
[Team LiB]

• Table of Contents

• Index

• Reviews

• Examples

• Reader Reviews

• Errata

Active Directory Cookbook

By Robbie Allen

Publisher: O'Reilly

Pub Date: September 2003

ISBN: 0-596-00464-8

Pages: 622

This book contains hundreds of step-by-step solutions for both common and uncommon problems
that you might encounter with Active Directory -- including recipes to deal with the Lightweight
Directory Access Protocol (LDAP), multi-master replication, Domain Name System (DNS), Group
Policy, the Active Directory Schema, and many other features. Author Robbie Allen, a Senior Systems
Architect at Cisco Systems and co-author of our Active Directory tutorial, based this collection of
troubleshooting recipes on his own experience, along with input from Windows administrators
throughout the industry. Each recipe includes a discussion to explain how and why the solution
works, so you can adapt the problem-solving techniques to similar situations.

[Team LiB]

[Team LiB]

• Table of Contents

• Index

• Reviews

• Examples

• Reader Reviews

• Errata

Active Directory Cookbook

By Robbie Allen

Publisher: O'Reilly

Pub Date: September 2003

ISBN: 0-596-00464-8

Pages: 622

 Copyright

 Foreword

 Preface

 Who Should Read This Book?

 What's in This Book?

 Conventions Used in This Book

 We'd Like Your Feedback!

 Acknowledgments

 Chapter 1. Getting Started

 Approach to the Book

 Recipe 1.1. Where to Find the Tools

 Recipe 1.2. Getting Familiar with LDIF

 Recipe 1.3. Programming Notes

 Recipe 1.4. Replaceable Text

 Recipe 1.5. Where to Find More Information

 Chapter 2. Forests, Domains, and Trusts

 Introduction

 Recipe 2.1. Creating a Forest

 Recipe 2.2. Removing a Forest

 Recipe 2.3. Creating a Domain

 Recipe 2.4. Removing a Domain

 Recipe 2.5. Removing an Orphaned Domain

 Recipe 2.6. Finding the Domains in a Forest

 Recipe 2.7. Finding the NetBIOS Name of a Domain

 Recipe 2.8. Renaming a Domain

 Recipe 2.9. Changing the Mode of a Domain

 Recipe 2.10. Using ADPrep to Prepare a Domain or Forest for Windows Server 2003

 Recipe 2.11. Determining if ADPrep Has Completed

 Recipe 2.12. Checking Whether a Windows 2000 Domain Controller Can Be Upgraded to Windows Server

2003

 Recipe 2.13. Raising the Functional Level of a Windows Server 2003 Domain

 Recipe 2.14. Raising the Functional Level of a Windows Server 2003 Forest

 Recipe 2.15. Creating a Trust Between a Windows NT Domain and an AD Domain

 Recipe 2.16. Creating a Transitive Trust Between Two AD Forests

 Recipe 2.17. Creating a Shortcut Trust Between Two AD Domains

 Recipe 2.18. Creating a Trust to a Kerberos Realm

 Recipe 2.19. Viewing the Trusts for a Domain

 Recipe 2.20. Verifying a Trust

 Recipe 2.21. Resetting a Trust

 Recipe 2.22. Removing a Trust

 Recipe 2.23. Enabling SID Filtering for a Trust

 Recipe 2.24. Finding Duplicate SIDs in a Domain

 Chapter 3. Domain Controllers, Global Catalogs, and FSMOs

 Introduction

 Recipe 3.1. Promoting a Domain Controller

 Recipe 3.2. Promoting a Domain Controller from Media

 Recipe 3.3. Demoting a Domain Controller

 Recipe 3.4. Automating the Promotion or Demotion of a Domain Controller

 Recipe 3.5. Troubleshooting Domain Controller Promotion or Demotion Problems

 Recipe 3.6. Removing an Unsuccessfully Demoted Domain Controller

 Recipe 3.7. Renaming a Domain Controller

 Recipe 3.8. Finding the Domain Controllers for a Domain

 Recipe 3.9. Finding the Closest Domain Controller

 Recipe 3.10. Finding a Domain Controller's Site

 Recipe 3.11. Moving a Domain Controller to a Different Site

 Recipe 3.12. Finding the Services a Domain Controller Is Advertising

 Recipe 3.13. Configuring a Domain Controller to Use an External Time Source

 Recipe 3.14. Finding the Number of Logon Attempts Made Against a Domain Controller

 Recipe 3.15. Enabling the /3GB Switch to Increase the LSASS Cache

 Recipe 3.16. Cleaning Up Distributed Link Tracking Objects

 Recipe 3.17. Enabling and Disabling the Global Catalog

 Recipe 3.18. Determining if Global Catalog Promotion Is Complete

 Recipe 3.19. Finding the Global Catalog Servers in a Forest

 Recipe 3.20. Finding the Domain Controllers or Global Catalog Servers in a Site

 Recipe 3.21. Finding Domain Controllers and Global Catalogs via DNS

 Recipe 3.22. Changing the Preference for a Domain Controller

 Recipe 3.23. Disabling the Global Catalog Requirement During a Windows 2000 Domain Login

 Recipe 3.24. Disabling the Global Catalog Requirement During a Windows 2003 Domain Login

 Recipe 3.25. Finding the FSMO Role Holders

 Recipe 3.26. Transferring a FSMO Role

 Recipe 3.27. Seizing a FSMO Role

 Recipe 3.28. Finding the PDC Emulator FSMO Role Owner via DNS

 Chapter 4. Searching and Manipulating Objects

 Introduction

 Recipe 4.1. Viewing the RootDSE

 Recipe 4.2. Viewing the Attributes of an Object

 Recipe 4.3. Using LDAP Controls

 Recipe 4.4. Using a Fast or Concurrent Bind

 Recipe 4.5. Searching for Objects in a Domain

 Recipe 4.6. Searching the Global Catalog

 Recipe 4.7. Searching for a Large Number of Objects

 Recipe 4.8. Searching with an Attribute-Scoped Query

 Recipe 4.9. Searching with a Bitwise Filter

 Recipe 4.10. Creating an Object

 Recipe 4.11. Modifying an Object

 Recipe 4.12. Modifying a Bit-Flag Attribute

 Recipe 4.13. Dynamically Linking an Auxiliary Class

 Recipe 4.14. Creating a Dynamic Object

 Recipe 4.15. Refreshing a Dynamic Object

 Recipe 4.16. Modifying the Default TTL Settings for Dynamic Objects

 Recipe 4.17. Moving an Object to a Different OU or Container

 Recipe 4.18. Moving an Object to a Different Domain

 Recipe 4.19. Renaming an Object

 Recipe 4.20. Deleting an Object

 Recipe 4.21. Deleting a Container That Has Child Objects

 Recipe 4.22. Viewing the Created and Last Modified Timestamp of an Object

 Recipe 4.23. Modifying the Default LDAP Query Policy

 Recipe 4.24. Exporting Objects to an LDIF File

 Recipe 4.25. Importing Objects Using an LDIF File

 Recipe 4.26. Exporting Objects to a CSV File

 Recipe 4.27. Importing Objects Using a CSV File

 Chapter 5. Organizational Units

 Introduction

 Recipe 5.1. Creating an OU

 Recipe 5.2. Enumerating the OUs in a Domain

 Recipe 5.3. Enumerating the Objects in an OU

 Recipe 5.4. Deleting the Objects in an OU

 Recipe 5.5. Deleting an OU

 Recipe 5.6. Moving the Objects in an OU to a Different OU

 Recipe 5.7. Moving an OU

 Recipe 5.8. Determining How Many Child Objects an OU Has

 Recipe 5.9. Delegating Control of an OU

 Recipe 5.10. Allowing OUs to Be Created Within Containers

 Recipe 5.11. Linking a GPO to an OU

 Chapter 6. Users

 Introduction

 Recipe 6.1. Creating a User

 Recipe 6.2. Creating a Large Number of Users

 Recipe 6.3. Creating an inetOrgPerson User

 Recipe 6.4. Modifying an Attribute for Several Users at Once

 Recipe 6.5. Moving a User

 Recipe 6.6. Renaming a User

 Recipe 6.7. Copying a User

 Recipe 6.8. Unlocking a User

 Recipe 6.9. Finding Locked Out Users

 Recipe 6.10. Troubleshooting Account Lockout Problems

 Recipe 6.11. Viewing the Account Lockout and Password Policies

 Recipe 6.12. Enabling and Disabling a User

 Recipe 6.13. Finding Disabled Users

 Recipe 6.14. Viewing a User's Group Membership

 Recipe 6.15. Changing a User's Primary Group

 Recipe 6.16. Transferring a User's Group Membership to Another User

 Recipe 6.17. Setting a User's Password

 Recipe 6.18. Setting a User's Password via LDAP

 Recipe 6.19. Setting a User's Password via Kerberos

 Recipe 6.20. Preventing a User from Changing His Password

 Recipe 6.21. Requiring a User to Change Her Password at Next Logon

 Recipe 6.22. Preventing a User's Password from Expiring

 Recipe 6.23. Finding Users Whose Passwords Are About to Expire

 Recipe 6.24. Setting a User's Account Options (userAccountControl)

 Recipe 6.25. Setting a User's Account to Expire in the Future

 Recipe 6.26. Finding Users Whose AccountsAre About to Expire

 Recipe 6.27. Determining a User's Last Logon Time

 Recipe 6.28. Finding Users Who Have Not Logged On Recently

 Recipe 6.29. Setting a User's Profile Attributes

 Recipe 6.30. Viewing a User's Managed Objects

 Recipe 6.31. Modifying the Default Display Name Used When Creating Users in ADUC

 Recipe 6.32. Creating a UPN Suffix for a Forest

 Chapter 7. Groups

 Introduction

 Recipe 7.1. Creating a Group

 Recipe 7.2. Viewing the Direct Members of a Group

 Recipe 7.3. Viewing the Nested Members of a Group

 Recipe 7.4. Adding and Removing Members of a Group

 Recipe 7.5. Moving a Group

 Recipe 7.6. Changing the Scope or Type of a Group

 Recipe 7.7. Delegating Control for Managing Membership of a Group

 Recipe 7.8. Resolving a Primary Group ID

 Recipe 7.9. Enabling Universal Group Membership Caching

 Chapter 8. Computers

 Introduction

 Recipe 8.1. Creating a Computer

 Recipe 8.2. Creating a Computer for a Specific User or Group

 Recipe 8.3. Joining a Computer to a Domain

 Recipe 8.4. Moving a Computer

 Recipe 8.5. Renaming a Computer

 Recipe 8.6. Testing the Secure Channel for a Computer

 Recipe 8.7. Resetting a Computer

 Recipe 8.8. Finding Inactive or Unused Computers

 Recipe 8.9. Changing the Maximum Number of Computers a User Can Join to the Domain

 Recipe 8.10. Finding Computers with a Particular OS

 Recipe 8.11. Binding to the Default Container for Computers

 Recipe 8.12. Changing the Default Container for Computers

 Chapter 9. Group Policy Objects (GPOs)

 Introduction

 Recipe 9.1. Finding the GPOs in a Domain

 Recipe 9.2. Creating a GPO

 Recipe 9.3. Copying a GPO

 Recipe 9.4. Deleting a GPO

 Recipe 9.5. Viewing the Settings of a GPO

 Recipe 9.6. Modifying the Settings of a GPO

 Recipe 9.7. Importing Settings into a GPO

 Recipe 9.8. Assigning Logon/Logoff and Startup/Shutdown Scripts in a GPO

 Recipe 9.9. Installing Applications with a GPO

 Recipe 9.10. Disabling the User or Computer Settings in a GPO

 Recipe 9.11. Listing the Links for GPO

 Recipe 9.12. Creating a GPO Link to an OU

 Recipe 9.13. Blocking Inheritance of GPOs on an OU

 Recipe 9.14. Applying a Security Filter to a GPO

 Recipe 9.15. Creating a WMI Filter

 Recipe 9.16. Applying a WMI Filter to a GPO

 Recipe 9.17. Backing Up a GPO

 Recipe 9.18. Restoring a GPO

 Recipe 9.19. Simulating the RSoP

 Recipe 9.20. Viewing the RSoP

 Recipe 9.21. Refreshing GPO Settings on a Computer

 Recipe 9.22. Restoring a Default GPO

 Chapter 10. Schema

 Introduction

 Recipe 10.1. Registering the Active Directory Schema MMC Snap-in

 Recipe 10.2. Enabling Schema Updates

 Recipe 10.3. Generating an OID to Use for a New Class or Attribute

 Recipe 10.4. Generating a GUID to Use for a New Class or Attribute

 Recipe 10.5. Extending the Schema

 Recipe 10.6. Documenting Schema Extensions

 Recipe 10.7. Adding a New Attribute

 Recipe 10.8. Viewing an Attribute

 Recipe 10.9. Adding a New Class

 Recipe 10.10. Viewing a Class

 Recipe 10.11. Indexing an Attribute

 Recipe 10.12. Modifying the Attributes That Are Copied When Duplicating a User

 Recipe 10.13. Modifying the Attributes Included with Ambiguous Name Resolution

 Recipe 10.14. Adding or Removing an Attribute in the Global Catalog

 Recipe 10.15. Finding the Nonreplicated and Constructed Attributes

 Recipe 10.16. Finding the Linked Attributes

 Recipe 10.17. Finding the Structural, Auxiliary, Abstract, and 88 Classes

 Recipe 10.18. Finding the Mandatory and Optional Attributes of a Class

 Recipe 10.19. Modifying the Default Security of a Class

 Recipe 10.20. Deactivating Classes and Attributes

 Recipe 10.21. Redefining Classes and Attributes

 Recipe 10.22. Reloading the Schema Cache

 Chapter 11. Site Topology

 Introduction

 Recipe 11.1. Creating a Site

 Recipe 11.2. Listing the Sites

 Recipe 11.3. Deleting a Site

 Recipe 11.4. Creating a Subnet

 Recipe 11.5. Listing the Subnets

 Recipe 11.6. Finding Missing Subnets

 Recipe 11.7. Creating a Site Link

 Recipe 11.8. Finding the Site Links for a Site

 Recipe 11.9. Modifying the Sites That Are Part of a Site Link

 Recipe 11.10. Modifying the Cost for a Site Link

 Recipe 11.11. Disabling Site Link Transitivity or Site Link Schedules

 Recipe 11.12. Creating a Site Link Bridge

 Recipe 11.13. Finding the Bridgehead Servers for a Site

 Recipe 11.14. Setting a Preferred Bridgehead Server for a Site

 Recipe 11.15. Listing the Servers

 Recipe 11.16. Moving a Domain Controller to a Different Site

 Recipe 11.17. Configuring a Domain Controller to Cover Multiple Sites

 Recipe 11.18. Viewing the Site Coverage for a Domain Controller

 Recipe 11.19. Disabling Automatic Site Coverage for a Domain Controller

 Recipe 11.20. Finding the Site for a Client

 Recipe 11.21. Forcing a Host to a Particular Site

 Recipe 11.22. Creating a Connection Object

 Recipe 11.23. Listing the Connection Objects for a Server

 Recipe 11.24. Load-Balancing Connection Objects

 Recipe 11.25. Finding the ISTG for a Site

 Recipe 11.26. Transferring the ISTG to Another Server

 Recipe 11.27. Triggering the KCC

 Recipe 11.28. Determining if the KCC Is Completing Successfully

 Recipe 11.29. Disabling the KCC for a Site

 Recipe 11.30. Changing the Interval at Which the KCC Runs

 Chapter 12. Replication

 Introduction

 Recipe 12.1. Determining if Two Domain Controllers Are in Sync

 Recipe 12.2. Viewing the Replication Status of Several Domain Controllers

 Recipe 12.3. Viewing Unreplicated Changes Between Two Domain Controllers

 Recipe 12.4. Forcing Replication from One Domain Controller to Another

 Recipe 12.5. Changing the Intra-Site Replication Interval

 Recipe 12.6. Changing the Inter-Site Replication Interval

 Recipe 12.7. Disabling Inter-Site Compression of Replication Traffic

 Recipe 12.8. Checking for Potential Replication Problems

 Recipe 12.9. Enabling Enhanced Logging of Replication Events

 Recipe 12.10. Enabling Strict or Loose Replication Consistency

 Recipe 12.11. Finding Conflict Objects

 Recipe 12.12. Viewing Object Metadata

 Chapter 13. Domain Name System (DNS)

 Introduction

 Recipe 13.1. Creating a Forward Lookup Zone

 Recipe 13.2. Creating a Reverse Lookup Zone

 Recipe 13.3. Viewing a Server's Zones

 Recipe 13.4. Converting a Zone to an AD-Integrated Zone

 Recipe 13.5. Moving AD-Integrated Zones into an Application Partition

 Recipe 13.6. Delegating Control of a Zone

 Recipe 13.7. Creating and Deleting Resource Records

 Recipe 13.8. Querying Resource Records

 Recipe 13.9. Modifying the DNS Server Configuration

 Recipe 13.10. Scavenging Old Resource Records

 Recipe 13.11. Clearing the DNS Cache

 Recipe 13.12. Verifying That a Domain Controller Can Register Its Resource Records

 Recipe 13.13. Registering a Domain Controller's Resource Records

 Recipe 13.14. Preventing a Domain Controller from Dynamically Registering All Resource Records

 Recipe 13.15. Preventing a Domain Controller from Dynamically Registering Certain Resource Records

 Recipe 13.16. Deregistering a Domain Controller's Resource Records

 Recipe 13.17. Allowing Computers to Use a Different Domain Suffix from Their AD Domain

 Chapter 14. Security and Authentication

 Introduction

 Recipe 14.1. Enabling SSL/TLS

 Recipe 14.2. Encrypting LDAP Traffic with SSL, TLS, or Signing

 Recipe 14.3. Enabling Anonymous LDAP Access

 Recipe 14.4. Restricting Hosts from Performing LDAP Queries

 Recipe 14.5. Using the Delegation of Control Wizard

 Recipe 14.6. Customizing the Delegation of Control Wizard

 Recipe 14.7. Viewing the ACL for an Object

 Recipe 14.8. Customizing the ACL Editor

 Recipe 14.9. Viewing the Effective Permissions on an Object

 Recipe 14.10. Changing the ACL of an Object

 Recipe 14.11. Changing the Default ACL for an Object Class in the Schema

 Recipe 14.12. Comparing the ACL of an Object to the Default Defined in the Schema

 Recipe 14.13. Resetting an Object's ACL to the Default Defined in the Schema

 Recipe 14.14. Preventing the LM Hash of a Password from Being Stored

 Recipe 14.15. Enabling List Object Access Mode

 Recipe 14.16. Modifying the ACL on Administrator Accounts

 Recipe 14.17. Viewing and Purging Your Kerberos Tickets

 Recipe 14.18. Forcing Kerberos to Use TCP

 Recipe 14.19. Modifying Kerberos Settings

 Chapter 15. Logging, Monitoring, and Quotas

 Introduction

 Recipe 15.1. Enabling Extended dcpromo Logging

 Recipe 15.2. Enabling Diagnostics Logging

 Recipe 15.3. Enabling NetLogon Logging

 Recipe 15.4. Enabling GPO Client Logging

 Recipe 15.5. Enabling Kerberos Logging

 Recipe 15.6. Enabling DNS Server Debug Logging

 Recipe 15.7. Viewing DNS Server Performance Statistics

 Recipe 15.8. Enabling Inefficient and Expensive LDAP Query Logging

 Recipe 15.9. Using the STATS Control to View LDAP Query Statistics

 Recipe 15.10. Using Perfmon to Monitor AD

 Recipe 15.11. Using Perfmon Trace Logs to Monitor AD

 Recipe 15.12. Enabling Auditing of Directory Access

 Recipe 15.13. Creating a Quota

 Recipe 15.14. Finding the Quotas Assigned to a Security Principal

 Recipe 15.15. Changing How Tombstone Objects Count Against Quota Usage

 Recipe 15.16. Setting the Default Quota for All Security Principals in a Partition

 Recipe 15.17. Finding the Quota Usage for a Security Principal

 Chapter 16. Backup, Recovery, DIT Maintenance, and Deleted Objects

 Introduction

 Recipe 16.1. Backing Up Active Directory

 Recipe 16.2. Restarting a Domain Controller in Directory Services Restore Mode

 Recipe 16.3. Resetting the Directory Service Restore Mode Administrator Password

 Recipe 16.4. Performing a Nonauthoritative Restore

 Recipe 16.5. Performing an Authoritative Restore of an Object or Subtree

 Recipe 16.6. Performing a Complete Authoritative Restore

 Recipe 16.7. Checking the DIT File's Integrity

 Recipe 16.8. Moving the DIT Files

 Recipe 16.9. Repairing or Recovering the DIT

 Recipe 16.10. Performing an Online Defrag Manually

 Recipe 16.11. Determining How Much Whitespace Is in the DIT

 Recipe 16.12. Performing an Offline Defrag to Reclaim Space

 Recipe 16.13. Changing the Garbage Collection Interval

 Recipe 16.14. Logging the Number of Expired Tombstone Objects

 Recipe 16.15. Determining the Size of the Active Directory Database

 Recipe 16.16. Searching for Deleted Objects

 Recipe 16.17. Restoring a Deleted Object

 Recipe 16.18. Modifying the Tombstone Lifetime for a Domain

 Chapter 17. Application Partitions

 Introduction

 Recipe 17.1. Creating and Deleting an Application Partition

 Recipe 17.2. Finding the Application Partitions in a Forest

 Recipe 17.3. Adding or Removing a Replica Server for an Application Partition

 Recipe 17.4. Finding the Replica Servers for an Application Partition

 Recipe 17.5. Finding the Application Partitions Hosted by a Server

 Recipe 17.6. Verifying Application Partitions Are Instantiated on a Server Correctly

 Recipe 17.7. Setting the Replication Notification Delay for an Application Partition

 Recipe 17.8. Setting the Reference Domain for an Application Partition

 Recipe 17.9. Delegating Control of Managing an Application Partition

 Chapter 18. Interoperability and Integration

 Introduction

 Recipe 18.1. Accessing AD from a Non-Windows Platform

 Recipe 18.2. Programming with .NET

 Recipe 18.3. Programming with DSML

 Recipe 18.4. Programming with Perl

 Recipe 18.5. Programming with Java

 Recipe 18.6. Programming with Python

 Recipe 18.7. Integrating with MIT Kerberos

 Recipe 18.8. Integrating with Samba

 Recipe 18.9. Integrating with Apache

 Recipe 18.10. Replacing NIS

 Recipe 18.11. Using BIND for DNS

 Recipe 18.12. Authorizing a Microsoft DHCP Server

 Recipe 18.13. Using VMWare for Testing AD

 Appendix A. Tool List

 ACL Diagnostics Command (acldiag.exe)

 Active Directory Domains and Trusts Snap-in (domain.msc)

 Active Directory Installation Wizard (dcpromo.exe)

 Active Directory Load Balancer Command (adlb.exe)

 Active Directory Schema Snap-in (schmmgmt.msc)

 Active Directory Sites and Services (dssite.msc)

 Active Directory Users and Computers Snap-in (dsa.msc)

 AD Prep Utility (adprep.exe)

 ADSI Edit (adsiedit.msc)

 Audit Policy Command (auditpol.exe)

 Backup Wizard (ntbackup.exe)

 CSVDE Command (csvde.exe)

 Default Domain Controller Security Policy Snap-in (dcpol.msc)

 Default Domain Security Policy Snap-in (dompol.msc)

 Default Group Policy Restore Command (dcgpofix.exe)

 DNS Snap-in (dnsmgmt.msc)

 DNSCmd Command (dnscmd.exe)

 Domain Controller Diagnosis Command (dcdiag.exe)

 DS ACL Command (dsacls.exe)

 DS Add Command (dsadd.exe)

 DS Get Command (dsget.exe)

 DS Modify Command (dsmodify.exe)

 DS Move Command (dsmove.exe)

 DS Query Command (dsquery.exe)

 DS Remove Command (dsrm.exe)

 Enumprop Command (enumprop.exe)

 Group Policy Management Console (gpmc.msc)

 Group Policy Object Editor (gpedit.msc)

 Group Policy Verification Tool (gpotool.exe)

 Group Policy Results Command (gpresult.exe)

 Group Policy Refresh Command (gpupdate.exe)

 IP Configuration (ipconfig.exe)

 Kerberos List (klist.exe)

 Kerberos Tray (kerbtray.exe)

 LDIFDE Command (ldifde.exe)

 LDP (ldp.exe)

 Move Tree Command (movetree.exe)

 Netdom Command (netdom.exe)

 Network Connectivity Tester (netdiag.exe)

 NLTest Command (nltest.exe)

 Nslookup Command (nslookup.exe)

 NTDS Util Command (ntdsutil.exe)

 OID Generator Command (oidgen.exe)

 Redirect Default Computers Command (redircmp.exe)

 Redirect Default Users Command (redirusr.exe)

 Reg Command (reg.exe)

 Registry Editor (regedit.exe)

 Rename Domain Command (rendom.exe)

 Replication Diagnostics Command (repadmin.exe)

 Replication Monitor (replmon.exe)

 Resultant Set of Policy Snap-in (rsop.msc)

 SecEdit Command (secedit.exe)

 Time Service (w32tm.exe)

 Unlock (unlock.exe)

 UUID Generator Command (uuidgen.exe)

 WinNT32 Command (winnt32.exe)

 Colophon

 Index

[Team LiB]

[Team LiB]

Copyright

Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of a bluefin tuna and the topic of Active Directory is a
trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com

[Team LiB]

Foreword
I've been waiting for "The Year of the Directory" for 15 years, basically since "The Year of the LAN,"
which, if I recall correctly, occurred in 1983, 1984, 1985, and briefly again in 1988. But as I write this
in 2003, there are very few enterprise networks that are not running a directory of one sort or
another. While I was patiently waiting at the front door, the directory slipped in the back. I must
have been napping on the couch.

The Year of the Directory never came, nor will it ever. Just as with TV, fax, LANs, cell phones, and
the Internet, we've experienced another sea change in communications and information technology.
But no one can point to the time when the change "happened." Ocean tides have a well-defined
schedule, but watershed technology changes are more like global warming. "Look, Honey! The waves
come right up to the front porch!" The IT industry has simply evolved over time to assimilate yet
another new technology, making our ability to communicate and compute more seamless, more
pervasive, and more affordable.

And that's sort of the point of directories: to make it possible for us to build larger, more
sophisticated networks that don't collapse under the weight of their own complexity. The first
commercial NOS with an integrated directory, Banyan's VINES, was a startling success in this regard.
At a time when most enterprise IT executives were just dimly aware that workgroup LANs had utterly
subverted their minicomputer and mainframe-based strategies, a relatively few prescient CIOs had
seen the future, building centrally managed, global PC networks based on Banyan's distributed and
replicated directory, StreetTalk.

I loved VINES and StreetTalk because they made it possible to operate distributed enterprise
networks with extremely low administrative costs. The VINES NOS provided competent file, print,
and communications on industry-standard server hardware. The StreetTalk directory service added
secure, distributed naming and authentication across the entire network. VINES also came bundled
with a directory-integrated email system that was a model of simplicity and scalability. VINES
administrators enjoyed all this with a low level of administrative overhead that we can only appreciate
in retrospect. Bringing up a new VINES server running both the directory and email service amounted
to loading the OS (27 floppies worth!), configuring the NIC, and giving the server a name.
Troubleshooting tools were mostly nonexistent because there were mostly no troubles to shoot. And
when there was a problem that we couldn't sort out using the primitive tools we had, waving a dead
chicken over the suspect server usually took care of it. StreetTalk made VINES as close to a "set it
and forget it" network as the industry has ever seen, which is just what directories are supposed to
do.

Banyan's 10-year lead in the enterprise network market evaporated in about 5 years, due to many
factors: inept marketing, the introduction of a competitive directory from Novell (NDS, now called
eDirectory), and ISV support that could only be described as hostile. Banyan's demise as a NOS
company was as ugly as it was inevitable.

The NOS directory market is now left to Novell's eDirectory and Microsoft's Active Directory.
eDirectory does well in many situations, but for building enterprise-scale, Windows-based networks,
Active Directory's dominance seems inevitable.

Now I'll admit to being a big fan of Microsoft's Active Directory. Active Directory is a wonderfully
sophisticated piece of software that performs well, scales up and scales out, and does an outstanding
job of integrating computers running earlier Windows operating systems such as Windows NT 4.0 and
Windows 98. I doubt that Microsoft has ever produced a piece of software as reliable as Active
Directory, particularly in its 1.0 version. I'd be really surprised if there's an enterprise that can't
implement Active Directory successfully.

But all that sophistication and performance requires a substantial amount of care and feeding.
Running a VINES network was like driving a 60s vintage VW Beetle: push, pull, left, right, and the Bug
did pretty much what you expected. Managing an Active Directory enterprise is more like piloting a
Lear jet. If you don't know how to use all those knobs and dials properly, you've got a good chance of
leaving a smoking crater in the ground.

A competent Active Directory administrator must have at least a passing understanding of a handful
of different technologies, including DNS, WINS, Kerberos, LDAP, and the Windows operating system
itself. And he must be able to perform more than a hundred different tasks using more than 30
different utilities. Even if you've read the books and taken the classes, becoming a skilled Active
Directory administrator requires detailed knowledge of the ins and outs of Active Directory. Although
Active Directory simplifies the management of a large network substantially, much of the
administrative overhead has simply shifted to Active Directory itself.

That's where the Active Directory Cookbook comes in. Robbie Allen has produced an outstanding
reference that spells out how to perform the hundred-plus tasks that an administrator is likely to
perform during the Active Directory lifecycle. The Active Directory Cookbook is essentially a book of
checklists for the professional Active Directory pilot. Each administrative task includes background
information, step-by-step instructions, and references to more detailed information on Microsoft's
web site. If you need to do something with Active Directory, Robbie shows you how to do it with a
minimum of fuss and bother.

I've known Robbie for several years, both as a first-string speaker for NetPro's Directory Experts
Conference and as a frequent contributor to Tony Murray's activedir.org mailing list. Robbie brings a
rare combination of skills and knowledge to the table. He has the rare ability to blend an in-depth
knowledge of how Active Directory actually works, hands-on understanding of what an administrator
needs to do (and not do!) to successfully deploy and run a large Active Directory installation, and a
Unix administrator's inbred desire to automate everything with scripts. So not only does Robbie
deliver a "how-to" for every Active Directory administrative task you're likely to perform, he shows
you how to automate it using a combination of VB Script, Perl, batch files, and command-line utilities.

And that's what really excites me about this book. A catalog of step-by-step instructions for common
Active Directory administrative tasks would be useful by itself. But by providing a programmatic
solution for most of these tasks, Robbie has laid the groundwork for automating most of your day-to-
day Active Directory management tasks. And that brings you a step closer to what you ultimately
want: a network with the performance and sophistication of Windows and Active Directory, and the
simplicity of administration we haven't had since VINES and StreetTalk. That would be a mighty
powerful combination.

-Gil Kirkpatrick CTO, NetPro[1]

[1] Gil Kirkpatrick is the Chief Technology Officer at NetPro and the founder of the Directory Experts
Conference. With a strategic combination of software solutions, conferences, and web resources, NetPro is
revolutionizing the way companies manage their directories and driving the availability and performance of
the world's networks. NetPro delivers the only comprehensive suite of solutions designed to manage network
directory services for 24 x 7 availability throughout the directory lifecycle (http://www.netpro.com).

http://www.netpro.com

[Team LiB]

[Team LiB]

Preface
In 1998 when I first became involved with the Microsoft Windows 2000 Joint Development Program
(JDP), there was very little data available on Active Directory. In the following months and even after
the initial release of Windows 2000, there were very few books or white papers to help early adopters
of Active Directory get started. And some of the information that had been published was often
inaccurate or misleading. Many early deployers had to learn by trial and error. As time passed, more
and more informative books were published, which helped fill the information gap.

By the end of the second year of its release, there was an explosion of information on Active
Directory. Not only were there over 50 books published, but Microsoft also cleaned up their
documentation on MSDN (http://msdn.microsoft.com) and their AD web site
(http://www.microsoft.com/ad/). Now those sites have numerous white papers, many of which could
serve as mini booklets. Other web sites have popped up as well that contain a great deal of
information on Active Directory. With Windows Server 2003, Microsoft has taken their level of
documentation a step higher. Extensive information on Active Directory is available directly from any
Windows Server 2003 computer in the form of the Help and Support Center (available from the Start
Menu). So with all this data available on Active Directory in the form of published books, white
papers, web sites, and even from within the operating system, why would you want to purchase this
one?

In the summer of 2002, I was thumbing through the Perl Cookbook from O'Reilly, looking for help
with an automation script I was writing for Active Directory. It just so happened that there was a
recipe that addressed the specific task I was trying to perform. In Cookbook parlance, a recipe
provides instructions on how to solve a particular problem. I thought that since Active Directory is
such a task-oriented environment, the Cookbook approach might be a very good format. After a little
research, I found there were books (often multiple) on nearly every facet of Active Directory,
including introductory books, design guides, books that focused on migration, programming books,
and reference books. The one type of book I didn't see was a task-oriented "how-to" book, which is
exactly what the Cookbook format provides.

Based on my own experience, hours of research, and years of hanging out on Active Directory
newsgroups and mailing lists, I've compiled over 325 recipes that should answer the majority of "How
do I do X" questions one could pose about Active Directory. And just as in the Perl community where
the Perl Cookbook was a great addition that sells well even today, I believe the Active Directory
Cookbook will also be a great addition to any Active Directory library.

[Team LiB]

http://msdn.microsoft.com
http://www.microsoft.com/ad/

[Team LiB]

Who Should Read This Book?

As with many of the books in the Cookbook series, the Active Directory Cookbook can be useful to
anyone who has to deploy, administer, or automate Active Directory. This book can serve as a great
reference for those who have to work with Active Directory on a day-to-day basis. And because of all
the programming samples, this book can be really beneficial to programmers who want to get a
jumpstart on performing certain tasks in an application. For those without much programming
background, the VBScript and Perl solutions are straightforward and should be pretty easy to follow
and expand on.

The companion to this book, Active Directory, Second Edition from O'Reilly, is a great choice for those
wanting a thorough description of the core concepts behind Active Directory, how to design an Active
Directory infrastructure, and how to automate that infrastructure using Active Directory Service
Interfaces (ADSI) and Windows Management Instrumentation (WMI). Active Directory, Second
Edition does not describe how to accomplish every possible task within Active Directory; that is the
purpose of this book. These two books, along with the supplemental information described in Recipe
1.5, should be sufficient to answer most questions you have about Active Directory.

[Team LiB]

[Team LiB]

What's in This Book?

This book consists of 18 chapters. Here is a brief overview of each chapter:

Chapter 1, sets the stage for the book by covering where you can find the tools used in the
book, VBScript and Perl issues to consider, and where to find additional information.

Chapter 2, covers how to create and remove forests and domains, update the domain mode or
functional levels, create different types of trusts, and other administrative trust tasks.

Chapter 3, covers promoting and demoting domain controllers, finding domain controllers,
enabling the global catalog, and finding and managing Flexible Single Master Operations (FSMO)
roles.

Chapter 4, covers the basics of searching Active Directory; creating, modifying, and deleting
objects; using LDAP controls; and importing and exporting data using LDAP Data Interchange
Format (LDIF) and comma-separated variable (CSV) files.

Chapter 5, covers creating, moving, and deleting Organizational Units, and managing the
objects contained within them.

Chapter 6, covers all aspects of managing user objects, including creating, renaming, moving,
resetting passwords, unlocking, modifying the profile attributes, and locating users that have
certain criteria (e.g., password is about to expire).

Chapter 7, covers how to create groups, modify group scope, and type and manage
membership.

Chapter 8, covers creating computers, joining computers to a domain, resetting computers, and
locating computers that match certain criteria (e.g., have been inactive for a number of weeks).

Chapter 9, covers how to create, modify, link, copy, import, back up, restore, and delete GPOs
using the Group Policy Management Console and scripting interface.

Chapter 10, covers basic schema administration tasks, such as generating object identifiers
(OIDs) and schemaIDGUIDs, how to use LDIF to extend the schema, and how to locate
attributes or classes that match certain criteria (e.g., all attributes that are indexed).

Chapter 11, covers how to manage sites, subnets, site links, and connection objects.

Chapter 12, covers how to trigger and disable the Knowledge Consistency Checker (KCC), how
to query metadata, force replication, and determine what changes have yet to replicate
between domain controllers.

Chapter 13, covers creating zones and resource records, modifying DNS server configuration,
querying DNS, and customizing the resource records a domain controller dynamically registers.

Chapter 14, covers how to delegate control, view and modify permissions, view effective

permissions, and manage Kerberos tickets.

Chapter 15, covers how to enable auditing, diagnostics, DNS, NetLogon, Kerberos and GPO
logging, obtain LDAP query statistics, and manage quotas.

Chapter 16, covers how to back up Active Directory, perform authoritative and nonauthoritative
restores, check DIT file integrity, perform online and offline defrags, and search for deleted
objects.

Chapter 17, covers creating and managing application partitions.

Chapter 18, covers how to integrate Active Directory with various applications, services, and
programming languages.

[Team LiB]

[Team LiB]

Conventions Used in This Book

The following typographical conventions are used in this book:

Constant width

Indicates command-line elements, computer output, and code examples.
Constant width italic

Indicates placeholders (for which you substitute an actual name) in examples and in registry
keys

Constant width bold

Indicates user input
Italic

Introduces new terms and example URLs, commands, file extensions, filenames, directory or
folder names, and UNC pathnames

Indicates a tip, suggestion, or general note. For example, I'll tell you if you
need to use a particular version or if an operation requires certain privileges.

Indicates a warning or caution. For example, I'll tell you if Active Directory does
not behave as you'd expect or if a particular operation has a negative impact
on performance.

[Team LiB]

[Team LiB]

We'd Like Your Feedback!

We at O'Reilly have tested and verified the information in this book to the best of our ability, but
mistakes and oversights do occur. Please let us know about errors you may find, as well as your
suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for the book, where we list errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/activedckbk

Examples can also be found at the author's web site:

http://www.rallenhome.com/books/adcookbook/code.html

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com

[Team LiB]

http://www.oreilly.com/catalog/activedckbk
http://www.rallenhome.com/books/adcookbook/code.html
http://www.oreilly.com

[Team LiB]

Acknowledgments

The people at O'Reilly were a joy to work with. I would like to thank Robert Denn for helping me get
this book off the ground. I am especially grateful for Andy Oram's insightful and thought-provoking
feedback.

I was very fortunate to have an all-star group of technical reviewers. If there was ever a need to
assemble a panel of the top Active Directory experts, you would be hard pressed to find a more
knowledgeable group of guys. Here they are in alphabetical order:

Rick Kingslan (rkingsla@cox.net) is a Senior Systems Engineer and Microsoft Windows Server MVP. If
you've ever posted a question to an Active Directory newsgroup or discussion forum, odds are Rick
participated in the thread. His uncanny ability to provide useful feedback on just about any Active
Directory problem helped ensure I covered all the angles with each recipe.

Gil Kirkpatrick (gilk@netpro.com) is the Executive Vice President & CTO of NetPro
(http://www.netpro.com/). Gil is also the author of Active Directory Programming from MacMillan.
His extensive knowledge of the underpinnings of Active Directory helped clarify several issues I did
not address adequately the first time through.

Tony Murray (tony@activedir.org) is the maintainer of the www.ActiveDir.org web site and mailing
list, which is one of the premier Active Directory discussion forums. The myriad of questions posed to
the list served as inspiration for this book. Tony's comments and suggestions throughout the book
helped tremendously.

Todd Myrick (myrickt@mail.nih.gov) has a unique perspective on Active Directory from his experience
inside the government. Todd contributed several "outside the box" ideas to the book that only a
creative person, such as he, could have done.

Joe Richards (joe@joeware.net) is the creator of the http://www.joeware.net/ web site, which
contains many must-have Active Directory tools, such as adfind, unlock, and much more. Joe is one

of the most experienced Active Directory administrators and programmers I've met. He's had to do
most of the tasks in this book at one point or another, so his contributions were significant.

Kevin Sullivan (ksullivan@aelita.com) is the Project Manager for Enterprise Directory Management at
Aelita. Kevin has as much experience with Active Directory as anyone you'll find. He is a frequent
contributor to Active Directory discussion forums, and he provided numerous suggestions and
clarifications throughout the book.

Last, but certainly not least, I would like to thank my wife Janet. Her love, support, and bright smile
are constant reminders of how lucky I am. Did I mention she cooks, too!

[Team LiB]

http://www.netpro.com/
http://www.joeware.net/

[Team LiB]

Chapter 1. Getting Started

Approach to the Book

Recipe 1.1. Where to Find the Tools

Recipe 1.2. Getting Familiar with LDIF

Recipe 1.3. Programming Notes

Recipe 1.4. Replaceable Text

Recipe 1.5. Where to Find More Information
[Team LiB]

[Team LiB]

Approach to the Book

If you are familiar with the O'Reilly Cookbook format that can be seen in other popular books, such
as the Perl Cookbook, Java Cookbook, and DNS and BIND Cookbook, then the layout of this book will
not be anything new to you. The book is composed of 18 chapters, each containing 10-30 recipes for
performing a specific Active Directory task. Within each recipe are four sections: problem, solution,
discussion, and see also. The problem section briefly describes the task the recipe focuses on. The
solution section contains step-by-step instructions on how to accomplish the task. The discussion
section contains detailed information about the problem or solution. The see also section contains
references to additional sources of information that can be useful if you still need more information
after reading the discussion. The see also section may reference other recipes, MS Knowledge Base
(MS KB) (http://support.microsoft.com/) articles, or documentation from the Microsoft Developers
Network (MSDN) (http://msdn.microsoft.com).

At Least Three Ways to Do It!

When I first began developing the content for the book, I struggled with how to capture the fact that
you can do things multiple ways with Active Directory. You may be familiar with the famous Perl
motto: There Is More Than One Way To Do It; well with Active Directory, there are often At Least
Three Ways To Do It. You can perform a task with a graphical user interface (GUI), such as ADSI
Edit, LDP, or the Active Directory Users and Computers snap-in; you can use a command-line
interface (CLI), such as the ds utilities (i.e., dsadd, dsmod, dsrm, dsquery, dsget), nltest, netdom, or
ldifde; and, finally, you can perform the same task using a scripting language, such as VBScript or
Perl.

Since people prefer different methods, and no one method is necessarily better than another, I
decided to write solutions to the recipes using one of each. That means instead of just a single
solution per recipe, I include up to three solutions using GUI, CLI, and programmatic examples. That
said, some recipes cannot be accomplished with one of the three methods or it is very difficult to do
so. In that case, only the applicable methods are covered.

In the GUI and CLI solutions, I use standard tools that are readily accessible. There are other tools
that I could have used, which would have made some of the tasks easier to accomplish, but I wanted
to make this book as useful as possible without requiring you to hunt down the tools I use.

I also took this approach with the programmatic solutions; I use VBScript for the programming
language, primarily because it is widely used among Windows administrators and is the most
straightforward from a code perspective when using Active Directory Service Interface (ADSI) and
Windows Script Host (WSH). For those familiar with other languages, such as Visual Basic, Perl and
JScript, it is very easy to convert code from VBScript.

The downside to using VBScript is that it does not have all of the facilities necessary to accomplish
some complicated tasks. It is for this reason that I use Perl in a few recipes that required a
complicated programmatic solution. For those of you who wish that all of the solutions were written
with Perl instead of VBScript, you are in luck. On the book's web site, I've posted companion Perl
solutions for every recipe that had a VBScript solution. Go to

http://support.microsoft.com/
http://msdn.microsoft.com

http://www.rallenhome.com/books/adcookbook/code.html to download the code.

Windows 2000 Versus Windows Server 2003

Another challenge with writing this book is there are now two versions of Active Directory. The initial
version was released with Windows 2000 and recently, Microsoft released Windows Server 2003,
which provides a lot of updates and new features. Since Windows Server 2003 Active Directory is the
latest and greatest version, and includes a lot of new tools that aren't present in Windows 2000, I've
decided to go with the approach of making everything work under Windows Server 2003 Active
Directory first, and Windows 2000 second. In fact, the majority of the solutions will work with
Windows 2000 unchanged. For the recipes or solutions that are specific to a particular version, I
include a note mentioning the version it is targeted for. Most GUI and programmatic solutions will
work with either version unchanged, but Microsoft introduced several new CLIs with Windows Server
2003, most of which cannot be run on the Windows 2000 operating system. Typically, you can still use
these newer tools on a Windows XP or Windows Server 2003 computer to manage Windows 2000
Active Directory.

[Team LiB]

http://www.rallenhome.com/books/adcookbook/code.html

[Team LiB]

Recipe 1.1 Where to Find the Tools

For the GUI and CLI solutions to mean much to you, you need access to the tools that are used in the
examples. For this reason, in the majority of cases and unless otherwise noted, I only used tools that
are part of the default operating system or available in the Resource Kit or Support Tools. The
Windows 2000 Server Resource Kit and Windows Server 2003 Resource Kit are invaluable sources of
information, along with providing numerous tools that aid administrators in their daily tasks. More
information on the Resource Kits can be found at the following web site:
http://www.microsoft.com/windows/reskits/. The Windows 2000 Support Tools, which is called the
Windows Support Tools in Windows Server 2003, contain many "must have" tools for people that
work with Active Directory. The Microsoft installer (MSI) for the Windows Support Tools can be found
on a Windows 2000 Server or Windows Server 2003 CD in the \support\toolsdirectory. The Appendix
A contains a complete list of the tools used within this book, where they can be found, and what
recipes they are used in.

Once you have the tools at your disposal, there are a couple other issues to be aware of while trying
to apply the solutions in your environment, which I'll now describe.

1.1.1 Running Tools with Alternate Credentials

A best practice for managing Active Directory is to create separate administrator accounts that you
grant elevated privileges, instead of letting administrators use their normal user account that they
use to access other Network Operating System (NOS) resources. This is beneficial because an
administrator who wants to use elevated privileges has to log on with his administrative account
explicitly instead of having the rights implicitly, which could lead to accidental changes in Active
Directory. Assuming you employ this method, then you must provide alternate credentials when
using tools to administer Active Directory unless you log on to a machine, such as a domain
controller, with the administrative credentials.

There are several options for specifying alternate credentials. Many GUI and CLI tools have an option
to specify a user and password to authenticate with. If the tool you want to use does not have that
option, you can use the runas command instead. The following command would run the enumprop

command from the Resource Kit under the credentials of the administrator account in the
rallencorp.com domain:

> runas /user:administrator@rallencorp.com[RETURN]
/netonly "enumprop \"LDAP://dc1/dc=rallencorp,dc=com\""

To run a Microsoft Management Console (MMC) console with alternate credentials, simply use mmc as
the command to run from runas:

> runas /user:administrator@rallencorp.com /netonly "mmc"

This will create an empty MMC console from which you can add consoles for any snap-ins that have
been installed on the local computer.

http://www.microsoft.com/windows/reskits/

The /netonly switch is necessary if the user you are authenticating with does

not have local logon rights on the machine you are running the command from.

There is another option for running MMC snap-ins with alternate credentials. Click on the Start menu
and browse to the tool you want to open, hold down the Shift key, and then right-click on the tool. If
you select Run As, you will be prompted to enter credentials to run the tool under.

1.1.2 Targeting Specific Domain Controllers

Another issue to be aware of when following the instructions in the recipes is whether you need to
target a specific domain controller. In the solutions in this book, I typically do not target a specific
domain controller. When you don't specify a domain controller, you are using a serverless bind and
there is no guarantee what server you will be hitting. Depending on your environment and the task
you need to do, you may want to target a specific domain controller so that you know where the
query or change will be taking place. Also, serverless binding can work only if the DNS for the Active
Directory forest is configured properly and your client can query it. If you have a standalone Active
Directory environment that has no ties to your corporate DNS, you may need to target a specific
domain controller for the tools to work.

[Team LiB]

[Team LiB]

Recipe 1.2 Getting Familiar with LDIF

Even with the new utilities available with Windows Server 2003, support for modifying data within
Active Directory using a command-line tool is relatively weak. The dsmod tool can modify attributes

on a limited set of object classes, but it does not allow you to modify any object type.

One reason for the lack of command-line tools to do this is the command line is not well suited for
manipulating objects, for example, that have multivalued attributes. If you want to specify more than
just one or two values, a single command could get quite long. It would be easier to use a GUI editor,
such as ADSI Edit, to do the task instead.

The LDAP Data Interchange Format was designed to address this issue. Defined in RFC 2849, LDIF
allows you to represent directory additions, modifications, and deletions in a text-based file, which
you can import into a directory using an LDIF-capable tool.

The ldifde utility has been available since Windows 2000 and it allows you to import and export

Active Directory content in LDIF format. LDIF files are composed of blocks of entries. An entry can
add, modify, or delete an object. The first line of an entry is the distinguished name. The second line
contains a changetype, which can be add, modify, or delete. If it is an object addition, the rest of

the entry contains the attributes that should be initially set on the object (one per line). For object
deletions, you do not need to specify any other attributes. And for object modifications, you need to
specify at least three more lines. The first should contain the type of modification you want to
perform on the object. This can be add (to set a previously unset attribute or to add a new value to a
multivalued attribute), replace (to replace an existing value), or delete (to remove a value). The

modification type should be followed by a colon and the attribute you want to perform the
modification on. The next line should contain the name of the attribute followed by a colon, and the
value for the attribute. For example, to replace the last name attribute with the value Smith, you'd
use the following LDIF:

dn: cn=jsmith,cn=users,dc=rallencorp,dc=com
changetype: modify
replace: sn
sn: Smith
-

Modification entries must be followed by a line that only contains a hyphen (-). You can put additional
modification actions following the hyphen, each separated by another hyphen. Here is a complete
LDIF example that adds a jsmith user object and then modifies the givenName and sn attributes for

that object:

dn: cn=jsmith,cn=users,dc=rallencorp,dc=com
changetype: add
objectClass: user
samaccountname: jsmith
sn: JSmith
useraccountcontrol: 512

dn: cn=jsmith,cn=users,dc=rallencorp,dc=com

changetype: modify
add: givenName
givenName: Jim
-
replace: sn
sn: Smith
-

See Recipe 4.24 and Recipe 4.25 for more details on how to use the ldifde utility to import and

export LDIF files.

[Team LiB]

[Team LiB]

Recipe 1.3 Programming Notes

In the VBScript solutions, my intention was to provide the answer in as few lines of code as
necessary. Since this book is not a pure programming book, I did not want to provide a detailed
explanation of how to use ADSI or WMI. If you are looking for that, I recommend Part 3 of Active
Directory, Second Edition. The intent of the VBScript code is to provide you the basics for how a task
can be automated and let you run with it. Most examples only take some minor tweaking to make
them do something useful for you.

Just as with the GUI and CLI solutions, there are some important issues to be aware of when looking
at the VBScript solutions.

1.3.1 Serverless Binds

I mentioned earlier that in the GUI and CLI examples I did not provide instructions for targeting a
specific domain controller to perform a task. Instead, I rely on serverless binds in most cases. The
same applies to the API solutions. A serverless bind for the RootDSE looks like the following in
VBScript:

set objRootDSE = GetObject("LDAP://RootDSE")

That code will query the RootDSE for a domain controller in the domain of the currently logged on
user. You can target a specific domain instead by simply specifying the domain name in the ADsPath:

set objRootDSE = GetObject("LDAP://apac.rallencorp.com/RootDSE")

And similarly, you can target a specific domain controller by including the server name in the
ADsPath:

set objRootDSE = GetObject("LDAP://dc1/RootDSE")

So depending on how your environment is set up and what forest you want to query, you may or
may not need to specify a domain or server name in the code.

1.3.2 Running Scripts Using Alternate Credentials

Just as you might need to run the GUI and CLI tools with alternate credentials, you may also need to
run your scripts and programs with alternate credentials. One way is to use the runas method

described earlier when invoking the script. A better option would be to use the Scheduled Tasks
service to run the script under credentials you specify when creating the task. And yet another option
is to hardcode the credentials in the script. Obviously, this is not very appealing in some scenarios
because you do not want the username and password contained in the script to be easily viewable by
others. Nevertheless, it is a necessary evil, especially when developing against multiple forests, and
I'll describe how it can be done with ADSI and ADO.

With ADSI, you can use the IADsOpenDSObject::OpenDSObject method to specify alternate

credentials. You can quickly turn any ADSI-based example in this book into one that authenticates as
a particular user. For example, a solution to print out the description of a domain might look like the
following:

set objDomain = GetObject("LDAP://dc=apac,dc=rallencorp,dc=com")
WScript.Echo "Description: " & objDomain.Get("description")

Using OpenDSObject, it takes only one additional statement to make the same code authenticate as

the administrator in the domain:

set objLDAP = GetObject("LDAP:")
set objDomain = objLDAP.OpenDSObject(_
 "LDAP://dc=apac,dc=rallencorp,dc=com", _
 "administrator@apac.rallencorp.com", _
 "MyPassword", _
 0)
WScript.Echo "Description: " & objDomain.Get("description")

It is just as easy to authenticate in ADO code as well. Take the following example, which queries all
computer objects in the apac.rallencorp.com domain:

strBase = "<LDAP://dc=apac,dc=rallencorp,dc=com>;"
strFilter = "(&(objectclass=computer)(objectcategory=computer));"
strAttrs = "cn;"
strScope = "subtree"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
objRS.MoveFirst
while Not objRS.EOF
 Wscript.Echo objRS.Fields(0).Value
 objRS.MoveNext
wend

Now, by adding two lines (shown in bold), we can authenticate with the administrator account:

strBaseDN = "<LDAP://dc=apac,dc=rallencorp,dc=com>;"
strFilter = "(&(objectclass=computer)(objectcategory=computer));"
strAttrs = "cn;"
strScope = "subtree"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Properties("User ID") = "administrator@apac.rallencorp.com"
objConn.Properties("Password") = "MyPassword"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBaseDN & strFilter & strAttrs & strScope)
objRS.MoveFirst
while Not objRS.EOF
 Wscript.Echo objRS.Fields(0).Value

 objRS.MoveNext
wend

To authenticate with ADO, you need to set the User ID and Password properties of the ADO

connection object. I used the UPN of the administrator for the user ID. With ADSI and ADO, you can
use a UPN, NT 4.0 style account name (e.g., APAC\Administrator), or distinguished name for the user
ID.

1.3.3 Defining Variables and Error Checking

An important part of any script is error checking. Error checking allows your programs to gracefully
identify any issues that arise during execution and take the appropriate action. Another best practice
is to define variables before you use them and clean them up after you are done with them. In this
book, most of the programmatic solutions do not include any error checking, predefined variables, or
variable clean up. While admittedly this is not setting a good example, if I included extensive error
checking and variable management, it would have made this book considerably longer with little
value to the reader. Again, the goal is to provide you with a code snippet that shows you how to
accomplish a task, not provide robust scripts that include all the trimmings.

Error checking with VBScript is pretty straightforward. At the beginning of the script include the
following declaration:

On Error Resume Next

This tells the script interpreter to continue even if errors occur. Without that declaration, anytime an
error is encountered the script will abort. When you use On Error Resume Next, you need to use the
Err object to check for errors after any step where a fatal error could occur. The following example
shows how to use the Err object.

On Error Resume Next
set objDomain = GetObject("LDAP://dc=rallencorp,dc=com")
if Err.Number <> 0 then
 Wscript.Echo "An error occured getting the domain object: " & Err.Description
 Wscript.Quit
end if

Two important properties of the Err object are Number, which if non-zero signifies an error, and
Description which will contain the error message.

As far as variable management goes, it is always a good practice to include the following at the
beginning of every script:

Option Explicit

When this is used, every variable in the script must be declared or an exception will be generated
when you attempt to run the script. Variables are declared in VBScript using the Dim keyword. After
you are done with a variable, it is a good practice to set it to Nothing so you release any resources

bound to the variable, and don't accidentally re-use the variable with its previous value. The following
code shows a complete example for printing the display name for a domain with error checking and
variable management included:

Option Explicit
On Error Resume Next

Dim objDomain
set objDomain = GetObject("LDAP://cn=users,dc=rallencorp,dc=com")
if Err.Number <> 0 then
 Wscript.Echo "An error occured getting the domain object: " & Err.Description
 Wscript.Quit
end if

Dim strDescr
strDescr = objDomain.Get("description")
if Err.Number <> 0 then
 Wscript.Echo "An error occured getting the description: " & Err.Description
 Wscript.Quit
end if

WScript.Echo "Description: " & strDescr

objDomain = Nothing
strDescr = Nothing

[Team LiB]

[Team LiB]

Recipe 1.4 Replaceable Text

This book is filled with examples. Every recipe consists of one or more examples that show how to
accomplish a task. Most CLI- and VBScript-based solutions use parameters that are based on the
domain, forest, OU, user, etc., that is being added, modified, queried, and so on. Instead of using
fictitious names, in most cases, I use replaceable text. This text should be easily recognizable
because it is in italics and surrounded by angle brackets (<>). Instead of describing what each
replaceable element represents every time I use it, I've included a list of some of the commonly used
ones here:

<DomainDN>

Distinguished name of domain (e.g., dc=amer,dc=rallencorp,dc=com)
<ForestRootDN>

Distinguished name of the forest root domain (e.g., dc=rallencorp,dc=com)
<DomainDNSName>

Fully qualified DNS name of domain (e.g., amer.rallencorp.com)
<ForestDNSName>

Fully qualified DNS name of forest root domain (e.g., rallencorp.com)
<DomainControllerName>

Single label or fully qualified DNS hostname of domain controller (e.g., dc01.rallencorp.com)
<UserDN>

Distinguished name of user (e.g., cn=administrator,cn=users,dc=rallencorp,dc=com)
<GroupDN>

Distinguished name of group (e.g., cn=DomainAdmins,cn=users,dc=rallencorp,dc=com)
<ComputerName>

Single label DNS hostname of computer (e.g., rallen-xp)

[Team LiB]

[Team LiB]

Recipe 1.5 Where to Find More Information

While it is my hope that this book provides you with enough information to perform most of the tasks
you need to do to maintain your Active Directory environment, it is not realistic to think every
possible task has been covered. In fact, there is easily another three to four chapters I could have
included in this book, but due to space and time considerations, it was not possible for this edition.
Working on this book has made me realize just how must stuff Active Directory administrators need
to know.

Now that Active Directory has been around for a few years, a significant user base has been built,
which has led to other great resources of information. This section contains some of the useful
sources of information that I use on a regular basis.

1.5.1 Command-Line Tools

If you have any questions about the complete syntax or usage information for any of the command-
line tools I use, you should first take a look at the help information for the tools. The vast majority of
CLI tools provide syntax information by simply passing /? as a parameter. For example:

> dsquery /?

1.5.2 Microsoft Knowledge Base

The Microsoft Support web site is a great source of information and is home of the Microsoft
Knowledge Base (MS KB) articles. Throughout the book, I include references to pertinent MS KB
articles where you can find more information on the topic. You can find the complete text for a KB
article by searching on the KB number at the following web site:
http://support.microsoft.com/default.aspx. You can also append the KB article number to the end of
this URL to go directly to the article: http://support.microsoft.com/?kbid=.

1.5.3 Microsoft Developers Network

MSDN contains a ton of information on Active Directory and the programmatic interfaces to Active
Directory, such as ADSI and LDAP. I sometimes reference MSDN pages in recipes. Unfortunately,
there is no easy way to reference the exact page I'm talking about unless I provided the URL or
navigation to the page, which would more than likely change by the time the book was printed.
Instead I provide the name of the title of the page, which you can use to search on via the following
site: http://msdn.microsoft.com/library/.

1.5.4 Web Sites

http://support.microsoft.com/default.aspx
http://support.microsoft.com/?kbid=
http://msdn.microsoft.com/library/

Microsoft Active Directory Home Page (http://www.microsoft.com/ad/)

This site is the starting point for Active Directory information provided by Microsoft. It contains
links to white papers, case studies, and tools.

Microsoft Webcasts (http://support.microsoft.com/default.aspx?scid=fh;EN-US;pwebcst)

Webcasts are on-demand audio/video technical presentations that cover a wide range of
Microsoft products. There are several Active Directory-related webcasts that cover such topics
as disaster recovery, upgrading to Windows Server 2003 Active Directory, and Active Directory
tools.

Google Search Engine (http://www.google.com/)

Google is my primary starting point for locating information on Active Directory. It is a powerful
search engine and is often quicker and easier to use to search the Microsoft web sites than
using the search engines provided on Microsoft's sites.

LabMice Active Directory (http://www.labmice.net/ActiveDirectory/default.htm)

The LabMice web site contains a large collection of links to information on Active Directory. It
has links to MS KB articles, white papers, and other web sites.

Robbie Allen's Home Page (http://www.rallenhome.com/)

This is my personal web site, which has information about the Active Directory books I've
written and links to download the code contained in each (including this book).

1.5.5 Newsgroups

microsoft.public.win2000.active_directory

This is a very active newsgroup where several top-notch Active Directory experts answer
questions posed by users.

microsoft.public.win2000.dns

This is another good resource if you have a DNS question you've been unable to find an answer
for; odds are someone on this newsgroup will have an answer.

microsoft.public.adsi.general

If you have questions about ADSI, this is another very active newsgroup where you can find
answers.

If you have a question about a particular topic, a good starting point is to search the newsgroups
using Google's Groups search engine (http://groups.google.com/). Just like its web search engine,
the group search engine is very fast and is an invaluable resource when trying to locate information.

1.5.6 Mailing Lists

ActiveDir (http://www.activedir.org/)

The ActiveDir mailing list is where the most advanced Active Directory questions can get
answered. The list owner, Tony Murray, does an excellent job of not allowing topics to get out
of hand as can sometimes happen on large mailing lists. The list is very active and it is rare for

http://www.microsoft.com/ad/
http://support.microsoft.com/default.aspx?scid=fh;EN-US;pwebcst
http://www.google.com/
http://www.labmice.net/ActiveDirectory/default.htm
http://www.rallenhome.com/
http://groups.google.com/
http://www.activedir.org/

a question to go unanswered. Some of Microsoft's Active Directory Program Managers also
participate on the list and are very helpful with the toughest questions. Keeping track of this list
is a must-have for any serious Active Directory administrator.

15 Seconds (http://15seconds.com/focus/ADSI.htm)

Just as the ActiveDir list is crucial for AD administrators, the 15 seconds list is extremely
valuable for AD developers. It is also very active and the participants are good about
responding to questions quickly.

1.5.7 Books

In addition to the Resource Kit books, the following books are good sources of information:

Active Directory, Second Edition, by Robbie Allen and Alistair Lowe-Norris (O'Reilly)

This is a good all-purpose book on Active Directory. A few of the topics the second edition cover
include new Windows Server 2003 features, designing Active Directory, upgrading from
Windows 2000, and Active Directory automation.

Managing Enterprise Active Directory Services, by Robbie Allen and Richard Puckett (Addison-Wesley)

This is a great resource for anyone who has to support a large-scale Active Directory
environment. The book preaches the benefits of automation in large environments and includes
over 300 sample scripts written in Perl and VBScript.

Active Directory Programming, by Gil Kirkpatrick (MacMillan)

This is a great book for those interested in learning the details of ADSI and LDAP programming.
The author, Gil Kirkpatrick, is a noted expert in the field.

1.5.8 Magazines

Windows & .NET Magazine (http://www.winnetmag.com/)

This is a general-purpose monthly magazine for system administrators that support Microsoft
products. The magazine isn't devoted to Active Directory, but generally there are related topics
covered every month.

Windows Scripting Solutions (http://www.winscriptingsolutions.com/)

This is a useful monthly newsletter that discusses automation scripts on a wide variety of
Microsoft products including Active Directory.

[Team LiB]

http://15seconds.com/focus/ADSI.htm
http://www.winnetmag.com/
http://www.winscriptingsolutions.com/

[Team LiB]

Chapter 2. Forests, Domains, and Trusts
Introduction

Recipe 2.1. Creating a Forest

Recipe 2.2. Removing a Forest

Recipe 2.3. Creating a Domain

Recipe 2.4. Removing a Domain

Recipe 2.5. Removing an Orphaned Domain

Recipe 2.6. Finding the Domains in a Forest

Recipe 2.7. Finding the NetBIOS Name of a Domain

Recipe 2.8. Renaming a Domain

Recipe 2.9. Changing the Mode of a Domain

Recipe 2.10. Using ADPrep to Prepare a Domain or Forest for Windows Server 2003

Recipe 2.11. Determining if ADPrep Has Completed

Recipe 2.12. Checking Whether a Windows 2000 Domain Controller Can Be Upgraded to
Windows Server 2003

Recipe 2.13. Raising the Functional Level of a Windows Server 2003 Domain

Recipe 2.14. Raising the Functional Level of a Windows Server 2003 Forest

Recipe 2.15. Creating a Trust Between a Windows NT Domain and an AD Domain

Recipe 2.16. Creating a Transitive Trust Between Two AD Forests

Recipe 2.17. Creating a Shortcut Trust Between Two AD Domains

Recipe 2.18. Creating a Trust to a Kerberos Realm

Recipe 2.19. Viewing the Trusts for a Domain

Recipe 2.20. Verifying a Trust

Recipe 2.21. Resetting a Trust

Recipe 2.22. Removing a Trust

Recipe 2.23. Enabling SID Filtering for a Trust

Recipe 2.24. Finding Duplicate SIDs in a Domain
[Team LiB]

[Team LiB]

Introduction

To the layperson, the title of this chapter may seem like a hodgepodge of unrelated terms. For the
seasoned Active Directory administrator, however, these terms represent the most fundamental and,
perhaps, most important concepts within Active Directory. In simple terms, a forest is a collection of
data partitions and domains; a domain is a hierarchy of objects that is replicated between one or
more domain controllers; a trust is an agreement between two domains to allow security principals
(i.e., users, groups, and computers) to access resources in either domain.

Active Directory domains are named using the Domain Name Service (DNS) namespace. The
domains that are part of a common DNS namespace are considered to be in the same domain tree.
For example, the amer.rallencorp.com, emea.rallencorp.com, and rallencorp.com domains are part of
the rallencorp.com domain tree. A single domain tree is sufficient for most implementations, but one
example when multiple domain trees are necessary is with large conglomerate corporations.
Conglomerates are made up of multiple individual companies. Each company typically wants to
maintain its own identity and, therefore, its own namespace. Describing the conglomerate scenario is
a good way to show the relationships between forests, domains, domain trees, and trusts.

Assuming each company within the conglomerate wants its Active Directory domain name to be
based on its company name, you have two choices for setting up this type of environment. You could
either make each company's domain(s) a domain tree within a single forest or you could implement
multiple forests. One of the biggest differences between the two options is that all the domains within
the forest trust each other, whereas separate forests by default do not trust each other. Without the
trust relationships, users from one forest cannot access resources in the domains of the other forest.
If you want users to be able to access resources within each company's domains, using separate
domain trees is an easier approach than separate forests. Transitive trusts are established between
the root domains of each domain tree within a forest. As a result, every domain within a forest,
regardless of which domain tree they are in, is trusted. Figure 2-1 illustrates an example with three
domain trees in a forest called rallencorp.com.

Figure 2-1. Multiple domain trees in a forest

If you implement the alternative approach and create multiple Windows 2000 Active Directory

forests, to create the fully trusted model you would have to create individual trusts between the
domains in every forest. This can get out of hand pretty quickly if there are numerous domains.
Fortunately, with Windows Server 2003 Active Directory, you can use the new trust type called forest
trust to create a single transitive trust between two forest root domains. This single trust causes all
of the domains in both forests to trust each other.

There are many more issues to consider when deciding how many forests, domains and domain trees
to implement. For a thorough explanation of Active Directory design considerations, I recommend
reading Part II of Active Directory, Second Edition (O'Reilly).

In this chapter, I cover the most common tasks that you would need to do with forests, domains, and
trusts. First, I'm going to review how each is represented in Active Directory.

The Anatomy of a Domain

Domains are represented in Active Directory by domainDNS objects. The distinguished name (DN) of a
domainDNS object directly corresponds to the fully qualified DNS name of the domain. For example,

the amer.rallencorp.com domain would have a DN of dc=amer,dc=rallencorp,dc=com. Table 2-1
contains a list of some of the interesting attributes that are available on domainDNS objects.

Table 2-1. Attributes of domainDNS objects

Attribute Description

dc Relative distinguished name of the domain (e.g., amer).

fSMORoleOwner
The NTDS Settings object DN of the domain controller that is the

PDC Emulator FSMO role owner for the domain. See Recipe 3.25 for
more information.

gPLink
List of GPOs that have been applied to the domain. By default it will
contain a reference to the Domain Security Policy GPO.

lockoutDuration
A 64-bit integer representing the time an account will be locked out
before being automatically unlocked. See Recipe 6.11 for more
information.

lockoutObservationWindow
A 64-bit integer representing the time after a failed logon attempt
that the failed logon counter for the account will be reset to 0. See
Recipe 6.11 for more information.

lockoutThreshold
Number of failed logon attempts after which an account will be
locked. See Recipe 6.11 for more information.

masteredBy
List of NTDS Settings objects for each domain controller in the

domain.

maxPwdAge
A 64-bit integer representing the maximum number of days a
password can be used before a user must change it. See Recipe 6.11
for more information.

Attribute Description

minPwdAge
A 64-bit integer representing the minimum number of days a
password must be used before it can be changed. See Recipe 6.11
for more information.

minPwdLength
Minimum number of characters allowed in a password. See Recipe
6.11 for more information.

msDS-Behavior-Version
Number that represents the functional level of the domain. This
attribute is new in Windows Server 2003. See Recipe 2.13 for more
information.

ms-DS-
MachineAccountQuota

The number of computer accounts a non-administrator user account
can join to the domain. See Recipe 8.9 for more information.

nTMixedDomain
Number that represents the mode of a domain. See Recipe 2.9 for
more information.

pwdHistoryLength
Number of passwords to remember before a user can reuse a
previous password. See Recipe 6.11 for more information.

pwdProperties

Bit flag that represents different options that can be configured for
passwords used in the domain, including password complexity and
storing passwords with reversible encryption. See Recipe 6.11 for
more information.

subRefs
Multivalue attribute containing the list of subordinate naming
contexts and application partitions.

wellKnownObjects
GUIDs for well-known objects, such as the default computer
container. See Recipe 8.11 for more information.

In Active Directory, domains are naming contexts (NCs) and are also represented under the
Partitions container in the Configuration NC as crossRef objects. In this case, the relative
distinguished name (RDN) of the crossRef object is the NetBIOS name of the domain as defined by
the netBIOSName attribute of the domain object. In our previous example of amer.rallencorp.com,
the corresponding crossRef object for the domain (assuming the forest name was rallencorp.com)

would be located at cn=AMER,cn=Partitions,cn=Configuration,dc=rallencorp,dc=com. Table 2-2
contains some interesting attributes of crossRef objects.

All naming contexts and application partitions have crossRef objects in the
Partitions container, not just domains.

Table 2-2. Attributes of crossRef objects

Attribute Description

cn
Relative distinguished name of the object. For domains, this will be the NetBIOS
name of the domain.

minPwdAge
A 64-bit integer representing the minimum number of days a
password must be used before it can be changed. See Recipe 6.11
for more information.

minPwdLength
Minimum number of characters allowed in a password. See Recipe
6.11 for more information.

msDS-Behavior-Version
Number that represents the functional level of the domain. This
attribute is new in Windows Server 2003. See Recipe 2.13 for more
information.

ms-DS-
MachineAccountQuota

The number of computer accounts a non-administrator user account
can join to the domain. See Recipe 8.9 for more information.

nTMixedDomain
Number that represents the mode of a domain. See Recipe 2.9 for
more information.

pwdHistoryLength
Number of passwords to remember before a user can reuse a
previous password. See Recipe 6.11 for more information.

pwdProperties

Bit flag that represents different options that can be configured for
passwords used in the domain, including password complexity and
storing passwords with reversible encryption. See Recipe 6.11 for
more information.

subRefs
Multivalue attribute containing the list of subordinate naming
contexts and application partitions.

wellKnownObjects
GUIDs for well-known objects, such as the default computer
container. See Recipe 8.11 for more information.

In Active Directory, domains are naming contexts (NCs) and are also represented under the
Partitions container in the Configuration NC as crossRef objects. In this case, the relative
distinguished name (RDN) of the crossRef object is the NetBIOS name of the domain as defined by
the netBIOSName attribute of the domain object. In our previous example of amer.rallencorp.com,
the corresponding crossRef object for the domain (assuming the forest name was rallencorp.com)

would be located at cn=AMER,cn=Partitions,cn=Configuration,dc=rallencorp,dc=com. Table 2-2
contains some interesting attributes of crossRef objects.

All naming contexts and application partitions have crossRef objects in the
Partitions container, not just domains.

Table 2-2. Attributes of crossRef objects

Attribute Description

Attribute Description

cn
Relative distinguished name of the object. For domains, this will be the NetBIOS
name of the domain.

dnsRoot Fully qualified DNS name of the domain.

nCName Distinguished name of the corresponding domainDNS object.

netBIOSName NetBIOS name of the domain. See Recipe 2.7 for more information.

trustParent
Distinguished name of the crossRef object representing the parent domain (if

applicable).

The Anatomy of a Trust

Trusts are stored as trustedDomain objects within the System container of a domain. Table 2-3 lists
some of the important attributes of trustedDomain objects.

Table 2-3. Attributes of trustedDomain objects

Attribute Description

cn
Relative distinguished name of the trust. This is the name of the target domain
that is trusted. For Windows NT domains, it is the NetBIOS name. For Active
Directory domains, it will be the DNS name.

trustDirection
Flag that indicates whether the trust is disabled, inbound, outbound, or both
inbound and outbound. See Recipe 2.19 and Recipe 2.20 for more information.

trustType
Flag that indicates if the trust is to a down-level (NT4), up-level (Windows 2000
or above), or Kerberos (e.g., MIT) domain. See Recipe 2.19 for more
information.

trustAttributes
Contain miscellaneous properties that can be enabled for a trust. See Recipe
2.19 for more information.

trustPartner The name of the trust partner. See Recipe 2.19 for more information.

A trust also has a corresponding user object in the Users container of a domain. This is where the
trust password is stored. The RDN of this user object is the same as the cn attribute for the
corresponding trustedDomain object with a $ appended.

The Anatomy of a Forest

A forest is a logical structure that is a collection of domains, plus the configuration and schema
naming contexts, and application partitions. Forests are considered the primary security boundary in
Active Directory. By that I mean, if you need to definitively restrict access to a domain such that
administrators from other domains do not have access, you need to implement a separate forest

cn
Relative distinguished name of the object. For domains, this will be the NetBIOS
name of the domain.

dnsRoot Fully qualified DNS name of the domain.

nCName Distinguished name of the corresponding domainDNS object.

netBIOSName NetBIOS name of the domain. See Recipe 2.7 for more information.

trustParent
Distinguished name of the crossRef object representing the parent domain (if

applicable).

The Anatomy of a Trust

Trusts are stored as trustedDomain objects within the System container of a domain. Table 2-3 lists
some of the important attributes of trustedDomain objects.

Table 2-3. Attributes of trustedDomain objects

Attribute Description

cn
Relative distinguished name of the trust. This is the name of the target domain
that is trusted. For Windows NT domains, it is the NetBIOS name. For Active
Directory domains, it will be the DNS name.

trustDirection
Flag that indicates whether the trust is disabled, inbound, outbound, or both
inbound and outbound. See Recipe 2.19 and Recipe 2.20 for more information.

trustType
Flag that indicates if the trust is to a down-level (NT4), up-level (Windows 2000
or above), or Kerberos (e.g., MIT) domain. See Recipe 2.19 for more
information.

trustAttributes
Contain miscellaneous properties that can be enabled for a trust. See Recipe
2.19 for more information.

trustPartner The name of the trust partner. See Recipe 2.19 for more information.

A trust also has a corresponding user object in the Users container of a domain. This is where the
trust password is stored. The RDN of this user object is the same as the cn attribute for the
corresponding trustedDomain object with a $ appended.

The Anatomy of a Forest

A forest is a logical structure that is a collection of domains, plus the configuration and schema
naming contexts, and application partitions. Forests are considered the primary security boundary in
Active Directory. By that I mean, if you need to definitively restrict access to a domain such that
administrators from other domains do not have access, you need to implement a separate forest

(and subsequently a domain in that forest), instead of using a domain within the current forest. This
is due to the transitive trust relationship between all domains in a forest and the extensive
permissions that members of the Domain Admins group have. Unlike domains and trusts, a forest is

not represented by a container or any other type of object in Active Directory. At a minimum, a
forest consists of three naming contexts: the forest root domain, the Configuration NC, and the
Schema NC. The Partitions container in the Configuration NC contains the complete list of

partitions that are associated with a forest. Here is a description of the type of partitions that can be
part of a forest:

Configuration NC

Contains data that is applicable across all of the domains and, thus, is replicated to all domain
controllers in the forest. Some of this data includes the site topology, list of partitions,
published services, display specifiers, and extended rights.

Schema NC

Contains the objects that describe how data can be structured and stored in Active Directory.
The classSchema objects in the Schema NC represent class definitions for objects. The
attributeSchema objects describe what data can be stored with classes. The Schema NC is

replicated to all domain controllers in a forest.
Domain NC

As described earlier, a domain is a naming context that holds domain-specific data including
user, group, and computer objects.

Application partitions

Configurable partitions that can be rooted anywhere in the forest and can be replicated to any
domain controller in the forest. These are not available with Windows 2000.

[Team LiB]

[Team LiB]

Recipe 2.1 Creating a Forest

2.1.1 Problem

You want to create a new forest by creating a new forest root domain.

2.1.2 Solution

2.1.2.1 Using a graphical user interface

Run dcpromo from a command line or Start Run.

On a Windows 2000 domain controller:

Select Domain controller for a new domain and click Next.1.

Select Create a new domain tree and click Next.2.

Select Create a new forest of domain trees and click Next.3.

Follow the rest of the configuration steps to complete the wizard.4.

On a Windows Server 2003 domain controller:

Select Domain controller for a new domain and click Next.1.

Select Domain in a new forest and click Next.2.

Follow the rest of the configuration steps to complete the wizard.3.

2.1.2.2 Using a command-line interface

dcpromo can also be run in unattended mode. See Recipe 3.4 for more details.

2.1.3 Discussion

The act of creating a forest consists of creating a forest root domain. To do this, you need to use the
dcpromo executable to promote a Windows 2000 or Windows Server 2003 server to be a domain

controller for a new domain. The dcpromo program has a wizard interface that requires you to

answer several questions about the forest and domain you want to promote the server into. After
dcpromo finishes, you will be asked to reboot the computer to complete the promotion process.

2.1.4 See Also

Recipe 2.3 for creating a domain, Recipe 3.1 for promoting a domain controller, Recipe 3.4 for
automating the promotion of a domain controller, and MS KB 238369 (HOW TO: Promote and Demote
Domain Controllers in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 2.2 Removing a Forest

2.2.1 Problem

You want to tear down a forest and decommission any domains contained within it because you no
longer need it.

2.2.2 Solution

To remove a forest, you need to demote, using dcpromo, all the domain controllers in the forest.
When you run dcpromo on an existing domain controller, you will be given the option to demote the

machine to a member server. After that is completed and depending on how your environment is
configured, you may need to remove WINS and DNS entries that were associated with the domain
controllers and domains unless they were automatically removed via WINS deregistration and
dynamic DNS (DDNS) during demotion. The following commands can help determine if all entries
have been removed:

> netsh wins server \\<WINSServerName> show name <ForestDNSName> 1c

> nslookup <DomainControllerDNSName>

> nslookup -type=SRV _ldap._tcp.gc._msdcs.<ForestDNSName>

> nslookup <ForestDNSName>

You will also want to remove any trusts that have been established for the forest (see Recipe 2.22 for
more details). For more information on how to demote a domain controller, see Recipe 3.3.

2.2.3 Discussion

The method described in the solution is the graceful way to tear down a forest. You can also use a
brute force method to remove a forest by simply reinstalling the operating system on all domain
controllers in the forest. This method is not recommended except in lab or test environments. The
brute force method is not a clean way to do it because the domain controllers are unaware the forest
is being removed and may generate errors until they are rebuilt. You'll also need to make sure any
DNS resource records for the domain controllers are removed from your DNS servers since the
domain controllers will not dynamically remove them like they do during the demotion process.

2.2.4 See Also

Recipe 2.19 for viewing the trusts for a domain, Recipe 2.22 for removing a trust, and Recipe 3.3 for
demoting a domain controller

[Team LiB]

[Team LiB]

Recipe 2.3 Creating a Domain

2.3.1 Problem

You want to create a new domain that may be part of an existing domain tree or the root of a new
domain tree.

2.3.2 Solution

2.3.2.1 Using a graphical user interface

Run dcpromo from a command line or Start Run.

On a Windows 2000 domain controller, select "Domain controller for a new domain" and then you can
select one of the following:

Create a new domain tree Place this new domain tree in an existing forest

Create a new child domain in an existing domain tree

On a Windows Server 2003 domain controller, select "Domain controller for a new domain" and then
you can select one of the following:

Domain in a new forest

Child domain in an existing domain tree

Domain tree in an existing forest

2.3.2.2 Using a command-line interface

dcpromo can also be run in unattended mode. See Recipe 3.4 for more details.

2.3.3 Discussion

The two options dcpromo offers to create a new domain are adding the domain to an existing domain

tree or starting a new domain tree. If you want to create a new domain that is a subdomain
(contained within the same namespace) of a parent domain, you are creating a domain in an existing

domain tree. If you are creating the first domain in a forest or a domain outside the namespace of
the forest root, you are creating a domain in a new domain tree.

Each domain increases the support costs of Active Directory due to the need for maintaining
additional domain controllers and time spent configuring and maintaining the domain. When
designing an Active Directory forest, your goal should be to keep the number of domains that are
necessary to a minimum.

2.3.4 See Also

Recipe 3.1 for promoting a domain controller, Recipe 3.4 for automating the promotion of a domain
controller, MS KB 238369 (HOW TO: Promote and Demote Domain Controllers in Windows 2000), and
MS KB 255248 (HOW TO: Create a Child Domain in Active Directory and Delegate the DNS
Namespace to the Child Domain)

[Team LiB]

[Team LiB]

Recipe 2.4 Removing a Domain

2.4.1 Problem

You want to remove a domain from a forest. You may need to remove a domain during test scenarios
or if you are collapsing or reducing the number of domains in a forest.

2.4.2 Solution

Removing a domain consists of demoting each domain controller in the domain, which is
accomplished by running dcpromo on the domain controllers and following the steps to remove them.

For the last domain controller in the domain, be sure to select "This server is the last domain
controller in the domain" in the dcpromo wizard so that the objects associated with the domain get

removed. If you do not select that option for the last domain controller in the domain, take a look at
Recipe 2.5 for how to remove an orphaned domain.

If the domain you want to remove has subdomains, you have to remove the
subdomains before proceeding.

After all domain controllers have been demoted and depending on how your environment is
configured, you may need to remove WINS and DNS entries that were associated with the domain
controllers and domain unless they were automatically removed via WINS deregistration and DDNS
during the demotion process. The following commands can help determine if all entries have been
removed:

> netsh wins server \\<WINSServerName> show name <DomainDNSName> 1c

> nslookup <DomainControllerName>

> nslookup -type=SRV _ldap._tcp.dc._msdcs.<DomainDNSName>

> nslookup <DomainDNSName>

You will also want to remove any trusts that have been established for the domain (see Recipe 2.22
for more details). For more information on how to demote a domain controller, see Recipe 3.3.

2.4.3 Discussion

The "brute force" method for removing a forest as described in the Discussion for Recipe 2.2 is not a
good method for removing a domain. Doing so will leave all of the domain controller and server
objects, along with the domain object and associated domain naming context hanging around in the
forest. If you used that approach, you would eventually see a bunch of replication and file replication
service (FRS) errors in the event log from failed replication events.

2.4.4 See Also

Recipe 2.19 for viewing the trusts for a domain, Recipe 2.22 for removing a trust, Recipe 3.3 for
demoting a domain controller, MS KB 238369 (HOW TO: Promote and Demote Domain Controllers in
Windows 2000), and MS KB 255229 (Dcpromo Demotion of Last Domain Controller in Child Domain
Does Not Succeed)

[Team LiB]

[Team LiB]

Recipe 2.5 Removing an Orphaned Domain

2.5.1 Problem

You want to completely remove a domain that was orphaned because "This server is the last domain
controller in the domain" was not selected when demoting the last domain controller, the domain was
forcibly removed, or the last domain controller in the domain was decommissioned improperly.

2.5.2 Solution

2.5.2.1 Using a command-line interface

The following ntdsutil commands (in bold) would forcibly remove the emea.rallencorp.com domain

from the rallencorp.com forest. Replace <DomainControllerName> with the hostname of the Domain

Naming Flexible Single Master Operation (FSMO) for the forest:

> ntdsutil "meta clean" "s o t" conn "con to server < DomainControllerName
>" q q
metadata cleanup: "s o t" "list domains"
Found 4 domain(s)
0 - DC=rallencorp,DC=com
1 - DC=amer,DC=rallencorp,DC=com
2 - DC=emea,DC=rallencorp,DC=com
3 - DC=apac,DC=rallencorp,DC=com
select operation target: sel domain 2
No current site
Domain - DC=emea,DC=rallencorp,DC=com
No current server
No current Naming Context
select operation target: q
metadata cleanup: remove sel domain

You will receive a message indicating whether the removal was successful.

2.5.3 Discussion

Removing an orphaned domain consists of removing the domain object for the domain (e.g.,
dc=emea,dc=rallencorp,dc=com), all of its child objects, and the associated crossRef object in the
Partitions container. You need to target the Domain Naming FSMO when using the ntdsutil

command because that server is responsible for creation and removal of domains.

In the solution, shortcut parameters were used to reduce the amount of typing necessary. If each
parameter were typed out fully, the commands would look as follows:

> ntdsutil "metadata cleanup" "select operation target" connections "connect to
 server <DomainControllerName
>" quit quit
metadata cleanup: "select operation target" "list domains"
Found 4 domain(s)
0 - DC=rallencorp,DC=com
1 - DC=amer,DC=rallencorp,DC=com
2 - DC=emea,DC=rallencorp,DC=com
3 - DC=apac,DC=rallencorp,DC=com
select operation target: select domain 2
No current site
Domain - DC=emea,DC=rallencorp,DC=com
No current server
No current Naming Context
select operation target: quit
metadata cleanup: remove selected domain

2.5.4 See Also

Recipe 3.6 for removing an unsuccessfully demoted domain controller, MS KB 230306 (HOW TO:
Remove Orphaned Domains from Active Directory), MS KB 251307 (HOW TO: Remove Orphaned
Domains from Active Directory Without Demoting the Domain Controllers), and MS KB 255229
(Dcpromo Demotion of Last Domain Controller in Child Domain Does Not Succeed)

[Team LiB]

[Team LiB]

Recipe 2.6 Finding the Domains in a Forest

2.6.1 Problem

You want a list of the domains in a forest.

2.6.2 Solution

2.6.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in. The list of the domains in the default forest can
be browsed in the left pane.

2.6.2.2 Using a command-line interface

> ntdsutil "d m" "sel op tar" c "co t s <DomainControllerName>" q "l d" q q q[RETURN]

2.6.2.3 Using VBScript

' This code gets the list of the domains contained in the
' forest that the user running the script is logged into.

set objRootDSE = GetObject("LDAP://RootDSE")
strADsPath = "<GC://" & objRootDSE.Get("rootDomainNamingContext") & ">;"
strFilter = "(objectcategory=domainDNS);"
strAttrs = "name;"
strScope = "SubTree"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strADsPath & strFilter & strAttrs & strScope)
objRS.MoveFirst
while Not objRS.EOF
 Wscript.Echo objRS.Fields(0).Value
 objRS.MoveNext
wend

2.6.3 Discussion

2.6.3.1 Using a graphical user interface

If you want to view the domains for an alternate forest than the one you are logged into, right-click on
"Active Directory Domains and Trusts" in the left pane, and select "Connect to Domain Controller."
Enter the forest name you want to browse in the Domain field. In the left pane, expand the forest root
domain to see any subdomains.

2.6.3.2 Using a command-line interface

In the ntdsutil example, shortcut parameters were used to reduce the amount of typing needed. If

each parameter were typed out fully, the command line would look like:

> ntdsutil "domain management" "select operation target" connections "connect [RETURN]

to server <DomainControllerName>" quit "List domains" quit quit quit

2.6.3.3 Using VBScript

In the VBScript solution, an ADO query is used to search for domainDNS objects stored in the global

catalog, using the root (forest) Domain NC as the search base. This query will find all domains in the
forest.

To find the list of domains for an alternate forest, include the name of the forest as part of the ADsPath
used in the first line of code. The following would target the othercorp.com forest:

set objRootDSE = GetObject("LDAP://othercorp.com/" & "RootDSE")

2.6.4 See Also

Recipe 3.8 for finding the domain controllers for a domain

[Team LiB]

[Team LiB]

Recipe 2.7 Finding the NetBIOS Name of a Domain

2.7.1 Problem

You want to find the NetBIOS name of a domain. Although Microsoft has moved to using DNS for
primary name resolution, the NetBIOS name of a domain is still important, especially with down-level
clients that are still based on NetBIOS instead of DNS for naming.

2.7.2 Solution

2.7.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in.1.

Right-click the domain you want to view in the left pane and select Properties.2.

The NetBIOS name will be shown in the "Domain name (pre-Windows 2000)" field.

2.7.2.2 Using a command-line interface

> dsquery * cn=partitions,cn=configuration,<ForestRootDN> -filter[RETURN]

"(&(objectcategory=crossref)(dnsroot=<DomainDNSName>)(netbiosname=*))" -attr[RETURN]
netbiosname

2.7.2.3 Using VBScript

' This code prints the NetBIOS name for the specified domain
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. amer.rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
strADsPath = "<LDAP://" & strDomain & "/cn=Partitions," & _
 objRootDSE.Get("configurationNamingContext") & ">;"
strFilter = "(&(objectcategory=Crossref)" & _
 "(dnsRoot=" & strDomain & ")(netBIOSName=*));"
strAttrs = "netbiosname;"
strScope = "Onelevel"
set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strADsPath & strFilter & strAttrs & strScope)
objRS.MoveFirst

WScript.Echo "NetBIOS name for " & strDomain & " is " & objRS.Fields(0).Value

2.7.3 Discussion

Each domain has a crossRef object that is used by Active Directory to generate referrals. Referrals

are necessary when a client performs a query and the directory server handling the request does not
have the matching object(s) in its domain. The NetBIOS name of a domain is stored in the domain's
crossRef object in the Partitions container in the Configuration NC. Each crossRef object has a
dnsRoot attribute, which is the fully qualified DNS name of the domain. The netBIOSName attribute

contains the NetBIOS name for the domain.

[Team LiB]

[Team LiB]

Recipe 2.8 Renaming a Domain

2.8.1 Problem

You want to rename a domain due to organizational changes or legal restrictions because of an
acquisition. Renaming a domain is a very involved process and should be done only when absolutely
necessary. Changing the name of a domain can have an impact on everything from DNS, replication,
and GPOs to DFS and Certificate Services. A domain rename also requires that all domain controllers
and member computers in the domain are rebooted!

2.8.2 Solution

Under Windows 2000, there is no supported process to rename a domain. There is one workaround
for mixed-mode domains in which you revert the domain and any of its child domains back to
Windows NT domains. This can be done by demoting all Windows 2000 domain controllers and leaving
the Windows NT domain controllers in place. You could then reintroduce Windows 2000 domain
controllers and use the new domain name when setting up Active Directory. The process is not very
clean and probably won't be suitable for most situations, but you can find out more about it in MS KB
292541.

A domain rename procedure is supported if a forest is running all Windows Server 2003 domain
controllers and is at the Windows Server 2003 forest functional level. Microsoft provides a rename
tool (rendom.exe) and detailed white paper describing the process at the following location:

http://www.microsoft.com/windowsserver2003/downloads/domainrename.mspx

2.8.3 Discussion

The domain rename process can accommodate very complex changes to your domain model. You
can perform the following types of renames:

Rename a domain to a new name without repositioning it in the domain tree.

Reposition a domain within a domain tree.

Create a new domain tree with a renamed domain.

One thing you cannot do with the domain rename procedure is reposition the forest root domain. You
can rename the forest root domain, but you cannot change its status as the forest root domain.
Another important limitation to note is that you cannot rename any domain in a forest that has had
Exchange 2000 installed. A future service pack release of Exchange Server 2003 will reportedly
handle domain renames. See the web site mentioned in the solution for more information on other

http://www.microsoft.com/windowsserver2003/downloads/domainrename.mspx

limitations.

2.8.4 See Also

MS KB 292541 (How to: Rename the DNS name of a Windows 2000 Domain)

[Team LiB]

[Team LiB]

Recipe 2.9 Changing the Mode of a Domain

2.9.1 Problem

You want to change the mode of a Windows 2000 Active Directory domain from mixed to native. You
typically want to do this as soon as possible after installing a Windows 2000 domain to take advantage
of features that aren't available with mixed-mode domains.

2.9.2 Solution

2.9.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in.1.

Browse to the domain you want to change in the left pane.2.

Right-click on the domain and select Properties. The current mode will be listed in the Domain
Operation Mode box.

3.

To change the mode, click the Change Mode button at the bottom.4.

2.9.2.2 Using a command-line interface

To retrieve the current mode, use the following command:

> dsquery * <DomainDN> -scope base -attr ntMixedDomain

Or you can use the enumprop command found in the Windows 2000 Resource Kit.

> enumprop /ATTR:ntMixedDomain "LDAP://<DomainDN>"

To change the mode to native, create an LDIF file called change_domain_mode.ldf with the following
contents:

dn: <DomainDN>
changetype: modify
replace: ntMixedDomain
ntMixedDomain: 0
-

Then run the ldifde command to import the change.

> ldifde -i -f change_domain_mode.ldf

2.9.2.3 Using VBScript

' This code changes the mode of the specified domain to native
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. amer.rallencorp.com
' ------ END CONFIGURATION ---------

set objDomain = GetObject("LDAP://" & strDomain)
if objDomain.Get("nTMixedDomain") > 0 Then
 Wscript.Echo "Changing mode to native . . . "
 objDomain.Put "nTMixedDomain", 0
 objDomain.SetInfo
else
 Wscript.Echo "Already a native mode domain"
end if

2.9.3 Discussion

The mode of a domain restricts the operating systems the domain controllers in the domain can run.
In a mixed-mode domain, you can have Windows 2000 and Windows NT domain controllers. In a
native-mode domain, you can have only Windows 2000 (and Windows Server 2003) domain
controllers. There are several important feature differences between mixed and native mode. Mixed
mode imposes the following limitations:

The domain cannot contain Universal security groups.

Groups in the domain cannot have their scope or type changed.

The domain cannot have nested groups (aside from global groups in domain local groups).

Account modifications sent to Windows NT BDCs, including password changes, must go through
PDC Emulator for the domain.

The domain cannot use SID History.

The domain cannot fully utilize trust transitivity.

The domain mode can be changed only from mixed to native mode. You cannot change it back from
native to mixed. When a Windows 2000 domain is first created, it starts off in mixed mode even if all
the domain controllers are running Windows 2000. The domain mode is stored in the ntMixedDomain

attribute on the domain object (e.g., dc=amer,dc=rallencorp,dc=com). A value of 0 signifies a native-
mode domain and 1 indicates a mixed-mode domain.

Windows Server 2003 Active Directory has a similar concept called functional levels. For more
information on Windows Server 2003 functional levels, see Recipe 2.13 and Recipe 2.14.

2.9.4 See Also

Recipe 2.13 for raising the functional level of a domain, Recipe 2.14 for raising the functional level of a
forest, and MS KB 186153 (Modes Supported by Windows 2000 Domain Controllers)

[Team LiB]

[Team LiB]

Recipe 2.10 Using ADPrep to Prepare a Domain or Forest
for Windows Server 2003

2.10.1 Problem

You want to upgrade your existing Windows 2000 Active Directory domain controllers to Windows
Server 2003. Before doing this, you must run the ADPrep tool, which extends the schema and adds
several objects in Active Directory that are necessary for new features and enhancements.

2.10.2 Solution

First, run the following command on the Schema FSMO with the credentials of an account that is in
both the Enterprise Admins and Schema Admins groups:

> adprep /forestprep

After the updates from /forestprep have replicated throughout the forest (see Recipe 2.11), run the

following command on the Infrastructure FSMO in each domain with the credentials of an account in
the Domain Admins group:

> adprep /domainprep

If the updates from /forestprep have not replicated to at least the Infrastructure FSMO servers in
each domain, an error will be returned when running /domainprep. To debug any problems you

encounter, see the ADPrep log files located at %SystemRoot%\System32\Debug\Adprep\Logs.

adprep can be found in the \i386 directory on the Windows Server 2003 CD.

The tool relies on several files in that directory, so you cannot simply copy that
file out to a server and run it. You must either run it from a CD or from a
location where the entire directory has been copied.

2.10.3 Discussion

The adprep command prepares a Windows 2000 forest and domains for Windows Server 2003. Both
/forestprep and /domainprep must be run before you can upgrade any domain controllers to

Windows Server 2003 or install new Windows Server 2003 domain controllers.

The adprep command serves a similar function to the Exchange 2000 setup /forestprep and
/domainprep commands, which prepare an Active Directory forest and domains for Exchange 2000.
The adprep /forestprep command extends the schema and modifies some default security

descriptors, which is why it must run on the Schema FSMO and under the credentials of someone in
both the Schema Admins and Enterprise Admins groups. In addition, the adprep /forestprep and

/domainprep commands add new objects throughout the forest, many of which are necessary for

new features supported in Windows Server 2003 Active Directory.

If you've installed Exchange 2000 or Services For Unix 2.0 in your forest prior to running adprep,
there are schema conflicts with the adprep schema extensions that you'll need to fix first. MS KB

325379 and 314649 have a detailed list of compatibility issues and resolutions.

2.10.4 See Also

Recipe 2.11 for determining if ADPrep has completed, Chapter 14 of Active Directory, Second Edition
for upgrading to Windows Server 2003, MS KB 331161 (List of Fixes to Use on Windows 2000 Domain
Controllers Before You Run the Adprep/Forestprep Command), MS KB 314649 (Windows Server 2003
ADPREP Command Causes Mangled Attributes in Windows 2000 Forests That Contain Exchange 2000
Servers), and MS KB 325379 (Upgrade Windows 2000 Domain Controllers to Windows Server 2003)

[Team LiB]

[Team LiB]

Recipe 2.11 Determining if ADPrep Has Completed

2.11.1 Problem

You want to determine if the ADPrep process, described in Recipe 2.10, has successfully prepared a
Windows 2000 domain or forest for Windows Server 2003. After ADPrep has completed, you will them
be ready to start promoting Windows Server 2003 domain controllers.

2.11.2 Solution

To determine if adprep /domainprep completed, check for the existence of the following object

where <DomainDN> is the distinguished name of the domain:

cn=Windows2003Update,cn=DomainUpdates,cn=System,<DomainDN>

To determine if adprep /forestprep completed, check for the existence of the following object

where <ForestRootDN> is the distinguished name of the forest root domain:

cn=Windows2003Update,cn=ForestUpdates,cn=Configuration,<ForestRootDN>

2.11.3 Discussion

As described in Recipe 2.10, the adprep utility is used to prepare a Windows 2000 forest for the
upgrade to Windows Server 2003. One of the nice features of adprep is it stores its progress in Active
Directory. For /domainprep, a container with a distinguished name of

cn=DomainUpdates,cn=System,<DomainDN> is created that has child object containers
cn=Operations and cn=Windows2003Update. After adprep completes a task, such as extending the
schema, it creates an object under the cn=Operations container to signify its completion. Each
object has a GUID for its name, which represents some internal operation for adprep. For
/domainprep, 52 of these objects are created. After all of the operations have completed
successfully, the cn=Windows2003Update object is created to indicate /domainprep has
completed.Figure 2-2 shows an example of the container structure created by /domainprep.

Figure 2-2. DomainPrep containers

For /forestprep, a container with the distinguished name of

cn=ForestUpdates,cn=Configuration,<ForestRootDN>, is created with child object containers
cn=Operations and cn=Windows2003Update. The same principles apply as for /domainprep except
that there are 36 operation objects stored within the cn=Operations container. After /forestprep
completes, the cn=Windows2003Update object will be created that marks the successful completion
of /forestprep. Figure 2-3 shows an example of the container structure created by /forestprep.

Figure 2-3. ForestPrep containers

2.11.4 See Also

Chapter 14 of Active Directory, Second Edition for upgrading to Windows Server 2003, and Recipe
2.10 for running adprep

[Team LiB]

[Team LiB]

Recipe 2.12 Checking Whether a Windows 2000 Domain
Controller Can Be Upgraded to Windows Server 2003

2.12.1 Problem

You want to determine if a domain controller is ready to be upgraded to Windows Server 2003.

2.12.2 Solution

Insert a Windows Server 2003 CD into the Windows 2000 domain controller or map a drive to the files
contained on the CD. Run the following command from the \i386 directory:

> winnt32 /checkupgradeonly

2.12.3 Discussion

The /checkupgradeonly switch simulates the initial steps for upgrading a server to Windows Server
2003. It verifies, among other things, that adprep has completed and that any installed applications

are compatible with the new operating system.

2.12.4 See Also

Recipe 2.11 for determining if adprep has completed and MS KB 331161 (List of Fixes to Use on

Windows 2000 Domain Controllers Before You Run the Adprep/Forestprep Command)

[Team LiB]

[Team LiB]

Recipe 2.13 Raising the Functional Level of a Windows
Server 2003 Domain

2.13.1 Problem

You want to raise the functional level of a Windows Server 2003 domain. You should raise the
functional level of a domain as soon as possible after installing a new Windows Server 2003 domain or
upgrading from Windows 2000 to take advantage of the new features and enhancements.

2.13.2 Solution

2.13.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in.1.

In the left pane, browse to the domain you want to raise, right-click it, and select Raise Domain
Functional Level.

2.

Select the new functional level and click OK.3.

After a few seconds you should see a message stating whether the operation was successful.

2.13.2.2 Using a command-line interface

To retrieve the current functional level, use the following command:

> dsquery * <DomainDN> -scope base -attr msDS-Behavior-Version

Or you can use the enumprop command found in the Windows 2000 Resource Kit.

> enumprop /ATTR:msDS-Behavior-Version "LDAP://<DomainDN>"

To change the functional level to Windows Server 2003, create an LDIF file called
raise_domain_func_level.ldf with the following contents:

dn: <DomainDN>
changetype: modify
replace: msDS-Behavior-Version
msDS-Behavior-Version: 2

-

Next, run the ldifde command to import the change.

> ldifde -i -f raise_domain_func_level.ldf

2.13.2.3 Using VBScript

' This code changes the functional level of the specified domain to
' the Windows Server 2003 domain functional level
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. amer.rallencorp.com
' ------ END CONFIGURATION ---------

set objDomain = GetObject("LDAP://" & strDomain)
objDomain.GetInfo
if objDomain.Get("msDS-Behavior-Version") <> 2 then
 Wscript.Echo "Changing domain to Windows Server 2003 functional level . . . "
 objDomain.Put "msDS-Behavior-Version", 2
 objDomain.SetInfo
else
 Wscript.Echo "Domain already at Windows Server 2003 functional level "
end if

2.13.3 Discussion

In Windows Server 2003 Active Directory, functional levels have replaced the domain mode that was
used in Windows 2000 to signify what operating systems are allowed to run on the domain controllers
in the domain. With Windows Server 2003, there are functional levels for both domains and forests;
whereas with Windows 2000, the domain mode only applied to domains. The msDS-Behavior-
Version attribute of the domainDNS object (e.g., dc=amer,dc=rallencorp,dc=com) holds the current
domain functional level. Table 2-4 shows the three functional levels, their associated msDS-Behavior-
Version value, and the operating systems that can be used on domain controllers in each.

Table 2-4. Windows Server 2003 domain functional levels

Functional level
msDS-Behavior-

Version
Valid operating systems

Windows 2000 0
Windows 2000Windows NT (when in mixed
mode)Windows Server 2003

Windows Server 2003
Interim

1 Windows NT 4.0Windows Server 2003

Windows Server 2003 2 Windows Server 2003

When a domain is at the Windows 2000 functional level, the domain can be in mixed mode or native
mode, as described in Recipe 2.9. Various new features of Windows Server 2003 Active Directory are

enabled with each domain functional level. See Chapter 1 of Active Directory, Second Edition
(O'Reilly) for more details.

The value contained in msDS-Behavior-Version is mirrored in the domainFunctionality attribute of

the RootDSE. That means you can perform anonymous queries against the RootDSE of a domain to
quickly determine what functional level it is currently at.

One of the benefits of the GUI solution is that if a problem is encountered, you
can save and view the output log, which will contain information on any errors
that were encountered.

2.13.4 See Also

Chapter 1 of Active Directory, Second Edition, Recipe 2.9 for changing domain mode, Recipe 2.10 for
preparing a forest with adprep, Recipe 2.14 for raising the functional level of a forest, and MS KB

322692 (HOW TO: Raise the Domain Functional Level in Windows Server 2003)

[Team LiB]

[Team LiB]

Recipe 2.14 Raising the Functional Level of a Windows
Server 2003 Forest

2.14.1 Problem

You want to raise the functional level of a Windows Server 2003 forest. You should raise the
functional level of a forest as soon as possible after installing a new Windows Server 2003 forest or
upgrading from a Windows 2000 forest to take advantage of the new features and enhancements.

2.14.2 Solution

2.14.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in.1.

In the left pane, right-click on Active Directory Domains and Trusts and select Raise Forest
Functional Level.

2.

Select Windows Server 2003 Functional Level and click OK.3.

After a few seconds you should see a message stating whether the operation was successful.

2.14.2.2 Using a command-line interface

To retrieve the current forest functional level, use the following command:

> dsquery * <ForestRootDN> -scope base -attr msDS-Behavior-Version

Or you can use the enumprop command found in the Windows 2000 Resource Kit.

> enumprop /ATTR:msDS-Behavior-Version "LDAP://<ForestRootDN>"

To change the functional level to Windows Server 2003, create an LDIF file called
raise_forest_func_level.ldf with the following contents:

dn: cn=partitions,cn=configuration,<ForestRootDN>
changetype: modify
replace: msDS-Behavior-Version
msDS-Behavior-Version: 2

-

Next, run the ldifde command to import the change.

> ldifde -i -f raise_forest_func_level.ldf

2.14.2.3 Using VBScript

' This code changes the functional level of the the forest the
' user running the script is logged into to Windows Server 2003.

set objRootDSE = GetObject("LDAP://RootDSE")
set objDomain = GetObject("LDAP://cn=partitions," & _
 objRootDSE.Get("configurationNamingContext"))
if objDomain.Get("msDS-Behavior-Version") <> 2 then
 Wscript.Echo "Attempting to change forest to " & _
 "Windows Server 2003 functional level . . . "
 objDomain.Put "msDS-Behavior-Version", 2
 objDomain.SetInfo
else
 Wscript.Echo "Forest already at Windows Server 2003 functional level"
end if

2.14.3 Discussion

Windows Server 2003 forest functional levels are very similar to domain functional levels. In fact,
Table 2-4 applies to forest functional levels as well, except that the list of available operating systems
applies to all domain controllers in the forest not just a single domain. So even if just one of the
domains in the forest is at the Windows 2000 domain functional level, you cannot raise the forest
above the Windows 2000 forest functional level. If you attempt to do so you will receive an error that
the operation cannot be completed. After you raise the last Windows 2000 domain functional level to
Windows Server 2003, you can then raise the forest functional level as well.

You may be wondering why there is a need to differentiate between forest and domain functional
levels. The primary reason is new features. Some new features of Windows Server 2003 Active
Directory require that all domain controllers in the forest are running Windows Server 2003. To
ensure all domain controllers are running a certain operating system throughout a forest, Microsoft
had to apply the functional level concept to forests as well as domains. For more information on the
new features that are available with each functional level, see Chapter 1 of Active Directory, Second
Edition (O'Reilly).

The forest functional level is stored in the msDS-Behavior-Version attribute of the Partitions

container in the Configuration NC. For example, in the rallencorp.com forest, it would be stored in
cn=partitions,cn=configuration,dc=rallencorp,dc=com. The value contained in msDS-Behavior-
Version is mirrored to the forestFunctionality attribute of the RootDSE, which means you can

find the functional level of the forest by querying the RootDSE.

One of the benefits of the GUI solution is that if a problem is encountered, you
can save and view the output log, which will contain information on any errors
that were encountered.

2.14.4 See Also

Chapter 1 of Active Directory, Second Edition, Recipe 2.9 for changing domain mode, Recipe 2.10 for
preparing a forest with adprep, Recipe 2.13 for raising the functional level of a domain, and MS KB

322692 (HOW TO: Raise the Domain Functional Level in Windows Server 2003)

[Team LiB]

[Team LiB]

Recipe 2.15 Creating a Trust Between a Windows NT
Domain and an AD Domain

2.15.1 Problem

You want to create a one-way or two-way nontransitive trust from an AD domain to a Windows NT
domain.

2.15.2 Solution

2.15.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in.1.

In the left pane, right-click the domain you want to add a trust for and select Properties.2.

Click on the Trusts tab.3.

Click the New Trust button.4.

After the New Trust Wizard opens, click Next.5.

Type the NetBIOS name of the NT domain and click Next.6.

Assuming the NT domain was resolvable via its NetBIOS name, the next screen will ask for the
Direction of Trust. Select Two-way, One-way incoming, or One-way outgoing, and click Next.

7.

If you selected Two-way or One-way Outgoing, you'll need to select the scope of authentication,
which can be either Domain-wide or Selective, and click Next.

8.

Enter and re-type the trust password and click Next.9.

Click Next twice to finish.10.

2.15.2.2 Using a command-line interface

> netdom trust <NT4DomainName> /Domain:<ADDomainName> /ADD[RETURN]

 [/UserD:<ADDomainName>\ADUser> /PasswordD:*][RETURN]

 [/UserO:<NT4DomainName>\NT4User> /PasswordO:*][RETURN]

 [/TWOWAY]

For example, to create a trust from the NT4 domain RALLENCORP_NT4 to the AD domain
RALLENCORP, use the following command:

> netdom trust RALLENCORP_NT4 /Domain:RALLENCORP /ADD[RETURN]
 /UserD:RALLENCORP\administrator /PasswordD:* [RETURN]
 /UserO:RALLENCORP_NT4\administrator /PasswordO:*

You can make the trust bidirectional, i.e., two-way, by adding a /TwoWay switch to the example.

2.15.3 Discussion

It is common when migrating from a Windows NT environment to Active Directory to set up trusts to
down-level master account domains or resource domains. This allows AD users to access resources in
the NT domains without providing alternate credentials. Windows NT does not support transitive
trusts and, therefore, your only option is to create a nontransitive trust. That means you'll need to
set up individual trusts between the NT domain and every Active Directory domain that contains
users that need to access the NT resources.

2.15.4 See Also

MS KB 306733 (HOW TO: Create a Trust Between a Windows 2000 Domain and a Windows NT 4.0
Domain), MS KB 308195 (HOW TO: Establish Trusts with a Windows NT-Based Domain in Windows
2000), MS KB 309682 (HOW TO: Set up a One-Way Non-Transitive Trust in Windows 2000), MS KB
325874 (HOW TO: Establish Trusts with a Windows NT-Based Domain in Windows Server 2003), and
MS KB 816301 (HOW TO: Create an External Trust in Windows Server 2003)

[Team LiB]

[Team LiB]

Recipe 2.16 Creating a Transitive Trust Between Two AD
Forests

This recipe requires the Windows Server 2003 forest functional level in both forests.

2.16.1 Problem

You want to create a transitive trust between two AD forests. This causes the domains in both forests to
trust each other without the need for additional trusts.

2.16.2 Solution

2.16.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in.1.

In the left pane, right click the forest root domain and select Properties.2.

Click on the Trusts tab.3.

Click the New Trust button.4.

After the New Trust Wizard opens, click Next.5.

Type the DNS name of the AD forest and click Next.6.

Select Forest trust and click Next.7.

Complete the wizard by stepping through the rest of the configuration screens.8.

2.16.2.2 Using a command-line interface

> netdom trust <Forest1DNSName> /Domain:<Forest2DNSName> /Twoway /Transitive /ADD[RETURN]

 [/UserD:<Forest2AdminUser> /PasswordD:*][RETURN]

 [/UserO:<Forest1AdminUser> /PasswordO:*]

For example, to create a two-way forest trust from the AD forest rallencorp.com to the AD forest
othercorp.com , use the following command:

> netdom trust rallencorp.com /Domain:othercorp.com /Twoway /Transitive /ADD [RETURN]
 /UserD:administrator@othercorp.com /PasswordD:*[RETURN]

 /UserO:administrator@rallencorp.com /PasswordO:*

2.16.3 Discussion

A new type of trust called a forest trust was introduced in Windows Server 2003. Under Windows 2000, if
you wanted to create a fully trusted environment between two forests, you would have to set up individual
external two-way trusts between every domain in both forests. If you have two forests with three domains
each and wanted to set up a fully trusted model, you would need nine individual trusts. Figure 2-4 illustrates
how this would look.

Figure 2-4. Trusts necessary for two Windows 2000 forests to trust each other

With a forest trust, you can define a single one-way or two-way transitive trust relationship that extends to
all the domains in both forests. You may want to implement a forest trust if you merge or acquire a
company and you want all of the new company's Active Directory resources to be accessible for users in
your Active Directory environment and vice versa. Figure 2-5 shows a forest trust scenario. To create a
forest trust, you need to use accounts from the Enterprise Admins group in each forest.

Figure 2-5. Trust necessary for two Windows Server 2003 forests to trust each
other

[Team LiB]

[Team LiB]

Recipe 2.17 Creating a Shortcut Trust Between Two AD
Domains

2.17.1 Problem

You want to create a shortcut trust between two AD domains in the same forest or in different
forests. Shortcut trusts can make the authentication process more efficient between two domains in a
forest.

2.17.2 Solution

2.17.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in.1.

In the left pane, right-click the domain you want to add a trust for, and select Properties.2.

Click on the Trusts tab.3.

Click the New Trust button.4.

After the New Trust Wizard opens, click Next.5.

Type the DNS name of the AD domain and click Next.6.

Assuming the AD domain was resolvable via DNS, the next screen will ask for the Direction of
Trust. Select Two-way and click Next.

7.

For the Outgoing Trust Properties, select all resources to be authenticated and click Next.8.

Enter and retype the trust password and click Next.9.

Click Next twice.10.

2.17.2.2 Using a command-line interface

> netdom trust <Domain1DNSName> /Domain:<Domain2DNSName> /Twoway /ADD[RETURN]

 [/UserD:<Domain2AdminUser> /PasswordD:*][RETURN]

 [/UserO:<Domain1AdminUser> /PasswordO:*]

To create a shortcut trust from the emea.rallencorp.com domain to the apac.rallencorp.com domain,
use the following netdom command:

> netdom trust emea.rallencorp.com /Domain:apac.rallencorp.com /Twoway /ADD [RETURN]
 /UserD:administrator@apac.rallencorp.com /PasswordD:*[RETURN]
 /UserO:administrator@emea.rallencorp.com /PasswordO:*

2.17.3 Discussion

Consider the forest in Figure 2-6. It has five domains in a single domain tree. In order for
authentication requests for Domain 3 to be processed by Domain 5, the request must traverse the
path from Domain 3 to Domain 2 to Domain 1 to Domain 4 to Domain 5. If you create a shortcut trust
between Domain 3 and Domain 5, the authentication path is just a single hop from Domain 3 to
Domain 5. To create a shortcut trust, you must be a member of the Domain Admins group in both
domains, or a member of the Enterprise Admins group.

Figure 2-6. Shortcut trust

[Team LiB]

[Team LiB]

Recipe 2.18 Creating a Trust to a Kerberos Realm

2.18.1 Problem

You want to create a trust to a Kerberos realm.

2.18.2 Solution

2.18.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in.1.

In the left pane, right-click the domain you want to add a trust for and select Properties.2.

Click on the Trusts tab.3.

Click the New Trust button.4.

After the New Trust Wizard opens, click Next.5.

Type the name of the Kerberos realm.6.

Select the radio button beside Realm Trust and click Next.7.

Select either Transitive or Nontransitive and click Next.8.

Select Two-way, One-way incoming, or One-way outgoing and click Next.9.

Enter and retype the trust password and click Next.10.

Click Next and click Finish.11.

2.18.2.2 Using a command-line interface

> netdom trust <ADDomainDNSName> /Domain:<KerberosRealmDNSName>[RETURN]

 /Realm /ADD /PasswordT:<TrustPassword>[RETURN]

 [/UserO:<ADDomainAdminUser> /PasswordO:*]

The <TrustPassword> has to match what was set on the Kerberos side. To create a realm trust from

the rallencorp.com domain to the Kerberos realm called kerb.rallencorp.com, use the following

command:

> netdom trust rallencorp.com /Domain:kerb.rallencorp.com [RETURN]
 /Realm /ADD /PasswordT:MyKerbRealmPassword[RETURN]
 /UserO:administrator@rallencorp.com /PasswordO:*

2.18.3 Discussion

You can create a Kerberos realm trust between an Active Directory domain and a non-Windows
Kerberos v5 realm. A realm trust can be used to allow clients from the non-Windows Kerberos realm
to access resources in Active Directory, and vice versa. See Recipe 18.7 for more information on MIT
Kerberos interoperability with Active Directory.

2.18.4 See Also

MS KB 260123 (Information on the Transitivity of a Kerberos Realm Trust) and MS KB 266080
(Answers to Frequently Asked Kerberos Questions)

[Team LiB]

[Team LiB]

Recipe 2.19 Viewing the Trusts for a Domain

2.19.1 Problem

You want to view the trusts for a domain.

2.19.2 Solution

2.19.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in.1.

In the left pane, right-click the domain you want to view and select Properties.2.

Click on the Trusts tab.3.

2.19.2.2 Using a command-line interface

> netdom query trust /Domain:<DomainDNSName>

2.19.2.3 Using VBScript

' This code prints the trusts for the specified domain.
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

' Trust Direction Constants taken from NTSecAPI.h
set objTrustDirectionHash = CreateObject("Scripting.Dictionary")
objTrustDirectionHash.Add "DIRECTION_DISABLED", 0
objTrustDirectionHash.Add "DIRECTION_INBOUND", 1
objTrustDirectionHash.Add "DIRECTION_OUTBOUND", 2
objTrustDirectionHash.Add "DIRECTION_BIDIRECTIONAL", 3

' Trust Type Constants - taken from NTSecAPI.h
set objTrustTypeHash = CreateObject("Scripting.Dictionary")
objTrustTypeHash.Add "TYPE_DOWNLEVEL", 1
objTrustTypeHash.Add "TYPE_UPLEVEL", 2
objTrustTypeHash.Add "TYPE_MIT", 3

objTrustTypeHash.Add "TYPE_DCE", 4

' Trust Attribute Constants - taken from NTSecAPI.h
set objTrustAttrHash = CreateObject("Scripting.Dictionary")
objTrustAttrHash.Add "ATTRIBUTES_NON_TRANSITIVE", 1
objTrustAttrHash.Add "ATTRIBUTES_UPLEVEL_ONLY", 2
objTrustAttrHash.Add "ATTRIBUTES_QUARANTINED_DOMAIN", 4
objTrustAttrHash.Add "ATTRIBUTES_FOREST_TRANSITIVE", 8
objTrustAttrHash.Add "ATTRIBUTES_CROSS_ORGANIZATION", 16
objTrustAttrHash.Add "ATTRIBUTES_WITHIN_FOREST", 32
objTrustAttrHash.Add "ATTRIBUTES_TREAT_AS_EXTERNAL", 64

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
set objTrusts = GetObject("LDAP://cn=System," & _
 objRootDSE.Get("defaultNamingContext"))
objTrusts.Filter = Array("trustedDomain")
Wscript.Echo "Trusts for " & strDomain & ":"

for each objTrust in objTrusts
 for each strFlag In objTrustDirectionHash.Keys
 if objTrustDirectionHash(strFlag) = objTrust.Get("trustDirection") then
 strTrustInfo = strTrustInfo & strFlag & " "
 end If
 next

 for each strFlag In objTrustTypeHash.Keys
 if objTrustTypeHash(strFlag) = objTrust.Get("trustType") then
 strTrustInfo = strTrustInfo & strFlag & " "
 end If
 next

 for each strFlag In objTrustAttrHash.Keys
 if objTrustAttrHash(strFlag) = objTrust.Get("trustAttributes") then
 strTrustInfo = strTrustInfo & strFlag & " "
 end If
 next

 WScript.Echo " " & objTrust.Get("trustPartner") & " : " & strTrustInfo
 strTrustInfo = ""
next

2.19.3 Discussion

2.19.3.1 Using a graphical user interface

You can view the properties of a particular trust by clicking on a trust and clicking the Properties
button.

2.19.3.2 Using a command-line interface

You can include the /Direct switch if you want to view only direct-trust relationships. If you don't
use /Direct, implicit trusts that occur due to transitive-trust relationships will also be listed.

2.19.3.3 Using VBScript

This script uses dictionary objects to ease the mapping of the various integer values for attributes,
such as trustType and trustDirection, to descriptive names. A dictionary object in VBScript is
analogous to a hash or associative array in other programming languages. The Add method accepts a
key and value pair to add to the dictionary. The Keys method returns the keys of the dictionary as a

collection. To access a value of the dictionary, you simply pass the key name as a parameter to the
dictionary object, such as objDictionary(strKey).

Another option to query trusts programmatically is with the Trustmon WMI Provider. The Trustmon
Provider is new to Windows Server 2003. See Recipe 2.20 for an example.

2.19.4 See Also

The Introduction at the beginning of this chapter for attributes of trustedDomain objects, Recipe

2.20 for another way to query trusts programmatically, MS KB 228477 (HOW TO: Determine Trust
Relationship Configurations), and MSDN: TRUSTED_DOMAIN_INFORMATION_EX

[Team LiB]

[Team LiB]

Recipe 2.20 Verifying a Trust

2.20.1 Problem

You want to verify that a trust is working correctly. This is the first diagnostics step to take if users
notify you that authentication to a remote domain appears to be failing.

2.20.2 Solution

2.20.2.1 Using a graphical user interface

For the Windows 2000 version of the Active Directory Domains and Trusts snap-in:

In the left pane, right-click on the trusting domain and select Properties.1.

Click the Trusts tab.2.

Click the domain that is associated with the trust you want to verify.3.

Click the Edit button.4.

Click the Verify button.5.

For the Windows Server 2003 version of the Active Directory Domains and Trusts snap-in:

In the left pane, right-click on the trusting domain and select Properties.1.

Click the Trusts tab.2.

Click the domain that is associated with the trust you want to verify.3.

Click the Properties button.4.

Click the Validate button.5.

2.20.2.2 Using a command-line interface

> netdom trust <TrustingDomain> /Domain:<TrustedDomain> /Verify /verbose[RETURN]

 [/UserO:<TrustingDomainUser> /PasswordO:*][RETURN]

 [/UserD:<TrustedDomainUser> /PasswordD:*]

2.20.2.3 Using VBScript

' The following code lists all of the trusts for the
' specified domain using the Trustmon WMI Provider.
' The Trustmon WMI Provider is only supported on Windows Server 2003.
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. amer.rallencorp.com
' ------ END CONFIGURATION ---------

set objWMI = GetObject("winmgmts:\\" & strDomain & _
 "\root\MicrosoftActiveDirectory")
set objTrusts = objWMI.ExecQuery("Select * from Microsoft_DomainTrustStatus")
for each objTrust in objTrusts
 Wscript.Echo objTrust.TrustedDomain
 Wscript.Echo " TrustedAttributes: " & objTrust.TrustAttributes
 Wscript.Echo " TrustedDCName: " & objTrust.TrustedDCName
 Wscript.Echo " TrustedDirection: " & objTrust.TrustDirection
 Wscript.Echo " TrustIsOk: " & objTrust.TrustIsOK
 Wscript.Echo " TrustStatus: " & objTrust.TrustStatus
 Wscript.Echo " TrustStatusString: " & objTrust.TrustStatusString
 Wscript.Echo " TrustType: " & objTrust.TrustType
 Wscript.Echo ""
next

' This code shows how to search specifically for trusts
' that have failed, which can be accomplished using a WQL query that
' contains the query: TrustIsOk = False
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. amer.rallencorp.com
' ------ END CONFIGURATION ---------

set objWMI = GetObject("winmgmts:\\" & strDomain & _
 "\root\MicrosoftActiveDirectory")
set objTrusts = objWMI.ExecQuery("select * " _
 & " from Microsoft_DomainTrustStatus " _
 & " where TrustIsOk = False ")
if objTrusts.Count = 0 then
 Wscript.Echo "There are no trust failures"
else
 WScript.Echo "Trust Failures:"
 for each objTrust in objTrusts
 Wscript.Echo " " & objTrust.TrustedDomain & " : " & _
 objTrust.TrustStatusString
 Wscript.Echo ""
 next
end if

2.20.3 Discussion

Verifying a trust consists of checking connectivity between the domains, and determining if the
shared secrets of a trust are synchronized between the two domains.

2.20.3.1 Using a graphical user interface

The Active Directory Domains and Trusts screens have changed somewhat between Windows 2000
and Windows Server 2003. The Verify button has been renamed Validate.

2.20.3.2 Using a command-line interface

If you want to verify a Kerberos trust, use the /Kerberos switch with the netdom command.

2.20.3.3 Using VBScript

The WMI Trustmon Provider is new to Windows Server 2003. It provides a nice interface for querying
and checking the health of trusts. One of the benefits of using WMI to access this kind of data is that
you can use WQL, the WMI Query Language, to perform complex queries to find trusts that have
certain properties. WQL is a subset of the Structured Query Language (SQL) commonly used to query
databases. In the second VBScript example, I used WQL to find all trusts that have a problem. You
could expand the query to include additional criteria, such as trust direction, and trust type.

2.20.4 See Also

MSDN: Trustmon Provider

[Team LiB]

[Team LiB]

Recipe 2.21 Resetting a Trust

2.21.1 Problem

You want to reset a trust password. If you've determined a trust is broken, you need to reset it,
which will allow users to authenticate across it again.

2.21.2 Solution

2.21.2.1 Using a graphical user interface

Follow the same directions as Recipe 2.20. The option to reset the trust will only be presented if the
Verify/Validate did not succeed.

2.21.2.2 Using a command-line interface

> netdom trust <TrustingDomain> /Domain:<TrustedDomain> /Reset /verbose[RETURN]

 [/UserO:<TrustingDomainUser> /PasswordO:*][RETURN]

 [/UserD:<TrustedDomainUser> /PasswordD:*]

2.21.2.3 Using VBScript

' This code resets the specified trust.
' ------ SCRIPT CONFIGURATION ------
' Set to the DNS or NetBIOS name for the Windows 2000,
' Windows NT domain or Kerberos realm you want to reset the trust for.

strTrustName = "<TrustToCheck>"

' Set to the DNS name of the source or trusting domain.

strDomain = "<TrustingDomain>"
' ------ END CONFIGURATION ---------

' Enable SC_RESET during trust enumerations
set objTrustProv = GetObject("winmgmts:\\" & strDomain & _
 "\root\MicrosoftActiveDirectory:Microsoft_TrustProvider=@")
objTrustProv.TrustCheckLevel = 3 ' Enumerate with SC_RESET
objTrustProv.Put_

' Query the trust and print status information

set objWMI = GetObject("winmgmts:\\" & strDomain & _
 "\root\MicrosoftActiveDirectory")
set objTrusts = objWMI.ExecQuery("Select * " _
 & " from Microsoft_DomainTrustStatus " _
 & " where TrustedDomain = '" & strTrustName & "'")
for each objTrust in objTrusts
 Wscript.Echo objTrust.TrustedDomain
 Wscript.Echo " TrustedAttributes: " & objTrust.TrustAttributes
 Wscript.Echo " TrustedDCName: " & objTrust.TrustedDCName
 Wscript.Echo " TrustedDirection: " & objTrust.TrustDirection
 Wscript.Echo " TrustIsOk: " & objTrust.TrustIsOK
 Wscript.Echo " TrustStatus: " & objTrust.TrustStatus
 Wscript.Echo " TrustStatusString: " & objTrust.TrustStatusString
 Wscript.Echo " TrustType: " & objTrust.TrustType
 Wscript.Echo ""
next

2.21.3 Discussion

Resetting a trust synchronizes the shared secrets (i.e., passwords) for the trust. The PDC in both
domains is used to synchronize the password so they must be reachable.

2.21.3.1 Using a command-line interface

If you are resetting a Kerberos realm trust, you'll need to specify the /PasswordT option with
netdom.

2.21.4 See Also

Recipe 2.20 for verifying a trust

[Team LiB]

[Team LiB]

Recipe 2.22 Removing a Trust

2.22.1 Problem

You want to remove a trust. This is commonly done when the remote domain has been
decommissioned or access to it is no longer required.

2.22.2 Solution

2.22.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in.1.

In the left pane, right-click on the trusting domain and select Properties.2.

Click the Trusts tab.3.

Click on the domain that is associated with the trust you want to remove.4.

Click the Remove button.5.

Click OK.6.

2.22.2.2 Using a command-line interface

> netdom trust <TrustingDomain> /Domain:<TrustedDomain> /Remove /verbose[RETURN]

 [/UserO:<TrustingDomainUser> /PasswordO:*][RETURN]

 [/UserD:<TrustedDomainUser> /PasswordD:*]

2.22.2.3 Using VBScript

' This code deletes a trust in the specified domain.
' ------ SCRIPT CONFIGURATION ------
' Set to the DNS or NetBIOS name for the Windows 2000,
' Windows NT domain or Kerberos realm trust you want to delete.

strTrustName = "<TrustName>"
' Set to the DNS name of the source or trusting domain

strDomain = "<DomainDNSName>"
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
set objTrust = GetObject("LDAP://cn=System," & _
 objRootDSE.Get("defaultNamingContext"))
objTrust.Delete "trustedDomain", "cn=" & strTrustName
set objTrustUser = GetObject("LDAP://cn=Users," & _
 objRootDSE.Get("defaultNamingContext"))
objTrustUser.Delete "trustedDomain", "cn=" & strTrustName & "$"
WScript.Echo "Successfully deleted trust for " & strTrustName

2.22.3 Discussion

Trusts are stored in Active Directory as two objects; a trustedDomain object in the System container
and a user object in the Users container. Both of these objects need to be removed when deleting a

trust. The GUI and CLI solutions take care of that in one step, but in the VBScript example both
objects needed to be explicitly deleted. It is also worth noting that each solution only deleted one side
of the trust. If the trust was to a remote AD forest or NT 4.0 domain, you also need to delete the
trust in that domain.

[Team LiB]

[Team LiB]

Recipe 2.23 Enabling SID Filtering for a Trust

2.23.1 Problem

You want to enable Security Identifier (SID) filtering for a trust. By enabling SID filtering you can
keep a hacker from spoofing a SID across a trust.

2.23.2 Solution

2.23.2.1 Using a command-line interface

> netdom trust <TrustingDomain> /Domain:<TrustedDomain> /Quarantine Yes[RETURN]

 [/UserO:<TrustingDomainUser> /PasswordO:*][RETURN]

 [/UserD:<TrustedDomainUser> /PasswordD:*]

2.23.3 Discussion

A security vulnerability exists with the use of SID history, which is described in detail in MS KB
289243. An administrator in a trusted domain can modify the SID history for a user, which could grant
her elevated privileges in the trusting domain. The risk of this exploit is relatively low due to the
complexity in forging a SID, but nevertheless, you should be aware of it. To prevent this from
happening you can enable SID Filtering for a trust. When SID filtering is enabled, the only SIDs that
are used as part of a user's token are from the trusted domain itself. SIDs from other trusting
domains are not included. SID filtering makes things more secure, but prevents the use of SID
history and can cause problems with transitive trusts.

2.23.4 See Also

MS KB 289243 (MS02-001: Forged SID Could Result in Elevated Privileges in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 2.24 Finding Duplicate SIDs in a Domain

2.24.1 Problem

You want to find any duplicate SIDs in a domain. Generally, you should never find duplicate SIDs in a
domain, but it is possible in some situations, such as when the relative identifier (RID) FSMO role
owner has to be seized or you are migrating users from Windows NT domains.

2.24.2 Solution

2.24.2.1 Using a command-line interface

To find duplicate SIDs run the following command, replacing <DomainControllerName> with a

domain controller or domain name:

> ntdsutil "sec acc man" "co to se <DomainControllerName>" "check dup sid" q q

The following message will be returned:

Duplicate SID check completed successfully. Check dupsid.log for any duplicates

The dupsid.log file will be in the directory where you started ntdsutil.

If you want to delete any objects that have duplicate SIDs, you can use the following command:

> ntdsutil "sec acc man" "co to se <DomainControllerName>" "clean dup sid" q q

Like the check command, the clean command will generate a message like the following upon
completion:

Duplicate SID cleanup completed successfully. Check dupsid.log for any duplicate

2.24.3 Discussion

All security principals in Active Directory have a SID, which is used to uniquely identify the object in
the Windows security system. There are two parts of a SID, the domain identifier and the RID.
Domain controllers are allocated a RID pool from the RID FSMO for the domain. When a new security
principal (user, group, or computer) is created, the domain controller takes a RID from its pool to
generate a SID for the account.

In some rare circumstances, such as when the RID master role is seized, overlapping RID pools can
be allocated, which can ultimately lead to duplicate SIDs. Having duplicate SIDs is a potentially

hazardous problem because a user, group, or computer could gain access to sensitive data they were
never intended to have access to.

2.24.4 See Also

MS KB 315062 (HOW TO: Find and Clean Up Duplicate Security Identifiers with Ntdsutil in Windows
2000)

[Team LiB]

[Team LiB]

Chapter 3. Domain Controllers, Global
Catalogs, and FSMOs

Introduction

Recipe 3.1. Promoting a Domain Controller

Recipe 3.2. Promoting a Domain Controller from Media

Recipe 3.3. Demoting a Domain Controller

Recipe 3.4. Automating the Promotion or Demotion of a Domain Controller

Recipe 3.5. Troubleshooting Domain Controller Promotion or Demotion Problems

Recipe 3.6. Removing an Unsuccessfully Demoted Domain Controller

Recipe 3.7. Renaming a Domain Controller

Recipe 3.8. Finding the Domain Controllers for a Domain

Recipe 3.9. Finding the Closest Domain Controller

Recipe 3.10. Finding a Domain Controller's Site

Recipe 3.11. Moving a Domain Controller to a Different Site

Recipe 3.12. Finding the Services a Domain Controller Is Advertising

Recipe 3.13. Configuring a Domain Controller to Use an External Time Source

Recipe 3.14. Finding the Number of Logon Attempts Made Against a Domain Controller

Recipe 3.15. Enabling the /3GB Switch to Increase the LSASS Cache

Recipe 3.16. Cleaning Up Distributed Link Tracking Objects

Recipe 3.17. Enabling and Disabling the Global Catalog

Recipe 3.18. Determining if Global Catalog Promotion Is Complete

Recipe 3.19. Finding the Global Catalog Servers in a Forest

Recipe 3.20. Finding the Domain Controllers or Global Catalog Servers in a Site

Recipe 3.21. Finding Domain Controllers and Global Catalogs via DNS

Recipe 3.22. Changing the Preference for a Domain Controller

Recipe 3.23. Disabling the Global Catalog Requirement During a Windows 2000 Domain Login

Recipe 3.24. Disabling the Global Catalog Requirement During a Windows 2003 Domain Login

Recipe 3.25. Finding the FSMO Role Holders

Recipe 3.26. Transferring a FSMO Role

Recipe 3.27. Seizing a FSMO Role

Recipe 3.28. Finding the PDC Emulator FSMO Role Owner via DNS
[Team LiB]

[Team LiB]

Introduction

Domain controllers are servers that host an Active Directory domain and provide authentication and
directory services to clients. A Domain controller is authoritative for a single domain, but can store
partial read-only copies of objects in other domains in the forest if it is enabled as a global catalog
server. All domain controllers in a forest also host the Configuration and Schema Naming Contexts,
which are replicated to all domain controllers in a forest.

Active Directory is a multi-master directory, meaning that updates can be issued to any domain
controller, but some tasks cannot be distributed to all servers due to concurrency issues. For
example, if two different domain controllers made conflicting updates to the schema, the impact
could be severe and could result in data loss. For this reason, Active Directory supports Flexible
Single Master Operations (FSMO) roles. For each role there is only one domain controller that acts as
the role owner and performs the tasks associated with the role. See Recipe 3.25 for more information
on FSMO roles.

The Anatomy of a Domain Controller

Each domain controller is represented in Active Directory by several objects; the two main ones are a
computer object and an nTDSDSA object. The computer object is necessary because a domain

controller needs to be represented as a security principal like any other type of computer in Active
Directory. The default location in a domain for domain controller computer objects is the Domain
Controllers OU at the root of the domain. They can be moved to a different OU, but it is highly

recommended that you don't unless you know what you are doing. Table 3-1 contains some useful
attributes of domain controller computer objects.

Table 3-1. Attributes of domain controller computer objects

Attribute Description

dnsHostName Fully qualified DNS name of the DC.

msDS-AdditionalDnsHostName
Contains the old DNS name of a renamed DC. This is new in
Windows Server 2003.

msDS-
AdditionalSamAccountName

Contains the old NetBIOS name of a renamed DC. This is new in
Windows Server 2003.

operatingSystem Textual description of the operating system running on the DC.

operatingSystemHotFix
Currently not being used, but will hopefully be populated with
the installed hotfixes at some point.

operatingSystemServicePack Service pack version installed on the DC.

Attribute Description

operatingSystemVersion Numeric version of the operating system installed on the DC.

sAMAccountName NetBIOS style name of the DC.

serverReferenceBL
DN of the DC's server object contained under the Sites

container in the Configuration NC.

servicePrincipalName List of SPNs supported by the DC.

Domain controllers are also represented by several objects under the Sites container in the
Configuration NC. The Sites container stores objects that are needed to create a site topology,
including site, subnet, sitelink, and server objects. The site topology is necessary so that domain

controllers can replicate data efficiently around the network. See Chapter 11 for more information.

Each domain controller has an nTDSDSA object that is subordinate to the domain controller's server

object in the site it is a member of. For example, if the DC1 domain controller were part of the RTP
site, its nTDSDSA object would be located here:

cn=NTDS Settings,cn=DC1,cn=RTP,cn=sites,cn=configuration,dc=rallencorp,dc=com

Table 3-2 lists some of the interesting attributes that are stored with nTDSDSA objects.

Table 3-2. Attributes of domain controller nTDSDSA objects

Attribute Description

hasMasterNCs
List of DNs for the naming contexts the DC is authoritative for. This does
not include application partitions.

hasPartialReplicaNCs
List of DNs for the naming contexts the DC has a partial read-only copy
of.

msDS-HasDomainNCs
The DN of the domain the DC is authoritative for. This is new in Windows
Server 2003.

msDS-HasMasterNCs
List of DNs for the naming contexts (domain, configuration, and schema)
and application partitions the DC is authoritative for. This is new in
Windows Server 2003.

options
If the low-order bit of this attribute is set, the domain controller stores a
copy of the global catalog.

[Team LiB]

operatingSystemVersion Numeric version of the operating system installed on the DC.

sAMAccountName NetBIOS style name of the DC.

serverReferenceBL
DN of the DC's server object contained under the Sites

container in the Configuration NC.

servicePrincipalName List of SPNs supported by the DC.

Domain controllers are also represented by several objects under the Sites container in the
Configuration NC. The Sites container stores objects that are needed to create a site topology,
including site, subnet, sitelink, and server objects. The site topology is necessary so that domain

controllers can replicate data efficiently around the network. See Chapter 11 for more information.

Each domain controller has an nTDSDSA object that is subordinate to the domain controller's server

object in the site it is a member of. For example, if the DC1 domain controller were part of the RTP
site, its nTDSDSA object would be located here:

cn=NTDS Settings,cn=DC1,cn=RTP,cn=sites,cn=configuration,dc=rallencorp,dc=com

Table 3-2 lists some of the interesting attributes that are stored with nTDSDSA objects.

Table 3-2. Attributes of domain controller nTDSDSA objects

Attribute Description

hasMasterNCs
List of DNs for the naming contexts the DC is authoritative for. This does
not include application partitions.

hasPartialReplicaNCs
List of DNs for the naming contexts the DC has a partial read-only copy
of.

msDS-HasDomainNCs
The DN of the domain the DC is authoritative for. This is new in Windows
Server 2003.

msDS-HasMasterNCs
List of DNs for the naming contexts (domain, configuration, and schema)
and application partitions the DC is authoritative for. This is new in
Windows Server 2003.

options
If the low-order bit of this attribute is set, the domain controller stores a
copy of the global catalog.

[Team LiB]

[Team LiB]

Recipe 3.1 Promoting a Domain Controller

3.1.1 Problem

You want to promote a server to a domain controller. You may need to promote a domain controller
to either initially create a domain in an Active Directory forest or add additional domain controllers to
the domain for load balancing and failover.

3.1.2 Solution

Run dcpromo.exe from a command line or via Start Run and answer the questions according to

the forest and domain you want to promote the server into.

3.1.3 Discussion

Promoting a server to a domain controller is the process where the server becomes authoritative for
an Active Directory domain. When you run the dcpromo program, a wizard interface walks you

through a series of screens that collects information about the forest and domain to promote the
server into. There are several options for promoting a server:

Promoting into a new forest (See Recipe 2.1)

Promoting into a new domain tree or child domain (See Recipe 2.3)

Promoting into an existing domain

You can automate the promotion process by running dcpromo during an unattended installation. See

Recipe 3.4 for more details.

3.1.4 See Also

Recipe 2.1 for creating a new forest, Recipe 2.3 for creating a new domain, and MS KB 238369 (HOW
TO: Promote and Demote Domain Controllers in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 3.2 Promoting a Domain Controller from Media

This recipe requires that the server being promoted run Windows Server 2003.

3.2.1 Problem

You want to promote a new domain controller using a backup from another domain controller as the
initial source of the directory contents (DIT) instead of replicating the entire DIT over the network.

3.2.2 Solution

You first need to back up the system state of an existing domain controller in the domain the
new server will go in. This can be accomplished by running the MS Backup utility found at Start

 Programs Accessories System Tools Backup.

1.

Once you have a good backup, you then need to restore it to the new server, which can also be
done using MS Backup. You should restore the files to an alternate location, not to their original
location.

2.

Next, run dcpromo with the /adv switch from a command line or Start Run:3.

> dcpromo /adv

After the dcpromo wizard starts, select Additional Domain Controller for an existing domain and

click Next.

4.

Under Copy Domain Information, select From these restored backup files, browse to the backup
files, and click Next.

5.

Enter credentials of a user in the Domain Admins group in the domain you are promoting the

domain controller into and click Next.

6.

Choose the folders to store the Active Directory Database and Log files and click Next.7.

Choose the folder to store SYSVOL and click Next.8.

Enter a Restore Mode password and click Next.9.

Click Next to start the promotion.10.

10.

3.2.3 Discussion

Being able to promote a domain controller using the system-state backup of another domain
controller is a new feature in Windows Server 2003. With Windows 2000, a new domain controller had
to replicate the entire DIT over the network from an existing domain controller. For organizations
that had either a really large Active Directory DIT file or very poor network connectivity to a remote
site, replicating the full contents over the network presented challenges. Under these conditions, the
promotion process could take a prohibitively long time to complete. Now with the dcpromo "install

from media" option, the initial promotion process can be substantially quicker. After you've done the
initial install from media (i.e., backup tape or CD/DVD), the domain controller will replicate the
changes since the backup was taken.

Be sure that the backup files you are using are much less than 60 days old. If
you install a domain controller using backup files that are older than 60 days,
you could get in trouble with zombie objects getting re-injected after being
purged (due to the default 60 day tombstone lifetime).

3.2.4 See Also

Recipe 16.1 for backing up Active Directory and MS KB 240363 (HOW TO: Use the Backup Program to
Back Up and Restore the System State in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 3.3 Demoting a Domain Controller

3.3.1 Problem

You want to demote a domain controller from a domain. If you want to decommission a domain
controller due to lack of use or change in architecture, you'll need to follow these demotion
procedures.

3.3.2 Solution

3.3.2.1 Using a graphical user interface

Run the dcpromo command from a command line or Start Run.1.

Click Next.2.

If the server is the last domain controller in the domain, check the box beside "This server is the
last domain controller in the domain."

3.

Click Next.4.

Type and confirm the password for the local Administrator account.5.

Click Next twice to begin the demotion.6.

3.3.3 Discussion

Before demoting a domain controller, ensure that all of the FSMO roles have been transferred to
other servers; otherwise, they will be transferred to random domain controllers that may not be
optimal for your installation. Also, if the server is a global catalog, ensure that other global catalog
servers exist in the forest that can handle the load.

It is important to demote a server before decommissioning or rebuilding it so that its associated
objects in Active Directory are removed, its DNS locator resource records are dynamically removed,
and replication with the other domain controllers is not interrupted. If a domain controller does not
successfully demote, or if you do not get the chance to demote it because of failed hardware, see
Recipe 3.6 for manually removing a domain controller from Active Directory.

3.3.4 See Also

Recipe 3.6 for removing an unsuccessfully demoted domain controller, Recipe 3.17 for disabling the
global catalog, Recipe 3.26 for transferring FSMO roles, MS KB 238369 (HOW TO: Promote and
Demote Domain Controllers in Windows 2000), and MS KB 307304 (HOW TO: Remove Active
Directory with the Dcpromo Tool in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 3.4 Automating the Promotion or Demotion of a
Domain Controller

3.4.1 Problem

You want to automate the installation or removal of a domain controller. You can make the promotion
process part of your standard build process by incorporating the necessary configuration lines in your
answer file(s).

3.4.2 Solution

You can automate the promotion of a domain controller by using the unattended process when
building the server or by manually running dcpromo after the system has been built. Pass an answer
file containing the necessary lines to promote the server to dcpromo by specifying a /answer switch.

Here is an example:

> dcpromo /answer:<path_to_answer_file>

If you want to run dcpromo as part of an unattended setup, you need to add a [GUIRunOnce] section
in your unattended setup file that calls the dcpromo process. You can promote a domain controller

only after setup has completed and someone logs in for the first time. That is why it is necessary to
use a [GUIRunOnce] section, which sets the RunOnce registry key to kick off dcpromo after someone

logs in. Here is an example:

[GUIRunOnce]
"dcpromo /answer:%systemroot%\system32\$winnt$.inf"

The dcpromo answer section starts with [DCInstall]. Here is an example answer file for adding a

domain controller to an existing domain in the rallencorp.com forest:

[DCINSTALL]
UserName=administrator
Password=RAllencorpAdminPassword
UserDomain=rallencorp.com
DatabasePath=%systemroot%\ntds
LogPath=%systemroot%\ntds
SYSVOLPath=%systemroot%\sysvol
SafeModeAdminPassword=DSrestoreModePassword
CriticalReplicationOnly=no
ReplicaOrNewDomain=Replica
ReplicaDomainDNSName=rallencorp.com
RebootOnSuccess=yes
CreateOrJoin=Join

3.4.3 Discussion

For a complete list of Windows Server 2003 [DCInstall] settings, see the ref.chm help file in

\support\tools\deploy.cab that can be found on the Windows Server 2003 CD. For Windows 2000, the
settings can be found in the unattend.doc file in \support\tools\deploy.cab on the Windows 2000 CD.

3.4.4 See Also

MS KB 223757 (Unattended Promotion and Demotion of Windows 2000 Domain Controllers), and MS
KB 224390 (How to Automate Windows 2000 Setup and Domain Controller Setup)

[Team LiB]

[Team LiB]

Recipe 3.5 Troubleshooting Domain Controller Promotion
or Demotion Problems

3.5.1 Problem

You are having problems promoting or demoting a domain controller and you want to troubleshoot it.

3.5.2 Solution

The best source of information about the status of promotion or demotion problems is the
Dcpromo.log and Dcpromoui.log files contained in the %SystemRoot%\Debug folder on the server.
The Dcpromo.log captures the input entered during dcpromo and logs the information that is
displayed as dcpromo progresses. The Dcpromoui.log file is much more detailed and captures discrete
actions that occur during dcpromo processing, including any user input.

Additionally, the Windows Server 2003 version of dcdiag contains two new tests that can aid in
troubleshooting promotion problems. The dcpromo test reports anything it finds that could impede
the promotion process. The RegisterInDNS test checks if the server can register records in DNS.

Here is an example of running both commands to test against the rallencorp.com domain:

> dcdiag /test:dcpromo /DnsDomain:rallencorp.com /ReplicaDC /test:RegisterInDNS

3.5.3 Discussion

In most cases, the level of detail provided by Dcpromoui.log should be sufficient to pinpoint any
problems, but you can increase logging if necessary. To enable the highest level of logging available,
set the following registry value to FF0003:
HKLM\Software\Microsoft\Windows\CurrentVersion\AdminDebug. You can confirm that this mask
took effect by running dcpromo again, checking the Dcpromoui.log, and searching for "logging mask."

For more information on the various logging settings, see MS KB 221254.

If you get desperate, the Network Monitor (netmon) program is very handy for getting a detailed

understanding of the network traffic that is being generated and any errors that are being returned.
You can identify what other servers it is talking to or if it is timing out when attempting to perform
certain queries or updates.

3.5.4 See Also

MS KB 221254 (Registry Settings for Event Detail in the Dcpromoui.log File), and MS KB 260371
(Troubleshooting Common Active Directory Setup Issues in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 3.6 Removing an Unsuccessfully Demoted Domain
Controller

3.6.1 Problem

Demotion of a domain controller was unsuccessful or you are unable to bring a domain controller back online
and you want to manually remove it from Active Directory.

3.6.2 Solution

The first step in the removal process is to run the following ntdsutil command, where

<DomainControllerName> is a domain controller in the same domain as the one you want to forcibly

remove:

> ntdsutil "meta clean" conn "co to ser <DomainControllerName
>" q "s o t" "l d"
Found 2 domain(s)
0 - DC=rallencorp,DC=com
1 - DC=emea,DC=rallencorp,DC=com

Select the domain of the domain controller you want to remove. In this case, I'll select the
emea.rallencorp.com domain:

select operation target: sel domain 1

Now, list the sites and select the site the domain controller is in (I'll use 1 for MySite1):

select operation target: list sites
Found 4 site(s)
0 - CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=rallencorp,DC=com
1 - CN=MySite1,CN=Sites,CN=Configuration,DC=rallencorp,DC=com
2 - CN=MySite2,CN=Sites,CN=Configuration,DC=rallencorp,DC=com
3 - CN=MySite3,CN=Sites,CN=Configuration,DC=rallencorp,DC=com
select operation target: sel site 1

Next, select the server you want to remove; in this case, I'm choosing 0 for DC5:

select operation target: list servers for domain in site
Found 2 server(s)
0 - CN=DC5,CN=Servers,CN=MySite1,CN=Sites,CN=Configuration,DC=rallencorp,DC=com
1 - CN=DC9,CN=Servers,CN=MySite1,CN=Sites,CN=Configuration,DC=rallencorp,DC=com
select operation target: sel server 0

Type quit to get back to the metadata cleanup menu.

select operation target: quit

metadata cleanup:

Finally, remove the server:

metadata cleanup: remove selected server

You should receive a message stating that the removal was complete. If you get an error, check to see if the
server's nTDSDSA object (e.g.,

CN=NTDSSettings,CN=DC5,CN=Servers,CN=MySite1,CN=Sites,CN=Configuration,DC=rallencorp,DC=com
) is present. If so, dcpromo may have already removed it, and it will take time for the change to replicate. If
it is still present, try the ntdsutil procedure again and if that doesn't work, manually remove that object

and the parent object (e.g., CN=DC5).

You should follow these additional steps to remove all traces of the domain controller:

Delete the CNAME record from DNS for <GUID> ._msdcs.<RootDomainDNSName> , where <GUID> is the
objectGUID for the server's nTDSDSA object. If scavenging is not enabled, you'll need to manually

delete all associated SRV records. Delete any A and PTR records that exist for the server. When using
Microsoft DNS, you can use the DNS MMC snap-in to accomplish these tasks.

1.

Delete the computer object for the server under OU=DomainControllers ,<DomainDN> . This can be

done using the Active Directory Users and Computers snap-in.

2.

Delete the FRS Member object for the computer contained under CN=DomainSystemVolume (SYSVOL
share),CN=file replication service,CN=system,< DomainDN> . This can be done using the Active

Directory Users and Computers snap-in when "Advanced Features" has been selected from the View
menu (so the System container will be displayed).

3.

3.6.3 Discussion

Forcibly removing a domain controller from a domain is not a task that should be taken lightly. If you need to
replace the server quickly, consider giving it a different name just to ensure that nothing confuses the new
server with the old one. If the domain controller was the last one in the domain, you'll need to manually
remove the domain from the forest as well. See Recipe 2.5 for more information on removing orphaned
domains.

Here are some additional issues to consider when you forcibly remove a domain controller:

Seize any FSMO roles the DC may have had.

If the DC was a global catalog server, ensure there is another global catalog server in the site.

If the DC was a DNS server, ensure there is another DNS server that can handle the load.

If the DC was the RID FSMO master, check to make sure duplicate SIDs have not been issued (see
Recipe 2.24).

Check to see if the DC hosted any application partitions and if so, consider making another server a
replica server for those application partitions (see Recipe 17.5).

If the (former) domain controller that you forcibly removed is still on the network, you should strongly

consider rebuilding it to avoid potential conflicts from it trying to re-inject itself back into Active Directory. If
that is not an option, you can try this option to force the server to not recognize itself as a domain controller.

Change the ProductOptions value under the HKLM\System\CurrentControlSet\Control key from
LanmanNT to ServerNT.

1.

Reboot the server.2.

Delete the NTDS folder.3.

Alternatively, if you are running Windows Server 2003 or Windows 2000 SP4 and later you can run dcpromo
/forceremoval from a command line to forcibly remove Active Directory from a server. See MS KB 332199

for more information.

3.6.4 See Also

Recipe 2.5 for removing an orphaned domain, Recipe 3.27 for seizing FSMO roles, MS KB 216498 (HOW TO:
Remove Data in Active Directory After an Unsuccessful Domain Controller Demotion), and MS KB 332199
(Using the DCPROMO /FORCEREMOVAL Command to Force the Demotion of Active Directory Domain
Controllers)

[Team LiB]

[Team LiB]

Recipe 3.7 Renaming a Domain Controller

3.7.1 Problem

You want to rename a domain controller.

3.7.2 Solution

3.7.2.1 Windows 2000 Active Directory

To rename a domain controller, you must first demote it to a member server. You can then rename it
and then promote it back to a domain controller.

3.7.2.2 Windows Server 2003 Active Directory

> netdom computername <CurrentName> /Add:<NewName>

> netdom computername <CurrentName> /MakePrimary:<NewName>

3.7.3 Discussion

There is no supported means to rename a Windows 2000 domain controller in place. That is why you
have to fake it by demoting the server before doing the rename. Before you demote the server, you
should transfer any FSMO roles. Alternatively, you can let dcpromo transfer the roles during

demotion, but you should check afterwards to verify which server(s) the role(s) were transferred to.
Likewise if the domain controller is a global catalog server, ensure another global catalog server is
available to cover for it.

Renaming a domain controller is a new feature of Windows Server 2003. A new option has been
added to the netdom utility to allow an alternate computer name to be associated with a computer in

Active Directory. Once you've added a new name, you can then set that name to be the primary
name, thereby renaming the computer. The old name effectively remains with the domain controller
until you remove it, which can be done using the netdom computername /Remove:<Name> command.
You should reboot the server before removing the old name. The old names are stored in the msDS-
AdditionalDnsHostName and msDS-AdditionalSamAccountName attributes on the domain
controller's computer object.

3.7.4 See Also

MS KB 195242 (Cannot Change Computer Name of a Domain Controller), MS KB 296592 (How to
Rename a Windows 2000 Domain Controller), and MS KB 814589 (HOW TO: Rename a Windows 2003
Domain Controller)

[Team LiB]

[Team LiB]

Recipe 3.8 Finding the Domain Controllers for a Domain

3.8.1 Problem

You want to find the domain controllers in a domain.

3.8.2 Solution

3.8.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

Connect to the target domain.2.

Click on the Domain Controllers OU.3.

The list of domain controllers for the domain will be present in the right pane.4.

3.8.2.2 Using a command-line interface

> netdom query dc /Domain:<DomainDNSName>

3.8.2.3 Using VBScript

' This code displays the domain controllers for the specified domain.
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. emea.rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
set objDomain = GetObject("LDAP://" & objRootDSE.Get("defaultNamingContext"))
strMasteredBy = objDomain.GetEx("masteredBy")
for each strNTDSDN in strMasteredBy
 set objNTDS = GetObject("LDAP://" & strNTDSDN)
 set objServer = GetObject(objNTDS.Parent)
 Wscript.echo objServer.Get("dNSHostName")
next

3.8.3 Discussion

There are several ways to get a list of domain controllers for a domain. The GUI solution simply looks
at the computer objects in the Domain Controllers OU. Whenever you promote a domain controller
into a domain, a computer object for the server gets placed into the Domain Controllers OU off the
root of the domain. Some administrators may move their domain controller computer objects to

different OUs, so this test does not guarantee accuracy in all cases.

The CLI and VBScript solutions take a slightly different approach by looking at the masteredBy

attribute on the domain object (e.g., dc=emea,dc=rallencorp,dc=com) of the domain. The
masteredBy attribute contains a list of distinguished names of the nTDSDSA objects of all the domain
controllers for that domain. The parent object of the nTDSDSA object, which is the server object of the
domain controller, has a dNSHostName attribute that contains the fully qualified DNS name of the

server.

And for yet another solution, see Recipe 3.21 to find out how to query DNS to get the list of domain
controllers for a domain.

3.8.4 See Also

Recipe 3.21 for finding domain controllers via DNS

[Team LiB]

[Team LiB]

Recipe 3.9 Finding the Closest Domain Controller

3.9.1 Problem

You want to find the closest domain controller for a particular domain.

3.9.2 Solution

3.9.2.1 Using a command-line interface

The following command finds the closest domain controller in the specified domain
(<DomainDNSName>). By default, it will return the closest DC for the computer nltest is being run
from, but you can optionally use the /server option to target a remote host. You can also optionally
specify the /site option to find a domain controller that belongs to a particular site.

> nltest /dsgetdc:<DomainDNSName> [/site:<SiteName>] [/server:<ClientName>]

3.9.2.2 Using VBScript

' This code finds the closest domain controller in the domain
' that the computer running the script is in.
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. emea.rallencorp.com
' ------ END CONFIGURATION ---------

set objIadsTools = CreateObject("IADsTools.DCFunctions")
objIadsTools.DsGetDcName(Cstr(strDomain))
Wscript.Echo "DC: " & objIadsTools.DCName
Wscript.Echo "DC Site: " & objIadsTools.DCSiteName
Wscript.Echo "Client Site: " & objIadsTools.ClientSiteName

3.9.3 Discussion

The DC locator process as described in MS KB 314861 and MS KB 247811 defines how clients find the
closest domain controller. The process uses the site topology stored in Active Directory to calculate
the site a particular client is in. After the client site has been identified, then it is a matter of finding a
domain controller that is either a member of that same site or that is covering for that site.

The Microsoft DsGetDcName Directory Services API method implements the DC Locator process, but
unfortunately cannot be used directly from a scripting language, such as VBScript. The IADsTools

interface provides a wrapper around DsGetDcName, which is what I used. The nltest /dsgetdc
command is also a wrapper around the DsGetDcName method, and is a handy tool when

troubleshooting client issues related to finding an optimal domain controller.

3.9.3.1 Using a command-line interface

You can use nltest to return the closest domain controller that is serving a particular function. Some
of the available functions include a global catalog server (/GC switch), time server (/TIMESERV
switch), KDC (/KDC switch), and PDC (/PDC switch). Run nltest /? from a command line for the

complete list.

3.9.3.2 Using VBScript

Similar to nltest, you can specify additional criteria for finding a domain controller by calling the
SetDsGetDcNameFlags method before calling DsGetDcName. SetDsGetDcNameFlags accepts a

comma-delimited string of the following flags:

DS_FORCE_REDISCOVERY
DS_DIRECTORY_SERVICE_REQUIRED
DS_DIRECTORY_SERVICE_PREFERRED
DS_GC_SERVER_REQUIRED
DS_PDC_REQUIRED
DS_IP_REQUIRED
DS_KDC_REQUIRED
DS_TIMESERV_REQUIRED
DS_WRITABLE_REQUIRED
DS_GOOD_TIMESERV_PREFERRED
DS_AVOID_SELF
DS_IS_FLAT_NAME
DS_IS_DNS_NAME
DS_RETURN_DNS_NAME
DS_RETURN_FLAT_NAME

3.9.4 See Also

For more information on the IADsTools interface see IadsTools.doc in the Support Tools, MS KB

247811 (How Domain Controllers Are Located in Windows), MS KB 314861 (How Domain Controllers
Are Located in Windows XP), MSDN: DsGetDcName, and MSDN: MicrosoftDNS

[Team LiB]

[Team LiB]

Recipe 3.10 Finding a Domain Controller's Site

3.10.1 Problem

You need to determine the site of which a domain controller is a member.

3.10.2 Solution

3.10.2.1 Using a graphical user interface

Open LDP and from the menu, select Connection Connect.1.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).2.

For Port, enter 389.3.

Click OK.4.

From the menu select Connection Bind.5.

Enter credentials of a domain user.6.

Click OK.7.

From the menu, select Browse Search.8.

For BaseDN, type the distinguished name of the Sites container (e.g.,

cn=sites,cn=configuration,dc=rallencorp, dc=com).

9.

For Scope, select Subtree.10.

For Filter, enter:11.

(&(objectcategory=server)(dnsHostName=<DomainControllerName>))

Click Run.12.

3.10.2.2 Using a command-line interface

> nltest /dsgetsite /server:<DomainControllerName>

3.10.2.3 Using VBScript

' This code prints the site the specified domain controller is in
' ------ SCRIPT CONFIGURATION ------

strDC = "<DomainControllerName>" ' e.g. dc1.rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strDC & "/RootDSE")
set objNTDS = GetObject("LDAP://" & objRootDSE.Get("dsServiceName"))
set objSite = GetObject(GetObject(GetObject(objNTDS.Parent).Parent).Parent)
WScript.Echo objSite.Get("cn")

3.10.3 Discussion

Domain controllers are represented in the site topology by a server object and a child nTDSDSA
object. Actually, any type of server can conceivably have a server object; it is the nTDSDSA object
that differentiates domain controllers from other types of servers. You'll often see the nTDSDSA object

of a domain controller used to refer to that domain controller elsewhere in Active Directory. For
example, the fSMORoleOwner attribute that represents the FSMO owners contains the distinguished
name of the nTDSDSA object of the domain controller that is holding the role.

3.10.3.1 Using a command-line interface

The nltest /dsgetsite command is a wrapper around the DsGetSiteName method.

3.10.3.2 Using VBScript

Since we cannot use the DsGetSiteName method directly in VBScript, we need to take a more indirect
approach. By querying the RootDSE of the target server, we can retrieve the dsServiceName
attribute. That attribute contains the DN of the nTDSDSA object for the domain controller; for

example, cn=NTDSSettings,cn=dc1,cn=MySite,cn=Sites,cn=Configuration,dc=rallencorp,dc=com.
Then, by calling the Parent method three consecutive times, we can retrieve the object for

cn=MySite,cn=Sites,cn=Configuration,dc=rallencorp,dc=com.

3.10.4 See Also

MSDN: DsGetSiteName

[Team LiB]

[Team LiB]

Recipe 3.11 Moving a Domain Controller to a Different Site

3.11.1 Problem

You want to move a domain controller to a different site.

3.11.2 Solution

3.11.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the left pane, expand the site that contains the domain controller.2.

Expand the Servers container.3.

Right-click on the domain controller you want to move and select Move.4.

In the Move Server box, select the site to which the domain controller will be moved and click OK.5.

3.11.2.2 Using a command-line interface

When using the dsmove command you must specify the DN of the object you want to move. In this case, it
needs to be the distinguished name of the server object for the domain controller. The value for the -
newparent option is the distinguished name of the Servers container you want to move the domain controller

to.

> dsmove "<ServerDN>" -newparent "<NewServersContainerDN>"

For example, the following command would move dc2 from the Default-First-Site-Name site to the
Raleigh site.

> dsmove "cn=dc2,cn=servers,cn=Default-First-Site-Name,cn=sites,cn=configuration,[RETURN]
rallencorp" -newparent "cn=servers,cn=Raleigh,cn=sites,cn=configuration,rallencorp"

3.11.2.3 Using VBScript

' This code moves a domain controller to a different site
' ------ SCRIPT CONFIGURATION ------

strDCName = "<DomainControllerName>" ' e.g. dc2

strCurrentSite = "<CurrentSiteName>" ' e.g. Default-First-Site-Name

strNewSite = "<NewSiteName>" ' e.g. Raleigh
' ------ END CONFIGURATION ---------

strConfigDN = GetObject("LDAP://RootDSE").Get("configurationNamingContext")
strServerDN = "LDAP://cn=" & strDCName & ",cn=servers,cn=" & _
 strCurrentSite & ",cn=sites," & strConfigDN
strNewParentDN = "LDAP://cn=servers,cn=" & strNewSite & ",cn=sites," & _
 strConfigDN

set objCont = GetObject(strNewParentDN)
objCont.MoveHere strServerDN, "cn=" & strDCName
WScript.Echo "Successfully moved " & strDCName & " to " & strNewSite

3.11.3 Discussion

When you install a new domain controller, a server object and nTDSDSA object for the domain controller get

added to the site topology. The Knowledge Consistency Checker (KCC) and Intersite Topology Generator
(ISTG) use these objects to determine whom the domain controller should replicate with.

A domain controller is assigned to the site that has been mapped to the subnet it is located on. If there is no
subnet object that has an address range that contains the domain controller's IP address, the server object
is added to the Default-First-Site-Name site. If the domain controller should be in a different site, you'll
then need to manually move it. It is a good practice to ensure that a subnet object that matches the domain

controller's subnet is already in Active Directory before promoting the server into the forest. That way you do
not need to worry about moving it after the fact.

When moving a server object, remember that it has to be moved to a Servers

container within a site, not directly under the site itself.

3.11.3.1 Using a command-line interface

In the solution provided, you need to know the current site of the domain controller you want to move. If you
do not know the site it is currently in, you can use dsquery to find it. In fact, you can use dsquery in
combination with dsmove in a single command line:

> for /F "usebackq" %i in (`dsquery server -name"<DomainControllerName>"`) do dsmove[RETURN]

-newparent "cn=servers,cn=Default-First-Site,cn=sites,cn=configuration,<ForestDN>" %i

This command is long so I'll break it up into three parts to clarify it. The first part contains the for command
extension that is built into the cmd.exe shell. When the /F "usebackq " syntax is specified, it is typically used

to iterate over output from a command and perform certain functions on the output.

for /F "usebackq" %i in

The next part of the for loop contains the data to iterate over. In this case, I use dsquery to return the
distinguished name of the server object for dc2 .

(`dsquery server -name "<DomainControllerName>"`)

The last part executes a command for each result returned from dsquery . In this case, there should only be

one result, so this command will only run once.

do dsmove -newparent "cn=servers,cn=Default-First-

Site,cn=sites,cn=configuration,<ForestDN>" %i

3.11.3.2 Using VBScript

Just as with the CLI solution, in the VBScript solution you need to specify which site the server is currently in. If
you prefer, you can programmatically query for the current site, as shown in Recipe 3.10 .

3.11.4 See Also

Recipe 3.10 for finding a domain controller's site and Recipe 4.17 for moving objects to different containers

[Team LiB]

[Team LiB]

Recipe 3.12 Finding the Services a Domain Controller Is
Advertising

3.12.1 Problem

You want to find the services a domain controller is advertising.

3.12.2 Solution

The following command will display the list of services a domain controller is advertising:

> dcdiag /v /s:<DomainControllerName> /test:advertising

You can also use nltest to get similar information:

> nltest /server:<DomainControllerName> /dsgetdc:<DomainName>

3.12.3 Discussion

The dcdiag /test:advertising command is a wrapper around the DsGetDcName method.
DsGetDcName returns a structure called DOMAIN_CONTROLLER_INFO that contains the list of services a

domain controller provides. Table 3-2 contains the possible values returned from this call.

Table 3-3. DOMAIN_CONTROLLER_INFO flags

Value Description

DS_DS_FLAG Directory server for the domain

DS_GC_FLAG Global catalog server for the forest

DS_KDC_FLAG Kerberos Key Distribution Center for the domain

DS_PDC_FLAG Primary domain controller of the domain

DS_TIMESERV_FLAG Time server for the domain

DS_WRITABLE_FLAG Hosts a writable directory service

3.12.4 See Also

MSDN: DsGetDcName and MSDN: DOMAIN_CONTROLLER_INFO

[Team LiB]

[Team LiB]

Recipe 3.13 Configuring a Domain Controller to Use an
External Time Source

3.13.1 Problem

You want to set the reliable time source for a domain controller.

3.13.2 Solution

3.13.2.1 Using a command-line interface

Run the following commands from the command line on a domain controller:

> net time /setsntp:<TimeServerNameOrIP>
> net stop w32time
> net start w32time

3.13.2.2 Using VBScript

' This codes configures a reliable time source on a domain controller
' ------ SCRIPT CONFIGURATION ------

strPDC = "<DomainControllerName>" ' e.g. dc01.rallencorp.com

strTimeServer = "<TimeServerNameOrIP>" ' e.g. ntp01.rallencorp.com
' ------ END CONFIGURATION ---------

strTimeServerReg = "SYSTEM\CurrentControlSet\Services\W32Time\Parameters"
const HKLM = &H80000002
set objReg = GetObject("winmgmts:\\" & strPDC & "\root\default:StdRegProv")
objReg.GetStringValue HKLM, strTimeServerReg, "ntpserver", strCurrentServer
WScript.Echo "Current Value: " & strCurrentServer
objReg.SetStringValue HKLM, strTimeServerReg, "ntpserver", strTimeServer
objReg.SetStringValue HKLM, strTimeServerReg, "type", "NTP"
strCurrentServer = ""
objReg.GetStringValue HKLM, strTimeServerReg, "ntpserver", strCurrentServer
WScript.Echo "New Value: " & strCurrentServer

' Restart Time Service
set objService = GetObject("winmgmts://" & strPDC & _
 "/root/cimv2:Win32_Service='W32Time'")
WScript.Echo "Stopping " & objService.Name

objService.StopService()

Wscript.Sleep 2000 ' Sleep for 2 seconds to give service time to stop

WScript.Echo "Starting " & objService.Name
objService.StartService()

3.13.3 Discussion

You need to set a reliable time source on the PDC Emulator FSMO for only the forest root domain. All
other domain controllers sync their time either from that server or from a PDC (or designated time
server) within their own domain. The list of external time servers is stored in the registry under the
W32Time Service registry key in the following location:
HKLM\SYSTEM\CurrentControlSet\Services\W32Time\Parameters\ntpserver.

If you want a domain controller, such as the PDC, to use an external time source, you have to set the
ntpserver registry value along with the type value. The default value for type on a domain
controller is Nt5DS, which means that the domain controller will use the Active Directory domain

hierarchy to find a time source. You can override this behavior and have a domain controller contact
a non-DC time source by setting type to NTP. In the CLI example, the /setsntp switch automatically
sets the type value to NTP. In the VBScript solution, I had to set it in the code.

After setting the time server, the W32Time service should be restarted for the change to take effect.
You can check that the server was set properly by running the following command:

> net time /querysntp

Since the PDC Emulator is the time source for the other domain controllers, you should also make
sure that it is advertising the time service, which you can do with the following command:

> nltest /server:<DomainControllerName> /dsgetdc:<DomainDNSName> /TIMESERV

3.13.4 See Also

MS KB 216734 (How to Configure an Authoritative Time Server in Windows 2000), MS KB 223184
(Registry Entries for the W32Time Service), MS KB 224799 (Basic Operation of the Windows Time
Service), MSDN: StdRegProv, and MSDN: Win32_Service

[Team LiB]

[Team LiB]

Recipe 3.14 Finding the Number of Logon Attempts Made
Against a Domain Controller

3.14.1 Problem

You want to find the number of logon requests a domain controller has processed.

3.14.2 Solution

The following query returns the number of logon requests processed:

> nltest /server:<DomainControllerName> /LOGON_QUERY

3.14.3 Discussion

The nltest /LOGON_QUERY command is a wrapper around the I_NetLogonControl2 method, and

can be useful to determine how many logon requests are being processed by a server. Viewing the
results of the command over a period of time and comparing them against a server in the same
domain can also tell you if one server is being used significantly more or less than the others.

3.14.4 See Also

MSDN: I_NetLogonControl2

[Team LiB]

[Team LiB]

Recipe 3.15 Enabling the /3GB Switch to Increase the
LSASS Cache

3.15.1 Problem

You are using more than 1 GB of memory on your domain controllers and want to enable the /3GB
switch so that the LSASS process can use more memory.

3.15.2 Solution

Edit the boot.ini file on the domain controller to contain the /3GB switch:

[boot loader]
timeout=30
default=multi(0)disk(0)rdisk(0)partition(2)\WINDOWS
[operating systems]
multi(0)disk(0)rdisk(0)partition(2)\WINDOWS="Windows Server 2003" /3GB

Restart the computer.

On Windows Server 2003, you can edit the boot.ini file by opening the System
applet in the Control Panel. Click the Startup and Recovery tab and click the
Edit button.

On Windows 2000, it is not so easy. You need to open an Explorer window,
select Tools Folder Options, and click the view tab. Uncheck "Hide
protected operating system files (Recommended)," and check "Show hidden
files and folders." Now browse to the root of your operating system partition
(e.g., C:) and edit the boot.ini file with a text editor.

3.15.3 Discussion

When computers are referred to as 32 or 64-bit computers that means they support memory
addresses that are 32 or 64 bits long. This is the total available memory (virtual and real) that can be
processed by the system. Since the days of Windows NT, Microsoft has split memory allocation in half
by giving applications up to 2 GB and the Windows kernel 2 GB of memory to use (32 bits of address
space = 2^32 = 4 GB). In many cases, administrators would rather allocate more memory to
applications than to the kernel. For this reason, Microsoft developed the /3GB switch to allow

applications to use up to 3 GB of memory, leaving the kernel with 1 GB.

The /3GB switch is supported only on Windows 2000 Advanced Server, Windows 2000 Datacenter

Server, Windows Server 2003 Enterprise Edition, and Windows Server 2003 Data Center Edition, and
should be used only if the computer has more than 1 GB of physical memory. For a good description
of how LSASS uses memory, see MS KB 308356.

3.15.4 See Also

MS KB 99743 (Purpose of the BOOT.INI File in Windows 2000 or Windows NT), MS KB 291988 (A
Description of the 4 GB RAM Tuning Feature and the Physical Address Extension Switch), and MS KB
308356 (Memory Usage By the Lsass.exe Process on Windows 2000-Based Domain Controllers)

[Team LiB]

[Team LiB]

Recipe 3.16 Cleaning Up Distributed Link Tracking
Objects

3.16.1 Problem

You want to make sure the Distributed Link Tracking (DLT) service is disabled and all DLT objects are
removed from Active Directory. The Distributed Link Tracking Server service is used to track links to
files on NTFS partitions. If a file that has a shortcut to it is renamed or moved, Windows uses the DLT
service to find the file when the shortcut is opened. Most organizations are unaware this service even
exists, but yet it can populate thousands of objects in Active Directory. Unless you are actively using
the functionality of the DLT service, it is recommended that you disable it.

3.16.2 Solution

If you upgrade a Windows 2000 domain controller to Windows Server 2003, the DLT Server service is
stopped and set to disabled. A new install of Windows Server 2003 also has the service stopped and
set to disabled. But the DLT Server service on Windows 2000 domain controllers is enabled by
default. Unless you need it, you should stop the service and disable it on all of your domain
controllers.

Next, you'll need to remove any DLT objects (linkTrackVolEntry and linkTrackOMTEntry) from

Active Directory. Since there can be hundreds of thousands of DLT objects, you will probably want to
stagger the deletion of those objects. The script in MS KB 315229 (dltpurge.vbs) can delete DLT
objects over a period of time instead of all at once. Here is an example of running the dltpurge.vbs
script against the dc1 domain controller in the rallencorp.com domain:

> cscript dltpurge.vbs -s dc1 -d dc=rallencorp,dc=com

3.16.3 Discussion

DLT consists of a client and server service. The server service runs on domain controllers and the
client service can run on any Windows 2000 or later machine. The server service stores data in Active
Directory in the form of linkTrackVolEntry and linkTrackOMTEntry objects, which are used to

track the names and locations of files on NTFS partitions. The
cn=ObjectMoveTable,cn=FileLinks,cn=System,<DomainDN> container stores linkTrackOMTEntry

objects that contain information about files that have been moved on computers in the domain. The
cn=VolumeTable,cn=FileLinks,cn=System,<DomainDN> container stores linkTrackVolEntry objects

that represent NTFS volumes on computers in the domain.

Over time, the number of DLT objects can grow substantially. Even though those objects do not take
up much space, if you are not actively taking advantage of this service, you should consider disabling
it and removing all DLT objects from Active Directory. If you remove a lot of DLT objects, you should

determine how much space you can reclaim on the disk of the domain controllers by performing an
offline defrag. See Recipe 16.12 for more information.

3.16.4 See Also

MS KB 232122 (Performing Offline Defragmentation of the Active Directory Database), MS KB 312403
(Distributed Link Tracking on Windows-Based Domain Controllers), and MS KB 315229 (Text Version
of Dltpurge.vbs for Microsoft Knowledge Base Article Q312403)

[Team LiB]

[Team LiB]

Recipe 3.17 Enabling and Disabling the Global Catalog

3.17.1 Problem

You want to enable or disable the global catalog on a particular server.

3.17.2 Solution

3.17.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

Browse to the nTDSDSA object (NTDS Settings) underneath the server object for the domain controller

you want to enable or disable the global catalog for.

2.

Right-click on NTDS Settings and select Properties.3.

Under the General tab, check (to enable) or uncheck (to disable) the box beside Global Catalog.4.

Click OK.5.

3.17.2.2 Using a command-line interface

In the following command, <ServerObjectDN> should be the server object DN, not the DN of the nTDSDSA

object.

> dsmod server "<ServerObjectDN>" -isgc yes|no

For example, the following command will enable the global catalog on dc1 in the Raleigh site:

> dsmod server[RETURN]
"cn=DC1,cn=servers,cn=Raleigh,cn=sites,cn=configuration,dc=rallencorp,dc=com" -isgc[RETURN]
yes

3.17.2.3 Using VBScript

' This code enables or disables the GC for the specified DC
' ------ SCRIPT CONFIGURATION ------

strDC = "<DomainControllerName>" ' e.g. dc01.rallencorp.com
strGCEnable = 1 ' 1 = enable, 0 = disable
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strDC & "/RootDSE")
objNTDS = GetObject("LDAP://" & strDC & "/" & _

 objRootDSE.Get("dSServiceName"))
objNTDS.Put "options", strGCEnable
objNTDS.SetInfo

3.17.3 Discussion

The first domain controller promoted into a forest is by default also made a global catalog server. If you want
additional servers to have the global catalog, you have to enable it. The global catalog on a domain controller
becomes enabled when the low-order bit on the options attribute on the nTDSDSA object under the server
object for the domain controller is set to 1. The DN of this object for dc1 in the Default-First-Site-Name site

looks like this: cn=NTDSSettings,cn=DC1,cn=Default-First-Site-
Name,cn=Sites,cn=Configuration,dc=rallencorp,dc=com .

After enabling the global catalog, it can take some time before the domain controller can start serving as a
global catalog server. The length of time is based on the amount of data that needs to replicate and the type of
connectivity between the domain controller's replication partners. After replication is complete, you should see
Event 1119 in the Directory Services log stating the server is advertising itself as a global catalog. At that point
you should also be able to perform LDAP queries against port 3268 on that server. See Recipe 3.18 for more
information on how to determine if global catalog promotion is complete.

3.17.4 See Also

Recipe 3.18 for determining if global catalog promotion is complete, and MS KB 313994 (HOW TO: Create or
Move a Global Catalog in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 3.18 Determining if Global Catalog Promotion Is
Complete

3.18.1 Problem

You want to determine if a domain controller is a global catalog server. After you initially enable the
global catalog on a domain controller, it can take some time for all of the read-only naming contexts
to replicate to it, depending on how large your forest is.

3.18.2 Solution

Query the isGlobalCatalogReady attribute on the RootDSE for the domain controller. A TRUE value

means the server is a global catalog and a FALSE value indicates it is not.

For more information on how to query the RootDSE, see Recipe 4.1.

3.18.3 Discussion

Once a server has completed initial replication of the global catalog, the isGlobalCatalogReady

attribute in the RootDSE will be marked TRUE. Another way to determine if a domain controller has
been at least flagged to become a global catalog is by checking if the options attribute on the
nTDSDSA object for the server has been set to 1. Note that this does not necessarily mean the server
is accepting requests as a global catalog. An additional query to the RootDSE as described in the

Solution, or directly to port 3268 (the global catalog port) could confirm it.

3.18.4 See Also

Recipe 4.1 for viewing the RootDSE

[Team LiB]

[Team LiB]

Recipe 3.19 Finding the Global Catalog Servers in a
Forest

3.19.1 Problem

You want a list of the global catalog servers in a forest.

3.19.2 Solution

3.19.2.1 Using a graphical user interface

Open LDP and from the menu select Connection Connect.1.

For Server, enter the name of a DC.2.

For Port, enter 389.3.

Click OK.4.

From the menu select Connection Bind.5.

Enter credentials of a domain user.6.

Click OK.7.

From the menu select Browse Search.8.

For BaseDN, type the DN of the Sites container (e.g., cn=sites,cn=configuration,dc=rallencorp,
dc=com).

9.

For Scope, select Subtree.10.

For Filter, enter (&(objectcategory=ntdsdsa)(options=1)).11.

Click Run.12.

3.19.2.2 Using a command-line interface

> dsquery server -forest -isgc

3.19.2.3 Using VBScript

' This code prints the global catalog servers for the specified forest.
' ------ SCRIPT CONFIGURATION ------

strForestName = "<ForestDNSName>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strForestName & "/" & "RootDSE")
strADsPath = "<LDAP://" & objRootDSE.Get("configurationNamingContext") & ">;"
strFilter = "(&(objectcategory=ntdsdsa)(options=1));"
strAttrs = "distinguishedname;"
strScope = "SubTree"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strADsPath & strFilter & strAttrs & strScope)
objRS.MoveFirst
while not objRS.EOF
 set objNTDS = GetObject("LDAP://" & objRS.Fields(0).Value)
 set objServer = GetObject(objNTDS.Parent)
 Wscript.Echo objServer.Get("dNSHostName")
 objRS.MoveNext
wend

3.19.3 Discussion

To find the global catalog servers in a forest, you need to query for NTDS Settings objects that have
the low-order bit of the options attribute equal to 1 under the sites container in the Configuration

Naming Context. That attribute determines if a domain controller should be a global catalog server,
but it does not necessarily mean it is a global catalog server yet. See Recipe 3.18 for more
information on how to tell if a server marked as a global catalog is ready to accept requests as one.

Another option for locating global catalogs is DNS, which is described in Recipe 3.21.

3.19.4 See Also

Recipe 3.18 for determining if global catalog promotion is complete

[Team LiB]

[Team LiB]

Recipe 3.20 Finding the Domain Controllers or Global
Catalog Servers in a Site

3.20.1 Problem

You want a list of the domain controllers or global catalog servers in a specific site.

3.20.2 Solution

3.20.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the right pane, expand the site that contains the domain controller.2.

For the list of domain controllers, expand the Servers container.3.

To find the global catalog servers, expand each domain controller, right-click on NTDS
Settings, and select Properties.

4.

Global catalog servers will have the box checked beside Global Catalog.5.

3.20.2.2 Using a command-line interface

The following query finds all domain controllers in specified site.

> dsquery server -site <SiteName>

To find only the global catalog servers in a site, use the same command with the -isgc option.

> dsquery server -site <SiteName> -isgc

3.20.2.3 Using VBScript

' This code prints the domain controllers in a site and then
' prints the global catalog servers in the site
' ------ SCRIPT CONFIGURATION ------

strSite = "<SiteName>" ' e.g. Default-First-Site-Name

strForest = "<ForestDNSName>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strForest & "/RootDSE")
strADsPath = "<LDAP://cn=servers,cn=" & strSite & ",cn=sites," & _
 objRootDSE.Get("configurationNamingContext") & ">;"
strFilter = "(objectcategory=ntdsdsa);"
strAttrs = "distinguishedName;"
strScope = "SubTree"

WScript.Echo "Domain controllers in " & strSite & ":"
set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strADsPath & strFilter & strAttrs & strScope)
objRS.MoveFirst
while not objRS.EOF
 Set objNTDS = GetObject("LDAP://" & objRS.Fields(0).Value)
 Set objServer = GetObject(objNTDS.Parent)
 Wscript.Echo " " & objServer.Get("dNSHostName")
 objRS.MoveNext
wend

' Global Catalog filter
strFilter = "(&(objectcategory=ntdsdsa)(options=1));"
WScript.Echo ""
WScript.Echo "Global Catalogs in " & strSite & ":"
set objRS = objConn.Execute(strADsPath & strFilter & strAttrs & strScope)
objRS.MoveFirst
while not objRS.EOF
 set objNTDS = GetObject("LDAP://" & objRS.Fields(0).Value)
 set objServer = GetObject(objNTDS.Parent)
 Wscript.Echo " " & objServer.Get("dNSHostName")
 objRS.MoveNext
wend

3.20.3 Discussion

Each domain controller has a server object within the Servers container for the site it is a member

of (e.g., cn=DC1,cn=Servers,cn=MySite, cn=site, cn=configuration, dc=rallencorp, dc=com).
Since other types of servers can have server objects in a site's Servers container, domain controllers
are differentiated by the nTDSDSA object that is a child of the server object (e.g.,

cn=NTDSSettings,cn=DC1,cn=Servers,cn=MySite, cn=site, cn=confiugration, dc=rallencorp,
dc=com). Querying for this nTDSDSA objects will return a list of domain controllers in the site.

Locating global catalog servers consists of the same query, except where the low-order bit of the
options attribute of the nTDSDSA object is equal to 1.

[Team LiB]

[Team LiB]

Recipe 3.21 Finding Domain Controllers and Global
Catalogs via DNS

3.21.1 Problem

You want to find domain controllers or global catalogs using DNS lookups.

3.21.2 Solution

Domain controllers and global catalog servers are represented in DNS as SRV records. You can query
SRV records using nslookup by setting the type=SRV, such as the following:

> nslookup
Default Server: dns01.rallencorp.com
Address: 10.1.2.3

> set type=SRV

You then need to issue the following query to retrieve all domain controllers for the specified domain.

> _ldap._tcp.<DomainDNSName>

You can issue a similar query to retrieve global catalogs, but since they are forest-wide, the query is
based on the forest name.

> _gc._tcp.<ForestDNSName>

You can even find the domain controllers or global catalogs that are in a particular site or that cover
a particular site by querying the following:

> _ldap._tcp.<SiteName>._sites.<DomainDNSName>

> _gc._tcp.<SiteName>._sites.<ForestDNSName>

See Recipe 11.18 for more information on site coverage.

3.21.3 Discussion

One of the benefits of Active Directory over its predecessor Windows NT is that it relies on DNS for
name resolution. Active Directory uses DNS to locate servers that serve a particular function, such as
a domain controller for a domain, global catalog server, PDC Emulator, KDC. It also uses the site
topology information stored in Active Directory to populate site-specific records for domain
controllers.

The DC locator process relies on this information in DNS to direct clients to the most optimal server
when logging in. Reliance on DNS makes it easy to troubleshoot problems related to clients finding
domain controllers. If you know the site a client is in, you can make a few DNS queries to determine
which domain controller they should be authenticating with.

The resource records a domain controller registers in DNS can be restricted, so querying DNS may
return only a subset of the actual domain controllers. See Recipe 13.14 and Recipe 13.15 for more
information.

3.21.4 See Also

Recipe 3.28 for finding the PDC Emulator via DNS and MS KB 267855 (Problems with Many Domain
Controllers with Active Directory Integrated DNS Zones)

[Team LiB]

[Team LiB]

Recipe 3.22 Changing the Preference for a Domain
Controller

3.22.1 Problem

You want a particular domain controller to be used less frequently for client requests or not at all.
This may be necessary if a particular domain controller is overloaded, perhaps due to application
requests.

3.22.2 Solution

You can modify the Priority or Weight fields in SRV resource records by modifying the registry on the
domain controller. Open regedit or regedt32 on the domain controller and browse to the following

key: HKLM\SYSTEM\CurrentControlSet\Services\Netlogon\Parameters. To configure the Priority, add
a REG_DWORD with the name LdapSrvPriority. To configure the weight, add a REG_DWORD with the
name LdapSrvWeight.

After you make the change, the %SystemRoot%\System32\Config\netlogon.dns file should be
updated and the DDNS updates sent to the DNS server within an hour. You can also restart the
NetLogon service to expedite the process.

3.22.3 Discussion

Each domain controller registers several SRV records that clients use as part of the DC locator
process to find the closest domain controller. Two fields of the SRV record let clients determine which
server to use when multiple possibilities are returned. The Priority field is used to dictate if a specific
server or set of servers should always be contacted over others unless otherwise unavailable. A
server with a higher priority (i.e., lower priority field value) will always be contacted before a server
with a lower priority. For example, if DC1 has a SRV priority of 5 and DC2 has a SRV priority of 10,
DC1 will always be used unless it is unavailable.

The Weight field, on the other hand, determines the percentage of time clients should use a particular
server. You can easily calculate the percentage by dividing the weight by the sum of all Weights for
servers with the same Priority. If server's DC1, DC2, and DC3 have Weights of 1, 2, and 3,
respectively, then DC1 will be contacted one out of six times (1 / (3 + 2 + 1)), DC2 will be contacted
two out of every six times or 1/3 (2 / (3 + 2 + 1)), and DC3 will be contacted three out of every six
times or 1/2(3 / (3 + 2 + 1)). Here is an example of how the SRV records look with these weights:

C:\>nslookup -type=SRV _ldap._tcp.dc._msdcs.rallencorp.com
Server: dns01.rallencorp.com
Address: 171.70.168.183

_ldap._tcp.dc._msdcs.rallencorp.com SRV service location:
 priority = 0
 weight = 1
 port = 389
 svr hostname = dc1.rallencorp.com
_ldap._tcp.dc._msdcs.rallencorp.com SRV service location:
 priority = 0
 weight = 2
 port = 389
 svr hostname = dc2.rallencorp.com
_ldap._tcp.dc._msdcs.rallencorp.com SRV service location:
 priority = 0
 weight = 3
 port = 389
 svr hostname = dc3.rallencorp.com

In certain situations, having this capability can come in handy. For example, the server acting as the
PDC FSMO role owner typically receives more traffic from clients simply because of the nature of
tasks that the PDC FSMO has to handle. If you find a certain server like the PDC FSMO has
considerably higher load than the rest of the servers, you could change the priority or weight of the
SRV records so that it is used less often during the DC locator process. You can increase the Priority
to eliminate its use unless all other domain controllers fail. Modify the Weight to reduce how often it
will be used.

[Team LiB]

[Team LiB]

Recipe 3.23 Disabling the Global Catalog Requirement
During a Windows 2000 Domain Login

3.23.1 Problem

You want to disable the requirement for a global catalog server to be reachable when a user logs into
a Windows 2000 domain.

3.23.2 Solution

3.23.2.1 Using a graphical user interface

Open the Registry Editor (regedit).1.

In the left pane, expand HKEY_LOCAL_MACHINE System CurrentControlSet
Control.

2.

Right-click on LSA and select New Key.3.

Enter IgnoreGCFailures for the key name and hit enter.4.

Restart the server.5.

3.23.2.2 Using a command-line interface

> reg add HKLM\SYSTEM\CurrentControlSet\Control\LSA\IgnoreGCFailures /ve
> shutdown /r

3.23.2.3 Using VBScript

' This code enables the IgnoreGCFailres registry setting and reboots
strLSA = "HKLM\SYSTEM\CurrentControlSet\Control\LSA\IgnoreGCFailures\"
Set objWSHShell = WScript.CreateObject("WScript.Shell")
objWSHShell.RegWrite strLSA, ""
WScript.Echo "Successfully created key"
WScript.Echo "Rebooting server . . . "
objWSHShell.Run "rundll32 shell32.dll,SHExitWindowsEx 2"

3.23.3 Discussion

With Windows 2000, a global catalog server must be contacted for every login attempt; otherwise,
the login will fail (unless there is no network connectivity, which would result in a cached login). This
is necessary to process all universal groups a user may be a member of. When a client attempts to
authenticate with a domain controller, that domain controller contacts a global catalog server behind
the scenes to enumerate the user's universal groups. See Recipe 7.9 for more details. If you have
domain controllers in remote sites and they are not enabled as global catalog servers, you may run
into a situation where users cannot login if the network connection to the network with the closest
global catalog server fails.

Although there is a plausible workaround in Windows Server 2003 Active Directory (see Recipe 3.24),
the only option you have available with Windows 2000 is to have the domain controllers ignore GC
lookup failures. You can do this by adding an IgnoreGCFailures registry key under
HKLM\SYSTEM\CurrentControlSet\Control\LSA on the domain controller(s) you want this to apply to.
If you use universal groups in any capacity, having the domain controllers ignore GC failures can be
very problematic because a user's token may not get updated with his universal group memberships.
It may be useful, though, if you have branch-office sites where you cannot deploy domain controllers.

3.23.4 See Also

Recipe 3.24 for disabling the global catalog requirement for Windows Server 2003, Recipe 7.9 for
enabling universal group caching, MS KB 216970 (Global Catalog Server Requirement for User and
Computer Logon), and MS KB 241789 (How to Disable the Requirement that a Global Catalog Server
Be Available to Validate User Logons)

[Team LiB]

[Team LiB]

Recipe 3.24 Disabling the Global Catalog Requirement
During a Windows 2003 Domain Login

This recipe requires the Windows Server 2003 forest functional level.

3.24.1 Problem

You want to disable the requirement for a global catalog server to be reachable when a user logs into
a Windows 2003 domain.

3.24.2 Solution

See Recipe 7.9 for information on enabling universal group caching, which effectively eliminates the
need to contact a global catalog server during logon.

[Team LiB]

[Team LiB]

Recipe 3.25 Finding the FSMO Role Holders

3.25.1 Problem

You want to find the domain controllers that are acting as one of the FSMO roles.

3.25.2 Solution

3.25.2.1 Using a graphical user interface

For the Schema Master:

Open the Active Directory Schema snap-in.1.

Right-click on Active Directory Schema in the left pane and select Operations Master.2.

For the Domain Naming Master:

Open the Active Directory Domains and Trusts snap-in.1.

Right-click on Active Directory Domains and Trusts in the left pane and select Operations
Master.

2.

For the PDC Emulator, RID Master, and Infrastructure Master:

Open the Active Directory Users and Computers snap-in.1.

Make sure you've targeted the correct domain.2.

Right-click on Active Directory Users and Computers in the left pane and select Operations
Master.

3.

There are individual tabs for the PDC, RID, and Infrastructure roles.4.

3.25.2.2 Using a command-line interface

In the following command, you can leave out the /Domain <DomainDNSName> option to query the

domain you are currently logged on.

> netdom query fsmo /Domain:<DomainDNSName>

For some reason, this command returns a "The parameter is incorrect" error on Windows Server
2003. Until that is resolved, you can use the dsquery server command shown here, where <Role>
can be schema, name, infr, pdc, or rid:

> dsquery server -hasfsmo <Role>

3.25.2.3 Using VBScript

' This code prints the FSMO role owners for the specified domain.
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. emea.rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
strDomainDN = objRootDSE.Get("defaultNamingContext")
strSchemaDN = objRootDSE.Get("schemaNamingContext")
strConfigDN = objRootDSE.Get("configurationNamingContext")

' PDC Emulator
set objPDCFsmo = GetObject("LDAP://" & strDomainDN)
Wscript.Echo "PDC Emulator: " & objPDCFsmo.fsmoroleowner

' RID Master
set objRIDFsmo = GetObject("LDAP://cn=RID Manager$,cn=system," & strDomainDN)
Wscript.Echo "RID Master: " & objRIDFsmo.fsmoroleowner

' Schema Master
set objSchemaFsmo = GetObject("LDAP://" & strSchemaDN)
Wscript.Echo "Schema Master: " & objSchemaFsmo.fsmoroleowner

' Infrastructure Master
set objInfraFsmo = GetObject("LDAP://cn=Infrastructure," & strDomainDN)
Wscript.Echo "Infrastructure Master: " & objInfraFsmo.fsmoroleowner

' Domain Naming Master
set objDNFsmo = GetObject("LDAP://cn=Partitions," & strConfigDN)
Wscript.Echo "Domain Naming Master: " & objDNFsmo.fsmoroleowner

3.25.3 Discussion

Several Active Directory operations are sensitive, such as updating the schema, and therefore, need
to be done on a single domain controller. Active Directory cannot guarantee the proper evaluation of
these functions in a situation where they may be invoked from more than one DC. The FSMO
mechanism is used to limit these functions to a single DC.

There are five designated FSMO roles that correspond to these sensitive functions. A FSMO role can
apply either to an entire forest or to a specific domain. Each role is stored in the fSMORoleOwner

attribute on various objects in Active Directory depending on the role. Table 3-4 contains a list of
FSMO roles.

Table 3-4. FSMO roles

Role Description fSMORoleOwner Location

Domain
or

Forest-
wide?

Schema
Processes schema
updates

CN=Schema,CN=Configuration,<ForestDN> Forest

Domain
Naming

Processes the addition,
removal, and renaming
of domains

CN=Partitions,CN=Configuration,<ForestDN> Forest

Infrastructure
Maintains references to
objects in other domains

CN=Infrastructure,<ForestDN> Domain

RID
Handles RID pool
allocation for the domain
controllers in a domain

CN=RidManager$,CN=System,<DomainDN> Domain

PDC Emulator

Acts as the Windows NT
master browser and also
as the PDC for downlevel
clients and Backup
Domain Controllers
(BDCs)

<DomainDN> Domain

3.25.3.1 Using VBScript

If you want to get the DNS name for each FSMO, you'll need to get the parent object of the nTDSDSA
object and use the dNSHostName attribute, similar to Recipe 3.8. The code for getting the Schema

Master could be changed to the following to retrieve the DNS name of the DC:

set objSchemaFsmo = GetObject("LDAP://cn=Schema,cn=Configuration," & strForestDN)
set objSchemaFsmoNTDS = GetObject("LDAP://" & objSchemaFsmo.fsmoroleowner)
set objSchemaFsmoServer = GetObject(objSchemaFsmoNTDS.Parent)
Wscript.Echo "Schema Master: " & objSchemaFsmoServer.Get("dNSHostName")

3.25.4 See Also

MS KB 197132 (Windows 2000 Active Directory FSMO Roles), MS KB 223346 (FSMO Placement and
Optimization on Windows 2000 Domain Controllers), MS KB 234790 (HOW TO: Find Servers That Hold
Flexible Single Master Operations Roles), and MS KB 324801 (HOW TO: View and Transfer FSMO
Roles in Windows Server 2003)

[Team LiB]

[Team LiB]

Recipe 3.26 Transferring a FSMO Role

3.26.1 Problem

You want to transfer a FSMO role to a different domain controller. This may be necessary if you need
to take a current FSMO role holder down for maintenance.

3.26.2 Solution

3.26.2.1 Using a graphical user interface

Use the same directions as described in Recipe 3.25 for viewing a specific FSMO, except target
(i.e., right-click and select Connect to Domain Controller) the domain controller you want to
transfer the FSMO to before selecting Operations Master.

1.

Click the Change button.2.

Click OK twice.3.

You should then see a message stating whether the transfer was successful.4.

3.26.2.2 Using a command-line interface

The following would transfer the PDC Emulator role to <NewRoleOwner>. See the discussion to see

about transferring the other roles.

> ntdsutil roles conn "co t s <NewRoleOwner>" q "transfer PDC" q q

3.26.2.3 Using VBScript

' This code transfers the PDC Emulator role to the specified owner.
' See the discussion to see about transferring the other roles.
' ------ SCRIPT CONFIGURATION ------

strNewOwner = "<NewRoleOwner>" ' e.g. dc2.rallencorp.com
' ------ END CONFIGURATION ---------

Set objRootDSE = GetObject("LDAP://" & strNewOwner & "/RootDSE")
objRootDSE.Put "becomePDC", 1
objRootDSE.SetInfo

3.26.3 Discussion

The first domain controller in a new forest is assigned the two forest-wide FSMO roles (schema and
domain naming). The first domain controller in a new domain gets the other three domain-wide roles.
It is very likely you'll need to move the roles around to different domain controllers at some point.
Also, when you need to take down a domain controller that is currently a FSMO role owner, you'll
want to transfer the role beforehand. If you plan to install a hotfix or do some other type of
maintenance that only necessitates a quick reboot, you may not want to go to the trouble of
transferring the FSMO role.

Some FSMO roles are more time critical than others. For example, the PDC Emulator role is used
extensively, but the Schema Master is needed only when extending the schema. If a FSMO role
owner becomes unavailable before you can transfer it, you'll need to seize the role (see Recipe 3.27).

3.26.3.1 Using a command-line interface

Any role can be transferred using ntdsutil by replacing "transfer PDC" in the solution with one of

the following:

"transfer domain naming master"

"transfer infrastructure master"

"transfer RID master"

"transfer schema master"

3.26.3.2 Using VBScript

FSMO roles can be transferred programmatically by setting the become<FSMORole> operational
attribute on the RootDSE of the domain controller to transfer the role to. The following are the

available attributes that can be set that correspond to each FSMO role:

becomeDomainMaster

becomeInfrastructureMaster

becomePDC

becomeRidMaster

becomeSchemaMaster

3.26.4 See Also

Recipe 3.25 for finding FSMO role holders, Recipe 3.27 for seizing a FSMO role, MS KB 223787
(Flexible Single Master Operation Transfer and Seizure Process), MS KB 255504 (Using Ntdsutil.exe to
Seize or Transfer FSMO Roles to a Domain Controller), and MS KB 324801 (HOW TO: View and
Transfer FSMO Roles in Windows Server 2003)

[Team LiB]

[Team LiB]

Recipe 3.27 Seizing a FSMO Role

3.27.1 Problem

You need to seize a FSMO role because the current role holder is down and will not be restored.

3.27.2 Solution

3.27.2.1 Using a command-line interface

The following would seize the PDC Emulator role to <NewRoleOwner>:

> ntdsutil roles conn "co t s <NewRoleOwner>" q "seize PDC" q q

Any of the other roles can be transferred as well using ntdsutil by replacing "transfer PDC" in the

previous solution with one of the following:

"seize domain naming master"

"seize infrastructure master"

"seize RID master"

"seize schema master"

3.27.2.2 Using VBScript

Seizing a FSMO role is typically not something you need to do programmatically, but you can do it. All
you need to do is set the fSMORoleOwner attribute for the object that represents the FSMO role as
described in Recipe 3.25 with the distinguished name of nTDSDSA object of the new role owner.

3.27.3 Discussion

Seizing a FSMO role should not be done lightly. The general recommendation is to seize a FSMO role
only when you cannot possibly bring the previous role holder back online. One reason that seizing a
role is problematic is that you could possibly lose data. For example, lets say that you extended the
schema, and immediately after it was extended the Schema FSMO went down. If you could not bring
that server back online, those extensions may have not replicated before the server went down. You

would need to determine if the any of the schema extensions replicated and, if not, re-extend the
schema. A similar problem can result from losing the RID FSMO, where duplicate RID pools may be
allocated. See Recipe 2.24 for more information.

3.27.4 See Also

Recipe 3.25 for finding FSMO role holders, Recipe 3.26 for transferring a FSMO role, MS KB 223787
(Flexible Single Master Operation Transfer and Seizure Process), and MS KB 255504 (Using
Ntdsutil.exe to Seize or Transfer FSMO Roles to a Domain Controller)

[Team LiB]

[Team LiB]

Recipe 3.28 Finding the PDC Emulator FSMO Role Owner
via DNS

3.28.1 Problem

You want to find the PDC Emulator for a domain using DNS.

3.28.2 Solution

3.28.2.1 Using a command-line interface

> nslookup -type=SRV _ldap._tcp.pdc._msdcs.<DomainDNSName>

3.28.3 Discussion

The PDC Emulator FSMO role is the only FSMO role that is stored in DNS. Like many of the other
Active Directory-related DNS records, the PDC record is stored as an SRV record under
_ldap._tcp.pdc._msdcs.<DomainDNSName> where <DomainDNSName> is the domain the PDC is in.

3.28.4 See Also

Recipe 3.21 for finding domain controllers via DNS

[Team LiB]

[Team LiB]

Chapter 4. Searching and Manipulating
Objects

Introduction

Recipe 4.1. Viewing the RootDSE

Recipe 4.2. Viewing the Attributes of an Object

Recipe 4.3. Using LDAP Controls

Recipe 4.4. Using a Fast or Concurrent Bind

Recipe 4.5. Searching for Objects in a Domain

Recipe 4.6. Searching the Global Catalog

Recipe 4.7. Searching for a Large Number of Objects

Recipe 4.8. Searching with an Attribute-Scoped Query

Recipe 4.9. Searching with a Bitwise Filter

Recipe 4.10. Creating an Object

Recipe 4.11. Modifying an Object

Recipe 4.12. Modifying a Bit-Flag Attribute

Recipe 4.13. Dynamically Linking an Auxiliary Class

Recipe 4.14. Creating a Dynamic Object

Recipe 4.15. Refreshing a Dynamic Object

Recipe 4.16. Modifying the Default TTL Settings for Dynamic Objects

Recipe 4.17. Moving an Object to a Different OU or Container

Recipe 4.18. Moving an Object to a Different Domain

Recipe 4.19. Renaming an Object

Recipe 4.20. Deleting an Object

Recipe 4.21. Deleting a Container That Has Child Objects

Recipe 4.22. Viewing the Created and Last Modified Timestamp of an Object

Recipe 4.23. Modifying the Default LDAP Query Policy

Recipe 4.24. Exporting Objects to an LDIF File

Recipe 4.25. Importing Objects Using an LDIF File

Recipe 4.26. Exporting Objects to a CSV File

Recipe 4.27. Importing Objects Using a CSV File
[Team LiB]

[Team LiB]

Introduction

Active Directory is based on the Lightweight Directory Access Protocol (LDAP) and supports the LDAP
v3 specification defined in RFC 2251. And while many of the AD tools and interfaces, such as ADSI,
abstract and streamline LDAP operations to make things easier, any good AD administrator or
developer must have a thorough understanding of LDAP to fully utilize Active Directory. This chapter
will cover the some of the basic LDAP-related tasks you may need to do with Active Directory, along
with other items related to searching and manipulating objects in the directory.

The Anatomy of an Object

The Active Directory schema is composed of a hierarchy of classes. These classes support
inheritance, which enables reuse of existing class definitions. At the top of the inheritance tree is the
top class, from which every class in the schema is derived. Table 4-1 contains a list of some of the
attributes that are available from the top class, and subsequently are defined on every object that is

created in Active Directory.

Table 4-1. Common attributes of objects

Attribute Description

cn Relative distinguished name (RDN) attribute for most object classes

createTimestamp
Timestamp when the object was created. See Recipe 4.22 for more
information

description
Multivalued attribute that can be used as a generic field for storing a
description of the object

displayName Name of the object displayed in administrative interfaces

distinguishedName Distinguished name of the object

modifyTimestamp
Timestamp when the object was last changed. See Recipe 4.22 for more
information

name
RDN of the object. The value of this attribute will mirror the naming
attribute (e.g., cn, ou, dc)

nTSecurityDescriptor Security descriptor assigned to the object

objectCategory
Used as a grouping mechanism for objects with a similar purpose (e.g.,
Person)

objectClass List of classes from which the object's class was derived

Attribute Description

objectGUID Globally unique identifier for the object

uSNChanged
Update sequence number (USN) assigned by the local server after the last
change to the object (can include creation)

uSNCreated USN assigned when the object was created

[Team LiB]

objectGUID Globally unique identifier for the object

uSNChanged
Update sequence number (USN) assigned by the local server after the last
change to the object (can include creation)

uSNCreated USN assigned when the object was created

[Team LiB]

[Team LiB]

Recipe 4.1 Viewing the RootDSE

4.1.1 Problem

You want to view attributes of the RootDSE, which can be useful for discovering basic information about
a forest, domain, or domain controller.

4.1.2 Solution

4.1.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter a domain controller, domain name, or leave blank to do a serverless bind.3.

For Port, enter 389.4.

Click OK.5.

The contents of the RootDSE will be shown in the right pane.6.

4.1.2.2 Using a command-line interface

> enumprop "LDAP://RootDSE"

4.1.2.3 Using VBScript

' This code prints the attributes of the RootDSE
set objRootDSE = GetObject("LDAP://RootDSE")
objRootDSE.GetInfo
for i = 0 to objRootDSE.PropertyCount - 1
 set strProp = objRootDSE.Item(i)
 WScript.Echo strProp.Name & " "
 for each strPropval in strProp.Values
 WScript.Echo " " & strPropval.CaseIgnoreString
 next
next

4.1.3 Discussion

The RootDSE was originally defined in RFC 2251 as part of the LDAPv3 specification. It is not part of the

Active Directory namespace per se. It is a synthetic object that is maintained separately by each
domain controller.

The RootDSE can be accessed anonymously, and in fact, none of the three solutions used credentials. In
the CLI and VBScript solutions, I used serverless binds against the RootDSE. In that case, the DC
Locator process is used to find a domain controller in the domain you authenticate against. This can also
be accomplished with LDP by not entering a server name from the Connect dialog box.

The RootDSE is key to writing portable AD-enabled applications. It provides a mechanism to
programmatically determine the distinguished names of the various naming contexts among other
things, which means you do not need to hardcode that information in scripts and programs. Here is an
example from LDP when run against a Windows Server 2003-based domain controller:

ld = ldap_open("dc01", 389);
Established connection to dc01.
Retrieving base DSA information . . .
Result <0>: (null)
Matched DNs:
Getting 1 entries:
>> Dn:
1> currentTime: 05/26/2003 15:29:42 Pacific Standard Time Pacific Daylight Time;

1> subschemaSubentry:CN=Aggregate,CN=Schema,CN=Configuration,DC=rallencorp,DC=com;

1> dsServiceName: CN=NTDS Settings,CN=DC01,CN=Servers,CN=Default-First-Site-
Name,CN=Sites,CN=Configuration,DC=rallencorp,DC=com;

5> namingContexts: DC=rallencorp,DC=com; CN=Configuration,DC=rallencorp,DC=com;
CN=Schema,CN=Configuration,DC=rallencorp,DC=com;
DC=DomainDnsZones,DC=rallencorp,DC=com; DC=ForestDnsZones,DC=rallencorp,DC=com;

1> defaultNamingContext: DC=rallencorp,DC=com;

1> schemaNamingContext: CN=Schema,CN=Configuration,DC=rallencorp,DC=com;

1> configurationNamingContext: CN=Configuration,DC=rallencorp,DC=com;

1> rootDomainNamingContext: DC=rallencorp,DC=com;

21> supportedControl: 1.2.840.113556.1.4.319; 1.2.840.113556.1.4.801; 1.2.840.113556.
1.4.473; 1.2.840.113556.1.4.528; 1.2.840.113556.1.4.417; 1.2.840.113556.1.4.619; 1.2.
840.113556.1.4.841; 1.2.840.113556.1.4.529; 1.2.840.113556.1.4.805; 1.2.840.113556.1.
4.521; 1.2.840.113556.1.4.970; 1.2.840.113556.1.4.1338; 1.2.840.113556.1.4.474; 1.2.
840.113556.1.4.1339; 1.2.840.113556.1.4.1340; 1.2.840.113556.1.4.1413; 2.16.840.1.
113730.3.4.9; 2.16.840.1.113730.3.4.10; 1.2.840.113556.1.4.1504; 1.2.840.113556.1.4.
1852; 1.2.840.113556.1.4.802;

2> supportedLDAPVersion: 3; 2;

12> supportedLDAPPolicies: MaxPoolThreads; MaxDatagramRecv; MaxReceiveBuffer;
InitRecvTimeout; MaxConnections; MaxConnIdleTime; MaxPageSize; MaxQueryDuration;
MaxTempTableSize; MaxResultSetSize; MaxNotificationPerConn; MaxValRange;

1> highestCommittedUSN: 53242;

4> supportedSASLMechanisms: GSSAPI; GSS-SPNEGO; EXTERNAL; DIGEST-MD5;

1> dnsHostName: dc01.rallencorp.com;

1> ldapServiceName: rallencorp.com:dc01$@RALLENCORP.COM;

1> serverName: CN=DC01,CN=Servers,CN=Default-First-Site-
Name,CN=Sites,CN=Configuration,DC=rallencorp,DC=com;

3> supportedCapabilities: 1.2.840.113556.1.4.800; 1.2.840.113556.1.4.1670; 1.2.840.
113556.1.4.1791;

1> isSynchronized: TRUE;

1> isGlobalCatalogReady: TRUE;

1> domainFunctionality: 0 = (DS_BEHAVIOR_WIN2000);

1> forestFunctionality: 0 = (DS_BEHAVIOR_WIN2000);

1> domainControllerFunctionality: 2 = (DS_BEHAVIOR_WIN2003);

4.1.3.1 Using VBScript

All attributes of the RootDSE were retrieved and displayed. Typically, you will need only a few of the
attributes; in which case, you'll want to use Get or GetEx as in the following example:

strDefaultNC = objRootDSE.Get("defaultNamingContext")

Or if want to get an object based on the distinguished name (DN) of one of the naming contexts, you
can call GetObject using an ADsPath:

set objUser = GetObject("LDAP://cn=administrator,cn=users," & _
 objRootDSE.Get("defaultNamingContext"))

4.1.4 See Also

RFC 2251, MS KB 219005 (Windows 2000: LDAPv3 RootDSE), MSDN: IADsPropertyEntry, MSDN:
IADsProperty Value, MSDN: IADs::Get, and MSDN: IADs::GetEx

[Team LiB]

[Team LiB]

Recipe 4.2 Viewing the Attributes of an Object

4.2.1 Problem

You want to view one or more attributes of an object.

4.2.2 Solution

4.2.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller or domain that contains the object.3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a user that can view the object (if necessary).7.

Click OK.8.

From the menu, select View Tree.9.

For BaseDN, type the DN of the object you want to view.10.

For Scope, select Base.11.

Click OK.12.

4.2.2.2 Using a command-line interface

> dsquery * "<ObjectDN>" -scope base -attr *

For Windows 2000, use this command:

> enumprop "LDAP://<ObjectDN>"

4.2.2.3 Using VBScript

' This code prints all attributes for the specified object.
' ------ SCRIPT CONFIGURATION ------

strObjectDN = "<ObjectDN>" ' e.g. cn=jsmith,cn=users,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

DisplayAttributes("LDAP://" & strObjectDN)

Function DisplayAttributes(strObjectADsPath)

 set objObject = GetObject(strObjectADsPath)
 objObject.GetInfo

 'Declare the hash (dictionary), constants and variables
 'Values taken from ADSTYPEENUM
 set dicADsType = CreateObject("Scripting.Dictionary")
 dicADsType.Add 0, "INVALID"
 dicADsType.Add 1, "DN_STRING"
 dicADsType.Add 2, "CASE_EXACT_STRING"
 dicADsType.Add 3, "CASE_IGNORE_STRING"
 dicADsType.Add 4, "PRINTABLE_STRING"
 dicADsType.Add 5, "NUMERIC_STRING"
 dicADsType.Add 6, "BOOLEAN"
 dicADsType.Add 7, "INTEGER"
 dicADsType.Add 8, "OCTET_STRING"
 dicADsType.Add 9, "UTC_TIME"
 dicADsType.Add 10, "LARGE_INTEGER"
 dicADsType.Add 11, "PROV_SPECIFIC"
 dicADsType.Add 12, "OBJECT_CLASS"
 dicADsType.Add 13, "CASEIGNORE_LIST"
 dicADsType.Add 14, "OCTET_LIST"
 dicADsType.Add 15, "PATH"
 dicADsType.Add 16, "POSTALADDRESS"
 dicADsType.Add 17, "TIMESTAMP"
 dicADsType.Add 18, "BACKLINK"
 dicADsType.Add 19, "TYPEDNAME"
 dicADsType.Add 20, "HOLD"
 dicADsType.Add 21, "NETADDRESS"
 dicADsType.Add 22, "REPLICAPOINTER"
 dicADsType.Add 23, "FAXNUMBER"
 dicADsType.Add 24, "EMAIL"
 dicADsType.Add 25, "NT_SECURITY_DESCRIPTOR"
 dicADsType.Add 26, "UNKNOWN"
 dicADsType.Add 27, "DN_WITH_BINARY"
 dicADsType.Add 28, "DN_WITH_STRING"

 for intIndex = 0 To (objObject.PropertyCount - 1)
 set objPropEntry = objObject.Item(intIndex)
 for Each objPropValue In objPropEntry.Values

 value = ""

 if (dicADsType(objPropValue.ADsType) = "DN_STRING") then
 value = objPropValue.DNString

 elseIf (dicADsType(objPropValue.ADsType) = "CASE_EXACT_STRING") then
 value = objPropValue.CaseExactString

 elseIf (dicADsType(objPropValue.ADsType) = "CASE_IGNORE_STRING") then
 value = objPropValue.CaseIgnoreString

 elseIf (dicADsType(objPropValue.ADsType) = "PRINTABLE_STRING") then
 value = objPropValue.PrintableString

 elseIf (dicADsType(objPropValue.ADsType) = "NUMERIC_STRING") then
 value = objPropValue.NumericString

 elseIf (dicADsType(objPropValue.ADsType) = "BOOLEAN") then
 value = CStr(objPropValue.Boolean)

 elseIf (dicADsType(objPropValue.ADsType) = "INTEGER") then
 value = objPropValue.Integer

 elseIf (dicADsType(objPropValue.ADsType) = "LARGE_INTEGER") then
 set objLargeInt = objPropValue.LargeInteger
 value = objLargeInt.HighPart * 2^32 + objLargeInt.LowPart

 elseIf (dicADsType(objPropValue.ADsType) = "UTC_TIME") then
 value = objPropValue.UTCTime

 else
 value = "<" & dicADsType.Item(objPropEntry.ADsType) & ">"

 end if
 WScript.Echo objPropEntry.Name & " : " & value
 next
 next
End Function

4.2.3 Discussion

Objects in Active Directory are made up of a collection of attributes. Attributes can be single- or
multivalued. Each attribute also has an associated syntax that is defined in the schema. See Recipe
10.7 for a complete list of syntaxes.

4.2.3.1 Using a graphical user interface

You can customize the list of attributes returned from a search with LDP by modifying the Attributes:
field under Options Search. To include all attributes enter *. For a subset enter a semicolon-

separated list of attributes.

4.2.3.2 Using a command-line interface

The -attr option for the dsquery command accepts a whitespace-separated list of attributes to
display. Using a * will return all attributes.

For the enumprop command, you can use the /ATTR option and a comma-separated list of attributes
to return. In the following example, only the name and whenCreated attributes would be returned:

> enumprop /ATTR:name,whenCreated "LDAP://<ObjectDN>"

4.2.3.3 Using VBScript

The DisplayAttributes function prints the attributes that contain values for the object passed in.
After using GetObject to bind to the object, I used the IADs::GetInfo method to populate the local

property cache with all of the object's attributes from AD. In order to print each value of a property, I
have to know its type or syntax. The ADsType method returns an integer from the ADSTYPEENUM

enumeration that corresponds with a particular syntax (e.g., boolean). Based on the syntax, I call a
specific method (e.g., Boolean) that can properly print the value. If I didn't incorporate this logic and
tried to print all values using the CaseIgnoreString method for example, an error would get

generated when the script encountered an octet string because octet strings (i.e., binary data) do not
have a CaseIgnoreString representation.

I stored the values from the ADSTYPEENUM enumeration in key/value pairs in a dictionary object (i.e.,
Scripting.Dictionary). In the dictionary object, the key for the dictionary is the ADSTYPEENUM

integer, and the value is a textual version of the syntax. I used the dictionary object so I could print
the textual syntax of each attribute. I iterated over all the properties in the property cache using
IADsPropertyList and IADsPropertyEntry objects, which are instantiated with the
IADsPropertyList::Item method.

The DisplayAttributes function is used throughout the book in examples

where the attributes for a given type of object are displayed.

4.2.4 See Also

Chapter 19, IADs and the Property Cache, from Active Directory, Second Edition, MSDN:
IADsPropertyEntry, MSDN: IADsPropertyList, MSDN: ADSTYPEENUM, and MSDN: IADs::GetInfo

[Team LiB]

[Team LiB]

Recipe 4.3 Using LDAP Controls

4.3.1 Problem

You want to use an LDAP control as part of an LDAP operation.

4.3.2 Solution

4.3.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Options Controls.2.

For the Windows Server 2003 version of LDP, select the control you want to use under Load
Predefined. The control should automatically be added to the list of Active Controls.

For the Windows 2000 version of LDP, you'll need to type the object identifier (OID) of the
control under Object Identifier.

3.

Enter the value for the control under Value.4.

Select whether the control is server- or client-side under Control Type.5.

Check the box beside Critical if the control is critical.6.

Click the Check-in button.7.

Click OK.8.

At this point, you will need to invoke the LDAP operation (for example, Search) that will use the
control. In the dialog box for any operation, be sure that the "Extended" option is checked
before initiating the operation.

9.

4.3.2.2 Using VBScript

None of the ADSI automation interfaces directly expose LDAP controls. That means they cannot be
utilized from VBScript. On the other hand, many of the controls, such as paged searching or deleting
a subtree, are wrapped within their own ADSI methods that can be used within VBScript.

Any LDAP-based API, such as the Perl Net::LDAP modules, can be used to set controls as part of

LDAP operations.

4.3.3 Discussion

LDAP controls were defined in the LDAPv3 specification as a way to extend LDAP and its operations
without breaking the protocol. Many controls have been implemented, some of which are used when
searching the directory (e.g., paged searching, VLV, finding deleted objects, and attribute scoped
query), and some are needed to do certain modifications to the directory (e.g., cross-domain object
moves, tree delete, and permissive modify). Controls can be marked as critical, which means they
must be processed with the request, or an error is returned. If an unsupported control is not flagged
as critical, the server can continue to process the request and ignore the control.

The complete list of controls supported by Active Directory is included in Table 4-2.

Table 4-2. LDAP controls supported by Active Directory

Name OID Description

Paged Results 1.2.840.113556.1.4.319
Instructs the server to return search results in
"pages."

Cross Domain
Move

1.2.840.113556.1.4.521 Used to move objects between domains.

DIRSYNC 1.2.840.113556.1.4.841
Used to find objects that have changed over a period
of time.

Domain Scope 1.2.840.113556.1.4.1339
Informs the server to not generate any referrals in a
search response.

Extended DN 1.2.840.113556.1.4.529
Used to return an object's GUID and SID (for security
principals) as part of its distinguished name.

Lazy Commit 1.2.840.113556.1.4.619

Informs the server to return after directory
modifications have been written to memory, but
before they have been written to disk. This can speed
up processing of a lot of modifications.

Change
Notification

1.2.840.113556.1.4.528
Used by clients to register for notification of when
changes occur in the directory.

Permissive
Modify

1.2.840.113556.1.4.1413

Allows duplicate adds of the same value for an
attribute or deletion of an attribute that has no
values to succeed (normally, it would fail in that
situation).

SD Flags 1.2.840.113556.1.4.801
Used to pass flags to the server to control certain
security descriptor options.

Search Options 1.2.840.113556.1.4.1340
Used to pass flags to the server to control search
options.

Name OID Description

Show Deleted
Objects

1.2.840.113556.1.4.417
Used to inform the server to return any deleted
objects that matched the search criteria.

Server-side Sort
Request

1.2.840.113556.1.4.473
Used to inform the server to sort the results of a
search.

Server-side Sort
Response

1.2.840.113556.1.4.474 Returned by the server in response to a sort request.

Tree Delete 1.2.840.113556.1.4.805
Used to delete portions of the directory tree,
including any child objects.

Verify Name 1.2.840.113556.1.4.1338
Used to target a specific GC server that is used to
verify DN-valued attributes that are processed during
add or modification operations.

VLV Request 2.16.840.1.113730.3.4.9
Used to request a virtual list view of results from a
search. This control is new to Windows Server 2003.

VLV Response 2.16.840.1.113730.3.4.10
Response from server returning a virtual list view of
results from a search. This control is new to Windows
Server 2003.

Attribute Scoped
Query

1.2.840.113556.1.4.1504
Used to force a query to be based on a specific DN-
valued attribute. This control is new to Windows
Server 2003. See Recipe 4.8 for an example.

Search Stats 1.2.840.113556.1.4.970
Used to return statistics about an LDAP query. See
Recipe 15.9 for an example.

Incremental
Multivalue
Retrieval

1.2.840.113556.1.4.802
Retrieve a range of values for a multi-valued attribute
instead of all values at once. This control is new to
Windows Server 2003.

4.3.4 See Also

RFC 2251 (Lightweight Directory Access Protocol (v3)) for a description of LDAP controls, MSDN:
Extended Controls, and MSDN : Using Controls

[Team LiB]

Show Deleted
Objects

1.2.840.113556.1.4.417
Used to inform the server to return any deleted
objects that matched the search criteria.

Server-side Sort
Request

1.2.840.113556.1.4.473
Used to inform the server to sort the results of a
search.

Server-side Sort
Response

1.2.840.113556.1.4.474 Returned by the server in response to a sort request.

Tree Delete 1.2.840.113556.1.4.805
Used to delete portions of the directory tree,
including any child objects.

Verify Name 1.2.840.113556.1.4.1338
Used to target a specific GC server that is used to
verify DN-valued attributes that are processed during
add or modification operations.

VLV Request 2.16.840.1.113730.3.4.9
Used to request a virtual list view of results from a
search. This control is new to Windows Server 2003.

VLV Response 2.16.840.1.113730.3.4.10
Response from server returning a virtual list view of
results from a search. This control is new to Windows
Server 2003.

Attribute Scoped
Query

1.2.840.113556.1.4.1504
Used to force a query to be based on a specific DN-
valued attribute. This control is new to Windows
Server 2003. See Recipe 4.8 for an example.

Search Stats 1.2.840.113556.1.4.970
Used to return statistics about an LDAP query. See
Recipe 15.9 for an example.

Incremental
Multivalue
Retrieval

1.2.840.113556.1.4.802
Retrieve a range of values for a multi-valued attribute
instead of all values at once. This control is new to
Windows Server 2003.

4.3.4 See Also

RFC 2251 (Lightweight Directory Access Protocol (v3)) for a description of LDAP controls, MSDN:
Extended Controls, and MSDN : Using Controls

[Team LiB]

[Team LiB]

Recipe 4.4 Using a Fast or Concurrent Bind

4.4.1 Problem

You want to perform an LDAP bind using a concurrent bind, also known as a fast bind. Concurrent
binds are typically used in situations where you need to authenticate a lot of users, but those users
do not need to directly access the directory or the directory access is done with another account.

4.4.2 Solution

This works only on a Windows Server 2003 domain controller.

4.4.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a DC.3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Options Connection Options.6.

Under Option Name: select LDAP_OPT_FAST_CONCURRENT_BIND7.

Click the Set button8.

From the menu, select Connection Bind.9.

Enter credentials of a user.10.

Click OK.11.

4.4.3 Discussion

Concurrent binding, unlike simple binding, does not generate a security token or determine a user's
group memberships during the authentication process. It only determines if the authenticating user
has a valid enabled account and password, which makes it much faster than a typical bind.
Concurrent binding is implemented as a session option that is set after you establish a connection to
a domain controller, but before any bind attempts are made. After the option has been set, any bind
attempt made with the connection will be a concurrent bind.

There are a couple of caveats when using concurrent binds. First, you cannot enable signing or
encryption, which means that all data for concurrent binds will be unencrypted over the network.
Secondly, because the user's security token is not generated, access to the directory is done
anonymously and access restrictions are based on the ANONYMOUS LOGON principal.

It is worth mentioning that there is another type of bind that is also known as a "fast bind," which has
been available since Windows 2000, but it is completely different from the procedure I just described.
This fast bind is implemented within ADSI, and simply means that when you fast bind to an object,
the objectClass attribute for the object is not retrieved; therefore, the object-specific IADs class

interfaces are not available. For example, if you bound to a user object using an ADSI fast bind, then
only the basic IADs interfaces would be available, not the IADsUser interfaces. This is the complete
list of interfaces that are available for objects retrieved with fast binds: IADs, IADsContainer,
IDirectoryObject, IDirectorySearch, IADsPropertyList, IADsObjectOptions,
ISupportErrorInfo, and IADsDeleteOps.

You must use IADsOpenDSObject::OpenDSObject interface to enable fast binds. If you call
IADsContainer::GetObject on a child object of a parent you used a fast bind with, the same fast

bind behavior applies. Unlike concurrent binds, ADSI fast binds do not impose any restrictions on the
authenticating user. It means that the object-specific IADs interfaces will not be available. Also, no
check is done to verify the object exists when you call OpenDSObject.

ADSI fast binds are useful when you need to make a lot of updates to objects you know exist
(perhaps from an ADO query that returned a list of DNs) and you do not need any IADs-specific
interfaces. Instead of two trips over the network per object binding, there would only be one. Here is
example code that shows how to do an ADSI fast bind:

const ADS_FAST_BIND = 32
set objLDAP = GetObject("LDAP:")

set objUser = objLDAP.OpenDSObject("LDAP://<ObjectDN>", _

 "<UserUPN>", _

 "<UserPassword>", _
 ADS_FAST_BIND)

4.4.4 See Also

MSDN: Using Concurrent Binding and MSDN: ADS_AUTHENTICATION_ENUM

[Team LiB]

[Team LiB]

Recipe 4.5 Searching for Objects in a Domain

4.5.1 Problem

You want to find objects that match certain criteria in a domain.

4.5.2 Solution

4.5.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a user.7.

Click OK.8.

From the menu, select Browse Search.9.

For BaseDN, type the base distinguished name where the search will start.10.

For Scope, select the appropriate scope.11.

For Filter, enter an LDAP filter.12.

Click Run.13.

4.5.2.2 Using a command-line interface

> dsquery * <BaseDN> -scope <Scope> -filter "<Filter>" -attr "<AttrList>"

4.5.2.3 Using VBScript

' This code searches for objects based on the specified criteria.
' ------ SCRIPT CONFIGURATION ------

strBase = "<LDAP://<BaseDN>>;" ' BaseDN should be the search base

strFilter = "<Filter>;" ' Valid LDAP search filter

strAttrs = "<AttrList>;" ' Comma-seperated list

strScope = "<Scope>" ' Should be on of Subtree, Onelevel, or Base
' ------ END CONFIGURATION ---------

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
objRS.MoveFirst
While Not objRS.EOF
 Wscript.Echo objRS.Fields(0).Value
 objRS.MoveNext
Wend

4.5.3 Discussion

Most tools that can be used to search Active Directory require a basic understanding of how to
perform LDAP searches using a base DN, search scope, and search filter as described in RFC 2251
and 2254. The base DN is where the search begins in the directory tree. The search scope defines
how far down in the tree to search from the base DN. The search filter is a prefix notation string that
contains equality comparisons of attribute and value pairs.

The scope can be base, onelevel (or one), or subtree (or sub). A base scope will only match the base
DN, onelevel will only match objects that are contained directly under the base DN, and subtree will
match everything below the base DN (not including the base DN).

The search filter syntax is a powerful way to represent simple and complex queries. An example filter
that matches all user objects would be (&(objectclass=user)(objectcategory=Person)). For

more information on filters, see RFC 2254.

4.5.3.1 Using a graphical user interface

To customize the list of attributes returned for each matching object, look at the GUI discussion in
Recipe 4.2.

4.5.3.2 Using a command-line interface

<AttrList> should be a space-separated list of attributes to return. If left blank, all attributes that

have a value will be returned.

4.5.3.3 Using VBScript

The VBScript solution used ADO to perform the search. When using ADO, you must first create a
connection object with the following three lines:

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"

At this point you can pass parameters to the Execute method, which will return a ResultSet object.
You can iterate over the ResultSet by using the MoveFirst and MoveNext methods.

See Recipe 4.7 for more information on specifying advanced options in ADO like the page size.

4.5.4 See Also

Recipe 4.2 for viewing attributes of objects, Recipe 4.7 for setting advanced ADO options, RFC 2251
(Lightweight Directory Access Protocol (v3)), RFC 2254 (Lightweight Directory Access Protocol (v3)),
MSDN: Searching with ActiveX Data Objects (ADO), and for a good white paper on performing
queries with LDAP see:
http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/ldap.asp

[Team LiB]

http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/ldap.asp

[Team LiB]

Recipe 4.6 Searching the Global Catalog

4.6.1 Problem

You want to perform a forest-wide search using the global catalog.

4.6.2 Solution

4.6.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a global catalog server.3.

For Port, enter 3268.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a user.7.

Click OK.8.

From the menu, select Browse Search.9.

For BaseDN, type the base distinguished name where to start the search.10.

For Scope, select the appropriate scope.11.

For Filter, enter an LDAP filter.12.

Click Run.13.

4.6.2.2 Using a command-line interface

> dsquery * <BaseDN> -gc -scope <Scope> -filter "<Filter>" -attr "<AttrList>"

4.6.2.3 Using VBScript

' This code searches the global catalog
' ------ SCRIPT CONFIGURATION ------

strBase = "<GC://<BaseDN>>;"

strFilter = "<Filter>;"

strAttrs = "<AttrList>;"

strScope = "<Scope>"
' ------ END CONFIGURATION ---------

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
objRS.MoveFirst
while Not objRS.EOF
 Wscript.Echo objRS.Fields(0).Value
 objRS.MoveNext
wend

4.6.3 Discussion

The global catalog facilitates forest-wide searches. When you perform a normal LDAP search over
port 389, you are searching against a particular partition in Active Directory, whether that is the
Domain naming context, Configuration naming context, Schema naming context, or application
partition. If you have multiple domains in your forest, this type of search will not search against all
domains.

The global catalog contains all a subset of the attributes for all objects in the forest (excluding objects
in application partitions). Think of it as a subset of all the naming contexts combined. All objects will
be contained in the global catalog, except for objects in application partitions, but only some of the
attributes will be available. For that reason, if you perform a global catalog search and do not get
values for attributes you were expecting to, make sure those attributes are included in the global
catalog, also known as the partial attribute set (PAS). See Recipe 10.14 for more information.

4.6.3.1 Using a graphical user interface

The only difference between this solution and Recipe 4.5 is that the "Port" has changed to 3268,
which is the standard GC port.

4.6.3.2 Using a command-line interface

The only difference between this solution and Recipe 4.5 is the addition of the -gc flag.

4.6.3.3 Using VBScript

The only difference between this solution and Recipe 4.5 is that strBase variable changed to use the

GC: progID:

strBase = "<GC://<BaseDN>>;"

4.6.4 See Also

Recipe 4.5 for searching for objects, and MSDN: Searching with ActiveX Data Objects (ADO)

[Team LiB]

[Team LiB]

Recipe 4.7 Searching for a Large Number of Objects

4.7.1 Problem

Your search is returning only 1,000 objects and you want it to return all matching objects.

4.7.2 Solution

You might notice that searches with large numbers of matches stop displaying after 1000. Domain
controllers return only a maximum of 1,000 entries from a search unless paging is enabled. This is
done to prevent queries from consuming a lot of resources on domain controllers by retrieving the
results all at once instead of in "pages" or batches. The following examples are variations of Recipe
4.5, which will show how to enable paging and return all matching entries.

4.7.2.1 Using a graphical user interface

Perform the same steps as in Recipe 4.5, but before clicking OK to start the search, click the
Options button.

1.

For Timeout (s), enter a value such as 10.2.

For Page size, enter the number of objects to be returned with each page-e.g., 1,000.3.

Under Search Call Type, select Paged.4.

Click OK.5.

A page of results (i.e., 1,000 entries) will be displayed each time you click on Run until all results
have been returned.

6.

4.7.2.2 Using a command-line interface

> dsquery * <BaseDN> -limit 0 -scope <Scope> -filter "<Filter>" -attr "<AttrList>"

4.7.2.3 Using VBScript

' This code enables paged searching
' ------ SCRIPT CONFIGURATION ------

strBase = "<LDAP://<BaseDN>>;"

strFilter = "<Filter>;"

strAttrs = "<AttrList>;"

strScope = "<Scope>"
' ------ END CONFIGURATION ---------

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objComm = CreateObject("ADODB.Command")
objComm.ActiveConnection = objConn
objComm.Properties("Page Size") = 1000
objComm.CommandText = strBase & strFilter & strAttrs & strScope
set objRS = objComm.Execute
objRS.MoveFirst
while Not objRS.EOF
 Wscript.Echo objRS.Fields(0).Value
 objRS.MoveNext
wend

4.7.3 Discussion

Paged searching support is implemented via an LDAP control. LDAP controls were defined in RFC 2251
and the Paged control in RFC 2696. Controls are extensions to LDAP that were not built into the
protocol, so not all directory vendors support the same ones.

In Active Directory, you can change the default maximum page size of 1,000 by
modifying the LDAP query policy. See Recipe 4.23 for more information.

If you need searches to return hundreds of thousands of entries, Active Directory will return a
maximum of only 262,144 entries even when paged searching is enabled. This value is defined in the
LDAP query policy and can be modified like the maximum page size (see Recipe 4.23).

4.7.3.1 Using a graphical user interface

A word of caution when using LDP to display a large number of entries-by default, only 2,048 lines
will be displayed in the right pane. To change that value, go to Options General and change the
Line Value under Buffer Size to a larger number.

4.7.3.2 Using a command-line interface

The only difference between this solution and Recipe 4.5 is the addition of the -limit 0 flag. With -
limit set to 0, paging will be enabled and all matching objects will be returned. If -limit is not

specified, a maximum of 100 entries.

4.7.3.3 Using VBScript

To enable paged searching in ADO, you must instantiate an ADO Command object. A Command object

allows for various properties of a query to be set, including size limit, time limit, and page size, to
name a few. See MSDN for the complete list.

4.7.4 See Also

Recipe 4.5 for searching for objects, Recipe 4.23 for viewing the default LDAP policy, RFC 2251
(Lightweight Directory Access Protocol (v3)), RFC 2696 (LDAP Control Extension for Simple Paged
Results Manipulation), and MSDN: Searching with ActiveX Data Objects (ADO)

[Team LiB]

[Team LiB]

Recipe 4.8 Searching with an Attribute-Scoped Query

This recipe requires the Windows Server 2003 forest functional level.

4.8.1 Problem

You want to retrieve attributes of objects that have been set in a multivalued-linked attribute, such
as the member attribute on group objects. An attribute-scoped query can do this in a single query,

instead of the previous method, which required multiple.

4.8.2 Solution

4.8.2.1 Using a graphical user interface

Follow the steps in Recipe 4.3 to enable an LDAP control.1.

Select the Attribute Scoped Query control (you can select controls by name with the Windows
Server 2003 version of LDP). For the Windows 2000 version of LDP, add a control with an OID of
1.2.840.113556.1.4.1504.

2.

For Value, enter the multivalued attribute name (e.g., member).3.

Click the Check in button.4.

Click OK.5.

From the menu, select Browse Search.6.

For BaseDN, type the DN of the object that contains the multivalued DNs.7.

For Scope, select Base.8.

For Filter, enter an LDAP filter to match against the objects that are part of the multivalued DN
attribute.

9.

Click Run.10.

4.8.2.2 Using a command-line interface

At the time of publication of this book, no CLI tools supported attribute-scoped queries.

4.8.2.3 Using VBScript

At the time of publication of this book, you cannot use attribute-scoped queries with ADSI, ADO, and
VBScript. In an ADO search, you can use the ADSI Flags property as part of a Connection object to

set the search preference, but there is no way to set the attribute that should be matched, which
must be included as part of the LDAP control.

4.8.3 Discussion

When dealing with group objects, you may have encountered the problem where you wanted to

search against the members of a group to find a subset or to retrieve certain attributes about each
member. This normally involved performing a query to retrieve all of the members, and additional
queries to retrieve whatever attributes you needed for each member. This was less than ideal, so an
alternative was developed for Windows Server 2003.

With an attribute-scoped query, you can perform a single query against the group object and return

whatever properties you need from the member's object, or return only a subset of the members
based on certain criteria. Let's look at the LDAP search parameters for an attribute-scoped query:

Attribute Scoped Query Control Value

The value to set for this control should be the multivalued DN attribute that you want to iterate
over (e.g., member).

Base DN

This should be the DN of the object that contains the multivalued DN attribute (e.g.,
cn=DomainAdmins,cn=users,dc=rallencorp,dc=com).

Scope

This should be set to Base.

Filter

The filter will match against objects defined in the Control Value. For example, a filter of
(&(objectclass=user)(objectcategory=Person)) would match any user objects defined in

the multivalued DN. You can also use any other attributes that are available with those objects.
The following filter would match all user objects that have a department attribute equal to
"Sales": (&(objectclass=user)(objectcategory=Person)(department=Sales))

Attributes

This should contain the list of attributes to return for object matched in the multivalued DN.

4.8.4 See Also

MSDN: Performing an Attribute Scoped Query and MSDN: Searching with ActiveX Data Objects
(ADO)

[Team LiB]

[Team LiB]

Recipe 4.9 Searching with a Bitwise Filter

4.9.1 Problem

You want to search against an attribute that contains a bit flag and you need to use a bitwise filter.

4.9.2 Solution

4.9.2.1 Using a graphical user interface

Follow the directions in Recipe 4.5 for searching for objects.1.

For the Filter, enter the bitwise expression, such as the following, which will find all universal groups:2.

(&(objectclass=group)(objectCategory=group)(groupType:1.2.840.113556.1.4.804:=8))

Click Run.3.

4.9.2.2 Using a command-line interface

The following query finds universal groups using a bitwise OR filter:

> dsquery * cn=users,dc=rallencorp,dc=com -scope subtree -attr "name" -filter [RETURN]
"(&(objectclass=group)(objectCategory=group)(groupType:1.2.840.113556.1.4.804:=8))"

The following query finds disabled user accounts using a bitwise AND filter:

> dsquery * cn=users,dc=rallencorp,dc=com -attr name -scope subtree -filter [RETURN]
"(&(objectclass=user)(objectcategory=person)(useraccountcontrol:1.2.840.113556.1.4.[RETURN]
803:=514))"

4.9.2.3 Using VBScript

' The following query finds all disabled user accounts
strBase = "<LDAP://cn=users,dc=rallencorp,dc=com>;"
strFilter = "(&(objectclass=user)(objectcategory=person)" & _
 "(useraccountcontrol:1.2.840.113556.1.4.803:=514));"
strAttrs = "name;"
strScope = "subtree"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"

set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
objRS.MoveFirst
while Not objRS.EOF
 Wscript.Echo objRS.Fields(0).Value
 objRS.MoveNext
wend

4.9.3 Discussion

Many attributes in Active Directory are composed of bit flags. A bit flag is often used to encode properties
about an object into a single attribute. For example, the groupType attribute on group objects is a bit flag that

is used to determine the group scope and type.

The userAccountControl attribute on user and computer objects is used to describe a whole series of

properties, including account status (i.e., enabled or disabled), account lockout, password not required,
smartcard authentication required, etc.

The searchFlags and systemFlags attributes on attributeSchema objects define, among other things,

whether an attribute is constructed, indexed, and included as part of Ambiguous Name Resolution (ANR).

To search against these types of attributes, you need to use bitwise search filters. There are two types of
bitwise search filters you can use, one that represents a logical OR and one that represents logical AND. This is
implemented within a search filter as a matching rule . A matching rule is simply a way to inform the LDAP
server (in this case, a domain controller) to treat part of the filter differently. Here is an example of what a
matching rule looks like:

(userAccountControl:1.2.840.113556.1.4.803:=514)

The format is (attributename :MatchingRuleOID :=value). As I mentioned, there are two bitwise matching

rules, which are defined by OIDs. The logical AND matching rule OID is 1.2.840.113556.1.4.803 and the logical
OR matching rule OID is 1.2.840.113556.1.4.804. These OIDs instruct the server to perform special processing
on the filter. A logical OR filter will return success if any bit specified by value , is stored in attributename .

Alternatively, the logical AND filter will return success if all bits specified by value , match the value of

attributename . Perhaps an example will help clarify this.

To create a normal user account, you have to set userAccountControl to 514. The number 514 was calculated

by adding the normal user account flag of 512 together with the disabled account flag of 2 (512 + 2 = 514). If
you use the following logical OR matching rule against the 514 value, as shown here:

(useraccountcontrol:1.2.840.113556.1.4.804:=514)

then all normal user accounts (flag 512) OR disabled accounts (flag 2) would be returned. This would include
enabled user accounts (from flag 512), disabled computer accounts (from flag 2), and disabled user accounts
(from flag 2). In the case of userAccountControl , flag 2 can apply to both user and computer accounts and,

hence, why both would be included in the returned entries.

One way to see the benefits of bitwise matching rules is that they allow you to combine a bunch of comparisons
into a single filter. In fact, it may help to think that the previous OR filter I just showed could also be written
using two expressions:

(|(useraccountcontrol:1.2.840.113556.1.4.804:=2) (useraccountcontrol:1.2.840.113556.
1.4.804:=512))

Just as before, this will match userAccountControl attributes that contain either the 2 or 512 flags.

For logical AND, similar principles apply. Instead of any of the bits in the flag being a possible match, ALL of the
bits in the flag must match for it to return a success. If we changed our userAccountControl example to use

logical AND, it would look like this:

(useraccountcontrol:1.2.840.113556.1.4.803:=514)

In this case, only normal user accounts that are also disabled would be returned. The same filter could be
rewritten using the & operator instead of | as in the following:

(&(useraccountcontrol:1.2.840.113556.1.4.803:=2)
 (useraccountcontrol:1.2.840.113556.1.4.803:=512))

An important subtlety to note is that when you are comparing only a single bit-flag value, the logical OR and
logical AND matching rule would return the same result. So if we wanted to find any normal user accounts we
could search on the single bit flag of 512 using either of the following:

(useraccountcontrol:1.2.840.113556.1.4.803:=512)

(useraccountcontrol:1.2.840.113556.1.4.804:=512)

4.9.4 See Also

MSDN: Enumerating Groups by Scope or Type in a Domain, MSDN: Determining Which Properties Are Non-
Replicated, Constructed, Global Catalog, and Indexed, and MS KB 305144 (How to Use the UserAccountControl
Flags to Manipulate User Account Properties)

[Team LiB]

[Team LiB]

Recipe 4.10 Creating an Object

4.10.1 Problem

You want to create an object.

4.10.2 Solution

In each solution below, an example of adding a user object is shown. Modify the examples as needed
to include whatever class and attributes you need to create.

4.10.2.1 Using a graphical user interface

Open ADSI Edit.1.

If an entry for the naming context you want to browse is not already displayed, do the
following:

Right-click on ADSI Edit in the right pane and click Connect to . . .a.

Fill in the information for the naming context, container, or OU you want to add an object
to. Click on the Advanced button if you need to enter alternate credentials.

b.

2.

In the left pane, browse to the container or OU you want to add the object to. Once you've
found the parent container, right-click on it and select New Object.

3.

Under Select a Class, select user.4.

For the cn, enter jsmith and click Next.5.

For sAMAccountName, enter jsmith and click Next.6.

Click the More Attributes button to enter additional attributes.7.

Click Finish.8.

4.10.2.2 Using a command-line interface

Create an LDIF file called create_object.ldf with the following contents:

dn: cn=jsmith,cn=users,dc=rallencorp,dc=com
changetype: add
objectClass: user
samaccountname: jsmith

then run the following command:

> ldifde -v -i -f create_object.ldf

It is also worth noting that you can add a limited number of object types with the dsadd command.
Run dsadd /? from a command line for more details.

4.10.2.3 Using VBScript

set objUsersCont = GetObject(LDAP://cn=users,dc=rallencorp,dc=com")
set objUser = objUsersCont.Create("user", "CN=jsmith")
objUser.Put "sAMAccountName", "jsmith" ' mandatory attribute
objUser.SetInfo

4.10.3 Discussion

To create an object in Active Directory, you have to specify the objectClass, relative distinguished

name (RDN) value, and any other mandatory attributes that are not automatically set by Active
Directory. Some of the automatically generated attributes include objectGUID, instanceType, and
objectCategory.

In the jsmith example, the objectclass was user, the RDN value was jsmith, and the only other
mandatory attribute that had to be set was sAMAccountName. Admittedly, this user object is unusable

in its current state because it will be disabled by default and no password was set, but it should give
you an idea of how to create an object.

4.10.3.1 Using a graphical user interface

Other tools, such as AD Users and Computers, could be used to do the same thing, but ADSI Edit is
useful as a generic object editor.

One attribute that you will not be able to set via ADSI Edit is the password (unicodePwd attribute). It

is stored in binary form and cannot be edited directly. If you want to set the password for a user
through a GUI, you can do it with the AD Users and Computers snap-in.

4.10.3.2 Using a command-line interface

For more on ldifde, see Recipe 4.25.

With dsadd, you can set numerous attributes when creating an object. The downside is that as of the

publication of this book, you can create only these object types: computer, contact, group, ou, quota,
and user.

4.10.3.3 Using VBScript

The first step to create an object is to call GetObject on the parent container. Then call the Create
method on that object and specify the objectClass and RDN for the new object. The
sAMAccountName attribute is then set by using the Put method. Finally, SetInfo commits the
change. If SetInfo is not called, the creation will not get committed to the domain controller.

4.10.4 See Also

Recipe 4.25 for importing objects using LDIF, MSDN: IADsContainer::GetObject, MSDN:
IADsContainer::Create, MSDN: IADs::Put, and MSDN: IADs::SetInfo

[Team LiB]

[Team LiB]

Recipe 4.11 Modifying an Object

4.11.1 Problem

You want to modify one or more attribute s of an object.

4.11.2 Solution

The following examples set the last name (sn) attribute for the jsmith user object.

4.11.2.1 Using a graphical user interface

Open ADSI Edit.1.

If an entry for the naming context you want to browse is not already displayed, do the
following:

2.

Right-click on ADSI Edit in the right pane and click Connect to . . .3.

Fill in the information for the naming context, container, or OU you want to add an object to.
Click on the Advanced button if you need to enter alternate credentials.

4.

In the left pane, browse to the container or OU that contains the object you want to modify.
Once you've found the object, right-click on it and select Properties.

5.

Edit the sn attribute.6.

Enter Smith and click OK.7.

Click Apply.8.

4.11.2.2 Using a command-line interface

Create an LDIF file called modify_object.ldf with the following contents:

dn: cn=jsmith,cn=users,dc=rallencorp,dc=com
changetype: modify
add: givenName
givenName: Jim
-

then run the following command:

> ldifde -v -i -f modify_object.ldf

You can modify a limited number of object types with the dsmod command. Run dsmod /? from a

command line for more details.

4.11.2.3 Using VBScript

strObjectDN = "cn=jsmith,cn=users,dc=rallencorp,dc=com"
set objUser = GetObject("LDAP://" & strObjectDN)
objUser.Put "sn", "Smith"
objUser.SetInfo

4.11.3 Discussion

4.11.3.1 Using a graphical user interface

If the parent container of the object you want to modify has a lot of objects in it, you may want to
add a new connection entry for the DN of the target object. This will be easier than trying to hunt
through a container full of objects. You can do this by right-clicking ADSI Edit and selecting Connect
to. Under Connection Point, select Distinguished Name and enter the DN of the object.

4.11.3.2 Using a command-line interface

For more on ldifde, see Recipe 4.25.

As of the publication of this book, the only types of objects you can modify with dsmod are computer,

contact, group, ou, server, quota and user.

4.11.3.3 Using VBScript

If you need to do anything more than simple assignment or replacement of a value for an attribute,
you'll need to use the PutEx method instead of Put. PutEx allows for greater control of assigning

multiple values, deleting specific values, and appending values.

PutEx requires three parameters: update flag, attribute name, and an array of values to set or unset.
The update flags are defined by the ADS_PROPERTY_OPERATION_ENUM collection and listed in Table 4-
3. Finally, SetInfo commits the change. If SetInfo is not called, the creation will not get committed

to the domain controller.

Table 4-3. ADS_PROPERTY_OPERATION_ENUM

Name Value Description

ADS_PROPERTY_CLEAR 1 Remove all value(s) of the attribute.

ADS_PROPERTY_UPDATE 2
Replace the current values of the attribute with the ones passed
in. This will clear any previously set values.

ADS_PROPERTY_APPEND 3
Add the values passed into the set of existing values of the
attribute.

ADS_PROPERTY_DELETE 4 Delete the values passed in.

In the following example, each update flag is used while setting the otherTelephoneNumber

attribute:

strObjectDN = "cn=jsmith,cn=users,dc=rallencorp,dc=com"

const ADS_PROPERTY_CLEAR = 1
const ADS_PROPERTY_UPDATE = 2
const ADS_PROPERTY_APPEND = 3
const ADS_PROPERTY_DELETE = 4

set objUser = GetObject("LDAP://" & strObjectDN)

' Add/Append two values
objUser.PutEx ADS_PROPERTY_APPEND, "otherTelephoneNumber", _
 Array("555-1212", "555-1213")
objUser.SetInfo
' Now otherTelephoneNumber = 555-1212, 555-1213

' Delete one of the values
objUser.PutEx ADS_PROPERTY_DELETE, "otherTelephoneNumber", Array("555-1213")
objUser.SetInfo
' Now otherTelephoneNumber = 555-1212

' Change values
objUser.PutEx ADS_PROPERTY_UPDATE, "otherTelephoneNumber", Array("555-1214")
objUser.SetInfo
' Now otherTelephoneNumber = 555-1214

' Clear all values
objUser.PutEx ADS_PROPERTY_CLEAR, "otherTelephoneNumber", vbNullString
objUser.SetInfo
' Now otherTelephoneNumber = <empty>

4.11.4 See Also

MSDN: IADs::Put, MSDN: IADs::PutEx, MSDN: IADs::SetInfo, and MSDN:
ADS_PROPERTY_OPERATION_ENUM

[Team LiB]

[Team LiB]

Recipe 4.12 Modifying a Bit-Flag Attribute

4.12.1 Problem

You want to modify an attribute that contains a bit flag.

4.12.2 Solution

4.12.2.1 Using VBScript

' This code safely modifies a bit-flag attribute
' ------ SCRIPT CONFIGURATION ------

strObject = "<ObjectDN>" ' e.g. cn=jsmith,cn=users,dc=rallencorp,dc=com

strAttr = "<AttrName>" ' e.g. rallencorp-UserProperties

boolEnableBit = <TRUEorFALSE> ' e.g. FALSE

intBit = <BitValue> ' e.g. 16
' ------ END CONFIGURATION ---------

set objObject = GetObject("LDAP://" & strObject)
intBitsOrig = objObject.Get(strAttr)
intBitsCalc = CalcBit(intBitsOrig, intBit, boolEnableBit)

if intBitsOrig <> intBitsCalc then
 objObject.Put strAttr, intBitsCalc
 objObject.SetInfo
 WScript.Echo "Changed " & strAttr & " from " & intBitsOrig & " to " & intBitsCalc
else
 WScript.Echo "Did not need to change " & strAttr & " (" & intBitsOrig & ")"
end if

Function CalcBit(intValue, intBit, boolEnable)

 CalcBit = intValue

 if boolEnable = TRUE then
 CalcBit = intValue Or intBit
 else
 if intValue And intBit then
 CalcBit = intValue Xor intBit
 end if

 end if

End Function

4.12.3 Discussion

In Recipe 4.9, I described how to search against attributes that contain a bit flag, which are used to
encode various settings about an object in a single attribute. As a quick recap, you need to use a
logical OR operation to match any bits being searched against, and logical AND to match a specific
set of bits. If you want to set an attribute that is a bit flag, you need to take special precautions to
ensure you don't overwrite an existing bit. Let's consider an example. RAllenCorp wants to secretly
store some non-politically correct information about its users, including things like whether the user is
really old or has big feet. They don't want to create attributes such as rallencorp-UserHasBigFeet

so they decide to encode the properties in a single bit flag attribute. They decide to call the attribute
rallencorp-UserProperties with the following possible bit values:

1

User is overweight
2

User is very tall
4

User has big feet
8

User is very old

After they extend the schema to include the new attribute, they need to initially populate the attribute
for all their users. To do so they can simply logically OR the values together that apply to each user.
So if settings 4 and 8 apply to the jsmith user, his rallencorp-UserProperties would be set to 12 (4

OR 8). No big deal so far. The issue comes in when they need to modify the attribute in the future.

They later find out that the jsmith user was a former basketball player and is 6'8". They need to set
the 2 bit (for being tall) in his rallencorp-UserProperties attribute. To set the 2 bit they need to

first determine if it has already been set. If it has already been set, then there is nothing to do. If the
2 bit hasn't been set, they need to logical OR 2 with the existing value of jsmith's rallencorp-
UserProperties attribute. If they simply set the attribute to 2, it would overwrite the 4 and 8 bits
that had been set previously. In the VBScript solution, they could use the CalcBit function to

determine the new value:

intBitsCalc = CalcBit(intBitsOrig, 2, TRUE)

The result would be 14 (12 OR 2).

The same logic applies if they want to remove a bit, except the XOR logical operator is used.

Active Directory contains numerous bit-flag attributes, most notably options
(which is used on several different object classes) and userAccountControl
(which is used on user objects). I do not recommended blindly setting those

attributes unless you know what you are doing. It is preferable to use a script
from this recipe so that it calculates the new value based on the existing value.

4.12.4 See Also

Recipe 4.9 for searching with a bit-wise filter

[Team LiB]

[Team LiB]

Recipe 4.13 Dynamically Linking an Auxiliary Class

This recipe requires the Windows Server 2003 forest functional level.

4.13.1 Problem

You want to dynamically link an auxiliary class to an existing object instance.

4.13.2 Solution

In each solution below, an example of adding the custom rallencorp-SalesUser auxiliary class to
the jsmith user object will be described.

4.13.2.1 Using a graphical user interface

Follow the directions for Recipe 4.11.1.

Edit the values for the objectClass attribute.2.

For "Value to add," enter rallencorp-SalesUser.3.

Click Add.4.

Click OK twice.5.

4.13.2.2 Using a command-line interface

Create an LDIF file called dynamically_link_class.ldf with the following contents:

dn: cn=jsmith,cn=users,dc=rallencorp,dc=com
changetype: modify
add: objectClass
objectClass: rallencorp-SalesUser
-

then run the following command:

> ldifde -v -i -f dynamically_link_class.ldf

4.13.2.3 Using VBScript

const ADS_PROPERTY_APPEND = 3
set objUser = GetObject("LDAP://cn=jsmith,cn=users,dc=rallencorp,dc=com")
objUser.PutEx ADS_PROPERTY_APPEND,"objectClass",Array("rallencorp-SalesUser")
objUser.SetInfo

4.13.3 Discussion

Dynamically linking an auxiliary class to an object is an easy way to use new attributes without
modifying the object class definition in the schema directly. In Windows 2000, auxiliary classes could
only be statically linked in the schema. With Windows Server 2003, you can dynamically link them by
appending the auxiliary class name to the objectClass attribute of an object.

A situation in which it makes more sense to dynamically link auxiliary classes rather than link them
statically is when several organizations or divisions within a company maintain their own user objects
and want to add new attributes to the user class. Under Windows 2000, each organization would
need to create their new attributes and auxiliary class in the schema, and then modify the user class
to include the new auxiliary class. If you have 10 organizations that want to do the same thing, user

objects in the forest could end up with a lot of attributes that would go unused. In Windows Server
2003, each division can instead create the new attributes and auxiliary class, and then dynamically
link the auxiliary class with the specific objects that they want to have the new attributes. This
eliminates the step of modifying the user class in the schema to contain the new auxiliary classes.

It is also worth mentioning that extensive use of dynamically linked auxiliary classes can lead to
problems. If several groups are using different auxiliary classes, it might become hard to determine
what attributes you can expect on your user objects. Essentially, you could end up with many

variations of a user class that each group has implemented through the use of dynamic auxiliary
classes. For this reason, use of dynamic auxiliary classes should be closely monitored.

4.13.4 See Also

Recipe 4.11 for modifying an object

[Team LiB]

[Team LiB]

Recipe 4.14 Creating a Dynamic Object

This recipe requires the Windows Server 2003 forest functional level.

4.14.1 Problem

You want to create an object that is automatically deleted after a period of time unless it is refreshed.

4.14.2 Solution

4.14.2.1 Using a graphical user interface

At the time of publication of this book, neither ADSI Edit nor LDP supported creating dynamic objects.

4.14.2.2 Using a command-line interface

Create an LDIF file called create_dynamic_object.ldf with the following contents:

dn: cn=jsmith,cn=users,dc=rallencorp,dc=com
changetype: add
objectClass: user
objectClass: dynamicObject
entryTTL: 1800
sAMAccountName: jsmith

then run the following command:

> ldifde -v -i -f create_dynamic_object.ldf

4.14.2.3 Using VBScript

' This code creates a dynamic user object with a TTL of 30 minutes (1800 secs)
set objUsersCont = GetObject("LDAP://cn=users,dc=rallencorp,dc=com")
set objUser = objUsersCont.Create("user", "CN=jsmith")
objUser.Put "objectClass", "dynamicObject"
objUser.Put "entryTTL", 1800
objUser.Put "sAMAccountName", "jsmith" ' mandatory attribute
objUser.SetInfo

4.14.3 Discussion

The ability to create dynamic objects is a new feature in Windows Server 2003. To create a dynamic
object, you simply need to specify the objectClass to have a value of dynamicObject in addition to
its structural objectClass (e.g., user) value when instantiating the object. The entryTTL attribute
can also be set to the number of seconds before the object is automatically deleted. If entryTTL is
not set, the object will use the dynamicObjectDefaultTTL attribute specified in the domain. The
entryTTL cannot be lower than the dynamicObjectMinTTL for the domain. See Recipe 4.16 for more

information on how to view and modify these default values.

Dynamic objects have a few special properties worth noting:

A static object cannot be turned into a dynamic object. The object must be marked as dynamic
when it is created.

Dynamic objects cannot be created in the Configuration NC and Schema NC.

Dynamic objects do not leave behind tombstone objects.

Dynamic objects that are containers cannot have static child objects.

4.14.4 See Also

Recipe 4.15 for refreshing a dynamic object, and Recipe 4.16 for modifying the default dynamic
object properties

[Team LiB]

[Team LiB]

Recipe 4.15 Refreshing a Dynamic Object

This recipe requires the Windows Server 2003 forest functional level.

4.15.1 Problem

You want to refresh a dynamic object to keep it from expiring and getting deleted from Active
Directory.

4.15.2 Solution

In each solution below, an example of adding a user object is used. Modify the examples as needed

to refresh whatever object is needed.

4.15.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller (or leave it blank to do a serverless bind).3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a user that can modify the object.7.

Click OK.8.

Select Browse Modify.9.

For Dn, enter the DN of the dynamic object you want to refresh.10.

For Attribute, enter entryTTL.11.

For Values, enter the new time to live (TTL) for the object in seconds.12.

13.

14.

11.

12.

Under Operation, select Replace.13.

Click Enter.14.

Click Run.15.

4.15.2.2 Using a command-line interface

Create an LDIF file called refresh_dynamic_object.ldf with the following contents:

dn: cn=jsmith,cn=users,dc=rallencorp,dc=com
changetype: modify
replace: entryTTL
entryTTL: 1800
-

then run the following command:

> ldifde -v -i -f refresh_dynamic_object.ldf

4.15.2.3 Using VBScript

set objUser = GetObject("LDAP://cn=jsmith,cn=users,dc=rallencorp,dc=com")
objUser.Put "entryTTL", "1800"
objUser.SetInfo

4.15.3 Discussion

Dynamic objects expire after their TTL becomes 0. You can determine when a dynamic object will
expire by looking at the current value of an object's entryTTL, which contains the seconds remaining

until expiration. If you've created a dynamic object and need to refresh it so that it will not get
deleted, you must reset the entryTTL attribute to a new value. There is no limit to the number of
times you can refresh a dynamic object. As long as the entryTTL value does not reach 0, the object

will remain in Active Directory.

4.15.4 See Also

Recipe 4.11 for modifying an object, and Recipe 4.14 for creating a dynamic object

[Team LiB]

[Team LiB]

Recipe 4.16 Modifying the Default TTL Settings for Dynamic
Objects

This recipe requires the Windows Server 2003 forest functional level.

4.16.1 Problem

You want to modify the minimum and default TTLs for dynamic objects.

4.16.2 Solution

In each solution below, I'll show how to set the DynamicObjectDefaultTTL setting to 172800. Modifying the
DynamicObjectMinTTL can be done in the same manner.

4.16.2.1 Using a graphical user interface

Open ADSI Edit.1.

If an entry for the Configuration naming context is not already displayed, do the following:

Right-click on ADSI Edit in the right pane and click Connect to . . .a.

Fill in the information for the naming context for your forest. Click on the Advanced button if you
need to enter alternate credentials.

b.

2.

In the left pane, browse to the following path under the Configuration naming context: Services
Windows NT Directory Service.

3.

Right-click cn=Directory Service and select Properties.4.

Edit the msDS-Other-Settings attribute.5.

Click on DynamicObjectDefaultTTL=< xxxxx> and click Remove.6.

The attribute/value pair should have been populated in the "Value to add" field.7.

Edit the number part of the value to be 172800.8.

Click Add.9.

10.

8.

9.

Click OK twice.10.

4.16.2.2 Using a command-line interface

The following ntdsutil command connects to <DomainControllerName> , displays the current values for the
dynamic object TTL settings, sets the DynamicObjectDefaultTTL to 172800, commits the change, and

displays the results:

> ntdsutil "config settings" connections "connect to server <DomainControllerName>"[RETURN]
q "show values" "set DynamicObjectDefaultTTL to 172800" "commit changes" "show[RETURN]
values" q q

4.16.2.3 Using VBScript

' This code modifies the default TTL setting for dynamic objects in a forest
' ------ SCRIPT CONFIGURATION ------
strNewValue = 172800

'Could be DynamicObjectMinTTL instead if you wanted to set that instead
strTTLSetting = "DynamicObjectDefaultTTL"
' ------ END CONFIGURATION ---------

const ADS_PROPERTY_APPEND = 3
const ADS_PROPERTY_DELETE = 4

set objRootDSE = GetObject("LDAP://RootDSE")
set objDS = GetObject("LDAP://CN=Directory Service,CN=Windows NT," & _
 "CN=Services,CN=Configuration," & _
 objRootDSE.Get("rootDomainNamingContext")
for each strVal in objDS.Get("msDS-Other-Settings")
 Set objRegEx = New RegExp
 objRegEx.Pattern = strTTLSetting & "="
 objRegEx.IgnoreCase = True
 Set colMatches = objRegEx.Execute(strVal)
 For Each objMatch in colMatches
 Wscript.Echo "Deleting " & strVal
 objDS.PutEx ADS_PROPERTY_DELETE, "msDS-Other-Settings", Array(strVal)
 objDS.SetInfo
 Next
Next

Wscript.Echo "Setting " & strTTLSetting & "=" & strNewValue
objDS.PutEx ADS_PROPERTY_APPEND, _
 "msDS-Other-Settings", _
 Array(strTTLSetting & "=" & strNewValue)
objDS.SetInfo

4.16.3 Discussion

Two configuration settings apply to dynamic objects:

dynamicObjectDefaultTTL

Defines the default TTL that is set for a dynamic object at creation time unless another one is set via
entryTTL .

dynamicObjectMinTTL

Defines the smallest TTL that can be configured for a dynamic object.

Unfortunately, these two settings are not stored as discrete attributes. Instead, they are stored as attribute-
value-assertions (AVA) in the msDS-Other-Settings attribute on the

cn=DirectoryServices,cn=WindowsNT,cn=Configuration ,<ForestRootDN> object. AVAs are used occasionally

in Active Directory on multivalued attributes, in which the values take the form of Setting1 =Value1 ,

Setting2 =Value2 , etc.

For this reason, you cannot simply manipulate AVA attributes as you would another attribute. You have to be
sure to add or replace values with the same format, as they existed previously.

4.16.3.1 Using a command-line interface

You can use ntdsutil in interactive mode or in single-command mode. In this solution, I've included all the

necessary commands on a single line. You can, of course, step through each command by simply running
ntdsutil in interactive mode and entering each command one by one.

4.16.3.2 Using VBScript

Because we are dealing with AVAs, the VBScript solution is not very straightforward. Getting a pointer to the
Directory Service object is easy, but then we must step through each value of the mSDS-Other-Settings

attribute until we find the one we are looking for. The reason it is not straightforward is that we do not know
the exact value of the setting we are looking for. All we know is that it begins with
DynamicObjectDefaultTTL= . That is why it is necessary to resort to regular expressions. With a regular
expression, we can compare each value against DefaultObjectDefaultTTL= and if we find a match, delete

that value only. After we've iterated through all of the values and hopefully deleted the one we are looking for,
we append the new setting using PutEx . Simple as that!

4.16.4 See Also

Recipe 4.11 for modifying an object and MSDN: Regular Expression (RegExp) Object

[Team LiB]

[Team LiB]

Recipe 4.17 Moving an Object to a Different OU or
Container

4.17.1 Problem

You want to move an object to a different container or OU.

4.17.2 Solution

4.17.2.1 Using a graphical user interface

Open ADSI Edit.1.

If an entry for the naming context you want to browse is not already displayed, do the
following:

Right-click on ADSI Edit in the right pane and click Connect to.a.

Fill in the information for the naming context, container, or OU containing the object. Click
on the Advanced button if you need to enter alternate credentials.

b.

2.

In the left pane, browse to the container, or OU that contains the object you want to modify.
Once you've found the object, right-click on it and select Move.

3.

Browse to the new parent of the object, select it, and click OK.4.

4.17.2.2 Using a command-line interface

> dsmove "<ObjectDN>" -newparent "<NewParentDN>"

4.17.2.3 Using VBScript

' This code moves an object from one location to another in the same domain.
' ------ SCRIPT CONFIGURATION ------

strNewParentDN = "LDAP://<NewParentDN>"

strObjectDN = "LDAP://cn=jsmith,<OldParentDN>"
strObjectRDN = "cn=jsmith"

' ------ END CONFIGURATION ---------

set objCont = GetObject(strNewParentDN)
objCont.MoveHere strObjectDN, strObjectRDN

4.17.3 Discussion

4.17.3.1 Using a graphical user interface

If the parent container of the object you want to move has a lot of objects in it, you may want to add
a new connection entry for the DN of the object you want to move. This may save you time searching
through the list of objects in the container. You can do this by right clicking ADSI Edit and selecting
Connect to. Under Connection Point, select Distinguished Name and enter the DN of the object you
want to move.

4.17.3.2 Using a command-line interface

The dsmove utility can work against any type of object (no limitations as with dsadd and dsmod). The

first parameter is the DN of the object to be moved. The second parameter is the new parent
container of the object. The -s parameter can additionally be used to specify a specific server to work

against.

4.17.3.3 Using VBScript

The MoveHere method can be tricky, so an explanation of how to use it to move objects is in order.
First, you need to call GetObject on the new parent container. Then call MoveHere on the parent

container object with the ADsPath of the object to move as the first parameter and the RDN of the
object to move as the second.

The reason for the apparent duplication of cn=jsmith in the MoveHere method is that the same

method can also be used for renaming objects within the same container (see Recipe 4.19).

4.17.4 See Also

MS KB 313066 (HOW TO: Move Users, Groups, and Organizational Units Within a Domain in Windows
2000), and MSDN: IADsContainer::MoveHere

[Team LiB]

[Team LiB]

Recipe 4.18 Moving an Object to a Different Domain

4.18.1 Problem

You want to move an object to a different domain.

4.18.2 Solution

4.18.2.1 Using a command-line interface

> movetree /start /s SourceDC /d TargetDC /sdn SourceDN /ddn TargetDN

In the following example, the cn=jsmith object in the amer.rallencorp.com domain will be moved to

the emea.rallencorp.com domain.

> movetree /start /s dc-amer1 /d dc-emea1[RETURN]
 /ddn cn=jsmith,cn=users,dc=amer,dc=rallencorp,dc=com[RETURN]
 /sdn cn=jsmith,cn=users,dc=emea,dc=rallencorp,dc=com[RETURN]

4.18.2.2 Using VBScript

set objObject = GetObject("LDAP://TargetDC/TargetParentDN")

objObject.MoveHere "LDAP://SourceDC/SourceDN", vbNullString

In the following example, the cn=jsmith object in the amer.rallencorp.com domain will be moved to

the emea.rallencorp.com domain.

set objObject = GetObject(_
 "LDAP://dc-amer1/cn=users,dc=amer,dc=rallencorp,dc=com")
objObject.MoveHere _
 "LDAP://dc-emea1/cn=jsmith,cn=users,dc=emea,dc=rallencorp,dc=com", _
 vbNullString

4.18.3 Discussion

You can move objects between domains assuming you follow a few guidelines:

The user requesting the move must have permission to modify objects in the parent container
of both domains.

You need to explicitly specify the target DC (serverless binds usually do not work). This is
necessary because the "Cross Domain Move" LDAP control is being used behind the scenes. For
more information on controls, see Recipe 4.3.

The move operation must be performed against the RID master for both domains.

Both domains must be in native mode.

When you move a user object to a different domain, its objectSID is replaced with a new SID
(based on the new domain), and the old SID is added to the sIDHistory attribute.

For group objects, you can only move universal groups. To move global or domain local groups,

you must first convert them to universal.

4.18.4 See Also

Recipe 4.3 for more on LDAP controls, MS KB 238394 (How to Use the MoveTree Utility to Move
Objects Between Domains in a Single Forest), and MSDN: IADsContainer::MoveHere

[Team LiB]

[Team LiB]

Recipe 4.19 Renaming an Object

4.19.1 Problem

You want to rename an object and keep it in its current container or OU.

4.19.2 Solution

4.19.2.1 Using a graphical user interface

Open ADSI Edit1.

If an entry for the naming context you want to browse is not already displayed, do the
following:

2.

Right-click on ADSI Edit in the right pane and click Connect to . . .3.

Fill in the information for the naming context, container, or OU that contains the object you
want to rename. Click on the Advanced button if you need to enter alternate credentials.

4.

In the left pane, browse to the container or OU that contains the object you want to modify.
Once you've found the object, right-click on it and select Rename.

5.

Enter the new name and click OK.6.

4.19.2.2 Using a command-line interface

> dsmove "<ObjectDN>" -newname "<NewName>"

4.19.2.3 Using VBScript

' This code renames an object and leaves it in the same location.
' ------ SCRIPT CONFIGURATION ------

strCurrentParentDN = "<CurrentParentDN>"

strObjectOldName = "cn=<OldName>"

strObjectNewName = "cn=<NewName>"
' ------ END CONFIGURATION ---------

set objCont = GetObject("LDAP://" & strCurrentParentDN)

objCont.MoveHere "LDAP://" & strObjectOldName & "," & _
 strCurrentParentDN, strObjectNewName

4.19.3 Discussion

Before you rename an object, ensure no applications reference it by name. You can make objects
rename-safe by requiring all applications that must store a reference to objects to use the GUID of
the object, not the name. The GUID (stored in the objectGUID attribute) is guaranteed to be unique

and does not change when an object is renamed.

4.19.3.1 Using a graphical user interface

If the parent container of the object you want to rename has a lot of objects in it, you may want to
add a new connection entry for the DN of the object you want to rename. This may save you time
searching through the list of objects in the container. You can do this by right-clicking ADSI Edit and
selecting Connect to. Under Connection Point, select Distinguished Name and enter the DN of the
object you want to rename.

4.19.3.2 Using a command-line interface

The two parameters that are needed to rename an object are the original DN of the object and the
new RDN (-newname). The -s option can also be used to specify a server name to work against.

4.19.3.3 Using VBScript

The MoveHere method can be tricky to use, so an explanation of how to use it to rename objects is in
order. First, you need to call GetObject on the parent container of the object you want to rename.
Then call MoveHere on the parent container object and specify the ADsPath of the object to rename
as the first parameter. The new RDN including prefix (e.g., cn=) of the object should be the second

parameter.

4.19.4 See Also

MSDN: IADsContainer::MoveHere

[Team LiB]

[Team LiB]

Recipe 4.20 Deleting an Object

4.20.1 Problem

You want to delete an object.

4.20.2 Solution

4.20.2.1 Using a graphical user interface

Open ADSI Edit.1.

If an entry for the naming context you want to browse is not already displayed, do the
following:

Right-click on ADSI Edit in the right pane and click Connect to . . .a.

Fill in the information for the naming context, container, or OU that contains the object
you want to delete. Click on the Advanced button if you need to enter alternate
credentials.

b.

2.

In the left pane, browse to the object you want to delete.3.

Right-click on the object and select Delete.4.

Click Yes to confirm.5.

4.20.2.2 Using a command-line interface

> dsrm "<ObjectDN>"

4.20.2.3 Using VBScript

strObjectDN = "<ObjectDN>"
set objUser = GetObject("LDAP://" & strObjectDN)
objUser.DeleteObject(0)

4.20.3 Discussion

This recipe covers deleting individual objects. If you want to delete a container or OU and all the
objects in it, take a look at Recipe 4.21.

4.20.3.1 Using a graphical user interface

If the parent container of the object you want to delete has a lot of objects in it, you may want to
add a new connection entry for the DN of the object you want to delete. This may save you time
searching through the list of objects in the container and could help avoid accidental deletions. You
can do this by right-clicking ADSI Edit and selecting Connect to. Under Connection Point, select
Distinguished Name and enter the DN of the object you want to delete.

4.20.3.2 Using a command-line interface

The dsrm utility can be used to delete any type of object (no limitations based on object type as with
dsadd and dsmod). The only required parameter is the DN of the object to delete. You can also
specify -noprompt to keep it from asking for confirmation before deleting. The -s parameter can be

used as well to specify a specific server to target.

4.20.3.3 Using VBScript

Using the DeleteObject method is straightforward. Passing 0 as a parameter is required, but does

not have any significance at present.

An alternate and perhaps safer way to delete objects is to use the IADsContainer::Delete method.

To use this method, you must first bind to the parent container of the object. You can then call
Delete by passing the object class and RDN of the object you want to delete. Here is an example for
deleting a user object:

set objCont = GetObject("LDAP://ou=Sales,dc=rallencorp,dc=com")
objCont.Delete "user", "cn=rallen"

Delete is safer than DeleteObject because you have to be more explicit about what you are
deleting. With DeleteObject you only need to specify a distinguished name and it will delete it. If you

happen to mis-type the DN or the user input to a web page that uses this method is mis-typed, the
result could be disastrous.

4.20.4 See Also

Recipe 4.21 for deleting a container, MS KB 258310 (Viewing Deleted Objects in Active Directory),
MSDN: IADsContainer::Delete, and MSDN: IADsDeleteOps::DeleteObject

[Team LiB]

[Team LiB]

Recipe 4.21 Deleting a Container That Has Child Objects

4.21.1 Problem

You want to delete a container or organizational unit and all child objects contained within.

4.21.2 Solution

4.21.2.1 Using a graphical user interface

Open ADSI Edit and follow the same steps as in Recipe 4.20. The only difference is that you'll be
prompted to confirm twice instead of once before the deletion occurs.

4.21.2.2 Using a command-line interface

> dsrm "<ObjectDN>" -subtree

4.21.2.3 Using VBScript

The same code from Recipe 4.20 will also delete containers and objects contained within them.

4.21.3 Discussion

As you can see from the solutions, there is not much difference between deleting a leaf node versus
deleting a container that has child objects. However, there is a distinction in what is happening in the
background.

Deleting an object that has no children can be done with a simple LDAP delete operation. On the other
hand, to delete a container and its children, the tree-delete LDAP control has to be used. If you were
to do the deletion from an LDAP-based tool like LDP, you would first need to enable the "Subtree
Delete" control, which has an OID of 1.2.840.113556.1.4.805. LDP provides another option to do a
"Recursive Delete" from the client side. That will essentially iterate through all the objects in the
container, deleting them one by one. The Subtree Delete is much more efficient, especially when
dealing with large containers.

4.21.4 See Also

Recipe 4.20 for deleting objects and MSDN: IADsDeleteOps::DeleteObject

[Team LiB]

[Team LiB]

Recipe 4.22 Viewing the Created and Last Modified
Timestamp of an Object

4.22.1 Problem

You want to determine when an object was either created or last updated.

4.22.2 Solution

4.22.2.1 Using a graphical user interface

Follow the steps in Recipe 4.2.1.

Ensure that createTimestamp and modifyTimestamp are included in the list of attributes to be

returned by looking at Attributes under Options Search.

2.

4.22.2.2 Using a command-line interface

> dsquery * "<ObjectDN>" -attr name createTimestamp modifyTimestamp

4.22.2.3 Using VBScript

' This code prints the created and last modified timestamp
' for the specified object.
' ------ SCRIPT CONFIGURATION ------

strObjectDN = "<ObjectDN>"
' ------ END CONFIGURATION ---------

set objEntry = GetObject("LDAP://" & strObjectDN)
Wscript.Echo "Object Name: " & objEntry.Get("name")
Wscript.Echo " Created: " & objEntry.Get("createTimestamp")
Wscript.Echo " Changed: " & objEntry.Get("modifyTimestamp")

4.22.3 Discussion

When an object is created or modified in Active Directory, the createTimestamp and
modifyTimestamp attributes get set with the current time. Those two attributes are replicated, so

assuming the latest modification of the object in question has replicated to all domain controllers,
they will contain the absolute create and last modified timestamps.

You may have also run across the whenCreated and whenChanged attributes. They also contain

create and modify timestamps, but these values are local to the domain controller and are not
replicated.

4.22.4 See Also

Recipe 4.2 for viewing the attributes of an object

[Team LiB]

[Team LiB]

Recipe 4.23 Modifying the Default LDAP Query Policy

4.23.1 Problem

You want to view or modify the default LDAP query policy of a forest. The query policy contains
settings that restrict search behavior, such as the maximum number of entries that can be returned
from a search.

4.23.2 Solution

4.23.2.1 Using a graphical user interface

Open ADSI Edit.1.

In the Configuration partition, browse to Services Windows NT Directory Service
Query Policies.

2.

In the left pane, click on the Query Policies container, then right-click on the Default Query
Policy object in the right pane, and select Properties.

3.

Double-click on the lDAPAdminLimits attribute.4.

Click on the attribute you want to modify and click Remove.5.

Modify the value in the Value to add box and click Add.6.

Click OK twice.7.

4.23.2.2 Using a command-line interface

To view the current settings, use the following command:

> ntdsutil "ldap pol" conn "con to server <DomainControllerName>" q "show values"

To change the MaxPageSize value to 2000, you can do the following:

> ntdsutil "ldap pol" conn "con to server <DomainControllerName>" q
ldap policy: set MaxPageSize to 2000
ldap policy: Commit Changes

4.23.2.3 Using VBScript

' This code modifies a setting of the default query policy for a forest
' ------ SCRIPT CONFIGURATION ------
pol_attr = "MaxPageSize" ' Set to the name of the setting you want to modify
new_value = 1000 ' Set to the value of the setting you want modify
' ------ END CONFIGURATION ---------

Const ADS_PROPERTY_APPEND = 3
Const ADS_PROPERTY_DELETE = 4

set rootDSE = GetObject("LDAP://RootDSE")
set ldapPol = GetObject("LDAP://cn=Default Query Policy,cn=Query-Policies," & _
 "cn=Directory Service,cn=Windows NT,cn=Services," & _
 rootDSE.Get("configurationNamingContext"))
set regex = new regexp
regex.IgnoreCase = true
regex.Pattern = pol_attr & "="
for Each prop In ldapPol.GetEx("ldapAdminLimits")
 if regex.Test(prop) then
 if prop = pol_attr & "=" & new_value then
 WScript.Echo pol_attr & " already equal to " & new_value
 else
 ldapPol.PutEx ADS_PROPERTY_APPEND, "lDAPAdminLimits", _
 Array(pol_attr & "=" & new_value)
 ldapPol.SetInfo
 ldapPol.PutEx ADS_PROPERTY_DELETE, "lDAPAdminLimits", Array(prop)
 ldapPol.SetInfo
 WScript.Echo "Set " & pol_attr & " to " & new_value
 end if
 Exit For
 end if
next

4.23.3 Discussion

The LDAP query policy contains several settings that control how domain controllers handle searches.
By default, one query policy is defined for all domain controllers in a forest, but you can create
additional ones and apply them to a specific domain controller or even at the site level (so that all
domain controllers in the site use that policy).

Query policies are stored in the Configuration NC as queryPolicy objects. The default query policy is
located at: cn=Default Query Policy, cn=Query-Policies, cn=Directory Service, cn=Windows NT,

cn=Services, <ConfigurationPartitionDN>. The lDAPAdminLimits attribute of a queryPolicy

object is multivalued and contains each setting for the policy in name-value pairs. Table 4-4 contains
the available settings.

Table 4-4. LDAP query policy settings

Name
Default
value

Description

MaxPoolThreads 4 per proc
Maximum number of threads that are created by the DC for
query execution.

MaxDatagramRecv 4096
Maximum number of datagrams that can be simultaneously
processed by the DC.

MaxReceiveBuffer 10485760
Maximum size in bytes for an LDAP request that the server
will attempt to process. If the server receives a request that
is larger then this value, it will close the connection.

InitRecvTimeout 120 secs Initial receive time-out.

MaxConnections 5000 Maximum number of open connections.

MaxConnIdleTime 900 secs Maximum amount of time a connection can be idle.

MaxActiveQueries 20 Maximum number of queries that can be active at one time.

MaxPageSize 1000 Maximum page size that is supported for LDAP responses.

MaxQueryDuration 120 secs
Maximum length of time the domain controller can execute a
query.

MaxTempTableSize 10000
Maximum size of temporary storage that is allocated to
execute queries.

MaxResultSetSize 262144 Maximum size of the LDAP Result Set.

MaxNotificationPerConn 5
Maximum number of notifications that a client can request for
a given connection.

Since the settings are stored as name/value pairs inside a single attribute, also referred to as AVAs,
the VBScript solution has to iterate over each value and use a regular expression to determine when
the target setting has been found. It does this by matching <SettingName>= at the beginning of the

string. See Recipe 4.16 for more on AVAs.

You should not change the default query policy in production unless you've
done plenty of testing. Changing some of the settings may result in unexpected
application or domain controller behavior.

Instead of modifying the default LDAP query policy, you can create a new one. In the Query
Policies container (where the default query policy object is located), create a new queryPolicy
object and set the lDAPAdminLimits attribute as just described based on the settings you want
configured. Then modify the queryPolicyObject attribute on the nTDSDSA object of a domain

controller you want to apply the new policy to. This can be done via the Active Directory Sites and
Services snap-in by browsing to the nTDSDSA object of a domain controller (cn=NTDS Settings),

right-clicking on it, and selecting Properties. You can then select the new policy from a drop-down
menu beside Query Policy. Click OK to apply the new policy.

4.23.4 See Also

MS KB 315071 (HOW TO: View and Set Lightweight Directory Access Protocol Policies by Using
Ntdsutil.exe in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 4.24 Exporting Objects to an LDIF File

4.24.1 Problem

You want to export objects to an LDAP Data Interchange Format (LDIF) file.

4.24.2 Solution

4.24.2.1 Using a graphical user interface

None of the standard Microsoft tools support exporting LDIF from a GUI.

4.24.2.2 Using a command-line interface

> ldifde -f output.ldf -l <AttrList> -p <Scope> -r "<Filter>" -d "<BaseDN>"

4.24.2.3 Using VBScript

There are no COM or VBScript-based interfaces to LDIF. With Perl you can use the Net::LDAP::LDIF

module, which supports reading and writing LDIF files.

4.24.3 Discussion

The LDIF specification defined in RFC 2849 describes a well-defined file-based format for representing
directory entries. The format is intended to be both human and machine parseable, which adds to its
usefulness. LDIF is the de facto standard for importing and exporting a large number of objects in a
directory and is supported by virtually every directory vendor including Microsoft.

4.24.3.1 Using a command-line interface

The -f switch specifies the name of the file to use to save the entries to, -s is the DC to query, -l is
the comma-separated list of attributes to include, -p is the search scope, -r is the search filter, and -
d is the base DN. If you encounter any problems using ldifde, the -v switch enables verbose mode

and can help identify problems.

4.24.4 See Also

Recipe 4.25 for importing objects using LDIF, RFC 2849 (The LDAP Data Interchange Format
(LDIF)-Technical Specification), and MS KB 237677 (Using LDIFDE to Import and Export Directory
Objects to Active Directory)

[Team LiB]

[Team LiB]

Recipe 4.25 Importing Objects Using an LDIF File

4.25.1 Problem

You want to import objects into Active Directory using an LDIF file. The file could contain object
additions, modifications, and/or deletions.

4.25.2 Solution

4.25.2.1 Using a command-line interface

To import objects using the ldifde utility, you must first create an LDIF file with the objects to add,

modify, or delete. Here is an example LDIF file that adds a user, modifies the user twice, and then
deletes the user:

dn: cn=jsmith,cn=users,dc=rallencorp,dc=com
changetype: add
objectClass: user
samaccountname: jsmith
sn: JSmith
useraccountcontrol: 512

dn: cn=jsmith,cn=users,dc=rallencorp,dc=com
changetype: modify
add: givenName
givenName: Jim
-
replace: sn
sn: Smith
-

dn: cn=jsmith,cn=users,dc=rallencorp,dc=com
changetype: delete

Once you've created the LDIF file, you just need to run the ldifde command to import the new

objects.

> ldifde -i -f input.ldf

4.25.3 Discussion

For more information on the LDIF format, check RFC 2849.

4.25.3.1 Using a command-line interface

To import with ldifde, simply specify the -i switch to turn on import mode and -f <filename> for
the file. It can also be beneficial to use the -v switch to turn on verbose mode to get more

information in case of errors.

4.25.4 See Also

Recipe 4.24 for information on LDIF, RFC 2849 (The LDAP Data Interchange Format (LDIF)-Technical
Specification), and MS KB 237677 (Using LDIFDE to Import and Export Directory Objects to Active
Directory)

[Team LiB]

[Team LiB]

Recipe 4.26 Exporting Objects to a CSV File

4.26.1 Problem

You want to export objects to a comma-separated variable (CSV) file. The CSV file can then be
opened and manipulated from a spreadsheet application or with a text editor.

4.26.2 Solution

4.26.2.1 Using a command-line interface

> csvde -f output.csv -l <AttrList> -p <Scope> -r "<Filter>" -d "<BaseDN>"

4.26.3 Discussion

Once you have a CSV file containing entries, you can use a spreadsheet application such as Excel to
view, sort, and manipulate the data.

4.26.3.1 Using a command-line interface

The parameters used by cvsde are nearly identical to those used by ldifde. The -f switch specifies
the name of the file to use to save the entries to, -s is the DC to query, -l is the comma-separated
list of attributes to include, -p is the search scope (base, onelevel, or subtree), -r is the search filter,
and -d is the base DN. If you encounter any issues, the -v switch enables verbose mode and can help

identify problems.

4.26.4 See Also

Recipe 4.27 for importing objects using a CSV file

[Team LiB]

[Team LiB]

Recipe 4.27 Importing Objects Using a CSV File

4.27.1 Problem

You want to import objects into Active Directory using a CSV file.

4.27.2 Solution

4.27.2.1 Using a command-line interface

To import objects using the csvde utility, you must first create a CSV file containing the objects to

add. The first line of the file should contain a comma-separated list of attributes you want to set, with
DN being the first attribute. Here is an example:

DN,objectClass,cn,sn,userAccountControl,sAMAccountName,userPrincipalName

The rest of the lines should contain entries to add. If you want to leave one of the attributes unset,
then leave the value blank (followed by a comma). Here is a sample CSV file that would add two user
objects:

DN,objectClass,sn,userAccountControl,sAMAccountName,userPrincipalName
"cn=jim,cn=users,dc=rallencorp,dc=com",user,Smith,512,jim,jim@rallencorp.com
"cn=john,cn=users,dc=rallencorp,dc=com",user,,512,john,john@rallencorp.com

Once you've created the CSV file, you just need to run cvsde command to import the new objects.

> csvde -i -f input.csv

4.27.3 Discussion

Note that each line of the CSV import file, except the header, should contain entries to add objects.
You cannot modify attributes of an object or delete objects using csvde. If you have a spreadsheet
containing objects you want to import, first save it as a CSV file and use csvde to import it.

4.27.3.1 Using a command-line interface

To import with csvde, simply specify the -i switch to turn on import mode and -f <filename> for the
file. It can also be beneficial to use the -v switch to turn on verbose mode to get more information in

case of errors.

4.27.4 See Also

Recipe 4.26 for exporting objects in CSV format, and MS KB 327620 (HOW TO: Use Csvde to Import
Contacts and User Objects into Active Directory)

[Team LiB]

[Team LiB]

Chapter 5. Organizational Units
Introduction

Recipe 5.1. Creating an OU

Recipe 5.2. Enumerating the OUs in a Domain

Recipe 5.3. Enumerating the Objects in an OU

Recipe 5.4. Deleting the Objects in an OU

Recipe 5.5. Deleting an OU

Recipe 5.6. Moving the Objects in an OU to a Different OU

Recipe 5.7. Moving an OU

Recipe 5.8. Determining How Many Child Objects an OU Has

Recipe 5.9. Delegating Control of an OU

Recipe 5.10. Allowing OUs to Be Created Within Containers

Recipe 5.11. Linking a GPO to an OU
[Team LiB]

[Team LiB]

Introduction

An LDAP directory, such as Active Directory, stores data in a hierarchy of containers and leaf nodes
called the directory information tree (DIT). Leaf nodes are end points in the tree, while containers
can store other containers and leaf nodes. In Active Directory, the two most common types of
containers are organizational units (OUs) and container objects. The container objects are generic
containers that do not have any special properties about them other than that they can contain
objects. Organizational units, on the other hand, have some special properties, such as being able to
be linked to a group policy. In most cases, when designing a hierarchy of objects in Active Directory,
especially users and computers, you should use OUs instead of containers. There is nothing you can
do with a container that you can't do with an OU, but the reverse is not true.

The Anatomy of an Organizational Unit

Organizational units can be created anywhere in a Domain naming context. The one exception is that
by default OUs cannot be added as a child of a container object. See Recipe 5.10 for more on how
to work around this. OUs are represented in Active Directory by organizationalUnit objects. Table
5-1 contains a list of some interesting attributes that are available on organizationalUnit objects.

Table 5-1. Attributes of organizationalUnit objects

Attribute Description

description Textual description of the OU.

gPLink
List of group policy objects (GPOs) that have been linked to the OU.
See Recipe 5.11 for more information.

gpOptions Contains 1 if GPO inheritance is blocked and 0 otherwise.

msDS-Approx-Immed-
Subordinates

Approximate number of direct child objects in the OU. See Recipe 5.8
for more information.

managedBy
Distinguished name (DN) of user or group that is in charge of
managing the OU.

ou Relative distinguished name of the OU.

modifyTimestamp Timestamp of when the OU was last modified.

createTimestamp Timestamp of when the OU was created.

[Team LiB]

[Team LiB]

Recipe 5.1 Creating an OU

5.1.1 Problem

You want to create an OU.

5.1.2 Solution

5.1.2.1 Using a graphical user interface

Open the Active Directory Users and Computers (ADUC) snap-in.1.

If you need to change domains, right-click on the Active Directory Users and Computers label in
the left pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, browse to the parent container of the new OU, right-click on it, and select New
 Organizational Unit.

3.

Enter the name of the OU and click OK.4.

To enter a description for the new OU, right-click on the OU in the left pane and select
Properties.

5.

Click OK after you are done.6.

5.1.2.2 Using a command-line interface

> dsadd ou "<OrgUnitDN>" -desc "<Description>"

5.1.2.3 Using VBScript

' This code creates an OU
' ------ SCRIPT CONFIGURATION ------

strOrgUnit = "<OUName>" ' e.g. Tools

strOrgUnitParent = "<ParentDN>" ' e.g. ou=Engineering,dc=rallencorp,dc=com

strOrgUnitDescr = "<Description>" ' e.g. Tools Users
' ------ END CONFIGURATION ---------

set objDomain = GetObject("LDAP://" & strOrgUnitParent)

set objOU = objDomain.Create("organizationalUnit", "OU=" & strOrgUnit)
objOU.Put "description", strOrgUnitDescr
objOU.SetInfo
WScript.Echo "Successfully created " & objOU.Name

5.1.3 Discussion

OUs are used to structure data within Active Directory. Typically, there are four reasons why you
would need to create an OU:

Segregate objects

It is common practice to group related data into an OU. For example, user objects and
computer objects are typically stored in separate OUs (in fact, that is the default configuration

with Active Directory). One reason for this is to make searching the directory easier.
Delegate administration

Perhaps the most often used reason for creating an OU is to delegate administration. With OUs
you can give a person or group of people rights to do certain functions on objects within the
OU.

Apply a GPO

An OU is the smallest unit that a GPO can be applied to. If you have different types of users
within your organization that need to apply different GPOs, the easiest way to set that up is to
store the users in different OUs and apply GPOs accordingly.

Controlling visibility of objects

You can use OUs as a way to restrict what users can see in the directory.

In each solution, the description attribute was set. It is not a mandatory attribute, but it is good

practice to set it so that others browsing the directory have a general understanding of the purpose
of the OU. Also, consider setting the managedBy attribute to reference a user or group that is the

owner of the OU.

5.1.4 See Also

MS KB 308194 (HOW TO: How to Create Organizational Units in a Windows 2000 Domain)

[Team LiB]

[Team LiB]

Recipe 5.2 Enumerating the OUs in a Domain

5.2.1 Problem

You want to enumerate all containers and OUs in a domain, which effectively displays the structure of
the domain.

5.2.2 Solution

5.2.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on "Active Directory Users and Computers" in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, you can browse the directory structure.3.

5.2.2.2 Using a command-line interface

The following command will enumerate all OUs in the domain of the user running the command.

> dsquery ou domainroot

5.2.2.3 Using VBScript

' This code recursively displays all container and organizationalUnit
' objects under a specified base. Using "" for the second parameter means
' that there will be no indention for the first level of objects displayed.

DisplayObjects "LDAP://<DomainDN>", ""

' DisplayObjects takes the ADsPath of the object to display
' child objects for and the number of spaces (indention) to
' use when printing the first parameter
Function DisplayObjects(strADsPath, strSpace)
 set objObject = GetObject(strADsPath)
 Wscript.Echo strSpace & strADsPath
 objObject.Filter = Array("container","organizationalUnit")
 for each objChildObject in objObject

 DisplayObjects objChildObject.ADsPath, strSpace & " "
 next
End Function

5.2.3 Discussion

5.2.3.1 Using a graphical user interface

If you want to expand all containers and OUs within an OU, you have to manually expand each one
within ADUC; there is no "expand all" option.

5.2.3.2 Using a command-line interface

To enumerate both OUs and containers, you have to a use a more generic dsquery command. The

following command will display all containers and OUs in the domain of the user running the
command:

> dsquery * domainroot -filter
"(|(objectcategory=container)(objectcategory=organizationalunit))" -scope subtree
-limit 0

5.2.3.3 Using VBScript

When iterating over the contents of an OU using a for each loop, paging will be enabled so that all

child objects will be returned (instead of only 1,000 per the administrative limit). In order to display all
child container objects regardless of depth, I used a recursive function called DisplayObjects.

[Team LiB]

[Team LiB]

Recipe 5.3 Enumerating the Objects in an OU

5.3.1 Problem

You want to enumerate all the objects in an OU.

5.3.2 Solution

The following solutions will enumerate all the objects directly under an OU. Look at the Discussion
section for more on how to display all objects under an OU regardless of depth.

5.3.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on "Active Directory Users and Computers" in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, browse to the OU you want to view.3.

Click on it. The contents of the OU will be displayed in the right pane.4.

5.3.2.2 Using a command-line interface

> dsquery * "<OrgUnitDN>" -limit 0 -scope onelevel

5.3.2.3 Using VBScript

set objOU = GetObject("LDAP://<OrgUnitDN>")
for each objChildObject in objOU
 Wscript.Echo objChildObject.Name
next

5.3.3 Discussion

5.3.3.1 Using a graphical user interface

By default, ADUC will display only 2,000 objects. To view more than 2000 objects, select View
Filter Options. In the box beside Maximum number of items displayed per folder:, put the maximum
number of objects you want to display.

5.3.3.2 Using a command-line interface

Using -limit 0, all objects under the OU will be displayed. If -limit is not specified, 100 will be

shown by default. You can also specify your own number if you want to only display a limited number
of objects.

The -scope onelevel option causes only direct child objects of the OU to be displayed. If you want
to display all objects regardless of depth, add -scope subtree.

5.3.3.3 Using VBScript

When a for each loop iterates over the contents of an OU, paging will be enabled so that all child

objects will be returned regardless of how many there are. If you want to display all child objects
regardless of depth, you have to implement a recursive function, such as the following:

' Using "" for the second parameter means that the there will be no
' indention for the first level of objects displayed.

DisplayObjects "LDAP://<OrgUnitDN>", ""

' DisplayObjects takes the ADsPath of the object to display child
' objects for and the second is the number of spaces (indention)
' to use when printing the first parameter
Function DisplayObjects(strADsPath, strSpace)
 set objObject = GetObject(strADsPath)
 Wscript.Echo strSpace & strADsPath
 for each objChildObject in objObject
 DisplayObjects objChildObject.ADsPath, strSpace & " "
 next
End Function

This code is nearly identical to that shown in Recipe 5.2. The only difference is that I didn't use the
Filter method to restrict the type of objects displayed.

[Team LiB]

[Team LiB]

Recipe 5.4 Deleting the Objects in an OU

5.4.1 Problem

You want to delete all the objects in an OU, but not the OU itself.

5.4.2 Solution

5.4.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on "Active Directory Users and Computers" in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, browse to the OU that contains the objects you want to delete and click on it.3.

Highlight all the objects in the right pane and hit the Delete button.4.

Press F5 to refresh the contents of the OU. If objects still exist, repeat the previous step.5.

5.4.2.2 Using a command-line interface

To delete all objects within an OU, but not the OU itself, you need to use the -subtree and -exclude
options with the dsrm command.

> dsrm "<OrgUnitDN>" -subtree -exclude

5.4.2.3 Using VBScript

' This code deletes the objects in an OU, but not the OU itself

set objOU = GetObject("LDAP://<OrgUnitDN>")
for each objChildObject in objOU
 Wscript.Echo "Deleting " & objChildObject.Name
 objChildObject.DeleteObject(0)
next

5.4.3 Discussion

If you want to delete the objects in an OU and recreate the OU, you can either delete the OU itself,
which will delete all child objects, or you could just delete the child objects. The benefits to the later
approach is that you do not need to reconfigure the ACL on the OU or relink GPOs.

5.4.4 See Also

Recipe 5.3 for enumerating objects in an OU, Recipe 5.5 for deleting an OU, and MSDN:
IADsDeleteOps::DeleteObject

[Team LiB]

[Team LiB]

Recipe 5.5 Deleting an OU

5.5.1 Problem

You want to delete an OU and all objects in it.

5.5.2 Solution

5.5.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on "Active Directory Users and Computers" in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, browse to the OU you want to delete, right-click on it, and select Delete.3.

Click Yes.4.

If the OU contains child objects, you will be asked for confirmation again before deleting it. Click
Yes.

5.

5.5.2.2 Using a command-line interface

To delete an OU and all objects contained within, use the -subtree option with the dsrm command. If
you don't use -subtree and the object you are trying to delete has child objects, the deletion will fail.

> dsrm "<OrgUnitDN>" -subtree

5.5.2.3 Using VBScript

' This code deletes an OU and all child objects of the OU

set objOU = GetObject("LDAP://<OrgUnitDN>")
objOU.DeleteObject(0)

5.5.3 Discussion

Deleting OUs that do not contain objects is just like deleting any other type of object. Deleting an OU

that contains objects requires a special type of delete operation. The "Tree Delete" LDAP control
(OID: 1.2.840.113556.1.4.805) must be used by the application or script to inform AD to delete
everything contained in the OU. All three solutions in this case use the control "under the covers," but
if you were going to perform the operation via an LDAP, such as LDP, you would need to enable the
control first.

5.5.4 See Also

Recipe 4.3 for using LDAP controls and MSDN: IADsDeleteOps::DeleteObject

[Team LiB]

[Team LiB]

Recipe 5.6 Moving the Objects in an OU to a Different OU

5.6.1 Problem

You want to move some or all of the objects in an OU to a different OU. You may need to do this as part of a
domain restructuring effort.

5.6.2 Solution

5.6.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on "Active Directory Users and Computers" in the left pane,
select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, browse to the OU that contains the objects you want to move and click on it.3.

Highlight the objects in the right pane you want to move, right-click on them, and select "Move."4.

Browse to the parent container you want to move the objects to, click on it.5.

Click OK.6.

Press F5 to refresh the contents of the OU. If objects still exist, repeat the previous three steps.7.

5.6.2.2 Using a command-line interface

> for /F "usebackq delims=""" %i in (`dsquery * "<OldOrgUnitDN>" -scope onelevel`)[RETURN]

do dsmove -newparent "<NewOrgUnitDN>" %i

5.6.2.3 Using VBScript

' This code moves objects from the "old" OU to the "new" OU
' ------ SCRIPT CONFIGURATION ------

strOldOrgUnit = "<OldOrgUnitDN>" ' e.g. ou=Eng Tools,dc=rallencorp,dc=com

strNewOrgUnit = "<NewOrgUnitDN>" ' e.g. ou=Tools,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

set objOldOU = GetObject("LDAP://" & strOldOrgUnit)
set objNewOU = GetObject("LDAP://" & strNewOrgUnit)
for each objChildObject in objOldOU
 Wscript.Echo "Moving " & objChildObject.Name

 objNewOU.MoveHere objChildObject.ADsPath, objChildObject.Name
next

5.6.3 Discussion

5.6.3.1 Using a graphical user interface

If you want to move more than 2,000 objects at one time, you will need to modify the default number of
objects displayed as described in Discussion section of Recipe 5.3 .

5.6.3.2 Using a command-line interface

Since dsmove can move only one object at a time, I had to use the for command to iterate over each child
object returned from dsquery . Also note that if you want to move more than 100 objects, you'll need to
specify the -limit xx option with dsquery , where xx is the maximum number of objects to move (use 0 for

all).

5.6.3.3 Using VBScript

For more information on the MoveHere method, see Recipe 4.17 .

5.6.4 See Also

Recipe 4.17 for moving objects, Recipe 5.3 for enumerating objects in an OU, and MSDN:
IADsContainer::MoveHere

[Team LiB]

[Team LiB]

Recipe 5.7 Moving an OU

5.7.1 Problem

You want to move an OU and all its child objects to a different location in the directory tree.

5.7.2 Solution

5.7.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on "Active Directory Users and Computers" in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, browse to the OU you want to move.3.

Right-click on the OU and select Move.4.

Select the new parent container for the OU and click OK.5.

5.7.2.2 Using a command-line interface

> dsmove "<OrgUnitDN>" -newparent "<NewParentDN>"

5.7.2.3 Using VBScript

set objOU = GetObject("LDAP://<NewParentDN>")

objOU.MoveHere "LDAP://<OrgUnitDN>", "<OrgUnitRDN>"

5.7.3 Discussion

One of the benefits of Active Directory is the ability to structure and restructure data easily. Moving
an OU, even one that contains a complex hierarchy of other OUs and objects, can be done without
impacting the child objects.

If any applications have a dependency on the location of specific objects, you need to ensure they are
either updated with the new location or preferably, reference the objects by GUID, not by

distinguished name.

You should also be mindful of the impact of inherited ACLs and applied group policy on the new
parent OU.

5.7.4 See Also

MS KB 313066 (HOW TO: Move Users, Groups, and Organizational Units Within a Domain in Windows
2000) and MSDN: IADsContainer::MoveHere

[Team LiB]

[Team LiB]

Recipe 5.8 Determining How Many Child Objects an OU
Has

This recipe requires the Windows Server 2003 domain functional level.

5.8.1 Problem

You want to determine if an OU has any child objects or determine how many child objects it
contains.

5.8.2 Solution

5.8.2.1 Using a graphical user interface

Open LDP.1.

From the Menu, select Browse Search.2.

For Base Dn, enter <OrgUnitDN>.3.

For Filter, enter (objectclass=*).4.

For Scope, select Base.5.

Click the Options button and enter msDS-Approx-Immed-Subordinates For Attributes.6.

Click OK and Run.7.

The results will be displayed in the right pane.8.

5.8.2.2 Using a command-line interface

> dsquery * "<OrgUnitDN>" -scope base -attr msDS-Approx-Immed-Subordinates

5.8.2.3 Using VBScript

' This code displays the approximate number of child objects for an OU

set objOU = GetObject("LDAP://<OrgUnitDN>")
objOU.GetInfoEx Array("msDS-Approx-Immed-Subordinates"), 0
WScript.Echo "Number of child objects: " & _
 objOU.Get("msDS-Approx-Immed-Subordinates")

5.8.3 Discussion

The msDS-Approx-Immed-Subordinates attribute is new to Windows Server 2003. It contains the

approximate number of direct child objects in a container or organizational unit. Note that this is an
approximation and can be off by 10% of the actual total for large containers. The main reason for
adding this attribute was to give applications an idea of how many objects a container has so that it
can display them accordingly.

msDS-Approx-Immed-Subordinates is a constructed attribute, that is, the value is not actually stored

in Active Directory like other attributes. Active Directory computes the value when an application
asks for it. In the VBScript solution, the GetInfoEx method had to be called because some
constructed attributes, such as this one, are not retrieved when GetInfo or Get is called.

You can accomplish similar functionality with Windows 2000 Active Directory, but you need to perform
a onelevel search against the OU and count the number of objects returned. This method is by no
means as efficient as using msDS-Approx-Immed-Subordinates in Windows Server 2003.

5.8.4 See Also

MSDN: GetInfoEx

[Team LiB]

[Team LiB]

Recipe 5.9 Delegating Control of an OU

5.9.1 Problem

You want to delegate administrative access of an OU to allow a group of users to manage objects in
the OU.

5.9.2 Solution

5.9.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on "Active Directory Users and Computers" in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, browse to the target OU, right-click on it, and select Delegate Control.3.

Select the users and/or groups to delegate control to by using the Add button and click Next.4.

Select the type of privilege to grant the users/groups and click Next.5.

Click Finish.6.

5.9.2.2 Using a command-line interface

ACLs can be set via a command-line with the dsacls utility from the Support Tools. See Recipe 14.10

for more information.

5.9.3 Discussion

Although you can delegate control of an OU to a particular user, it is generally a better practice to
use a group instead. Even if there is only one user to delegate control to, you should create a group,
add that user as a member, and use that group in the ACL. That way, in the future when you have to
replace that user with someone else, you can make sure the new person is in the correct group
instead of modifying ACLs again.

5.9.4 See Also

Recipe 14.10 for changing the ACL on an object

[Team LiB]

[Team LiB]

Recipe 5.10 Allowing OUs to Be Created Within
Containers

5.10.1 Problem

You want to create an OU within a container. By default, you cannot create OUs within container
objects due to restrictions in the Active Directory schema.

5.10.2 Solution

5.10.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in as a user that is a member of the Schema Admins
group. See Recipe 10.1 for more on using the Schema snap-in.

1.

Expand the Classes folder, right-click on the organizationalUnit class, and select Properties.2.

Select the Relationship tab and, next to Possible Superior, click Add Superior (Windows Server
2003) or Add (Windows 2000).

3.

Select container and click OK.4.

Click OK.5.

5.10.2.2 Using a command-line interface

Create an LDIF file called ou_in_container.ldf with the following contents:

dn: cn=organizational-unit,cn=schema,cn=configuration,<ForestRootDN>
changetype: modify
add: possSuperiors
possSuperiors: container
-

then run the ldifde command to import the change:

> ldifde -i -f ou_in_container.ldf

5.10.2.3 Using VBScript

' This code modifies the schema so that OUs can be created within containers
Const ADS_PROPERTY_APPEND = 3
set objRootDSE = GetObject("LDAP://RootDSE")
set objOUClass = GetObject("LDAP://cn=organizational-unit," & _
 objRootDSE.Get("schemaNamingContext"))
objOUClass.PutEx ADS_PROPERTY_APPEND, "possSuperiors", Array("container")
objOUClass.SetInfo

5.10.3 Discussion

Allowing OUs to be created within containers requires a simple modification to the schema. You have
to make the container class one of the possible superiors (possSuperiors attribute) for the
organizationalUnit class.

5.10.4 See Also

Recipe 10.1 for using the Schema snap-in and MS KB 224377 (Configuring Different Containers to
Hold Organizational Units)

[Team LiB]

[Team LiB]

Recipe 5.11 Linking a GPO to an OU

5.11.1 Problem

You want to apply the settings in a GPO to the users and/or computers within an OU, also known as
linking the GPO to the OU.

5.11.2 Solution

5.11.2.1 Using a graphical user interface

Open the Group Policy Management (GPMC) snap-in.1.

Expand Forest in the left pane.2.

Expand Domain and navigate down to the OU in the domain you want to link the GPO to.3.

Right-click on the OU and select either Create and Link a GPO Here (if the GPO does not already
exist) or Link an Existing GPO (if you have already created the GPO).

4.

5.11.2.2 Using VBScript

' This code links a GPO to an OU in the specified domain
' ------ SCRIPT CONFIGURATION ------

strDomainDN = "<DomainDN>" ' e.g. dc=rallencorp,dc=com

strGPO = "<GPOName>" ' e.g. WorkstationsGPO

strOUDN = "<OrgUnitDN>" ' e.g. ou=Workstations,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

strBaseDN = "<LDAP://cn=policies,cn=system,dc=" & strDomainDN & ">;"
strFilter = "(&(objectcategory=grouppolicycontainer)" & _
 "(objectclass=grouppolicycontainer)" & _
 "(displayname=" & strGPO & "));"
strAttrs = "ADsPath;"
strScope = "OneLevel"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBaseDN & strFilter & strAttrs & strScope)
if objRS.EOF <> TRUE then
 objRS.MoveFirst
end if

if objRS.RecordCount = 1 then
 strGPOADsPath = objRS.Fields(0).Value
 WScript.Echo "GPO Found: " & strGPOADsPath
elseif objRS.RecordCount = 0 then
 WScript.Echo "Did not founding matching GPO for: " & strGPO
 Wscript.Quit
elseif objRS.RecordCount > 1 then
 WScript.Echo "More than 1 GPO found matching: " & strGPO
 Wscript.Quit
end if

set objOU = GetObject("LDAP://" & strOUDN)

on error resume next
strGPLink = objOU.Get("gpLink")
if Err.Number then
 if Err.Number <> -2147463155 then
 WScript.Echo "Fatal error while retrieving gpLink attribute: " & _
 Err.Description
 Wscript.Quit
 end if
end if
on error goto 0

objOU.Put "gpLink", strGPLink & "[" & strGPOADsPath & ";0]"
objOU.SetInfo
WScript.Echo "GPO successfully linked"

5.11.3 Discussion

The GPOs that are linked to an OU are stored in the gpLink attribute of the OU. The format of the
gpLink attribute is kind of strange, so you have to be careful when programmatically or manually
setting that attribute. Since multiple GPOs can be linked to an OU, the gpLink attribute has to store

multiple values; unfortunately, it does not store them as you might expect in a multivalued attribute.
Instead, the links are stored as part of the single-valued gpLink attribute. The ADsPath of each linked

GPO is concatenated into a string, with each enclosed in square brackets. The ADsPath for each GPO is
followed by ;0 to signify the link is enabled or ;1 to signify the link is disabled. Here is an example
gpLink with two GPOs linked:

[LDAP://cn={6491389E-C302-418C-8D9D-
BB24E65E7507},cn=policies,cn=system,DC=rallencorp,DC=com;0][LDAP://cn={6AC1786C-016F-
11D2-945F-00C04fB984F9},cn=policies,cn=system,DC=rallencorp,DC=com;0]

A much better VBScript solution for linking GPOs is described in Recipe 9.12 , which uses the GPMC APIs.

5.11.4 See Also

Introduction in Chapter 9 for more information on GPMC, and MS KB 248392 (Scripting the Addition of
Group Policy Links)

[Team LiB]

[Team LiB]

Chapter 6. Users
Introduction

Recipe 6.1. Creating a User

Recipe 6.2. Creating a Large Number of Users

Recipe 6.3. Creating an inetOrgPerson User

Recipe 6.4. Modifying an Attribute for Several Users at Once

Recipe 6.5. Moving a User

Recipe 6.6. Renaming a User

Recipe 6.7. Copying a User

Recipe 6.8. Unlocking a User

Recipe 6.9. Finding Locked Out Users

Recipe 6.10. Troubleshooting Account Lockout Problems

Recipe 6.11. Viewing the Account Lockout and Password Policies

Recipe 6.12. Enabling and Disabling a User

Recipe 6.13. Finding Disabled Users

Recipe 6.14. Viewing a User's Group Membership

Recipe 6.15. Changing a User's Primary Group

Recipe 6.16. Transferring a User's Group Membership to Another User

Recipe 6.17. Setting a User's Password

Recipe 6.18. Setting a User's Password via LDAP

Recipe 6.19. Setting a User's Password via Kerberos

Recipe 6.20. Preventing a User from Changing His Password

Recipe 6.21. Requiring a User to Change Her Password at Next Logon

Recipe 6.22. Preventing a User's Password from Expiring

Recipe 6.23. Finding Users Whose Passwords Are About to Expire

Recipe 6.24. Setting a User's Account Options (userAccountControl)

Recipe 6.25. Setting a User's Account to Expire in the Future

Recipe 6.26. Finding Users Whose AccountsAre About to Expire

Recipe 6.27. Determining a User's Last Logon Time

Recipe 6.28. Finding Users Who Have Not Logged On Recently

Recipe 6.29. Setting a User's Profile Attributes

Recipe 6.30. Viewing a User's Managed Objects

Recipe 6.31. Modifying the Default Display Name Used When Creating Users in ADUC

Recipe 6.32. Creating a UPN Suffix for a Forest
[Team LiB]

[Team LiB]

Introduction

User accounts are one of the most frequently used types of objects in Active Directory. Because
Windows 2000 and Windows 2003 systems manage users through Active Directory, many key issues
that system administrators have to deal with are covered in this chapter. In particular, Active
Directory manages all the information regarding passwords, group membership, the disabling or
expiration of accounts, and when users have logged in.

The Anatomy of a User

The default location for user objects in a domain is the cn=Users container directly off the domain
root. You can, of course, create user objects in other containers and organizational units in a
domain. Table 6-1 contains a list of some of the interesting attributes that are available on user

objects. This is by no means a complete list. There are many other informational attributes that I
haven't included.

Table 6-1. Attributes of user objects

Attribute Description

accountExpires
Large integer representing when the user's account is going to expire. See
Recipe 6.25 for more information.

cn
Relative distinguished name of user objects. This is commonly the

username of the user.

displayName
Typically the full name of a user. This attribute is used in administrative
tools to display a user's descriptive "name."

givenName First name of the user.

homeDirectory
Local or UNC path of user's home directory. See Recipe 6.29 for more
information.

homeDrive
Defines the drive letter to map the user's home directory to. See Recipe
6.29 for more information.

lastLogon Last logon timestamp, which is not replicated among domain controllers.

lastLogonTimestamp
Approximate last logon timestamp, which is replicated among domain
controllers. This attribute is new in Windows Server 2003. See Recipe 6.27
for more information.

managedObjects
Multivalued linked attribute (with managedBy) that contains a list of DNs of

objects the user manages.

Attribute Description

lockoutTime
Large integer representation of the timestamp for when a user was locked
out. See Recipe 6.9 for more information.

memberOf
List of DNs of the groups the user is a member of. See Recipe 6.14 for more
information.

objectSID Octet string representing the SID of the user.

primaryGroupID ID of the primary group for the user. See Recipe 6.15 for more information.

profilePath UNC path to profile directory. See Recipe 6.29 for more information.

pwdLastSet
Large integer that can be translated into the last time the user's password
was set. See Recipe 6.23 for more information.

sAMAccountName NetBIOS style name of the user.

sidHistory
Multivalued attribute that contains a list of SIDs that is associated with the
user.

scriptPath Path to logon script. See Recipe 6.29 for more information.

sn Last name of user.

tokenGroups
List of SIDs for the groups in the domain the user is a member of (both
directly and via nesting).

unicodePwd
Octet string that contains the password for the user. This attribute cannot
be directly queried.

userAccountControl
Account flags that define such things as account status and password
change status.

userPrincipalName
Email-style account name for user, which a user can use to logon to a
computer.

userWorkstations Multivalued list of computers a user can logon to.

[Team LiB]

lockoutTime
Large integer representation of the timestamp for when a user was locked
out. See Recipe 6.9 for more information.

memberOf
List of DNs of the groups the user is a member of. See Recipe 6.14 for more
information.

objectSID Octet string representing the SID of the user.

primaryGroupID ID of the primary group for the user. See Recipe 6.15 for more information.

profilePath UNC path to profile directory. See Recipe 6.29 for more information.

pwdLastSet
Large integer that can be translated into the last time the user's password
was set. See Recipe 6.23 for more information.

sAMAccountName NetBIOS style name of the user.

sidHistory
Multivalued attribute that contains a list of SIDs that is associated with the
user.

scriptPath Path to logon script. See Recipe 6.29 for more information.

sn Last name of user.

tokenGroups
List of SIDs for the groups in the domain the user is a member of (both
directly and via nesting).

unicodePwd
Octet string that contains the password for the user. This attribute cannot
be directly queried.

userAccountControl
Account flags that define such things as account status and password
change status.

userPrincipalName
Email-style account name for user, which a user can use to logon to a
computer.

userWorkstations Multivalued list of computers a user can logon to.

[Team LiB]

[Team LiB]

Recipe 6.1 Creating a User

6.1.1 Problem

You want to create a user object.

6.1.2 Solution

6.1.2.1 Using a graphical user interface

Open the Active Directory Users and Computers (ADUC) snap-in.1.

If you need to change domains, right-click on "Active Directory Users and Computers" in the left pane,
select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, browse to the parent container of the new user, right-click on it, and select New
User.

3.

Enter the values for the first name, last name, full name, and user logon name fields as appropriate
and click Next.

4.

Enter and confirm password, set any of the password flags, and click Next.5.

Click Finish.6.

6.1.2.2 Using a command-line interface

> dsadd user "<UserDN>" -upn <UserUPN> -fn "<UserFirstName>" -ln "<UserLastName>"[RETURN]

-display "<UserDisplayName>" -pwd <UserPasswd>

6.1.2.3 Using VBScript

' Taken from ADS_USER_FLAG_ENUM
Const ADS_UF_NORMAL_ACCOUNT = 512

set objParent = GetObject("LDAP://<ParentDN>")

set objUser = objParent.Create("user", "cn=<UserName>") ' e.g. joes

objUser.Put "sAMAccountName", "<UserName>" ' e.g. joes

objUser.Put "userPrincipalName", "<UserUPN>" ' e.g. joes@rallencorp.com

objUser.Put "givenName", "<UserFirstName>" ' e.g. Joe

objUser.Put "sn", "<UserLastName>" ' e.g. Smith

objUser.Put "displayName", "<UserFirstName> <UserLastName>" ' e.g. Joe Smith
objUser.Put "userAccountControl", ADS_UF_NORMAL_ACCOUNT

objUser.SetInfo

objUser.SetPassword("<Password>")
objUser.AccountDisabled = FALSE
objUser.SetInfo

6.1.3 Discussion

The only mandatory attribute that must be set when creating a user is sAMAccountName , which is the

account name that is used to interoperate with down-level domains. To make the account immediately
available for a user to use, you'll need to make sure the account is enabled, which is accomplished by
setting userAccountControl to 512, and setting a password (see Recipe 6.17). If you allow UPN logons,
you'll want to make sure the userPrincipalName attribute is set.

With Windows Server 2003, you can also create user accounts using the inetOrgPerson class, which is
described in Recipe 6.3 . inetOrgPerson objects can be used for user authentication and restricting access
to resources in much the same way as user objects.

6.1.3.1 Using a graphical user interface

To set additional attributes, double-click on the user account after it has been created. There are several
tabs to choose from that contain attributes that are grouped together based on function (e.g., Profile).

6.1.3.2 Using a command-line interface

Several additional attributes can be set with the dsadd user command. Run dsadd user /? for the

complete list.

6.1.3.3 Using VBScript

Take a look at Recipe 6.24 for more information on the userAccountControl attribute and the various flags

that can be set for it.

6.1.4 See Also

Recipe 6.2 for creating users in bulk, Recipe 6.3 for creating an inetOrgPerson user, and MSDN:
ADS_USER_FLAG_ENUM

[Team LiB]

[Team LiB]

Recipe 6.2 Creating a Large Number of Users

6.2.1 Problem

You want to create a large number of user objects, either for testing purposes or to initially populate Active

Directory with your employee, customer, or student user accounts.

6.2.2 Solution

The following examples will create 1,000 users in the rallencorp.com domain under the Bulk OU. The password is

set, but no other attributes are configured. You can modify the examples to populate whatever attributes you
need.

6.2.2.1 Using a command-line interface

> for /L %i in (1,1,1000) do dsadd user cn=User%i,ou=bulk,dc=rallencorp,dc=com -pwd[RETURN]
User%i

6.2.2.2 Using VBScript

' This code creates a large number of users with incremented user names
' e.g. User1, User2, User3,
' ------ SCRIPT CONFIGURATION ------
intNumUsers = 1000 ' Number of users to create

strParentDN = "<ParentDN>" ' e.g. ou=bulk,dc=emea,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

' Taken from ADS_USER_FLAG_ENUM
Const ADS_UF_NORMAL_ACCOUNT = 512

set objParent = GetObject("LDAP://" & strParentDN)
for i = 1 to intNumUsers
 strUser = "User" & i
 Set objUser = objParent.Create("user", "cn=" & strUser)
 objUser.Put "sAMAccountName", strUser
 objUser.Put "userAccountControl", ADS_UF_NORMAL_ACCOUNT
 objUser.SetInfo
 objUser.SetPassword(strUser)
 objUser.AccountDisabled=FALSE
 objUser.SetInfo
 WScript.Echo "Created " & strUser
next
WScript.Echo ""
WScript.Echo "Created " & intNumUsers & " users"

6.2.3 Discussion

Using ADSI and even the new DS command line utilities on Windows Server 2003, you can create hundreds and
even thousands of users easily and quickly. I ran both the CLI and VBScript solutions in a test domain, which
create 1,000 user objects, on a single processor machine. The VBScript solution took less than 1.5 minutes and
the CLI solution took less than 5 minutes. Admittedly, they are not populating very many attributes, but it shows
that you can quickly populate Active Directory with user accounts very easily. You can also modify the examples
to pull from a data source, such as an employee database, and use real data.

6.2.4 See Also

Recipe 6.1 for creating a user

[Team LiB]

[Team LiB]

Recipe 6.3 Creating an inetOrgPerson User

6.3.1 Problem

You want to create an inetOrgPerson object, which is the standard LDAP object class to represent

users.

6.3.2 Solution

6.3.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on "Active Directory Users and Computers" in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, browse to the parent container of the new user, right-click on it, and select
New InetOrgPerson.

3.

Enter first name, last name, and user logon name fields as appropriate and click Next.4.

Enter and confirm the password, set any of the password flags, and click Next.5.

Click Finish.6.

6.3.2.2 Using a command-line interface

The dsadd command does not support creating inetOrgPerson objects so we'll use ldifde instead.

First, we need to create an LDIF file called create_inetorgperson.ldf with the following contents:

dn: <UserDN>
changetype: add
objectclass: inetorgperson

sAMAccountName: <UserName>
userAccountControl: 512

Be sure to replace <UserDN> with the distinguished name of the user you want to add and

<UserName> with the user's username. Then run the following command:

> ldifde -i -f create_inetorgperson.ldf

6.3.2.3 Using VBScript

' This code creates an inetOrgPerson object

set objParent = GetObject("LDAP://<ParentDN>")

set objUser = objParent.Create("inetorgperson", "cn=<UserName>")

' Taken from ADS_USER_FLAG_ENUM
Const ADS_UF_NORMAL_ACCOUNT = 512

objUser.Put "sAMAccountName", "<UserName>"

objUser.Put "userPrincipalName", "<UserUPN>"

objUser.Put "givenName", "<UserFirstName>"

objUser.Put "sn", "<UserLastName>"

objUser.Put "displayName", "<UserFirstName> <UserLastName>"
objUser.Put "userAccountControl", ADS_UF_NORMAL_ACCOUNT
objUser.SetInfo

objUser.SetPassword("<Password>")
objUser.AccountDisabled = FALSE
objUser.SetInfo

6.3.3 Discussion

The inetOrgPerson object class was defined in RFC 2798. It is the closest thing in the LDAP world to a
standard representation of a user, and most LDAP vendors support the inetOrgPerson class.
Unfortunately, Microsoft did not support inetOrgPerson with the initial release of Active Directory.

Even though they provided an add-on later to extend the schema to support it, the damage had been
done. Most Active Directory implementations were already using the user object class and were
unlikely to convert. This required vendors to build in support for the user class.

You can download the InetOrgPerson Kit for Windows 2000 from the following
web site: http://msdn.microsoft.com/library/en-us/dnactdir/html/inetopkit.asp.
This requires that you extend the schema to support an additional object class
and new attributes. It also creates a schema conflict with Windows Server
2003. See MS KB 314649 for more information.

In Windows Server 2003 Active Directory, inetOrgPerson is supported natively. You can create
inetOrgPerson objects for your users, who can use them to authenticate just as they would
accounts of the user object class. If you haven't deployed Active Directory yet and you plan on
integrating a lot of third-party LDAP-based applications that rely on inetOrgPerson, you may want
to consider using it over user. You won't be losing any information or functionality because the
inetOrgPerson class inherits directly from the user class. For this reason, the inetOrgPerson class
has even more attributes than the Microsoft user class. The one potential downside is that some of
the Microsoft tools, such as the DS utilities, do not support modifying inetOrgPerson objects.

6.3.4 See Also

http://msdn.microsoft.com/library/en-us/dnactdir/html/inetopkit.asp

Recipe 6.1 for creating a user and RFC 2798 (Definition of the inetOrgPerson LDAP Object Class)

[Team LiB]

[Team LiB]

Recipe 6.4 Modifying an Attribute for Several Users at Once

6.4.1 Problem

You want to modify an attribute for several users at once.

6.4.2 Solution

6.4.2.1 Using a graphical user interface

This requires the Windows Server 2003 version of the Active Directory Users and
Computers snap-in.

Open the Active Directory Users and Computers (ADUC) snap-in.1.

If you need to change domains, right-click on "Active Directory Users and Computers" in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, browse to the parent container of the objects you want to modify.3.

In the right pane, highlight each object you want to modify, right-click and select Properties.4.

Check the box beside the attribute(s) you want to modify and edit the fields for the attributes.5.

Click OK.6.

6.4.2.2 Using a command-line interface

The following command sets the home directory of all users under a parent container (<ParentDN>) to

be on a particular file server (<FileServer>). The user (i.e., $username$) is automatically replaced
with the sAMAccountName for the user.

> for /F "usebackq delims=""" %i in (`dsquery user "< ParentDN>" -limit 0 -scope[RETURN]

onelevel`) do dsmod user -hmdir "\\<FileServerName>\$username$" %i

6.4.2.3 Using VBScript

' This code sets the home drive of all users under a container
' to be on a file server where the share name is the same as the user's
' sAMAccountName.

set objParent = GetObject("LDAP://<ParentDN>")

objParent.Filter = Array("user")
for each objUser in objParent
 Wscript.Echo "Modifying " & objUser.Get("sAMAccountName")

 objUser.HomeDirectory = "\\<FileServerName>\" & _
 objUser.Get("sAMAccountName")
 objUser.SetInfo
next

6.4.3 Discussion

It is often necessary to update several users at once due to an organizational, locational or file server
change. In each solution, I showed how to modify all users within a parent container, but you may need
to use different criteria for locating the users.

With ADUC, you are limited to modifying multiple users that belong to the same container. You can,
however, create a Saved Query with the Windows Server 2003 version of ADUC that returns users based
on any criteria you specify. You can then highlight those users and modify them as described in the GUI
solution.

With the CLI solution, you can modify the dsquery user command to search on whatever criteria you

want. The same applies in the VBScript solution, but you'll need to use an ADO query instead of the
Filter method if you want to do anything more complex. See Recipe 4.5 for more information on

searching with ADO.

[Team LiB]

[Team LiB]

Recipe 6.5 Moving a User

6.5.1 Problem

You want to move a user object to a different container or OU.

6.5.2 Solution

6.5.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on "Active Directory Users and Computers" in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, right-click on the domain and select Find.3.

Type the name of the user and click Find Now.4.

In the Search Results, right-click on the user and select Move.5.

Browse to the new parent container or OU and click on it.6.

Click OK.7.

6.5.2.2 Using a command-line interface

> dsmove "<UserDN>" -newparent "<NewParentDN>"

6.5.2.3 Using VBScript

' This code moves a user from one container to another.
' ------ SCRIPT CONFIGURATION ------

strUserDN = "<UserDN>" ' e.g. cn=rallen,cn=users,dc=rallencorp,dc=com

strOUDN = "<NewParentDN>" ' e.g. ou=Sales,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

Set objUser = GetObject("LDAP://" & strUserDN)
Set objOU = GetObject("LDAP://" & strOUDN)

objOU.MoveHere objUser.ADsPath, objUser.Name

6.5.3 Discussion

Moving a user object between OUs in the same domain has no direct impact to the actual user. The

only thing to be cautious of is the impact of moving the user to a new OU that may have different
security or GPOs applied to it.

6.5.4 See Also

Recipe 4.17 for moving objects between OUs

[Team LiB]

[Team LiB]

Recipe 6.6 Renaming a User

6.6.1 Problem

You want to rename a user.

6.6.2 Solution

6.6.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Type the name of the user and click Find Now.3.

In the Search Results, right-click on the user and select Rename.4.

You can modify the Full Name, Last Name, First Name, Display Name, User Principal Name
(logon name), and SAM Account Name (pre-Windows 2000).

5.

Click OK after you are done.6.

6.6.2.2 Using a command-line interface

The following command will rename the RDN of the user:

> dsmove "<UserDN>" -newname "<NewUserName>"

You can modify the UPN (-upn), First Name (-fn), Last Name (-ln), and Display Name (-display)
using the dsmod user command. For example, the following command would change the user's UPN

and last name:

> dsmod user "<UserDN>" -upn "<NewUserUPN>" -ln "<NewUserLastName>"

6.6.2.3 Using VBScript

' This code renames the RDN of a user and the sAMAccountName attribute.
' ------ SCRIPT CONFIGURATION ------

strParentDN = "<ParentDN>" ' e.g. cn=Users,dc=rallencorp,dc=com

strUserOldName = "<OldUserName>" ' e.g. jsmith

strUserNewName = "<NewUserName>" ' e.g. jim
' ------ END CONFIGURATION ---------

set objCont = GetObject("LDAP://" & strParentDN)
objCont.MoveHere "LDAP://cn=" & strUserOldName & "," & strParentDN, _
 "cn=" & strUserNewName
set objUser = GetObject("LDAP://cn=" & strUserNewName & "," & strParentDN)
objUser.Put "sAMAccountName", strUserNewName
objUser.SetInfo
WScript.Echo "Rename successful"

6.6.3 Discussion

Renaming a user object can have a couple different meanings in Active Directory. In the generic

object sense, renaming an object consists of changing the RDN for the object to something else, such
as if cn=jsmith became cn=joe. Typically, you need to rename more than that with users. For

example, let's say you had a username naming convention of FirstInitialLastName so Joe Smith's
username would be jsmith. Let's pretend that Joe decides one day that Smith is way too common

and he wants to be more unique by changing his last name to Einstein. Now his username should be
jeinstein. The following attributes would need to change to complete a rename of his object:

His RDN should change from cn=jsmith to cn=jeinstein.

His sAMAccountName should change to jeinstein.

His userPrincipalName (UPN) should change to jeinstein@rallencorp.com.

His mail (email address) attribute should change to jeinstein@rallencorp.com.

His sn (last name) attribute should change to Einstein.

While this example may be contrived, it shows that renaming Joe Smith to Joe Einstein can take up
to five attribute changes in Active Directory. It is also important to note that if you change any of the
first three in the bulleted list (RDN, UPN, or SAM Account Name), you should have the user log off
and log back on after the changes have replicated. Since most applications and services rely on user
GUID or SID, which doesn't change during a user rename, the person should not be impacted, but
you want to have him log off and back on anyway just in case.

6.6.4 See Also

Recipe 4.19 for renaming objects

[Team LiB]

[Team LiB]

Recipe 6.7 Copying a User

6.7.1 Problem

You want to copy an existing user account, which may be serving as a template, in order to create a
new account.

6.7.2 Solution

6.7.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, browse to the parent container of the template user object.2.

In the right pane, right-click on the user and select Copy.3.

Enter the name information for the new user and click Next.4.

Enter a password, check any options you want enabled, and click Next.5.

Click Finish.6.

6.7.2.2 Using VBScript

' This code copies the attributes in the Attrs array from an
' existing object to a new one.
' ------ SCRIPT CONFIGURATION ------
arrAttrs = Array("department","co","title","l", "c", "st")

strParentDN = "<ParentContainer>" ' e.g. cn=Users,dc=rallencorp,dc=com

strTemplateUser = "<TemplateUserName>" ' e.g. template-user-sales

strNewUser = "<NewUserName>" ' e.g. jdoe

strPassword = "<Password>"
' ------ END CONFIGURATION ---------

Const ADS_UF_NORMAL_ACCOUNT = 512 ' from ADS_USER_FLAG_ENUM

Set objTemplate = GetObject("LDAP://cn=" & strTemplateUser & _
 "," & strParentDN)
Set objParent = GetObject("LDAP://" & strParentDN)

Set objUser = objParent.Create("user", "cn=" & strNewUser)

objUser.Put "sAMAccountName", strNewUser
objUser.Put "userAccountControl", ADS_UF_NORMAL_ACCOUNT

for each strAttr in arrAttrs
 objUser.Put strAttr, objTemplate.Get(strAttr)
next

objUser.SetInfo
objUser.SetPassword(strPassword)
objUser.AccountDisabled = FALSE
objUser.SetInfo
WScript.Echo "Successfully created user"

6.7.3 Discussion

Copying a user consists of copying the attributes that are common among a certain user base, which
can include department, address, and perhaps even organizational information. ADUC actually uses
attributes that are marked in the schema as "Copied when duplicating a user" to determine which
attributes to copy. The VBScript solution just used a hardcoded set of attributes. If you are interested
in finding the attributes that are configured in the schema to get copied, see Recipe 10.12.

6.7.3.1 Using a graphical user interface

In order to copy a user in ADUC, you have to browse to the user object. If you locate the user by

using Find instead, the Copy option is not available when right-clicking a user in the search results
window.

6.7.3.2 Using VBScript

ADSI has a CopyHere method, but it is available only for the NDS provider. It was not implemented

for the LDAP provider and so copying a user via a single method is not supported.

6.7.4 See Also

Recipe 10.12 for finding the attributes that should be copied when duplicating a user

[Team LiB]

[Team LiB]

Recipe 6.8 Unlocking a User

6.8.1 Problem

You want to unlock a locked out user.

6.8.2 Solution

6.8.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Type the name of the user beside Name and click Find Now.4.

In the Search Results, right-click on the user and select Unlock.5.

Click OK.6.

6.8.2.2 Using VBScript

' This code unlocks a locked user.
' ------ SCRIPT CONFIGURATION ------

strUsername = "<UserName>" ' e.g. jsmith

strDomain = "<NetBiosDomainName>" ' e.g. RALLENCORP
' ------ END CONFIGURATION ---------

set objUser = GetObject("WinNT://" & strDomain & "/" & strUsername)
if objUser.IsAccountLocked = TRUE then
 objUser.IsAccountLocked = FALSE
 objUser.SetInfo
 WScript.Echo "Account unlocked"
else
 WScript.Echo "Account not locked"
end if

6.8.3 Discussion

If you've enabled account lockouts in a domain (see Recipe 6.11), users will inevitably get locked out.
A user can get locked out for a number of reasons, but generally it is either because a user mistypes
his password a number of times, or he changes his password and does not log off and log on again,
or has mapped drives.

You can use ADSI's IADsUser::IsAccountLocked method to determine if a user is locked out. You
can set IsAccountLocked to FALSE to unlock a user. Unfortunately, there is a bug with the LDAP

provider version of this method so you have to use the WinNT provider instead. See MS KB 250873
for more information on this bug.

6.8.4 See Also

Recipe 6.9 for finding locked out users, Recipe 6.11 for viewing the account lockout policy, MS KB
250873 (Programmatically Changing the Lockout Flag in Windows 2000), and MSDN: Account Lockout

[Team LiB]

[Team LiB]

Recipe 6.9 Finding Locked Out Users

6.9.1 Problem

You want to find users that are locked out.

6.9.2 Solution

6.9.2.1 Using a command-line interface

The following command finds all locked-out users in the domain of the specified domain controller:

> unlock <DomainControllerName> * -view

Unlock.exe was written by Joe Richards (http://www.joeware.net/) and can be

downloaded from http://www.joeware.net/win32/zips/Unlock.zip.

6.9.3 Discussion

Finding the accounts that are currently locked out is a surprisingly complicated task. You would
imagine that you could run a query similar to the one to find disabled users, but unfortunately, it is
not that easy.

The lockoutTime attribute is populated with a timestamp when a user is locked. One way to find
locked out users would be to find all users that have something populated in lockoutTime (i.e.,
lockoutTime=*). That query would definitely find all the currently locked users, but it would also find

all the users that were locked, became unlocked, and have yet to log in since being unlocked. This is
where the complexity comes into place.

To determine the users that are currently locked out, you have to query the lockoutDuration

attribute stored on the domain object (e.g., dc=rallencorp,dc=com). This attribute defines the
number of minutes that an account will stay locked before becoming automatically unlocked. We
need to take this value and subtract it from the current time to derive a timestamp that would be the
outer marker for which users could still be locked. We can then compare this timestamp with the
lockoutTime attribute of user objects. The search filter to find all locked users once you've

determined the locked timestamp would look something like this:

(&(objectcategory=Person)(objectclass=user)(lockoutTime>DerivedTimestamp))

http://www.joeware.net/
http://www.joeware.net/win32/zips/Unlock.zip

For any users that have a lockoutTime that is less than the derived timestamp, their account has
already been automatically unlocked per the lockoutDuration setting.

None of the current standard GUI or CLI tools incorporate this kind of logic, but fortunately, Joe
Richards wrote the unlock.exe utility, which does. And as its name implies, you can also unlock

locked accounts with it as well. Thanks, Joe!

6.9.4 See Also

MS KB 813500 (Support WebCast: Microsoft Windows 2000 Server and Windows Server 2003:
Password and Account Lockout Features)

[Team LiB]

[Team LiB]

Recipe 6.10 Troubleshooting Account Lockout Problems

6.10.1 Problem

A user is having account lockout problems and you need to determine where it is getting locked from
and how it is getting locked out.

6.10.2 Solution

6.10.2.1 Using a graphical user interface

LockoutStatus is a new tool available for Windows 2000 or Windows Server 2003 that can help

identify which domain controllers users are getting locked out. It works by querying the lockout
status of a user against all domain controllers in the user's domain.

To determine the lockout status of a user

Open LockoutStatus and select File Select Target from the menu.1.

Enter the target user name and the domain of the user.2.

Click OK.3.

At this point, each domain controller in the domain will be queried and the results will be displayed.

6.10.3 Discussion

The Lockoutstatus.exe tool is just one of many that are available in the new "Account Lockout and

Management" tool set provided by Microsoft. These new lockout tools are intended to help
administrators with account lockout problems that are very difficult to troubleshoot given the tools
available under Windows 2000. Along with the tool mentioned in the Solution Section, here are a few
others that are included in the set:

ALockout.dll

A script that uses this DLL called EnableKerbLog.vbs is included with the tool set that can be
used to enable logging of application authentication. This can help identify applications using
bad credentials that are causing account lockouts.

ALoInfo.exe

Displays services and shares that are using a particular account name. It can also print all the
users and their password age.

NLParse.exe

Filter tool for the netlogon.log files. You can use it to extract just the lines that relate to
account lockout information.

All of the new Account Lockout tools can be downloaded from:

http://microsoft.com/downloads/details.aspx?familyid=7AF2E69C-91F3-4E63-8629-
B999ADDE0B9E&displaylang=en.

6.10.4 See Also

MS KB 813500 (Support WebCast: Microsoft Windows 2000 Server and Windows Server 2003:
Password and Account Lockout Features)

[Team LiB]

http://microsoft.com/downloads/details.aspx?familyid=7AF2E69C-91F3-4E63-8629-

[Team LiB]

Recipe 6.11 Viewing the Account Lockout and Password
Policies

6.11.1 Problem

You want to view the account lockout and password policies for a domain.

6.11.2 Solution

6.11.2.1 Using a graphical user interface

Open the Domain Security Policy snap-in.1.

In the left menu, expand Default Domain Policy Computer Configuration Windows
Settings Security Settings Account Policies.

2.

Click on Password Policy or Account Lockout Policy and double-click the property you want to set
or view in the right frame.

3.

6.11.2.2 Using a command-line interface

> enumprop /ATTR:[RETURN]
lockoutduration,lockoutthreshold,lockoutobservationwindow,maxpwdage,minpwdage,[RETURN]

minpwdlength,pwdhistorylength,pwdproperties "LDAP://<DomainDN>"

6.11.2.3 Using VBScript

' This code displays the current settings for the password
' and account lockout policies.
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDN>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
set objDomain = GetObject("LDAP://" & _
 objRootDSE.Get("defaultNamingContext"))

' Hash containing the domain password and lockout policy attributes
' as keys and the units (e.g. minutes) as the values
set objDomAttrHash = CreateObject("Scripting.Dictionary")
objDomAttrHash.Add "lockoutDuration", "minutes"
objDomAttrHash.Add "lockoutThreshold", "attempts"

objDomAttrHash.Add "lockoutObservationWindow", "minutes"
objDomAttrHash.Add "maxPwdAge", "minutes"
objDomAttrHash.Add "minPwdAge", "minutes"
objDomAttrHash.Add "minPwdLength", "characters"
objDomAttrHash.Add "pwdHistoryLength", "remembered"
objDomAttrHash.Add "pwdProperties", " "

' Iterate over each attribute and print it
for each strAttr in objDomAttrHash.Keys
 if IsObject(objDomain.Get(strAttr)) then
 set objLargeInt = objDomain.Get(strAttr)
 if objLargeInt.LowPart = 0 then
 value = 0
 else
 value = Abs(objLargeInt.HighPart * 2^32 + objLargeInt.LowPart)
 value = int (value / 10000000)
 value = int (value / 60)
 end if
 else
 value = objDomain.Get(strAttr)
 end if
 WScript.Echo strAttr & " = " & value & " " & objDomAttrHash(strAttr)
next

'Constants from DOMAIN_PASSWORD_INFORMATION
Set objDomPassHash = CreateObject("Scripting.Dictionary")
objDomPassHash.Add "DOMAIN_PASSWORD_COMPLEX", &h1
objDomPassHash.Add "DOMAIN_PASSWORD_NO_ANON_CHANGE", &h2
objDomPassHash.Add "DOMAIN_PASSWORD_NO_CLEAR_CHANGE", &h4
objDomPassHash.Add "DOMAIN_LOCKOUT_ADMINS", &h8
objDomPassHash.Add "DOMAIN_PASSWORD_STORE_CLEARTEXT", &h16
objDomPassHash.Add "DOMAIN_REFUSE_PASSWORD_CHANGE", &h32

' The PwdProperties attribute requires special processing because
' it is a flag that holds multiple settings.
for each strFlag In objDomPassHash.Keys
 if objDomPassHash(strFlag) and objDomain.Get("PwdProperties") then
 WScript.Echo " " & strFlag & " is enabled"
 else
 WScript.Echo " " & strFlag & " is disabled"
 end If
next

6.11.3 Discussion

Several parameters controlling account lockout and password complexity can be set on the Domain
Security GPO. The properties that can be set for the "Account Lockout Policy" include:

Account lockout duration

Number of minutes an account will be locked before being automatically unlocked. A value of 0

indicates accounts will be locked out indefinitely, i.e., until an administrator manually unlocks
them.

Account lockout threshold

Number of failed logon attempts after which an account will be locked.
Reset account lockout counter after

Number of minutes after a failed logon attempt that the failed logon counter for an account will be
reset to 0.

The properties that can be set for the "Password Policy" include:

Enforce password history

Number of passwords to remember before a user can reuse a previous password.
Maximum password age

Maximum number of days a password can be used before a user must change it.
Minimum password age

Minimum number of days a password must be used before it can be changed.
Minimum password length

Minimum number of characters a password must be.
Password must meet complexity requirements

If enabled, passwords must meet all of the following criteria:

Not contain all or part of the user's account name

Be at least six characters in length

Contain characters from three of the following four categories:

English uppercase characters (A-Z)

English lowercase characters (a-z)

Base 10 digits (0-9)

Nonalphanumeric characters (e.g., !, $, #, %)
Store passwords using reversible encryption

If enabled, passwords are stored in such a way that they can be retrieved and decrypted. This is
essentially the same as storing passwords in plain text.

6.11.3.1 Using a graphical user interface

On a domain controller or machine that has adminpak.msi installed, the Domain Security Policy snap-in
is present from the Start menu under Administrative Tools. On a member server, you need to open the
GPO snap-in and locate the Domain Security policy. See Introduction in Chapter 9 for more information
on GPOs.

6.11.3.2 Using a command-line interface

There is no standard CLI that can be used to modify a GPO, but you can use enumprop to view each of

the attributes on the domain object that make up the account lockout and password policy settings.

6.11.3.3 Using VBScript

The VBScript solution required quite a bit of code to perform a simple task; printing out the account
lockout and password policy settings. First, I created a Dictionary object with each of the six attributes
as the keys and the unit's designation for each key (e.g., minutes) as the value. I then iterated over
each key, printing it along with the value retrieved from the domain object.

Some additional code was necessary to distinguish between the values returned from some of the
attributes. In the case of the time-based attributes, such as lockoutDuration , a IADsLargeInteger
object was returned from the Get method instead of a pure integer or string value. IADsLargeInteger

objects represent 64-bit, also known as Integer8, numbers. 32-bit systems, which make up the
majority of systems today, have to break 64-bit numbers into two parts (a high and low part) in order
to store them. Unfortunately, VBScript cannot natively handle a 64-bit number and stores it as a double
precision. To convert a 64-bit number into something VBScript can handle, we have to first multiply the
high part by 4,294,967,296 (2^32) and then add the low part to the result.

value = Abs(objLargeInt.HighPart * 2^32 + objLargeInt.LowPart)

Then I divided by 10,000,000 or 10^7, which represents the number of 100 nanosecond intervals per
second.

value = int (value / 10000000)

I then used the int function to discard any remainder and finally divided the result by 60 (number of

seconds).

value = int (value / 60)

Note that the result is only an approximation in minutes and can be off by several minutes, hours, or
even days depending on the original value.

The last part of the code iterates over another Dictionary object that contains constants representing
various flags that can be set as part of the pwdProperties attribute.

6.11.4 See Also

MS KB 221930 (Domain Security Policy in Windows 2000), MS KB 255550 (Configuring Account Policies
in Active Directory), MSDN: IADsLargeInteger, and MSDN: DOMAIN_PASSWORD_INFORMATION

[Team LiB]

[Team LiB]

Recipe 6.12 Enabling and Disabling a User

6.12.1 Problem

You want to enable or disable a user.

6.12.2 Solution

6.12.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Type the name of the user beside Name and click Find Now.4.

In the Search Results, right-click on the user and select Enable Account to enable or Disable
Account to disable.

5.

Click OK.6.

6.12.2.2 Using a command-line interface

To enable a user, use the following command:

> dsmod user <UserDN> -disabled no

To disable a user, use the following command:

> dsmod user <UserDN> -disabled yes

6.12.2.3 Using VBScript

' This code will enable or disable a user.
' ------ SCRIPT CONFIGURATION ------
' Set to FALSE to disable account or TRUE to enable account
strDisableAccount = FALSE

strUserDN = "<UserDN>" ' e.g. cn=jsmith,cn=Users,dc=rallencorp,dc=com

' ------ END CONFIGURATION ---------

set objUser = GetObject("LDAP://" & strUserDN)
if objUser.AccountDisabled = TRUE then
 WScript.Echo "Account for " & objUser.Get("cn") & " currently disabled"
 if strDisableAccount = FALSE then
 objUser.AccountDisabled = strDisableAccount
 objUser.SetInfo
 WScript.Echo "Account enabled"
 end if
else
 WScript.Echo "Account currently enabled"
 if strDisableAccount = TRUE then
 objUser.AccountDisabled = strDisableAccount
 objUser.SetInfo
 WScript.Echo "Account disabled"
 end if
end if

6.12.3 Discussion

Account status is used to control if a user is allowed to log on or not. When an account is disabled,
the user is not allowed to log on to her workstation with the account or access AD controlled
resources. Much like the lockout status, the account status is stored as a flag in the
userAccountControl attribute (see Recipe 6.24).

There is an IADsUser::AccountDisabled property that allows you to determine and change the

status. Set the method FALSE to enable the account or TRUE to disable.

6.12.4 See Also

Recipe 6.13 for finding disabled users, and Recipe 6.24 for more on the userAccountControl

attribute

[Team LiB]

[Team LiB]

Recipe 6.13 Finding Disabled Users

6.13.1 Problem

You want to find disabled users in a domain.

6.13.2 Solution

6.13.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, connect to the domain you want to query.2.

Right-click on the domain and select Find.3.

Beside Find, select Common Queries.4.

Check the box beside "disabled accounts."5.

Click the Find Now button.6.

6.13.2.2 Using a command-line interface

> dsquery user <DomainDN> -disabled

6.13.2.3 Using VBScript

' This code finds all disabled user accounts in a domain.
' ------ SCRIPT CONFIGURATION ------

strDomainDN = "<DomainDN>" ' e.g. dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

strBase = "<LDAP://" & strDomainDN & ">;"
strFilter = "(&(objectclass=user)(objectcategory=person)" & _
 "(useraccountcontrol:1.2.840.113556.1.4.803:=2));"
strAttrs = "name;"
strScope = "subtree"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
objRS.MoveFirst
while Not objRS.EOF
 Wscript.Echo objRS.Fields(0).Value
 objRS.MoveNext
wend

6.13.3 Discussion

Users in Active Directory can either be enabled or disabled. A disabled user cannot log in to the
domain. Unlike account lockout, which is an automatic process that is based on the number of times
a user incorrectly enters a password, an account has to be manually enabled or disabled.

All disabled user accounts have the bit that represents 2 (0010) set in their userAccountControl

attribute. This doesn't mean that the attribute will be equal to 2, it just means that the bit that equals
2 will be enabled-other bits may also be set. See Recipe 4.9 and Recipe 4.12 for a more detailed
explanation of bit flags.

6.13.4 See Also

Recipe 6.12 for enabling and disabling users

[Team LiB]

[Team LiB]

Recipe 6.14 Viewing a User's Group Membership

6.14.1 Problem

You want to view the group membership of a user.

6.14.2 Solution

6.14.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Type the name of the user beside Name and click Find Now.4.

In the Search Results, double-click on the user.5.

Click the Member Of tab.6.

To view all indirect group membership (from nested groups), you'll need to double-click on each
group.

7.

6.14.2.2 Using a command-line interface

The following command displays the groups <UserDN> is a member of. Use the -expand switch to list

nested group membership as well:

> dsget user <UserDN> -memberof [-expand]

6.14.2.3 Using VBScript

' This code displays the group membership of a user.
' It avoids infinite loops due to circular group nesting by
' keeping track of the groups that have already been seen.
' ------ SCRIPT CONFIGURATION ------

strUserDN = "<UserDN>" ' e.g. cn=jsmith,cn=Users,dc=rallencorp,dc=com

' ------ END CONFIGURATION ---------

set objUser = GetObject("LDAP://" & strUserDN)
Wscript.Echo "Group membership for " & objUser.Get("cn") & ":"
strSpaces = ""
set dicSeenGroup = CreateObject("Scripting.Dictionary")
DisplayGroups "LDAP://" & strUserDN, strSpaces, dicSeenGroup

Function DisplayGroups (strObjectADsPath, strSpaces, dicSeenGroup)

 set objObject = GetObject(strObjectADsPath)
 WScript.Echo strSpaces & objObject.Name
 on error resume next ' Doing this to avoid an error when memberOf is empty
 if IsArray(objObject.Get("memberOf")) then
 colGroups = objObject.Get("memberOf")
 else
 colGroups = Array(objObject.Get("memberOf"))
 end if

 for each strGroupDN In colGroups
 if Not dicSeenGroup.Exists(strGroupDN) then
 dicSeenGroup.Add strGroupDN, 1
 DisplayGroups "LDAP://" & strGroupDN, strSpaces & " ", dicSeenGroup
 end if
 next

End Function

6.14.3 Discussion

The memberOf attribute on user objects is multivalued and contains the list of distinguished names
for the groups the user is a member. memberOf is actually linked with the member attribute on group

objects, which holds the distinguished names of its members. For this reason, you cannot directly
modify the memberOf attribute; you must instead modify the member attribute on the group.

The primary group of a user, which the user is technically a member of, will not be shown in either
the CLI or VBScript solutions. This is due to the fact that the primary group is not stored in the
memberOf attribute like the rest of the groups. See Recipe 6.15 and Recipe 7.8 for more on finding

the primary group of a user.

6.14.4 See Also

Recipe 7.3 for more on viewing the nested members of a group and Recipe 10.16 for more
information on linked attributes

[Team LiB]

[Team LiB]

Recipe 6.15 Changing a User's Primary Group

6.15.1 Problem

You want to change the primary group of a user.

6.15.2 Solution

6.15.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Type the name of the user beside Name and click Find Now.4.

In the Search Results, double-click on the user.5.

Click the Member Of tab.6.

Click on the name of the group you want to set as the primary group.7.

Click the Set Primary Group button.8.

Click OK.9.

6.15.2.2 Using VBScript

' This code first checks to see if the user's primary group is already
' set to the specified group. If not it will a) add the user to the group
' if not already a member and b) set the primary group id to the group.
' ------ SCRIPT CONFIGURATION ------

strUserDN = "<UserDN>" ' e.g. cn=rallen,ou=Sales,dc=rallencorp,dc=com

strGroupDN = "<GroupDN>" ' e.g. cn=SalesGroup,ou=Sales,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

Const ADS_PROPERTY_APPEND = 3

set objUser = GetObject("LDAP://" & strUserDN)
WScript.Echo

set objGroup = GetObject("LDAP://" & strGroupDN)
objGroup.GetInfoEx Array("primaryGroupToken"), 0
if objGroup.Get("primaryGroupToken") = objUser.Get("primaryGroupID") then
 WScript.Echo "Primary group for user already set to " & strGroupDN
 WScript.Quit
end if

intAddMember = 1
for each strMemberDN in objUser.GetEx("memberOf")
 if LCase(strMemberDN) = LCase(strGroupDN) then
 intAddMember = 0
 Exit for
 end if
next

if intAddMember > 0 then
 objGroup.PutEx ADS_PROPERTY_APPEND, "member", Array(strUserDN)
 objGroup.SetInfo
 WScript.Echo "Added " & strUserDN & " as member of " & strGroupDN
end if

objUser.Put "primaryGroupID", objGroup.Get("primaryGroupToken")
objUser.SetInfo
WScript.Echo "Changed primary group id of " & strUserDN & _
 " to " & objGroup.Get("primaryGroupToken")

6.15.3 Discussion

The primary group is a holdover from Windows NT that was used to support Macintosh and POSIX
clients, but it is not used actively in Active Directory. That said, you might have some legacy
applications that depend on the primary group, and therefore, you may have to change some users'
primary group.

Changing the primary group is not difficult, but it is not straightforward either. The primary group is
stored on user objects in the primaryGroupID attribute, which contains the RID of the primary
group. You can obtain this value by querying the primaryGroupToken attribute on the target group
object. Before you can set the primaryGroupID on the user object, you have to first make sure the
user is a member of the group. If you try to set the primaryGroupID for a group in which the user is

not a member, you will get an error.

The default primaryGroupID is set to 513 (Domain Users) for all users.

6.15.4 See Also

Recipe 7.8 for determining the group name given a group ID, MS KB 297951 (HOWTO: Use the
PrimaryGroupID Attribute to Find the Primary Group for a User), MS KB 321360 (How to Use Native
ADSI Components to Find the Primary Group), and MS KB 243330 (Well Known Security Identifiers in

Windows 2000)

[Team LiB]

[Team LiB]

Recipe 6.16 Transferring a User's Group Membership to
Another User

6.16.1 Problem

You want to transfer the group membership for one user to another.

6.16.2 Solution

6.16.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Beside Name, type the name of the user you want to transfer groups from and click Find Now.4.

In the Search Results, double-click on the user.5.

Click the Member Of tab.6.

For each group you want to add another user in, do the following:

Double-click on the group.a.

Click the Members tab.b.

Click the Add button.c.

Find the user you want to add in the object picker and click OK.d.

Click OK.e.

7.

6.16.2.2 Using a command-line interface

The following command line will add <NewUserDN> to all of the groups that <CurrentUserDN> is a member

of:

> for /F "usebackq delims=""" %i in (`dsget user "<CurrentUserDN>" -memberof`) do[RETURN]

dsmod group %i -addmbr "<NewUserDN>"

If you want to get fancy and remove <CurrentUserDN> from each of the groups in the same operation,
simply add an -rmmbr option on the end:

> for /F "usebackq delims=""" %i in (`dsget user "<CurrentUserDN>" -memberof`) do[RETURN]

dsmod group %i -addmbr "<NewUserDN>" -rmmbr "<CurrentUserDN>"

6.16.2.3 Using VBScript

' This code adds the "new" user to the groups the "current"
' user is a member of
' ------ SCRIPT CONFIGURATION ------

strCurrentUserDN = "<CurrentUserDN>" ' e.g. cn=jsmith,ou=Sales,dc=rallencorp,dc=com

strNewUserDN = "<NewUserDN>" ' e.g. cn=rallen,ou=Sales,dc=rallencorp,dc=com"
' ------ SCRIPT CONFIGURATION ------

Const ADS_PROPERTY_APPEND = 3

set objCurrentUser = GetObject("LDAP://" & strCurrentUserDN)
set objNewUser = GetObject("LDAP://" & strNewUserDN)

on error resume next
WScript.Echo "Transfering groups from " & strCurrentUserDN & " to " & strNewUserDN
for each strGroupDN in objCurrentUser.GetEx("memberOf")
 set objGroup = GetObject("LDAP://" & strGroupDN)
 objGroup.PutEx ADS_PROPERTY_APPEND, "member", Array(strNewUserDN)
 objGroup.SetInfo
 if Err then
 WScript.Echo "Error adding user to group: " & strGroupDN
 else
 WScript.Echo "Added user to group: " & strGroupDN
 end if
next

6.16.3 Discussion

Employees come and go; people take on new responsibilities and move on to new jobs. It is common to
have movement within an organization. When this happens, typically someone is replacing the person that
is moving on. The new person needs to get up to speed as quickly as possible, including getting accounts set
up and access to any necessary resources. A big part of this includes getting added to the correct groups.
You can help facilitate this by using one of the processes outlined in the Solution section to help the user
gain access to the exact same groups that the former employee was a member of.

One important issue to point out is that the memberOf attribute, which was used in the Solution section to

determine a user's group membership, contains only the groups in the same domain as the user. Any
groups the user is a member of outside of the user's domain, will not be transferred. To transfer group
membership outside of a domain, you will need to perform a query against the global catalog for all group
objects that have a member attribute that contains the DN of the user.

6.16.4 See Also

Recipe 7.4 for adding and removing members of a group

[Team LiB]

[Team LiB]

Recipe 6.17 Setting a User's Password

6.17.1 Problem

You want to set the password for a user.

6.17.2 Solution

6.17.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Type the name of the user beside Name and click Find Now.4.

In the Search Results, right-click on the user and select Reset Password.5.

Enter and confirm the new password.6.

Click OK.7.

6.17.2.2 Using a command-line interface

This command changes the password for the user specified by <UserDN>. Using * after the -pwd
option prompts you for the new password. You can replace * with the password you want to set, but

it is not a good security practice since other users that are logged into the machine may be able to
see it.

> dsmod user <UserDN> -pwd *

6.17.2.3 Using VBScript

' This code sets the password for a user.
' ------ SCRIPT CONFIGURATION ------

strUserDN = "<UserDN>" ' e.g. cn=jsmith,cn=Users,dc=rallencorp,dc=com

strNewPasswd = "NewPasword"

' ------ END CONFIGURATION ---------

set objUser = GetObject("LDAP://" & strUserDN)
objUser.SetPassword(strNewPasswd)
Wscript.Echo "Password set for " & objUser.Get("cn")

6.17.3 Discussion

The password for a user is stored in the unicodePwd attribute. You cannot directly modify that

attribute, but have to use one of the supported APIs. See Recipe 6.18 to see how to set the password
using native LDAP and Recipe 6.19 for changing the password via Kerberos.

With the VBScript solution, you can use the IADsUser::SetPassword method or
IADsUser::ChangePassword. The latter requires the existing password to be known before setting it.

This is the method you'd want to use if you've created a web page that accepts the previous
password before allowing a user to change it.

6.17.4 See Also

Recipe 6.18 for setting the password via LDAP, Recipe 6.19 for setting the password via Kerberos, MS
KB 225511 (New Password Change and Conflict Resolution Functionality in Windows), MS KB 264480
(Description of Password-Change Protocols in Windows 2000), MSDN: IADsUser::SetPassword, and
MSDN: IADsUser::ChangePassword

[Team LiB]

[Team LiB]

Recipe 6.18 Setting a User's Password via LDAP

6.18.1 Problem

You want to set the password for a user using LDAP.

6.18.2 Solution

You have to first enable SSL/TLS support in your Active Directory domain. See Recipe 14.1 for more
on this.

You can then set the unicodePwd attribute of a user object using LDAP operations over an SSL or

TLS connection.

The value for the unicodePwd attribute must be a Unicode string that is surrounded by quotes and

Base64 encoded. See Recipe 10.4 for more on encoding text with Base64.

6.18.3 Discussion

The unicodePwd attribute can be directly modified over a SSL or TLS connection, but it can never be

read.

6.18.4 See Also

Recipe 10.4 for more on Base64 encoding, Recipe 14.1 for enabling SSL/TLS, MS KB 263991 (How to
Set a User's Password with Ldifde), MS KB 264480 (Description of Password-Change Protocols in
Windows 2000), and MS KB 269190 (HOWTO: Change a Windows 2000 User's Password Through
LDAP)

[Team LiB]

[Team LiB]

Recipe 6.19 Setting a User's Password via Kerberos

6.19.1 Problem

You want to change a password using Kerberos from a Unix machine.

6.19.2 Solution

If you have MIT Kerberos 5 client installed and configured properly, you can run the following
commands, which will change your password in Active Directory:

$ kinit
Password for jsmith@RALLENCORP.COM: ****
$ kpasswd
Password for jsmith@RALLENCORP.COM: ****
Enter new password: ******
Enter it again: ******
Password changed.

6.19.3 Discussion

See Recipe 18.7 for more information on Kerberos.

6.19.4 See Also

MS KB 264480 (Description of Password-Change Protocols in Windows 2000), RFC 3244 (Microsoft
Windows 2000 Kerberos Change Password and Set Password Protocols), and IETF draft-ietf-cat-
kerb-chg-password-02.txt

[Team LiB]

[Team LiB]

Recipe 6.20 Preventing a User from Changing His
Password

6.20.1 Problem

You want to disable a user's ability to change his password.

6.20.2 Solution

6.20.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Beside Name, type the name of the user you want to modify and click Find Now.4.

In the Search Results, double-click on the user.5.

Click the Account tab.6.

Under Account options, check the box beside User cannot change password.7.

Click OK.8.

6.20.2.2 Using a command-line interface

> dsmod user <UserDN> -canchpwd no

6.20.2.3 Using VBScript

' This code disables a user's ability to change password
' ------ SCRIPT CONFIGURATION ------

strUserDN = "<UserDN>" ' e.g. cn=rallen,ou=Sales,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

Const ACETYPE_ACCESS_DENIED_OBJECT = 6

Const ACEFLAG_OBJECT_TYPE_PRESENT = 1
Const RIGHT_DS_CONTROL_ACCESS = 256
Const CHANGE_PASSWORD_GUID = "{ab721a53-1e2f-11d0-9819-00aa0040529b}"

set objUser = GetObject("LDAP://" & strUserDN)
set objSD = objUser.Get("ntSecurityDescriptor")
set objDACL = objSD.DiscretionaryAcl

' Add a deny ACE for Everyone
set objACE = CreateObject("AccessControlEntry")
objACE.Trustee = "Everyone"
objACE.AceFlags = 0
objACE.AceType = ACETYPE_ACCESS_DENIED_OBJECT
objACE.Flags = ACEFLAG_OBJECT_TYPE_PRESENT
objACE.ObjectType = CHANGE_PASSWORD_GUID
objACE.AccessMask = RIGHT_DS_CONTROL_ACCESS
objDACL.AddAce objACE

' Add a deny ACE for Self
set objACE = CreateObject("AccessControlEntry")
objACE.Trustee = "Self"
objACE.AceFlags = 0
objACE.AceType = ACETYPE_ACCESS_DENIED_OBJECT
objACE.Flags = ACEFLAG_OBJECT_TYPE_PRESENT
objACE.ObjectType = CHANGE_PASSWORD_GUID
objACE.AccessMask = RIGHT_DS_CONTROL_ACCESS
objDACL.AddAce objACE

objSD.DiscretionaryAcl = objDACL
objUser.Put "nTSecurityDescriptor", objSD
objUser.SetInfo
WScript.Echo "Enabled no password changing for " & strUserDN

6.20.3 Discussion

Even though in the GUI solution you check and uncheck the "User cannot change password" setting,
actually making the change in Active Directory is a little more complicated as is evident in the
VBScript solution. Not allowing a user to change her password consists of setting two deny Change
Password ACEs on the target user object. One deny ACE is for the Everyone account and the other is
for Self.

The VBScript solution should work as is, but it is not very robust in terms of checking to see if the
ACEs already exist and making sure they are in the proper order. If you need to make the code more
robust, I suggest checking out MS KB 269159 for more information on setting ACEs properly.

6.20.4 See Also

MS KB 269159 (HOWTO: Use Visual Basic and ADsSecurity.dll to Properly Order ACEs in an ACL)

[Team LiB]

[Team LiB]

Recipe 6.21 Requiring a User to Change Her Password at
Next Logon

6.21.1 Problem

You want to require a user to change her password the next time she logs on to the domain.

6.21.2 Solution

6.21.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Beside Name, type the name of the user you want to modify and click Find Now.4.

In the Search Results, double-click on the user.5.

Click the Account tab.6.

Under Account options, check the box beside User must change password at next logon.7.

Click OK.8.

6.21.2.2 Using a command-line interface

> dsmod user "<UserDN>" -mustchpwd yes

6.21.2.3 Using VBScript

' This code sets the flag that requires a user to change their password
' ------ SCRIPT CONFIGURATION ------

strUserDN = "<UserDN>" ' e.g. cn=rallen,ou=Sales,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

set objUser = GetObject("LDAP://" & strUserDN)

objUser.Put "pwdLastSet", 0
objUser.SetInfo
WScript.Echo "User must change password at next logon: " & strUserDN

6.21.3 Discussion

When a user changes her password, a timestamp is written to the pwdLastSet attribute of the user

object. When the user logs in to the domain, this timestamp is compared to the maximum password
age that is defined by the Domain Security Policy to determine if the password has expired. To force
a user to change her password at next logon, set the pwdLastSet attribute of the target user to and

verify that the user's account doesn't have the never expire password option enabled.

To disable this option so that a user does not have to change her password, set pwdLastSet to -1.
These two values (0 and -1) are the only ones that can be set on the pwdLastSet attribute.

[Team LiB]

[Team LiB]

Recipe 6.22 Preventing a User's Password from Expiring

6.22.1 Problem

You want to prevent a user's password from expiring.

6.22.2 Solution

6.22.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Beside Name, type the name of the user you want to modify and click Find Now.4.

In the Search Results, double-click on the user.5.

Click the Account tab.6.

Under Account options, check the box beside Password never expires.7.

Click OK.8.

6.22.2.2 Using a command-line interface

> dsmod user "<UserDN>" -pwdneverexpires yes

6.22.2.3 Using VBScript

' This code sets a users password to never expire
' See Recipe 4.12 for the code for the CalcBit function
' ------ SCRIPT CONFIGURATION ------

strUserDN = "<UserDN>" ' e.g. cn=rallen,ou=Sales,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

intBit = 65536

strAttr = "userAccountControl"

set objUser = GetObject("LDAP://" & strUserDN)
intBitsOrig = objUser.Get(strAttr)
intBitsCalc = CalcBit(intBitsOrig, intBit, TRUE)
if intBitsOrig <> intBitsCalc then
 objUser.Put strAttr, intBitsCalc
 objUser.SetInfo
 WScript.Echo "Changed " & strAttr & " from " & _
 intBitsOrig & " to " & intBitsCalc
else
 WScript.Echo "Did not need to change " & strAttr & " (" & _
 intBitsOrig & ")"
end if

6.22.3 Discussion

Setting a user's password to never expire overrides any password aging policy you've defined in the
domain. To disable password expiration, you need to set the bit equivalent of 65536 (i.e.,
10000000000000000) in the userAccountControl attribute of the target user.

6.22.4 See Also

Recipe 4.12 for more on modifying a bit-flag attribute and Recipe 6.24 for more on setting the
userAccountControl attribute

[Team LiB]

[Team LiB]

Recipe 6.23 Finding Users Whose Passwords Are About
to Expire

6.23.1 Problem

You want to find the users whose passwords are about to expire.

6.23.2 Solution

6.23.2.1 Using a command-line interface

> dsquery user -stalepwd <NumDaysSinceLastPwdChange>

6.23.2.2 Using Perl

#!perl
This code finds the user accounts whose password is about to expire
------ SCRIPT CONFIGURATION ------
Domain and container/OU to check for accounts that are about to expire

my $domain = '<DomainDNSName>';
my $cont = ''; # set to empty string to query entire domain
 # Or set to a relative path in the domain, e.g. cn=Users
Days since password change

my $days_ago = <NumDaysSinceLastPwdChange> # e.g. 60;
------ END CONFIGURATION ---------

use strict;
use Win32::OLE;
 $Win32::OLE::Warn = 3;
use Math::BigInt;

Need to convert the number of seconds from $day_ago
to a large integer for comparison against pwdLastSet
my $past_secs = time - 60*60*24*$days_ago;
my $intObj = Math::BigInt->new($past_secs);
 $intObj = Math::BigInt->new($intObj->bmul('10 000 000'));
my $past_largeint = Math::BigInt->new(
 $intObj->badd('116 444 736 000 000 000'));
 $past_largeint =~ s/^[+-]//;

Setup the ADO connections
my $connObj = Win32::OLE->new('ADODB.Connection');
$connObj->{Provider} = "ADsDSOObject";
Set these next two if you need to authenticate

$connObj->Properties->{'User ID'} = '<User>';

$connObj->Properties->{'Password'} = '<Password>';
$connObj->Open;
my $commObj = Win32::OLE->new('ADODB.Command');
$commObj->{ActiveConnection} = $connObj;
$commObj->Properties->{'Page Size'} = 1000;
Grab the default domain naming context
my $rootDSE = Win32::OLE->GetObject("LDAP://$domain/RootDSE");
my $rootNC = $rootDSE->Get("defaultNamingContext");
Run ADO query and print results
$cont .= "," if $cont and not $cont =~ /,$/;
my $query = "<LDAP://$domain/$cont$rootNC>;";
$query .= "(&(objectclass=user)";
$query .= "(objectcategory=Person)";
$query .= "(!useraccountcontrol:1.2.840.113556.1.4.803:=2)";
$query .= "(pwdLastSet<=$past_largeint)";
$query .= "(!pwdLastSet=0));";
$query .= "cn,distinguishedName;";
$query .= "subtree";
$commObj->{CommandText} = $query;
my $resObj = $commObj->Execute($query);
die "Could not query $domain: ",$Win32::OLE::LastError,"\n"
 unless ref $resObj;

print "\nUsers who haven't set their passwd in $days_ago days or longer:\n";
my $total = 0;
while (!($resObj->EOF)) {
 print "\t",$resObj->Fields("distinguishedName")->value,"\n";
 $total++;
 $resObj->MoveNext;
}
print "Total: $total\n";

6.23.3 Discussion

When a Windows-based client logs on to Active Directory, a check is done against the domain
password policy and the user's pwdLastSet attribute to determine if the user's password has expired.

If it has, the user is prompted to change it. In a pure Windows-based environment, this notification
process may be adequate, but if you have a lot of non-Windows-based computers that are joined to
an Active Directory domain (e.g., Kerberos-enabled Unix clients), or you have a lot of application and
service accounts, you'll need to develop your own user password expiration notification process. Even
in a pure Windows environment, cached logins present a problem because when a user logs into the
domain with cached credentials (i.e., when the client is not able to reach a domain controller), this
password expiration notification check is not done.

The process of finding users whose passwords are about to expire is a little complicated. Fortunately,
the new dsquery user command helps by providing an option for searching for users that haven't

changed their password for a number of days (-stalepwd). The downside to the dsquery user

command is that it will not only find users whose password is about to expire, but also users that
must change their password at next logon (i.e., pwdLastSet = 0). The Perl solution does not suffer

from this limitation.

The Perl solution consists of a two-step process. First, we need to calculate a time in the past at
which we would consider a password "old" or "about" to expire. The pwdLastSet attribute is a
replicated attribute on user objects that contain the timestamp (as a large integer) of when the user

last set her password. If today is May 31 and we want to find all users who have not set their
password for 30 days, we need to query for user's who have a pwdLastSet timestamp older than

May 1.

First, a brief word on timestamps stored as large integers. It may seem odd, but large integer
timestamps are represented as the number of 100-nanosecond intervals since January 1, 1601. To
convert the current time to a large integer, we have to find the current time in seconds since the
epoch (January 1, 1970) multiply that times 10,000,000 and then add 116,444,736,000,000,000 to it.
This will give you an approximate time (in 100-nanosecond intervals) as a large integer. It is only an
approximate time because when dealing with big numbers like this, a degree of accuracy is lost
during the arithmetic.

I chose to use Perl over VBScript because VBScript doesn't handle computing
large integers given the current time and date very well.

All right, now that you know how to calculate the current time, we need to calculate a time in the
past as a large integer. Remember, we need to find the time at which passwords are considered close
to expiring. In the Perl solution, you can configure the number of days since users changed their
password. Once we've calculated this value, all we need is to come up with a search filter that we can
use in ADO to find the matching users.

The first part of the filter will match all user objects.

$query .= "(&(objectclass=user)";
$query .= "(objectcategory=Person)";

But we really only want to find all enabled user objects (do you care if a disabled user object's
password is about to expire?). This next bit-wise filter will match only enabled user objects. See
Recipe 6.13 for more information on finding disabled and enabled users.

$query .= "(!useraccountcontrol:1.2.840.113556.1.4.803:=2)";

The next part of the filter is the important part. This is where we use the derived last password
change timestamp to compare against pwdLastSet.

$query .= "(pwdLastSet<=$past_largeint)";

Finally, we exclude all users that are required to change their password at next logon (pwdLastSet

equal to zero).

$query .= "(!pwdLastSet=0));";

6.23.4 See Also

Recipe 6.11 for more on the password policy for a domain, Recipe 6.17 for how to set a user's
password, and Recipe 6.22 for how to set a user's password to never expire

[Team LiB]

[Team LiB]

Recipe 6.24 Setting a User's Account Options
(userAccountControl)

6.24.1 Problem

You want to view or update the userAccountControl attribute for a user. This attribute controls various

account options, such as if the user must change their password at next logon and if the account is disabled.

6.24.2 Solution

6.24.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Beside Name, type the name of the user and click Find Now.4.

In the Search Results, double-click on the user.5.

Select the Account tab.6.

Many of the userAccountControl flags can be set under Account options.7.

Click OK after you're done.8.

6.24.2.2 Using a command-line interface

The dsmod user command has several options for setting various userAccountControl flags, as shown in Table
6-2 . Each switch accepts yes or no as a parameter to either enable or disable the setting.

Table 6-2. dsmod user options for setting userAccountControl

dsmod user switch Description

-mustchpwd Sets whether the user must change password at next logon.

-canchpwd Sets whether the user can change his password.

-disabled Set account status to enabled or disabled.

dsmod user switch Description

-reversiblepwd Sets whether the user's password is stored using reversible encryption.

-pwdneverexpires Sets whether the user's password never expires.

6.24.2.3 Using VBScript

' This code enables or disables a bit value in the userAccountControl attr.
' See Recipe 4.12 for the code for the CalcBit function.
' ------ SCRIPT CONFIGURATION ------

strUserDN = "<UserDN>" ' e.g. cn=rallen,ou=Sales,dc=rallencorp,dc=com

intBit = <BitValue> ' e.g. 65536

boolEnable = <TrueOrFalse> ' e.g. TRUE
' ------ END CONFIGURATION ---------

strAttr = "userAccountControl"
set objUser = GetObject("LDAP://" & strUserDN)
intBitsOrig = objUser.Get(strAttr)
intBitsCalc = CalcBit(intBitsOrig, intBit, boolEnable)
if intBitsOrig <> intBitsCalc then
 objUser.Put strAttr, intBitsCalc
 objUser.SetInfo
 WScript.Echo "Changed " & strAttr & " from " & _
 intBitsOrig & " to " & intBitsCalc
else
 WScript.Echo "Did not need to change " & strAttr & " (" & _
 intBitsOrig & ")"
end if

6.24.3 Discussion

The userAccountControl attribute on user (and computer) objects could be considered the kitchen sink of

miscellaneous and sometimes completely unrelated user account properties. If you have to work with creating
and managing user objects very much, you'll need to become intimately familiar with this attribute.

The userAccountControl attribute is a bit flag, which means you have to take a couple extra steps to search

against it or modify it. See Recipe 4.9 for more on searching with a bit-wise filter and Recipe 4.12 for modifying
a bit-flag attribute.

The dsmod user command can be used to modify a subset of userAccountControl properties, as shown in
Table 6-2 . Table 6-3 contains the complete list userAccountControl properties as defined in the

ADS_USER_FLAG_ENUM enumeration.

Table 6-3. ADS_USER_FLAG_ENUM values

Name Value Description

ADS_UF_SCRIPT 1 Logon script is executed.

-reversiblepwd Sets whether the user's password is stored using reversible encryption.

-pwdneverexpires Sets whether the user's password never expires.

6.24.2.3 Using VBScript

' This code enables or disables a bit value in the userAccountControl attr.
' See Recipe 4.12 for the code for the CalcBit function.
' ------ SCRIPT CONFIGURATION ------

strUserDN = "<UserDN>" ' e.g. cn=rallen,ou=Sales,dc=rallencorp,dc=com

intBit = <BitValue> ' e.g. 65536

boolEnable = <TrueOrFalse> ' e.g. TRUE
' ------ END CONFIGURATION ---------

strAttr = "userAccountControl"
set objUser = GetObject("LDAP://" & strUserDN)
intBitsOrig = objUser.Get(strAttr)
intBitsCalc = CalcBit(intBitsOrig, intBit, boolEnable)
if intBitsOrig <> intBitsCalc then
 objUser.Put strAttr, intBitsCalc
 objUser.SetInfo
 WScript.Echo "Changed " & strAttr & " from " & _
 intBitsOrig & " to " & intBitsCalc
else
 WScript.Echo "Did not need to change " & strAttr & " (" & _
 intBitsOrig & ")"
end if

6.24.3 Discussion

The userAccountControl attribute on user (and computer) objects could be considered the kitchen sink of

miscellaneous and sometimes completely unrelated user account properties. If you have to work with creating
and managing user objects very much, you'll need to become intimately familiar with this attribute.

The userAccountControl attribute is a bit flag, which means you have to take a couple extra steps to search

against it or modify it. See Recipe 4.9 for more on searching with a bit-wise filter and Recipe 4.12 for modifying
a bit-flag attribute.

The dsmod user command can be used to modify a subset of userAccountControl properties, as shown in
Table 6-2 . Table 6-3 contains the complete list userAccountControl properties as defined in the

ADS_USER_FLAG_ENUM enumeration.

Table 6-3. ADS_USER_FLAG_ENUM values

Name Value Description

Name Value Description

ADS_UF_SCRIPT 1 Logon script is executed.

ADS_UF_ACCOUNTDISABLE 2 Account is disabled.

ADS_UF_HOMEDIR_REQUIRED 8 Home Directory is required.

ADS_UF_LOCKOUT 16 Account is locked out.

ADS_UF_PASSWD_NOTREQD 32 A password is not required.

ADS_UF_PASSWD_CANT_CHANGE 64
Read-only flag that indicates if the
user cannot change their password.

ADS_UF_ENCRYPTED_TEXT_PASSWORD_ALLOWED 128
Store password using reversible
encryption.

ADS_UF_TEMP_DUPLICATE_ACCOUNT 256
Account provides access to the
domain, but no other domain that
trusts the domain.

ADS_UF_NORMAL_ACCOUNT 512 Enabled user account.

ADS_UF_INTERDOMAIN_TRUST_ACCOUNT 2048
A permit to trust account for a system
domain that trusts other domains.

ADS_UF_WORKSTATION_TRUST_ACCOUNT 4096 Enabled computer account.

ADS_UF_SERVER_TRUST_ACCOUNT 8192
Computer account for backup domain
controller.

ADS_UF_DONT_EXPIRE_PASSWD 65536 Password will not expire.

ADS_UF_MNS_LOGON_ACCOUNT 131072 MNS logon account.

ADS_UF_SMARTCARD_REQUIRED 262144 Smart card is required for logon.

ADS_UF_TRUSTED_FOR_DELEGATION 524288 Allow Kerberos delegation.

ADS_UF_NOT_DELEGATED 1048576

Do not allow Kerberos delegation
even if
ADS_UF_TRUSTED_FOR_DELETATION
is enabled.

ADS_UF_USE_DES_KEY_ONLY 2097152 Requires DES encryption for keys.

ADS_UF_DONT_REQUIRE_PREAUTH 4194304
Account does not require Kerberos
preauthentication for logon.

ADS_UF_PASSWORD_EXPIRED 8388608
Read-only flag indicating account's
password has expired. Only used with
the WinNT provider.

ADS_UF_TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION 16777216 Account is enabled for delegation.

6.24.4 See Also

ADS_UF_SCRIPT 1 Logon script is executed.

ADS_UF_ACCOUNTDISABLE 2 Account is disabled.

ADS_UF_HOMEDIR_REQUIRED 8 Home Directory is required.

ADS_UF_LOCKOUT 16 Account is locked out.

ADS_UF_PASSWD_NOTREQD 32 A password is not required.

ADS_UF_PASSWD_CANT_CHANGE 64
Read-only flag that indicates if the
user cannot change their password.

ADS_UF_ENCRYPTED_TEXT_PASSWORD_ALLOWED 128
Store password using reversible
encryption.

ADS_UF_TEMP_DUPLICATE_ACCOUNT 256
Account provides access to the
domain, but no other domain that
trusts the domain.

ADS_UF_NORMAL_ACCOUNT 512 Enabled user account.

ADS_UF_INTERDOMAIN_TRUST_ACCOUNT 2048
A permit to trust account for a system
domain that trusts other domains.

ADS_UF_WORKSTATION_TRUST_ACCOUNT 4096 Enabled computer account.

ADS_UF_SERVER_TRUST_ACCOUNT 8192
Computer account for backup domain
controller.

ADS_UF_DONT_EXPIRE_PASSWD 65536 Password will not expire.

ADS_UF_MNS_LOGON_ACCOUNT 131072 MNS logon account.

ADS_UF_SMARTCARD_REQUIRED 262144 Smart card is required for logon.

ADS_UF_TRUSTED_FOR_DELEGATION 524288 Allow Kerberos delegation.

ADS_UF_NOT_DELEGATED 1048576

Do not allow Kerberos delegation
even if
ADS_UF_TRUSTED_FOR_DELETATION
is enabled.

ADS_UF_USE_DES_KEY_ONLY 2097152 Requires DES encryption for keys.

ADS_UF_DONT_REQUIRE_PREAUTH 4194304
Account does not require Kerberos
preauthentication for logon.

ADS_UF_PASSWORD_EXPIRED 8388608
Read-only flag indicating account's
password has expired. Only used with
the WinNT provider.

ADS_UF_TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION 16777216 Account is enabled for delegation.

6.24.4 See Also

Recipe 4.12 for setting a bit-flag attribute and MSDN: ADS_USER_FLAG_ENUM

[Team LiB]

[Team LiB]

Recipe 6.25 Setting a User's Account to Expire in the
Future

6.25.1 Problem

You want a user's account to expire at some point in the future.

6.25.2 Solution

6.25.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Beside Name, type the name of the user you want to modify and click Find Now.4.

In the Search Results, double-click on the user.5.

Click the Account tab.6.

Under Account expires, select the radio button beside End of.7.

Select the date the account should expire.8.

Click OK.9.

6.25.2.2 Using a command-line interface

Valid values for the -acctexpires flag include a positive number of days in the future when the

account should expire, to expire the account at the end of the day, or "never" to disable account
expiration.

> dsmod user "<UserDN>" -acctexpires <NumDays>

6.25.2.3 Using VBScript

' This code sets the account expiration date for a user.
' ------ SCRIPT CONFIGURATION ------

strExpireDate = "<Date>" ' e.g. "07/10/2004"

strUserDN = "<UserDN>" ' e.g. cn=rallen,ou=Sales,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

set objUser = GetObject("LDAP://" & strUserDN)
objUser.AccountExpirationDate = strExpireDate
objUser.SetInfo
WScript.Echo "Set user " & strUserDN & " to expire on " & strExpireDate

' These two lines would disable account expiration for the user
' objUser.Put "accountExpires", 0
' objUser.SetInfo

6.25.3 Discussion

User accounts can be configured to expire on a certain date. Account expiration is stored in the
accountExpires attribute on a user object. This attribute contains a large integer representation of

the date in which the account expires. If you set this attribute to 0, it disables account expiration for
the user (i.e., the account will never expire). Note that this is different than the dsmod user
command where a value of 0 with -acctexpires will cause the account to expire at the end of the
day. Why does it differ from how the accountExpires attribute works? Great question.

6.25.4 See Also

MS KB 318714 (HOW TO: Limit User Logon Time in a Domain in Windows 2000) and MSDN: Account
Expiration

[Team LiB]

[Team LiB]

Recipe 6.26 Finding Users Whose AccountsAre About to
Expire

6.26.1 Problem

You want to find users whose accounts are about to expire.

6.26.2 Solution

6.26.2.1 Using Perl

This code finds the user accounts that are about to expire.
------ SCRIPT CONFIGURATION ------
Domain and container/OU to check for accounts that are about to expire

my $domain = '<DomainDNSName>'; ' e.g. amer.rallencorp.com
my $cont = ''; # set to empty string to query entire domain
 # Or set to a relative path in the domain, e.g. cn=Users
Number of weeks until a user will expire
my $weeks_ago = 4;
------ END CONFIGURATION ---------

use strict;
use Win32::OLE;
 $Win32::OLE::Warn = 3;
use Math::BigInt;

Need to convert the number of seconds until $weeks_ago
to a large integer for comparison against accountExpires
my $future_secs = time + 60*60*24*7*$weeks_ago;
my $intObj = Math::BigInt->new($future_secs);
 $intObj = Math::BigInt->new($intObj->bmul('10 000 000'));
my $future_largeint =
 Math::BigInt->new($intObj->badd('116 444 736 000 000 000'));
 $future_largeint =~ s/^[+-]//;

Now need to convert the current time into a large integer
 $intObj = Math::BigInt->new(time);
 $intObj = Math::BigInt->new($intObj->bmul('10 000 000'));
my $current_largeint =
 Math::BigInt->new($intObj->badd('116 444 736 000 000 000'));
 $current_largeint =~ s/^[+-]//;

Set up the ADO connections.
my $connObj = Win32::OLE->new('ADODB.Connection');
$connObj->{Provider} = "ADsDSOObject";
Set these next two if you need to authenticate

$connObj->Properties->{'User ID'} = '<User>';

$connObj->Properties->{'Password'} = '<Password>';
$connObj->Open;
my $commObj = Win32::OLE->new('ADODB.Command');
$commObj->{ActiveConnection} = $connObj;
$commObj->Properties->{'Page Size'} = 1000;

Grab the default domain name.
my $rootDSE = Win32::OLE->GetObject("LDAP://$domain/RootDSE");
my $rootNC = $rootDSE->Get("defaultNamingContext");

Run ADO query and print results.
$cont .= "," if $cont and not $cont =~ /,$/;
my $query = "<LDAP://$domain/$cont$rootNC>;";
$query .= "(&(objectclass=user)";
$query .= "(objectcategory=Person)";
$query .= "(!useraccountcontrol:1.2.840.113556.1.4.803:=2)";
$query .= "(accountExpires<=$future_largeint)";
$query .= "(accountExpires>=$current_largeint)";
$query .= "(!accountExpires=0));";
$query .= "cn,distinguishedName;";
$query .= "subtree";
$commObj->{CommandText} = $query;
my $resObj = $commObj->Execute($query);
die "Could not query $domain: ",$Win32::OLE::LastError,"\n"
 unless ref $resObj;

print "\nUsers whose account will expire in $weeks_ago weeks or less:\n";
my $total = 0;
while (!($resObj->EOF)) {
 print "\t",$resObj->Fields("distinguishedName")->value,"\n";
 $total++;
 $resObj->MoveNext;
}
print "Total: $total\n";

6.26.3 Discussion

The code to find expiring user objects is very similar to that of Recipe 6.23 for finding expiring
passwords. The main difference is that instead of querying the pwdLastSet attribute, we need to
query accountExpires. Also, instead of setting accountExpires to a timestamp in the past, as we
did for pwdLastSet, it needs to contain a future timestamp for when accounts will expire. This makes

the logic only slightly different. Let's break down the search filter and review the other differences.

This part of the filter finds all enabled user objects:

$query .= "(&(objectclass=user)";
$query .= "(objectcategory=Person)";
$query .= "(!useraccountcontrol:1.2.840.113556.1.4.803:=2)";

This next part finds only the accounts that are going to expire. The second line prevents all currently
expired accounts from being returned.

$query .= "(accountExpires<=$future_largeint)";
$query .= "(accountExpires>=$current_largeint)";

The last part of the filter excludes users that are marked to never expire:

$query .= "(!accountExpires=0));";

6.26.4 See Also

Recipe 6.23 for more on large integer manipulation, Recipe 6.25 for setting a user's account to
expire, and MS KB 318714 (HOW TO: Limit User Logon Time in a Domain in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 6.27 Determining a User's Last Logon Time

This recipe requires the Windows Server 2003 forest functional level.

6.27.1 Problem

You want to determine the last time a user logged into a domain.

6.27.2 Solution

6.27.2.1 Using a graphical user interface

If you install the AcctInfo.dll extension to Active Directory Users and Computers, you can view the
last logon timestamp.

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Beside Name, type the name of the user you want to modify and click Find Now.4.

In the Search Results, double-click on the user.5.

Click the Additional Account Info tab.6.

View the value for Last-Logon-Timestamp.7.

AcctInfo.dll can be downloaded from the Microsoft download site:

http://microsoft.com/downloads/details.aspx?FamilyId=7AF2E69C-91F3-4E63-
8629-B999ADDE0B9E&displaylang=en

6.27.2.2 Using VBScript

' This code prints the last logon timestamp for a user.

http://microsoft.com/downloads/details.aspx?FamilyId=7AF2E69C-91F3-4E63-

' ------ SCRIPT CONFIGURATION ------

strUserDN = "<UserDN>" ' e.g. cn=rallen,ou=Sales,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

set objUser = GetObject("LDAP://" & strUserDN)
set objLogon = objUser.Get("lastLogonTimestamp")
intLogonTime = objLogon.HighPart * (2^32) + objLogon.LowPart
intLogonTime = intLogonTime / (60 * 10000000)
intLogonTime = intLogonTime / 1440
WScript.Echo "Approx last logon timestamp: " & intLogonTime + #1/1/1601#

6.27.3 Discussion

Trying to determine when a user last logged on has always been a challenge in the Microsoft NOS
environment. In Windows NT, you could retrieve a user's last logon timestamp from a PDC or BDC,
but this timestamp was the last time the user logged on to the PDC or BDC. That means in order to
determine the actual last logon, you'd have to query every domain controller in the domain. In large
environments, this wasn't practical. With Windows 2000 Active Directory, things did not improve
much. A lastLogon attribute is used to store the last logon timestamp, but unfortunately, this

attribute isn't replicated. So again, to get an accurate picture, you'd have to query every domain
controller in the domain for the user's last logon attribute and keep track of the most recent one.

Now with Windows Server 2003, we finally have a viable solution. A new attribute was added to the
schema for user objects called lastLogonTimestamp. This attribute is similar to the lastLogon

attribute that was available previously, with two distinct differences. First, and most importantly, this
attribute is replicated. That means when a user logs in, the lastLogonTimestamp attribute will get

populated and then replicate to all domain controllers in the domain.

The second difference is that since lastLogonTimestamp is replicated, special safeguards needed to

be put in place so that users that logged in repeatedly over a short period of time did not cause
unnecessary replication traffic. For this reason, the lastLogonTimestamp is updated only if the last
update occurred a week or more ago. This means that the lastLogonTimestamp attribute could be

up to a week off in terms of accuracy with a user's actual last logon. Ultimately, this shouldn't be a
problem for most situations because lastLogonTimestamp is intended to address the common

problem where administrators want to run a query and determine which users have not logged in
over the past month or more.

6.27.4 See Also

Recipe 6.28 for finding users that have not logged on recently

[Team LiB]

[Team LiB]

Recipe 6.28 Finding Users Who Have Not Logged On
Recently

This recipe requires the Windows Server 2003 domain functional level.

6.28.1 Problem

You want to determine which users have not logged on recently.

6.28.2 Solution

6.28.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Beside Find, select Common Queries.3.

Select the number of days beside Days since last logon.4.

Click the Find Now button.5.

6.28.2.2 Using a command-line interface

> dsquery user -inactive <NumWeeks>

6.28.2.3 Using Perl

This code finds the users that have not logged in over a period of time
------ SCRIPT CONFIGURATION ------
Domain and container/OU to check for inactive accounts

my $domain = '<DomainDNSName>'; # e.g. amer.rallencorp.com
my $cont = 'cn=Users'; # set to empty string to query entire domain
 # Or set to a relative path in the domain:
 # e.g. cn=Users

Number of weeks a user needs to be inactive to be returned

my $weeks_ago = <NumWeeks>; # e.g. 4
------ END CONFIGURATION ---------

use strict;
use Win32::OLE;
 $Win32::OLE::Warn = 3;
use Math::BigInt;

Need to convert the number of seconds since $weeks_ago
to a large integer for comparison against lastLogonTimestamp
my $past_secs = time - 60*60*24*7*$weeks_ago;
my $intObj = Math::BigInt->new($past_secs);
 $intObj = Math::BigInt->new($intObj->bmul('10 000 000'));
my $past_largeint = Math::BigInt->new(
 $intObj->badd('116 444 736 000 000 000'));
 $past_largeint =~ s/^[+-]//;

Setup the ADO connections
my $connObj = Win32::OLE->new('ADODB.Connection');
$connObj->{Provider} = "ADsDSOObject";
Set these next two if you need to authenticate

$connObj->Properties->{'User ID'} = '<UserUPNOrDN>';

$connObj->Properties->{'Password'} = '<Password>';
$connObj->Open;
my $commObj = Win32::OLE->new('ADODB.Command');
$commObj->{ActiveConnection} = $connObj;
$commObj->Properties->{'Page Size'} = 1000;

Grab the default domain name
my $rootDSE = Win32::OLE->GetObject("LDAP://$domain/RootDSE");
my $rootNC = $rootDSE->Get("defaultNamingContext");

Run ADO query and print results
$cont .= "," if $cont and not $cont =~ /,$/;
my $query = "<LDAP://$domain/$cont$rootNC>;";
$query .= "(&(objectclass=user)";
$query .= "(objectcategory=Person)";
$query .= "(!useraccountcontrol:1.2.840.113556.1.4.803:=2)";
$query .= "(lastlogontimestamp<=$past_largeint));";
$query .= "cn,distinguishedName;";
$query .= "subtree";
$commObj->{CommandText} = $query;
my $resObj = $commObj->Execute($query);
die "Could not query $domain: ",$Win32::OLE::LastError,"\n"
 unless ref $resObj;

print "\nUsers that have been inactive for $weeks_ago weeks or more:\n";
my $total = 0;
while (!($resObj->EOF)) {
 my $cn = $resObj->Fields(0)->value;
 print "\t",$resObj->Fields("distinguishedName")->value,"\n";

 $total++;
 $resObj->MoveNext;
}
print "Total: $total\n";

6.28.3 Discussion

As I talked about in Recipe 6.27, in Windows Server 2003 a new attribute on user objects called
lastLogonTimestamp contains the approximate last time the user logged on. Using this to find the

users that have not logged on in a number of weeks is much easier than the option with Windows
2000, where we would need to query every domain controller in the domain.

The GUI and CLI solutions are straightforward, but the Perl solution is a little more complicated. The
code is very similar to that of Recipe 6.27, and I suggest reading that if you are curious about the
large integer conversions going on.

6.28.4 See Also

Recipe 6.23 for more on computing large integer timestamps and Recipe 6.27 for more on finding a
user's last logon timestamp

[Team LiB]

[Team LiB]

Recipe 6.29 Setting a User's Profile Attributes

6.29.1 Problem

You want to set one or more of the user profile attributes.

6.29.2 Solution

6.29.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

In the left pane, right-click on the domain and select Find.2.

Select the appropriate domain beside In.3.

Beside Name, type the name of the user and click Find Now.4.

In the Search Results, double-click on the user.5.

Click the Profile tab.6.

Modify the various profile settings as necessary.7.

Click OK.8.

6.29.2.2 Using a command-line interface

> dsmod user "<UserDN>" -loscr <ScriptPath> -profile <ProfilePath> -hmdir[RETURN]

<HomeDir> -hmdrv <DriveLetter>

6.29.2.3 Using VBScript

' This code sets the various profile related attributes for a user.

strUserDN = "<UserDN>" ' e.g. cn=jsmith,cn=Users,dc=rallencorp,dc=com
set objUser = GetObject("LDAP://" & strUserDN)
objUser.Put "homeDirectory", "\\fileserver\" & objUser.Get("sAMAccountName")
objUser.Put "homeDrive", "z:"
objUser.Put "profilePath", "\\fileserver\" & _

 objUser.Get("sAMAccountName") & "\profile"
objUser.Put "scriptPath", "login.vbs"
objUser.SetInfo
Wscript.Echo "Profile info for " & objUser.Get("sAMAccountName") & " updated"

6.29.3 Discussion

The four attributes that make up a user's profile settings include the following:

homeDirectory

UNC path to home directory
homeDrive

Drive letter (e.g., z:) to map home directory
profilePath

UNC path to profile directory
scriptPath

Path to logon script

When you set the homeDirectory attribute, the folder being referenced needs to already exist. For

an example on creating shares for users, see MS KB 234746.

6.29.4 See Also

MS KB 234746 (How to Create User Shares for All Users in a Domain with ADSI), MS KB 271657
(Scripted Home Directory Paths Require That Folders Exist), and MS KB 320043 (HOW TO: Assign a
Home Directory to a User)

[Team LiB]

[Team LiB]

Recipe 6.30 Viewing a User's Managed Objects

6.30.1 Problem

You want to view the objects owned by a user.

6.30.2 Solution

6.30.2.1 Using a graphical user interface

Open ADSI Edit.1.

If an entry for the naming context you want to browse is not already displayed, do the
following:

2.

Right-click on ADSI Edit in the right pane and click Connect to.3.

Fill in the information for the naming context, container, or OU you want to add an object to.
Click on the Advanced button if you need to enter alternate credentials.

4.

In the left pane, browse to the naming context, container, or OU the object you want to view.
Once you've found the object, right-click on it and select Properties.

5.

View the managedObjects attribute.6.

6.30.2.2 Using a command-line interface

> enumprop /ATTR:managedObjects "LDAP://<UserDN>"

6.30.2.3 Using VBScript

' This code displays the managed objects for a user
' ------ SCRIPT CONFIGURATION ------

strUserDN = "<UserDN>" ' e.g. cn=jsmith,cn=Users,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

on error resume next
set objUser = GetObject("LDAP://" & strUserDN)
Wscript.Echo objUser.Get("cn") & "'s Managed Objects:"

colObjects = objUser.GetEx("managedObjects")
if Err.Number = -2147463155 then
 Wscript.Echo " none"
else
 for each strObjectDN in colObjects
 Wscript.Echo " " & strObjectDN
 next
end if

6.30.3 Discussion

The managedObjects attribute is linked to the managedBy attribute that can be set on certain objects
in Active Directory like computers and groups. Setting the managedBy attribute provides a quick and
dirty way to define who owns an object. If you do use it, you can use the managedObjects attribute
on user objects to get the list of objects the user has been configured in the managedBy attribute for.

[Team LiB]

[Team LiB]

Recipe 6.31 Modifying the Default Display Name Used
When Creating Users in ADUC

6.31.1 Problem

You want to modify how the default display name gets generated when you create a new user
through the Active Directory Users and Computers snap-in.

6.31.2 Solution

6.31.2.1 Using a graphical user interface

Open ADSI Edit.1.

In the Configuration Naming Context browse to DisplaySpecifiers <Locale> where

<Locale> is the locale for your language (e.g., the US English locale is 409).

2.

Double-click on cn=user-Display.3.

Edit the createDialog attribute with the value you want the new default to be (e.g., %<sn>,
%<givenName>).

4.

Click OK.5.

6.31.2.2 Using VBScript

' This code modifies the default ADUC display name.
' ------ SCRIPT CONFIGURATION ------
strNewDefault = "%<sn>, %<givenName>"

strForestName = "<ForestDNSName>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

Set objRootDSE = GetObject("LDAP://" & strForestName & "/RootDSE")
Set objDispSpec = GetObject("LDAP://cn=User-Display,cn=409," & _
 "cn=DisplaySpecifiers," & _
 objRootDSE.Get("ConfigurationNamingContext"))
objDispSpec.Put "createDialog", strNewDefault
objDispSpec.SetInfo
WScript.Echo "New default for user's display name has been set to: " & _

 strNewDefault

6.31.3 Discussion

When you create a new user object in the Active Directory Users and Computers snap-in, it will

automatically fill in the Full Name field as you type in the First Name, Initials, and Last Name fields.
As a convenience, you may want to alter that behavior so that it automatically fills in a different
value. To do that, you need to modify the User-Display display specifier, which has the following

distinguished name:

cn=user-Display,cn=<Locale>,cn=DisplaySpecifiers,cn=Configuration,<ForestRootDN>

<Locale> should be replaced with your language specific locale and <ForestRootDN> should contain
the distinguished name for your forest root domain. You need to modify the createDialog attribute,

which by default has no value. Replacement variables are presented by %<attribute>, where

attribute is an attribute name. For example, if you wanted to make the default be "LastName,
FirstName" you would use the following value:

%<sn>, %<givenName>

6.31.4 See Also

MS KB 250455 (XADM: How to Change Display Names of Active Directory Users)

[Team LiB]

[Team LiB]

Recipe 6.32 Creating a UPN Suffix for a Forest

6.32.1 Problem

You want users to have a different User Principal Name (UPN) suffix from the default provided by
your forest.

6.32.2 Solution

6.32.2.1 Using a graphical user interface

Open the Active Directory Domains and Trusts snap-in.1.

In the left pane, right-click Active Directory Domains and Trusts and select Properties.2.

Under Alternate UPN suffixes, type the name of the suffix you want to add.3.

Click Add and OK.4.

6.32.2.2 Using VBScript

' This code adds a new UPN suffix.
' ------ SCRIPT CONFIGURATION ------
strNewSuffix = "<NewSuffix>" ' e.g. othercorp.com

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
set objPartitions = GetObject("LDAP://cn=Partitions," & _
 objRootDSE.Get("ConfigurationNamingContext"))
objPartitions.PutEx ADS_PROPERTY_APPEND, "uPNSuffixes", Array(strNewSuffix)
objPartitions.SetInfo

6.32.3 Discussion

The UPN allows users to log on with a friendly name that may even correspond to their email
address. UPN logons also do not require the domain to be known so that it can be abstracted away
from the user. You may need to create an additional UPN suffix (e.g., @rallencorp.com) if you want
UPNs to map to email addresses, but your AD forest is rooted at a different domain name (e.g.,

ad.rallencorp.com) than the domain name used in email addresses (e.g., rallencorp.com).

6.32.3.1 Using VBScript

UPN suffixes are stored in the multivalued uPNSuffixes attribute on the Partitions container in the

configuration-naming context. The default forest UPN suffix is assumed and not stored in that
attribute.

6.32.4 See Also

MS KB 243280 (Users Can Log On Using User Name or User Principal Name), MS KB 243629 (HOW
TO: Add UPN Suffixes to a Forest), and MS KB 269441 (HOWTO: Use ADSI to List the UPN Suffixes
That Are Defined in Active Directory)

[Team LiB]

[Team LiB]

Chapter 7. Groups
Introduction

Recipe 7.1. Creating a Group

Recipe 7.2. Viewing the Direct Members of a Group

Recipe 7.3. Viewing the Nested Members of a Group

Recipe 7.4. Adding and Removing Members of a Group

Recipe 7.5. Moving a Group

Recipe 7.6. Changing the Scope or Type of a Group

Recipe 7.7. Delegating Control for Managing Membership of a Group

Recipe 7.8. Resolving a Primary Group ID

Recipe 7.9. Enabling Universal Group Membership Caching
[Team LiB]

[Team LiB]

Introduction

A group is a simple concept that has been used in many different types of systems over the years. In
generic terms, a group is just a collection of things. Groups are used most frequently in a security
context whereby you set up a group of users and apply certain permissions or rights to that group.
Using a group is much easier when applying security than using individual users because you have to
apply the security only once instead of once per user.

In Active Directory, groups are flexible objects that can contain virtually any other type of object as a
member. Active Directory groups can be used for many different purposes including controlling
access to resources, defining a filter for the application of group policies, and as an email distribution
list.

The scope and type of a group defines how the group can be used in a forest. The type of a group
can be either security or distribution. Security groups can be used to restrict access to resources
whereas distribution groups can be used only as a simple grouping mechanism. Both group types can
be used as email lists. The scope of a group determines where members of the group can be located
in the forest and where in the forest you can use the group in ACLs. The supported group scopes
include universal, global, and domain local. Universal groups and domain local groups can have
members that are part of any domain in the forest. Global groups can only have members that are
part of the same domain the group is in.

The Anatomy of a Group

Groups are represented in Active Directory by group objects. Table 7-1 contains a list of some of the
noteworthy attributes that are available on group objects.

Table 7-1. Attributes of group objects

Attribute Description

cn Relative distinguished name of group objects.

createTimestamp Timestamp of when the OU was created.

description Textual description of the group.

groupType
Flag containing the group scope and type. See Recipe 7.6 for more
information.

info Additional notes about a group.

primaryGroupToken
Local RID for the group. This matches the primaryGroupID attribute that is
set on user objects.

Attribute Description

managedBy DN of a user or group that is the owner of the group.

managedObjects List of DNs of objects this group is listed in the managedBy attribute for.

member List of DNs of members of the group.

memberOf List of DNs of the groups this group is a member of.

modifyTimestamp Timestamp of when the OU was last modified.

sAMAccountName
Down-level account name for the group. Typically this is the same as the cn

attribute.

wWWHomePage URL of the home page for the group.

[Team LiB]

managedBy DN of a user or group that is the owner of the group.

managedObjects List of DNs of objects this group is listed in the managedBy attribute for.

member List of DNs of members of the group.

memberOf List of DNs of the groups this group is a member of.

modifyTimestamp Timestamp of when the OU was last modified.

sAMAccountName
Down-level account name for the group. Typically this is the same as the cn

attribute.

wWWHomePage URL of the home page for the group.

[Team LiB]

[Team LiB]

Recipe 7.1 Creating a Group

7.1.1 Problem

You want to create a group.

7.1.2 Solution

7.1.2.1 Using a graphical user interface

Open the Active Directory Users and Computers (ADUC) snap-in.1.

If you need to change domains, right-click on Active Directory Users and Computers in the left
pane, select Connect to Domain, enter the domain name and click OK.

2.

In the left pane, browse to the parent container of the new group, right-click on it, and select
New Group.

3.

Enter the name of the group and select the group scope (global, domain local, or universal) and
group type (security or distribution).

4.

Click OK.5.

7.1.2.2 Using a command-line interface

In the following example, <GroupDN> should be replaced with the DN of the group to create,

<GroupScope> should be l, g, or u for domain local, global, and universal groups, respectively, and -
secgroup should be set to yes if the group is a security group or no otherwise. Another
recommended option is to set -desc for specifying a group description.

> dsadd group "<GroupDN>" -scope <GroupScope> -secgrp yes|no -desc "<GroupDesc>"

7.1.2.3 Using VBScript

' The following code creates a global security group.
' ------ SCRIPT CONFIGURATION ------

strGroupParentDN = "<GroupParentDN>" ' e.g. ou=Groups,dc=rallencorp,dc=com

strGroupName = "<GroupName>" ' e.g. ExecAdminsSales

strGroupDescr = "<GroupDesc>" ' e.g. Executive Admins for Sales group

' ------ END CONFIGURATION ---------

' Constants taken from ADS_GROUP_TYPE_ENUM
Const ADS_GROUP_TYPE_DOMAIN_LOCAL_GROUP = 1
Const ADS_GROUP_TYPE_GLOBAL_GROUP = 2
Const ADS_GROUP_TYPE_LOCAL_GROUP = 4
Const ADS_GROUP_TYPE_SECURITY_ENABLED = -2147483648
Const ADS_GROUP_TYPE_UNIVERSAL_GROUP = 8

set objOU = GetObject("LDAP://" & strGroupParentDN)
set objGroup = objDomain.Create("group","cn=" & strGroupName)
objGroup.Put "groupType", ADS_GROUP_TYPE_GLOBAL_GROUP _
 Or ADS_GROUP_TYPE_SECURITY_ENABLED
objOU.Put "description", strGroupDescr
objOU.SetInfo

7.1.3 Discussion

In each solution, a group was created with no members. For more information on how to add and
remove members, see Recipe 7.4.

The groupType attribute contains a flag indicating both group scope and type. The available flag
values are defined in the ADS_GROUP_TYPE_ENUM enumeration. Recipe 7.6 contains more information

on setting the group scopes and types.

7.1.4 See Also

Recipe 7.4 for adding and removing group members, Recipe 7.6 for setting group scope and type, MS
KB 231273 (Group Type and Scope Usage in Windows), MS KB 232241 (Group Management with
ADSI in Windows 2000), MS KB 320054 (HOW TO: Manage Groups in Active Directory in Windows
2000), and MSDN: ADS_GROUP_TYPE_ENUM

[Team LiB]

[Team LiB]

Recipe 7.2 Viewing the Direct Members of a Group

7.2.1 Problem

You want to view the direct members of a group.

7.2.2 Solution

7.2.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on Active Directory Users and Computers in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, right-click on the domain and select Find.3.

Enter the name of the group and click Find Now.4.

Double-click on the group in the bottom results pane.5.

Click the Members tab.6.

7.2.2.2 Using a command-line interface

> dsget group "<GroupDN>" -members

7.2.2.3 Using VBScript

' This code prints the direct members of the specified group.
' ------ SCRIPT CONFIGURATION ------

strGroupDN = "<GroupDN>" ' e.g. cn=SalesGroup,ou=Groups,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

set objGroup = GetObject("LDAP://" & strGroupDN)
Wscript.Echo "Members of " & objGroup.Name & ":"
for each objMember in objGroup.Members
 Wscript.Echo objMember.Name
next

7.2.3 Discussion

The member attribute of a group object contains the distinguished names of the direct members of

the group. By direct members, I mean the members that have been directly added to the group. This
is in contrast to indirect group members, which are members of the group due to nested group
membership. See Recipe 7.3 for how to find the nested membership of a group.

7.2.4 See Also

Recipe 7.3 for viewing nested group membership

[Team LiB]

[Team LiB]

Recipe 7.3 Viewing the Nested Members of a Group

7.3.1 Problem

You want to view the nested members of a group.

7.3.2 Solution

7.3.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on Active Directory Users and Computers in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, right-click on the domain and select Find.3.

Enter the name of the group and click Find Now.4.

Double-click on the group in the bottom results pane.5.

Click the Members tab.6.

You now have to double-click on each group member to view its membership.7.

7.3.2.2 Using a command-line interface

> dsget group "<GroupDN>" -members -expand

7.3.2.3 Using VBScript

' This code prints the nested membership of a group.
' ------ SCRIPT CONFIGURATION ------

strGroupDN = "<GroupDN>" ' e.g. cn=SalesGroup,ou=Groups,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

strSpaces = " "
set dicSeenGroupMember = CreateObject("Scripting.Dictionary")
Wscript.Echo "Members of " & strGroupDN & ":"

DisplayMembers "LDAP://" & strGroupDN, strSpaces, dicSeenGroupMember

Function DisplayMembers (strGroupADsPath, strSpaces, dicSeenGroupMember)

 set objGroup = GetObject(strGroupADsPath)
 for each objMember In objGroup.Members
 Wscript.Echo strSpaces & objMember.Name
 if objMember.Class = "group" then
 if dicSeenGroupMember.Exists(objMember.ADsPath) then
 Wscript.Echo strSpaces & " ^ already seen group member " & _
 "(stopping to avoid loop)"
 else
 dicSeenGroupMember.Add objMember.ADsPath, 1
 DisplayMembers objMember.ADsPath, strSpaces & " ", _
 dicSeenGroupMember
 end if
 end if
 next

End Function

7.3.3 Discussion

As described in Recipe 7.2, group membership is stored in the multivalued member attribute on group

objects. But that attribute will not show the complete picture because group nesting is allowed in
Active Directory after you've transitioned from mixed mode. To view the complete group
membership, you have to recurse through each group's members.

In the VBScript example, I used a dictionary object (referred to as a hash or associative array in
other languages) to ensure I did not get in an infinite loop. The dictionary object stores each group
member; before the DisplayMembers function is called a check is performed to determine if the

group has already been evaluated. If so, a message is displayed indicating the group will not be
processed again. If this type of checking was not employed and you had a situation where group A
was a member of group B, group B was a member of group C, and group C was a member of group
A, the loop would repeat without terminating.

7.3.4 See Also

Recipe 7.2 for viewing group membership and MSDN: IADsMember

[Team LiB]

[Team LiB]

Recipe 7.4 Adding and Removing Members of a Group

7.4.1 Problem

You want to add or remove members of a group.

7.4.2 Solution

7.4.2.1 Using a graphical user interface

Follow the same steps as in Recipe 7.2 to view the members of the group.1.

To remove a member, click on the member name, click the Remove button, click Yes, and click
OK.

2.

To add a member, click on the Add button, enter the name of the member, and click OK twice.3.

7.4.2.2 Using a command-line interface

The -addmbr option adds a member to a group:

> dsmod group "<GroupDN>" -addmbr "<MemberDN>"

The -rmmbr option removes a member from a group:

> dsmod group "<GroupDN>" -rmmbr "<MemberDN>"

The -chmbr option replaces the complete membership list:

> dsmod group "<GroupDN>" -chmbr "<Member1DN Member2DN . . . >"

7.4.2.3 Using VBScript

' This code adds a member to a group.
' ------ SCRIPT CONFIGURATION ------

strGroupDN = "<GroupDN>" ' e.g. cn=SalesGroup,ou=Groups,dc=rallencorp,dc=com

strMemberDN = "<MemberDN>" ' e.g. cn=jsmith,cn=users,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

set objGroup = GetObject("LDAP://" & strGroupDN)
' Add a member
objGroup.Add("LDAP://" & strMemberDN)
' This code removes a member from a group.
' ------ SCRIPT CONFIGURATION ------

strGroupDN = "<GroupDN>" ' e.g. cn=SalesGroup,ou=Groups,dc=rallencorp,dc=com

strMemberDN = "<MemberDN>" ' e.g. cn=jsmith,cn=users,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

set objGroup = GetObject("LDAP://" & strGroupDN)
' Remove a member
objGroup.Remove("LDAP://" & strMemberDN)

7.4.3 Discussion

Since there are no restrictions on what distinguished names you put in the member attribute, you can

essentially have any type of object as a member of a group, which makes groups very useful. While
Organizational Units (OUs) are typically used to structure objects that share certain criteria, group

objects can be used to create loose collections of objects.

The benefit of using group objects as a collection mechanism is that the same object can be a

member of multiple groups whereas an object can only be a part of a single OU. Another key
difference is that you can assign permissions on resources to groups because they are considered
security principals in Active Directory, whereas OUs are not. This is different from some other
directories, such as Novel Netware, where OUs act more like security principals.

7.4.4 See Also

Recipe 7.2 for viewing group membership, MSDN: IADsGroup::Add, and MSDN: IADsGroup::Remove

[Team LiB]

[Team LiB]

Recipe 7.5 Moving a Group

7.5.1 Problem

You want to move a group to a different OU or domain.

7.5.2 Solution

To move a group to a different OU, follow the instructions in Recipe 4.17. To move a group to a
different domain, follow the instructions in Recipe 4.18.

7.5.3 Discussion

The only type of group that can be moved between domains are universal groups. If you want to
move a global or domain local group to a different domain, first convert it to a universal group, move
the group, then convert it back to a global or domain local group.

When you convert a group between types, you may encounter problems because different groups
have different membership restrictions. See Introduction in Chapter 7 for more information on grou
type membership restrictions.

A much easier way to accomplish inter-domain group moves is by using the Active Directory
Migration Tool (ADMT). With ADMT, you can move and restructure groups without needing to go to all
the trouble of converting the group to a universal and modifying the group membership. For more
information on ADMT, see the following site:

http://www.microsoft.com/windows2000/downloads/tools/admt/default.asp

7.5.4 See Also

Recipe 4.17 for moving an object to a different OU, Recipe 4.18 for moving an object to a different
domain, and Recipe 7.6 for changing group scope and type

[Team LiB]

http://www.microsoft.com/windows2000/downloads/tools/admt/default.asp

[Team LiB]

Recipe 7.6 Changing the Scope or Type of a Group

7.6.1 Problem

You want to change the scope or type of a group.

7.6.2 Solution

7.6.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on Active Directory Users and Computers in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, right-click on the domain and select Find.3.

Enter the name of the group you want to modify and click Find Now.4.

Double-click on the group in the results pane.5.

In the group properties dialog box, select the new scope or type and click OK.6.

7.6.2.2 Using a command-line interface

The following example changes the group scope for <GroupDN> to <NewScope>, which should be l for
domain local group, g for global group, or u for universal group.

> dsmod group "<GroupDN>" -scope <NewScope>

The following example changes the group type for <GroupDN>. For the -secgrp switch, specify yes to
change to a security group or no to make the group a distribution list.

> dsmod group "<GroupDN>" -secgrp yes|no

7.6.2.3 Using VBScript

' This code sets the scope and type of the specified group
' to a universal security group.

' ------ SCRIPT CONFIGURATION ------

strGroupDN = "<GroupDN>" ' e.g. cn=SalesGroup,ou=Groups,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

' Constants taken from ADS_GROUP_TYPE_ENUM
ADS_GROUP_TYPE_DOMAIN_LOCAL_GROUP = 1
ADS_GROUP_TYPE_GLOBAL_GROUP = 2
ADS_GROUP_TYPE_LOCAL_GROUP = 4
ADS_GROUP_TYPE_SECURITY_ENABLED = -2147483648
ADS_GROUP_TYPE_UNIVERSAL_GROUP = 8

set objGroup = GetObject("LDAP://" & strGroupDN)
objGroup.Put "groupType", ADS_GROUP_TYPE_UNIVERSAL_GROUP _
 Or ADS_GROUP_TYPE_SECURITY_ENABLED
objGroup.SetInfo

7.6.3 Discussion

Group scope and type are stored as a flag in the groupType attribute on group objects. To directly
update groupType, you must logically OR the values associated with each type and scope, as shown

in the API solution. Note that there is no specific value for the distribution list type. If you want to
create a distribution list, just do not include the ADS_GROUP_TYPE_SECURITY_ENABLED flag when
setting groupType.

For a good description of the usage scenarios for each group type, see Chapter
11 in Active Directory, Second Edition.

7.6.4 See Also

MS KB 231273 (Group Type and Scope Usage in Windows), MSDN: ADS_GROUP_TYPE_ENUM, and
MSDN: What Type of Group to Use

[Team LiB]

[Team LiB]

Recipe 7.7 Delegating Control for Managing Membership of a
Group

7.7.1 Problem

You want to delegate control of managing the membership of a group.

7.7.2 Solution

7.7.2.1 Using a graphical user interface

This is a new feature of Windows Server 2003 version of ADUC.

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on Active Directory Users and Computers in the left pane,
select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, right-click on the domain and select Find.3.

Enter the name of the group and click Find Now.4.

Double-click on the group in the results pane.5.

Select the Managed By tab.6.

Click the Change button.7.

Locate the group or user to delegate control to and click OK.8.

Check the box beside Manager can update membership list.9.

Click OK.10.

7.7.2.2 Using a command-line interface

> dsacls <GroupDN> /G <GroupName>@DomainName:WP;member;

In the following example, the SalesAdmin group will be given rights to modify membership of the
PreSales group.

> dsacls cn=presales,ou=sales,dc=rallencorp,dc=com /G salesadmins@rallencorp.com: [RETURN]
WP;member;

7.7.2.3 Using VBScript

' This code grants write access to the member attribute of a group.
' ------ SCRIPT CONFIGURATION ------

strGroupDN = "<GroupDN>" ' e.g. cn=SalesGroup,ou=Sales,dc=rallencorp,dc=com"

strUserOrGroup = "<UserOrGroup>" ' e.g. joe@rallencorp.com or RALLENCORP\joe
' ------ END CONFIGURATION ---------

set objGroup = GetObject("LDAP://" & strGroupDN)
'############################
' Constants
'############################
' ADS_ACETYPE_ENUM
Const ADS_ACETYPE_ACCESS_ALLOWED_OBJECT = &h5
Const ADS_FLAG_OBJECT_TYPE_PRESENT = &h1
Const ADS_RIGHT_DS_WRITE_PROP = &h20

' From schemaIDGUID of member attribute
Const MEMBER_ATTRIBUTE = "{bf9679c0-0de6-11d0-a285-00aa003049e2}"

'############################
' Create ACL
'############################
set objSD = objGroup.Get("ntSecurityDescriptor")
set objDACL = objSD.DiscretionaryAcl

' Set WP for member attribute
set objACE = CreateObject("AccessControlEntry")
objACE.Trustee = strUserOrGroup
objACE.AccessMask = ADS_RIGHT_DS_WRITE_PROP
objACE.AceFlags = 0
objACE.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE.ObjectType = MEMBER_ATTRIBUTE

objDACL.AddAce objACE

'############################
' Set ACL
'############################
objSD.DiscretionaryAcl = objDACL
objGroup.Put "ntSecurityDescriptor", objSD
objGroup.SetInfo
WScript.Echo "Delegated control of member attribute for " & _
 strGroupDN & " to " & strUserOrGroup

7.7.3 Discussion

To grant a user or group the ability to manage group membership, you have to grant the write property
(WP) permission on the member attribute of the target group. You can add this ACE directly using dsacls

or more indirectly with ADUC. ADUC in Windows Server 2003 has a new feature that allows you to simply
check a box to grant the ability to modify group membership to the object represented by the managedBy

attribute.

If you want to configure additional permissions, such as the ability to modify the description attribute for
the group, you will need to go to the Security tab in ADUC, or specify the appropriate attribute with the /G
switch with dsacls . For example, this will grant write property on the description attribute:

/G <GroupName>@DomainDNSName:WP;description;

7.7.4 See Also

Recipe 14.10 for delegating control in Active Directory

[Team LiB]

[Team LiB]

Recipe 7.8 Resolving a Primary Group ID

7.8.1 Problem

You want to find the name of a user's primary group.

7.8.2 Solution

7.8.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on Active Directory Users and Computers in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, right-click on the domain and select Find.3.

Type the name of the user and click Find Now.4.

In the Search Results, double-click on the user.5.

Click the Member Of tab.6.

The Primary Group name is shown on the bottom half of the dialog box.7.

7.8.2.2 Using VBScript

' This code prints the group name of a user's primary group
' ------ SCRIPT CONFIGURATION ------

strNTDomain = "<DomainName>" ' NetBios Name of the AD domain, e.g. RALLENCORP

strUser = "<UserName>" ' e.g. Administrator
' ------ END CONFIGURATION ---------

' Iterate over the user's groups and create a search filter
' that contains each group
set objUser = GetObject("WinNT://" & strNTDomain & "/" & strUser & ",user")
strFilter = ""
for each objGroup in objUser.Groups
 strFilter = strFilter & "(samAccountName=" & objGroup.Name & ")"
next

strFilter = "(|" & strFilter & ")"

' Now need to perform a search to retrieve each group
' and their primaryGroupToken
strBase = "<LDAP://" & strNTDomain & ">;"
strFilter = "(&(objectcategory=group)" & strFilter & ");"
strAttrs = "name,primaryGroupToken,cn;"
strScope = "subtree;"
set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objComm = CreateObject("ADODB.Command")
set objComm.ActiveConnection = objConn
objComm.CommandText = strBase & strFilter & strAttrs & strScope
' Be sure to enable paging in case number of groups > 1000
objComm.Properties("Page Size") = 1000
set objRS = objComm.Execute

' Iterate over each group again and stop after a match with the user's
' primaryGroupID has been made
strPrimaryGroup = ""
while ((not objRS.EOF) and (strPrimaryGroup = ""))
 if (objUser.PrimaryGroupID = objRS.Fields("primaryGroupToken").value) then
 strPrimaryGroup = objRS.Fields("name").Value
 end if
 objRS.moveNext
wend
objConn.Close

WScript.Echo "Primary Group for " & strUser & " is " & strPrimaryGroup & _
 " (" & objUser.PrimaryGroupID & ")"

7.8.3 Discussion

When trying to determine a user's group membership, you have to look at both user's memberOf

attribute, which contains a list of DNs for each group the user is a member of, and the user's primary
group. By default, all users are assigned Domain Users as their primary group. Therefore, by default
all users in a domain are implicitly members of the Domain Users group. Unfortunately, a user's
primary group will not show up in the memberOf attribute unless explicitly added.

Services for Macintosh and POSIX-based applications are the main users of
primary groups. If you don't use either of those, you don't need to worry about
changing a user's primary group.

The primary group is stored in the primaryGroupID attribute on user objects. Unfortunately, the RID
of the group is stored in that attribute, not the DN or even sAMAccountName as you might expect.
group objects have a primaryGroupToken attribute, which contains the same value, but is a

constructed attribute. Because Active Directory dynamically constructs it, you cannot utilize it in
search filters. So even if you have the primaryGroupID of a user, e.g., 513, you cannot do a simple

query to find out which group it is associated with.

You can find the name of a user's primary group relatively easily using the Active Directory Users and
Computers snap-in as I described in the GUI solution. Finding it via a script, on the other hand, is
considerably more complicated. There are a few different ways to go about determining a group
given a primary group ID and they are covered pretty well in MS KB 321360 and 297951. For the API
solution, I use the approach I feel is the most efficient.

I first used the WinNT: provider to retrieve a user's groups. The difference between using the WinNT:
provider and using the LDAP: provider is that the WinNT: provider returns the primary group as part
of the IADsGroup collection whereas the LDAP: provider does not. Unfortunately, there is no

indication which of the groups is the primary group. So I needed to iterate over each group and build
an LDAP filter that will be used later to retrieve each group using ADO. After I execute the ADO
query, I then iterate over each group and check the primaryGroupToken attribute of that group to
see if it matches the user's primaryGroupID attribute. If it does, I've found the user's primary group.

7.8.4 See Also

MS KB 297951 (HOWTO: Use the PrimaryGroupID Attribute to Find the Primary Group for a User) and
MS KB 321360 (How to Use Native ADSI Components to Find the Primary Group)

[Team LiB]

[Team LiB]

Recipe 7.9 Enabling Universal Group Membership
Caching

This recipe requires the Windows Server 2003 forest functional level.

7.9.1 Problem

You want to enable universal group membership caching so that a global catalog server is not needed
during user logins.

7.9.2 Solution

7.9.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the left pane, browse to the site you want to enable group caching for and click on it.2.

In the right pane, double-click on the NTDS Site Settings object.3.

Under Universal Group Membership Caching, check the box beside Enable Universal Group
Caching.

4.

If you want to force the cache refresh from a particular site, select a site or else leave the
default set to <Default>.

5.

Click OK.6.

7.9.2.2 Using a command-line interface

You can use a combination of the dsquery site and dsget site commands to find if a site has group

caching enabled.

> dsquery site -name <SiteName> | dsget site -dn -cachegroups -prefGCSite

You can use ldifde to enable group caching. Create a file called enable_univ_cache.ldf with the

following contents, but change <SiteName> to the name of the site you want to enable, and

<ForestRootDN> with the distinguished name of the forest root domain:

dn: cn=NTDS Site Settings,cn=<SiteName>,cn=sites,cn=configuration,<ForestRootDN>
changetype: modify
replace: options
options: 32
-

Then use the following command to import the change:

> ldifde -i -f enable_univ_cache.ldf

7.9.2.3 Using VBScript

' This code enables universal group caching for the specified site.
' ------ SCRIPT CONFIGURATION ------

strSiteName = "<SiteName>" ' e.g. Default-First-Site-Name
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objSite = GetObject("LDAP://cn=NTDS Site Settings,cn=" & strSiteName & _
 ",cn=sites," & objRootDSE.Get("configurationNamingContext"))
objSite.Put "options", 32
objSite.SetInfo
WScript.Echo "Successfully enabled universal group caching for " & _
 strSiteName

7.9.3 Discussion

When a client logs on to a Windows 2000 Active Directory domain controller, the domain controller
must contact a global catalog server (if it is not one itself) in order to fully authenticate the client.
This is necessary because of universal groups.

Universal groups can be created and used anywhere in a forest. Objects located anywhere in a forest
can be added as members of a universal group. Since a universal group could be created in a domain
other than where the user object resides, it is necessary to store universal group membership in the
global catalog. That way, during logon, domain controllers can query a global catalog to determine all
universal groups a user is a member of. Microsoft's primary reason for making this a requirement
during logon is that a user could be part of a universal group that has been explicitly denied access to
certain resources. If universal groups aren't evaluated, a user could gain access to resources that
were previously restricted.

To remove this limitation in Windows Server 2003 Active Directory, universal group caching was
introduced. Universal group caching can be enabled on a per site basis and allows domain controllers
to cache universal group information locally, therefore, removing the need to query the global catalog
during client logon.

You can enable universal group caching manually by enabling the 10000 bit (32 in decimal) on
options attribute of the NTDS Site Settings object. The CLI and VBScript solutions blindly wrote 32

to that attribute, which is not ideal. See Recipe 4.12 for more information on properly setting a bit-
flag attribute. The Sites and Services snap-in hides this logic and just requires you to check a box.

Another setting can also be configured that relates to universal group caching. By default, domain
controllers will use the site topology to determine what is the optimal site to query a global catalog
server for universal group information. You can override this feature and explicitly set which site
domain controllers should use by selecting the site in the Sites and Services snap-in or by setting the
msDS-Preferred-GC-Site attribute on the NTDS Site Settings object to the DN of the target site.

[Team LiB]

[Team LiB]

Chapter 8. Computers

Introduction

Recipe 8.1. Creating a Computer

Recipe 8.2. Creating a Computer for a Specific User or Group

Recipe 8.3. Joining a Computer to a Domain

Recipe 8.4. Moving a Computer

Recipe 8.5. Renaming a Computer

Recipe 8.6. Testing the Secure Channel for a Computer

Recipe 8.7. Resetting a Computer

Recipe 8.8. Finding Inactive or Unused Computers

Recipe 8.9. Changing the Maximum Number of Computers a User Can Join to the Domain

Recipe 8.10. Finding Computers with a Particular OS

Recipe 8.11. Binding to the Default Container for Computers

Recipe 8.12. Changing the Default Container for Computers
[Team LiB]

[Team LiB]

Introduction

As far as Active Directory is concerned, computers are very similar to users. In fact, computer
objects inherit directly from the user object class, which is used to represent user accounts. That
means computer objects have all of the attributes of user objects and then some. Computers need

to be represented in Active Directory for many of the same reasons users do, including the need to
access resources securely, utilize GPOs, and have permissions granted or restricted on them.

To participate in a domain, computers need a secure channel to a domain controller. A secure
channel is an authenticated connection that can transmit encrypted data. To set up the secure
channel, a computer has to present a password to a domain controller. The domain controller then
verifies that password against the password stored in Active Directory with the computer's account.
Without the computer object, and subsequently, the password stored with it, there would be no way
for the domain controller to verify a computer is what it claims to be.

The Anatomy of a Computer

The default location for computer objects in a domain is the cn=Computers container located directly
off the domain root. You can, however, create computer objects anywhere in a domain. And in
Windows Server 2003, you can modify the default location for computer objects as described in

Recipe 8.12. Table 8-1 contains a list of some of the interesting attributes that are available on
computer objects.

Table 8-1. Attributes of computer objects

Attribute Description

cn Relative distinguished name of computer objects.

dnsHostName Fully qualified DNS name of the computer.

lastLogonTimestamp
The approximate timestamp of the last time the computer logged
in the domain. This is a new attribute in Windows Server 2003.

managedBy
The distinguished name (DN) of user or group that manages the
computer.

memberOf List of DNs of the groups the computer is a member of.

operatingSystem
Textual description of the operating system running on the
computer. See Recipe 8.10 for more information.

operatingSystemHotFix
Currently not being used, but will hopefully be populated at some
point.

Attribute Description

operatingSystemServicePack
Service pack version installed on the computer. See Recipe 8.10
for more information.

operatingSystemVersion
Numeric version of the operating system installed on the
computer. See Recipe 8.10 for more information.

pwdLastSet
Large integer that can be translated into the last time the
computer's password was set. See Recipe 8.8 for more
information.

sAMAccountName
NetBIOS-style name of the computer. This is typically the name of
the computer with $ at the end.

userAccountControl Account flag that defines various account properties.

[Team LiB]

operatingSystemServicePack
Service pack version installed on the computer. See Recipe 8.10
for more information.

operatingSystemVersion
Numeric version of the operating system installed on the
computer. See Recipe 8.10 for more information.

pwdLastSet
Large integer that can be translated into the last time the
computer's password was set. See Recipe 8.8 for more
information.

sAMAccountName
NetBIOS-style name of the computer. This is typically the name of
the computer with $ at the end.

userAccountControl Account flag that defines various account properties.

[Team LiB]

[Team LiB]

Recipe 8.1 Creating a Computer

8.1.1 Problem

You want to create a computer account.

8.1.2 Solution

8.1.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on Active Directory Users and Computers in the left
pane, select Connect to Domain, enter the domain name and click OK.

2.

In the left pane, browse to the parent container for the computer, right-click on it, and select
New Computer.

3.

Enter the name of the computer and click OK.4.

8.1.2.2 Using a command-line interface

> dsadd computer "<ComputerDN>" -desc "<Description>"

8.1.2.3 Using VBScript

' This code creates a computer object.
' ------ SCRIPT CONFIGURATION ------

strBase = "<ParentComputerDN>" ' e.g. cn=Computers,dc=rallencorp,dc=com

strComp = "<ComputerName>" ' e.g. joe-xp

strDescr = "<Description>" ' e.g. Joe's Windows XP workstation
' ------ END CONFIGURATION ---------

' ADS_USER_FLAG_ENUM
Const ADS_UF_WORKSTATION_TRUST_ACCOUNT = &h1000

set objCont = GetObject("LDAP://" & strBase)
set objComp = objCont.Create("computer", "cn=" & strComp)

objComp.Put "sAMAccountName", strComp & "$"
objComp.Put "description", strDesc
objComp.Put "userAccountControl", ADS_UF_WORKSTATION_TRUST_ACCOUNT
objComp.SetInfo
Wscript.Echo "Computer account for " & strComp & " created"

8.1.3 Discussion

Creating a computer object in Active Directory is not much different from creating a user object. I
set the description attribute in the CLI and API solutions, but it is not a mandatory attribute. The
only mandatory attribute is sAMAccountName which should be set to the name of the computer with $
appended. Also note that these solutions simply create a computer object. This does not mean any

user can join a computer to the domain with that computer account. For more information creating a
computer object and allowing a specific user or group to join the computer to the domain, see Recipe

8.2.

8.1.4 See Also

Recipe 8.2 for creating a computer for a user, MS KB 222525 (Automating the Creation of Computer
Accounts), MS KB 283771 (HOW TO: Pre-stage Windows 2000 Computers in Active Directory), MS KB
315273 (Automating the Creation of Computer Accounts), MS KB 320187 (HOW TO: Manage
Computer Accounts in Active Directory in Windows 2000), and MSDN: ADS_USER_FLAG_ENUM

[Team LiB]

[Team LiB]

Recipe 8.2 Creating a Computer for a Specific User or
Group

8.2.1 Problem

You want to create a computer account for a specific user or group to join to the domain. This requires
setting permissions on the computer account so the user or group can modify certain attributes.

8.2.2 Solution

8.2.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on Active Directory Users and Computers in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, browse to the parent container for the computer, right-click on it, and select New
 Computer.

3.

Enter the name of the computer.4.

Click the Change button.5.

Use the Object Picker to select a user or group to join the computer to the domain.6.

Click OK.7.

8.2.2.2 Using a command-line interface

In the following solution, replace <ComputerDN> with the distinguished name of the computer object and

<UserOrGroup> with the user principal name or NT-style name of a user or group you want to manage

the computer:

> dsadd computer <ComputerDN>

> dsacls <ComputerDN> /G <UserOrGroup>:CALCGRSDDTRC;;

> dsacls <ComputerDN> /G <UserOrGroup>:WP;description;

> dsacls <ComputerDN> /G <UserOrGroup>:WP;sAMAccountName;

> dsacls <ComputerDN> /G <UserOrGroup>:WP;displayName;

> dsacls <ComputerDN> /G <UserOrGroup>:WP;"Logon Information";

> dsacls <ComputerDN> /G <UserOrGroup>:WP;"Account Restrictions";

> dsacls <ComputerDN> /G <UserOrGroup>:WS;"Validated write to service principal[RETURN]
name";

> dsacls <ComputerDN> /G <UserOrGroup>:WS;"Validated write to DNS host name";

8.2.2.3 Using VBScript

' This code creates a computer object and grants a user/group rights over it
' ------ SCRIPT CONFIGURATION ------

strComputer = "<ComputerName>" ' e.g. joe-xp

strUser = "<UserOrGroup>" ' e.g. joe@rallencorp.com or RALLENCORP\joe

strDescr = "<ComputerDescr>" ' e.g. Joe's workstation

strDomain = "<ComputerDomain>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

'############################
' Constants
'############################

' ADS_USER_FLAG_ENUM
Const ADS_UF_PASSWD_NOTREQD = &h0020
Const ADS_UF_WORKSTATION_TRUST_ACCOUNT = &h1000

' ADS_ACETYPE_ENUM
Const ADS_ACETYPE_ACCESS_ALLOWED = &h0
Const ADS_ACETYPE_ACCESS_ALLOWED_OBJECT = &h5

' ADS_FLAGTYPE_ENUM
Const ADS_FLAG_OBJECT_TYPE_PRESENT = &h1

' ADS_RIGHTS_ENUM
Const ADS_RIGHT_DS_SELF = &h8
Const ADS_RIGHT_DS_WRITE_PROP = &h20
Const ADS_RIGHT_DS_CONTROL_ACCESS = &h100
Const ADS_RIGHT_ACTRL_DS_LIST = &h4
Const ADS_RIGHT_GENERIC_READ = &h80000000
Const ADS_RIGHT_DELETE = &h10000
Const ADS_RIGHT_DS_DELETE_TREE = &h40
Const ADS_RIGHT_READ_CONTROL = &h20000

' schemaIDGUID values
Const DISPLAY_NAME = "{bf967953-0de6-11d0-a285-00aa003049e2}"
Const SAM_ACCOUNT_NAME = "{3e0abfd0-126a-11d0-a060-00aa006c33ed}"
Const DESCRIPTION = "{bf967950-0de6-11d0-a285-00aa003049e2}"

' controlAccessRight rightsGUID values
Const USER_LOGON_INFORMATION = "{5f202010-79a5-11d0-9020-00c04fc2d4cf}"
Const USER_ACCOUNT_RESTRICTIONS = "{4C164200-20C0-11D0-A768-00AA006E0529}"
Const VALIDATED_DNS_HOST_NAME = "{72E39547-7B18-11D1-ADEF-00C04FD8D5CD}"
Const VALIDATED_SPN = "{F3A64788-5306-11D1-A9C5-0000F80367C1}"

'############################
' Create Computer
'############################

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
set objContainer = GetObject("LDAP://cn=Computers," & _
 objRootDSE.Get("defaultNamingContext"))
set objComputer = objContainer.Create("Computer", "cn=" & strComputer)
objComputer.Put "sAMAccountName", strComputer & "$"
objComputer.Put "userAccountControl", _
 ADS_UF_PASSWD_NOTREQD Or ADS_UF_WORKSTATION_TRUST_ACCOUNT
objComputer.Put "description", strDescr
objComputer.SetInfo

'############################
' Create ACL
'############################

set objSD = objComputer.Get("ntSecurityDescriptor")
set objDACL = objSD.DiscretionaryAcl

' Special: Control Rights, List Children
' Generic Read, Delete,
' Delete Subtree, Read Permission
set objACE1 = CreateObject("AccessControlEntry")
objACE1.Trustee = strUser
objACE1.AccessMask = ADS_RIGHT_DS_CONTROL_ACCESS Or _
 ADS_RIGHT_ACTRL_DS_LIST Or _
 ADS_RIGHT_GENERIC_READ Or _
 ADS_RIGHT_DELETE Or _
 ADS_RIGHT_DS_DELETE_TREE Or ADS_RIGHT_READ_CONTROL
objACE1.AceFlags = 0
objACE1.AceType = ADS_ACETYPE_ACCESS_ALLOWED

' Write Property: description
set objACE2 = CreateObject("AccessControlEntry")
objACE2.Trustee = strUser
objACE2.AccessMask = ADS_RIGHT_DS_WRITE_PROP
objACE2.AceFlags = 0
objACE2.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE2.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE2.ObjectType = DESCRIPTION

' Write Property: sAMAccountName
set objACE3 = CreateObject("AccessControlEntry")
objACE3.Trustee = strUser
objACE3.AccessMask = ADS_RIGHT_DS_WRITE_PROP
objACE3.AceFlags = 0
objACE3.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE3.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE3.ObjectType = SAM_ACCOUNT_NAME

' Write Property: displayName
set objACE4 = CreateObject("AccessControlEntry")
objACE4.Trustee = strUser

objACE4.AccessMask = ADS_RIGHT_DS_WRITE_PROP
objACE4.AceFlags = 0
objACE4.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE4.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE4.ObjectType = DISPLAY_NAME

' Write Property: Logon Information
set objACE5 = CreateObject("AccessControlEntry")
objACE5.Trustee = strUser
objACE5.AccessMask = ADS_RIGHT_DS_WRITE_PROP
objACE5.AceFlags = 0
objACE5.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE5.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE5.ObjectType = USER_LOGON_INFORMATION

' Write Property: Account Restrictions
set objACE6 = CreateObject("AccessControlEntry")
objACE6.Trustee = strUser
objACE6.AccessMask = ADS_RIGHT_DS_WRITE_PROP
objACE6.AceFlags = 0
objACE6.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE6.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE6.ObjectType = USER_ACCOUNT_RESTRICTIONS

' Write Self: Validated SPN
set objACE7 = CreateObject("AccessControlEntry")
objACE7.Trustee = strUser
objACE7.AccessMask = ADS_RIGHT_DS_SELF
objACE7.AceFlags = 0
objACE7.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE7.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE7.ObjectType = VALIDATED_SPN

' Write Self: Validated DNS Host Name
set objACE8 = CreateObject("AccessControlEntry")
objACE8.Trustee = strUser
objACE8.AccessMask = ADS_RIGHT_DS_SELF
objACE8.AceFlags = 0
objACE8.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE8.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE8.ObjectType = VALIDATED_DNS_HOST_NAME

objDACL.AddAce objACE1
objDACL.AddAce objACE2
objDACL.AddAce objACE3
objDACL.AddAce objACE4
objDACL.AddAce objACE5
objDACL.AddAce objACE6
objDACL.AddAce objACE7
objDACL.AddAce objACE8

'############################

' Set ACL
'############################
objSD.DiscretionaryAcl = objDACL
objComputer.Put "ntSecurityDescriptor", objSD
objComputer.SetInfo
WScript.Echo "Successfully created " & strComputer & _
 " and gave rights to " & strUser

8.2.3 Discussion

Simply creating a computer object in Active Directory does not permit a user to join a computer to the
domain. Certain permissions have to be granted so that the user has rights to modify the computer

object. When you create a computer via the Active Directory Users and Computers snap-in you have the
option to select a user or group to manage the computer object and join a computer to the domain

using that object. When you use that method, eight access control entries (ACEs) are added to the
access control list (ACL) of the computer object. They are:

List Contents, Read All Properties, Delete, Delete Subtree, Read Permissions, All Extended Rights
(i.e., Allowed to Authenticate, Change Password, Send As, Receive As, Reset Password

Write Property for description

Write Property for sAMAccountName

Write Property for displayName

Write Property for Logon Information

Write Property for Account Restrictions

Validate write to DNS host name

Validated write for service principal name

8.2.3.1 Using a graphical user interface

If you want to modify the default permissions that are applied when you select a user or group through
the GUI, double-click on the computer object after you created it and go to the Security tab. For the

Security tab to be visible, you have to select View Advanced Features.

8.2.3.2 Using a command-line interface

With the dsacls utility, you can specify either a UPN (user@domain) or down-level style (DOMAIN\user
) account name when applying permissions. Also, dsacls requires that the displayName of the

attribute, property set, or extended right you are setting the permission on be used instead of the
lDAPDisplayName , as one might expect. That is why I had to use "Validated write to service principal
name," which is the displayName for the Validated-SPN controlAccessRight object with the ACE for
the SPN-validated write. dsacls is also case sensitive, so be sure to specify the correct case for the
words in the displayName .

8.2.3.3 Using VBScript

After creating the computer object, similar to Recipe 8.1 , I create an ACE object for each of the eight
ACEs I previously listed using the IADsAccessControlEntry interface. To apply the ACEs, I retrieved
the current security descriptor for the computer object, which is stored in the nTSecurityDescriptor
attribute, and then add the eight ACEs. Finally, I called SetInfo to commit the change to Active

Directory. For more information on setting ACEs and ACLs programmatically, see the
IADsAccessControlEntry documentation in MSDN.

8.2.4 See Also

Recipe 8.1 for creating a computer account, MS KB 238793 (Enhanced Security Joining or Resetting
Machine Account in Windows 2000 Domain), MS KB 283771 (HOW TO: Prestage Windows 2000
Computers in Active Directory), MS KB 320187 (HOW TO: Manage Computer Accounts in Active
Directory in Windows 2000), MSDN: IADsAccessControlEntry, MSDN: ADS_ACETYPE_ENUM, and MSDN:
ADS_RIGHTS_ENUM, MSDN: ADS_FLAGTYPE_ENUM

[Team LiB]

[Team LiB]

Recipe 8.3 Joining a Computer to a Domain

8.3.1 Problem

You want to join a computer to a domain after the computer object has already been created in
Active Directory.

8.3.2 Solution

8.3.2.1 Using a graphical user interface

Log onto the computer you want to join and open the Control Panel.1.

Open the System applet.2.

Click the Computer Name tab.3.

Click the Change button.4.

Under Member of, select Domain.5.

Enter the domain you want to join and click OK.6.

You may be prompted to enter credentials that have permission to join the computer.7.

Reboot the computer.8.

Note that the tabs in the System applet vary between Windows 2000, Windows XP, and
Windows Server 2003.

9.

8.3.2.2 Using a command-line interface

> netdom join <ComputerName> /Domain <DomainName> /UserD <DomainUserUPN>[RETURN]

/PasswordD * /UserO <ComputerAdminUser> /PasswordO * /Reboot

8.3.2.3 Using VBScript

' This code joins a computer to a domain.
' ------ SCRIPT CONFIGURATION ------

strComputer = "<ComputerName>" ' e.g. joe-xp

strDomain = "<DomainName>" ' e.g. rallencorp.com

strDomainUser = "<DomainUserUPN>" ' e.g. administrator@rallencorp.com

strDomainPasswd = "<DomainUserPasswd>"

strLocalUser = "<ComputerAdminUser>" ' e.g. administrator

strLocalPasswd = "<ComputerUserPasswd>"
' ------ END CONFIGURATION ---------

'########################
' Constants
'########################
Const JOIN_DOMAIN = 1
Const ACCT_CREATE = 2
Const ACCT_DELETE = 4
Const WIN9X_UPGRADE = 16
Const DOMAIN_JOIN_IF_JOINED = 32
Const JOIN_UNSECURE = 64
Const MACHINE_PASSWORD_PASSED = 128
Const DEFERRED_SPN_SET = 256
Const INSTALL_INVOCATION = 262144

'###########################
' Connect to Computer
'###########################
set objWMILocator = CreateObject("WbemScripting.SWbemLocator")
objWMILocator.Security_.AuthenticationLevel = 6
set objWMIComputer = objWMILocator.ConnectServer(strComputer, _
 "root\cimv2", _
 strLocalUser, _
 strLocalPasswd)
set objWMIComputerSystem = objWMIComputer.Get(_
 "Win32_ComputerSystem.Name='" & _
 strComputer & "'")

'###########################
' Join Computer
'###########################
rc = objWMIComputerSystem.JoinDomainOrWorkGroup(strDomain, _
 strDomainPasswd, _
 strDomainUser, _
 vbNullString, _
 JOIN_DOMAIN)
if rc <> 0 then
 WScript.Echo "Join failed with error: " & rc
else
 WScript.Echo "Successfully joined " & strComputer & " to " & strDomain
end if

8.3.3 Discussion

When trying to add a computer to Active Directory, you must first create the computer object as

described in Recipe 8.1 and Recipe 8.2. Then you can join the computer to the domain.

8.3.3.1 Using a graphical user interface

If you have the correct permissions in Active Directory, you can actually create a computer object at
the same time as you join it to a domain via the instructions described in the GUI solution. Since the
System applet doesn't allow you to specify an OU for the computer object, if it needs to create a
computer object, it will do so in the default Computers container. See Recipe 8.1 and Recipe 8.2 for

more information on the default computers container and how to change it.

8.3.3.2 Using a command-line interface

The netdom command will attempt to create a computer object for the computer during a join if one
does not already exist. An optional /OU switch can be added to specify the OU in which to create the
computer object. To do so you'll need to have the necessary permissions to create and manage
computer objects in the OU.

There are some restrictions on running the netdom join command remotely. If a Windows XP

machine has the ForceGuest security policy setting enabled, you cannot join it remotely. Running the
netdom command directly on the machine works regardless of the ForceGuest setting.

8.3.3.3 Using VBScript

In order for the Win32_ComputerSystem::JoinDomainOrWorkGroup method to work remotely, you
have to use an AuthenticationLevel equal to 6 so that the traffic between the two machines
(namely the passwords) is encrypted. You can also create computer objects using
JoinDomainOrWorkGroup by using the ACCT_CREATE flag in combination with JOIN_DOMAIN.

This function works only with Windows XP and Windows Server 2003 and is not
available for Windows 2000 and earlier machines.

Just like with the netdom utility, you cannot run this script against a remote computer if that

computer has the ForceGuest setting enabled.

8.3.4 See Also

More information on the ForceGuest setting can be found here:
http://www.microsoft.com/technet/prodtechnol/winxppro/reskit/prde_ffs_ypuh.asp, MS KB 238793
(Enhanced Security Joining or Resetting Machine Account in Windows 2000 Domain), MS KB 251335
(Domain Users Cannot Join Workstation or Server to a Domain), MS KB 290403 (How to Set Security
in Windows XP Professional That Is Installed in a Workgroup), MSDN:
Win32_ComputerSystem::JoinDomainOrWorkgroup, and MSDN: NetJoinDomain

[Team LiB]

http://www.microsoft.com/technet/prodtechnol/winxppro/reskit/prde_ffs_ypuh.asp

[Team LiB]

Recipe 8.4 Moving a Computer

8.4.1 Problem

You want to move a computer object to a different container or OU.

8.4.2 Solution

8.4.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right click on Active Directory Users and Computers in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, right-click on the domain and select Find.3.

Beside Find, select Computers.4.

Type the name of the computer and click Find Now.5.

In the Search Results, right-click on the computer and select Move.6.

Browse to the new parent container or OU and click on it.7.

Click OK.8.

With the Windows Server 2003 version of Active Directory Users and
Computers you can also use the new drag and drop functionality to move
computers and other objects.

8.4.2.2 Using a command-line interface

> dsmove "<ComputerDN>" -newparent "<NewParentDN>"

8.4.2.3 Using VBScript

' This code moves a computer to the specified container/OU.
' ------ SCRIPT CONFIGURATION ------

strCompDN = "<ComputerDN>" ' e.g. cn=joe-xp,cn=Users,dc=rallencorp,dc=com

strOUDN = "<NewParentDN>" ' e.g. ou=workstations,dc=rallencorp,dc=com
' ------ END CONFIGURATION ---------

set objComp = GetObject("LDAP://" & strCompDN)
set objOU = GetObject("LDAP://" & strOUDN)
objOU.MoveHere objComp.ADsPath, objComp.Name

8.4.3 Discussion

You can move computer objects around a domain without much impact on the computer itself. You

just need to be cautious of the security settings on the new parent OU, which may impact a user's
ability to manage the computer object in Active Directory. Also, if GPOs are used differently on the

new parent, it could impact booting and logon times.

8.4.4 See Also

Recipe 4.17 for moving an object to a different OU, and Recipe 4.18 for moving an object to a
different domain

[Team LiB]

[Team LiB]

Recipe 8.5 Renaming a Computer

8.5.1 Problem

You want to rename a computer.

8.5.2 Solution

8.5.2.1 Using a graphical user interface

Log on to the computer either directly or with a remote console application, such as Terminal
Services.

1.

Open the Control Panel and double-click on the System Applet.2.

Select the Computer Name tab and click the Change button.3.

Under Computer Name, type the new name of the computer and click OK until you are out of
the System applet.

4.

Reboot the machine.5.

8.5.2.2 Using a command-line interface

> netdom renamecomputer <ComputerName> /NewName <NewComputerName> /UserD[RETURN]

<DomainUserUPN> /PasswordD * /UserO <ComputerAdminUser> /PasswordO * /Reboot

8.5.2.3 Using VBScript

' This code renames a computer in AD and on the host itself.
' ------ SCRIPT CONFIGURATION ------

strComputer = "<ComputerName>" e.g. joe-xp

strNewComputer = "<NewComputerName>" e.g. joe-pc

strDomainUser = "<DomainUserUPN>" e.g. administrator@rallencorp.com

strDomainPasswd = "<DomainUserPasswd>"

strLocalUser = "<ComputerAdminUser>" e.g. joe-xp\administrator

strLocalPasswd = "<ComputerAdminPasswd>"
' ------ END CONFIGURATION ---------

'###########################
' Connect to Computer
'###########################
set objWMILocator = CreateObject("WbemScripting.SWbemLocator")
objWMILocator.Security_.AuthenticationLevel = 6
set objWMIComputer = objWMILocator.ConnectServer(strComputer, _
 "root\cimv2", _
 strLocalUser, _
 strLocalPasswd)
set objWMIComputerSystem = objWMIComputer.Get(_
 "Win32_ComputerSystem.Name='" & _
 strComputer & "'")
'###########################
' Rename Computer
'###########################
rc = objWMIComputerSystem.Rename(strNewComputer, _
 strDomainPasswd, _
 strDomainUser)
if rc <> 0 then
 WScript.Echo "Rename failed with error: " & rc
else
 WScript.Echo "Successfully renamed " & strComputer & " to " & _
 strNewComputer
end if

WScript.Echo "Rebooting . . . "
set objWSHShell = WScript.CreateObject("WScript.Shell")
objWSHShell.Run "rundll32 shell32.dll,SHExitWindowsEx 2"

8.5.3 Discussion

Renaming a computer consists of two operations: renaming the computer object in Active Directory

and renaming the hostname on the machine itself. To do it in one step, which each of the three
solutions offer, you must have permission in Active Directory to rename the account and
administrator permissions on the target machine. For the rename operation to be complete, you
must reboot the computer.

In some cases, renaming a computer can adversely affect services running on
the computer. For example, you cannot rename a machine that is a Windows
2000 domain controller or a Windows Certificate Authority without first
removing those services.

8.5.3.1 Using a graphical user interface

After you rename the computer, you will be prompted to reboot the machine. You can cancel out if
necessary, but you'll need to reboot at some point to complete the rename operation.

8.5.3.2 Using a command-line interface

The renamecomputer option in netdom is new to Windows Server 2003. It can run remotely and
includes a /Reboot switch that allows you to automatically reboot the computer after the rename is

complete.

8.5.3.3 Using VBScript

The Win32_ComputerSystem::Rename method must be run on the local machine unless the

computer is a member of a domain. Unlike the GUI and CLI solutions, you cannot specify alternate
credentials for the connection to the computer other than domain credentials. For this reason, the
user and password you use with the Rename method must have administrative privileges on the
target machine (i.e., part of the Administrators group) and on the computer object in Active

Directory.

This method is new in Windows XP and Windows Server 2003, and is not
available on Windows 2000 and earlier machines.

8.5.4 See Also

Recipe 4.19 for renaming objects, MS KB 228544 (Changing Computer Name in Windows 2000
Requires Restart), MS KB 238793 (Enhanced Security Joining or Resetting Machine Account in
Windows 2000 Domain), MS KB 260575 (HOW TO: Use Netdom.exe to Reset Machine Account
Passwords of a Windows 2000 Domain Controller), MS KB 325354 (HOW TO: Use the Netdom.exe
Utility to Rename a Computer in Windows Server 2003), and MSDN:
Win32_ComputerSystem::Rename

[Team LiB]

[Team LiB]

Recipe 8.6 Testing the Secure Channel for a Computer

8.6.1 Problem

You want to test the secure channel of a computer.

8.6.2 Solution

8.6.2.1 Using a command-line interface

> nltest /server:<ComputerName> /sc_query:<DomainName>

8.6.3 Discussion

Every member computer in an Active Directory domain establishes a secure channel with a domain
controller. The computer's password is stored locally in the form of an LSA secret and in Active
Directory. This password is used by the NetLogon service to establish the secure channel with a
domain controller. If, for some reason, the LSA secret and computer password become out of sync,
the computer will no longer be able to authenticate in the domain. The nltest /sc_query command

can query a computer to verify its secure channel is working. Here is sample output from the
command when things are working:

Flags: 30 HAS_IP HAS_TIMESERV
Trusted DC Name \\dc1.rallencorp.com
Trusted DC Connection Status Status = 0 0x0 NERR_Success
The command completed successfully

If a secure channel is failing, you'll need to reset the computer as described in Recipe 8.7. Here is
sample output when things are not working:

Flags: 0
Trusted DC Name
Trusted DC Connection Status Status = 1311 0x51f ERROR_NO_LOGON_SERVERS
The command completed successfully

8.6.4 See Also

Recipe 8.7 for resetting a computer and MS KB 216393 (Resetting Computer Accounts in Windows
2000 and Windows XP)

[Team LiB]

[Team LiB]

Recipe 8.7 Resetting a Computer

8.7.1 Problem

You want to reset a computer because its secure channel is failing.

8.7.2 Solution

8.7.2.1 Using a graphical user interface

Open the Active Directory Users and Computers snap-in.1.

If you need to change domains, right-click on Active Directory Users and Computers in the left
pane, select Connect to Domain, enter the domain name, and click OK.

2.

In the left pane, right-click on the domain and select Find.3.

Beside Find, select Computers.4.

Type the name of the computer and click Find Now.5.

In the Search Results, right-click on the computer and select Reset Account.6.

Click Yes to verify.7.

Click OK.8.

Rejoin computer to the domain.9.

8.7.2.2 Using a command-line interface

You can use the dsmod utility to reset a computer's password. You will need to rejoin the computer to

the domain after doing this.

> dsmod computer "<ComputerDN>" -reset

Another option is to use the netdom command, which can reset the computer so that you do not need

to rejoin it to the domain:

> netdom reset <ComputerName> /Domain <DomainName> /UserO <UserUPN> /PasswordO *

8.7.2.3 Using VBScript

' This resets an existing computer object's password to initial default.
' You'll need to rejoin the computer after doing this.

set objComputer = GetObject("LDAP://<ComputerDN>")

objComputer.SetPassword "<ComputerName>"

8.7.3 Discussion

When you've identified that a computer's secure channel has failed, you'll need to reset the
computer, which consists of setting the computer object password to the name of the computer. This

is the default initial password for new computers. Every 30 days Windows 2000 and newer systems
automatically change their passwords in the domain. After you've set the password, you'll need to
rejoin the computer to the domain since it will no longer be able to communicate with a domain
controller due to unsynchronized passwords. However, the netdom reset command will try to reset

the password on both the computer and in Active Directory, which will not necessitate rejoining it to
the domain if successful.

8.7.4 See Also

Recipe 8.3 for joining a computer to a domain, Recipe 8.6 for testing a secure channel, MS KB 216393
(Resetting Computer Accounts in Windows 2000 and Windows XP), and MS KB 325850 (HOW TO: Use
Netdom.exe to Reset Machine Account Passwords of a Windows Server 2003 Domain Controller)

[Team LiB]

[Team LiB]

Recipe 8.8 Finding Inactive or Unused Computers

8.8.1 Problem

You want to find inactive computer accounts in a domain.

8.8.2 Solution

These solutions only apply to Windows-based machines. Other types of
machines (e.g., Unix) that have accounts in Active Directory may not update
their login timestamps or passwords, which are used to determine inactivity.

8.8.2.1 Using a command-line interface

The following query will locate all inactive computers in the current forest:

> dsquery computer forestroot -inactive <NumWeeks>

You can also use domainroot in combination with the -d option to query a specific domain:

> dsquery computer domainroot -d <DomainName> -inactive <NumWeeks>

or you can target your query at a specific container:

> dsquery computer ou=MyComputers,dc=rallencorp,dc=com -inactive <NumWeeks>

This can only be run against a Windows Server 2003 domain functional level or
higher domain.

8.8.2.2 Using Perl

#!perl

#-----------------------
Script Configuration
#-----------------------
Domain and container/OU to check for inactive computer accounts
my $domain = 'amer.rallencorp.com';

set to empty string to query entire domain

my $computer_cont = 'cn=Computers,';

Number of weeks used to find inactive computers
my $weeks_ago = 30;
#-----------------------
End Configuration
#-----------------------

use strict;
use Win32::OLE;
 $Win32::OLE::Warn = 3;
use Math::BigInt;

Must convert the number of seconds since $weeks_ago
to a large integer for comparison against lastLogonTimestamp
my $sixmonth_secs = time - 60*60*24*7*$weeks_ago;
my $intObj = Math::BigInt->new($sixmonth_secs);
 $intObj = Math::BigInt->new($intObj->bmul('10 000 000'));
my $sixmonth_int = Math::BigInt->new(
 $intObj->badd('116 444 736 000 000 000'));
 $sixmonth_int =~ s/^[+-]//;

Setup the ADO connections
my $connObj = Win32::OLE->new('ADODB.Connection');
$connObj->{Provider} = "ADsDSOObject";
$connObj->Open;
my $commObj = Win32::OLE->new('ADODB.Command');
$commObj->{ActiveConnection} = $connObj;
$commObj->Properties->{'Page Size'} = 1000;

Grab the default root domain name
my $rootDSE = Win32::OLE->GetObject("LDAP://$domain/RootDSE");
my $rootNC = $rootDSE->Get("defaultNamingContext");

Run ADO query and print results
my $query = "<LDAP://$domain/$computer_cont$rootNC>;";
$query .= "(&(objectclass=computer)";
$query .= "(objectcategory=computer)";
$query .= "(lastlogontimestamp<=$sixmonth_int));";
$query .= "cn,distinguishedName;";
$query .= "subtree";
$commObj->{CommandText} = $query;
my $resObj = $commObj->Execute($query);
die "Could not query $domain: ",$Win32::OLE::LastError,"\n"
 unless ref $resObj;

print "\nComputers that have been inactive for $weeks_ago weeks or more:\n";
my $total = 0;
while (!($resObj->EOF)) {
 my $cn = $resObj->Fields(0)->value;
 print "\t",$resObj->Fields("distinguishedName")->value,"\n";
 $total++;

 $resObj->MoveNext;
}
print "Total: $total\n";

8.8.3 Discussion

8.8.3.1 Using a command-line interface

The dsquery computer command is very handy for finding inactive computers that have not logged
into the domain for a number of weeks or months. You can pipe the results of the query to dsrm if
you want to remove the inactive computer objects from Active Directory in a single command. Here

is an example that would delete all computers in the current domain that have been inactive for 12
weeks or longer:

> for /F "usebackq" %i in (`dsquery computer domainroot -inactive 12`) do dsrm %i

Unless you have a requirement for quickly removing unused computer objects, I'd recommend

allowing them to remain inactive for at least three months before removing them. If you don't really
care when the objects get removed, use a year (i.e., 52 weeks) to be on the safe side.

8.8.3.2 Using Perl

With Windows 2000 Active Directory, the only way you can determine if a computer is inactive is to
query either the pwdLastSet or lastLogon attributes. The pwdLastSet attribute is a 64-bit integer

that translates into the date and time the computer last updated its password. Since computers are
suppose to change their password every 30 days, you could run a query that finds the computers
that have not changed their password in several months. This is difficult with VBScript because it does
not handle 64-bit integer manipulation very well. There are third-party add-ons you can get that
provide 64-bit functions, but none of the built-in VBScript functions can do it and it is non-trivial to
implement without an add-on.

The lastLogin attribute can also be used to find inactive computers because that attribute contains a

64-bit integer representing the last time the computer logged into the domain. The problem with the
lastLogin attribute is that it is not replicated. Since it is not replicated, you have to query every
domain controller in the domain to find the most recent lastLogin value. As you can imagine, this is

less than ideal, especially if you have a lot of domain controllers.

Fortunately, in Windows Server 2003, Microsoft added a new attribute called lastLogonTimestamp to
user and computer objects. This attribute contains the approximate last logon timestamp (again in a

64-bit, large-integer format) for the user or computer and is replicated to all domain controllers. It is
the "approximate" last logon because the domain controllers will update the value only if it hasn't
been updated for a certain period of time (such as a week). This prevents the attribute from being
updated constantly and causing a lot of unnecessary replication traffic.

Since VBScript was out of the question, I turned to my first love . . . Perl. It is very rare to find a
problem that you can't solve with Perl and this is no exception. The biggest issue is manipulating a
number to a 64-bit integer, which we can do with the Math::BigInt module.

First, I determine the time in seconds from 1970 for the date that we want to query computer

inactivity against. That is, take the current time and subtract the number of weeks we want to go
back. Then I have to convert that number to a big integer. The last step is simply to perform an ADO
query for all computers that have a lastLogonTimestamp less than or equal to the value I just

calculated.

8.8.4 See Also

Recipe 6.26 for finding users whose accounts are about to expire

[Team LiB]

[Team LiB]

Recipe 8.9 Changing the Maximum Number of Computers
a User Can Join to the Domain

8.9.1 Problem

You want to grant users the ability to join more or fewer than 10 computers to a domain. This limit is
called the machine account quota.

8.9.2 Solution

8.9.2.1 Using a graphical user interface

Open ADSI Edit.1.

Right-click on the domainDNS object for the domain you want to change and select Properties.2.

Edit the ms-DS-MachineAccountQuota attribute and enter the new quota value.3.

Click OK twice.4.

8.9.2.2 Using a command-line interface

In the following LDIF code replace <DomainDN> with the distinguished name of the domain you want

to change and replace <Quota> with the new machine account quota:

dn: <DomainDN>
changetype: modify
replace: ms-DS-MachineAccountQuota

ms-DS-MachineAccountQuota: <Quota>
-

If the LDIF file was named change_computer_quota.ldf, you would then run the following

command:

> ldifde -v -i -f change_computer_quota.ldf

8.9.2.3 Using VBScript

' This code sets the machine account quota for a domain.
' ------ SCRIPT CONFIGURATION ------

intQuota = <Quota>

strDomain = "<DomainDNSName>" ' e.g. emea.rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
set objDomain = GetObject("LDAP://" & objRootDSE.Get("defaultNamingContext"))
objDomain.Put "ms-DS-MachineAccountQuota", intQuota
objDomain.SetInfo
WScript.Echo "Updated user quota to " & intQuota

8.9.3 Discussion

In a default Active Directory installation, members of the Authenticated Users group can add and
join up to 10 computer accounts in the default Computers container. The number of computer
accounts that can be created is defined in the ms-DS-MachineAccountQuota attribute on the
domainDNS object for a domain. The default setting is artificially set to 10, but you can easily change

that to whatever number you want, including 0, via the methods described in the Solution section. If
you set it to 0, users have to be granted explicit permissions in Active Directory to join computers,
such as those described in Recipe 8.3.

Another method for granting users the right to add computer objects, although not recommended, is

via group policy. If you grant the "Add workstation to domain" right via Computer Configuration
Windows Settings Security Settings Local Policies User Rights Assignment, then users
will be able to create computer accounts even if they do not have create child permissions on the
default Computers container. This is a holdover from Windows NT to maintain backwards

compatibility, and should not be used unless absolutely necessary.

8.9.4 See Also

Recipe 8.3 for permissions needed to join computers to a domain, MS KB 251335 (Domain Users
Cannot Join Workstation or Server to a Domain), and MS KB 314462 ("You Have Exceeded the
Maximum Number of Computer Accounts" Error Message When You Try to Join a Windows XP
Computer to a Windows 2000 Domain)

[Team LiB]

[Team LiB]

Recipe 8.10 Finding Computers with a Particular OS

8.10.1 Problem

You want to find computers that have a certain OS version, release, or service pack in a domain.

8.10.2 Solution

8.10.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a user to perform the search.7.

Click OK.8.

From the Menu, select Browse Search.9.

For Base Dn, enter the base of where you want your search to begin.10.

For Filter, enter a filter that contains the OS attribute you want to search on. For example, a
query for all computers that are running Windows XP would be the following:

11.

(&(objectclass=computer)(objectcategory=computer)(operatingSystem=Windows XP
Professional))

Select the appropriate Scope based on how deep you want to search.12.

Click the Options button if you want to customize the list of attributes returned for each matching
object.

13.

Click Run and the results will be displayed in the right pane.14.

8.10.2.2 Using a command-line interface

> dsquery * <DomainDN> -scope subtree -attr "*" -filter "(&(objectclass=[RETURN]
computer)(objectcategory=computer)(operatingSystem=Windows Server 2003))"

8.10.2.3 Using VBScript

' This code searches for computer objects that have Service Pack 1 installed.
' ------ SCRIPT CONFIGURATION ------

strBase = "<LDAP://" & "<DomainDN>" & ">;"
' ------ END CONFIGURATION ---------

strFilter = "(&(objectclass=computer)(objectcategory=computer)" & _
 "(operatingSystemServicePack=Service Pack 1));"
strAttrs = "cn,operatingSystem,operatingSystemVersion," & _
 " operatingSystemServicePack;"
strScope = "subtree"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
Set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
objRS.MoveFirst
while Not objRS.EOF
 Wscript.Echo objRS.Fields(0).Value
 Wscript.Echo objRS.Fields(1).Value
 Wscript.Echo objRS.Fields(2).Value
 Wscript.Echo objRS.Fields(3).Value
 Wscript.Echo objRS.Fields(4).Value
 WScript.Echo
 objRS.MoveNext
wend

8.10.3 Discussion

When a computer joins an Active Directory domain, the operating system attributes are updated for
the computer object. There are four of these attributes, which can be used in queries to find computers

that match certain OS-specific criteria, like service pack level. These attributes include the following:

operatingSystem

Descriptive name of the installed Operating System (e.g., Windows Server 2003, Windows 2000
Server, and Windows XP Professional)

operatingSystemVersion

Numerical representation of the operating system (e.g., 5.0 (2195) and 5.2 (3757))
operatingSystemServicePack

Current service pack level if one is installed (e.g., Service Pack 2 and Service Pack 3)

This recipe only applies to Windows-based machines. Other types of machines
(e.g., Unix) that have accounts in Active Directory do not automatically update
their OS attributes.

[Team LiB]

[Team LiB]

Recipe 8.11 Binding to the Default Container for
Computers

This recipe requires the Windows Server 2003 domain functional level.

8.11.1 Problem

You want to bind to the default container that new computers objects are created in.

8.11.2 Solution

8.11.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a domain user.7.

Click OK.8.

From the menu, select View Tree.9.

For the DN, enter:10.

<WKGUID=aa312825768811d1aded00c04fd8d5cd,<DomainDN>>

where <DomainDN> is the distinguished name of a domain.

Click OK.11.

In the left menu, you can now browse the default computers container for the domain.12.

11.

12.

8.11.2.2 Using a command-line interface

With tools like netdom , if there is an option to only specify the name of the computer, and not its DN

or parent container, the default computers container is typically used.

8.11.2.3 Using VBScript

' This code illustrates how to bind to the default computers container.
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. apac.rallencorp.com
' ------ END CONFIGURATION ---------

' Computer GUID as defined in ntdsapi.h
Const ADS_GUID_COMPUTRS_CONTAINER = "aa312825768811d1aded00c04fd8d5cd"

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
set objCompContainer = GetObject("LDAP://<WKGUID=" & _
 ADS_GUID_COMPUTRS_CONTAINER & "," & _
 objRootDSE.Get("defaultNamingContext") & ">")
WScript.Echo objCompContainer.Get("distinguishedName")

8.11.3 Discussion

There are several important objects within each Active Directory domain that need to be "rename
safe." By that I mean you should be able to rename the object and not impact other applications that
may depend on it. It is for this reason that Microsoft created WKGUID binding. WKGUID allows you to
use a well-known GUID to bind with instead of a distinguished name.

For example, the default computers container has the following WKGUID:

aa312825768811d1aded00c04fd8d5cd

You can use the GUID to bind to the default computers container in the domain using the following
ADsPath:

LDAP://<WKGUID=aa312825768811d1aded00c04fd8d5cd,dc=apac,dc=rallencorp,dc=com>

The list of well-known objects for a domain is contained in the wellKnownObjects attribute of the
domainDNS object for the domain. The wellKnownObjects attribute is multivalued with DNWithBinary

syntax. The following is an example of what that attribute looks like for the rallencorp.com domain:

B:32:AA312825768811D1ADED00C04FD8D5CD:CN=Computers,DC=rallencorp,DC=com; B:32:
F4BE92A4C777485E878E9421D53087DB:CN=Microsoft,CN=Program Data,DC=rallencorp,DC=com;
B:32:09460C08AE1E4A4EA0F64AEE7DAA1E5A:CN=Program Data,DC=rallencorp,DC=com; B:32:
22B70C67D56E4EFB91E9300FCA3DC1AA:CN=ForeignSecurityPrincipals,DC=rallencorp,DC=com;
B:32:18E2EA80684F11D2B9AA00C04F79F805:CN=Deleted Objects,DC=rallencorp,DC=com; B:32:
2FBAC1870ADE11D297C400C04FD8D5CD:CN=Infrastructure,DC=rallencorp,DC=com; B:32:
AB8153B7768811D1ADED00C04FD8D5CD:CN=LostAndFound,DC=rallencorp,DC=com; B:32:
AB1D30F3768811D1ADED00C04FD8D5CD:CN=System,DC=rallencorp,DC=com; B:32:
A361B2FFFFD211D1AA4B00C04FD7D83A:OU=Domain Controllers,DC=rallencorp,DC=com; B:32:

A9D1CA15768811D1ADED00C04FD8D5CD:CN=Users,DC=rallencorp,DC=com;

Each value has the format of:

B:NumberofBytes:GUID:DistinguishedName

As you can see, the GUID for the first value is the same as the one we used in the ADsPath above to
bind to the default computers container.

8.11.4 See Also

Recipe 8.12 for changing the default computers container and MSDN: Binding to Well-Known Objects
Using WKGUID

[Team LiB]

[Team LiB]

Recipe 8.12 Changing the Default Container for
Computers

8.12.1 Problem

You want to change the container that computers are created in by default.

8.12.2 Solution

8.12.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a domain user.7.

Click OK.8.

From the menu, select Browse Modify.9.

For Dn, enter the distinguished name of the domainDNS object of the domain you want to

modify.

10.

For Attribute, enter wellKnownObjects.11.

For Values, enter the following:12.

B:32:AA312825768811D1ADED00C04FD8D5CD:CN=Computers,<DomainDN>

where <DomainDN> is the same as the DN you enter for the Dn field.

Select Delete for the Operation and click the Enter button.13.

14.

13.

Go back to the Values field and enter the following:14.

B:32:AA312825768811D1ADED00C04FD8D5CD:<NewComputersParent>,<DomainDN>

where <NewComputersParent> is the new parent container for new computer objects
(e.g., ou=RAllenCorp Computers).

Select Add for the Operation and click the Enter button.15.

Click the Run button.16.

The result of the operations will be displayed in the right pane of the main LDP window.17.

8.12.2.2 Using a command-line interface

> redircmp "<NewParentDN>"

8.12.2.3 Using VBScript

' This code changes the default computers container.
' ------ SCRIPT CONFIGURATION ------

strNewComputersParent = "<NewComputersParent>" ' e.g. OU=RAllenCorp Computers

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

Const COMPUTER_WKGUID = "B:32:AA312825768811D1ADED00C04FD8D5CD:"
' ADS_PROPERTY_OPERATION_ENUM
Const ADS_PROPERTY_APPEND = 3
Const ADS_PROPERTY_DELETE = 4

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
set objDomain = GetObject("LDAP://" & objRootDSE.Get("defaultNamingContext"))
set objCompWK = GetObject("LDAP://" & _
 "<WKGUID=AA312825768811D1ADED00C04FD8D5CD," & _
 objRootDSE.Get("defaultNamingContext") & ">")

objDomain.PutEx ADS_PROPERTY_DELETE, "wellKnownObjects", _
 Array(COMPUTER_WKGUID & objCompWK.Get("distinguishedName"))
objDomain.PutEx ADS_PROPERTY_APPEND, "wellKnownObjects", _
 Array(COMPUTER_WKGUID & strNewComputersParent & "," &
 objRootDSE.Get("defaultNamingContext"))
objDomain.SetInfo
WScript.Echo "New default Computers container set to " & _
 strNewComputersParent

8.12.3 Discussion

Most Active Directory administrators do not use the Computers container within the Domain naming

context as their primary computer repository. One reason is that since it is a container and not an
OU, you cannot apply a group policy to it. If you have another location where you store computer

objects, you might want to consider changing the default container used to bind to the computers
container by changing the well-known objects attribute, as shown in this recipe. This could be
beneficial if you want to ensure computers cannot sneak into Active Directory without any group
policies applied to it.

See Recipe 8.11 for more information on how well-known objects are specified in Active Directory.

8.12.4 See Also

MS KB 324949 (Redirecting the Users and Computers Containers in Windows Server 2003 Domains)

[Team LiB]

[Team LiB]

Chapter 9. Group Policy Objects (GPOs)
Introduction

Recipe 9.1. Finding the GPOs in a Domain

Recipe 9.2. Creating a GPO

Recipe 9.3. Copying a GPO

Recipe 9.4. Deleting a GPO

Recipe 9.5. Viewing the Settings of a GPO

Recipe 9.6. Modifying the Settings of a GPO

Recipe 9.7. Importing Settings into a GPO

Recipe 9.8. Assigning Logon/Logoff and Startup/Shutdown Scripts in a GPO

Recipe 9.9. Installing Applications with a GPO

Recipe 9.10. Disabling the User or Computer Settings in a GPO

Recipe 9.11. Listing the Links for GPO

Recipe 9.12. Creating a GPO Link to an OU

Recipe 9.13. Blocking Inheritance of GPOs on an OU

Recipe 9.14. Applying a Security Filter to a GPO

Recipe 9.15. Creating a WMI Filter

Recipe 9.16. Applying a WMI Filter to a GPO

Recipe 9.17. Backing Up a GPO

Recipe 9.18. Restoring a GPO

Recipe 9.19. Simulating the RSoP

Recipe 9.20. Viewing the RSoP

Recipe 9.21. Refreshing GPO Settings on a Computer

Recipe 9.22. Restoring a Default GPO
[Team LiB]

[Team LiB]

Introduction

Active Directory group policy objects (GPOs) can customize virtually any aspect of a computer or
user's desktop. They can also install applications, secure a computer, run logon/logoff or
startup/shutdown scripts, and much more. You can assign a GPO to a specific security group,
Organizational units (OU), site, or domain. This is called scope of management (SOM for short)
because only the users or computers that fall under the scope of the group, OU, site, or domain will
process the GPO. Assigning a GPO to a SOM is referred to as linking the GPO.

With Windows Server 2003, you can also use a WMI filter to restrict the application of a GPO. A WMI
filter is simply a WMI query that can search against any information on a client's computer. If the WMI
filter returns a true value (i.e., something is returned from the query), the GPO will be processed;
otherwise, it will not. So not only do you have all of the SOM options for applying GPOs, you can now
use any WMI information available on the client's computer to determine whether GPOs should be
applied. For more on the capabilities of GPOs, I recommend reading Chapter 7 of Active Directory,
Second Edition (O'Reilly).

GPOs consist of two parts. groupPolicyContainer (GPC) objects are stored in Active Directory for

each GPO, which reside in the cn=Policies,cn=System,<DomainDN> container. These objects store

information related to software deployment and are used for linking to OUs, sites, and domains. The
guts of GPOs are stored on the file system of each domain controller in group policy template (GPT)
files. These can be found in the %SystemRoot%\SYSVOL\sysvol\<DomainDNSName>\Policies directory.

So why are there two storage points for GPOs? The need for the Active Directory object is obvious: to
be able to link GPOs to other types of objects, the GPOs need to be represented in Active Directory.
It is necessary to store GPOs on the file system because clients currently use a file-based mechanism
to process and store GPOs, and to provide legacy support for the NETLOGON share.

Managing GPOs

While the capabilities of GPOs were significant in Windows 2000 Active Directory, the one obvious
thing that was lacking were good tools for managing them. The dual storage nature of GPOs creates a
lot of problems. First, Microsoft did not provide a scriptable interface for accessing and manipulating
GPOs. Second, there were no tools for copying or migrating GPOs from a test environment to
production. In Windows 2000, the primary tool for managing GPOs was the Group Policy Editor (GPE),
now known as the Group Policy Object Editor (GPOE). The main function of GPOE is to modify GPO
settings; it does not provide any other management capabilities.

Microsoft realized these were major issues for group policy adoption, so they developed the Group
Policy Management Console (GPMC). The GPMC is a MMC snap-in that provides the kitchen sink of
GPO management capabilities. You can create, delete, import, copy, back-up, restore, and model
GPOs from a single interface. Perhaps what is even better is the scriptable API that comes with the
GPMC. Pretty much every function you can accomplish with the GPMC tool, you can do via a script.

The only major feature that is still lacking is the ability to directly modify the
settings of a GPO. That can be done only with the GPOE. However, the GPMC
provides numerous options for migrating GPOs, which addresses the majority of
the problems people face today.

You can download the GPMC from the following site:
http://www.microsoft.com/windowsserver2003/gpmc/default.mspx. It requires the .NET Framework
on Windows Server 2003 or Windows XP SP 1 with hotfix Q326469, and cannot be run on Windows
2000. You can manage Windows 2000-based Active Directory GPOs with the GPMC as long as you run
it from one of the previously mentioned platforms.

The majority of solutions presented in this chapter use GPMC. In fact, most of these recipes would
not have had workable solutions were it not for the GPMC. It is for this reason that I highly
recommend downloading it and becoming familiar with it. Most of the command-line solutions I
provide, use one of the scripts provided in the GPMC install. A whole host of pre-canned scripts have
already been written, in a mix of VBScript and JavaScript, that serve as great command-line tools
and good examples to start scripting GPOs. These scripts are available, by default, in the
%ProgramFiles%\GPMC\scripts directory. You can execute them one of two ways. You can call it
using cscript:

> cscript listallgpos.wsf

or, if you make cscript your default WSH interpreter, you can execute the file directly. To make
cscript your default interpreter, run this command:

> cscript //H:cscript

The complete documentation for the GPM API is available in the gpmc.chm file in the
%ProgramFiles%\GPMC\scripts directory or from MSDN (http://msdn.microsoft.com/).

[Team LiB]

http://www.microsoft.com/windowsserver2003/gpmc/default.mspx
http://msdn.microsoft.com/

[Team LiB]

Recipe 9.1 Finding the GPOs in a Domain

9.1.1 Problem

You want to find all of the GPOs that have been created in a domain.

9.1.2 Solution

9.1.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container.2.

Expand the Domains container.3.

Browse to the domain of the target GPO.4.

Expand the Group Policy Objects container. All of the GPOs in the domain will be listed under
that container.

5.

9.1.2.2 Using a command-line interface

> listallgpos.wsf [/domain:<DomainDNSName>] [/v]

You can also use the gpotool to display the GPOs:

> gpotool [/domain:<DomainDNSName>] [/verbose]

9.1.2.3 Using VBScript

' This code displays all of the GPOs for a domain.
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Create an empty search criteria
set objGPMSearchCriteria = objGPM.CreateSearchCriteria
set objGPOList = objGPMDomain.SearchGPOs(objGPMSearchCriteria)

' Print the GPOs.
WScript.Echo "Found " & objGPOList.Count & " GPOs in " & strDomain & ":"
for each objGPO in objGPOList
 WScript.Echo " " & objGPO.DisplayName
next

9.1.3 Discussion

See the Introduction in Chapter 9 for more on how GPOs are stored in Active Directory.

9.1.3.1 Using VBScript

You can find the GPOs in a domain by using the GPMDomain.SearchGPOs method. The only parameter
you need to pass to SearchGPOs is a GPMSearchCriteria object, which can be used to define criteria
for your search. In this case, I created a GPMSearchCriteria object without additional criteria so
that all GPOs are returned. The SearchGPOs method returns a GPMGPOCollection object, which is a
collection of GPMGPO objects.

9.1.4 See Also

MS KB 216359 (HOW TO: Identify Group Policy Objects in the Active Directory and SYSVOL) and
MSDN: GPMDomain.SearchGPOs

[Team LiB]

[Team LiB]

Recipe 9.2 Creating a GPO

9.2.1 Problem

You want to create a GPO to force users to have a particular desktop configuration or provision
configuration settings on workstations or servers.

9.2.2 Solution

9.2.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, and browse to the
domain of the target GPO.

2.

Right-click on the Group Policy Objects container and select New.3.

Enter the name of the GPO and click OK.4.

9.2.2.2 Using a command-line interface

> creategpo.wsf <GPOName> [/domain:<DomainDNSName>]

9.2.2.3 Using VBScript

' This code creates an empty GPO.
' ------ SCRIPT CONFIGURATION ------

strGPO = "<GPOName>" ' e.g. Sales GPO

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Create the GPO and print the results

set objGPO = objGPMDomain.CreateGPO()
WScript.Echo "Successfully created GPO"
objGPO.DisplayName = strGPO
WScript.Echo "Set GPO name to " & strGPO

9.2.3 Discussion

When you create a GPO through the GPMC, it is initially empty with no settings or links configured.
See Recipe 9.6 for more on modifying GPO settings, and Recipe 9.12 for creating a link.

9.2.3.1 Using VBScript

To create a GPO, I first instantiate a GPMDomain object for the domain to add the GPO to. This is
accomplished with the GPM.GetDomain method. Then it is just a matter of calling the
GPMDomain.CreateGPO method (with no parameters) to create an empty GPO. A GPM.GPO object is

returned from this method, which I then use to set the display name of the GPO.

9.2.4 See Also

MS KB 216359 (HOW TO: Identify Group Policy Objects in the Active Directory and SYSVOL) and
MSDN: GPMDomain.CreateGPO

[Team LiB]

[Team LiB]

Recipe 9.3 Copying a GPO

9.3.1 Problem

You want to copy the properties and settings of a GPO to another GPO.

9.3.2 Solution

9.3.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the source GPO, and expand the Group Policy Objects container.

2.

Right-click on the source GPO and select Copy.3.

Right-click on the Group Policy Objects container and select Paste.4.

Select whether you want to use the default permissions or preserve the existing permissions,
and click OK.

5.

A status window will pop up that will indicate whether the copy was successful. Click OK to
close.

6.

Rename the new GPO by right-clicking it in the left pane and selecting Rename.7.

9.3.2.2 Using a command-line interface

> copygpo.wsf <SourceGPOName> <TargetGPOName>

9.3.2.3 Using VBScript

' This code copies a source GPO to a new GPO
' ------ SCRIPT CONFIGURATION ------

strSourceGPO = "<SourceGPOName>" ' e.g. SalesGPO

strNewGPO = "<NewGPOName>" ' e.g. Marketing GPO

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Find the source GPO
set objGPMSearchCriteria = objGPM.CreateSearchCriteria
objGPMSearchCriteria.Add objGPMConstants.SearchPropertyGPODisplayName, _
 objGPMConstants.SearchOpEquals, cstr(strSourceGPO)
set objGPOList = objGPMDomain.SearchGPOs(objGPMSearchCriteria)
if objGPOList.Count = 0 then
 WScript.Echo "Did not find GPO: " & strGPO
 WScript.Echo "Exiting."
 WScript.Quit
elseif objGPOList.Count > 1 then
 WScript.Echo "Found more than one matching GPO. Count: " & _
 objGPOList.Count
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found GPO: " & objGPOList.Item(1).DisplayName
End if

' Copy from source GPO to target GPO
set objGPMResult = objGPOList.Item(1).CopyTo(0, objGPMDomain, strNewGPO)

' This will throw an exception if there were any errors
' during the actual operation.
on error resume next
objGPMResult.OverallStatus()
if objGPMResult.Status.Count > 0 then
 WScript.Echo "Status message(s): " & objGPMResult.Status.Count
 for i = 1 to objGPMResult.Status.Count
 WScript.Echo objGPMResult.Status.Item(i).Message
 next
 WScript.Echo vbCrLf
end if

' Display the results
if Err.Number <> 0 then
 WScript.Echo "Error copying GPO."
 WScript.Echo "Error: " & Err.Description
else
 WScript.Echo "Copy successful to " & strNewGPO & "."
end if

9.3.3 Discussion

Prior to the GPMC tool, one of the big problems with managing GPOs in large environments is
migrating them from one forest to another. It is common to have a test forest where GPOs are

initially created, configured, and tested before moving them into production. The problem is that once
you have the GPO the way you want it in the test forest, there is no easy way to move it to the
production forest.

With the GPMC you can simply copy GPOs between domains and even forests. Copying GPOs
between forests requires a trust to be in place between the two target domains (or a forest trust
between the two forests). If this is not possible, you can import GPOs, which is similar to a copy
except that a trust is not needed. A GPO import uses a back up of the source GPO in order to create
the new GPO. See Recipe 9.7 for more information on importing a GPO.

Some properties of GPOs, such as security group filters or UNC paths, may vary slightly from domain
to domain. In that case, you can use a GPMC migration table to help facilitate the transfer of those
types of references to the target domain. For more information on migration tables, see the GPMC
help file.

9.3.3.1 Using VBScript

To copy a GPO, I have to first find the source GPO. To do this, I use a GPMSearchCriteria object to

find the GPO that is equal to the display name of the GPO specified in the configuration section. I use
an if elseif else conditional statement to ensure that only one GPO is returned. If zero was

returned or more than one are returned, I have to abort the script.

Now that I have a GPMGPO object, I'm ready to copy the GPO using the GPMGPO.CopyTo method. The
first parameter to CopyTo is a flag that indicates how permissions in the source GPO should be

handled when copying them to the new GPO. I specified 0 to use the default setting (see the GPMC
help file for the other values). The second parameter is a GPMDomain object of the domain the GPO

should be copied to. The last parameter is the display name of the new GPO.

9.3.4 See Also

Recipe 9.7 for importing a GPO and MSDN: GPMGPO.CopyTo

[Team LiB]

[Team LiB]

Recipe 9.4 Deleting a GPO

9.4.1 Problem

You want to delete a GPO.

9.4.2 Solution

9.4.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the target GPO, and expand the Group Policy Objects container.

2.

Right-click on the target GPO and select Delete.3.

Click OK to confirm.4.

9.4.2.2 Using a command-line interface

> deletegpo.wsf <GPOName> [/domain:<DomainDNSName>]

9.4.2.3 Using VBScript

' This code deletes the specified GPO.
' ------ SCRIPT CONFIGURATION ------

strGPO = "<GPOName>" ' e.g. My New GPO

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Find the GPO
set objGPMSearchCriteria = objGPM.CreateSearchCriteria

objGPMSearchCriteria.Add objGPMConstants.SearchPropertyGPODisplayName, _
 objGPMConstants.SearchOpEquals, cstr(strGPO)
set objGPOList = objGPMDomain.SearchGPOs(objGPMSearchCriteria)
if objGPOList.Count = 0 then
 WScript.Echo "Did not find GPO: " & strGPO
 WScript.Echo "Exiting."
 WScript.Quit
elseif objGPOList.Count > 1 then
 WScript.Echo "Found more than one matching GPO. Count: " & _
 objGPOList.Count
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found GPO: " & objGPOList.Item(1).DisplayName
end if

' Delete the GPO
objGPOList.Item(1).Delete
WScript.Echo "Successfully deleted GPO: " & strGPO

9.4.3 Discussion

When you delete a GPO through the GPMC, it attempts to find all links to the GPO in the domain and
will delete them if the user has permissions to delete the links. If the user does not have the
necessary permissions to remove the links, the GPO will still get deleted, but the links will remain
intact. Any links external to the domain the GPO is in are not automatically deleted. It is for this
reason that it is a good practice to view the links to the GPO before you delete it. Links to deleted
GPOs show up as "Not Found" in GPMC.

9.4.3.1 Using VBScript

I use a GPMSearchCriteria object to find the GPO that is equal to the display name of the GPO
specified in the configuration section. I use an if elseif else conditional statement to ensure that

only one GPO is returned. If zero or more than one are returned, I abort the script. If only one is
returned, I used the GPMGPO.Delete method to delete the GPO.

9.4.4 See Also

Recipe 9.11 for viewing the links for a GPO and MSDN: GPMGPO.Delete

[Team LiB]

[Team LiB]

Recipe 9.5 Viewing the Settings of a GPO

9.5.1 Problem

You want to view the settings that have been defined on a GPO.

9.5.2 Solution

9.5.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the target GPO, and expand the Group Policy Objects container.

2.

Click on the target GPO.3.

In the right pane, click on the Settings tab.4.

Click the Show All link to display all configured settings.5.

9.5.2.2 Using a command-line interface

> getreportsforgpo.wsf "<GPOName>" <ReportLocation> [/domain:<DomainDNSName>]

9.5.2.3 Using VBScript

' This code generates a HTML report of all the properties
' and settings for a GPO.
' ------ SCRIPT CONFIGURATION ------

strGPO = "<GPOName>" ' e.g. Sales GPO

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com

strReportFile = "<FileNameAndPath>" ' e.g. c:\gpo_report.html
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object

set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

set objGPMSearchCriteria = objGPM.CreateSearchCriteria
objGPMSearchCriteria.Add objGPMConstants.SearchPropertyGPODisplayName, _
 objGPMConstants.SearchOpEquals, cstr(strGPO)
set objGPOList = objGPMDomain.SearchGPOs(objGPMSearchCriteria)

if objGPOList.Count = 0 then
 WScript.Echo "Did not find GPO: " & strGPO
 WScript.Echo "Exiting."
 WScript.Quit
elseif objGPOList.Count > 1 then
 WScript.Echo "Found more than one matching GPO. Count: " & _
 objGPOList.Count
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found GPO: " & objGPOList.Item(1).DisplayName
end if

set objGPMResult = objGPOList.Item(1).GenerateReportToFile(_
 objGPMConstants.ReportHTML, _
 strReportFile)

' This will throw an exception if there were any errors
' during the actual operation.
on error resume next
objGPMResult.OverallStatus()

if objGPMResult.Status.Count > 0 then
 WScript.Echo "Status message(s): " & objGPMResult.Status.Count
 for i = 1 to objGPMResult.Status.Count
 WScript.Echo objGPMResult.Status.Item(i).Message
 next
 WScript.Echo vbCrLf
end if

' Display the result
if Err.Number <> 0 then
 WScript.Echo "Error generating report."
 WScript.Echo "Error: " & Err.Description
else
 WScript.Echo "Reported saved to " & strReportFile
end if

9.5.3 Discussion

The GPMC can generate an XML or HTML report that contains all of the settings in a GPO. See Recipe
9.6 for more on how to modify GPO settings.

9.5.3.1 Using VBScript

I use a GPMSearchCriteria object to find the GPO that is equal to the display name of the GPO
specified in the configuration section. I use an if elseif else conditional statement to ensure that

only one GPO is returned. If zero or more than one are returned, I abort the script. If only one is
returned, I used the GPMGPO.GenerateReportToFile method to generate a report of all the settings
in the GPO. The first parameter for GenerateReportToFile is a constant that determines the type of

report to generate (i.e., HTML or XML). The second parameter is the path of the file to store the
report.

9.5.4 See Also

MSDN: GPMGPO.GenerateReportToFile

[Team LiB]

[Team LiB]

Recipe 9.6 Modifying the Settings of a GPO

9.6.1 Problem

You want to modify the settings associated with a GPO.

9.6.2 Solution

9.6.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the target GPO, and expand the Group Policy Objects container.

2.

Right-click on the target GPO and select Edit. This will bring up the Group Policy Object Editor.3.

Browse through the Computer Configuration or User Configuration settings and modify them as
necessary.

4.

9.6.2.2 Using a command-line interface or VBScript

You cannot modify the settings of a GPO with any of the command-line tools or APIs, but you can
copy and import settings as described in Recipe 9.3 and Recipe 9.7.

9.6.3 Discussion

The one function that the GPMC tool and API cannot do is modify GPO settings. This still must be
done from within the GPOE. You can, however, launch GPOE from within GPMC as described in the
GUI solution. Not having a scriptable way to modify GPO settings has been a big roadblock with
managing GPOs, especially across multiple forests. Copying or importing GPOs can help with
migrating settings across forests.

9.6.4 See Also

Recipe 9.3 for copying a GPO, Recipe 9.5 for viewing the settings of a GPO, and Recipe 9.7 for

importing a GPO

[Team LiB]

[Team LiB]

Recipe 9.7 Importing Settings into a GPO

9.7.1 Problem

You want to import settings from one GPO to another.

9.7.2 Solution

9.7.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the target GPO, and expand the Group Policy Objects container.

2.

Right-click on the target GPO and select Import Settings.3.

Click Next.4.

Click the Backup button if you want take a backup of the GPO you are importing into.5.

Click Next.6.

Select the backup folder location and click Next.7.

Select the backup instance you want to import from and click Next.8.

It then will scan to see if there are any security principals or UNC paths in the GPO being
imported from. If there are, it will give you an option to modify those settings.

9.

Click Next.10.

Click Finish.11.

9.7.2.2 Using a command-line interface

> importgpo.wsf "<GPOBackupLocation>" "<OrigGPOName>" "<NewGPOName>"

9.7.2.3 Using VBScript

' This code imports the settings from a GPO that has been backed up into
' an existing GPO.
' ------ SCRIPT CONFIGURATION ------

strGPOImportTo = "<GPOName>" ' e.g. Sales GPO

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com

strBackupLocation = "<BackupLocation>" ' e.g. c:\GPMC Backups

' GUID representing specific backup
' e.g.{3E53B39B-C29B-44FF-857B-8A84528804FF}

strBackupID = "<BackupGUID>"
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Locate GPO backup
set objGPMBackupDir = objGPM.GetBackupDir(strBackupLocation)
set objGPMBackup = objGPMBackupDir.GetBackup(strBackupID)
WScript.Echo "Backup found:"
WScript.Echo " ID: " & objGPMBackup.ID
WScript.Echo " Timestamp: " & objGPMBackup.TimeStamp
WScript.Echo " GPO ID: " & objGPMBackup.GPOID
WScript.Echo " GPO Name: " & objGPMBackup.GPODisplayName
WScript.Echo " Comment: " & objGPMBackup.Comment
WScript.Echo

' Find GPO to import into
set objGPMSearchCriteria = objGPM.CreateSearchCriteria
objGPMSearchCriteria.Add objGPMConstants.SearchPropertyGPODisplayName, _
 objGPMConstants.SearchOpEquals, cstr(strGPOImportTo)
set objGPOList = objGPMDomain.SearchGPOs(objGPMSearchCriteria)
if objGPOList.Count = 0 then
 WScript.Echo "Did not find GPO: " & strGPO
 WScript.Echo "Exiting."
 WScript.Quit
elseif objGPOList.Count > 1 then
 WScript.Echo "Found more than one matching GPO. Count: " & _
 objGPOList.Count
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found GPO: " & objGPOList.Item(1).DisplayName
end if

' Perform the import
set objGPMResult = objGPOList.Item(1).Import(0,objGPMBackup)

' This will throw an exception if there were any errors
' during the actual operation.

on error resume next
objGPMResult.OverallStatus()

if objGPMResult.Status.Count > 0 then
 WScript.Echo "Status message(s): " & objGPMResult.Status.Count
 for i = 1 to objGPMResult.Status.Count
 WScript.Echo objGPMResult.Status.Item(i).Message
 next
 WScript.Echo vbCrLf
end if

' Print results
if Err.Number <> 0 then
 WScript.Echo "Error importing GPO " & objGPMBackup.GPODisplayName
 WScript.Echo "Error: " & Err.Description
else
 WScript.Echo "Import successful."
 WScript.Echo "GPO '" & objGPMBackup.GPODisplayName & _
 "' has been imported into GPO '" & _
 objGPOList.Item(1).DisplayName & "'"
end if

9.7.3 Discussion

The GPMC import function uses a back up of the source GPO to create the new "imported" GPO. This
means you must first back up the source GPO using GPMC. You can then import the settings from
that GPO into a new GPO, which may be in the same domain or a completely different forest.
Importing a GPO is a great way to help facilitate transferring GPO settings from a test environment to
production.

Some properties of GPOs, such as security group filters or UNC paths, may vary slightly from domain
to domain. In this case, you can use a GPMC migration table to help facilitate the transfer of those
kinds of references to the target domain. For more information on migration tables, see the GPMC
help file.

9.7.3.1 Using VBScript

To import the settings of a backup, I have to first instantiate a GPMBackup object of the source
backup by specifying the backup ID (a GUID) with the GPMBackupDir.GetBackup method. If you
need to programmatically search for the backup ID, you can use the GPMBackup.SearchBackups

method to find the most recent backup or a backup with a particular display name.

Next, I instantiate a GPMGPO object of the GPO I'm importing into. To do this, I use a
GPMSearchCriteria object to find the GPO that is equal to the display name of the GPO specified in
the configuration section. I use an if elseif else conditional statement to ensure that only one GPO

is returned. If zero or more than one are returned, I abort the script. If only one was returned, I use
the GPMGPO.Import method to import the settings. The first parameter to the Import method is a flag

that determines how security principals and UNC path mapping is done. I use 0, which is the default to
not copy security settings. You can also use a migration table to do mappings if necessary. The
second parameter is the GPMBackup object I instantiated earlier. The rest of the script performs some

error handling and prints the results.

9.7.4 See Also

Recipe 9.3 for copying a GPO, Recipe 9.17 for backing up a GPO, and MSDN: GPMGPO.Import

[Team LiB]

[Team LiB]

Recipe 9.8 Assigning Logon/Logoff and
Startup/Shutdown Scripts in a GPO

9.8.1 Problem

You want to assign either user logon/logoff scripts or computer startup/shutdown scripts in a GPO.

9.8.2 Solution

9.8.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the target GPO, and expand the Group Policy Objects container.

2.

Right-click on the target GPO and select Edit. This will bring up the Group Policy Object Editor.3.

If you want to assign a computer startup or shutdown script, browse to Computer Configuration
 Windows Settings Scripts. If you want to assign a user logon or logoff script, browse to

User Computer Windows Settings Scripts.

4.

In the right pane, double-click on the type of script you want to add.5.

Click the Add button.6.

Select the script by typing the name of it in or browsing to its location.7.

Optionally type any script parameters in the Script Parameters field.8.

Click OK twice.9.

9.8.3 Discussion

When you assign a script in a GPO, you can either reference a script that is stored locally on the
domain controller somewhere under the NETLOGON share or a UNC path to a remote fileserver.

The logon script can also be set as an attribute of the user object (scriptPath). This is provided as

legacy support for users migrated from NT 4.0 domains. You should choose either one method of

specifying the logon script or the other, but not both, as this will cause the logon script to run twice.

[Team LiB]

[Team LiB]

Recipe 9.9 Installing Applications with a GPO

9.9.1 Problem

You want to install an application on a group of computers using a GPO.

9.9.2 Solution

9.9.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the target GPO, and expand the Group Policy Objects container.

2.

Right-click on the target GPO and select Edit. This will bring up the Group Policy Object Editor.3.

Under Computer Configuration or User Configuration (depending on which you want to target
the installation for), expand Software Settings.

4.

Right-click on Software Installation and select New Package.5.

Browse to the network share that has the MSI package for the application and click OK.6.

Select whether you want to Assign the application or Publish it and click OK.7.

9.9.3 Discussion

Installing applications with a GPO is a powerful feature, but you must be careful about the network
and client impact it can have. If the MSI package you are installing is several megabytes in size, it
will take a while for it to download to the client computer, which can result in sluggish performance
on the client, especially over a slow connection. You'll also want to make sure you've thoroughly
tested the application before deployment. After you've configured the GPO to install it, it will be only
a short period of time before it is installed on all targeted your clients. If there is a bug in the
application or the installer program is faulty, the impact could be severe to your user base.

Your two options for deploying an application are to assign it or publish it. If you assign an
application, it will get automatically installed on the targeted clients. If you publish an application, it
will not get automatically installed, but will be available to be installed manually from Add/Remove
Programs in the Control Panel on the target computers.

[Team LiB]

[Team LiB]

Recipe 9.10 Disabling the User or Computer Settings in a
GPO

9.10.1 Problem

You want to disable either the user or computer settings of a GPO.

9.10.2 Solution

9.10.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the target GPO, and expand the Group Policy Objects container.

2.

Right-click on the target GPO and select GPO Status3.

You can either select User Configuration Settings Disabled to disable the user settings or
Computer Configuration Settings Disabled to disable the computer settings.

4.

9.10.2.2 Using VBScript

' This code can enable or disable the user or computer settings of a GPO.
' ------ SCRIPT CONFIGURATION ------

strGPO = "<GPOName>" ' e.g. Sales GPO

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com
boolUserEnable = False
boolCompEnable = True
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Find the specified GPO
set objGPMSearchCriteria = objGPM.CreateSearchCriteria

objGPMSearchCriteria.Add objGPMConstants.SearchPropertyGPODisplayName, _
 objGPMConstants.SearchOpEquals, cstr(strGPO)
set objGPOList = objGPMDomain.SearchGPOs(objGPMSearchCriteria)
if objGPOList.Count = 0 then
 WScript.Echo "Did not find GPO: " & strGPO
 WScript.Echo "Exiting."
 WScript.Quit
elseif objGPOList.Count > 1 then
 WScript.Echo "Found more than one matching GPO. Count: " & _
 objGPOList.Count
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found GPO: " & objGPOList.Item(1).DisplayName
end if

' You can comment out either of these if you don't want to set one:

objGPOList.Item(1).SetUserEnabled boolUserEnable
WScript.Echo "User settings: " & boolUserEnable

objGPOList.Item(1).SetComputerEnabled boolCompEnable
WScript.Echo "Computer settings: " & boolCompEnable

9.10.3 Discussion

GPOs consist of two parts, a user and a computer section. The user section contains settings that are
specific to a user that logs into a computer, while the computer section defines settings that apply to
the computer regardless of which user logs in. You can enable or disable either the user configuration
or computer configuration sections of a GPO, or both. By disabling both, you effectively disable the
GPO. This can be useful if you want to stop a GPO from applying settings to clients, but you do not
want to delete it, remove the links, or clear the settings.

Disabling the user configuration or the computer configuration is useful in environments that have
separate OUs for computers and users. Typically, you would disable the computer configuration for
GPOs linked to the users' OU and vice versa. Disabling half the GPO in the way makes GPO
processing more efficient and can reduce logon times.

9.10.3.1 Using VBScript

First, I have to find the target GPO. To do this, I use a GPMSearchCriteria object to find the GPO
that is equal to the display name of the GPO specified in the configuration section. I use an if
elseif else conditional statement to ensure that only one GPO is returned. If zero or more than
one are returned, I abort the script. If only one is returned, I call the SetUserEnabled and
SetComputerEnable methods to either enable or disable the settings per the configuration.

9.10.4 See Also

MSDN: GPMGPO.SetUserEnabled and MSDN: GPMGPO.SetComputerEnabled

[Team LiB]

[Team LiB]

Recipe 9.11 Listing the Links for GPO

9.11.1 Problem

You want to list all of the links for a particular GPO.

9.11.2 Solution

9.11.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the target GPO, and expand the Group Policy Objects container.

2.

Click on the GPO you want to view the links for.3.

In the right pane, the defined links for the GPO will be listed under Links.4.

9.11.2.2 Using a command-line interface

> dumpgpoinfo.wsf "<GPOName>"

9.11.2.3 Using VBScript

' This code lists all the sites, OUs, and domains a GPO is linked to.
' ------ SCRIPT CONFIGURATION ------

strGPO = "<GPOName>" ' e.g. SalesGPO

strForest = "<ForestName>" ' e.g. rallencorp.com

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)
' Initialize the Sites Container object
set objGPMSitesContainer = objGPM.GetSitesContainer(strForest, _

 strDomain, "", objGPMConstants.UseAnyDC)
' Find the specified GPO
set objGPMSearchCriteria = objGPM.CreateSearchCriteria
objGPMSearchCriteria.Add objGPMConstants.SearchPropertyGPODisplayName, _
 objGPMConstants.SearchOpEquals, cstr(strGPO)
set objGPOList = objGPMDomain.SearchGPOs(objGPMSearchCriteria)
if objGPOList.Count = 0 then
 WScript.Echo "Did not find GPO: " & strGPO
 WScript.Echo "Exiting."
 WScript.Quit
elseif objGPOList.Count > 1 then
 WScript.Echo "Found more than one matching GPO. Count: " & _
 objGPOList.Count
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found GPO: " & objGPOList.Item(1).DisplayName
end if

' Search for all SOM links for this GPO
set objGPMSearchCriteria = objGPM.CreateSearchCriteria
objGPMSearchCriteria.Add objGPMConstants.SearchPropertySOMLinks, _
 objGPMConstants.SearchOpContains, objGPOList.Item(1)
set objSOMList = objGPMDomain.SearchSOMs(objGPMSearchCriteria)
set objSiteLinkList = objGPMSitesContainer.SearchSites(objGPMSearchCriteria)

if objSOMList.Count = 0 and objSiteLinkList.Count = 0 Then
 WScript.Echo "No Site, Domain, or OU links found for this GPO"
else
 WScript.Echo "Links:"
 for each objSOM in objSOMList
 select case objSOM.Type
 case objGPMConstants.SOMDomain
 strSOMType = "Domain"
 case objGPMConstants.SOMOU
 strSOMType = "OU"
 end select
 ' Print GPO Domain and OU links
 WScript.Echo " " & objSOM.Name & " (" & strSOMType & ")"
 next

 ' Print GPO Site Links
 for each objSiteLink in objSiteLinkList
 WScript.Echo " " & objSiteLink.Name & " (Site)"
 next
end if

9.11.3 Discussion

See the Introduction in Chapter 9 for more information on GPO linking and SOMs.

9.11.3.1 Using VBScript

First, I have to find the target GPO. To do this, I use a GPMSearchCriteria object to find the GPO
that is equal to the display name of the GPO specified in the configuration section. I use an if elseif
else conditional statement to ensure that only one GPO is returned. If none or more than one are

returned, I abort the script. If only one is returned, I search for all SOMs (domain, OUs, and sites)
that have the GPO linked using the GPMSitesContainer.SearchSites and GPMDomain.SearchSOMs

methods.

9.11.4 See Also

Recipe 9.12 for creating a GPO link to an OU MSDN: GPMDomain.SearchSOMs, and MSDN:
GPMSitesContainer.SearchSites

[Team LiB]

[Team LiB]

Recipe 9.12 Creating a GPO Link to an OU

9.12.1 Problem

You want to apply the GPO settings to the users and/or computers in an OU. This is called linking a
GPO to an OU.

9.12.2 Solution

9.12.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, and browse to the
target domain.

2.

Right-click on the OU you want to link and Link an Existing GPO.3.

Select from the list of available GPOs and click OK.4.

9.12.2.2 Using VBScript

' This code links a GPO to an OU
' ------ SCRIPT CONFIGURATION ------

strGPO = "<GPOName>" ' e.g. Sales GPO

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com

strOU = "<OrgUnitDN>" ' e.g. ou=Sales,dc=rallencorp,dc=com
intLinkPos = -1 ' set this to the position the GPO evaluated at
 ' a value of -1 signifies appending it to the end of the list
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Find the specified GPO
set objGPMSearchCriteria = objGPM.CreateSearchCriteria
objGPMSearchCriteria.Add objGPMConstants.SearchPropertyGPODisplayName,

objGPMConstants.SearchOpEquals, cstr(strGPO)
set objGPOList = objGPMDomain.SearchGPOs(objGPMSearchCriteria)
if objGPOList.Count = 0 then
 WScript.Echo "Did not find GPO: " & strGPO
 WScript.Echo "Exiting."
 WScript.Quit
elseif objGPOList.Count > 1 then
 WScript.Echo "Found more than one matching GPO. Count: " & _
 objGPOList.Count
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found GPO: " & objGPOList.Item(1).DisplayName
end if

' Find the specified OU
set objSOM = objGPMDomain.GetSOM(strOU)
if IsNull(objSOM) then
 WScript.Echo "Did not find OU: " & strOU
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found OU: " & objSOM.Name
end if

on error resume next

set objGPMLink = objSOM.CreateGPOLink(intLinkPos, objGPOList.Item(1))

if Err.Number <> 0 then
 WScript.Echo "There was an error creating the GPO link."
 WScript.Echo "Error: " & Err.Description
else
 WScript.Echo "Sucessfully linked GPO to OU"
end if

9.12.3 Discussion

Linking a GPO is the process whereby you assign a SOM, which can be an OU, site, or domain. The
solutions show how to link a GPO to an OU, but they could be easily modified to link to a site or
domain.

See Recipe 5.11 for details on how to link an OU by modifying the gpLink attribute, instead of using

the GPMC interface.

9.12.3.1 Using VBScript

To link a GPO, I first have to find the target GPO. I use a GPMSearchCriteria object to find the GPO
that is equal to the display name of the GPO specified in the configuration section. I use an if elseif
else conditional statement to ensure that only one GPO is returned. If zero or more than are are

returned, I abort the script. If only one GPO was returned, I instantiate a GPMSOM object by passing
the name of the OU to be linked to the GPMDomain.GetSOM method. Once I instantiate this object, I
can call GPMSOM.CreateGPOLink to create a GPO link to the OU.

9.12.4 See Also

MS KB 248392 (Scripting the Addition of Group Policy Links) and MSDN: GPMSOM.CreateGPOLink

[Team LiB]

[Team LiB]

Recipe 9.13 Blocking Inheritance of GPOs on an OU

9.13.1 Problem

You want to block inheritance of GPOs on an OU.

9.13.2 Solution

9.13.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, and browse to the
target domain.

2.

Right-click on the OU you want to block inheritance for and select Block Inheritance.3.

9.13.2.2 Using VBScript

' This code blocks inheritance of GPOs on the specified OU
' ------ SCRIPT CONFIGURATION ------

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com

strOU = "<OrgUnitDN>" ' e.g. ou=Sales,dc=rallencorp,dc=com
boolBlock = TRUE ' e.g. set to FALSE to not block inheritance
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Find the specified OU
set objSOM = objGPMDomain.GetSOM(strOU)
if IsNull(objSOM) then
 WScript.Echo "Did not find OU: " & strOU
 WScript.Echo "Exiting."
 WScript.Quit
else

 WScript.Echo "Found OU: " & objSOM.Name
end if

' on error resume next

objSOM.GPOInheritanceBlocked = boolBlock

if Err.Number <> 0 then
 WScript.Echo "There was an error blocking inheritance."
 WScript.Echo "Error: " & Err.Description
else
 WScript.Echo "Successfully set inheritance blocking on OU to " & boolBlock
end if

9.13.3 Discussion

By default, GPOs are inherited down through the directory tree. If you link a GPO to a top-level OU,
that GPO will apply to any objects within the child OUs. Sometimes that may not be what you want,
and you can disable inheritance as described in the solutions.

Try to avoid blocking inheritance when possible because it can make determining what settings
should be applied to a user or computer difficult. If someone sees that a GPO is applied at a top-level
OU, they may think it applies to any object under it. Using the Resultant Set of Policies (RSoP) snap-
in can help identify what settings are applied to a user or computer (see Recipe 9.20).

9.13.3.1 Using VBScript

To block inheritance, I first have to get a GPMSOM object for the OU by calling the GPMDomain.GetSOM

method. The only parameter to this method is the DN of the OU (or leave blank to reference the
domain itself). Next, I call the GPMSOM. GPOInheritanceBlocked method, which should be set to

either TRUE or FALSE depending if you want inheritance blocked or not.

9.13.4 See Also

MSDN: GPMDomain.GetSOM and MSDN: GPMSOM.GPOInheritanceBlocked

[Team LiB]

[Team LiB]

Recipe 9.14 Applying a Security Filter to a GPO

9.14.1 Problem

You want to configure a GPO so that it applies only to members of a particular security group.

9.14.2 Solution

9.14.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
target domain, and expand the Group Policy Objects container.

2.

Click on the GPO you want to modify.3.

In the right pane under Security Filtering, click the Add button.4.

Use the Object Picker to select a group and click OK.5.

Highlight Authenticated Users and click the Remove button.6.

Click OK to confirm.7.

9.14.2.2 Using a command-line interface

> setgpopermissions.wsf "<GPOName>" "<GroupName>" /permission:Apply

> setgpopermissions.wsf "<GPOName>" "Authenticated Users" /permission:None

9.14.2.3 Using VBScript

' This code adds a security group filter permission to a GPO
' and removes the Authenticated Users filter permission.
' ------ SCRIPT CONFIGURATION ------

strGPO = "<GPOName>" ' e.g. Sales GPO

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com

strGroupAdd = "<GroupName>" ' e.g. SalesUsers
strGroupRemove = "Authenticated Users"

' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Find the specified GPO
set objGPMSearchCriteria = objGPM.CreateSearchCriteria
objGPMSearchCriteria.Add objGPMConstants.SearchPropertyGPODisplayName, _
 objGPMConstants.SearchOpEquals, cstr(strGPO)
set objGPOList = objGPMDomain.SearchGPOs(objGPMSearchCriteria)
if objGPOList.Count = 0 then
 WScript.Echo "Did not find GPO: " & strGPO
 WScript.Echo "Exiting."
 WScript.Quit
elseif objGPOList.Count > 1 then
 WScript.Echo "Found more than one matching GPO. Count: " & _
 objGPOList.Count
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found GPO: " & objGPOList.Item(1).DisplayName
end if

' Get permission objects to Apply GPO
set objGPMPerm1 = objGPM.CreatePermission(strGroupAdd, _
 objGPMConstants.PermGPOApply, False)
set objGPMPerm2 = objGPM.CreatePermission(strGroupRemove, _
 objGPMConstants.PermGPOApply, False)

' Get the existing set of permissions on the GPO
set objSecurityInfo = objGPOList.Item(1).GetSecurityInfo()

' Add the new permission
objSecurityInfo.Add objGPMPerm1
' Remove Authenticate users
objSecurityInfo.Remove objGPMPerm2

on error resume next

' Apply the permission to the GPO
objGPOList.Item(1).SetSecurityInfo objSecurityInfo
if Err.Number <> 0 then
 WScript.Echo "There was an error setting the security filter."
 WScript.Echo "Error: " & Err.Description
else
 WScript.Echo "Added Apply permission for group " & strGroupAdd
 WScript.Echo "Removed Apply permission for group " & strGroupRemove
end if

9.14.3 Discussion

Creating a security filter for a GPO consists of granting a specific group the Apply Group Policy
permission on the ACL of the GPO. By default, Authenticated Users are granted the Apply Group

Policy right on all new GPOs, so you will also need to remove this right if you want to restrict the GPO
to only be applied to members of another group.

Avoid using "Deny" as part of the security filter because it can lead to confusion with accounts that
have membership of groups with conflicting filter settings. For example, if a user is a member of a
group that has "Deny" set in the filter and is also a member of a group that is allowed to apply the
policy, the Deny setting will always win. This can be difficult to troubleshoot.

Be very careful when changing permissions on GPOs. If you create a very
restricted GPO and apply a security filter to it, put tight controls on who can
modify the GPO and how. If for some reason that security filter was removed
(resulting in no security filters), the restrictive GPO could be applied to every
user or computer in the domain.

9.14.3.1 Using VBScript

First, I have to find the target GPO. I use a GPMSearchCriteria object to find the GPO that is equal
to the display name of the GPO specified in the configuration section. I use an if elseif else

conditional statement to ensure that only one GPO is returned. If none or more than one were
returned, I abort the script. If only one GPO is returned, I create two GPM.CreatePermission objects
for the group I want to add as a security filter and for the Authenticated Users group. Next, I use
the GPMGPO.GetSecurityInfo to retrieve the current ACL on the GPO. Finally, I add the permission

to the ACL for group I want as the new security filter, and I remove the permission for
Authenticated Users.

9.14.4 See Also

MSDN: GPM.CreatePermission and MSDN: GPMGPO.GetSecurityInfo

[Team LiB]

[Team LiB]

Recipe 9.15 Creating a WMI Filter

WMI filters can be configured only on a Windows Server 2003 domain controller,
and they will apply only to Windows Server 2003- and Windows XP-based
clients.

9.15.1 Problem

You want to create a WMI filter.

9.15.2 Solution

9.15.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
target domain, and click the WMI Filters container.

2.

Right-click on the WMI Filters container and select New.3.

Enter a name and description for the filter.4.

Click the Add button.5.

Select the appropriate namespace, enter a WQL query, and click OK.6.

Repeat steps 5 and 6 for as many queries as you need to add.7.

Click the Save button.8.

9.15.2.2 Using VBScript

At the time of publication of this book, there were no GPM methods available for creating WMI filters.

9.15.3 Discussion

WMI filters are new in Windows Server 2003 and provide another way to filter how GPOs are applied

to clients. WMI filters live in Active Directory as objects under the WMIPolicy container within the
System container for a domain. A WMI filter consists of a WMI Query Language (WQL) query that

when linked to a GPO will be run against all clients that the GPO applies to. If the WQL returns a true
value (that is returns nonempty results from the WQL query), the GPO will continue to process. If the
WQL query returns false (nothing is returned from the query), the GPO will not be processed.

The great thing about WMI filters is that the vast amount of information that is available in WMI on a
client becomes available to filter GPOs. You can query against CPU, memory, disk space, hotfixes
installed, service packs installed, applications installed, running processes, and the list goes on and
on.

For example, if you want to create a GPO that applies only to computers that are running Windows XP
Professional, it would have been really difficult to accomplish under Windows 2000. You would have
either needed to create a security group that contained all of those computers as members (and
apply a security filter), or move all of those workstations to a particular OU. With a WMI filter, this
becomes trivial. Here is an example WQL query that would return true when run on a Windows XP
Professional workstation:

select * from Win32_OperatingSystem
 where Caption = "Microsoft Windows XP Professional"

9.15.4 See Also

Recipe 9.16 for applying a WMI filter to a GPO and MSDN: Querying with WQL

[Team LiB]

[Team LiB]

Recipe 9.16 Applying a WMI Filter to a GPO

WMI filters can be configured only on a Windows Server 2003 domain controller,
and they will apply only to Windows Server 2003- and Windows XP-based
clients.

9.16.1 Problem

You want to apply a WMI filter to a GPO.

9.16.2 Solution

9.16.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the GPO you want to target, and expand the Group Policy Objects container.

2.

Single-click on the target GPO.3.

In the right name, at the bottom of the window you can select from the list of WMI filters.4.

After you've selected the WMI filter, click Yes to confirm.5.

9.16.2.2 Using VBScript

' This code links an existing WMI filter with a GPO
' ------ SCRIPT CONFIGURATION ------

strGPO = "<GPOName>" ' e.g. Sales GPO

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com

' e.g. {D715559A-7965-45A6-864D-AEBDD9934415}

strWMIFilterID = "<WMIFilterID>"
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Find the GPO
set objGPMSearchCriteria = objGPM.CreateSearchCriteria
objGPMSearchCriteria.Add objGPMConstants.SearchPropertyGPODisplayName, _
 objGPMConstants.SearchOpEquals, _
 cstr(strGPO)
set objGPOList = objGPMDomain.SearchGPOs(objGPMSearchCriteria)
if objGPOList.Count = 0 then
 WScript.Echo "Did not find GPO: " & strGPO
 WScript.Echo "Exiting."
 WScript.Quit
elseif objGPOList.Count > 1 then
 WScript.Echo "Found more than one matching GPO. Count: " & _
 objGPOList.Count
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found GPO: " & objGPOList.Item(1).DisplayName
end if

on error resume next

' Retrieve the WMI filter
strWMIFilter = "MSFT_SomFilter.Domain=""" & _
 strDomain & """,ID=""" & _
 strWMIFilterID & """"
set objWMIFilter = objGPMDomain.GetWMIFilter(strWMIFilter)
if Err.Number <> 0 then
 WScript.Echo "Did not find WMI Filter: " & strWMIFilterID
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found WMI Filter: " & objWMIFilter.Name
end if

' Link the filter and print the result
objGPOList.Item(1).SetWMIFilter(objWMIFilter)
if Err.Number <> 0 then
 WScript.Echo "Failed to set WMI filter."
 WScript.Echo "Error: " & err.description
else
 WScript.Echo "Set WMI filter successfully."
end if

9.16.3 Discussion

You can link only one WMI filter to a GPO. This is not necessarily a limitation because you can still link
more than one GPO to a site, domain, or OU. If you need multiple WMI filters to apply to a GPO, copy
the GPO and apply a new WMI filter to it. See Recipe 9.15 for more information on WMI filters.

9.16.3.1 Using VBScript

I use a GPMSearchCriteria object to find the GPO that is equal to the display name of the GPO
specified in the configuration section. I use an if elseif else conditional statement to ensure that

only one GPO is returned. If none or more than one are returned, I abort the script. If only one GPO
is returned, I call GPMDomain.GetWMIFilter to instantiate a GPMWMIFilter object based on the WMI

filter GUID specified in the configuration section. If you need to programmatically search for the WMI
filter ID, you can use the GPMDomain.SearchWMIFilters method. After I retrieve the GPMWMIFilter
object, I call the GPMGPO.SetWMIFilter method to set the filter for the GPO.

9.16.4 See Also

MSDN: GPMDomain.GetWMIFilter and MSDN: GPMGPO.SetWMIFilter

[Team LiB]

[Team LiB]

Recipe 9.17 Backing Up a GPO

9.17.1 Problem

You want to back up a GPO.

9.17.2 Solution

9.17.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the GPO you want to back up, and expand the Group Policy Objects container.

2.

Right-click on the GPO you want to back up, and select Back Up.3.

For Location, enter the folder path to store the backup files.4.

For Description, enter a descriptive name for the backup.5.

Click the Back Up button.6.

You will see a progress bar and status message that indicates if the back up was successful.7.

Click OK to exit.8.

9.17.2.2 Using a command-line interface

> backupgpo.wsf "<GPOName>" "<BackupFolder>" /comment:"<BackupComment>"

9.17.2.3 Using VBScript

' This code backs up a GPO to the specified backup location.
' ------ SCRIPT CONFIGURATION ------

strGPO = "<GPOName>" ' e.g. Default Domain Policy

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com

strLocation = "<BackupFolder>" ' e.g. c:\GPMC Backups

strComment = "<BackupComment>" ' e.g. Default Domain Policy Weekly
' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Find the GPO you want to back up
set objGPMSearchCriteria = objGPM.CreateSearchCriteria
objGPMSearchCriteria.Add objGPMConstants.SearchPropertyGPODisplayName, _
 objGPMConstants.SearchOpEquals, cstr(strGPO)
set objGPOList = objGPMDomain.SearchGPOs(objGPMSearchCriteria)
if objGPOList.Count = 0 then
 WScript.Echo "Did not find GPO: " & strGPO
 WScript.Echo "Exiting."
 WScript.Quit
elseif objGPOList.Count > 1 then
 WScript.Echo "Found more than one matching GPO. Count: " & _
 objGPOList.Count
 WScript.Echo "Exiting."
 WScript.Quit
else
 WScript.Echo "Found GPO: " & objGPOList.Item(1).DisplayName
End if

' Kick off the backup
On Error Resume Next
set objGPMResult = objGPOList.Item(1).Backup(strLocation, strComment)
' Call the OverallStatus method on the GPMResult.
' This will throw an exception if there were any
' errors during the actual operation.
objGPMResult.OverallStatus()
if objGPMResult.Status.Count > 0 then
 WScript.Echo "Status messages:" & objGPMResult.Status.Count
 for i = 1 to objGPMResult.Status.Count
 WScript.Echo objGPMResult.Status.Item(i).Message
 next
 WScript.Echo vbCrLf
end if

' Print the results
if Err.Number <> 0 then
 WScript.Echo "The backup failed."
 WScript.Echo "Attempted to backup GPO '" & strGPO & "' to location " & strLocation
 WScript.Echo "Error: " & err.description
else
 set objGPMBackup = objGPMResult.Result
 WScript.Echo "Backup completed successfully."
 WScript.Echo "GPO ID: " & objGPMBackup.GPOID
 WScript.Echo "Timestamp: " & objGPMBackup.TimeStamp
 WScript.Echo "Backup ID: " & objGPMBackup.ID
end if

9.17.3 Discussion

The GPMC provides a way to back up individual (or all) GPOs. A GPO backup consists of a set of folders
and files that catalog the GPO settings, filters and links, and is created in the backup location you
specify. You can back up a GPO to a local drive or over the network to a file server. Restoring a GPO is
just as easy and is described in Recipe 9.18 .

Prior to GPMC, the only way to back up GPOs was by backing up the System State on a domain
controller. The System State includes Active Directory and SYSVOL (both components are needed to
completely back up a GPO). To restore a GPO using this method, you'd have to boot into DS Restore
mode and perform an authoritative restore of the GPO(s) you were interested in. Needless to say, the
GPMC method is significantly easier.

A good practice is to back up your GPO backups. Since all the back-up information is captured in a
series of files, you can back up that information to media, which provides two levels of restore
capability. You could restore the last backup taken, which could be stored on a domain controller or
file server, or you could go to tape and restore a previous version.

In the folder you specify to store the GPO backups is a list of folders that have GUIDs for names. This
does not make it very easy to distinguish which backups are for which GPOs. A quick way to find that
out is to use the querybackuplocation.wsf script. This will list each of the folder GUID names and

the corresponding GPO it is for:

> querybackuplocation.wsf "c:\gpmc backups"

9.17.3.1 Using VBScript

I use a GPMSearchCriteria object to find the GPO that is equal to the display name of the GPO
specified in the configuration section. I use an if elseif else conditional statement to ensure that

only one GPO is returned. If none or more than one is returned, I abort the script. If only one is
returned, I call the GPMGPO.Backup method to back up the GPO. The first parameter is the directory

to store the GPO backup files, and the second parameter is a comment that can be stored with the
back up. This comment may come in handy later for doing searches against the backups on a server,
so you may want to think about what to put for it.

9.17.4 See Also

Recipe 9.18 for restoring a GPO and MSDN: GPMGPO.Backup

[Team LiB]

[Team LiB]

Recipe 9.18 Restoring a GPO

9.18.1 Problem

You want to restore a GPO.

9.18.2 Solution

9.18.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, expand the Forest container, expand the Domains container, browse to the
domain of the GPO you want to back up, and expand the Group Policy Objects container.

2.

Right-click on the GPO you want to restore, and select Restore from Backup.3.

Click Next.4.

Select the backup folder location and click Next.5.

Select the backup you want to restore and click Next.6.

Click Finish.7.

You will see the restore status window. After it completes, click OK to close the window.8.

9.18.2.2 Using a command-line interface

> restoregpo.wsf "<BackupFolder>" "<GPOName>"

9.18.2.3 Using VBScript

' This code restores a GPO from a back up.
' ------ SCRIPT CONFIGURATION ------

strGPO = "<GPOName>" ' e.g. Sales Users GPO

strDomain = "<DomainDNSName>" ' e.g. rallencorp.com

strLocation = "<BackupFolder>" ' e.g. c:\GPMC Backups

strBackupID = "<BackupGUID>" ' e.g. {85CA37AC-0DB3-442B-98E8-537291D26ED3}

' ------ END CONFIGURATION ---------

set objGPM = CreateObject("GPMgmt.GPM")
set objGPMConstants = objGPM.GetConstants()

' Initialize the Domain object
set objGPMDomain = objGPM.GetDomain(strDomain, "", objGPMConstants.UseAnyDC)

' Make sure backup location and ID are valid
set objGPMBackupDir = objGPM.GetBackupDir(strLocation)
set objGPMBackup = objGPMBackupDir.GetBackup(strBackupID)
WScript.Echo "Backup found:"
WScript.Echo " ID: " & objGPMBackup.ID
WScript.Echo " Timestamp: " & objGPMBackup.TimeStamp
WScript.Echo " GPO ID: " & objGPMBackup.GPOID
WScript.Echo " GPO Name: " & objGPMBackup.GPODisplayName
WScript.Echo " Comment: " & objGPMBackup.Comment
WScript.Echo

' Perform restore
set objGPMResult = objGPMDomain.RestoreGPO(objGPMBackup, _
 objGPMConstants.DoNotValidateDC)
' This will throw an exception if there were any errors
' during the actual operation.
on error resume next
objGPMResult.OverallStatus()
if objGPMResult.Status.Count > 0 then
 WScript.Echo "Status message(s): " & objGPMResult.Status.Count
 for i = 1 to objGPMResult.Status.Count
 WScript.Echo objGPMResult.Status.Item(i).Message
 next
 WScript.Echo vbCrLf
end if

' Print result
if Err.Number <> 0 then
 WScript.Echo "Error restoring GPO " & objGPMBackup.GPODisplayName
 WScript.Echo "Error: " & Err.Description
else
 WScript.Echo "Restore successful."
 WScript.Echo "GPO '" & objGPMBackup.GPODisplayName & _
 "' has been restored."
end if

9.18.3 Discussion

To restore a GPO using GPMC, you first need a valid backup of the GPO. The procedure for backing
up a GPO is described in Recipe 9.17. You can then restore the GPO, even if the GPO has been
deleted. To restore a deleted GPO, use the following steps:

1.

2.

Right-click on the Group Policy Objects container in the target domain and select Manage
Backups.

1.

Highlight the GPO you want to restore and click the Restore Button2.

Click Yes to confirm.3.

Click OK after the restore completes.4.

If you don't have a valid backup of the GPO, but you do have another GPO that is identical or similar
to the one you want to restore (perhaps in another forest), you can copy that GPO to replace the one
you want to restore. See Recipe 9.3 for more on copying GPOs.

9.18.3.1 Using VBScript

To restore a GPO, I have to first get a handle to the backup I am going to restore from. This is done
by instantiating an object to the backup location with GPM.GetBackupDir, and then calling
GPMBackupDir.GetBackup with the GUID of the backup to be restored. If you need to
programmatically search for the backup ID, you can use the GPMBackup.SearchBackups method to

find the most recent backup or a backup with a particular display name.

After I obtain a GPMBackup object, I call the GPMDomain.RestoreGPO method. The first parameter is
the GPMBackup object that represents the backup to restore. The second parameter is a validation

flag, and I use the constant that causes the restore to not be validated against a domain controller.

9.18.4 See Also

Recipe 9.3 for copying a GPO, Recipe Recipe 9.17 for backing up a GPO, and MSDN:
GPMDomain.RestoreGPO

[Team LiB]

[Team LiB]

Recipe 9.19 Simulating the RSoP

9.19.1 Problem

You want to simulate the RSoP based on OU, site, and security group membership. This is also
referred to as Group Policy Modeling.

9.19.2 Solution

This must be run against a Windows Server 2003 domain controller.

9.19.2.1 Using a graphical user interface

Open the GPMC snap-in.1.

In the left pane, right-click Group Policy Modeling and select Group Policy Modeling Wizard.2.

Select a domain controller to process the query and click Next.3.

Under User Information and/or Computer Information, select either the container you want to
simulate to contain the user or computer or select a specific user or computer account, and click
Next.

4.

Select a site if necessary, and click Next.5.

If you selected a target user container or user account in step 4, you will be presented with an
option to simulate different group membership. Click Next when you are done.

6.

If you selected a target computer container or computer account in step 4, you will be
presented with an option to simulate different group membership. Click Next when you are
done.

7.

If you selected a target user container or user account in step 4, you will be presented with an
option to simulate any additional WMI filters. Click Next when you are done.

8.

If you selected a target computer container or computer account in step 4, you will be
presented with an option to simulate any additional WMI filters. Click Next when you are done.

9.

Click Next to start the simulation.10.

11.

12.

10.

Click Finish.11.

In the right pane of the GPMC window, the results of the simulation will be displayed.12.

9.19.3 Discussion

With GPMC, you can simulate the RSoP based on user-defined OU, site, group, and domain
membership. This is very powerful because it allows you to create one or more GPOs, simulate it
being applied to a user and computer and determine whether any changes are necessary before
deployment.

9.19.4 See Also

Recipe 9.20 for viewing the RSoP

[Team LiB]

[Team LiB]

Recipe 9.20 Viewing the RSoP

9.20.1 Problem

You want to view the actual RSoP for a user and computer. This is a great tool for determining if
policies are being applied correctly on a client.

9.20.2 Solution

9.20.2.1 Using a graphical user interface

The RSoP snap-in is available only on Windows Server 2003 and Windows XP.

Open the RSoP snap-in by running rsop.msc from the command line. This will cause the RSoP snap-

in to evaluate the group policies for the target computer and pop open a MMC console so that you
can browse the applied settings.

You can target a different computer by right-clicking the top of the tree in the left pane and selecting
Change Query. You will then be prompted for the name of the computer to query.

9.20.2.2 Using a command-line interface

> gpresult

With the Windows Server 2003 version of gpresult, you can specify a /S option and the name of a

computer to target, which allows you to run the command remotely. With Windows 2000, there is a
/S option, but it enables super verbose mode. There is no way to target another computer with the
Windows 2000 version. For a complete list of options with either version, run gpresult /? from a

command line.

9.20.3 Discussion

If you implement more than a few GPOs, it can get confusing as to what settings will apply to users.
To address this problem, you can query the resultant set of policy on a client to determine what
settings have been applied.

The registry on the target computer is another source of information. You can view the list of policies
that were applied to the computer by viewing the subkeys under this key:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Group Policy\History

The settings that were applied are not stored in the registry, but you can obtain the GPO name,
distinguished name, SYSVOL location , version, and where the GPO is linked.

9.20.4 See Also

Recipe 9.19 for simulating the RSoP

[Team LiB]

[Team LiB]

Recipe 9.21 Refreshing GPO Settings on a Computer

9.21.1 Problem

You've made some changes to a GPO and want to apply them to a computer by refreshing the group
policies for the computer.

9.21.2 Solution

9.21.2.1 Using a command-line interface

On Windows Server 2003 or Windows XP, use this command:

> gpupdate [/target:{Computer | User}]

On Windows 2000, use this command:

> secedit /refreshpolicy [machine_policy | user_policy]

9.21.3 Discussion

The new gpupdate command is a much-needed improvement over the older secedit utility. With
gpupdate you can force all settings to be applied with the /force option (the default is only changed
settings). You can apply the computer or user settings of GPOs using the /target option, and you
can force a logoff or reboot after the settings have been applied using the /logoff and /boot

options.

9.21.4 See Also

MS KB 298444 (A Description of the Group Policy Update Utility)

[Team LiB]

[Team LiB]

Recipe 9.22 Restoring a Default GPO

9.22.1 Problem

You've made changes to the Default Domain Security Policy, Default Domain Controller Security
Policy, or both, and now want to reset them to their original configuration.

9.22.2 Solution

This tool can be run only from a Windows Server 2003 domain controller.

9.22.2.1 Using a command-line interface

The following command would replace both the Default Domain Security Policy and Default Domain
Controller Security Policy. You can specify Domain or DC instead of Both, to only restore one or the

other.

> dcgpofix /target:Both

Note that this must be run from a domain controller in the target domain where you want to reset
the GPO.

9.22.3 Discussion

If you've ever made changes to the default GPOs and would like to revert back to the original
settings, the dcgpofix utility is your solution. dcgpofix works with a particular version of the

schema. If the version it expects to be current is different from what is in Active Directory, it will not
restore the GPOs. You can work around this by using the /ignoreschema switch, which will restore
the GPO according to the version dcgpofix thinks is current. The only time you might experience this

issue is if you install a service pack on a domain controller (dc1) that extends the schema, but have
not installed it yet on a second domain controller (dc2). If you try to run dcgpofix from dc2, you will
receive the error since a new version of the schema and the dcgpofix utility was installed on dc1.

[Team LiB]

[Team LiB]

Chapter 10. Schema

Introduction

Recipe 10.1. Registering the Active Directory Schema MMC Snap-in

Recipe 10.2. Enabling Schema Updates

Recipe 10.3. Generating an OID to Use for a New Class or Attribute

Recipe 10.4. Generating a GUID to Use for a New Class or Attribute

Recipe 10.5. Extending the Schema

Recipe 10.6. Documenting Schema Extensions

Recipe 10.7. Adding a New Attribute

Recipe 10.8. Viewing an Attribute

Recipe 10.9. Adding a New Class

Recipe 10.10. Viewing a Class

Recipe 10.11. Indexing an Attribute

Recipe 10.12. Modifying the Attributes That Are Copied When Duplicating a User

Recipe 10.13. Modifying the Attributes Included with Ambiguous Name Resolution

Recipe 10.14. Adding or Removing an Attribute in the Global Catalog

Recipe 10.15. Finding the Nonreplicated and Constructed Attributes

Recipe 10.16. Finding the Linked Attributes

Recipe 10.17. Finding the Structural, Auxiliary, Abstract, and 88 Classes

Recipe 10.18. Finding the Mandatory and Optional Attributes of a Class

Recipe 10.19. Modifying the Default Security of a Class

Recipe 10.20. Deactivating Classes and Attributes

Recipe 10.21. Redefining Classes and Attributes

Recipe 10.22. Reloading the Schema Cache
[Team LiB]

[Team LiB]

Introduction

The Active Directory schema contains the blueprint for how objects are structured and secured, what
data they can contain, and even how they can be viewed. Having a thorough understanding of the
schema is paramount for any Active Directory administrator. Understanding key concepts, such as
class inheritance, class types, attribute syntax, and attribute indexing options, is critical to being able
to adequately design an Active Directory infrastructure and should be considered mandatory for any
developer that is writing applications or automation scripts that utilize Active Directory.

If you are one of the lucky few who is designated as a schema administrator (i.e., member of the
Schema Admins group), then the importance of the schema is already well known to you. This chapter

serves a guide to accomplishing many of the day-to-day tasks you will need to do as a schema
administrator. If you feel you need more nuts and bolts information on how the schema works, I
suggest reading Chapter 4 of Active Directory, Second Edition (O'Reilly).

The Anatomy of Schema Objects

An interesting feature of Active Directory that is not common among other LDAP implementations is
that the schema is stored within Active Directory as a set of objects. This means that you can use
similar interfaces and programs to manage the schema as you would any other type of object.

All schema objects are stored in the Schema container (e.g.,

cn=schema,cn=configuration,<ForestRootDN>). The schema is comprised of two classes of objects,
classSchema and attributeSchema. Unsurprisingly, the classSchema objects define classes and
attributeSchema objects define attributes. The Schema container contains a third type of object
called subSchema, also known as the abstract schema, which is defined in the LDAP v3 specification
(RFC 2251). There is only a single subSchema object in the Schema container, named cn=Aggregate,

and it contains a summary of the entire schema.

Table 10-1 and Table 10-2 contain useful attributes of classSchema objects and attributeSchema

objects, respectively.

Table 10-1. Attributes of classSchema objects

Attribute Description

adminDescription Description of the class.

auxiliaryClass
Multivalued attribute containing any auxiliary classes defined for the
class.

cn Relative distinguished name of the class.

Attribute Description

defaultHidingValue
Boolean that determines whether objects of this class are hidden by
default in administrative GUIs.

defaultSecurityDescriptor Default security descriptor applied to objects of this class.

governsID Object identifier (OID) for the class.

isDefunct
Boolean that indicates whether the class is defunct (i.e.,
deactivated).

lDAPDisplayName
Name used when referencing the class in searches or when
instantiating or modifying objects of this class.

mayContain
Multivalued attribute that contains a list of attributes that can be
optionally set on the class.

mustContain
Multivalued attribute that contains a list of attributes that must be
set on the class.

objectClassCategory
Integer representing the class's type. Can be one of 1 (structural),
2 (abstract), 3 (auxiliary), or 0 (88).

possibleInferiors Multivalued list of other object classes this object can contain.

possSuperiors Multivalued list of object classes this object can be subordinate to.

rDNAttID Naming attribute (i.e., RDN) of instances of the class.

schemaIDGUID GUID of the class.

showInAdvancedViewOnly
Boolean that indicates whether instances of this class should only be
shown in Advanced mode in the administrative GUIs.

subClassOf Parent class.

systemAuxiliaryClass
Multivalued attribute containing any auxiliary classes defined for the
class. This can only be modified internally by Active Directory.

systemFlags Integer representing additional properties of the class.

systemMayContain
Multivalued attribute that contains a list of attributes that can be
optionally set on the class. This can only be modified internally by
Active Directory.

systemMustContain
Multivalued attribute that contains a list of attributes that must be
set on the class. This can only be modified internally by Active
Directory.

systemPossSuperiors
Multivalued list of object classes this object can be subordinate to.
This can only be modified internally by Active Directory.

Table 10-2. Attributes of attributeSchema objects

Attribute Description

defaultHidingValue
Boolean that determines whether objects of this class are hidden by
default in administrative GUIs.

defaultSecurityDescriptor Default security descriptor applied to objects of this class.

governsID Object identifier (OID) for the class.

isDefunct
Boolean that indicates whether the class is defunct (i.e.,
deactivated).

lDAPDisplayName
Name used when referencing the class in searches or when
instantiating or modifying objects of this class.

mayContain
Multivalued attribute that contains a list of attributes that can be
optionally set on the class.

mustContain
Multivalued attribute that contains a list of attributes that must be
set on the class.

objectClassCategory
Integer representing the class's type. Can be one of 1 (structural),
2 (abstract), 3 (auxiliary), or 0 (88).

possibleInferiors Multivalued list of other object classes this object can contain.

possSuperiors Multivalued list of object classes this object can be subordinate to.

rDNAttID Naming attribute (i.e., RDN) of instances of the class.

schemaIDGUID GUID of the class.

showInAdvancedViewOnly
Boolean that indicates whether instances of this class should only be
shown in Advanced mode in the administrative GUIs.

subClassOf Parent class.

systemAuxiliaryClass
Multivalued attribute containing any auxiliary classes defined for the
class. This can only be modified internally by Active Directory.

systemFlags Integer representing additional properties of the class.

systemMayContain
Multivalued attribute that contains a list of attributes that can be
optionally set on the class. This can only be modified internally by
Active Directory.

systemMustContain
Multivalued attribute that contains a list of attributes that must be
set on the class. This can only be modified internally by Active
Directory.

systemPossSuperiors
Multivalued list of object classes this object can be subordinate to.
This can only be modified internally by Active Directory.

Table 10-2. Attributes of attributeSchema objects

Attribute Description

adminDescription Description of the attribute.

attributeID OID for the attribute.

attributeSecurityGUID
GUID to be used to apply security credentials to a set of
objects.

attributeSyntax
OID representing the syntax of the attribute. This is used in
conjunction with oMSyntax to define a unique syntax.

cn Relative distinguished name of the attribute.

isDefunct
Boolean that indicates if the attribute is defunct (i.e.,
deactivated).

isMemberOfPartialAttributeSet
Boolean that indicates if the attribute is a member of the
partial attribute set (i.e., the global catalog).

isSingleValued
Boolean that indicates whether the attribute is single valued or
multivalued.

linkID
If this is populated, it will contain an integer that represents a
link (either forward or backward) to another attribute.

lDAPDisplayName
Name used when referencing the attribute in searches or when
populating it on objects. Note that this value may not be the
same as cn.

oMSyntax
An integer representing the OM type of the attribute. This is
used in conjunction with attributeSyntax to determine a

unique syntax for the attribute.

schemaIDGUID GUID of the attribute.

searchFlags
Integer representing special properties related to searching
with the attribute. This includes how the attribute is indexed
and if it is used in ANR searches.

systemFlags Integer representing additional properties of the attribute.

[Team LiB]

[Team LiB]

Recipe 10.1 Registering the Active Directory Schema MMC
Snap-in

10.1.1 Problem

You want to use the Active Directory Schema snap-in for the first time on a computer.

10.1.2 Solution

Before you can use the Active Directory Schema snap-in, you have to register the dynamic link
library (DLL) associated with it. This can be done with the regsvr32 utility using the following

command:

> regsvr32 schmmgmt.dll

If the command is successful, you'll see the following message:

DllRegisterServer in schmmgmt.dll succeeded.

10.1.3 Discussion

Most of the Active Directory MMC snap-ins do not require that you manually register the associated
DLL. Microsoft requires this with the Active Directory Schema snap-in due to the sensitive nature of
modifying the schema. This doesn't actually do much to prevent users from using it, but at least it
isn't available by default. And regardless, only members of the Schema Admins group have

permission to modify the schema anyway, so making this snap-in available should not pose much of
a risk.

The schmmgmt.dll file is installed as part of adminpak.msi or when a domain controller is promoted.

If you want to use the Schema snap-in on a non-domain controller machine and you have not
installed the adminpak.msi package, you'll need to specify the full path to schmmgmt.dll when using
regsvr32, which can be found in the \i386 directory of a Windows Server CD.

10.1.4 See Also

MS KB 320337 (HOW TO: Manage the Active Directory Schema in Windows 2000), and MS KB 326310
(HOW TO: Manage the Active Directory Schema in Windows Server 2003 Enterprise Edition)

[Team LiB]

[Team LiB]

Recipe 10.2 Enabling Schema Updates

This is necessary only when the Schema FSMO role owner is running Windows 2000.

10.2.1 Problem

You want to enable schema modifications on the Schema FSMO. This is a necessary first step before you can
extend the schema.

10.2.2 Solution

10.2.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

Click on Active Directory Schema in the left pane.2.

Right-click on Active Directory Schema and select Operations Master.3.

Check the box beside Allow schema modifications.4.

Click OK.5.

10.2.2.2 Using a command-line interface

To enable modifications to the schema, use the following command:

> reg add HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\NTDS\Parameters /t [RETURN]
REG_DWORD /v "Schema Update Allowed" /d 1

To disable modifications to the schema, use the following command:

> reg delete HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\NTDS\Parameters /v[RETURN]
"Schema Update Allowed" /f

10.2.2.3 Using VBScript

' This code enables or disables schema mods on Schema FSMO.
' ------ SCRIPT CONFIGURATION ------
' TRUE to enable schema mods and FALSE to disable

boolSetReg = TRUE

' Name of the Schema FSMO or "." to run locally

strDC = "<SchemaFSMOName>"
' ------ END CONFIGURATION ---------

const HKEY_LOCAL_MACHINE = &H80000002
set objReg = GetObject("winmgmts:\\" & strDC & "\root\default:StdRegProv")
strKeyPath = "System\CurrentControlSet\Services\NTDS\Parameters"
strValueName = "Schema Update Allowed"

if boolSetReg = TRUE then
 strValue = 1
 intRC = objReg.SetDWORDValue(HKEY_LOCAL_MACHINE,strKeyPath, _
 strValueName,strValue)
 if intRC > 0 then
 WScript.Echo "Error occurred: " & intRC
 else
 WScript.Echo strValueName & " value set to " & strValue
 end if
else
 intRC = objReg.DeleteValue(HKEY_LOCAL_MACHINE,strKeyPath,strValueName)
 if intRC > 0 then
 WScript.Echo "Error occurred: " & intRC
 else
 WScript.Echo strValueName & " value deleted"
 end if
end if

10.2.3 Discussion

When the Schema FSMO role owner is running Windows 2000, you must explicitly enable schema modifications
on the server before extending the schema. To enable this, you need to create a key value called Schema
Update Allowed with a value of 1 under the following key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\NTDS\Parameters

To disable schema modifications, set the value to 0 or delete it from the registry.

This is no longer necessary when the Schema FSMO owner is running Windows Server
2003. Microsoft removed this registry hack as a requirement for extending the schema.

10.2.4 See Also

MS KB 285172 (Schema Updates Require Write Access to Schema in Active Directory)

[Team LiB]

[Team LiB]

Recipe 10.3 Generating an OID to Use for a New Class or
Attribute

10.3.1 Problem

You want to generate an OID to use with a new class or attribute you intend to add to the schema.

10.3.2 Solution

You have two options for generating an OID. First, you can generate a base OID off of the Microsoft OID
tree. This can be done with the Oidgen.exe utility from the Resource Kit:

> oidgen
Attribute Base OID: 1.2.840.113556.1.4.7000.233.28688.28684.8.2849.956347.1967079.334190
 Class Base OID: 1.2.840.113556.1.5.7000.111.28688.28684.8.370553.291204.940269.113484

Using Oidgen is really easy, but if you want to implement schema extensions for production use, I strongly

suggest you consider using an OID from your company or organization's OID branch. To determine if your
company already has an assigned OID, see these sites:

http://www.iana.org/assignments/enterprise-numbers
http://www.alvestrand.no/objectid/

If your organization does not have an assigned OID, go to your country's national registry to request one.
The list of registries can be found at the following site:
http://www.iso.ch/iso/en/aboutiso/isomembers/index.html .

Once you have a base OID, you can create branches from that OID however you want. For example, if you
had a base OID of 1.2.3.4, you could start new class OIDs under 1.2.3.4.1 and new attributes under
1.2.3.4.2. In that case, the first class OID you would create would be 1.2.3.4.1.1 and the first attribute OID
would be 1.2.3.4.2.1.

10.3.3 Discussion

An OID is nothing more than a string of numbers separated by dots (.). OIDs were initially defined by the ITU-
T in X.208 and have been used to uniquely identify a variety of things including SNMP MIB objects and LDAP
schema classes and attributes. OIDs are hierarchical, and the national registries are responsible for
managing and assigning OID branches.

[Team LiB]

http://www.iana.org/assignments/enterprise-numbers
http://www.alvestrand.no/objectid/
http://www.iso.ch/iso/en/aboutiso/isomembers/index.html

[Team LiB]

Recipe 10.4 Generating a GUID to Use for a New Class or
Attribute

10.4.1 Problem

You want to generate a GUID to use for the schemaIDGUID attribute of a new class or attribute you

intend to add to the schema.

10.4.2 Solution

There are several ways to go about generating a GUID. If you do not specify the schemaIDGUID when

initially creating a class or attribute, one will automatically be generated for you. So you could add
the class or attribute to the schema of a test forest, and then use the schemaIDGUID that was

generated in that forest.

You can also programmatically generate a GUID using Perl, VB, C++, or C#, but you cannot do it
natively within VBScript. The Windows API supports a CoCreateGUID method that can be used to
generate a GUID. If you are stuck with VBScript, you can wrap the CoCreateGUID method in an

ActiveX DLL using VB and then use that DLL from within VBScript.

Finally, you can use a tool such as uuidgen.exe, which is available in the Microsoft Platform SDK to
generate GUIDs. Uuidgen doesn't require any parameters (although there are a few options that can
be seen by running uuidgen -h), and it can generate as many GUIDs as you need.

If you intend to use LDIF files for extending the schema (highly recommended), then you need to
encode any GUIDs in base64 notation. This is necessary because GUIDs are stored as octet strings
(binary data) in Active Directory. The LDIF specification requires any binary data to be encoded in
base64. Again, VBScript does not support base64 encoding natively, but other languages like Perl
have modules available that do. Here is an example Perl script that uses a combination of the
uuidgen utility to generate a GUID, the Win32::Lanman module to convert the GUID to binary, and
the MIME::Base64 module to encode it:

#!perl
use MIME::Base64;
use Win32::Lanman;

Get the string GUID
my $str_guid = `uuidgen.exe`;
chomp $str_guid;

Convert to a binary GUID
my $bin_guid = Win32::Lanman::StringToGuid($str_guid);

Base64 encode binary GUID
my $b64_guid = encode_base64($bin_guid);

print "$b64_guid\n";

You can avoid using uuidgen.exe altogether by using the Win32::Guidgen
module or Data::UUID (for Unix), both of which can generate text-based

GUIDs.

10.4.3 Discussion

The schemaIDGUID attribute defines the GUID or unique identifier for classes and attributes in the

schema. It is a good practice to define this attribute in your schema extensions when creating new
classes or attributes. This is especially true if the new class or attribute will be associated with any
extended rights or property sets, which reference schema objects by GUID. If you do not explicitly
set that value, the method you use for creating or modifying extended rights to use that class will
have to dynamically determine the schemaIDGUID for each forest it is implemented in, which is not

very clean.

[Team LiB]

[Team LiB]

Recipe 10.5 Extending the Schema

10.5.1 Problem

You want to extend the schema to support new classes and attributes in Active Directory.

10.5.2 Solution

Extending the schema is a straightforward process, which consists of adding new classes or
attributes, or modifying existing ones in the schema. While extending the schema is not hard, due to
the sensitive nature of the schema, you should implement a schema extension process that
thoroughly tests any extensions before you put them in your production forest. Here is a suggested
summary of what your schema extension process should be:

Meet with clients and determine if there is a business justification for integrating their
application with Active Directory.

1.

Examine the extensions and determine what impact, if any, it will have on your Active Directory
environment (e.g., adding an attribute to the global catalog).

2.

Try out the extensions in a test environment. Observe any peculiarities.3.

Document the extensions.4.

Extend the schema in your production Active Directory.5.

For more information on defining a schema extension process, see Chapter 12 of Active Directory,
Second Edition (O'Reilly).

10.5.3 Discussion

One thing to be cautious of when developing a schema extension process is not to make it an overly
bureaucratic process that can require several weeks to complete. If that is the type of process you
implement, you'll find that fewer people will want to integrate their applications with your Active
Directory infrastructure. While some organizations may want to strictly limit schema extensions,
there is nothing inherently bad about extending the schema and it is one of the core features and
advantages over Active Directory's predecessor-Windows NT 4.0.

10.5.4 See Also

Recipe 10.7 for adding a new attribute, Recipe 10.9 for adding a new class, and MS KB 283791 (How
to Modify Schema Information Using the Ldifde Utility)

[Team LiB]

[Team LiB]

Recipe 10.6 Documenting Schema Extensions

10.6.1 Problem

You want to document your schema extensions.

10.6.2 Solution

There are several different ways you can document schema extensions. If you require LDIF files of
the schema extensions before you extend the schema, you could use the files themselves as a simple
self-documenting system. You can put comments in LDIF files by putting # at the beginning of a line.
I personally prefer this option and recommend that any company that needs to extend the schema of
their customer's Active Directory should include LDIF files, regardless of whether you use that
method to actually extend the schema.

Another fairly easy mechanism for documenting schema extensions is with the SchemaDoc program
developed by Microsoft. SchemaDoc is a simple GUI program that lets you document classes and
attributes that have already been added to Active Directory. The output for SchemaDoc is XML, which
you can then use to create your own management interface for viewing the contents.

SchemaDoc can be downloaded from the following site:

http://www.microsoft.com/downloads/details.aspx?FamilyId=BEF87B1D-D2F1-4795-88C5-
CA66CFC3AB29&displaylang=en

More information on SchemaDoc can be found here:

http://www.microsoft.com/technet/prodtechnol/ad/windows2000/maintain/schema.asp

10.6.3 Discussion

There are no hard and fast rules for documenting schema extensions. Documenting schema
extensions in some fashion, even if rudimentary, should be a requirement of any schema extension
process you adopt. If you have the resources and time, you can even develop a much more elaborate
documentation system using the web or even an object-modeling system.

10.6.4 See Also

RFC 2849 (The LDAP Data Interchange Format (LDIF)-Technical Specification)

[Team LiB]

http://www.microsoft.com/downloads/details.aspx?FamilyId=BEF87B1D-D2F1-4795-88C5-
http://www.microsoft.com/technet/prodtechnol/ad/windows2000/maintain/schema.asp

[Team LiB]

Recipe 10.7 Adding a New Attribute

10.7.1 Problem

You want to add a new attribute to the schema.

10.7.2 Solution

For Windows 2000 Active Directory you need to enable schema modifications
before proceeding. See Recipe 10.2 for more information.

10.7.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, right-click on the Attributes folder and select Create Attribute.2.

Click the Continue button to confirm that you want to extend the schema.3.

Enter the information for the new attribute.4.

Click OK.5.

10.7.2.2 Using a command-line interface

You can create new attributes by using ldifde and an LDIF file that contains the properties to be set
on the attribute. The following text shows an example LDIF file called create_attr.ldf that creates
an attribute called rallencorp-LanguagesSpoken:

dn: cn=rallencorp-LanguagesSpoken,cn=schema,cn=configuration,<ForestRootDN>
changetype: add
objectclass: attributeSchema
lDAPDisplayName: rallencorp-LanguagesSpoken
attributeId: 1.3.6.1.4.1.999.1.1.28.3
oMSyntax: 20
attributeSyntax: 2.5.5.4
isSingleValued: FALSE
searchFlags: 1
description: "Languages a user speaks"

Then run the following command:

> ldifde -v -i -f create_attr.ldf

10.7.2.3 Using VBScript

' This code illustrates how to create an attribute
' called rallencorp-LanguagesSpoken

set objRootDSE = GetObject("LDAP://RootDSE")
set objSchemaCont = GetObject("LDAP://" & _
 objRootDSE.Get("schemaNamingContext"))
set objAttr = objSchemaCont.Create("attributeSchema", _
 "cn=rallencorp-LanguagesSpoken")
objAttr.Put "lDAPDisplayName", "rallencorp-LanguagesSpoken"
objAttr.Put "attributeId", "1.3.6.1.4.1.999.1.1.28.3"
objAttr.Put "oMSyntax", 20
objAttr.Put "attributeSyntax", "2.5.5.4"
objAttr.Put "isSingleValued", FALSE
objAttr.Put "description", "Languages a user speaks"
objAttr.Put "searchFlags", 1 ' index the attribute
objAttr.SetInfo
WScript.Echo "Attribute created"

10.7.3 Discussion

To create an attribute, you need to add an attributeSchema object to the Schema container.

Typically, when you extend the schema, you perform several additions or modifications at once. The
order of your extensions is very important. You can't create a class, assign an attribute, and then
create the attribute; you obviously need to create the attribute before it can be assigned to the class.
Even if you create the attribute before you assign it to a class, you must reload the schema before
doing the class assignment. Reloading the schema is described in more detail in Recipe 10.22.

Most of the attributes that can be set on attributeSchema objects are pretty straightforward, but a
couple of them take a little explanation. The attributeSyntax and oMSyntax attributes together

define the syntax, or the type of data that can be contained in the attribute. Table 10-3 shows the
possible combinations of these two attributes and the resulting syntax.

Table 10-3. attributeSyntax and oMSyntax combinations

Name attributeSyntax oMSyntax Description

AccessPointDN 2.5.5.14 127
Type of distinguished name taken from
X.500.

Boolean 2.5.5.8 1 TRUE or FALSE value.

CaseExactString 2.5.5.3 27 Case-sensitive string.

Name attributeSyntax oMSyntax Description

CaseIgnoreString 2.5.5.4 20 Case-insensitive string.

DirectoryString 2.5.5.12 64 Case-insensitive Unicode string.

DN 2.5.5.1 127 String representing a distinguished name.

DNWithBinary 2.5.5.7 127

Octet string that has the following format:

B:CharCount:BinaryValue:ObjectDN

where CharCount is the number of

hexadecimal digits in BinaryValue,

BinaryValue is the hexadecimal

representation of the binary value, and
ObjectDN is a distinguished name.

DNWithString 2.5.5.14 127

Octet string that contains a string value and
a DN. A value with this syntax has the
following format:

S:CharCount:StringValue:ObjectDN

where CharCount is the number of

characters in the StringValue string, and

ObjectDN is a distinguished name of an

object in Active Directory.

Enumeration 2.5.5.9 10 Defined in X.500 and treated as an integer.

GeneralizedTime 2.5.5.11 24
Time string format defined by ASN.1
standards. See ISO 8601 and X.680.

IA5String 2.5.5.5 22
Case-sensitive string containing characters
from the IA5 character set.

Integer 2.5.5.9 2 32-bit integer.

Integer8 2.5.5.16 65 64-bit integer, also known as a large integer.

NTSecurityDescriptor 2.5.5.15 66
Octet string that contains a security
descriptor.

NumericString 2.5.5.6 18 String that contains digits.

OctetString 2.5.5.10 4 Array of bytes used to store binary data.

OID 2.5.5.2 6
String that contains digits (0-9) and decimal
points (.).

ORName 2.5.5.7 127
Taken from X.400; used for X.400 to RFC 822
mapping.

PresentationAddress 2.5.5.13 127
String that contains OSI presentation
addresses.

CaseIgnoreString 2.5.5.4 20 Case-insensitive string.

DirectoryString 2.5.5.12 64 Case-insensitive Unicode string.

DN 2.5.5.1 127 String representing a distinguished name.

DNWithBinary 2.5.5.7 127

Octet string that has the following format:

B:CharCount:BinaryValue:ObjectDN

where CharCount is the number of

hexadecimal digits in BinaryValue,

BinaryValue is the hexadecimal

representation of the binary value, and
ObjectDN is a distinguished name.

DNWithString 2.5.5.14 127

Octet string that contains a string value and
a DN. A value with this syntax has the
following format:

S:CharCount:StringValue:ObjectDN

where CharCount is the number of

characters in the StringValue string, and

ObjectDN is a distinguished name of an

object in Active Directory.

Enumeration 2.5.5.9 10 Defined in X.500 and treated as an integer.

GeneralizedTime 2.5.5.11 24
Time string format defined by ASN.1
standards. See ISO 8601 and X.680.

IA5String 2.5.5.5 22
Case-sensitive string containing characters
from the IA5 character set.

Integer 2.5.5.9 2 32-bit integer.

Integer8 2.5.5.16 65 64-bit integer, also known as a large integer.

NTSecurityDescriptor 2.5.5.15 66
Octet string that contains a security
descriptor.

NumericString 2.5.5.6 18 String that contains digits.

OctetString 2.5.5.10 4 Array of bytes used to store binary data.

OID 2.5.5.2 6
String that contains digits (0-9) and decimal
points (.).

ORName 2.5.5.7 127
Taken from X.400; used for X.400 to RFC 822
mapping.

PresentationAddress 2.5.5.13 127
String that contains OSI presentation
addresses.

Name attributeSyntax oMSyntax Description

PrintableString 2.5.5.5 19
Case-sensitive string that contains characters
from the printable character set.

ReplicaLink 2.5.5.10 127 Used by Active Directory internally.

Sid 2.5.5.17 4
Octet string that contains a security identifier
(SID).

UTCTime 2.5.5.11 23
Time string format defined by ASN.1
standards.

The searchFlags attribute is a bit flag that defines special properties related to searching with the

attribute. Table 10-4 contains the values that can be set for this attribute. The values are cumulative;
so in order to index an attribute and include it in ANR searches, you would set a value of 5 (1 + 4).

Table 10-4. searchFlags bit values

Value Description

1 Index over attribute. See Recipe 10.11 for more information.

2 Index over container and attribute.

4
Include as part of Ambiguous Name Resolution (ANR). Should be used in addition to 1. See
Recipe 10.13 for more information.

8 Preserve attribute in tombstone objects.

16 Copy attribute when duplicating an object. See Recipe 10.12 for more information.

32
Create a tuple index for this attribute. This improves the response time for searches that
put a wildcard in front of the search string for the attribute, (e.g., givenname=*on).

10.7.4 See Also

Recipe 4.12 for setting a bit flag, Recipe 10.9 for adding a new class, and Recipe 10.22 for reloading
the schema

[Team LiB]

PrintableString 2.5.5.5 19
Case-sensitive string that contains characters
from the printable character set.

ReplicaLink 2.5.5.10 127 Used by Active Directory internally.

Sid 2.5.5.17 4
Octet string that contains a security identifier
(SID).

UTCTime 2.5.5.11 23
Time string format defined by ASN.1
standards.

The searchFlags attribute is a bit flag that defines special properties related to searching with the

attribute. Table 10-4 contains the values that can be set for this attribute. The values are cumulative;
so in order to index an attribute and include it in ANR searches, you would set a value of 5 (1 + 4).

Table 10-4. searchFlags bit values

Value Description

1 Index over attribute. See Recipe 10.11 for more information.

2 Index over container and attribute.

4
Include as part of Ambiguous Name Resolution (ANR). Should be used in addition to 1. See
Recipe 10.13 for more information.

8 Preserve attribute in tombstone objects.

16 Copy attribute when duplicating an object. See Recipe 10.12 for more information.

32
Create a tuple index for this attribute. This improves the response time for searches that
put a wildcard in front of the search string for the attribute, (e.g., givenname=*on).

10.7.4 See Also

Recipe 4.12 for setting a bit flag, Recipe 10.9 for adding a new class, and Recipe 10.22 for reloading
the schema

[Team LiB]

[Team LiB]

Recipe 10.8 Viewing an Attribute

10.8.1 Problem

You want to view the properties of an attribute.

10.8.2 Solution

10.8.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, click on the Attributes folder.2.

In the right pane, double-click the attribute you want to view.3.

Click on each tab to view the available properties.4.

10.8.2.2 Using a command-line interface

In the following command, replace <AttrCommonName> with the common name (not LDAP display

dame) of the attribute you want to view:

> dsquery * cn=schema,cn=configuration,<ForestRootDN> -scope onelevel -attr *[RETURN]

-filter "(&(objectcategory=attributeSchema)(cn=<AttrCommonName>))"

10.8.2.3 Using VBScript

' This code displays the attributes for the specified attributeSchema object
' Refer to Recipe 4.2 for the DisplayAttributes() function code.
' ------ SCRIPT CONFIGURATION ------
' Set to the common name (not LDAP display dame) of the attribute

strAttrName = "<AttrCommonName>" ' e.g. surname
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objAttr = GetObject("LDAP://cn=" & strAttrName & "," & _
 objRootDSE.Get("schemaNamingContext"))
objAttr.GetInfo
WScript.Echo "Properties for " & strAttrName & ":"
DisplayAttributes(objAttr.ADsPath)

10.8.3 Discussion

In the CLI and VBScript solutions, I mention that you need to specify the common name or cn of the

attribute you want to view. The common name is a source of confusion for many people. For example,
the surname attribute has the following distinguished name in the rallencorp.com forest:

cn=surname,cn=schema,cn=configuration,dc=rallencorp,dc=com

The problem is that most applications refer to attributes by their LDAP display name as defined in the
lDAPDisplayName attribute for the attributeSchema object, which is typically different than the cn
attribute. As an example, the surname attribute uses surname for its common name (cn) , but sn for
its LDAP display name (lDAPDisplayName) .

In the CLI solution, if you want to use the LDAP display name instead of cn, simply change (cn=

<AttrCommonName>) to (lDAPDisplayName= <AttrLDAPName>) . In the VBScript solution, it is not
that simple. When using cn , we can call GetObject since we know the DN of the attributeSchema
object. If you want to use the lDAPDisplayName attribute instead, you'll need to do an ADO query

and use the search criteria similar to that in the CLI solution.

One attribute of note that is defined on attributeSchema objects is the systemFlags bit flag, which is

used to define a few miscellaneous properties about an attribute. Table 10-5 contains the bits
associated with systemFlags . The values are cumulative, so a value of 17 (1 + 16) would indicate

that the attribute is part of the base Active Directory installation and is not replicated.

Table 10-5. systemFlags bit values

Value Description

1 Not replicated among domain controllers.

4 Dynamically constructed by Active Directory.

16 Part of the base Active Directory installation. This value cannot be set.

10.8.4 See Also

Recipe 4.2 for viewing the attributes of an object and Recipe 4.9 for searching with a bit-wise filter

[Team LiB]

[Team LiB]

Recipe 10.9 Adding a New Class

10.9.1 Problem

You want to add a new class to the schema.

10.9.2 Solution

For Windows 2000 Active Directory you need to enable schema modifications
before proceeding. See Recipe 10.2 for more information.

10.9.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, right-click on the Classes folder and select Create Class . . .2.

Click the Continue button to confirm that you want to extend the schema.3.

Enter the information for the new class and click Next.4.

Enter any mandatory and optional attributes and click Finish.5.

10.9.2.2 Using a command-line interface

You can create new classes by using ldifde and an LDIF file that contains the properties to be set on

the class. The following text shows an example LDIF file called create_class.ldf that creates a class
called rallencorp-SalesUser:

dn: cn=rallencorp-SalesUser,cn=schema,cn=configuration,<ForestRootDN>
changetype: add
objectclass: classSchema
lDAPDisplayName: rallencorp-SalesUser
governsId: 1.3.6.1.4.1.999.1.1.28.4
objectClassCategory: 3
subClassOf: top
description: Auxiliary class for Sales user attributes
adminDescription: Auxiliary class for Sales user attributes
mayContain: rallencorp-Building

mayContain: rallencorp-Theatre

Then run the following command:

> ldifde -v -i -f create_class.ldf

10.9.2.3 Using VBScript

' This code creates a class in the schema called rallencorp-SalesUser.
' It is assumed that the script is being run by a member of Schema Admins

set objRootDSE = GetObject("LDAP://RootDSE")
set objSchemaCont = GetObject("LDAP://" & _
 objRootDSE.Get("schemaNamingContext"))
set objClass = objSchemaCont.Create("classSchema", _
 "cn=rallencorp-SalesUser")
objClass.Put "lDAPDisplayName", "rallencorp-SalesUser"
objClass.Put "governsId", "1.3.6.1.4.1.999.1.1.28.4"
objClass.Put "objectClassCategory", 3
objClass.Put "subClassOf", "top"
objClass.Put "adminDescription", "Languages a user speaks"
objClass.Put "mayContain", Array("rallencorp-Building","rallencorp-Theatre")
objClass.SetInfo
WScript.Echo "Class created"

10.9.3 Discussion

To create a new class, you need to create a classSchema object in the Schema container. The

important attributes to set include:

governsId

Defines the OID for the class
objectClassCategory

Defines the class type
subClassOf

Defines the parent class
mayContain and mustContain

Defines any optional and mandatory attributes for instantiated objects of the class

The lDAPDisplayName also needs to be set and should be equal to the common name (cn) as a

general rule. Even though many of the default classes do not use the same name for the common
name and LDAP display name, using the same name is highly recommended to avoid confusion when
referencing the class. Another best practice is to set the schemaIDGUID of the class, which is

especially important if you are doing anything with extended rights. The See Also section contains
references to recipes that cover some of these topics in more depth.

10.9.4 See Also

Introduction in Chapter 10 for attributes of classSchema objects, Recipe 10.3 for generating an OID,

Recipe 10.4 for generating a GUID, Recipe 10.17 for more on object class type, Recipe 10.19 for
setting the default security for a class, and Recipe 10.22 for reloading the schema cache

[Team LiB]

[Team LiB]

Recipe 10.10 Viewing a Class

10.10.1 Problem

You want to view the attributes of a class.

10.10.2 Solution

10.10.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, click on the Classes folder.2.

In the right pane, double-click the class you want to view.3.

Click on each tab to view the available properties.4.

10.10.2.2 Using a command-line interface

In the following command, replace <ClassCommonName> with the common name (not LDAP display name)

of the class you want to view:

> dsquery * cn=<ClassCommonName>,cn=schema,cn=configuration,<ForestRootDN> -scope[RETURN]
base -attr *

10.10.2.3 Using VBScript

' This code prints out the attributes for the specified class.
' Recipe 4.2 for the code for the DisplayAttributes() function.
' ------ SCRIPT CONFIGURATION ------
' Set to the common name (not LDAP display dame)
' of the class you want to view.

strClassName = "<ClassCommonName>" ' e.g. user
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objClass = GetObject("LDAP://cn=" & strClassName & "," & _
 objRootDSE.Get("schemaNamingContext"))
objClass.GetInfo
WScript.Echo "Properties for " & strClassName
DisplayAttributes(objClass.ADsPath)

10.10.3 Discussion

See Table 10-1 for a list of the important classSchema attributes and their descriptions.

10.10.4 See Also

Recipe 4.2 for viewing the attributes of an object

[Team LiB]

[Team LiB]

Recipe 10.11 Indexing an Attribute

10.11.1 Problem

You want to index an attribute so that searches using that attribute are faster.

10.11.2 Solution

For Windows 2000 Active Directory you need to enable schema modifications
before proceeding. See Recipe 10.2 for more information.

10.11.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, click on the Attributes folder.2.

In the right pane, double-click the attribute you want to index.3.

Check the box beside Index this attribute in the Active Directory.4.

Click OK.5.

10.11.2.2 Using a command-line interface

You can index an attribute by using the ldifde utility and an LDIF file that contains the following:

dn: cn=<AttrCommonName>,cn=schema,cn=configuration,<ForestRootDN>
changetype: modify
replace: searchFlags
searchFlags: 1
-

If the LDIF file were named index_attribute.ldf, you would run the following command:

> ldifde -v -i -f index_attribute.ldf

10.11.2.3 Using VBScript

' This code indexes an attribute.
' ------ SCRIPT CONFIGURATION ------
' Set to the common name (not LDAP display name) of the attribute

strAttrName = "<AttrCommonName>" ' e.g. rallencorp-LanguagesSpoken
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objAttr = GetObject("LDAP://cn=" & strAttrName & "," &
 objRootDSE.Get("schemaNamingContext"))
objAttr.Put "searchFlags", 1
objAttr.SetInfo
WScript.Echo "Indexed attribute: " & strAttrName

The CLI and VBScript solutions assume that searchFlags wasn't previously set

and just blindly overwrites whatever value is present if one was. See Recipe
4.12 for a better solution that will enable the bit you want without overwriting
any previous settings.

10.11.3 Discussion

To index an attribute, you need to enable the 1 bit (0001) in the searchFlags attribute for the
attributeSchema object.

searchFlags is a bit flag attribute that is used to set various properties related to searching with the
attribute. Table 10-5 contains the various bit flags that can be set with searchFlags. When setting
searchFlags, you may often need to set a couple bits together. For example, all Ambiguous Name
Resolution (ANR) attributes must also be indexed, which means searchFlags should be set to 5 (1 +

4).

You can find the attributes that are indexed in the schema by using the following search criteria:

Base

cn=Schema,cn=Configuration,<ForestRootDN>

Filter

(&(objectcategory=attributeSchema)(searchFlags:1.2.840.113556.1.4.803:=1))

Scope

 onelevel

Alternatively, to find attributes that aren't indexed, change the previous search filter to the following:

(&(objectcategory=attributeSchema)(!(searchFlags:1.2.840.113556.1.4.803:=1)))

10.11.4 See Also

Recipe 4.12 for modifying a bit-flag attribute, Recipe 10.7 for adding a new attribute, and MS KB
243311 (Setting an Attribute's searchFlags Property to Be Indexed for ANR)

[Team LiB]

[Team LiB]

Recipe 10.12 Modifying the Attributes That Are Copied
When Duplicating a User

10.12.1 Problem

You want to add an attribute to the list of attributes that are copied when duplicating a user with the
Active Directory Users and Computers snap-in.

10.12.2 Solution

For Windows 2000 Active Directory you need to enable schema modifications
before proceeding. See Recipe 10.2 for more information.

10.12.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, click on the Attributes folder.2.

In the right pane, double-click the attribute you want to edit.3.

Check the box beside Attribute is copied when duplicating a user.4.

Click OK.5.

10.12.2.2 Using a command-line interface

You can cause an attribute to get copied when duplicating a user by using the ldifde utility and an

LDIF file that contains the following:

dn: cn=rallencorp-LanguagesSpoken,cn=schema,cn=configuration,<ForestRootDN>
changetype: modify
replace: searchFlags
searchFlags: 16
-

If the LDIF file were named add_dup_user_attr.ldf, you would run the following command:

> ldifde -v -i -f add_dup_user_attr.ldf

10.12.2.3 Using VBScript

' This code adds an attribute to the list of attributes that get
' copied when duplicating a user.
' ------ SCRIPT CONFIGURATION ------
' Set to the common name (not LDAP display dame) of the attribute

strAttrName = "<AttrCommonName>" ' e.g. rallencorp-LanguagesSpoken
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objAttr = GetObject("LDAP://cn=" & strAttrName & "," & objRootDSE.
Get("schemaNamingContext"))
objAttr.Put "searchFlags", 16
objAttr.SetInfo
WScript.Echo "New copied attribute: " & strAttrName

The CLI and VBScript solutions assume that searchFlags wasn't previously set

and just blindly overwrites whatever value is present if one was. Check our
Recipe 4.12 for a better solution that will enable the bit you want without
overwriting any previous settings.

10.12.3 Discussion

The Active Directory Users and Computers snap-in queries the schema for the list of attributes that
should be copied whenever you right-click on a user and select Copy. This flag is purely informational
and does not impose any restrictions or result in any impact on the DIT, like indexing an attribute
does.

To find which attributes are copied when duplicating a user, use the following search criteria:

Base

cn=Schema,cn=Configuration,<ForestRootDN>

Filter

(&(objectcategory=attributeSchema)(searchFlags:1.2.840.113556.1.4.803:=16))

Scope

onelevel

Alternatively, to find attributes that aren't copied, change the search filter above to the following:

(&(objectcategory=attributeSchema)(!(searchFlags:1.2.840.113556.1.4.803:=16)))

10.12.4 See Also

Recipe 4.12 for modifying a bit flag attribute and Recipe 10.7 for adding a new attribute

[Team LiB]

[Team LiB]

Recipe 10.13 Modifying the Attributes Included with
Ambiguous Name Resolution

10.13.1 Problem

You want to modify the attributes that are included as part of ANR.

10.13.2 Solution

For Windows 2000 Active Directory, you need to enable schema modifications
before proceeding. See Recipe 10.2 for more information.

10.13.2.1 Using a graphical user interface

In order to proceed, you must have first indexed the attribute.1.

Open the Active Directory Schema snap-in.2.

In the left pane, click on the Attributes folder.3.

In the right pane, double-click the attribute you want to edit.4.

Check the box beside ANR.5.

Click OK.6.

10.13.2.2 Using a command-line interface

You can include an attribute as part of ANR by using the ldifde utility and an LDIF file that contains

the following:

dn: cn=rallencorp-LanguagesSpoken,cn=schema,cn=configuration,<ForestRootDN>
changetype: modify
replace: searchFlags
searchFlags: 5
-

If the LDIF file were named add_anr_attr.ldf, you would run the following command:

> ldifde -v -i -f add_anr_attr.ldf

10.13.2.3 Using VBScript

' This code will make an attribute part of the ANR set.
' ------ SCRIPT CONFIGURATION ------
' Set to the common name (not LDAP display dame) of the attribute

strAttrName = "<AttrCommonName>" ' e.g. rallencorp-LanguagesSpoken
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objAttr = GetObject("LDAP://cn=" & strAttrName & "," & _
 objRootDSE.Get("schemaNamingContext"))
objAttr.Put "searchFlags", 5
objAttr.SetInfo
WScript.Echo "New ANR attribute: " & strAttrName

The CLI and VBScript solutions assume that searchFlags wasn't previously set

and just blindly overwrites whatever value is present if one was. Check out
Recipe 4.12 for a better solution that will enable the bit you want without
overwriting any previous settings.

10.13.3 Discussion

ANR is an efficient search algorithm that allows for a complex search filter to be written using a single
comparison. For example, a search for (anr=Jim Smith) would translate into the following query:

An OR filter with every attribute in the ANR set against Jim Smith*

A filter for givenName = Jim* and sn = Smith*

A filter for givenName = Smith* and sn = Jim*

These filters are ORed together and then processed by Active Directory. Since all default ANR
attributes are also indexed, the query return should come back quickly.

Here is a list of the default attributes that are included as part of ANR searches. The LDAP display
name of the attribute is shown first with the common name in parenthesis.

displayName (Display-Name)

givenName (Given-Name)

legacyExchangeDN (Legacy-Exchange-DN)

msDS-AdditionalSamAccountName (ms-DS-Additional-Sam-Account-Name)

physicalDeliveryOfficeName (Physical-Delivery-Office-Name)

name (RDN)

sAMAccountName (SAM-Account-Name)

sn (Surname)

msDS-AdditionalSamAccountName was added as an ANR attribute in Windows

Server 2003.

It is important to make sure that any new ANR attributes are also indexed. ANR searches are
intended to be very fast, and if a non-indexed attribute was added to the set, it could dramatically
impact the performance of the searches.

You can find which attributes are included in the ANR set by using the following search criteria:

Base

cn=Schema,cn=Configuration,<ForestRootDN>

Filter

(&(objectcategory=attributeSchema)(searchFlags:1.2.840.113556.1.4.803:=4))

Scope

onelevel

Alternatively, to find attributes that aren't included in ANR, change the previous search filter to the
following:

(&(objectcategory=attributeSchema)(!(searchFlags:1.2.840.113556.1.4.803:=4)))

10.13.4 See Also

Recipe 4.12 for modifying a bit-flag attribute, Recipe 10.7 for adding a new attribute, MS KB 243299
(Ambiguous Name Resolution for LDAP in Windows 2000), and MS KB 243311 (Setting an Attribute's
searchFlags Property to Be Indexed for ANR)

[Team LiB]

[Team LiB]

Recipe 10.14 Adding or Removing an Attribute in the
Global Catalog

10.14.1 Problem

You want to add or remove an attribute in the global catalog.

10.14.2 Solution

For Windows 2000 Active Directory, you need to enable schema modifications
before proceeding. See Recipe 10.2 for more information.

10.14.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, click on the Attributes folder.2.

In the right pane, double-click the attribute you want to edit.3.

Check the box beside Replicate this attribute to the Global Catalog to add to the global catalog,
or uncheck to remove the global catalog.

4.

Click OK.5.

10.14.2.2 Using a command-line interface

You can add an attribute to the global catalog by using the ldifde utility and an LDIF file that

contains the following:

dn: cn=<AttrCommonName>,cn=schema,cn=configuration,<ForestRootDN>
changetype: modify
replace: isMemberOfPartialAttributeSet
isMemberOfPartialAttributeSet: TRUE
-

If the LDIF file were named add_gc_attr.ldf, you would run the following command:

> ldifde -v -i -f add_gc_attr.ldf

10.14.2.3 Using VBScript

' This code adds an attribute to the global catalog
' ------ SCRIPT CONFIGURATION ------
' Set to the common name (not LDAP display dame) of the attribute.

strAttrName = "<AttrCommonName>" ' e.g. surname
' Set to TRUE to add to GC, set to FALSE to remove from GC
boolAddtoGC = TRUE
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objAttr = GetObject("LDAP://cn=" & strAttrName & "," & _
 objRootDSE.Get("schemaNamingContext"))
objAttr.Put "isMemberOfPartialAttributeSet", boolAddtoGC
objAttr.SetInfo
WScript.Echo "Added attribute to GC: " & strAttrName

10.14.3 Discussion

Each domain controller in a forest replicates a copy of the Domain naming context for its own domain
as well as copies of the forest-wide Configuration and Schema partitions. However, domain
controllers do not replicate Domain naming contexts for other domains in the forest. When enabled
as a global catalog server, a domain controller will replicate partial, read-only replicas of all the
objects in other domains in the forest.

Searching against the global catalog is useful when you need to perform a single search across
several naming contexts at once. The global catalog stores only a subset of each object's attributes,
which is why it is considered a partial replica. Attributes stored in the global catalog are considered
part of the partial attribute list (PAS). The attributes that are part of the PAS should be either ones
you'd want to use as part of searches against the global catalog, or ones you would want returned
after searching the global catalog.

You can add attributes that are stored in the global catalog by setting the
isMemberOfPartitalAttributeSet attribute of an attributeSchema object to TRUE. Likewise, to

remove an attribute from the partial attribute set, you need to set
isMemberOfPartitalAttributeSet to FALSE for the target attribute.

With Windows 2000, anytime you added an attribute to the partial attribute set,
a full sync of all of the global catalog contents was done for every global catalog
server. This could have a major impact on replication in some multidomain
environments, as the amount of data that needs to replicate across your forest
could be significant. Fortunately, this limitation was removed in Windows Server
2003 so that a full sync is no longer performed. Removing an attribute from the
partial attribute list does not force a global catalog sync, even under Windows
2000.

You can find which attributes are included in the global catalog by using a query with the following
criteria:

Base

cn=Schema,cn=Configuration,<ForestRootDN>

Filter

(&(objectcategory=attributeSchema)(isMemberOfPartitalAttributeSet=TRUE))

Scope

onelevel

Alternatively, to find attributes that aren't in the global catalog, you only need to change part of the
previous filter to the following:

(isMemberOfPartialAttributeSet=FALSE)

10.14.4 See Also

MS KB 229662 (How to Control What Data Is Stored in the Global Catalog), MS KB 230663 (HOW TO:
Enumerate Attributes Replicated to the Global Catalog), MS KB 232517 (Global Catalog Attributes and
Replication Properties), MS KB 248717 (How to Modify Attributes That Replicate to the Global
Catalog), MS KB 257203 (Common Default Attributes Set for Active Directory and Global Catalog),
and MS KB 313992 (HOW TO: Add an Attribute to the Global Catalog in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 10.15 Finding the Nonreplicated and Constructed
Attributes

10.15.1 Problem

You want to find the attributes are not replicated or are constructed by Active Directory.

10.15.2 Solution

10.15.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a domain user.7.

Click OK.8.

From the menu, select Browse Search.9.

For BaseDN, type the Schema Container DN (e.g.,
cn=schema,cn=configuration,dc=rallencorp,dc=com).

10.

For Scope, select One Level.11.

To find nonreplicated attributes, use the following for Filter:12.

(&(objectcategory=attributeSchema)(systemFlags:1.2.840.113556.1.4.803:=1))

To find constructed attributes, use the following for Filter:13.

(&(objectcategory=attributeSchema)(systemFlags:1.2.840.113556.1.4.803:=4))

Click Run.14.

14.

10.15.2.2 Using a command-line interface

To find the nonreplicated attributes, use the following command:

> dsquery * cn=schema,cn=configuration,<ForestRootDN> -scope onelevel -attr "cn"[RETURN]
-filter "(&(objectcategory=attributeSchema)(systemFlags:1.2.840.113556.1.4.803:=1))"

To find the constructed attributes, use the following command:

> dsquery * cn=schema,cn=configuration,<ForestRootDN> -scope onelevel -attr "cn"[RETURN]
-filter "(&(objectcategory=attributeSchema)(systemFlags:1.2.840.113556.1.4.803:=4))"

10.15.2.3 Using VBScript

' This script will print out the nonreplicated and constructed attributes

set objRootDSE = GetObject("LDAP://RootDSE")
strBase = "<LDAP://" & objRootDSE.Get("SchemaNamingContext") & ">;"
strFilter = "(&(objectcategory=attributeSchema)" _
 & "(systemFlags:1.2.840.113556.1.4.803:=1));"
strAttrs = "cn;"
strScope = "onelevel"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
objRS.MoveFirst
WScript.Echo "Nonreplicated attributes: "
while Not objRS.EOF
 Wscript.Echo " " & objRS.Fields(0).Value
 objRS.MoveNext
wend

strFilter = "(&(objectcategory=attributeSchema) " _
 & "(systemFlags:1.2.840.113556.1.4.803:=4));"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
objRS.MoveFirst
WScript.Echo ""
WScript.Echo "Constructed attributes: "
while Not objRS.EOF
 Wscript.Echo " " & objRS.Fields(0).Value
 objRS.MoveNext
wend

10.15.3 Discussion

The systemFlags attribute of attributeSchema objects defines a few special attribute properties,

including whether an attribute is not replicated between domain controllers and whether it is dynamically
constructed by Active Directory.

Most attributes are replicated after they are updated on an object, but some never replicate between
domain controllers. These attributes are considered nonreplicated. An example of a nonreplicated
attribute you may be familiar with is the lastLogon attribute that stores the last logon timestamp for
user and computer objects. Whenever a user or computer logs in to Active Directory, the authenticating
domain controller updates the user or computer's lastLogin attribute, but the update does not get

replicated out to other domain controllers.

Constructed attributes are automatically maintained by Active Directory and cannot be set manually. A
good example of a constructed attribute is the new msDS-Approx-Immed-Subordinates that is available in

Windows Server 2003. That attribute contains the approximate number of child objects within a container.
Obviously this attribute wouldn't be of much value if you had to maintain it, so Active Directory does it
automatically.

One of the downsides to constructed attributes is that you cannot search against them. For example, I
cannot perform a search to find all containers that have more than 10 objects in them (i.e., msDS-
Approx-Immed-Subordinates>10). This would return an operations error. Constructed attributes can

only be returned as part of the attribute set for a query and not used as part of the query itself.

To find the nonreplicated or constructed attributes you have to use a bitwise LDAP filter against
attributeSchema objects. A bit value of 1 indicates the attribute is non-replicated and a value of 4

indicates the attribute is constructed.

10.15.4 See Also

Recipe 4.9 for searching with a bitwise filter

[Team LiB]

[Team LiB]

Recipe 10.16 Finding the Linked Attributes

10.16.1 Problem

You want to find attributes that are linked.

10.16.2 Solution

10.16.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a domain user.7.

Click OK.8.

From the menu, select Browse Search.9.

For BaseDN, type the Schema container DN (e.g.,

cn=schema,cn=configuration,dc=rallencorp,dc=com).

10.

For Scope, select One Level.11.

To find linked attributes, use the following for Filter:12.

(&(objectcategory=attributeSchema)(linkid=*))

Click Run.13.

10.16.2.2 Using a command-line interface

> dsquery * cn=schema,cn=configuration,<ForestRootDN> -scope onelevel -filter[RETURN]
"(&(objectcategory=attributeSchema)(linkid=*))" -attr cn linkID

10.16.2.3 Using VBScript

' This code prints out all of the attributes that are linked
' and their corresponding linkID values
set objRootDSE = GetObject("LDAP://RootDSE")
strBase = "<LDAP://" & objRootDSE.Get("SchemaNamingContext") & ">;"
strFilter = "(&(objectcategory=attributeSchema)(linkid=*));"
strAttrs = "cn,linkid;"
strScope = "onelevel"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
objRS.MoveFirst
while Not objRS.EOF
 Wscript.Echo objRS.Fields(1).Value & " : " & objRS.Fields(0).Value
 objRS.MoveNext
wend

10.16.3 Discussion

The values of some attributes in Active Directory are linked. For example, if you set the manager
attribute on one user object to be the DN of a second user object, the reports attribute on the
second user object will automatically contain the first user object's DN. In this example, the manager
attribute, or the attribute that gets set, is considered the forward link and the reports attribute, or

the attribute that automatically gets calculated, is called the back link. Another common example is
group membership. The member attribute of the group object represents the forward link, while the
memberOf attribute of the corresponding object (e.g., user) represents the back link.

You can identify which attributes are linked in the schema by searching for attributeSchema objects
that have a linkID attribute that contains some value. The linkID value for a forward-link attribute
will be an even, positive number. The corresponding back-link attribute will be the forward- linkID
plus 1. For example, the manager attribute linkID is 42 and the back-link reports attribute has a
linkID of 43.

[Team LiB]

[Team LiB]

Recipe 10.17 Finding the Structural, Auxiliary, Abstract,
and 88 Classes

10.17.1 Problem

You want to list the structural, auxiliary, abstract, and 88 classes.

10.17.2 Solution

10.17.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, click on the Classes folder.2.

In the right pane, the list of all the classes will be displayed. The Type column contains the type of
class. Even though you can click on the column header, it currently does not sort the classes by
type.

3.

10.17.2.2 Using a command-line interface

> dsquery * cn=schema,cn=configuration,<ForestRootDN> -limit 0 -scope onelevel[RETURN]
-filter "(objectcategory=classSchema)" -attr lDAPDisplayName objectclasscategory

10.17.2.3 Using VBScript

' This code prints out classes of a particular type
' ------ SCRIPT CONFIGURATION ------
' Set the following to TRUE or FALSE depending if you want to
' view or not view classes of the type defined by the variable
boolShowStructural = TRUE
boolShowAuxiliary = TRUE
boolShowAbstract = TRUE
boolShow88 = TRUE
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objSchemaCont = GetObject("LDAP://cn=schema," & _
 objRootDSE.Get("configurationNamingContext"))
objSchemaCont.Filter = Array("classSchema")
WScript.Echo "Loading classes, this will take a few seconds."
for each objClass in objSchemaCont

 WScript.StdOut.Write(".")
 if objClass.Get("objectClassCategory") = 0 then
 str88 = str88 & vbTab & objClass.Get("lDAPDisplayName") & vbCrlf
 elseif objClass.Get("objectClassCategory") = 1 then
 strStruct = strStruct & vbTab & _
 objClass.Get("lDAPDisplayName") & vbCrlf
 elseif objClass.Get("objectClassCategory") = 2 then
 strAbst = strAbst & vbTab & objClass.Get("lDAPDisplayName") & vbCrlf
 elseif objClass.Get("objectClassCategory") = 3 then
 strAux = strAux & vbTab & objClass.Get("lDAPDisplayName") & vbCrlf
 else
 WScript.Echo "Unknown class type: " & _
 objClass.Get("lDAPDisplayName") & vbCrlf
 end if
next
WScript.Echo vbCrlf

if boolShowStructural = TRUE then
 WScript.Echo "Structural Classes: "
 WScript.Echo strStruct
 WScript.Echo
end if

if boolShowAbstract = TRUE then
 WScript.Echo "Abstract Classes: "
 WScript.Echo strAbst
 WScript.Echo
end if

if boolShowAuxiliary = TRUE then
 WScript.Echo "Auxiliary Classes: "
 WScript.Echo strAux
 WScript.Echo
end if

if boolShow88 = TRUE then
 WScript.Echo "88 Classes: "
 WScript.Echo str88
 WScript.Echo
end if

10.17.3 Discussion

There are four supported class types in the Active Directory schema. The class type is defined by the
objectClassCategory attribute on classSchema objects. Each class type is used for a different purpose

relating to organizing and inheriting classes. Table 10-6 describes each type.

Table 10-6. Object class category values

Name Value Description

88 0
Legacy class type defined by the original X.500 standards. It should not be used for
new classes.

Structural 1
Used for instantiating objects. Can be comprised of abstract, auxiliary, and other
structural classes.

Abstract 2
Used to define a high-level grouping of attributes that can be used as part of other
abstract or structural class definitions. Objects cannot be instantiated using an
abstract class.

Auxiliary 3
Used as a collection of attributes that can be applied to other abstract, auxiliary, or
structural classes.

[Team LiB]

[Team LiB]

Recipe 10.18 Finding the Mandatory and Optional
Attributes of a Class

10.18.1 Problem

You want to view the mandatory and optional attributes of a class.

10.18.2 Solution

10.18.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, click on the Classes folder.2.

In the right pane, double-click the class you want to view.3.

Click on the Attributes tab.4.

10.18.2.2 Using a command-line interface

> dsquery * cn=<ClassCommonName>,cn=schema,cn=configuration,<ForestRootDN> -l[RETURN]
-scope base -attr mayContain mustContain systemMayContain systemMustContain

10.18.2.3 Using VBScript

' This code displays the mandatory and optional attributes for a class.
' ------ SCRIPT CONFIGURATION ------
' Set to common name of class to view

strClassName = "<ClassCommonName>" ' e.g. Surname
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objClass = GetObject("LDAP://cn=" & strClassName & "," & _
 objRootDSE.Get("schemaNamingContext"))

WScript.Echo "Class: " & strClassName & vbCrlf

' Need to enable this so that if an attribute is not set, it won't die
on error resume next

WScript.Echo "mayContain:"

for each strVal in objClass.Get("mayContain")
 WScript.Echo vbTab & strVal
next

WScript.Echo vbCrlf & "systemMayContain:"
for each strVal in objClass.Get("systemMayContain")
 WScript.Echo vbTab & strVal
next

WScript.Echo vbCrlf & "mustContain:"
for each strVal in objClass.Get("mustContain")
 WScript.Echo vbTab & strVal
next

WScript.Echo vbCrlf & "systemMustContain:"
for each strVal in objClass.Get("systemMustContain")
 WScript.Echo vbTab & strVal
next

10.18.3 Discussion

The mayContain and systemMayContain attributes define the optional attributes for a class while the
mustContain and systemMustContain attributes contain the mandatory attributes. The
systemMayContain and systemMustContain attributes are set by Active Directory and cannot be
modified. You need to be careful when adding attributes to the mustContain attribute for existing

classes because you can easily cause objects that use those classes to become invalid due to not
having the mandatory attribute set.

It is also worth noting that each of the solutions display only the attributes defined directly on the
class. It will not show any inherited attributes that are defined by inherited classes.

[Team LiB]

[Team LiB]

Recipe 10.19 Modifying the Default Security of a Class

10.19.1 Problem

You want to modify the default security that is applied to objects instantiated from a particular
structural class.

10.19.2 Solution

For Windows 2000 Active Directory, you need to enable schema modifications
before proceeding. See Recipe 10.2 for more information.

10.19.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, click on the Classes folder.2.

In the right pane, double-click the class you want to modify the security for.3.

Click the Default Security tab.4.

Modify the security as necessary.5.

Click OK.6.

10.19.3 Discussion

Whenever a new object is created in Active Directory, a default security descriptor (SD) is applied to
it along with any inherited security from its parent container. The default security descriptor is stored
in the defaultSecurityDescriptor attribute of the classSchema object. If you modify the default

SD, every new object will get that SD, but it does not affect any existing objects.

10.19.4 See Also

MS KB 265399 (HOW TO: Change Default Permissions for Objects That Are Created in the Active
Directory)

[Team LiB]

[Team LiB]

Recipe 10.20 Deactivating Classes and Attributes

10.20.1 Problem

You want to deactivate a class or attribute in the schema because you no longer need it.

10.20.2 Solution

10.20.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, click on the Classes folder.2.

In the right pane, double-click the class you want to deactivate.3.

Uncheck the box beside Class is active.4.

Click OK.5.

10.20.2.2 Using a command-line interface

You can deactivate a class using the ldifde utility and an LDIF file that contains the following lines:

dn: cn=<SchemaObjectCommonName>,cn=schema,cn=configuration,<ForestRootDN>
changetype: modify
replace: isDefunct
isDefunct: TRUE
-

If the LDIF file were named deactivate_class.ldf, you would run the following command:

> ldifde -v -i -f deactivate_class.ldf

10.20.2.3 Using VBScript

' This code deactivates a class or attribute.
' ------ SCRIPT CONFIGURATION ------

strName = "<SchemaObjectCommonName>" ' e.g. rallencorp-LanguagesSpoken

' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objSchemaObject = GetObject("LDAP://cn=" & strName & "," & _
 objRootDSE.Get("schemaNamingContext"))
objSchemaObject.Put "isDefunct", TRUE
objSchemaObject.SetInfo
WScript.Echo "Schema object deactivated: " & strName

10.20.3 Discussion

There is no supported way to delete classes or attributes defined in the schema. You can, however,
deactivate them, also known as making them defunct. Before you deactivate a class you should make
sure that no instantiated objects of that class exist. If you want to deactivate an attribute, you should
make sure no object classes define the attribute as mandatory. After you've verified the class or
attribute is no longer being used, you can deactivate by setting the isDefunct attribute to TRUE. You
can always reactivate it at a later time by simply setting isDefunct to FALSE. With Windows Server

2003 Active Directory, you can even redefine the class or attribute while it is defunct. This gives you
much more flexibility over reusing classes or attributes you may have added before, but no longer
want.

10.20.4 See Also

Recipe 10.21 for redefining classes and attributes

[Team LiB]

[Team LiB]

Recipe 10.21 Redefining Classes and Attributes

This recipe requires the Windows Server 2003 forest functional level.

10.21.1 Problem

You want to redefine a class or attribute that was previously created.

10.21.2 Solution

To redefine a class or attribute, you must first deactivate it by setting the isDefunct attribute to

TRUE (see Recipe 10.20 for more details). If you are deactivating a class, make sure no objects are
instantiated that use the class. If you are deactivating an attribute, make sure it isn't populated on
any objects and remove it from any classes that have it defined as part of mayContain and
mustContain. After the class or attribute has been deactivated, you can modify (i.e., redefine) the
LDAP display name (lDAPDisplayName), the OID (governsID or attributeID), the syntax
(attributeSyntax and oMSyntax), and the schemaIDGUID. The one attribute that you cannot modify

is the common name.

10.21.3 Discussion

Redefining schema objects is a new feature of Windows Server 2003. Although you still cannot delete
schema objects in Windows Server 2003,[1] you can work around many of the reasons that would
cause you to want to delete a schema object by redefining it instead. Some examples of when
redefine comes in handy includes if you accidentally mistype an OID (governsID/attributeID) or
lDAPDisplayName, or no longer need an attribute you previously created. You can reuse it by

renaming the attribute and giving it a different syntax.

[1] You could delete schema objects in W2K pre-SP3, but I won't get into that here. You find more information
about that here: http://www.winnetmag.com/Articles/Index.cfm?ArticleID=27096

10.21.4 See Also

Recipe 10.20 for deactivating classes and attributes

[Team LiB]

http://www.winnetmag.com/Articles/Index.cfm?ArticleID=27096

[Team LiB]

Recipe 10.22 Reloading the Schema Cache

10.22.1 Problem

You want to reload the schema cache so that schema extensions take effect immediately.

10.22.2 Solution

10.22.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, click on Active Directory Schema.2.

Right-click on the label and select Reload the Schema.3.

10.22.2.2 Using a command-line interface

You can reload the schema by using the ldifde utility and an LDIF file that contains the following:

dn:
changetype: modify
add: schemaUpdateNow
schemaUpdateNow: 1
-

If the LDIF file were named reload.ldf, you would run the following command:

> ldifde -v -i -f reload.ldf

10.22.2.3 Using VBScript

set objRootDSE = GetObject("LDAP://dc1/RootDSE")
objRootDSE.Put "schemaUpdateNow", 1
objRootDSE.SetInfo
WScript.Echo "Schema reloaded"

10.22.3 Discussion

Each domain controller maintains a complete copy of the schema in memory to make access to the
schema very fast. This is called the schema cache. When you extend the schema on the Schema
FSMO role owner, the change is written to the schema cache, and not committed to disk yet. The
schema automatically commits any changes to the schema every five minutes if a change has taken
place, but you can also do it manually/programmatically by writing to the schemaUpdateNow

operational attribute of the RootDSE on the Schema FSMO role owner. Once that is done, any
changes to the schema cache are written to disk.

It is necessary to force a schema cache update if your schema extensions reference newly created
attributes or classes. For example, lets say that we want to create one new auxiliary class that
contains one new attribute. To do that we would first need to create the attribute and then create the
auxiliary class. As part of the auxiliary class' definition, we would need to reference the new attribute,
but unless we reload the schema cache, an error would be returned stating that the attribute does
not exist. For this reason we need to add an additional step. First, create the attribute, then reload
the schema cache, and finally, create the auxiliary class. Here is what an LDIF representation would
look like:

dn: cn=rallencorp-TestAttr,cn=schema,cn=configuration,dc=rallencorp,dc=com
changetype: add
objectclass: attributeSchema
lDAPDisplayName: rallencorp-TestAttr
attributeId: 1.3.6.1.4.1.999.1.1.28.312
oMSyntax: 20
attributeSyntax: 2.5.5.4
isSingleValued: FALSE
searchFlags: 1

dn:
changetype: modify
add: schemaUpdateNow
schemaUpdateNow: 1
-

dn: cn=rallencorp-TestClass,cn=schema,cn=configuration,dc=rallencorp,dc=com
changetype: add
objectclass: classSchema
lDAPDisplayName: rallencorp-TestClass
governsId: 1.3.6.1.4.1.999.1.1.28.311
subClassOf: top
objectClassCategory: 3
mayContain: rallencorp-TestAttr

10.22.4 See Also

Recipe 10.7 for adding a new attribute to the schema and Recipe 10.9 for adding a new class to the
schema

[Team LiB]

[Team LiB]

Chapter 11. Site Topology
Introduction

Recipe 11.1. Creating a Site

Recipe 11.2. Listing the Sites

Recipe 11.3. Deleting a Site

Recipe 11.4. Creating a Subnet

Recipe 11.5. Listing the Subnets

Recipe 11.6. Finding Missing Subnets

Recipe 11.7. Creating a Site Link

Recipe 11.8. Finding the Site Links for a Site

Recipe 11.9. Modifying the Sites That Are Part of a Site Link

Recipe 11.10. Modifying the Cost for a Site Link

Recipe 11.11. Disabling Site Link Transitivity or Site Link Schedules

Recipe 11.12. Creating a Site Link Bridge

Recipe 11.13. Finding the Bridgehead Servers for a Site

Recipe 11.14. Setting a Preferred Bridgehead Server for a Site

Recipe 11.15. Listing the Servers

Recipe 11.16. Moving a Domain Controller to a Different Site

Recipe 11.17. Configuring a Domain Controller to Cover Multiple Sites

Recipe 11.18. Viewing the Site Coverage for a Domain Controller

Recipe 11.19. Disabling Automatic Site Coverage for a Domain Controller

Recipe 11.20. Finding the Site for a Client

Recipe 11.21. Forcing a Host to a Particular Site

Recipe 11.22. Creating a Connection Object

Recipe 11.23. Listing the Connection Objects for a Server

Recipe 11.24. Load-Balancing Connection Objects

Recipe 11.25. Finding the ISTG for a Site

Recipe 11.26. Transferring the ISTG to Another Server

Recipe 11.27. Triggering the KCC

Recipe 11.28. Determining if the KCC Is Completing Successfully

Recipe 11.29. Disabling the KCC for a Site

Recipe 11.30. Changing the Interval at Which the KCC Runs
[Team LiB]

[Team LiB]

Introduction

Active Directory needs information about the network to determine how domain controllers should
replicate and what domain controller(s) are optimal for a given client to authenticate with. This
network information is often referred to as the site or replication topology, and consists of numerous
object types that represent various aspects of the network.

At a high level, a site is a collection of high-speed LAN segments. One or more subnets can be
associated with a site, and this mapping is used to determine which site a client (based on IP
address) belongs to. Sites are connected via site links, which are analogous to WAN connections.
Finally, each domain controller in a site has one or more connection objects, which defines a
replication connection to another domain controller.

These site topology objects are contained under the Sites container within the Configuration naming

context. Figure 11-1 shows an example of the site topology hierarchy using the Active Directory Sites
and Services snap-in.

Figure 11-1. Site topology hierarchy

Directly under the Sites container are the individual site containers, plus containers that store the
site link objects (cn=Inter-site Transports) and subnets (cn=Subnets). There are three objects
included within a site, an NTDS Site Settings (nTDSSiteSettings) object that contains attributes
that can customize replication behavior for the whole site, a License Site Settings
(licensingSiteSettings) object that can be used to direct hosts within the site to the appropriate
licensing server, and a Servers container. The Servers container contains a server object for each

of the domain controllers that are members of the site, along with any other servers that need to be
represented in the site topology (e.g., DFS servers).

A server object can contain a NTDS Settings (nTDSDSA) object, which distinguishes domain
controller server objects from other server objects. The NTDS Settings object stores several
attributes that are used to customize replication behavior for a specific domain controller. The NTDS
Settings object can contain one or more nTDSConnection objects, which define the replication

connections between domain controllers.

The Anatomy of Site Topology Objects

Table 11-1 through Table 11-7 contain some of the important attributes of the various site topology
objects.

Table 11-1. Attributes of site objects

Attribute Description

cn RDN of the object. This is the name of the site (e.g., Raleigh).

gpLink Contains a prioritized list of GPOs that are linked to the site.

siteObjectBL
Multivalued attribute that contains a list of distinguished names for each subnet
that is associated with the site.

Table 11-2. Attributes of nTDSSiteSettings objects

Attribute Description

cn RDN of the object, which is always equal to NTDS Site Settings.

interSiteTopologyGenerator
Distinguished name of the NTDS Settings object of the current
Inter-site Topology Generator (ISTG).

msDS-Preferred-GC-Site

If universal group caching is enabled, this contains the
distinguished name of the site that domain controllers should
refresh their cache from. This attribute is new to Windows Server
2003. See Recipe 7.9 for more information.

options

Bit flag that determines if universal group caching is enabled,
whether site link transitivity is disabled, and if replication
schedules should be ignored. For more information see Recipe
11.11.

schedule
Octet string that represents the default replication schedule for the
site.

Table 11-3. Attributes of subnet objects

Attribute Description

cn
RDN of the object. Contains the network number and bit mask for the subnet (e.g.,
10.1.3.0/24).

siteObject Distinguished name of the site object the subnet is associated with.

Table 11-4. Attributes of siteLink objects

Attribute Description

cn RDN of the object. Contains the name of the link.

cost Number that represents the site link cost. See Recipe 11.10 for more information.

replInterval Interval in minutes that replication occurs over the site link.

schedule Octet string that represents the replication schedule for the site link.

siteList
Multivalued list of distinguished names of each site that is associated with the site
link. See Recipe 11.8 for more information.

Table 11-5. Attributes of server objects

Attribute Description

bridgeheadTransportList
Multivalued attribute that contains the list of transports (e.g., IP or
SMTP) for which the server is a preferred bridgehead server.

cn
RDN of the object. This is set to the hostname of the associated
server.

dNSHostName
Fully qualified domain name of the server. This attribute is
automatically maintained for domain controllers.

serverReference
Distinguished name of the corresponding computer object contained

within one of the domain-naming contexts.

Table 11-6. Attributes of nTDSDSA (NTDS Settings) objects

Attribute Description

cn RDN of the object, which is always equal to NTDS Settings.

invocationID GUID that represents the DIT (ntds.dit) on the domain controller.

hasMasterNCs
Multivalued attribute containing the list of writeable naming contexts
(does not include application partitions) stored on the domain controller.

Attribute Description

hasPartialReplicaNCs
Multivalued attribute containing the list of read-only naming contexts
stored on the domain controller. This will be populated only if the
domain controller is a global catalog server.

msDS-Behavior-Version
Number that represents the functional level (i.e., operating system) of
the domain controller. This attribute is new to Windows Server 2003.

msDS-HasDomainNCs
Contains the distinguished name of the writeable Domain naming context
stored on the domain controller. This attribute is new to Windows Server
2003.

msDs-
HasInstantiatedNCs

A combination of all available read-only and writeable naming contexts
stored on the domain controller. This attribute is new to Windows Server
2003.

msDS-
hasPartialReplicaNCs

Multivalued attribute that contains distinguished names of each read-
only naming context stored on the domain controller. This will be
populated only if the domain controller is a global catalog server. This
attribute is new to Windows Server 2003.

msDS-hasMasterNCs
Multivalued attribute that contains distinguished names of each writeable
naming context and application partition stored on the domain controller.
This attribute is new to Windows Server 2003.

options Bit flag that determines if domain controller is a global catalog server.

queryPolicyObject
If set, the distinguished name of LDAP query policy object to be used by
the domain controller.

Table 11-7. Attributes of nTDSConnection objects

Attribute Description

cn
RDN of the object. For Knowledge Consistency Checker (KCC) generated
connections, this is a GUID.

enabledConnection Boolean that indicates if the connection is available to be used.

fromServer
Distinguished name of the NTDS Settings object of the domain controller

this connection replicates with.

ms-DS-
ReplicatesNCReason

Multivalued attribute that stores reason codes for why the connection
exists. There will be one entry per naming context the connection is used
for.

options
Bit flag where a value of 1 indicates the connection was created by the
KCC and a value of 0 means the connection was manually created. See
Recipe 11.22 for more information.

schedule Octet string that represents the replication schedule for the site link.

transportType
Distinguished name of the transport type (e.g., IP or SMTP) that is used
for the connection.

hasPartialReplicaNCs
Multivalued attribute containing the list of read-only naming contexts
stored on the domain controller. This will be populated only if the
domain controller is a global catalog server.

msDS-Behavior-Version
Number that represents the functional level (i.e., operating system) of
the domain controller. This attribute is new to Windows Server 2003.

msDS-HasDomainNCs
Contains the distinguished name of the writeable Domain naming context
stored on the domain controller. This attribute is new to Windows Server
2003.

msDs-
HasInstantiatedNCs

A combination of all available read-only and writeable naming contexts
stored on the domain controller. This attribute is new to Windows Server
2003.

msDS-
hasPartialReplicaNCs

Multivalued attribute that contains distinguished names of each read-
only naming context stored on the domain controller. This will be
populated only if the domain controller is a global catalog server. This
attribute is new to Windows Server 2003.

msDS-hasMasterNCs
Multivalued attribute that contains distinguished names of each writeable
naming context and application partition stored on the domain controller.
This attribute is new to Windows Server 2003.

options Bit flag that determines if domain controller is a global catalog server.

queryPolicyObject
If set, the distinguished name of LDAP query policy object to be used by
the domain controller.

Table 11-7. Attributes of nTDSConnection objects

Attribute Description

cn
RDN of the object. For Knowledge Consistency Checker (KCC) generated
connections, this is a GUID.

enabledConnection Boolean that indicates if the connection is available to be used.

fromServer
Distinguished name of the NTDS Settings object of the domain controller

this connection replicates with.

ms-DS-
ReplicatesNCReason

Multivalued attribute that stores reason codes for why the connection
exists. There will be one entry per naming context the connection is used
for.

options
Bit flag where a value of 1 indicates the connection was created by the
KCC and a value of 0 means the connection was manually created. See
Recipe 11.22 for more information.

schedule Octet string that represents the replication schedule for the site link.

transportType
Distinguished name of the transport type (e.g., IP or SMTP) that is used
for the connection.

[Team LiB]

[Team LiB]

Recipe 11.1 Creating a Site

11.1.1 Problem

You want to create a site.

11.1.2 Solution

11.1.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

Right-click on the Sites container and select New Site.2.

Beside Name, enter the name of the new site.3.

Under Link Name, select a site link for the site.4.

Click OK twice.5.

11.1.2.2 Using a command-line interface

Create an LDIF file called create_site.ldf with the following contents:

dn: cn=<SiteName>,cn=sites,cn=configuration,<ForestRootDN>
changetype: add
objectclass: site

dn: cn=Licensing Site Settings,cn=<SiteName>,cn=sites,cn=configuration, <ForestRootDN>
changetype: add
objectclass: licensingSiteSettings

dn: cn=NTDS Site Settings,cn=<SiteName>,cn=sites,cn=configuration,<ForestRootDN>
changetype: add
objectclass: nTDSSiteSettings

dn: cn=Servers,cn=<SiteName>,cn=sites,cn=configuration,<ForestRootDN>
changetype: add
objectclass: serversContainer

then run the following command:

> ldifde -v -i -f create_site.ldf

11.1.2.3 Using VBScript

' This code creates the objects that make up a site.
' ------ SCRIPT CONFIGURATION ------

strSiteName = "<SiteName>" ' e.g. Dallas
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objSitesCont = GetObject("LDAP://cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
' Create the site
set objSite = objSitesCont.Create("site","cn=" & strSiteName)
objSite.SetInfo

' Create the Licensing Site Settings object
set objLicensing = objSite.Create("licensingSiteSettings", _
 "cn=Licensing Site Settings")
objLicensing.SetInfo

' Create the NTDS Site Settings object
set objNTDS = objSite.Create("nTDSSiteSettings","cn=NTDS Site Settings")
objNTDS.SetInfo

' Create the Servers container
set objServersCont = objSite.Create("serversContainer","cn=Servers")
objServersCont.SetInfo

WScript.Echo "Successfully created site " & strSiteName

11.1.3 Discussion

To create a site in Active Directory, you have to create a number of objects. The first is a site object,
which is the root of all the other objects. The site object contains the following:

licensingSiteSettings

This object isn't mandatory, but is created automatically when creating a site with AD Sites and
Services. It is intended to point clients to a license server for the site.

nTDSSiteSettings

This object stores replication-related properties about a site, such as the replication schedule,
current ISTG role holder, and whether universal group caching is enabled.

serversContainer

This container is the parent of the server objects that are part of the site. All the domain

controllers that are members of the site will be represented in this container.

After these objects are created, you've essentially created an empty site. If you didn't do anything else,
the site would not be of much value. To make it usable, you need to assign subnet objects to it (see
Recipe 11.4), and add the site to a siteLink object to link the site to other sites (see Recipe 11.7). At

that point, you can promote or move domain controllers into the site, and it should be fully functional.

11.1.4 See Also

MS KB 318480 (HOW TO: Create and Configure an Active Directory Site in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 11.2 Listing the Sites

11.2.1 Problem

You want to obtain the list of sites.

11.2.2 Solution

11.2.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

Click on the Sites container.2.

The list of sites will be displayed in the right pane.3.

Double-click on a site to view its properties.4.

11.2.2.2 Using a command-line interface

Run the following command to list the sites:

> dsquery site

Run the following command to view the properties for a particular site:

> dsget site "<SiteName>"

11.2.2.3 Using VBScript

' This code lists all of the site objects.

set objRootDSE = GetObject("LDAP://RootDSE")
set objSitesCont = GetObject("LDAP://cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
objSitesCont.Filter = Array("site")
for each objSite in objSitesCont
 Wscript.Echo " " & objSite.Get("cn")
next

11.2.3 Discussion

Site objects are stored in the Sites container (e.g.,

cn=sites,cn=configuration,dc=rallencorp,dc=com) in the Configuration Naming Context (CNC). For
more information on creating sites, see Recipe 11.1.

[Team LiB]

[Team LiB]

Recipe 11.3 Deleting a Site

11.3.1 Problem

You want to delete a site.

11.3.2 Solution

11.3.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

Click on the Sites container.2.

In the right pane, right-click the site you want to delete and select Delete.3.

Click Yes twice.4.

11.3.2.2 Using a command-line interface

> dsrm <SiteDN> -subtree -noprompt

11.3.2.3 Using VBScript

' This code deletes a site and all child containers.
' ------ SCRIPT CONFIGURATION ------

strSiteName = "<SiteName>" ' e.g. Dallas
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objSite = GetObject("LDAP://cn=" & strSiteName & ",cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
objSite.DeleteObject(0)
WScript.Echo "Successfully deleted site " & strSiteName

11.3.3 Discussion

When deleting a site, be very careful to ensure that no active server objects exist within it. If you

delete a site that contains domain controllers, it will disrupt replication for all domain controllers in
that site. A more robust VBScript solution would be to first perform an ADO query for all server

objects using the distinguished name of the site as the base DN. If no servers were returned, then
you could safely delete the site. If server objects were found, you should move them before deleting

the site.

It is also worth noting that deleting a site does not delete any of the subnets or site links that were
associated with the site. This would be another good thing to add to the VBScript solution. That is,
before you delete the site, delete any subnets and site links that are associated with site.

[Team LiB]

[Team LiB]

Recipe 11.4 Creating a Subnet

11.4.1 Problem

You want to create a subnet.

11.4.2 Solution

11.4.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

Right-click on the Subnets container and select New Subnet.2.

Enter the Address and Mask and then select which site the subnet is part of.3.

Click OK.4.

11.4.2.2 Using a command-line interface

Create an LDIF file called create_subnet.ldf with the following contents:

dn: cn=<Subnet>,cn=subnets,cn=sites,cn=configuration,<ForestRootDN>
changetype: add
objectclass: subnet

siteObject: cn=<SiteName>,cn=sites,cn=configuration,<ForestRootDN>

then run the following command:

> ldifde -v -i -f create_subnet.ldf

11.4.2.3 Using VBScript

' This code creates a subnet object and associates it with a site.
' ------ SCRIPT CONFIGURATION ------

strSubnet = "<Subnet>" ' e.g. 10.5.3.0/24

strSite = "<SiteName>" ' e.g. Dallas
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objSubnetsCont = GetObject("LDAP://cn=subnets,cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
set objSubnet = objSubnetsCont.Create("subnet", "cn=" & strSubnet)
objSubnet.Put "siteObject", "cn=" & strSite & ",cn=sites," & _
 objRootDSE.Get("configurationNamingContext")
objSubnet.SetInfo

WScript.Echo "Successfully created subnet " & strSubnet

11.4.3 Discussion

Subnet objects reside in the Subnets container (e.g.,

cn=subnets,cn=sites,cn=configuration,dc=rallencorp,dc=com) in the CNC. The relative distinguished
name (RDN) of the subnet should be the subnet address and bit-mask combination (e.g.,
10.5.3.0/24). The other important attribute to set is siteObject, which should contain the DN of the

site that the subnet is associated with.

11.4.4 See Also

MS KB 323349 (HOW TO: Configure Subnets in Windows Server 2003 Active Directory)

[Team LiB]

[Team LiB]

Recipe 11.5 Listing the Subnets

11.5.1 Problem

You want to list the subnet objects in Active Directory.

11.5.2 Solution

11.5.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

Click on the Subnets container.2.

The list of subnets will be displayed in the right pane.3.

To view the properties of a specific subnet, double-click on the one you want to view.4.

11.5.2.2 Using a command-line interface

The following command will list all subnets:

> dsquery subnet

The following command will display the properties for a particular subnet. Replace <Subnet> with the

subnet address and mask (e.g., 10.5.3.0/24):

> dsget subnet "<Subnet>"

11.5.2.3 Using VBScript

' This code lists all the subnets stored in Active Directory.
set objRootDSE = GetObject("LDAP://RootDSE")
set objSubnetsCont = GetObject("LDAP://cn=subnets,cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
objSubnetsCont.Filter = Array("subnet")
for each objSubnet in objSubnetsCont
 Wscript.Echo " " & objSubnet.Get("cn")
next

11.5.3 Discussion

To display the site that subnets are associated with, include the siteObject attribute as one of the

attributes to return from the query. For example, the second to last line of the VBScript solution
could be modified to return the site by using this code:

Wscript.Echo " " & objSubnet.Get("cn") & " : " & objSubnet.Get("siteObject")

11.5.4 See Also

MS KB 323349 (HOW TO: Configure Subnets in Windows Server 2003 Active Directory)

[Team LiB]

[Team LiB]

Recipe 11.6 Finding Missing Subnets

11.6.1 Problem

You want to find the subnets that are missing from your site topology. Missing subnets can result in
clients not authenticating against the most optimal domain controller, which can degrade performance.

11.6.2 Solution

Having all of your subnets in Active Directory is important because a client that attempts to logon from a
subnet that is not associated with any site may authenticate with any domain controller in the domain.
This can result in the logon process taking longer to complete. Unfortunately, Microsoft has not provided
an easy way to rectify this problem.

Under Windows 2000, the only source of missing subnet information was the System event 5778. Here is
an example:

Event Type: Information
Event Source: NETLOGON
Event Category: None
Event ID: 5778
Date: 1/27/2003
Time: 12:07:04 AM
User: N/A
Computer: DC2
Description:
'JSMITH-W2K' tried to determine its site by looking up its IP address ('10.21.85.34')
in the Configuration\Sites\Subnets container in the DS. No subnet matched the IP
address. Consider adding a subnet object for this IP address.

The only way to dynamically determine missing subnets is to query each domain controller for 5778
events and map the IP addresses specified within the events to a subnet you add to the site topology.

With Windows Server 2003 things are not that much better. One of the issues with the 5778 events under
Windows 2000 is that they could easily fill up your System event log if you had many missing subnets. In
Windows 2003, Microsoft decided to instead display a summary event 5807 that states that some number
of connection attempts have been made by clients that did not map to a subnet in the site topology. Here
is an example:

Event Type: Warning
Event Source: NETLOGON
Event Category: None
Event ID: 5807
Date: 1/10/2003
Time: 10:59:53 AM
User: N/A

Computer: DC1
Description:
During the past 4.18 hours there have been 21 connections to this Domain Controller
from client machines whose IP addresses don't map to any of the existing sites in the
enterprise. Those clients, therefore, have undefined sites and may connect to any
Domain Controller including those that are in far distant locations from the clients.
A client's site is determined by the mapping of its subnet to one of the existing
sites. To move the above clients to one of the sites, please consider creating subnet
object(s) covering the above IP addresses with mapping to one of the existing sites.
The names and IP addresses of the clients in question have been logged on this
computer in the following log file '%SystemRoot%\debug\netlogon.log' and,
potentially, in the log file '%SystemRoot%\debug\netlogon.bak' created if the former
log becomes full. The log(s) may contain additional unrelated debugging information.
To filter out the needed information, please search for lines which contain text
'NO_CLIENT_SITE:'. The first word after this string is the client name and the second
word is the client IP address. The maximum size of the log(s) is controlled by the
following registry DWORD value 'HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
Netlogon\Parameters\LogFileMaxSize'; the default is 20000000 bytes. The current
maximum size is 20000000 bytes. To set a different maximum size, create the above
registry value and set the desired maximum size in bytes.

For more information, see Help and Support Center at http://go.microsoft.com/fwlink/
events.asp.

Instead of scraping the event logs on every domain controller, you can look at the
%SystemRoot%\debug\netlogon.log file on each domain controller and parse out all the NO_CLIENT_SITE
entries. This is still far from an easy process, but at least the event logs are no longer cluttered with 5778
events.

Here is an example of some of the NO_CLIENT_SITE entries from the netlogon.log file:

01/16 15:50:07 RALLENCORP: NO_CLIENT_SITE: RALLEN-TEST4 164.2.45.157
01/16 15:50:29 RALLENCORP: NO_CLIENT_SITE: SJC-BACKUP 44.25.26.142
01/16 16:19:58 RALLENCORP: NO_CLIENT_SITE: RALLEN-TEST4 164.2.45.157
01/16 16:20:07 RALLENCORP: NO_CLIENT_SITE: RALLEN-TEST4 164.2.45.157
01/16 16:50:07 RALLENCORP: NO_CLIENT_SITE: RALLEN-TEST4 164.2.45.157
01/16 16:57:00 RALLENCORP: NO_CLIENT_SITE: JSMITH-W2K1 10.61.80.19
01/16 17:20:08 RALLENCORP: NO_CLIENT_SITE: RALLEN-TEST4 164.2.45.157
01/16 17:50:08 RALLENCORP: NO_CLIENT_SITE: RALLEN-TEST4 164.2.45.157

If you wanted to get creative and automate a solution to do this, you could write a script that goes out to
each domain controller, opens the netlogon.log file and retrieves NO_CLIENT_SITE entries. You can then
examine all of the IP addresses and create subnets in Active Directory that would contain them. You
could associate all of those subnets with a default site or even use the Default-First-Site-Name site.

Then once a week (or whenever), you could look at the sites that were created or that were associated
with the default site and determine what site they really should be associated with.

[Team LiB]

[Team LiB]

Recipe 11.7 Creating a Site Link

11.7.1 Problem

You want to create a site link to connect two or more sites together.

11.7.2 Solution

11.7.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

Expand the Sites container.2.

Expand the Inter-Site Transports container.3.

Right-click on IP (or SMTP) and select New Site Link.4.

For Name, enter the name for the site link.5.

Under Site is not in this site link, select at least two sites and click the Add button.6.

Click OK.7.

11.7.2.2 Using a command-line interface

The following LDIF would create a site link connecting the SJC and Dallas sites:

dn: cn=Dallas-SJC,cn=IP,cn=inter-site

transports,cn=sites,cn=configuration,<ForestRootDN>
changetype: add
objectclass: siteLink

siteObject: cn=SJC,cn=sites,cn=configuration,<ForestRootDN>

siteObject: cn=Dallas,cn=sites,cn=configuration,<ForestRootDN>

If the LDIF file were named create_site_link.ldf, you'd then run the following command:

> ldifde -v -i -f create_site_link.ldf

11.7.2.3 Using VBScript

' This code creates a site link
' ------ SCRIPT CONFIGURATION ------
intCost = 100 ' site link cost
intReplInterval = 180 ' replication interval in minutes

strSite1 = "<Site1>" ' e.g. SJC

strSite2 = "<Site2>" ' e.g. Dallas
strLinkName = strSite1 & " - " & strSite2
' ------ END CONFIGURATION ---------

' Taken from ADS_PROPERTY_OPERATION_ENUM
const ADS_PROPERTY_UPDATE = 2

set objRootDSE = GetObject("LDAP://RootDSE")
set objLinkCont = GetObject(_
 "LDAP://cn=IP,cn=Inter-site Transports,cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
set objLink = objLinkCont.Create("siteLink", "cn=" & strLinkName)
strSite1DN = "cn=" & strSite1 & ",cn=sites," & _
 objRootDSE.Get("configurationNamingContext")
strSite2DN = "cn=" & strSite2 & ",cn=sites," & _
 objRootDSE.Get("configurationNamingContext")
objLink.PutEx ADS_PROPERTY_UPDATE, "siteList", Array(strSite1DN,strSite2DN)
objLink.Put "cost", intCost
objLink.Put "replInterval", intReplInterval
objLink.SetInfo

WScript.Echo "Successfully created link: " & strLinkName

11.7.3 Discussion

Without site links, domain controllers would not be able to determine the optimal partners to replicate
with. The cost that is associated with a site defines how "expensive" the link is. A lower cost is less
expensive (or faster) than a higher cost. Link costs are inversely proportional to bandwidth.

11.7.4 See Also

MS KB 316812 (HOW TO: Create and Configure a Site Link in Active Directory in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 11.8 Finding the Site Links for a Site

11.8.1 Problem

You want to list the site links that are associated with a site.

11.8.2 Solution

11.8.2.1 Using a graphical user interface

Open LDP and from the menu, select Connection Connect.1.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).2.

For Port, enter 389.3.

Click OK.4.

From the menu, select Connection Bind.5.

Enter credentials of domain user.6.

Click OK.7.

From the menu, select Browse Search.8.

For BaseDN, type the Inter-Site Transports container DN (e.g., cn=Inter-

siteTransports,cn=sites,cn=configuration,dc=rallencorp,dc=com).

9.

For Scope, select Subtree.10.

For Filter, enter the following:11.

(&(objectcategory=siteLink)(siteList=cn=<SiteName>,[RETURN]

cn=sites,cn=configuration,<ForestRootDN>))

Click Run.12.

11.8.2.2 Using a command-line interface

> dsquery * "cn=inter-site transports,cn=sites,cn=configuration,< ForestRootDN>"[RETURN]

-filter "(&(objectcategory=siteLink)(siteList=cn=<SiteName>,[RETURN]

cn=sites,cn=configuration,<ForestRootDN>))" -scope subtree -attr name

11.8.2.3 Using VBScript

' This code displays the site links associated with the specified site
' ------ SCRIPT CONFIGURATION ------

strSiteName = "<SiteName>" ' e.g. Raleigh
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
strSiteDN = "cn=" & strSiteName & ",cn=sites," & _
 objRootDSE.Get("ConfigurationNamingContext")

strBase = "<LDAP://cn=Inter-site Transports,cn=sites," _
 & objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(&(objectcategory=siteLink)" & _
 "(siteList=" & strSiteDN & "));"
strAttrs = "name;"
strScope = "subtree"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)

WScript.Echo "Total site links for " & strSiteName & ": " & objRS.RecordCount
if objRS.RecordCount > 0 then
 objRS.MoveFirst
 while Not objRS.EOF
 Wscript.Echo vbTab & objRS.Fields(0).Value
 objRS.MoveNext
 wend
end if

11.8.3 Discussion

A site can be included as part of zero or more site links. A site with no site links would be considered
orphaned from the site topology, since there is no way to determine how and where it connects into the
topology. Branch office sites may have only a single site link back to a hub, while a hub site may have
numerous links that connect it to the rest of the world.

Finding the site links associated with a site consists of performing a query for all siteLink objects that
have DN of the site included in the siteList attribute for a link. The siteList attribute is a multivalued

attribute that contains all the sites that are connected via the site link.

[Team LiB]

[Team LiB]

Recipe 11.9 Modifying the Sites That Are Part of a Site
Link

11.9.1 Problem

You want to modify the sites associated with a site link.

11.9.2 Solution

11.9.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the left pane, expand Sites Inter-Site Transports.2.

Click either the IP or SMTP folder depending where the site link is stored.3.

In the right pane, double-click on the link you want to modify.4.

Under the General tab, you can add and remove sites that are associated with the site link.5.

Click OK.6.

11.9.2.2 Using a command-line interface

Create an LDIF file called modify_site_link.ldf with the following contents. Replace <LinkName> with

the name of the link and <SiteName> with the site to add to the link.

dn: cn=<LinkName>,cn=IP,cn=inter-site

transports,cn=sites,cn=configuration,<ForestRootDN>
changetype: modify
add: siteList

siteList: cn=<SiteName>,cn=sites,cn=configuration,<ForestRootDN>
-

Then run the following command:

> ldifde -v -i -f modify_site_link.ldf

11.9.2.3 Using VBScript

' This code adds a site to an existing site link
' ------ SCRIPT CONFIGURATION ------

strSite = "<SiteName>" ' e.g. Burlington

strLink = "<LinkName>" ' e.g. DEFAULTIPSITELINK
' ------ END CONFIGURATION ---------

' Taken from ADS_PROPERTY_OPERATION_ENUM
const ADS_PROPERTY_APPEND = 3

set objRootDSE = GetObject("LDAP://RootDSE")
set objLink = GetObject("LDAP://cn=" & strLink & _
 ",cn=IP,cn=Inter-site Transports,cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
strSiteDN = "cn=" & strSite & ",cn=sites," & _
 objRootDSE.Get("configurationNamingContext")
objLink.PutEx ADS_PROPERTY_APPEND, "siteList", Array(strSiteDN)
objLink.SetInfo

WScript.Echo "Successfully modified link: " & strLink

11.9.3 Discussion

To associate a site with a site link, add the DN of the site to the siteList attribute of the siteLink

object that represents the link. To remove a site from a link, do the reverse. Remove the DN
associated with the site from the siteList attribute.

11.9.4 See Also

Recipe 11.8 for finding the links associated with a site

[Team LiB]

[Team LiB]

Recipe 11.10 Modifying the Cost for a Site Link

11.10.1 Problem

You want to modify the cost for a site link.

11.10.2 Solution

11.10.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the left pane, expand Sites Inter-Site Transports.2.

Click either the IP or SMTP folder depending where the site link is stored.3.

In the right pane, double-click on the link you want to modify.4.

Under the General tab, you can change the cost for the site link.5.

Click OK.6.

11.10.2.2 Using a command-line interface

Create an LDIF file called modify_site_link_cost.ldf with the following contents. Replace <LinkName>

with the name of the site you want to modify.

dn: cn=DEFAULTIPSITELINK,cn=IP,cn=inter-site
transports,cn=sites,cn=configuration,<ForestRootDN>
changetype: modify
replace: cost

cost: <LinkCost>
-

Then run the following command:

> ldifde -v -i -f modify_site_link_cost.ldf

11.10.2.3 Using VBScript

' This code modifies the cost attribute of a site link
' ------ SCRIPT CONFIGURATION ------

strLink = "<SiteLink>" ' e.g. DEFAULTIPSITELINK

intCost = <LinkCost> ' e.g. 200
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objLink = GetObject("LDAP://cn=" & strLink & _
 ",cn=IP,cn=Inter-site Transports,cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
objLink.Put "cost", intCost
objLink.SetInfo

WScript.Echo "Successfully modified link: " & strLink

11.10.3 Discussion

The cost attribute is one of the most important attributes of siteLink objects. cost is used by the

KCC to determine what connection objects should be created to allow domain controllers to replicate
data.

cost is inversely proportional to bandwidth. The lower the cost, the greater the bandwidth. The

number you use for the cost is also arbitrary; the default is 100. You could use 100-1,000 as the
range for your site link costs, or you could use 1-10. The actual number isn't important, it is relative
based on the other site links.

[Team LiB]

[Team LiB]

Recipe 11.11 Disabling Site Link Transitivity or Site Link
Schedules

11.11.1 Problem

You want to disable site link transitivity to control replication.

11.11.2 Solution

11.11.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the left pane, expand Sites Inter-Site Transports.2.

Right-click either the IP or SMTP folder depending which protocol you want to disable transitivity

or ignore schedules for.

3.

Select Properties.4.

To disable site link transitivity, uncheck Bridge all site links.5.

To ignore site link schedules, check Ignore schedules.6.

Click OK.7.

11.11.2.2 Using a command-line interface

You can modify the options attribute of a site link object using an LDIF file and ldifde, but since

the attribute is a bit flag, you are better off using the GUI or VBScript solutions that look at the
current value of options and modify it accordingly. ldifde doesn't handle this type of logic.

11.11.2.3 Using VBScript

' This code can disable site link transitivity and site
' schedules for all links of the IP transport.
' The code for the CalcBit function can be found in Recipe 4.12
 ------ SCRIPT CONFIGURATION ------

boolDisableTrans = <TrueOrFalse> ' e.g. TRUE

boolIgnoreSchedules = <TrueOrFalse> ' e.g. FALSE
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objLink = GetObject(_
 "LDAP://cn=IP,cn=Inter-site Transports,cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))

intBitsOrg = objLink.Get("options")
intBits = CalcBit(intBitsOrig, 2, boolDisableTrans)
intBits = CalcBit(intBitsOrig, 1, boolIgnoreSchedules)

if objLink.Get("options") <> intBits then
 objLink.Put "options", intBits
 objLink.SetInfo
 WScript.Echo "Successfully modified link transitivity for " & strLink
else
 WScript.Echo "Did not need to modify link transitivity for " & strLink
end if

11.11.3 Discussion

Active Directory site links are transitive, which means that if site A is linked to site B, and site B is
linked to site C, then site A is also be linked (through site B) to site C. The Knowledge Consistency
Checker (KCC) uses transitivity by default when making decisions about creating connection objects.
You can disable this behavior if you want. Typically this is not something you'll want to do unless you
know what you are doing. Disabling transitivity may be necessary for some Windows 2000
deployments that have a lot of sites and find that the KCC is having a hard time keeping up. With
Windows Server 2003, the KCC has been greatly improved and site link transitivity should not cause
problems.

The other reason you might want to disable transitivity is if you need to make replication more
deterministic. Disabling transitivity makes it much easier to determine where the KCC will attempt to
establish connection objects, because the KCC on a domain controller will not be able to replicate with
domain controllers that are not in sites that are directly linked.

I mention site link schedules here primarily because the same attribute (i.e., options) that

determines site link transitivity also determines if link schedules are enforced. If you enable the
ignore schedules option for a particular transport (i.e., IP or SMTP), the KCC ignores any
preconfigured link schedules. If you later disable this setting, link schedules will go back into effect.

11.11.4 See Also

Recipe 4.12 for more on setting a bit-flag attribute

[Team LiB]

[Team LiB]

Recipe 11.12 Creating a Site Link Bridge

11.12.1 Problem

You want to create a site link bridge because you've disabled site link transitivity.

11.12.2 Solution

11.12.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the left pane, expand Sites Inter-Site Transports.2.

Right-click either the IP or SMTP folder depending which protocol you want to create a site link

bridge for.

3.

Select New Site Link Bridge.4.

Highlight two or more sites in the left box.5.

Click the Add button.6.

Click OK.7.

11.12.2.2 Using a command-line interface

Create an LDIF file called create_site_link_bridge.ldf with the following contents, where <Link1> and

<Link2> refer to the site links to be bridged:

dn: cn=<BridgeName>,cn=IP,cn=inter-site

transports,cn=sites,cn=configuration,<ForestRootDN>
changetype: add
objectclass: siteLinkBridge

siteLinkList: cn=<Link1>,cn=IP,cn=Inter-site Transports,cn=sites,cn=configuration,

<ForestRootDN>

siteLinkList: cn=<Link2>,cn=IP,cn=Inter-site Transports,cn=sites,cn=configuration,

<ForestRootDN>

Then run the following command:

> ldifde -v -i -f create_site_link_bridge.ldf

11.12.2.3 Using VBScript

' This code creates a site link bridge between two site links
' ------ SCRIPT CONFIGURATION ------

strLink1 = "<Link1>" ' e.g. AMS-LON

strLink2 = "<Link2>" ' e.g. SJC-RTP

strBridge = "<BridgeName>" ' e.g. AMER-EUR
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objLinkCont = GetObject(_
 "LDAP://cn=IP,cn=Inter-site Transports,cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
set objBridge = objLinkCont.Create("siteLinkBridge", "cn=" & strBridge)
strLink1DN = "cn=" & strLink1 & _
 ",cn=IP,cn=Inter-site Transports,cn=sites," & _
 objRootDSE.Get("configurationNamingContext")
strLink2DN = "cn=" & strLink2 & _
 ",cn=IP,cn=Inter-site Transports,cn=sites," & _
 objRootDSE.Get("configurationNamingContext")
objBridge.Put "siteLinkList", Array(strLink1DN,strLink2DN)
objBridge.SetInfo

WScript.Echo "Successfully created bridge: " & strBridge

11.12.3 Discussion

If you've disabled site link transitivity or have networks that lack direct routes between sites, you will
need to create site link bridges. Creating a site link bridge to link several links is analogous to
creating a site link to link several sites. Lets take an example where site link transitivity is disabled
and we have four sites; site A has a link to site B and site C has a link to site D. If we want domain
controllers in sites A and B to replicate with sites C and D, we need to create a site link bridge to
bridge the A-B link with C-D.

11.12.4 See Also

Recipe 11.11 for disabling site link transitivity

[Team LiB]

[Team LiB]

Recipe 11.13 Finding the Bridgehead Servers for a Site

11.13.1 Problem

You want to find the bridgehead servers for a site.

11.13.2 Solution

11.13.2.1 Using a graphical user interface

Open the Replication Monitor from the Support Tools (replmon.exe).1.

From the menu, select View Options.2.

In the left pane, right-click on Monitored Servers and select Add Monitored Server.3.

Use the Add Monitored Server Wizard to add a server in the site you want to find the
bridgehead server(s) for.

4.

In the left pane, right-click on the server and select Show BridgeHead Servers In This
Server's Site.

5.

11.13.2.2 Using a command-line interface

> repadmin /bridgeheads [<ServerName>] [/verbose]

The /bridgeheads option is valid only with the Windows Server 2003 version of repadmin. There is

no such option in the Windows 2000 version.

11.13.2.3 Using VBScript

' This code finds the bridgehead servers for the specified site.
' ------ SCRIPT CONFIGURATION ------

strServer = "<ServerName>" ' server to target query against, e.g. dc01

strSite = "<SiteName>" ' name of site to query
 ' e.g. Default-First-Site-Name
' ------ END CONFIGURATION ---------

set objIadsTools = CreateObject("IADsTools.DCFunctions")
intRes = objIadsTools.GetBridgeHeadsInSite(Cstr(strServer),Cstr(strSite),0)

if intRes = -1 then
 Wscript.Echo "Error bridge heads: " & objIadsTools.LastErrorText
 WScript.Quit
end if

for count = 1 to intRes
 WScript.Echo vbTab & objIadsTools.BridgeHeadName(count)
next

11.13.3 Discussion

Bridgehead servers are responsible for replicating data between sites. Instead of all domain
controllers replicating the same naming contexts outside of the site, the bridgehead servers act as a
funnel for replication into and out of a site. Any domain controller in a site can become a bridgehead
server and bridgeheads are designated by the KCC for each writeable partition in the site. You can
control which servers are designated as bridgehead servers by defining preferred bridgehead servers.
See Recipe 11.14 for more on how to do this.

11.13.4 See Also

MS KB 271997 (Description of Bridgehead Servers in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 11.14 Setting a Preferred Bridgehead Server for a Site

11.14.1 Problem

You want to set a preferred bridgehead server for a site.

11.14.2 Solution

11.14.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the left pane, expand Sites , expand the site where the server you want to set as a bridgehead is
contained and expand the Servers container

2.

Right-click on the server you want to set as the bridgehead and select Properties.3.

Highlight IP, SMTP, or both, pertaining to the protocol(s) for which you want the server to be a bridgehead.4.

Click the Add button.5.

Click OK.6.

11.14.2.2 Using a command-line interface

Create an LDIF file called set_bridgehead_server.ldf with the following contents:

dn: cn=<DCName>,cn=servers,cn=<SiteName>,cn=sites,cn=configuration,<ForestRootDN>
changetype: modify
add: bridgeheadTransportList

bridgeheadTransportList: cn=IP,cn=Inter-site Transports,cn=sites,cn=configuration,<ForestRootDN>
-

then run the following command:

> ldifde -v -i -f set_bridgehead_server.ldf

11.14.2.3 Using VBScript

' This code sets a preferred bridgehead server for a particular transport
' ------ SCRIPT CONFIGURATION ------

strServer = "<DomainControllerName>" ' e.g. dc1

strServerSite = "<SiteName>" ' e.g. Default-First-Site-Name

strTransport = "<TransportName>" ' e.g. either IP or SMTP

' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objServer = GetObject("LDAP://cn=" & strServer & ",cn=Servers,cn=" & _
 strServerSite & ",cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
objServer.Put "bridgeHeadTransportList", _
 "cn=" & strTransport & ",cn=Inter-site Transports,cn=sites," _
 & objRootDSE.Get("configurationNamingContext")
objServer.SetInfo

WScript.Echo "Successfully set bridgehead server: " & strServer

11.14.3 Discussion

Setting a preferred bridgehead server can give you more control over which domain controllers participate in inter-
site replication, but it is also limiting. The KCC typically selects bridgehead servers dynamically, but if you set
preferred bridgehead servers, the KCC will not select new ones if the preferred servers become unavailable.
Therefore, you should ensure that if you do select preferred bridgehead servers, you select at least two for a given
partition in a site.

As a general rule, you shouldn't set preferred bridgehead servers if at all possible.

11.14.4 See Also

MS KB 271997 (Description of Bridgehead Servers in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 11.15 Listing the Servers

11.15.1 Problem

You want to list the server objects in the site topology.

11.15.2 Solution

11.15.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a domain user.7.

Click OK.8.

From the menu, select Browse Search.9.

For BaseDN, type the Sites container's DN (e.g.,

cn=sites,cn=configuration,dc=rallencorp,dc=com).

10.

For Scope, select Subtree.11.

For Filter, enter (objectcategory=server).12.

Click Run.13.

11.15.2.2 Using a command-line interface

> dsquery server [-site <SiteName>]

11.15.2.3 Using VBScript

' This code lists the server objects in the site topology.

set objRootDSE = GetObject("LDAP://RootDSE")
strBase = "<LDAP://cn=sites," & _
 objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(objectcategory=server);"
strAttrs = "distinguishedName;"
strScope = "subtree"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
objRS.MoveFirst
while Not objRS.EOF
 Wscript.Echo objRS.Fields(0).Value
 objRS.MoveNext
wend

11.15.3 Discussion

Each Active Directory domain controller is represented in the site topology by a server object that is

associated with a specific site. Replication decisions are made based on links from this site to other
sites that contain domain controllers.

Other types of services can also add server objects to the site topology. The way you can distinguish
which ones are domain controllers is the presence of a NTDS Settings (nTDSDSA) object that is a
child of the server object. Only domain controllers will have that object.

[Team LiB]

[Team LiB]

Recipe 11.16 Moving a Domain Controller to a Different
Site

11.16.1 Problem

You want to move a domain controller to a different site. This may be necessary if you promoted the
domain controller without first adding its subnet to Active Directory. In that case, the domain controller
will be added to the Default-First-Site-Name site.

11.16.2 Solution

11.16.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the left pane, expand Sites , expand the site where the server you want to move is contained,
and expand the Servers container.

2.

Right-click on the server you want to move and select Move.3.

Select the site to move the server to.4.

Click OK.5.

11.16.2.2 Using a command-line interface

> dsmove "cn=<ServerName>,cn=servers,cn=<CurrentSite>,[RETURN]

cn=sites,cn=configuration,<ForestRootDN>" -newparent "cn=servers,cn=<NewSite>,[RETURN]

cn=sites,cn=configuration,<ForestRootDN>"

11.16.2.3 Using VBScript

' This code moves a server to a different site.
' ------ SCRIPT CONFIGURATION ------
' Should contain the common name of the server object

strDC = "<DomainControllerName>" ' e.g. dc02
' Name of servers current site

strCurrentSite = "<CurrentSite>" ' e.g. Default-First-Site-Name
' Name of site you want to move server to

strNewSite = "<NewSite>" ' e.g. Raleigh
' ------ END CONFIGURATION ---------

strConfigDN = GetObject("LDAP://RootDSE").Get("configurationNamingContext")
strServerDN = "LDAP://cn=" & strDC & ",cn=servers,cn=" & _
 strCurrentSite & ",cn=sites," & strConfigDN
strNewParentDN = "LDAP://cn=servers,cn=" & strNewSite & ",cn=sites," & strConfigDN

Set objCont = GetObject(strNewParentDN)
objCont.MoveHere strServerDN, "cn=" & strDC

11.16.3 Discussion

After you move a server to a new site, you might want to monitor replication to and from that server to
make sure that any new connections that are needed get created and start replicating. See Recipe 12.2
for more on viewing the replication status of a server.

11.16.4 See Also

MS KB 214677 (Automatic Detection of Site Membership for Domain Controllers)

[Team LiB]

[Team LiB]

Recipe 11.17 Configuring a Domain Controller to Cover
Multiple Sites

11.17.1 Problem

You want to configure a domain controller to cover multiple sites, which will cause clients in those
sites to use that domain controller for authentication and directory lookups.

11.17.2 Solution

11.17.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

In the left pane, expand HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet
Services Netlogon Parameters.

2.

If the SiteCoverage value does not exist, right-click on Parameters in the left pane and select
New Multi-String Value. For the name, enter SiteCoverage.

3.

In the right pane, double-click on the value and on a separate line, enter each site the server
should cover.

4.

Click OK.5.

11.17.2.2 Using a command-line interface

> reg add HKLM\System\CurrentControlSet\Services\Netlogon\Parameters /v [RETURN]

"SiteCoverage" /t REG_MULTI_SZ /d <Site1>\0<Site2>

11.17.2.3 Using VBScript

' This code configures a domain controller to cover multiple sites.
' ------ SCRIPT CONFIGURATION ------

strDC = "<DomainControllerName>" ' e.g. dc01

arrSites = Array("<Site1>","<Site2>") ' Array of sites to cover
' ------ END CONFIGURATION ---------

strNTDSReg = "SYSTEM\CurrentControlSet\Services\Netlogon\Parameters"
const HKLM = &H80000002
set objReg = GetObject("winmgmts:\\" & strDC & "\root\default:StdRegProv")
objReg.SetMultiStringValue HKLM, strNTDSReg, _
 "SiteCoverage", _
 arrSites
WScript.Echo "Site coverage set for " & strDC

11.17.3 Discussion

It is perfectly valid to have a site that does not contain its own domain controller. In fact, if you
model the site topology after your real network, some sites will lack their own domain controllers
unless you've deployed a branch office architecture or have very few sites. If you create sites without
any domain controllers, the site links between the sites determine what domain controllers will
"cover" or advertise their services to the site. When a domain controller covers for a remote site, it
needs to publish site-specific DNS resource records, which clients in the site use to find the domain
controller. Active Directory will select DCs to cover DC-less sites automatically, but you can hard-
code the list of sites a specific domain controller should cover by modifying the Registry as described
in the Solution section.

11.17.4 See Also

MS KB 200498 (Configure a Domain Controller for Membership in Multiple Sites)

[Team LiB]

[Team LiB]

Recipe 11.18 Viewing the Site Coverage for a Domain
Controller

11.18.1 Problem

You want to view the sites a domain controller covers.

11.18.2 Solution

11.18.2.1 Using a command-line interface

In the following command, replace <DomainControllerName> with the name of the domain controller

you want to view site coverage for:

> nltest /server:<DomainControllerName> /DsGetSiteCov

11.18.2.2 Using VBScript

Although you cannot use it directly from a scripting language like VBScript, Microsoft provides a
DsGetDcSiteCoverage method that can be used by languages, such as Visual Basic and C++, to
retrieve site coverage information. In fact, the nltest command shown in the CLI solution is a

wrapper around this method.

11.18.3 Discussion

Recipe 11.17 describes how to force a domain controller to cover multiple sites. Recipe 11.19
describes how you can disable a domain controller from covering for any sites other than its own.

11.18.4 See Also

MSDN: DsGetDcSiteCoverage

[Team LiB]

[Team LiB]

Recipe 11.19 Disabling Automatic Site Coverage for a
Domain Controller

11.19.1 Problem

You want to prevent a domain controller from covering sites outside of the one it resides in.

11.19.2 Solution

11.19.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

Expand HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services Netlogon
 Parameters.

2.

Right-click on Parameters and select New DWORD Value.3.

For the name, enter AutoSiteCoverage.4.

Double-click on the new value, enter 0 under Value data, and click OK.5.

11.19.2.2 Using a command-line interface

> reg add HKLM\System\CurrentControlSet\Services\Netlogon\Parameters /v [RETURN]
AutoSiteCoverage /t REG_DWORD /d 0

11.19.2.3 Using VBScript

' This code disables auto site coverage
strNetlogonReg = "SYSTEM\CurrentControlSet\Services\Netlogon\Parameters"
const HKLM = &H80000002
Set objReg = GetObject("winmgmts:root\default:StdRegProv")
objReg.SetDWORDValue HKLM, strNetlogonReg, "AutoSiteCoverage", 0
WScript.Echo "Site coverage disabled"

11.19.3 Discussion

If you want to reduce the load on a domain controller, one way is to prevent it from covering for
other sites. Automatic site coverage happens when a site does not have any member domain
controllers.

11.19.4 See Also

Recipe 11.18 for viewing the site coverage for a domain controller

[Team LiB]

[Team LiB]

Recipe 11.20 Finding the Site for a Client

11.20.1 Problem

You want to find which site a client computer is in.

11.20.2 Solution

11.20.2.1 Using a command-line interface

In the following command, replace <HostName> with the name of the host you want to find the site

for:

> nltest /server:<HostName> /DsGetSite

11.20.2.2 Using VBScript

Although you cannot use it directly from a scripting language like VBScript, Microsoft provides a
DsGetSiteName method that can be used by languages, such as Visual Basic and C++, to retrieve
site coverage information. In fact, the nltest command shown in the CLI solution is a wrapper

around this method.

The IADsTool interface provides a wrapper around this method:

set objIadsTools = CreateObject("IADsTools.DCFunctions")

strSite = objIadsTools.DsGetSiteName("<HostName>")
Wscript.Echo "Site: " & strSite

11.20.3 Discussion

Each domain controller has a server object that is contained with a site. Clients are different-they

are associated with a site based on their IP address and the corresponding subnet that it matches is
in the Subnets container. The client site information is important because it determines the domain

controller the client authenticates with. If the client's IP address does not match a subnet range of
any of the subnets stored in Active Directory, it will randomly pick a site to use, which means it could
authenticate against any domain controller in the domain. See Recipe 11.21 for a way to hardcode
the site association for a client.

11.20.4 See Also

Recipe 11.21 for forcing a host to a particular site, MS KB 247811 (How Domain Controllers Are
Located in Windows), and MSDN: DsGetSiteName

[Team LiB]

[Team LiB]

Recipe 11.21 Forcing a Host to a Particular Site

11.21.1 Problem

You want to force a host to be in a particular site.

11.21.2 Solution

11.21.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

Expand HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services Netlogon
Parameters.

2.

Right-click on Parameters and select New String Value.3.

Enter SiteName for the name.4.

Double-click on the new value, enter the name of the site under Value data, and click OK.5.

11.21.2.2 Using a command-line interface

> reg add HKLM\System\CurrentControlSet\Services\Netlogon\Parameters /v SiteName /t [RETURN]

REG_SZ /d <SiteName>

11.21.2.3 Using VBScript

' This code forces the host the script is run on to use a particular host
' ------ SCRIPT CONFIGURATION ------

strSite = "<SiteName>" ' e.g. Raleigh
' ------ END CONFIGURATION ---------

strNetlogonReg = "SYSTEM\CurrentControlSet\Services\Netlogon\Parameters"
const HKLM = &H80000002
set objReg = GetObject("winmgmts:root\default:StdRegProv")
objReg.SetStringValue HKLM, strNetlogonReg, "SiteName", strSite
WScript.Echo "Set SiteName to " & strSite

11.21.3 Discussion

You can bypass the part of the DC Locator process that determines a client's site by hard-coding it in the

Registry. This is generally not recommended and should primarily be used as a troubleshooting tool. If a client
is experiencing authentication delays due to a misconfigured site or subnet object, you can hard-code its site

so it temporarily points to a more optimal location (and domain controller).

11.21.4 See Also

Recipe 11.20 for finding the site of a client and MS KB 247811 (How Domain Controllers Are Located in
Windows)

[Team LiB]

[Team LiB]

Recipe 11.22 Creating a Connection Object

11.22.1 Problem

You want to create a connection object to manually set up replication between two sites.

11.22.2 Solution

11.22.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the left pane, expand Sites, expand the site that contains the connection object you want to
check, expand the Servers container, and expand the server for which you want to create the
connection object.

2.

Right-click on the NTDS Settings object and select Create New Active Directory Connection.3.

Select the replication partner and click OK.4.

Enter the name for the connection and click OK.5.

11.22.2.2 Using a command-line interface

> repadmin /add <PartitionDN> <DC1DNSName> <DC2DNSName>

11.22.3 Discussion

Hopefully you will not need to create connection objects manually. Creating and maintaining
connection objects is the job of the KCC. It can be a lot of work to keep your connection objects up to
date by yourself, especially if you have a large topology. The KCC uses complex algorithms to
determine the best partners for a domain controller to replicate with. The Windows 2000 KCC had
problems generating very large topologies, but the Windows Server 2003 version is significantly
better.

It is sometimes necessary to create connections manually if you find a replication problem and need
to get replication going again between one or more sites. By creating a connection and forcing
replication to occur over that connection, you can get servers back in sync quickly.

11.22.4 See Also

Recipe 11.23 for listing the connections for a server

[Team LiB]

[Team LiB]

Recipe 11.23 Listing the Connection Objects for a Server

11.23.1 Problem

You want to view the connection objects associated with a domain controller.

11.23.2 Solution

11.23.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the left pane, expand Sites, expand the site that contains the connection object you want to
check, expand the Servers container, expand the server that contains the connection object,
and click on the NTDS Settings object.

2.

In the right pane, under the name column, it will display which connection objects are
automatically generated (by the KCC) and which ones were manually generated.

3.

11.23.2.2 Using a command-line interface

> repadmin /showconn [<DomainControllerName>]

11.23.2.3 Using VBScript

' This code lists the connection objects for a server
' ------ SCRIPT CONFIGURATION ------

strServer = "<ServerName>" ' e.g. dc01

strSite = "<SiteName>" ' e.g. MySite1
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objNTDSCont = GetObject("LDAP://cn=NTDS Settings,cn=" & strServer & _
 ",cn=servers,cn=" & strSite & ",cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
objNTDSCont.Filter = Array("ntdsConnection")
WScript.Echo "Connection objects for " & strSite & "\" & strServer
for each objConn in objNTDSCont
 if objConn.Get("options") = 0 then

 Wscript.Echo " " & objConn.Get("cn") & " (MANUAL)"
 else
 Wscript.Echo " " & objConn.Get("cn") & " (AUTO)"
 end if
next

Another option for programmatically getting the connection objects for a server
is to use the GetDSAConnections method from the IADsTool interface.

11.23.3 Discussion

Connection objects are used to replicate inbound changes to a domain controller. By viewing the
connection objects for a server you can see what domain controllers it receives updates from.
Connection objects are created automatically by the KCC, but can be created manually if necessary.

11.23.4 See Also

Recipe 11.22 for creating a connection object

[Team LiB]

[Team LiB]

Recipe 11.24 Load-Balancing Connection Objects

11.24.1 Problem

You want to evenly distribute connection objects between bridgehead servers in a site.

11.24.2 Solution

11.24.2.1 Using a command-line interface

To see what changes the command would make, run it without the /commit option. To actually make
the changes in Active Directory, use the /commit option:

> adlb /server:<DomainControllerName> -site:<SiteName> [/commit] [/verbose]

This command is available in the Windows Server 2003 Resource Kit.

11.24.3 Discussion

Bridgeheads can become overloaded or end up with too many connection objects in relation to other
bridgeheads in the domain. The Active Directory Load Balancing (ADLB) tool allows you to balance the
load of connection objects among bridgehead servers within a site. The Windows Server 2003
algorithms are much better than Windows 2000 for load balancing connection objects across servers,
but that process happens only when new connection objects are added. You can use the adlb tool to

load balance the connection objects more efficiently at any time.

I recommend viewing the changes adlb would make first before using the /commit option. It is
always good to do a sanity check to ensure adlb doesn't mess up your replication topology.

[Team LiB]

[Team LiB]

Recipe 11.25 Finding the ISTG for a Site

11.25.1 Problem

You want to find the Inter-Site Topology Generator (ISTG) for a site.

11.25.2 Solution

11.25.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

Click on the site you are interested in.2.

In the right pane, double-click on the NTDS Site Settings object.3.

The ISTG will be displayed under Inter-Site Topology Generator if one is present.4.

11.25.2.2 Using a command-line interface

> repadmin /istg <DomainControllerName>

This command is available only with the Windows Server 2003 version of repadmin.

11.25.2.3 Using VBScript

' This code finds the ISTG for the specified site.
' ------ SCRIPT CONFIGURATION ------

strSiteName = <SiteName> ' e.g. Raleigh
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objSiteSettings = GetObject("LDAP://cn=NTDS Site Settings,cn=" & _
 strSiteName & ",cn=sites," & _
 objRootDSE.Get("ConfigurationNamingContext"))
on error resume next
strISTGDN = objSiteSettings.Get("interSiteTopologyGenerator")
if (strISTGDN <> "") then

 set objNTDSSettings = GetObject("LDAP://" & strISTGDN)
 set objServer = GetObject(objNTDSSettings.Parent)
 WScript.Echo "ISTG for site " & strSiteName & " is " & _
 objServer.Get("dnsHostName")
else
 WScript.Echo "No ISTG found for site " & strSiteName
end if

11.25.3 Discussion

One domain controller in every site is picked as the ISTG for that site. While each domain controller is
responsible for creating its own intra-site connection objects, the ISTG for a site is responsible for
creating the inter-site connection objects for the bridgehead servers in the site.

The current ISTG for a site is stored in the interSiteTopologyGenerator attribute of the site's NTDS
Site Settings object. The distinguished name of ISTG's NTDS Settings object is stored in the
interSiteTopologyGenerator attribute.

Disabling inter-site topology generation is synonymous with disabling the KCC for a site. See Recipe
11.29 for more information on disabling the KCC.

11.25.4 See Also

Recipe 11.26 for moving the ISTG, MS KB 224815 (The Role of the Inter-Site Topology Generator in
Active Directory Replication), and MS KB 224599 (Determining the Inter-Site Topology Generator
(ISTG) of a Site in the Active Directory)

[Team LiB]

[Team LiB]

Recipe 11.26 Transferring the ISTG to Another Server

11.26.1 Problem

You want to move the ISTG for a site to another domain controller. This happens automatically if you
take the current ISTG offline, but you may want to transfer the role to a server that is more optimal
in your environment.

11.26.2 Solution

11.26.2.1 Using a graphical user interface

Open ADSI Edit.1.

Connect to the CNC if it is not already displayed in the left pane.2.

In the left pane, browse the Configuration NC Sites.3.

Click on the site you want to transfer the ISTG for.4.

In the right pane, double-click CN=NTDS Site Settings.5.

Modify the interSiteTopologyGenerator attribute to include the NTDS Settings object of the

domain controller you want to transfer the ISTG role to.

6.

Click OK.7.

11.26.2.2 Using VBScript

' This code forces a new ISTG in a site.
' ------ SCRIPT CONFIGURATION ------
' Name of site to transfer ISTG in

strSiteName = "<SiteName>" ' e.g. Raleigh
' Site the new ISTG server is in

strNewISTGSite = "<ISTGSiteName>" ' e.g. Raleigh
' Common name of server object for new ISTG

strNewISTGName = "<DomainControllerName>" ' e.g. dc01
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")

set objSiteSettings = GetObject("LDAP://cn=NTDS Site Settings,cn=" & _
 strSiteName & ",cn=sites," & _
 objRootDSE.Get("ConfigurationNamingContext"))
strCurrentISTG = objSiteSettings.Get("interSiteTopologyGenerator")

objSiteSettings.Put "interSiteTopologyGenerator", _
 "cn=NTDS Settings,cn=" & strNewISTGName & _
 ",cn=servers,cn=" & strNewISTGSite & ",cn=sites," & _
 objRootDSE.Get("ConfigurationNamingContext")
objSiteSettings.SetInfo
WScript.Echo "ISTG for " & strSiteName & " changed from:"
WScript.Echo " " & strCurrentISTG
WScript.Echo "To"
WScript.Echo " " & objSiteSettings.Get("interSiteTopologyGenerator")

11.26.3 Discussion

The current ISTG for a site is stored in the interSiteTopologyGenerator attribute of the site's NTDS
Site Settings object. The distinguished name of the ISTG's NTDS Settings object is stored in that

attribute.

Domain controllers communicate their presence as the ISTG by writing to the
interSiteTopologyGenerator attribute at a set interval. If you want another domain controller to

assume the role of the ISTG, you need to write the distinguished name of that domain controller's
NTDS Settings object to the interSiteTopologyGenerator attribute of the NTDS Site Settings

object for the site.

Two registry settings govern the ISTG registration process, both of which are stored under the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\NTDS\Parameters key. The interval (in
minutes) in which the current ISTG should write to the interSiteTopologyGenerator attribute to
inform the other DCs in the site that it is still the ISTG is stored in the KCC site generator renewal
interval (minutes) value. The default is 30 minutes. The other value is named KCC site generator
fail-over (minutes) and contains the time in minutes that each domain controller in the site should
wait for the interSiteTopologyGenerator attribute to be written to before attempting to register

itself as the ISTG. The default is 60 minutes.

11.26.4 See Also

MS KB 224815 (The Role of the Inter-Site Topology Generator in Active Directory Replication)

[Team LiB]

[Team LiB]

Recipe 11.27 Triggering the KCC

11.27.1 Problem

You want to trigger the KCC.

11.27.2 Solution

11.27.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

In the left pane, browse to the NTDS Settings object for the server you want to trigger the KCC

for.

2.

Right-click on NTDS Settings, select All Tasks, and Check Replication Topology.3.

Click OK.4.

11.27.2.2 Using a command-line interface

> repadmin /kcc <DomainControllerName>

11.27.2.3 Using VBScript

' This code triggers the KCC on a DC.
' ------ SCRIPT CONFIGURATION ------

strDC = "<DomainControllerName>" ' e.g. dc01
' ------ END CONFIGURATION ---------

set objIadsTools = CreateObject("IADsTools.DCFunctions")
intRes = objIadsTools.TriggerKCC(Cstr(strDC),0)

if intRes = -1 then
 Wscript.Echo objIadsTools.LastErrorText
else
 Wscript.Echo "KCC successfully triggered"
end if

11.27.3 Discussion

The KCC runs every 15 minutes by default on all domain controllers to generate the intra-site
topology connections. The KCC that runs on the server that is selected as the ISTG generates inter-
site topology connections to other sites from the bridgehead servers in its site. In some situations,
such as when you create new site, siteLink, or subnet objects, you may want to run the KCC

immediately so that any new connections between domain controllers get created.

11.27.4 See Also

Recipe 11.28 for determining if the KCC is completing successfully, for more information on IADsTools
see iadstools.doc that is installed with the Support Tools, and MS KB 224815 (The Role of the Inter-
Site Topology Generator in Active Directory Replication)

[Team LiB]

[Team LiB]

Recipe 11.28 Determining if the KCC Is Completing
Successfully

11.28.1 Problem

You want to determine if the KCC is completing successfully.

11.28.2 Solution

11.28.2.1 Using a graphical user interface

Open the Event Viewer of the target domain controller.1.

Click on the Directory Service log.2.

In the right pane, click on the Source heading to sort by that column.3.

Scroll down to view any events with Source: NTDS KCC.4.

11.28.2.2 Using a command-line interface

The following command will display any KCC errors found in the Directory Service log:

> dcdiag /v /test:kccevent /s:<DomainControllerName>

11.28.3 Discussion

The only way to debug issues with the KCC is by looking for NTDS KCC events in the Directory
Service event log. If you suspect a problem or perhaps are seeing errors, you can increase the
amount of logging in the event log by enabling diagnostics logging for the KCC. When the KCC
diagnostics logging is enabled, each KCC exception logs a lot of information to the event log that may
help you pinpoint the problem. See Recipe 15.2 for more information on enabling diagnostics logging.

[Team LiB]

[Team LiB]

Recipe 11.29 Disabling the KCC for a Site

11.29.1 Problem

You want to disable the KCC for a site and generate your own replication connections between
domain controllers.

11.29.2 Solution

11.29.2.1 Using a graphical user interface

Open ADSI Edit.1.

Connect to the Configuration Naming Context if it is not already displayed.2.

In the left pane, browse the Configuration Naming Context Sites.3.

Click on the site you want to disable the KCC for.4.

In the right pane, double-click CN=NTDS Site Settings.5.

Modify the options attribute. To disable only intra-site topology generation, enable the 00001

bit (decimal 1). To disable inter-site topology generation, enable the 10000 bit (decimal 16). To
disable both, enable the 10001 bits (decimal 17).

6.

Click OK.7.

11.29.2.2 Using a command-line interface

You can disable the KCC for <SiteName> by using the ldifde utility and an LDIF file that contains the

following:

dn: cn=NTDS Site Settings,<SiteName>,cn=sites,cn=configuration,<ForestRootDN>
changetype: modify
replace: options

options: <OptionsValue>
-

If the LDIF file were named disable_kcc.ldf, you would run the following command:

> ldifde -v -i -f disable_kcc.ldf

11.29.2.3 Using VBScript

' This code disables the KCC for a site.
' ------ SCRIPT CONFIGURATION ------

strSiteName = "<SiteName>" ' e.g. Default-First-Site-Name
boolDisableIntra = TRUE ' set to TRUE/FALSE to disable/enable intra-site
boolDisableInter = TRUE ' set to TRUE/FALSE to disable/enable inter-site
' ------ END CONFIGURATION ---------

strAttr = "options"
set objRootDSE = GetObject("LDAP://RootDSE")
set objObject = GetObject("LDAP://cn=NTDS Site Settings,cn=" _
 & strSiteName & ",cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))

intBitsOrig = objObject.Get(strAttr)
intBitsCalc = CalcBit(intBitsOrig, 1, boolDisableIntra)
WScript.Echo "Checking the KCC Intra-site generation flag:"
if intBitsOrig <> intBitsCalc then
 objObject.Put strAttr, intBitsCalc
 objObject.SetInfo
 WScript.Echo " Changed " & strAttr & " from " & _
 intBitsOrig & " to " & intBitsCalc
else
 WScript.Echo " Did not need to change " & strAttr & _
 " (" & intBitsOrig & ")"
end if

intBitsOrig = objObject.Get(strAttr)
intBitsCalc = CalcBit(intBitsOrig, 16, boolDisableInter)
WScript.Echo "Checking the KCC Inter-site generation flag:"
if intBitsOrig <> intBitsCalc then
 objObject.Put strAttr, intBitsCalc
 objObject.SetInfo
 WScript.Echo " Changed " & strAttr & " from " & intBitsOrig & _
 " to " & intBitsCalc
else
 WScript.Echo " Did not need to change " & strAttr & " (" & _
 intBitsOrig & ")"
end if

11.29.3 Discussion

In some cases, you may want to disable the KCC from generating the intra-site topology connections,
inter-site topology connections, or both. The connection objects the KCC dynamically creates
determines how domain controllers replicate with each other. Disabling the KCC was sometimes
necessary with Windows 2000 due to scalability issues with the KCC and very large topologies. In
Windows Server 2003, the KCC has been greatly improved and, hopefully, you will not need to disable

the KCC. I recommend against disabling the KCC unless you have really good reasons because you
will have to pay close attention to any domain controller or site topology changes and manually
adjust the connection objects accordingly.

Disabling the KCC can only be done at the site level. You have to modify the NTDS Site Settings
object of the site for which you want to disable the KCC. The options attribute (a bit flag) on this

object determines whether the KCC runs. If the 00001 bit is enabled, intra-site topology generation is
disabled, if the 10000 bit is enabled (16 in decimal), inter-site topology generation is disabled. See
Recipe 4.12 for more on the proper way to set bit-flags.

11.29.4 See Also

Recipe 4.12 for more on setting bit flags, Recipe 11.22 for creating a connection object manually, MS
KB 242780 (How to Disable the Knowledge Consistency Checker From Automatically Creating
Replication Topology), and MS KB 245610 (HOW TO: Disable the Knowledge Consistency Checker
Inter-Site Topology Generation for All Sites)

[Team LiB]

[Team LiB]

Recipe 11.30 Changing the Interval at Which the KCC Runs

11.30.1 Problem

You want to change the interval at which the KCC runs.

11.30.2 Solution

11.30.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

Expand HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services NTDS
Parameters.

2.

Right-click on Parameters and select New DWORD Value.3.

Enter the following for the name: Repl topology update period (secs).4.

Double-click on the new value and under Value data enter the KCC interval in number of seconds (900 is
the default).

5.

Click OK.6.

11.30.2.2 Using a command-line interface

> reg add HKLM\System\CurrentControlSet\Services\NTDS\Parameters /v "Repl topology [RETURN]

update period (secs)" /t REG_DWORD /d <NumSecs>

11.30.2.3 Using VBScript

' This code changes the interval in which the KCC runs.
' ------ SCRIPT CONFIGURATION ------

intNumSecs = <NumSecs> ' Number of seconds between intervals
 ' 900 is default
' ------ END CONFIGURATION ---------

strNetlogonReg = "SYSTEM\CurrentControlSet\Services\NTDS\Parameters"
const HKLM = &H80000002
Set objReg = GetObject("winmgmts:root\default:StdRegProv")
objReg.SetDWORDValue HKLM, strNetlogonReg, _
 "Repl topology update period (secs)", _
 intNumSecs

WScript.Echo "KCC interval set to " & intNumSecs

11.30.3 Discussion

By default, the KCC checks its connections ever 15 minutes and makes changes as necessary. You can
modify this interval by simply modifying the registry. This was necessary with many Windows 2000
implementations that had large topologies. In that case, the KCC may have taken longer than 15 minutes to
run or monopolized the CPU. Changing the KCC to run every hour instead of 15 minutes would help ensure it
would complete. With Windows Server 2003, Microsoft made significant improvements to the scalability of the
KCC and I recommend running the KCC at the default interval.

There is another related registry setting you should also be aware of. By default, the KCC waits 5 minutes
after Active Directory starts up before it runs. You can change this delay by creating a REG_DWORD value
called Repl topology update delay (secs) under the

HKLM\System\CurrentControlSet\Services\NTDS\Parameters\ key. The data for the value should be the
number of seconds to wait after startup before the KCC starts. The default is 300, which is 5 minutes.

11.30.4 See Also

MS KB 271988 (Replication Topology Updates)

[Team LiB]

[Team LiB]

Chapter 12. Replication

Introduction

Recipe 12.1. Determining if Two Domain Controllers Are in Sync

Recipe 12.2. Viewing the Replication Status of Several Domain Controllers

Recipe 12.3. Viewing Unreplicated Changes Between Two Domain Controllers

Recipe 12.4. Forcing Replication from One Domain Controller to Another

Recipe 12.5. Changing the Intra-Site Replication Interval

Recipe 12.6. Changing the Inter-Site Replication Interval

Recipe 12.7. Disabling Inter-Site Compression of Replication Traffic

Recipe 12.8. Checking for Potential Replication Problems

Recipe 12.9. Enabling Enhanced Logging of Replication Events

Recipe 12.10. Enabling Strict or Loose Replication Consistency

Recipe 12.11. Finding Conflict Objects

Recipe 12.12. Viewing Object Metadata
[Team LiB]

[Team LiB]

Introduction

Replication is one of the most important and perhaps complex components of Active Directory. The
infrastructure behind Active Directory replication, including the site topology, connection objects, and
the KCC, was covered in Chapter 11. This chapter focuses strictly on some of the tasks and processes
associated with replicating data and checking replication health. For an in-depth overview of how
replication works in Active Directory, I suggest reading Chapter 5 in Active Directory, Second Edition
(O'Reilly).

[Team LiB]

[Team LiB]

Recipe 12.1 Determining if Two Domain Controllers Are in
Sync

12.1.1 Problem

You want to determine if two domain controllers are in sync and have no objects to replicate to each
other.

12.1.2 Solution

12.1.2.1 Using a command-line interface

By running the following two commands you can compare the up-to-dateness vector on the two DCs:

> repadmin /showutdvec <DC1Name> <NamingContextDN>

> repadmin /showutdvec <DC2Name> <NamingContextDN>

The Windows 2000 version of repadmin used a different syntax to accomplish the same thing. Here is

the equivalent syntax:

> repadmin /showvector <NamingContextDN> <DC1Name>

> repadmin /showvector <NamingContextDN> <DC2Name>

12.1.2.2 Using VBScript

' This code prints the up-to-dateness vector for the DCs defined in
' the array arrDCList for the naming context defined by strNCDN
' ------ SCRIPT CONFIGURATION ------
' Set to the DN of the naming context you want to check the DCs against

strNCDN = "<NamingContextDN>" ' e.g. dc=amer,dc=rallencorp,dc=com
' Enter 2 or more DCs to compare

arrDCList = Array("<DC1Name>","<DC2Name>")
' ------ END CONFIGURATION ---------

set objIadsTools = CreateObject("IADsTools.DCFunctions")

for each strDC in arrDCList
 WScript.Echo "Replication partner USNs for " & strDC & ":"
 intUSN = objIadsTools.GetHighestCommittedUSN(Cstr(strDC),0)
 if intUSN = -1 then

 Wscript.Echo "Error retrieving USN: " & objIadsTools.LastErrorText
 WScript.Quit
 end if
 WScript.Echo vbTab & strDC & " = " & intUSN

 intRes = objIadsTools.GetReplicationUSNState(Cstr(strDC), _
 Cstr(strNCDN),0,0)
 if intRes = -1 then
 Wscript.Echo "Error retrieving USNs: " & objIadsTools.LastErrorText
 WScript.Quit
 end if
 for count = 1 to intRes
 WScript.Echo vbTab & objIadsTools.ReplPartnerName(count) & _
 " = " & objIadsTools.ReplPartnerUSN(count)
 next
 WScript.Echo
next

12.1.3 Discussion

To determine if two or more DCs are in sync from a replication standpoint, you need to compare their
up-to-dateness vectors. Each domain controller stores what it thinks is the highest update sequence
number (USN) for every DC that replicates a naming context. This is called the up-to-dateness
vector. If you want to compare DC1 and DC2, you'd first want to get the up-to-dateness vector for
DC1 and compare DC1's highest USN against what DC2 thinks DC1's highest USN is. If they are
different, then you can deduce that DC2 has not replicated all the changes from DC1 yet. Next,
compare the reverse to see if DC1 is in sync with DC2.

12.1.4 See Also

See IadsTools.doc in the Support Tools for more information on the IADsTools interface

[Team LiB]

[Team LiB]

Recipe 12.2 Viewing the Replication Status of Several
Domain Controllers

12.2.1 Problem

You want to take a quick snap-shot of replication activity for one or more domain controllers.

12.2.2 Solution

12.2.2.1 Using a command-line interface

The following command will show the replication status of all the domain controllers in the forest:

> repadmin /replsum

You can also use * as a wildcard character to view the status of a subset of domain controllers. The

following command will display the replication status of only the servers that begin with the name
dc-rtp:

> repadmin /replsum dc-rtp*

This command is only available with the Windows Server 2003 version of
repadmin.

12.2.3 Discussion

The new /replsum option in repadmin is a great way to quickly determine if there are any replication

issues. This command should be your starting point if you suspect any replication problems. If you
are running /replsum against a lot of domain controllers, you can use the /sort option to order the
returned table output by any of the table columns. You can also use the /errorsonly option to

display only the replication partners who are encountering errors.

[Team LiB]

[Team LiB]

Recipe 12.3 Viewing Unreplicated Changes Between Two
Domain Controllers

12.3.1 Problem

You want to find the unreplicated changes between two domain controllers.

12.3.2 Solution

12.3.2.1 Using a graphical user interface

Open the Replication Monitor from the Support Tools (replmon.exe).1.

From the menu, select View Options.2.

On the General tab, check the box beside Show Transitive Replication Partners and Extended
Data.

3.

Click OK.4.

In the left pane, right-click on Monitored Servers and select Add Monitored Server.5.

Use the Add Monitored Server Wizard to add one of the domain controllers you want to compare
(I'll call it dc1).

6.

In the left pane, under the server you just added, expand the naming context that you want to
check for unreplicated changes.

7.

Right-click on the other domain controller you want to compare (I'll call it dc2) and select Check
Current USN and Un-replicated Objects.

8.

Enter credentials if necessary and click OK.9.

If some changes have not yet replicated from dc2 to dc1, a box will pop up that lists the
unreplicated objects.

10.

To find out what changes have yet to replicate from dc1 to dc2, repeat the same steps except
add dc2 as a monitored server and check for unreplicated changes against dc1.

11.

12.3.2.2 Using a command-line interface

Run the following two commands to find the differences between two domain controllers. Use the
/statistics option to view a summary of the changes:

> repadmin /showchanges <DC1Name> <DC2GUID> <NamingContextDN>

> repadmin /showchanges <DC2Name> <DC1GUID> <NamingContextDN>

The Windows 2000 version of repadmin has a different syntax to accomplish the same thing. Here is

the equivalent syntax:

> repadmin /getchanges <NamingContextDN> <DC1Name> <DC2GUID>

> repadmin /getchanges <NamingContextDN> <DC2Name> <DC1GUID>

12.3.2.3 Using VBScript

' This code uses the IADsTools interface to print the unreplicated
' changes for the naming context defined by strNCDN for the DCs
' defined by strDC1Name and strDC2Name
' ------ SCRIPT CONFIGURATION ------

strNCDN = "<NamingContextDN>" ' e.g. dc=rallencorp,dc=com

strDC1Name = "<DC1Name>" ' e.g. dc1.rallencorp.com

strDC2Name = "<DC2Name>" ' e.g. dc2.rallencorp.com
' ------ END CONFIGURATION ---------

set objIadsTools = CreateObject("IADsTools.DCFunctions")

' ----------------------------------
' Have to get the GUIDs of both servers in order to identify
' the correct partner in the GetReplicationUSNState call
' ----------------------------------
strDC1GUID = objIadsTools.GetGuidForServer(Cstr(strDC1Name), _
 Cstr(strDC1Name),0)
strDC2GUID = objIadsTools.GetGuidForServer(Cstr(strDC2Name), _
 Cstr(strDC2Name),0)

' ----------------------------------
' Need to get what each DC thinks is the highest USN for the other
' The USN is needed in the call to GetMetaDataDifferences to return
' the unreplicated changes
' ----------------------------------
intRes = objIadsTools.GetReplicationUSNState(Cstr(strDC1Name), _
 Cstr(strNCDN),0,0)
if intRes = -1 then
 Wscript.Echo objIadsTools.LastErrorText
 WScript.Quit
end if
for count = 1 to intRes
 if strDC2GUID = objIadsTools.ReplPartnerGuid(count) then
 intDC2USN = objIadsTools.ReplPartnerUSN(count)
 end if
next

if intDC2USN = "" then
 WScript.Echo strDC2Name & " is not a replication partner with " & _
 strDC1Name
end if
intRes = objIadsTools.GetReplicationUSNState(Cstr(strDC2Name), _
 Cstr(strNCDN),0,0)
if intRes = -1 then
 Wscript.Echo objIadsTools.LastErrorText
 WScript.Quit
end if
for count = 1 to intRes
 if strDC1GUID = objIadsTools.ReplPartnerGuid(count) then
 intDC1USN = objIadsTools.ReplPartnerUSN(count)
 end if
next
if intDC2USN = "" then
 WScript.Echo strDC1Name & " is not a replication partner with " & _
 strDC2Name
end if

' ----------------------------------
' Now that we have retrieved the highest USN for both partners,
' the GetMetaDataDifferences method will return what needs to be
' replicated
' ----------------------------------
intRes = objIadsTools.GetMetaDataDifferences(Cstr(strDC1Name), _
 Cstr(intDC1USN), _
 Cstr(strNCDN),0)
if intRes = -1 then
 Wscript.Echo objIadsTools.LastErrorText
 WScript.Quit
end if
WScript.Echo "Data on " & strDC1Name & " but not " & strDC2Name & ":"
for count = 1 to intRes
 WScript.Echo count & ". " & _
 objIadsTools.MetaDataDifferencesObjectDN(count)
 WScript.Echo vbTab & " Attribute: " & _
 objIadsTools.MetaDataDifferencesAttribute(count)
 WScript.Echo vbTab & " Write time: " & _
 objIadsTools.MetaDataDifferencesLastWriteTime(count)
 WScript.Echo vbTab & " Orig Server: " & _
 objIadsTools.MetaDataDifferencesOrigServer(count)
 WScript.Echo vbTab & " Orig USN: " & _
 objIadsTools.MetaDataDifferencesOrigUSN(count)
next
WScript.Echo

intRes = objIadsTools.GetMetaDataDifferences(Cstr(strDC2Name), _
 Cstr(intDC2USN), _
 Cstr(strNCDN), 0)
if intRes = -1 then
 Wscript.Echo objIadsTools.LastErrorText

 WScript.Quit
end if
WScript.Echo "Data on " & strDC2Name & " but not " & strDC1Name & ":"
for count = 1 to intRes
 WScript.Echo count & ". " & _
 objIadsTools.MetaDataDifferencesObjectDN(count)
 WScript.Echo vbTab & " Attribute: " & _
 objIadsTools.MetaDataDifferencesAttribute(count)
 WScript.Echo vbTab & " Write time: " & _
 objIadsTools.MetaDataDifferencesLastWriteTime(count)
 WScript.Echo vbTab & " Orig Server: " & _
 objIadsTools.MetaDataDifferencesOrigServer(count)
 WScript.Echo vbTab & " Orig USN: " & _
 objIadsTools.MetaDataDifferencesOrigUSN(count)
next

12.3.3 Discussion

All three solutions show how to display the current unreplicated changes between two domain
controllers. The repadmin /showchanges command has several additional options you can use to

display the changes, including saving the output to a file for later comparison. Also, with the
/statistics option, you can view a summary of the changes.

12.3.4 See Also

See IadsTools.doc in the Support Tools for more information on the IADsTools interface

[Team LiB]

[Team LiB]

Recipe 12.4 Forcing Replication from One Domain
Controller to Another

12.4.1 Problem

You want to force replication between two partners.

12.4.2 Solution

12.4.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

Browse to the NTDS Setting object for the domain controller you want to replicate to.2.

In the right pane, right-click on the connection object to the domain controller you want to
replicate from and select Replicate Now.

3.

12.4.2.2 Using a command-line interface

The following command will perform a replication sync of the naming context specified by
<NamingContextDN> from <DC2Name> to <DC1Name>:

> repadmin /replicate <DC1Name> <DC2Name> <NamingContextDN>

The Windows 2000 version of repadmin has a different syntax to accomplish the same thing. Here is

the equivalent syntax:

> repadmin /sync <NamingContextDN> <DC1Name> <DC2GUID>

12.4.2.3 Using VBScript

' This code initiates a replication event between two DCs
' for a naming context
' ------ SCRIPT CONFIGURATION ------

strDC1Name = "<DC1Name>" ' e.g. dc1

strDC2Name = "<DC2Name>" ' e.g. dc2

strNamingContextDN = "<NamingContextDN>" ' e.g. dc=rallencorp,dc=com

' ------ END CONFIGURATION ---------

set objIadsTools = CreateObject("IADsTools.DCFunctions")
intRes = objIadsTools.ReplicaSync(Cstr(strDC1Name),_
 Cstr(strNamingContextDN),_
 Cstr(strDC2Name), 0, 0)
if intRes = -1 then
 Wscript.Echo "Error: " & objIadsTools.LastErrorText
else
 WScript.Echo "Replication intitiated from " & strDC2Name & _
 " to " & strDC1Name
end if

12.4.3 Discussion

Each solution shows how to replicate all unreplicated changes from a source domain controller to a
destination domain controller. This sync is one way. If you want to ensure that both domain
controllers are in sync, you'll need to follow the same directions except swap the domain controllers.

With repadmin you can replicate a single object instead of any unreplicated
object in a naming context by using the /replsingleobj option. This option is
only available with the Windows Server 2003 version of repadmin.

12.4.4 See Also

Recipe 12.3 for viewing unreplicated changes between two domain controllers, MS KB 232072
(Initiating Replication Between Active Directory Direct Replication Partners), and see IadsTools.doc in
the Support Tools for more information on the IADsTools interface

[Team LiB]

[Team LiB]

Recipe 12.5 Changing the Intra-Site Replication Interval

12.5.1 Problem

You want to change the number of seconds that a domain controller in a site waits before replicating
within the site.

12.5.2 Solution

12.5.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

Expand HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services NTDS
Parameters.

2.

If a value entry for Replicator notify pause after modify (secs) does not exist, right-click on
Parameters and select New DWORD Value. For the name, enter: Replicator notify pause
after modify (secs) .

3.

Double-click on the value and enter the number of seconds to wait before notifying intra-site
replication partners.

4.

Click OK.5.

12.5.2.2 Using a command-line interface

With the following command, change <NumSeconds> to the number of seconds to set the intra-site

replication delay to:

> reg add HKLM\System\CurrentControlSet\Services\NTDS\Parameters /v "Replicator [RETURN]

notify pause after modify (secs)" /t REG_DWORD /d <NumSeconds>

12.5.2.3 Using VBScript

' This code sets the intra-site delay interval
' ------ SCRIPT CONFIGURATION ------

strDC = "<DomainControllerName>" ' DC you want to configure

intNumSeconds = <NumSeconds> ' Time in seconds to delay
' ------ END CONFIGURATION ---------

const HKLM = &H80000002
strNTDSReg = "SYSTEM\CurrentControlSet\Services\NTDS\Parameters"

set objReg = GetObject("winmgmts:\\" & strDC & _
 "\root\default:StdRegProv")
objReg.SetDWORDValue HKLM, strNTDSReg, _
 "Replicator notify pause after modify (secs)", _
 intNumSeconds
WScript.Echo "Intra-site replication delay set to " & intNumSeconds

12.5.3 Discussion

After a change has been made to a domain controller's local copy of Active Directory, it waits for a period
of time before sending change notification requests to its intra-site replication partners. The default delay
on Windows 2000 domain controllers is five minutes. For Windows Server 2003, the default delay has
been changed to 15 seconds. You can customize this notification delay by changing the registry value,
Replicator notify pause after modify (secs), on the domain controllers, as described in the Solution
section.

If you are changing this setting on Windows 2000 domain controllers, Microsoft
recommends removing it after upgrading to Windows Server 2003 in order to utilize
the new default of 15 seconds.

12.5.4 See Also

MS KB 214678 (How to Modify the Default Intra-Site Domain Controller Replication Interval)

[Team LiB]

[Team LiB]

Recipe 12.6 Changing the Inter-Site Replication Interval

12.6.1 Problem

You want to set the schedule for replication for a site link.

12.6.2 Solution

These solutions assume the IP transport, but the SMTP transport could be used as well.

12.6.2.1 Using a graphical user interface

Open the Active Directory Sites and Services snap-in.1.

Expand the Inter-Site Transport container.2.

Click on the IP container.3.

In the right pane, double-click on the site link you want to modify the replication interval for.4.

Enter the new interval beside Replicate every.5.

Click OK.6.

12.6.2.2 Using a command-line interface

To change the replication interval, create an LDIF file named set_link_rep_interval.ldf with the
following contents:

dn: cn=<LinkName>,cn=ip,cn=Inter-Site Transports,cn=sites,

cn=configuration,<ForestRootDN>
changetype: modify
replace: replInterval

replInterval: <NewInterval>
-

then run the following command:

> ldifde -v -i -f set_link_rep_interval.ldf

12.6.2.3 Using VBScript

' This code sets the replication interval for a site link
' ------ SCRIPT CONFIGURATION ------

strLinkName = "<LinkName>" ' cn of the link you want to configure

intNewInterval = <NewInterval> ' replication interval in minutes
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objLink = GetObject("LDAP://cn=" & strLinkName & _
 ",cn=IP,cn=Inter-site Transports,cn=sites," & _
 objRootDSE.Get("configurationNamingContext"))
objLink.Put "replInterval", intNewInterval
objLink.SetInfo
WScript.Echo "Set interval for link " & objLink.Get("cn") & _
 " to " & intNewInterval

12.6.3 Discussion

To configure the inter-site replication interval between two sites, you need to set the replInterval

attribute on the site-link object that connects the two sites. The value of the attribute should be the
replication interval in minutes. The default value is 180 minutes (3 hours) and the minimum is 15
minutes

[Team LiB]

[Team LiB]

Recipe 12.7 Disabling Inter-Site Compression of
Replication Traffic

12.7.1 Problem

You want to disable inter-site compression of replication traffic.

12.7.2 Solution

You need to modify the options attribute of the site-link object that connects the sites you want to

disable compression for. Site-link objects are stored in the following location:

cn=IP,cn=Inter-site Transports,cn=Sites,cn=Configuration,<ForestRootDN>

The options attribute is a bit flag. In order to disable compression, you must set bit 4, or 0100 in

binary. If the attribute is currently unset, you can simply set it to 4. If it contains a value, you should
see Recipe 4.12 for more information on properly setting bit flags.

12.7.3 Discussion

By default, data replicated inter-site is compressed. By contrast, intra-site replication traffic is not
compressed. It is useful to compress inter-site traffic if the traffic is going over a WAN on the
assumption that the less traffic the better. The trade-off to reduce WAN traffic is increased CPU
utilization on the bridgehead servers replicating the data. If CPU utilization is an issue on your
bridgehead servers and you aren't as concerned about the amount of traffic being replicated, you
should consider disabling inter-site compression.

12.7.4 See Also

Recipe 4.12 for setting bit flag attributes

[Team LiB]

[Team LiB]

Recipe 12.8 Checking for Potential Replication Problems

12.8.1 Problem

You want to determine if replication is succeeding.

12.8.2 Solution

The following two commands will help identify problems with replication on a source domain
controller:

> dcdiag /test:replications
> repadmin /showrepl /errorsonly

12.8.3 Discussion

For a more detailed report, you can use the Replication Monitor (replmon.exe). The Generate Status

Report option will produce a lengthy report of site topology, replication information, and provide
details on any errors encountered. The Directory Service event log can also be an invaluable source
of replication and KCC problems.

12.8.4 See Also

Recipe 12.2 for viewing the replication status of several domain controllers

[Team LiB]

[Team LiB]

Recipe 12.9 Enabling Enhanced Logging of Replication
Events

12.9.1 Problem

You want to enable enhanced logging of replication events.

12.9.2 Solution

Enable diagnostics logging for 5 Replication Events. See Recipe 15.2 for more information.

12.9.3 See Also

MS KB 220940 (How to Enable Diagnostic Event Logging for Active Directory Services)

[Team LiB]

[Team LiB]

Recipe 12.10 Enabling Strict or Loose Replication
Consistency

12.10.1 Problem

You want to enable strict or loose replication consistency.

12.10.2 Solution

12.10.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

Expand HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services NTDS
 Parameters.

2.

If the Strict Replication Consistency value does not exist, right-click on Parameters and select
New DWORD Value. For the name, enter Strict Replication Consistency.

3.

In the right pane, double-click on the value and enter 1 to enable strict consistency or 0 to
enable loose consistency.

4.

Click OK.5.

12.10.2.2 Using a command-line interface

To enable strict consistency, run the following command:

> reg add HKLM\System\CurrentControlSet\Services\NTDS\Parameters /v "Strict [RETURN]
Replication Consistency" /t REG_DWORD /d 1

To enable loose consistency, run the following command:

> reg add HKLM\System\CurrentControlSet\Services\NTDS\Parameters /v "Strict [RETURN]
Replication Consistency" /t REG_DWORD /d 0

12.10.2.3 Using VBScript

' This code enables strict or loose consistency on the specified DC.

' ------ SCRIPT CONFIGURATION ------
intEnableStrict = 1 ' 1 = strict consistency, 0 = loose consistency

strDC = "<DomainControllerName>"
' ------ END CONFIGURATION ---------

const HKLM = &H80000002
strNTDSReg = "SYSTEM\CurrentControlSet\Services\NTDS\Parameters"
set objReg = GetObject("winmgmts:\\" & strDC & _
 "\root\default:StdRegProv")
objReg.SetDWORDValue HKLM, strNTDSReg, "Strict Replication Consistency", _
 intEnableStrict
WScript.Echo "Strict Replication Consistency value set to " & _
 intEnableStrict

12.10.3 Discussion

Up until Windows 2000 Service Pack (SP) 3, domain controllers followed a loose replication
consistency model whereby lingering objects could get reinjected into Active Directory and replicate
among all the domain controllers. A lingering object is one that was previously deleted, but got
reintroduced because a domain controller did not successfully replicate for the duration of the time
defined by the tombStoneLifetime attribute or was restored using a backup that was older than the
tombStoneLifetime. See Introduction in Chapter 16 for more on the tombStoneLifetime attribute.

Windows 2000 SP2 and earlier domain controllers would replicate the lingering object throughout the
naming context. Loose consistency has the potential to cause some security risks since an object you
thought was deleted is now back in the forest again.

Some post-SP2 hotfixes and SP3 introduced strict replication consistency. Under strict replication, a
domain controller will stop replicating with a destination domain controller when it determines that the
source is attempting to replicate a lingering object. Event id 1084 will get logged in the Directory
Service event log indicating that it couldn't replicate the lingering object. Although strict replication
can halt replication, it is the preferable method and is a good check to ensure lingering objects do not
infiltrate your forest. For this reason, you must monitor your domain controllers to ensure they are
replicating on a regular basis and do not have any 1084 events.

12.10.4 See Also

See the Introduction in Chapter 16 for more on the tombStoneLifetime attribute, MS KB 317097

(Lingering Objects Prevent Active Directory Replication from Occurring), and MS KB 314282
(Lingering Objects May Remain After You Bring an Out-of-Date Global Catalog Server Back Online)

[Team LiB]

[Team LiB]

Recipe 12.11 Finding Conflict Objects

12.11.1 Problem

You want to find conflict objects that are a result of replication collisions.

12.11.2 Solution

12.11.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).3.

For Port, enter 389 or 3268 for the global catalog.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials (if necessary) of a user that can view the object.7.

Click OK.8.

From the menu, select Browse Search.9.

For BaseDN, type the base DN from where you want to start the search.10.

For Scope, select the appropriate scope.11.

For Filter, enter (|(cn=*\0ACNF:*)(ou=*\0ACNF:*)).12.

Click Run.13.

12.11.2.2 Using a command-line interface

The following command finds all conflict objects within the whole forest:

> dsquery * forestroot -gc -attr distinguishedName -scope subtree -filter [RETURN]

"(|(cn=*\0ACNF:*)(ou=*\0ACNF:*))"

12.11.2.3 Using VBScript

' This code finds any conflict objects in a forest.
' If the search times out, you may need to change strBase to
' a specific OU or container
' ------ SCRIPT CONFIGURATION ------

strBase = "<GC://" & "<ForrestRootDN>" & ">;"
' ------ END CONFIGURATION ---------

strFilter = "(|(cn=*\0ACNF:*)(ou=*\0ACNF:*));"
strAttrs = "distinguishedName;"
strScope = "Subtree"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open
Set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)

WScript.Echo objRS.RecordCount & " conflict objects found"
while not objRS.EOF
 Wscript.Echo objRS.Fields.Item("distinguishedName").Value
 objRS.MoveNext
wend

12.11.3 Discussion

Any distributed multi-master system has to deal with replication collisions, and Active Directory is no
different. A collision can occur if an object is created on one domain controller and before that object
has time to replicate out, an object with at least the same name, if not identical, is created on a
different domain controller. So which object wins? With Active Directory, the last object created wins
and gets to keep its name while the first object created has to be renamed. The format of the
renamed object is:

<ObjectName>\0CNF:<ObjectGUID>

where <ObjectName> is the original name of the object, followed by a null termination character,

followed by CNF:, followed by the object's GUID.

It is good to periodically scan your Active Directory tree to ensure you do not have a lot of conflict
objects hanging around. It is a bit problematic to find conflict objects in a single query because the
filter to find them is not optimized. In all three solutions, you have to perform a leading and trailing
match pattern search (with *) and this can easily timeout if you have a lot of objects. You may want
to restrict your initial search to a few containers so the search is quicker. Most notably, you'll want to
search against your containers that have computer objects because they can frequently generate

conflict objects. This can occur when a computer account is created, joined to a domain, and then the
computer reboots. After the computer starts up, if it authenticates against a domain controller that
has not replicated the new computer object, the domain controller will add a new object, which
eventually results in a conflict.

See MS KB 297083 for more information on how to handle conflict objects after you've identified
them.

12.11.4 See Also

MS KB 218614 (Replication Collisions in Windows 2000) and MS KB 297083 (How to Rename an Object
After a Replication Collision Has Occurred)

[Team LiB]

[Team LiB]

Recipe 12.12 Viewing Object Metadata

12.12.1 Problem

You want to view metadata for an object. The object's replPropertyMetaData attribute stores

metadata information about the most recent updates to every attribute that has been set on the
object.

12.12.2 Solution

12.12.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller or domain that contains the object.3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials (if necessary) of a user that can view the object.7.

Click OK.8.

From the menu, select Browse Replication View Metadata.9.

For Object DN, type the distinguished name of the object you want to view.10.

Click OK.11.

12.12.2.2 Using a command-line interface

In the following command, replace <ObjectDN> with the distinguished name of the object for which

you want to view metadata:

> repadmin /showobjmeta <DomainControllerName> <ObjectDN>

This command was called /showmeta in the Windows 2000 version of repadmin. Also, the parameters

are switched in that version, where <ObjectDN> comes before <DomainControllerName>.

12.12.2.3 Using VBScript

' This code displays the meta data for the specified object.
' ------ SCRIPT CONFIGURATION ------

strObjectDN = "<ObjectDN>" ' e.g. dc=rallencorp,dc=com

strDC = "<DomainControllerName>" ' e.g. dc1
' ------ END CONFIGURATION ---------

set objIadsTools = CreateObject("IADsTools.DCFunctions")
intRes = objIadsTools.GetMetaData(Cstr(strDC),Cstr(strObjectDN),0)

if intRes = -1 then
 Wscript.Echo objIadsTools.LastErrorText
 WScript.Quit
end if

for count = 1 to intRes
 WScript.Echo count & ". " & objIadsTools.MetaDataName(count)
 WScript.Echo vbTab & " Version: " & _
 objIadsTools.MetaDataVersionNumber(count)
 WScript.Echo vbTab & " Last Write: " & _
 objIadsTools.MetaDataLastWriteTime(count)
 WScript.Echo vbTab & " Local USN: " & _
 objIadsTools.MetaDataLocalUSN(count)
 WScript.Echo vbTab & " Source USN: " & _
 objIadsTools.MetaDataSourceUSN(count)
 WScript.Echo vbTab & " Server: " & _
 objIadsTools.MetaDataServerName(count)
next

12.12.3 Discussion

Object metadata can be an invaluable source of information when you need to troubleshoot
replication problems or find out the last time an attribute was set for a particular object. In fact, a
quick way to determine if two domain controllers have the same copy of an object is to look at the
metadata on both servers for the object. If they both have the same metadata, then they have the
same version of the object.

Unfortunately, the replPropertyMetaData attribute is stored as an octet string, so you cannot

simply read the attribute to view all of the metadata information. In the VBScript solution, the
IADsTool GetMetaData method is a wrapper around the DsReplicaGetInfo method call. This method
understands the format of the replPropertyMetaData attribute and can return it into a readable

format. The following data is stored for each attribute that has been set on the object:

Attribute ID

Attribute that was updated.

Attribute version

Number of originating writes to the property.
Local USN

USN of the property on the local DC. This will be the same as the originating DC if the
originating DC and local DC are the same.

Originating USN

USN stored with the property when the update was made on the originating DC.
Originating DC

DC that the originating write was made on.
Time/Date

Time and date property was changed in UTC.

12.12.4 See Also

See IadsTools.doc in the Support Tools for more information on the IADsTools interface

[Team LiB]

[Team LiB]

Chapter 13. Domain Name System (DNS)
Introduction

Recipe 13.1. Creating a Forward Lookup Zone

Recipe 13.2. Creating a Reverse Lookup Zone

Recipe 13.3. Viewing a Server's Zones

Recipe 13.4. Converting a Zone to an AD-Integrated Zone

Recipe 13.5. Moving AD-Integrated Zones into an Application Partition

Recipe 13.6. Delegating Control of a Zone

Recipe 13.7. Creating and Deleting Resource Records

Recipe 13.8. Querying Resource Records

Recipe 13.9. Modifying the DNS Server Configuration

Recipe 13.10. Scavenging Old Resource Records

Recipe 13.11. Clearing the DNS Cache

Recipe 13.12. Verifying That a Domain Controller Can Register Its Resource Records

Recipe 13.13. Registering a Domain Controller's Resource Records

Recipe 13.14. Preventing a Domain Controller from Dynamically Registering All Resource
Records

Recipe 13.15. Preventing a Domain Controller from Dynamically Registering Certain Resource
Records

Recipe 13.16. Deregistering a Domain Controller's Resource Records

Recipe 13.17. Allowing Computers to Use a Different Domain Suffix from Their AD Domain
[Team LiB]

[Team LiB]

Introduction

Active Directory is tightly coupled with the Domain Name System (DNS). Both clients and domain
controllers use DNS to locate domain controllers in a particular site or that serve a particular function.
Each domain controller requires numerous resource records to be present in DNS so it can advertise
its services as a domain controller, global catalog server, PDC Emulator, etc. For a detailed
description of each of these records plus much more on DNS, see Chapter 6 in Active Directory,
Second Edition (O'Reilly).

One of the innovative uses of Active Directory is as a store of DNS data. Instead of using the
antiquated primary and secondary zone transfer method or even the more recent NOTIFY method
(RFC 1996) to replicate zone data between servers, AD-integrated zones store the zone data in
Active Directory and use the same replication process used to replicate other data between domain
controllers. The one catch with AD-integrated zones is that the DNS server must also be a domain
controller. Overloading DNS server responsibilities on your domain controllers may not be something
you want to do if you plan on supporting a large volume of DNS requests.

The Anatomy of a DNS Object

The only time DNS data is stored in Active Directory is if you have a zone that is AD-integrated. When
using standard primary and secondary zones that are not AD-integrated, the DNS data is stored
locally in the file system of each DNS server in zone files. If you have an AD-integrated zone under
Windows 2000, a container is created in the following location:
cn=<ZoneName>,cn=MicrosoftDNS,cn=System,<DomainDN>, where <ZoneName> is the name of the

zone. For Windows Server 2003, you can use application partitions to store DNS data in an alternate
location. By default, there are three options:

Store DNS data on all domain controllers in a domain (only option for Windows 2000).

Store DNS data on all domain controllers that are DNS servers in the domain.

Store DNS data on all domain controllers that are DNS servers in the forest.

The default location for the second option is dc=DomainDNSZones,<DomainDN> and for the third

option, it is dc=ForestDNSZones,<ForestDN>. These two locations are actually application partitions

that are replicated only to the domain controllers that are DNS servers in the domain or forest,
respectively.

Inside the MicrosoftDNS container, is a dnsZone object for each AD-integrated zone. Inside of the
dnsZone container are dnsNode objects, which stores all resource records associated with a particular

node. In the following textual representation of an A record, the dc1.rallencorp.com name is
considered a node (generally the left side of the resource record).

dc1.rallencorp.com. 600 IN A 6.10.57.21

There could be multiple resource records associated with the dc1.rallencorp.com name, so Microsoft
decided to implement each distinct name as a dnsNode object. The dnsNode object has a dnsRecord

attribute, which is multivalued and contains all of the resource records associated with that node.
Unfortunately, the contents of that attribute are stored in a binary format and are not directly
readable.

Table 13-1 and Table 13-2 contain some of the interesting attributes that are available on dnsZone
and dnsNode objects, respectively.

Table 13-1. Attributes of dnsZone objects

Attribute Description

dc Relative distinguished name of the zone.

dnsProperty
Binary formatted string that stores configuration information about
the zone.

msDS-Approx-Immed-
Subordinates

Approximate number of nodes contained within the zone. This is new
to Windows Server 2003.

Table 13-2. Attributes of dnsNode objects

Attribute Description

dc Relative distinguished name of the node.

dnsRecord
Binary formatted multivalued attribute that stores the resource records associated
with the node.

dnsTombstoned
Boolean that indicates whether the node is marked for deletion. FALSE means it is
not and TRUE means that it is.

[Team LiB]

[Team LiB]

Recipe 13.1 Creating a Forward Lookup Zone

13.1.1 Problem

You want to create a forward lookup zone. A forward lookup zone maps names to IP addresses or
other names.

13.1.2 Solution

13.1.2.1 Using a graphical user interface

Open the DNS Management snap-in.1.

If an entry for the DNS server you want to connect to does not exist, right-click on DNS in the
left pane and select Connect to DNS Server. Select This computer or The following computer,
enter the server you want to connect to (if applicable), and click OK.

2.

Expand the server in the left pane and click on Forward Lookup Zones.3.

Right-click on Forward Lookup Zones and select New Zone.4.

Click Next.5.

Select the zone type and click Next.6.

If you selected to store the zone data in Active Directory, next you will be asked which servers
you want to replicate the DNS data to. Click Next after you make your selection. (This only
applies for Windows Server 2003).

7.

Enter the zone name and click Next.8.

Fill out the information for the remaining screens. They will vary depending on if you are
creating a primary, secondary, or stub zone.

9.

13.1.2.2 Using a command-line interface

The following command creates an AD-Integrated zone:

> dnscmd <DNSServerName> /zoneadd <ZoneName> /DsPrimary

13.1.2.3 Using VBScript

' This code creates an AD-Integrated forward zone.
' ------ SCRIPT CONFIGURATION ------

strServer = "<DNSServerName>" ' e.g. dc1.rallencorp.com

strNewZone = "<ZoneName>" ' e.g. othercorp.com
' ------ END CONFIGURATION ---------

set objDNS = GetObject("winMgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSZone = objDNS.Get("MicrosoftDNS_Zone")
strNull = objDNSZone.CreateZone(strNewZone, 0 , True)
WScript.Echo "Created zone " & strNewZone

13.1.3 Discussion

13.1.3.1 Using a command-line interface

When you create an AD-integrated zone with the /DsPrimary switch, you can additionally include a
/dp switch and specify an application partition to add the zone to. Here is an example:

> dnscmd /zoneadd <ZoneName> /DsPrimary /dp domaindnszones.rallencorp.com

13.1.3.2 Using VBScript

The DNS WMI Provider is Microsoft's first comprehensive DNS API. You can create and modify zones,
query and manage resource records, and manipulate DNS server configuration. In the VBScript
solution, the CreateZone method of the MicrosoftDNS_Zone class was used to create the forward

zone.

13.1.4 See Also

Recipe 13.2 for creating a reverse lookup zone, MS KB 323445 (HOW TO: Create a New Zone on a
DNS Server in Windows Server 2003), MSDN: DNS WMI Provider, and MSDN: CreateZone Method of
the MicrosoftDNS_Zone Class

[Team LiB]

[Team LiB]

Recipe 13.2 Creating a Reverse Lookup Zone

13.2.1 Problem

You want to create a reverse lookup zone. A reverse lookup zone maps IP addresses to names.

13.2.2 Solution

13.2.2.1 Using a graphical user interface

Open the DNS Management snap-in.1.

If an entry for the DNS server you want to connect to does not exist, right-click on DNS in the
left pane and select Connect to DNS Server. Select This computer or The following computer,
enter the server you want to connect to (if applicable), and click OK.

2.

Expand the server in the left pane and click on Reverse Lookup Zones.3.

Right-click on Reverse Lookup Zones and select New Zone.4.

Click Next.5.

Select the zone type and click Next.6.

If you selected to store the zone data in Active Directory, next you will be asked which servers
you want to replicate the DNS data to. Click Next after you make your selection. (This only
applies for Windows Server 2003).

7.

Type the Network ID for the reverse zone or enter a reverse zone name to use.8.

Fill out the information for the remaining screens. They will vary depending on if you are
creating a primary, secondary, or stub zone.

9.

13.2.2.2 Using a command-line interface

The following command creates an AD-integrated reverse zone:

> dnscmd <DNSServerName> /zoneadd <ZoneName> /DsPrimary

13.2.2.3 Using VBScript

' This code creates an AD-integrated reverse zone.
' ------ SCRIPT CONFIGURATION ------

strServer = "<DNSServerName>" ' e.g. dc1.rallencorp.com

strNewZone = "<ZoneName>" ' e.g. 8.10.192.in-addr.arpa.
' ------ END CONFIGURATION ---------

set objDNS = GetObject("winMgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSZone = objDNS.Get("MicrosoftDNS_Zone")
strNull = objDNSZone.CreateZone(strNewZone, 0 , True)
WScript.Echo "Created zone " & strNewZone

13.2.3 Discussion

Creating a reverse zone is very similar to creating a forward zone. See Recipe 13.1 for more
information.

13.2.4 See Also

MS KB 323445 (HOW TO: Create a New Zone on a DNS Server in Windows Server 2003) and MSDN:
CreateZone Method of the MicrosoftDNS_Zone Class

[Team LiB]

[Team LiB]

Recipe 13.3 Viewing a Server's Zones

13.3.1 Problem

You want to view the zones on a server.

13.3.2 Solution

13.3.2.1 Using a graphical user interface

Open the DNS Management snap-in.1.

Right-click on DNS in the left pane and select Connect to DNS Server.2.

Enter the server you want to connect to and click Enter.3.

In the left pane, expand the server and click Forward Lookup Zones and Reverse Lookup Zones
to view the supported zones.

4.

13.3.2.2 Using a command-line interface

> dnscmd <DNSServerName> /enumzones

13.3.2.3 Using VBScript

' This code lists the zones that are supported by the specified server.
' ------ SCRIPT CONFIGURATION ------

strServer = "<DNSServerName>" ' e.g. dc1.rallencorp.com
' ------ END CONFIGURATION ---------

set objDNS = GetObject("winMgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")
set objZones = objDNS.ExecQuery("Select * from MicrosoftDNS_Zone " & _
 "Where DnsServerName = '" & _
 objDNSServer.Name & "'")
WScript.Echo "Zones on " & objDNSServer.Name
for each objZone in objZones
 WScript.Echo " " & objZOne.Name
next

13.3.3 Discussion

13.3.3.1 Using a graphical user interface

When you click on either the Forward Lookup Zones or Reverse Lookup Zones in the left pane, the
right pane contains a Type column that displays the zone type for each zone.

13.3.3.2 Using a command-line interface

When using the /enumzones switch without any more parameters, it displays all zones on the server.

You can specify additional filters that limit the types of zones returned. With the Windows 2000
version of dnscmd, you can specify up to two filters:

Filter1:
 /Primary
 /Secondary
 /Cache
 /Auto-Created
Filter2:
 /Forward
 /Reverse

With the Windows Server 2003 version of dnscmd, the filter behavior has changed. Instead of having

two levels of criteria you can specify one or more of the following:

/Primary
/Secondary
/Forwarder
/Stub
/Cache
/Auto-Created
/Forward
/Reverse
/Ds
/File
/DomainDirectoryPartition
/ForestDirectoryPartition
/CustomDirectoryPartition
/LegacyDirectoryPartition

/DirectoryPartition <PartitionName>

13.3.3.3 Using VBScript

A WQL query was used to find all MicrosoftDNS_Zone objects. You can add additional criteria to the
WQL Select statement to return a subset of zones supported on the server.

13.3.4 See Also

MSDN: MicrosoftDNS_Zone

[Team LiB]

[Team LiB]

Recipe 13.4 Converting a Zone to an AD-Integrated Zone

13.4.1 Problem

You want to convert a primary zone to an AD-integrated zone. This causes the contents of the zone
to be stored and replicated in Active Directory instead of in a text file.

13.4.2 Solution

13.4.2.1 Using a graphical user interface

Open the DNS Management snap-in.1.

Right-click on DNS in the left pane and select Connect to DNS Server.2.

Enter the server you want to connect to and click Enter.3.

If you want to convert a forward zone, expand the Forward Lookup Zone folder. If you want to
convert a reverse zone, expand the Reverse Lookup Zone folder.

4.

Click on the zone you want to convert, then right-click it and select Properties.5.

Beside Type, click the Change button.6.

Check the box beside Store the zone in Active Directory.7.

Click OK twice.8.

13.4.2.2 Using a command-line interface

> dnscmd <ServerName> /zoneresettype <ZoneName> /DsPrimary

13.4.2.3 Using VBScript

' This code converts a zone to AD-integrated.
' ------ SCRIPT CONFIGURATION ------

strZone = "<ZoneName>" ' e.g. rallencorp.com

strServer = "<ServerName>" ' e.g. dc1.rallencorp.com
' ------ END CONFIGURATION ---------

set objDNS = GetObject("winMgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")
set objDNSZone = objDNS.Get("MicrosoftDNS_Zone.ContainerName=""" & _
 strZone & """,DnsServerName=""" & _
 objDNSServer.Name & """,Name=""" & strZone & """")
strNull = objDNSZone.ChangeZoneType(0, True)
objDNSZone.Put_
WScript.Echo "Converted " & strZone & " to AD-Integrated"

13.4.3 Discussion

See Introduction in Chapter 13 and Recipe 13.5 for more on AD-integrated zones.

13.4.4 See Also

MS KB 198437 (How to Convert DNS Primary Server to Active Directory Integrated), MS KB 227844
(Primary and Active Directory Integrated Zones Differences), and MSDN: ChangeZoneType Method of
the MicrosoftDNS_Zone Class

[Team LiB]

[Team LiB]

Recipe 13.5 Moving AD-Integrated Zones into an
Application Partition

This recipe requires the Windows Server 2003 domain functional level.

13.5.1 Problem

You want to move AD-integrated zones into an application partition.

13.5.2 Solution

13.5.2.1 Using a graphical user interface

Open the DNS Management snap-in.1.

If an entry for the DNS server you want to connect to does not exist, right-click on DNS in the
left pane and select Connect to DNS Server. Select This computer or The following computer,
enter the server you want to connect to (if applicable), and click OK.

2.

Expand the server in the left pane and expand either Forward Lookup Zones or Reverse Lookup
Zones depending on the type of zone.

3.

Click on the name of the zone.4.

Right-click on the zone and select Properties.5.

Click on the Change button beside Replication.6.

Select the application partition you want to move the zone into.7.

Click OK twice.8.

13.5.2.2 Using a command-line interface

The following command will move a zone to the default application partition that replicates across all
domain controllers that are DNS servers in the domain:

> dnscmd <DNSServerName> /zonechangedirectorypartition <ZoneName> /domain

13.5.2.3 Using VBScript

At the time of publication of this book, the DNS WMI Provider did not support programmatically
moving a zone into an application partition.

13.5.3 Discussion

With Windows 2000 Active Directory, if you had AD-integrated zones, those zones were replicated to
every domain controller in the domain where they were stored. In many cases, not every domain
controller also serves as a DNS server, which results in increased and unnecessary traffic to replicate
changes with the zone(s).

Windows Server 2003 provides an elegant solution to this issue by using application partitions.
Application partitions are user-defined partitions that can be configured to replicate with any domain
controller in a forest. This provides a lot more flexibility for how you store and replicate your AD-
integrated zones. You could, in fact, have a couple domain controllers from each domain act as DNS
servers for all of your AD domains.

13.5.4 See Also

Chapter 17 for more information on application partitions

[Team LiB]

[Team LiB]

Recipe 13.6 Delegating Control of a Zone

13.6.1 Problem

You want to delegate control of managing the resource records in a zone.

13.6.2 Solution

13.6.2.1 Using a graphical user interface

Open the DNS Management snap-in.1.

If an entry for the DNS server you want to connect to does not exist, right-click on DNS in the
left pane and select Connect to DNS Server. Select This computer or The following computer,
enter the server you want to connect to (if applicable), and click OK.

2.

Expand the server in the left pane and expand either Forward Lookup Zones or Reverse Lookup
Zones depending on the type of zone.

3.

Click on the name of the zone.4.

Right-click on the zone and select Properties.5.

Click on the Security tab.6.

Click the Add button.7.

Use the Object Picker to locate the user or group to which you want to delegate control.8.

Under Permissions, check the Full Control box.9.

Click OK.10.

13.6.2.2 Using a command-line interface

The following command grants full control over managing the resource records in an AD-Integrated
zone:

> dsacls dc=<ZoneName>,cn=MicrosoftDNS,<DomainOrAppPartitionDN> /G[RETURN]

 <UserOrGroup>:GA;;

13.6.2.3 Using VBScript

' This code grants full control for the specified user or group over
' an AD-Integrated zone.
' ------ SCRIPT CONFIGURATION ------

strZoneDN = "dc=<ZoneName>,cn=MicrosoftDNS,<DomainOrAppPartitionDN>"

strUserOrGroup = "<UserOrGroup>" ' e.g. joe@rallencorp.com or RALLENCORP\joe
' ------ END CONFIGURATION ---------

set objZone = GetObject("LDAP://" & strZoneDN)
'############################
' Constants
'############################

' ADS_ACETYPE_ENUM
Const ADS_ACETYPE_ACCESS_ALLOWED_OBJECT = &h5

' ADS_FLAGTYPE_ENUM
Const ADS_FLAG_OBJECT_TYPE_PRESENT = &h1

' ADS_RIGHTS_ENUM
Const ADS_RIGHT_GENERIC_ALL = &h10000000

'############################
' Create ACL
'############################

set objSD = objZone.Get("ntSecurityDescriptor")
set objDACL = objSD.DiscretionaryAcl

' Full Control
set objACE1 = CreateObject("AccessControlEntry")
objACE1.Trustee = strUserOrGroup
objACE1.AccessMask = ADS_RIGHT_GENERIC_ALL
objACE1.AceFlags = 0
objACE1.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE1.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT

objDACL.AddAce objACE1

'############################
' Set ACL
'############################
objSD.DiscretionaryAcl = objDACL
objZone.Put "ntSecurityDescriptor", objSD
objZone.SetInfo
WScript.Echo "Delegated control of " & strZoneDN & " to " & strUserOrGroup

13.6.3 Discussion

By default, members of the DNSAdmins group have control over DNS server and zone configuration.

You can delegate control of individual AD-integrated zones by modifying permissions on the zone
object in AD. The solutions show examples for how to grant Full Control to a user or group over a
particular zone.

13.6.4 See Also

MS KB 256643 (Unable to Prevent DNS Zone Administrator from Creating New Zones)

[Team LiB]

[Team LiB]

Recipe 13.7 Creating and Deleting Resource Records

13.7.1 Problem

You want to create and delete resource records.

13.7.2 Solution

13.7.2.1 Using a graphical user interface

Open the DNS Management snap-in.1.

If an entry for the DNS server you want to connect to does not exist, right-click on DNS in the
left pane and select Connect to DNS Server. Select This computer or The following computer,
enter the server you want to connect to (if applicable), and click OK.

2.

If you want to add or delete a record in a forward zone, expand the Forward Lookup Zone
folder. If you want to add or delete a record for a reverse zone, expand the Reverse Lookup
Zone folder.

To create a resource record, do the following:

3.

In the left pane, right-click the zone and select the option that corresponds to the record type
you want to create-e.g., New Host (A).

4.

Fill in all required fields.5.

Click OK.

To delete a resource record, do the following:

6.

In the left pane, click on the zone the record is in.7.

In the right pane, right-click on the record you want to delete and select Delete.8.

Click Yes to confirm.9.

13.7.2.2 Using a command-line interface

To add a resource record, use the following command:

> dnscmd <DNSServerName> /recordadd <ZoneName> <NodeName> <RecordType> <RRData>

The following command adds an A record in the rallencorp.com zone:

> dnscmd dc1 /recordadd rallencorp.com wins01 A 19.25.52.2.25

To delete a resource record, use the following command:

> dnscmd <DNSServerName> /recorddelete <ZoneName> <NodeName> <RecordType> <RRData>

The following command deletes an A record in the rallencorp.com zone:

> dnscmd dc1 /recorddelete rallencorp.com wins01 A 19.25.52.2.25

13.7.2.3 Using VBScript

' This code shows how to add an A record and PTR record using
' the DNS WMI Provider
' ------ SCRIPT CONFIGURATION ------
strForwardRRAdd = "test-xp.rallencorp.com. IN A 192.32.64.13"
strReverseRRAdd = "13.64.32.192.in-addr.arpa IN PTR test-xp.rallencorp.com"
strForwardDomain = "rallencorp.com"
strReverseDomain = "192.in-addr.arpa."
' ------ END CONFIGURATION ---------

set objDNS = GetObject("winMgmts:root\MicrosoftDNS")
set objRR = objDNS.Get("MicrosoftDNS_ResourceRecord")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")

' Create the A record
strNull = objRR.CreateInstanceFromTextRepresentation(_
 objDNSServer.Name, _
 strForwardDomain, _
 strForwardRRAdd, _
 objOutParam)
set objRR2 = objDNS.Get(objOutParam)
WScript.Echo "Created Record: " & objRR2.TextRepresentation

' Create the PTR record
strNull = objRR.CreateInstanceFromTextRepresentation(_
 objDNSServer.Name, _
 strReverseDomain, _
 strReverseRRAdd, _
 objOutParam)
set objRR2 = objDNS.Get(objOutParam)
WScript.Echo "Created Record: " & objRR2.TextRepresentation
' This code shows how to delete an A and PTR record for the record
' I created in the previous example.

strHostName = "test-xp.rallencorp.com."

set objDNS = GetObject("winMgmts:root\MicrosoftDNS")

set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")

set objRRs = objDNS.ExecQuery(" select * " & _
 " from MicrosoftDNS_ResourceRecord " & _
 " where OwnerName = """ & strHostName & """" & _
 " Or RecordData = """ & strHostName & """")
if objRRs.Count < 1 then
 WScript.Echo "No matches found for " & strHostName
else
 for each objRR in objRRs
 objRR.Delete_
 WScript.Echo "Deleted " & objRR.TextRepresentation
 next
end if

13.7.3 Discussion

13.7.3.1 Using a graphical user interface

The DNS Management snap-in is good for creating a small number of records, but if you need to add
or delete more than a couple of dozen, then I'd recommend writing a batch file around dnscmd or

preferably, use the DNS WMI Provider.

13.7.3.2 Using a command-line interface

Adding A, CNAME, and PTR resource records is pretty straightforward as far as the data you must
enter, but other record types, such as SRV, require quite a bit more data. The help pages for
/recordadd and /recorddelete display the required information for each record type.

13.7.3.3 Using VBScript

In the first example, I created A and PTR records using the CreateInstanceFrom
TextRepresentation method, which is a MicrosoftDNS_ResourceRecord method that allows you to

create resource records by passing in the textual version of the record. This is the textual
representation of the A record used in the example:

test-xp.rallencorp.com IN A 192.32.64.13

The first parameter to this method is the DNS server name, the second is the name of the domain to
add the record to, the third is the resource record, and the last is an out parameter that returns a
reference to the new resource record.

In the second example, I find all resource records that match a certain hostname and delete them.
This is done by first using a WQL query to find all resource records where the OwnerName equals the
target host name (this will match any A records) and where RecordData equals the target host name
(this will match any PTR records). The Delete_ method is called on each matching record, removing

them on the DNS server.

13.7.4 See Also

MSDN: MicrosoftDNS_ResourceRecord

[Team LiB]

[Team LiB]

Recipe 13.8 Querying Resource Records

13.8.1 Problem

You want to query resource records.

13.8.2 Solution

13.8.2.1 Using a graphical user interface

The DNS Management snap-in does not provide an interface for searching resource records.

13.8.2.2 Using a command-line interface

In the following command, replace <RecordType> with the type of resource record you want to find

(e.g., A, CNAME, SRV) and <RecordName> with the name or IP address of the record to match:

> nslookup -type=<RecordType> <RecordName>

13.8.2.3 Using VBScript

' This code prints the resource records that match
' the specified name
' ------ SCRIPT CONFIGURATION ------

strQuery = "<RecordName>"
' ------ END CONFIGURATION ---------

set objDNS = GetObject("winMgmts:root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")
set objRRs = objDNS.ExecQuery(" select * " & _
 " from MicrosoftDNS_ResourceRecord" & _
 " where OwnerName = """ & strQuery & """" & _
 " Or DomainName = """ & strQuery & """" & _
 " Or RecordData = """ & strQuery & """")
if objRRs.Count < 1 then
 WScript.Echo "No matches found for " & strHostName & " of " _
 & strRecordType & " type"
else
 for each objRR in objRRs

 WScript.Echo objRR.TextRepresentation
 next
end if

13.8.3 Discussion

13.8.3.1 Using a command-line interface

You can leave off the -type switch and the command will find any A, PTR, and CNAME records that

match <RecordName>. You can also run nslookup from interactive mode, which can be entered by
typing nslookup at a command prompt with no additional parameters.

13.8.3.2 Using VBScript

In the VBScript solution a WQL query was used to find all matching resource records. This is a good
example of how powerful the DNS WMI Provider can be. The query attempts to find any object of the
MicrosoftDNS_ResourceRecord class that has an OwnerName, DomainName, or RecordData field

equal to the <RecordName>. This is not the most efficient query if the server supports multiple large

zones, so you may want restrict it to search for specific types of records by adding criteria to match
RecordType = <Type>.

13.8.4 See Also

MSDN: MicrosoftDNS_ResourceRecord

[Team LiB]

[Team LiB]

Recipe 13.9 Modifying the DNS Server Configuration

13.9.1 Problem

You want to modify the DNS Server settings.

13.9.2 Solution

13.9.2.1 Using a graphical user interface

Open the DNS Management snap-in.1.

If an entry for the DNS server you want to connect to does not exist, right-click on DNS in the
left pane and select Connect to DNS Server. Select This computer or The following computer,
enter the server you want to connect to (if applicable), and click OK.

2.

Click on the server, right-click on it, and select Properties.3.

There will be several tabs you can choose from to edit the server settings.4.

Click OK to commit the changes after you've completed your modifications.5.

13.9.2.2 Using a command-line interface

With the following command, replace <Setting> with the name of the setting to modify and <Value>

with the value to set:

> dnscmd <DNSServerName> /config /<Setting> <Value>

13.9.2.3 Using VBScript

set objDNS = GetObject("winMgmts:root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")

objDNSServer.<Setting> = <Value> ' e.g. objDNSServer.AllowUpdate = TRUE
objDNSServer.Put_

13.9.3 Discussion

The Microsoft DNS server supports a variety of settings to configure everything from scavenging and
forwarders to logging. With the DNS Management snap-in, the settings are spread over several tabs
in the Properties property page. You can get a list of these settings by simply running dnscmd
/config from a command line. For the CLI and VBScript solutions, the setting names are nearly
identical. In the VBScript solution, be sure to call the Put_ method after you are done configuring

settings in order for the changes to take effect.

13.9.4 See Also

MSDN: MicrosoftDNS_Server

[Team LiB]

[Team LiB]

Recipe 13.10 Scavenging Old Resource Records

13.10.1 Problem

You want to scavenge old resource records. DNS scavenging is the process whereby resource records
are automatically removed if they are not updated after a period of time. Typically, this applies to
only resource records that were added via DDNS, but you can also scavenge manually added, also
referred to as static, records. DNS scavenging is a recommended practice so that your DNS zones are
automatically kept clean of stale resource records.

13.10.2 Solution

The following solutions will show how to enable automatic scavenging on all AD-integrated zones.

13.10.2.1 Using a graphical user interface

Open the DNS Management snap-in.1.

If an entry for the DNS server you want to connect to does not exist, right-click on DNS in the
left pane and select Connect to DNS Server. Select This computer or The following computer,
enter the server you want to connect to (if applicable), and click OK.

2.

Click on the server, right-click on it, and select Set Aging/Scavenging for all zones.3.

Check the box beside Scavenge stale resource records.4.

Configure the No-Refresh and Refresh intervals as necessary and click OK.5.

Check the box beside Apply these settings to the existing Active Directory-integrated zones and
click OK.

6.

Right-click on the server again and select Properties.7.

Select the Advanced tab.8.

Check the box beside Enable automatic scavenging of stale resource records.9.

Configure the scavenging period as necessary.10.

Click OK.11.

11.

13.10.2.2 Using a command-line interface

> dnscmd <DNSServerName> /config /ScavengingInterval <ScavengingMinutes>

> dnscmd <DNSServerName> /config /DefaultAgingState 1

> dnscmd <DNSServerName> /config /DefaultNoRefreshInterval <NoRefreshMinutes>

> dnscmd <DNSServerName> /config /DefaultRefreshInterval <RefreshMinutes>

> dnscmd <DNSServerName> /config ..AllZones /aging 1

13.10.2.3 Using VBScript

' This code enables scavenging for all AD-integrated zones
' ------ SCRIPT CONFIGURATION ------

strServer = "<DNSServerName>"

intScavengingInterval = <ScavengingMinutes>

intNoRefreshInterval = <NoRefreshMinutes>

intRefreshInterval = <RefreshMinutes>
' ------ END CONFIGURATION ---------

set objDNS = GetObject("winMgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")

objDNSServer.ScavengingInterval = intScavengingInterval
objDNSServer.DefaultNoRefreshInterval = intNoRefreshInterval
objDNSServer.DefaultRefreshInterval = intRefreshInterval
objDNSServer.DefaultAgingState = TRUE
objDNSServer.Put_
WScript.Echo "Configured server scavenging settings"

set objZones = objDNS.ExecQuery("Select * from MicrosoftDNS_Zone " & _
 "Where DnsServerName = '" & _
 objDNSServer.Name & "'" & _
 " And DsIntegrated = TRUE")
WScript.Echo "Configuring AD-integrated zones: "
for each objZone in objZones
 WScript.Echo " " & objZone.Name & " HERE: " & objZone.Aging
 objZone.Aging = 1
 objZone.Put_
next

13.10.3 Discussion

There are four settings you need to be aware of before enabling scavenging. You must use caution
when enabling scavenging because an incorrect configuration could lead to resource records getting
deleted by mistake.

The first setting you have to configure is the scavenging interval. This is the interval in which the DNS
server will kick off the scavenging process. It is disabled by default so that scavenging does not take
place unless you enable this setting. The default value is 168 hours, which is equivalent to 7 days.

The second setting is the default aging state for new zones. If you want all new zones to be configured

for scavenging, set this to 1.

The next two settings control how records get scavenged. The no refresh interval determines how
long before a dynamically updated record can be updated again. This setting is necessary to reduce
how often a DNS server has to update its timestamp of the resource record. The default value is 168
hours (7 days). That means that after a resource record has been dynamically updated, the server
will not accept another dynamic update for the same record for another 7 days. If the IP address or
some other data for the record changes, the server will accept that.

The refresh interval setting is the amount of time after the no refresh interval that a client has to
update its record before it is considered old or stale. The default value for this setting is also 168
hours (7 days). If you use the default values, the combination of the no refresh interval and refresh
interval would mean that a dynamically updated record would not be considered stale for up to 14
days after its last update. In actuality, it could be up to 21 days before the record is deleted if the
record became stale right after the last scavenge process completed-7 days (no refresh) + 7 days
(refresh) + up to 7 days (scavenge process).

[Team LiB]

[Team LiB]

Recipe 13.11 Clearing the DNS Cache

13.11.1 Problem

You want to clear the DNS cache. The DNS cache contains resource records that are cached for a
period of time in memory so that repeated requests for the same record can be returned
immediately. There are two types of DNS cache. One pertains to the resolver on any Windows client
(servers and workstations), and the other to the cache used by the Microsoft DNS server.

13.11.2 Solution

To flush the client resolver cache, use the following command:

> ipconfig /flushdns

To flush the DNS server cache, use any of the following solutions.

13.11.2.1 Using a graphical user interface

Open the DNS Management snap-in.1.

Right-click on DNS in the left pane and select Connect to DNS Server.2.

Enter the server you want to connect to and click Enter.3.

Right-click on the server and select Clear Cache.4.

13.11.2.2 Using a command-line interface

The following command will clear the cache on <DNSServerName>. You can leave out

<DNSServerName> to run against the local server:

> dnscmd <DNSServerName> /clearcache

13.11.2.3 Using VBScript

' This code clears the DNS server cache on the specified server.
' ------ SCRIPT CONFIGURATION ------

strServer = "<DNSServerName>" ' e.g. dc1.rallencorp.com

' ------ END CONFIGURATION ---------

set objDNS = GetObject("winmgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")
set objDNSCache = objDNS.Get("MicrosoftDNS_Cache.ContainerName=""..Cache""" & _
 ",DnsServerName=""" & objDNSServer.Name & _
 """,Name=""..Cache""")
objDNSCache.ClearCache
WScript.Echo "Cleared server cache"

13.11.3 Discussion

The client resolver cache is populated whenever a DNS lookup is performed on a workstation or
server; for example, with the nslookup command.

<DeletedRepeatedText>

The second type of cache is only for Microsoft DNS servers. It is a cache of all DNS requests the
server has made to resolve queries from clients. You can view this cache by browsing the Cached
Lookups folder for a server in the DNS Management snap-in. This folder is not shown by default, so
you'll need to select Advanced from the View menu.

With both the client and server cache, the records are removed from the cache after the record's TTL
or Time To Live value expires. The TTL is used to age records so that clients and servers have to
rerequest them at a later point and receive any changes that may have occurred.

[Team LiB]

[Team LiB]

Recipe 13.12 Verifying That a Domain Controller Can
Register Its Resource Records

13.12.1 Problem

You want to verify DNS is configured correctly so that a domain controller can register its resource
records, which are needed for clients to be able to locate various AD services.

13.12.2 Solution

13.12.2.1 Using a command-line interface

This test is available only with the Windows Server 2003 version of dcdiag.

With the following dcdiag command, replace dc1 with the DNS name of the domain the domain

controller is in. This command has to be run directly on the domain controller you want to test.

> dcdiag /test:RegisterInDNS /DnsDomain:dc1

 Starting test: RegisterInDNS
 DNS configuration is sufficient to allow this domain controller to
 dynamically register the domain controller Locator records in DNS.

 The DNS configuration is sufficient to allow this computer to dynamically
 register the A record corresponding to its DNS name.

 dc1 passed test RegisterInDNS

13.12.3 Discussion

With the default setup, domain controllers attempt to dynamically register the resource records
necessary for them to be located by Active Directory clients and other domain controllers. The
domain controllers must have their resource records populated in DNS in order to function. It can be
very tedious and error-prone to register all of the records manually, which is why allowing the
domain controllers to use dynamic DNS (DDNS) to automatically register and update their records
can be much easier from a support standpoint.

The Windows Server 2003 version of the dcdiag command provides a new RegisterInDNS switch

that allows you to test whether or not the DC can register its records. In the solution above, I
showed the output if the domain controller passes the test.

Here is the output if an error occurs:

Starting test: RegisterInDNS
 This domain controller cannot register domain controller Locator DNS
 records. This is because either the DNS server with IP address
 6.10.45.14 does not support dynamic updates or the zone rallencorp.com is
 configured to prevent dynamic updates.

 In order for this domain controller to be located by other domain members
 and domain controllers, the domain controller Locator DNS records must be
 added to DNS. You have the following options:

 1. Configure the rallencorp.com zone and the DNS server with IP address
 6.10.45.14 to allow dynamic updates. If the DNS server does not
 support dynamic updates, you might need to upgrade it.

 2. Migrate the rallencorp.com zone to a DNS server that supports dynamic
 updates (for example, a Windows 2000 DNS server).

 3. Delegate the zones _msdcs.rallencorp.com, _sites.rallencorp.com,
 _tcp.rallencorp.com, and _udp.rallencorp.com to a DNS server that supports
 dynamic updates (for example, a Windows 2000 DNS server); or

 4. Manually add to the DNS records specified in the
 systemroot\system32\config\netlogon.dns file.

 DcDiag cannot reach a conclusive result because it cannot interpret the
 following message that was returned: 9501.

 dc1 failed test RegisterInDNS

As you can see, it offers several options for resolving the problem. The information provided will also
vary depending on the error encountered.

13.12.4 See Also

Recipe 13.13 for registering a domain controller's resource records

[Team LiB]

[Team LiB]

Recipe 13.13 Registering a Domain Controller's Resource
Records

13.13.1 Problem

You want to manually force registration of a domain controller's resource records. This may be
necessary if you've made some configuration changes on your DNS servers to allow your domain
controllers to start dynamically registering resource records.

13.13.2 Solution

13.13.2.1 Using a command-line interface

> nltest /dsregdns /server:<DomainControllerName>

13.13.3 Discussion

The Windows Server 2003 version of nltest provides a /dsregdns switch that allows you to force

registration of the domain controller-specific resource records. You can also force reregistration of its
resource records by restarting the NetLogon service on the domain controller. The NetLogon service
automatically attempts to reregister a domain controller's resource records every hour, so if you can
wait that long, you do not need to use the nltest command.

13.13.4 See Also

Recipe 13.12 for verifying if a domain controller is registering its resource records

[Team LiB]

[Team LiB]

Recipe 13.14 Preventing a Domain Controller from
Dynamically Registering All Resource Records

13.14.1 Problem

You want to prevent a domain controller from dynamically registering its resource records using
DDNS. If you manually register domain controllers' resource records, you'll want to prevent those
domain controllers from attempting to dynamically register them. If you do not disable them from
sending dynamic update requests, you may see annoying error messages on your DNS servers that
certain DDNS updates are failing.

13.14.2 Solution

13.14.2.1 Using a command-line interface

> reg add HKLM\System\CurrentControlSet\Services\Netlogon\Parameters /v [RETURN]
UseDynamicDNS /t REG_DWORD /d 0
The operation completed successfully.

> net stop netlogon
The Net Logon service is stopping.
The Net Logon service was stopped successfully.

> del %SystemRoot%\system32\config\netlogon.dnb

> net start netlogon
The Net Logon service is starting.......
The Net Logon service was started successfully.

13.14.2.2 Using VBScript

' This code prevents a DC from registering resource records dynamically.
' It must be run directly on the server.

' Create Registry Value
const HKLM = &H80000002
set oReg=GetObject("winmgmts:root\default:StdRegProv")
strKeyPath = "System\CurrentControlSet\Services\Netlogon\Parameters"
if oReg.SetDWORDValue(HKLM,strKeyPath,"UseDynamicDNS",1) <> 0 then
 WScript.Echo "Error creating registry value"

else
 WScript.Echo "Created registry value successfully"
end if

' Stop Netlogon service
strService = "Netlogon"
set objService = GetObject("WinMgmts:root/cimv2:Win32_Service.Name='" & _
 strService & "'")
if objService.StopService <> 0 then
 WScript.Echo "Error stopping " & strService & " service"
else
 WScript.Echo "Stopped " & strService & " service successfully"
end if

' Delete netlogon.dnb file
set WshShell = CreateObject("WScript.Shell")
set objFSO = CreateObject("Scripting.FileSystemObject")
set objFile = objFSO.GetFile(_
 WshShell.ExpandEnvironmentStrings("%SystemRoot%") _
 & "\system32\config\netlogon.dnb")
objFile.Delete
WScript.Echo "Deleted netlogon.dnb successfully"

' Start Netlogon service
if objService.StartService <> 0 then
 WScript.Echo "Error starting " & strService & " service"
else
 WScript.Echo "Started " & strService & " service successfully"
end if

WScript.Echo
WScript.Echo "Done"

13.14.3 Discussion

By default, domain controllers attempt to dynamically register their Active Directory-related resource
records every hour via the NetLogon service. You can prevent a domain controller from doing this by
setting the UseDynamicDNS value to 0 under
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Netlogon\Parameters. After you set that
value, you should stop the NetLogon service, remove the
%SystemRoot%\system32\config\netlogon.dnb file and then start NetLogon back up. It is necessary
to remove the netlogon.dnb file because it maintains a cache of the resource records that are
dynamically updated. This file will get recreated when the NetLogon service restarts.

13.14.4 See Also

Recipe 13.15 for preventing certain records from being dynamically registered, MS KB 198767 (How
to Prevent Domain Controllers from Dynamically Registering DNS Names), and MS KB 246804 (How
to Enable/Disable Windows 2000 Dynamic DNS Registrations)

[Team LiB]

[Team LiB]

Recipe 13.15 Preventing a Domain Controller from
Dynamically Registering Certain Resource Records

13.15.1 Problem

You want to prevent a domain controller from dynamically registering certain resource records. It is
sometimes advantageous to prevent certain resource records from being dynamically registered. For
example, if you want to reduce the load on the PDC Emulator for a domain, you could prevent some
of its SRV records from being published, which would reduce the amount of client traffic the server
receives.

13.15.2 Solution

13.15.2.1 Using a command-line interface

This command will disable the Ldap, Gc, and GcIpAddress resource records from being dynamically
registered:

> reg add HKLM\System\CurrentControlSet\Services\Netlogon\Parameters /v [RETURN]
 DnsAvoidRegisterRecords /t REG_MULTI_SZ /d Ldap\0Gc\0GcIpAddress
The operation completed successfully.

> net stop netlogon
The Net Logon service is stopping.
The Net Logon service was stopped successfully.

> del %SystemRoot%\system32\config\netlogon.dnb

> net start netlogon
The Net Logon service is starting.......
The Net Logon service was started successfully.

13.15.2.2 Using VBScript

' This code prevents a DC from registering the resource records
' associated with the Ldap, Gc, and GcIpAddress mnemonics and must be run
' directly on the server.

' Create Registry Value
const HKLM = &H80000002

set objReg = GetObject("winmgmts:root\default:StdRegProv")
strKeyPath = "System\CurrentControlSet\Services\Netlogon\Parameters"
' prevent Ldap, Gc, and GCIpAddress records from being registered
arrValues = Array("Ldap","Gc","GcIpAddress")
if objReg.SetMultiStringValue(HKLM,strKeyPath,"DnsAvoidRegisterRecords", _
 arrValues) <> 0 then
 WScript.Echo "Error creating registry value"
else
 WScript.Echo "Created registry value successfully"
end if

' Stop Netlogon service
strService = "Netlogon"
set objService = GetObject("WinMgmts:root/cimv2:Win32_Service.Name='" & _
 strService & "'")
if objService.StopService <> 0 then
 WScript.Echo "Error stopping " & strService & " service"
else
 WScript.Echo "Stopped " & strService & " service successfully"
end if

' Delete netlogon.dnb file
On Error Resume Next
set WshShell = CreateObject("WScript.Shell")
set objFSO = CreateObject("Scripting.FileSystemObject")
set objFile = objFSO.GetFile(_
 WshShell.ExpandEnvironmentStrings("%systemroot%") _
 & "\system32\config\netlogon.dnb")
objFile.Delete
if (Err.Number <> 0) then
 WScript.Echo "Error deleting netlogon.dnb: " & Err.Description
else
 WScript.Echo "Deleted netlogon.dnb successfully"
end if

' Start Netlogon service
if objService.StartService <> 0 then
 WScript.Echo "Error starting " & strService & " service"
else
 WScript.Echo "Started " & strService & " service successfully"
end if

WScript.Echo
WScript.Echo "Done"

13.15.3 Discussion

The procedure to disable registration of certain resource records is very similar to that described in
Recipe 13.14 for preventing all records from being dynamically registered, except in this case, you
need to create a value called DnsAvoidRegisterRecords under the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Netlogon\Parameters key. The type for

DnsAvoidRegisterRecords should be REG_MULTI_SZ and the data should be a whitespace separated
list of mnemonics. Mnemonics are used to represent various resource records that domain controllers
register. The complete list of mnemonics is included in Table 13-3.

Table 13-3. Registry mnemonics for resource records

Registry
mnemonic

Resource
record type

Resource record name

LdapIpAddress A <DnsDomainName>

Ldap SRV _ldap._tcp.<DnsDomainName>

LdapAtSite SRV _ldap._tcp.<SiteName>._sites.<DnsDomainName>

Pdc SRV _ldap._tcp.pdc._msdcs.<DnsDomainName>

Gc SRV _ldap._tcp.gc._msdcs.<DnsForestName>

GcAtSite SRV _ldap._tcp.<SiteName>._sites.gc._msdcs.<DnsForestName>

DcByGuid SRV _ldap._tcp.<DomainGuid>.domains._msdcs.<DnsForestName>

GcIpAddress A _gc._msdcs.<DnsForestName>

DsaCname CNAME <DsaGuid>._msdcs.<DnsForestName>

Kdc SRV _kerberos._tcp.dc._msdcs.<DnsDomainName>

KdcAtSite SRV _kerberos._tcp.dc._msdcs.<SiteName>._sites.<DnsDomainName>

Dc SRV _ldap._tcp.dc._msdcs.<DnsDomainName>

DcAtSite SRV _ldap._tcp.<SiteName>._sites.dc._msdcs.<DnsDomainName>

Rfc1510Kdc SRV _kerberos._tcp.<DnsDomainName>

Rfc1510KdcAtSite SRV _kerberos._tcp.<SiteName>._sites.<DnsDomainName>

GenericGc SRV _gc._tcp.<DnsForestName>

GenericGcAtSite SRV _gc._tcp.<SiteName>._sites.<DnsForestName>

Rfc1510UdpKdc SRV _kerberos._udp.<DnsDomainName>

Rfc1510Kpwd SRV _kpasswd._tcp.<DnsDomainName>

Rfc1510UdpKpwd SRV _kpasswd._udp.<DnsDomainName>

13.15.4 See Also

Recipe 13.14 for preventing all records from being dynamically registered, MS KB 246804 (How to
Enable/Disable Windows 2000 Dynamic DNS Registrations), and MS KB 267855 (Problems with Many
Domain Controllers with Active Directory Integrated DNS Zones)

[Team LiB]

[Team LiB]

Recipe 13.16 Deregistering a Domain Controller's
Resource Records

13.16.1 Problem

You want to manually deregister a domain controller's resource records.

13.16.2 Solution

13.16.2.1 Using a command-line interface

With the following nltest command, replace <DomainControllerName> with the FQDN of the domain

controller you want to deregister and <DomainDNSName> with the FQDN of the domain of which the

domain controller is a member:

> nltest /dsderegdns:<DomainControllerName> /Dom:<DomainDNSName>

13.16.3 Discussion

When a domain controller is demoted from a domain, it dynamically deregisters its resource records.
This is a nice feature of the demotion process because it means you do not have to manually remove
all of the resource records or wait for scavenging to remove them. If, however, you have a domain
controller that crashes and you do not plan on bringing it back online, you'll need to remove the
records manually or wait for scavenging.

You can use the DNS Mgmt MMC snap-in and even the dnscmd.exe utility to remove them one by
one, or you can use the nltest command, as shown in the solution. The /dsderegdns switch also
has /DomGUID and /DsaGUID options if you want to delete the records that are based on the domain

GUID and DSA GUID, respectively. You need to know the actual GUIDs of the domain and domain
controller to use those switches, so if you don't have them handy, it would be easier to delete them
using the DNS Mgmt MMC snap-in.

[Team LiB]

[Team LiB]

Recipe 13.17 Allowing Computers to Use a Different
Domain Suffix from Their AD Domain

13.17.1 Problem

You want to allow computers to use a different domain suffix than their AD domain.

13.17.2 Solution

The following solutions work only for Windows Server 2003 domains. Read the
Discussion for a workaround for Windows 2000.

13.17.2.1 Using a graphical user interface

Open ADSI Edit.1.

Connect to the domain you want to edit.2.

Right-click on the domainDNS object and select Properties.3.

Edit the msDS-AllowedDNSSuffixes attribute and enter the DNS suffix you want to add.4.

Click OK.5.

13.17.2.2 Using a command-line interface

Create an LDIF file called add_dns_suffix.ldf with the following contents:

dn: <DomainDN>
changetype: modify
add: msDS-AllowedDNSSuffixes

msDS-AllowedDNSSuffixes: <DNSSuffix>
-

then run the following command:

> ldifde -v -i -f add_dns_suffix.ldf.ldf

13.17.2.3 Using VBScript

' This code adds a domain suffix that can be used by clients in the domain.
' ------ SCRIPT CONFIGURATION ------

strDNSSuffix = "<DNSSuffix>" ' e.g. othercorp.com

strDomain = "<DomainDNSName>" ' e.g. amer.rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strDomain & "/RootDSE")
set objDomain = GetObject("LDAP://" & objRootDSE.Get("defaultNamingContext"))
objDomain.Put "msDS-AllowedDNSSuffixes", strDNSSuffix
objDomain.SetInfo

WScript.Echo "Added " & strDNSSuffix & " to suffix list."

13.17.3 Discussion

Windows 2000, Windows XP, and Windows Server 2003 member computers dynamically maintain the
dNSHostName and servicePrincipalName attributes of their corresponding computer object in Active

Directory with their current host name. By default, those attributes can only contain host names that
have a DNS suffix equal to the Active Directory domain the computer is a member of.

If the computer's DNS suffix is not equal to the Active Directory domain, 5788 and 5789 events will be
generated in the System event log on the domain controllers the clients attempt to update. These
events report that the dnsHostName and servicePrincipalName attributes could not be updated due

to an incorrect domain suffix. For Windows Server 2003 domains, you can avoid this by adding the
computer's DNS suffix to the msDS-AllowedDNSSuffixes attribute on the domain object (e.g.,

dc=rallencorp,dc=com).

With Windows 2000, the only workaround for this issue is to grant the Self principal the ability to
write the dNSHostName and servicePrincipalName attribute for computer objects. Here are the

steps:

Open ADSI Edit.1.

Right-click on the domain object and select Properties.2.

Click the Security tab.3.

Click the Add button.4.

Enter Self in the object picker and click OK.5.

Click the Advanced button.6.

Under the Name column, double-click on SELF.7.

Click the Properties tab.8.

Beside Apply onto, select Computer objects.9.

10.

11.

8.

9.

Under Permissions, check the Allow box for Write dNSHostName and Write
servicePrincipalName.

10.

Click OK until you close all the windows.11.

It is worth noting that if you implement this method, it is possible for someone
to cause a computer to write any name into those attributes, and, therefore,
advertise itself as another computer.

13.17.4 See Also

MS KB 258503 (DNS Registration Errors 5788 and 5789 When DNS Domain and Active Directory
Domain Name Differ)

[Team LiB]

[Team LiB]

Chapter 14. Security and Authentication

Introduction

Recipe 14.1. Enabling SSL/TLS

Recipe 14.2. Encrypting LDAP Traffic with SSL, TLS, or Signing

Recipe 14.3. Enabling Anonymous LDAP Access

Recipe 14.4. Restricting Hosts from Performing LDAP Queries

Recipe 14.5. Using the Delegation of Control Wizard

Recipe 14.6. Customizing the Delegation of Control Wizard

Recipe 14.7. Viewing the ACL for an Object

Recipe 14.8. Customizing the ACL Editor

Recipe 14.9. Viewing the Effective Permissions on an Object

Recipe 14.10. Changing the ACL of an Object

Recipe 14.11. Changing the Default ACL for an Object Class in the Schema

Recipe 14.12. Comparing the ACL of an Object to the Default Defined in the Schema

Recipe 14.13. Resetting an Object's ACL to the Default Defined in the Schema

Recipe 14.14. Preventing the LM Hash of a Password from Being Stored

Recipe 14.15. Enabling List Object Access Mode

Recipe 14.16. Modifying the ACL on Administrator Accounts

Recipe 14.17. Viewing and Purging Your Kerberos Tickets

Recipe 14.18. Forcing Kerberos to Use TCP

Recipe 14.19. Modifying Kerberos Settings
[Team LiB]

[Team LiB]

Introduction

The default Windows 2000 Active Directory installation was not as secure as it could have been. It
allowed anonymous queries to be executed, which could take up valuable processing resources, and
it did not place any requirements on encrypting or signing traffic between clients and domain
controllers. As a result, usernames, passwords, and search results could be sent over the network in
clear text. Fortunately, with Windows Server 2003, things have been tightened up significantly. LDAP
traffic is signed by default and anonymous queries are disabled by default. Additionally, Transport
Layer Security (TLS), the more flexible cousin of Secure Sockets Layer (SSL), is supported in
Windows Server 2003, which allows for end-to-end encryption of traffic between domain controllers
and clients.

Active Directory's Access Control List (ACL) model provides ultimate flexibility for securing objects
throughout a forest. You can restrict access down to the attribute level if you need to. With this
flexibility also comes increased complexity. An object's ACL is initially generated from the default ACL
for the object's class, inherited permissions, and permissions directly applied on the object.

An ACL is a collection of ACE entries (Access Control Entry), which defines the permission and
properties that a security principal can use on the object on which the ACL is applied. Defining these
entries and populating the ACL is the foundation of Active Directory security and delegation.

In this chapter, I will explore some of the common tasks around managing permissions in Active
Directory. If you are looking for a detailed guide to Active Directory permissions, I suggest reading
Chapter 11 in Active Directory, Second Edition (O'Reilly).

In order for ACLs to be of use, a user has to authenticate to Active Directory. Kerberos is the primary
network authentication system used by Active Directory. Kerberos is a standards-based system that
was originally developed at MIT, and has been widely implemented at universities. I will also be
covering some Kerberos-related tasks that you likely to encounter in this chapter. For a complete
review of Kerberos, I recommend Kerberos: The Definitive Guide (O'Reilly).

[Team LiB]

[Team LiB]

Recipe 14.1 Enabling SSL/TLS

14.1.1 Problem

You want to enable SSL/TLS access to your domain controllers so clients can encrypt LDAP traffic to
the servers.

14.1.2 Solution

14.1.2.1 Using a graphical user interface

Open the Control Panel on a domain controller.1.

Open the Add or Remove Programs applet.2.

Click on Add/Remove Windows Components.3.

Check the box beside Certificate Services and click Yes to verify.4.

Click Next.5.

Select the type of authority you want the domain controller to be (select Enterprise root CA if
you are unsure) and click Next.

6.

Type the common name for the CA, select a validity period, and click Next.7.

Enter the location for certificate database and logs and click Next.8.

After the installation completes, click Finish.9.

Now open the Domain Controller Security Policy GPO.10.

Navigate to Computer Configuration Windows Settings Security Settings Public
Key Policies.

11.

Right-click on Automatic Certificate Request Settings and select New Automatic Certificate
Request.

12.

Click Next.13.

Under Certificate Templates, click on Domain Controller and click Next.14.

Click Finish.15.

16.

14.

15.

Right-click on Automatic Certificate Request Settings select New Automatic Certificate
Request.

16.

Click Next.17.

Under Certificate Templates, click on Computer and click Next.18.

Click Finish.19.

14.1.3 Discussion

After domain controllers obtain certificates, they open up ports 636 and 3289. Port 636 is for LDAP
over SSL/TLS and port 3289 is used for the global catalog over SSL/TLS. See Recipe 14.2 for more
information on how to query a domain controller using SSL/TLS.

14.1.4 See Also

MS KB 247078 (HOW TO: Enable Secure Socket Layer (SSL) Communication Over LDAP For Windows
2000 Domain Controllers), MS KB 281271 (Windows 2000 Certification Authority Configuration to
Publish Certificates in Active Directory of Trusted Domain), and MS KB 321051 (How to Enable LDAP
over SSL with a Third-Party Certification Authority)

[Team LiB]

[Team LiB]

Recipe 14.2 Encrypting LDAP Traffic with SSL, TLS, or
Signing

14.2.1 Problem

You want to encrypt LDAP traffic using SSL, TLS, or signing.

14.2.2 Solution

14.2.2.1 Using a graphical user interface

Most of the GUI-based tools on a Windows Server 2003, Windows XP, or Windows 2000 SP 3 machine
automatically sign and encrypt traffic between the server and client. This includes the following tools:

Active Directory Domains and Trusts

Active Directory Sites and Services

Active Directory Schema

Active Directory Users and Computers

ADSI Edit

Group Policy Management Console

Object Picker

Also with ADSI Edit, you can specify the port number to use when browsing a partition. View the
Settings for a connection by right-clicking on the partition and selecting Settings. Click the Advanced
button and enter 636 for LDAP over SSL or 3269 for the global catalog over SSL.

The Windows Server 2003 version of LDP supports encryption using the StartTLS and StopTLS
operations, which are available from the Options TLS menu. With the Windows 2000 version, you
can use SSL by going to Connection Connect and entering 636 or 3269 for the port.

14.2.2.2 Using a command-line interface

The DS command-line tools support LDAP signing and encryption when run from Windows Server
2003 or Windows XP against a Windows 2000 SP3 or Windows Server 2003 domain controller. This

includes dsadd, dsmod, dsrm, dsmove, dsget, and dsquery.

14.2.2.3 Using VBScript

' This code shows how to enable SSL and secure authentication using ADSI

ADS_SECURE_AUTHENTICATION = 1
ADS_USE_SSL = 2

set objLDAP = GetObject("LDAP:")
set objOU = objLDAP.OpenDSObject("LDAP://ou=Sales,dc=rallencorp,dc=com", _
 "administrator@rallencorp.com", _
 "MyAdminPassword", _
 ADS_SECURE_AUTHENTICATION + ADS_USE_SSL)
WScript.Echo objOU.Get("ou")
' This code shows how to enable SSL and secure authentication using ADO:

' Constants taken from ADS_AUTHENTICATION_ENUM
ADS_SECURE_AUTHENTICATION = 1
ADS_USE_SSL = 2

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Properties("User ID") = "administrator@rallencorp.com"
objConn.Properties("Password") = "MyAdminPassword"
objConn.Properties("Encrypt Password") = True
objConn.Properties("ADSI Flag") = ADS_SECURE_AUTHENTICATION + ADS_USE_SSL
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute("<LDAP://cn=users,dc=rallencorp,dc=com>;" & _
 "(cn=*);" & "cn;" & "onelevel")
objRS.MoveFirst
while Not objRS.EOF
 Wscript.Echo objRS.Fields(0).Value
 objRS.MoveNext
wend

14.2.3 Discussion

The out-of-the-box install of Windows 2000 Active Directory did not provide any default data
encryption over the network between clients and domain controllers with most of the standard tools.
If you run Network Monitor (netmon.exe) while using tools that perform simple LDAP binds, you'll see
LDAP requests, usernames, and passwords going over the network in plain text. Obviously this is not
the most secure configuration, so with Windows Server 2003 most of the AD tools sign and encrypt
traffic from the clients to the domain controllers by default.

To use the more secure Windows Server 2003 tools against Windows 2000 domain controllers, you
need to install SP 3 on the Windows 2000 domain controllers. The new versions of the tools cannot be
run directly on Windows 2000, so you must use a Windows XP or Windows Server 2003 machine to
host them.

If you want to take advantage of some of the new features of the tools, but have not installed SP 3
yet, you can disable signing on the Windows XP or Windows Server 2003 machine. It is worth stating
the obvious that this is insecure and defeats one of the major benefits of the new tools, but you may
have no other choice. To disable signing, set the following registry value to 0x03:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\AdminDebug\ADsOpenObjectFlags

14.2.4 See Also

Recipe 14.1 for enabling SSL/TLS, MS KB 325465 (Windows 2000 Domain Controllers Require SP3 or
Later When Using Windows Server 2003 Administration Tools), MS KB 304718 (Administering
Windows Server-Based Computers Using Windows XP Professional-Based Clients), and MSDN:
ADS_AUTHENTICATION_ENUM

[Team LiB]

[Team LiB]

Recipe 14.3 Enabling Anonymous LDAP Access

14.3.1 Problem

You want to enable anonymous LDAP access for clients. In Windows 2000 Active Directory,
anonymous queries were enabled by default, although restricted. With Windows Server 2003 Active
Directory, anonymous queries are disabled except for querying the RootDSE.

14.3.2 Solution

14.3.2.1 Using a graphical user interface

Open ADSI Edit.1.

In the Configuration partition, browse to cn=Services cn=Windows NT cn=Directory
Service.

2.

In the left pane, right-click on the Directory Service object and select Properties.3.

Double-click on the dSHeuristics attribute.4.

If the attribute is empty, set it with the value: 0000002.5.

If the attribute has an existing value, make sure the seventh digit is set to 2.6.

Click OK twice.7.

14.3.2.2 Using VBScript

' This code enables or disables anonymous query mode for a forest.
' ------ SCRIPT CONFIGURATION ------
boolEnableAnonQuery = 2 ' e.g. 2 to enable, 0 to disable
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objDS = GetObject(_
 "LDAP://cn=Directory Service,cn=Windows NT,cn=Services," _
 & objRootDSE.Get("configurationNamingContext"))
strDSH = objDS.Get("dSHeuristics")

for i = len(strDSH) to 6
 strDSH = strDSH & "0"
next

strNewDSH = Left(strDSH,6) & boolEnableAnonQuery
strNewDSH = strNewDSH & Right(strDSH, len(strDSH) - 7)

WScript.Echo "Old value: " & strDSH
WScript.Echo "New value: " & strNewDSH

if strDSH <> strNewDSH then
 objDS.Put "dSHeuristics", strNewDSH
 objDS.SetInfo
 WScript.Echo "Successfully set anon query mode to " & boolEnableAnonQuery
else
 WScript.Echo "Anon query mode already set to " & boolEnableAnonQuery
end if

14.3.3 Discussion

To enable anonymous access, you have to modify the dSHeuristics attribute of the cn=Directory

Service,cn=Windows NT,cn=Services,ConfigurationDN object. The dSHeuristics attribute is an

interesting attribute used to control certain behavior in Active Directory. For example, you can enable
"List Object Mode" (see Recipe 14.15) by setting the dSHeuristics flag.

The dSHeuristics attribute consists of a series of digits that when set enable certain functionality. To
enable anonymous access, the seventh bit must be set to 2. By default, dSHeuristics does not have
a value. If you set it to enable anonymous access, the value would be the following: 0000002.

After enabling anonymous access, the assumption is you'll want to grant access for anonymous users
to retrieve some data from Active Directory. To do that, grant the ANONYMOUS LOGON user access to

the parts of the directory you want anonymous users to search. You must grant the access from the
root of the directory down to the object of interest. See MS KB 320528 for an example of how to
enable the anonymous user to query email addresses of user objects.

14.3.4 See Also

MS KB 320528 (How to Configure Active Directory to Allow Anonymous Queries), and MS KB 326690
(Anonymous LDAP Operations to Active Directory Are Disabled on Windows Server 2003 Domain
Controllers)

[Team LiB]

[Team LiB]

Recipe 14.4 Restricting Hosts from Performing LDAP
Queries

14.4.1 Problem

You want domain controllers to reject LDAP queries from certain IP addresses. This can be useful if
you want to prohibit domain controllers from responding to LDAP queries for certain applications or
hosts.

14.4.2 Solution

14.4.2.1 Using a command-line interface

This option is not present in the Windows Server 2003 version of ntdsutil.

The following adds network 10.0.0.0 with mask 255.255.255.0 to the IP deny list:

> ntdsutil "ipdeny list" conn "co t s <DomainControllerName>" q
IP Deny List: Add 10.0.0.0 255.255.255.0
*[1] 10.0.0.0 GROUP MASK 255.255.255.0

NOTE: * | D - uncommitted addition | deletion
IP Deny List: Commit
 [1] 10.10.10.0 GROUP MASK 255.255.255.0

NOTE: * | D - uncommitted addition | deletion

14.4.3 Discussion

The IP deny list is stored as an octet string in the lDAPIPDenyList attribute of a query policy. See

Recipe 4.23 for more information on the LDAP query policy.

When the IP deny list is set, domain controllers that are using the default query policy will not
respond to LDAP queries from any IP address specified in the deny list address range. To test
whether a certain IP address would be denied, run Test x.x.x.x, where x.x.x.x is an IP address,
from the IP Deny List: subcommand in ntdsutil.

By setting the IP deny list on the default query policy, you would effectively restrict the IP address
range from querying any domain controller in the forest. If you need to only restrict queries for a
specific domain controller, you'll need to create a new LDAP query policy and apply it to the domain
controller.

14.4.4 See Also

Recipe 4.23 for more information on the LDAP query policy, and MS KB 314976 (HOW TO: Use the
Ntdsutil Utility to Deny Access to IP Addresses in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 14.5 Using the Delegation of Control Wizard

14.5.1 Problem

You want to delegate control over objects in Active Directory to a user or group.

14.5.2 Solution

14.5.2.1 Using a graphical user interface

Open the Active Directory Users and Computers or Active Directory Sites and Services snap-in
depending on the type of object you want to delegate.

1.

In the left pane, browse to the object you want to delegate control on.2.

Right-click on the object and select Delegate Control. Only certain objects support the
Delegation of Control Wizard, so this option will not show up for every type of object.

3.

Click Next.4.

Click the Add button and use the Object Picker to select the users or groups you want to
delegate control to.

5.

Click Next.6.

If the task you want to delegate is an option under Delegate the following common tasks, check
it and click Next. If the task is not present, select Create a custom task to delegate and click
Next. If you selected the latter option, you will need to go perform two additional steps:

Select the object type you want to delegate.a.

Click Next.b.

Select the permissions you want to delegate.c.

Click Next.d.

7.

Click Finish.8.

14.5.3 Discussion

The Delegation of Control Wizard is Microsoft's attempt to ease the pain of trying to set permissions
for common tasks. Because Active Directory permissions are so granular, they can also be
cumbersome to configure. The Delegation of Control Wizard helps in this regard, but it is limited. The
default tasks that can be delegated are fairly minimal, although you can add more tasks as described
in Recipe 14.6. Another limitation is that you can only add new permissions; you cannot undo or
remove permissions that you set with the wizard. To do that, you have to use the ACL Editor directly
as described in Recipe 14.10.

14.5.4 See Also

Recipe 14.6 for customizing the Delegation of Control wizard

[Team LiB]

[Team LiB]

Recipe 14.6 Customizing the Delegation of Control
Wizard

14.6.1 Problem

You want to add or remove new delegation options in the Delegation of Control Wizard.

14.6.2 Solution

Open the Delegation of Control Wizard INF file (%SystemRoot%\Inf\Delegwiz.inf) on the computer
you want to modify the wizard for.

Under the [DelegationTemplates] section, you'll see a line like the following:

Templates = template1, template2, template3, template4, template5, template6,
template7, template8, template9,template10, template11, template12, template13

You need to append a new template name. In this case I'll follow the same naming convention and
create a template named template14. The line now looks like this:

Templates = template1, template2, template3, template4, template5, template6,
template7, template8, template9,template10, template11, template12, template13,
template14

Scroll to the end of the file and append a new template section. You can use the other template
sections as examples. Here is the generic format:

[<TemplateName>]

AppliesToClasses = <CommaSeparatedOfObjectClassesInvokedFrom>

Description = "<DescriptionShownInWizard>"

ObjectTypes = <CommaSeparatedListOfObjectClassesThatAreSet>

[<TemplateName>.SCOPE]

<Permission entries for Scope>

[<TemplateName>.<ObjectClass1>]

<Permission entries for ObjectClass1>

[<TemplateName>.<ObjectClass2>]

<Permission entries for ObjectClass2>

 . . .

<TemplateName> is the same as what we used in the [DelegationTemplates] section, e.g.,
template14.

In the AppliesToClasses line, replace <CommaSeparatedObjectClassesInvokedFrom> with a

comma-separated list of LDAP display names of the classes that can be delegated. This delegation
action will show up on the classes listed here only when you select Delegate Control from a snap-in.
To make our new template entry apply to domain objects, OUs, and containers, we would use this:

AppliesToClasses = domainDNS,organizationalUnit,container

In the Description line, replace <DescriptionShownInWizard> with the text you want shown in the

wizard that describes the permissions being delegated. Here is an example description for delegating
full control over inetOrgPerson objects:

Description = "Create, delete, and manage user and inetOrgPerson accounts"

In the ObjectTypes line, replace <CommaSeparatedListOfObjectClassesThatAreSet> with a

comma-separated list of object classes that be delegated. In this example, permissions will be
modified for user and inetOrgPerson objects:

ObjectTypes = user,inetOrgPerson

Next, define the actual permissions to set when this action is selected. You can define two different
types of permissions. You can use a [<TemplateName>.SCOPE] section to define permissions that are

set on the object that is used to start the wizard. This will be one of the object classes defined in the
AppliesToClass line. This is commonly used in the context of containers and organizational units to

specify create, modify, or delete child objects of a particular type. For example, to grant the ability to
create (CC) or delete (DC) user and inetOrgPerson objects, you would use the following:

[template14.SCOPE]
user=CC,DC
inetOrgPerson=CC,DC

As you can see, each permission (e.g., create child) is abbreviated to a two-letter code. Here are the
valid codes:

RP

Read Property
WP

Write Property
CC

Create Child
DC

Delete Child
GA

Full Control

It is perfectly valid to leave out a SCOPE section if it is not needed. The rest of the lines are used to
specify permissions that should be set on the object classes defined by the ObjectTypes line.

To grant full control over all existing user and inetOrgPerson objects, I'll use these entries:

[template14.user]
@=GA

[template14.inetOrgPerson]
@=GA

This is very similar to the previous example except that SCOPE was replaced with the names of the
object classes the permissions apply to. The @ symbol is used to indicate that the permission applies
to all attributes on the object. You can get more granular by replacing @ with the name of attribute

the permission applies to. For example, this would grant read and write permissions on the
department attribute for inetOrgPerson objects:

[template14.inetOrgPerson]
department=RP,WP

You can also enable control access rights using the CONTROLRIGHT designator instead of @ or an

attribute name. You need to specify the LDAP display name of the control access right you want to
enable. This next section enables the Reset Password right on inetOrgPerson objects and enables
read and write access to the pwdLastSet attribute:

[template14.inetOrgPerson]
CONTROLRIGHT="Reset Password"
pwdLastSet=RP,WP

14.6.3 Discussion

You can completely customize the tasks that can be delegated with the Delegation of Control Wizard,
but you still have the problem of getting the delegwiz.inf file on all the clients that need to use the
new settings. You can manually copy it to the computers that need it or use group policy to automate
the distribution of it.

14.6.4 See Also

Recipe 14.5 for more on using the Delegation of Control wizard

[Team LiB]

[Team LiB]

Recipe 14.7 Viewing the ACL for an Object

14.7.1 Problem

You want to view the ACL for an object.

14.7.2 Solution

14.7.2.1 Using a graphical user interface

Open the ACL Editor. You can do this by viewing the properties of an object (right-click on the
object and select Properties) with a tool, such as Active Directory Users and Computers (ADUC)
or ADSI Edit. Select the Security tab. To see the Security tab with ADUC, you must select View

 Advanced Features from the menu.

1.

Click the Advanced button to view a list of the individual ACEs.2.

14.7.2.2 Using a command-line interface

> dsacls <ObjectDN>

14.7.2.3 Using VBScript

Unfortunately, the code to view the ACEs in an ACL is quite messy and long. This will be included as
part of the code on the web site for the book (http://www.oreilly.com/catalog/activedckbk/).

14.7.3 Discussion

Viewing an object's ACL is a common task and should already be familiar to most administrators. The
ACL editor is useful for checking the permissions that have been set on objects, especially after
running the Delegation of Control Wizard. In addition to viewing permissions, the options available in
the GUI include, viewing Auditing settings and the Owner of the object. Knowing the owner of and
object is important because ownership confers certain inherent rights.

Because the ACL Editor is the same for NTFS permissions and properties as it is for Active Directory
objects, you should feel comfortable with the look and feel of the interface-it is exactly the same as
File and Folder permissions. I also highly recommend getting familiar with the Advanced View of the

http://www.oreilly.com/catalog/activedckbk/

ACL Editor, as this is truly the view in which you can determine what is going on with permissions.
The Basic view presents a list of security principals that have permissions configured, but it will not
always show every ACE entry. The Advanced view will show the complete picture including the scope
of permissions for ACEs down to the object and even attribute level.

14.7.4 See Also

Recipe 14.10 for changing an ACL and Recipe 15.12 for auditing of object access

[Team LiB]

[Team LiB]

Recipe 14.8 Customizing the ACL Editor

14.8.1 Problem

You want to set permissions on attributes that do not show up in the default ACL Editor.

14.8.2 Solution

The ACL Editor shows only a subset of the object's attributes that permissions can be set on. These
can be seen in the ACL Editor by clicking the Advanced button, adding or editing a permission entry,
and selecting the Properties tab.

An attribute can have a read permission, write permission, or both, either of which can be set to
Allow or Deny. If the attribute you want to secure is not in the list, you will need to modify the
%SystemRoot%\system32\dssec.dat file on the computer running the ACL Editor.

There are sections for each object class, represented in square brackets-e.g., [user]. Underneath

that heading is a list of attributes that you can configure to display or not display in the ACL Editor.
These are the first few lines for the [user] section:

[user]
aCSPolicyName=7
adminCount=7
allowedAttributes=7

The value to the right of the attribute determines whether it is shown in the ACL Editor. The valid
values include the following:

0

Both Read Property and Write Property are displayed for attribute.
1

Write property is displayed for the attribute.
2

Read property is displayed for the attribute.
7

No entries are displayed for the attribute.

If the attribute is not defined, then the default value (specified by @, if present) is used.

14.8.3 Discussion

Much like the Delegation of Control Wizard, you can customize the attributes that are shown in the
ACL Editor, but you still need to distribute the dssec.dat file to all computers that need to see the
change.

A good example of when this recipe is needed is for delegating the ability to unlock accounts. This is
common in larger organizations where you want to assign this task to the help desk without giving
them additional rights on user objects. In this case, you need to set the lockoutTime in the [user]

section of the dssec.dat file to 0.

14.8.4 See Also

MS KB 296490 (How to Modify the Filtered Properties of an Object) and MS KB 294952 (How To
Delegate the Unlock Account Right)

[Team LiB]

[Team LiB]

Recipe 14.9 Viewing the Effective Permissions on an
Object

14.9.1 Problem

You want to view the effective permissions for a user or group on a particular object.

14.9.2 Solution

14.9.2.1 Using a graphical user interface

Open the ACL Editor. You can do this by viewing the properties of an object (right-click on the
object and select Properties) with a tool, such as Active Directory Users and Computers (ADUC)
or ADSI Edit. Select the Security tab. To see the Security tab with ADUC, you must select View

 Advanced Features from the menu.

1.

Click the Advanced button.2.

Select the Effective Permissions tab.3.

Click the Select button to bring up the Object Editor.4.

Find the user or group you for which want to see the effective permissions.5.

The results will be shown under Effective Permissions.6.

The Effective Permissions tab is available only in the Windows Server 2003
version of the ACL Editor. For Windows 2000, you'll need to use the acldiag

solution.

14.9.2.2 Using a command-line interface

> acldiag <ObjectDN> /geteffective:<UserOrGroup>

14.9.3 Discussion

Viewing the permissions on an object does not tell the whole story as to what the actual translated
permissions are for a user or group on that object. The effective permissions of an object take into

account all group membership and any inherited permissions that may have been applied further up
the tree.

[Team LiB]

[Team LiB]

Recipe 14.10 Changing the ACL of an Object

14.10.1 Problem

You want to change the ACL on an object to grant or restrict access to it for a user or group.

14.10.2 Solution

14.10.2.1 Using a graphical user interface

Open the ACL Editor. You can do this by viewing the properties of an object (right-click on the
object and select Properties) with a tool, such as Active Directory Users and Computers (ADUC)
or ADSI Edit. Select the Security tab. To see the Security tab with ADUC, you must select View

 Advanced Features from the menu.

1.

Click the Advanced button to view a list of the individual ACEs.2.

14.10.2.2 Using a command-line interface

> dsacls <ObjectDN>

14.10.2.3 Using VBScript

See Recipe 7.7, Recipe 8.2, Recipe 13.6, and Recipe 17.9 for several examples of modifying an ACL
with VBScript.

14.10.3 Discussion

Changing the ACL of an object is a common task for administrators in any but the most basic AD
implementations because, as shown in Recipe 14.5 and Recipe 14.6, the Delegation of Control Wizard
is limited and cumbersome to extend and deploy. The GUI and command-line methods are useful for
one-off changes to permissions, but for making global changes to a number of objects you should
consider using a script.

14.10.4 See Also

MS KB 281146 (How to Use Dsacls.exe in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 14.11 Changing the Default ACL for an Object
Class in the Schema

14.11.1 Problem

You want to change the default ACL for an object class in the schema.

14.11.2 Solution

14.11.2.1 Using a graphical user interface

Open the Active Directory Schema snap-in.1.

In the left pane, browse to the class you want to modify.2.

Right-click on it and select Properties.3.

Select the Default Security tab.4.

Use the ACL Editor to change the ACL.5.

Click OK.6.

The Default Security tab is available only in the Windows Server 2003 version of
the Active Directory Schema snap-in. See MS KB 265399 for the manual
approach that is needed with Windows 2000.

14.11.3 Discussion

Each instantiated object in Active Directory has an associated structural class that defines a default
security descriptor (defaultSecurityDescriptor attribute). When an object is created, the default

security descriptor is applied to it. This, along with inheritable permissions from the parent container,
determines how an object's security descriptor is initially defined.

14.11.4 See Also

Recipe 14.12 for comparing the ACL of an object to the default defined in the schema, Recipe 14.13

for resetting the ACL of an object to that defined in the schema, and MS KB 265399 (HOW TO: Change
Default Permissions for Objects That Are Created in the Active Directory)

[Team LiB]

[Team LiB]

Recipe 14.12 Comparing the ACL of an Object to the
Default Defined in the Schema

14.12.1 Problem

You want to determine if an object has the permissions defined in the schema for its object class as
part of its ACL.

14.12.2 Solution

14.12.2.1 Using a command-line interface

> acldiag <ObjectDN> /schema

14.12.3 Discussion

For more on the default security descriptor, see Recipe 14.11.

14.12.4 See Also

Recipe 14.13 for resetting an object's ACL to the default defined in the schema

[Team LiB]

[Team LiB]

Recipe 14.13 Resetting an Object's ACL to the Default
Defined in the Schema

14.13.1 Problem

You want to reset an object's ACL to the one defined in the schema for the object's object class.

14.13.2 Solution

14.13.2.1 Using a graphical user interface

This is available only in the Windows Server 2003 version of the ACL Editor.

Open the ACL Editor. You can do this by viewing the properties of an object (right-click on the
object and select Properties) with a tool, such as Active Directory Users and Computers (ADUC)
or ADSI Edit. Select the Security tab. To see the Security tab with ADUC, you must select View

 Advanced Features from the menu.

1.

Click the Advanced button.2.

Click the Default button.3.

Click OK twice.4.

14.13.2.2 Using a command-line interface

> dsacls <ObjectDN> /s

14.13.3 Discussion

For more on the default security descriptor, see Recipe 14.11.

[Team LiB]

[Team LiB]

Recipe 14.14 Preventing the LM Hash of a Password from
Being Stored

14.14.1 Problem

You want to prevent the LM hash for new passwords from being stored in Active Directory. The LM
hash is primarily used for backwards compatibility with Windows 95 and 98 clients. The LM hash is
susceptible to brute force attacks.

14.14.2 Solution

For Windows 2000, you need to create the following Registry key on all domain controllers:
HKLM\SYSTEM\CurrentControlSet\Control\Lsa\NoLMHash. Note that this is a key and not a value
entry. Also, this is only supported on W2K SP2 and later domain controllers.

For Windows Server 2003, the NoLMHash key has turned into a DWORD value entry under the
HKLM\SYSTEM\CurrentControlSet\Control\Lsa key. This value should be set to 1. You can accomplish
this by modifying the Default Domain Controller Security Policy as described next.

14.14.2.1 Using a graphical user interface

Open the Default Domain Controller Security Policy snap-in.1.

In the left pane, expand Local Policies Security Options.2.

In the right pane, double-click on Network security: Do not store LAN Manager hash value on
next password change.

3.

Check the box beside Define this policy setting.4.

Click the Enabled radio button.5.

14.14.3 Discussion

If you do not have Windows 98 or older clients in your domain, you should consider disabling the
storage of the LM password hash for users. The LM hash uses an old algorithm (pre-Windows NT 4.0)
and is considered to be relatively weak compared to the NT hash that is also stored.

The LM hash is generated only for passwords that are shorter than 15
characters. So if you are one of the few people who have a password longer
than this, the LM hash is not stored for you.

14.14.4 See Also

MS KB 299656 (How to Prevent Windows from Storing a LAN Manager Hash of Your Password in
Active Directory and Local SAM Databases)

[Team LiB]

[Team LiB]

Recipe 14.15 Enabling List Object Access Mode

14.15.1 Problem

You want to prevent any authenticated user from being able to browse the contents of Active
Directory by default. Enabling List Object Access mode means users will need explicit permissions to
see directory listings of containers.

14.15.2 Solution

14.15.2.1 Using a graphical user interface

Open ADSI Edit.1.

In the Configuration partition, browse to cn=Services cn=Windows NT cn=Directory
Service.

2.

In the left pane, right-click on the Directory Service object and select Properties.3.

Double-click on the dSHeuristics attribute.4.

If the attribute is empty, set it with the value: 001. If the attribute has an existing value, make
sure the third bit (from the left) is set to 1.

5.

Click OK twice.6.

14.15.2.2 Using VBScript

' This code enables or disables list object mode for a forest.
' ------ SCRIPT CONFIGURATION ------
boolEnableListObject = 1 ' e.g. 1 to enable, 0 to disable
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objDS = GetObject(_
 "LDAP://cn=Directory Service,cn=Windows NT,cn=Services," _
 & objRootDSE.Get("configurationNamingContext"))
strDSH = objDS.Get("dSHeuristics")
if len(strDSH) = 1 then
 strDSH = strDSH & "0"

end if
strNewDSH = Left(strDSH,2) & boolEnableListObject
if len(strDSH) > 3 then
 strNewDSH = strNewDSH & Right(strDSH, len(strDSH) - 3)
end if

WScript.Echo "Old value: " & strDSH
WScript.Echo "New value: " & strNewDSH

if strDSH <> strNewDSH then
 objDS.Put "dSHeuristics", strNewDSH
 objDS.SetInfo
 WScript.Echo "Successfully set list object mode to " & _
 boolEnableListObject
else
 WScript.Echo "List object mode already set to " & boolEnableListObject
end if

14.15.3 Discussion

List Object Access mode is useful if you want your users to only view a subset of objects when doing
a directory listing of a particular container or you do not want them to be able to list the objects in a
container at all. By default, the Authenticated Users group is granted the List Contents access

control right over objects in a domain. If you remove or deny this right on a container by modifying
the ACL, users will not be able to get a listing of the objects in that container in tools, such as Active
Directory Users and Computers or ADSI Edit.

To limit the objects' users can see when they do a listing, you first need to enable List Object Access
mode as described in the solution. You should then remove the List Contents access control right on
the target container. Lastly, you'll need to grant the List Object right to the objects the users or
groups should be able to list.

Enabling List Object Access mode can significantly increase the administration
overhead for configuring ACLs in Active Directory.

14.15.4 See Also

MSDN: Controlling Object Visibility and Microsoft's High-Volume Hosting Site at
http://www.microsoft.com/serviceproviders/deployment/hvh_ad_deploy.asp

[Team LiB]

http://www.microsoft.com/serviceproviders/deployment/hvh_ad_deploy.asp

[Team LiB]

Recipe 14.16 Modifying the ACL on Administrator
Accounts

14.16.1 Problem

You want to modify the ACL for user accounts that are members of one of the administrative groups.

14.16.2 Solution

Using one of the methods described in Recipe 14.10, modify the ACL on the
cn=AdminSDHolder,cn=Systems,<DomainDN> object in the domain the administrator accounts reside

in. The ACL on this object gets applied every hour to all user accounts that are members of the
administrative groups.

14.16.3 Discussion

If you've ever tried to directly modify the ACL on a user account that was a member of one of the
administrative groups in Active Directory, or you modified the ACL on the OU containing an
administrative account and wondered why the account's ACL was overwritten later, you've come to
the right place. The Admin SD Holder feature of Active Directory is one that many administrators
stumble upon after much grinding of teeth. However, after you realize the purpose for it, you'll
understand it is a necessary feature.

Once an hour, a process on the PDC Emulator, which I'll refer to as the Admin SD Holder process,
compares the ACL on the AdminSDHolder object to the ACL on the accounts that are in

administrative groups in the domain. If it detects a difference, it will overwrite the account ACL and
disable inheritance. If you later remove a user from an administrative group, you will need to reapply
any inherited permissions and enable inheritance if necessary. The Admin SD Holder process will not
take care of this for you.

The Admin SD Holder process is intended to subvert any malicious activity by a user that has been
delegated rights over an OU or container that contains an account that is in one of the administrative
groups. The malicious user could, for example, reset the password of the account and log in to the
domain using that account, which would give him elevated privileges to do even more malicious
things.

These are the groups included as part of the Admin SD Holder processing:

Administrators

Account Operators

Cert Publishers

Backup Operators

Domain Admins

Enterprise Admins

Print Operators

Schema Admins

Server Operators

The Administrator and Krbtgt user accounts are also specifically checked during the Admin SD Holder
process.

14.16.4 See Also

MS KB 232199 (Description and Update of the Active Directory AdminSDHolder Object), MS KB
306398 (AdminSDHolder Object Affects Delegation of Control for Past Administrator Accounts), and
MS KB 817433 (Delegated Permissions Are Not Available and Inheritance Is Automatically Disabled)

[Team LiB]

[Team LiB]

Recipe 14.17 Viewing and Purging Your Kerberos Tickets

14.17.1 Problem

You want to view and possibly purge your Kerberos tickets.

14.17.2 Solution

Both the kerbtray and klist utilities can be found in the Resource Kit.

14.17.2.1 Using a graphical user interface

Run kerbtray.exe from the command line or Start Run.1.

A new icon (green) should show up in the system tray (where the system time is located).
Double-click on that icon. This will allow you to view your current tickets.

2.

To purge your tickets, right-click on the kerbtray icon in the system tray and select Purge

Tickets.

3.

Close the kerbtray window and reopen it by right-clicking on the kerbtray icon and selecting

List Tickets.

4.

14.17.2.2 Using a command-line interface

Run the following command to list your current tickets:

> klist tickets

Run the following command to purge your tickets:

> klist purge

14.17.3 Discussion

Active Directory uses Kerberos as its preferred network authentication system. When you
authenticate to a Kerberos Key Distribution Center (KDC), which in Active Directory terms is a
domain controller, you are issued one or more tickets. These tickets identify you as a certain principal
in Active Directory and can be used to authenticate you to other Kerberized services. This type of

ticket is known as a ticket-granting-ticket, or TGT. Once you've obtained a TGT, the client can pass
that to a Kerberized service and if the service accepts the ticket, it will issue a service ticket that
represents the client for the particular service.

Kerberos is a fairly complicated system that cannot be done justice in a single paragraph. If you want
more information on tickets and how the Kerberos authentication system works, see
Kerberos:TheDefinitive Guide (O'Reilly).

14.17.4 See Also

RFC 1510 (The Kerberos Network Authentication Service V5), and MS KB 232179 (Kerberos
Administration in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 14.18 Forcing Kerberos to Use TCP

14.18.1 Problem

Clients are experiencing authentication problems and you've determined it is due to UDP
fragmentation of Kerberos traffic. You want to force Kerberos traffic to go over TCP instead.

14.18.2 Solution

14.18.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

In the left pane, expand HKEY_LOCAL_MACHINE System CurrentControlSet
Control Lsa Kerberos Parameters.

2.

Right-click on Parameters and select New DWORD value. Enter MaxPacketSize for the value
name.

3.

In the right pane, double-click on MaxPacketSize and enter 1.4.

Click OK.5.

14.18.2.2 Using a command-line interface

> reg add "HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Kerberos\Parameters" /v [RETURN]
"MaxPacketSize" /t REG_DWORD /d 1

14.18.2.3 Using VBScript

' This code forces Kerberos to use TCP
' ------ SCRIPT CONFIGURATION ------

strComputer = "<ComputerName>" ' e.g. rallen-w2k3
' ------ END CONFIGURATION ---------

const HKLM = &H80000002
strRegKey = "SYSTEM\CurrentControlSet\Control\Lsa\Kerberos\Parameters"
set objReg = GetObject("winmgmts:\\" & strComputer & _
 "\root\default:StdRegProv")
objReg.SetDwordValue HKLM, strRegKey, "MaxPacketSize", 1
WScript.Echo "Kerberos forced to use TCP for " & strComputer

14.18.3 Discussion

If you have users that are experiencing extremely slow logon times (especially over VPN) or they are
seeing the infamous "There are currently no logon servers available to service the logon request,"
then they may be experiencing UDP fragmentation of Kerberos traffic. One way to help identify if
there is a problem with Kerberos is to have the users run the following command:

> netdiag /test:kerberos

Another source of information is the System event log on the clients. Various Kerberos-related events
are logged there if problems with authentication occur.

For more information about Kerberos and UDP, see MS KB 244474 (How to Force Kerberos to Use TCP
Instead of UDP).

[Team LiB]

[Team LiB]

Recipe 14.19 Modifying Kerberos Settings

14.19.1 Problem

You want to modify the default Kerberos settings that define things, such as maximum ticket lifetime.

14.19.2 Solution

14.19.2.1 Using a graphical user interface

Open the Domain Security Policy snap-in.1.

In the left pane, expand Account Policies Kerberos Policy.2.

In the right pane, double-click on the setting you want to modify.3.

Enter the new value and click OK.4.

14.19.3 Discussion

There are several Kerberos-related settings you can customize. In most environments, the default
settings are sufficient, but the ones you can modify are listed in Table 14-1.

Change the default settings with caution as it could cause operational problems
and compromise security if done incorrectly.

Table 14-1. Kerberos policy settings

Setting Default value

Enforce user logon restrictions Enabled

Maximum lifetime for service ticket 600 minutes

Maximum lifetime for user ticket 10 hours

Maximum lifetime for user ticket renewal 7 days

14.19.4 See Also

Setting Default value

Maximum tolerance for computer clock synchronization 5 minutes

14.19.4 See Also

MS KB 231849 (Description of Kerberos Policies in Windows 2000) and MS KB 232179 (Kerberos
Administration in Windows 2000)

[Team LiB]

Maximum tolerance for computer clock synchronization 5 minutes

14.19.4 See Also

MS KB 231849 (Description of Kerberos Policies in Windows 2000) and MS KB 232179 (Kerberos
Administration in Windows 2000)

[Team LiB]

[Team LiB]

Chapter 15. Logging, Monitoring, and
Quotas

Introduction

Recipe 15.1. Enabling Extended dcpromo Logging

Recipe 15.2. Enabling Diagnostics Logging

Recipe 15.3. Enabling NetLogon Logging

Recipe 15.4. Enabling GPO Client Logging

Recipe 15.5. Enabling Kerberos Logging

Recipe 15.6. Enabling DNS Server Debug Logging

Recipe 15.7. Viewing DNS Server Performance Statistics

Recipe 15.8. Enabling Inefficient and Expensive LDAP Query Logging

Recipe 15.9. Using the STATS Control to View LDAP Query Statistics

Recipe 15.10. Using Perfmon to Monitor AD

Recipe 15.11. Using Perfmon Trace Logs to Monitor AD

Recipe 15.12. Enabling Auditing of Directory Access

Recipe 15.13. Creating a Quota

Recipe 15.14. Finding the Quotas Assigned to a Security Principal

Recipe 15.15. Changing How Tombstone Objects Count Against Quota Usage

Recipe 15.16. Setting the Default Quota for All Security Principals in a Partition

Recipe 15.17. Finding the Quota Usage for a Security Principal
[Team LiB]

[Team LiB]

Introduction

This chapter deals with tracking the activity and usage of various Active Directory components.
Whenever you need to troubleshoot a problem, often the first place you look is log files. With Active
Directory, there are several different log files, and each have different ways to increase or decrease
the verbosity of information that is logged. Viewing log messages can be useful, but you may also
want to look at performance metrics to determine if the system is being over-utilized. I'll review a
couple of ways you can view performance metrics and monitor Active Directory performance. For
more extensive monitoring, I suggest looking at NetPro's (http://www.netpro.com/) Active Directory
monitoring tools or Microsoft Operations Manager (http://microsoft.com/mom/).

I'll also cover a somewhat-related topic in this chapter called quotas, which allow you to monitor and
limit the number of objects a security principal (user, group, or computer) can create in a partition.
This feature, introduced in Windows Server 2003, closes a hole that existed in Windows 2000 where
users that had access to create objects in Active Directory could create as many as they wanted.
These users could even cause a denial of service by creating objects until the disk filled on the
domain controllers. This kind of attack is not likely to happen in most environments, but the
possibility should still be considered.

The Anatomy of a Quota Object Container

Quota objects are stored in the NTDS Quotascontainer in all Windows Server 2003-based naming

contexts and application partitions except the schema-naming context (quotas cannot be associated
with the schema-naming context). By default, this container is hidden from view within tools, such as
Active Directory Users and Computers, but can be seen by selecting View Advanced Features
from the menu. The quota object container has an objectClass of msDS-QuotaContainer, and

contains several attributes that define default quota behavior. Table 15-1 lists some of the important
attributes of msDS-QuotaContainer objects.

Table 15-1. Attributes of msDS-QuotaContainer objects

Attribute Description

cn
RDN of quota container objects. By default, this is equal to NTDS
Quotas.

msDS-DefaultQuota
The default quota applied to all security principals that do not have
another quota specification applied. See Recipe 15.16 for more details.

msDS-QuotaEffective
A constructed attribute that contains the effective quota of the security
principal that is viewing the attribute. See Recipe 15.17 for more
details.

http://www.netpro.com/
http://microsoft.com/mom/

Attribute Description

msDS-QuotaUsed
A constructed attribute that contains the quota usage of the security
principal that is viewing the attribute. See Recipe 15.17 for more
details.

msDS-
TombstoneQuotaFactor

Percentage that tombstone objects count against a quota. The default is
100, which means a tombstone object has equal weighting to a normal
object. See Recipe 15.15 for more details.

msDS-TopQuotaUsage
Multivalued attribute that contains information about the security
principals with the top quota usage. See Recipe 15.17 for more details.

The Anatomy of a Quota Object

Quota objects have an objectClass of msDS-QuotaControl, which defines three attributes that

relate to quotas. Table 15-2 contains these attributes and provides a description for each.

Table 15-2. Attributes of msDS-QuotaControl objects

Attribute Description

cn RDN of the quota object.

msDS-
QuotaAmount

Number of objects that can be created by the security principals that the quota
applies to. See Recipe 15.13 for more information.

msDS-
QuotaTrustee

SID of the security principal that the quota applies to. This can be a user, group,
or computer SID. See Recipe 15.13 for more information.

[Team LiB]

msDS-QuotaUsed
A constructed attribute that contains the quota usage of the security
principal that is viewing the attribute. See Recipe 15.17 for more
details.

msDS-
TombstoneQuotaFactor

Percentage that tombstone objects count against a quota. The default is
100, which means a tombstone object has equal weighting to a normal
object. See Recipe 15.15 for more details.

msDS-TopQuotaUsage
Multivalued attribute that contains information about the security
principals with the top quota usage. See Recipe 15.17 for more details.

The Anatomy of a Quota Object

Quota objects have an objectClass of msDS-QuotaControl, which defines three attributes that

relate to quotas. Table 15-2 contains these attributes and provides a description for each.

Table 15-2. Attributes of msDS-QuotaControl objects

Attribute Description

cn RDN of the quota object.

msDS-
QuotaAmount

Number of objects that can be created by the security principals that the quota
applies to. See Recipe 15.13 for more information.

msDS-
QuotaTrustee

SID of the security principal that the quota applies to. This can be a user, group,
or computer SID. See Recipe 15.13 for more information.

[Team LiB]

[Team LiB]

Recipe 15.1 Enabling Extended dcpromo Logging

15.1.1 Problem

You want to enable extended dcpromo logging. This can be useful if you are experiencing problems during
the promotion or demotion process and the dcpromo log files are not providing enough information to

indicate the problem.

15.1.2 Solution

These solutions are slightly different on Windows 2000. See the Discussion section for more information. To
enable the maximum amount of logging, use 16711683 (FF0003 in hexadecimal) as the flag value. For a
complete description of the possible bit values, see MS KB 221254.

15.1.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

In the left pane, expand HKEY_LOCAL_MACHINE Software Microsoft Windows
CurrentVersion AdminDebug dcpromoui .

2.

If the LogFlags value does not exist, right-click on dcpromoui in the left pane and select New

DWORD Value. For the name, enter LogFlags.

3.

In the right pane, double-click on the LogFlags value and enter the flag value you want to set.4.

Click OK.5.

15.1.2.2 Using a command-line interface

With the following command, <FlagValue> needs to the decimal version (not hexidecimal) of the flag

value:

> reg add HKLM\Software\Microsoft\Windows\CurrentVersion\AdminDebug\dcpromoui /v [RETURN]

"LogFlags" /t REG_DWORD /d <FlagValue>

15.1.2.3 Using VBScript

' This code sets the dcpromoui logging flag (for Windows Server 2003 only)
' ------ SCRIPT CONFIGURATION ------

strDC = "<DomainControllerName>" ' e.g. dc01

intFlag = <FlagValue> ' Flag value in decimal, e.g. 16711683
' ------ END CONFIGURATION ---------

const HKLM = &H80000002
strDcpromoReg = "Software\Microsoft\Windows\CurrentVersion\AdminDebug\dcpromoui"
set objReg = GetObject("winmgmts:\\" & strDC & "\root\default:StdRegProv")
objReg.SetDwordValue HKLM, strDcpromoReg, "LogFlags", intFlag
WScript.Echo "Dcpromoui flag set to " & intFlag

15.1.3 Discussion

As described in Recipe 3.5 , the dcpromo wizard creates a couple of log files in %SystemRoot%\debug

when it is executed, which can be useful in troubleshooting promotion or demotion problems. Typically, the
default amount of logging that is done in the dcpromoui.log file is sufficient to identify most problems, but
you can increase it as described in the Solution section.

The location of the log flags registry value changed from Windows 2000 to Windows Server 2003. In
Windows 2000, the value is located here:

HKLM\Software\Microsoft\Windows\CurrentVersion\AdminDebug\dcpromoui

In Windows Server 2003, the value is located here (which was used in the Solutions section):

HKLM\Software\Microsoft\Windows\CurrentVersion\AdminDebug\dcpromoui\LogFlags

15.1.4 See Also

Recipe 3.5 for more on troubleshooting dcpromo problems, and MS KB 221254 (Registry Settings for Event

Detail in the Dcpromoui.log File)

[Team LiB]

[Team LiB]

Recipe 15.2 Enabling Diagnostics Logging

15.2.1 Problem

You want to enable diagnostics event logging because the current level of logging is not providing
enough information to help pinpoint the problem you are troubleshooting.

15.2.2 Solution

15.2.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

In the left pane, expand HKEY_LOCAL_MACHINE System CurrentControlSet
Services NTDS Diagnostics.

2.

In the right pane, double-click on the diagnostics logging entry you want to increase, and enter a
number (0-5) based on how much you want logged.

3.

Click OK.4.

15.2.2.2 Using a command-line interface

> reg add HKLM\SYSTEM\CurrentControlSet\Services\NTDS\Diagnostics /v [RETURN]

"<LoggingSetting>" /t REG_DWORD /d <0-5>

15.2.2.3 Using VBScript

' This code sets the specified diagnostics logging level
' ------ SCRIPT CONFIGURATION ------

strDC = "<DomainControllerName>" ' e.g. dc01

strLogSetting = "<LoggingSetting>" ' e.g. 1 Knowledge Consistency Checker

intFlag = <FlagValue> ' Flag value in decimal, e.g. 5
' ------ END CONFIGURATION ---------

const HKLM = &H80000002
strRegKey = "SYSTEM\CurrentControlSet\Services\NTDS\Diagnostics"
set objReg = GetObject("winmgmts:\\" & strDC & "\root\default:StdRegProv")
objReg.SetDwordValue HKLM, strRegKey, "LogFlags", intFlag

WScript.Echo "Diagnostics logging for " & strLogSetting _
 & " set to " & intFlag

15.2.3 Discussion

A useful way to troubleshoot specific problems you are encountering with Active Directory is to
increase the diagnostics logging level. Diagnostics logging can be enabled by component. For
example, if you determine the Knowledge Consistency Checker (KCC) is not completing every 15
minutes, you can enable diagnostics logging for the "1 Knowledge Consistency Checker" setting.

These settings are stored under HKLM\SYSTEM\CurrentControlSet\Services\NTDS\Diagnostics. By
default, all settings are set to 0, which disables diagnostic logging, but you can increase it by setting it
to a number from 1 through 5. As a general rule, a value of 1 is used for minimum logging, 3 for
medium logging, and 5 for maximum logging. It is a good practice to ease your way up to 5 because
some diagnostics logging settings can generate a bunch of events in the event log, which may make
it difficult to read, along with increasing resource utilization on the domain controller.

Here is the complete list of diagnostics logging settings for Windows Server 2003. Note that settings
20-24 are not available on Windows 2000-based domain controllers.

1 Knowledge Consistency Checker
2 Security Events
3 ExDS Interface Events
4 MAPI Interface Events
5 Replication Events
6 Garbage Collection
7 Internal Configuration
8 Directory Access
9 Internal Processing
10 Performance Counters
11 Initialization/Termination
12 Service Control
13 Name Resolution
14 Backup
15 Field Engineering
16 LDAP Interface Events
17 Setup
18 Global Catalog
19 Inter-site Messaging
20 Group Caching
21 Linked-Value Replication
22 DS RPC Client
23 DS RPC Server
24 DS Schema

15.2.4 See Also

MS KB 220940 (How to Enable Diagnostic Event Logging for Active Directory Services)

[Team LiB]

[Team LiB]

Recipe 15.3 Enabling NetLogon Logging

15.3.1 Problem

You want to enable NetLogon logging to help with troubleshooting client account logon, lockout, or
domain controller location issues.

15.3.2 Solution

15.3.2.1 Using a command-line interface

To enable Netlogon logging, use the following command:

> nltest /dbflag:0x2080ffff

To disable Netlogon logging, use the following command:

> nltest /dbflag:0x0

15.3.3 Discussion

The netlogon.log file located in %SystemRoot%\Debug can be invaluable for troubleshooting client
logon and related issues. When enabled at the highest setting (0x2000ffff), it logs useful information,
such as the site the client is in, the domain controller the client authenticated against, additional
information related to the DC Locator process, account password expiration information, account
lockout information, and even Kerberos failures.

The NetLogon logging level is stored in the following registry value:

HKLM\System\CurrentControlSet\Services\Netlogon Parameters\DBFlag

If you set that registry value manually, instead of using nltest, you'll need to restart the NetLogon

service for it to take effect.

One of the issues with the netlogon.log file is that it can quickly grow to several megabytes, which
makes it difficult to peruse. A new tool available for Windows XP and Windows Server 2003 called
nlparse can filter the contents of the netlogon.log file so that you'll only see certain type of log
entries. The nlparse tool is part of the Account Lockout and Management Tools that Microsoft made

available from the following web site (assuming the tools haven't moved):

http://www.microsoft.com/downloads/details.aspx?FamilyID=7af2e69c-91f3-4e63-8629-
b999adde0b9e&DisplayLang=en

http://www.microsoft.com/downloads/details.aspx?FamilyID=7af2e69c-91f3-4e63-8629-

15.3.4 See Also

MS KB 109626 (Enabling Debug Logging for the Netlogon Service), MS KB 247811 (How Domain
Controllers Are Located in Windows), and MS KB 273499 (Description of Security Event 681)

[Team LiB]

[Team LiB]

Recipe 15.4 Enabling GPO Client Logging

15.4.1 Problem

You want to troubleshoot GPO processing issues on a client or server by enabling additional logging in
the Application event log.

15.4.2 Solution

15.4.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

In the left pane, expand HKEY_LOCAL_MACHINE Software Microsoft Windows NT
 CurrentVersion.

2.

If the Diagnostics key doesn't exist, right-click on CurrentVersion and select New Key. Enter
Diagnostics for the name and hit enter.

3.

Right-click on Diagnostics and select New DWORD value. Enter
RunDiagnosticLoggingGroupPolicy for the value name.

4.

In the right pane, double-click on RunDiagnosticLoggingGroupPolicy and enter 1.5.

Click OK.6.

15.4.2.2 Using a command-line interface

> reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Diagnostics" /v [RETURN]
"RunDiagnosticLoggingGroupPolicy" /t REG_DWORD /d 1

15.4.2.3 Using VBScript

' This code enables GPO logging on a target computer
' ------ SCRIPT CONFIGURATION ------

strComputer = "<ComputerName>" ' e.g. rallen-w2k3
' ------ END CONFIGURATION ---------

const HKLM = &H80000002
strRegKey = "SOFTWARE\Microsoft\Windows NT\CurrentVersion\Diagnostics"
set objReg = GetObject("winmgmts:\\" & strComputer _
 & "\root\default:StdRegProv")
objReg.SetDwordValue HKLM, strRegKey, "RunDiagnosticLoggingGroupPolicy", 1

WScript.Echo "Enabled GPO logging for " & strComputer

15.4.3 Discussion

If you experience problems with client GPO processing, such as a GPO not getting applied even though
you think it should, there aren't many tools that can help you troubleshoot the problem. One way to
get detailed information about what GPOs are applied on a client is by enabling additional GPO event
logging. If you set the RunDiagnosticLoggingGroupPolicy Registry value to 1, extensive logging will be
done in the Application event log. Events detailing the beginning of the GPO processing cycle, what
GPOs are applied, and any errors encountered will all be logged. Here is an example of a log message
that shows which GPOs are going to be applied on the host DC1. To disable this logging, either delete
RunDiagnosticLoggingGroupPolicy or set the value to 0.

Here is a sample event log message:

Event Type: Error
Event Source: Userenv
Event Category: None
Event ID: 1031
Date: 5/26/2003
Time: 5:52:13 PM
User: NT AUTHORITY\SYSTEM
Computer: DC1
Description:
Group Policy objects to be applied: "Default Domain Policy" "Default Domain
Controllers Policy" .

15.4.4 See Also

MS KB 186454 (How to Enable User Environment Event Logging in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 15.5 Enabling Kerberos Logging

15.5.1 Problem

You want to enable Kerberos logging on a domain controller to troubleshoot authentication problems.

15.5.2 Solution

15.5.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

In the left pane, expand HKEY_LOCAL_MACHINE System CurrentControlSet Control Lsa
 Kerberos Parameters.

2.

If the LogLevel value doesn't already exist, right-click on Parameters and select New DWORD value.
Enter LogLevel for the value name and click OK.

3.

In the right pane, double-click on LogLevel and enter 1.4.

Click OK.5.

15.5.2.2 Using a command-line interface

> reg add HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Kerberos\Parameters /v "LogLevel" [RETURN]
/t REG_DWORD /d 1

15.5.2.3 Using VBScript

' This code enables Kerberos logging for the specified domain controller
' ------ SCRIPT CONFIGURATION ------

strDC = "<DomainControllerName>" ' e.g. dc01
' ------ END CONFIGURATION ---------

const HKLM = &H80000002
strRegKey = "SYSTEM\CurrentControlSet\Control\Lsa\Kerberos\Parameters"
set objReg = GetObject("winmgmts:\\" & strDC & "\root\default:StdRegProv")
objReg.SetDwordValue HKLM, strRegKey, "LogLevel", 1
WScript.Echo "Enable Kerberos logging for " & strDC

15.5.3 Discussion

If you are experiencing authentication problems or would like to determine whether you are experiencing any
Kerberos-related issues, enabling Kerberos logging will cause Kerberos errors to be logged in the System event
log. The Kerberos events can point out if the problem is related to clock skew, an expired ticket, expired
password, etc. For a good overview of some of the Kerberos error messages, see MS KB 230476.

Here is an example event:

Event Type: Error
Event Source: Kerberos
Event Category: None
Event ID: 3
Date: 5/26/2003
Time: 5:53:43 PM
User: N/A
Computer: DC01
Description:
A Kerberos Error Message was received:
 on logon session
 Client Time:
 Server Time: 0:53:43.0000 5/27/2003 Z
 Error Code: 0xd KDC_ERR_BADOPTION
 Extended Error: 0xc00000bb KLIN(0)
 Client Realm:
 Client Name:
 Server Realm: RALLENCORP.COM
 Server Name: host/ dc01.rallencorp.com
 Target Name: host/dc01.rallencorp.com@RALLENCORP.COM
 Error Text:
 File: 9
 Line: ab8
 Error Data is in record data.

15.5.4 See Also

MS KB 230476 (Description of Common Kerberos-Related Errors in Windows 2000) and MS KB 262177 (HOW TO:
Enable Kerberos Event Logging)

[Team LiB]

[Team LiB]

Recipe 15.6 Enabling DNS Server Debug Logging

15.6.1 Problem

You want to enable DNS debug logging to troubleshoot issues related to DNS queries or updates.

15.6.2 Solution

15.6.2.1 Using a graphical user interface

Open the DNS Management snap-in.1.

Right-click on DNS in the left pane and select Connect to DNS Server.2.

Enter the server you want to connect to and click Enter.3.

Right-click on the server and select Properties.4.

Click on the Debug Logging tab (or the Logging tab for Windows 2000).5.

Select what you want to log and the location of the log file (the log file location is hardcoded to
%systemroot%\system32\dns\dns.log on Windows 2000).

6.

Click OK.7.

15.6.2.2 Using a command-line interface

Use the following command to enable debug logging. You have to add together the event codes you
want logged and specify the result in hex for the log level. The available event codes can be found in
Table 15-3 .

> dnscmd <DNSServerName> /Config /LogLevel <EventFlagSumInHex>

Use the following command to specify the location of the log file:

> dnscmd <DNSServerName> /Config /LogFilePath <DirectoryAndFilePath>

Use the following command to log only entries that pertain to certain IP addresses:

> dnscmd <DNSServerName> /Config /LogIPFilterList <IPAddress1>[,<IPAddress2> . . .]

Use the following command to specify the maximum log file size:

> dnscmd <DNSServerName> /Config /LogFileMaxSize <NumberOfBytesInHex>

15.6.2.3 Using VBScript

' This code enables DNS debug logging.
' ------ SCRIPT CONFIGURATION ------

strServer = "<DNSServerName>" ' e.g. dc1
' The log level must be in decimal, not hex like dnscmd

intLogLevel = <EventFlagSumInDecimal> ' e.g. 65535

arrFilterList = Array("<IPAddress1>") ' e.g. 192.168.1.12

strFilePath = <DirectoryAndFilePath> ' e.g. c:\dnslog.txt

intFileSize = <NumberOfBytesInDecimal> ' e.g. 50000000
' ------ END CONFIGURATION ---------

set objDNS = GetObject("winMgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")
objDNSServer.LogLevel = intLogLevel
objDNSServer.LogIPFilterList = arrFilterList
objDNSServer.LogFilePath = strFilePath
objDNSServer.LogFileMaxSize = intFileSize
objDNSServer.Put_
WScript.Echo "Enabled DNS Debug Logging on " & strServer

15.6.3 Discussion

With the DNS Server debug log, you can record all DNS operations received and initiated by the
server, including queries, updates, zone transfers, etc. If you need to troubleshoot a particular host,
you can use the LogIPFilterList setting in dnscmd or the WMI DNS Provider to restrict the log to

operations performed only for or by that host.

The most important debug log setting is the log level. With the DNS Console, you can select from a list
of available options. With Windows Server 2003, the DNS Console provides an intuitive interface for
selecting the required options. On Windows 2000, you are presented with a list of check boxes and
you have to figure out which ones need to be used in conjunction with one another. You have a
similar issue with CLI and VBScript solutions, where you need to determine what log level you want to
set.

Table 15-3 contains all of the event codes with their hexadecimal and decimal values.

Table 15-3. DNS debug logging event codes

Hexadecimal value Decimal value Description

0x0 0 No logging. This is the default.

0x1 1 Queries transactions.

0x10 16 Notifications transactions.

0x20 32 Updates transactions.

0xFE 254 Non-queries transactions.

Hexadecimal value Decimal value Description

0x100 256 Question packets.

0x200 512 Answer packets.

0x1000 4096 Send packets.

0x2000 8192 Receive packets.

0x4000 16384 UDP packets.

0x8000 32768 TCP packets.

0xFFFF 65535 All packets.

0x10000 65536 AD write transactions.

0x20000 131072 AD update transactions.

0x1000000 16777216 Full packets.

0x80000000 2147483648 Write-through transactions.

DNS debug logging can come in handy if you want to look at the dynamic update requests a
particular DNS server is processing. For example, if a client or DHCP server is attempting to
dynamically register records, you can enable the Update Transactions log category on the DNS server
you think should be processing the updates. If you don't see any update transactions, that can
indicate another server is processing the dynamic update requests.

Transactions are not immediately written to the debug log file as they occur.
They are buffered and written to the file after a certain number of requests are
processed.

15.6.4 See Also

MSDN: MicrosoftDNS_Server

[Team LiB]

0x100 256 Question packets.

0x200 512 Answer packets.

0x1000 4096 Send packets.

0x2000 8192 Receive packets.

0x4000 16384 UDP packets.

0x8000 32768 TCP packets.

0xFFFF 65535 All packets.

0x10000 65536 AD write transactions.

0x20000 131072 AD update transactions.

0x1000000 16777216 Full packets.

0x80000000 2147483648 Write-through transactions.

DNS debug logging can come in handy if you want to look at the dynamic update requests a
particular DNS server is processing. For example, if a client or DHCP server is attempting to
dynamically register records, you can enable the Update Transactions log category on the DNS server
you think should be processing the updates. If you don't see any update transactions, that can
indicate another server is processing the dynamic update requests.

Transactions are not immediately written to the debug log file as they occur.
They are buffered and written to the file after a certain number of requests are
processed.

15.6.4 See Also

MSDN: MicrosoftDNS_Server

[Team LiB]

[Team LiB]

Recipe 15.7 Viewing DNS Server Performance Statistics

15.7.1 Problem

You want to view DNS Server performance statistics.

15.7.2 Solution

15.7.2.1 Using a graphical user interface

Open the Performance Monitor.1.

Click on System Monitor in the left pane.2.

In the right pane, click the + button. This will bring up the page to add counters.3.

Under Select counters from computer, enter the DNS server you want to target.4.

Select the DNS performance object.5.

Select the counters you want to add and click the Add button.6.

Click Close.7.

15.7.2.2 Using a command-line interface

> dnscmd <DNSServerName> /statistics

15.7.2.3 Using VBScript

' This code displays all statistics for the specified DNS server
' ------ SCRIPT CONFIGURATION ------

strServer = "<DNSServerName>" ' e.g. dc1.rallencorp.com
' ------ END CONFIGURATION ---------

set objDNS = GetObject("winmgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")
set objStats = objDNS.ExecQuery("Select * from MicrosoftDNS_Statistic ")
for each objStat in objStats

 WScript.Echo " " & objStat.Name & " : " & objStat.Value
next

15.7.3 Discussion

The Microsoft DNS Server keeps track of dozens of performance metrics. These metrics include the
number of queries, updates, transfers, directory reads, and directory writes processed by the server.
If you can pump these metrics into an enterprise management system, you can track DNS usage and
growth over time.

These statistics can also be useful to troubleshoot load-related issues. If you suspect a DNS Server is
being overwhelmed with DNS update requests, you can look at the Dynamic Update Received/sec
counter and see if it is processing an unusually high number of updates.

15.7.3.1 Using a command-line interface

You can obtain a subset of the statistics by providing a "statid" after the /statistics option. Each

statistics category has an associated number (i.e., statid). For a complete list of categories and their
statid, run the following command:

> dnscmd /statistics /?

Here is an example of viewing the Query (statid = 2) and Query2 (statid = 4) statistics:

> dnscmd /statistics 6
DNS Server . statistics:

Queries and Responses:

Total:
 Queries Received = 14902
 Responses Sent = 12900
UDP:
 Queries Recvd = 14718
 Responses Sent = 12716
 Queries Sent = 23762
 Responses Recvd = 0
TCP:
 Client Connects = 184
 Queries Recvd = 184
 Responses Sent = 184
 Queries Sent = 0
 Responses Recvd = 0

Queries:

Total = 14902
 Notify = 0
 Update = 2207
 TKeyNego = 184

 Standard = 12511
 A = 1286
 NS = 29
 SOA = 2263
 MX = 0
 PTR = 1
 SRV = 8909
 ALL = 0
 IXFR = 0
 AXFR = 0
 OTHER = 23

Command completed successfully.

15.7.3.2 Using VBScript

You can obtain a subset of statistics by adding a where clause to the WQL query. The following query
would match only counters that start with "Records":

select * from MicrosoftDNS_Statistic where Name like 'Records%'

15.7.4 See Also

MSDN: MicrosoftDNS_Statistic

[Team LiB]

[Team LiB]

Recipe 15.8 Enabling Inefficient and Expensive LDAP
Query Logging

15.8.1 Problem

You want to log inefficient and expensive LDAP queries to the Directory Services event log.

15.8.2 Solution

To log a summary report about the total number of searches, total expensive searches, and total
inefficient searches to the Directory Services event log, set the 15 Field Engineering diagnostics
logging setting to 4. This summary is generated every 12 hours during the garbage collection cycle.

To log an event to the Directory Services event log every time an expensive or inefficient search
occurs, set the 15 Field Engineering diagnostics logging setting to 5.

See Recipe 15.2 for more on enabling diagnostics logging.

15.8.3 Discussion

A search is considered expensive if it has to visit a large number of objects in Active Directory. A
search is considered inefficient if it returns less than 10% of the total objects it visits. The default
threshold for an expensive query is 10,000. That means any search that visits 10,000 or more objects
would be considered expensive. The default bottom limit for an inefficient query is 1,000. If a query
visited 1,000 objects and only returned 99 of them (less than 10%), it would be considered inefficient.
If it returned 900 instead, it would not be considered inefficient. To summarize, with 1,000 being the
default bottom threshold, no search that visits less than 1,000 entries (even if it visited 999 and
returned 0) would be considered inefficient.

Here is an example summary report event that is logged when 15 Field Engineering is set to 4:

Event Type: Information
Event Source: NTDS General
Event Category: Field Engineering
Event ID: 1643
Date: 5/24/2003
Time: 7:24:24 PM
User: NT AUTHORITY\ANONYMOUS LOGON
Computer: DC1
Description:
Internal event: Active Directory performed the following number of search operations
within this time interval.

Time interval (hours):

9
Number of search operations:
24679

During this time interval, the following number of search operations were
characterized as either expensive or inefficient.

Expensive search operations:
7
Inefficient search operations:
22

If you set 15 Field Engineering to 5, the summary event is logged during the garbage collection cycle,
and event 1644 every time an expensive or inefficient search occurs. Notice that this event provides
details on all aspects of the search including the client IP, authenticating user, search base DN, search
filter, attributes, controls, number of entries visited, and number of entries returned. This was taken
from a Windows Server 2003 domain controller. Windows 2000 does not provide quite as much detail.

Event Type: Information
Event Source: NTDS General
Event Category: Field Engineering
Event ID: 1644
Date: 5/24/2003
Time: 7:50:40 PM
User: RALLENCORP\rallen
Computer: DC1
Description:
Internal event: A client issued a search operation with the following options.

Client:
192.168.4.14
Starting node:
DC=rallencorp,DC=com
Filter:
 (description=*)
Search scope:
subtree
Attribute selection:
cn
Server controls:

Visited entries:
10340
Returned entries:
1000

With the default settings, the query shown in the above event is considered both expensive and
inefficient. It is expensive because it visited more than 10,000 entries. It is inefficient because it
returned less than 10% of those entries.

You can customize what a domain controller considers expensive and inefficient by creating a couple
registry values under the HKLM\SYSTEM\CurrentControlSet\Services\NTDS\Parameters key. You can

create a value named Expensive Search Results Threshold of type DWORD, and specify the

number of entries a search would need to visit to be considered expensive. Similarly, you can create a
value named Inefficient Search Results Threshold of type DWORD, and specify the minimum

number of entries visited where a match returning less than 10% would be considered inefficient.

If you want to see all the LDAP queries that are being sent to a domain
controller, a quick way to do that would be to set the 15 Field Engineering
setting to 5 and Expensive Search Results Threshold to 0. This would cause

the domain controller to consider every search as expensive and log all the
LDAP searches. While this can be very useful, you should use it with care as it
could quickly fill your event log.

15.8.4 See Also

Recipe 15.2 for enabling diagnostics logging

[Team LiB]

[Team LiB]

Recipe 15.9 Using the STATS Control to View LDAP Query
Statistics

15.9.1 Problem

You want to use the STATS LDAP control to test the efficiency of a query.

15.9.2 Solution

15.9.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a user to perform the search.7.

Click OK.8.

From the menu, select Options Control.9.

For the Windows Server 2003 version of LDP, you can select Search Stats from the Load Predefined

selection. For Windows 2000, add a control with the OID 1.2.840.113556.1.4.970.

10.

Click OK.11.

From the menu, select Browse Search.12.

Enter your search criteria and then click the Options button.13.

Under Search Call Type, be sure that Extended is selected.14.

Click OK and Click Run.15.

15.9.3 Discussion

The STATS control is a useful way to obtain statistics about the performance of an LDAP query. With the STATS
control, you can find out information, such as the amount of time it took the server to process the query, how
many entries were visited versus returned, what the search filter expanded to, and if any indexes were used.
Here is an example of what the STATS control returns for a search for all group objects in the cn=Users

container:

***Searching . . .
ldap_search_ext_s(ld, "cn=users,DC=rallencorp,DC=com", 2, "(objectcategory=group)",
attrList, 0, svrCtrls, ClntCtrls, 20, 1000 ,&msg)
Result <0>:
Matched DNs:
Stats:
 Call Time: 10 (ms)
 Entries Returned: 17
 Entries Visited: 17
 Used Filter:
(objectCategory=CN=Group,CN=Schema,CN=Configuration,DC=rallencorp,DC=com) [RETURN]
 Used Indexes: INTERSECT_INDEX:17:I;

A couple things are worth noting here. First, the search visited only 17 entries and ended up returning all 17. In
terms of the definitions defined in Recipe 15.8 , this query is both inexpensive and efficient . You can also see
that the filter that I used, (objectcategory=group), was expanded to
(objectCategory=CN=Group,CN=Schema, CN=Configuration,DC=rallencorp,DC=com) . The syntax of the
objectCategory attribute is a distinguished name, but Active Directory provides a shortcut so that you need to

use only the LDAP display name of the class instead. Internally, Active Directory converts the display name to
the distinguished name, as shown here. Finally, we can see that our search used an index
INTERSECT_INDEX:17:I.

Let's look at another example, except this time I'll perform an ANR search for "Jim Smith":

***Searching . . .
ldap_search_ext_s(ld, "ou=Sales,DC=rallencorp,DC=com", 2, "(anr=Jim Smith)",
attrList, 0, svrCtrls, ClntCtrls, 20, 1000 ,&msg)
Result <0>:
Matched DNs:
Stats:
 Call Time: 20 (ms)
 Entries Returned: 1
 Entries Visited: 2
 Used Filter: (| (displayName=Jim Smith*) (givenName=Jim Smith*)
(legacyExchangeDN=Jim Smith) (msDS-AdditionalSamAccountName=Jim Smith*)
(physicalDeliveryOfficeName=Jim Smith*) (proxyAddresses=Jim Smith*) (name=Jim
Smith*) (sAMAccountName=Jim Smith*)
(sn=Jim Smith*) (& (givenName=Jim*) (sn=Smith*)) (& (givenName=Smith*) (sn=Jim*)))
 Used Indexes: idx_givenName:10:N;idx_givenName:10:N;idx_sn:9:N;idx_
sAMAccountName:8:N;idx_name:7:N;idx_proxyAddresses:6:N;idx_
physicalDeliveryOfficeName:5:N;idx_msDS-AdditionalSamAccountName:4:N;idx_
legacyExchangeDN:3:N;idx_givenName:2:N;idx_displayName:1:N;

You can see from the second line that I used a very simple filter (anr=Jim Smith) . If you look down a little
farther at "Used Filter:" you can see a better example of search filter expansion. Like the objectCategory

example earlier, ANR is a shorthand way to do something complex. A simple one-term search filter expands

into a multiterm filter that searches across numerous attributes. For more on the behavior of ANR, see Recipe
10.13 . The point of showing this is that the STATS control is very powerful and can be an invaluable tool when
trying to troubleshoot or optimize LDAP queries.

15.9.4 See Also

Recipe 4.3 for using a LDAP controls, Recipe 4.5 for searching for objects, Recipe 10.13 for more on ANR, and
Recipe 15.8 for more on expensive and inefficient searches

[Team LiB]

[Team LiB]

Recipe 15.10 Using Perfmon to Monitor AD

15.10.1 Problem

You want to use Perfmon to monitor the performance of Active Directory.

15.10.2 Solution

15.10.2.1 Using a graphical user interface

Open the Performance Monitor.1.

Click on System Monitor in the left pane.2.

Type Ctrl + I. This will bring up the page to add counters.3.

Under Select counters from computer, enter the name of the domain controller you want to
target.

4.

Select the NTDS performance object.5.

Select the counters you want to monitor.6.

After you done with your selections, click Close.7.

15.10.3 Discussion

There are several Perfmon counters that can be very valuable for monitoring and troubleshooting
Active Directory. The NTDS performance object has counters for address book lookups, inbound and
outbound replication, LDAP reads, writes and searches, Kerberos authentication, and the Security
Account Manager (SAM).

Here is a list of some of the most useful NTDS counters. I've also included their Perfmon explanation,
which you can view by clicking on the Explain button in the Add Counters dialog box.

DRA Inbound Bytes Total/sec

Shows the total number of bytes replicated in. It is the sum of the number of uncompressed
bytes (never compressed) and the number of compressed bytes (after compression).

DRA Inbound Objects/sec

Shows the number of objects received from neighbors through inbound replication. A neighbor
is a domain controller from which the local domain controller replicates locally.

DRA Inbound Values Total/sec

Shows the total number of object property values received from inbound replication partners.
Each inbound object has one or more properties, and each property has zero or more values.
Zero values indicates property removal.

DRA Outbound Bytes Total/sec

Shows the total number of bytes replicated out. It is the sum of the number of uncompressed
bytes (never compressed) and the number of compressed bytes (after compression).

DRA Outbound Objects/sec

Shows the number of objects replicated out.
DRA Outbound Values Total/sec

Shows the number of object property values sent to outbound replication partners.
DRA Pending Replication Synchronizations

Shows the number of directory synchronizations that are queued for this server, but not yet
processed.

DS Client Binds/sec

Shows the number of Ntdsapi.dll binds per second serviced by this DC.
DS Directory Reads/sec

Shows the number of directory reads per second.
DS Directory Searches/sec

Shows the number of directory searches per second.
DS Directory Writes/sec

Shows the number of directory writes per second.
KDC AS Requests

Shows the number of Authentication Server (AS) requests serviced by the Kerberos Key
Distribution Center (KDC) per second. AS requests are used by client to obtain a ticket-
granting ticket.

KDC TGS Requests

Shows the number of Ticket Granting Server (TGS) requests serviced by the KDC per second.
TGS requests are used by the client to obtain a ticket to a resource.

Kerberos Authentications

Shows the number of times per second that clients use a ticket to this DC to authenticate to
this DC.

LDAP Bind Time

Shows the time, in milliseconds, taken for the last successful LDAP bind.
LDAP Client Sessions

Shows the number of currently connected LDAP client sessions.
LDAP Searches

Shows the percentage of directory searches coming from LDAP.
LDAP Searches/sec

Shows the rate at which LDAP clients perform search operations.
LDAP Successful Binds

Shows the percentage of LDAP bind attempts that are successful.
LDAP Successful Binds/sec

Shows the number of LDAP binds per second.
LDAP Writes

Shows the percentage of directory writes coming from LDAP.
LDAP Writes/sec

Shows the rate at which LDAP clients perform write operations.

[Team LiB]

[Team LiB]

Recipe 15.11 Using Perfmon Trace Logs to Monitor AD

15.11.1 Problem

You want to enable Perfmon Trace Logs to view system level calls related to Active Directory.

15.11.2 Solution

Open the Performance Monitor.1.

In the left pane, expand Performance Logs and Alerts.2.

Right-click on Trace Logs and select New Log Settings.3.

Enter a name for the log and click OK.4.

Click the Add button.5.

Highlight one or more of the Active Directory providers and click OK.6.

Use the tabs to configure additional settings about the log.7.

When you are done, click OK.8.

Unless you've scheduled it to run at a different time, the trace log you created should show up in
the right pane next to a green icon, which indicates it is running.

9.

To stop the Trace Log, right-click on it in the right pane and select Stop.10.

Now open up a command shell (cmd.exe).11.

Use cd to change into the directory where the trace log files are stored (c:\perflogs by default).12.

Run the following command:13.

> tracerpt <LogFileName>

This command is available by default with Windows Server 2003. On Windows 2000, you'll need to use
the Resource Kit utility called tracedmp.exe .

The tracerpt command generates a summary.txt file that summarizes all of the events by total. A

second file called dumpfile.csv is created that can be imported into Excel or viewed with a text viewer to
show the details of each event.

15.11.3 Discussion

Trace Logs capture detailed system and application level events. Applications support Trace Log
capability by developing a Trace Log Provider. Active Directory supports several providers that log low-
level system calls related to Kerberos, LDAP, and DNS, to name a few. This can be an extremely
valuable tool for debugging and even figuring out the inner-workings of Active Directory. Trace Logs can
be resource intensive, so you should enable them with care.

Here is an example of what the summary.txt file looks like on a domain controller that had all of the
Active Directory-related Trace Log Providers enabled:

Files Processed:
 AD_000001.etl
Total Buffers Processed 5
Total Events Processed 193
Total Events Lost 0
Start Time Friday, May 23, 2003
End Time Friday, May 23, 2003
Elapsed Time 24 sec
+---+
|Event Count Event Name Event Type Guid |
+---+
| 1 EventTrace Header {68fdd900-4a3e-11d1-84f4-0000f80464e3}|
| 69 SamNameById Start {25059476-899f-11d2-819e-0000f875a064}|
| 69 SamNameById End {25059476-899f-11d2-819e-0000f875a064}|
| 2 KerbInitSecurityContext End {52e82f1a-7cd4-47ed-b5e5-fde7bf64cea6}|
| 2 KerbInitSecurityContext Start {52e82f1a-7cd4-47ed-b5e5-fde7bf64cea6}|
| 1 KerbAcceptSecurityContext Start {94acefe3-9e56-49e3-9895-7240a231c371}|
| 1 KerbAcceptSecurityContext End {94acefe3-9e56-49e3-9895-7240a231c371}|
| 1 SamGetAliasMem Start {1cf5fd19-1ac1-4324-84f7-970a634a91ee}|
| 1 SamGetAliasMem End {1cf5fd19-1ac1-4324-84f7-970a634a91ee}|
| 14 LdapRequest End {b9d4702a-6a98-11d2-b710-00c04fb998a2}|
| 14 LdapRequest Start {b9d4702a-6a98-11d2-b710-00c04fb998a2}|
| 1 DsLdapBind Start {05acd009-daeb-11d1-be80-00c04fadfff5}|
| 1 DsLdapBind End {05acd009-daeb-11d1-be80-00c04fadfff5}|
| 8 DsDirSearch End {05acd000-daeb-11d1-be80-00c04fadfff5}|
| 8 DsDirSearch Start {05acd000-daeb-11d1-be80-00c04fadfff5}|
+---+

Here you can see that over a 24-second period there was 1 LDAP bind request (DsLdapBind), 8
directory searches (DsDirSearch), and 14 total LDAP requests (LdapRequest).

The dumpfile.csv contains entries for every event that was generated during the time period. Here is an
example of an entry for one of the DsDirSearch requests (note that the lines will wrap due to their
length so I've added a blank line in between for separation):

DsDirSearch, Start, 0x000003F4, 126982224636242128, 61350, 440530, "DS", 3, 3,
1141178432, 2694848000, "192.168.5.26", "deep", "OU=Sales,DC=rallencorp,DC=com", "0,
0

DsDirSearch, End, 0x000003F4, 126982224636342271, 61350, 440540, "DS", 3, 5,
1157955648, 2694848000, "0", "
(&(objectCategory=CN=Person,CN=Schema,CN=Configuration,DC=rallencorp,DC=com)
(objectClass=user)) 0, 0

Based on just those two lines (disregarding most of the numeric values), we can deduce that a user on
the host with IP address 192.168.5.26 performed an LDAP query for user objects in the Sales OU.

Pretty neat, huh?

15.11.4 See Also

MS KB 302552 (HOW TO: Create and Configure Performance Monitor Trace Logs in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 15.12 Enabling Auditing of Directory Access

15.12.1 Problem

You want to enable auditing of directory access and modifications. Audit events are logged to the
Security event log.

15.12.2 Solution

15.12.2.1 Using a graphical user interface

Open the Domain Controller Security Policy snap-in.1.

In the left pane, expand Local Policies and click on Audit Policy2.

In the right pane, double-click Audit directory service access.3.

Make sure the box is checked beside Define these policy settings.4.

Check the box beside Success and/or Failure.5.

Click OK.6.

15.12.2.2 Using a command-line interface

> auditpol \\<DomainControlerName> /enable /directory:all

15.12.3 Discussion

You can log events to the Security event log for every successful and/or failed attempt to access or
modify the directory, which is referred to as auditing. Auditing is enabled via the Domain Controller
Security GPO with the Audit directory service access setting. Once this is enabled, you need to use
the ACL Editor to define auditing in the SACL of the objects and containers you want to monitor.

By default, the domain object has an inherited audit entry for the Everyone security principal for all

object access and modifications. That means once you enable auditing in the Domain Controller
Security Policy and it replicates out, domain controllers will log events for any directory access or
modification to any part of the directory. As you can imagine, auditing every access to Active
Directory can generate a lot of events, so you'll either want to disable the Everyone auditing and

apply more specific auditing, or keep a close eye on your domain controllers to ensure they are not
adversely affected while auditing is enabled.

Here is an example event that was logged after the Administrator account created a contact
object called foobar in the Sales OU:

Event Type: Success Audit
Event Source: Security
Event Category: Directory Service Access
Event ID: 566
Date: 5/26/2003
Time: 7:24:10 PM
User: RALLENCORP\administrator
Computer: DC1
Description:
Object Operation:
 Object Server: DS
 Operation Type: Object Access
 Object Type: organizationalUnit
 Object Name: OU=Sales,DC=rallencorp,DC=com
 Handle ID: -
 Primary User Name: DC1$
 Primary Domain: RALLENCORP
 Primary Logon ID: (0x0,0x3E7)
 Client User Name: administrator
 Client Domain: RALLENCORP
 Client Logon ID: (0x0,0x3B4BE)
 Accesses: Create Child

 Properties:
 Create Child
 contact

 Additional Info: CN=foobar,OU=Sales,DC=rallencorp,DC=com
 Additional Info2: CN=foobar,OU=Sales,DC=rallencorp,DC=com
 Access Mask: 0x1

It can also be useful to enable Audit Account Management in the Domain
Controller Security GPO. This provides additional information about account
management operations, for example, finding what account deleted a certain
object.

15.12.4 See Also

MS KB 232714 (HOW TO: How to Enable Auditing of Directory Service Access), MS KB 314955 (HOW
TO: Audit Active Directory Objects in Windows 2000), MS KB 314977 (HOW TO: Enable Active
Directory Access Auditing in Windows 2000), and MS KB 814595 (HOW TO: Audit Active Directory
Objects in Windows Server 2003)

[Team LiB]

[Team LiB]

Recipe 15.13 Creating a Quota

This recipe requires a Windows Server 2003 domain controller.

15.13.1 Problem

You want to limit the number of objects a security principal can create in a partition by creating a
quota.

15.13.2 Solution

15.13.2.1 Using a command-line interface

> dsadd quota -part <PartitionDN> -qlimit <QuotaLimit> -acct <PrincipalName>[RETURN]

 [-rdn <QuotaName>]

The following command creates a quota specification that allows the RALLENCORP\rallen user to
create only 5 objects in the dc=rallencorp,dc=com partition:

> dsadd quota -part dc=rallencorp,dc=com -qlimit 5 -acct RALLENCORP\rallen

15.13.3 Discussion

Quotas are a new feature in Windows Server 2003 that allow an administrator to limit the number of
objects that a user (or group of users) can create. This is similar in nature to the quota for creating
computer objects found in Windows 2000 (see Recipe 8.9 for more details), except the quotas in
Windows Server 2003 apply to the creation of all object types.

There are three things that need to be set when creating a quota specification, including:

Partition

Currently, quotas can apply only to an entire partition. You cannot create a quota that pertains
only to a subtree in a partition. You can create quotas for any partition, including application
partitions, except for the schema-naming context. The reasoning behind this restriction is that
the schema is a highly protected area of the directory and you shouldn't need to restrict how
many objects get created there.

Target security principal

A quota can be defined for any type of security principal. The msDS-QuotaTrustee attribute on

the quota object stores the target principal in the form of a SID.
Limit

This determines how many objects the target security principal can create.

The quota limit is a combination of the new objects that a user creates plus any tombstone objects
that are created by that user. If a user creates an object and then deletes another object, that would
count as 2 toward any quotas that apply to the user. This is because when an object is deleted, a
tombstone object is created in its place, which counts as another object creation. If a user creates an
object and later deletes the same object, this would count as only 1 object against their quota. After
the tombstone object is removed from Active Directory (60 days by default), the user's quota would
be decremented. By default, a tombstone object counts as 1 object, but that is configurable. See
Recipe 15.15 for more on changing the tombstone quota factor.

Since quotas can be assigned to users, groups, or computers, it is conceivable that multiple quotas
may apply to a user. In this case, the quota with the highest limit will be in force for the user. You
can also create a default quota for a partition that applies to all security principals. See Recipe 15.16
for more information on configuring the default quota.

Quotas do not apply to members of the Enterprise Admins and Domain Admins

groups. Even if you've configured a default quota for all users, members of
those administrative groups will not have any restrictions.

15.13.4 See Also

Recipe 8.9 for more on the computer object quota, Introduction in Chapter 15 for more on the
attributes of quota objects, Recipe 15.14 for finding the quotas assigned to a security principal,
Recipe 15.15 for changing the tombstone quota factor, and Recipe 15.16 for setting a default quota

[Team LiB]

[Team LiB]

Recipe 15.14 Finding the Quotas Assigned to a Security
Principal

This recipe requires a Windows Server 2003 domain controller.

15.14.1 Problem

You want to find the quotas that have been configured for a security principal (i.e., user, group, or
computer).

15.14.2 Solution

15.14.2.1 Using a command-line interface

> dsquery quota -part <PartitionDN> -acct <PrincipalName>

The following command searches for quotas that have been assigned to the RALLENCORP\rallen user

in the dc=rallencorp,dc=com partition:

> dsquery quota -part dc=rallencorp,dc=com -acct RALLENCORP\rallen

15.14.3 Discussion

The dsquery solution will find only quotas that have been directly assigned to a security principal.
The msDS-QuotaTrustee attribute on quota objects defines a SID that the quota applies to. The
dsquery quota command will look up the SID for the specified account and match that against quota

objects that reference that SID. Unfortunately, this doesn't quite show the whole picture. A user
could have a quota assigned directly, which the dsquery command would show, but the user could
also be part of one or more groups that have quotas assigned. These won't show up using dsquery.

A more robust solution would entail retrieving the tokenGroups attribute of the user, which contains

a list of SIDs for all expanded group memberships, and then querying each of those groups to
determine whether any of them have quotas assigned. This is actually the type of algorithm that is
used to determine a user's effective quota, as shown in Recipe 15.17.

15.14.4 See Also

Recipe 15.13 for creating a quota

[Team LiB]

[Team LiB]

Recipe 15.15 Changing How Tombstone Objects Count
Against Quota Usage

This recipe requires a Windows Server 2003 domain controller.

15.15.1 Problem

You want to change the relative weight of tombstone objects in quota calculations.

15.15.2 Solution

15.15.2.1 Using a graphical user interface

Open ADSI Edit.1.

Connect to the partition on which you want to modify this setting (has to be done on a per
partition basis).

2.

In the left pane, expand the root of the partition.3.

Right-click on cn=NTDS Quotas and select Properties.4.

Set the msDS-TombstoneQuotaFactor attribute to a value between 0 and 100.5.

Click OK.6.

15.15.2.2 Using a command-line interface

Create an LDIF file called change_tombstone_quota.ldf with the following contents:

dn: cn=NTDS Quotas,<PartitionDN>
changetype: modify
replace: msDs-TombstoneQuotaFactor

msDs-TombstoneQuotaFactor: <0-100>
-

then run the following command:

> ldifde -v -i -f change_tombstone_quota.ldf

15.15.2.3 Using VBScript

' This code modifies the tombstone quota factor for the specified partition
' ------ SCRIPT CONFIGURATION ------

strPartitionDN = "<PartitionDN>" ' e.g. dc=rallencorp,dc=com

intTombstoneFactor = <0-100> ' e.g. 50
' ------ END CONFIGURATION ---------

set objPart = GetObject("LDAP://cn=NTDS Quotas," & strPartitionDN)
objPart.Put "msDs-TombstoneQuotaFactor", intTombstoneLifetime
objPart.SetInfo
WScript.Echo "Set the tombstone quota factor for " & _
 strPartitionDN & " to " & intTombstoneFactor

15.15.3 Discussion

The tombstone quota factor is a percentage that determines how much each tombstone object
counts against a security principal's quota usage. By default, tombstone objects count as one object.
This means if a user's quota is set to 10, and the user deletes 10 objects, that user will not be able to
create or delete any other objects until those tombstone objects have been purged from Active
Directory.

The msDs-TombstoneQuotaFactor attribute on the NTDS Quota container for each partition defines

the tombstone quota factor. As mentioned previously, the default is that tombstone objects count
100% of a normal object, and thus, the msDs-TombstoneQuotaFactor attribute contains 100 by

default. If you modify that attribute to contain 50, and a user has a quota limit of 10, then that user
could delete 20 objects (i.e., create 20 tombstone objects) because 20 x 50% = 10. You may not
care about how many objects your users delete; in which case, you'd want to set the tombstone
quota factor to 0.

[Team LiB]

[Team LiB]

Recipe 15.16 Setting the Default Quota for All Security
Principals in a Partition

This recipe requires a Windows Server 2003 domain controller.

15.16.1 Problem

You want to set a default quota for all security principals.

15.16.2 Solution

15.16.2.1 Using a graphical user interface

Open ADSI Edit.1.

Connect to the partition you want to modify (has to be done on a per partition basis).2.

In the left pane, expand the root of the partition.3.

Right-click on cn=NTDS Quotas and select Properties.4.

Set the msDS-DefaultQuota attribute to the number objects that security principals should be

allowed to create if they are not assigned another quota.

5.

Click OK.6.

15.16.2.2 Using a command-line interface

Create an LDIF file called set_default_quota.ldf with the following contents:

dn: cn=NTDS Quotas,<PartitionDN>
changetype: modify
replace: msDs-DefaultQuota

msDs-DefaultQuota: <NumberOfObjects>
-

then run the following command:

> ldifde -v -i -f set_default_quota.ldf

15.16.2.3 Using VBScript

' This code sets the default quota for the specified partition
' ------ SCRIPT CONFIGURATION ------

strPartitionDN = "<PartitionDN>" ' e.g. dc=rallencorp,dc=com

intDefaultQuota = <NumberOfObjects> ' e.g. 10
' ------ END CONFIGURATION ---------

set objPart = GetObject("LDAP://cn=NTDS Quotas," & strPartitionDN)
objPart.Put "msDs-DefaultQuota", intDefaultQuota
objPart.SetInfo
WScript.Echo "Set the default quota for " & _
 strPartitionDN & " to " & intDefaultQuota

15.16.3 Discussion

The easiest way to apply a default quota to all of your users is to modify the msDS-DefaultQuota
attribute on the NTDS Quotas container for the target partition. This attribute contains the default

quota limit that is used if no other quotas have been assigned to a security principal.

You should be careful when setting the default quota because it applies to every non-administrator
security principal. If you set the default to 0, for example, computers would not be able to
dynamically update their DNS records in an AD-integrated zone because that creates an object. This
may not be applicable in your environment, but the point is that you need to consider the impact of
the default quota and test it thoroughly before implementing it.

[Team LiB]

[Team LiB]

Recipe 15.17 Finding the Quota Usage for a Security
Principal

This recipe requires a Windows Server 2003 domain controller.

15.17.1 Problem

You want to find the quota usage for a certain security principal.

15.17.2 Solution

The quota usage of a security principal can be determined a few different ways. First, you can use the
dsget command. Here is an example:

> dsget user "<UserDN>" -part <PartitionDN> -qlimit -qused

This displays the effective quota limit and how much quota has been used for a particular user. You
can use similar parameters with dsget computer and dsget group to find the quota usage for those

types of objects.

Users can find their own quota usage by querying the msDs-QuotaUsed and msDs-QuotaEffective
attributes on the cn=NTDS Quotas container for a partition. These two attributes are constructed,

which means they are dynamically calculated based on the user that is accessing them (see Recipe
10.15 for more on constructed attributes). The msDs-QuotaUsed attribute returns how much of the
quota has been used by the user and the msDs-QuotaEffective attribute contains the quota limit.

Alternatively, view the msDs-TopQuotaUsage attribute on a partition's cn=NTDS Quotas container,

which contains the user's with the top quota usage. This attribute is multi-valued, with each value
being XML-like text that contains the SID and how much of the quota the principal has used. See the
Discussion section for an example.

15.17.3 Discussion

If you implement quotas, you'll certainly need to tell users what their quotas are (or provide
instructions on how they can find out for themselves). Currently, there are a few ways to determine
quota usage as outlined in the Solution section.

Perhaps the most interesting is obtaining the top-quota usage. Each value of the msDs-
TopQuotaUsage attribute contains an entry that details someone that has high-quota usage (at the

time of publication of this book, it was unknown exactly what "high" constituted). Each value of the
msDs-TopQuotaUsage attribute contains blocks of data formatted in XML-like language. Each block
has the SID of the security principal (<ownerSID>), quota used (<quotaUsed>), number of tombstone
objects created (<tombstonedCount>) and the number of objects that are still active (<liveCount>)

(i.e., not tombstoned). Here is an example of what the attribute can contain:

>> Dn: CN=NTDS Quotas,DC=rallencorp,DC=com
 3> msDS-TopQuotaUsage:
<MS_DS_TOP_QUOTA_USAGE>
 <partitionDN> DC=rallencorp,DC=com </partitionDN>
 <ownerSID> S-1-5-21-1422208173-2062366415-1864960452-512 </ownerSID>
 <quotaUsed> 152 </quotaUsed>
 <tombstonedCount> 2 </tombstonedCount>
 <liveCount> 150 </liveCount>
</MS_DS_TOP_QUOTA_USAGE>
;
<MS_DS_TOP_QUOTA_USAGE>
 <partitionDN> DC=rallencorp,DC=com </partitionDN>
 <ownerSID> S-1-5-18 </ownerSID>
 <quotaUsed> 43 </quotaUsed>
 <tombstonedCount> 32 </tombstonedCount>
 <liveCount> 11 </liveCount>
</MS_DS_TOP_QUOTA_USAGE>
;
<MS_DS_TOP_QUOTA_USAGE>
 <partitionDN> DC=rallencorp,DC=com </partitionDN>
 <ownerSID> S-1-5-32-544 </ownerSID>
 <quotaUsed> 14 </quotaUsed>
 <tombstonedCount> 0 </tombstonedCount>
 <liveCount> 14 </liveCount>
</MS_DS_TOP_QUOTA_USAGE>

15.17.4 See Also

Recipe 15.14 for more on finding the quotas assigned to a security principal

[Team LiB]

[Team LiB]

Chapter 16. Backup, Recovery, DIT
Maintenance, and Deleted Objects

Introduction

Recipe 16.1. Backing Up Active Directory

Recipe 16.2. Restarting a Domain Controller in Directory Services Restore Mode

Recipe 16.3. Resetting the Directory Service Restore Mode Administrator Password

Recipe 16.4. Performing a Nonauthoritative Restore

Recipe 16.5. Performing an Authoritative Restore of an Object or Subtree

Recipe 16.6. Performing a Complete Authoritative Restore

Recipe 16.7. Checking the DIT File's Integrity

Recipe 16.8. Moving the DIT Files

Recipe 16.9. Repairing or Recovering the DIT

Recipe 16.10. Performing an Online Defrag Manually

Recipe 16.11. Determining How Much Whitespace Is in the DIT

Recipe 16.12. Performing an Offline Defrag to Reclaim Space

Recipe 16.13. Changing the Garbage Collection Interval

Recipe 16.14. Logging the Number of Expired Tombstone Objects

Recipe 16.15. Determining the Size of the Active Directory Database

Recipe 16.16. Searching for Deleted Objects

Recipe 16.17. Restoring a Deleted Object

Recipe 16.18. Modifying the Tombstone Lifetime for a Domain
[Team LiB]

[Team LiB]

Introduction

The AD Directory Information Tree (DIT) is implemented as a transactional database using the
Extensible Storage Engine (ESE). The primary database file is named ntds.dit and by default is stored
in %SystemRoot%\NTDS, but can be relocated during the initial promotion process or manually via
the ntdsutil command (see Recipe 16.8 for more details).

Each database write transaction is initially stored in a log file called edb.log, which is stored in the
same directory as ntds.dit. That log file can grow to 10 MB in size after which additional log files are
created (e.g., edb00001.log), each growing to up to 10 MB. After the transactions in the log files are
committed to the database, the files are rotated. These log files are useful when a domain controller
is shut down unexpectedly. When the DC comes back online, Active Directory can replay the log files
and apply any transactions that may have not previously been written to disk. The edb.chk file stores
the last committed transaction, which can be used to determine the transactions in the log files that
have yet to be committed. Two 10 MB placeholder files called res1.log and res2.log are used if the
disk runs out of space and Active Directory needs to commit changes.

In order to recover portions of Active Directory, or the entire directory itself, you need to have a solid
backup strategy in place. You can back up Active Directory while it is online, which means you do not
need to worry about having regular downtime just to do backups. Restoring Active Directory is also
easy. To do any type of restore, you have to boot into offline mode, more commonly referred to as
Directory Services (DS) Restore Mode, where the Active Directory database is not active. You can
then restore a single object, an entire subtree, or the complete database if necessary. For a detailed
discussion on backing up and restoring Active Directory, see Chapter 13 in Active Directory, Second
Edition (O'Reilly).

You need to be familiar with how deleted objects are treated in Active Directory, which can affect
your backup procedures. When an object is deleted, the original object is removed, but a tombstone
object is created in its place that contains a small subset of the original object's attributes. These
objects are stored in the cn=Deleted Objects container in the naming context the original object

was located in.

The deleted object is named using the following format: <OrigName>\0ADEL:<ObjectGUID>, where

<OrigName> was the original RDN of the object, <ObjectGUID> is the GUID of the original object, and
\0 is a null-terminated character. For example, if I deleted the jsmith user object, its tombstone

object would have a distinguished name, such as the following:

CN=jsmith\0ADEL:fce1ca8e-a5ec-4a29-96e1-c8013e533d2c,CN=Deleted[RETURN]
Objects,DC=rallencorp,DC=com

After a period of time known as the tombstone lifetime (60 days is the default), the tombstone object
is finally removed from Active Directory. At that point, no remnants of the former object exist in
Active Directory.

Tombstone objects are important to understand in regard to your backup strategy because you
should not keep backups longer than the tombstone lifetime. If you attempt to restore a backup that
is older than the tombstone lifetime, it may introduce objects that were deleted, but the tombstone
object no longer exists. Under normal conditions, if you do a nonauthoritative restore from backup,

objects that were valid when the backup was taken, but were deleted afterward will not be re-added.
A check is done before injecting new objects via the nonauthoritative restore to determine if a
tombstone object exists for it. If a tombstone object exists for it, Active Directory knows the object
was deleted after the backup. If the tombstone object has already expired (e.g., the backup is older
than 60 days), Active Directory has no way to determine if the object was previously deleted and will
happily re-add it. Reinjected deleted objects are referred to as lingering or zombie objects.

The tombstone lifetime value is stored in the tombStoneLifetime attribute on the following object:

cn=Directory Service,cn=Windows NT, cn=Services, cn=Configuration, <ForestRootDN>.

The Anatomy of a Deleted Object

Deleted objects are stored in the Deleted Objects container of a naming context. You cannot

browse that container by default. You need to enable an LDAP control, as explained in Recipe 16.16,
to view deleted objects. Table 16-1 contains some of the attributes that are stored with deleted
objects.

The attributes that are preserved in tombstone objects are determined by
attributeSchema objects that have the 01000 bit enabled (8 in decimal) in the
searchFlags attribute.

Table 16-1. Useful attributes of deleted objects

Attribute Description

isDeleted The value for this attribute is TRUE for deleted objects.

lastKnownParent
Distinguished name of container the object was contained in. This is new in
Windows Server 2003.

name RDN of the object original object.

userAccountControl
This attribute is copied from the original object after it is deleted. This only
applies to user and computer objects.

objectSID
This attribute is copied from the original object after it is deleted. This only
applies to user and computer objects.

sAMAccountName
This attribute is copied from the original object after it is deleted. This only
applies to user and computer objects.

[Team LiB]

[Team LiB]

Recipe 16.1 Backing Up Active Directory

16.1.1 Problem

You want to back up Active Directory to tape or disk.

16.1.2 Solution

Back up the System State, which includes the Active Directory-related files on the domain controller.
Here are the directions for backing up the System State using the NtBackup utility that comes
installed on Windows 2000 and Windows Server 2003 computers:

16.1.2.1 Using a graphical user interface

Go to Start All Programs (or Programs for Windows 2000) Accessories System
Tools Backup.

1.

Click the Advanced Mode link.2.

Click the Backup tab.3.

Check the box beside System State.4.

Check the box beside any other files, directories, or drives you would also like to back up.5.

For Backup destination, select either File or Tape depending on where you want to back up the
data to.

6.

For Backup media or file name, type either the name of a file or select the tape to save the
backup to.

7.

Click the Start Backup button twice.8.

16.1.2.2 Using a command-line interface

The NtBackup utility supports several command-line parameters that you can use to initiate backups
without ever bringing up the GUI.

For the complete list of supported commands on Windows 2000, see MS KB 300439 (How to Use
Command Line Parameters With the "Ntbackup" Command).

For the complete list of supported commands on Windows Server 2003, see MS KB 814583 (HOW TO:
Use Command Line Parameters with the Ntbackup Command in Windows Server 2003).

16.1.3 Discussion

Fortunately, domain controllers can be backed up while online. Having the ability to do live backups
makes the process very easy. And since Active Directory is included as part of the System State on
domain controllers, you are required to back up only the System State, although you can back up
other folders and drives as necessary. On a domain controller, the System State includes the
following:

Boot files

Registry

COM+ class registration database

Active Directory files

System Volume (SYSVOL)

Certificates database (if running Certificate Server)

16.1.4 See Also

Recipe 16.18 for modifying the tombstone lifetime, MS KB 216993 (Backup of the Active Directory Has
60-Day Useful Life), MS KB 240363 (HOW TO: Use the Backup Program to Back Up and Restore the
System State in Windows 2000), MS KB 300439 (How to Use Command Line Parameters With the
"Ntbackup" Command), MS KB 326216 (HOW TO: Use the Backup Feature to Back Up and Restore
Data in Windows Server 2003), and MS KB 814583 (HOW TO: Use Command Line Parameters with
the Ntbackup Command in Windows Server 2003)

[Team LiB]

[Team LiB]

Recipe 16.2 Restarting a Domain Controller in Directory
Services Restore Mode

16.2.1 Problem

You want to restart a domain controller in DS Restore Mode.

16.2.2 Solution

To enter DS Restore Mode, you must reboot the server at the console. Press F8 after the power-on
self test (POST), which will bring up a menu, as shown in Figure 16-1. From the menu, select
Directory Services Restore Mode.

Figure 16-1. Boot options

16.2.3 Discussion

The Active Directory database is live and locked by the system when a domain controller is booted
into normal mode. If you want to perform integrity checks, manipulate the Active Directory database
in some way or restore part of the database, you have to reboot into DS Restore Mode. In this mode,
Active Directory does not start up and the database files (ntds.dit) are not locked.

It is not always practical to be logged into the console of the server when you need to reboot it into
DS Restore Mode. You can work around this by modifying the boot.ini file for the server to
automatically boot into DS Restore Mode after reboot. You can then use Terminal Services to log on
to the machine remotely while it is in that mode. See MS KB 256588 for more information on how to
enable this capability. Be careful if you try to access DS Restore Mode via Terminal Services. Unless

you have configured everything properly, you may end up with the domain controller booted into DS
Restore Mode and not be able to access it via Terminal Services.

16.2.4 See Also

MS KB 256588 (Using Terminal Services for Remote Administration of Windows 2000 DCs in Directory
Service Restore Mode)

[Team LiB]

[Team LiB]

Recipe 16.3 Resetting the Directory Service Restore Mode
Administrator Password

16.3.1 Problem

You want to reset the DS Restore Mode administrator password. This password is set individually
(i.e., not replicated) on each domain controller, and is initially configured when you promote the
domain controller into a domain.

16.3.2 Solution

16.3.2.1 Using a graphical user interface

For this to work you must be booted into DS Restore Mode (see Recipe 16.2 for more
information).

1.

Go to Start Run.2.

Type compmgmt.msc and press Enter.3.

In the left pane, expand System Tools Local Users and Computers.4.

Click on the Users folder.5.

In the right pane, right-click on the Administrator user and select Set Password.6.

Enter the new password and confirm, then click OK.7.

16.3.2.2 Using a command-line interface

With the Windows Server 2003 version of ntdsutil, you can change the DS Restore Mode
administrator password of a domain controller while it is live (i.e., not in DS Restore Mode). Another
benefit of this new option is that you can run it against a remote domain controller. Here is the sample
output when run against domain controller DC1.

> ntdsutil "set dsrm password" "reset password on server DC1"
ntdsutil: set dsrm password
Reset DSRM Administrator Password: reset password on server DC1
Please type password for DS Restore Mode Administrator Account: **********

Please confirm new password: **********
Password has been set successfully.

Microsoft added a new command in Windows 2000 Service Pack 2 and later called setpwd. It works
similarly to the Windows Server 2003 version of ntdsutil by allowing you to reset the DS Restore

Mode password while a domain controller is live. It can also be used remotely.

16.3.3 Discussion

You may be thinking that having a separate DS Restore Mode administrator password can be quite a
pain. Yet another thing you have to maintain and update on a regular basis, right? But if you think
about it, you'll see that it is quite necessary.

Generally, you boot a domain controller into DS Restore Mode when you need to perform some type
of maintenance on the Active Directory database. To do this, the database needs to be offline. If the
database is offline, then there is no way to authenticate against it. The system has to use another
user repository, so it reverts back to the legacy SAM database. The DS Restore Mode administrator
account and password are stored in the SAM database just like with standalone Windows clients.

16.3.4 See Also

Recipe 16.2 for booting into Directory Services Restore Mode, MS KB 239803 (How to Change the
Recovery Console Administrator Password on a Domain Controller), and MS KB 322672 (HOW TO:
Reset the Directory Services Restore Mode Administrator Account Password in Windows Server
2003)

[Team LiB]

[Team LiB]

Recipe 16.4 Performing a Nonauthoritative Restore

16.4.1 Problem

You want to perform a nonauthoritative restore of a domain controller. This can be useful if you want
to quickly restore a domain controller that failed due to a hardware problem.

16.4.2 Solution

16.4.2.1 Using a graphical user interface

You must first reboot into Directory Services Restore Mode (see Recipe 16.2 for more
information).

1.

Open the NT Backup utility; go to Start All Programs (or Programs for Windows 2000)
Accessories System Tools Backup.

2.

Click the Advanced Mode link.3.

Under the Welcome tab, click the Restore Wizard button and click Next.4.

Check the box beside System State and any other drives you want to restore and click Next.5.

Click the Advanced button.6.

Select Original location for Restore files to.7.

For the How to Restore option, select Replace existing files and click Next.8.

For the Advanced Restore Options, be sure that the following are checked: Restore Security
Settings, Restore junction points, and Preserve existing mount volume points. Then click Next.

9.

Click Finish.10.

Restart the computer.11.

16.4.3 Discussion

If you encounter a failed domain controller that you cannot bring back up (e.g., multiple hard disks
fail), you have two options for restoring it. One option is to remove the domain controller completely

from Active Directory (as outlined in Recipe 3.6) and then repromote it back in. This is known as the
restore from replication method, because you are essentially bringing up a brand new domain
controller and letting replication restore all the data on the server. On Windows Server 2003 domain
controllers, you can also use the Install From Media option described in Recipe 3.2 to expedite this
process.

The other option is described in the Solution section. You can restore the domain controller from a
good backup. This method involves getting into DS Restore Mode, restoring the system state and any
necessary system drive(s) and then rebooting. As long as the domain controller comes up clean, it
should start participating in Active Directory replication once again and sync any changes that have
occurred since the backup was taken.

For a detailed discussion of the advantages and disadvantages of each option, see Chapter 13 in
Active Directory, Second Edition (O'Reilly).

16.4.4 See Also

Recipe 16.2 for getting into Directory Services Restore Mode and MS KB 240363 (HOW TO: Use the
Backup Program to Back Up and Restore the System State in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 16.5 Performing an Authoritative Restore of an
Object or Subtree

16.5.1 Problem

You want to perform an authoritative restore of one or more objects, but not the entire Active
Directory database.

16.5.2 Solution

Follow the same steps as Recipe 16.4, except after the restore has completed, do not restart the
computer.

To restore a single object, run the following:

> ntdsutil "auth restore" "restore object cn=jsmith,ou=Sales,dc=rallencorp,dc=com" q

To restore an entire subtree, run the following:

> ntdsutil "auth restore" "restore subtree ou=Sales,dc=rallencorp,dc=com" q

Restart the computer.

There are some issues related to restoring user, group, computer, and trust objects that you should
be aware of. See MS KB 216243 and MS KB 280079 for more information.

16.5.3 Discussion

If an administrator or user accidentally deletes an important object or entire subtree from Active
Directory, you can restore it. Fortunately, the process isn't very painful. The key is having a good
backup that contains the objects you want to restore. If you don't have a backup with the objects in
it, you are out of luck. Well, that is not completely true with Windows Server 2003. See Recipe 16.17
for another option to restore deleted objects.

To restore one or more objects, you need to follow the same steps as performing a nonauthoritative
restore. The only difference is that after you do the restore, you need to use the ntdsutil command

to mark the objects in question as authoritative on the restored domain controller. After you reboot
the domain controller, it will replicate any changed objects since the backup that was restored on the
machine, except for the objects or subtree that were marked as authoritative. For those objects,
Active Directory increments the USN in such a way that they will become authoritative and replicate
out to the other domain controllers.

You can also use ntdsutil without first doing a restore in situations where an object has been

deleted accidentally, but the change has not yet replicated to all domain controllers. The trick here is
that you need to find a domain controller that has not had the deletion replicated yet and either stop
it from replicating or make the object authoritative before it receives the replication update.

16.5.4 See Also

Recipe 16.2 for booting into Directory Services Restore Mode, Recipe 16.17 for restoring a deleted
object, MS KB 216243 (Authoritative Restore of Active Directory and Impact on Trusts and Computer
Accounts), and MS KB 280079 (Authoritative Restore of Groups Can Result in Inconsistent
Membership Information Across Domain Controllers)

[Team LiB]

[Team LiB]

Recipe 16.6 Performing a Complete Authoritative Restore

16.6.1 Problem

You want to perform a complete authoritative restore of the Active Directory database because
something very bad has happened.

16.6.2 Solution

Follow the same steps as Recipe 16.4, except after the restore has completed, do not restart the
computer.

Run the following command to restore the entire database:

> ntdsutil "auth restore" "restore database" q

Restart the computer.

16.6.3 Discussion

In a production environment, you should never have to perform a complete authoritative restore. It
is a drastic measure and you will inevitably lose data as a result. Before you even attempt such a
restore, you may want to contact Microsoft Support to make sure all options have been exhausted.
That said, you should test the authoritative restore process in a lab environment, and make sure you
have the steps properly documented in case you ever do need to use it.

16.6.4 See Also

Recipe 16.2 for getting into Directory Services Restore Mode, MB KB 216243 (Authoritative Restore of
Active Directory and Impact on Trusts and Computer Accounts), MS KB 241594 (HOW TO: Perform
an Authoritative Restore to a Domain Controller in Windows 2000), and MS KB 280079 (Authoritative
Restore of Groups Can Result in Inconsistent Membership Information Across Domain Controllers)

[Team LiB]

[Team LiB]

Recipe 16.7 Checking the DIT File's Integrity

16.7.1 Problem

You want to check the integrity and semantics of the DIT file to verify there is no corruption or bad
entries.

16.7.2 Solution

16.7.2.1 Using a command-line interface

First, reboot into Directory Services Restore Mode. Then run the following commands:

> ntdsutil files integrity q q
> ntdsutil "semantic database analysis" "verbose on" go

16.7.3 Discussion

The Active Directory DIT file (ntds.dit) is implemented as a transactional database. Microsoft uses the
ESE database (formerly called Jet) for Active Directory, which has been used for years in other
products, such as Microsoft Exchange.

Since the Active Directory DIT ultimately is a database, it can suffer from many of the same issues
that traditional databases do. The ntdsutil integrity command checks for any low-level database

corruption and ensures that the database headers are correct and the tables are in a consistent
state. It reads every byte of the database and can take quite a while to complete depending on how
large your DIT file is. The time it takes is also greatly dependent on your hardware, but some early
estimates from Microsoft for Windows 2000 put the rate at 2 GB an hour.

Whereas the ntdsutil integrity command verifies the overall structure and health of the
database, the ntdsutil semantics command looks at the contents of the database. It will verify,

among other things, reference counts, replication metadata, and security descriptors. If any errors
are reported back, you can run go fixup to attempt to correct them. You should have a recent

backup handy before doing this because in the worst case the corruption cannot be fixed or may
become worse after the go fixup command completes.

16.7.4 See Also

Recipe 16.2 for booting into Directory Services Restore Mode and MS KB 315136 (HOW TO: Complete
a Semantic Database Analysis for the Active Directory Database by Using Ntdsutil.exe)

[Team LiB]

[Team LiB]

Recipe 16.8 Moving the DIT Files

16.8.1 Problem

You want to move the Active Directory DIT files to a new drive to improve performance or capacity.

16.8.2 Solution

16.8.2.1 Using a command-line interface

First, reboot into DS Restore Mode. Then, run the following commands, in which <DriveAndFolder>

is the new location where you want to move the files (e.g., d:\NTDS):

> ntdsutil files "move db to <DriveAndFolder>" q q

> ntdsutil files "move logs to <DriveAndFolder>" q q

16.8.3 Discussion

You can move the Active Directory database file (ntds.dit) independently of the log files. The first
command in the solution moves the database and the second moves the logs. You may also want to
consider running an integrity check against the database after you've moved it to ensure everything
checks out. See Recipe 16.7 for more details.

16.8.4 See Also

Recipe 16.2 for booting into Directory Services Restore Mode, Recipe 16.7 for checking DIT file
integrity, MS KB 257420 (HOW TO: Move the Ntds.dit File or Log Files), and MS KB 315131 (HOW TO:
Use Ntdsutil to Manage Active Directory Files from the Command Line in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 16.9 Repairing or Recovering the DIT

16.9.1 Problem

You need to repair or perform a soft recovery of the Active Directory DIT because a power failure or
some other failure caused the domain controller to enter an unstable state.

16.9.2 Solution

16.9.2.1 Using a command-line interface

First, reboot into DS Restore Mode.

Run the following command to perform a soft recovery of the transaction log files:

> ntdsutil files recover q q

If you continue to experience errors, you may need to run a repair, which does a low level repair of
the database, but can result in loss of data:

> ntdsutil files repair q q

If either the recover or repair are successful, you should then check the integrity (see Recipe 16.7).

16.9.3 Discussion

You should (hopefully) never need to recover or repair your Active Directory database. A recovery
may be needed after a domain controller unexpectedly shuts down, perhaps due to a power loss, and
certain changes were never committed to the database. When it boots back up, a soft recovery is
automatically done in an attempt to reapply any changes contained in the transaction log files. Since
Active Directory does this automatically, it is unlikely that running the ntdsutil recover command
will be of much help. The ntdsutil repair, on the other hand, can fix low-level problems, but it can

also result in a loss of data, which cannot be predicted. USE AT YOUR OWN PERIL!

I recommend you use extreme caution when performing a repair, and you may want to engage
Microsoft Support first in case something really bad goes wrong. If you try the repair and it makes
things worse, you should consider rebuilding the domain controller from scratch. See Recipe 3.6 for
forcibly removing a domain controller.

16.9.4 See Also

Recipe 16.2 for booting into Directory Services Restore Mode, Recipe 16.7 for checking the integrity of
the DIT, and MS KB 315131 (HOW TO: Use Ntdsutil to Manage Active Directory Files from the
Command Line in Windows 2000)

[Team LiB]

[Team LiB]

Recipe 16.10 Performing an Online Defrag Manually

This recipe must be run against a Windows Server 2003 domain controller.

16.10.1 Problem

You want to initiate an online defragmentation. This can be useful if you want to expedite the defrag
process after deleting a bunch of objects.

16.10.2 Solution

16.10.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of the target domain controller.3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a user from one of the administrator groups.7.

Click OK.8.

From the menu, select Browse Modify.9.

Leave the Dn blank.10.

For Attribute, enter DoOnlineDefrag.11.

For Values, enter 180.12.

For Operation, select Add.13.

Click Enter.14.

15.

13.

14.

Click Run.15.

16.10.2.2 Using a command-line interface

Create an LDIF file called online_defrag.ldf with the following contents:

dn:
changetype: modify
replace: DoOnlineDefrag
DoOnlineDefrag: 180
-

then run the following command:

> ldifde -v -i -f online_defrag.ldf

16.10.2.3 Using VBScript

' This code kicks off an online defrag to run for up to 180 seconds
' ------ SCRIPT CONFIGURATION ------

strDC = "<DomainControllerName>" ' e.g. dc01
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strDC & "/RootDSE")
objRootDSE.Put "DoOnlineDefrag", 180
objRootDSE.SetInfo
WScript.Echo "Successfully initiated an online defrag"

16.10.3 Discussion

New to Windows Server 2003 is the ability to initiate an online defragmentation. By default, the online
defrag process runs every 12 hours on each domain controller. This process defrags the Active
Directory database (ntds.dit) by combining whitespace generated from deleted objects, but does not
reduce the size of the database file.

To kick off an online defrag, simply write the DoOnlineDefrag attribute to the RootDSE with a value

equal to the maximum time the defrag process should run (in seconds). You must be a member of
one of the administrator groups in the domain controller's domain in order to write to this attribute.

16.10.4 See Also

Recipe 16.12 for performing an offline defrag and MS KB 198793 (The Active Directory Database
Garbage Collection Process)

[Team LiB]

[Team LiB]

Recipe 16.11 Determining How Much Whitespace Is in the DIT

16.11.1 Problem

You want to find the amount of whitespace in your DIT. A lot of whitespace in the DIT may mean that you
could regain enough space on the disk to warrant performing an offline defrag.

16.11.2 Solution

16.11.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

Expand HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services NTDS
Diagnostics.

2.

In the right pane, double-click on 6 Garbage Collection.3.

For Value data, enter 1.4.

Click OK.5.

16.11.2.2 Using a command-line interface

> reg add HKLM\System\CurrentControlSet\Services\NTDS\Diagnostics /v "6 Garbage[RETURN]
Collection" /t REG_DWORD /d 1

16.11.2.3 Using VBScript

' This code enables logging of DIT whitespace information in the event log.
' ------ SCRIPT CONFIGURATION ------

strDCName = "<DomainControllerName>" ' e.g. dc1
' ------ END CONFIGURATION ---------

const HKLM = &H80000002
strNTDSReg = "SYSTEM\CurrentControlSet\Services\NTDS\Diagnostics"
set objReg = GetObject("winmgmts:\\" & strDCName & "\root\default:StdRegProv")
objReg.SetDWORDValue HKLM, strNTDSReg, "6 Garbage Collection", 1
WScript.Echo "Garbage Collection logging set to 1"

16.11.3 Discussion

By setting the 6 Garbage Collection diagnostics logging option, event 1646 will get generated after the
garbage collection process runs. Here is an example 1646 event:

Event Type: Information
Event Source: NTDS Database
Event Category: Garbage Collection
Event ID: 1646
Date: 5/25/2003
Time: 9:52:46 AM
User: NT AUTHORITY\ANONYMOUS LOGON
Computer: DC1
Description:
Internal event: The Active Directory database has the following amount of free hard
disk space remaining.

Free hard disk space (megabytes):
100
Total allocated hard disk space (megabytes):
1024

This shows that domain controller dc1 has a 1 GB DIT file with 100 MB that is free (i.e., whitespace).

16.11.4 See Also

Recipe 16.12 for performing an offline defrag

[Team LiB]

[Team LiB]

Recipe 16.12 Performing an Offline Defrag to Reclaim
Space

16.12.1 Problem

You want to perform an offline defrag of the Active Directory DIT to reclaim whitespace in the DIT
file.

16.12.2 Solution

16.12.2.1 Using a command-line interface

First, reboot into Directory Services Restore Mode.1.

Next, check the integrity of the DIT, as outlined in Recipe 16.7.2.

Now, you are ready to perform the defrag. Run the following command to create a compacted
copy of the DIT file. You should check to make sure the drive on which, you create the copy has
plenty of space. A rule of thumb is that it should have at least 115% of the size of the current
DIT available.

3.

> ntdsutil files "compact to <TempDriveAndFolder>" q q

Next, you need to delete the transaction log files in the current NTDS directory.4.

> del <CurrentDriveAndFolder>*.log

You may want to keep a copy of the original DIT file for a short period of time to ensure nothing
catastrophic happens to the compacted DIT. If you are going to copy or move the original
version, be sure you have enough space in its new location.

5.

> move <CurrentDriveAndFolder>\ntds.dit <TempDriveAndFolder>\ntds_orig.dit

> move <TempDriveAndFolder>\ntds.dit <CurrentDriveAndFolder>\ntds.dit

Repeat the steps in Recipe 16.7 to ensure the new DIT is not corrupted. If it is clean, reboot into
normal mode and monitor the event log. If no errors are reported in the event log, make sure
the domain controller is backed up as soon as possible.

6.

16.12.3 Discussion

Performing an offline defragmentation of your domain controllers can reclaim disk space if you've
deleted a large number of objects from Active Directory. You should only perform an offline defrag
when (and if) this occurs, e.g., following a spin-off. The database will reuse whitespace and grow
organically as required. Typically, the database grows year over year as more objects are added, so
the offline defrag should be seldom required. An offline defrag always carries a small element of risk,
so it should not be done unnecessarily.

You might want to consider doing an offline defrag after the upgrade to Windows Server 2003. A new
feature called single instance storage for security descriptors can greatly reduce the amount of space
your DIT requires. With this new feature, unique security descriptors are stored once regardless of
how many times they are used, whereas in Windows 2000 the same security descriptor would be
stored individually on each object that uses it.

The key thing to plan ahead of time is your disk space requirements. If you plan on creating the
compacted copy of the DIT on the same drive as the current DIT, you need to make sure that drive
has 115% of the size of the DIT available. If you plan on storing the original DIT on the same drive,
you'll need to make sure you have at least that much space available.

16.12.4 See Also

Recipe 16.2 for booting into Directory Services Restore Mode, Recipe 16.7 for checking the integrity of
the DIT, MS KB 198793 (The Active Directory Database Garbage Collection Process), MS KB 229602
(Defragmentation of the Active Directory Database), and MS KB 232122 (Performing Offline
Defragmentation of the Active Directory Database)

[Team LiB]

[Team LiB]

Recipe 16.13 Changing the Garbage Collection Interval

16.13.1 Problem

You want to change the default garbage collection interval.

16.13.2 Solution

16.13.2.1 Using a graphical user interface

Open ADSI Edit.1.

In the left pane, expand cn=Configuration cn=Services cn=Windows NT.2.

Right-click on cn=Directory Service and select Properties.3.

Edit the garbageColPeriod attribute and set it to the interval in hours that the garbage

collection process should run (the default is 12 hours).

4.

Click OK.5.

16.13.2.2 Using a command-line interface

Create an LDIF file called change_garbage_period.ldf with the following contents:

dn: cn=Directory Service,cn=Windows NT,cn=Services,cn=Configuration,<ForestRootDN>
changetype: modify
replace: garbageCollPeriod

garbageCollPeriod: <IntervalInHours>
-

then run the following command:

> ldifde -v -i -f change_garbage_period.ldf

16.13.2.3 Using VBScript

' This code changes the default garbage collection interval
' ------ SCRIPT CONFIGURATION ------

intGarbageColl = <IntervalInHours>
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objDSCont = GetObject("LDAP://cn=Directory Service,cn=Windows NT," & _
 "cn=Services," & objRootDSE.Get("configurationNamingContext"))
objDSCont.Put "garbageCollPeriod", intGarbageColl
objDSCont.SetInfo
WScript.Echo "Successfully set the garbage collection interval to " & _
 intGarbageColl

16.13.3 Discussion

When an object is deleted from the Configuration naming context, a Domain naming context, or an
application partition, the original object is removed from Active Directory, and a tombstone object is
created that contains a small subset of the object's original attributes. This tombstone object remains
in Active Directory for the duration of the tombstone lifetime (default is 60 days) before it gets
completely removed. See Recipe 16.18 for more information on the tombstone lifetime.

A garbage collection process runs on each domain controller that automatically removes expired
tombstone objects. This process runs every 12 hours by default, but you can change it to run more or
less frequently by setting the garbageCollPeriod attribute on the

cn=DirectoryService,cn=WindowsNT,cn=Services,cn=Configuration, <RootDomainDN> object to the

frequency in hours.

16.13.4 See Also

Recipe 16.18 for modifying the tombstone lifetime, Recipe 16.14 for logging the number of
tombstones that get garbage collected, and MS KB 198793 (The Active Directory Database Garbage
Collection Process)

[Team LiB]

[Team LiB]

Recipe 16.14 Logging the Number of Expired Tombstone
Objects

16.14.1 Problem

You want to log the number of expired tombstone objects that are removed from Active Directory during
each garbage-collection cycle.

16.14.2 Solution

16.14.2.1 Using a graphical user interface

Run regedit.exe from the command line or Start Run.1.

Expand HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services NTDS
Diagnostics.

2.

In the right pane, double-click on 6 Garbage Collection.3.

For Value data, enter 3.4.

Click OK.5.

16.14.2.2 Using a command-line interface

> reg add HKLM\System\CurrentControlSet\Services\NTDS\Diagnostics /v "6 Garbage[RETURN]
Collection" /t REG_DWORD /d 3

16.14.2.3 Using VBScript

' This code enables garbage collection logging.
' ------ SCRIPT CONFIGURATION ------

strDCName = "<DomainControllerName>"
intValue = 3
' ------ END CONFIGURATION ---------

const HKLM = &H80000002
strNTDSReg = "SYSTEM\CurrentControlSet\Services\NTDS\Diagnostics"
set objReg = GetObject("winmgmts:\\" & strDCName & "\root\default:StdRegProv")
objReg.SetDWORDValue HKLM, strNTDSReg, "6 Garbage Collection," intValue
WScript.Echo "Garbage Collection logging enabled"

16.14.3 Discussion

Here is a sample event that is logged when the 6 Garbage Collection diagnostics logging level is set to 3 or
higher:

Event Type: Information
Event Source: NTDS General
Event Category: Garbage Collection
Event ID: 1006
Date: 6/24/2003
Time: 11:29:31 AM
User: NT AUTHORITY\ANONYMOUS LOGON
Computer: DC1
Description:
Internal event: Finished removing deleted objects that have expired (garbage
collection). Number of expired deleted objects that have been removed: 229.

16.14.4 See Also

Recipe 15.2 for more on diagnostics logging and Recipe 16.13 for more on the garbage-collection process

[Team LiB]

[Team LiB]

Recipe 16.15 Determining the Size of the Active Directory
Database

16.15.1 Problem

You want to determine the size of the Active Directory database.

16.15.2 Solution

16.15.2.1 Using a command-line interface

If you are in DS Restore Mode, you can use ntdsutil to report the size of the Active Directory

database:

> ntdsutil files info

If you are not in DS Restore Mode and run this command, you will receive the following error
message:

*** Error: Operation only allowed when booted in DS restore mode
 "set SAFEBOOT_OPTION=DSREPAIR" to override - NOT RECOMMENDED!

As you can see, it is possible to override this failure by setting the SAFEBOOT_OPTION environment
variable to DSREPAIR, but I do not recommend this unless you know what you are doing. By setting
that environment variable, the ntdsutil command will not stop you from performing other

commands. This can be very dangerous.

Another method, which is safer and easier, is to bring up a command shell by going to Start Run,
typing cmd.exe, and pressing Enter. Then type cd <NTDSDir>, where <NTDSDir> is the full path to
the ntds.dit file. Finally, run the dir command; the output will show the size of the files.

16.15.3 Discussion

The size of the Active Directory database on a domain controller is effectively the size of the ntds.dit
file. This file can vary slightly in size between domain controllers even within the same domain due to
unreplicated changes or differences with nonreplicated data.

You should monitor the size of this file on one or more domain controllers in each domain to ensure
you have adequate disk space. Also, by knowing the average size of your DIT, you can recognize if it
spikes dramatically, perhaps due to a new application that is writing data to the directory.

If you find that you are running out of disk space, you have a couple of options. You could move the
Active Directory files to a new drive with more capacity. Alternatively, you can perform an offline
defragmentation if the DIT file contains a lot of whitespace.

16.15.4 See Also

Recipe 16.8 for moving the DIT files, Recipe 16.11 for determining how much whitespace is in the
DIT, and Recipe 16.12 for performing an offline defragmentation of the Active Directory database

[Team LiB]

[Team LiB]

Recipe 16.16 Searching for Deleted Objects

16.16.1 Problem

You want to search for deleted objects.

16.16.2 Solution

16.16.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller you want to target (or leave blank to do a
serverless bind).

3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Connect.6.

Enter credentials of a user that is an administrator for the domain.7.

Click OK.8.

From the menu, select Options Controls.9.

For Windows Server 2003, select the Return Deleted Objects control under Load Predefined.10.

For Windows 2000, type 1.2.840.113556.1.4.417 for the Object Identifier and click the Check

In button.

11.

Click OK.12.

From the menu, select Browse Search.13.

For BaseDN, enter: cn=Deleted Objects,<DomainDN>.14.

For Scope, select One Level.15.

For Filter, enter: (isDeleted=TRUE).16.

17.

15.

16.

Click the Options button.17.

Under Search Call Type, select Extended.18.

Click OK.19.

Click Run.20.

16.16.2.2 Using a command-line interface

As of this writing, none of the standard command-line tools provide a way to search for deleted
objects.

16.16.2.3 Using VBScript

It is currently not possible to search for deleted objects with ADSI or ADO.

16.16.3 Discussion

When an object is deleted in Active Directory, it is not completely deleted. The original object is
removed, but a tombstone (deleted) object takes its place in the Deleted Objects container within

the naming context it was deleted in. See Introduction in Chapter 16 for more on tombstone objects.

Both the Deleted Objects container and tombstone objects themselves are hidden by default in

tools, such as Active Directory Users and Computers and ADSI Edit. To query tombstone objects you
have to enable the Return Deleted Objects LDAP control, which has an OID of
1.2.840.113556.1.4.417. When that control is enabled, you can perform searches for tombstone
objects by specifying a search filter that contains (isDeleted=TRUE) in it. Only members of the

administrator groups can perform searches for tombstone objects.

16.16.4 See Also

MSDN: Retrieving Deleted Objects

[Team LiB]

[Team LiB]

Recipe 16.17 Restoring a Deleted Object

This recipe must be run against a Windows Server 2003 domain controller.

16.17.1 Problem

You want to restore an object that was previously deleted.

16.17.2 Solution

16.17.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a domain controller (or leave blank to do a serverless bind).3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter credentials of a user that can restore the deleted object (only administrators for the
domain by default).

7.

Click OK.8.

From the menu, select Options Controls.9.

Select Return deleted objects from the Load Predefined selection.10.

Click OK.11.

From the menu, select Browse Modify.12.

For Dn, enter the distinguished name of the deleted object you want to restore.13.

For Attribute, enter distinguishedName.14.

15.

16.

13.

14.

For Values, enter the original DN of the object.15.

For Operation, select Replace.16.

Click Enter.17.

For Attribute, enter isDeleted.18.

For Values, remove any text.19.

For Operation, select Delete.20.

Click Enter.21.

Add mandatory attributes as necessary:22.

For Attribute, enter <ManadatoryAttribute>.23.

For Values, enter <MandatoryAttributeValue>.24.

For Operation, select Add.25.

Check the box beside Extended.26.

Click Run.27.

The results will be displayed in the right pane.28.

16.17.3 Discussion

Windows Server 2003 supports restoring tombstone (deleted) objects, which have not expired. This
is an alternative to performing an authoritative restore for an object that was accidentally deleted.
The downside to this approach is that since most attributes that you care about (excluding those in
Table 16-1) are not populated on tombstone objects, the restored deleted object will only be a
shadow of its former self.

Here are the basic steps to restore a deleted object:

Enable the Return Deleted Objects control (1.2.840.113556.1.4.417).1.

Remove the isDeleted attribute of the object (do not simply set to FALSE).2.

Replace the distinguishedName attribute with its new location in the tree.3.

Restore any mandatory attributes.4.

This should all be done in a single LDAP operation.

After the object has been restored, you can repopulate any optional attributes that were set
previously. By default only members of the administrator groups can restore deleted objects. You can
delegate control over restoring deleted objects by granting the Reanimate Tombstone extended right

to a user or group. The user or group will also need rights to modify attributes of the restored object
including the ability to create child objects in the container the object is restored to.

Granting the privilege to restore objects should be done with caution. A user
could restore a user object and after setting the password, login with the

account. This could give the user access to resources he was not suppose to
have.

16.17.4 See Also

Recipe 16.16 for searching for deleted objects and MSDN: Restoring Deleted Objects

[Team LiB]

[Team LiB]

Recipe 16.18 Modifying the Tombstone Lifetime for a
Domain

16.18.1 Problem

You want to change the default tombstone lifetime for a domain.

16.18.2 Solution

16.18.2.1 Using a graphical user interface

Open ADSI Edit.1.

In the left pane, expand cn=Configuration cn=Services cn=Windows NT.2.

Right-click on cn=Directory Service and select Properties.3.

Set the tombstoneLifetime attribute to the number of days that tombstone objects should

remain in Active Directory before getting removed completely (the default is 60 days).

4.

Click OK.5.

16.18.2.2 Using a command-line interface

Create an LDIF file called change_tombstone_lifetime.ldf with the following contents:

dn: cn=Directory Service,cn=Windows NT,cn=Services,cn=Configuration,<ForestRootDN>
changetype: modify
replace: tombstoneLifetime

tombstoneLifetime: <NumberOfDays>
-

then run the following command:

> ldifde -v -i -f change_tombstone_lifetime.ldf

16.18.2.3 Using VBScript

' This code modifies the default tombstone lifetime

' ------ SCRIPT CONFIGURATION ------

intTombstoneLifetime = <NumberOfDays>
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
set objDSCont = GetObject("LDAP://cn=Directory Service,cn=Windows NT," & _
 "cn=Services," & objRootDSE.Get("configurationNamingContext"))
objDSCont.Put "tombstoneLifetime", intTombstoneLifetime
objDSCont.SetInfo
WScript.Echo "Successfully set the tombstone lifetime to " & _
 intTombstoneLifetime

16.18.3 Discussion

It is not recommended that you change this setting unless you have a very good reason. Lowering
this value below the 60-day default, also lowers the length of time a backup of Active Directory is
good for. See Introduction in Chapter 16 and Recipe 16.16 for more information on tombstone
(deleted) objects and the tombstone lifetime.

16.18.4 See Also

Recipe 16.13 for more on the garbage collection process, MS KB 198793 (The Active Directory
Database Garbage Collection Process), MS KB 216993 (Backup of the Active Directory Has 60-Day
Useful Life), and MS KB 314282 (Lingering Objects May Remain After You Bring an Out-of-Date Global
Catalog Server Back Online)

[Team LiB]

[Team LiB]

Chapter 17. Application Partitions

Introduction

Recipe 17.1. Creating and Deleting an Application Partition

Recipe 17.2. Finding the Application Partitions in a Forest

Recipe 17.3. Adding or Removing a Replica Server for an Application Partition

Recipe 17.4. Finding the Replica Servers for an Application Partition

Recipe 17.5. Finding the Application Partitions Hosted by a Server

Recipe 17.6. Verifying Application Partitions Are Instantiated on a Server Correctly

Recipe 17.7. Setting the Replication Notification Delay for an Application Partition

Recipe 17.8. Setting the Reference Domain for an Application Partition

Recipe 17.9. Delegating Control of Managing an Application Partition
[Team LiB]

[Team LiB]

Introduction

Active Directory domain controllers host exactly three predefined partitions. The configuration naming
context is replicated to all domain controllers in the forest and contains information that is forest-
wide, such as the site topology and LDAP query policies. The schema-naming context is also
replicated forest-wide and contains all of the schema objects that define how data is stored and
structured in Active Directory. The third partition is the domain naming context, which is replicated to
all of the domain controllers that host a particular domain.

Windows Server 2003 introduces a new type of partition called an application partition, which is very
similar to the other naming contexts except you can configure which domain controllers in the forest
replicate the data contained within it. This capability gives administrators much more flexibility over
how they can store and replicate data contained in Active Directory. If you need to replicate a certain
set of data to only two different sites, you can create an application partition that will only replicate
the data to the domain controllers in those two sites.

For more details on application partitions, see Chapter 3 in Active Directory, Second Edition (O'Reilly).

Application Partitions are new to Windows Server 2003, so this entire chapter
applies only to Windows Server 2003 domain controllers. Windows 2000 domain
controllers cannot host application partitions.

The Anatomy of an Application Partition

Application partitions are stored in Active Directory similar to domains. In fact, they consist of the
same two objects as domains, a domainDNS object and a crossRef object that resides under the
Partitions container in the Configuration Naming Context (CNC). Application partitions are named

like domains and can be virtually anything you want. You can create an application partition that uses
the current namespace within the forest. For example, in the rallencorp.com (dc=rallencorp,dc=com)
forest, you could create an apps.rallencorp.com (dc=apps,dc=rallencorp,dc=com) application
partition. Alternatively, a name that is part of a new tree can also be used, for example, apps.local
(dc=apps,dc=local). Application partitions can also be subordinate to other application partitions.

Table 17-1 and Table 17-2 contain some of the interesting attributes of domainDNS and crossRef

objects as they apply to application partitions.

Table 17-1. Attributes of domainDNS objects

Attribute Description

dc Relative distinguished name of the application partition.

Attribute Description

instanceType
This attribute must be set to 5 when creating an application partition. See Recipe
17.1 for more information.

msDs-
masteredBy

List of nTDSDSA object DNs of the domain controllers that replicate the application

partition. See Recipe 17.4 for more information.

Table 17-2. Attributes of crossRef objects

Attribute Description

cn
Relative distinguished name of the crossRef object. This value is

generally a GUID for application partitions.

dnsRoot Fully qualified DNS name of the application partition.

msDS-NC-Replica-
Locations

List of nTDSDSA object DNs of the domain controllers that replicate the

application partition. See Recipe 17.4 for more information.

msDS-
SDReferenceDomain

Domain used for security descriptor translation. See Recipe 17.8 for
more information.

nCName
Distinguished name of the application partition's corresponding
domainDNS object.

systemFlags
Bit flag that identifies if the crossRef represents an application. See

Recipe 17.2 for more information.

[Team LiB]

instanceType
This attribute must be set to 5 when creating an application partition. See Recipe
17.1 for more information.

msDs-
masteredBy

List of nTDSDSA object DNs of the domain controllers that replicate the application

partition. See Recipe 17.4 for more information.

Table 17-2. Attributes of crossRef objects

Attribute Description

cn
Relative distinguished name of the crossRef object. This value is

generally a GUID for application partitions.

dnsRoot Fully qualified DNS name of the application partition.

msDS-NC-Replica-
Locations

List of nTDSDSA object DNs of the domain controllers that replicate the

application partition. See Recipe 17.4 for more information.

msDS-
SDReferenceDomain

Domain used for security descriptor translation. See Recipe 17.8 for
more information.

nCName
Distinguished name of the application partition's corresponding
domainDNS object.

systemFlags
Bit flag that identifies if the crossRef represents an application. See

Recipe 17.2 for more information.

[Team LiB]

[Team LiB]

Recipe 17.1 Creating and Deleting an Application
Partition

17.1.1 Problem

You want to create or delete an application partition. Application partitions are useful if you need to
replicate data to a subset of locations where you have domain controllers. Instead of replicating the
application data to all domain controllers in a domain, you can use an application partition to only
replicate the data to the domain controllers of your choosing.

17.1.2 Solution

17.1.2.1 Using a graphical user interface

To create an application partition, do the following:

Open ADSI Edit.1.

Connect to the domain of which the new application partition will be a child.2.

In the left pane, right-click on the domain and select New Object.3.

Select domainDNS and click Next.4.

For Value, enter the name of the application partition and click Next.5.

Click on More Attributes.6.

Select Both for which properties to view.7.

Select instanceType for property to view.8.

For the Edit Attribute field, enter 5.9.

Click the Set button.10.

Click OK.11.

Click Finish.12.

To delete an application, do the following:

1.

12.

Open ADSI Edit.1.

Connect to the configuration naming context of the forest the application partition is in, if it is
not already present in the left pane.

2.

Expand the configuration naming context and click on the Partitions container.3.

In the right pane, right-click on the crossRef object that represents the application partition

and select Delete.

4.

Click Yes to confirm.5.

17.1.2.2 Using a command-line interface

Use the following command to create an application partition on a domain controller:

> ntdsutil "dom man" conn "co to se <DomainControllerName>" q "create nc[RETURN]

<AppPartitionDN> NULL" q q

Use the following command to delete an application partition:

> ntdsutil "dom man" conn "co to se <DomainControllerName>" q "delete nc[RETURN]

<AppPartitionFQDN>" q q

17.1.2.3 Using VBScript

' This code creates an application partition off of the
' root of the default forest.
' ------ SCRIPT CONFIGURATION ------

strAppPart = "<AppPartitionName>" ' DN of the app partition to delete

strServer = "<DomainControllerName>" ' DNS name of DC to host app partition

strDescr = "<Description>" ' Descriptive text about the app partition
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://" & strServer & "/RootDSE")
set objLDAP = GetObject("LDAP://" & strServer & "/" & _
 objRootDSE.Get("rootDomainNamingContext"))
set objAppPart = objLDAP.Create("domainDNS", "dc=" & strAppPart)
objAppPart.Put "instancetype", 5
objAppPart.Put "description", strDescr
objAppPart.SetInfo
WScript.Echo "Created application partition: " & strAppPart
' This code deletes the specified application partition
' ------ SCRIPT CONFIGURATION ------

strAppPart = "<AppPartitionDN>" ' DN of the app partition to delete
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
strBase = "<LDAP://cn=Partitions," & _

 objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(&(objectcategory=crossRef)(nCName=" & _
 strAppPart & "));"
strAttrs = "cn,distinguishedName;"
strScope = "onelevel"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)

if objRS.RecordCount <> 1 then
 WScript.Echo "Did not find a match for " & strAppPart
else
 objRS.MoveLast
 set objAppPart = GetObject("LDAP://" & _
 objRS.Fields("distinguishedName").Value)
 objAppPart.DeleteObject(0)
 Wscript.Echo "Deleted " & objRS.Fields("distinguishedName").Value
end if

17.1.3 Discussion

To create an application partition, you need to create a domainDNS object that serves as the root
container for the partition. A crossRef object is automatically created in the Partitions container in
the CNC. Conversely, when removing an application partition, you only need to remove the crossRef
object and the domainDNS is automatically deleted. When you delete an application partition, all

objects within the partition also get deleted. Tombstone objects are not created for any of the objects
within the application partition or for the application partition itself.

17.1.4 See Also

MS KB 322669 (HOW TO: Manage the Application Directory Partition and Replicas in Windows Server
2003), and MSDN: Creating an Application Directory Partition, and MSDN: Deleting an Application
Directory Partition

[Team LiB]

[Team LiB]

Recipe 17.2 Finding the Application Partitions in a Forest

17.2.1 Problem

You want to find the application partitions that have been created in a forest.

17.2.2 Solution

17.2.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a DC.3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter a user and password with the necessary credentials.7.

Click OK.8.

From the menu, select Browse Search.9.

For BaseDN, type the DN of the Partitions container (e.g.,

cn=partitions,cn=configuration,dc=rallencorp, dc=com).

10.

For Filter, enter:11.

(&(objectcategory=crossRef)(systemFlags:1.2.840.113556.1.4.803:=5))

For Scope, select One Level.12.

Click the Options button.13.

For Attributes, type dnsRoot.14.

Click OK.15.

16.

14.

15.

Click Run.16.

17.2.2.2 Using a command-line interface

Use the following command to find all of the application partitions in a forest:

> dsquery * cn=partitions,cn=configuration,<ForestDN> -filter[RETURN]
"(&(objectcategory=crossRef)(systemFlags:1.2.840.113556.1.4.803:=5))"[RETURN]
-scope onelevel -attr dnsRoot

17.2.2.3 Using VBScript

' This code displays the application partitions contained in the
' default forest

set objRootDSE = GetObject("LDAP://RootDSE")
strBase = "<LDAP://cn=Partitions," & _
 objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(&(objectcategory=crossRef)" & _
 "(systemFlags:1.2.840.113556.1.4.803:=5));"
strAttrs = "cn,ncName;"
strScope = "onelevel"

set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)

objRS.MoveFirst
while not objRS.EOF
 Wscript.Echo objRS.Fields("nCName").Value
 objRS.MoveNext
wend

17.2.3 Discussion

The method I used in the Solution to get the list of application partitions was to query all crossRef
objects in the Partitions container that have the systemFlags attribute with the 0101 bits set (5 in

decimal). To do this, I used a logical AND bit-wise filter. See Recipe 4.9 for more on searching with a
bitwise filter.

You can take a shortcut by not including the bitwise OID in the search filter, and changing it to
systemFlags=5. This currently produces the same results in my test forest as with the bitwise filter,

but there are no guarantees since it is a bit-flag attribute. There may exist special circumstances
when an application partition would have another bit set in systemFlags that would yield a different

value.

In each solution, I printed the dnsRoot attribute for each application partition, which contains the
DNS name of the application partition. You can also retrieve the nCName attribute, which contains the

distinguished name of the application partition.

[Team LiB]

[Team LiB]

Recipe 17.3 Adding or Removing a Replica Server for an
Application Partition

17.3.1 Problem

You want to add or remove a replica server for an application partition. After you've created an
application partition, you should make at least one other server a replica server in case the first server
fails.

17.3.2 Solution

17.3.2.1 Using a command-line interface

Use the following command to add a replica server for an application partition:

> ntdsutil "dom man" conn "co to se <DomainControllerName>" q "add nc replica[RETURN]

<AppPartitionDN> <DomainControllerName>" q q

Use the following command to remove a replica server for an application partition:

> ntdsutil "dom man" conn "co to se <DomainControllerName>" q "remove nc replica[RETURN]

<AppPartitionDN> <DomainControllerName>" q q

17.3.2.2 Using VBScript

' This code adds or removes a replica server for the
' specified application partition
' ------ SCRIPT CONFIGURATION ------

strAppPart = "<AppPartitionFQDN>" ' DNS name of the application partition

' Hostname of server to add as replica for app partition.
' This needs to match the common name for the DC's server object.

strServer = "<DomainControllerName>" ' e.g. dc01

' Set to True to add server as new replica or False to remove
boolAdd = True
' ------ END CONFIGURATION ---------

' Constants taken from ADS_PROPERTY_OPERATION_ENUM
const ADS_PROPERTY_APPEND = 3
const ADS_PROPERTY_DELETE = 4

set objRootDSE = GetObject("LDAP://RootDSE")

' --
' First find the NTDS Settings object for the server
' --
strBase = "<LDAP://cn=Sites," & _
 objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(&(objectcategory=server)(cn=" & strServer & "));"
strAttrs = "cn,distinguishedName;"
strScope = "subtree"
set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
if objRS.RecordCount <> 1 then
 WScript.Echo "Did not find a match for server " & strServer
 WScript.Quit
else
 objRS.MoveLast
 strServerDN = "cn=NTDS Settings," & _
 objRS.Fields("distinguishedName").Value
 ' Make sure the NTDS Settings object actually exists
 set objNTDSDSA = GetObject("LDAP://" & strServerDN)
 Wscript.Echo "Found server: "
 WScript.Echo strServerDN
 Wscript.Echo
end if

' --
' Now need to find the crossRef object for the application partition
' --
strBase = "<LDAP://cn=Partitions," & _
 objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(&(objectcategory=crossRef)" & _
 "(dnsRoot=" & strAppPart & "));"
strAttrs = "cn,distinguishedName;"
strScope = "onelevel"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
if objRS.RecordCount <> 1 then
 WScript.Echo "Did not find a match for application partition " & _
 strAppPart
 WScript.Quit
else
 objRS.MoveLast
 set objAppPart = GetObject("LDAP://" & _
 objRS.Fields("distinguishedName").Value)
 Wscript.Echo "Found app partition: "
 WScript.Echo objRS.Fields("distinguishedName").Value
 WScript.Echo
end if

' ---
' Lastly, either add or remove the replica server
' ---

if boolAdd = TRUE then
 objAppPart.PutEx ADS_PROPERTY_APPEND, "msDS-NC-Replica-Locations", _
 Array(strServerDN)
 objAppPart.SetInfo
 WScript.Echo "Added server to replica set"
else
 objAppPart.PutEx ADS_PROPERTY_DELETE, "msDS-NC-Replica-Locations", _
 Array(strServerDN)
 objAppPart.SetInfo
 WScript.Echo "Removed server from replica set"
end if

17.3.3 Discussion

When you initially create an application partition, there is only one domain controller that hosts the
application partition, namely the one you created the application partition on. You can add any other
domain controllers in the forest as replica servers assuming the domain controllers are running Windows
Server 2003. The list of replica servers is stored in the msDS-NC-Replica-Locations attribute on the
crossRef object for the application partition in the Partitions container. That attribute contains the
distinguished name of each replica server's nTDSDSA object. To add a replica server, simply add the DN of

the new replica server. To remove a replica server, remove the DN corresponding to the server you want
to remove. Behind the scene, the Knowledge Consistency Checker (KCC) gets triggered anytime there is
a change to that attribute and will either cause the application partition to get replicated to the target
domain controller or will remove it from the target domain controller. When a domain controller is
demoted, it will automatically remove itself as a replica server for any application partitions it replicated.

17.3.4 See Also

Recipe 17.4 for finding the replica servers for an application partition and MS KB 322669 (HOW TO:
Manage the Application Directory Partition and Replicas in Windows Server 2003)

[Team LiB]

[Team LiB]

Recipe 17.4 Finding the Replica Servers for an Application
Partition

17.4.1 Problem

You want to find the replica servers for an application partition.

17.4.2 Solution

17.4.2.1 Using a graphical user interface

Open ADSI Edit.1.

Connect to the configuration naming context of the forest the application partition is in, if it is not
already present in the left pane.

2.

Expand the configuration naming context and click on the Partitions container.3.

In the right pane, right-click on the crossRef object that represents the application partition and

select Properties.

4.

Under Attributes, select the msDS-NC-Replica-Locations attribute.5.

17.4.2.2 Using a command-line interface

> ntdsutil "dom man" conn "co to se <DomainControllerName>" q "list nc replicas[RETURN]

<AppPartitionDN>" q q

17.4.2.3 Using VBScript

' This code displays the DN of each domain controller's
' nTDSDSA object that is a replica server for the
' specified app partition
' ------ SCRIPT CONFIGURATION ------
' Fully qualified DNS name of app partition

strAppPart = "<AppPartitionFQDN>" ' e.g. apps.rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
strBase = "<LDAP://cn=Partitions," & _
 objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(&(objectcategory=crossRef)(dnsRoot=" & strAppPart & "));"

strAttrs = "msDS-NC-Replica-Locations;"
strScope = "onelevel"
set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
if objRS.RecordCount <> 1 then
 WScript.Echo "Did not find a match for application partition " & _
 strAppPart
 WScript.Quit
else
 objRS.MoveLast
 if objRS.Fields("msDS-NC-Replica-Locations").Properties.Count > 0 then
 Wscript.Echo "There are no replica servers for app partition " & _
 strAppPart
 else
 Wscript.Echo "Replica servers for app partition " & strAppPart & ":"
 for each strNTDS in objRS.Fields("msDS-NC-Replica-Locations").Value
 WScript.Echo " " & strNTDS
 next
 end if
end if

17.4.3 Discussion

The list of replica servers for an application partition is stored in the multivalued msDS-NC-Replica-
Locations attribute on the crossRef object for the application partition. This object is located in the
Partitions container in the configuration naming context.

17.4.4 See Also

Recipe 17.3 for adding and removing replica servers

[Team LiB]

[Team LiB]

Recipe 17.5 Finding the Application Partitions Hosted by a
Server

17.5.1 Problem

You want to find the application partitions that a particular server replicates. Before you decommission a
server, it is good to check to see if it hosts any application partitions and if so, add another replica server to
replace it.

17.5.2 Solution

17.5.2.1 Using a graphical user interface

Open LDP.1.

From the menu, select Connection Connect.2.

For Server, enter the name of a DC.3.

For Port, enter 389.4.

Click OK.5.

From the menu, select Connection Bind.6.

Enter a user and password with the necessary credentials.7.

Click OK.8.

From the menu, select Browse Search.9.

For BaseDN, type the DN of the Partitions container (e.g.,

cn=partitions,cn=configuration,dc=rallencorp, dc=com).

10.

For Filter, enter:11.

(&(objectcategory=crossRef)(systemFlags:1.2.840.113556.1.4.803:=5)

(msDS-NC-Replica-Locations=cn=NTDS Settings,cn=<DomainControllerName>,

cn=servers,cn=<SiteName>,cn=sites, cn=configuration,<ForestDN>))

For Scope, select One Level.12.

Click the Options button.13.

14.

15.

12.

13.

For Attributes, type dnsRoot .14.

Click OK.15.

Click Run.16.

17.5.2.2 Using a command-line interface

Use the following command to find all of the application partitions hosted by a domain controller. To run this
command, you need the distinguished name of the forest root domain (<ForestDN>), the common name of

the DC's server object (<DomainControllerName>), and the common name of the site object the server is

in (<SiteName>).

> dsquery * "cn=partitions,cn=configuration,<ForestDN>" -scope onelevel -attr[RETURN]
dnsRoot -filter "(&(objectcategory=crossRef)(systemFlags:1.2.840.113556.1.4.803:=5)[RETURN]

(msDS-NC-Replica-Locations=cn=NTDS Settings,cn=<DomainControllerName>,[RETURN]

cn=servers,cn=<SiteName>,cn=sites, cn=configuration,<ForestDN>))"

17.5.2.3 Using VBScript

' This code finds the application partitions hosted by the specified server.
' ------ SCRIPT CONFIGURATION ------
' Hostname of server to add as replica for app partition.
' This needs to match the common name for the DC's server object.

strServer = "<DomainControllerName>" ' e.g. dc01
' ------ END CONFIGURATION ---------

' --
' First need to find the NTDS Settings object for the server
' --
set objRootDSE = GetObject("LDAP://RootDSE")
strBase = "<LDAP://cn=Sites," & _
 objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(&(objectcategory=server)(cn=" & strServer & "));"
strAttrs = "cn,distinguishedName;"
strScope = "subtree"
set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
if objRS.RecordCount <> 1 then
 WScript.Echo "Did not find a match for server " & strServer
 WScript.Quit
else
 objRS.MoveLast
 strServerDN = "cn=NTDS Settings," & _
 objRS.Fields("distinguishedName").Value
 Wscript.Echo "Found server object: "
 WScript.Echo strServerDN
 Wscript.Echo
end if

' --
' Find the crossRef objects that are hosted by the server
' --
strBase = "<LDAP://cn=Partitions," & _
 objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(&(objectcategory=crossRef)" & _
 "(msDS-NC-Replica-Locations=" & strServerDN & "));"
strAttrs = "nCName;"
strScope = "onelevel"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
if objRS.RecordCount = 0 then
 WScript.Echo "Server " & strServer & _
 " does not host any application partitions"
 WScript.Quit
else
 Wscript.Echo "App partitions hosted by server " & strServer & ": "
 objRS.MoveFirst
 while not objRS.EOF
 WScript.Echo " " & objRS.Fields("nCName").Value
 objRS.MoveNext
 wend
end if

17.5.3 Discussion

As described in Recipe 17.3 and Recipe 17.4 , the msDS-NC-Replica-Locations attribute on crossRef objects

contains the list of replica servers for a given application partition. Each of the solutions illustrates how to
perform a query using this attribute to locate all of the application partitions a particular domain controller is a
replica server for. For the GUI and CLI solutions, you need to know the distinguished name of the nTDSDSA

object for the target domain controller. The VBScript solution tries to dynamically determine the distinguished
name given a server name.

17.5.4 See Also

Recipe 17.4 for finding the replica servers for an application partition

[Team LiB]

[Team LiB]

Recipe 17.6 Verifying Application Partitions Are
Instantiated on a Server Correctly

17.6.1 Problem

You want to verify that an application partition is instantiated on a replica server. After you add a
domain controller as a replica server for an application partition, the data in the application partition
needs to fully replicate to that domain controller before it can be used on that domain controller.

17.6.2 Solution

17.6.2.1 Using a command-line interface

Use the following command to determine if there are any problems with application partitions on a
domain controller:

> dcdiag /test:checksdrefdom /test:verifyreplicas /test:crossrefvalidation /s: [RETURN]

<DomainControllerName>

These tests are valid only with the Windows Server 2003 version of dcdiag .

17.6.3 Discussion

The dcdiag CheckDSRefDom , VerifyReplicas , and CrossRefValidation tests can help determine if

an application partition has been instantiated on a server and if there are any problems with it. Here is
the dcdiag help information for those three tests:

CrossRefValidation

This test looks for cross-referencess that are in some way invalid.
CheckSDRefDom

This test checks that all application directory partitions have appropriate security descriptor
reference domains.

VerifyReplicas

This test verifies that all application directory partitions are fully instantiated on all replica
servers.

Another way you can check to see if a certain application partition has been instantiated on a domain
controller yet is to look at the msDS-HasInstantiatedNCs attribute for the server's nTDSDSA object.

That attribute has DN with Binary syntax and contains a list of all the application partitions that have
been successfully instantiated on the server. Unfortunately, tools such as ADSI Edit and dsquery do

not interpret DN with Binary attributes correctly, but it can be viewed with LDP.

[Team LiB]

[Team LiB]

Recipe 17.7 Setting the Replication Notification Delay for
an Application Partition

17.7.1 Problem

Two replication-related settings that you can customize for application partitions (or any naming
context for that matter) include the first and subsequent replication delay after a change to the
partition has been detected. The first replication delay is the time that a domain controller waits
before it notifies its first replication partner that there has been a change. The subsequent replication
delay is the time that the domain controller waits after it has notified its first replication partner
before it will notify its next partner. You may need to customize these settings so that replication
happens as quickly as you need it to for data in the application partition.

17.7.2 Solution

17.7.2.1 Using a graphical user interface

Open ADSI Edit.1.

Connect to the configuration naming context of the forest the application partition is in if it is
not already present in the left pane.

2.

Expand the configuration naming context and click on the Partitions container.3.

In the right pane, right-click on the crossRef object that represents the application partition

and select Properties.

4.

Set the msDS-Replication-Notify-First-DSA-Delay and msDS-Replication-Notify-
Subsequent-DSA-Delay attributes to the number of seconds you want for each delay (see the

Discussion section for more details).

5.

Click OK.6.

17.7.2.2 Using a command-line interface

The Windows Server 2003 version of repadmin supports setting the notification delays:

> repadmin /notifyopt <AppPartitionDN> /first:<FirstDelayInSeconds> /subs:[RETURN]

 <NextDelayInSeconds>

For Windows 2000, you can create an LDIF file with the following contents:

dn: <AppPartitionCrossRefDN>
changetype: modify
replace: msDS-Replication-Notify-First-DSA-Delay

msDS-Replication-Notify-First-DSA-Delay: <FirstDelayInSeconds>
-
replace: msDS-Replication-Notify-Subsequent-DSA-Delay

msDS-Replication-Notify-Subsequent-DSA-Delay: <NextDelayInSeconds>
-

If the file were named change_replication_delays.ldf, you'd run the following command:

> ldifde -v -i -f change_replication_delays.ldf

17.7.2.3 Using VBScript

' This code sets the replication delay for an application partition
' ------ SCRIPT CONFIGURATION ------

strAppPartDN = "<AppPartitionDN>" ' e.g. dc=apps,dc=rallencorp,dc=com

intFirstDelay = <FirstDelayInSeconds>

intNextDelay = <NextDelayInSeconds>
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
strBase = "<LDAP://cn=Partitions," & _
 objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(&(objectcategory=crossRef)(nCName=" & strAppPartDN & "));"
strAttrs = "cn,distinguishedName;"
strScope = "onelevel"
set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)

if objRS.RecordCount <> 1 then
 WScript.Echo "Did not find a match for " & strAppPartDN
else
 objRS.MoveLast
 set objAppPart = GetObject("LDAP://" & _
 objRS.Fields("distinguishedName").Value)
 objAppPart.Put "msDS-Replication-Notify-First-DSA-Delay", intFirstDelay
 objAppPart.Put "msDS-Replication-Notify-Subsequent-DSA-Delay", intNextDelay
 objAppPart.SetInfo
 Wscript.Echo "Modified " & objRS.Fields("distinguishedName").Value
end if

17.7.3 Discussion

The settings that control the notification delay are stored in the msDS-Replication-Notify-First-

DSA-Delay and msDS-Replication-Notify-Subsequent-DSA-Delay attributes on the application
partition's crossRef object in the Partitions container. The time values are stored as seconds. The

default for application partitions is 60 seconds for the first delay and 60 seconds for the subsequent
delay.

[Team LiB]

[Team LiB]

Recipe 17.8 Setting the Reference Domain for an Application
Partition

17.8.1 Problem

Whenever you create an object in Active Directory, the default security descriptor defined in the schema
for the object's class is applied to the object. This default security descriptor may reference specific
groups, such as Domain Admins , but it is not specific to a domain. This makes a lot of sense for domain-
naming contexts, where the Domain Admins group in question would be the one defined in the domain.
For application partitions, which don't contain a Domain Admins group, it is not so straightforward. Which
domain's Domain Admins group do you use? To work around this issue, you can set a default security
descriptor reference domain for an application partition by setting the msDS-SDReferenceDomain attribute
of the partition's crossRef object.

17.8.2 Solution

17.8.2.1 Using a graphical user interface

Open ADSI Edit.1.

Connect to the Configuration naming context of the forest the application partition is in if it is not
already present in the left pane.

2.

Expand the Configuration naming context and click on the Partitions container.3.

In the right pane, right-click on the crossRef object that represents the application partition and

select Properties.

4.

Under Attributes, select the msDS-SDReferenceDomain attribute.5.

17.8.2.2 Using a command-line interface

> ntdsutil "dom man" conn "co to se <DomainControllerName>" q "set nc ref domain[RETURN]

<AppPartitionDN> <DomainDN>" q q

17.8.2.3 Using VBScript

' This code sets the SD reference domain for the specified app partition
' ------ SCRIPT CONFIGURATION ------
' DN of reference domain

strRefDomainDN = "<DomainDN>" ' e.g. dc=emea,dc=rallencorp,dc=com
' Fully qualified DNS name of app partition

strAppPart = "<AppPartitionFQDN>" ' e.g. app.rallencorp.com
' ------ END CONFIGURATION ---------

set objRootDSE = GetObject("LDAP://RootDSE")
strBase = "<LDAP://cn=Partitions," & _
 objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(&(objectcategory=crossRef)(dnsRoot=" & _
 strAppPart & "));"
strAttrs = "nCName,msDS-SDReferenceDomain,distinguishedName;"
strScope = "onelevel"
set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
if objRS.RecordCount <> 1 then
 WScript.Echo "Did not find a match for application partition " & _
 strAppPart
 WScript.Quit
else
 objRS.MoveLast
 WScript.Echo "Current Reference Domain: " & _
 objRS.Fields("msDS-SDReferenceDomain").Value
 set objCrossRef = GetObject("LDAP://" & _
 objRS.Fields("distinguishedName").Value)
 objCrossRef.Put "msDS-SDReferenceDomain", strRefDomainDN
 objCrossRef.SetInfo
 WScript.Echo "New Reference Domain: " & _
 objCrossRef.Get("msDS-SDReferenceDomain")
end if

17.8.3 Discussion

If you don't set the msDS-SDReferenceDomain attribute for an application partition, then a certain

hierarchy is followed to determine the default security descriptor domain. These are the guidelines:

If the application partition is created as part of a new tree, the forest root domain is used as the
default domain.

If the application partition is a child of a domain, the parent domain is the default domain.

If the application partition is a child of another application partition, the parent application partition's
default domain is used.

17.8.4 See Also

Recipe 10.19 for more on setting the default security descriptor for a class, Recipe 17.1 for creating an
application partition, and MS KB 322669 (HOW TO: Manage the Application Directory Partition and Replicas
in Windows Server 2003)

[Team LiB]

[Team LiB]

Recipe 17.9 Delegating Control of Managing an Application
Partition

17.9.1 Problem

You want to delegate control over the management of an application partition.

17.9.2 Solution

17.9.2.1 Using a graphical user interface

Open ADSI Edit.1.

Connect to the Configuration naming context of the forest the application partition is in if it is not
already present in the left pane.

2.

Expand the Configuration naming context and click on the Partitions container.3.

In the right pane, right-click on the crossRef object that represents the application partition and

select Properties.

4.

Click the Security tab.5.

Click the Advanced button.6.

Click the Add button.7.

Use the object picker to find the user or group you want to delegate control to and click OK.8.

Click the Properties tab.9.

Under Allow, check the boxes beside Write msDS-NC-Replica-Locations, Write msDS-
SDReferenceDomain, Write msDS-Replication-Notify-First-DSA-Delay, and Write msDS-Replication-
Notify-Subsequent-DSA-Delay.

10.

Click OK.11.

17.9.2.2 Using a command-line interface

> dsacls <AppPartitionCrossRefDN> /G <UserOrGroup>:RPWP;msDS-NC-Replica-Locations

> dsacls <AppPartitionCrossRefDN> /G <UserOrGroup>:RPWP;msDS-SDReferenceDomain

> dsacls <AppPartitionCrossRefDN> /G <UserOrGroup>:RPWP;msDS-Replication-Notify-[RETURN]
First-DSA-Delay

> dsacls <AppPartitionCrossRefDN> /G <UserOrGroup>:RPWP;msDS-Replication-Notify-[RETURN]

Subsequent-DSA-Delay

17.9.2.3 Using VBScript

' This script delegates control over the four key attributes
' of an app partition to the specified user or group.
' ------ SCRIPT CONFIGURATION ------
' Fully qualified DNS name of app partition

strAppPart = "<AppPartitionFQDN>" ' e.g. apps.rallencorp.com
' User or group to delegate control to

strUser = "<UserOrGroup>" ' e.g. joe@rallencorp.com or RALLENCORP\joe
' ------ END CONFIGURATION ---------

'############################
' Constants
'############################

' ADS_ACETYPE_ENUM
Const ADS_ACETYPE_ACCESS_ALLOWED = &h0
Const ADS_ACETYPE_ACCESS_ALLOWED_OBJECT = &h5

' ADS_FLAGTYPE_ENUM
Const ADS_FLAG_OBJECT_TYPE_PRESENT = &h1

' ADS_RIGHTS_ENUM
Const ADS_RIGHT_DS_WRITE_PROP = &h20
Const ADS_RIGHT_DS_READ_PROP = &h10

' schemaIDGUID values
Const REPLICA_LOCATIONS = "{97de9615-b537-46bc-ac0f-10720f3909f3}"
Const SDREFERENCEDOMAIN = "{4c51e316-f628-43a5-b06b-ffb695fcb4f3}"
Const NOTIFY_FIRST_DSA_DELAY = "{85abd4f4-0a89-4e49-bdec-6f35bb2562ba}"
Const NOTIFY_SUBSEQUENT_DSA_DELAY = "{d63db385-dd92-4b52-b1d8-0d3ecc0e86b6}"

'############################
' Find App Partition
'############################

set objRootDSE = GetObject("LDAP://RootDSE")
strBase = "<LDAP://cn=Partitions," & _
 objRootDSE.Get("ConfigurationNamingContext") & ">;"
strFilter = "(&(objectcategory=crossRef)(dnsRoot=" & _
 strAppPart & "));"
strAttrs = "cn,distinguishedName;"
strScope = "onelevel"
set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"
Set objRS = objConn.Execute(strBase & strFilter & strAttrs & strScope)
if objRS.RecordCount <> 1 then
 WScript.Echo "Did not find a match for " & strAppPart

else
 objRS.MoveLast
 set objAppPart = GetObject("LDAP://" & _
 objRS.Fields("distinguishedName").Value)
end if

'############################
' Create ACL
'############################

set objSD = objAppPart.Get("ntSecurityDescriptor")
set objDACL = objSD.DiscretionaryAcl

' Read/Write Property: msDS-NC-Replica-Locations
set objACE1 = CreateObject("AccessControlEntry")
objACE1.Trustee = strUser
objACE1.AccessMask = ADS_RIGHT_DS_WRITE_PROP Or ADS_RIGHT_DS_READ_PROP
objACE1.AceFlags = 0
objACE1.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE1.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE1.ObjectType = REPLICA_LOCATIONS '

' Read/Write Property: msDS-SDReferenceDomain
set objACE2 = CreateObject("AccessControlEntry")
objACE2.Trustee = strUser
objACE2.AccessMask = ADS_RIGHT_DS_WRITE_PROP Or ADS_RIGHT_DS_READ_PROP
objACE2.AceFlags = 0
objACE2.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE2.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE2.ObjectType = SDREFERENCEDOMAIN

' Read/Write Property: msDS-Replication-Notify-First-DSA-Delay
set objACE3 = CreateObject("AccessControlEntry")
objACE3.Trustee = strUser
objACE3.AccessMask = ADS_RIGHT_DS_WRITE_PROP Or ADS_RIGHT_DS_READ_PROP
objACE3.AceFlags = 0
objACE3.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE3.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE3.ObjectType = NOTIFY_FIRST_DSA_DELAY

' Read/Write Property: msDS-Replication-Notify-Subsequent-DSA-Delay
set objACE4 = CreateObject("AccessControlEntry")
objACE4.Trustee = strUser
objACE4.AccessMask = ADS_RIGHT_DS_WRITE_PROP Or ADS_RIGHT_DS_READ_PROP
objACE4.AceFlags = 0
objACE4.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT
objACE4.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT
objACE4.ObjectType = NOTIFY_SUBSEQUENT_DSA_DELAY

objDACL.AddAce objACE1
objDACL.AddAce objACE2
objDACL.AddAce objACE3

objDACL.AddAce objACE4

'############################
' Set ACL
'############################
objSD.DiscretionaryAcl = objDACL
objAppPart.Put "ntSecurityDescriptor", objSD
objAppPart.SetInfo
WScript.Echo "Delegated control of " & strAppPart & " to " & strUser

17.9.3 Discussion

If you want to delegate control of management of application partitions, you must grant control over four
key attributes. Here is a description of each attribute and what can be accomplished by having control
over it:

msDS-NC-Replica-Locations

By having write access to this attribute, a user can add replica servers for the application partition.
See Recipe 17.3 for more information.

msDS-SDReferenceDomain

By having write access to this attribute, a user can define the default security descriptor domain for
the application partition. See Recipe 17.8 for more information.

msDS-Replication-Notify-First-DSA-Delay

See Recipe 17.7 for more information.
msDS-Replication-Notify-Subsequent-DSA-Delay

See Recipe 17.7 for more information.

If you want to delegate control over managing objects within the application partition, you need to follow
the same procedures you would when delegating control over objects in a domain naming context. See
Recipe 14.5 for more information on delegating control.

17.9.4 See Also

Recipe 14.5 for delegating control, Recipe 17.3 for more on adding and removing replica servers, Recipe
17.7 for more on the replication delay attributes, and Recipe 17.8 for more on the default security
descriptor domain

[Team LiB]

[Team LiB]

Chapter 18. Interoperability and Integration

Introduction

Recipe 18.1. Accessing AD from a Non-Windows Platform

Recipe 18.2. Programming with .NET

Recipe 18.3. Programming with DSML

Recipe 18.4. Programming with Perl

Recipe 18.5. Programming with Java

Recipe 18.6. Programming with Python

Recipe 18.7. Integrating with MIT Kerberos

Recipe 18.8. Integrating with Samba

Recipe 18.9. Integrating with Apache

Recipe 18.10. Replacing NIS

Recipe 18.11. Using BIND for DNS

Recipe 18.12. Authorizing a Microsoft DHCP Server

Recipe 18.13. Using VMWare for Testing AD
[Team LiB]

[Team LiB]

Introduction

Active Directory supports several important industry standards, which allow other services and
platforms to interoperate and integrate with it. The Lightweight Directory Access Protocol (LDAP) is
the standards-based protocol used by all major directory service vendors for directory access and
management. LDAP is platform neutral, which means you can access and manage data in Active
Directory from a variety of platforms. Active Directory uses the Domain Name System (DNS) for its
name resolution services so you can use tools, such as nslookup, to locate domain controllers by

making DNS queries. Kerberos is the most widely used network authentication protocol and is
supported by Active Directory, so even non-Windows-based Kerberos-enabled clients can
authenticate. These are just a few of the standards Active Directory supports. Throughout this
chapter I will cover how you can access, manage, and integrate Active Directory in ways that are not
typically documented.

[Team LiB]

[Team LiB]

Recipe 18.1 Accessing AD from a Non-Windows Platform

18.1.1 Problem

You want to access or manage AD from a non-Windows platform.

18.1.2 Solution

18.1.2.1 Using a graphical user interface

One of the best platform-neutral graphical user interfaces for managing an LDAP directory, such as
Active Directory, is the LDAP Browser/Editor. It was written in Java and can run on virtually any
machine that has Java 1.2.2 or greater installed. It can be downloaded from the following site:
http://www.iit.edu/~gawojar/ldap/.

18.1.2.2 Using a command-line interface

The original LDAP server produced at the University of Michigan included a set of command-line
utilities that can query and update an LDAP directory. Over time these tools have become very
popular on the UNIX platforms, and they can even be used to query and update Active Directory. The
OpenLDAP project took over maintenance of the University of Michigan's LDAP server and also the
command-line tools. To download the latest version of the tools, go to the following site:
http://www.openldap.org/.

18.1.2.3 Using a programming language

Any programming language that supports LDAP can be used to programmatically access and manage
Active Directory. See the other recipes in this chapter for using Perl, Python, Java, and PHP.

18.1.3 Discussion

Due to the fact that LDAP is an open standard, it has been adopted on many platforms and
programming languages. While you can perform 90% of the things you would need to do from a non-
Windows platform, some tasks do still require a Windows GUI, CLI, or API. For example, there is no
easy way to manage ACLs in Active Directory from a non-Windows platform. You can, however, do
virtually anything you need to do as far as adding, modifying, and removing objects in Active
Directory with the basic LDAP-enabled tools.

http://www.iit.edu/~gawojar/ldap/
http://www.openldap.org/

18.1.4 See Also

Recipe 18.4, Recipe 18.5, and Recipe 18.6 for more on how to programmatically query and update
Active Directory using Perl, Java, and Python

[Team LiB]

[Team LiB]

Recipe 18.2 Programming with .NET

18.2.1 Problem

You want to programmatically access Active Directory using the .NET Framework.

18.2.2 Solution

The System.DirectoryServices namespace can be used to interface with Active Directory using the

.NET Framework. The following code is a simple VB.NET program that prints the attributes of the
RootDSE:

Imports System.DirectoryServices

Module Module1

 Sub Main()

 Dim objRootDSE As New DirectoryEntry("LDAP://RootDSE")

 Dim strAttrName As String
 Dim objValue As Object

 For Each strAttrName In objRootDSE.Properties.PropertyNames
 For Each objValue In objRootDSE.Properties(strAttrName)
 Console.WriteLine(strAttrName & " : " & objValue.ToString)
 Next objValue
 Next strAttrName

 End Sub

End Module

18.2.3 Discussion

The System.DirectoryServices namespace is a generic directory service interface that is intended

to replace ADSI. It provides a rich set of properties and methods for accessing, querying, and
manipulating objects in Active Directory. Currently, there is no native support for scripting languages,
such as VBScript and Perl, but you can use Microsoft's version of JavaScript (i.e., JScript) with .NET
to utilize System.DirectoryServices.

The System.DirectoryServices DirectorySearcher class is a simple interface for making LDAP
queries. The DirectoryEntry class is used for instantiating existing objects or creating new ones. In

the Solution section, I used the DirectoryEntry class to access the RootDSE. DirectorySearcher
and DirectoryEntry are the two main classes to become familiar with if you want to do Active

Directory programming with .NET. For more information and examples on using
System.DirectoryServices, see Chapter 28 of Active Directory, Second Edition (O'Reilly).

System.DirectoryServices does not currently provide interfaces for everything that could be done
with ADSI. Instead, you can use the NativeObject property on an instantiated object to return an

ADSI object, which you can then use to access any ADSI properties or methods for the object.

18.2.4 See Also

Chapter 28 in Active Directory, Second Edition (O'Reilly) and System.DirectoryServices reference
information can be found at http://msdn.microsoft.com/library/en-
us/cpref/html/frlrfSystemDirectoryServices.asp

[Team LiB]

http://msdn.microsoft.com/library/en-

[Team LiB]

Recipe 18.3 Programming with DSML

18.3.1 Problem

You want to programmatically access Active Directory using the Directory Services Markup Language
(DSML). DSML is the answer for all programmers who have been longing for an XML-based interface
to query and access a directory.

18.3.2 Solution

To use DSML with Active Directory, you have to install the Windows DSML client (DSFW) on a
Windows 2000 or Windows Server 2003 computer that is running IIS. The DSML client can be
downloaded from the following site:
http://www.microsoft.com/windows2000/server/evaluation/news/bulletins/dsml.asp. If you are
installing the client on a Windows 2000 machine, you will also need to make sure MSXML 3.0 SP2 is
installed.

After the client is installed, you can perform DSML queries against that server, which will translate
the calls into LDAP queries to Active Directory. No additional software needs to be installed on domain
controllers to support DSML.

The following code shows a DSML request for the RootDSE:

<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/">
 <se:Body xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <batchRequest>
 <searchRequest dn="" scope="baseObject">
 <filter>
 <present name="objectclass"/>
 </filter>
 </searchRequest>
 </batchRequest>
 </se:Body>
</se:Envelope>

18.3.3 Discussion

DSML is an XML alternative to using LDAP to access and manage a directory server. The Oasis
standards body has driven the development of DSML (http://www.oasis-open.org/committees/dsml/)
and now most directory vendors support it as of Version 2 (DSMLv2).

DSML encodes LDAP-like functions in XML messages and transmits them to a SOAP client that can sit
directly on the directory server or a separate server. Currently, Active Directory domain controllers

http://www.microsoft.com/windows2000/server/evaluation/news/bulletins/dsml.asp
http://www.oasis-open.org/committees/dsml/

do not support DSML directly and, thus, a separate client must be installed. For more information
including the DSML specification, see the Oasis web site.

18.3.4 See Also

DSMLfW home page:
http://www.microsoft.com/windows2000/server/evaluation/news/bulletins/dsml.asp

[Team LiB]

http://www.microsoft.com/windows2000/server/evaluation/news/bulletins/dsml.asp

[Team LiB]

Recipe 18.4 Programming with Perl

18.4.1 Problem

You want to programmatically access Active Directory using Perl.

18.4.2 Solution

There are two options for accessing Active Directory with Perl. You can use the Net::LDAP modules
that are cross platform and use the LDAP protocol, or you can use the Win32::OLE module that gives
you access to ADSI and must be run on a Windows machine. Both modules can be downloaded from
the Comprehensive Perl Archive Network (CPAN) web site, http://www.cpan.org/.

The following example shows how to use the Net::LDAP modules to query the RootDSE:

#!/usr/SD/perl/bin/perl

use strict;
use Net::LDAP;

my $ldap_server = $ARGV[0] || 'dc1';
my $ldapobj = Net::LDAP->new($ldap_server) or die " Could not connect: $@";
my $rootdse = $ldapobj->search(
 base => '',
 filter => '(objectclass=*)',
 scope => 'base',
);
die $rootdse->error if $rootdse->code;
foreach $entry($rootdse->entries) {
 foreach $attr(sort $entry->attributes) {
 foreach ($entry->get($attr)) {
 print "$attr: $_\n";
 }
 }
}

This next example uses the Win32::OLE module and ADSI to display the attributes of the RootDSE:

use strict;
use Win32::OLE 'in';

my $rootdse = Win32::OLE->GetObject("LDAP://RootDSE");
$rootdse->GetInfo;
for my $i (0 .. $rootdse->PropertyCount - 1) {

http://www.cpan.org/

 my $prop = $rootdse->Item($i);
 print $prop->Name,"\n";
 foreach my $val (in $prop->Values) {
 print " ",$val->CaseIgnoreString,"\n";
 }
}

It is worth noting that with Net::LDAP, you generally need to bind to the target domain controller
before performing a search or any other operation. In the Net::LDAP example above, I didn't need to
do that because I queried the RootDSE, which allows anonymous (i.e., unauthenticated) connections.
A bind can be done using the following code:

$ldapobj->bind('administrator@rallencorp.com', password => 'galt');

In the second code sample where I used ADSI with Win32::OLE, the credentials of the user running
the script are used by default, so you only need to do an explicit bind if you need to authenticate as a
different user.

18.4.3 Discussion

The Net::LDAP modules are a robust set of modules for querying and modifying an LDAP directory.
Net::LDAP also supports DSML, the abstract schema, and LDIF. Net::LDAP is a native Perl
implementation, which means that it does not rely on an external LDAP SDK. Since it is a pure Perl
implementation, you can write Net::LDAP-based scripts on a variety of platforms to interface with
Active Directory or other LDAP-based directories. Graham Barr initially developed the Net::LDAP
modules and more information can be found about the modules on the following web site:
http://perl-ldap.sourceforge.net/.

The Win32::OLE modules provide an interface into Microsoft's Component Object Model (COM). Most
of the ADSI classes and methods are available from the COM automation interface, known as
IDispatch. This allows you to combine the flexibility of Perl with the robustness of ADSI.

Documentation for the Win32::OLE module can be found at
http://aspn.activestate.com/ASPN/Perl/Products/ActivePerl/site/lib/Win32/OLE.html.

18.4.4 See Also

http://www.cpan.org/ to download Perl modules

[Team LiB]

http://perl-ldap.sourceforge.net/
http://aspn.activestate.com/ASPN/Perl/Products/ActivePerl/site/lib/Win32/OLE.html
http://www.cpan.org/

[Team LiB]

Recipe 18.5 Programming with Java

18.5.1 Problem

You want to programmatically access Active Directory using Java.

18.5.2 Solution

The Java Naming and Directory Interface (JNDI) is a standard extension to Java that can be used to
access a variety of naming and directory services including DNS and LDAP. JNDI is part of the Java
Enterprise API set and is documented on the following site: http://java.sun.com/products/jndi/. JNDI
provides an object-oriented interface to programming with LDAP, and is not based on the LDAP C
API, which many other LDAP API's are based on.

The following code uses JNDI to print out the RootDSE for the host DC1:

/**
 * Print the RootDSE for DC1
 * usage: java RootDSE
 */

import javax.naming.*;
import javax.naming.directory.*;

class RootDSE {
 public static void main(String[] args) {

 try {
 // Create initial context.
 DirContext ctx = new InitialDirContext();

 // Read attributes from root DSE.
 Attributes attrs = ctx.getAttributes(
 "ldap://DC1", new String[]{"*"});

 // Get a list of the attributes.
 NamingEnumeration enums = attrs.getIDs();

 // Print out each attribute and its values.
 while (enums != null && enums.hasMore()) {
 String nextattr = (String)enums.next();
 System.out.println(attrs.get(nextattr));
 }

http://java.sun.com/products/jndi/

 // Close the context.
 ctx.close();

 } catch (NamingException e) {
 e.printStackTrace();
 }
 }
}

18.5.3 Discussion

Any serious Java programmer should be familiar with JNDI. It is a generic interface that can be used
with a variety of services, not least of which includes Active Directory. A good tutorial on JNDI is
available on Sun's web site: http://java.sun.com/products/jndi/tutorial/.

18.5.4 See Also

Sun's JNDI home page : http://java.sun.com/products/jndi/

[Team LiB]

http://java.sun.com/products/jndi/tutorial/
http://java.sun.com/products/jndi/

[Team LiB]

Recipe 18.6 Programming with Python

18.6.1 Problem

You want to programmatically access Active Directory using Python.

18.6.2 Solution

As with Perl, you have two options for programming Active Directory with Python: the native LDAP-
based approach, and a COM interface, which allows you to use ADSI. The LDAP module can be
downloaded from http://python-ldap.sourceforge.net/. The COM interface is part of the standard
ActivePython install available from ActiveState (http://www.activestate.com/ActivePython/).

The following Python code sample prints out the RootDSE of DC1 using the LDAP interface:

import ldap

try:
 l = ldap.open("dc1")
except ldap.LDAPError, e:
 print e

baseDN = ""
searchScope = ldap.SCOPE_BASE
retrieveAttributes = None
searchFilter = "objectclass=*"

try:
 ldap_result_id = l.search(baseDN, searchScope, searchFilter,
 retrieveAttributes)
 result_type, result_data = l.result(ldap_result_id, 0)
 if result_type == ldap.RES_SEARCH_ENTRY:
 print result_data

except ldap.LDAPError, e:
 print e

This next code sample uses the win32com.client module to access the RootDSE with ADSI:

import win32com.client

objRootDSE = win32com.client.GetObject('LDAP://RootDSE')
objRootDSE.GetInfo()

http://python-ldap.sourceforge.net/
http://www.activestate.com/ActivePython/

for i in range(0, objRootDSE.PropertyCount - 1):
 prop = objRootDSE.Item(i)
 print prop.Name
 for val in prop.Values:
 print " ",val.CaseIgnoreString

18.6.3 Discussion

More information is available on Python by going to the Python home page: http://www.python.org/.

[Team LiB]

http://www.python.org/

[Team LiB]

Recipe 18.7 Integrating with MIT Kerberos

18.7.1 Problem

You want to integrate your existing MIT Kerberos infrastructure with Active Directory.

18.7.2 Solution

Integrating MIT Kerberos with Active Directory typically means setting up a trust between an Active
Directory domain and your MIT Kerberos realm. Creating a trust between a domain and realm is the first
step toward Kerberos interoperability. It will allow users to access resources in either the AD domain or
Kerberos realm. Here are the steps to create the trust:

Create a trust to the Kerberos realm on a domain controller:1.

> netdom trust AD.RALLENCORP.COM /Domain:MIT.RALLENCORP.COM /Add /Realm / [RETURN]
PasswordT:"Password"

Make the trust transitive (if necessary):2.

> netdom trust AD.RALLENCORP.COM /Domain:MIT.RALLENCORP.COM /Transitive:yes

Add a KDC for the Kerberos realm on the domain controller(s):3.

> ksetup /addkdc MIT.RALLENCORP.COM kdc01.mit.rallencorp.com

Add the AD domain principal to the Kerberos realm (on the Unix host):4.

kadmin: addprinc -e des-cbc-crc:normal krbtgt/ad.rallencorp.com

18.7.3 Discussion

What I've shown here is just the tip of the iceberg. You may need to configure service principals, create
account mappings, create host principals, and tweak the krb5.conf configuration file on your MIT KDCs to
accomplish full integration in your environment. Providing details on how to do all of that is beyond the
scope of this book, but a great resource on Kerberos is O'Reilly's Kerberos: The Definitive Guide , which
covers all the ins and outs of the Kerberos protocol and interoperability with Active Directory. Also, there
are some good resources on the Web, which I've listed here:

MIT Kerberos home page (http://web.mit.edu/kerberos/www/)

Microsoft's Step-by-Step Guide to MIT Kerberos Interoperability
(http://www.microsoft.com/windows2000/techinfo/planning/security/kerbsteps.asp)

Windows 2000-MIT Kerberos Interop Trip-ups
(http://calnetad.berkeley.edu/documentation/test_environment/kerb_interop_trip-ups.html)

18.7.4 See Also

MS KB 217098 (Basic Overview of Kerberos User Authentication Protocol in Windows 2000), MS KB 230476
(Description of Common Kerberos-Related Errors in Windows 2000), MS KB 248758 (Information About the
Windows 2000 Kerberos Implementation), MS KB 324143 (HOW TO: Use the Kerberos Setup Tool
(Ksetup.exe)), and MS KB 810755 (White Paper: Windows 2000 Kerberos Interoperability and
Authentication)

[Team LiB]

[Team LiB]

Recipe 18.8 Integrating with Samba

18.8.1 Problem

You want your Samba clients to authenticate against Active Directory and access Active Directory
resources.

18.8.2 Solution

Samba 2.2 currently does not provide Active Directory support. The next release, Samba 3.0, which
is in Beta at the time of this writing, will provide client-side support of Active Directory. OpenLDAP
and MIT Kerberos must also be installed on the client to provide full LDAP and Kerberos functionality.

18.8.3 Discussion

Samba has a rich history of providing Unix integration and interoperability solutions for the Windows
network operating system (NOS) under Windows NT. Samba is typically deployed so that Windows-
based clients can use Unix-based file and print services seamlessly. A Samba server can also act as a
PDC in a Windows NT 4.0 environment. Do not expect this level of server emulation for Active
Directory domain controllers any time soon.

18.8.4 See Also

For more information on the Samba project, see http://www.samba.org/.

[Team LiB]

http://www.samba.org/

[Team LiB]

Recipe 18.9 Integrating with Apache

18.9.1 Problem

If your organization has Active Directory and Apache deployed, one way to reduce logins is to
integrate the two by having HTTP authentication on Apache use Active Directory.

18.9.2 Solution

There are several Apache modules that support authentication to an LDAP store, and with the release
of Apache 2.0, it is supported natively with the mod_auth_ldap module. The documentation for
mod_auth_ldap can be found at the following site: http://httpd.apache.org/docs-
2.0/mod/mod_auth_ldap.html.

The mod_auth_ldap module works in the following way:

Binds using preconfigured bind DN and bind password.1.

Searches the directory with the preconfigured search filter and username of the user that is
authenticating.

2.

If a match was found, performs a bind attempt with the matching user's DN and password.3.

If you are still running Apache 1.x, the auth_ldap module is widely used and works in much the same
way as mod_auth_ldap. For more information, visit the following site:
http://www.rudedog.org/auth_ldap/.

18.9.3 Discussion

The mod_auth_ldap module isn't ideal from an Active Directory perspective. Typically, the second
step (search for the user's DN) is completely unnecessary. If you have been configuring a user
principal name (UPN) for all of your users, the search could be eliminated by attempting to
authenticate the user with its UPN instead of the DN. Active Directory supports binding with either.
That means mod_auth_ldap could instead just take the user name entered in the user
name/password prompt and prepend it to a preconfigured UPN suffix (e.g., @rallencorp.com).
Hopefully, the developers of mod_auth_ldap will take this into consideration for a future
enhancement.

Another issue to be aware of when using this module is that you will need to hardcode a domain
controller name to query and bind against in the mod_auth_ldap configuration. Unless you are using
some type of load balancing software or hardware, you will be placing a dependency on that domain
controller.

http://httpd.apache.org/docs-
http://www.rudedog.org/auth_ldap/

Both mod_auth_ldap and auth_ldap support SSL and TLS, and I highly recommend enabling that if
you plan on using either of these modules. If you don't enable SSL/TLS support, passwords sent from
the Apache server to a domain controller will be sent in clear text.

18.9.4 See Also

For more information on Apache, see http://www.apache.org/.

[Team LiB]

http://www.apache.org/

[Team LiB]

Recipe 18.10 Replacing NIS

18.10.1 Problem

You want to replace all or part of your NIS infrastructure with Active Directory. NIS serves many of
the same functions as Active Directory and you can reduce costs by integrating both infrastructures.

18.10.2 Solution

The Microsoft Services for Unix (SFU) suite provides numerous tools that can aid in integrating your
Unix and Windows systems. SFU has a NIS server that can be used as a replacement for existing NIS
servers and uses Active Directory as its data store. SFU comes with a set of schema extensions that
the NIS server uses to structure the user, group, and host information that NIS clients require. SFU
also includes a NFS server and client software if you are trying to interoperate with NFS. All of the
SFU software runs on Windows operating systems. More information on SFU can be found on the
following site: http://www.microsoft.com/windows/sfu/default.asp.

If you'd rather not use SFU, another option is the NIS/LDAP Gateway from PADL Software
(http://www.padl.com/). The PADL NIS/LDAP Gateway utilizes the SFU schema extensions to provide
NIS services with an Active Directory backend. NIS clients can use the gateway to resolve user,
group, and host information and works with SunONE Directory Server as well as Active Directory. The
NIS/LDAP Gateway is supported on a host of Unix-based platforms including Solaris, FreeBSD, and
Linux.

18.10.3 See Also

LDAP System Administration (O'Reilly), MS KB 324083 (HOW TO: Install Server for NIS on Windows
for Unix-to-Windows Migration), MS KB 324541 (HOW TO: Configure Server for NIS for a Unix-to-
Windows Migration), and MS KB 324543 (HOW TO: Migrate Existing NIS Maps to Server for NIS in a
Unix-to-Windows Migration)

[Team LiB]

http://www.microsoft.com/windows/sfu/default.asp
http://www.padl.com/

[Team LiB]

Recipe 18.11 Using BIND for DNS

18.11.1 Problem

You've decided that you do not want to use Microsoft DNS for Active Directory and instead prefer to
use BIND.

18.11.2 Solution

The two main requirements for supporting Active Directory DNS are SRV records and Dynamic DNS
support. The first version of BIND to support SRV records was 8.2.2 patch 7. Hopefully you are
running a much more recent version since that was released in 2000. You technically don't have to
use DDNS with Active Directory DNS records, but if you don't, you end up doing a lot of work to
manually maintain the Active Directory-related resource records.

Here is an example BIND 8 configuration to support the ad.rallencorp.com domain:

Options {
directory "/etc/namedb";
};
Zone "ad.rallencorp.com" IN {
type master;
file "db.ad.rallencorp.com";
allow-update { dc1.; dc2.; dc3.; };
check-names ignore;
};

The directory directive specifies where the zone files are stored. The type should be master, and
the file directive is the name of the file to store the contents of the zone in. The allow-update

directive indicates which servers (either by name or IP address) can dynamically update the zone.
Finally, the check-names ignore directive tells BIND not to be restrictive about the names used in

resource records. Without this setting, BIND would fail to respond to queries for records containing
underscores used by Active Directory.

The BIND 9 configuration for the same zone would look exactly the same, except the check-names
ignore line is not necessary. By default, BIND 9 allows underscores in resource records.

After your BIND servers are properly configured, be sure the resolver on your domain controllers
points to at least one of the BIND name servers. This can be done by going into the Network
Connections for each domain controller and right-clicking the active connection. Click on Properties,
highlight Internet Protocol (TCP/IP), and select Properties. You can configure the resolvers under the
General tab. This setting can also be configured through DHCP or Group Policy.

18.11.3 Discussion

See Recipe 13.13 for forcing a domain controller to reregister its records and Recipe 13.12 for
verifying a domain controller can register its records.

BIND documentation and source can be downloaded from the following ISC site:
http://www.isc.org/products/BIND/.

18.11.4 See Also

MS KB 255913 (Integrating Windows 2000 DNS into an Existing BIND or Windows NT 4.0-Based DNS
Namespace), and MS KB 323419 (HOW TO: Migrate an Existing DNS Infrastructure from a BIND-
Based Server to a Windows Server 2003-Based DNS)

[Team LiB]

http://www.isc.org/products/BIND/

[Team LiB]

Recipe 18.12 Authorizing a Microsoft DHCP Server

18.12.1 Problem

You want to authorize a Microsoft DHCP server in Active Directory so that clients can use it.

18.12.2 Solution

18.12.2.1 Using a graphical user interface

Open the DHCP snap-in.1.

In the left pane, right-click on DHCP and select New Server.2.

Type in the name of the new DHCP server and click OK.3.

Click on the server entry in the left pane.4.

Right-click on the server and select Authorize.5.

18.12.3 Discussion

Windows 2000- and Windows Server 2003-based DHCP servers must be authorized before they can
give out leases to clients. This feature helps reduce the occurrence of rogue DHCP servers that an
end-user sets up, perhaps even unintentionally. A rogue DHCP server can provide incorrect lease
information or deny lease requests altogether, ultimately causing a denial of service for clients on
your network.

If the DHCP Server service is enabled on a domain controller, it is automatically authorized. A DHCP
server that is a member server of an Active Directory domain performs a query in Active Directory to
determine whether it is authorized. If it is, it will respond to DHCP requests, if not, it will not respond
to requests. A standalone DHCP server that is not a member of an Active Directory domain sends out
a DHCPINFORM message when it first initializes. If an authorized DHCP server responds to the
message, the standalone server will not respond to any further DHCP requests. If it does not receive
a response from any DHCP servers, it will respond to client requests and give out leases.

Authorized DHCP servers are represented in Active Directory as objects of the dhcpClass class,

which can be found in the cn=NetServices,cn=Services,cn=Configuratation,<ForestRootDN>

container. The RDN for each authorized DHCP server is the IP address of the server.

Windows 2000 DHCP servers cannot be authorized with the Windows Server
2003 version of the DHCP snap-in unless the DHCP server has Service Pack 2
installed.

18.12.4 See Also

MS KB 279908 (Unexpected Results in the DHCP Service Snap-In After Using NETSH to Authorize
DHCP), MS KB 300429 (HOW TO: Install and Configure a DHCP Server in an Active Directory Domain
in Windows 2000), and MS KB 303351 (How to Use Netsh.exe to Authorize, Unauthorize, and List
DHCP Servers in Active Directory), MS KB 306925 (Cannot Authorize New DHCP Server in Active
Directory), and MS KB 323360 (HOW TO: Install and Configure a DHCP Server in an Active Directory
Domain in Windows Server 2003)

[Team LiB]

[Team LiB]

Recipe 18.13 Using VMWare for Testing AD

18.13.1 Problem

One of the issues that developers and administrators commonly face when trying to do Active
Directory testing is the limitation of being able to host only a single domain on a server. You can use
VMWare to work around this issue and host multiple domains on a single server.

18.13.2 Solution

VMWare, Inc. (http://www.vmware.com/) develops a very popular virtual machine technology that
allows you to run multiple operating systems, even of different varieties, on a single machine. Their
VMWare Workstation product can be used on laptops and desktop servers and is great for running
simulations. Their VMWare GSX Server is oriented for enterprise solutions so that you could even run
production- grade services from VMWare virtual machines.

As far as Active Directory goes, you can create several virtual machines on a single host using either
the Workstation or GSX Server products to simulate a forest. I've personally used VMWare to help
facilitate schema extension testing. Since there is no supported schema deletion process, once you've
extended the schema, you cannot extend the schema again with the same extensions (if you wanted
to test the extension process again). VMWare stores each virtual machine as a collection of files.
Once you've created a baseline domain controller virtual machine, you can copy the files that make
up that virtual machine and create as many domain controllers as needed.

If you support multiple domains in a forest, it can be expensive in terms of both hardware and people
to support multiple test environments that are similar to your production environment. For each
domain in a forest, you need a separate server. If you have a four-domain forest and want to create
three test environments, you'd need 12 servers total. With VMWare, you could use three servers and
host all four domains on each server. I suppose if you had a big enough server, you could even host
all four test environments on the same server!

The new snapshot capability with VMWare 4.0 can make testing even easier. With it you can take a
snapshot of a virtual machine and preserve its state at a specific moment in time. You can then
revert to the saved snapshot at any time, irrespective of whether the machine is powered on or off.
This is ideal for testing schema changes.

18.13.3 Discussion

One of the caveats with using VMWare is that Microsoft will not support any issues that arise while
running Active Directory or any other product for that matter under VMWare. In my experience,
Microsoft support will make a best effort to try and troubleshoot problems with VMWare, but they will
not guarantee a resolution.

http://www.vmware.com/

Speaking of Microsoft, they have plans of their own for developing virtual server technology. In
February 2003, Microsoft purchased rights to the Virtual PC software developed by Connectix, a
privately held company. By mid-2003 Microsoft released a customer preview of the newly packaged
Microsoft Virtual Server for Windows Server 2003. This will be a direct competitor to VMWare and
provides many of the same capabilities. For more information on the Virtual Server, see
http://www.microsoft.com/windowsserver2003/evaluation/news/bulletins/vmnews.mspx.

18.13.4 See Also

MS KB 273508 (VMWare Support Policy and Support Boundaries)

[Team LiB]

http://www.microsoft.com/windowsserver2003/evaluation/news/bulletins/vmnews.mspx

[Team LiB]

Appendix A. Tool List
There are more Active Directory tools than you can shake a domain controller at! There are over 50
tools used in this book alone. In this appendix, I've listed each tool I used in the book along with the
tasks that can be accomplished with it, what kind of tool it is, where it can be found, and the recipes
in which it was used.

[Team LiB]

[Team LiB]

ACL Diagnostics Command (acldiag.exe)

Tasks that can be accomplished:

View the ACL (permission and audit entries) for an object, check an object's ACL against the
default in the schema, get effective permissions for a user or group, and check and fix
delegations performed through the Delegation of Control wizard

Type of tool:

Command line
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 14.9, Recipe 14.12

[Team LiB]

[Team LiB]

Active Directory Domains and Trusts Snap-in
(domain.msc)

Tasks that can be accomplished:

Raise domain mode (Windows 2000) or functional level (Windows Server 2003) of a domain or
forest, manage trusts, and view and modify the description and managedBy attributes for a

domain
Type of tool:

MMC snap-in
Where to find it:

adminpak.msi for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 2.6, Recipe 2.7, Recipe 2.9, Recipe 2.13, Recipe 2.14, Recipe 2.15, Recipe 2.16, Recipe
2.17, Recipe 2.18, Recipe 2.19, Recipe 2.20, Recipe 2.21, Recipe 2.22, Recipe 3.25

[Team LiB]

[Team LiB]

Active Directory Installation Wizard (dcpromo.exe)

Tasks that can be accomplished:

Promote and demote a domain controller
Type of tool:

Wizard
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 2.1, Recipe 2.2, Recipe 2.3, Recipe 2.4, Recipe 3.1, Recipe 3.2, Recipe 3.3, Recipe 3.4

[Team LiB]

[Team LiB]

Active Directory Load Balancer Command (adlb.exe)

Tasks that can be accomplished:

Balance the load among connection objects within a site
Type of tool:

Command line
Where to find it:

Windows Server 2003 Resource Kit
Recipes in which it is used:

Recipe 11.24

[Team LiB]

[Team LiB]

Active Directory Schema Snap-in (schmmgmt.msc)

Tasks that can be accomplished:

Browse, create, and modify classes and attributes
Type of tool:

MMC snap-in
Where to find it:

adminpak.msi for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 3.25, Recipe 5.10, Recipe 10.1, Recipe 10.2, Recipe 10.7, Recipe 10.8, Recipe 10.9,
Recipe 10.10, Recipe 10.11, Recipe 10.12, Recipe 10.13, Recipe 10.14, Recipe 10.19, Recipe
10.20, Recipe 10.21, Recipe 14.11

[Team LiB]

[Team LiB]

Active Directory Sites and Services (dssite.msc)

Tasks that can be accomplished:

Browse and manipulate site topology objects (sites, subnets, links, servers, etc.), manage
connection objects, schedule replication, force replication from a partner, trigger the KCC,
enable the global catalog, specify an alternate LDAP query policy for a domain controller, and
enable universal group caching

Type of tool:

MMC snap-in
Where to find it:

adminpak.msi for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 3.11, Recipe 3.17, Recipe 3.20, Recipe 7.9, Recipe 11.1, Recipe 11.2, Recipe 11.3,
Recipe 11.4, Recipe 11.5, Recipe 11.7, Recipe 11.9, Recipe 11.10, Recipe 11.11, Recipe 11.12,
Recipe 11.14, Recipe 11.16, Recipe 11.22, Recipe 11.23, Recipe 11.25, Recipe 11.27, Recipe
12.4, Recipe 12.6

[Team LiB]

[Team LiB]

Active Directory Users and Computers Snap-in
(dsa.msc)

Tasks that can be accomplished:

Browse, create, and manipulate users, groups, computers, OUs, and other domain specific
objects. Create and save queries to find objects, raise the functional level of a domain, view
and transfer the FSMOs for a domain, delegate control, and much more

Type of tool:

MMC snap-in
Where to find it:

adminpak.msi for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 3.8, Recipe 3.25, Recipe 5.1, Recipe 5.2, Recipe 5.3, Recipe 5.4, Recipe 5.5, Recipe 5.6,
Recipe 5.7, Recipe 5.9, Recipe 6.1, Recipe 6.3, Recipe 6.4, Recipe 6.5, Recipe 6.6, Recipe 6.7,
Recipe 6.8, Recipe 6.12, Recipe 6.13, Recipe 6.14, Recipe 6.15, Recipe 6.16, Recipe 6.17,
Recipe 6.20, Recipe 6.21, Recipe 6.22, Recipe 6.24, Recipe 6.25, Recipe 6.27, Recipe 6.28,
Recipe 6.29, Recipe 7.1, Recipe 7.2, Recipe 7.3, Recipe 7.4, Recipe 7.6, Recipe 7.7, Recipe 7.8,
Recipe 8.1, Recipe 8.2, Recipe 8.4, Recipe 8.7

[Team LiB]

[Team LiB]

AD Prep Utility (adprep.exe)

Tasks that can be accomplished:

Prepare a Windows 2000 domain and forest for update to Windows Server 2003
Type of tool:

Command
Where to find it:

\i386 on Windows Server 2003 CD
Recipes in which it is used:

Recipe 2.10, Recipe 2.11

[Team LiB]

[Team LiB]

ADSI Edit (adsiedit.msc)

Tasks that can be accomplished:

Generic Active Directory editor that can be used to search, browse, create, and manipulate
objects throughout a forest

Type of tool:

MMC snap-in
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 4.10, Recipe 4.11, Recipe 4.13, Recipe 4.16, Recipe 4.17, Recipe 4.18, Recipe 4.20,
Recipe 4.21, Recipe 4.23, Recipe 6.30, Recipe 6.31, Recipe 8.9, Recipe 11.26, Recipe 11.29,
Recipe 13.17, Recipe 14.3, Recipe 14.15, Recipe 15.15, Recipe 15.16, Recipe 16.13, Recipe
16.18, Recipe 17.1, Recipe 17.4, Recipe 17.7, Recipe 17.8, Recipe 17.9

[Team LiB]

[Team LiB]

Audit Policy Command (auditpol.exe)

Tasks that can be accomplished:

Enable or disable auditing on a computer
Type of tool:

Command line
Where to find it:

Resource Kit for Windows 2000
Recipes in which it is used:

Recipe 15.12

[Team LiB]

[Team LiB]

Backup Wizard (ntbackup.exe)

Tasks that can be accomplished:

Back up and restore a domain controller, including Active Directory
Type of tool:

Wizard
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 3.2, Recipe 16.1, Recipe 16.4, Recipe 16.5, Recipe 16.6

[Team LiB]

[Team LiB]

CSVDE Command (csvde.exe)

Tasks that can be accomplished:

Import and export objects using a comma-separated value (CSV) formatted file
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 4.26, Recipe 4.27

[Team LiB]

[Team LiB]

Default Domain Controller Security Policy Snap-in
(dcpol.msc)

Tasks that can be accomplished:

Modify the settings of the Domain Controller Security GPO
Type of tool:

MMC snap-in
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 14.1, Recipe 14.14, Recipe 15.12

[Team LiB]

[Team LiB]

Default Domain Security Policy Snap-in (dompol.msc)

Tasks that can be accomplished:

Modify the settings of the Domain Security GPO
Type of tool:

MMC snap-in
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 6.11, Recipe 14.19

[Team LiB]

[Team LiB]

Default Group Policy Restore Command
(dcgpofix.exe)

Tasks that can be accomplished:

Restore the Domain Controllers Security Policy and Domain Security Policy to the default
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 9.22

[Team LiB]

[Team LiB]

DNS Snap-in (dnsmgmt.msc)

Tasks that can be accomplished:

Browse and manipulate DNS server configuration; and browse, create, and modify zones and
resource records. Enable debug logging, perform DNS test queries, restart the DNS service,
modify permissions, and modify application partition configuration

Type of tool:

MMC snap-in
Where to find it:

adminpak.msi for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 13.1, Recipe 13.2, Recipe 13.3, Recipe 13.4, Recipe 13.5, Recipe 13.6, Recipe 13.7,
Recipe 13.9, Recipe 13.10, Recipe 13.11, Recipe 15.6

[Team LiB]

[Team LiB]

DNSCmd Command (dnscmd.exe)

Tasks that can be accomplished:

Manipulate DNS server configuration; query, create, and modify zones; and resource records.
View server statistics, enable debug logging, and modify application partition configuration

Type of tool:

Command line
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 13.1, Recipe 13.2, Recipe 13.3, Recipe 13.4, Recipe 13.5, Recipe 13.7, Recipe 13.9,
Recipe 13.10, Recipe 13.11, Recipe 15.6, Recipe 15.7

[Team LiB]

[Team LiB]

Domain Controller Diagnosis Command (dcdiag.exe)

Tasks that can be accomplished:

Run a variety of diagnostics tests against a domain controller
Type of tool:

Command line
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 3.5, Recipe 3.12, Recipe 11.28, Recipe 12.8, Recipe 13.12, Recipe 17.6

[Team LiB]

[Team LiB]

DS ACL Command (dsacls.exe)

Tasks that can be accomplished:

View and set ACLs on objects
Type of tool:

Command line
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 7.7, Recipe 8.2, Recipe 13.6, Recipe 14.7, Recipe 14.10, Recipe 14.13, Recipe 17.9

[Team LiB]

[Team LiB]

DS Add Command (dsadd.exe)

Tasks that can be accomplished:

Add computer, contact, group, OU, user, and quota objects
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 5.1, Recipe 6.1, Recipe 6.2, Recipe 7.1, Recipe 8.1, Recipe 8.2, Recipe 15.13

[Team LiB]

[Team LiB]

DS Get Command (dsget.exe)

Tasks that can be accomplished:

Retrieve the properties of computer, contact, subnet, group, OU, server, site, user, quota, and
partition objects

Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 7.2, Recipe 7.3, Recipe 6.14, Recipe 6.16, Recipe 11.2, Recipe 11.5, Recipe 15.17

[Team LiB]

[Team LiB]

DS Modify Command (dsmodify.exe)

Tasks that can be accomplished:

Modify properties of computer, contact, group, OU, server, user, quota, and partition objects
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 3.17, Recipe 6.3, Recipe 6.6, Recipe 6.12, Recipe 6.16, Recipe 6.17, Recipe 6.20, Recipe
6.21, Recipe 6.22, Recipe 6.24, Recipe 6.25, Recipe 6.29, Recipe 7.4, Recipe 7.6, Recipe 8.7

[Team LiB]

[Team LiB]

DS Move Command (dsmove.exe)

Tasks that can be accomplished:

Move and rename objects
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 3.11, Recipe 4.17, Recipe 4.19, Recipe 5.6, Recipe 5.7, Recipe 6.5, Recipe 6.6, Recipe
8.4, Recipe 11.16

[Team LiB]

[Team LiB]

DS Query Command (dsquery.exe)

Tasks that can be accomplished:

Perform queries for computer, contact, group, OU, server, site, subnet, user, quota, and
partition objects. Perform generic queries to retrieve any type of object

Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 2.7, Recipe 2.9, Recipe 2.13, Recipe 2.14, Recipe 3.19, Recipe 3.20, Recipe 3.25, Recipe
4.2, Recipe 4.5, Recipe 4.6, Recipe 4.7, Recipe 4.9, Recipe 4.22, Recipe 5.2, Recipe 5.3, Recipe
5.6, Recipe 5.8, Recipe 6.4, Recipe 6.13, Recipe 6.23, Recipe 6.28, Recipe 7.9, Recipe 8.8,
Recipe 10.8, Recipe 10.10, Recipe 10.15, Recipe 10.16, Recipe 10.17, Recipe 10.18, Recipe
11.2, Recipe 11.3, Recipe 11.5, Recipe 11.8, Recipe 11.15, Recipe 12.11, Recipe 15.14, Recipe
17.2, Recipe 17.5

[Team LiB]

[Team LiB]

DS Remove Command (dsrm.exe)

Tasks that can be accomplished:

Remove leaf nodes and subtrees
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 4.20, Recipe 4.21, Recipe 5.4, Recipe 5.5

[Team LiB]

[Team LiB]

Enumprop Command (enumprop.exe)

Tasks that can be accomplished:

View the attributes of an object
Type of tool:

Command line
Where to find it:

Windows 2000 Resource Kit
Recipes in which it is used:

Recipe 2.9, Recipe 2.13, Recipe 2.14, Recipe 4.1, Recipe 4.2, Recipe 6.11, Recipe 6.30

[Team LiB]

[Team LiB]

Group Policy Management Console (gpmc.msc)

Tasks that can be accomplished:

One-stop shopping for all your GPO management needs. You can perform just about any GPO
management task from this tool. A variety of scripts are also provided with the GPMC install
that can be used to manage GPOs from a command line. The GPMC scripts used in this book
include: BackupGpo.wsf, CopyGpo.wsf, CreateGpo.wsf, DeleteGpo.wsf, DumpGpoInfo.wsf,
GetReportsForGpo.wsf, ImportGpo.wsf, ListAllGpos.wsf, QueryBackupLocation.wsf,
RestoreGpo.wsf, and SetGpoPermissions.wsf

Type of tool:

MMC snap-in
Where to find it:

http://www.microsoft.com/downloads/details.aspx?FamilyId=F39E9D60-7E41-4947-82F5-
3330F37ADFEB&displaylang=en

Recipes in which it is used:

Recipe 5.11, Recipe 9.1, Recipe 9.2, Recipe 9.3, Recipe 9.4, Recipe 9.5, Recipe 9.6, Recipe 9.7,
Recipe 9.8, Recipe 9.9, Recipe 9.10, Recipe 9.11, Recipe 9.12, Recipe 9.13, Recipe 9.14, Recipe
9.15, Recipe 9.16, Recipe 9.17, Recipe 9.18, Recipe 9.19

[Team LiB]

http://www.microsoft.com/downloads/details.aspx?FamilyId=F39E9D60-7E41-4947-82F5-

[Team LiB]

Group Policy Object Editor (gpedit.msc)

Tasks that can be accomplished:

Modify the settings of a GPO
Type of tool:

MMC snap-in
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 9.6

[Team LiB]

[Team LiB]

Group Policy Verification Tool (gpotool.exe)

Tasks that can be accomplished:

Verify consistency of a GPO across domain controllers, view properties of GPOs, such as display
name, when created and changed, version number, GUID, and flags

Type of tool:

Command line
Where to find it:

Resource Kit for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 9.1

[Team LiB]

[Team LiB]

Group Policy Results Command (gpresult.exe)

Tasks that can be accomplished:

Display the resultant set of policy (RSoP) for a user and computer
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 9.20

[Team LiB]

[Team LiB]

Group Policy Refresh Command (gpupdate.exe)

Tasks that can be accomplished:

Apply the changed settings of a GPO, apply all settings of a GPO, and reboot or logoff user
after GPO processing completes

Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 9.21

[Team LiB]

[Team LiB]

IP Configuration (ipconfig.exe)

Tasks that can be accomplished:

Request, release, renew an IP address, flush the local DNS cache, display the local DNS cache,
and register resource records in DNS

Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 13.11

[Team LiB]

[Team LiB]

Kerberos List (klist.exe)

Tasks that can be accomplished:

View and purge Kerberos tickets
Type of tool:

Command line
Where to find it:

Resource Kit for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 14.9

[Team LiB]

[Team LiB]

Kerberos Tray (kerbtray.exe)

Tasks that can be accomplished:

View and purge Kerberos tickets
Type of tool:

Graphical User Interface
Where to find it:

Resource Kit for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 14.17

[Team LiB]

[Team LiB]

LDIFDE Command (ldifde.exe)

Tasks that can be accomplished:

Import and export objects using the LDAP Interchange Format (LDIF)
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 2.11, Recipe 2.13, Recipe 2.14, Recipe 4.10, Recipe 4.11, Recipe 4.13, Recipe 4.14,
Recipe 4.15, Recipe 4.24, Recipe 4.25, Recipe 5.10, Recipe 6.3, Recipe 7.9, Recipe 8.9, Recipe
8.10, Recipe 10.7, Recipe 10.9, Recipe 10.11, Recipe 10.12, Recipe 10.13, Recipe 10.14, Recipe
10.20, Recipe 10.22, Recipe 11.1, Recipe 11.4, Recipe 11.7, Recipe 11.9, Recipe 11.10, Recipe
11.12, Recipe 11.14, Recipe 11.29, Recipe 12.6, Recipe 13.17, Recipe 15.15, Recipe 15.16,
Recipe 16.10, Recipe 16.13, Recipe 16.18, Recipe 17.7

[Team LiB]

[Team LiB]

LDP (ldp.exe)

Tasks that can be accomplished:

Generic LDAP object editor and browser
Type of tool:

Graphical User Interface
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 3.10, Recipe 3.19, Recipe 4.1, Recipe 4.2, Recipe 4.2, Recipe 4.3, Recipe 4.5, Recipe
4.6, Recipe 4.7, Recipe 4.8, Recipe 4.9, Recipe 4.15, Recipe 4.22, Recipe 5.8, Recipe 8.10,
Recipe 8.11, Recipe 8.12, Recipe 10.15, Recipe 10.16, Recipe 10.17, Recipe 10.18, Recipe 11.8,
Recipe 11.15, Recipe 12.11, Recipe 12.12, Recipe 15.9, Recipe 16.10, Recipe 16.16, Recipe
16.17, Recipe 17.2, Recipe 17.3

[Team LiB]

[Team LiB]

Move Tree Command (movetree.exe)

Tasks that can be accomplished:

Move objects within and between a domain
Type of tool:

Command line
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 4.18

[Team LiB]

[Team LiB]

Netdom Command (netdom.exe)

Tasks that can be accomplished:

Add a computer to the domain, rename a computer, join a computer to the domain, move a
computer to a new domain, query computers, trusts, and FSMOs in a domain, remove a
computer from a domain, reset a computer, and manage and verify trusts

Type of tool:

Command line
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 2.15, Recipe 2.16, Recipe 2.17, Recipe 2.18, Recipe 2.20, Recipe 2.20, Recipe 2.21,
Recipe 2.22, Recipe 2.23, Recipe 3.7, Recipe 3.8, Recipe 3.25, Recipe 8.3, Recipe 8.5, Recipe
8.7, Recipe 18.7

[Team LiB]

[Team LiB]

Network Connectivity Tester (netdiag.exe)

Tasks that can be accomplished:

Run a variety of network-based diagnostics tests
Type of tool:

Command line
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 14.18

[Team LiB]

[Team LiB]

NLTest Command (nltest.exe)

Tasks that can be accomplished:

Query, verify, and reset the secure channel of a computer; obtain a list of domain controllers
for a domain; find a domain controller; find a client's site; display the site coverage for a
domain controller; register and deregister a domain controller's resource records; display the
parent domain; query trusts; view the number of logon attempts processed by a domain
controller; and perform a shutdown

Type of tool:

Command line
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 3.9, Recipe 3.10, Recipe 3.12, Recipe 3.14, Recipe 8.6, Recipe 11.18, Recipe 11.20,
Recipe 13.13, Recipe 13.16, Recipe 15.3

[Team LiB]

[Team LiB]

Nslookup Command (nslookup.exe)

Tasks that can be accomplished:

Perform DNS lookups for any resource record type
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 2.2, Recipe 2.4, Recipe 3.21, Recipe 3.28, Recipe 13.8

[Team LiB]

[Team LiB]

NTDS Util Command (ntdsutil.exe)

Tasks that can be accomplished:

Perform a variety of DIT maintenance functions, such as checking DIT file integrity and
semantics, perform a soft recovery, perform restores, view FSMO role holders, manages LDAP
query policies, find and remove duplicate SIDs, clean-up metadata from a failed domain
controller, and set the DS Restore mode administrator password

Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 2.5, Recipe 2.6, Recipe 2.24, Recipe 3.6, Recipe 3.26, Recipe 3.27, Recipe 4.16, Recipe
4.23, Recipe 14.4, Recipe 16.3, Recipe 16.5, Recipe 16.6, Recipe 16.7, Recipe 16.8, Recipe
16.9, Recipe 16.12, Recipe 16.15, Recipe 17.1, Recipe 17.3, Recipe 17.4, Recipe 17.8

[Team LiB]

[Team LiB]

OID Generator Command (oidgen.exe)

Tasks that can be accomplished:

Generate an object identifier to be used when creating new classes or attributes in the schema
Type of tool:

Command line
Where to find it:

Windows 2000 Resource Kit
Recipes in which it is used:

Recipe 10.3

[Team LiB]

[Team LiB]

Redirect Default Computers Command (redircmp.exe)

Tasks that can be accomplished:

Redirect the default computers container to another location in the directory tree
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 8.12

[Team LiB]

[Team LiB]

Redirect Default Users Command (redirusr.exe)

Tasks that can be accomplished:

Redirect the default users container to another location in the directory tree
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 8.12

[Team LiB]

[Team LiB]

Reg Command (reg.exe)

Tasks that can be accomplished:

Query, add, delete, copy, save, restore, load, unload, compare, export, and import registry
keys and values

Type of tool:

Command line
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 3.23, Recipe 10.1, Recipe 11.16, Recipe 11.18, Recipe 11.20, Recipe 11.29, Recipe 12.4,
Recipe 12.9, Recipe 13.13, Recipe 13.14, Recipe 14.17, Introduction in Chapter 15, Recipe
15.1, Recipe 15.3, Recipe 15.4, Recipe 16.9, Recipe 16.13

[Team LiB]

[Team LiB]

Registry Editor (regedit.exe)

Tasks that can be accomplished:

Browse, query, add, delete, rename, export, import, and copy registry keys and values
Type of tool:

Graphical User Interface
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 3.22, Recipe 3.23, Recipe 11.17, Recipe 11.19, Recipe 11.21, Recipe 11.30, Recipe 12.5,
Recipe 12.10, Recipe 14.18, Recipe 15.1, Recipe 15.2, Recipe 15.4, Recipe 15.5, Recipe 16.11,
Recipe 16.14

[Team LiB]

[Team LiB]

Rename Domain Command (rendom.exe)

Tasks that can be accomplished:

Rename a domain (requires the Windows Server 2003 forest functional level)
Type of tool:

Command line
Where to find it:

http://www.microsoft.com/windowsserver2003/downloads/domainrename.mspx
Recipes in which it is used:

Recipe 2.8

[Team LiB]

http://www.microsoft.com/windowsserver2003/downloads/domainrename.mspx

[Team LiB]

Replication Diagnostics Command (repadmin.exe)

Tasks that can be accomplished:

Display the bridgeheads for a site, find the ISTG for a site, trigger the KCC, force replication to
a partner, replicate a single object, force synchronization of a naming context, view the
replication status of several domain controllers, show the differences between two domain
controllers, view object metadata, obtain the up-to-dateness vector, and a variety of other
replication management functions

Type of tool:

Command line
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 11.13, Recipe 11.22, Recipe 11.23, Recipe 11.25, Recipe 11.27, Recipe 12.1, Recipe
12.2, Recipe 12.3, Recipe 12.4, Recipe 12.8, Recipe 12.12, Recipe 17.7

[Team LiB]

[Team LiB]

Replication Monitor (replmon.exe)

Tasks that can be accomplished:

View the replication status of the naming contexts supported by a domain controller, force
replication to a partner, force synchronization of a naming context, get the current USN, search
a domain for replication errors, generate a detailed status report, and much more

Type of tool:

Graphical User Interface
Where to find it:

Support Tools for Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 11.13, Recipe 12.3

[Team LiB]

[Team LiB]

Resultant Set of Policy Snap-in (rsop.msc)

Tasks that can be accomplished:

View the RSoP for a user and computer
Type of tool:

MMC snap-in
Where to find it:

%SystemRoot%\System32 on Windows Server 2003
Recipes in which it is used:

Recipe 9.20

[Team LiB]

[Team LiB]

SecEdit Command (secedit.exe)

Tasks that can be accomplished:

Refresh group policy settings, and analyze, configure, export and validate security settings
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 9.21

[Team LiB]

[Team LiB]

Time Service (w32tm.exe)

Tasks that can be accomplished:

Configure and monitor the Windows Time Service
Type of tool:

Command line
Where to find it:

%SystemRoot%\System32 on Windows 2000 and Windows Server 2003
Recipes in which it is used:

Recipe 3.13

[Team LiB]

[Team LiB]

Unlock (unlock.exe)

Tasks that can be accomplished:

Find users that are locked out and unlock them
Type of tool:

Command line
Where to find it:

http://www.joeware.net/win32/zips/Unlock.zip
Recipes in which it is used:

Recipe 6.9

[Team LiB]

http://www.joeware.net/win32/zips/Unlock.zip

[Team LiB]

UUID Generator Command (uuidgen.exe)

Tasks that can be accomplished:

Generate a UUID/GUID that can be used when creating new classes and attributes
Type of tool:

Command line
Where to find it:

Windows 2000 Platform SDK
Recipes in which it is used:

Recipe 10.4

[Team LiB]

[Team LiB]

WinNT32 Command (winnt32.exe)

Tasks that can be accomplished:

Upgrade a computer to Windows 2000 or Windows Server 2003; can also perform checks to
determine if an upgrade is possible

Type of tool:

Wizard
Where to find it:

\i386 on Windows 2000 and Windows Server 2003 CD
Recipes in which it is used:

Recipe 2.12

[Team LiB]

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Active Directory Cookbook is a bluefin tuna (Thunnus thynnus), also
known as a horse mackerel. It inhabits both the Atlantic and Pacific Oceans in temperate and
subtropical waters. The body of a bluefin tuna is a metallic, deep blue on top, while the undersides
and belly are silvery white. The first dorsal fin is yellow or blue; the second is red or brown. The rear
fin and finlets are yellow, edged with black. The central caudal keel is black.

The bluefin tuna is one of the largest and fastest species of marine fish. An adult can weigh as much
as 1,500 pounds (680 kilograms), and can swim up to speeds of 55 miles per hour (88.5 kilometers
per hour). A bluefin tuna can swim across the Atlantic Ocean in 40 days. Recent pop-up satellite
tracking has revealed that the bluefin tuna can dive to depths greater than 3,000 feet in a matter of
minutes and still maintain a body temperature of 77 degrees Fahrenheit (25 degrees Celsius), even in
near-freezing water.

Commercial fishing has reduced the stock of bluefin tuna to the extent that a single fish, once caught,
can be worth up to $40,000 (U.S.). However, the situation is reversible, and the numbers of tuna
could increase if the guidelines of the International Commission for the Conservation of Atlantic Tuna
(ICCAT), an intergovernmental fishing organization that oversees tuna, are followed.

Matt Hutchinson was the production editor for Active Directory Cookbook. Genevieve d'Entremont,
Marlowe Shaeffer, and Darren Kelly provided quality control. Octal Publishing, Inc. provided
production services.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9
and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon
was written by Reg Aubry.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

abstract classes, searching

access

 auditing

 from non-Windows

Access Control Entry (ACE)

Access Control List [See ACL]

accounts

 ACLs, modifying

 policies, viewing

 user

 configuring expiration

 updating

ACE (Access Control Entry)

ACL (Access Control List)

 modifying 2nd

 schemas

 comparing

 resetting

 viewing

ACL Diagnostics Command (acldiag.exe)

ACL Editor, customizing

Active Directory Domains and Trusts Snap-in (domain.msc)

Active Directory Installation Wizard (dcpromo.exe)

Active Directory Load Balancer Command (adlb.exe)

Active Directory Schema Snap-in (schmmgmt.msc)

Active Directory Sites and Services (dssite.msc)

Active Directory Users and Computers (ADUC)

Active Directory Users and Computers Snap-in (dsa.msc)

AD Prep Utility (adprep.exe)

adding

 application partitions, replicas

 attributes to schemas 2nd 3rd

 classes to schemas

 members to groups

 resource records

administration [See also management]

 Active Directory

administrator accounts, modifying ACLs

ADPrep tool

 domain controllers, promoting

ADSI Edit (adsiedit.msc)

ADUC (Active Directory Users and Computers)

advertisements

ambiguous name resolution (ANR)

anonymous access, LDAP

ANR (ambiguous name resolution)

Apache

application partitions

 creating

 delegating

 overview of

 references, setting

 replicas

 modifying

 searching

 replication, resetting

 searching

 servers

 searching

 verifying

applications, installing GPOs

applying Delegation of Control Wizard

assignment of scripts

attribute-scoped queries, searching

attributes

 application partitions

 bit-flag, modifying

 computer objects

 crossRef objects

 deleted objects

 DNS object

 domain controller objects

 domainDNS objects

 objects

 viewing

 OU

 quota object container

 RootDSE

 schemas

 adding 2nd

 adding/deleting

 deactivating

 extending

 indexing

 modifying

 modifying ANR

 redefining

 searching

 viewing

 site objects

 trustedDomain objects

 user objects

 configuring profiles

 modifying

Audit Policy Command (auditpol.exe)

auditing

authoritative restores

authorization, DHCP servers

automation of domain controllers

auxiliary classes

 dynamically linking

 searching

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

backing up

 GPOs

Backup Domain Controllers (BDCs)

Backup Wizard (ntbackup.exe)

BDCs (Backup Domain Controllers)

BIND

binds

 computer objects

 LDAP

 serverless

bit-flag attributes, modifying

bitwise filters, searching

blocking GPOs

bridgehead servers

 configuring

 searching

bridging site objects

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

caching

 DNS, clearing

 group membership

 schemas

channels

 resetting

 testing

child objects

 deleting

 OU

classes

 auxiliary

 schemas

 adding 2nd

 deactivating

 extending

 modifying security

 redefining

 searching

 viewing

clearing DNS caches

clients, site objects

code

 error checking

 executing scripts

 serverless binds

comma-separated variable [See CSV]

command-line interface

 ANR

 attribute-scoped queries

 auxiliary classes

 bitwise filter

 computer objects

 binding

 joining

 modifying containers

 moving

 renaming

 resetting

 searching 2nd

 testing

 computer objects, creating

 containers, deleting

 domain controllers

 configuring

 enabling/disabling global catalog

 forcing replication

 moving

 searching

 searching FSMO role holders

 searching unreplicated changes

 synchronizing

 transferring FSMO role holders

 viewing synchronization status

 domains

 creating

 deleting orphans

 finding duplicate SIDs

 functional levels

 modifying modes

 searching forests

 searching NetBIOS names

 forests

 creating

 functional levels

 global catalogs

 disabling

 searching 2nd

 GPOs

 backing up

 copying

 creating

 deleting

 filtering security

 importing

 listing links

 modifying

 refreshing 2nd

 restoring

 searching

 viewing

 viewing RSoP

 groups

 adding/deleting members

 caching

 creating

 creating computer objects

 managing

 searching

 viewing

 viewing nested members

 LDAP query policy

 objects

 creating

 creating dynamic

 deleting

 exporting 2nd

 importing 2nd

 modifying

 modifying TTL settings

 moving 2nd

 refreshing dynamic objects

 renaming

 searching 2nd

 viewing attributes

 OU

 child objects

 creating 2nd

 delegating

 deleting

 enumerating 2nd

 linking GPOs

 moving

 replication

 enabling consistency

 modifying intervals

 scheduling

 searching conflict objects

 viewing metadata

 RootDSE

 schemas

 adding attributes 2nd

 deactivating

 deleting attributes

 enabling

 indexing attributes

 linking

 modifying

 reloading caches

 searching

 searching classes

 viewing attributes

 viewing classes

 SID filtering

 site objects

 bridging

 completing KCC

 configuring bridgehead servers

 configuring domain controllers

 creating

 creating connection objects

 creating subnets

 deleting

 disabling 2nd

 disabling KCC

 forcing hosts

 linking

 listing

 listing connection objects

 listing servers

 listing subnets

 load-balancing connection objects

 modifying

 modifying KCC

 moving

 searching

 searching bridgehead servers

 triggering KCC

 troubleshooting

 viewing domain controllers

 timestamps

 trusts

 creating between Windows NT and AD domains

 creating transitive trusts

 deleting

 Kerberos realm

 resetting

 shortcut trusts

 verifying

 viewing

 user objects

 configuring account expiration

 configuring passwords

 configuring profiles

 creating

 creating large number of

 enabling

 inetOrgPerson

 locking passwords

 modifying

 modifying passwords

 moving

 preventing password expiration

 renaming

 searching

 searching disabled users

 searching login

 transferring groups

 updating accounts

 viewing 2nd

 viewing groups

command-line tools

completing KCC

compression, disabling

computer objects

 binding

 creating

 joining

 modifying

 modifying containers

 moving

 overview of

 renaming

 resetting

 searching 2nd

 testing

concurrent binds

configuration

 application partitions

 references

 connection objects

 domain controllers

 multiple sites

 domains

 forests

 GPOs

 groups

 objects 2nd

 OU 2nd

 quota object

 shortcut trusts

 site objects

 bridgehead servers

 subnets

 transitive trusts

 trusts

 Kerbero realm

 Windows NT

 user objects

 account expiration

 copying

 determining logon

 enabling

 formatting UPN suffixes

 inetOrgPerson

 large number of

 locking passwords

 modifying

 modifying groups

 modifying names

 modifying passwords

 moving

 passwords

 preventing password expiration

 profiles

 renaming

 searching

 searching disabled users

 searching logon

 transferring groups

 troubleshooting

 unlocking

 updating accounts

 viewing 2nd

 viewing groups

 WMI filters

 applying

conflict objects, searching

connection objects

 creating

 load-balancing 2nd

 viewing

consistency, enabling

constructed attributes, searching

containers [See also quota container object]

 computer objects, modifying

 objects

 deleting

 moving

 renaming

 user objects, moving

controls, LDAP

converting zones

copying

 GPOs

 user objects

credentials

 executing tools with

 scripts

crossRef objects

CSV (comma-separated variable)

 exporting

 importing

CSVDE Command (csvde.exe)

customization

 ACL Editor

 application partitions

 Delegation of Control Wizard

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

databases, sizing

deactivating

 attributes

 classes

Default Domain Controller Security Policy Snap-in (dcpol.msc)

Default Domain Security Policy Snap-in (dompol.msc)

Default Group Policy Restore Command (dcgpofix.exe)

default TTL settings, modifying

defining variables

defragmentation

 reclaiming whitespace

 repairing manually

delegation

 application partitions

 control of group membership

 OU

 zones

Delegation of Control Wizard

 applying

 customizing

deleted objects

 overview of

 restoring

 searching

deleting

 application partitions

 replicas

 attributes

 domain controllers

 domains

 orphans

 forests

 GPOs

 members

 objects

 containers

 OU

 resource records

 site objects

 trusts

demoting domain controllers

 automating

 deleting

 troubleshooting

deregistering resource records

DHCP (Dynamic Handshake Challenge Protocol)

diagnostics logging, enabling

Directory Information Tree [See DIT]

Directory Services Markup Language (DSML)

disabled users

disabling [See also enabling]

 compression

 domain controllers

 global catalog 2nd 3rd

 GPOs

 KCC

 site object

 user objects

 searching

Distributed Link Tracking (DLT)

DIT (Directory Information Tree)

 integrity

 moving

 recovery

 whitespace

DLT (Distributed Link Tracking)

DNS (Domain Name Service)

 BIND

 global catalogs, searching

DNS object

 caches, clearing

 overview of

 resource records

 deregistering

 managing

 querying

 registering

 scavenging

 servers, modifying

 suffixes, allowing

 zones

 converting

 creating forward lookup zones

 creating reverse lookup zones

 delegating

 moving

 viewing

DNS Snap-in (dnsmgmt.msc)

DNSCmd Command (dnscmd.exe)

documentation, extensions

Domain Controller Diagnosis Command (dcdiag.exe)

domain controllers

 authoritative restores

 configuring

 demoting

 automating

 deleting

 troubleshooting

 disabling

 DLT

 FSMO role holders

 seizing

 global catalog

 disabling 2nd

 promoting

 searching

 logon attempts

 media, promoting

 memory, optimizing

 modifying

 moving 2nd

 multiple sites, configuring to cover

 nonauthoritative restores

 overview of

 promoting

 automating

 troubleshooting

 renaming

 replication

 disabling compression

 enabling consistency

 enabling logging

 forcing

 modifying intervals

 scheduling

 searching conflict objects

 searching unreplicated changes

 troubleshooting

 viewing metadata

 restarting

 searching

 servers, promoting

 services, searching

 synchronizing

 viewing status

 targeting

 upgrading 2nd

 viewing

Domain Name Service [See DNS]

domainDNS objects

domains 2nd [See also forests]

 ADPrep tool

 promoting domain controllers

 computer objects, joining

 creating

 deleting

 orphans

 forests, searching

 functional levels

 modes, modifying

 NetBIOS, searching names

 objects, moving

 overview of

 PDC Emulator, searching

 renaming

 SID, finding duplicates

 tombstone objects, modifying

 trees

 trusts

 deleting

 resetting

 verifying

 viewing

 Windows NT, creating trusts

DS ACL Command (dsacls.exe)

DS Add Command (dsadd.exe)

DS Get Command (dsget.exe)

DS Modify Command (dsmodify.exe)

DS Move Command (dsmove.exe)

DS Query Command (dsquery.exe)

DS Remove Command (dsrm.exe)

DS Restore Mode

 resetting

DSML (Directory Services Markup Language)

duplicates

 finding SIDs

 users

dynamic objects

 creating

 modifying

 refreshing

dynamically linking auxiliary classes

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

effective permissions, viewing

enabling

 anonymous LDAP access

 consistency

 diagnostics logging

 DNS logging

 extended dcpromo logging

 global catalog

 GPO client logging

 Kerberos logging

 LDAP logging

 List Object Access mode

 logging

 NetLogon logging

 schemas

 SSL/TLS

 user objects

encryption, SSL/TLS

enumeration, OU

Enumprop Command (enumprop.exe)

error checking [See also troubleshooting]

ESE (Extensible Storage Engine)

executing with alternate credentials

exporting objects 2nd

extended dcpromo logging, enabling

extending attributes

Extensible Storage Engine [See ESE]

extensions, documenting

external time sources, configuring

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

fast binds

files, DIT

 moving

 recovering

 whitespace

filtering

 bitwise filters

 security

 SID

 WMI filters

 applying

 creating

finding [See also searching]

 domain controllers

 FSMO role holders

 global catalog

 number of logon attempts

 services

forcing

 Kerberos traffic

 replication

forcing hosts

forests 2nd

 creating

 deleting

 domains

 deleting

 deleting orphans

 searching

 functional levels

 global catalogs, searching 2nd

 overview of

 shortcut trusts

 transitive trusts

 trusts

 UPN suffixes, creating

formatting suffixes

forward lookup zones, creating

FSMO role holders

 searching

 seizing

 transferring

functional levels

 Windows 2003 Server domains

 Windows 2003 Server forests

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

garbage collection, modifying

global catalogs

 attributes, adding/deleting

 searching

GPOs (group policy objects)

 backing up

 blocking

 copying

 creating

 deleting

 disabling

 importing

 installing

 linking 2nd

 listing links

 managing

 modifying

 refreshing

 restoring 2nd

 RSoP

 simulating

 viewing

 scripts, assigning

 searching

 security, filtering

 viewing

 WMI filters

 applying

 creating

graphical user interface [See GUI]

Group Policy Management Console (gpmc.msc)

Group Policy Object Editor (gpedit.msc)

group policy objects [See GPOs]

Group Policy Refresh Command (gpupdate.exe)

Group Policy Results Command (gpresult.exe)

Group Policy Verification Tool (gpotool.exe)

groups

 computer objects, creating

 creating

 Delegation of Control Wizard

 customizing

 effective permissions

 members

 adding/deleting

 caching

 managing

 modifying 2nd

 moving

 overview of

 searching

 transferring

 viewing 2nd

 nesting

GUI (graphical user interface)

 attributes

 customizing 2nd

 queries

 auxiliary classes, linking

 binds

 bitwise filters

 computer objects

 binding

 creating

 joining

 modifying

 modifying containers

 moving

 renaming

 resetting

 searching

 containers

 domain controllers

 demoting

 enabling/disabling global catalog

 forcing replication

 moving

 searching

 searching FSMO role holders

 searching unreplicated changes

 transferring FSMO role holders

 domains

 creating

 functional levels

 modifying modes

 searching forests

 searching NetBIOS names

 forests

 creating

 functional levels

 global catalogs

 disabling

 searching 2nd

 GPOs

 applying WMI filters

 assigning scripts

 backing up

 blocking

 copying

 creating

 creating WMI filters

 deleting

 disabling

 filtering security

 importing

 installing applications

 linking

 listing links

 modifying

 restoring

 searching

 simulating RSoP

 viewing

 viewing RSoP

 groups

 adding/deleting members

 caching

 creating

 creating computer objects

 managing

 modifying

 searching

 viewing

 viewing nested members

 LDAP controls

 modifying query policies

 objects

 creating

 creating dynamic objects

 deleting

 exporting

 modifying 2nd

 moving

 refreshing

 renaming

 searching

 searching large number of

 viewing attributes

 OU

 child objects

 creating 2nd

 delegating

 deleting

 enumerating

 linking GPOs

 moving

 replication

 modifying intervals

 scheduling

 searching conflict objects

 viewing metadata

 RootDSE

 schemas

 adding attributes 2nd

 adding classes

 ANR

 deactivating

 deleting attributes

 enabling

 indexing attributes

 linking

 modifying

 modifying security

 reloading caches

 searching

 searching classes

 viewing attributes

 viewing classes

 site objects

 bridging

 completing KCC

 configuring bridgehead servers

 configuring domain controllers

 creating

 creating connection objects

 creating subnets

 deleting

 disabling 2nd

 disabling KCC

 forcing hosts

 linking

 listing

 listing connection objects

 listing servers

 listing subnets

 modifying

 modifying KCC

 searching bridgehead servers

 transferring

 triggering KCC

 troubleshooting

 timestamps

 trusts

 creating between Windows NT and AD domains

 creating transitive trusts

 deleting

 Kerberos realm

 resetting

 shortcut trusts

 verifying

 viewing

 user objects

 configuring account expiration

 configuring passwords

 configuring profiles

 copying

 creating

 determining logon

 enabling

 formatting UPN suffixes

 inetOrgPerson

 locking passwords

 modifying

 modifying groups

 modifying names

 modifying passwords

 moving

 preventing password expiration

 renaming

 searching disabled users

 searching logon

 transferring groups

 troubleshooting

 unlocking

 updating accounts

 viewing

 viewing groups

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

hosts, forcing

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

importing

 GPOs

 objects

inactive computer objects, searching

indexing attributes

inetOrgPerson object, creating

installing GPOs

integration

 access from non-Windows

 Apache

 MIT Kerberos

 Samba

integrity, DIT files

Inter-Site Topology Generator (ISTG)

interoperability, access from non-Windows

intervals, garbage collection, modifying

IP Configuration (ipconfig.exe)

ISTG (Inter-Site Topology Generator)

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

Java, programming

joining computer objects

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

Kerberos

 logging, enabling

 passwords, configuring

 realms

 tickets, viewing

 traffic

 forcing

 modifying

Kerberos List (klist.exe)

Kerberos Tray (kerbtray.exe)

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

large numbers of objects, searching

LDAP (Lightweight Directory Access Protocol)

 anonymous access

 binds

 controls

 passwords

 queries

 query policy, modifying

 SSL/TLS

LDAP Data Interchange Format [See LDIF]

LDIF (LDAP Data Interchange Format)

 exporting

 importing

LDIFDE Command (ldifde.exe)

ldifde utility

LDP (ldp.exe)

Lightweight Directory Access Protocol [See LDAP]

linking

 attributes

 auxiliary classes

 GPOs

 listing

 OU

 site objects

 bridging

 modifying

List Object Access, enabling

listing

 connection objects

 domains in forests

 links

 servers

 site objects

 subnets

LM hash, preventing password storage

load-balancing connection objects 2nd

locked users

 searching

 troubleshooting

 viewing

locking passwords

logging

 diagnostics

 DNS, enabling

 enabling

 extended dcpromo

 GPO client, enabling

 Kerberos, enabling

 LDAP, enabling

 NetLogon, enabling

 tombstone objects

login

 global catalogs, disabling 2nd

 scripts, assigning

logoff

logon

 attempts, finding number of

 determining

 NetLogon logging, enabling

 passwords

 searching

loose consistency

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

mailing lists

maintenance, backing up [See also troubleshooting]2nd

management

 Active Directory

 application partitions

 GPOs

 groups

 user objects

mandatory attributes, searching

margins

 DIT files

 reclaiming

media, promoting domain controllers

members

 adding/deleting

 caching

 managing

memory, optimizing

metadata, viewing

Microsoft Developers Network (MSDN)

Microsoft Knowledge Base (MS KB)

MIT Kerberos

mixed mode, modifying

modification

 ACLs 2nd

 application partitions

 attributes

 ANR

 schemas

 bit-flag attributes

 classes

 computer objects 2nd

 DNS server

 domain controllers

 domain modes

 garbage collection

 GPOs

 groups

 KCC

 Kerberos traffic

 LDIF

 objects 2nd

 passwords

 query policies

 quota object

 replication intervals

 schemas

 enabling

 site objects

 tombstone objects

 user objects

 groups

 names

monitoring Active Directory

Move Tree Command (movetree.exe)

moving

 computer objects

 DIT files 2nd

 domain controllers

 FSMO role holders

 groups

 objects

 OU

 site objects

 zones

MS KB (Microsoft Knowledge Base)

MSDN (Microsoft Developers Network)

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

names

 ANR

 domains, renaming

 NetBIOS, searching domains

 user objects

 formatting UPN suffixes

 modifying

naming contexts (NCs)

native mode, modifying

NCs (naming contexts)

nested group members, viewing

.NET, programming

NetBIOS, searching names

Netdom Command (netdom.exe)

NetLogon logging, enabling

Network Connectivity Tester (netdiag.exe)

Network Information System (NIS), replacing

Network Operating System (NOS)

newsgroups

NIS (Network Information System), replacing

NLTest Command (nltest.exe)

nonauthoritative restores

NOS (Network Operating System)

Nslookup Command (nslookup.exe)

NTDS Util Command (ntdsutil.exe)

nTDSDSA object

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

objects

 ACLs, viewing

 attributes

 viewing

 creating 2nd

 deleting

 OU

 DLT

 exporting 2nd

 importing

 modifying 2nd

 moving

 nTDSDSA

 OU

 delegating

 enumerating

 moving

 overview of

 refreshing

 renaming

 searching

 large numbers of

 user

 configuring account expiration

 configuring passwords

 configuring profiles

 copying

 creating

 creating large number of

 determining logon

 enabling

 formatting UPN suffixes

 inetOrgPerson

 locking passwords

 modifying

 modifying groups

 modifying names

 modifying passwords

 moving

 preventing password expiration

 renaming

 searching

 searching disabled users

 searching logon

 transferring groups

 troubleshooting

 unlocking

 updating accounts

 viewing 2nd

 viewing groups

offline defrag, repairing manually

OID Generator Command (oidgen.exe)

online defrag, repairing manually

operating systems, NOS

optimizing memory

optional attributes, searching

organizational unit [See OU]

orphans, deleting

OU (organizational unit)

 child objects

 creating 2nd

 delegating

 deleting

 enumerating

 GPOs

 blocking

 linking

 linking GPOs

 moving

 objects

 moving 2nd

 renaming

 overview of

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

partitions [See also application partitions]

 forests

passwords

 DS Restore Mode

 LM hash, preventing storage

 policies, viewing

 user objects

 configuring

 locking

 modifying

 preventing expiration

PDC Emulator

Perfmon

Perl

 computer objects

 programming

 user objects

permissions

 schemas, comparing to ACLs

 viewing

policies, queries

preferences, modifying

profiles

programming

 DSML

 Java

 .NET

 Perl

 Python

 VBScript

 error checking

 executing scripts

 serverless binds

promoting

 domain controllers

 automating

 media

 servers

 troubleshooting

 global catalog

purging Kerberos tickets

Python, programming

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

queries

 attribute-scoped, searching

 LDAP, restricting

 policies, modifying

 resource records

 testing

quota object

 auditing

 containers

 creating

 diagnostics

 DNS logging, enabling

 DNS Server performance, viewing

 extended dcpromo logging, enabling

 GPO client logging

 Kerberos logging, enabling

 LDAP logging, enabling

 modifying

 NetLogon logging, enabling

 overview of

 Perfmon

 queries, testing

 searching

 security

 searching

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

RDN (relative distinguished name)

recovery, DIT files

redefining

 attributes

 classes

Redirect Default Computers Command (redircmp.exe)

Redirect Default Users Command (redirusr.exe)

references, application partitions

refreshing

 GPOs

 objects

Reg Command (reg.exe)

registration

 resource records

 schema

Registry Editor (regedit.exe)

relative distinguished name (RDN)

reloading schema caches

Rename Domain Command (rendom.exe)

renaming

 computer objects

 domain controllers

 domains

 objects

 user objects

replaceable text

replacing NIS

replication

 application partitions

 attributes

 domain controllers

 disabling compression

 enabling consistency

 enabling logging

 forcing

 modifying intervals

 scheduling

 searching conflict objects

 searching unreplicated changes

 synchronizing

 troubleshooting

 viewing metadata

 viewing synchronization status

 site objects, controlling

Replication Diagnostics Command (repadmin.exe)

Replication Monitor (replmon.exe)

resetting

 ACLs

 application partitions

 computer objects

 DS Restore Mode

 trusts

resource records

 deregistering

 managing

 querying

 registering

 scavenging

resources

 books

 magazines

 mailing lists

 newsgroups

 web sites

restarting domain controllers

restoring

 authoritative restores

 deleted objects

 GPOs 2nd

 nonauthoritative restores

restricting LDAP queries

Resultant Set of Policy Snap-in (rsop.msc)

reverse lookup zones, creating

RootDSE, viewing

RSoP

 simulating

 viewing

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

Samba

saving GPOs

scavenging resource records

scheduling replication

schemas

 ACLs

 comparing

 resetting

 attributes

 adding 2nd 3rd

 deactivating

 deleting

 extending

 indexing

 modifying

 modifying ANR

 redefining

 searching

 viewing

 caches, reloading

 classes

 adding

 deactivating

 modifying security

 redefining

 searching

 viewing

 enabling

 extensions, documenting

 overview of

 registering

scope, modifying

scripts

 error checking

 executing

 GPOs

searching

 application partitions

 replicas

 servers

 attribute-scoped queries

 attributes, schemas

 with bitwise filters

 classes

 computer objects 2nd

 conflict objects

 deleted objects

 domain controllers

 unreplicated changes

 domains

 forests

 NetBIOS names

 FSMO role holders

 global catalog 2nd

 GPOs

 groups

 logon attempts

 objects

 large numbers of

 quota object

 security

 services

 site objects

 bridgehead servers

 subnets

 user objects 2nd

Secure Sockets Layer [See SSL]

security

 classes

 computer objects

 resetting

 GPOs

 quota objects

 searching

Security Identifier [See SID]

seizing FSMO role holders

serverless binds

servers

 application partitions

 bridgehead

 configuring

 searching

 DHCP, authorizing

 DNS object, modifying

 domain controllers

 listing

services, searching

shortcut trusts

SID (Security Identifier)

 duplicates

 filtering

simulating RSoP

site objects

 bridgehead servers

 bridging

 completing KCC

 connection objects

 load-balancing 2nd

 viewing

 creating

 deleting

 disabling

 disabling KCC

 domain controllers

 configuring multiple sites

 disabling

 viewing

 forcing hosts

 linking

 listing

 servers

 modifying

 modifying KCC

 moving

 searching

 bridgehead servers

 subnets

 creating

 listing

 searching

 transferring

 triggering KCC

 troubleshooting

sites

 domain controllers

 moving

 searching

 global catalogs, searching

sizing databases

SSL (Secure Sockets Layer)

 enabling

 encrypting

strict consistency

structural classes, searching

subnets

 creating

 listing

 searching

suffixes

 allowing

 UPN

synchronization

 domain controllers

 status, viewing

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

targeting domain controllers

testing

 computer objects

 queries

 VMWare

text, replaceable

Time Service (w32tm.exe)

time-to-live (TTL), modifying

timestamps, viewing

TLS (Transport Layer Security)

 enabling

 encrypting

tombstone objects

 logging

 modifying 2nd

tools

 ADPrep

 promoting domain controllers

 command-line

 ldifde utility

traffic

 forcing

 modifying

transferring

 FSMO role holders

 site objects

 user objects

transitive trusts, creating

transitivity, disabling site links

Transport Layer Security [See TLS]

trees

 creating

 deleting

 deleting orphans

triggering KCC

troubleshooting [See also quota object]

 DIT files

 domain controller promotion/demotion

 error checking

 offline defrag, reclaiming whitespace

 online defrag, repairing manually

 replication

 site objects

 user objects

trustedDomain objects

trusts

 deleting

 Kerberos realm

 overview of

 resetting

 shortcuts

 SID filtering

 transitive

 verifying

 viewing

 Windows NT

TTL (time-to-live), modifying

types of groups

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

Unlock (unlock.exe)

unlocking user objects

unused computer objects, searching

updating

 schemas

 user accounts

upgrading domain controllers 2nd

UPN (User Principal Name)

user objects

 accounts

 configuring expiration

 updating

 computer objects

 copying

 creating

 inetOrgPerson

 large number of

 modifying

 Delegation of Control Wizard

 customizing

 duplicating

 effective permissions

 enabling

 logon

 determing

 searching

 modifying groups

 moving

 names

 formatting UPN suffixes

 modifying

 passwords

 configuring

 locking

 modifying

 preventing expiration

 profiles

 renaming

 searching

 searching disabled users

 transferring groups

 troubleshooting

 unlocking

 viewing 2nd

 viewing groups

User Principal Name (UPN)

UUID Generator Command (uuidgen.exe)

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

variables, defining

VBScript

 attribute-scoped queries

 auxiliary classes

 bitwise filter

 computer objects

 binding

 creating

 joining

 modifying

 modifying containers

 moving

 renaming

 resetting

 searching

 containers

 domain controllers

 configuring

 forcing replication

 moving

 searching

 searching FSMO role holders

 searching unreplicated changes

 synchronizing

 transferring FSMO role holders

 domains

 functional levels

 modifying modes

 searching forests

 searching NetBIOS names

 forests

 global catalogs

 disabling

 searching 2nd

 GPOs

 applying WMI filters

 backing up

 blocking

 copying

 creating

 creating WMI filters

 deleting

 disabling

 filtering security

 importing

 linking

 listing links

 modifying

 restoring

 searching

 viewing

 groups

 adding/deleting members

 caching

 creating

 creating computer objects

 managing

 modifying

 searching

 viewing

 viewing nested members

 LDAP

 controls

 query policy

 objects

 creating

 creating dynamic

 deleting

 exporting

 importing

 modifying

 modifying TTL settings

 moving 2nd

 refreshing dynamic objects

 renaming

 searching 2nd

 viewing attributes

 OU

 child objects

 creating 2nd

 delegating

 deleting

 enumerating

 linking GPOs

 moving

 replication

 enabling consistency

 modifying intervals

 scheduling

 searching conflict objects

 viewing metadata

 RootDSE

 schemas

 adding attributes

 adding classes

 adding/deleting attributes

 ANR

 deactivating

 enabling

 indexing attributes

 linking

 reloading caches

 searching

 searching classes

 viewing attributes

 viewing classes

 scripts

 error checking

 executing

 serverless binds

 site objects

 bridging

 completing KCC

 configuring bridgehead servers

 configuring domain controllers

 creating

 creating subnets

 deleting

 disabling 2nd

 disabling KCC

 forcing hosts

 linking

 listing

 listing connection objects

 listing servers

 listing subnets

 modifying

 modifying KCC

 moving

 searching

 searching bridgehead servers

 transferring

 triggering KCC

 troubleshooting

 viewing domain controllers

 timestamps

 trusts

 deleting

 resetting

 verifying

 viewing

 user objects

 configuring account expiration

 configuring passwords

 configuring profiles

 copying

 creating

 creating large number of

 determining logon

 enabling

 formatting UPN suffixes

 inetOrgPerson

 locking passwords

 modifying

 modifying groups

 modifying names

 modifying passwords

 moving

 preventing password expiration

 renaming

 searching disabled users

 transferring groups

 unlocking

 updating accounts

 viewing 2nd

 viewing groups

verification

 application partitions

 trusts

viewing

 ACLs

 attributes

 objects

 schemas

 classes

 connection objects

 DNS Server performance

 domain controllers

 effective permissions

 GPOs

 groups

 nesting

 Kerberos tickets

 metadata

 objects

 RootDSE

 RSoP

 trusts

 user accounts

 user objects 2nd

 groups

 zones

VMWare

[Team LiB]

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

web sites

whitespace

 DIT files

 reclaiming

Windows 2000

 comparing to Windows Server 2003

 domain controllers

 domains

 forests

 global catalog

Windows 2003 Server

 comparing to Windows 2000

 domain controllers

 promoting

 upgrading 2nd

 domains

 forests

 global catalog

Windows NT

 Backup Domain Controllers 2nd

 trusts

WinNT32 Command (winnt32.exe)

WMI filters

 applying

 creating

[Team LiB]

	Main Page
	Table of content
	Copyright
	Foreword
	Preface
	Who Should Read This Book?
	What's in This Book?
	Conventions Used in This Book
	We'd Like Your Feedback!
	Acknowledgments

	Chapter 1. Getting Started
	Approach to the Book
	Recipe 1.1 Where to Find the Tools
	Recipe 1.2 Getting Familiar with LDIF
	Recipe 1.3 Programming Notes
	Recipe 1.4 Replaceable Text
	Recipe 1.5 Where to Find More Information

	Chapter 2. Forests, Domains, and Trusts
	Introduction
	Recipe 2.1 Creating a Forest
	Recipe 2.2 Removing a Forest
	Recipe 2.3 Creating a Domain
	Recipe 2.4 Removing a Domain
	Recipe 2.5 Removing an Orphaned Domain
	Recipe 2.6 Finding the Domains in a Forest
	Recipe 2.7 Finding the NetBIOS Name of a Domain
	Recipe 2.8 Renaming a Domain
	Recipe 2.9 Changing the Mode of a Domain
	Recipe 2.10 Using ADPrep to Prepare a Domain or Forest for Windows Server 2003
	Recipe 2.11 Determining if ADPrep Has Completed
	Recipe 2.12 Checking Whether a Windows 2000 Domain Controller Can Be Upgraded to Windows Server 2003
	Recipe 2.13 Raising the Functional Level of a Windows Server 2003 Domain
	Recipe 2.14 Raising the Functional Level of a Windows Server 2003 Forest
	Recipe 2.15 Creating a Trust Between a Windows NT Domain and an AD Domain
	Recipe 2.16 Creating a Transitive Trust Between Two AD Forests
	Recipe 2.17 Creating a Shortcut Trust Between Two AD Domains
	Recipe 2.18 Creating a Trust to a Kerberos Realm
	Recipe 2.19 Viewing the Trusts for a Domain
	Recipe 2.20 Verifying a Trust
	Recipe 2.21 Resetting a Trust
	Recipe 2.22 Removing a Trust
	Recipe 2.23 Enabling SID Filtering for a Trust
	Recipe 2.24 Finding Duplicate SIDs in a Domain

	Chapter 3. Domain Controllers, Global Catalogs, and FSMOs
	Introduction
	Recipe 3.1 Promoting a Domain Controller
	Recipe 3.2 Promoting a Domain Controller from Media
	Recipe 3.3 Demoting a Domain Controller
	Recipe 3.4 Automating the Promotion or Demotion of a Domain Controller
	Recipe 3.5 Troubleshooting Domain Controller Promotion or Demotion Problems
	Recipe 3.6 Removing an Unsuccessfully Demoted Domain Controller
	Recipe 3.7 Renaming a Domain Controller
	Recipe 3.8 Finding the Domain Controllers for a Domain
	Recipe 3.9 Finding the Closest Domain Controller
	Recipe 3.10 Finding a Domain Controller's Site
	Recipe 3.11 Moving a Domain Controller to a Different Site
	Recipe 3.12 Finding the Services a Domain Controller Is Advertising
	Recipe 3.13 Configuring a Domain Controller to Use an External Time Source
	Recipe 3.14 Finding the Number of Logon Attempts Made Against a Domain Controller
	Recipe 3.15 Enabling the /3GB Switch to Increase the LSASS Cache
	Recipe 3.16 Cleaning Up Distributed Link Tracking Objects
	Recipe 3.17 Enabling and Disabling the Global Catalog
	Recipe 3.18 Determining if Global Catalog Promotion Is Complete
	Recipe 3.19 Finding the Global Catalog Servers in a Forest
	Recipe 3.20 Finding the Domain Controllers or Global Catalog Servers in a Site
	Recipe 3.21 Finding Domain Controllers and Global Catalogs via DNS
	Recipe 3.22 Changing the Preference for a Domain Controller
	Recipe 3.23 Disabling the Global Catalog Requirement During a Windows 2000 Domain Login
	Recipe 3.24 Disabling the Global Catalog Requirement During a Windows 2003 Domain Login
	Recipe 3.25 Finding the FSMO Role Holders
	Recipe 3.26 Transferring a FSMO Role
	Recipe 3.27 Seizing a FSMO Role
	Recipe 3.28 Finding the PDC Emulator FSMO Role Owner via DNS

	Chapter 4. Searching and Manipulating Objects
	Introduction
	Recipe 4.1 Viewing the RootDSE
	Recipe 4.2 Viewing the Attributes of an Object
	Recipe 4.3 Using LDAP Controls
	Recipe 4.4 Using a Fast or Concurrent Bind
	Recipe 4.5 Searching for Objects in a Domain
	Recipe 4.6 Searching the Global Catalog
	Recipe 4.7 Searching for a Large Number of Objects
	Recipe 4.8 Searching with an Attribute-Scoped Query
	Recipe 4.9 Searching with a Bitwise Filter
	Recipe 4.10 Creating an Object
	Recipe 4.11 Modifying an Object
	Recipe 4.12 Modifying a Bit-Flag Attribute
	Recipe 4.13 Dynamically Linking an Auxiliary Class
	Recipe 4.14 Creating a Dynamic Object
	Recipe 4.15 Refreshing a Dynamic Object
	Recipe 4.16 Modifying the Default TTL Settings for Dynamic Objects
	Recipe 4.17 Moving an Object to a Different OU or Container
	Recipe 4.18 Moving an Object to a Different Domain
	Recipe 4.19 Renaming an Object
	Recipe 4.20 Deleting an Object
	Recipe 4.21 Deleting a Container That Has Child Objects
	Recipe 4.22 Viewing the Created and Last Modified Timestamp of an Object
	Recipe 4.23 Modifying the Default LDAP Query Policy
	Recipe 4.24 Exporting Objects to an LDIF File
	Recipe 4.25 Importing Objects Using an LDIF File
	Recipe 4.26 Exporting Objects to a CSV File
	Recipe 4.27 Importing Objects Using a CSV File

	Chapter 5. Organizational Units
	Introduction
	Recipe 5.1 Creating an OU
	Recipe 5.2 Enumerating the OUs in a Domain
	Recipe 5.3 Enumerating the Objects in an OU
	Recipe 5.4 Deleting the Objects in an OU
	Recipe 5.5 Deleting an OU
	Recipe 5.6 Moving the Objects in an OU to a Different OU
	Recipe 5.7 Moving an OU
	Recipe 5.8 Determining How Many Child Objects an OU Has
	Recipe 5.9 Delegating Control of an OU
	Recipe 5.10 Allowing OUs to Be Created Within Containers
	Recipe 5.11 Linking a GPO to an OU

	Chapter 6. Users
	Introduction
	Recipe 6.1 Creating a User
	Recipe 6.2 Creating a Large Number of Users
	Recipe 6.3 Creating an inetOrgPerson User
	Recipe 6.4 Modifying an Attribute for Several Users at Once
	Recipe 6.5 Moving a User
	Recipe 6.6 Renaming a User
	Recipe 6.7 Copying a User
	Recipe 6.8 Unlocking a User
	Recipe 6.9 Finding Locked Out Users
	Recipe 6.10 Troubleshooting Account Lockout Problems
	Recipe 6.11 Viewing the Account Lockout and Password Policies
	Recipe 6.12 Enabling and Disabling a User
	Recipe 6.13 Finding Disabled Users
	Recipe 6.14 Viewing a User's Group Membership
	Recipe 6.15 Changing a User's Primary Group
	Recipe 6.16 Transferring a User's Group Membership to Another User
	Recipe 6.17 Setting a User's Password
	Recipe 6.18 Setting a User's Password via LDAP
	Recipe 6.19 Setting a User's Password via Kerberos
	Recipe 6.20 Preventing a User from Changing His Password
	Recipe 6.21 Requiring a User to Change Her Password at Next Logon
	Recipe 6.22 Preventing a User's Password from Expiring
	Recipe 6.23 Finding Users Whose Passwords Are About to Expire
	Recipe 6.24 Setting a User's Account Options (userAccountControl)
	Recipe 6.25 Setting a User's Account to Expire in the Future
	Recipe 6.26 Finding Users Whose AccountsAre About to Expire
	Recipe 6.27 Determining a User's Last Logon Time
	Recipe 6.28 Finding Users Who Have Not Logged On Recently
	Recipe 6.29 Setting a User's Profile Attributes
	Recipe 6.30 Viewing a User's Managed Objects
	Recipe 6.31 Modifying the Default Display Name Used When Creating Users in ADUC
	Recipe 6.32 Creating a UPN Suffix for a Forest

	Chapter 7. Groups
	Introduction
	Recipe 7.1 Creating a Group
	Recipe 7.2 Viewing the Direct Members of a Group
	Recipe 7.3 Viewing the Nested Members of a Group
	Recipe 7.4 Adding and Removing Members of a Group
	Recipe 7.5 Moving a Group
	Recipe 7.6 Changing the Scope or Type of a Group
	Recipe 7.7 Delegating Control for Managing Membership of a Group
	Recipe 7.8 Resolving a Primary Group ID
	Recipe 7.9 Enabling Universal Group Membership Caching

	Chapter 8. Computers
	Introduction
	Recipe 8.1 Creating a Computer
	Recipe 8.2 Creating a Computer for a Specific User or Group
	Recipe 8.3 Joining a Computer to a Domain
	Recipe 8.4 Moving a Computer
	Recipe 8.5 Renaming a Computer
	Recipe 8.6 Testing the Secure Channel for a Computer
	Recipe 8.7 Resetting a Computer
	Recipe 8.8 Finding Inactive or Unused Computers
	Recipe 8.9 Changing the Maximum Number of Computers a User Can Join to the Domain
	Recipe 8.10 Finding Computers with a Particular OS
	Recipe 8.11 Binding to the Default Container for Computers
	Recipe 8.12 Changing the Default Container for Computers

	Chapter 9. Group Policy Objects (GPOs)
	Introduction
	Recipe 9.1 Finding the GPOs in a Domain
	Recipe 9.2 Creating a GPO
	Recipe 9.3 Copying a GPO
	Recipe 9.4 Deleting a GPO
	Recipe 9.5 Viewing the Settings of a GPO
	Recipe 9.6 Modifying the Settings of a GPO
	Recipe 9.7 Importing Settings into a GPO
	Recipe 9.8 Assigning Logon/Logoff and Startup/Shutdown Scripts in a GPO
	Recipe 9.9 Installing Applications with a GPO
	Recipe 9.10 Disabling the User or Computer Settings in a GPO
	Recipe 9.11 Listing the Links for GPO
	Recipe 9.12 Creating a GPO Link to an OU
	Recipe 9.13 Blocking Inheritance of GPOs on an OU
	Recipe 9.14 Applying a Security Filter to a GPO
	Recipe 9.15 Creating a WMI Filter
	Recipe 9.16 Applying a WMI Filter to a GPO
	Recipe 9.17 Backing Up a GPO
	Recipe 9.18 Restoring a GPO
	Recipe 9.19 Simulating the RSoP
	Recipe 9.20 Viewing the RSoP
	Recipe 9.21 Refreshing GPO Settings on a Computer
	Recipe 9.22 Restoring a Default GPO

	Chapter 10. Schema
	Introduction
	Recipe 10.1 Registering the Active Directory Schema MMC Snap-in
	Recipe 10.2 Enabling Schema Updates
	Recipe 10.3 Generating an OID to Use for a New Class or Attribute
	Recipe 10.4 Generating a GUID to Use for a New Class or Attribute
	Recipe 10.5 Extending the Schema
	Recipe 10.6 Documenting Schema Extensions
	Recipe 10.7 Adding a New Attribute
	Recipe 10.8 Viewing an Attribute
	Recipe 10.9 Adding a New Class
	Recipe 10.10 Viewing a Class
	Recipe 10.11 Indexing an Attribute
	Recipe 10.12 Modifying the Attributes That Are Copied When Duplicating a User
	Recipe 10.13 Modifying the Attributes Included with Ambiguous Name Resolution
	Recipe 10.14 Adding or Removing an Attribute in the Global Catalog
	Recipe 10.15 Finding the Nonreplicated and Constructed Attributes
	Recipe 10.16 Finding the Linked Attributes
	Recipe 10.17 Finding the Structural, Auxiliary, Abstract, and 88 Classes
	Recipe 10.18 Finding the Mandatory and Optional Attributes of a Class
	Recipe 10.19 Modifying the Default Security of a Class
	Recipe 10.20 Deactivating Classes and Attributes
	Recipe 10.21 Redefining Classes and Attributes
	Recipe 10.22 Reloading the Schema Cache

	Chapter 11. Site Topology
	Introduction
	Recipe 11.1 Creating a Site
	Recipe 11.2 Listing the Sites
	Recipe 11.3 Deleting a Site
	Recipe 11.4 Creating a Subnet
	Recipe 11.5 Listing the Subnets
	Recipe 11.6 Finding Missing Subnets
	Recipe 11.7 Creating a Site Link
	Recipe 11.8 Finding the Site Links for a Site
	Recipe 11.9 Modifying the Sites That Are Part of a Site Link
	Recipe 11.10 Modifying the Cost for a Site Link
	Recipe 11.11 Disabling Site Link Transitivity or Site Link Schedules
	Recipe 11.12 Creating a Site Link Bridge
	Recipe 11.13 Finding the Bridgehead Servers for a Site
	Recipe 11.14 Setting a Preferred Bridgehead Server for a Site
	Recipe 11.15 Listing the Servers
	Recipe 11.16 Moving a Domain Controller to a Different Site
	Recipe 11.17 Configuring a Domain Controller to Cover Multiple Sites
	Recipe 11.18 Viewing the Site Coverage for a Domain Controller
	Recipe 11.19 Disabling Automatic Site Coverage for a Domain Controller
	Recipe 11.20 Finding the Site for a Client
	Recipe 11.21 Forcing a Host to a Particular Site
	Recipe 11.22 Creating a Connection Object
	Recipe 11.23 Listing the Connection Objects for a Server
	Recipe 11.24 Load-Balancing Connection Objects
	Recipe 11.25 Finding the ISTG for a Site
	Recipe 11.26 Transferring the ISTG to Another Server
	Recipe 11.27 Triggering the KCC
	Recipe 11.28 Determining if the KCC Is Completing Successfully
	Recipe 11.29 Disabling the KCC for a Site
	Recipe 11.30 Changing the Interval at Which the KCC Runs

	Chapter 12. Replication
	Introduction
	Recipe 12.1 Determining if Two Domain Controllers Are in Sync
	Recipe 12.2 Viewing the Replication Status of Several Domain Controllers
	Recipe 12.3 Viewing Unreplicated Changes Between Two Domain Controllers
	Recipe 12.4 Forcing Replication from One Domain Controller to Another
	Recipe 12.5 Changing the Intra-Site Replication Interval
	Recipe 12.6 Changing the Inter-Site Replication Interval
	Recipe 12.7 Disabling Inter-Site Compression of Replication Traffic
	Recipe 12.8 Checking for Potential Replication Problems
	Recipe 12.9 Enabling Enhanced Logging of Replication Events
	Recipe 12.10 Enabling Strict or Loose Replication Consistency
	Recipe 12.11 Finding Conflict Objects
	Recipe 12.12 Viewing Object Metadata

	Chapter 13. Domain Name System (DNS)
	Introduction
	Recipe 13.1 Creating a Forward Lookup Zone
	Recipe 13.2 Creating a Reverse Lookup Zone
	Recipe 13.3 Viewing a Server's Zones
	Recipe 13.4 Converting a Zone to an AD-Integrated Zone
	Recipe 13.5 Moving AD-Integrated Zones into an Application Partition
	Recipe 13.6 Delegating Control of a Zone
	Recipe 13.7 Creating and Deleting Resource Records
	Recipe 13.8 Querying Resource Records
	Recipe 13.9 Modifying the DNS Server Configuration
	Recipe 13.10 Scavenging Old Resource Records
	Recipe 13.11 Clearing the DNS Cache
	Recipe 13.12 Verifying That a Domain Controller Can Register Its Resource Records
	Recipe 13.13 Registering a Domain Controller's Resource Records
	Recipe 13.14 Preventing a Domain Controller from Dynamically Registering All Resource Records
	Recipe 13.15 Preventing a Domain Controller from Dynamically Registering Certain Resource Records
	Recipe 13.16 Deregistering a Domain Controller's Resource Records
	Recipe 13.17 Allowing Computers to Use a Different Domain Suffix from Their AD Domain

	Chapter 14. Security and Authentication
	Introduction
	Recipe 14.1 Enabling SSL/TLS
	Recipe 14.2 Encrypting LDAP Traffic with SSL, TLS, or Signing
	Recipe 14.3 Enabling Anonymous LDAP Access
	Recipe 14.4 Restricting Hosts from Performing LDAP Queries
	Recipe 14.5 Using the Delegation of Control Wizard
	Recipe 14.6 Customizing the Delegation of Control Wizard
	Recipe 14.7 Viewing the ACL for an Object
	Recipe 14.8 Customizing the ACL Editor
	Recipe 14.9 Viewing the Effective Permissions on an Object
	Recipe 14.10 Changing the ACL of an Object
	Recipe 14.11 Changing the Default ACL for an Object Class in the Schema
	Recipe 14.12 Comparing the ACL of an Object to the Default Defined in the Schema
	Recipe 14.13 Resetting an Object's ACL to the Default Defined in the Schema
	Recipe 14.14 Preventing the LM Hash of a Password from Being Stored
	Recipe 14.15 Enabling List Object Access Mode
	Recipe 14.16 Modifying the ACL on Administrator Accounts
	Recipe 14.17 Viewing and Purging Your Kerberos Tickets
	Recipe 14.18 Forcing Kerberos to Use TCP
	Recipe 14.19 Modifying Kerberos Settings

	Chapter 15. Logging, Monitoring, and Quotas
	Introduction
	Recipe 15.1 Enabling Extended dcpromo Logging
	Recipe 15.2 Enabling Diagnostics Logging
	Recipe 15.3 Enabling NetLogon Logging
	Recipe 15.4 Enabling GPO Client Logging
	Recipe 15.5 Enabling Kerberos Logging
	Recipe 15.6 Enabling DNS Server Debug Logging
	Recipe 15.7 Viewing DNS Server Performance Statistics
	Recipe 15.8 Enabling Inefficient and Expensive LDAP Query Logging
	Recipe 15.9 Using the STATS Control to View LDAP Query Statistics
	Recipe 15.10 Using Perfmon to Monitor AD
	Recipe 15.11 Using Perfmon Trace Logs to Monitor AD
	Recipe 15.12 Enabling Auditing of Directory Access
	Recipe 15.13 Creating a Quota
	Recipe 15.14 Finding the Quotas Assigned to a Security Principal
	Recipe 15.15 Changing How Tombstone Objects Count Against Quota Usage
	Recipe 15.16 Setting the Default Quota for All Security Principals in a Partition
	Recipe 15.17 Finding the Quota Usage for a Security Principal

	Chapter 16. Backup, Recovery, DIT Maintenance, and Deleted Objects
	Introduction
	Recipe 16.1 Backing Up Active Directory
	Recipe 16.2 Restarting a Domain Controller in Directory Services Restore Mode
	Recipe 16.3 Resetting the Directory Service Restore Mode Administrator Password
	Recipe 16.4 Performing a Nonauthoritative Restore
	Recipe 16.5 Performing an Authoritative Restore of an Object or Subtree
	Recipe 16.6 Performing a Complete Authoritative Restore
	Recipe 16.7 Checking the DIT File's Integrity
	Recipe 16.8 Moving the DIT Files
	Recipe 16.9 Repairing or Recovering the DIT
	Recipe 16.10 Performing an Online Defrag Manually
	Recipe 16.11 Determining How Much Whitespace Is in the DIT
	Recipe 16.12 Performing an Offline Defrag to Reclaim Space
	Recipe 16.13 Changing the Garbage Collection Interval
	Recipe 16.14 Logging the Number of Expired Tombstone Objects
	Recipe 16.15 Determining the Size of the Active Directory Database
	Recipe 16.16 Searching for Deleted Objects
	Recipe 16.17 Restoring a Deleted Object
	Recipe 16.18 Modifying the Tombstone Lifetime for a Domain

	Chapter 17. Application Partitions
	Introduction
	Recipe 17.1 Creating and Deleting an Application Partition
	Recipe 17.2 Finding the Application Partitions in a Forest
	Recipe 17.3 Adding or Removing a Replica Server for an Application Partition
	Recipe 17.4 Finding the Replica Servers for an Application Partition
	Recipe 17.5 Finding the Application Partitions Hosted by a Server
	Recipe 17.6 Verifying Application Partitions Are Instantiated on a Server Correctly
	Recipe 17.7 Setting the Replication Notification Delay for an Application Partition
	Recipe 17.8 Setting the Reference Domain for an Application Partition
	Recipe 17.9 Delegating Control of Managing an Application Partition

	Chapter 18. Interoperability and Integration
	Introduction
	Recipe 18.1 Accessing AD from a Non-Windows Platform
	Recipe 18.2 Programming with .NET
	Recipe 18.3 Programming with DSML
	Recipe 18.4 Programming with Perl
	Recipe 18.5 Programming with Java
	Recipe 18.6 Programming with Python
	Recipe 18.7 Integrating with MIT Kerberos
	Recipe 18.8 Integrating with Samba
	Recipe 18.9 Integrating with Apache
	Recipe 18.10 Replacing NIS
	Recipe 18.11 Using BIND for DNS
	Recipe 18.12 Authorizing a Microsoft DHCP Server
	Recipe 18.13 Using VMWare for Testing AD

	Appendix A. Tool List
	ACL Diagnostics Command (acldiag.exe)
	Active Directory Domains and Trusts Snap-in (domain.msc)
	Active Directory Installation Wizard (dcpromo.exe)
	Active Directory Load Balancer Command (adlb.exe)
	Active Directory Schema Snap-in (schmmgmt.msc)
	Active Directory Sites and Services (dssite.msc)
	Active Directory Users and Computers Snap-in (dsa.msc)
	AD Prep Utility (adprep.exe)
	ADSI Edit (adsiedit.msc)
	Audit Policy Command (auditpol.exe)
	Backup Wizard (ntbackup.exe)
	CSVDE Command (csvde.exe)
	Default Domain Controller Security Policy Snap-in (dcpol.msc)
	Default Domain Security Policy Snap-in (dompol.msc)
	Default Group Policy Restore Command (dcgpofix.exe)
	DNS Snap-in (dnsmgmt.msc)
	DNSCmd Command (dnscmd.exe)
	Domain Controller Diagnosis Command (dcdiag.exe)
	DS ACL Command (dsacls.exe)
	DS Add Command (dsadd.exe)
	DS Get Command (dsget.exe)
	DS Modify Command (dsmodify.exe)
	DS Move Command (dsmove.exe)
	DS Query Command (dsquery.exe)
	DS Remove Command (dsrm.exe)
	Enumprop Command (enumprop.exe)
	Group Policy Management Console (gpmc.msc)
	Group Policy Object Editor (gpedit.msc)
	Group Policy Verification Tool (gpotool.exe)
	Group Policy Results Command (gpresult.exe)
	Group Policy Refresh Command (gpupdate.exe)
	IP Configuration (ipconfig.exe)
	Kerberos List (klist.exe)
	Kerberos Tray (kerbtray.exe)
	LDIFDE Command (ldifde.exe)
	LDP (ldp.exe)
	Move Tree Command (movetree.exe)
	Netdom Command (netdom.exe)
	Network Connectivity Tester (netdiag.exe)
	NLTest Command (nltest.exe)
	Nslookup Command (nslookup.exe)
	NTDS Util Command (ntdsutil.exe)
	OID Generator Command (oidgen.exe)
	Redirect Default Computers Command (redircmp.exe)
	Redirect Default Users Command (redirusr.exe)
	Reg Command (reg.exe)
	Registry Editor (regedit.exe)
	Rename Domain Command (rendom.exe)
	Replication Diagnostics Command (repadmin.exe)
	Replication Monitor (replmon.exe)
	Resultant Set of Policy Snap-in (rsop.msc)
	SecEdit Command (secedit.exe)
	Time Service (w32tm.exe)
	Unlock (unlock.exe)
	UUID Generator Command (uuidgen.exe)
	WinNT32 Command (winnt32.exe)

	Colophon
	Index
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W

