline in multiline match mode, /m.

\A Start of search string, in all match modes.

$
End of search string or before a string-ending newline, or before any newline in
multiline match mode, /m.

\Z End of string or before a string-ending newline, in any match mode.

\z End of string, in any match mode.

\G Beginning of current search.

\b Word boundary.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind; fixed-length only.

(?<!...) Negative lookbehind; fixed-length only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 1-6. Comments and mode modifiers (continued)

Modifier Meaning

/i Case-insensitive matching.

/m ^ and $ match next to embedded \n.

/s Dot (.) matches newline.

/x Ignore whitespace and allow comments (#) in pattern.

/o Compile pattern only once.

(?mode) Turn listed modes (xsmi) on for the rest of the subexpression.

(?-mode) Turn listed modes (xsmi) off for the rest of the subexpression.

(?mode:...) Turn listed modes (xsmi) on within parentheses.

(?mode:...) Turn listed modes (xsmi) off within parentheses.

(?#...) Treat substring as a comment.

#... Treat rest of line as a comment in /x mode.

\u Force next character to uppercase.

\l Force next character to lowercase.

\U Force all following characters to uppercase.

\L Force all following characters to lowercase.

\Q Quote all following regex metacharacters.

\E End a span started with \U, \L, or \Q.

Table 1-7. Grouping, capturing, conditional, and control (continued)

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2,... and $1, $2,....

\n Contains text matched by the nth capture group.

(?:...) Groups subpattern, but does not capture submatch.

(?>...) Disallow backtracking for text matched by subpattern.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sequence Meaning

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, but as few times as possible .

(?

(COND)...|...)
Match with if-then-else pattern where COND is an integer referring to either a

backreference or a lookaround assertion.

(?(COND)...) Match with if-then pattern.

(?{CODE}) Execute embedded Perl code.

(??{CODE}) Match regex from embedded Perl code.

1.3.2 Regular Expression Operators

Perl provides the built-in regular expression operators qr//, m//, and s///, as well as the split

function. Each operator accepts a regular expression pattern string that is run through string and
variable interpolation and then compiled.

Regular expressions are often delimited with the forward slash, but you can pick any non-
alphanumeric, non-whitespace character. Here are some examples:

qr#...# m!...! m{...}
s|...|...| s[...][...] s<...>/.../

A match delimited by slashes (/.../) doesn't require a leading m:

/.../ #same as m/.../

Using the single quote as a delimiter suppresses interpolation of variables and the constructs
\N{name}, \u, \l, \U, \L, \Q, \E. Normally these are interpolated before being passed to the regular

expression engine.

qr// (Quote Regex)

qr/PATTERN/ismxo

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, but as few times as possible .

(?

(COND)...|...)
Match with if-then-else pattern where COND is an integer referring to either a

backreference or a lookaround assertion.

(?(COND)...) Match with if-then pattern.

(?{CODE}) Execute embedded Perl code.

(??{CODE}) Match regex from embedded Perl code.

1.3.2 Regular Expression Operators

Perl provides the built-in regular expression operators qr//, m//, and s///, as well as the split

function. Each operator accepts a regular expression pattern string that is run through string and
variable interpolation and then compiled.

Regular expressions are often delimited with the forward slash, but you can pick any non-
alphanumeric, non-whitespace character. Here are some examples:

qr#...# m!...! m{...}
s|...|...| s[...][...] s<...>/.../

A match delimited by slashes (/.../) doesn't require a leading m:

/.../ #same as m/.../

Using the single quote as a delimiter suppresses interpolation of variables and the constructs
\N{name}, \u, \l, \U, \L, \Q, \E. Normally these are interpolated before being passed to the regular

expression engine.

qr// (Quote Regex)

qr/PATTERN/ismxo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Quote and compile PATTERN as a regular expression. The returned value may be used in a later

pattern match or substitution. This saves time if the regular expression is going to be repeatedly
interpolated. The match modes (or lack of), /ismxo, are locked in.

m// (Matching)

m/PATTERN/imsxocg

Match PATTERN against input string. In list context, returns a list of substrings matched by capturing
parentheses, or else (1) for a successful match or () for a failed match. In scalar context, returns 1
for success or "" for failure. /imsxo are optional mode modifiers. /cg are optional match modifiers.
/g in scalar context causes the match to start from the end of the previous match. In list context, a
/g match returns all matches or all captured substrings from all matches. A failed /g match will reset
the match start to the beginning of the string unless the match is in combined /cg mode.

s/// (Substitution)

s/PATTERN/REPLACEMENT/egimosx

Match PATTERN in the input string and replace the match text with REPLACEMENT, returning the

number of successes. /imosx are optional mode modifiers. /g substitutes all occurrences of PATTERN.

Each /e causes an evaluation of REPLACEMENT as Perl code.

split

split /PATTERN/, EXPR, LIMIT

split /PATTERN/, EXPR

split /PATTERN/
split

Return a list of substrings surrounding matches of PATTERN in EXPR. If LIMIT, the list contains

substrings surrounding the first LIMIT matches. The pattern argument is a match operator, so use m

if you want alternate delimiters (e.g., split m{PATTERN}). The match permits the same modifiers as
m{}. Table 1-8 lists the after-match variables.

Table 1-8. After-match variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variable Meaning

$1, $2,
...

Captured submatches.

@- $-[0] offset of start of match. $-[n] offset of start of $n.

@+ $+[0] offset of end of match. $+[n] offset of end of $n.

$+ Last parenthesized match.

$'
Text before match. Causes all regular expressions to be slower. Same as
substr($input, 0, $-[0]).

$&
Text of match. Causes all regular expressions to be slower. Same as substr($input,
$-[0], $+[0] - $-[0]).

$'
Text after match. Causes all regular expressions to be slower. Same as
substr($input, $+[0]).

$^N Text of most recently closed capturing parentheses.

$* If true, \m is assumed for all matches without a \s.

$^R The result value of the most recently executed code construct within a pattern match.

1.3.3 Unicode Support

Perl provides built-in support for Unicode 3.2, including full support in the \w, \d, \s, and \b

metasequences.

The following constructs respect the current locale if use locale is defined: case-insensitive (i)
mode, \L, \l, \U, \u, \w, and \W.

Perl supports the standard Unicode properties (see Table 1-3) as well as Perl-specific composite
properties (see Table 1-9). Scripts and properties may have an Is prefix but do not require it. Blocks
require an In prefix only if the block name conflicts with a script name.

Table 1-9. Composite Unicode properties

Property Equivalent

IsASCII [\x00-\x7f]

IsAlnum [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}]

IsAlpha [\p{Ll}\p{Lu}\p{Lt}\p{Lo}]

IsCntrl \p{C}

IsDigit \p{Nd}

IsGraph [^\p{C}\p{Space}]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Equivalent

IsLower \p{Ll}

IsPrint \P{C}

IsPunct \p{P}

IsSpace [\t\n\f\r\p{Z}]

IsUppper [\p{Lu}\p{Lt}]

IsWord [_\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}]

IsXDigit [0-9a-fA-F]

1.3.4 Examples

Example 1-1. Simple match

Match Spider-Man, Spiderman, SPIDER-MAN, etc.
my $dailybugle = "Spider-Man Menaces City!";
if ($dailybugle =~ m/spider[-]?man/i) { do_something(); }

Example 1-2. Match, capture group, and qr

Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
my $date = "12/30/1969";
my $regex = qr!(\d\d)[-/](\d\d)[-/](\d\d(?:\d\d)?)!;
if ($date =~ m/$regex/) {
 print "Day= ", $1,
 "Month=", $2,
 "Year= ", $3;
}

Example 1-3. Simple substitution

Convert
 to
 for XHTML compliance
my $text = "Hello World!
";
$text =~ s#
#
#ig;

Example 1-4. Harder substitution

urlify - turn URL's into HTML links
$text = "Check the website, http://www.oreilly.com/catalog/repr.";
$text =~
 s{
 \b # start at word boundary
 (# capture to $1
 (https?|telnet|gopher|file|wais|ftp) :

IsLower \p{Ll}

IsPrint \P{C}

IsPunct \p{P}

IsSpace [\t\n\f\r\p{Z}]

IsUppper [\p{Lu}\p{Lt}]

IsWord [_\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}]

IsXDigit [0-9a-fA-F]

1.3.4 Examples

Example 1-1. Simple match

Match Spider-Man, Spiderman, SPIDER-MAN, etc.
my $dailybugle = "Spider-Man Menaces City!";
if ($dailybugle =~ m/spider[-]?man/i) { do_something(); }

Example 1-2. Match, capture group, and qr

Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
my $date = "12/30/1969";
my $regex = qr!(\d\d)[-/](\d\d)[-/](\d\d(?:\d\d)?)!;
if ($date =~ m/$regex/) {
 print "Day= ", $1,
 "Month=", $2,
 "Year= ", $3;
}

Example 1-3. Simple substitution

Convert
 to
 for XHTML compliance
my $text = "Hello World!
";
$text =~ s#
#
#ig;

Example 1-4. Harder substitution

urlify - turn URL's into HTML links
$text = "Check the website, http://www.oreilly.com/catalog/repr.";
$text =~
 s{
 \b # start at word boundary
 (# capture to $1
 (https?|telnet|gopher|file|wais|ftp) :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # resource and colon
 [\w/#~:.?+=&%@!\-] +? # one or more valid
 # characters
 # but take as little as
 # possible
)
 (?= # lookahead
 [.:?\-] * # for possible punctuation
 (?: [^\w/#~:.?+=&%@!\-] # invalid character
 | $) # or end of string
)
 }{$1}igox;

1.3.5 Other Resources

Programming Perl, by Larry Wall, Tom Christiansen, and Jon Orwant (O'Reilly), is the standard
Perl reference.

Mastering Regular Expressions, Second Edition, by Jeffrey E. F. Friedl (O'Reilly), covers the
details of Perl regular expressions on pages 283-364.

perlre is the perldoc documentation provided with most Perl distributions.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.4 Java (java.util.regex)

Java 1.4 supports regular expressions with Sun's java.util.regex package. Although there are

competing packages available for previous versions of Java, Sun is poised to become the standard.
Sun's package uses a Traditional NFA match engine. For an explanation of the rules behind a
Traditional NFA engine, see Section 1.2.

1.4.1 Supported Metacharacters

java.util.regex supports the metacharacters and metasequences listed in Table 1-10 through

Table 1-14. For expanded definitions of each metacharacter, see Section 1.2.1.

Table 1-10. Character representations

Sequence Meaning

\a Alert (bell).

\b Backspace, x08, supported only in character class.

\e ESC character, x1B.

\n Newline, x0A.

\r Carriage return, x0D.

\f Form feed, x0C.

\t Horizontal tab, x09.

\0octal Character specified by a one-, two-, or three-digit octal code.

\xhex Character specified by a two-digit hexadecimal code.

\uhex Unicode character specified by a four-digit hexadecimal code.

\cchar Named control character.

Table 1-11. Character classes and class-like constructs

Class Meaning

[...] A single character listed or contained in a listed range.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Meaning

[^...] A single character not listed and not contained within a listed range.

. Any character, except a line terminator (unless DOTALL mode).

\w Word character, [a-zA-Z0-9_].

\W Non-word character, [^a-zA-Z0-9_].

\d Digit, [0-9].

\D Non-digit, [^0-9].

\s Whitespace character, [\t\n\f\r\x0B].

\S Non-whitespace character, [^ \t\n\f\r\x0B].

\p{prop}
Character contained by given POSIX character class, Unicode property, or Unicode
block.

\P{prop}
Character not contained by given POSIX character class, Unicode property, or Unicode
block.

Table 1-12. Anchors and other zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in MULTILINE mode.

\A Beginning of string, in any match mode.

$ End of string, or before any newline if in MULTILINE mode.

\Z End of string but before any final line terminator, in any match mode.

\z End of string, in any match mode.

\b Word boundary.

\B Not-word-boundary.

\G Beginning of current search.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 1-13. Comments and mode modifiers

[^...] A single character not listed and not contained within a listed range.

. Any character, except a line terminator (unless DOTALL mode).

\w Word character, [a-zA-Z0-9_].

\W Non-word character, [^a-zA-Z0-9_].

\d Digit, [0-9].

\D Non-digit, [^0-9].

\s Whitespace character, [\t\n\f\r\x0B].

\S Non-whitespace character, [^ \t\n\f\r\x0B].

\p{prop}
Character contained by given POSIX character class, Unicode property, or Unicode
block.

\P{prop}
Character not contained by given POSIX character class, Unicode property, or Unicode
block.

Table 1-12. Anchors and other zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in MULTILINE mode.

\A Beginning of string, in any match mode.

$ End of string, or before any newline if in MULTILINE mode.

\Z End of string but before any final line terminator, in any match mode.

\z End of string, in any match mode.

\b Word boundary.

\B Not-word-boundary.

\G Beginning of current search.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 1-13. Comments and mode modifiers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modifier/sequence
Mode

character
Meaning

Pattern.UNIX_LINES d Treat \n as the only line terminator.

Pattern.DOTALL s
Dot (.) matches any character, including a line
terminator.

Pattern.MULTILINE m ^ and $ match next to embedded line terminators.

Pattern.COMMENTS x
Ignore whitespace and allow embedded comments
starting with #.

Pattern.CASE_INSENSITIVE i Case-insensitive match for ASCII characters.

Pattern.UNICODE_CASE u Case-insensitive match for Unicode characters.

Pattern.CANON_EQ

Unicode "canonical equivalence" mode where
characters or sequences of a base character and
combining characters with identical visual
representations are treated as equals.

(?mode)
Turn listed modes (idmsux) on for the rest of the

subexpression.

(?-mode)
Turn listed modes (idmsux) off for the rest of the

subexpression.

(?mode:...) Turn listed modes (idmsux) on within parentheses.

(?-mode:...) Turn listed modes (idmsux) off within parentheses.

#... Treat rest of line as a comment in /x mode.

Table 1-14. Grouping, capturing, conditional, and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2,... and $1, $2,....

\n Contains text matched by the nth capture group.

$n In a replacement string, contains text matched by the nth capture group.

(?:...) Groups subpattern, but does not capture submatch.

(?>...) Disallow backtracking for text matched by subpattern.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sequence Meaning

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few times as possible.

*+ Match 0 or more times, and never backtrack.

++ Match 1 or more times, and never backtrack.

?+ Match 0 or 1 times, and never backtrack.

{n}+ Match at least n times, and never backtrack.

{n,}+ Match at least n times, and never backtrack.

{x,y}+ Match at least x times, no more than y times, and never backtrack.

1.4.2 Regular Expression Classes and Interfaces

Java 1.4 introduces two main classes, java.util.regex.Pattern and java.util.regex.Matcher;
an exception, java.util.regex.PatternSyntaxException; and a new interface, CharSequence.
Additionally, Sun upgraded the String class to implement the CharSequence interface and to provide
basic pattern-matching methods. Pattern objects are compiled regular expressions that can be
applied to many strings. A Matcher object is a match of one Pattern applied to one string (or any
object implementing CharSequence).

Backslashes in regular expression String literals need to be escaped. So \n (newline) becomes \\n
when used in a Java String literal that is to be used as a regular expression.

java.lang.String

Description

New methods for pattern matching.

Methods

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few times as possible.

*+ Match 0 or more times, and never backtrack.

++ Match 1 or more times, and never backtrack.

?+ Match 0 or 1 times, and never backtrack.

{n}+ Match at least n times, and never backtrack.

{n,}+ Match at least n times, and never backtrack.

{x,y}+ Match at least x times, no more than y times, and never backtrack.

1.4.2 Regular Expression Classes and Interfaces

Java 1.4 introduces two main classes, java.util.regex.Pattern and java.util.regex.Matcher;
an exception, java.util.regex.PatternSyntaxException; and a new interface, CharSequence.
Additionally, Sun upgraded the String class to implement the CharSequence interface and to provide
basic pattern-matching methods. Pattern objects are compiled regular expressions that can be
applied to many strings. A Matcher object is a match of one Pattern applied to one string (or any
object implementing CharSequence).

Backslashes in regular expression String literals need to be escaped. So \n (newline) becomes \\n
when used in a Java String literal that is to be used as a regular expression.

java.lang.String

Description

New methods for pattern matching.

Methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

boolean matches (String regex)

Return true if regex matches the entire String.

String[] split (String regex)

Return an array of the substrings surrounding matches of regex.

String [] split (String regex, int limit)

Return an array of the substrings surrounding the first limit-1 matches of regex.

String replaceFirst (String regex, String replacement)

Replace the substring matched by regex with replacement.

String replaceAll (String regex, String replacement)

Replace all substrings matched by regex with replacement.

java.util.regex.Pattern

extends Object and implements Serializable

Description

Models a regular expression pattern.

Methods

static Pattern compile(String regex)

Construct a Pattern object from regex.

static Pattern compile(String regex, int flags)

Construct a new Pattern object out of regex and the OR'd mode-modifier constants flags.
int flags()

Return the Pattern's mode modifiers.

Matcher matcher(CharSequence input)

Construct a Matcher object that will match this Pattern against input.

static boolean matches(String regex, CharSequence input)

Return true if regex matches the entire string input.
String pattern()

Return the regular expression used to create this Pattern.

String[] split(CharSequence input)

Return an array of the substrings surrounding matches of this Pattern in input.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String[] split(CharSequence input, int limit)

Return an array of the substrings surrounding the first limit matches of this pattern in regex.

java.util.regex.Matcher

extends Object

Description

Models a regular expression pattern matcher and pattern matching results.

Methods

Matcher appendReplacement(StringBuffer sb, String replacement)

Append substring preceding match and replacement to sb.

StringBuffer appendTail(StringBuffer sb)

Appends substring following end of match to sb.
int end()

Index of the first character after the end of the match.
int end(int group)

Index of the first character after the text captured by group.
boolean find()

Find the next match in the input string.
boolean find(int start)

Find the next match after character position, start.
String group()

Text matched by this Pattern.

String group(int group)

Text captured by capture group, group.
int groupCount()

Number of capturing groups in Pattern.
boolean lookingAt()

True if match is at beginning of input.
boolean matches()

Return true if Pattern matches entire input string.
Pattern pattern()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Return Pattern object used by this Matcher.

String replaceAll(String replacement)

Replace every match with replacement.

String replaceFirst(String replacement)

Replace first match with replacement.
Matcher reset()

Reset this matcher so that the next match starts at the beginning of the input string.
Matcher reset(CharSequence input)

Reset this matcher with new input.
int start()

Index of first character matched.
int start(int group)

Index of first character matched in captured substring, group.

java.util.regex.PatternSyntaxException

implements Serializable

Description

Thrown to indicate a syntax error in a regular expression pattern.

Methods

PatternSyntaxException(String desc, String regex, int index)

Construct an instance of this class.
String getDescription()

Return error description.
int getIndex()

Return error index.
String getMessage()

Return a multiline error message containing error description, index, regular expression
pattern, and indication of the position of the error within the pattern.

String getPattern()

Return the regular expression pattern that threw the exception.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

java.lang.CharSequence

implemented by CharBuffer, String,
StringBuffer

Description

Defines an interface for read-only access so that regular expression patterns may be applied to a
sequence of characters.

Methods

char charAt(int index)

Return the character at the zero-based position, index.
int length()

Return the number of characters in the sequence.
CharSequence subSequence(int start, int end)

Return a subsequence including the start index and excluding the end index.
String toString()

Return a String representation of the sequence.

1.4.3 Unicode Support

This package supports Unicode 3.0, although \w, \W, \d, \D, \s, and \S support only ASCII. You can
use the equivalent Unicode properties \p{L}, \P{L}, \p{Nd}, \P{Nd}, \p{Z}, and \P{Z}. The word
boundary sequences, \b and \B, do understand Unicode.

For supported Unicode properties and blocks, see Table 1-2. This package supports only the short
property names, such as \p{Lu}, and not \p{Lowercase_Letter}. Block names require the In prefix

and support only the name form without spaces or underscores; for example,
\p{InGreekExtended}, not \p{In_Greek_Extended} or \p{In Greek Extended}.

1.4.4 Examples

Example 1-5. Simple match

//Match Spider-Man, Spiderman, SPIDER-MAN, etc.
public class StringRegexTest {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static void main(String[] args) throws Exception {
 String dailybugle = "Spider-Man Menaces City!";

 //regex must match entire string
 String regex = "(?i).*spider[-]?man.*";

 if (dailybugle.matches(regex)) {
 //do something
 }
 }
}

Example 1-6. Match and capture group

//Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
import java.util.regex.*;

public class MatchTest {
 public static void main(String[] args) throws Exception {
 String date = "12/30/1969";
 Pattern p =
 Pattern.compile("(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)");

 Matcher m = p.matcher(date);

 if (m.find()) {
 String month = m.group(1);
 String day = m.group(2);
 String year = m.group(3);
 }
 }
}

Example 1-7. Simple substitution

//Convert
 to
 for XHTML compliance
import java.util.regex.*;

public class SimpleSubstitutionTest {
 public static void main(String[] args) {
 String text = "Hello world.
";

 try {
 Pattern p = Pattern.compile("
", Pattern.CASE_INSENSITIVE);
 Matcher m = p.matcher(text);

 String result = m.replaceAll("
");
 }
 catch (PatternSyntaxException e) {
 System.out.println(e.getMessage());
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 catch (Exception e) { System.exit(); }

 }

}

Example 1-8. Harder substitution

//urlify - turn URL's into HTML links
import java.util.regex.*;

public class Urlify {
 public static void main (String[] args) throws Exception {
 String text = "Check the website, http://www.oreilly.com/catalog/repr.";
 String regex =
 "\\b # start at word\n"
 + " # boundary\n"
 + "(# capture to $1\n"
 + "(https?|telnet|gopher|file|wais|ftp) : \n"
 + " # resource and colon\n"
 + "[\\w/\\#~:.?+=&%@!\\-] +? # one or more valid\n"
 + " # characters\n"
 + " # but take as little\n"
 + " # as possible\n"
 + ")\n"
 + "(?= # lookahead\n"
 + "[.:?\\-] * # for possible punc\n"
 + "(?: [^\\w/\\#~:.?+=&%@!\\-] # invalid character\n"
 + "| $) # or end of string\n"
 + ")";

 Pattern p = Pattern.compile(regex,
 Pattern.CASE_INSENSITIVE + Pattern.COMMENTS);
 Matcher m = p.matcher(text);
 String result = m.replaceAll("$1");
 }
}

1.4.5 Other Resources

Java NIO, by Ron Hitchens (O'Reilly), shows regular expressions in the context of Java's new
I/O improvements.

Mastering Regular Expressions, Second Edition, by Jeffrey E. F. Friedl (O'Reilly), covers the
details of Java regular expressions on pages 378-391.

Sun's online documentation at http://java.sun.com/j2se/1.4/docs/api/java/util/regex/package-
summary.html.

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/package-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.5 .NET and C#

Microsoft's .NET framework provides a consistent and powerful set of regular expression classes for
all .NET implementations. The following sections list the .NET regular expression syntax, the core
.NET classes, and C# examples. Microsoft's .NET uses a Traditional NFA match engine. For an
explanation of the rules behind a Traditional NFA engine, see Section 1.2.

1.5.1 Supported Metacharacters

.NET supports the metacharacters and metasequences listed in Table 1-15 through Table 1-8. For
expanded definitions of each metacharacter, see Section 1.2.1.

Table 1-15. Character representations

Sequence Meaning

\a Alert (bell), x07.

\b Backspace, x08, supported only in character class.

\e ESC character, x1B.

\n Newline, x0A.

\r Carriage return, x0D.

\f Form feed, x0C.

\t Horizontal tab, x09.

\v Vertical tab, x0B.

\0octal Character specified by a two-digit octal code.

\xhex Character specified by a two-digit hexadecimal code.

\uhex Character specified by a four-digit hexadecimal code.

\cchar Named control character.

Table 1-16. Character classes and class-like constructs

Class Meaning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Meaning

[...] A single character listed or contained within a listed range.

[^...] A single character not listed and not contained within a listed range.

. Any character, except a line terminator (unless single-line mode, s).

\w
Word character, [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}\p{Pc}] or [a-zA-Z_0-9] in
ECMAScript mode.

\W
Non-word character, [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}\p{Pc}] or [^a-zA-Z_0-9] in
ECMAScript mode.

\d Digit, \p{Nd} or [0-9] in ECMAScript mode.

\D Non-digit, \P{Nd} or [^0-9] in ECMAScript mode.

\s
Whitespace character, [\f\n\r\t\v\x85\p{Z}] or [\f\n\r\t\v] in ECMAScript

mode.

\S
Non-whitespace character, [^ \f\n\r\t\v\x85\p{Z}] or [^ \f\n\r\t\v] in
ECMAScript mode.

\p{prop} Character contained by given Unicode block or property.

\P{prop} Character not contained by given Unicode block or property.

Table 1-17. Anchors and other zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in MULTILINE mode.

\A Beginning of string, in all match modes.

$ End of string, or before any newline if in MULTILINE mode.

\Z End of string but before any final line terminator, in all match modes.

\z End of string, in all match modes.

\b Boundary between a \w character and a \W character.

\B Not-word-boundary.

\G End of the previous match.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

[...] A single character listed or contained within a listed range.

[^...] A single character not listed and not contained within a listed range.

. Any character, except a line terminator (unless single-line mode, s).

\w
Word character, [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}\p{Pc}] or [a-zA-Z_0-9] in
ECMAScript mode.

\W
Non-word character, [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}\p{Pc}] or [^a-zA-Z_0-9] in
ECMAScript mode.

\d Digit, \p{Nd} or [0-9] in ECMAScript mode.

\D Non-digit, \P{Nd} or [^0-9] in ECMAScript mode.

\s
Whitespace character, [\f\n\r\t\v\x85\p{Z}] or [\f\n\r\t\v] in ECMAScript

mode.

\S
Non-whitespace character, [^ \f\n\r\t\v\x85\p{Z}] or [^ \f\n\r\t\v] in
ECMAScript mode.

\p{prop} Character contained by given Unicode block or property.

\P{prop} Character not contained by given Unicode block or property.

Table 1-17. Anchors and other zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in MULTILINE mode.

\A Beginning of string, in all match modes.

$ End of string, or before any newline if in MULTILINE mode.

\Z End of string but before any final line terminator, in all match modes.

\z End of string, in all match modes.

\b Boundary between a \w character and a \W character.

\B Not-word-boundary.

\G End of the previous match.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 1-18. Comments and mode modifiers

Modifier/sequence
Mode

character
Meaning

Singleline s
Dot (.) matches any character, including a line
terminator.

Multiline m ^ and $ match next to embedded line terminators.

IgnorePatternWhitespace x
Ignore whitespace and allow embedded comments
starting with #.

IgnoreCase i
Case-insensitive match based on characters in the
current culture.

CultureInvariant i Culture-insensitive match.

ExplicitCapture n
Allow named capture groups, but treat parentheses as
non-capturing groups.

Compiled Compile regular expression.

RightToLeft
Search from right to left, starting to the left of the
start position.

ECMAScript
Enables ECMAScript compliance when used with
IgnoreCase or Multiline.

(?imnsx-imnsx) Turn match flags on or off for rest of pattern.

(?imnsx-imnsx:...)
Turn match flags on or off for the rest of the
subexpression.

(?#...) Treat substring as a comment.

#... Treat rest of line as a comment in /x mode.

Table 1-19. Grouping, capturing, conditional, and control

Sequence Meaning

(...) Grouping. Submatches fill \1,\2,... and $1, $2,....

\n In a regular expression, match what was matched by the nth earlier submatch.

$n In a replacement string, contains the nth earlier submatch.

(?<name>...) Captures matched substring into group, name.

(?:...) Grouping-only parentheses, no capturing.

(?>...) Disallow backtracking for subpattern.

...|... Alternation; match one or the other.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sequence Meaning

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, but as few times as possible.

Table 1-20. Replacement sequences

Sequence Meaning

$1, $2, ... Captured submatches.

${name} Matched text of a named capture group.

$' Text before match.

$& Text of match.

$' Text after match.

$+ Last parenthesized match.

$_ Copy of original input string.

1.5.2 Regular Expression Classes and Interfaces

.NET defines its regular expression support in the System.Text.RegularExpressions module. The
RegExp() constructor handles regular expression creation, and the rest of the RegExp methods
handle pattern matching. The Groups and Match classes contain information about each match.

C#'s raw string syntax, @"", allows you to define regular expression patterns without having to

escape embedded backslashes.

Regex

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, but as few times as possible.

Table 1-20. Replacement sequences

Sequence Meaning

$1, $2, ... Captured submatches.

${name} Matched text of a named capture group.

$' Text before match.

$& Text of match.

$' Text after match.

$+ Last parenthesized match.

$_ Copy of original input string.

1.5.2 Regular Expression Classes and Interfaces

.NET defines its regular expression support in the System.Text.RegularExpressions module. The
RegExp() constructor handles regular expression creation, and the rest of the RegExp methods
handle pattern matching. The Groups and Match classes contain information about each match.

C#'s raw string syntax, @"", allows you to define regular expression patterns without having to

escape embedded backslashes.

Regex

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This class handles the creation of regular expressions and pattern matching. Several static methods
allow for pattern matching without creating a RegExp object.

Methods

public Regex(string pattern)

public Regex(string pattern, RegexOptions options)

Return a regular expression object based on pattern and with the optional mode modifiers,

options.

public static void CompileToAssembly(RegexCompilationInfo[] regexinfos,

System.Reflection.AssemblyName assemblyname)

public static void CompileToAssembly(RegexCompilationInfo[] regexinfos,

System.Reflection.AssemblyName assemblyname)

public static void CompileToAssembly(RegexCompilationInfo[] regexinfos,

System.Reflection.AssemblyName assemblyname,

System.Reflection.Emit.CustomAttributeBuilder[] attributes)

public static void CompileToAssembly(RegexCompilationInfo[] regexinfos,

System.Reflection.AssemblyName assemblyname,

System.Reflection.Emit.CustomAttributeBuilder[] attributes, string resourceFile)

Compile one or more Regex objects to an assembly. The regexinfos array describes the

regular expressions to include. The assembly filename is assemblyname. The array attributes

defines attributes for the assembly. resourceFile is the name of a Win32 resource file to

include in the assembly.
public static string Escape(string str)

Return a string with all regular expression metacharacters, pound characters (#), and

whitespace escaped.
public static bool IsMatch(string input, string pattern)

public static bool IsMatch(string input, string pattern, RegexOptions options)

public bool IsMatch(string input)

public bool IsMatch(string input, int startat)

Return the success of a single match against the input string input. Static versions of this

method require the regular expression pattern. The options parameter allows for optional

mode modifiers (OR'd together). The startat parameter defines a starting position in input to

start matching.
public static Match Match(string input, string pattern)

public static Match Match(string input, string pattern, RegExpOptions options)

public Match Match(string input)

public Match Match(string input, int startat)

public Match Match(string input, int startat, int length)

Perform a single match against the input string input and return information about the match

in a Match object. Static versions of this method require the regular expression pattern. The

options parameter allows for optional mode modifiers (OR'd together). The startat and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

length parameters define a starting position and the number of characters after the starting

position to perform the match.
public static MatchCollection Matches(string input, string pattern)

public static MatchCollection Matches(string input, string pattern, RegExpOptions

options)

public MatchCollection Matches(string input)

public MatchCollection Matches(string input, int startat)

Find all matches in the input string input, and return information about the matches in a
MatchCollection object. Static versions of this method require the regular expression

pattern. The options parameter allows for optional mode modifiers (OR'd together). The

startat parameter defines a starting position in input to perform the match.

public static string Replace(string input, pattern, MatchEvaluator evaluator)

public static string Replace(string input, pattern, MatchEvaluator evaluator,

RegexOptions options)

public static string Replace(string input, pattern, string replacement)

public static string Replace(string input, pattern, string replacement, RegexOptions

options)

public string Replace(string input, MatchEvaluator evaluator)

public string Replace(string input, MatchEvaluator evaluator, int count)

public string Replace(string input, MatchEvaluator evaluator, int count, int startat)

public string Replace(string input, string replacement)

public string Replace(string input, string replacement, int count)

public string Replace(string input, string replacement, int count, int startat)

Return a string in which each match in input is replaced with either the evaluation of the

replacement string or a call to a MatchEvaluator object. The string replacement can contain

backreferences to captured text with the $n or ${name} syntax.

The options parameter allows for optional mode modifiers (OR'd together). The count paramenter

limits the number of replacements. The startat parameter defines a starting position in input to

start the replacement.

public static string[] Split(string input, string pattern)

public static string[] Split(string input, string pattern, RegexOptions options)

public static string[] Split(string input)

public static string[] Split(string input, int count)

public static string[] Split(string input, int count, int startat)

Return an array of strings broken around matches of the regex pattern. If specified, no more
than count strings are returned. You can specify a starting position in input with startat.

Match

Properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public bool Success

Indicates whether the match was successful.
public string Value

Text of the match.
public int Length

Number of characters in the matched text.
public int Index

Zero-based character index of the start of the match.
public GroupCollection Groups

A GroupCollection object where Groups[0].value contains the text of the entire match, and
each additional Groups element contains the text matched by a capture group.

Methods

public Match NextMatch()

Return a Match object for the next match of the regex in the input string.

public virtual string Result(string result)

Return result with special replacement sequences replaced by values from the previous

match.
public static Match Synchronized(Match inner)

Return a Match object identical to inner, except also safe for multithreaded use.

Group

Properties

public bool Success

True if the group participated in the match.
public string Value

Text captured by this group.
public int Length

Number of characters captured by this group.
public int Index

Zero-based character index of the start of the text captured by this group.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5.3 Unicode Support

.NET provides built-in support for Unicode 3.1, including full support in the \w, \d, and \s sequences.
The range of characters matched can be limited to ASCII characters by turning on ECMAScript mode.

Case-insensitive matching is limited to the characters of the current language defined in
Thread.CurrentCulture, unless the CultureInvariant option is set.

.NET supports the standard Unicode properties (see Table 1-2) and blocks. Only the short form of
property names are supported. Block names require the Is prefix and must use the simple name

form, without spaces or underscores.

1.5.4 Examples

Example 1-9. Simple match

//Match Spider-Man, Spiderman, SPIDER-MAN, etc.
namespace Regex_PocketRef
{
 using System.Text.RegularExpressions;

 class SimpleMatchTest
 {
 static void Main()
 {
 string dailybugle = "Spider-Man Menaces City!";

 string regex = "spider[-]?man";

 if (Regex.IsMatch(dailybugle, regex, RegexOptions.IgnoreCase)) {
 //do something
 }
 }
}

Example 1-10. Match and capture group

//Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
using System.Text.RegularExpressions;

class MatchTest
{
 static void Main()
 {
 string date = "12/30/1969";
 Regex r =
 new Regex(@"(\d\d)[-/](\d\d)[-/](\d\d(?:\d\d)?)");

 Match m = r.Match(date);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (m.Success) {
 string month = m.Groups[1].Value;
 string day = m.Groups[2].Value;
 string year = m.Groups[3].Value;
 }
 }
}

Example 1-11. Simple substitution

//Convert
 to
 for XHTML compliance
using System.Text.RegularExpressions;

class SimpleSubstitutionTest
{
 static void Main()
 {
 string text = "Hello world.
";
 string regex = "
";
 string replacement = "
";

 string result =
 Regex.Replace(text, regex, replacement, RegexOptions.IgnoreCase);
 }
}

Example 1-12. Harder substitution

//urlify - turn URL's into HTML links
using System.Text.RegularExpressions;

public class Urlify
{
 static Main ()
 {
 string text = "Check the website, http://www.oreilly.com/catalog/repr.";
 string regex =
 @"\b # start at word boundary
 (# capture to $1
 (https?|telnet|gopher|file|wais|ftp) :
 # resource and colon
 [\w/#~:.?+=&%@!\-] +? # one or more valid
 # characters
 # but take as little as
 # possible
)
 (?= # lookahead
 [.:?\-] * # for possible
 # punctuation
 (?: [^\w/#~:.?+=&%@!\-] # invalid character
 | $) # or end of string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

)";

 Regex r = new Regex(regex, RegexOptions.IgnoreCase
 | RegexOptions.IgnorePatternWhitespace);
 string result = r.Replace(text, "$1");
 }
}

1.5.5 Other Resources

Programming C#, by Jesse Liberty (O'Reilly), gives a thorough introduction to C#, .NET, and
regular expressions.

Mastering Regular Expressions, Second Edition, by Jeffrey E. F. Friedl (O'Reilly), covers the
details and failings of .NET regular expressions on pages 399-432.

Microsoft's online documentation at http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/cpgenref/html/cpconregularexpressionslanguageelements.asp.

[Team LiB]

http://msdn.microsoft.com/library/default.asp?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.6 Python

Python provides a rich, Perl-like regular expression syntax in the re module. The re module uses a

Traditional NFA match engine. For an explanation of the rules behind an NFA engine, see Section 1.2.

This chapter covers the version of re included with Python 2.2, although the module has been

available in similar form since Python 1.5.

1.6.1 Supported Metacharacters

The re module supports the metacharacters and metasequences listed in Table 1-21 through Table

1-25. For expanded definitions of each metacharacter, see Section 1.2.1.

Table 1-21. Character representations

Sequence Meaning

\a Alert (bell), x07.

\b Backspace, x08, supported only in character class.

\n Newline, x0A.

\r Carriage return, x0D.

\f Form feed, x0C.

\t Horizontal tab, x09.

\v Vertical tab, x0B.

\octal Character specified by up to three octal digits.

\xhh Character specified by a two-digit hexadecimal code.

\uhhhh Character specified by a four-digit hexadecimal code.

\Uhhhhhhhh Character specified by an eight-digit hexadecimal code.

Table 1-22. Character classes and class-like constructs

Class Meaning

[...] Any character listed or contained within a listed range.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Meaning

[^...] Any character that is not listed and is not contained within a listed range.

. Any character, except a newline (unless DOTALL mode).

\w Word character, [a-zA-z0-9_] (unless LOCALE or UNICODE mode).

\W Non-word character, [^a-zA-z0-9_] (unless LOCALE or UNICODE mode).

\d Digit character, [0-9].

\D Non-digit character, [^0-9].

\s Whitespace character, [\t\n\r\f\v].

\S Nonwhitespace character, [\t\n\r\f\v].

Table 1-23. Anchors and zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in MULTILINE match mode.

\A Start of search string, in all match modes.

$
End of search string or before a string-ending newline, or before any newline in
MULTILINE match mode.

\Z End of string or before a string-ending newline, in any match mode.

\b Word boundary.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 1-24. Comments and mode modifiers

Modifier/sequence
Mode

character
Meaning

I or IGNORECASE i Case-insensitive matching.

L or LOCALE L
Cause \w, \W, \b, and \B to use current locale's definition

of alphanumeric.

M or MULTILINE or (?
m)

m ^ and $ match next to embedded \n.

[^...] Any character that is not listed and is not contained within a listed range.

. Any character, except a newline (unless DOTALL mode).

\w Word character, [a-zA-z0-9_] (unless LOCALE or UNICODE mode).

\W Non-word character, [^a-zA-z0-9_] (unless LOCALE or UNICODE mode).

\d Digit character, [0-9].

\D Non-digit character, [^0-9].

\s Whitespace character, [\t\n\r\f\v].

\S Nonwhitespace character, [\t\n\r\f\v].

Table 1-23. Anchors and zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in MULTILINE match mode.

\A Start of search string, in all match modes.

$
End of search string or before a string-ending newline, or before any newline in
MULTILINE match mode.

\Z End of string or before a string-ending newline, in any match mode.

\b Word boundary.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 1-24. Comments and mode modifiers

Modifier/sequence
Mode

character
Meaning

I or IGNORECASE i Case-insensitive matching.

L or LOCALE L
Cause \w, \W, \b, and \B to use current locale's definition

of alphanumeric.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modifier/sequence
Mode

character
Meaning

M or MULTILINE or (?
m)

m ^ and $ match next to embedded \n.

S or DOTALL or (?s) s Dot (.) matches newline.

U or UNICODE or (?u) u
Cause \w, \W, \b, and \B to use Unicode definition of

alphanumeric.

X or VERBOSE or (?x) x Ignore whitespace and allow comments (#) in pattern.

(?mode)
Turn listed modes (iLmsux) on for the entire regular

expression.

(?#...) Treat substring as a comment.

#... Treat rest of line as a comment in VERBOSE mode.

Table 1-25. Grouping, capturing, conditional, and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2,...

(?P<name> ...) Group subpattern and capture submatch into named capture group, name.

(?P=name) Match text matched by earlier named capture group, name.

\n Contains the results of the nth earlier submatch.

(?:...) Groups subpattern, but does not capture submatch.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{x,y} Match at least x times but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few times as possible.

1.6.2 re Module Objects and Functions

M or MULTILINE or (?
m)

m ^ and $ match next to embedded \n.

S or DOTALL or (?s) s Dot (.) matches newline.

U or UNICODE or (?u) u
Cause \w, \W, \b, and \B to use Unicode definition of

alphanumeric.

X or VERBOSE or (?x) x Ignore whitespace and allow comments (#) in pattern.

(?mode)
Turn listed modes (iLmsux) on for the entire regular

expression.

(?#...) Treat substring as a comment.

#... Treat rest of line as a comment in VERBOSE mode.

Table 1-25. Grouping, capturing, conditional, and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2,...

(?P<name> ...) Group subpattern and capture submatch into named capture group, name.

(?P=name) Match text matched by earlier named capture group, name.

\n Contains the results of the nth earlier submatch.

(?:...) Groups subpattern, but does not capture submatch.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{x,y} Match at least x times but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few times as possible.

1.6.2 re Module Objects and Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The re module defines all regular expression functionality. Pattern matching is done directly through

module functions, or patterns are compiled into regular expression objects that can be used for
repeated pattern matching. Information about the match, including captured groups, is retrieved
through match objects.

Python's raw string syntax, r'' or r"", allows you to specify regular expression patterns without
having to escape embedded backslashes. The raw-string pattern, r'\n', is equivalent to the regular
string pattern, '\\n'. Python also provides triple-quoted raw strings for multiline regular expressions:
r'''text''' and r"""text""".

Module Functions

The re module defines the following functions and one exception.

compile(pattern [, flags])

Return a regular expression object with the optional mode modifiers, flags.

match(pattern, string [, flags])

Search for pattern at starting position of string, and return a match object or None if no

match.
search(pattern, string [, flags])

Search for pattern in string, and return a match object or None if no match.

split(pattern, string [, maxsplit=0])

Split string on pattern. Limit the number of splits to maxsplit. Submatches from capturing

parentheses are also returned.
sub(pattern, repl, string [, count=0])

Return a string with all or up to count occurrences of pattern in string replaced with repl.

repl may be either a string or a function that takes a match object argument.

subn(pattern, repl, string [, count=0])

Perform sub() but return a tuple of the new string and the number of replacements.

findall(pattern, string)

Return matches of pattern in string. If pattern has capturing groups, returns a list of

submatches or a list of tuples of submatches.
finditer(pattern, string)

Return an iterator over matches of pattern in string. For each match, the iterator returns a

match object.
escape(string)

Return string with alphanumerics backslashed so that string can be matched literally.
exception error

Exception raised if an error occurs during compilation or matching. This is common if a string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

passed to a function is not a valid regular expression.

RegExp

Regular expression objects are created with the re.compile function.

flags

Return the flags argument used when the object was compiled or 0.
groupindex

Return a dictionary that maps symbolic group names to group numbers.
pattern

Return the pattern string used when the object was compiled.
match(string [, pos [, endpos]])

search(string [, pos [, endpos]])

split(string [, maxsplit=0])

sub(repl, string [, count=0])

subn(repl, string [, count=0])

findall(string)

Same as the re module functions, except pattern is implied. pos and endpos give start and

end string indexes for the match.

Match Objects

Match objects are created by the match and find functions.

pos
endpos

Value of pos or endpos passed to search or match.
re

The regular expression object whose match or search returned this object.
string

String passed to match or search.

group([g1, g2, ...])

Return one or more submatches from capturing groups. Groups may be either numbers
corresponding to capturing groups or strings corresponding to named capturing groups. Group
zero corresponds to the entire match. If no arguments are provided, this function returns the
entire match. Capturing groups that did not match have a result of None.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

groups([default])

Return a tuple of the results of all capturing groups. Groups that did not match have the value
None or default.

groupdict([default])

Return a dictionary of named capture groups, keyed by group name. Groups that did not
match have the value None or default.

start([group])

Index of start of substring matched by group (or start of entire matched string if no group).

end([group])

Index of end of substring matched by group (or start of entire matched string if no group).

span([group])

Return a tuple of starting and ending indexes of group (or matched string if no group).

expand([template])

Return a string obtained by doing backslash substitution on template. Character escapes,

numeric backreferences, and named backreferences are expanded.
lastgroup

Name of the last matching capture group, or None if no match or if the group had no name.
lastindex

Index of the last matching capture group, or None if no match.

1.6.3 Unicode Support

re provides limited Unicode support. Strings may contain Unicode characters, and individual Unicode
characters can be specified with \u. Additionally, the UNICODE flag causes \w, \W, \b, and \B to
recognize all Unicode alphanumerics. However, re does not provide support for matching Unicode

properties, blocks, or categories.

1.6.4 Examples

Example 1-13. Simple match

#Match Spider-Man, Spiderman, SPIDER-MAN, etc.
import re

dailybugle = 'Spider-Man Menaces City!'
pattern = r'spider[-]?man.'

if re.match(pattern, dailybugle, re.IGNORECASE):
 print dailybugle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 1-14. Match and capture group

#Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
import re

date = '12/30/1969'

regex = re.compile(r'(\d\d)[-/](\d\d)[-/](\d\d(?:\d\d)?)')

match = regex.match(date)

if match:
 month = match.group(1) #12
 day = match.group(2) #30
 year = match.group(3) #1969

Example 1-15. Simple substitution

#Convert
 to
 for XHTML compliance
import re

text = 'Hello world.
'
regex = re.compile(r'
', re.IGNORECASE);
repl = r'
'

result = regex.sub(repl,text)

Example 1-16. Harder substitution

#urlify - turn URL's into HTML links
import re

text = 'Check the website, http://www.oreilly.com/catalog/repr.'

pattern = r'''
 \b # start at word boundary
 (# capture to \1
 (https?|telnet|gopher|file|wais|ftp) :
 # resource and colon
 [\w/#~:.?+=&%@!\-] +? # one or more valid chars
 # take little as possible
)
 (?= # lookahead
 [.:?\-] * # for possible punc
 (?: [^\w/#~:.?+=&%@!\-] # invalid character
 | $) # or end of string
)'''

regex = re.compile(pattern, re.IGNORECASE
 + re.VERBOSE);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

result = regex.sub(r'\1', text)

1.6.5 Other Resources

Python's online documentation at http://www.python.org/doc/current/lib/module-re.html.

[Team LiB]

http://www.python.org/doc/current/lib/module-re.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.7 PCRE Lib

The Perl Compatible Regular Expression (PCRE) library is a free-for-any-use, open source regular
expression library developed by Philip Hazel. PCRE has been incorporated into PHP, Apache 2.0, KDE,
Exim MTA, Analog, and Postfix. Users of those programs can use the supported metacharacters listed
in Table 1-26 through Table 1-30.

The PCRE library uses a Traditional NFA match engine. For an explanation of the rules behind an NFA
engine, see Section 1.2.

This reference covers PCRE Version 4.0, which aims to emulate Perl 5.8-style regular expressions.

1.7.1 Supported Metacharacters

PCRE supports the metacharacters and metasequences listed in Table 1-26 through Table 1-30. For
expanded definitions of each metacharacter, see Section 1.2.1.

Table 1-26. Character representations

Sequence Meaning

\a Alert (bell), x07.

\b Backspace, x08, supported only in character class.

\e ESC character, x1B.

\n Newline, x0A.

\r Carriage return, x0D.

\f Form feed, x0C.

\t Horizontal tab, x09.

\octal Character specified by a three-digit octal code.

\xhex Character specified by a one- or two-digit hexadecimal code.

\x{hex} Character specified by any hexadecimal code.

\cchar Named control character.

Table 1-27. Character classes and class-like constructs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Meaning

[...] A single character listed or contained in a listed range.

[^...] A single character not listed and not contained within a listed range.

[:class:] POSIX-style character class valid only within a regex character class.

. Any character except newline (unless single-line mode, /s).

\C One byte; however, this may corrupt a Unicode character stream.

\w Word character, [a-zA-z0-9_].

\W Non-word character, [^a-zA-z0-9_].

\d Digit character, [0-9].

\D Non-digit character, [^0-9].

\s Whitespace character, [\n\r\f\t].

\S Non-whitespace character, [^\n\r\f\t].

Table 1-28. Anchors and zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in multiline match mode, /m.

\A Start of search string, in all match modes.

$
End of search string or before a string-ending newline, or before any newline if in
multiline match mode, /m.

\Z End of string or before a string-ending newline, in any match mode.

\z End of string, in any match mode.

\G Beginning of current search.

\b
Word boundary; position between a word character (\w) and either a non-word
character (\W), the start of the string, or the end of the string.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 1-29. Comments and mode modifiers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modifier/sequence
Mode

character
Meaning

PCRE_CASELESS i
Case-insensitive matching for characters with codepoints
values less than 256.

PCRE_MULTILINE m ^ and $ match next to embedded \n.

PCRE_DOTALL s Dot (.) matches newline.

PCRE_EXTENDED x Ignore whitespace and allow comments (#) in pattern.

PCRE_UNGREEDY U
Reverse greediness of all quantifiers: * becomes non-
greedy and *? becomes greedy.

PCRE_ANCHORED Force match to start at the first position searched.

PCRE_DOLLAR_ENDONLY
Force $ to match at only the end of a string instead of

before a string ending with a newline. Overridden by
multiline mode.

PCRE_NO_AUTO_CAPTURE Disable capturing function of parentheses.

PCRE_UTF8
Treat regular expression and subject strings as strings of
multibyte UTF-8 characters.

(?mode)
Turn listed modes (imsxU) on for the rest of the

subexpression.

(?-mode)
Turn listed modes (imsxU) off for the rest of the

subexpression.

(?mode:...) Turn listed modes (xsmi) on within parentheses.

(?mode:...) Turn listed modes (xsmi) off within parentheses.

\Q Quote all following regex metacharacters.

\E End a span started with \Q.

(?#...) Treat substring as a comment.

#... Treat rest of line as a comment in PCRE_EXTENDED mode.

Table 1-30. Grouping, capturing, conditional, and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2,...

(?P<name>...)
Group subpattern and capture submatch into named capture group,
name.

\n
Contains the results of the nth earlier submatch from a parentheses

capture group or a named capture group.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sequence Meaning

(?:...) Group subpattern, but do not capture submatch.

(?>...) Disallow backtracking for text matched by subpattern.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}?
Match at least x times, no more than y times, and as few times as

possible.

*+ Match 0 or more times, and never backtrack.

++ Match 1 or more times, and never backtrack.

?+ Match 0 or 1 times, and never backtrack.

{n}+ Match at least n times, and never backtrack.

{n,}+ Match at least n times, and never backtrack.

{x,y}+ Match at least x times, no more than y times, and never backtrack.

(?

(condition)...|...)
Match with if-then-else pattern. The condition can be either the number

of a capture group or a lookahead or lookbehind construct.

(?(condition)...)
Match with if-then pattern. The condition can be either the number of a

capture group or a lookahead or lookbehind construct.

1.7.2 PCRE API

Applications using PCRE should look for the API prototypes in pcre.h and include the actual library
file, libpcre.a, by compiling with -lpcre.

Most functionality is contained in the functions pcre_compile(), which prepares a regular
expression data structure, and pcre_exec(), which performs the pattern matching. You are
responsible for freeing memory, although PCRE does provide pcre_free_substring() and
pcre_free_substring_list() to help out.

(?:...) Group subpattern, but do not capture submatch.

(?>...) Disallow backtracking for text matched by subpattern.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}?
Match at least x times, no more than y times, and as few times as

possible.

*+ Match 0 or more times, and never backtrack.

++ Match 1 or more times, and never backtrack.

?+ Match 0 or 1 times, and never backtrack.

{n}+ Match at least n times, and never backtrack.

{n,}+ Match at least n times, and never backtrack.

{x,y}+ Match at least x times, no more than y times, and never backtrack.

(?

(condition)...|...)
Match with if-then-else pattern. The condition can be either the number

of a capture group or a lookahead or lookbehind construct.

(?(condition)...)
Match with if-then pattern. The condition can be either the number of a

capture group or a lookahead or lookbehind construct.

1.7.2 PCRE API

Applications using PCRE should look for the API prototypes in pcre.h and include the actual library
file, libpcre.a, by compiling with -lpcre.

Most functionality is contained in the functions pcre_compile(), which prepares a regular
expression data structure, and pcre_exec(), which performs the pattern matching. You are
responsible for freeing memory, although PCRE does provide pcre_free_substring() and
pcre_free_substring_list() to help out.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PCRE API Synopsis

pcre *pcre_compile(const char * pattern, int options, const char ** errptr, int *

erroffset, const unsigned char * tableptr)

Compile pattern with optional mode modifiers options and optional locale tables tableptr,
which are created with pcre_maketables(). Returns either a compiled regex or NULL with

errptr pointing to an error message and erroffset pointing to the position in pattern where

the error occurred.
int pcre_exec(const pcre * code, const pcre_extra *extra, const char * subject, int

length, int startoffset, int options, int * ovector, int ovecsize)

Perform pattern matching with a compiled regular expression, code, and a supplied input

string, subject, of length length. The results of a successful match are stored in ovector. The

first and second elements of ovector contain the position of the first character in the overall

match and the character following the end of the overall match. Each additional pair of
elements, up to two thirds the length of ovector, contain the positions of the starting

character and the character after capture group submatches. Optional parameters options

contain mode modifiers, and pcre_extra contains the results of a call to pcre_study().

pcre_extra *pcre_study(const pcre * code, int options, const char ** errptr)

Return information to speed up calls to pcre_exec() with code. There are currently no

options, so options should always be zero. If an error occurred, errptr points to an error

message.
int pcre_copy_named_substring(const pcre * code, const char * subject, int * ovector, int

stringcount, const char * stringname, char * buffer, int buffersize)

Copy the substring matched by the named capture group stringname into buffer.

stringcount is the number of substrings placed into ovector, usually the result returned by
pcre_exec().

int pcre_copy_substring(const char * subject, int * ovector, int stringcount, int

stringnumber, char * buffer, int buffersize)

Copy the substring matched by the numbered capture group stringnumber into buffer.

stringcount is the number of substrings placed into ovector, usually the result returned by
pcre_exec().

int pcre_get_named_substring(const pcre * code, const char * subject, int * ovector, int

stringcount, const char * stringname, const char ** stringptr)

Create a new string, pointed to by stringptr, containing the substring matched by the named

capture group stringname. Returns the length of the substring. stringcount is the number of

substrings placed into ovector, usually the result returned by pcre_exec().

int pcre_get_stringnumber(const pcre * code, const char * name)

Return the numbered capture group associated with the named capture group, name.

int pcre_get_substring(const char * subject, int * ovector, int stringcount, int

stringnumber, const char ** stringptr)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Create a new string, pointed to by stringptr, containing the substring matched by the

numbered capture group stringnumber. Returns the length of the substring. stringcount is

the number of substrings placed into ovector, usually the result returned by pcre_exec().

int pcre_get_substring_list(const char * subject, int * ovector, int stringcount, const

char *** listptr)

Return a list of pointers, listptr, to all captured substrings.

void pcre_free_substring(const char * stringptr)

Free memory pointed to by stringptr and allocated by pcre_get_named_substring() or
pcre_get_substring_list().

void pcre_free_substring_list(const char ** stringptr)

Free memory pointed to by stringptr and allocated by pcre_get_substring_list().
const unsigned char *pcre_maketables(void)

Build character tables for the current locale.
int pcre_fullinfo(const pcre * code, const pcre_extra * extra, int what, void * where)

Place info on a regex specified by what into where. Available values for what are
PCRE_INFO_BACKREFMAX, PCRE_INFO_CAPTURECOUNT, PCRE_INFO_FIRSTBYTE,
PCRE_INFO_FIRSTTABLE, PCRE_INFO_LASTLITERAL, PCRE_INFO_NAMECOUNT,
PCRE_INFO_NAMEENTRYSIZE, PCRE_INFO_NAMETABLE, PCRE_INFO_OPTIONS, PCRE_INFO_SIZE,
and PCRE_INFO_STUDYSIZE.

int pcre_config(int what, void * where)

Place the value of build-time options specified by what into where. Available values for what are
PCRE_CONFIG_UTF8, PCRE_CONFIG_NEWLINE, PCRE_CONFIG_LINK_SIZE,
PCRE_CONFIG_POSIX_MALLOC_THRESHOLD, and PCRE_CONFIG_MATCH_LIMIT.

char *pcre_version(void)

Return a pointer to a string containing the PCRE version and release date.
void *(*pcre_malloc)(size_t)

Entry point PCRE uses for malloc() calls.
void (*pcre_free)(void *)

Entry point PCRE uses for pcre_free() calls.
int (*pcre_callout)(pcre_callout_block *)

Can be set to a callout function that will be called during matches.

1.7.3 Unicode Support

PCRE provides basic Unicode support. When a pattern is compiled with the PCRE_UTF8 flag, the

pattern will run on Unicode text. However, PCRE has no capability to recognize any properties of
characters whose values are greater than 256.

PCRE determines case and the property of being a letter or digit based on a set of default tables. You
can supply an alternate set of tables based on a different locale. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setlocale(LC_CTYPE, "fr");
tables = pcre_maketables();
re = pcre_compile(..., tables);

1.7.4 Examples

Examples Example 1-17 and Example 1-18 are adapted from an open source example written by
Philip Hazel and copyright by the University of Cambridge, England.

Example 1-17. Simple match

#include <stdio.h>
#include <string.h>
#include <pcre.h>

#define CAPTUREVECTORSIZE 30 /* should be a multiple of 3 */

int main(int argc, char **argv)
{
pcre *regex;
const char *error;
int erroffset;
int capturevector[CAPTUREVECTORSIZE];
int rc;

char *pattern = "spider[-]?man";
char *text ="SPIDERMAN menaces city!";

/* Compile Regex */
regex = pcre_compile(
 pattern,
 PCRE_CASELESS, /* OR'd mode modifiers */
 &error, /* error message */
 &erroffset, /* position in regex where error occurred */
 NULL); /* use default locale */

/* Handle Errors */
if (regex = = NULL)
 {
 printf("Compilation failed at offset %d: %s\n", erroffset,
 error);
 return 1;
 }

/* Try Match */
rc = pcre_exec(
 regex, /* compiled regular expression */
 NULL, /* optional results from pcre_study */
 text, /* input string */
 (int)strlen(text), /* length of input string */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 0, /* starting position in input string */
 0, /* OR'd options */
 capturevector, /* holds results of capture groups */
 CAPTUREVECTORSIZE);

/* Handle Errors */
if (rc < 0)
 {
 switch(rc)
 {
 case PCRE_ERROR_NOMATCH: printf("No match\n"); break;
 default: printf("Matching error %d\n", rc); break;
 }
 return 1;
 }
return 0;
}

Example 1-18. Match and capture group

#include <stdio.h>
#include <string.h>
#include <pcre.h>

#define CAPTUREVECTORSIZE 30 /* should be a multiple of 3 */

int main(int argc, char **argv)
{
pcre *regex;
const char *error;
int erroffset;
int capturevector[CAPTUREVECTORSIZE];
int rc, i;

char *pattern = "(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)";
char *text ="12/30/1969";

/* Compile the Regex */
re = pcre_compile(
 pattern,
 PCRE_CASELESS, /* OR'd mode modifiers */
 &error, /* error message */
 &erroffset, /* position in regex where error occurred */
 NULL); /* use default locale */

/* Handle compilation errors */
if (re = = NULL)
 {
 printf("Compilation failed at offset %d: %s\n",
 erroffset, error);
 return 1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

rc = pcre_exec(
 regex, /* compiled regular expression */
 NULL, /* optional results from pcre_study */
 text, /* input string */
 (int)strlen(text), /* length of input string */
 0, /* starting position in input string */
 0, /* OR'd options */
 capturevector, /* holds results of capture groups */
 CAPTUREVECTORSIZE);

/* Handle Match Errors */
if (rc < 0)
 {
 switch(rc)
 {
 case PCRE_ERROR_NOMATCH: printf("No match\n"); break;
 /*
 Handle other special cases if you like
 */
 default: printf("Matching error %d\n", rc); break;
 }
 return 1;
 }

/* Match succeded */

printf("Match succeeded\n");

/* Check for output vector for capture groups */
if (rc = = 0)
 {
 rc = CAPTUREVECTORSIZE/3;
 printf("ovector only has room for %d captured substrings\n",
 rc - 1);
 }

/* Show capture groups */

for (i = 0; i < rc; i++)
 {
 char *substring_start = text + ovector[2*i];
 int substring_length = capturevector[2*i+1]
 - capturevector[2*i];
 printf("%2d: %.*s\n", i, substring_length, substring_start);
 }

return 0;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.7.5 Other Resources

The C source code and documentation for PCRE at http://www.pcre.org.

[Team LiB]

http://www.pcre.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.8 PHP

This reference covers PHP 4.3's Perl-style regular expression support contained within the preg

routines. PHP also provides POSIX-style regular expressions, but these do not offer additional benefit
in power or speed. The preg routines use a Traditional NFA match engine. For an explanation of the

rules behind an NFA engine, see Section 1.2.

1.8.1 Supported Metacharacters

PHP supports the metacharacters and metasequences listed in Table 1-31 through Table 1-35. For
expanded definitions of each metacharacter, see Section 1.2.1.

Table 1-31. Character representations

Sequence Meaning

\a Alert (bell), x07.

\b Backspace, x08, supported only in character class.

\e ESC character, x1B.

\n Newline, x0A.

\r Carriage return, x0D.

\f Form feed, x0C.

\t Horizontal tab, x09

\octal Character specified by a three-digit octal code.

\xhex Character specified by a one- or two-digit hexadecimal code.

\x{hex} Character specified by any hexadecimal code.

\cchar Named control character.

Table 1-32. Character classes and class-like constructs

Class Meaning

[...] A single character listed or contained within a listed range.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Meaning

[^...] A single character not listed and not contained within a listed range.

[:class:] POSIX-style character class valid only within a regex character class.

. Any character except newline (unless single-line mode,/s).

\C One byte; however, this may corrupt a Unicode character stream.

\w Word character, [a-zA-z0-9_].

\W Non-word character, [^a-zA-z0-9_].

\d Digit character, [0-9].

\D Non-digit character, [^0-9].

\s Whitespace character, [\n\r\f\t].

\S Non-whitespace character, [^\n\r\f\t].

Table 1-33. Anchors and zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in multiline match mode, /m.

\A Start of search string, in all match modes.

$
End of search string or before a string-ending newline, or before any newline if in
multiline match mode, /m.

\Z End of string or before a string-ending newline, in any match mode.

\z End of string, in any match mode.

\G Beginning of current search.

\b
Word boundary; position between a word character (\w) and a non-word character
(\W), the start of the string, or the end of the string.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 1-34. Comments and mode modifiers

Modes Meaning

[^...] A single character not listed and not contained within a listed range.

[:class:] POSIX-style character class valid only within a regex character class.

. Any character except newline (unless single-line mode,/s).

\C One byte; however, this may corrupt a Unicode character stream.

\w Word character, [a-zA-z0-9_].

\W Non-word character, [^a-zA-z0-9_].

\d Digit character, [0-9].

\D Non-digit character, [^0-9].

\s Whitespace character, [\n\r\f\t].

\S Non-whitespace character, [^\n\r\f\t].

Table 1-33. Anchors and zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in multiline match mode, /m.

\A Start of search string, in all match modes.

$
End of search string or before a string-ending newline, or before any newline if in
multiline match mode, /m.

\Z End of string or before a string-ending newline, in any match mode.

\z End of string, in any match mode.

\G Beginning of current search.

\b
Word boundary; position between a word character (\w) and a non-word character
(\W), the start of the string, or the end of the string.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 1-34. Comments and mode modifiers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modes Meaning

i Case-insensitive matching.

m ^ and $ match next to embedded \n.

s Dot (.) matches newline.

x Ignore whitespace and allow comments (#) in pattern.

U Inverts greediness of all quantifiers: * becomes lazy and *? greedy.

A Force match to start at search start in subject string.

D
Force $ to match end of string instead of before the string ending newline.

Overridden by multiline mode.

u
Treat regular expression and subject strings as strings of multi-byte UTF-8
characters.

(?mode) Turn listed modes (imsxU) on for the rest of the subexpression.

(?-mode) Turn listed modes (imsxU) off for the rest of the subexpression.

(?mode:...) Turn mode (xsmi) on within parentheses.

(?-

mode:...)
Turn mode (xsmi) off within parentheses.

(?#...) Treat substring as a comment.

#... Rest of line is treated as a comment in x mode.

\Q Quotes all following regex metacharacters.

\E Ends a span started with \Q.

Table 1-35. Grouping, capturing, conditional, and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2,...

(?P<name>...) Group subpattern and capture submatch into named capture group, name.

\n
Contains the results of the nth earlier submatch from a parentheses

capture group or a named capture group.

(?:...) Groups subpattern, but does not capture submatch.

(?>...) Disallow backtracking for text matched by subpattern.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sequence Meaning

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}?
Match at least x times, no more than y times, and as few times as

possible.

*+ Match 0 or more times, and never backtrack.

++ Match 1 or more times, and never backtrack.

?+ Match 0 or 1 times, and never backtrack.

{n}+ Match at least n times, and never backtrack.

{n,}+ Match at least n times, and never backtrack.

{x,y}+ Match at least x times, no more than y times, and never backtrack.

(?

(condition)...|...)
Match with if-then-else pattern. The condition can be either the number

of a capture group or a lookahead or lookbehind construct.

(?(condition)...)
Match with if-then pattern. The condition can be either the number of a

capture group or a lookahead or lookbehind construct.

1.8.2 Pattern-Matching Functions

PHP provides several standalone functions for pattern matching. When creating regular expression
strings, you need to escape embedded backslashes; otherwise, the backslash is interpreted in the
string before being sent to the regular expression engine.

array preg_grep (string pattern, array input)

Return array containing every element of input matched by pattern.

int preg_match_all (string pattern, string subject, array matches [, int flags])

Search for all matches of pattern against string and return the number of matches. The

matched substrings are placed in the matches array. The first element of matches is an array

containing the text of each full match. Each additional element N of matches is an array

containing the Nth capture group match for each full match. So matches[7][3] contains the

text matches by the seventh capture group in the fourth match of pattern in string.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}?
Match at least x times, no more than y times, and as few times as

possible.

*+ Match 0 or more times, and never backtrack.

++ Match 1 or more times, and never backtrack.

?+ Match 0 or 1 times, and never backtrack.

{n}+ Match at least n times, and never backtrack.

{n,}+ Match at least n times, and never backtrack.

{x,y}+ Match at least x times, no more than y times, and never backtrack.

(?

(condition)...|...)
Match with if-then-else pattern. The condition can be either the number

of a capture group or a lookahead or lookbehind construct.

(?(condition)...)
Match with if-then pattern. The condition can be either the number of a

capture group or a lookahead or lookbehind construct.

1.8.2 Pattern-Matching Functions

PHP provides several standalone functions for pattern matching. When creating regular expression
strings, you need to escape embedded backslashes; otherwise, the backslash is interpreted in the
string before being sent to the regular expression engine.

array preg_grep (string pattern, array input)

Return array containing every element of input matched by pattern.

int preg_match_all (string pattern, string subject, array matches [, int flags])

Search for all matches of pattern against string and return the number of matches. The

matched substrings are placed in the matches array. The first element of matches is an array

containing the text of each full match. Each additional element N of matches is an array

containing the Nth capture group match for each full match. So matches[7][3] contains the

text matches by the seventh capture group in the fourth match of pattern in string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default ordering of matches can be set explicitly with the PREG_SET_ORDER flag.

PREG_SET_ORDER sets a more intuitive ordering where each element of matches is an array

corresponding to a match. The zero element of each array is the complete match, and each
additional element corresponds to a capture group. The additional flag PREG_OFFSET_CAPTURE

causes each array element containing a string to be replaced with a two-element array
containing the same string and starting character position in subject.

int preg_match (string pattern, string subject [, array matches [, int flags]])

Return 1 if pattern matches in subject, otherwise return 0. If the matches array is provided,
the matched substring is placed in matches[0] and any capture group matches are placed in

subsequent elements. One allowed flag, PREG_OFFSET_CAPTURE, causes elements of matches to

be replaced with a two-element array containing the matched string and starting character
position of the match.

string preg_quote (string str [, string delimiter])

Return a str with all regular expression metacharacters escaped. Provide the delimiter

parameter if you are using optional delimiters with your regular expression and need the
delimiter escaped in str.

mixed preg_replace_callback (mixed pattern, callback callback, mixed subject [, int

limit])

Return text of subject with every occurrence of pattern replaced with the results of

callback. The callback should take one parameter, an array containing the matched text and

any matches from capture groups. If provided, the function performs no more than limit

replacements. If pattern has the /e modifier, replacement is parsed for reference substitution

and then executed as PHP code.

If pattern is an array, each element is replaced with callback. If subject is an array, the

function iterates over each element.
mixed preg_replace (mixed pattern, mixed replacement, mixed subject [, int limit])

Return text of subject with every occurrence of pattern replaced with replacement. If

provided, the function performs no more than limit replacements. The replacement string
may refer to the match or capture group matches with $n (preferred) or \n (deprecated). If

pattern has the /e modifier, replacement is parsed for reference substitution and then

executed as PHP code.

If pattern is an array, then each element is replaced with replacement or, if replacement is

an array, the corresponding element in replacement. If subject is an array, the function

iterates over each element.
array preg_split (string pattern, string subject [, int limit [, int flags]])

Return an array of strings broken around pattern. If specified, preg_split() returns no

more than limit substrings. A limit is the same as "no limit," allowing you to set flags.
Available flags are: PREG_SPLIT_NO_EMPTY, return only non-empty pieces;
PREG_SPLIT_DELIM_CAPTURE, return captured submatches after each split substring; and
PREG_SPLIT_OFFSET_CAPTURE, return an array of two-element arrays where the first element

is the match and the second element is the offset of the match in subject.

1.8.3 Examples

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 1-19. Simple match

//Match Spider-Man, Spiderman, SPIDER-MAN, etc.
$dailybugle = "Spider-Man Menaces City!";

$regex = "/spider[-]?man/i";

if (preg_match($regex, $dailybugle)) {
 //do something
}

Example 1-20. Match and capture group

//Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
$date = "12/30/1969";
$p = "!(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)!";

if (preg_match($p,$date,$matches) {
 $month = $matches[1];
 $day = $matches[2];
 $year = $matches[3];
}

Example 1-21. Simple substitution

//Convert
 to
 for XHTML compliance
$text = "Hello world.
";

$pattern = "{
}i";

echo preg_replace($pattern, "
", $text);

Example 1-22. Harder substitution

//urlify - turn URL's into HTML links
$text = "Check the website, http://www.oreilly.com/catalog/repr.";
$regex =
 "{ \\b # start at word\n"
 . " # boundary\n"
 . "(# capture to $1\n"
 . "(https?|telnet|gopher|file|wais|ftp) : \n"
 . " # resource and colon\n"
 . "[\\w/\\#~:.?+=&%@!\\-]+? # one or more valid\n"
 . " # characters\n"
 . " # but take as little as\n"
 . " # possible\n"
 . ")\n"
 . "(?= # lookahead\n"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 . "[.:?\\-]* # for possible punct\n"
 . "(?:[^\\w/\\#~:.?+=&%@!\\-] # invalid character\n"
 . "|$) # or end of string\n"
 . ") }x";

echo preg_replace($regex, "$1", $text);

1.8.4 Other Resources

PHP's online documentation at http://www.php.net/pcre.

[Team LiB]

http://www.php.net/pcre
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.9 vi Editor

The vi program is a popular text editor on all Unix systems, and Vim is a popular vi clone with
expanded regular expression support. Both use a DFA match engine. For an explanation of the rules
behind a DFA engine, see Section 1.2.

1.9.1 Supported Metacharacters

Table 1-36 through Table 1-40 list the metacharacters and metasequences supported by vi. For
expanded definitions of each metacharacter, see Section 1.2.1.

Table 1-36. Character representation

Sequence Meaning

Vim only

\b Backspace, x08.

\e ESC character, x1B.

\n Newline, x0A.

\r Carriage return, x0D.

\t Horizontal tab, x09.

Table 1-37. Character classes and class-like constructs

Class Meaning

[...] Any character listed or contained within a listed range.

[^...] Any character that is not listed or contained within a listed range.

[:class:] POSIX-style character class valid only within a character class.

. Any character except newline (unless /s mode).

Vim only

\w Word character, [a-zA-z0-9_].

\W Non-word character, [^a-zA-z0-9_].

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Meaning

\a Letter character, [a-zA-z].

\A Non-letter character, [^a-zA-z].

\h Head of word character, [a-zA-z_].

\H Not the head of a word character, [^a-zA-z_].

\d Digit character, [0-9].

\D Non-digit character, [^0-9].

\s Whitespace character, [\t].

\S Non-whitespace character, [^ \t].

\x Hex digit, [a-fA-F0-9].

\X Non-hex digit, [^a-fA-F0-9].

\o Octal digit, [0-7].

\O Non-octal digit, [^0-7].

\l Lowercase letter, [a-z].

\L Non-lowercase letter, [^a-z].

\u Uppercase letter, [A-Z].

\U Non-uppercase letter, [^A-Z].

\i Lowercase letter, [a-z].

\L Non-lowercase letter, [^a-z].

\u Uppercase letter, [A-Z].

\U Non-uppercase letter, [^A-Z].

\i Identifier character defined by isident.

\I Any non-digit identifier character.

\k Keyword character defined by iskeyword, often set by language modes.

\K Any non-digit keyword character.

\f Filename character defined by isfname. Operating system dependent.

\F Any non-digit filename character.

\p Printable character defined by isprint, usually x20-x7E.

\P Any non-digit printable character.

Table 1-38. Anchors and zero-width tests

\a Letter character, [a-zA-z].

\A Non-letter character, [^a-zA-z].

\h Head of word character, [a-zA-z_].

\H Not the head of a word character, [^a-zA-z_].

\d Digit character, [0-9].

\D Non-digit character, [^0-9].

\s Whitespace character, [\t].

\S Non-whitespace character, [^ \t].

\x Hex digit, [a-fA-F0-9].

\X Non-hex digit, [^a-fA-F0-9].

\o Octal digit, [0-7].

\O Non-octal digit, [^0-7].

\l Lowercase letter, [a-z].

\L Non-lowercase letter, [^a-z].

\u Uppercase letter, [A-Z].

\U Non-uppercase letter, [^A-Z].

\i Lowercase letter, [a-z].

\L Non-lowercase letter, [^a-z].

\u Uppercase letter, [A-Z].

\U Non-uppercase letter, [^A-Z].

\i Identifier character defined by isident.

\I Any non-digit identifier character.

\k Keyword character defined by iskeyword, often set by language modes.

\K Any non-digit keyword character.

\f Filename character defined by isfname. Operating system dependent.

\F Any non-digit filename character.

\p Printable character defined by isprint, usually x20-x7E.

\P Any non-digit printable character.

Table 1-38. Anchors and zero-width tests

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sequence Meaning

^ Start of a line when appearing first in a regular expression; otherwise, it matches itself.

$ End of a line when appearing last in a regular expression; otherwise, it matches itself.

\<
Beginning of word boundary, (i.e., a position between a punctuation or space character
and a word character).

\> End of word boundary.

Table 1-39. Mode modifiers

Modifier Meaning

:set ic Turns on case-insensitive mode for all searching and substitution.

:set noic Turns off case-insensitive mode.

\u Force next character in a replacement string to uppercase.

\l Force next character in a replacement string to lowercase.

\U Force all following characters in a replacement string to uppercase.

\L Force all following characters in a replacement string to lowercase.

\E or \e Ends a span started with \U or \L.

Table 1-40. Grouping, capturing, conditional, and control

Sequence Meaning

\(...\) Group subpattern and capture submatch into \1,\2,...

\n
Contains the results of the nth earlier submatch. Valid in both a regex pattern or a

replacement string.

& Evaluates to the matched text when used in a replacement string.

* Match 0 or more times.

Vim only

\+ Match 1 or more times.

\= Match 1 or 0 times.

\{n} Match exactly n times.

\{n,} Match at least n times.

\{,n} Match at most n times.

\{x,y} Match at least x times, but no more than y times.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.9.2 Pattern Matching

Searching

/pattern

?pattern

Moves to the start of the next position in the file matched by pattern. A ?pattern searches
backwards. A search can be repeated with the n (search forward) or N (search backwards)

commands.

Substitution

:[addr1[,addr2]]s/pattern/replacement/[cgp]

Replace the text matched by pattern with replacement on every line in the address range. If no

address range is given, the current line is used. Each address may be either a line number or a
regular expression. If addr1 is supplied, substitution will begin on that line number (or the first

matching line) and continue until either the end of the file or the line indicated (or matched) by
addr2. There are also a number of address shortcuts, which are described in the following tables.

Substitution options

Option Meaning

c Prompt before each substitution.

g Replace all matches on a line.

p Print line after substitution.

Address shortcuts

Address Meaning

. Current line.

$ Last line in file.

% Entire file.

't Position "t".

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Address Meaning

/...[/] Next line matched by pattern.

?...[?] Next previous line matched by pattern.

\/ Next line matched by the last search.

\? Next previous line matched by the last search.

\& Next line where the last substitution pattern matched.

1.9.3 Examples

Example 1-23. Simple search in vi

Find spider-man, Spider-Man, Spider Man
/[Ss]pider[-][Mm]an

Example 1-24. Simple search in Vim

Find spider-man, Spider-Man, Spider Man, spiderman, SPIDER-MAN, etc.
:set ic
/spider[-]\=man

Example 1-25. Simple substitution in vi

Globally convert
 to
 for XHTML compliance.
:set ic
: % s/
/<br \/>/

Example 1-26. Simple substitution in Vim

Globally convert
 to
 for XHTML compliance.
: % s/
/<br \/>/i

Example 1-27. Harder substitution in Vim

Urlify: Turn URLs into HTML links
: % s/\(https\=:\/\/[a-z_.\\w\/\\#~:?+=&;%@!-]*\)/< a href="\1">\1<\/a>/ic

1.9.4 Other Resources

Learning the vi Editor, by Linda Lamb and Arnold Robbins (O'Reilly), is a guide to the vi editor
and popular vi clones.

http://www.geocities.com/volontir/, by Oleg Raisky, is an overview of Vim regular expression

/...[/] Next line matched by pattern.

?...[?] Next previous line matched by pattern.

\/ Next line matched by the last search.

\? Next previous line matched by the last search.

\& Next line where the last substitution pattern matched.

1.9.3 Examples

Example 1-23. Simple search in vi

Find spider-man, Spider-Man, Spider Man
/[Ss]pider[-][Mm]an

Example 1-24. Simple search in Vim

Find spider-man, Spider-Man, Spider Man, spiderman, SPIDER-MAN, etc.
:set ic
/spider[-]\=man

Example 1-25. Simple substitution in vi

Globally convert
 to
 for XHTML compliance.
:set ic
: % s/
/<br \/>/

Example 1-26. Simple substitution in Vim

Globally convert
 to
 for XHTML compliance.
: % s/
/<br \/>/i

Example 1-27. Harder substitution in Vim

Urlify: Turn URLs into HTML links
: % s/\(https\=:\/\/[a-z_.\\w\/\\#~:?+=&;%@!-]*\)/< a href="\1">\1<\/a>/ic

1.9.4 Other Resources

Learning the vi Editor, by Linda Lamb and Arnold Robbins (O'Reilly), is a guide to the vi editor
and popular vi clones.

http://www.geocities.com/volontir/, by Oleg Raisky, is an overview of Vim regular expression

http://www.geocities.com/volontir/
http://www.geocities.com/volontir/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

syntax.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.10 JavaScript

JavaScript introduced Perl-like regular expression support with Version 1.2. This reference covers
Version 1.5 as defined by the ECMA standard. Supporting implementations include Microsoft Internet
Explorer 5.5+ and Netscape Navigator 6+. JavaScript uses a Traditional NFA match engine. For an
explanation of the rules behind an NFA engine, see Section 1.2.

1.10.1 Supported Metacharacters

JavaScript supports the metacharacters and metasequences listed in Table 1-41 through Table 1-45.
For expanded definitions of each metacharacter, see Section 1.2.1.

Table 1-41. Character representations

Sequence Meaning

\0 Null character, \x00.

\b Backspace, \x08, supported only in character class.

\n Newline, \x0A.

\r Carriage return, \x0D.

\f Form feed, \x0C.

\t Horizontal tab, \x09.

\t Vertical tab, \x0B.

\xhh Character specified by a two-digit hexadecimal code.

\uhhhh Character specified by a four-digit hexadecimal code.

\cchar Named control character.

Table 1-42. Character classes and class-like constructs

Class Meaning

[...] A single character listed or contained within a listed range.

[^...] A single character not listed and not contained within a listed range.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Meaning

. Any character except a line terminator, [^\x0A\x0D\u2028\u2029].

\w Word character, [a-zA-Z0-9_].

\W Non-word character, [^a-zA-Z0-9_].

\d Digit character, [0-9].

\D Non-digit character, [^0-9].

\s Whitespace character.

\S Non-whitespace character.

Table 1-43. Anchors and other zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in multiline match mode, /m.

$
End of search string or before a string-ending newline, or before any newline if in
multiline match mode, /m.

\b Word boundary.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

Table 1-44. Mode modifiers

Modifier Meaning

m ^ and $ match next to embedded line terminators.

i Case-insensitive match.

Table 1-45. Grouping, capturing, conditional, and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2,... and $1, $2,....

\n In a regular expression, contains text matched by the nth capture group.

$n In a replacement string, contains text matched by the nth capture group.

(?:...) Group subpattern, but do not capture submatch.

. Any character except a line terminator, [^\x0A\x0D\u2028\u2029].

\w Word character, [a-zA-Z0-9_].

\W Non-word character, [^a-zA-Z0-9_].

\d Digit character, [0-9].

\D Non-digit character, [^0-9].

\s Whitespace character.

\S Non-whitespace character.

Table 1-43. Anchors and other zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in multiline match mode, /m.

$
End of search string or before a string-ending newline, or before any newline if in
multiline match mode, /m.

\b Word boundary.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

Table 1-44. Mode modifiers

Modifier Meaning

m ^ and $ match next to embedded line terminators.

i Case-insensitive match.

Table 1-45. Grouping, capturing, conditional, and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2,... and $1, $2,....

\n In a regular expression, contains text matched by the nth capture group.

$n In a replacement string, contains text matched by the nth capture group.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sequence Meaning

(?:...) Group subpattern, but do not capture submatch.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few times as possible.

1.10.2 Pattern-Matching Methods and Objects

JavaScript provides convenient pattern-matching methods in String objects, as well as a RegExp

object for more complex pattern matching. JavaScript strings use the backslash for escapes, and
therefore any escapes destined for the regular expression engine should be double escaped (e.g.,
"\\w" instead of "\w"). You can also use the regular expression literal syntax, /pattern/img.

String

Strings support four convenience methods for pattern matching. Each method takes a pattern
argument, which may be either a RegExp object or a string containing a regular expression pattern.

Methods

search(pattern)

Match pattern against the string returning either the character position of the start of the first
matching substring or -1.

replace(pattern, replacement)

The replace() method searches the string for a match of pattern and replaces the matched

substring with replacement. If pattern has global mode set, then all matches of pattern are

(?:...) Group subpattern, but do not capture submatch.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few times as possible.

1.10.2 Pattern-Matching Methods and Objects

JavaScript provides convenient pattern-matching methods in String objects, as well as a RegExp

object for more complex pattern matching. JavaScript strings use the backslash for escapes, and
therefore any escapes destined for the regular expression engine should be double escaped (e.g.,
"\\w" instead of "\w"). You can also use the regular expression literal syntax, /pattern/img.

String

Strings support four convenience methods for pattern matching. Each method takes a pattern
argument, which may be either a RegExp object or a string containing a regular expression pattern.

Methods

search(pattern)

Match pattern against the string returning either the character position of the start of the first
matching substring or -1.

replace(pattern, replacement)

The replace() method searches the string for a match of pattern and replaces the matched

substring with replacement. If pattern has global mode set, then all matches of pattern are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

replaced. The replacement string may have $n constructs that are replaced with the matched

text of the nth capture group in pattern.

match(pattern)

Match pattern against the string returning either an array or -1. Element 0 of the array

contains the full match. Additional elements contain submatches from capture groups. In global
(g) mode, the array contains all matches of pattern with no capture group submatches.

split(pattern, limit)

Return an array of strings broken around pattern. If limit, the array contains at most the

first limit substrings broken around pattern. If pattern contains capture groups, captured

substrings are returned as elements after each split substring.

RegExp

Models a regular expression and contains methods for pattern matching.

Constructor

new RegExp(pattern, attributes)

/ pattern/attributes

RegExp objects can be created with either the RegExp() constructor or a special literal syntax

/.../. The parameter pattern is a required regular expression pattern, and the parameter

attributes is an optional string containing any of the mode modifiers g, i, or m. The

parameter pattern can also be a RegExp object, but the attributes parameter then becomes

required.

The constructor can throw two expceptions. SyntaxError is thrown if pattern is malformed or if

attributes contains invalid mode modifiers. TypeError is thrown if pattern is a RegExp object and

the attributes parameter is omitted.

Instance properties

global

Boolean, if RegExp has g attribute.
ignoreCase

Boolean, if RegExp has i attribute.
lastIndex

The character position of the last match.
multiline

Boolean, if RegExp has m attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

source

The text pattern used to create this object.

Methods

exec(text)

Search text and return an array of strings if the search succeeds and null if it fails. Element 0

of the array contains the substring matched by the entire regular expression. Additional
elements correspond to capture groups.

If the global flag (g) is set, then lastIndex is set to the character position after the match or
zero if there was no match. Successive exec() or test() calls will start at lastIndex. Note
that lastIndex is a property of the regular expression, not the string being searched. You
must reset lastIndex manually if you are using a RegExp object in global mode to search

multiple strings.
test(text)

Return true if the RegExp object matches text. The test() method behaves in the same way
as exec() when used in global mode: successive calls start at lastIndex even if used on

different strings.

1.10.3 Examples

Example 1-28. Simple match

//Match Spider-Man, Spiderman, SPIDER-MAN, etc.
 var dailybugle = "Spider-Man Menaces City!";

 //regex must match entire string
 var regex = /spider[-]?man/i;

 if (dailybugle.search(regex)) {
 //do something
 }

Example 1-29. Match and capture group

//Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
 var date = "12/30/1969";
 var p =
 new RegExp("(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)");

 var result = p.exec(date);
 if (result != null) {
 var month = result[1];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 var day = result[2];
 var year = result[3];

Example 1-30. Simple substitution

//Convert
 to
 for XHTML compliance
 String text = "Hello world.
";

 var pattern = /
/ig;

 test.replace(pattern, "
");

Example 1-31. Harder substitution

//urlify - turn URL's into HTML links
 var text = "Check the website, http://www.oreilly.com/catalog/repr.";
 var regex =
 "\\b" // start at word boundary
 + "(" // capture to $1
 + "(https?|telnet|gopher|file|wais|ftp) :"
 // resource and colon
 + "[\\w/\\#~:.?+=&%@!\\-]+?" // one or more valid chars
 // take little as possible
 + ")"
 + "(?=" // lookahead
 + "[.:?\\-]*" // for possible punct
 + "(?:[^\\w/\\#~:.?+=&%@!\\-]"// invalid character
 + "|$)" // or end of string
 + ")";

 text.replace(regex, "$1");

1.10.4 Other Resources

JavaScript: The Definitive Guide, by David Flanagan (O'Reilly), is a reference for all JavaScript,
including regular expressions.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.11 Shell Tools

awk, sed, and egrep are a related set of Unix shell tools for text processing. awk and egrep use a
DFA match engine, and sed uses an NFA engine. For an explanation of the rules behind these
engines, see Section 1.2.

This reference covers GNU egrep 2.4.2, a program for searching lines of text; GNU sed 3.02, a tool
for scripting editing commands; and GNU awk 3.1, a programming language for text processing.

1.11.1 Supported Metacharacters

awk, egrep, and sed support the metacharacters and metasequences listed in Table 1-46 through
Table 1-50. For expanded definitions of each metacharacter, see Section 1.2.1.

Table 1-46. Character representations

Sequence Meaning Tool

\a Alert (bell). awk, sed

\b Backspace; supported only in character class. awk

\f Form feed. awk, sed

\n Newline (line feed). awk, sed

\r Carriage return. awk, sed

\t Horizontal tab. awk, sed

\v Vertical tab. awk, sed

\ooctal A character specified by a one-, two-, or three-digit octal code. sed

\octal A character specified by a one-, two-, or three-digit octal code. awk

\xhex A character specified by a two-digit hexadecimal code. awk, sed

\ddecimal A character specified by a one, two, or three decimal code. awk, sed

\cchar A named control character (e.g., \cC is Control-C). awk, sed

\b Backspace. awk

\metacharacter Escape the metacharacter so that it literally represents itself. awk, sed, egrep

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 1-47. Character classes and class-like constructs

Class Meaning Tool

[...]
Matches any single character listed or contained within a listed
range.

awk, sed,
egrep

[^...]
Matches any single character that is not listed or contained within a
listed range.

awk, sed,
egrep

. Matches any single character, except newline.
awk, sed,
egrep

\w Matches an ASCII word character, [a-zA-Z0-9_]. egrep, sed

\W
Matches a character that is not an ASCII word character, [^a-zA-
Z0-9_].

egrep, sed

[:prop:] Matches any character in the POSIX character class. awk, sed

[^[:prop:]] Matches any character not in the POSIX character class. awk, sed

Table 1-48. Anchors and other zero-width testshell tools

Sequence Meaning Tool

^ Matches only start of string, even if newlines are embedded. awk, sed, egrep

$ Matches only end of search string, even if newlines are embedded. awk, sed, egrep

\< Matches beginning of word boundary. egrep

\> Matches end of word boundary. egrep

Table 1-49. Comments and mode modifiers

Modifier Meaning Tool

flag: i or I Case-insensitive matching for ASCII characters. sed

command-line option: -i Case-insensitive matching for ASCII characters. egrep

set IGNORECASE to non-zero Case-insensitive matching for Unicode characters. awk

Table 1-50. Grouping, capturing, conditional, and control

Sequence Meaning Tool

(PATTERN) Grouping. awk

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sequence Meaning Tool

\(PATTERN\) Group and capture sub-matches, filling \1,\2,...,\9. sed

\n Contains the nth earlier submatch. sed

...|... Alternation; match one or the other. egrep, awk, sed

Greedy quantifiers

* Match 0 or more times. awk, sed, egrep

+ Match 1 or more times. awk, sed, egrep

? Match 1 or 0 times. awk, sed, egrep

\{n\} Match exactly n times. sed, egrep

\{n,\} Match at least n times. sed, egrep

\{x,y\} Match at least x times, but no more than y times. sed, egrep

egrep

egrep [options] pattern files

egrep searches files for occurrences of pattern and prints out each matching line.

Example

$ echo 'Spiderman Menaces City!' > dailybugle.txt
$ egrep -i 'spider[-]?man' dailybugle.txt
Spiderman Menaces City!

sed

sed '[address1][,address2]s/pattern/replacement/[flags]' files

sed -f script files

By default, sed applies the substitution to every line in files. Each address can be either a line

number or a regular expression pattern. A supplied regular expression must be defined within the
forward slash delimiters (/...). If address1 is supplied, substitution will begin on that line number or

the first matching line, and continue until either the end of the file or the line indicated or matched by
address2.

Two subsequences, & and \n, will be interpreted in replacement based on the results of the match.

The sequence & is replaced with the text matched by pattern. The sequence \n corresponds to a

capture group (1..9) in the current match.

\(PATTERN\) Group and capture sub-matches, filling \1,\2,...,\9. sed

\n Contains the nth earlier submatch. sed

...|... Alternation; match one or the other. egrep, awk, sed

Greedy quantifiers

* Match 0 or more times. awk, sed, egrep

+ Match 1 or more times. awk, sed, egrep

? Match 1 or 0 times. awk, sed, egrep

\{n\} Match exactly n times. sed, egrep

\{n,\} Match at least n times. sed, egrep

\{x,y\} Match at least x times, but no more than y times. sed, egrep

egrep

egrep [options] pattern files

egrep searches files for occurrences of pattern and prints out each matching line.

Example

$ echo 'Spiderman Menaces City!' > dailybugle.txt
$ egrep -i 'spider[-]?man' dailybugle.txt
Spiderman Menaces City!

sed

sed '[address1][,address2]s/pattern/replacement/[flags]' files

sed -f script files

By default, sed applies the substitution to every line in files. Each address can be either a line

number or a regular expression pattern. A supplied regular expression must be defined within the
forward slash delimiters (/...). If address1 is supplied, substitution will begin on that line number or

the first matching line, and continue until either the end of the file or the line indicated or matched by
address2.

Two subsequences, & and \n, will be interpreted in replacement based on the results of the match.

The sequence & is replaced with the text matched by pattern. The sequence \n corresponds to a

capture group (1..9) in the current match.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The available flags are:

n

Substitute the nth match in a line, where n is between 1 and 512.
g

Substitute all occurrences of pattern in a line.
p

Print lines with successful substitutions.
w file

Write lines with successful substitutions to file.

Example

Change date formats from MM/DD/YYYY to DD.MM.YYYY.

$ echo 12/30/1969' |
 sed 's!\([0-9][0-9]\)/\([0-9][0-9]\)/\([0-9]\{2,4\}\)!\2.\1.\3!g'

awk

awk 'instructions' files

awk -f script files

The awk script contained in either instructions or script should be a series of /pattern/

{action} pairs. The action code is applied to each line matched by pattern. awk also supplies

several functions for pattern matching.

Functions

match(text, pattern)

If pattern matches in text, returns the position in text where the match starts. A failed
match returns zero. A successful match also sets the variable RSTART to the position where the
match started and the variable RLENGTH to the number of characters in the match.

gsub(pattern, replacement, text)

Substitutes each match of pattern in text with replacement and returns the number of

substitutions. Defaults to $0 if text is not supplied.

sub (pattern, replacement, text)

Substitutes first match of pattern in text with replacement. A successful substitution returns

1, and an unsuccessful substitution returns 0. Defaults to $0 if text is not supplied.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

Create an awk file and then run it from the command line.

$ cat sub.awk
{
 gsub(/https?:\/\/[a-z_.\\w\/\\#~:?+=&;%@!-]*/,
 "\&");

 print
}

$ echo "Check the website, http://www.oreilly.com/catalog/repr" | awk -f sub.awk

1.11.2 Other Resources

sed & awk, by Dale Dougherty and Arnold Robbins (O'Reilly), is an introduction and reference to
both tools.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

comment

$ anchor

(...) parentheses

(?

 ...) subexpression grouping

(?>...) atomic grouping

(?<name>...) named capture

* greedy quantifier

*+ possessive quantifier

*? lazy quantifier

+ greedy quantifier

++ possessive quantifier

+? lazy quantifier

. (dot)

? greedy quantifier

?#... comment

?+ possessive quantifier

?? lazy quantifier

?i mode modifier

?if then | else

[...] character class

[^...] character class

\> metacharacter

\1

\A anchor

\b metacharacter

\B metacharacter

\cchar

\D

\d

\G anchor

\num

\p{prop}

\Q...\E (literal text span)

\S

\s

\unum

\Unum

\W

\w

\X

\x{num}

\xnum

\Z anchor

\z anchor

^ anchor

| alternation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

address shortcuts, vi editor

after-match variables

alternation

anchors

 .Net framework

 Java (java.util.regex)

 JavaScript

 PCRE lib

 Perl Version 5.8

 PHP

 Python

 shell tools

 vi editor

array preg_grep function (PHP)

ASCII control characters

atomic grouping

awk

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

backslashes in regular expression String literals

 Java (java.util.regex)

boundary, word

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

C#

capturing

 .Net framework

 Java (java.util.regex)

 JavaScript

 PCRE lib

 PHP

 Python

 shell tools

 vi editor

case-insensitive mode

character classes

 and class-like constructs

 .Net framework

 Java (java.util.regex)

 JavaScript

 PCRE lib

 Perl Version 5.8

 PHP

 shell tools

 POSIX

character representations

 .Net framework

 Java (java.util.regex)

 JavaScript

 PCRE lib

 Perl Version 5.8

 PHP

 Python

 shell tools

 vi editor

character shorthands

CharSequence interface

class shorthands

classes (Java (java.util.regex))

combining character sequence, Unicode

comments

 .Net framework

 Java (java.util.regex)

 PCRE lib

 Perl 5.8

 PHP

 Python

 shell tools

compile function (Python)

conditional

 .Net framework

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Java (java.util.regex)

 JavaScript

 PCRE lib

 PHP

 Python

 shell tools

 vi editor

control

 .Net framework

 Java (java.util.regex)

 JavaScript

 shell tools

 vi editor

control characters

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Deterministic Finite Automaton (DFA)

DFA engines

dot (.)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

egrep

end attribute (Python)

endpos attribute (Python)

engines

 classes of

escape function (Python)

escapes

 hex and Unicode

 octal

exception error (Python)

exec method, RegExp class (JavaScript)

expand attribute (Python)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

find function (Python)

findall function (Python)

finditer function (Python)

free-spacing mode

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

greedy quantifiers

group attribute (Python)

groupdict attribute (Python)

grouping

 .Net framework

 Java (java.util.regex)

 JavaScript

 PCRE lib

 PHP

 Python

 shell tools

 vi editor

groups attribute (Python)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

harder substitution example

 Java (java.util.regex)

 JavaScript

 Perl Version 5.8

 PHP

 Vim

Hazel, Philip

hex escapes

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

interfaces (Java (java.util.regex))

iterative matching

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Java (java.util.regex)

 anchors and other zero-width tests

 backslashes in regular expression String literals

 character classes and class-like constructs

 character representations

 comments and mode modifiers

 examples

 grouping, capturing, conditional, and control

 metacharacters and metasequences

 regular expression classes and interfaces

 Unicode support

java.lang.CharSequence class

java.lang.String class

java.util.regex

 Matcher class 2nd

 Pattern class 2nd

 PatternSyntaxException class 2nd

JavaScript

 anchors and zero-width tests

 character classes and class-like constructs

 character representations

 examples

 grouping, capturing, conditional, and control

 mode modifiers

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

lastgroup attribute (Python)

lastindex attribute (Python)

lazy quantifiers

line

 end of

 start of

lookahead

lookaround constructs

lookbehind

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

m// (Matching)

match and capture group example

 Java (java.util.regex)

 JavaScript

 PCRE lib

 Perl Version 5.8

 PHP

Match class (.Net)

match function (Python) 2nd

match method, String class (JavaScript)

Match objects (Python)

matching, iterative

metacharacters 2nd

 Java (java.util.regex)

 Perl Version 5.8

metasequences [See metacharacters]

mode modifiers 2nd

 .Net framework

 Java (java.util.regex)

 JavaScript

 PCRE lib

 Perl Version 5.8

 Python

 shell tools

 vi editor

modifiers, mode [See mode modifiers]

Module Functions

multiline mode

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

named capture

negated character classes

.NET framework

 anchors and zero-width tests

 character classes and class-like constructs

 character representations

 comments and mode modifiers

 grouping, capturing, conditional, and control

NFA engines

 POSIX

 Traditional

Nondeterministic Finite Automaton (NFA)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

octal escape

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

parentheses

 capturing and grouping

 grouping-only

pattern matching

PCRE API

 Synopsis

PCRE lib

 anchors and zero-width tests

 character classes and class-like constructs

 character representations

 comments and mode modifiers

 examples 2nd

 grouping, capturing, conditional, and control

 Unicode support

pcre_compile() function (PCRE)

pcre_config() function (PCRE)

pcre_copy_named_substring() function (PCRE)

pcre_copy_substring() function (PCRE)

pcre_exec() function (PCRE) 2nd

pcre_free_substring() function (PCRE)

pcre_free_substring_list() function (PCRE)

pcre_fullinfo() function (PCRE)

pcre_get_named_substring() function (PCRE)

pcre_get_stringnumber() function (PCRE)

pcre_get_substring() function (PCRE)

pcre_get_substring_list() function (PCRE)

pcre_study() function (PCRE)

pcre_version() function (PCRE)

Perl Compatible Regular Expression (PCRE) library [See PCRE lib]

Perl Version 5.8

 anchors and zero-width tests

 character classes and class-like constructs

 character representations

 comments and mode modifiers

 grouping, capturing, conditional, and control

 metacharacters

 regular expression operators

 single quotes

 Unicode support

PHP

 anchors and zero-width tests

 character classes and class-like constructs

 character representations

 comments and mode modifiers

 examples

 grouping, capturing, conditional, and control

 pattern matching functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pos attribute (Python)

POSIX character classes

POSIX NFA engines

possessive quantifiers

preg_match function (PHP)

preg_match_all function (PHP)

preg_quote function (PHP)

preg_replace function (PHP)

preg_replace_callback function (PHP)

preg_split function (PHP)

Python

 anchors and zero-width tests

 character representations

 comments and mode modifiers

 examples

 grouping, capturing, conditional, and control

 Unicode support

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

qr// (Quote Regex)

quantifiers

 greedy

 lazy

 possessive

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

re attribute (Python)

re module (Python)

 functions

Regex class (.Net)

RegExp class

 JavaScript

 Python

regular expression engines [See engines]

regular expression operators

 Perl Version 5.8

regular expressions

 overview

replace method, String class (JavaScript)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

s/// (Substitution)

search function (Python)

search method, String class (JavaScript)

searching

 vi editor

 Vim

sed

shell tools

 anchors and zero-width tests

 character classes and class-like constructs

 character representations

 comments and mode modifiers

 examples

 grouping, capturing, conditional, and control

shorthands, character

simple match example

 Java (java.util.regex)

 JavaScript

 PCRE lib

 Perl Version 5.8

 PHP

 Python

simple search in Vim example

simple substitution example

 Java (java.util.regex)

 JavaScript

 Perl Version 5.8

 PHP

 vi editor

 Vim

single quotes in Perl

single-line mode

span attribute (Python)

split

split function (Python)

split method, String class (JavaScript)

start attribute (Python)

string

 end of

 start of

string attribute (Python)

String object (JavaScript)

sub function (Python)

subn function (Python)

subpatterns, grouping

substitution

 harder example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Java (java.util.regex)

 JavaScript

 Perl Version 5.8

 PHP

 Vim

 options, vi editor

 simple example

 Java (java.util.regex)

 JavaScript

 Perl Version 5.8

 PHP

 vi editor

 Vim

 vi editor

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

test method, RegExp class (JavaScript)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Unicode

 combining character sequence

 escapes

 Java (java.util.regex)

 properties

 scripts, and blocks

 properties, composite

 support

 PCRE lib

 Perl Version 5.8

 Python

use locale

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

variables, after-match

vi editor

 address shortcuts

 anchors and zero-width tests

 character classes and class-like constructs

 character representations

 examples

 grouping, capturing, conditional, and control

 mode modifiers

 substitution options

Vim

 harder substitution example

 simple search example

 simple substitution example

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

word boundary

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

zero-width assertions

zero-width tests

 .Net framework

 Java (java.util.regex)

 JavaScript

 PCRE lib

 Perl Version 5.8

 PHP

 Python

 shell tools

 vi editor

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Main Page
	Table of content
	Copyright
	Chapter 1. Regular Expression Pocket Reference
	1.1 About This Book
	1.2 Introduction to Regexes and Pattern Matching
	1.3 Perl 5.8
	1.4 Java (java.util.regex)
	1.5 .NET and C#
	1.6 Python
	1.7 PCRE Lib
	1.8 PHP
	1.9 vi Editor
	1.10 JavaScript
	1.11 Shell Tools

	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index Z

