
http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating HTML5 Animations
with Flash and Wallaby

Ian McLean

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adobe Developer Library, a copublishing partnership between O’Reilly Media Inc.,
and Adobe Systems, Inc., is the authoritative resource for developers using Adobe
technologies. These comprehensive resources offer learning solutions to help devel-
opers create cutting-edge interactive web applications that can reach virtually any-
one on any platform.

With top-quality books and innovative online resources covering the latest tools for
rich-Internet application development, the Adobe Developer Library delivers expert
training straight from the source. Topics include ActionScript, Adobe Flex®, Adobe
Flash®, and Adobe Acrobat®.

Get the latest news about books, online resources, and more at http://adobedeveloper
library.com.

Untitled-1 1 3/3/09 5:37:20 PM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating HTML5 Animations with Flash and Wallaby
by Ian McLean

Copyright © 2011 Ian McLean. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Jasmine Perez
Copyeditor: Audrey Doyle
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Creating HTML5 Animations with Flash and Wallaby, the image of a wallaby, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30713-4

[LSI]

1314904133

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

My sincerest thanks goes out to my love, Jana, for
graciously tolerating the number of times I asked
her “does this sound right?” and to my family for

penny pinching to buy me my first PowerPC
computer so many years ago.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

Preface . ix

1. Flash Professional Basics . 1
The Flash Platform 2
Flash Professional at a Glance 3

The Library 4
The Stage 4
The Timeline 5

Importing Assets 6
Drawing Shapes 7
Working with Images 8

Knowing When to Use Bitmaps or Shapes 9
Avoiding Undesired Scaling in Bitmaps 9

Converting Assets to Symbols 10
Instances 11

Keyframes 12
Tweening 12

2. Creating a Basic HTML5 Animation . 15
Creating a New Project 15
Creating the Text 16
Animating the Marquis 18
Exporting the HTML5 Animation from Wallaby 21

3. Creating Advanced Animations . 23
Building for Performance 24

Export and Test Often 25
Take the Right Approach 25
Stay Mindful of Bandwidth 26
Determine the Limitations 26

Wallaby-Specific Performance Tips 27

vii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Using Wallaby . 29
Converting Animations 29

Preferences 31
Status 32
Errors and Warnings 32

5. Using Wallaby Animations . 35
Placing the Animation 35
Adding Basic Interactivity 40

viii | Table of Contents

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

What Is Wallaby?
Adobe Wallaby is a tool that is used to convert animated content created in Flash
Professional to HTML5 so that it may be viewed using many of the standards-compliant
browsers available today. In doing so, Wallaby enables you to use a mature animation
tool, like Flash Professional, to produce compelling animations and creative content
for the standard Web.

Put simply, Wallaby means that creating standards-compliant animations for the Web
just got a lot easier for everybody.

You’ll also be happy to know that all iOS-based devices are fair game as well. That
means it is open season in terms of creating Flash content that can be displayed on the
iPhone and iPad.

Until now, the big challenge in creating HTML5 animations was that you had to be a
skilled JavaScript developer to pull it off. Assuming you were said developer, the
amount of effort involved in creating HTML5 animations programmatically was still
far too time-consuming, as it required writing code to draw your shapes, code to load
any potential bitmap assets, and code for all the necessary translations of those items
over time. Also, considering there was no built-in mechanism to manage the chronology
of your animations, such as a timeline provides, to time your animations you had to
monitor the count of a timer.

Creating HTML5 animations also proved challenging for designers, as it required them
to write code. While there are some great "devsigners" out there who know both design
and development, having to get involved with code to build an animation isn’t exactly
most designers’ cup of tea.

There is a greater issue at hand here, though: designers and developers are often cut
from different cloth. A developer probably shouldn’t be given creative control of any
animation unless you want to see some very interesting results. At the same time, a
designer might struggle with writing code when charged with having to create anima-
tions programmatically. When you consider this, you realize how the state of creating

ix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

animations on the standard Web has been completely backward; it has forced devel-
opers to act as designers and designers to act as developers.

The good news is that if you’re a creative type, Wallaby puts you right back in the game
of creating animations for the standard Web. If you’re a developer, provided you can
learn some Flash Professional basics, you can spend just 30 minutes creating an ani-
mation rather than several hours. These are really big wins for designers and developers
alike.

A Brief History of Flash and HTML5
These days, some people view Flash and HTML5 as competing technologies, even
though a good number of the capabilities of these technologies are starting to converge.
It’s true that HTML5 has improved substantially over HTML4 and seeks to offer a lot
of the same features of Flash. Whether one of these technologies will fully replace the
other is unknown; it seems far more likely that they will simply continue to coexist.
Regardless, there is no denying the fact that Flash has provided a means of creating
complex animation and interactivity on the Web for many years. However, HTML has
offered a standard and universally accessible format for representing data on the Web
that is openly visible to search engines. Because of this, Flash and HTML have often
been used in complementary ways; you will find numerous examples of sites leveraging
HTML as a foundation to display data and Flash to achieve a more sophisticated level
of animation or interactivity.

Concerns in Reaching Audiences
Although the number of people with Flash Player is significantly high, a portion of those
users still don’t have Flash. Therefore, it’s safe to presume that if you’re targeting Flash
users, some people will turn away because they won’t make an effort to install the Flash
plug-in or because their device simply doesn’t support it. On the other hand, HTML5
works out of the box in modern browsers, and therefore, projects that seek to reach
the largest audience possible tend to rely solely on HTML5 to power their content. In
some cases, this can mean sacrificing some of the capabilities of Flash and, more spe-
cifically, some of things that were easier to do in Flash, such as creating animations,
and designing a site with a lesser level of animation and interactivity.

The idea behind Wallaby is to give you some of the best of both worlds: use Flash to
easily create engaging animations while maintaining the widest reach in terms of au-
dience by targeting HTML5.

I would be remiss if I didn’t mention that HTML5 doesn’t solve every challenge in
reaching our audience. Although the HTML5 specification is a standard supported by
most modern browsers, many people still continue to use older browsers. For example,
much to the dismay of many web developers, a significant number of people still use

x | Preface

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Internet Explorer 6, especially in the corporate realm. If your project must be viewable
by browsers new and old, you might choose to avoid the features of HTML5 entirely
and stick with HTML4. Although the number of people using older browsers will con-
tinue to decrease with time, gaps in your reachable audience will always exist. Just
make sure to consider this when deciding on a technology for your project, and you’ll
be fine.

Now, assuming you’ve already considered this and HTML5 is your weapon of choice,
great; Wallaby will put you on the fast track to creating HTML5 experiences with
engaging animations.

Browser Support
Wallaby in its current form makes heavy use of WebKit-specific CCS3 tags. This means
that non-WebKit-based browsers such as Firefox and IE9 will not fully support Wal-
laby-generated animations.

However, browsers like Chrome, Safari, and Mobile Safari are fair game.

Conversion Limitations
While the ability to use a visual tool such as Flash Professional to create HTML5 sim-
plifies the process of creating animations, it’s important to recognize that Wallaby can’t
be perfect at crafting the most optimized code possible. For highly complex animations
where optimal performance is critical, it’s often best to get “closer to the metal” and
work directly with JavaScript and HTML rather than using a visual tool to create this
code for you.

Another limitation is that Wallaby really only supports those features of Flash that are
relevant to creating an animation. For instance, it won’t have much success in con-
verting your complex AS3 game to HTML5. However, it does support all the features
necessary to streamline the creation of animations.

Who This Book Is For
This book is intended for anyone who wants to create HTML5-based animations using
Flash Professional and wants to skip the additional work of coding these animations
by hand. You might be a designer who is looking for a means to generate HTML5
content, or you might be a developer who is looking for a faster way to create animations
than the fully programmatic approach provides. Either way, to benefit from this book
you won’t need any previous experience with Flash Professional.

A note about scope: Flash Professional is covered in this book, but being that our focus
is on creating HTML5, we will stick to the material relevant to that process. The content
within is fairly comprehensive and will help you to become familiar with the application

Preface | xi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

as well as give you the skills necessary to create many different types of animations
using Flash Professional. Even so, Flash Professional has many advanced techniques
and tips beyond what is covered in this book. If you want to learn even more about
Flash Professional, there are many great books out there for those who want to obtain
rock-star-like skills.

Content Approach
This book covers everything you need to know to create HTML5 animations, whether
you are a novice or an expert Flash user. Chapter 1 and Chapter 2 focus on providing
those who are new to Flash with a background on the tool, its features, and concepts
regarding its use. Chapter 3 through Chapter 5 focus on the Wallaby-specific aspects
of using Flash, its supported features, caveats, and the process of making your content
live.

With this in mind, those who are comfortable with creating content in Flash may wish
to focus on Chapter 3 through Chapter 5. If you’re new to Flash, feel free to simply
take it from the top.

System Requirements
If you plan to use Flash Professional to create HTML5 animations, you’ll need Flash
Professional CS5 or later. Also, as with any application, your system needs to meet
certain requirements in order to run the software. Adobe suggests the following, as a
minimum:

Windows

• Intel Pentium 4 or AMD Athlon 64 processor

• 3.5 GB of available hard-disk space for installation; additional free space re-
quired during installation (cannot install on removable Flash storage devices)

• 1024 × 768 display (1280 × 800 recommended) with 16-bit video card

• DVD-ROM drive

• QuickTime 7.6.2 software required for multimedia features

• Broadband Internet connection required for online services

Mac OS

• Multicore Intel processor

• Mac OS X v10.5.8 or v10.6

• 1 GB of RAM (2 GB recommended)

• 4 GB of available hard-disk space for installation; additional free space required
during installation (cannot install on a volume that uses a case-sensitive file
system or on removable Flash storage devices)

xii | Preface

http://lib.ommolketab.ir
http//lib.ommolketab.ir

• 1024 × 768 display (1280 × 800 recommended) with 16-bit video card

• DVD-ROM drive

• QuickTime 7.6.2 software required for multimedia features

• Broadband Internet connection required for online services

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

Preface | xiii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Creating HTML5 Animations with Flash
and Wallaby by Ian McLean (O’Reilly). Copyright 2011 Ian McLean,
978-1-449-30713-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449307134

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9781449307134
mailto:bookquestions@oreilly.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xv

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1

Flash Professional Basics

Flash Professional is a popular tool used to author a wide variety of creative and inter-
active content that can be deployed to the Web and mobile devices. It can even be used
to create desktop applications. There are many aspects to the application itself, but its
most notable characteristic is a timeline and asset-centric interface that makes it ideal
for creating animations. Until recently, Flash-created content was only viewable by
devices with support for Flash.

Now, when combined with Wallaby, Flash Professional can be used to create HTML5-
based animations as well.

At this point, you might be wondering why we would bother using an application
intended to create Flash content to instead create HTML5 animations. After all, aren’t
we talking apples and elephants here? The answer is both yes and no. Sure, Flash and
HTML5 are different technologies with different implementations for powering con-
tent on the Web. However, if we look at creating animations from an artistic perspec-
tive, the workflow is really one and the same. Flash Professional provides an advanced
visual interface to create animated content that really accelerates this workflow. This
remains true regardless of whether that content is ultimately powered by Flash or by
HTML5. In fact, Flash Professional is one of the first tools, if not the first tool, on the
market that allows you to take a visual approach to creating HTML5 animations versus
a fully programmatic approach.

As an animation tool, Flash Professional is well seasoned. The first incantation of the
Flash software actually debuted in 1996 as an application called FutureSplash Anima-
tor. It was then given the name Flash after being purchased by Macromedia not long
after its release. At the time, the visual capabilities of Flash went far beyond the capa-
bilities of HTML; that led to widespread use of Flash on the Web. Today Flash Pro-
fessional is part of the Adobe Creative Suite of products and has evolved into a very
powerful and feature-rich tool responsible for much of the content on the Web.

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Before we go any further, it bears mentioning that Flash Professional is just one tool
within the family of the Flash Platform. In fact, because of the versatility of Flash Player
itself, there are several tools, each of which takes a different approach to creating con-
tent. The common thread among these tools is that they all produce content that is
powered by the Flash Player runtime. There is, however, one new exception to this, in
that Flash Professional animation projects can now be exported to HTML5. This means
that animations created with Flash can run on the standard Web without the need for
a plug-in.

The Flash Platform
For the purposes of creating HTML5 animations, we will focus almost entirely on Flash
Professional and the Adobe Wallaby export tool. However, creating HTML5 anima-
tions is just one capability of Flash Professional. That being said, having a basic un-
derstanding of the playing field in terms of Flash tools and technologies can help you
feel more at home as you explore the Flash Professional user interface. It will also help
you better understand what pertains to the HTML5 workflow and what doesn’t.

Let’s have a look at a few of the terms and technologies you’ll encounter as you build
your animation:

Flash Professional
As I mentioned, Flash Professional is a timeline-based tool for creating animations
and interactive experiences that we’ll be working with to author our HTML5 con-
tent.

As of the writing of this book, the current version is Flash Professional CS5.

FLA files
FLA files are Flash Professional project files. These are the files that Wallaby re-
quires when converting your content.

FLA files have an extension of .fla.

Flash Player
Flash Player is the runtime that typically executes all Flash content. Of course, the
animations we export to HTML5 are the exception to this. Flash Player often comes
in the form of a browser plug-in but can be standalone as well.

As of the writing of this book, the current major version is Flash Player 10.

SWF files
SWF files are the output files that are published from Flash Professional and can
be played with Flash Player. Since our output will be HTML5 markup, we won’t
be exporting a SWF when we’re done. We will, however, be publishing SWFs
during the creation of our animations in order to preview them before we take the
final step of exporting them to HTML5.

SWF files have an extension of .swf.

2 | Chapter 1: Flash Professional Basics

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ActionScript
ActionScript is Flash’s scripting language. Although AS3 has a very broad set of
capabilities, you won’t need to learn much more than a few lines. Our usage of
AS3 will be more or less limited to handling buttons clicks and basic frame navi-
gation. Anything beyond that isn’t relevant when creating our animations, and thus
isn’t supported by the Wallaby Exporter.

As of the writing of this book, the current version is ActionScript 3.

Now that you have an understanding of the platform and its moving parts, Flash Pro-
fessional should make a bit more sense to you. Keep in mind that the Flash Platform
features many other tools beyond what I’ve covered here. You won’t need any knowl-
edge of these as far as HTML5 animations are concerned, but feel free to explore them
all the same.

Flash Professional at a Glance
Now that we’ve covered the fundamentals of the Flash Platform, let’s dive into the Flash
Professional application.

As I mentioned before, you’ll be spending the majority of your time with Flash Profes-
sional. From here on out, when I refer to “Flash” I will be speaking strictly of Flash
Professional. This will help to eliminate any confusion between the terms Flash and
Flash Player or Flash Platform as we move forward.

The Flash user interface has several different panels and windows for performing var-
ious tasks, but from a 1,000-foot view it is really composed of three main parts (see
Figure 1-1):

• The Library which is used to store assets

• The Stage which is like a drawing canvas for assets

• The Timeline which is used to build animations

As you create your animation, you will, for the most part, be creating assets in the
Library, placing them on the Stage, and then using the Timeline to animate them.
(Although that was a fairly simplistic statement, it does a good job of describing the
general workflow in Flash.)

Flash Professional at a Glance | 3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-1. The Flash Professional CS5 interface

The Library
The Library in Flash is simply an area that stores all the various parts of your animation
in one place. Items in the Library can be renamed, deleted, or organized into folders as
needed. These items can be images, video, audio, or items called symbols. We’ll discuss
symbols in more detail in just a second, but first, let’s look at how you’ll arrange these
items in your animation.

The Stage
If you’ve worked with graphics programs in the past, the Stage is probably a very fa-
miliar concept. The Stage is the content area where your animation lives visually. Items
can be placed anywhere on the Stage, or even off-stage. Items off-stage aren’t visible to
those viewing the animation. For example, you might use off-stage items to create an
effect of an item flying onto the screen from the outside.

By accessing the Modify→Document Settings menu, you can configure the Stage in
terms of its dimensions and its background color to suit the needs of your animation.
You can also change the units on the Stage to whatever you’re most comfortable with.
Figure 1-2 shows the settings you can configure in the Document Settings window.

Keep in mind that when your animation is ultimately viewed in a browser, its dimen-
sions can be different from what you set here. This is because additional size and scaling

4 | Chapter 1: Flash Professional Basics

http://lib.ommolketab.ir
http//lib.ommolketab.ir

information may be specified within the HTML page. As such, an animation could
potentially change its size and scaling options.

Figure 1-2. The Document Settings window

Lastly, from this window, you can change the frame rate for the animation, which brings
us to our next topic.

The Timeline
The concept behind the Timeline in Flash Professional is a lot like a reel of film played
on a projector. The Timeline, as shown in Figure 1-3, contains a series of movie-like
cells, known as frames, which can be displayed back-to-back in order to create motion.
The speed at which these frames are played is known as the frame rate or frames per
second (which is often abbreviated to fps).

Figure 1-3. The Timeline

The frame rate inevitably affects how the animation appears to the eye. The lower the
animation’s frame rate, the more the animation looks like a slide show. Conversely, the

Flash Professional at a Glance | 5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

higher the animation’s frame rate, the more fluid the animation appears. The default
frame rate for a Flash project is 24 fps, which also happens to be the standard frame
rate of film. This will usually suffice for most animations. Alternatively, some users may
prefer 30 fps, the standard frame rate of NTSC, as it provides some additional fluidity.
If your animation requires highly fluid movement, you can set your frame rate as high
as you need to; keep in mind, though, that the highest value isn’t always the best. High
frame rates can tax the CPU and result in faulty playback. Also note that if you change
your animation’s frame rate in the middle of your project, you will be changing the
speed of all your animated parts as well. This is why it’s best to decide on a frame rate
at the start of your project.

Similar to a program like Photoshop or Illustrator, the Timeline also supports layers as
a means of separating visual elements into distinct levels (see Figure 1-4). Layers can
be extremely useful when creating animations with many parts by giving you a means
of organization. You also can move layers up and down to change their display depth.

Figure 1-4. Timeline layers

When you’re viewing the Stage with multiple layers you’re actually seeing the result of
all these layers being stacked one on top of the other. However, if you were to hide all
the layers and focus on a single layer, you would see that the content of that layer is,
in fact, separated from the rest.

Ultimately, the Timeline, with the help of what are called keyframes, is what you’ll use
to design the movement of your animations through a process called tweening. We’ll
come back to keyframes and tweening later; first let’s have a closer look at how we
work with assets in Flash.

Importing Assets
Provided the file you’re trying to import is supported, you can use the File→Import
menu option to easily import your assets into Flash.

By default, Flash supports major media types and formats for images, video, and audio.
While the application itself supports these types, we must stay mindful of what is sup-
ported by the HTML5 exporter, and more importantly, what isn’t. Specifically, Wal-

6 | Chapter 1: Flash Professional Basics

http://lib.ommolketab.ir
http//lib.ommolketab.ir

laby doesn’t support video and audio media types. As such, when creating animations
you’ll probably want to limit your imports to images or vector graphics created in a
program like Illustrator. Doing so will help to ensure that your animations export
properly when you’re finished.

Drawing Shapes
Flash Professional has a toolbar similar to what you might find in Photoshop or Illus-
trator. From this Tools pane (see Figure 1-5), you can create shapes or text as well as
manipulate their position and scale on the Stage.

Figure 1-5. The Tools pane

Anything you draw in Flash takes the form of a shape. Shapes in Flash are vector graph-
ics that are drawn at display time from a stored algorithm. The algorithm is essentially
a blueprint; it fully describes all aspects of the shape. Figure 1-6 shows a shape with
editable vertices.

Figure 1-6. A shape with editable vertices

A major benefit of using vector graphics in a project is that they can be scaled and
manipulated to any size or shape without losing quality. Shapes are also very malleable;

Drawing Shapes | 7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

you can change their shape at any time. You can even use tweens to morph between
two different shapes, which we’ll cover in a bit.

Working with Images
When you want to use an existing picture or you need something that doesn’t make
sense to draw in Flash, you will typically import an image. When importing an image
into Flash, regardless of its format or compression, it becomes a bitmap.

Bitmaps, as opposed to graphics, are bitmapped images such as JPEGs or PNGs. Bit-
maps contain per-pixel data used to describe the image rather than an algorithm. Since
there is no formulaic representation of a bitmap, when a bitmap is scaled it loses image
clarity, as shown in Figure 1-7. This effect is far more dramatic when scaling bitmaps
above their original size because the necessary image data simply doesn’t exist; it must
be intelligently guessed based on the existing pixel data. Creating data that doesn’t exist
is far more difficult than throwing away data that does exist; hence scaling bitmaps
down tends to generate good results. Regardless, scaling too far in either direction
proves to be problematic at some point.

Figure 1-7. A bitmap which has become lossy because it has been scaled too high

8 | Chapter 1: Flash Professional Basics

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Knowing When to Use Bitmaps or Shapes
If bitmaps have so many constraints, you might wonder why we don’t simply rely on
vector graphics entirely. The answer is that complex vector graphics come at a high
performance cost. For example, you would want to refrain from converting a highly
detailed photo of a person’s face into a vector graphic. The complexity of the formula
needed to represent the image as a vector graphic would not only be far greater than a
bitmap of the same image, but would also cause considerable strain on your CPU. In
turn, this would likely cause choppy playback when viewing the animation.

Deciding when to use bitmaps or shapes depends on what you need to accomplish. If
you need higher detail, using a bitmap makes sense. If you need an asset that you can
change or morph, graphics are a better alternative.

If you need a mixture of both, you can actually convert an image to a graphic, although
you will probably need to play around with it to see if you can maintain an acceptable
level of detail without winding up with a vector representation that is too complex.

Avoiding Undesired Scaling in Bitmaps
There is also another important thing to consider when using bitmaps. As I mentioned,
bitmaps can lose quality when they are scaled. With that in mind, it’s important to
consider how your animation will scale when viewed at different resolutions or on
different devices, and the effect it will have on the bitmaps in the animation.

Sometimes the animation isn’t scaled at all; you set a fixed width and height for the
content and it’s viewed at that size regardless of the device being used. In this case, you
can use bitmaps to your heart’s content and no loss of quality will occur since there is
no scaling involved.

If you aren’t working with a fixed width, you’ve probably set your content to scale so
as to take up as much of the screen as possible. In this case, you have to be more careful.
For example, say you have an animation with a document size of 1024 × 768 that has
a background image that is also 1024 × 768. The animation has been placed within a
page so that it expands to the maximum size possible. If someone using an iPad views
the image, there is almost no loss in quality. This is because the screen resolution of
the iPad is 1024 × 768 and little to no scaling needs to occur to fill the screen. Now, if
the same animation is viewed on a monitor with a higher resolution of 1920 × 1080,
the animation will scale considerably to take up the full screen and a very noticeable
loss of quality will occur in the background image. In a case like this, it might have
made more sense to design the animation using a shape as the background so that it
would maintain its quality.

As you can see, there are several considerations to keep in mind when building your
animations. And there are many more beyond what I can reasonably cover here. Some-
times the best solution can only result from simple trial and error. Even so, if you put

Working with Images | 9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the effort into thinking through your approach before building an animation, you’re
bound to save yourself a lot of time.

Converting Assets to Symbols
Once you’ve imported or drawn something on the Stage in Flash, the next step is typ-
ically to convert it into a symbol. A symbol is simply a container for content that makes
it reusable within the animation by allowing you to create instances. We’ll cover in-
stances and their benefits in just a moment, but for now, let’s look at the different forms
a symbol can take.

When you create a symbol you have the option of specifying the behavior of a movie
clip, graphic, or button (see Figure 1-8).

Figure 1-8. A symbol with a set type of Graphic

The movie clip is the most commonly used symbol in Flash. A movie clip is simply a
timeline-based symbol that acts as a container for animations so that they don’t always
have to live directly on the main Timeline of your document. A key thing to remember
about a movie clip is that it has an independent timeline. This means its playback isn’t
linked to the playback of the main Timeline in any way. A movie clip also allows frame
navigation actions and interactivity using ActionScript.

A graphic is very similar to a movie clip with the exception that it does not have an
independent timeline. The playback of a graphic is directly tied to the playback of the
main Timeline. Additionally, a graphic doesn’t support any interactivity via Action-
Script.

Buttons are more or less what they sound like. When creating a symbol with the be-
havior of a button, you’ll have a frame for each state of the button’s interaction; up,
down, and over (see Figure 1-9). Button symbols allow you to easily build buttons with
custom visual states.

10 | Chapter 1: Flash Professional Basics

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-9. A button symbol

The type of symbol you choose to create depends on what you’re trying to achieve.
Graphics are best suited for static assets and individual pieces of an animation. Movie
clips are often ideal for constructing animations using those pieces. Buttons are used
to capture user input so that you can do things like stop or replay the animation or
provide a means of navigating to a specific point on the Timeline.

Instances
Any symbol in the Library that is placed on the Stage creates what is called an in-
stance of that asset. An instance, in this case, just means that Flash uses the same de-
scription in the Library to draw the asset on the Stage, regardless of how many of those
assets are actually placed. The end result of this is that you can place an item on the
Stage 100 times without increasing the size needed store to the animation on disk.

Since speed is essential when viewing content on the Web, this sort of small footprint
becomes very desirable. This, however, doesn’t mean there is no cost to having several
instances of the same asset on the screen at once. In this case, more system resources,
like CPU and memory, are required in order for the asset to be drawn; and this is as
true for HTML5 as it is for anything else.

In terms of performance, modern-day desktop and laptop computers are so fast that
they rarely have any trouble handling the complex content we throw at them. Mobile
devices, on the other hand, have only a fraction of the power of traditional computers.
This means a far greater emphasis on optimizing your content is required if you intend
to produce mobile content. Thankfully, you can stay out of trouble if you understand
some basics about computer resources and how they’ll be used. We’ll discuss this op-
timization in greater detail in Chapter 3.

Converting Assets to Symbols | 11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Keyframes
Keyframes are nothing more than frames that are used to define what should be visible
on the Stage starting at a particular point in time.

A keyframe can be several frames in length as well. The length of a keyframe instructs
Flash that its contents should continue to be displayed on-screen until the last frame
is reached or until a new keyframe is encountered.

Flash also has what are known as blank keyframes. These indicate that nothing is to be
displayed on the Stage at that time. To create a blank keyframe you can add a new
keyframe to the Timeline or take an existing keyframe and delete all of its content on
the Stage. Figure 1-10 shows a keyframe and a blank keyframe.

Figure 1-10. A keyframe and a blank keyframe

Once you have two keyframes on the Timeline, you can create a tween.

Tweening
For a cartoon animator who draws each frame by hand, a series of consecutive key-
frames might do the job just fine. In fact, some animators use Flash in just this way.
For the rest of us, hand-drawing frame-by-frame animations can become extremely
time-consuming. To eliminate the need to draw all of the in-between parts of an ani-
mation Flash Professional offers a technique appropriately named tweening. Tweening
allows you to design a transformation of a visual asset over a period of time and have
all the necessary steps in between created for you.

A couple of different types of tweens are available in Flash. A motion tween can automate
changes in position, rotation, scale, and skew (see Figure 1-11). It can also automate
value changes for color and filter effects that are available in Flash.

Figure 1-11. A motion tween with independent keyframes on the Timeline

12 | Chapter 1: Flash Professional Basics

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Because motion tweens can get very complex, they actually contain their own keyframes
that are independent of those found directly on the Timeline. These keyframes can still
be edited from the main Timeline, but a far more advanced editor called the Motion
Editor exists that provides finer control when animating (see Figure 1-12).

Figure 1-12. The Motion Editor

There is also another type of tween known as a shape tween. A shape tween is what it
sounds like; it allows you to animate changes in a shape, as shown in Figure 1-13. This
can be accomplished in two ways. The first method is to create two keyframes over
which a single shape changes its form. The second method is to create keyframes with
two completely different shapes, in which case Flash will blend or morph between them.

Figure 1-13. Example of how a shape tween changes from a square to a rhombus

A classic tween is the much simpler predecessor to a motion tween. Classic tweens work
in the same way as motion tweens except that classic tweens lack their own self-con-
tained keyframes (see Figure 1-14). Classic tweens are also incompatible with the Mo-
tion Editor. Instead, they use keyframes placed directly on the Timeline.

Keyframes | 13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-14. A classic tween

Now that we’ve had a basic overview of Flash we can move right into creating our first
Wallaby animation.

14 | Chapter 1: Flash Professional Basics

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2

Creating a Basic HTML5 Animation

For your first animation you will build a simple scrolling text marquis. This will be very
similar to the old HTML <marquis> tag, and while it isn’t exactly fancy, it’s a perfectly
simple example to start with.

Once you’re done, you’ll need the Adobe Wallaby application to export the animation.
If you haven’t installed it already, take a moment to download it from the Adobe Labs
website (http://labs.adobe.com/).

Creating a New Project
Before you begin building your animation, you’ll need to create a new project in Flash.
Select File→New to access the New Document window (see Figure 2-1).

Figure 2-1. The New Document window

15

http://labs.adobe.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here you’ll see several different options for creating a new document. For our purposes,
we want to create an ActionScript 3.0 document, so select ActionScript 3.0 and click
OK.

Flash will open a new project where you’ll be presented with a blank canvas where you
will draw and animate your text.

Creating the Text
At this point, you’re ready to create your text, so go to the toolbar and select the Text
tool (), as shown in Figure 2-2).

Figure 2-2. The Text tool on the toolbar

With the Text tool selected, go ahead and click anywhere on the Stage to get a text
cursor, and then write a message out of which you want to create a marquis (see
Figure 2-3).

Now that you have some text on the Stage you are ready to animate it. As I mentioned
in Chapter 1, if you want to animate an item on the Stage, the first step is to convert
the item to a symbol in your Library.

To do so just select the text you’ve created and then use the Modify→Convert to Symbol
option, or press the F8 key.

Once you’ve created your symbol, you’ll notice that it’s now an item in your Library
that you can use to create any number of additional instances on the Stage (see Fig-
ure 2-4).

Note that there’s no need to drag this to the Stage since your already existing text is
now an instance of this as well.

16 | Chapter 2: Creating a Basic HTML5 Animation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2-3. Text creation with the Text tool

Figure 2-4. A symbol in the Library

Creating the Text | 17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Animating the Marquis
With your marquis symbol on the Stage you can now animate it. To achieve the scrolling
effect you need a keyframe where you’ll position the text outside the visible Stage so
that you can animate it scrolling by.

Looking at the Timeline you’ll notice that a keyframe was already created for you when
you created your text item on the Stage (see Figure 2-5).

Figure 2-5. The keyframe containing the text item

To position the text item outside the visible Stage, just select it and drag it to the right
until you’re past the Stage boundaries (see Figure 2-6).

Figure 2-6. The text item moved to the right, outside the visible content area

Now that that’s off the screen you want to animate it across the screen to the left to
give a scrolling effect. Click on a later frame on the Timeline (say, frame 20), right-click,

18 | Chapter 2: Creating a Basic HTML5 Animation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and select the Insert Keyframe option from the context menu. Notice that this creates
a keyframe with identical content to the earlier keyframe on the Timeline (see Fig-
ure 2-7).

Figure 2-7. The keyframe added at frame 20

Next, with the new keyframe selected, grab the text item on the Stage and drag it back
to the left until it is outside the visible Stage area (see Figure 2-8). To make sure there
is no y-axis movement you can hold down the Shift key while you drag.

Figure 2-8. The text item moved to the left, outside the visible content area

Animating the Marquis | 19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that you’ve created the necessary keyframes and positioned the start and end
points of your text animation all that is left to do is to create the tween. Click anywhere
between the two keyframes and right-click to create a classic tween (see Figure 2-9).

Figure 2-9. The motion tween between the two keyframes

With your tween created you can publish the document to view the resultant animation
(see Figure 2-10). Do so by selecting the Control→Test Movie→Test option, or simply
use the Shift-Return key shortcut.

Figure 2-10. The published animation

20 | Chapter 2: Creating a Basic HTML5 Animation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

At this point, you should see your marquis continuously scrolling from left to right.
Notice that the animation does not stop at the last frame but continues to loop. This
is because looping is the default behavior of a movie clip in Flash.

Go ahead and close the animation; then use the File→Save menu option to name the
file (e.g., marqui.fla), and save your project somewhere on your hard disk. Remember
this location because you’ll be loading this file into Wallaby in just a moment.

Exporting the HTML5 Animation from Wallaby
Once you’ve opened Wallaby, there are only a couple of steps to export your animation.
First click the Browse button and select the Flash project file (.fla file) that you saved
just a moment ago (see Figure 2-11).

Figure 2-11. The Wallaby application interface

With the .fla file selected go ahead and click the Convert button. You’ll be asked to
name your HTML file. Give it the name “marquis.html” and click Save to start the
conversion. You’ll see a message in the Status area when the conversion process is
complete.

At this point, your animation is ready to be viewed. If you navigate to the folder where
you exported your HTML, you’ll see the marquis.html file along with some other sup-

Exporting the HTML5 Animation from Wallaby | 21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

porting files (see Figure 2-12). These files are required to drive the animation, so make
sure they remain in the same directory.

Figure 2-12. The Wallaby exported files

If you double-click on marquis.html, your animation will load in your default browser.
Now you can sit back and enjoy the fruits of your labor: an HTML5 marquis animation
that can be viewed on any standards-compliant browser and a multitude of devices.

With a basic animation under our belt, we’ll move on to Chapter 3 and cover some tips
pertaining to the creation of more complex animations.

22 | Chapter 2: Creating a Basic HTML5 Animation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3

Creating Advanced Animations

When building animations it’s important that you don’t introduce things into your
animations that don’t export. The last thing you want to do is to spend several hours
tweaking an animation that previews in Flash, only to discover that Wallaby doesn’t
support some aspect of it.

As I mentioned before, Wallaby can’t possibly support all of the many features of Flash.
Here is a list of what it does support, along with some usage tips:

Timeline
Wallaby supports the Flash Timeline, keyframes, and tweens. Support for nested
timelines (movie clips) does exist, although it’s suggested that animations should
be designed primarily on Flash’s main Timeline where possible.

Layers
Standard layers, guide layers, and mask layers are supported within animations.

Wallaby only supports masks with a duration that lasts the duration of the frame.
If you make a partial mask on a layer, it will generate an error. Masks, when con-
verted, can also put significant strain on less powerful devices. As such, be careful
when using complicated masking, and be sure to keep the number of masks in your
animation at a minimum.

ActionScript
Wallaby provides no support for any ActionScript, with one exception: the
stop() command. Putting stop() on the final frame of an animation allows you to
specify that the animation should not loop. Otherwise, all animations will loop by
default.

Symbols
Symbols and symbol identifiers are supported in Wallaby. In fact, symbol identi-
fiers are carried through to resultant HTML5 code, making it much easier to im-
plement interactivity to individual parts of your animation using JavaScript after
the fact. We’ll touch on this in the “Adding Basic Interactivity” section of Chap-
ter 5.

23

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Filters
Alpha filters are the only filters currently supported by Wallaby.

Shapes
In general, any vector graphics you can create in Flash can be converted in Wallaby.
This includes all shape tools, and the pen and pencil tools.

Strokes
Wallaby supports strokes of any size. Stroke styles, on the other hand, are limited
to hairline, solid, and dashed.

Fills
Wallaby supports gradient-based fills, image-based fills, and solid colors.

Images
Wallaby supports any images that can be imported into Flash. Image transparency
is also supported, but this will depend largely on the transparency support in the
browser where the animation is being viewed.

Buttons
Buttons with normal, hover, and active states can be designed using Flash and
exported with Wallaby. When exported and viewed in a browser these buttons
will change their states per the user’s interaction. However, since there is no Ac-
tionScript support within Wallaby, any button-click actions, such as navigating to
a new page, will need to be added after the export using JavaScript.

Paths
Motion paths can be used in order to animate your visual assets along a path.

Text
Wallaby provides support for standard text and some TLF text. When using TLF
text, make sure you do a few text exports early on to ensure that your text content
is supported.

Tweens
Wallaby supports classic tweens, motion tweens, and shape tweens.

Build your animation with these supported features, and come conversion time, you
should have few issues. After you’ve exported, the next step will be to ensure that the
animation performs well in the browser.

Building for Performance
Before you start creating that complex animation that is going to blow everyone away,
it’s important to understand a bit about performance tuning. As with any project,
working fast and seeing fast results can be exciting, but if you aren’t diligent in organ-
izing your project and trimming the fat as you add complexity, the performance of the
final product will really suffer.

24 | Chapter 3: Creating Advanced Animations

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In our case, there is a reason why performance tuning is especially important. If you’ve
ever worked with visual tools for creating web content or visual tools that export any
kind of programmatic code, you may have noticed that the tools fail to be telepathic.
By this I mean that while these tools do their best to translate what you do into code,
they can’t know exactly how you intend to use any of the code, and therefore the code
they generate can be somewhat generic and/or poorly structured. Effectively, this
means the generated code, although functional, rarely performs as well as something
that was handwritten and optimized for the task. Wallaby isn’t exempt from this rule,
and while it will work fine for the creation of most animations, those of you who are
making exceptionally complicated animations may encounter some poor performance
from Wallaby that you wouldn’t experience if the same animation were generated by
some handwritten JavaScript optimized for the task. It’s likely that performance won’t
be an issue for most of the animations you will export, but if you’re attempting some-
thing complicated there are some things to keep in mind to ensure that your resultant
animation can perform as well as possible.

When we use Wallaby we’re really asking one technology (Flash) to create content for
a completely different technology (HTML5). With this kind of approach there are
challenges due to the large delta between how those technologies handle things.

Consequently, not everything that runs well in Flash Player runs well in a browser.

I’m not simply referring to unsupported features of Flash that cannot be translated to
HTML5, but rather to the performance of your successfully exported animation. That
being said, when building more complicated animations you’ll want to pay close at-
tention to optimizing your project so that the final product will run smoothly.

Here are a few guidelines to accomplish this.

Export and Test Often
I can’t stress how important this is if you’re attempting a more complicated animation.
You want to avoid the situation where you’ve spent several days building an animation,
only to discover at the 11th hour that it doesn’t run well in a browser. At that stage of
the game, you’ll have a very difficult time determining the point at which things became
too complicated or what you should do to attempt to fix the performance issues.

If instead you export frequently after making significant changes, you’ll be less likely
to waste days building a bad animation and you’ll be able to identify and resolve issues
before it’s too late.

Take the Right Approach
Let’s imagine that you want to make an animation with falling snow and you want each
snowflake to have some variation.

Building for Performance | 25

http://lib.ommolketab.ir
http//lib.ommolketab.ir

One approach could be to make 50 different snowflakes, each as a highly detailed
transparent image. You could then import them, scale them each to a different size,
and animate them individually so that they fall and rotate at the same time.

While this might create a realistic-looking snowfall effect, it does so in a way that creates
a lot of strain on the browser. Each snowflake has to be held separately in memory, and
then each one must be translated during each step of the animation.

Another approach that could accomplish something very similar is to create one large
image with snowflakes of different designs, sizes, and rotations, and simply animate it
so that it moves downward, thus creating the illusion of falling snow. This approach
requires much less effort on behalf of the browser and would allow you to create several
additional animated elements in your animation before reaching its performance lim-
itations.

Stay Mindful of Bandwidth
If you’ve developed anything for the Web in the past, you know the value of maintaining
a low kilobyte weight to ensure fast load times. Wallaby exports your assets in the same
form that you include them in your project and makes no effort to appropriately size
or compress them beyond what you have prepared. Make sure you apply the same care
and consideration to preparing and handling the assets for animation as you would for
anything else. For example, you would want to avoid including needlessly large or
uncompressed images if the way in which you are using those images doesn’t necessitate
such a high quality.

Determine the Limitations
Naturally the browsers and devices that your audience is using aren’t all created equally.

Here’s an example. Safari, unlike Chrome, supports GPU acceleration, giving it some
advantage in rendering some more complex animations on devices equipped with a
powerful GPU such as an iPad or iPhone. On the other hand, the optimizations of the
V8 JavaScript engine within Chrome coupled with the more powerful CPUs found in
desktops and newer tablets offer some advantage as well.

The trick, however, is not to determine the browser and device combination that will
run your animation the fastest, but rather to determine the slowest browser and device
combination that you wish to support. You’ll need to draw a line as to the minimum
hardware and browsers that you expect to support, and this is how you can determine
how complicated your animation can be and how much effort you’ll need to put into
tuning its performance.

If, on the other hand, you only intend to target a specific device and browser combi-
nation, you’re free to create animations that leverage the full potential of each.

26 | Chapter 3: Creating Advanced Animations

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Wallaby-Specific Performance Tips
There are a few features that run great in Flash but, when converted to HTML5, require
a lot of JavaScript code to pull off. As a rule, the more complex the generated code, the
more the browser has to work, which can result in poor animation performance. With
that being said, here are just a few Wallaby-specific performance tips to help you create
lightweight and well-performing animations:

Use motion tweens
In Wallaby, motion tweens can be converted to HTML5 in a far more efficient
fashion than frame-by-frame animations. Avoid using the latter altogether if pos-
sible, and focus on using tweens to create animations.

Minimize shape tweens
Shape tweens, although supported, can result in a lot of generated JavaScript and
can place some strain on the browser. Use them sparingly in order to ensure that
your animation performs well.

Use simple paths
Motion paths are typically OK, but try to avoid using exceptionally complex paths
as they can have a negative effect on performance.

Now that we’ve greatly raised the chances of building a supported and well-performing
animation for conversion, let’s take a closer look at the Wallaby interface and the proc-
ess of conversion.

Wallaby-Specific Performance Tips | 27

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4

Using Wallaby

Before getting started, remember that your document file must be produced with Flash
Professional CS5 or later in order for it to work.

If you haven’t downloaded Wallaby yet, do so now. You can download an installer for
either Mac OS or Windows from the Adobe Labs website (http://labs.adobe.com/tech
nologies/wallaby/); once you’ve downloaded the installer, run it.

Converting Animations
Now, in order to convert your animation, open Wallaby and click the Browse button
to locate your Flash document. Once you’ve selected it, go ahead and click Convert
(see Figure 4-1).

Wallaby will ask you where you want to save the resultant .html file. This is slightly
misleading because Wallaby will actually be exporting the .html file and all the addi-
tional files necessary to power your animation. As such, it makes sense to create a new
folder for your animation. This saves you from having to hunt down each of Wallaby’s
files in a cluttered folder.

Once the export is complete, you can open your folder and you should see something
similar to Figure 4-2.

We’ll cover how to actually use these files in your site in the next chapter, but for now,
let’s look at the individual files:

jquery-1.4.2.js
JQuery is a JavaScript library that’s used for creating the different aspects of the
animation. This is always included in the main .html file.

marquis_assets
This folder contains the individual assets needed for the animation, in SVG format.

marquis.css
This file contains all the CSS information for the animation.

29

http://labs.adobe.com/technologies/wallaby/
http://labs.adobe.com/technologies/wallaby/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

marquis.html
This is the animation’s main .html file containing the necessary HTML markup for
the animation.

marquis.js
All of the generated JavaScript code that performs the animation is in this file.

marquis.log
This is a logfile containing information about the export process.

Each of these files is necessary to power the animation. Be sure to keep them within
the same folder. If you decide to move them around, that’s fine; just make sure you
update the file references in the .html file to reflect the changes, or the animation won’t
work.

Figure 4-1. A Flash document ready for Wallaby to convert

Figure 4-2. The resultant files exported for the animation

30 | Chapter 4: Using Wallaby

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preferences
If you click the Preferences button in Wallaby, you’ll get a couple of options—specif-
ically, Preview in Default Browser and Enable Logging (see Figure 4-3).

Figure 4-3. Wallaby Preferences

Both of these options are fairly self-explanatory. If you deselect Preview in Default
Browser, your animation will not automatically open after the conversion is complete.
Enable Logging, if selected, will generate a logfile in the export directory containing
information about the export process. This can be useful for taking a close look at a
project that may be generating a lot of errors. If no errors exist, this logfile will simply
log the details of your successful export (see Figure 4-4).

Figure 4-4. A successful export log

Converting Animations | 31

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Status
During the export process, the Status area will basically tell you when the conversion
is in process and when it has finished. If there were errors in the project, the Status area
will reflect this; otherwise, it will show a success message.

Errors and Warnings
All errors and warnings during the export process are echoed to the Errors and Warn-
ings text area. When you are developing your animation this area is critical in terms of
telling you whether you’ve used an unsupported feature in your animation project.

Whereas errors will prevent the project from exporting, warnings will allow the project
to export. Some warnings can potentially be overlooked, but make sure you check your
animation and ensure that the results are as expected. For example, if I were to try to
convert a project with lines with a line style of hatched I would get a warning informing
me that this specific line style is unsupported (see Figure 4-5). If this line style were
critical to the design I wanted for the animation, I might want to consider creating that
effect in a way that is supported by the exporter. If it didn’t matter, I could just disregard
this warning.

Figure 4-5. A warning about an unsupported feature

32 | Chapter 4: Using Wallaby

http://lib.ommolketab.ir
http//lib.ommolketab.ir

All told, the Wallaby tool is very basic and easy to use. If you’ve been careful to avoid
any unsupported features of Flash and you’ve periodically kept an eye on the perform-
ance of your animation while you were building it, you should be able to export your
final animation without a hitch.

Next we’ll look at how to incorporate your animation into your existing content or site.

Converting Animations | 33

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5

Using Wallaby Animations

After you’ve exported your animation, you probably will want to incorporate it into an
existing page somehow. If a JavaScript guru is available to help you, great; otherwise,
you’ll need to dig into the HTML and JavaScript and do a quick transplant of your
animation code into your existing page.

Placing the Animation
Before we get started, keep in mind that, although your content will likely be more
complex than this, the process we’re about to cover will be more or less the same
regardless of the content’s complexity.

Now, even though the “splash” page is a widely known faux pas these days, for the
sake of our basic example let’s say that you want to make one anyway. With that in
mind, let’s assume you’ve created the following HTML document named enter.html
with a link that says “Enter site”:

enter.html
<!DOCTYPE html>
<!-- Created with Adobe(R) technology -->
<html>
 <head>
 <meta charset="utf-8"></meta>
 </head>
 <body>
 Enter Site
 </body>
</html>

In order to finish the page, you want your animation to appear above the “Enter Site”
link on this page. We’ll use our scrolling marquis example from Chapter 2 as the ani-
mation to be placed.

35

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Begin by copying the files necessary for the animation into the directory containing
your existing HTML content. Let’s look at the files that were exported from our scroll-
ing marquis animation, in Figure 5-1.

Figure 5-1. Exported marquis animation

Copy the marquis_assets, marquis.css, and marquis.js files, as well as the
jquery-1.4.2.js JQuery library, into the directory containing your existing HTML con-
tent.

If your existing HTML already has the JQuery library included, there is
no need to copy or include it a second time.

After you have copied the files, update the enter.html markup so that it includes the
CSS and JavaScript necessary for your animation:

enter.html
<!DOCTYPE html>
<!-- Created with Adobe(R) technology -->
<html>
 <head>
 <meta charset="utf-8"></meta>
 <link href="marquis.css" type="text/css" rel="stylesheet"></link>
 <script type="text/javascript" src="jquery-1.4.2.js"></script>
 <script type="text/javascript" src="marquis.js"></script>
 </head>
 <body>
 Enter Site
 </body>
</html>

36 | Chapter 5: Using Wallaby Animations

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Next, you want to grab the HTML markup that contains your animation from the
exported animation source.

The source of your marquis animation looks like this:

marquis.html
<!DOCTYPE html>
<!-- Created with Adobe(R) technology -->
<html>
 <head>
 <meta charset="utf-8"></meta>
 <link href="marquis.css" type="text/css" rel="stylesheet"></link>
 <script type="text/javascript" src="jquery-1.4.2.js"></script>
 <script type="text/javascript" src="marquis.js"></script>
 </head>
 <body>
 <div class="wlby_movie">
 <div class="wlby_1 wlby_sprite">
 <div class="wlby_2 wlby_fs">
 <!-- Start of symbol: MarquisText -->
 <div class="wlby_button">
 <div class="wlby_button_normal wlby_button_hover wlby_button_active">

 </div>
 </div>
 <!-- End of symbol: MarquisText -->
 </div>
 <div class="wlby_4">
 <div class="wlby_5">
 <!-- Start of symbol: MarquisText -->
 <div class="wlby_button">
 <div class="wlby_button_normal wlby_button_hover wlby_button_active">

 </div>
 </div>
 <!-- End of symbol: MarquisText -->
 </div>
 </div>
 </div>
 </div>
 </body>
</html>

Initially this might look a little complicated, but the only thing that needs to be iden-
tified in this code is the div with the class name of wlby_movie. This is the div that
contains the markup related to your animation. Go ahead and select wlby_movie and
its contents, and copy it so that you can place it in your enter.html markup.

Placing the Animation | 37

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now place the wlby_movie div and its contents into your existing page, beneath your
<body> tag:

enter.html
<!DOCTYPE html>
<!-- Created with Adobe(R) technology -->
<html>
 <head>
 <meta charset="utf-8"></meta>
 <link href="marquis.css" type="text/css" rel="stylesheet"></link>
 <script type="text/javascript" src="jquery-1.4.2.js"></script>
 <script type="text/javascript" src="marquis.js"></script>
 </head>
 <body>
 <div class="wlby_movie">
 <div class="wlby_1 wlby_sprite">
 <div class="wlby_2 wlby_fs">
 <!-- Start of symbol: MarquisText -->
 <div class="wlby_button">
 <div class="wlby_button_normal wlby_button_hover wlby_button_active">

 </div>
 </div>
 <!-- End of symbol: MarquisText -->
 </div>
 <div class="wlby_4">
 <div class="wlby_5">
 <!-- Start of symbol: MarquisText -->
 <div class="wlby_button">
 <div class="wlby_button_normal wlby_button_hover wlby_button_active">

 </div>
 </div>
 <!-- End of symbol: MarquisText -->
 </div>
 </div>
 </div>
 </div>

 Enter Site
 </body>
</html>

Now that your animation markup has been placed and all the necessary CSS and Java-
Script have been included you’re ready to view your animation by opening enter.html
in a browser and viewing the results (see Figure 5-2).

38 | Chapter 5: Using Wallaby Animations

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 5-2. The animation running within the existing HTML

At this point, the animation should be successfully placed within your existing page.
You might notice, though, that your “Enter Site” link is actually above the animation
when instead you want it below. This is because when Wallaby generates the CSS for
the wlby_movie div its CSS positioning defaults to absolute. This means the animation
will calculate its positions based on the browser window rather than from within the
div in which you’ve placed it. Therefore, you need to update the CSS in the mar-
quis.css file that you included in the page so that the wlby_movie div positioning is
relative:

div.wlby_movie
{
 overflow: hidden;
 position: relative;
 left: 0px;
 top: 0px;
 width: 550px;
 height: 400px;
}

Placing the Animation | 39

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now your animation should determine its placement relative to its containing divider
and your link will appear like you would expect (see Figure 5-3).

Figure 5-3. The animation with relative positioning

And with that, your animation has been successfully placed within your existing con-
tent, and its positioning has been updated so that it remains within your designated
content area.

Adding Basic Interactivity
Because Wallaby offers no real ActionScript support, you must add interactivity to your
animation at this point, after you’ve converted your content.

Working off our existing example, let’s assume that we’d like someone viewing this
page to be able to enter the site by clicking on the marquis text as well. In order to
enable this capability, you can add some basic JQuery to your code, but you need an
easy means of referencing the text content in the animation, either as an ID or as a

40 | Chapter 5: Using Wallaby Animations

http://lib.ommolketab.ir
http//lib.ommolketab.ir

class. Depending on the complexity of the animation, it can become difficult to isolate
the aspect of the animation which you want to be interactive, and this is precisely why
Wallaby supports symbol identifiers.

Going back to our Flash project, select the text instance on the Stage and open the
Properties panel from the Window→Properties menu item. In the field at the top you
can assign an identifier to the symbol (see Figure 5-4).

Figure 5-4. The MarquisText instance with a symbol identifier

In this case, I’ve used “marquis” as the symbol identifier. Had we done this before the
earlier conversion process, we would have seen the following in our code:

<div class="wlby_movie">
 <div class="wlby_1 marquis">
 <!-- Start of symbol: MarquisText -->

 <!-- End of symbol: MarquisText -->
 </div>
</div>

Now, having set an identifier, the div containing the marquis text now has a class name
of wlby_1 marquis. The name of the identifier has been appended to the div class.

Adding Basic Interactivity | 41

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that this has been done, you can easily reference the marquis text using JQuery
in order to add interactivity. Open the marquis.js file and place the following code at
the top:

$(document).ready(function() {
$('.marquis').click(function(){
window.location = "main.html";
});
}

This is a bit of JavaScript and JQuery that takes your marquis object and tells a function
to fire when the marquis is clicked. The function then tells the browser to take you to
the main.html portion of your site.

Now your user can click the animation and enter the site. Although this is what you
sought to achieve, it’s hardly the extent to which you can add interactivity to your
animation. With a greater understanding of JavaScript and JQuery, as well as some
knowledge of the generated code from your animation, there are seemingly vast pos-
sibilities as to what you can do with your animation.

Now go forth and have fun creating your own HTML5 animations and exploring all
the possibilities!

42 | Chapter 5: Using Wallaby Animations

http://lib.ommolketab.ir
http//lib.ommolketab.ir

About the Author
Ian McLean is a Flash platform enthusiast, speaker, and technical writer who has been
building enterprise applications for over 10 years. An expert in Flex and AIR, Ian also
maintains a strong interest in emerging development tools, processes, and practices.
Ian has a background in game development and masquerades as a producer and mas-
tering engineer in his free time.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Table of Contents
	Preface
	What Is Wallaby?
	A Brief History of Flash and HTML5
	Concerns in Reaching Audiences
	Browser Support
	Conversion Limitations
	Who This Book Is For
	Content Approach
	System Requirements
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Flash Professional Basics
	The Flash Platform
	Flash Professional at a Glance
	The Library
	The Stage
	The Timeline

	Importing Assets
	Drawing Shapes
	Working with Images
	Knowing When to Use Bitmaps or Shapes
	Avoiding Undesired Scaling in Bitmaps

	Converting Assets to Symbols
	Instances

	Keyframes
	Tweening

	Chapter 2. Creating a Basic HTML5 Animation
	Creating a New Project
	Creating the Text
	Animating the Marquis
	Exporting the HTML5 Animation from Wallaby

	Chapter 3. Creating Advanced Animations
	Building for Performance
	Export and Test Often
	Take the Right Approach
	Stay Mindful of Bandwidth
	Determine the Limitations

	Wallaby-Specific Performance Tips

	Chapter 4. Using Wallaby
	Converting Animations
	Preferences
	Status
	Errors and Warnings

	Chapter 5. Using Wallaby Animations
	Placing the Animation
	Adding Basic Interactivity

