
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adam Calderon
Joel Rumerman

Advanced
ASP.NET AJAX
Server Controls
For .NET
Framework 3.5

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris

Madrid • Cape Town • Sydney • Tokyo • Singapore • Mexico City

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark
claim, the designations have been printed with initial
capital letters or in all capitals.

The .NET logo is either a registered trademark or
trademark of Microsoft Corporation in the United
States and/or other countries and is used under license
from Microsoft.

The authors and publisher have taken care in the
preparation of this book, but make no expressed or
implied warranty of any kind and assume no respon-
sibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection
with or arising out of the use of the information or pro-
grams contained herein.

The publisher offers excellent discounts on this book
when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or
custom covers and content particular to your business,
training goals, marketing focus, and branding inter-
ests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the web: www.informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Calderon, Adam, 1964-
Advanced ASP.Net Ajax server controls for .Net 3.5

/ Adam Calderon, Joel Rumerman.
p. cm.

ISBN 0-321-51444-0 (pbk. : alk. paper) 1. Internet
programming. 2. Active server pages. 3. Microsoft
.NET. 4. Ajax (Web site development technology) 5.
Web servers. I. Rumerman, Joel, 1980- II. Title.

QA76.625.C34 2008
006.7’882—dc22

2008013462

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of
America. This publication is protected by copyright,
and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, record-
ing, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-51444-8
ISBN-10: 0-321-51444-0
Text printed in the United States on recycled paper at
RR Donnelly in Crawfordsville, Indiana.
First printing: July 2008

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Joan Murray

Development Editors
Sheri Cain
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-Shirley

Copy Editor
Keith Cline

Indexer
WordWise Publishing Services

Proofreader
Geneil Breeze

Publishing Coordinator
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Bronkella Publishing

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To my wife, Gayle, and my son, Derek: You were already accustomed to my

hard work ethic, but I think writing this book took things to the next level.

Your patience and understanding during this long journey provided the

foundation I needed to get through the rough times. I am truly blessed to

have the both of you in my life.

—Adam

To my wife, Stacey: You make even the hard days easy. And to my parents: I

truly am 50 percent of each of you.

—Joel

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents

Foreword xxv
Preface xxvii
Acknowledgments xxxv
About the Authors xxxix

I Client Code

1 Programming with JavaScript 3
Generally JavaScript 4

JavaScript Introduction 4

Language Attributes 4

Primitive Data Types 6

Strings 8
Objects 9

Variables and Function Arguments 16

Error Handling 25

Delayed Code Execution Using Timeouts and Intervals 30

Object-Oriented JavaScript Programming 39
Abstract Data Types 40

Inheritance 46

2 Microsoft AJAX Library Programming 51
Extending the Built-In JavaScript Types 52

Booleans 52

Dates and Numbers 53

Contentsviii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Strings 54

Arrays 55

Extending the Microsoft AJAX Library 60
Classes 60

Interfaces 67

Enumerations 72

Inheritance and Interface Implementation 78

Important New Types 88
Sys.EventHandlerList 88

Sys.StringBuilder 94

Sys.Debug 96

Sys.UI.DomElement 101

Sys.UI.DomEvent 107

Maintaining Scope 112
Delegates 113

Callbacks 115

II Controls

3 Components 121
Components Defined 121

Components, Controls, and Behaviors 122

Sys.Component 125
Defining New Components 129

Creating Components 134

Wrapping Up Components 151

Controls 151
New Concepts 153

Defining a New Control 155

Creating a Control 157

Wrapping Up Controls 159

Behaviors 159
Defining a Behavior 161

Creating a Behavior 162

Wrapping Up Behaviors 167

Contents ix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 Sys.Application 169
Background Information 169

Creating Sys.Application 170

Type Information 172

Method Information 172

Component Manager 176
Adding a Component 177

Finding a Component 179

Removing a Component 183

Getting Components 184

Initialization Routine 185
Component Creation Process 189

Load Event 198

The Unload Routine 203
Sys.Application.dispose 203

5 Adding Client Capabilities to Server Controls 207
Script-Generation Architecture 208

Behavior and Control Script Generation 208

Script Resources 214

ScriptManager 218

Adding Client-Side Behavior Using the ExtenderControl 220
ExtenderControl Overview 221

Creating an Extender Control 221

Adding Client-Side Functionality Using the ScriptControl 233
ScriptControl Overview 234

Creating a Script Control 237

Adding Client-Side Functionality to Composite Controls Using
the IScriptControl Interface 247

Composite Control Overview 247

IScriptControl Interface 249

Creating the Composite Control 249

Contentsx

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 ASP.NET AJAX Localization 255
Localization in ASP.NET 255

Determining What Needs to Be Localized 257

Running under a Particular Culture 261

Localizing Displayed Values 267

Localization in ASP.NET AJAX 277
JavaScript Localization Capabilities 277

ASP.NET AJAX Localization Capabilities 280

7 Control Development in a Partial Postback Environment 317
UpdatePanel Behavior 318
The Effects of a Partial Postback on Client Components 324

Automatic Disposal of Behaviors and Controls 329

Automatic Disposal of Components 337

Manual Disposal of a Component, Control, or Behavior 340

Loading of JavaScript Statements and Files 355
ScriptManager Registration Methods 355

Sys.Application.notifyScriptLoaded() 362

Sys.Application Events 364
The init Event 364

The load Event 365

III Communication

8 ASP.NET AJAX Communication Architecture 371
New Communication Paradigm 372
ASP.NET AJAX 2.0 Extensions Communication Architecture 374

Web Services 375

Page Methods 386

Serialization 388

Server Framework Components 394

Microsoft AJAX Library Communication Architecture 401
Service Proxies 401

Serialization 415

Contents xi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

WebRequest 417

Web Request Core 421

9 Application Services 425
ASP.NET 2.0 Membership, Role, and User Profile Services 425

Forms Authentication 426

ASP.NET 2.0 Provider Model 429

Web Site Administration Tool 431

Membership 433

Roles 439

Profiles 444

ASP.NET AJAX Application Services 448
Authentication Service 448

Role Service 453

Profile Service 456

Custom Application Services 460
HTTP Handler Factory and Supporting Classes 462

Service Proxy 473

Configuration 477

IV AJAX Control Toolkit

10 ASP.NET AJAX Control Toolkit Architecture 481
Overview of the Toolkit 482

Reliance on Attributes to Simplify Development 482

Rich Set of .NET Classes 482

Rich Set of JavaScript Classes 483

Support for Animations 483

Composition of the Toolkit 483
Installation 484

Layout of the Solution 484

Server-Based Architecture 486
Attributes 486

Base Classes for Extenders and ScriptControls 491

Designer Classes 495

Contentsxii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Client-Based Architecture 499
BehaviorBase Class 500

ControlBase Class 501

Animations 501
Animation Structure and Types 502

Client Architecture 503

Server Architecture 509

11 Adding Client Capabilities to Server Controls Using the
ASP.NET AJAX Control Toolkit 513
Adding Client-Side Behavior Using the ExtenderControlBase 513

Visual Studio 2008 Extender Control Library Template 514

Inheriting from the ExtenderControlBase Class 518

Creating the AjaxControlToolkit.BehaviorBase Class 521

Attaching the Extender to a Control 523

Final Thoughts 523

Adding Design-Time Support to Your Extender Control 524
Default Design-Time Experience 525

Adding Designers and Editors to Properties 526

Adding Animations to Your Extender Control 532
Animations Using the JavaScript API 533

Animations Using the Declarative Method 537

V Appendixes

A JavaScript in Visual Studio 2008 547
IntelliSense 547

Referencing Libraries and Web Services 548

XML Comments 551

B Validating Method Parameters 555

Contents xiii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C ASP.NET Handlers and Modules 559
ASP.NET Application Lifecycle 559
HTTP Handlers 560

Overview of HTTP Handlers 561

Overview of HTTP Handler Factory 562

HTTP Modules 565
Overview of HTTP Modules 565

D Client Error Handling Code 569
ErrorHandler Client Class 569
ErrorEventArgs Client Class 571
ErrorHandler Server Control 571
StackTrace Client Class 572
ErrorDataService Web Service 574
Test Error Page 574

Index 577

Contentsxiv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figures

Figure 1.1 Output of caught error alert 28

Figure 1.2 Output of unhandled error alert 29

Figure 1.3 Output of alert registered with timeout 32

Figure 1.4 Output of alert after we modified variable b 33

Figure 1.5 Output of the abc div tag after 7 seconds 38

Figure 2.1 IntelliSense in Visual Studio 2008 of an implicit namespace 62

Figure 2.2 IntelliSense in Visual Studio 2008 of a declared namespace 62

Figure 2.3 Output of sorted books list 71

Figure 2.4 Output of sorted newspaper list 72

Figure 2.5 Availability of base class methods 80

Figure 2.6 Output of the overridden base class method 81

Figure 2.7 Output of the editorAddedHandler method after adding Tim 92

Figure 2.8 Output of the editorAddedHandler method after adding Mark 92

Figure 2.9 Debug test page in action 99

Figure 2.10 Web Development Helper displaying the trace messages 100

Figure 2.11 Visual Studio’s output window displaying the trace messages 100

Figure 2.12 Firebug’s console window displaying the trace messages 100

Figure 2.13 Safari’s JavaScript console displaying the trace messages 100

Figure 2.14 Opera’s error console displaying the trace messages 101

Figure 2.15 The div and span with initial x,y coordinates; after moving x,y

coordinates; and the div’s final width and height 106

xv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2.16 The span with the highlight removed 107

Figure 2.17 The undefined error message 113

Figure 2.18 The object’s _name member 114

Figure 2.19 Output of _name and context 116

Figure 3.1 Class hierarchy between Sys.Component, Sys.UI.Behavior, and

Sys.UI.Control 123

Figure 3.2 Decision process between component, control, and behavior 125

Figure 4.1 The Operation Aborted error in Internet Explorer 192

Figure 5.1 Script-generation class structure 209

Figure 5.2 Selecting the Embedded Resource option of the build action 215

Figure 5.3 ExtenderControl class hierarchy 222

Figure 5.4 ExtenderControl project template 223

Figure 5.5 ExtenderControl project template structure 224

Figure 5.6 Extender Control Wizard 232

Figure 5.7 ImageRotator sample 233

Figure 5.8 ScriptControl class hierarchy 235

Figure 5.9 ScriptControl project template 238

Figure 5.10 ScriptControl project template structure 239

Figure 5.11 ImageURL Editor 242

Figure 5.12 TextBoxInfo control 246

Figure 5.13 TextBoxInfo control help alert 246

Figure 5.14 CompositeControl class hierarchy 248

Figure 6.1 The Transactions page with what needs to be localized circled 257

Figure 6.2 Fiddler view of a request’s Accept-Language header 262

Figure 6.3 Fiddler’s view of a request’s Accept-Language header with multiple

languages specified 263

Figure 6.4 Transactions page with culture selector 264

Figure 6.5 Accessing Visual Studio 2008’s Generate Local Resource tool 268

Figure 6.6 Newly Created Transactions.aspx.resx file in App_LocalResources 269

Figure 6.7 Resources in Transactions.aspx.resx 272

Contentsxvi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.8 BoundFieldResource1 in Transactions.aspx.resx 272

Figure 6.9 Transactions page using Transactions.aspx.resx 273

Figure 6.10 The three local resource files 274

Figure 6.11 The Spanish (Mexico) local resource file 275

Figure 6.12 The French local resource file 275

Figure 6.13 The Transactions page under the Spanish (Mexico) culture 276

Figure 6.14 The Transactions page under the French culture 276

Figure 6.15 The toLocaleString output of a number when the operating system is

running in French 279

Figure 6.16 The toLocaleString output of a date when the operating system is

running in French 280

Figure 6.17 The localeFormat output of a number when the operating system is

running in French 284

Figure 6.18 The format output of a number when the operating system is running

in French 284

Figure 6.19 The localeFormat output of a date when the operating system is

running in French 287

Figure 6.20 The format output of a date when the operating system is running in

French 288

Figure 6.21 The Transactions page with the amount filter 294

Figure 6.22 An English error message stating the amount values are invalid 294

Figure 6.23 A French error message stating the amount values are invalid 295

Figure 6.24 A focused and unformatted CurrencyTextBox 295

Figure 6.25 An unfocused and formatted CurrencyTextBox 295

Figure 6.26 An English error message displayed after entering an invalid

number 296

Figure 6.27 A French error message displayed after entering an invalid

number 296

Figure 6.28 Our project’s layout in Visual Studio 296

Figure 6.29 The CurrencyTextBox resource file 303

Figure 6.30 The InvalidNumberMessage resource 304

Figure 6.31 Visual Studio with the three resource files 304

Figure 6.32 The CurrencyTextBox.es-mx.resx resource file 304

Figure 6.33 The CurrencyTextBox.fr.resx resource file 304

Figure 6.34 ScriptResource attribute in AssemblyInfo.cs 305

Figure 6.35 Our new Filter.js file 310

Figure 6.36 Transactions page with “Invalid From Amount” error message 313

Contents xvii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.37 Localized Filter.js files 313

Figure 6.38 Script Documents showing Filter.es-mx.js file use 314

Figure 6.39 Our Spanish error message 315

Figure 7.1 High-level steps during partial page rendering 319

Figure 7.2 Sample UpdatePanel page browser display 321

Figure 7.3 Web Development Helper view of a partial postback 322

Figure 7.4 Web Development Helper view of a partial postback in text form 323

Figure 7.5 The initialization message in the Visual Studio Debug window 327

Figure 7.6 The dispose and second initialization messages in the Visual Studio

Debug window 327

Figure 7.7 Re-creating Comp 1 during a partial postback 328

Figure 7.8 UpdatePanel UP1’s content being replaced 332

Figure 7.9 ImageRotator extender in an UpdatePanel 335

Figure 7.10 The disposal and initialization of each component 339

Figure 7.11 The dispose script for the partial postback component 340

Figure 7.12 A HoverCard’s visual output 343

Figure 7.13 The HoverCard’s initial location 344

Figure 7.14 The HoverCard after we’ve dragged it a bit 345

Figure 7.15 Initial position of the HoverCard in the div tag 346

Figure 7.16 The HoverCard’s position after we’ve clicked the header 346

Figure 7.17 The initial view of the page wrapped in an UpdatePanel 348

Figure 7.18 The JavaScript error after we clicked the Update button 349

Figure 7.19 The second JavaScript error after we clicked the first error’s Continue

button 349

Figure 7.20 ErrorHandler’s initialization and disposal messages 354

Figure 7.21 Partial page-rendering sample 360

Figure 7.22 Alert from ClientScriptManager registration in page load 361

Figure 7.23 Alert from ScriptManager registration in page load 361

Figure 7.24 UpdatePanel response shown in Web Development Helper 362

Figure 7.25 The output of the loadHandler method 367

Figure 7.26 The output of the loadHandler method 367

Figure 8.1 ASP.NET AJAX server communication architecture 375

Figure 8.2 AJAX-enabled WCF service template 382

Contentsxviii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8.3 ASP.NET application lifecycle 395

Figure 8.4 Microsoft AJAX Library communication architecture 401

Figure 9.1 Web Site Administration 432

Figure 9.2 Web Site Administration Tool Security tab 432

Figure 9.3 Membership login sample 436

Figure 9.4 Create users using the Web Site Administration Tool 437

Figure 9.5 Managing users using the Web Site Administration Tool 438

Figure 9.6 Editing users using the Web Site Administration Tool 438

Figure 9.7 Role management using the Web Site Administration Tool 440

Figure 9.8 Managing access using roles 441

Figure 9.9 Restricting access using roles 441

Figure 9.10 Profile Maintenance page 447

Figure 9.11 Order entry screen 451

Figure 9.12 Client-side login 451

Figure 9.13 AJAX Profile Maintenance page 458

Figure 9.14 Custom application service server architecture 461

Figure 9.15 Custom application service client architecture 462

Figure 9.16 ServiceHandlerFactory HTTP handler 463

Figure 9.17 ServiceCommunication project structure 466

Figure 9.18 CommunicationSupport namespace classes 467

Figure 10.1 ASP.NET AJAX Control Toolkit attributes 487

Figure 10.2 ASP.NET AJAX Control Toolkit extender and ScriptControl base

classes 491

Figure 10.3 ASP.NET AJAX Control Toolkit design-time classes 496

Figure 10.4 Design-time experience with extender controls 497

Figure 10.5 Adding the AutoComplete page method smart tag action 498

Figure 10.6 ASP.NET AJAX Control Toolkit JavaScript class hierarchy 500

Figure 10.7 ASP.NET AJAX Control Toolkit animation containers 505

Figure 10.8 ASP.NET AJAX Control Toolkit animations 507

Figure 10.9 ASP.NET AJAX Control Toolkit animation actions 508

Figure 10.10 ASP.NET AJAX Control Toolkit declarative animation support

classes 510

Contents xix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 11.1 Extender control project template 515

Figure 11.2 Extender control project template structure 515

Figure 11.3 Extender Control Wizard 524

Figure 11.4 Extender properties on the image control 525

Figure 11.5 Image URL Collection Editor 529

Figure 11.6 Image URL Editor 530

Figure A.1 ProcessData IntelliSense 550

Figure A.2 Books.Publishers.Publisher IntelliSense 550

Figure A.3 Constructor’s IntelliSense for completion list 552

Figure A.4 Constructor’s IntelliSense underneath during selection 552

Figure A.5 IntelliSense completion list 554

Figure A.6 Parameter IntelliSense 554

Figure C.1 ASP.NET application lifecycle 560

Contentsxx

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Tables

Table 1.1 Special Number Values 7

Table 1.2 Special Characters 8

Table 1.3 typeof Evaluations 20

Table 1.4 Standard Error Properties 26

Table 1.5 Nonstandard Error Properties 26

Table 2.1 Results of the parse Method 53

Table 2.2 New String Type Methods 54

Table 2.3 New Array Type Methods 55-56

Table 2.4 Existing Error Types 58

Table 2.5 Sys.EventHandlerList Methods 89

Table 2.6 Sys.StringBuilder Methods 95

Table 2.7 Sys.Debug Methods 96

Table 2.8 Available Debug Consoles 99

Table 2.9 Sys.UI.DomElement Methods 102

Table 2.10 Attaching Event Handlers to DOM Element Events 107

Table 2.11 Sys.UI.DomEvent Methods 109

Table 2.12 Sys.UI.DomEvent Properties 110

Table 3.1 Differences between Components, Controls, and Behaviors 124

Table 3.2 Interfaces Implemented by Sys.Component 126

Table 3.3 Sys.Component Members 126

Table 3.4 Sys.Component Methods 127-128

Table 3.5 Sys.UI.Control Methods 152

xxi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 3.6 Sys.UI.Control Methods Related to Control’s Parent 154

Table 3.7 Sys.UI.Control Methods Related to Event Bubbling 155

Table 3.8 Sys.UI.Behavior Methods 159-160

Table 4.1 Sys.Application Internal Members 171

Table 4.2 Sys.Application Methods 173-174

Table 4.3 Sys.ApplicationLoadEventArgs Members 199

Table 5.1 ScriptComponentDescriptor Properties 210

Table 5.2 ScriptComponentDescriptor Methods 211

Table 5.3 ScriptReference Properties 217

Table 6.1 New Number Type Methods 282

Table 6.2 New Date Type Methods 286

Table 6.3 Sys.CultureInfo Properties 291

Table 7.1 ScriptManager Script Registration Methods 356

Table 8.1 Properties of the ServiceReference Class 385

Table 8.2 Constructors of the DataContractJsonSerializer 390

Table 8.3 Subset of Methods of the DataContractJsonSerializer 391

Table 8.4 Properties of the WebServiceError Class 403

Table 8.5 Proxy Class Properties 404

Table 8.6 WebServiceProxy Class Properties 415

Table 8.7 WebServiceProxy Class Methods 415

Table 8.8 WebRequest Class Properties 417-418

Table 8.9 WebRequest Class Methods 418

Table 8.10 XMLHttpExecutor Class Properties 422-423

Table 8.11 XMLHttpExecutor Class Methods 423

Table 9.1 Forms Authentication Elements 427-428

Table 9.2 Deny and Allow 429

Table 9.3 Provider Services and Default Classes 430

Table 9.4 Common Membership Class Properties 433-434

Table 9.5 Common Membership Class Methods 434-435

Table 9.6 Membership Controls 435-436

Contentsxxii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 9.7 Common Roles Class Properties 442

Table 9.8 Common Roles Class Methods 443

Table 9.9 AuthenticationService Properties 449

Table 9.10 AuthenticationService Methods 450

Table 9.11 RoleService Properties 454

Table 9.12 RoleService Methods 454

Table 9.13 ProfileService Properties 457

Table 9.14 ProfileService Methods 457

Table 10.1 Attributes and ScriptComponentDescriptor Methods Comparison 488

Table 10.2 ScriptReference-Related Attributes 490

Table 10.3 ExtenderControlBase Core Properties 492

Table 10.4 Animation Properties 504

Table 10.5 Animation Methods 504

Table 10.6 Animation Events 504

Table 11.1 Partial List of Fade Animation Class Properties 536

Table A.1 Param Element Attributes 553

Table C.1 HttpApplication Events 566

Contents xxiii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Foreword

TH E ASP.NET P L AT F O R M P O W E R S millions of websites around the
world today, and is perhaps one of the most productive platforms for web
development. During the nearly ten years of its development and use,
ASP.NET has formed around itself a strong community and vibrant ecosys-
tem of developers.

The page framework and the associated server controls framework are
quintessential to the success of ASP.NET and its developer experience, pro-
gramming model, and extensibility. Writing this Foreword brings back
memories of early ASP.NET days, and reminds me of the continued evolu-
tion of the framework as a platform alongside the Web.

In the late 1990s, the Web was very much a nascent application platform.
Browsers brought potential for new levels of reach, but offered few and
varying degrees of capabilities (remember HTML 3.2?), and concepts such
as “stateless programming model” presented an odd paradigm shift. Server
controls provided a set of familiar abstractions and created a component-
based rapid application development (RAD) programming experience for
the Web (à la Visual Basic) and allowed developers to feel at home as they
started to look to the Web to build the next generation of data-driven appli-
cations.

Flash forward a few years, and in 2006, the AJAX buzz created a
renewed interest in the Web as the application platform. Today, AJAX is
mainstream and, quite literally, everywhere. It enables building interactive
experiences that users have come to expect. Still, it brings new but similar

xxv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

challenges: varying browser APIs and an unfamiliar script-based pro-
gramming model. Once again, ASP.NET (and in particular, server controls)
provided a mechanism for creating a productive development model for
incorporating AJAX-based techniques, and for encapsulating server and
client behaviors into a familiar and consistent component model.

ASP.NET provides an end-to-end AJAX story. Traditional server con-
trols create a simple server-centric AJAX programming model, but they are
just a part of the story. This new generation of server controls leverages an
AJAX script framework that independently enables a client-centric AJAX
programming model. The core framework is complemented by the AJAX
Control Toolkit, which offers both a compelling set of out-of-the-box com-
ponents and an open source project for further developing the ASP.NET
AJAX stack. I am excited to see this end-to-end story uncovered and unfold
itself over the course of this book.

In this book, Adam and Joel focus on providing a beyond-the-basics drill
down of the inner workings and extensibility of the ASP.NET AJAX frame-
work by covering the programming patterns established by the script
framework, the architecture, and the techniques to create AJAX-enabled
server controls. They also cover advanced but still relevant topics such as
localization and error handling. By providing a conceptual guide to under-
standing and extending the framework, this book is sure to serve any appli-
cation or component developer who is looking to unlock the true potential
of ASP.NET AJAX.

—Nikhil Kothari
Software Architect
.NET Developer Platform, Microsoft

Forewordxxvi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

Introduction

SE RV E R C O N T R O L S A R E A N I N T E G R A L aspect of every ASP.NET applica-
tion we build. They encapsulate browser appearance and server function-
ality in a reusable object. They can be used across multiple pages within a
single ASP.NET application and across multiple ASP.NET applications.
ASP.NET comes with a lot of prebuilt server controls. We have simple con-
trols such as the label, and we have complex controls such as the GridView.
We can also create our own server controls to meet a need not met by one of
the existing controls by inheriting from the appropriate base class and over-
riding its methods as needed.

This model of using server controls to encapsulate browser appearance
and server functionality has served our needs well since the inception of
ASP.NET 1.0, but our server control needs are changing.

A new server control need that has recently surfaced is the ability to
incorporate AJAX functionality directly into the server control.

This need arose because our web applications need to be more respon-
sive and visually interactive than the traditional ASP.NET repaint-the-
entire-screen model and therefore the traditional server control supplies.
This requirement has emerged because users are using websites such as
Gmail, Live.com, Yahoo! Mail, and others that don’t repaint the screen
every time they click a button or need to receive fresh data. Rather, they rely

xxvii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

on AJAX to fetch fresh data and then update or add to a portion of the
screen based on that data. Because these websites are heavily used and
users really enjoy their experience while using these websites, they expect
other websites to perform with the same elegance as their favored sites do.
When a website doesn’t perform with the same elegance, the user often
moves on to another website that does. Those popular applications have
raised the bar for what is an acceptably user-friendly website.

Because our users are demanding a website experience that essentially
uses AJAX and we build our ASP.NET websites using server controls, we
need a way of easily creating server controls that not only encapsulate
browser appearance and server functionality, but also include AJAX func-
tionality so that the server control itself is AJAX-enabled.

Taking a step back for a moment, unlike other technologies you might
have read books about, ASP.NET AJAX server controls don’t provide you
with anything that you couldn’t already do. We’ve always been able to
embed AJAX functionality into server controls… it was just a real pain.

There were a few different methods we could use to include the
JavaScript with our server control such as embedding it as a resource, but
we eventually ended up having to do the same three tasks. To make our
server control have some serious client capabilities, we always had to con-
catenate strings together to form JavaScript statements and functions, write
browser sniffing statements to make sure that the JavaScript was cross-
browser compatible, and add attributes or render out HTML that attached
the JavaScript functionality to the client versions of our server controls. It
wasn’t impossible, but it was error-prone, and there was always this min-
gling of server code and JavaScript that was hard to maintain and even
harder to read.

Furthermore, if you had multiple server controls that had client capa-
bilities, it was difficult (but not impossible) to ensure that the client func-
tions that each server control required didn’t overwrite each other when
rendered on the browser. Tracking down that problem was always a fun
hour or so.

The difficulty grew exponentially if we wanted to include a mechanism
for asynchronously communicating with the server when the user pressed

Prefacexxviii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

a button embedded in the server control. Even with a helper communica-
tion library, there were always tricks to getting your control to communi-
cate properly with the server.

These hindrances were problematic enough to lead to some bad pro-
gramming habits and bad code and to scare programmers away from even
attempting to include AJAX functionality in their server controls.

These problems are what Microsoft ASP.NET AJAX solves.
In this book, we teach you how to use ASP.NET AJAX to create server

controls that encapsulate AJAX functionality. ASP.NET AJAX provides both
server and client programming constructs that make adding AJAX capa-
bilities to our server controls easy. Not to sound cliché, but with ASP.NET
AJAX reducing the complexity of adding AJAX capabilities to our server
controls, we can create server controls whose AJAX capabilities are limited
only by our creativity. If we want a listbox that self-updates with fresh data,
if we want a type-ahead textbox that dynamically populates from the
server, or if we want a button that submits an address for verification, we
can easily accomplish these things through ASP.NET AJAX.

The ASP.NET AJAX Components

As we go through the book we’ll be talking about the three parts of
ASP.NET AJAX: the Microsoft AJAX Library, the ASP.NET 2.0 AJAX Exten-
sions, and the ASP.NET AJAX Control Toolkit. Here’s a quick rundown of
the different components.

Microsoft AJAX Library
The Microsoft AJAX Library is the JavaScript programming framework of
ASP.NET AJAX. It provides all the client programming constructs you’ll
use to create new client objects and components. It’s contained within
the MicrosoftAjax.js JavaScript file that’s embedded in the System.Web.
Extensions DLL.

Preface xxix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ASP.NET 2.0 AJAX Extensions
The ASP.NET 2.0 AJAX Extensions are server objects such as the Script
Manager, ScriptControl, and ScriptDescriptor, which provide a connec-
tion between the Microsoft AJAX Library and our server ASP.NET devel-
opment. These server objects provide an important distinction between
ASP.NET AJAX and other AJAX frameworks because they provide a server
programming model for manipulating client code (and allow us to make
AJAX-enabled server controls!). Like the Microsoft AJAX Library, they are
included in the System.Web.Extensions DLL.

ASP.NET AJAX Control Toolkit
The ASP.NET AJAX Control Toolkit is a shared source project that is built
on top of ASP.NET AJAX. It’s an effort shared between Microsoft and the
ASP.NET AJAX community with the goal of developing powerful and
reusable ASP.NET AJAX extenders and controls.

It’s not actually part of ASP.NET AJAX, but because it provides so many
great server and extender controls, it’s invaluable to the ASP.NET AJAX
community. Creating new extender controls through it is a topic we cover
fully.

Book Breakdown

The book is divided into four major parts. In the first part, we focus on the
basics of the Microsoft AJAX Library and JavaScript, the programming lan-
guage that powers it. We call this part “Client Code.” In the second part, we
focus on a creating distributable AJAX-enabled controls, and we call this
part “Controls.” In the third part, called “Communication,” we focus on the
different ways your client control can communicate with the server. Finally,
in the fourth part, we focus on the AJAX Control Toolkit, a slightly higher-
level model of creating AJAX-enabled server controls. This final part is
aptly named “AJAX Control Toolkit.”

Client Code
Chapter 1, “Programming with JavaScript,” focuses on JavaScript, the pro-
gramming language that powers the Microsoft AJAX Library. We spend a

Prefacexxx

http://lib.ommolketab.ir
http//lib.ommolketab.ir

full chapter on JavaScript because so many developers (ourselves included)
have glossed over key details when working with the language; and
because you’re going to be writing so much JavaScript to AJAX-enable your
server controls, a solid background is important.

In Chapter 2, “Microsoft AJAX Library Programming,” we continue
where we left off in Chapter 1 by taking a look at how the Microsoft AJAX
Library builds on JavaScript to provide a programming platform a .NET
developer will find familiar.

Controls
Starting in Chapter 3, “Components,” we begin our path to creating fully
encapsulated AJAX-enabled controls by learning how to use and derive
from three key client types: components, controls, and behaviors. We talk
theory and provide a couple of practical examples.

In Chapter 4, “Sys.Application,” we cover maybe the most important
portion of the Microsoft AJAX Library as we discuss Sys.Application and
how it acts like a client runtime with which we can interact.

In Chapter 5, “Adding Client Capabilities to Server Controls,” we bring
the server into the mix when we cover how to create server components
that automatically create corresponding components.

In Chapter 6, “ASP.NET AJAX Localization,” we continue adding con-
trol capabilities with an in-depth examination of localization in ASP.NET
AJAX.

Finally, in Chapter 7, “Control Development in a Partial Postback Envi-
ronment,” we wrap up the “Controls” part with a look at the concerns sur-
rounding how the UpdatePanel affects control development.

Communication
With Chapter 8, “ASP.NET AJAX Communication Architecture,” we start
looking at communication in ASP.NET AJAX using Windows Communi-
cation Foundation (WCF) services, page methods, and the client web serv-
ice proxies.

In Chapter 9, “Application Services,” we cover the application services
and include a demonstration of how to build your own application
service.

Preface xxxi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Control Toolkit
Beginning with Chapter 10, “ASP.NET AJAX Control Toolkit Architecture,”
we start our look at the AJAX Control Toolkit. We cover the base classes that
are used by toolkit controls and the support and designer classes that pro-
vide additional features.

Finally, we conclude the book with Chapter 11, “Adding Client Capa-
bilities to Server Controls Using the ASP.NET AJAX Control Toolkit,” as we
attach client capabilities to server controls using the AJAX Control Toolkit.
This chapter includes how to build a new extender control and provide
design-time features for it.

What Is Not Covered?

You might find it strange to see a note that talks about what we’re not cov-
ering. We’re including it for two reasons.

First, this book covers a pretty narrow topic when compared to
ASP.NET AJAX at large. Because of this, we don’t have the normal intro-
ductory chapter where we walk you through the basics or history of
ASP.NET AJAX. Instead, we’re making the assumption, good or bad, that
you’ve got some ASP.NET AJAX knowledge under your belt. If you don’t,
don’t worry; getting your ASP.NET AJAX knowledge to the point where
you feel comfortable doesn’t take long, and this book will pick up right
where that basic knowledge leaves off. For this type of information, the
Microsoft ASP.NET AJAX website located at http://asp.net/ajax is an
excellent source.

Second, we’re leaving out a familiar ASP.NET AJAX subject, and we
wanted a chance to tell you and defend our decision before we got too far.
This is something that we’ve repeatedly debated between the two of us and
asked many colleagues for their opinion and was a decision that we didn’t
come to easily.

There are no chapters in which we cover how to use the UpdatePanel
server control.

Okay, you haven’t closed the book? Good. Let us explain how and why
we came to this decision.

Prefacexxxii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Simply put, the UpdatePanel is a server control. It comes with ASP.NET
AJAX and provides a quick and dirty way to refresh a portion of a page
such that the page goes through its normal lifecycle, but doesn’t refresh the
entire page when the page processing is done. Using it, we don’t have to
alter the way we’ve been programming web pages since ASP.NET 1.0 came
out. This is a good thing and was a “quick win” for Microsoft. It allowed
ASP.NET AJAX to be adopted quickly by ASP.NET developers and pro-
vided a unique advantage against other AJAX frameworks.

However, the UpdatePanel is just a server control and it’s developed in
such a way that it doesn’t have a whole lot of comparative properties with
the type of ASP.NET AJAX server control development we’re covering.

We’re not saying it’s not an important server control and that it has no
place in the AJAX world. Rather, it is an extremely valuable tool whose
complexity and correct usage is worthy of a small book; just not this one.

Finally, although we do not cover how to use the UpdatePanel, we do
cover how to create server controls so that they work correctly in an
UpdatePanel, or more specifically a partial-postback, environment. We
expect that you want your new server controls to work in any ASP.NET
environment, and a partial-postback environment is no exception. The par-
tial-postback environment, however, requires us to use some different
methods, the new ScriptManager.RegisterXXX methods being the most
common, and take some care in how we create our server controls. So,
we’ve dedicated Chapter 7 to this topic.

Why Just Server Controls?

Writing a book on just server controls allows us to delve deeply into a nar-
row topic that is extremely important to web application developers. The
ASP.NET AJAX books currently available all generally focus on the tech-
nology as a whole. Because they cover a broad range of topics, giving a taste
of everything, they have trouble really getting into how certain parts of
ASP.NET AJAX work and tend to give shallow coverage of topics that we
think are key to creating server controls. It’s been our experience that devel-
opers tend to move past the content of the more general books fairly

Preface xxxiii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

quickly because nonbasic situations arise almost immediately when work-
ing on a real-life web application.

Target Audience

This book is primarily targeted at the experienced ASP.NET developer who
has developed custom web server controls. We expect that you’re reading
this book to enhance your already proficient ASP.NET development skill
set with new ASP.NET AJAX skills. The applications you develop demand
elegance and professionalism and easy maintenance and scalability, so you
tend to use server controls to your advantage wherever possible.

Besides your experience with ASP.NET, we expect that you’re familiar
with JavaScript and the basics of ASP.NET AJAX. Therefore, we don’t cover
how to set up a new ASP.NET AJAX-enabled web application, and
although we do cover JavaScript, we start our coverage at a level where we
assume some existing knowledge.

Our goal is to provide you with the tools you need to build reusable
ASP.NET AJAX server controls or AJAX Control Toolkit extender controls.
Our feeling is that reasonably knowledgeable ASP.NET developers will be
able to learn the skills necessary to create new ASP.NET AJAX server con-
trols through this book and then add that skill to their ASP.NET develop-
ment tool bag.

Prerequisites

This book requires ASP.NET 3.5 AJAX and Visual Studio 2008. We heavily
cover features included in ASP.NET 3.5 AJAX not included in ASP.NET 2.0
AJAX and C#’s and Visual Studio 2008’s new capabilities such as automatic
properties and JavaScript IntelliSense.

Source Code

The source code for the book’s examples can be found on the book’s web-
site: www.informit.com/title/9780321514448.

Prefacexxxiv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Acknowledgments

WE A R E TO TA L LY A M A Z E D AT H O W much effort it took so many people
to make this book. From the editor to the technical reviewers, copy editors,
and marketing folks, there are a lot of people responsible for creating a
quality book other than the authors.

We first want to thank all our technical reviewers: Joe Stagner, Jason
Schmitt, Milan Negovan, and Russel Gauthier. This book wouldn’t be any-
where near as good as it is without the massive time and effort you put into
each chapter. The early drafts were rough, real rough, and your reviews let
us know it. If you hadn’t been so truthful, we would have thought that
what we had written was ready to publish, which would have been a huge
mistake. Your ability to take all our jumbled thoughts and see what we
were trying to say and put us on the path to a comprehensible, useful book
is simply amazing. There is no way we could have done this without every
piece of input you provided.

We also want to thank our project editor, Jovana San Nicolas-Shirley, for
letting us make last-minute changes and answering all our seemingly end-
less questions (and those we have still yet to ask!).

Also, we want to thank our copy editor, Keith Cline, for asking for clar-
ifications when our writing was unclear, correcting our errant grammar,
and making us sound like seasoned writers (when we’re really not!).

A special thanks goes out to our marketing team of Curt Johnson, Nancy
Valentine, and Andrea Bledsoe for getting our book out to the public.

xxxv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We also want to thank Joan Murray, our wonderful editor who not only
guided two brand new authors through their first book-writing experience,
but also managed to have a baby during it all. Congratulations again, and
thanks for providing all the support and leeway we needed to craft a qual-
ity book.

Thanks also to everyone else at Addison-Wesley who has worked on the
book, including Emily Frey, our temporary editor; Kristy Hart and Sheri
Cain, who performed early development edits; Karen Opal, who got us into
the Library of Congress; and everyone else who we’ve either forgotten or
didn’t know about!

From Adam
First, I want to thank my coauthor, Joel, for his never-ending pursuit of
excellence, both professionally and personally. Our endless discussions
about technology and life in general made writing this book a truly awe-
some experience. I also want to thank the great team at InterKnowlogy for
providing an environment that motivates someone to keep pursuing his
technical passions. The cutting-edge work that InterKnowlogy continues to
attract makes it a most challenging and exciting place to work.

From Joel
Although this book is dedicated to my wife, Stacey, I want to acknowledge
her here, too. We share an office at home and spent countless hours together
while she studied for licensing exams and I wrote. There is no way that I
would have stayed sane if you had not been there to break the monotony
and distract me when I got frustrated. Bouncing ideas and analogies off of
you was one of the most fun aspects of writing this book. You truly are an
amazing woman, a wonderful wife, an accomplished professional, and a
fantastic officemate.

Although my wife was my officemate for most evenings and weekends
of the past year, this book wouldn’t have happened and I wouldn’t be as
advanced in my career as I am without my coauthor, Adam. Adam
approached me to coauthor this book when we worked together at Inter-
Knowlogy because I had shown a greater interest in the technology than
required to just get the job done. Because I was really into the technology,

Acknowledgmentsxxxvi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

but more because I respect him so much both as a professional and a per-
son, I was immediately onboard. Although I left InterKnowlogy shortly
after we started the book, our personal and professional relationship has
only gotten stronger; and without his leadership, dedication, technical
knowledge, and industry connections, this book would have never gotten
very far nor be nearly as good as it is. Thanks, Adam, for putting up with
my endless phone calls, circular ideas, and overall pain-in-the-ass self.

My parents: Mom and Dad. Who would’ve thought that I would actu-
ally end up 50 percent Mom and 50 percent Dad? Dad, your “don’t guess,
think” advice when I was programming Pascal in high school taught me to
step back from a problem. Mom, the endless hours you dedicated working
with me on my reports, essays, and papers has made me a halfway decent
writer and not scared of the copy editor’s red pen. Also, previous oppor-
tunities I had to write for you instilled confidence in me that I could do this.

Keri, Seth, Riley, and Cameron. Thanks for always asking about the
book and encouraging me. Remember, it’ll make a good bedtime story for
the kids, and I’m sure it’ll put you to sleep, too.

All the developers at the CoStar Group, especially my teammates Jason,
Louise, and John. You guys have helped me grow as a developer and a team
member, and together we delivered a mapping solution second to none. I’m
sure the coming years will be as rewarding as the past one as we branch
into new uncharted territories.

Finally, to all my friends who have shared a beer with me in the past 14
months and heard me either cheer in happiness for completing a milestone
or curse an upcoming deadline, thanks. Believe it or not, your support
throughout this whole process has meant a lot to me.

Acknowledgments xxxvii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

About the Authors

Adam Calderon is a C# MVP and the Application Development Practice
Lead at InterKnowlogy. He is an accomplished software developer, author,
teacher, and speaker with more than 14 years of experience designing and
developing solutions on the Microsoft platform. His involvement with
ASP.NET AJAX began in late 2005 with his participation in the ASP.NET
ATLAS First Access program and later as a member of the UI Server Frame-
works Advisory Council. Adam was one of the fortunate few who were
able to work on a production application that utilized ASP.NET AJAX in its
alpha form and experienced firsthand the trials and tribulations of working
in “beta land” on this exciting technology. Visit Adam’s blog at
http://blogs.interknowlogy.com/adamcalderon.

Joel Rumerman is a Senior .NET Developer at the CoStar Group, where he
develops ASP.NET applications to support the company’s commercial real
estate information business. He is an adept software developer with more
than eight years of experience developing .NET applications and is active
in the San Diego .NET community as an author and speaker. Joel has been
working with ASP.NET AJAX since late 2005 when he started work on a
large-scale application for a worldwide independent software vendor. This
initial entry into the ASP.NET AJAX world provided him invaluable expe-
rience as he worked closely with Microsoft as a member of the ATLAS First
Access program and participated in a Strategic Design Review of the tech-
nology. Joel has gone on to implement many more solutions using ASP.NET
AJAX, including a Virtual Earth mash-up that maps commercial real estate
properties. Visit Joel’s blog at http://seejoelprogram.wordpress.com.

xxxix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PART I
Client Code

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this page intentionally blank)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1
Programming with JavaScript

A S W E C O V E R E D I N T H E PR E FA C E , ASP.NET AJAX is composed of
three distinct sections: the Microsoft AJAX Library, ASP.NET 2.0

AJAX, and the ASP.NET AJAX Control Toolkit. In this chapter, we focus on
the programming language that powers the Microsoft AJAX Library,
JavaScript.

We’re spending some time on JavaScript rather than jumping directly
into programming with the Microsoft AJAX Library because successfully
programming using the Microsoft AJAX Library requires a solid founda-
tion of JavaScript, the language it was written in and extends. As much as
the Library provides to ease client-side development and turn JavaScript
programming into an object-oriented development experience ASP.NET
developers can relate to, we still need rock-solid JavaScript skills when we
program within it. Otherwise, we won’t be able to take full advantage of
its abilities and won’t understand how to use it properly.

Because JavaScript is a full programming language, covering it com-
pletely requires a full book. If you want to master it completely, we recom-
mend JavaScript: The Definitive Guide by David Flanagan and Pro JavaScript
Techniques by John Resig. Because this book is about ASP.NET AJAX and
not JavaScript, however, we cannot cover every nook and cranny of the lan-
guage. Instead, we try to tackle concepts that you might have glossed over

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

in your day-to-day development. Topics we cover are functions as first-
class objects, primitive data types, objects, equality, variable scope, and
function arguments.

From there, we transition into developing a few objects that act like a
classic object-oriented system. We cover this because the Microsoft AJAX
Library acts like a classic object-oriented system, and it’s important to
understand the basics of how Microsoft created this system so that we can
be prepared for and understand its programming model.

Generally JavaScript

JavaScript Introduction
JavaScript can be separated into two categories: client-side JavaScript
(CSJS) and server-side JavaScript (SSJS). SSJS is used infrequently when
compared to its client-side sibling. Because we’re looking at client tech-
nologies, when we refer to JavaScript in this book we refer to CSJS.

JavaScript is actually the Mozilla Foundation implementation of the
ECMAScript standard, but the term is more commonly used to refer to all
implementations of the ECMAScript standard rather than to the Mozilla
Foundation-specific implementation. When we refer to JavaScript in this
book, we are referring to the ECMAScript standard, not the Mozilla-specific
implementation. Keep in mind, however, that different browsers have
implemented the standard in moderately different ways.

Despite its name, JavaScript is completely unrelated to the Sun
Microsystem Java programming language. Netscape changed the language
name from LiveScript to JavaScript as a co-marketing deal between
Netscape and Sun when Java was bundled with the Netscape browser, back
when Netscape was the dominate browser. In retrospect, it is a horrible
name that has been the source of confusion for many developers.

Language Attributes

Dynamically Typed

In dynamically typed languages, the data types are not declared and are
not known until execution time. This is in contrast to statically typed

Chapter 1: Programming with JavaScript4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

languages, such as C# or Java, where data types are declared and known
at compile type. Dynamically typed languages can lead to more flexible
applications when compared to statically typed languages, but developers
often prefer the clarity and error checking that declared and compiled data
types provide in a statically typed language. The example in Listing 1.1
shows legal statements in JavaScript, a dynamically typed language, which
would be illegal in a statically typed language.

Listing 1.1 Dynamic Typing

var x = 5; // set x to 5
x = "hello!"; // set x to 'hello!'

In JavaScript, this is perfectly legal because the type is associated to the
value of the variable rather than the variable itself. In contrast, this is ille-
gal in a statically typed language because the type is associated to the vari-
able and the compiler wouldn’t allow x to change its associated type from
an integer to a string.

Interpreted

Like most scripting languages, JavaScript is interpreted rather than com-
piled. Its code is stored as text and interpreted into machine instructions
and stored in memory as the program runs. This is in contrast to compiled
languages, such as C# and Java, where the code is compiled into machine
instructions or an intermediate form such as IL or bytecode in a discrete
step before program execution begins.

Functions as First-Class Objects

In JavaScript, Function is a type of built-in object. It has a property that con-
tains executable code and can be invoked using its name followed by
parentheses, (). The Function object is important because it enables us to
group code into a callable block. We actually use the Function type
unknowingly whenever we declare a new function. Whenever the keyword
function is used, it actually creates a new object of type Function passing
in the function’s body to Function’s constructor. Listing 1.2 demonstrates
this concept. The two methods, newMethod and newMethod2, are exactly the
same thing (other than their names) once interpreted and executed by the
JavaScript runtime.

Generally JavaScript 5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 1.2 Creating Functions

var newMethod = new Function("alert ('new method');");
newMethod(); // alerts "new method"

function newMethod2() {
alert ("new method");

}
newMethod2(); // alerts "new method"

Because we can create an object of type Function, we can declare func-
tions wherever we want without enclosing them inside another concept
such as a class, as we normally do in class-based object-oriented program-
ming languages. The ability to do this makes the function a first-class citi-
zen (or object) of the language.

This idea has important ramifications. It means that functions act as the
bounding construct of the language and displace what we might consider
a normal object-oriented principle, classes. No keyword represents the
common class idea found in most modern object-oriented programming
languages such as Java or C#. (The class keyword in JavaScript refers to
a CSS class.) Rather, as we discuss in the “Object-Oriented JavaScript
Programming” section later in this chapter, functions act as the boundary
for new types.

An important aspect of JavaScript functions is that they are unique only
by name, not by name plus arguments as in other languages. If we declare
one function and then declare another function with the same name, the
second function overwrites the first one.

Primitive Data Types
JavaScript has three primitive data types: boolean, number, and string.
It also has two special values: undefined and null. (We cover null and
undefined later in this section and explain the differences between
undefined the value and undefined the type.) Everything else is a variation
of the Object type, which we cover in detail in this chapter’s “Objects”
section.

booleans

A boolean has two possible values: true or false. booleans can be created
by assigning true, false, 1 (indicating true), or 0 (indicating false) to a vari-
able, as shown in Listing 1.3.

Chapter 1: Programming with JavaScript6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 1.3 Declaring boolean Variables

var x = false;
var y = true;
var z = 1;
alert (y === z); // alerts 'true'

Numbers

Numbers are always stored as 64-bit values, similar to doubles in .NET.
Because of this single number type, division between any two numbers can
produce fractional results. The number type also contains a series of special
values shown in Table 1.1. A number can be manipulated through normal
mathematical and bitwise expressions, and normal order-of-operations
precedence is applied (parentheses, exponents, multiplication, division,
addition, and subtraction). If the current value has a decimal value and a
bitwise expression is used, the number is first converted to a 32-bit integer
using rounding, the bitwise expression is applied, and then the number is
converted back to a 64-bit double.

Table 1.1 Special Number Values

Constant Definition

Number.NaN or Nan Not a number. Useful for determining
whether a variable can be coerced into a
Number type.

Number.Infinity or Infinity Represents the greatest possible value, but
has no numeric value.

Number.MAX_VALUE Largest possible number represented
within the 64 bits.

Number.MIN_VALUE Smallest possible number represented
within the 64 bits.

Number.POSITIVE_INFINITY Represents positive infinity.

Number.Negative_INFINITY Represents negative infinity.

Generally JavaScript 7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Strings

A string is a sequence of zero or more Unicode values used to represent
text. They are immutable (modification produces a new string), and there is
no separate character type that represents a string of length one.

Strings are created using quotation marks. They can be either single (')
or double (") quotation marks, but they have to be paired properly. The for-
ward slash (\) is used for escaping quotes and special characters within a
string. Listing 1.4 demonstrates some patterns used to create strings.

Listing 1.4 Declaring String Variables

var x = "Hello!";
var y = 'Hello Again!';
var z = 'Hello, I\'m Bob';

Table 1.2 shows the other special characters that use the forward slash to
escape them.

Table 1.2 Special Characters

Escape Sequence Output

\' Single quote (‘)

\" Double quote (“)

\\ Backslash (\)

\b Backspace

\t Horizontal tab

\n New line character

\r Carriage return character

\f Form feed character

\ddd Octal sequence (3 digits)

\xdd Hexadecimal sequence (2 hex digits)

\udddd Unicode sequence (4 hex digits)

Chapter 1: Programming with JavaScript8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Objects
Besides variables that are primitive data types, every other variable in
JavaScript is an object. Functions, dates, and Document Object Model
(DOM) elements, among many others, are all objects. Objects are how we
extend the language with our own types, write modular code, and gener-
ally make our code easier to understand. We use objects extensively
throughout the rest of this book, and we discuss how to use them in a clas-
sic object-oriented system later in this chapter. For now, however, let’s go
over some object basics.

Basics

First, we can create new objects in two different ways. We can use the built-
in Object type with the new keyword, or we can use an object literal. An
object literal is a string that defines the object and is begun with a left curly
brace ({) and ended with a right curly brace (}). Listing 1.5 demonstrates
using these two methods to create two new object instances.

Listing 1.5 Creating New Object Instances

var myCar = new Object();
var myCar2 = { };

Strings 9

NOTE String Concatenation Is Expensive!

Any time you assign a string to a variable, memory is allocated from
the heap to store that string. This occurs because strings are
immutable. They cannot change after they have been assigned to a
variable. Therefore, take care, where possible, to avoid concatenating
strings. Certain techniques are available, which the Microsoft AJAX
Library makes readily accessible through the Sys.StringBuilder type,
to avoid string concatenations through the use of arrays to store string
parts. We strongly suggest that if you want to write string concatena-
tion code that performs well, use the Sys.StringBuilder class just as
you would on the server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These objects already have a function available just because they’re
objects. The toString function is attached to the object’s prototype (we
explain what a prototype is in a bit), and therefore it is subsequently avail-
able on all instances that inherit from Object, which is everything.

Besides having the toString function, which would require an override
to make it output anything interesting, these objects are a bit plain because
they have no properties assigned. We can assign properties to an object
using either the Object Literal notation or through a dot notation. Listing 1.6
shows both ways as we add the make and model properties to the two object
instances we created in Listing 1.5.

Listing 1.6 Object Properties

var myCar = new Object();
myCar.make = 'Ford';
myCar.model = 'Explorer';

var myCar2 = { make: "Ford", model: "Explorer" };

JavaScript stores an object’s properties using an associative array, which
is an array that is accessed by key rather than index. The dot notation that
we used in Listing 1.6 is just another way of accessing the values in the
associative array. We could have just as easily added the properties using
array syntax. Listing 1.7 demonstrates this concept.

Listing 1.7 Object Properties as Associative Arrays

var myCar = new Object();
myCar.make = 'Ford';
myCar["model"] = 'Explorer';

alert (myCar.make === myCar["make"]); // alerts true.

Chapter 1: Programming with JavaScript10

NOTE Associative Arrays

Associative arrays are a great way of accessing a property on an object
by name. Whenever you’re tempted to use an eval statement to access
the property on an object, you can most likely access it by array posi-
tion instead.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Because objects store their properties in an associative array, we can iter-
ate over the properties using a for…in loop. Listing 1.8 demonstrates this
concept as we iterate over the properties of our myCar object.

Listing 1.8 Using a for…in Loop

var myCar = new Object();
myCar.make = 'Ford';
myCar["model"] = 'Explorer';
myCar.year = 2003;
myCar.mileage = 60000;

var propValues;
for (var propName in myCar) {

propValues = propValues + " " + myCar[propName];
}

alert (propValues); / alerts "Ford Explorer 2003 60000 ";

Just as we defined properties, we can define functions. Listing 1.9 adds
the print function to our myCar object.

Listing 1.9 Object Functions

myCar.print = function() {
alert (this.make + " " + this.model);

};
myCar.print(); // alerts 'Ford Explorer'

We could have done all of this using the Object Literal notation, too. List-
ing 1.10 shows how to create the same object using Object Literal notation.

Listing 1.10 Object Literal Notation

var myOtherCar = {
make: "Ford",
model: "Explorer",
year: 2003,
mileage: 60000
print: function() {

alert (this.make + " " + this.model);
}

}

myOtherCar.print // alerts 'Ford Explorer'

Strings 11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adding properties and functions to an existing object is useful in many
cases, but has serious drawbacks because those properties and functions
are added only to that particular instance. If we wanted to create another
object that has the same properties and functions, we would have to re-add
them to the new object instance. Fortunately, JavaScript provides other
ways of attaching properties and functions to an object so that they have to
be defined only one time. We cover this mechanism in the “Object-Oriented
JavaScript Programming” section of this chapter.

Chapter 1: Programming with JavaScript12

NOTE Expando Properties

Adding properties and functions to an object in the manner we just
discussed is called adding an Expando property. Expando properties
tend to be slow performing when compared to custom objects; so
although they have some useful purposes, their use should be limited
to those situations where you have no choice but to use them. Instead,
you should use the custom object technique we cover in the “Object-
Oriented JavaScript Programming” section of this chapter.

After we add a property or a function to an object, we can set its value
back to null by assigning null to it, as shown here:

myCar.print = null;

This is useful, but if we iterate over this object using the for…in loop,
print will still be included in the loop. If you don’t want the property at
all anymore and want to completely remove it, you can delete it from the
object using the delete command as follows:

delete myCar.print;

Deleting a property removes it from the object so that it will no longer be
returned from the for…in loop, and if accessed, it returns undefined.

JavaScript Object Notation (JSON)

JSON is a data interchange format similar to XML in purpose, but lighter
than XML when compared on the number of characters needed to define an
object with the same content. Listing 1.11 shows the JSON and XML needed
to create an object with the same content.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 1.11 JSON versus XML

[
{

"Make":"Ford",
"Model":"Explorer",
"Year": 2003,
"Type": "SUV",
"PreviousOwners" : ["Tony","Mark","Susan"]

},
{

"Make":"Honda",
"Model":"Accord",
"Year": 1999,
"Type": "Sedan",
"PreviousOwners" : ["Stacey","Bailey","Robin"]

}
]
<Cars>
<Car>
<Make>Ford</Make>
<Model>Explorer</Model>
<Year>2003</Year>
<Type>SUV</Type>
<PreviousOwners>
<Owner>Tony</Owner>
<Owner>Mark</Owner>
<Owner>Susan</Owner>

</PreviousOwners>
</Car>
<Car>
<Make>Honda</Make>
<Model>Accord</Model>
<Year>1999</Year>
<Type>Sedan</Type>
<PreviousOwners>
<Owner>Stacey</Owner>
<Owner>Bailey</Owner>
<Owner>Robin</Owner>

</PreviousOwners>
</Car>

</Cars>

JSON’s syntax is based on the Object Literal notation briefly covered
earlier, but the rules for creating valid JSON are stricter in comparison.

The first rule difference is that property names must be enclosed in full
quotation marks. In Object Literal notation, they can be enclosed in full
quotation marks, single quotation marks, or nothing at all as long as they

Strings 13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

don’t conflict with a reserved word. In JSON, every property name must
be enclosed in quotes.

The other rule difference is the type of objects that can be assigned to
properties. In Object Literal notation any primitive type or object can be
assigned to a property. Not so in JSON. In JSON, only primitive data types,
arrays, null, and object literals can be assigned to properties. Because it’s
used as a data interchange format, it makes sense that functions and other
objects aren’t allowed to be assigned to properties.

Chapter 1: Programming with JavaScript14

NOTE JSON in ASP.NET AJAX

JSON is the default response format for web services that are made
callable to client code.

Primitive Data Type Wrapper Objects

Each of the primitive data types, boolean, number, and string, has a wrap-
per object that’s accessed through the capitalized version of the primitive
data type: Boolean, Number, and String. The wrapper objects derive from
the Object data type and contain the methods (substring, length,
toString, and so on) that we seemingly use directly off variables that point
to primitive data types. Because the primitive data types just store data and
don’t have any methods or properties available to them, JavaScript silently
converts the primitive data types to and from the wrapper objects so that
we can use methods without having to cast to another object first.

As an example of this implicit conversion, consider the length property
that we use on the string data type shown in Listing 1.12.

Listing 1.12 Implicit Conversion to Primitive Wrapper Object

var x = "Hello!";
var len = x.length;

Now when we use the length property of the x variable, JavaScript actu-
ally converts the primitive string data type to its wrapper String object and
then executes the length property on it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

instanceof

instanceof determines whether an object derives from a particular type.
This operation can prove useful when programming systems that work
with inherited and derived types, but it works only with objects and does
not work with the primitive types. Listing 1.13 demonstrates instanceof in
action.

Listing 1.13 instanceof

var x = new Date();
alert (x instanceof Date); // alerts true
alert (x instanceof Object); // also returns true.

As you might expect, x is an instance of a Date and an Object because
the Date type derives from Object.

The constructor Property

The constructor property references the function that created an object. It
can be used to determine an object’s type. It is similar to the instanceof
operator, but instead of testing to see whether the object is derived or is of
a particular type, the constructor property returns the name of the func-
tion that created the object, which is really the object’s exact type. Listing
1.14 shows how to use the constructor property.

Listing 1.14 The constructor Property

var x = new Number();
if (x.constructor === Number) {

alert ("x is a number!");
}

This code snippet will alert “x is a number!” because we used the
Number constructor method to create our object.

The constructor property is key to mimicking a classic object-oriented
system, and we cover how to use it for this purpose in the “Object-Oriented
JavaScript Programming” section.

Strings 15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Variables and Function Arguments

Equality

JavaScript provides two different types of equality models: strict and not
strict. The strict equality operators compare both the value and type of the
operands and are accessed through the operators === and !==, which are
often referred to as strict equal and strict not equal. The not strict equality
operators, accessed through the operators == and !=, compare the operands
based solely on value. If the operands are not the same type, such as a
number and a string, JavaScript attempts to perform a type conversion to
an appropriate type before performing the comparison. Both equality mod-
els are useful depending on what you’re trying to accomplish, but the strict
equality operators perform a bit better because they don’t require any type
conversions before they’re executed. Most of the JavaScript code that we’ll
write and that Microsoft wrote in the Microsoft AJAX Library uses the strict
equality operators when a comparison is required.

Scope

Variables in JavaScript are scoped differently than in other block-scoped
languages such as C# or Java. In JavaScript, only the global object (the
window object in browsers) and functions are variable scope boundaries.
Other blocks, such as if-then-else statements and while loops, don’t pro-
vide a variable scope boundary. This is in contrast to other languages such
as C#, where scope can be created anywhere by enclosing code within a
pair of curly braces ({}).

Chapter 1: Programming with JavaScript16

TIP constructor Property of Primitive Data Types

Because the primitive data types don’t inherit from Object, you might
be wondering what’s returned when we examine their constructor
properties. Well, at least in Internet Explorer 7 and Firefox, the wrap-
per object’s constructor that’s associated to each primitive data type
is returned. It seems that even when attempting to access the
constructor property, JavaScript casts the primitive types to their
wrapper objects.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Not having the ability to scope variables within a block other than a
function means that variables declared inside a block other than the func-
tion block will be accessible outside that block. Listing 1.15 shows how we
can access a variable declared within an if-then statement from outside
the block and how a function acts as a scoping boundary as we unsuccess-
fully attempt to access a variable declared inside the function from the
outside.

Listing 1.15 Function-Level Variable Scope

function myMethod() {
var insideVariable = 3;
if (true) {

var unscopedVariable = new Date();
}

// successfully alerts the year
alert (unscopedVariable.getFullYear());

}

myMethod();
alert (insideVariable); // alerts undefined

As mentioned, the scoping element other than a function is the global
window. The global window is the root of the DOM and is accessed
through the window keyword. Everything that we program in JavaScript is
in some way or another attached to the global window object, and if you’ve
been procedurally programming with JavaScript, you’ve been unknow-
ingly (or maybe knowingly) using the global window object a lot. Every
time you create a variable in procedural code, you are adding that variable
to the window object. In fact, all global variables and functions can be
accessed through the window keyword, but we normally leave it off for
brevity and just use the variable or function name. To demonstrate this,
Listing 1.16 first declares a global variable and then accesses it with and
without the window prefix.

Strings 17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 1.16 Globally Scoped Variables

var myGlobalVariable = "I'm global!!";

alert (window.myGlobalVariable); // alerts "I'm global!!"
alert (myGlobalVariable); // also alerts "I'm global!!"

As you can see, there’s no difference in accessing global variables with
or without the window prefix. We half-heartedly suggest, however, that you
use the window prefix when accessing global JavaScript variables. It pro-
vides clarity on variable scope.

As for global variable usage in JavaScript, they act like global variables
in other languages and are accessible from within all scopes. They serve a
purpose, but as discussed in the “Object-Oriented JavaScript” section later
in this chapter, we can encapsulate our variables in objects, which provide
us with benefits such as preventing variable-name collisions.

Finally, variables that aren’t declared before they are used, as shown in
Listing 1.17, are dynamically declared as a global variable by the JavaScript
runtime. Having the runtime create a global variable automatically for us is
expensive because the runtime searches for the variable’s declaration in all
valid scopes before creating a new variable. To eke out the most perform-
ance of our code and to avoid frustrating, hard-to-track-down bugs, we
should always declare variables before they are used.

Listing 1.17 Undeclared Variables

myVariable = "Hello!"; // missing var keyword
alert (myVariable) // alerts "Hello!"
function myMethod() {

myOtherVariable = "hi!"; // missing var keyword
}

myMethod();
alert (myOtherVariable); // alerts "hi!";

null and undefined

null and undefined are two reserved words that deserve special attention.
null is a reserved word that means no value and is used to point a vari-

able to no data so that memory can be reused. Unlike the .NET languages,
however, null (or Nothing in VB) is not the default value of a newly

Chapter 1: Programming with JavaScript18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

declared variable. Rather, undefined is the default value of a newly
declared variable.

undefined is a primitive value and a type. Both styles of undefined are
supported by all modern browsers, but they serve different purposes. As a
primitive value, undefined refers to a newly declared variable’s default
value. As a type, undefined refers to a variable that has never been declared
and is accessed using the typeof keyword. Listing 1.18 demonstrates the
different usages of null and undefined.

Listing 1.18 Comparing null and the undefined Value

var x = null;
var y;

alert (x); // alerts 'null'
alert (y); // alerts 'undefined'-this is a value.
alert (typeof(z)); // alerts-'undefined' this is a type.
alert (y == typeof(z)); // alerts 'false'

Comparing a null valued variable and an undefined valued variable
will evaluate to true when using the nonstrict comparison and evaluate to
false when using the strict comparison, as shown in Listing 1.19.

Listing 1.19 Comparing null to Itself

var x;
alert (x == null); // alerts 'true'
alert (x === null); // alerts 'false'

This typeof comparison is using undefined as a primitive value. If we
were to use undefined as a type, using the keyword typeof to return us a
type, comparing to null will evaluate to false, using either strict or non-
strict. Listing 1.20 demonstrates this.

Listing 1.20 Comparing Using the undefined Type

var x;
alert (typeof(x) == null); // alerts 'false'
alert (typeof(x) === null); // alerts 'false'

As shown in the “Function Arguments” section later in the chapter,
undefined is useful for determining whether an argument was passed into
a function.

Strings 19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

typeof

typeof returns a string based on the data type of its operand. The operand
can be a variable, string, object, or keyword. typeof is most commonly used
to determine whether a variable has been declared and/or assigned to by
testing it against the undefined type we described earlier. Listing 1.21
demonstrates this type of usage.

Listing 1.21 Using typeof to Test Variable Declaration and Assignment

var x;
alert (typeof(x)); // alerts "undefined"

function abc (param1) {
if (typeof(param1) === "undefined") {

alert ("param1 was not supplied.");
}

}

// execute abc, but leave out the parameter
abc();

Using typeof on variables can produce some interesting results. Table
1.3 displays the results of executing typeof on variables of the stated types.

Table 1.3 typeof Evaluations

Statement Output

alert (typeof(new Array())); "object"

alert (typeof(new Object ())); "object"

alert (typeof(new Date())); "object"

alert (typeof(new String("hi!"))); "object"

alert (typeof (33)); "number"

alert (typeof (true)); "boolean"

alert (typeof ("hi!")); "string"

alert (typeof (null)); "object"

alert (typeof (undefined)); "undefined"

Chapter 1: Programming with JavaScript20

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Notice how the null, Array, and Date types return "object" as their
data types. This might seem a bit odd at first because we expect the method
call to return something more representative of the actual object, such as
"Array" or "Date". This is a quirk of the typeof function. It returns only the
base type of the operand. Because all variables at their base types are fun-
damentally either a primitive data type, an object, or undefined, those are
the only types of values that typeof returns.

Function Arguments

You can explicitly define a function’s arguments using the following com-
mon pattern:

function fn(var1, var2)

However, explicit definition isn’t required because method arguments
are always supplied to the function in a special local arguments variable.
This local variable is accessible once inside the function through
the arguments keyword. Each function has its own local arguments vari-
able, including functions that are contained within other functions. The
arguments local variable acts like a quasi-array but without any of the array
methods such as join or split. It has two properties: length and callee.
length refers to the number of entries in the array, and callee refers to cur-
rently executing function.

arguments Variable

Let’s take a look at some code that uses the local arguments variable. List-
ing 1.22 shows a function where the arguments aren’t explicitly specified,
but they are still available.

Listing 1.22 Implicit Arguments

function myMethod() {
var firstArgument = arguments[0];
alert (firstArgument); // alerts "Ford"

}

myMethod ("Ford");

Strings 21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The execution of this block of code will alert "Ford" because it was the
first argument supplied to the argument list of the method. If we had sup-
plied other arguments in the method call, they would be available in the
subsequent array positions.

We can also code functions that explicitly name parameters as they are
passed into the method. Parameters are named based on the position in
which they are listed and the order in which they are passed. The code in
Listing 1.23 explicitly names parameters as they are passed into the method
and also compares the argument at the first position in the arguments vari-
able with the named make parameter to demonstrate that they are the same
thing.

Listing 1.23 Explicit Arguments

function myMethod2(make, model) {
alert (make); // alerts "Ford"
alert (model); // alerts "Explorer"
alert (make === arguments[0]); alerts "true"

}

myMethod2("Ford", "Explorer");

Finally, if we name a parameter, but one isn’t passed in, our parameter’s
type will be undefined, as shown in Listing 1.24.

Listing 1.24 Undefined Arguments

function myMethod2(make, model) {
alert (make); // alerts "Ford"
alert (typeof(model) === "undefined"); // alerts true.

}

myMethod2("Ford");

Having the ability to pass in an arbitrary range of arguments enables us
to handle arguments in a dynamic manner. For instance, we can define a
worker method that executes another method with an arbitrary number of
parameters. Listing 1.25 demonstrates this idea.

Chapter 1: Programming with JavaScript22

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 1.25 Dynamic Arguments

function executeOtherFunction () {
if (arguments.length > 0) {

var method = arguments[0] + "("
for (var i=1; i<arguments.length; i++) {
method = method + arguments [i];
if (i < arguments.length-1) {

method = method + ",";
}

}
method = method + ");";
eval (method);

}
}

function otherFunction () {
if (arguments.length > 0) {

for (var i=0; i<arguments.length; i++) {
alert (arguments[i]);

}
}

}

executeOtherFunction ("otherFunction", "Ford", "Explorer", 1999);

Although this code demonstration is a bit contrived, this ability is use-
ful in real-world examples, such as in a dynamic code execution engine.

callee

The callee property available on a function’s local arguments variable
accesses the function being executed. Listing 1.26 shows an example of
using arguments.callee to access the sayHello method.

Listing 1.26 arguments.callee

function sayHello(name) {
alert ("Hi " + name);
alert ("My method name is: " + arguments.callee);

}
sayHello("Bob")

Strings 23

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This might seem like an unnecessary feature, but when we use anony-
mous methods, the callee property can prove especially useful because we
have no name to refer to our anonymous method if it needs to be called
again. Listing 1.27 demonstrates this idea; we implement a factorial func-
tion through recursion, which relies on an anonymous function to perform
the factorial work.

Listing 1.27 Recursive Anonymous Methods with arguments.callee

function doFactorial() {
return function(x) {

if (x<=1) {
return 1;

}
else {
return x*arguments.callee(x-1);

}
}

}

alert ("Factorial of 5: " + doFactorial()(5)); // alerts 120(5*4*3*2*1)

Chapter 1: Programming with JavaScript24

NOTE arguments.caller

caller is another property that might be available on the local
arguments variable. It refers to the method that called the currently
executing method. However, because not all modern browsers sup-
port arguments.caller, use it carefully.

this

this in JavaScript points to the current owner of the executing method. It
functions much like this in C# and can point to the global window object
if the executing method is procedural, a DOM element if the executing
method is handling a DOM event, or an object if the executing method is
contained within the object’s definition. Listing 1.28 displays the described
scenarios.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 1.28 The Different Uses of this

function proceduralFunction() {
// in a procedural function, this points to the window

}
proceduralFunction();

function clickFunction() {
// in a function that handles an event, this points to the
// DOM element (myButton)

}
myButton.onclick = clickFunction;

MyObject = function MyObject() {
this.method = function() {

// in a function contained within an object,
// this points to MyObject

}
}

var my = new MyObject();
my.method();

Error Handling
JavaScript provides two different mechanisms for trapping and handling
errors. It provides a try-catch-finally mechanism for catching and handling
errors and a global error event for handling uncaught errors.

Try-Catch-Finally Mechanism

The try-catch-finally mechanism works similarly to the one available in C#
and other languages. Code wrapped in a try block that causes an error to
be thrown transfers control to the catch block, which receives as a param-
eter an instance of the built-in Error type describing the error that occurred.
Listing 1.29 displays a basic try-catch block.

Listing 1.29 Basic try-catch Statement

try {
var a = null;
a.prop = "bad value.";

}
catch (e) { }

Strings 25

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In our example, because a is null and we try to assign a value to the
prop property, an error is thrown. When the error is thrown, the catch block
takes control. The catch block accepts a single parameter, e, which is an
instance of the Error type. The Error type has two standard properties, as
listed in Table 1.4.

Table 1.4 Standard Error Properties

Property Name Description

name The type of the error that occurred. The possible types vary
from browser to browser, but the most common ones are
Error, EvalError, RangeError, SyntaxError, TypeError,
and URIError.

message Information about the error that actually occurred.

Browsers also implement useful nonstandard error properties. Just be
careful to check for a property’s existence before accessing it. Table 1.5
details the properties.

Table 1.5 Nonstandard Error Properties

Property Name Browser Description

number Internet Explorer A proprietary number that indicates the
type of error that occurred

description Internet Explorer A string property that can hold different
information than the message property

fileName Firefox The path of the file that contains the code
that caused the error

lineNumber Firefox The line on which the error occurred

stack Firefox A stack trace of all method calls up until the
error occurred

line Safari The line on which the error occurred

sourceURL Safari The URL of the file that contains the code
that caused the error

Chapter 1: Programming with JavaScript26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once the catch block has control, it can use the error parameter for
whatever purpose you define, such as displaying a message to the user or
publishing the error back to the server using AJAX.

Strings 27

TIP Error Publishing

With the increasingly large amount of JavaScript code we’re writing
for our web applications, more errors are occurring at the browser
level. Although we’ve had general error logging mechanisms at the
server level for a while now, we’re normally blind to the errors that
crop up on client machines resulting from bad JavaScript. If you’re
writing an AJAX application, a good idea is to plan a client error pub-
lishing mechanism to send client errors back to the server so that
you’re notified of them. Just make sure it doesn’t cause any errors
itself!

We cover a client error handling component in Chapter 3, “Components,”
and you can find its source in Appendix D, “Client Error Handling
Code.”

Besides catching runtime exceptions, you can create and throw your
own errors. You do this by creating a new Error object and then throwing
it using the throw command. Listing 1.30 shows how to do so.

Listing 1.30 Throwing an Error

function fn (param1) {
if (typeof(param1) === "undefined") {

var err = new Error();
err.message = "Param1 was not supplied";
err.name = "Missing Parameter";
throw err;

}
}

try {
fn();

}
catch (e) {

alert ("Name: " + e.name + "\nMessage: " + e.message);
}

Figure 1.1 displays the output of Listing 1.30.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1.1 Output of caught error alert

The last part of the try-catch-finally mechanism is the finally block. As
with C#, the finally block always executes after either the try block or the
catch block execution is complete. It’s useful for cleaning up any variables
or objects that might have been affected by either the try or catch blocks.
Listing 1.31 shows how to use the finally block; we update a global vari-
able to the current date when the finally block executes.

Listing 1.31 Using the finally Block

window.lastExecutionCompletedDate = null;

function fn (param1) {
…

}

try {
fn();

}
catch (e) {

alert ("Name: " + e.name + "\nMessage: " + e.message);
}
finally {

window.lastExecutionCompletedDate = new Date();
}

Unhandled Exceptions

The other error handling mechanism is the global error event attached to
the window, which can be used as a catchall for unhandled errors. We can
trap unhandled errors by creating a function that handles the error event.
Listing 1.32 shows how to wire up to the error event.

Chapter 1: Programming with JavaScript28

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 1.32 The Error Event Handler

function errorHandler (message, errorURL, lineNumber) {}
window.onerror = errorHandler;

The signature for the error handler function takes three parameters: the
error message, the URL of the page where the error occurred, and the line
number of where the error occurred.

Strings 29

Figure 1.2 Output of unhandled error alert

NOTE Line Number

The line number is notoriously wrong in Internet Explorer.

Now, when an unhandled error occurs, our errorHandler method takes
over. Listing 1.33 shows a more complete version of the error handler and
code that causes an unhandled error.

Listing 1.33 Globally Handling an Error

function errorHandler (message, errorURL, lineNumber) {
var outputMessage =
"Message: " + message +
"\nURL: " + errorURL +
"\nLine Number: " + lineNumber;

alert (outputMessage);
}
window.onerror = errorHandler;

var a = null;
a.value = "bad value.";

Figure 1.2 shows the output of executing Listing 1.32.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Delayed Code Execution Using Timeouts and Intervals
JavaScript provides two ways to register code for delayed execution
through timeouts and intervals. Some common uses of timeouts and
intervals are animation, helping to check a session’s activeness at various
points in time, delayed response to a DOM event such as a mouseover, and
a whole host of other applications.

Timeouts and intervals are identical except for one difference. Timeouts
execute only after the delay expires, whereas intervals execute when the
time delay expires and then reset themselves so that they will continually
execute after the delay expires. In this sense, the time delay is really an
interval.

Timeouts

Creating a timeout is done through the window.setTimeout method. When
you call the setTimeout method, you pass in the code you want to execute
after the delay expires and the amount of the delay in milliseconds:

window.setTimeout("alert('x');", 1000);

The preceding code registers the statement alert('x'); to execute after
1,000 milliseconds has expired.

The setTimeout method returns a unique number called the timeout ID.
The timeout ID can be used to prevent the code from executing when
the delay expires by executing the window.clearTimeout method with the
timeout ID as its argument. Listing 1.34 demonstrates how to cancel the
timeout.

Listing 1.34 Canceling a Timeout

var timeoutId = window.setTimeout("alert('x');", 1000);
window.clearTimeout(timeoutId);

If the window.clearTimeout method executes before the 1,000 millisec-
ond delay expires, the timeout is canceled, and its code won’t execute.

Understanding how the code registered with the timeout (as well as
interval) executes when the delay expires is tantamount to using timeouts
successfully. In Listing 1.34, we used a string to hold the code we wanted
to execute when the delay expired. This is one code registration option that

Chapter 1: Programming with JavaScript30

http://lib.ommolketab.ir
http//lib.ommolketab.ir

setTimeout supports. In the background, JavaScript automatically wraps
our string in an anonymous function when it creates the timeout and then
executes the function when the delay expires. Listing 1.35 displays the code
that JavaScript actually executes.

Listing 1.35 Automatically Generated Function

function anonymous()
{

alert('x');
}

The other code registration option that setTimeout supports is using a
function. The function can be either a predefined function or an anonymous
function we define inline. Listing 1.36 displays the setTimeout call using an
anonymous function as its code registration method, and Listing 1.37
shows the same functionality using a predefined function.

Listing 1.36 Explicit Anonymous Function

window.setTimeout(
function () {

alert ("x");
},

1000);

Listing 1.37 Predefined Function

function preDefined() {
alert ("x");

}
window.setTimeout(preDefined, 1000);

Strings 31

NOTE Zero Parameter Methods

The automatic calls to the functions registered in the setTimeout or
setInterval methods will not pass in any parameters. The methods
we specify can be defined with parameters for use in other cases, but
if we try to access the parameters in our function after the setTimeout
or setInterval automatically calls it, the values will be undefined.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

One advantage of using a function, either anonymous inline or a pre-
defined, instead of a string expression is avoiding the complexity of con-
catenating a string. In Listing 1.38, we create two timeouts that produce the
same result. The first uses the string concatenation method, and the second
uses an anonymous function.

Listing 1.38 Explicit Anonymous Function

var a = new Date();
var b = "Hello!";

window.setTimeout ("alert ('" + b + " today is " + a + "');", 1000);

window.setTimeout(
function () {

alert (b + " today is " + a);
},

1000);

As Listing 1.38 shows, because we’re trying to use a string in the code
we want to register, the string concatenation needed to create the valid
string expression gets complicated very quickly even when working with
our simple example. On the other hand, using a function allows us to pro-
gram normally and keep the code readable. When we execute the code in
Listing 1.38, we receive two identical alerts that look something like what’s
shown in Figure 1.3.

Chapter 1: Programming with JavaScript32

Figure 1.3 Output of alert registered with timeout

There are some difficulties, however, with using a function rather than a
string. The difficulties lie in what the parameter values are when the
method executes after the delay.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The fact that the two alerts created by Listing 1.38 are identical is actu-
ally just luck. The only reason they’re identical is because the variables do
not change once we create the second timeout. We can see how fragile the
identical methods are by altering our code slightly. Listing 1.39 adds a state-
ment that updates variable b to "boo!" once we create the second timeout.

Listing 1.39 Problems with Functions and Variables

var a = new Date();
var b = "Hello!";

window.setTimeout ("alert ('" + b + " today is " + a + "');", 1000);

window.setTimeout(
function () {

alert (b + " today is " + a);
},

1000);

b = "Boo!";

Now when our timeouts execute they do not produce the same alerts.
The first timeout still produces the same alert shown in Figure 1.3, but the
second timeout produces an alert similar to Figure 1.4.

Strings 33

Figure 1.4 Output of alert after we modified variable b

The reason this happens is because of a subtlety in how the string
expression treats variables. As mentioned earlier, when JavaScript encoun-
ters the string, it wraps the string in an anonymous method, and that’s
what is executed when the delay expires. When JavaScript creates this
anonymous method and there are variables included in the string used to
create the method as there are in our example, it evaluates those parameters
at the time that the function is created. So, rather than create a function that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

looks similar to the one used in the second setTimeout method, it looks like
the one shown in Listing 1.40.

Listing 1.40 Automatically Generated Anonymous Function

function anonymous()
{

alert ('Hello! today is Sun Feb 17 21:28:36 PST 2008');
}

Now when our timeout expires it alerts the predetermined string, and
even though we’ve modified the b’s value before the timeout expires, the
modification has no effect.

In comparison, when a function is used, the function attached to the
timeout and the variable references inside the function are evaluated when
the delay expires and the function executes. This different execution pattern
means that the variables used inside the function could have been modified
since the timeout was created.

As you might have guessed, this could be an undesirable characteristic
of our timeout because we might want our timeout to use the variable’s
value as it was when the timeout was created. Yet, we also don’t want to
resort to using a string for our timeout, because it’s hard to work with.

Don’t worry; there is a way around this problem. First, let’s fix the
anonymous function version of our code, and then we can cover how to fix
the predefined function version.

If we wrap our setTimeout in a function and then immediately execute
it, we can create scope and thus remember the original values of our vari-
ables. Listing 1.41 demonstrates how we can fix the anonymous function
method.

Listing 1.41 Inducing Scope for Our Anonymous Function

var fn = function(c,d) {
window.setTimeout(

function () {
alert (d + " today is " + c);

},
1000);

}(a,b);

Chapter 1: Programming with JavaScript34

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here we define the function fn that expects the two parameters c and d.
As soon as we declare fn, we immediately execute it, passing in the variables
a and b, which at this point haven’t been modified. Those values are then
assigned to fn’s parameters c and d, respectively. Then our setTimeout
method executes, creating our timeout. We’ve replaced the variables a and
b in the timeout’s anonymous function with c and d. We are able to do this
because of a JavaScript feature called closures. Because fn’s execution will
be complete by the time the anonymous method inside the timeout executes,
you might think that the timeout’s anonymous method wouldn’t have
access to c and d. But because of JavaScript’s closure feature, c and d are still
available to the timeout’s anonymous method. The general closure principle
that we use here is that a function declared inside another function will have
access to the outer functions arguments even after the outer function’s exe-
cution has completed. We talk some more about closures later on in this
chapter when we cover object-oriented JavaScript programming.

Now, when our second timeout executes, the alert will use b’s initial
"Hello!" value instead of the latter "Boo!" value.

Strings 35

NOTE Scope Problems

Another problem with setTimeout and setInterval is that when the
code that is registered with the timeout executes, this will always be
the global window object, even if we create our timeout from within an
object. This is the case because both methods are attached to the
window object and therefore our registered code executes with the
window object as its owner. With window as the method’s owner,
the window becomes this.

Maintaining scope is a larger problem than just dealing with timeouts
and intervals. The section “Maintaining Scope” in Chapter 2,
“Microsoft AJAX Library Programming,” explains how to overcome
this problem using features in the Microsoft AJAX Library.

Fixing the predefined version is similar to the anonymous version, but
is a bit more complicated. Listing 1.42 displays the fixed version.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 1.42 Inducing Scope for Our Predefined Function

var a = new Date();
var b = "Hello!";

function preDefined(c, d) {
alert (d + " today is " + c);

}

function curry(func, a,b) {
return function() {

func(a,b);
}

}
window.setTimeout(curry(preDefined,a,b), 1000);

b = "Boo!";

When the window.setTimeout method executes, the first parameter to
the setTimeout call is actually a method call into curry, which is defined
above it. The parameters passed into the curry method are the predefined
function, a, and b. curry then proceeds to create and return an anonymous
function that will execute the predefined function with values a and b. This
anonymous function gets registered with the timeout. By passing a and b

into the curry function, we’ve again created a closure; so when the anony-
mous method executes, values a and b are what they were when the curry
method executed.

Chapter 1: Programming with JavaScript36

TIP Curry Methods

Curry methods are a common tool in functional programming. In our
case, we’re using a curry method to reduce the number of parameters.
We need to get a and b into our anonymous method, but setTimeout
accepts only methods with no parameters. To get around this, we
curry our parameters into our anonymous method early. Doing this
also enables us to retain the original values of a and b.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When Will a Timeout Execute?
Unlike .NET, the current versions of JavaScript are single threaded. It

doesn’t have the capabilities to execute more than one statement at a

time. Given that, a timeout executes when the following conditions are

true:

1. The timeout’s delay has expired.

2. No older expired timeouts are waiting to be executed.

3. The current call stack is completed.

The first condition is straightforward. The timeout’s delay must have

expired for it to be added to the list of things to execute.

The second condition, when there are no other older expired timeouts

waiting to execute, pretty much means that our expired timeout needs to

get in line. If there are other expired timeouts waiting to execute and

they’ve been in line longer than our expired timeout has, they go first.

The third condition, when the current call stack is completed, means that

while the current call stack still has instructions to execute, JavaScript will

not switch to another call stack. Example call stacks are all the code exe-

cuted by a single event handler, the callback of an AJAX method, and a

timeout’s anonymous method. When JavaScript starts executing a call

stack, it won’t stop until it has finished. When it has finished, it will be

available to execute another call stack that’s been added to the queue of

call stacks to be processed, which could be our expired timeout.

The following code illustrates how a timeout’s execution is delayed

because the current call stack hasn’t completed:

window.setTimeout ("alert ('" + b + " today is " + a + "');", 1000);

var x="";
for (var i=0; i<75000;i++) {

x+= i.toString();
}

Because the loop doesn’t complete for quite a while, the timeout can’t exe-

cute, even though it has expired.

Strings 37

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Intervals

Intervals are identical to timeouts except that the function or string expres-
sion is continuously evaluated at the specified interval until the interval is
canceled, instead of executing only one time when the delay expires. We
create an interval in Listing 1.43 using a window.setInterval method that
continually appends "hello!" to the div tag "abc".

Listing 1.43 Using an Interval

<body>
<form id="form1" runat="server">

<div id="abc" />
</form>

<script type="text/javascript">
var div = document.getElementById("abc");
var intervalId = window.setInterval(
"div.innerHTML += 'hello!';", 1000);

</script>
</body>

Figure 1.5 displays the effects of the interval executing seven times.

Chapter 1: Programming with JavaScript38

hello!hello!hello!hello!hello!hello!hello!

Figure 1.5 Output of the abc div tag after 7 seconds

Just as with timeouts, intervals can be canceled using the ID that is
returned and the clearInterval method.

Listing 1.44 Clearing an Interval

var intervalId = window.setInterval("alert('x');", 1000);
window.clearInterval(timeoutId);

Other than that, there really aren’t any other differences between an
interval and a timeout. The same rules apply to when an interval will exe-
cute and the intricacies of using expressions and functions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript Programming

Because most ASP.NET programmers have backgrounds in classic, class-
based object-oriented systems, the Microsoft AJAX Library was designed to
mimic a classic object-oriented system in JavaScript to provide a develop-
ment experience most of its audience would find welcoming. The Microsoft
AJAX Library implements new programming constructs to achieve this
classic object-oriented system, but those constructs all rely on JavaScript
language features, some of which were described in the preceding section,
for their implementations. These constructs are available for use without
understanding how they were implemented, but it’s our opinion that one
can’t successfully develop within the Microsoft AJAX Library, even with
the new, more familiar constructs, without understanding the basics of how
a classic object-oriented system can be created using out-of-the-box
JavaScript.

So, in this section, we walk through how we can achieve two common
object-oriented principles, abstract data types and inheritance in JavaScript,
without using the Microsoft AJAX Library. This should set you up for suc-
cess when you start using the constructs provided by the Microsoft AJAX
Library to create new systems.

Object-Oriented JavaScript Programming 39

NOTE A Word about JavaScript and Classic Object-Oriented
Systems

JavaScript is a prototypal object language. It can be coerced into mim-
icking a classic system, but we’re not advocating that mimicking a clas-
sic object-oriented system is in fact the best way to program with
JavaScript. In fact, some JavaScript purists believe that coercing
JavaScript in this way is sacrilegious. However, because this book is
looking at JavaScript through the ASP.NET AJAX lens and the
Microsoft AJAX Library mimics a classic object-oriented system, it
seems appropriate that we consider JavaScript in a classic system man-
ner only rather than introduce other ways of working with it.

Furthermore, there are a few different approaches to coerce JavaScript
so that it mimics a classic object-oriented system. The way we describe
in this section is just one way, and a not full-baked way at that. A cur-
sory Internet search on “object-oriented JavaScript” will show that
opinions differ greatly about how best to achieve a classic system in
JavaScript and that the idea is continually evolving.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Abstract Data Types
As stated earlier in the section “Generally JavaScript,” JavaScript doesn’t
support the class keyword as conventional object-oriented languages such
as Java, C#, and C++ do. Instead, JavaScript relies on functions having dou-
ble duty as both procedural entry points and abstract data type definitions.
In fact, every JavaScript programmer who has created a function has
already created a new abstract data type. Let’s take a look at the simple
example in Listing 1.45. The first thing we do is declare a new empty func-
tion: Book. Then we execute the function and assign it to the variable
execResult. Then we do something a bit different and use the Book function
as an object constructor.

Listing 1.45 Defining Types

function Book() {}

var execResult = Book();
var myBook = new Book();

We can do this because the function keyword doubles as both a con-
structor function and a procedural method declaration. This allows us to
both create a new object using the function and execute it as a procedural
method. The new keyword determines which path the function keyword
takes: Execute the method as a constructor or a procedural method that
returns a result.

After we have an object, myBook, we can dynamically add properties to
the instance as shown in Listing 1.46.

Listing 1.46 Adding Properties to an Instance

myBook.publisher = 'Addison & Wesley';
myBook.subject = 'ASP.NET';

alert (myBook.subject === 'ASP.NET'); // alerts true

As we described earlier, the problem with adding properties this way
is that if we create another instance of type Book, we no longer have access
to the properties we just defined because they were only added to the
instance of that object, not to the abstract data type’s definition. Listing 1.47

Chapter 1: Programming with JavaScript40

http://lib.ommolketab.ir
http//lib.ommolketab.ir

demonstrates that if we determine the typeof the subject property on
another instance of the Book type, we’re returned the undefined type.

Listing 1.47 Undefined Properties

var myOtherBook = new Book();
alert (typeof(myOtherBook.subject)); // alerts 'undefined';

If we want properties to be available to all instances of the object, we
have to define them in the constructor, which in turn adds to the abstract
data type’s definition. Listing 1.48 demonstrates this as we add the
publisher, subject, and publishYear properties to the Book type.

Listing 1.48 Defining Type Members

function Book() {
this.publisher = null;
this.subject= null;

var publishYear = 1998;
}

The this keyword that we use to define the publisher and subject

members is used to add members to the object so that they are publicly vis-
ible. The publishYear member defined using the var keyword is actually
private to the Book’s constructor. If we try to access it from outside Book,
we’ll receive undefined as the result.

Now, when we create another Book, the publisher and subject mem-
bers will be defined and initialized to null. Listing 1.49 demonstrates the
null publisher property and the undefined publishYear member.

Listing 1.49 Default Values and Private Members

var myGoodBook = new Book();
alert (myGoodBook.publisher == null);
alert(typeof(myGoodBook.publishYear) === 'undefined');

If we want to supply parameters to our constructor, we can just specify
them as we normally would for a method, as shown in Listing 1.50.

Object-Oriented JavaScript Programming 41

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 1.50 Constructor Parameters

function Book(publisher, subject, publishYear) {
this.publisher = publisher;
this.subject = subject;

var publishYear = publishYear;
}

Now, when we create a new Book, we can specify the publisher, subject,
and publish year, as shown in Listing 1.51.

Listing 1.51 Creating an Instance with Parameters

var myAJAXBook = new Book("A&W", "ASP.NET AJAX", 2007);
alert (myAJAXBook.subject === "ASP.NET AJAX");

Finally, we can assign new methods to our class to support behavior,
as shown in Listing 1.52. The two methods prefixed with this,
IsSubjectDotNet, and IsBookNewAndCool will be publicly available on
instances of the object. The methods really aren’t any different from the
publisher and subject properties. They just point to functions rather
than strings (remember, functions are objects, too). The other method,
WasPublishedThisYear, is private to the Book constructor and can be
accessed by public methods, but is not visible externally. It can, however,
access the private variable publishYear and be accessed by public mem-
bers as shown in the IsBookNewAndCool method.

Listing 1.52 Defining Publicly Visible Methods

Book = function (publisher, subject, publishYear) {
this.publisher = publisher;
this.subject = subject;

var publishYear = publishYear;

this.IsSubjectDotNet = function() {
return (this.subject.indexOf('NET') !== -1);

}

this.IsBookNewAndCool = function() {
return (WasPublishedThisYear() && this.IsSubjectDotNet ());

}

WasPublishedThisYear = function () {

Chapter 1: Programming with JavaScript42

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var currdate = new Date();
return (currdate.getFullYear() === publishYear);

}
}

var myFinalBook = new Book('A&W', '.NET', 2007);

// alerts true
alert (typeof(myFinalBook.WasPublishedThisYear) === "undefined");
// alerts true
alert (myFinalBook.IsSubjectDotNet());
// alerts false
alert (myFinalBook.IsBookNewAndCool());

This is a complete definition of an abstract data type in JavaScript. We
could use this abstract data type on any page in a repetitive, consistent
manner, but it has a major problem. Every time the Book constructor is exe-
cuted, it assigns the publisher and subject properties their respective val-
ues, but it also creates and assigns the IsSubjectDotNet and
IsBookNewAndCool functions to the current object, this. Creating and
assigning the functions this way is actually quite expensive in terms of exe-
cution time and resources. However, there is a better way to create and
assign functions to an abstract data type. From the “Generally JavaScript”
section, you know that the objects in JavaScript are prototype based. If
we edit the Book’s prototype and add the IsSubjectDotNet and
IsBookNewAndCool methods to it, when we create a new Book instance we
will use its prototype as the template. This will reduce the execution time
for creating a Book instance and also reduce the memory footprint each
instance holds. Listing 1.53 demonstrates adding the methods to the Book’s
prototype instead of creating them and assigning them to each Book
instance.

Listing 1.53 Defining Prototype-Based Methods

Book = function (publisher, subject, publishYear) {
this.publisher = publisher;
this.subject = subject;

var publishYear = publishYear;
WasPublishedThisYear = function() {

var currdate = new Date();
return (currdate.getFullYear() === publishYear);

}
}

Object-Oriented JavaScript Programming 43

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 1.53 continued

Book.prototype.IsSubjectDotNet = function() {
return (this.subject.indexOf('NET') !== -1);

}

Book.prototype.IsBookNewAndCool = function() {
return (WasPublishedThisYear() && this.IsSubjectDotNet ());

}

var myFinalBook = new Book('A&W', '.NET', 2007);

// alerts "true"
alert (myFinalBook.IsSubjectDotNet());
// alerts "false"
alert (myFinalBook.IsBookNewAndCool());

Now, whenever a new Book instance is created, its methods are cloned
from its prototype. Using the prototype method is the best performing way
to create methods and assign them to an abstract data type’s definition
because only one copy of the methods is created and stored versus creat-
ing them for each object instance.

Prototyping in a Prototype Language

The concept of prototyping is the major tenet of prototype-based lan-
guages, of which JavaScript is one. In prototype-based languages, objects
are not instantiated by creating an instance of a particular class from a class
definition, but rather are cloned from existing objects and thus copy the
behavior (the prototype) of the existing object, preserving the same quali-
ties as the original. To create a new object type, we modify the prototype of
an object and then clone it as needed. In JavaScript, we modify an object’s
prototype by manipulating a special property called prototype. This is
what we did in the example in Listing 1.53. An interesting property of pro-
totypes is that when we manipulate an object’s prototype, all instances of
that object recognize the change immediately. For instance, if we add a new
function to our Book’s prototype, when we have an instance of the object the
instance of the object will be able to access the new function. Listing 1.54
demonstrates this idea as we add a new method, toArray, and access it
from our previously created myFinalBook variable.

Chapter 1: Programming with JavaScript44

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 1.54 Modifying an Existing Object’s Prototype

...
// create the object.
var myFinalBook = new Book('A&W', '.NET', 2007);

// modify the prototype
Book.prototype.toArray = function() {

return [this.publisher, this.subject];
}

// new method is available on object
alert (myFinalBook.toArray().length);

Object-Oriented JavaScript Programming 45

NOTE A Word about Closures

The “Abstract Data Types” section we just went over relies heavily on
the idea of closures. We didn’t mention them by name because explain-
ing them and how they work can be a bit difficult, and we really
wanted to relate this section to an object-oriented principle with which
you might be more familiar.

For those who care, however, a closure is defined as a method that con-
tains local variables and inner functions that still exist after the outer
method has completed its execution. Put into more practical terms, a
closure is implemented by having one function contain another with
a pointer to the inner function being available after the outer function
has exited. The IsBookNewAndCool function in Listing 1.52 is an exam-
ple of an inner function declared inside an outer one that’s available
after the Book constructor exited, and thus a new closure was formed
when we created an instance of the Book type. Important to note is that
a new closure is formed every time we create a Book instance, and
hence the memory footprint of a creating a Book closure that contains
a lot of inner functions is large as we explained in the discussion of
Listing 1.52.

Closures can be used for many different programming tasks other than
what we’ve used them for in this section and also have some serious
caveats when it comes to garbage collection, performance, and usage.
For more information, we suggest reading the excellent blog entry at
http://blog.morrisjohns.com/javascript_closures_for_dummies. For
the more theoretical ideas, check out www.jibbering.com/faq/
faq_notes/closures. html.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inheritance
Another important principle of object-oriented development is inheritance.
Inheritance is defined as a derived object taking over (inheriting) the data
and behavior of another object. This is a common feature in most object-
oriented languages and something we assume you’re familiar with.
JavaScript presents some unique challenges when it comes to inheritance
because it doesn’t provide an apparent inheritance mechanism directly in
the language, and it’s left up to the developer to implement an inheritance
pattern. Let’s take a look at one way we can implement the inheritance pat-
tern in JavaScript by continuing with our Book example.

Using our Book type we defined in Listing 1.53, we want to define a new
type called TextBook that inherits from Book. We also want to add a new
gradeLevel property to TextBook. To achieve the inheritance, we have to
follow three steps. First, we have to define our new TextBook type and
chain its constructor to Book’s constructor so that when a TextBook is cre-
ated and its constructor executed, Book’s constructor also executes. Second,
we need to have our class functions accessible to our derived type, and
finally we need to ensure that when queried our derived type returns the
correct information regarding its type.

To start, we need to chain our derived type’s constructor to our
base type’s constructor. To do this, we write a helper function called
initializeBaseType that will execute our base type’s constructor. We’re
going to attach initializeBaseType to Object’s prototype so that we can
use it from any object. Listing 1.55 shows the code for initializeBaseType.

Listing 1.55 Defining initializeBaseType

Object.prototype.initializeBaseType = function (baseType, args) {
if (arguments.length > 1) {

baseType.apply(this, args);
}
else {

baseType.call(this);
}

}

initializeBaseType uses either apply or call to execute the baseType’s
constructor in the scope of this, which will be the derived type, thus cre-
ating all the base class’s elements on the derived type.

Chapter 1: Programming with JavaScript46

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We can then use this helper method when we define our new TextBook
type, as shown in Listing 1.56.

Listing 1.56 Calling a Base Constructor Using initializeBaseType

TextBook = function(publisher, subject, publishYear, gradeLevel) {
this.gradeLevel = gradeLevel;
this.initializeBaseType (Book, [publisher, subject, publishYear]);

}

Now, when we create a new TextBook, the initializeBaseType method
is executed, and all of Book’s properties are assigned to this, the current
object. Listing 1.57 shows the base property publisher available to the
myTextBook variable that was created using the TextBook constructor.

Listing 1.57 Accessing Inherited Properties

var myTextBook = new TextBook("A&W", "ASP.NET AJAX", 2007, 11);
alert (myTextBook.publisher);
alert (myTextBook.gradeLevel);

This works for inheriting properties and functions attached to an object
as properties (i.e., using this), but we also need to attach methods that are
attached to the base type’s prototype to the derived type so that we can
inherit behavior and data. There are a couple of ways to accomplish this,
but a simple way is to assign a new instance of the base type to the proto-
type of the derived type. The following code shows an example of this pat-
tern with TextBook’s prototype being assigned an instance of a Book:

TextBook.prototype = new Book();

In assigning an instance of Book to TextBook’s prototype, we are in
essence assigning Book’s public prototype to TextBook’s private prototype.
Whenever we attempt to access one of Book’s methods on a TextBook
instance, JavaScript will search for that method in the public prototype of
TextBook. When it determines that the method doesn’t exist on its own pro-
totype, it walks to the next prototype in the chain, in this case Book’s, and
attempts to locate the method there. If it finds it there, the method is exe-
cuted; but if it doesn’t find it there, it continues walking the prototype chain
until the chain is exhausted or the method is found and executed. The chain
is exhausted when Object’s prototype is reached and searched. Initially,

Object-Oriented JavaScript Programming 47

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object’s prototype is null, but like any other object, Object’s prototype can
be extended.

Chapter 1: Programming with JavaScript48

WARNING Inheritance Implementation

Defining inheritance this way is a bit limited because we need to
ensure that executing a parameterless constructor on Book has no
undesirable side effects. There are other ways to associate Book’s meth-
ods to TextBook that are more robust and have less potential for prob-
lems; for the purposes of this example, however, associating the
methods through instance assignment is sufficient.

This prototype chain walk we just described also gives us a way to over-
ride base methods in a derived type. If our derived type redefines a method
that is defined on the base type, our prototype walk stops at the derived
instance’s method instead of continuing to the base type’s prototype. List-
ing 1.58 demonstrates an example of redefining the IsBookNewAndCool
method.

Listing 1.58 Redefining a Base Class Method

TextBook.prototype.IsBookNewAndCool = function() {
return (this.gradeLevel > 7 && WasPublishedThisYear());

}

The final feature of inheritance is the ability to execute a base class method
from the inherited class. For instance, what if we want to execute Book’s
IsBookNewAndCool method from within TextBook’s IsBookNewAndCool

method? Unfortunately, this isn’t a trivial problem, and it can be a bit cum-
bersome to solve in a super clean way within JavaScript. For the purposes
of our simplistic inheritance example, we can use the code shown in
Listing 1.59.

Listing 1.59 Executing a Base Class Method

TextBook.prototype.IsBookNewAndCool = function() {
return (this.gradeLevel > 7
&& Book.prototype.IsBookNewAndCool.call(this));

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The problem with this code is that it limits us to hard coding our base
class’s name in the derived class method. It would be much cleaner to use
a keyword such as base or super as other object-oriented languages do, but
because JavaScript lacks the ability for a class to know about its base class,
we would have to implement our own base or super keyword and its asso-
ciated functionality. This isn’t impossible—after all, ASP.NET AJAX and
other frameworks do it—but it’s beyond the scope of this book.

Finally, now that we’ve pointed TextBook’s prototype at an instance of
Book, the public constructor property that points back to the method that
created the object is broken. If we test Textbook.prototype.constructor,
we’ll receive the result Book because we’ve cloned its prototype and
assigned it to TextBook’s. To fix this, we need to repoint our TextBook’s
constructor property back to itself:

TextBook.prototype.constructor = TextBook;

To recap our new code, Listing 1.60 displays the full code listing for cre-
ating a new TextBook type that inherits from Book.

Listing 1.60 Complete Code Sample

// Define our new helper method
Object.prototype.inherits = function (parentType) {

if (arguments.length > 1) {
baseType.apply(this, arguments);

}
else
{

baseType.call(this);
}

}

// define our new TextBook type
TextBook = function (publisher, subject, publishYear, gradeLevel) {

this.Inherits (Book, publisher, subject, publishYear);
this.gradeLevel = gradeLevel;

}

TextBook.prototype.IsBookNewAndCool = function() {
return (this.gradeLevel > 7

&& Book.prototype.IsBookNewAndCool.call(this));

TextBook.prototype = new Book();
TextBook.prototype.constructor = TextBook;

Object-Oriented JavaScript Programming 49

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SUMMARY

In this chapter, we walked through JavaScript, the programming language
of the Microsoft AJAX Library. We began with some JavaScript features and
continued by mimicking a classic object-oriented system. Understanding
how JavaScript works and how to use it is tantamount to successfully pro-
gramming using the Microsoft AJAX Library and understanding the code
and features we discuss in the rest of the book. The language’s nuances and
prototypal object pattern can seem a bit odd at first, but it also provides a
unique programming experience once accustomed to. As we move through
the rest of the book, we use what we’ve worked through and add it to other
JavaScript tidbits of information.

Chapter 1: Programming with JavaScript50

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2
Microsoft AJAX Library
Programming

N O W T H AT W E’V E C O M P L E T E D our dive into JavaScript and object-
oriented concepts as implemented in JavaScript, let’s start to examine

the Microsoft AJAX Library.
The Microsoft AJAX Library is a JavaScript framework that exists to

make JavaScript programming easier and quicker. It provides objects and
programming constructs that we can use to build applications at a more
abstract level than if we had to manipulate plain JavaScript. It’s designed to
be approachable to ASP.NET developers, so you’ll see many concepts and
types that look similar to ones an ASP.NET developer will have come across
when building pages and controls.

There’s nothing magical about the Microsoft AJAX Library, and there’s
nothing in it that we couldn’t have written using plain JavaScript ourselves.
The beauty of it is that a bunch of JavaScript experts got together and
crafted something that the rest of us could understand and reuse to pro-
duce code that is cross-browser compliant, less error-prone, better per-
forming, and easier to read and maintain.

In this chapter, we examine the types and objects that provide the ben-
efits we just mentioned. We start out by exploring new features attached to
the built-in types that address some of their shortcomings. We move on to
covering a development pattern called the Prototype Model that enables

51

http://lib.ommolketab.ir
http//lib.ommolketab.ir

you to build custom object-oriented types to extend the Library. While cov-
ering the Prototype Model, we cover how we’re using a new type system
that’s defined in the Library that enables inheritance and interface imple-
mentation. Finally, we wrap up this chapter with a look at five new impor-
tant types—Sys.EventHandlerList, Sys.StringBuilder, Sys.Debug,
Sys.UI.DomElement, and Sys.UI.DomEvent—which are available within the
Library.

Extending the Built-In JavaScript Types

As discussed in Chapter 1, “Programming with JavaScript,” JavaScript con-
tains a series of built-in types: objects, arrays, dates, strings, errors,
booleans, numbers, and functions, among others. These built-in types,
however, have some faults. Sometimes they lack key capabilities such as
trimming a string, and sometimes they make performing a simple task,
such as inserting an item into the middle of an array, more difficult than it
needs to be.

The Microsoft AJAX Library attempts to overcome some of the built-in
types’ problems by extending them with new features.

Booleans
The Microsoft AJAX Library extends the built-in Boolean type with a single
method: parse. parse converts a string representation of a logical value into
a Boolean object. It’s used with the following syntax:

var myBool = Boolean.parse(stringValue);

The result of the parse operation depends on the stringValue. Table 2.1
lists the possible values for the stringValue argument and what their parse
result is.

Chapter 2: Microsoft AJA X Library Programming52

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 2.1 Results of the parse Method

stringValue Parse Output

"true" true

"false" false

"True" true

"False" false

true Error, value must be string

false Error, value must be string

0 Error, value must be string

1 Error, value must be string

23432 Error, value must be string

"test" Error, value must be true or false

As you can tell from the results, only "True" and "False"—both upper-
case and lowercase—are parsed successfully. This feature might seem shal-
low, but it really comes in handy when we need to accept user input and
don’t want to be too picky about the format in which they provide it.

Extending the Built-In JavaScript Types 53

NOTE Wrapper Objects

The new methods that we’re discussing here are all attached to objects.
Remember, the primitive data types: number, boolean, and string,
only hold data. It’s their respective wrapper objects: Number, Boolean,
and String that have attached functions.

Dates and Numbers
The new methods for working with dates and numbers all have to do with
formatting and localization. We cover these topics in detail in Chapter 6,
“ASP.NET AJAX Localization,” so we defer to that chapter for information
about the extensions provided to the date and number types.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Strings
The Microsoft AJAX Library extends the built-in String type to include
some new methods that .NET developers will find familiar. Table 2.2 lists
the methods and syntax.

Table 2.2 New String Type Methods

Method Name Description Syntax

startsWith Determines whether a String var beginsWith =
object begins with the stringObject.startsWith
specified string (prefix);

endsWith Determines whether a String var endsWith =
object ends with the stringObject.endsWith
specified string (suffix);

trim Removes leading and trailing var trimmedString =
whitespace from a String stringObject.trim();
object

trimEnd Removes trailing whitespace var trimmedString =
from a String object stringObject.trimEnd();

trimStart Removes leading whitespace var trimmedString =
from a String object stringObject.trimStart();

format Replaces each format item in var formattedString =
the String object with a String.format(format,
corresponding value args);

var formatted =
String.format("{0:d}
items", 6);

// formatted = "6 items"

localeFormat Replaces each format item in var formattedString =
the String object with a String.localeFormat
corresponding value, (format,args);
calculating that value based var formatted =
on the current culture String.localeFormat

("{0:d} items", 6);
// formatted = "6 items"

Chapter 2: Microsoft AJA X Library Programming54

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The methods are pretty self-explanatory, so we leave the examples to
you.

Arrays
As with the String object, the Microsoft AJAX Library extends the built-in
Array object with useful methods that will be familiar to .NET developers.
Table 2.3 details the new methods. Notice that all the methods are static.

Table 2.3 New Array Type Methods

Method
Name Description Syntax

add Adds an item to the end Array.add(arrayObject, item);
of the Array object.

addRange Adds a series of items to Array.add(arrayObject, [a,b,c]);
the end of the Array object.

insert Inserts an item into an Array.insert(arrayObject, item, 3);
Array object at the
specified position.

enqueue Adds an item to the end Array.enqueue(arrayObject, item);
of the Array object.

remove Removes an item from an var success = Array.remove
Array object and returns (arrayObject, item);
a Boolean value indicating
whether the item was
removed successfully.

removeAt Removes an item from an Array.removeAt(arrayObject, 3);
Array object at the
specified position.

Extending the Built-In JavaScript Types 55

NOTE format and localeFormat

The format and localeFormat methods deserve a little more attention
than Table 2.2 provides. Rather than cover it here, we cover it in Chap-
ter 6 when we cover the localization and globalization of all objects,
including dates, numbers, and strings.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 2.3 continued

Method
Name Description Syntax

dequeue Removes and returns the var dequeuedItem =
first of the Array object. Array.dequeue(arrayObject);

contains Determines whether an var isContained =
item is in the Array object. Array.contains(arrayObject, item);

indexOf Returns the index of an var indexOfItem =
item in the Array object. Array.indexOf(arrayObject, item);
If it isn’t found, -1 is
returned.

foreach Executes a function Array.forEach(arrayObject, fn,
against each item in the context);
Array object.

clone Creates and returns a var clonedArray =
shallow copy of the Array Array.clone(arrayObject);
object.

clear Clears the Array object. Array.clear(arrayObject);

parse Converts a string into an var newArray =
Array object. Array.parse("[1,2,3,4]");

Most of the new methods attached to the Array type aren’t really new.
Instead, they wrap single-statement calls on an array instance. For instance,
the removeAt method just calls a single line of code:
arrayVar.splice(index, 1);

Good or bad, the Microsoft AJAX Library wraps the native array meth-
ods with ones that are more familiar to the .NET developer.

One of the new array methods that provide functionality other than
wrapping a single statement is the forEach method.

forEach

As stated in Table 2.3, the forEach method executes a function against each
element of an array, and its syntax is as follows:

Chapter 2: Microsoft AJA X Library Programming56

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Array.forEach(arrayObject, fn, context);

The array containing the elements is the first parameter, and the func-
tion we want to apply to each array element is the second parameter. The
third parameter can be anything we want it to be, and it will be available
as the current context (i.e., this) whenever the function we’ve defined gets
executed.

The function that we define to apply to each array element has a spe-
cific syntax we follow. The syntax is this:
function fn(element, index, arrayObject) { }

With this function, the first parameter is the current element, the second
parameter is the index of the current element in the array, and the third
parameter is the array containing all the elements.

Within the function, this is the context parameter that we originally
passed into our forEach method call. Listing 2.1 demonstrates a full exam-
ple of the forEach method.

Listing 2.1 Using Array.forEach

var myArray = Array.parse(
"[
'Joel@example.com',
'Adam@example.com',
'Bob@example.com'

]");
var emailTo = '';
function buildEmailTo (emailAddress, index, arrayObject) {

emailTo += emailAddress + this;
}

Array.forEach(myArray, buildEmailTo, ';');

// alerts 'Joel@example.com;Adam@example.com;Bob@example.com;'
alert (emailTo);

The purpose of the forEach method is to help you write less code by
providing a logical loop structure that allows you to execute an arbitrary
method on each element. If used properly, you can avoid writing the same
loop more than once.

Errors

We covered JavaScript’s built-in error handling framework in the “Error
Handling” section of Chapter 1. The Microsoft AJAX Library extends the

Extending the Built-In JavaScript Types 57

http://lib.ommolketab.ir
http//lib.ommolketab.ir

error handling framework with .NET-like concepts and includes a set of
predefined errors. Table 2.4 details the new error types provided by the
Microsoft AJAX Library.

Table 2.4 Existing Error Types

Name Similar .NET Exception Description

argumentNull System.ArgumentNullException Argument is
null.

argumentOutOfRange System.ArgumentOutOfRangeException Argument was
outside the
range of valid
values.

argumentType None Argument can-
not be converted
to an expected
type.

argumentUndefined System.NullReferenceException Argument is
unexpectedly
undefined.

invalidOperation System.InvalidOperationException Cannot execute
operation at the
current state of
an object.

notImplemented System.NotImplementedException Method isn’t
implemented.

parameterCount None Parameter count
mismatch.

Creating New Error Types

You might want to create a new reusable error type, and you can follow the
Microsoft AJAX Library’s pattern of error creation to accomplish this. To
start, let’s define our new error. Our new error is going to be called the
nonPositive error, and it is intended to be thrown when it is determined
that a number is less than zero. Listing 2.2 details our code.

Chapter 2: Microsoft AJA X Library Programming58

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.2 Defining an Error Type

Error.nonPositive = function(value) {
var displayMessage = "NonPositive Exception: " + value;
var e = Error.create(displayMessage,

{"name": "NonPositive" }
);
e.popStackFrame();
return e;

}

Our nonPositive error is just a new object type. It is considered a new
Error type because it returns an Error object as its return value. In the
method body, the Error.create statement creates the Error object. It cre-
ates it with an error message string, and then adds an object that contains
additional information about the error. Then, the e.popStackFrame call
attempts to attach the current call stack to the error.

Extending the Built-In JavaScript Types 59

NOTE popStackFrame

The popStackFrame error has an effect only when the browser supports
a stack property on the Error object. Current browsers are Mozilla
Firefox and Opera.

Finally, the error is returned as the function’s return value.

NOTE Error Object

We attached the nonPositive error to the global Error object, but
doing this was just a design decision for this particular error. We could
have left it as a standalone object, or we could have attached it to some
other namespace.

Now that we’ve defined our error, let’s use it. Listing 2.3 creates and
throws the error if it determines that the value passed in is less than zero.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.3 Throwing an Error

function runTest(value) {
try {

if (value < 0) {
throw Error.nonPositive(value);

}
}
catch (e) {

if (e.name === "NonPositive") {
alert (e.message);

}
}

}

runTest(-2);
runTest(2);

Extending the Microsoft AJAX Library

The Microsoft AJAX Library was designed to be extensible so that it can be
adapted to your application’s needs. We extend it by creating custom
objects through a development pattern called the Prototype Model and the
Library’s type system. We can extend it with new types of classes, inter-
faces, and enumerations.

The Prototype Model consists of four steps:

1. Namespace declaration

2. Type declaration

3. Public interface declaration

4. Type registration

Each individual step is straightforward, with the bulk of the program-
ming work residing in the type and public interface declaration. Let’s look
at each step in detail as we build a simple class.

Classes
Classes are used to define objects that contain attributes and behaviors.
These attributes and behaviors are normally linked to form a logical group-
ing of information and behavior.

Chapter 2: Microsoft AJA X Library Programming60

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Namespace Declaration

A namespace declaration is completely optional, just as it is in .NET pro-
gramming, but using it provides the same benefits as it does in .NET. It
helps group our types into logical blocks that are easier for us to compre-
hend and manage. We might have a utilities namespace or a controls name-
space. Using a namespace also helps prevent naming collisions.

Creating a namespace is done through a single line of code. The syntax
for creating a namespace is as follows:
Type.registerNamespace("namespace");

Extending the Microsoft AJA X Library 61

NOTE The Type System

The type system (or Type object depending on how you look at it) is a
new global object supplied by the Microsoft AJAX Library. It’s respon-
sible for registering classes and namespaces, implementing inheritance
and interfaces, and a whole host of other tasks. It is similar in func-
tionality to the type system in the .NET Framework. We use the type
system extensively as we walk through creating new types.

Listing 2.4 demonstrates a few different namespace declarations.

Listing 2.4 Declaring Namespaces

Type.registerNamespace ("Books.Publishers");
Type.registerNamespace ("Books.Authors");
Type.registerNamespace ("Some.Other.Namespace");

There are two important points to understand when declaring name-
spaces. First, declaring a namespace as we did with Type.register
Namespace("Books.Publishers") actually declares two namespaces:
Books and Books.Publishers. The outer namespace, Books, is implicitly
created when we declare the more specific namespace Books.Publishers.
This means that we don’t have to explicitly declare the Books namespace to
use it. Figure 2.1 shows how Visual Studio’s IntelliSense picks up the inner
namespace’s availability, although we didn’t explicitly declare it, and Fig-
ure 2.2 shows the availability of the full namespace, Books.Publishers,
that we explicitly declared.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2.1 IntelliSense in Visual Studio 2008 of an implicit namespace

Chapter 2: Microsoft AJA X Library Programming62

Figure 2.2 IntelliSense in Visual Studio 2008 of a declared namespace

The second point is that registering the same namespace more than once
is okay. When you are working with a system of JavaScript files, more than
one file might require a specific namespace such as Web.Behaviors. Because
the file creator won’t know whether both files will always be used together,
each file needs to declare the namespace within itself to guarantee its avail-
ability. Because of this requirement, the Microsoft AJAX Library keeps track
of which namespaces are already created and ignores namespaces that are
declared more than once.

NOTE IntelliSense in Visual Studio 2008

IntelliSense in Visual Studio 2008 has improved dramatically. We cover
it in detail in Appendix A, “JavaScript in Visual Studio 2008.”

Type Declaration

In pure technical terms, a type declaration is a variable name assigned to a
Function object whose purpose is to act as a constructor method and create
an object of that type (a concept we covered in Chapter 1). The type decla-
ration also contains members that should be created and assigned to each
instance of that type and are meant to be accessed through the public

http://lib.ommolketab.ir
http//lib.ommolketab.ir

interface. Listing 2.5 defines a new type, Publisher, using the Books.
Publishers namespace we declared in Listing 2.4. The code also attaches
two new members to the type: _name and _city.

Listing 2.5 Defining a Type

Books.Publishers.Publisher = function() {
this._name = null;
this._city = null;

}

Extending the Microsoft AJA X Library 63

TIP Classes Are Functions!

The importance of understanding that a class is a variable assigned to
a Function object is something that we can’t stress enough. It is per-
haps the most crucial piece of information you need to understand to
comprehend the Prototype Model.

NOTE Capitalizing Constructor

When defining methods that are intended to be used as constructor
methods, we use PascalCase, resulting in each word in the function’s
name being capitalized.

We can also pass in parameters to the constructor method as shown in
Listing 2.6.

Listing 2.6 Defining a Constructor with Parameters

Books.Publishers.Publisher = function(name, city) {
this._name = name;
this._city = city;

}

NOTE Privacy

When defining types in this manner, there is no real concept of privacy.
Our want-to-be private members can be accessed from an instance of that
type just by requesting the member name. We can’t declare the name and
city members we just defined as private, as we can in .NET, and have the
JavaScript runtime enforce the privacy. The best we can do using this

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Finally, in the case that our type inherits from another type, we need to
call the base class’s constructor when our constructor is executed. This is
done using the initializeBase method, as shown in Listing 2.7.

Listing 2.7 Initializing Inheritance

Books.Publishers.Publisher = function(name, city) {
Books.Publishers.Publisher.initializeBase(this, [name]);
this._name = name;
this._city = city;

}

The initializeBase method takes as a parameter the pointer to the cur-
rent object, this, and an argument array. In cases where there are no argu-
ments to pass to the base type’s constructor, the argument array can be set
to null or not passed in at all. In other cases, we can selectively pass the
arguments our base class requires, as we do in the Listing 2.7, by creating
a new array.

Chapter 2: Microsoft AJA X Library Programming64

TIP Executing initializeBase

Even if our type doesn’t inherit from another type, executing
initializeBase is recommended. It won’t hurt anything, and because
we define what our type inherits from in another section of code, it’s
possible that we’ll change its inheritance at a later point and forget to
include the initializeBase method. If we just include it from the
beginning, we won’t have this problem.

style of programming is have privacy by convention. Privacy by con-
vention is naming things in a certain way such that when a tool such as
IntelliSense or a person reads the code, it is understood that the variable
was intended to be private. In the case of ASP.NET AJAX, members and
functions that are prefixed with an underscore (_) are considered private
members, and their use by other objects should be avoided. If you do
decide to access a private member or method, understand that its imple-
mentation may change in future releases or be completely removed. We
should use private members and methods with the same consideration
and care that we access private members and methods in .NET through
reflection.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Public Interface Declaration

Now that we’ve defined our new type and declared its private members,
we need to define the type’s public interface. We do this by extending the
type’s prototype just as we did in Chapter 1. We could use the same syn-
tax for extending the type’s prototype as we did previously, but we can use
a more concise syntax. Listing 2.8 adds the get and set properties to our
Publisher’s public interface using the concise syntax.

Listing 2.8 Defining the Public Interface

Books.Publishers.Publisher.prototype = {
get_name: function() {

return this._name;
},
set_name: function(value) {

this._name = value;
},
get_city: function() {

return this._city;
},
set_city: function(value) {

Extending the Microsoft AJA X Library 65

TIP Extension of the Function Object

The initializeBase method is available to our Books.Publishers.
Publisher class because in the Microsoft AJAX Library, the
Function object type’s prototype has been extended to include the
initializeBase method. Because our Books.Publishers.Publisher
object is a pointer to a Function object, the initializeBase method is
available to it. (The Microsoft AJAX Library does this in a roundabout
way using the previously mentioned type system to extend the
Function’s prototype, but it has the same effect as directly extending
the Function’s prototype.)

NOTE Code Repeat!

If the code examples we just covered look familiar, don’t worry, you’re
not going crazy. A type declaration is similar to the object-oriented
JavaScript programming model we detailed in Chapter 1. You’ll
see more patterns repeated as we walk through the “Public Interface
Declaration” section.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.8 continued

this._city = value;
},

toString: function() {
return this.getLocation();

},

getLocation: function() {
return this._name + " in " + this._city;

}
}

Chapter 2: Microsoft AJA X Library Programming66

NOTE Property Prefixes

The get_ and set_ prefixes that we use on our getter and setter prop-
erties, respectively, are considered a naming convention. Normally,
naming conventions are useful from a readability and comprehension
aspect, but don’t serve a functional purpose within the language. In
the Microsoft AJAX Library, however, some naming conventions also
serve a functional purpose.

The get_ and set_ prefixes fall into this category of having a func-
tional purpose. When we cover creating components in Chapter 3,
“Components,” we discuss the functional purpose of the get_ and
set_ prefixes.

The public interface accesses the private members that we declared in
our type definition. As we walk through more features of the Microsoft
AJAX Library, we continually enhance our public interface to provide fea-
tures to our type.

Type Registration

The final step, type registration, is how we attach our type to the Microsoft
AJAX Library runtime. It’s also the point where we can specify a base class
to inherit from and interfaces that our type implements. Registering a type
is as straightforward as registering a namespace and is completed through
a single line of code. The following code demonstrates how to register the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Book.Publishers.Publisher type we’ve coded in the previous code
examples:
Books.Publishers.Publisher.registerClass("Books.Publishers.
Publisher");

With this code, we register our class with the Microsoft AJAX Library, but
don’t specify a base class that it inherits from or any interfaces it implements.
Later in this chapter, in the “Inheritance and Interface Implementation”
section, we go over inheritance and interface implementation.

Extending the Microsoft AJA X Library 67

NOTE Registration Requirements

When we are passing the name of a class into the registerClass
method, the name passed in must be the same as the function we are
using as the type declaration. The Microsoft AJAX Library evaluates
this name to ensure that it is available as a type before it registers the
class with the runtime.

We also need to make sure that we don’t register a class more than one
time. Doing so will cause an invalidOperation error to be thrown by
the runtime.

The requirements just mentioned also hold true for register
Interface and registerEnum.

Now that we’ve covered the four basic steps of the Prototype Model to
build a class, let’s look at how we can use the Prototype Model to build the
other different types of objects we can register with the Microsoft AJAX
Library, an interface and an enumeration.

Interfaces
Interfaces are a formal contract that a class can implement to expose behav-
ior it promises to provide. They are a common concept in object-oriented
languages, but are foreign to JavaScript. However, the Microsoft AJAX
Library brings the interface concept to the client programming environ-
ment, albeit in a dynamic language kind of way.

An interface in the Microsoft AJAX Library works similarly to a .NET
interface and is easily declared following the same basic steps as a class dec-
laration. Let’s take a quick look at a simple interface, IComparable, which

http://lib.ommolketab.ir
http//lib.ommolketab.ir

defines a single method compareTo. Our IComparable interface is displayed
in Listing 2.9.

Listing 2.9 Defining an Interface

IComparable = function() { };
IComparable.prototype = {

compareTo: function(obj) {throw Error.notImplemented(); }
};
IComparable.registerInterface("IComparable");

First, IComparable’s type declaration takes no parameters. Because
interfaces do not maintain state themselves, private members aren’t
allowed, and therefore there is no need for function parameters.

Second, the constructor method does not call initializeBase as we did
in the class’s constructor. Interfaces cannot inherit from another interface, so
there is no possibility of a base class or base interface.

Moving to the public interface declaration, the single compareTo func-
tion throws the predefined notImplemented error. In the .NET Framework,
there is no method body when we declare an interface method, just the
method’s signature. However, there is no equivalent code construct in
JavaScript, where we can just declare a method’s signature, so we’re forced
to include a method body. Because we’re forced to include a method body,
we need to ensure that if the method is called directly on the interface ver-
sus an implementation of the interface that we throw an error.

Finally, when we register our interface, we use the registerInterface
method that is available on the Function type. The registerInterface
method takes a single parameter, which is the name of the interface.

To test our new IComparable interface, we apply it to a couple of test
classes: Book and Newspaper. Then, we create a bubbleSort function that is
designed to sort any array whose items implement IComparable. To test our
bubbleSort method, we create a list of Books and a list of Newspapers and
sort them using the method.

To start, Listing 2.10 defines our Book and Newspaper types.

Chapter 2: Microsoft AJA X Library Programming68

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.10 Defining Book and Newspaper

// Book Declaration
Book = function(text) {

this._text = text;
};
Book.prototype = {

get_text: function() { return this._text; },

// compare a book to another book
// returns -1 if this book text's length is less than obj
// returns 0 if the book text's length is the same as obj
// returns 1 if the book text's length is the greater than obj
compareTo: function(obj) {

var objLen = obj.get_text().length;
var thisLen = this.get_text().length;
if (thisLen === objLen) {
return 0;

}
else if (thisLen > objLen) {
return 1;

}
return -1;

},
toString: function() { return this._text; }

};
Book.registerClass("Book", null, IComparable);

// Newspaper Declaration
Newspaper= function(numberOfPages) {

this._numberOfPages = numberOfPages;
};
Newspaper.prototype = {

get_numberOfPages: function() { return this._numberOfPages; },

// compare a newspaper to another newspaper
// return -1 if this newspaper's number of pages is less than obj
// return 0 if they're the same
// return 1 if this newspaper's number of pages is greater than obj.
compareTo: function (obj) {

var objPages = obj.get_numberOfPages();
if (this._numberOfPages === objPages) {
return 0;

}
else if (this._numberOfPages > objPages) {
return 1;

}
return -1;

},
toString: function () { return this._numberOfPages; }

}
Newspaper.registerClass("Newspaper", null, IComparable);

Extending the Microsoft AJA X Library 69

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Both types implement the IComparable interface and its compareTo func-
tion. The compareTo function rudimentarily compares one instance to
another and returns the numeric value -1, 0, or 1.

With our types defined, we can craft our generic bubbleSort function,
which is shown in Listing 2.11.

Listing 2.11 Defining the bubbleSort method

// sorts anything that implements IComparable
function bubbleSort(toSort) {

var sortedArray = [];
for (var i=0; i< toSort.length; i++) {

var itemToSort = toSort[i];

// test to make sure that IComparable is supported.
if (!IComparable.isImplementedBy(itemToSort)) {
throw Error.invalidOperation(

"Item does not implement IComparable");
}

for (var j=0; j<sortedArray.length; j++) {
var itemToCompare = sortedArray[j];

if (itemToSort.compareTo(itemToCompare) < 0) {
break;

}
}
Array.insert(sortedArray, j, itemToSort);

}
return sortedArray;

}

Our bubbleSort function works like a normal bubble sort and iterates
through the toSort array, creating a sorted array as it processes each item.

When it pulls an item to sort out of the array, it checks to make sure that
it implements the IComparable interface by using the isImplementBy
method. If the item fails to be implemented by IComparable, an
invalidationOperation error is created and thrown.

When the sort enters the inner loop, it executes the compareTo method
on the itemToSort until it either finds an element that it is less than itself
or runs out of items to compare, which means the itemToSort goes at the
end of the list.

Chapter 2: Microsoft AJA X Library Programming70

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When the position of the new item is determined, it is inserted into the
sortedArray.

We can test our new bubbleSort by creating a list of Books and a list of
Newspapers and running them through the bubbleSort. Listing 2.12 shows
our test code.

Listing 2.12 Testing our bubbleSort Method

var bookList = [
new Book("This is the book text"),
new Book("This is the other book's text"),
new Book("This is my book's text"),
new Book("This is my book's text"),
new Book("This is my other book's text")];

var newspaperList = [
new Newspaper(15),
new Newspaper(154),
new Newspaper(22),
new Newspaper(65),
new Newspaper(1),
new Newspaper(16),
new Newspaper(87),
new Newspaper(69),
new Newspaper(44)];

var sortedBooks = bubbleSort(bookList);
var sortedNewspapers = bubbleSort(newspaperList);

alert (sortedBooks.join(" — "));
alert (sortedNewspapers.join(" — "));

Figure 2.3 and Figure 2.4 show the output of the sortedBooks alert call
and the sortedNewspapers alert call.

Extending the Microsoft AJA X Library 71

Figure 2.3 Output of sorted books list

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2.4 Output of sorted newspaper list

Although interfaces in the Microsoft AJAX Library are beneficial, as evi-
denced in the preceding code example, when compared with interfaces in
.NET, they have a few significant drawbacks worth mentioning.

First, an interface cannot inherit from another interface, as is possible in
the .NET Framework. This is a bit limiting because we can’t combine
behaviors from multiple interfaces into a single concept.

Second, when a class implements an interface, no check is done to
ensure that the class implements all the interface’s methods. This is the
main reason why it’s important for the interface’s methods to throw
notImplemented errors. In case a class doesn’t implement an interface
method and the method is executed, an error is thrown versus silently fail-
ing. Finally, as a corollary to the previous point, there’s no guarantee that an
interface definition won’t include a method declaration whose body is not
empty or does not throw the notImplemented error. Having a method that
performs a task other than throw an error breaks the rules of an interface.

Enumerations
Believe it or not, enumerations in ASP.NET AJAX are interesting. An enu-
meration in ASP.NET AJAX mimics the Enumeration type in the .NET
Framework. As in the .NET Framework, an ASP.NET AJAX enumeration
is composed of a set of predefined named constants. An enumeration also
exposes two methods, parse and toString, which can be used to evaluate
values against the enumeration and can have different behavior depending
on how the enumeration was declared.

Chapter 2: Microsoft AJA X Library Programming72

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To define an enumeration, we follow the same four basic steps outlined
earlier: declare a namespace, declare the enumeration type, modify the
public interface definition, and register the enumeration with the Microsoft
AJAX Library. Listing 2.13 is a full example of an enumeration declaration.

Listing 2.13 Defining an Enumeration

Type.registerNamespace("Books");
Books.BookType = function() {};
Books.BookType.prototype =
{

TextBook: 1,
Biography: 2,
CookBook: 4,
HowTo: 8,
SelfHelp: 16

};
Books.BookType.prototype.Fantasy = 32;
Books.BookType.registerEnum("Books.BookType", true);

After our enumeration has been registered, we access the enumeration’s
items as shown in Listing 2.14.

Listing 2.14 Accessing an Enumeration’s Items

var bookType1 = Books.BookType.TextBook;
var bookType2 = Books.BookType.Biography;
// alerts "true"
alert (bookType1 !== bookType2);

Using the enumeration is similar to using one that was declared in .NET.
The main difference is that once assigned to a variable, an enumeration
item is evaluated to its integer value. So, if we were to examine bookType1’s
value, we would receive the value 1, not the strongly typed Books.
BookType.TextBook as we would in .NET.

Extending the Microsoft AJA X Library 73

NOTE Modifiable Enumerations

Unlike the .NET Framework where an enumeration is constrained to
its predefined values, an enumeration in ASP.NET AJAX can be mod-
ified at runtime, so you need to protect yourself from unexpected
results when working with an enumeration.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Looking at our enumeration’s declaration, there are a few differences
between it and the class declaration we previously covered. Let’s examine
the differences between the two and the steps we took to create our
enumeration.

First, our constructor method is empty. Enumerations don’t have any
instance members and don’t inherit from another type. There really isn’t
anything that makes sense to execute when our enumeration is instanti-
ated, and the constructor should always be empty.

Second, we declare the public interface in a slightly different way.
Instead of declaring and adding Function objects to the prototype, we
assign other types of objects to the prototype. In the Books.BookType enu-
meration declared in Listing 2.13, we can see that there are five public mem-
bers added—TextBook, Biography, CookBook, HowTo, and SelfHelp—using
the concise prototype syntax. However, rather than have these public mem-
bers point to functions as we would when we declared a class, we point
them to integer values. This means that when we access the value
Books.BookType.TextBook, we don’t access a function, we access an inte-
ger. The sixth public member, Fantasy, is added using the more verbose
prototype method to help clarify this point.

Finally, we register our enumeration using the registerEnum function
that is available on the Books.BookType object. Similar to the register
Class method we used to register a class, the registerEnum is available
from the Books.BookType object because the JavaScript Function object has
been extended to include a registerEnum method and Books.BookType is
just a variable that points to a Function object.

Registering the enumeration using the registerEnum method has the
effect of assigning the members that are attached to the prototype of the
enumeration back to the type as expando properties. To better clarify this
idea, Listing 2.15 displays the code from within the registerEnum method
that performs this action.

Listing 2.15 Adding Expando Properties

for (var i in this.prototype) {
this[i] = this.prototype[i];

}

Chapter 2: Microsoft AJA X Library Programming74

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The code iterates over the members that are attached to the prototype
and assigns them as expando properties to the enumeration.

When we register our enumeration, we include two parameters. The
first is a string that is the name of the enumeration, and the second is a
boolean that indicates whether the enumeration should run in flags mode
or nonflags mode. As you might expect, if the second parameter’s value is
true, the enumeration runs in flags mode; if it is false, the enumeration runs
in nonflags mode. An enumeration that is set up to run in flags mode allows
bit operations to be applied to the enumeration’s items. In most cases, the
usage of the flags mode affects only the parse and toString methods asso-
ciated to the enumeration. Let’s cover the parse and toString methods and
see how they perform when our enumeration is both in the nonflags mode
and in the flags mode.

Parse

The parse method syntax is as follows:
EnumType.parse(value, ignoreCase);

Depending on whether the enumeration is in flags mode or nonflags
mode, parse behaves differently.

Parse Nonflags Mode

When you use parse on an enumeration that is in nonflags mode, parse
attempts to convert the string into one of the enumeration’s items and then
return its value. To do this, parse just takes the string that was passed into
the method through the first parameter and attempts to find it the enu-
meration’s prototype. If it can’t find the string in the enumeration, parse
throws an invalid value error. Listing 2.16 demonstrates the common usage
of the parse method.

Listing 2.16 Parsing a Value to an Enumeration

var value = Books.BookType.parse("HowTo");
alert (value); // alerts 8
try {

Books.BookType.parse("Gardening");
} // throws an error
catch (e) {}

Extending the Microsoft AJA X Library 75

http://lib.ommolketab.ir
http//lib.ommolketab.ir

parse also optionally takes a second parameter, ignoreCase, which
determines whether the parsing should be case sensitive. By default, the
ignoreCase value is false, and the parsing is case sensitive. Listing 2.17
demonstrates the use of this parameter.

Listing 2.17 Parsing a Value Ignoring Case

try {
Books.BookType.parse("howto", false);

}
catch (e) { }
// throws an error because the lower-case string "howto" wasn't found.

var value = Books.BookType.parse("howto", true);
alert (value); // alerts 8

This is the functionality of parse when the enumeration is marked to
run in nonflags mode.

Parse Flags Mode

When you use parse on an enumeration that is marked to run in flags
mode, multiple string values can be passed in through the first parameter
using a comma-separated list, and the method returns a bitwise OR’d value
of those strings’ parsed values. If we attempt to pass in a comma-separated
list to an enumeration that isn’t set to run in flags mode, parse attempts to
parse the string as a whole entity. Listing 2.18 demonstrates parse’s capa-
bility to parse multiple values when using an enumeration that is set to run
in flags mode.

Listing 2.18 Parsing Multiple Values Using a Flag-Enabled Enumeration

var value = Books.BookType.parse("HowTo,SelfHelp");
alert (value); // alerts 24.

In this code example, the two values passed in, "HowTo" and "SelfHelp",
are parsed and are evaluated to their respective enumeration items,
Books.BookType.HowTo and Books.BookType.SelfHelp. Then, their values are
bitwise OR’d together to form the resulting value 24. In this particular exam-
ple, the resulting value 24 is returned because the Books.BookType.HowTo has
the value of 8, or in binary format 00001000, and the Books.BookType.

Chapter 2: Microsoft AJA X Library Programming76

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SelfHelp has the value 16, or in binary format 00010000. When they are bit-
wise OR’d together, they form the value 00011000, which is equivalent to the
integer value 24.

Extending the Microsoft AJA X Library 77

NOTE Not Found Values

If one of the strings included in the comma-separated string wasn’t
found on the enumeration, parse throws an error. Also, if we had only
passed in one value, as we did in Listing 2.16, the result would have
been the same.

toString

The toString method syntax is as follows:
EnumType.toString(value);

Depending on whether the enumeration is in flags mode or in nonflags
mode, toString behaves differently.

toString Nonflags Mode

In nonflags mode, toString attempts to convert a number to one of the
enumeration items by looping through the values of the enumeration and
attempting to find the matching value. Listing 2.19 demonstrates the com-
mon usage for toString.

Listing 2.19 Converting a Value to an Enumeration Item Using toString

var howTo = Books.BookType.toString(8);
alert (howTo); // alerts "HowTo"

Just like with the parse method, if you attempt to execute the toString
method passing in a value that doesn’t exist on the enumeration, an
ArgumentOutOfRangeException is thrown.

toString Flags Mode

In flags mode, toString attempts to convert a number into one or more
enumeration items by treating the value passed in as a parameter as a bit-
wise value. An example best exemplifies this idea. Listing 2.20 shows the
process in action.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.20 Converting a Value to Multiple Enumeration Items Using toString

var enumValues = Books.BookType.toString(26);
alert (enumValues); // outputs "Biography, HowTo, SelfHelp";

To see how the enumeration items "SelfHelp", "HowTo", and "Biography"
were encoded in the 26 value; we first need to write out 26 in binary format,
which is 00011010. Looking at the binary representation of 26, we can see that
there is a 1 in the 16, 8, and 2 positions in the 8-bit byte. This means that those
positions are “on” and that the enumeration items corresponding to these
values are also “on.” That is how 26, even though it doesn’t correspond to
a particular enumeration item in the enumeration, actually includes three
values.

Inheritance and Interface Implementation
Although we can now create a new class, interface, or enumeration, the
Microsoft AJAX Library really starts to become an object-oriented pro-
gramming language that is familiar to .NET developers when we’re able to
inherit from a base class and implement interfaces.

Class inheritance and interface implementation are two important, com-
monly found features of object-oriented languages that allow ideas to be
generalized into human-comprehensible packages. Throughout the object-
oriented universe, there are different ways to generalize ideas. In the .NET
Framework, however, generalization is provided through the ability
for classes to inherit from a single base class and implement multiple
interfaces.

The Microsoft AJAX Library follows the same rules of inheritance and
interface implementation in that classes can inherit from one base class and
implement multiple interfaces. Which base class a class inherits from and
which interfaces a class implements are specified in the registerClass
statement that we execute when we register our type with the Microsoft
AJAX Library.

Inheritance

Inheritance is used to define new classes that are based on a class that has
already been defined. The new classes inherit the attributes and behavior of
the base class, but can override the behavior of the base class if it decides to.

Chapter 2: Microsoft AJA X Library Programming78

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting Up Inheritance

Setting up a class that inherits from another is straightforward. Let’s define
a new class, Books.Publishers.NewspaperPublisher, that inherits from
our previously defined class Books.Publishers.Publisher. Listing 2.21
shows the new class inheriting from the previous one.

Listing 2.21 Setting Up Inheritance

Books.Publishers.Publisher = function(name, city) {
…

}
…

Books.Publishers.Publisher.registerClass('Books.Publishers.Publisher');

Books.Publishers.NewspaperPublisher = function(name, city, state) {
Books.Publishers.NewspaperPublisher.initializeBase
(this, [name, city]);

this._state = state;
}
Books.Publishers.NewspaperPublisher.prototype = {
…

}
Books.Publishers.NewspaperPublisher.registerClass(
'Books.Publishers.NewspaperPublisher', Books.Publishers.Publisher);

Extending the Microsoft AJA X Library 79

NOTE Class Registration Order

When defining a class that inherits from another, you need to ensure
that the base class is defined and registered before you register the
derived class. JavaScript is a translated language and is therefore read
and processed from top to bottom and left to right. If you attempt to
reference a base class that is defined and registered below your derived
class, you’ll receive runtime errors. Depending on the mistake you
make, you’ll either receive a JavaScript undefined error or a “type not
registered” error.

Setting up the inheritance was a two-step process, and the code required
is highlighted in the code example. First, we chained the derived class’s
constructor to the base class’s constructor by executing the initializeBase
method in the derived class’s constructor. Then, when we executed the
registerClass method, we specified the base class as the second parame-
ter. Notice that when we specified the base class, we used the variable that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

points to the base class rather than the string version of the name, as we do
with the first parameter.

Accessing Base Class Methods

Now that we’ve set up our new class’s inheritance, we can access the base
class’s attributes and methods. We have two sets of properties available on
our base class, "city" and "name", and after we declare an instance of our
derived class, we can access these methods just by executing them on our
instance. Listing 2.22 demonstrates how we’re able to execute the get_city
method on our instance.

Listing 2.22 Accessing Base Class Methods

var instance = new Books.Publishers.NewspaperPublisher
("A&W", "Boston", "MA");

alert (instance.getLocation()); // alerts 'A&W in Boston'

We’re able to access any of the methods that our base class exposes in
this way. In fact, if we look at the IntelliSense available on our instance vari-
able, we’re able to see the get_*, set_*, and getLocation methods are
available to us. Figure 2.5 shows how these methods are available to us
inside Visual Studio.

Chapter 2: Microsoft AJA X Library Programming80

Figure 2.5 Availability of base class methods

What IntelliSense won’t show you is that the members _city and _name

are also available to our instance variable. Because they’re prefixed with the
underscore, they’re intended to be private members of the base class and
inaccessible to the inherited class. However, as mentioned earlier, there are
no true private members in JavaScript using the development pattern we’re

http://lib.ommolketab.ir
http//lib.ommolketab.ir

using, and therefore we can execute the code shown in Listing 2.23 with-
out any problems.

Listing 2.23 Accessing Private Members

var instance =
new Books.Publishers.NewspaperPublisher("A&W", "Boston", "MA");

alert (instance._city);

Overriding Base Class Methods

In C#, if we want to override a base class’s method in a derived class, we first
mark the base class method with the keyword virtual, and then mark the
derived class method with the keyword override. In the Microsoft AJAX
Library, all methods are overridable and don’t need to be marked with a spe-
cial keyword either in the base class or in the derived class. Listing 2.24
demonstrates how to override the getLocation method of our base class.

Listing 2.24 Overriding a Base Class Method

Books.Publishers.NewspaperPublisher.prototype = {
getLocation: function() {

return
this.get_name() + " in " +
this.get_city() + ", " +
this._state;

}
}

Now, when we execute the getLocation method on our instance object,
the derived class’s getLocationmethod is executed rather than the base class
version. Figure 2.6 shows the output of executing the code in Listing 2.24.

Extending the Microsoft AJA X Library 81

Figure 2.6 Output of the overridden base class method

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Calling Base Class Methods

In object-oriented languages, derived classes often override methods of the
base class, and this is possible in the JavaScript, as we demonstrated in the
previous section. It is also common for derived classes to override base
class methods and also execute the base class method in the overridden
method’s body. We constantly use this idea whenever we work within
ASP.NET and override any of the page’s lifecycle methods. An example is
shown in Listing 2.25, where we execute the base class’s OnPreRender from
within the overridden OnPreRender method.

Listing 2.25 Calling a Base Method in C#

…

public void override OnPreRender(EventArgs e)
{

base.OnPreRender(e);
// add some extra functionality here

}

As is shown in the example, C# uses the base keyword to execute a
method as it is attached to the base class when working inside a derived
class. Unfortunately, JavaScript lacks this keyword or a suitable replace-
ment, and executing a base class method isn’t as easy as it is in C#. How-
ever, the Microsoft AJAX Library helps us out and provides a way to
execute a base class method using the callBaseMethod method, as shown
in Listing 2.26.

Listing 2.26 Calling a Base Method

Books.Publishers.NewspaperPublisher.prototype = {
getLocation: function() {

var baseLocation =
Books.Publishers.NewspaperPublisher.callBaseMethod(this,
'getLocation');

return baseLocation + this._state;
}

}

The syntax for executing the base method is as follows:
derivedType.callBaseMethod(instance, 'methodname', [parameter
Array]);

Chapter 2: Microsoft AJA X Library Programming82

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In our example, the derived type is Books.Publishers.Newspaper
Publisher, the instance is this, the method name is getLocation, and there
are no parameters required by the method, so we leave off the parameter
array parameter.

The Microsoft AJAX Library executes the base method using a simple
algorithm. First, it determines the base type from the derived type’s regis-
tration information. If the base type is found, it searches for the method
within the base type’s prototype that matches the method name. If it finds
the method name, it executes the associated method using the built-in apply

JavaScript method.

Working with Inheritance

The Microsoft AJAX Library provides some methods to query an instance
or a type for inheritance hierarchy information. For the subsequent code
snippets, we rely on a new type called TestType that is defined in Listing
2.27.

Listing 2.27 TestType Definition

TestType = function(element) {
TestType.initializeBase(this, [element]);

}

// inherit from Sys.UI.Control, a Microsoft AJAX Library built-in type
// Sys.UI.Control inherits from Sys.Component
TestType.registerClass("TestType", Sys.UI.Control);

inheritsFrom

inheritsFrom (see Listing 2.28) determines whether a type inherits from
another type somewhere on its inheritance hierarchy:
var inherits = Type.inheritsFrom(baseType);

Listing 2.28 Using inheritsFrom

var a = TestType.inheritsFrom(Sys.UI.Control);
var b = TestType.inheritsFrom(Sys.Component);
var c = Sys.Component.inheritsFrom(TestType);
var d = TestType.inheritsFrom(Object);

alert (a); // true

Extending the Microsoft AJA X Library 83

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.28 continued

alert (b); // true
alert (c); // false
alert (d); // false.
// Inheritance in the framework does not propagate to the
// built-in Object type, but is only for types
// registered with the framework.

getBaseType

getBaseType (see Listing 2.29) returns the base type of a type if there is one;
otherwise, it returns null. The object returned isn’t the name of the base
type, but is actually the constructor function for the type:
var baseType = Type.getBaseType();

Listing 2.29 Using getBaseType

var a = TestType.getBaseType();
var b = Books.Publishers.NewspaperPublisher.getBaseType();
var c = Sys.Component.getBaseType();

alert (a == null ? "null" : a.getName()); // Sys.UI.Control
alert (b == null ? "null" : b.getName()); // Books.Publishers.Publisher
alert (c == null ? "null" : c.getName()); // null

isInstanceOfType

isInstanceOfType (see Listing 2.30) determines whether an instance inher-
its from a type somewhere in the instance type’s inheritance tree:
var inherits = Type.isInstanceOfType(instanceVar);

Listing 2.30 Using isInstanceOfType

// TestType inherits from Sys.UI.Control, which requires
// a DOM element in its constructor.
// For now, assume we have an element on the page with id 'abc'
var instanceVar = new TestType(document.getElementById("abc"));

var a = TestType.isInstanceOfType(instanceVar);
var b = Sys.Component.isInstanceOfType(instanceVar);
var c = Books.Publishers.Publisher.isInstanceOfType(instanceVar);

alert (a); // true
alert (b); // true
alert (c); // false

Chapter 2: Microsoft AJA X Library Programming84

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The methods that we just described are important because they provide
type information that can be used to control execution flow and other tasks.
Listing 2.31 demonstrates how you can use isInstanceOfType to control
execution flow.

Listing 2.31 Controlling Flow by Type

function processObject(obj) {
if (Sys.UI.Behavior.isInstanceOfType(obj) ||

(Sys.UI.Control.isInstanceOfType(obj)) {
processElement(obj.get_element());

}
else if (Sys.Component.isInstanceOfType(obj)) {

processNonElement(obj);
}
else {

alert ("obj does not inherit from a supported type.");
}

}

var instanceVar = new TestType(document.getElementById("abc"));
processObject(instanceVar);

Implementing Multiple Interfaces

We already showed how to implement a single interface, in Listing 2.10, but
a common practice in .NET is to implement more than one interface. We can
do the same using the Microsoft AJAX Library. All we have to do is append
the interface name to the end of our registerClass method. Listing 2.32
defines a new interface, ICloneable, and applies it to our previously
defined Book class.

Listing 2.32 Implementing Multiple Interfaces

ICloneable: function() {};
ICloneable.prototype = {

clone:function() { throw Error.notImplemented(); }
};
ICloneable.registerInterface("ICloneable");

… // IComparable Declaration

Book = function(text) {
this._text = text;

};

Extending the Microsoft AJA X Library 85

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.32 continued

Book.prototype = {
get_text: function() { return this._text; },

compareTo: function(obj) {
…

},
clone: function() {

return new Book(this._text);
},
toString: function() { return this._text; }

};
Book.registerClass("Book", null, IComparable, ICloneable);

The differences between the previous declaration of Book and the one in
Listing 2.32 are the clone method and the registerClass statement. The
clone method is the implementation of the ICloneable interface, and in the
registerClass statement, we include the ICloneable interface.

The full syntax for registering a class that implements an interface is as
follows:
className.registerClass("className", baseClass, interface1,
interface2, … ,interfaceN);

Notice that the final value of the registerClass method can have zero
to many interface names. This is how we can tell the Microsoft AJAX
Library that this class implements the following interfaces.

Using an Interface

Our previous bubble sort example walked us through how to implement an
interface, and there isn’t much more to an interface than that. The Microsoft
AJAX Library does, however, provide us some methods for working with
interfaces that are useful for type reflection.

implementsInterface

implementsInterface (see Listing 2.33) determines whether a class imple-
ments a particular interface:
var implementsInterface = className.implementsInterface(inter
faceName);

Chapter 2: Microsoft AJA X Library Programming86

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.33 Using implementsInterface

var a = Books.implementsInterface(ICloneable);

var b = ICloneable.implementsInterface(ICloneable);

//using some built-in types
var c = Sys.Component.
implementsInterface(Sys.INotifyPropertyChange);

alert (a); // outputs true
alert (b); // outputs false; interfaces are not self-implementing
alert (c); // outputs true

isImplementedBy

isImplementedBy (see Listing 2.34) determines whether an instance vari-
able implements a particular interface:
var implementsInterface = interfaceName.isImplementedBy
(instanceVar);

Listing 2.34 Using isImplementedBy

var book = new Book("abc");
var numberVar = new Number(4);

var a = ICloneable.isImplementedBy(book);
var b = IComparable.isImplementedBy(numberVar);

//using some built-in types
var comp = new Sys.Component();
var c = Sys.INotifyPropertyChange.isImplementedBy(comp);

alert (a); // outputs true
alert (b); // outputs false
alert (c); // outputs true

getInterfaces

getInterfaces (see Listing 2.35) returns an array of interfaces that a type
implements:
var interfaces = className.getInterfaces();

Extending the Microsoft AJA X Library 87

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.35 Using getInterfaces

// for this example we'll use Sys.Component because it implements
// multiple interfaces

var interfaces = Sys.Component.getInterfaces();
for (var i=0; i<interfaces.length; i++) {

alert (interfaces[i].getName());
}

// alerts
// Sys.IDisposable
// Sys.INotifyPropertyChange
// Sys.INotifyDisposing

Important New Types

Besides extending the built-in JavaScript types, the Microsoft AJAX Library
provides new types that help us develop better code and implement more
complex features. This section tackles a few of these new types. These new
types include Sys.EventHandlerList, which provides .NET-style events,
Sys.StringBuilder, which provides performant string concatenation capa-
bilities, Sys.Debug, which provides new debugging capabilities; Sys.UI.
DomElement, which provides DOM element manipulation methods; and
Sys.UI.DomEvent, which provides DOM event methods.

Sys.EventHandlerList
The Sys.EventHandlerList type provides a way for us to create, maintain,
and raise custom events.

So far, when we’ve written JavaScript code that responds to events,
the events being raised are either DOM events or attached to built-in
objects. A DOM element was clicked, the window was resized, and an
XmlHttpRequest object’s ready state changed are all examples of events pro-
vided to us through the DOM or by existing objects.

But what if we wanted to raise our own custom events so objects could
respond to a change in state of another object? An item was removed from
the list, a component was destroyed from the application, and a property on
an object was changed are all examples of scenarios in which we might want
to raise an event. There is no preexisting JavaScript object that allows us to

Chapter 2: Microsoft AJA X Library Programming88

http://lib.ommolketab.ir
http//lib.ommolketab.ir

do this. The ability to create, maintain, and raise custom events is what
Sys.EventHandlerList provides.

Important New Types 89

NOTE System.ComponentModel.EventHandlerList

Sys.EventHandlerList was designed to mimic the .NET-type
System.ComponentModel.EventHandlerList.

To add custom events to an object, you add an instance of Sys.Event
HandlerList into another object and expose public methods off that object
that manipulate the instance. (Table 2.5 details the methods we use to
manipulate the Sys.EventHandlerList type.)

To illustrate how to add the custom events capability, we enhance our
Books.Publishers.Publisher object with an instance of Sys.Event

HandlerList. Listing 2.36 shows our enhanced type definition.

Table 2.5 Sys.EventHandlerList Methods

Method Name Description Syntax

addHandler Adds a handler obj.addHandler(eventName, handler);
(a function) to the list
of handlers for the
event name (string)

removeHandler Removes a handler obj.removeHandler(eventName,
from the list of handler);
handlers of the event
name

getHandler Builds and returns a var handler =
function object that obj.getHandler(eventName);
encapsulates all of the
handlers assigned to
the event name

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.36 Adding the Custom Events Capability

Type.registerNamespace ("Books.Publishers");
Books.Publishers.Publisher = function(name, city) {

Books.Publishers.Publisher.initializeBase(this, [name]);
this._name = name;
this._city = city;
this._editors = [];

this._events = new Sys.EventHandlerList();
}

Books.Publishers.Publisher.prototype = {
// … code omitted for brevity … //

get_editors: function() {
return this._editors;

},

add_editorAdded: function(handler) {
this._events.addHandler("editorAdded", handler);

},
remove_editorAdded: function(handler) {

this._events.removeHandler("editorAdded", handler);
},

addEditor: function(editor) {
Array.add(this._editors, editor);
var handler = this._events.getHandler("editorAdded");
if (handler != null) {

handler (this, Sys.EventArgs.Empty);
}

}
}
Books.Publishers.Publisher.registerClass("Books.Publishers.Publisher");

In Listing 2.36, we added two new members and four new methods.
The new members are _events, which is an instance of Sys.Event

HandlerList, and _editors, which is an Array.
The first method added, get_editors, is a public property that returns

access to the private _editors member.
The second method added, add_editorAdded, provides a way to add an

event handler to the editorAdded event. The method takes in a single
parameter, handler, which is a function that will be executed when the
editorAdded event is raised. The association between the event
editorAdded and the event handler function handler is stored using the

Chapter 2: Microsoft AJA X Library Programming90

http://lib.ommolketab.ir
http//lib.ommolketab.ir

_events object. The event name and the handler are passed into _events
addHandler method to store the association.

The third method added, remove_editorAdded, provides a way to
remove an event handler from the editorAdded event. It works exactly the
same way as the add_editorAdded method except that rather than call
addHandler on the _events object it calls removeHandler.

Important New Types 91

NOTE Adding and Removing Multiple Handlers

If you add the same handler more than once to an event, that handler
executes more than once when the event is raised. Similarly, if you add
the same handler more than once to an event and then want to remove
it, you must remove it more than once, too. Finally, if you remove a
handler from an event and that handler is not associated to the event,
nothing happens. No error is thrown.

The fourth and final method, addEditor, is responsible for adding the
editor to the _editor array and raising the editorAdded event. It accom-
plishes the first task using Array.add. It then raises the editorAdded event
similarly to how it’s done in .NET. In .NET, we write code the looks like
what is shown in Listing 2.37 to raise the editorAdded event.

Listing 2.37 Raising the Event

if (editorAdded != null)
editorAdded(this, System.EventArgs.Empty);

The JavaScript code is nearly identical except that we have to first
retrieve the event handler method from the _events object. We do this by
calling the getHandler method on the _events object with the argument
editorAdded, the name of the event we want to retrieve. After we retrieve
the handler, we execute it passing in a pointer to the current object and the
Sys.EventArgs.Empty object. (We cover this call in more detail in a few
moments.)

We can test our new event capabilities by creating a function that
handles the editorAdded event. Listing 2.38 demonstrates our new event
capabilities.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.38 Handling the editorAdded Event

function editorAddedHandler(sender, args) {
alert ("Current Number of Editors: " + sender.get_editors().length);

}

var pub = new Books.Publishers.Publisher("A&W","Boston");
pub.add_editorAdded(editorAddedHandler);
pub.addEditor("Tim");
pub.addEditor("Mark");

When the code runs, each time we add an editor to our pub object the
editorAddedHandler method executes. Referring back to Listing 2.37 we
can see that when we execute the handler we provide two parameter val-
ues: this and Sys.EventArgs.Empty. These are the values available in our
editorAddedHandler method in the sender and args parameters, respec-
tively. Figure 2.7 and Figure 2.8 show the output of editorAddedHandler
after each editor has been added.

Chapter 2: Microsoft AJA X Library Programming92

Figure 2.7 Output of the editorAddedHandler method after adding Tim

Figure 2.8 Output of the editorAddedHandler method after adding Mark

Getting back to the execution of the handler inside the addEditor
method, we passed in two arguments to the handler call—this and
Sys.EventArgs.Empty—and these arguments translated to the sender and
args parameters in our editorAddedHandler method. Passing in the cur-
rent object so that it is available as the sender parameter in our handler is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

customary, just as it is in .NET, but we can actually pass in anything we
want to. The second argument is where we’re supposed to pass in any rel-
evant data we want our handler to have access to. We do this by inheriting
from Sys.EventArgs to create our own event arguments type similarly to
how we inherit from System.EventArgs in .NET. Listing 2.39 shows an
example of how to inherit from Sys.EventArgs to create an event argu-
ments type that holds the number of editors.

Important New Types 93

NOTE Sys.EventArgs.Empty

Sys.EventArgs.Empty is just a default instantiation of the Sys.EventArgs
class. Like its .NET counterpart, System.EventArgs.Empty, it is used to
pass blank empty information to a handler.

Listing 2.39 Creating a Custom EventArgs Type

Books.Publishers.NumberOfEditorsEventArgs = function(numberOfEditors) {
this._numberOfEditors = numberOfEditors;

}
Books.Publishers.NumberOfEditorsEventArgs.prototype = {
get_numberOfEditors: function() {

return this._numberOfEditors;
}

}
Books.Publishers.NumberOfEditorsEventArgs.registerClass
("Books.Publishers.NumberOfEditorsEventArgs", Sys.EventArgs);

There’s not much to creating our own event arguments type. The dec-
laration and body are similar to any other Microsoft AJAX Library object,
and in this particular instance our event argument contains the number of
editors. The main difference is that we inherit from Sys.EventArgs rather
than some other type or none at all.

After we have our event arguments type defined, we can use it instead
of Sys.EventArgs.Empty. Listing 2.40 shows the modified addEditor
method that uses the new event arguments type when we raise the
editorAdded event.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.40 Raising the editorAdded Event Using the NumberOfEditorsEventArgs Type

addEditor: function(editor) {
Array.add(this._editors, editor);
var handler = this._events.getHandler("editorAdded");
if (handler != null) {

var args = new Books.Publishers.NumberOfEditorsEventArgs
(this._editors.length);

handler (this, args);
}

}

As the highlighted code shows, we create a new instance of the
Books.Publishers.NumberOfEditorsEventArgs type and use it as the sec-
ond argument in our handler call.

Now, when our handler executes, the second parameter will be of type
Books.Publishers.NumberOfEditorsEventArgs rather than Sys.EventArgs.
Empty. We can then use this parameter to retrieve the number of editors. List-
ing 2.41 shows our updated editorAddedHandled method.

Listing 2.41 Using the NumberOfEditorsEventArgs in the editorAddedHandler Method

function editorAddedHandler(sender, args) {
alert ("Current Number of Editors: " + args.get_numberOfEditors());

}

Sys.StringBuilder
A new class to work with strings that the Microsoft AJAX Library includes
is the Sys.StringBuilder class. It is a member of the Microsoft AJAX
Library’s Sys namespace and is created using the following syntax:
var sb = new Sys.StringBuilder(optionalInitialText);

Its purpose is to provide an efficient way to concatenate multiple strings
together. Its availability is important because like in .NET, JavaScript strings
are immutable objects. After they’ve been assigned a value, memory is allo-
cated. Any changes to that value, such as appending more characters,
causes a completely new memory space to be allocated to hold the modi-
fied string. This isn’t very efficient, especially when concatenating a large
number of strings together, because memory to hold the entire string will
constantly be allocated. To get around the inefficient use of memory, we
append string pieces to a StringBuilder, and when we’ve completed our

Chapter 2: Microsoft AJA X Library Programming94

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Important New Types 95

appending, we use the toString method of the StringBuilder class to cre-
ate a single string as output. Sys.StringBuilder methods and syntax are
explained in Table 2.6.

Table 2.6 Sys.StringBuilder Methods

Method Name Description Syntax

append Appends a string to the sb.append("Hello!");
end of the StringBuilder sb.append("My name is :");
instance

appendLine Appends a string and a sb.appendLine("Hello!");
blank line to the end of a sb.appendLine("My name is :");
StringBuilder instance

clear Clears the contents of the sb.clear();
StringBuilder

isEmpty Determines whether the var isSBEmpty=sb.isEmpty();
StringBuilder instance
contains any content

toString Concatenates the string var fullStr = sb.toString();
parts together, returning var fullStrSep =
a single string sb.toString("@");

// creates a string with an @
symbol between each string part.

NOTE Sys.StringBuilder: Under the Hood

Sys.StringBuilder achieves better performance than string concate-
nation, but how? Whenever you call append or appendLine on your
Sys.StringBuilder instance, the text you’re appending is actually
added to the end of an array rather than directly to a string, increas-
ing the length of the array by one with each appending. When you ask
for the concatenated string using the toString method, the array ele-
ments are “joined” together using the Array.join method. The join
method works by calculating the string version of each array element
and then creating a single string containing all the elements. It does
this without assigning to memory more than once, and therefore the
inefficiencies of constantly reallocating and assigning to memory are
eliminated.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sys.Debug
One of the hardest tasks in JavaScript is debugging. Although the tools
have matured in recent years, they are still lacking in many aspects.
ASP.NET AJAX attempts to alleviate some of these problems by providing
a set of debugging commands that are available through the Sys.Debug
object.

Chapter 2: Microsoft AJA X Library Programming96

NOTE Sys._Debug

Sys.Debug is an instance of the private type Sys._Debug, which is why
we call Sys.Debug an object rather than a type.

There isn’t an extensive list of commands, but they provide decent cov-
erage of the common debugging scenarios. Table 2.7 details the five public
methods available from Sys.Debug.

Table 2.7 Sys.Debug Methods

Method Name Description Syntax

trace Appends a message to the Sys.Debug.trace(message);
console and to an HTML
TextArea named TraceConsole
if one is present on the page.

traceDump Recursively enumerates the Sys.Debug.traceDump(object)
properties of an object,
appending the properties and
their values to the console.

clearTrace Clears the HTML TextArea Sys.Debug.clearTrace();
named TraceConsole if one
is present on the page.

fail Appends a message to console, Sys.Debug.fail(message);
and then breaks into the
debugger using the JavaScript
debugger if that command is
supported by the browser.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Important New Types 97

Method Name Description Syntax

assert Evaluates a conditional Sys.Debug.assert(condition,
expression. If the expression is message, displayCaller);
false, a JavaScript confirmation
is displayed to the user with the
message provided in the assert
call. If the user confirms the
dialog, the message is appended
to the console, and if the browser
supports the debugger command,
the browser breaks into the
JavaScript debugger.

Listing 2.42 provides a test page for the trace methods that we defined
in Table 2.7: trace, traceDump, and clearTrace. The code relies on our pre-
viously defined Books.Publishers.Publisher object, which is placed in
the Publisher.js file but not shown in the listing.

Listing 2.42 Testing Sys.Debug’s Tracing Methods

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="DebugTester.aspx.cs" Inherits="Debugging.DebugTester" %>

<html>
<head runat="server">

<title>Trace in Action!</title>

<script type="text/javascript">
function trace() {

Sys.Debug.trace($get("txtTraceMessage").value);
}

function traceDump() {
var name = $get("txtPublisherName").value;
var city = $get("txtPublisherCity").value;
var myPublisher = new Books.Publishers.Publisher(name, city);
Sys.Debug.traceDump(myPublisher);

}

function clearTrace() {
Sys.Debug.clearTrace();

}
</script>

</head>
<body>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.42 continued

<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server">

<Scripts>
<asp:ScriptReference Path="~/Publisher.js" />

</Scripts>
</asp:ScriptManager>
<textarea id="TraceConsole"

style="width: 400px;
height: 200px;"
cols="1"
rows="1">

</textarea>

Trace Message:
<input type="text" id="txtTraceMessage" />
<input type="button"

onclick="trace();"
value="Append Trace" />

Publisher Name:
<input type="text" id="txtPublisherName" />
Publisher City:
<input type="text" id="txtPublisherCity" />
<input type="button"

onclick="traceDump();"
value="Dump Publisher Object" />

<input type="button"

onclick="clearTrace();"
value="Clear Trace" />

</form>
</body>
</html>

Figure 2.9 shows the example page in action. Because we defined a
textarea with ID TraceConsole in the DebugTester page, the trace
commands append their information to the textarea.

Even if we didn’t include a textarea on the page, the trace commands
still append to the console. What the console is depends on the executing
situation. Table 2.8 details the different consoles.

Chapter 2: Microsoft AJA X Library Programming98

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Important New Types 99

Figure 2.9 Debug test page in action

Table 2.8 Available Debug Consoles

Browser or Application Console Information

Visual Studio When a debugger is attached to Internet Explorer
either by directly attaching to the IExplore.exe
instance or by running the application through
Visual Studio, trace messages will appear in the
Output window when the window is set to Show
Output from Debug.

Web Development Helper Once it is installed and running on the page, trace
messages are appended to the script console.

Firefox With Firebug installed, trace messages are
appended to its console.

Safari Once the debug menu has been added to the
browser, trace messages are appended to the
JavaScript console.

Opera The trace messages are appended to the error
console.

Figures 2.10 through 2.14 show the various consoles with trace mes-
sages appended to them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2: Microsoft AJA X Library Programming100

Figure 2.10 Web Development Helper displaying the trace messages

Figure 2.11 Visual Studio’s output window displaying the trace messages

Figure 2.12 Firebug’s console window displaying the trace messages

Figure 2.13 Safari’s JavaScript console displaying the trace messages

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2.14 Opera’s error console displaying the trace messages

The other two methods, fail and assert, work similarly to their .NET
counterparts System.Diagnositcs.Debug.Fail and System.Diagnostics.

Debug.Assert. Important to note is that both methods break into the
JavaScript debugger only if the browser supports the debugger command.

Sys.UI.DomElement
The Sys.UI.DomElement class includes commonly used methods for work-
ing with DOM elements. Instead of us creating Sys.UI.DomElement
instances, static methods are attached to the class, and we use those instead.
Table 2.9 details the methods and syntax provided by the class.

Important New Types 101

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2: Microsoft AJA X Library Programming102

Table 2.9 Sys.UI.DomElement Methods

Method Name Description Syntax

getElementById Searches for and returns an var elm =
or $get element with the given ID Sys.UI.DomElement.

within the parent element getElementById(elmId,
(second parameter). If no parent);
second parameter is or
specified, document is var elm = $get(elmId,
assumed. searchRadius);
$get can be used as a shortcut
to the Sys.UI.DomElement.
getElementById method.

getLocation Gets a JSON-formatted object var location =
that contains the x,y Sys.UI.DomElement.
coordinates of the object in getLocation(elm);
relation to the owner frame var x = location.x;
or window. var y = location.y;

getBounds The same as getLocation, and var bounds =
also returns the width and Sys.UI.DomElement.
height of the element in pixels. getBounds(elm);

var x = location.x;
var y = location.y;
var width =
location.width;
var height =
location.height;

setLocation Sets the absolute position Sys.UI.DomElement.
of an element relative to the setLocation(elm, x, y);
upper-left corner of its con-
taining block. The containing
block for an absolutely posi-
tioned element is the nearest
ancestor with a position value
other than static.

addCssClass Adds a CSS class to the Sys.UI.DomElement.
element if the class is not addCssClass(elm,
already part of it. cssClassName);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Important New Types 103

Method Name Description Syntax

containsCssClass Determines whether a CSS var classApplied =
class belongs to an element. Sys.UI.DomElement.

containsCssClass(elm,
cssClassName);

removeCssClass Removes a CSS class from an Sys.UI.DomElement.
element. removeCssClass(elm,

cssClassName);

toggleCssClass Adds a CSS class to an Sys.UI.DomElement.
element if it is not already toggleCssClass(elm,
added. cssClassName);
Removes a CSS class if it is
already added.

getVisible Gets an element’s visibility. var visible =
An element is visible if its Sys.UI.DomElement.
visibility is not 'hidden' and getVisible(elm);
its display is not 'none'.

setVisible Sets an element’s visibility Sys.UI.DomElement.
style-property and updates setVisible(elm, false);
the display style-property
appropriately based on the
current visibility mode.

getVisibilityMode Gets an element’s visibility var mode =
mode. The possible values Sys.UI.DomElement.
are Sys.UI.VisibilityMode. getVisibilityMode(elm);
hide and Sys.UI.
VisibilityMode.collapse.

setVisibilityMode Sets an element’s visibility Sys.UI.DomElement.
mode. If the element is already setVisibilityMode
hidden, setting the visibility (elmSys.UI.
mode to collapse will set the VisibilityMode.
element’s display style- collapse);
property to none. Setting it
to hide will set the element’s
display style-property to
whatever it was originally:
inline, block, or
inline-block.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you work through actual code, you’ll find that the methods provided
by the Sys.UI.DomElement class are useful. Listing 2.43 shows a test page
that uses each of the methods listed in Table 2.9.

Listing 2.43 Sys.UI.DomElement Methods

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs" Inherits="Chapter_3._Default" %>

<html>
<head>

<style type="text/css">
.highLightElement {
background-color: Yellow;
color: Green;
font-weight: bold;

}
</style>

</head>
<body>

<form runat="server">
<asp:ScriptManager ID="SM1" runat="server" />
<div id="myDiv" style="position: absolute;

Chapter 2: Microsoft AJA X Library Programming104

NOTE getLocation and getBounds Problems

With elements that are styled with "position:fixed", getLocation
and getBounds will not work correctly in all browsers. "fixed" dis-
rupts the layout flow and prevents accurate location and bounds from
being calculated.

NOTE Shortcut Methods

The Microsoft AJAX Library exposes a few global methods as short-
cuts to commonly used methods. These methods are prefixed with the
$ character. Examples of these shortcuts are the $get method, which
references the Sys.UI.DomElement.getElementById method, and the
$addHandler and $removeHandler methods, which reference the
Sys.UI.DomEvent.addHandler and Sys.UI.DomEvent.removeHandler
methods, respectively.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

top: 10px;
left: 10px;
width: 250px;
height: 175px;
border:solid 1px black">

<input type="button"

id="removeHighlight"
value="Remove Highlight"
onclick="removeHighlightFn();" />

</div>
</form>

<script type="text/javascript">

// remove the highLightElement CSS Class from the
// SPAN element if its present
function removeHighlightFn() {

var spanElm = $get("mySpan");
if (spanElm !== null &&
Sys.UI.DomElement.containsCssClass
(spanElm, 'highLightElement')) {

Sys.UI.DomElement.removeCssClass
(spanElm, 'highLightElement');

}
}

// getElementById
var divElm = Sys.UI.DomElement.getElementById("myDiv");

// get an element contained within another element.
var spanElm = $get("mySpan", divElm);

// use getLocation to write out the bounds of
// the SPAN element
var spanLocation = Sys.UI.DomElement.getLocation(spanElm);
spanElm.innerHTML =

"Initial Inner span X: "
+ spanLocation.x
+ "
Initial Inner span Y: "
+ spanLocation.y
+ "
";

// use setLocation to move the DIV element
var divLocation = Sys.UI.DomElement.getLocation(divElm);
Sys.UI.DomElement.setLocation

(divElm, divLocation.x + 100, divLocation.y + 100);

Important New Types 105

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.43 continued

var spanLocation = Sys.UI.DomElement.getLocation(spanElm);
spanElm.innerHTML +=

"
 Final Inner Span X: "
+ spanLocation.x
+ "
Final Inner Span Y: "
+ spanLocation.y
+ "
";

// use containsCssClass and addCssClass to add
// the highLightElement CSS class to the SPAN element
if (!Sys.UI.DomElement.containsCssClass

(spanElm, 'highLightElement')) {
Sys.UI.DomElement.addCssClass(spanElm, 'highLightElement');

}

// use getBounds to get the bounds of the DIV element
var divBounds = Sys.UI.DomElement.getBounds(divElm);
spanElm.innerHTML +=

"
 The width of the DIV: "
+ divBounds.width
+ "
The height of the DIV: "
+ divBounds.height;

</script>
</body>
</html>

When the code in Listing 2.43 first executes and the SPAN and DIV have
been placed and updated, we’re presented with the output shown in
Figure 2.15.

Chapter 2: Microsoft AJA X Library Programming106

Figure 2.15 The div and span with initial x,y coordinates; after moving x,y coordinates;
and the div’s final width and height

When we click the Remove Highlight button, the removeHighlightFn
method executes, and the highlight is removed from the text. Figure 2.16
shows the resulting display.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Important New Types 107

Figure 2.16 The span with the highlight removed

Sys.UI.DomEvent
The Sys.UI.DomEvent class provides cross-browser access to DOM element
event properties and methods to work with DOM element events. This
class is useful because it provides a common denominator for the different
browser’s eventing systems.

Let’s start with how event handlers are attached to DOM element events
without using the Sys.UI.DomEvent class. Among the four major browsers,
there are three common ways of attaching event handlers. Table 2.10
explains them.

Table 2.10 Attaching Event Handlers to DOM Element Events

Event Registration Supported
Method Syntax Browsers

attachEvent elm.attachEvent(eventName, handler); Internet
Explorer

addEventListenter elm.addEventListener(eventName, Firefox, Safari,
handler, useCapturing); Opera

oneventname= elm.oneventname=handler; All

Right away, we can see that the first two event registration methods,
attachEvent and addEventListener, are problematic because they aren’t
supported by all the major browsers. The final method, assigning a handler
to the event using the oneventname= syntax, works across all browsers, but
it can prove problematic when you want to assign more than one event

http://lib.ommolketab.ir
http//lib.ommolketab.ir

handler to a single DOM element event. Although you can overcome this
problem fairly easily with some helper code, another annoying problem is
that you have to write the event handler code to handle the different ways
the browsers builds and passes in the event. Listing 2.44 demonstrates the
basic code we have to write to handle an event successfully across differ-
ent browsers.

Listing 2.44 Normalizing an Event

function handleClickEvent(e) {
// check to see if there was an event argument passed in.
if (!e) {

e = window.event;
}

// determine the event's firing element.
var elmFiringEvent = null;
if (typeof(e.target) !== 'undefined') {

elmFiringEvent = e.target;
}
else {

elmFiringEvent = e.srcElement;
}

}

var button = $get('removeHighlight');
button.onclick = handleClickEvent;

As you can see, we have to jump through a few hoops to get a pointer
to the event object, and when we have that pointer, we have to jump
through more hoops to determine the element that originated the event.

These are the problems that Sys.UI.DomEvent solves. It provides meth-
ods that standardize how we attach and detach handlers from DOM ele-
ment events and internally normalizes all events by having all events pass
through it first. Table 2.11 details the methods and syntax that the
Sys.UI.DomEvent class provides.

Chapter 2: Microsoft AJA X Library Programming108

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Important New Types 109

Table 2.11 Sys.UI.DomEvent Methods

Method Name Description Syntax

.addHandler Attaches a handler to Sys.UI.DomEvent.addHandler(elm,
$addHandler the DOM element event. eventName, handler)

or
$addHandler(elm, eventName,
handler);

.addHandlers Attaches multiple Sys.UI.DomEvent.addHandlers
$addHandlers events/handlers to a (elm, {eventName: handler,

DOM element. eventName2: handler2});
or
$attachHandlers(elm,
{eventName: handler,
eventName2: handler2);

.clearHandlers Removes all the Sys.UI.DomEvent.
$clearHandlers handlers for all events clearHandlers(elm);

from a DOM element. or
$clearHandlers(elm);

.preventDefault Prevents the default event.preventDefault();
action from occurring.
For instance, if you
prevent the default of
a keydown event in a
textbox, the character
won’t be appended to
the textbox’s input.

.stopPropagation Prevents the event from event.stopPropagation();
being bubbled up the
DOM hierarchy to
parent elements.

.removeHandler Removes a specific Sys.UI.DomEvent.
$removeHandler handler for a specific removeHandler(elm, eventName,

event on a specific handler);
element. or

$removeHandler(elm, eventName,
handler);

Those are the methods available on Sys.UI.DomEvent, but they don’t tell
the whole story of what Sys.UI.DomEvent does for us. Sys.UI.DomEvent
also normalizes the event information across browsers. Normalizing the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2: Microsoft AJA X Library Programming110

event information eliminates the problem of searching for the target prop-
erty or srcElement property on our event object among other problems
caused by the browser’s different eventing systems. Listing 2.45 demon-
strates an event handler method that uses a normalized event and attach-
ing and detaching an event handler from the DOM element’s event.

Listing 2.45 Attaching and Removing a DOM Element Event Handler

function handleClickEvent(e) {
var elmFiringEvent = e.target;

// remove the handler from the firing event.
$removeHandler(elmFiringEvent, "click", handleClickEvent);

}

var button = $get('removeHighlight');

// attach the event handler to the button's click event.
$addHandler(button, "click", handleClickEvent);

As the handleClickEvent method shows, there is always an argument
passed into the event handler, which is of type Sys.UI.DomEvent. This is the
normalized event object, and it will be the same whether you are running
in Firefox, Internet Explorer, or in a different supported browser. Table 2.12
lists the properties that are available on this normalized event object.

Table 2.12 Sys.UI.DomEvent Properties

Property Name Description

altKey A Boolean value indicating whether the Alt key was pressed
when the event fired

button Gets a Sys.UI.MouseButton enumeration property that indi-
cates the state of the mouse when the event fired

charCode Gets the character code of the key that fired the event

clientX Gets the x-coordinate of the mouse’s position relative to the
client window excluding scroll bars

clientY Gets the y-coordinate of the mouse’s position relative to the
client window excluding scroll bars

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Important New Types 111

Property Name Description

ctrlKey A Boolean value indicating whether the Ctrl key was pressed
when the event fired

offsetX Gets the x-coordinate of the mouse’s position relative to the ele-
ment that raised the event

offsetY Gets the y-coordinate of the mouse’s position relative to the ele-
ment that raised the event

screenX Gets the x-coordinate of the mouse’s position relative to the
user’s screen

screenY Gets the y-coordinate of the mouse’s position relative to the
user’s screen

shiftKey A Boolean value indicating whether the Shift key was pressed
when the event fired

target The element that raised the event

type The name of the event

NOTE Normalizing the Event Object

In normalizing the event, the Microsoft AJAX Library developers had
to decide what to name properties when they expressed the same
value across multiple browsers but had different names. Hence,
srcElement was renamed target, and other name changes occurred.

They also made a decision to normalize different types of events into
a single event object. This means that each event object has exactly the
same properties no matter what the originating event was. This is use-
ful from a standardization viewpoint, but can lead to some missing
information that you might have expected to be available on your
event object.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Maintaining Scope

When working with events such as the example we coded in Listing 2.45,
maintaining the scope of this can become a problem. In Listing 2.45, when
the handleClickEvent method executed, we had a single parameter, e,
available to us, which was a normalized DomEvent object. We also had this
available to us, and because the method was executing as an event handler
for a DOM element, this pointed to the firing element, which was the
removeHighlight button.

Having this point to the DOM element is the default behavior of an
event handler method, but it is unwanted behavior when our event handler
is contained within an object. In the case where our method is contained
within an object, we normally want this to point to the current object, not
the firing DOM element.

Listing 2.46 demonstrates this problem. In the code example, we define
a new test type called MyObject that contains a single private member,
_name, and a single method, clickEventHandler, whose purpose is to alert
_name’s value when it is clicked. We create an instance of the object and then
attach the click event of a button to the object’s clickEventHandler.

Listing 2.46 Demonstrating Problems with this

<html>
<body>

<form id="form1" runat="server">
<input type="button" value="Test!" id="test" />
<asp:ScriptManager ID="SM1" runat="server" />

</form>

<script type="text/javascript">

Chapter 2: Microsoft AJA X Library Programming112

TIP Accessing the Raw Event

If needed, the event as raised by the browser can be accessed through
the Sys.UI.DomEvent object. It is accessed through the rawEvent prop-
erty. This property can be useful when the normalized event object
doesn’t contain a particular property that the rawEvent will. But be
careful, when you access the rawEvent object you are writing non-
standard code and must write code for each of the browsers you
intend to support.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

MyObject = function() {
this._name = "Default Name";

};

MyObject.prototype = {
clickEventHandler: function(e) {

alert (this._name);
}

};

var myObject = new MyObject();
$addHandler($get("test"), "click", myObject.clickEventHandler);
</script>

</body>
</html>

The code looks like it would alert "Default Name" when we click the test
button, but instead we get the undefined value, as shown in Figure 2.17.

Maintaining Scope 113

Figure 2.17 The undefined error message

We receive this error message rather than the desired “Default Name”
because when clickEventHandler executes, this points to the test button
and not the current object. To correct this, we can use a construct provided
to us by the Microsoft AJAX Library called a delegate.

Delegates
Delegates are another idea brought over from .NET. In .NET, they are
objects that encapsulate a reference to another method. The delegate object
can be passed to other code, which can execute the referenced method with-
out any knowledge of the method it’s executing.

In the Microsoft AJAX Library, delegates work relatively the same way.
You create a delegate supplying the reference to the method you want

http://lib.ommolketab.ir
http//lib.ommolketab.ir

executed and then pass the delegate to other code, which then executes the
referenced method.

The main benefit of a Microsoft AJAX Library delegate is that you can
supply an instance in which you want the referenced method executed.
Simply put, you can point this to any object you want. We can use this fea-
ture of delegates to maintain scope during event operations.

To create the delegate, we use the Function.createDelegate method, as
follows:
var del = Function.createDelegate(instance, method);

Altering the relevant portions of Listing 2.46, we can use a delegate to
get the clickEventHandler method to alert the desired value. Listing 2.47
displays the alerted code.

Listing 2.47 Using a Delegate

…

var myObject = new MyObject();
var del =

Function.createDelegate(myObject, myObject.clickEventHandler);
$addHandler($get("test"), "click", del);

…

What we did is create a delegate that is executed when the click event
fires instead of the directly executing clickEventHandler. When the dele-
gate executes, clickEventHandler will execute, and this will be myObject.

Now when we click our test button, we’re presented with the desired
output, as shown in Figure 2.18.

Chapter 2: Microsoft AJA X Library Programming114

Figure 2.18 The object’s _name member

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Callbacks
Although callbacks aren’t directly related to maintaining scope, they are
useful for passing extra information to event handlers. In Listing 2.47 we
defined the clickEventHandler method with a single parameter, which
will always be the DomEvent. What callbacks enable us to do is send in some
other data as a second parameter.

To use a callback, we follow the same pattern as a delegate. We create a
callback and add it as the handler method for an event. To create a callback,
use the following syntax:
var callback = Function.createCallback(method, context);

The method is the method to execute, and the context is the extra data
we want to pass into that method. Listing 2.48 updates the previous exam-
ple in two ways. First, we add an extra parameter to the clickEvent
Handler method. Second, we create a callback and use it in adding the
click event handler to the test button. When we create the callback, we use
the previously defined delegate as the method and supply a simple "123"
string as the context. One thing that is great about delegates and callbacks
is that we can combine them as needed. If we weren’t able to, our this
problem would return and we wouldn’t be able to access _name.

Maintaining Scope 115

NOTE A Delegate’s Internals

The internals of a delegate are simple.

return function() {
return method.apply(instance, arguments);

}

It returns an anonymous function that uses JavaScript’s apply method
to switch the context of this as it executes the method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.48 Using a Callback

…

clickEventHandler: function(e, context) {
alert (this._name + context);

}
…

…

var a = new MyObject();
var del = Function.createDelegate(a, a.clickEventHandler);
var cb = Function.createCallback(del, "123");
$addHandler($get("test"), "click", cb);
…

Now when our clickEventHandler executes, everything is the same
except that its context parameter will be “123” and our output will look like
Figure 2.19.

Chapter 2: Microsoft AJA X Library Programming116

Figure 2.19 Output of _name and context

One of the drawbacks of a callback is that we can specify only one extra
parameter. Because of this, if we want to supply multiple parameters, we
need to use a simple object that acts like a dictionary. Listing 2.49 shows
how we can supply a dictionary rather than a simple parameter.

Listing 2.49 Passing in a Dictionary

var context = {"Date": new Date().getDate(), "x": 319, "y":483};
var cb = Function.createCallback(del, context);

NOTE Not the Only Use

Using callbacks with event handlers isn’t their only use. Another
handy use is to use them to pass in the same object over and over again
without specifying it for each call.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SUMMARY

In this chapter we walked through the basics of working with the Microsoft
AJAX Library. First we covered how to extend the .NET Framework with
your own objects. Then, we detailed the Microsoft AJAX Library’s base
type extensions. From there, we covered how the Microsoft AJAX Library
works with DOM elements and events using the Sys.UI.DomElement and
Sys.UI.DomEvent classes, respectively. Finally, we wrapped it up with a
walk-through of how to maintain scope using delegates and callbacks.

Summary 117

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PART II
Controls

119

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3
Components

I N CH A P T E R 2, “MI C R O S O F T AJAX Library Programming,” we began
our discussion of the Microsoft AJAX Library and how it extends the

built-in JavaScript types with new features, how to use the Prototype
Model to extend the Library with our own custom types, and we even cov-
ered a few of the important prebuilt types.

In this chapter, we continue our discussion of the Microsoft AJAX
Library by covering components and its two derived types, controls and
behaviors. This chapter is the start of creating client objects that will be
related to server controls.

Components Defined

A component is any object whose client type inherits from Sys.Component.
They are extremely important because you’ll use the Sys.Component base
type to extend the framework to create new components. You’ll want to cre-
ate new components because Sys.Component contains a few distinct char-
acteristics not found in any other Microsoft AJAX Library type.

First, components are designed to bridge the gap between client and
server programming. Through server objects called ScriptDescriptors,
we can instruct ASP.NET AJAX to automatically emit JavaScript that creates
instances of our component types. Using this feature, we can attach client

121

http://lib.ommolketab.ir
http//lib.ommolketab.ir

capabilities to web server controls without actually writing any JavaScript
in our web server control’s class.

Chapter 3: Components122

NOTE Creating Components through Server Code

We cover creating components through server code in detail in Chap-
ter 5, “Adding Client Capabilities to Server Controls.”

Second, Sys.Application, which is a global object that acts like a client
runtime, is set up to manage any type that inherits from Sys.Component.
This means that your component will go through a predefined lifecycle.
You’ll know when the component will be created and when it will be dis-
posed, and you can inject your own custom code at these points as needed.
This provides you with a great deal of control and safety.

NOTE Components and Web Server Controls

Sys.Applicationmanaging components is similar to a page managing
web server controls. It was designed that way on purpose to give
ASP.NET developers a familiar feel when programming within the
Microsoft AJAX Library. We cover Sys.Application in detail in Chap-
ter 4, “Sys.Application.”

Finally, components have a lot of the common functionality that you’ll
need already built-in. They have a Sys.EventHandlerList instance, so you
can create, maintain, and raise custom events. They implement the
Sys.INotifyPropertyChanged interface, which provides property-changed
notification methods. And they implement the Sys.INotifyDisposing
interface so that other objects can be notified easily when they are disposed.

Components, Controls, and Behaviors
As if components weren’t already great, there are two special-purpose
component types contained within the Microsoft AJAX Library: behaviors,
represented by the Sys.UI.Behavior class; and controls, represented by the
Sys.UI.Control class. Figure 3.1 shows the hierarchy between the three
types.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 3.1 Class hierarchy between Sys.Component, Sys.UI.Behavior, and Sys.UI.Control

Components Defined 123

Sys.Component

Sys.UI.ControlSys.UI.Behavior

TIP Managed Components

As Figure 3.1 shows, Sys.Component is the base type for both
Sys.UI.Control and Sys.UI.Behavior. As stated earlier, Sys.
Application manages components. It is through inheritance that con-
trols and behaviors are managed, too. When we talk about Sys.
Application, we refer to it as having managed components, which
could be a component, behavior, or control.

Behaviors, controls, and components are mostly the same. This is the
case because when compared to the amount of functionality the base com-
ponent type provides, behaviors and controls don’t provide much, and the
functionality they do provide doesn’t take them in a radically different
direction.

The one striking difference that does exist between a base component
and a behavior or control is behaviors and controls have a built-in associa-
tion to a DOM element because they are intended to be visual. In compar-
ison, components do not have a built-in association to a DOM element
because they are intended to be nonvisual.

Between behaviors and controls, the major difference is that a DOM ele-
ment can have only one control associated to it, whereas it can have multi-
ple associated behaviors.

Table 3.1 summarizes the differences between the three types.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 3.1 Differences between Components, Controls, and Behaviors

Can Be A DOM Element Can Access to
Object Associated to Have More Than Object from
Type a DOM Element One Associated to It DOM Element

Component Not allowed N/A (not directly N/A (not directly asso-
associated to a DOM ciated to a DOM element).
element).

Control Must be No, a DOM element Yes, a control can be ac-
associated to a can have only one cessed through a control
DOM element associated control. expando property attached

to the DOM element.

Behavior Must be Yes, a DOM element Yes, a behavior can be
associated to a can have one or more accessed through an
DOM element associated behaviors. expando property of the

behavior’s name from the
DOM element if the
behavior was named at the
time it was initialized.

All behaviors attached to
an element can be accessed
by a private _behaviors
array attached to the DOM
element.

These rules are enforced during the creation of a component, behavior,
and control and dictate what base type your new type will inherit from.
Figure 3.2 covers the basic decision process when determining what type of
new object to create based on the feature’s requirements.

Now that we covered the basics of components, controls, and behaviors,
let’s tackle each type individually.

Chapter 3: Components124

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 3.2 Decision process between component, control, and behavior

Sys.Component

Sys.Component is the root type of all components and provides the major-
ity of the functionality. It does not inherit from another type, but does
implement three interfaces: Sys.IDisposable, Sys.INotifyProperty

Changed, and Sys.INotifyDisposing. Table 3.2 details these three
interfaces.

Sys.Component 125

Feature
Requirements

Is the Feature going to be
associated to a DOM

Element?

Should the Feature be
combinable with other

features?

YesYesYes

YesYesYes

Behavior

Component

Control

NoNo

NoNo

No

No

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 3.2 Interfaces Implemented by Sys.Component

Interface Purpose Methods

Sys.INotifyPropertyChanged Implements add_propertyChanged
property-changed remove_propertyChanged
notification event

Sys.INotifyDisposing Implements add_disposing
disposing event remove_disposing

Sys.IDisposable Represents a dispose
disposable object.

Sys.Component also contains five internal members, as detailed in
Table 3.3.

Table 3.3 Sys.Component Members

Member Name Purpose Type

_id The unique identifier of the compo- string
nent. Used to find the component
after it’s registered with
Sys.Application. Each component
managed by Sys.Application must
have a unique ID.

_idSet Indicates whether the _id boolean
property has been set.

_initializing Indicates whether the component boolean
has been through its initialization
routine.

_updating Indicates whether the component boolean
is updating.

_events Maintains a list of events and event Sys.EventHandlerList
handlers.

Besides implementing the methods required by the three interfaces,
Sys.Component exposes methods that allow interaction with its internal

Chapter 3: Components126

http://lib.ommolketab.ir
http//lib.ommolketab.ir

members. Table 3.4 details these methods and the methods required by the
three interfaces.

Table 3.4 Sys.Component Methods

Method Name Description Syntax

beginUpdate Marks the compo- comp.beginUpdate();
nent as updating.
Called during the
creation of a
component.

endUpdate Marks the compo- comp.endUpdate();
nent as not updating.
Called during the
creation of a compo-
nent. Executes the
initialize method
if the component is
not initialized.
Executes the updated
method.

updated Empty comp.updated();
implementation.

get_isUpdating Getter for the comp.get_isUpdating();
updating member.

initialize Marks the component comp.initialize();
as initialized.

get_initialized Getter for the comp.get_initialized();
initialized member.

dispose Executes the comp.dispose();
disposing event
handlers. Removes
the _events property
from the component.
Unregisters the com-
ponent from
Sys.Application.

Sys.Component 127

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 3.4 continued

Method Name Description Syntax

get_events Getter for the events comp.get_events()
member.

get_id Getter for the ID comp.get_id();
member.

set_id Setter for the ID comp.set_id(id);
member. ID cannot
be changed after it
has been set (through
this setter) or after
the component has
been registered with
Sys.Application.

add_disposing Adds an event comp.add_disposing(handler);
handler to the
disposing event.

remove_disposing Removes an event comp.remove_
handler from the disposing(handler);
disposing event.

add_propertyChanged Adds an event comp.add_
handler to the propertyChanged(handler);
propertyChanged
event.

remove_propertyChanged Removes an event comp.remove_
handler from the propertyChanged(handler)
propertyChanged
event.

raisePropertyChanged Executes registered comp.raisePropertyChanged
propertyChanged (propertyName);
event handlers
passing in the name
of the property that
changed in the event
arguments.

Chapter 3: Components128

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Defining New Components
Sys.Component is extremely useful, but directly creating instances of it is
not its purpose. Instead, it is intended to be used as a base class for user-
defined components.

We can define a new component type using the Prototype Model we
covered in Chapter 2 and registering our component to inherit from
Sys.Component.

ErrorHandler Component

To demonstrate how to define a new component, we create a new error han-
dling component. The ErrorHandler component will be responsible for
publishing handled and unhandled errors to an error data service.

Skeleton

To start, we create the skeleton of our new component, as Listing 3.1 shows.

Listing 3.1 Defining Our ErrorHandler Component

/// <reference name="MicrosoftAjax.js"/>
ErrorHandler = function() {

ErrorHandler.initializeBase(this);
};

ErrorHandler.prototype = {
initialize: function() {

ErrorHandler.callBaseMethod(this, 'initialize');
},
dispose: function() {

ErrorHandler.callBaseMethod(this, 'dispose');
}

}
ErrorHandler.registerClass('ErrorHandler', Sys.Component);

Sys.Component 129

NOTE beginUpdate, endUpdate, and initialize

beginUpdate, endUpdate, and initialize are automatically executed
during the component creation process. They are normally not exe-
cuted by user-defined code, but can be overridden to provide custom
functionality.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Besides calling initializeBase in the constructor and registering
our class to inherit from Sys.Component, we overrode Sys.Component’s
initialize and dispose methods. We included these overrides in the
skeleton because overriding the initialize and dispose methods is nor-
mally the first step taken in creating a new component, and we suggest
doing it right away.

Build Up and Tear Down

We can build on our skeleton definition by providing an implementation of
our initialize and dispose methods.

In the initialize method, you build up your component. This includes
adding event handlers to DOM elements, appending a new DOM element
to the tree, or anything else your component requires.

In the dispose method, you tear down your component. This might
include detaching an event from a DOM element, destroying a created
DOM element, or releasing any other resources that your component
created.

Chapter 3: Components130

TIP dispose May Be Called More Than Once

It’s a good habit to write your dispose method so that it can be called
more than once without causing any runtime errors. With a decently
complex application, it’s likely you’ll get into a situation where when
some manager object is disposed it will call dispose on its child compo-
nents. But, each of the child components will have also been registered as
a disposable object with Sys.Application. When Sys.Application dis-
poses and executes dispose on each of the registered disposable objects,
it will be the second (or more time) that disposewill have been called on
them. If you’re not careful, this can cause a runtime error. Simple if-then
checks can prevent most common problems.

For our new ErrorHandler component, we need to add a handler to the
window’s error event when the component initializes and then remove the
handler when our component disposes. Listing 3.2 shows how we do this.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.2 Adding a Handler to Window’s error Event

/// <reference name="MicrosoftAjax.js"/>
ErrorHandler = function () {

ErrorHandler.initializeBase(this);
};

ErrorHandler.prototype = {
initialize: function () {

ErrorHandler.callBaseMethod(this, 'initialize');
window.onerror =
Function.createDelegate(this, this._unhandledError);

},

dispose: function ErrorHandler$dispose() {
window.onerror = null;
ErrorHandler.callBaseMethod(this, 'dispose');

},

_unhandledError: function(msg, url, lineNumber) {
try {
var stackTrace = StackTrace.createStackTrace(arguments.callee);
ErrorDataService.PublishError

(stackTrace, msg, url, lineNumber);
}
catch (e) { }

}
}
ErrorHandler.registerClass('ErrorHandler', Sys.Component);

As you can see in Listing 3.2, we did some interesting things. First, in the
initialize method, we created a delegate that pointed to the _unhandled
Error method and assigned it to the window’s error event using the
onerror assignment.

Sys.Component 131

TIP window.onerror

We used the onerror assignment rather than the $addHandler method
because for some reason the window’s error event doesn’t support
adding events through addEventListener or attachEvent, the two
browser-specific methods that $addHandler eventually calls.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the dispose method, we went ahead and cleared the window’s error
event handler. This is the buildup and teardown of our component.

In the unhandledError method that will execute when an unhandled
error occurs, we do two things. First, we generate a stack trace using a
global StackTrace object passing in the callee property of the function’s
arguments variable. After we have our stack trace, we execute the
PublishError method on our ErrorDataService web service proxy, pass-
ing to the server the stack trace, the error message, the URL of the page
where the error occurred, and the line number of the error message. We also
wrapped all the code in a try-catch statement because we don’t want the
error handling code to throw any runtime errors itself.

Chapter 3: Components132

NOTE StackTrace and ErrorDataService

The global StackTrace object we used to generate our stack trace of the
executing call stack is really useful for debugging, and its full source
code is available in Appendix D, “Client Error Handling Code.” Sim-
ilarly, the ErrorDataService web service that we used to send the
error information back to the server for processing can be found in
Appendix D.

Using Base Class Methods and Objects

By inheriting from Sys.Component, our type inherits all the attributes and
behaviors of Sys.Component. Using the base class’s Sys.EventHandlerList
object and its related functionality, we can define new events without hav-
ing to write much code ourselves. Listing 3.3 expands our basic Error
Handler component and adds an event that we can register with that will
be raised whenever an error occurs.

Listing 3.3 Using Base Class Methods

… // code remains the same as before.

_unhandledError: function (msg, url, lineNumber) {
try {
var stackTrace =
StackTrace.createStackTrace(arguments.callee);
ErrorDataService.PublishError

(stackTrace, msg, url, lineNumber);

var args = new ErrorEventArgs(stackTrace, msg, url, lineNumber);
this._raiseUnhandledErrorOccured(args);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}
catch (e) { }

},

add_unhandledErrorOccurred: function(handler) {
this.get_events().addHandler("unhandledErrorOccurred", handler);

},

remove_unhandledErrorOccurred: function(handler) {
this.get_events().removeHandler("unhandledErrorOccurred", handler);

},

_raiseUnhandledErrorOccured: function(args) {
var evt = this.get_events().getHandler("unhandledErrorOccurred");
if (evt !== null) {

evt(this, args);
}

},
}
ErrorHandler.registerClass('ErrorHandler', Sys.Component) ;

ErrorEventArgs = function(stackTrace, message, url, lineNumber) {
ErrorEventArgs.initializeBase(this);
this._message = message;
this._stackTrace = stackTrace;
this._url = url;
this._lineNumber = lineNumber;

}
ErrorEventArgs.registerClass("ErrorEventArgs", Sys.EventArgs);

Starting from the bottom of Listing 3.3, we define the new ErrorEvent
Args type. This type inherits from Sys.EventArgs and turns our error infor-
mation into an object.

In the ErrorHandler type, we added the three methods necessary to
add, remove, and raise the unhandledErrorOccurred event. We rely on
Sys.Component’s event handler list, which we access through
this.get_events() to maintain the list of events.

Finally, in the _unhandledError, we added code to create the error
event arguments and then pass them on to the method that raises the event.

One final change that we make to our ErrorHandler component is to
add a property that allows us to enable or disable the error publishing fea-
ture. Listing 3.4 shows the code changes.

Listing 3.4 Adding the Disable Error Publishing Property

/// <reference name="MicrosoftAjax.js"/>
ErrorHandler = function () {

Sys.Component 133

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.4 continued

ErrorHandler.initializeBase(this);
this._disableErrorPublication = false;

};

ErrorHandler.prototype = {
…

get_disableErrorPublication: function() {
return this._disableErrorPublication;

},

set_disableErrorPublication: function(value) {
if (!this.get_updating()) {

this.raisePropertyChanged("disableErrorPublication");
}
this._disableErrorPublication = value;

},

_unhandledError: function(msg, url, lineNumber) {
try {

var stackTrace = StackTrace.createStackTrace(arguments.callee);
if (!this._disableErrorPublication) {
ErrorDataService.PublishError

(stackTrace, msg, url, lineNumber);
}
var args =
new ErrorEventArgs(stackTrace, msg, url, lineNumber);

this._raiseUnhandledErrorOccured(args);
}
catch (e) { }

},
…

}
ErrorHandler.registerClass('ErrorHandler', Sys.Component);
…

With that final change, we’ve created a useful component that we can
use to send client error information to the server so that we can be aware
of issues our clients are experiencing.

Creating Components
Based on what we’ve covered so far, you might think that to create a new
component you would “new up” a component and assign it to a variable,
as shown in Listing 3.5.

Chapter 3: Components134

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.5 Creating an Instance of a Component Using new

var errorHandler = new ErrorHandler();
errorHandler.set_disableErrorPublication (false);

Although nothing is wrong with this code, after all a component is just
a JavaScript object, components should be created through the Sys.
Component.create method. Listing 3.6 shows the syntax for using the
create method.

Listing 3.6 Creating an Instance of a Component Using Sys.Component.create

var newComponent =
Sys.Component.create(

type,
properties,
events,
references,
element);

The Sys.Component.create method, which can also be accessed
through the global variable $create, does more than just create a new
instance of a particular type. Instead, it creates an instance of a particular
type, registers the instance with Sys.Application as a managed compo-
nent, and automatically calls the component’s beginUpdate, endUpdate,
updating, and initialize methods. In addition to doing all this automat-
ically, depending on what parameters are provided to the call, $create can
assign initial property values, add event handlers to events, assign other
components as references, and associate a DOM element to the component.
Finally, the $create method returns a pointer to the created instance. So as
you can see, the $create method does a lot more than create a new instance
of a type.

Sys.Component 135

NOTE Initialize Execution

Initialize always executes after all properties, events, and references
have been set.

Importantly, the $create method not only creates instances of types that
directly inherit from Sys.Component, but can also create types that have
multiple levels of inheritance before reaching the Sys.Component type. This
includes controls that inherit from Sys.UI.Control and behaviors that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To demonstrate how to use the $create method, we walk through a
series of $create calls changing the parameters around to suit our demon-
stration purposes.

Chapter 3: Components136

NOTE Parameter Information

The only parameter required by the $create method is type. The other
parameters—properties, events, references, and element—are all
optional parameters. If you don’t want to use them, supply null.

Supplying a value other than null for the element parameter is valid
only when the type you’re creating an instance of inherits from
Sys.UI.Control or Sys.UI.Behavior. If you pass in an element when
creating a component that does not inherit from either of these types,
an error is thrown.

Likewise, if you do not pass in an element when creating an instance
of a type that inherits from Sys.UI.Control or Sys.UI.Behavior, an
error will be thrown.

NOTE Sys.Application Is Initialized

The following explanation of the $create method assumes that
Sys.Application has been initialized. Although components will not
always be created under this condition, we chose this assumption for
the initial walkthrough of the $create method so that we could have
a clear path through the method without too many branches.

However, there are a couple of significant differences between creating
components after Sys.Application is initialized and creating compo-
nents before Sys.Application is fully initialized, and we point out
how the $create method changes when Sys.Application isn’t fully
initialized when we discuss Sys.Application’s initialization process
in Chapter 4.

Using the type Parameter

First, let’s look at the basic call where we only pass in the type we want to cre-
ate and null values for the rest of the parameters. Listing 3.7 shows this call.

inherit from Sys.UI.Behavior. The $create method works a little bit dif-
ferently when creating a behavior or control, and we cover this slight dif-
ference when we cover those types later in this chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.7 The type Parameter

var errorHandler =
Sys.Component.create(

ErrorHandler,
null,
null,
null,
null);

type
Description: The type of component to create
Expected type: type
Required: Yes
Other requirements: The value assigned to type must inherit from
Sys.Component.
Notes: The parameter is not enclosed in quotation marks because
it’s a Type object, not a string. A Type object is a Function object
that has been registered with the Microsoft AJAX Library using the
registerClass, registerInterface, or registerEnum method
such as we did with the ErrorHandler component.

In this example, the first thing the Sys.Component.create method does
is ensure that the parameter value ErrorHandler is a Type and inherits from
Sys.Component. After it passes those tests, it creates a new instance of
ErrorHandler and assigns it to a local variable.

Sys.Component 137

NOTE Registering as a Disposable Object

When the new instance is created, it registers as a disposable object
with Sys.Application. Doing so ensures that the instance’s dispose
method is executed when Sys.Application is disposed. We cover this
topic further in Chapter 4.

Then, on our new instance, beginUpdate is executed. By default, begin
Update does nothing more than set the internal updating flag to true, but
it can be overridden by the new component’s implementation to do more
work if necessary.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Then, on our new instance, endUpdate is executed, which sets the inter-
nal _updating flag back to false and then executes the initialize method,
which we overrode to attach an event handler to the window’s error event.
Once the initialize method has executed, the updated method executes.
If a method override is not supplied, the updated method doesn’t do any-
thing. From there, the component is returned, and you can access it through
a variable assigned to the method call.

Chapter 3: Components138

TIP _initialized Check

In endUpdate, there is a check to make sure the internal member
_initialized is false before initialize is called. In the case of the
$create method, initialized will always be false when endUpdate
is called. However, if you use endUpdate for a different purpose later in
the component’s lifecycle, _initialized will be set to true, and the
initialize method won’t execute again. This allows you to call
beginUpdate and endUpdate without having to worry about your com-
ponent being re-initialized.

This simple example tells us one important thing through the power
of omission. Nowhere did we say that the component got added to Sys.
Application’s managed objects, which is something we claimed the Sys.
Component.create method did. This didn’t happen because the ID of the
component was never set, and only components that have their IDs set are
automatically added to Sys.Application’s managed components. We can
correct this by manually setting the component’s ID and then adding it to
Sys.Application’s list of managed components, as shown in Listing 3.8.

Listing 3.8 Manually Setting the ID and Calling addComponent

var errorHandler =
Sys.Component.create(

ErrorHandler,
null,
null,
null,
null);

errorHandler.set_id("ApplicationErrorHandler");
Sys.Application.addComponent(errorHandler);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Another way to correct this problem is to initially set the component’s
ID. If the ID is set using the properties parameter, the component will
automatically be added to Sys.Application’s managed components right
after the events parameter is processed. Listing 3.9 shows the change
required.

Listing 3.9 Setting the Component’s id Inline

var errorHandler =
Sys.Component.create(

ErrorHandler,
{id: "ApplicationErrorHandler"},
null,
null,
null);

Because having a value for the component’s ID is necessary for it to
become a managed component, it should almost always be set in the
$create call. There might be special cases where you don’t want to set it or
want to set it a later time, but these will be rare.

Also, the IDs of components that are managed by Sys.Application
must be unique. If you attempt to add two components with the same ID
to Sys.Application's managed components either through the $create
statement or manually calling addComponent, an error will be thrown.

Sys.Component 139

NOTE Calling addComponent

If we were to manually add the component to Sys.Application with-
out setting the component’s ID, an error would be thrown.

NOTE Using the returned Variable

The $create method enables us to access the created component
through a pointer returned by the method, but it’s useful only in
certain situations. Because the component is registered with Sys.
Application, we’ll be able to get access to the component later by find-
ing it within Sys.Application’s managed components using its
unique ID.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the properties Parameter

In this example let’s pass in some simple initial property values. Listing
3.10 shows how we do this.

Listing 3.10 Passing In Initial Property Values

var errorHandler =
Sys.Component.create(

ErrorHandler,
{
id: "ApplicationErrorHandler",
disableErrorPublication: true

},
null,
null,
null);

properties
Expected type: Object
Required: No
Description: An object containing key-value pairs, where the key is
the name of a property on the component to set, and the value is the
value to assign to that property

In this example, the initial steps of the $create method are the same as
they were in the previous example. The type is validated, the component
is created, and beginUpdate is executed.

The next step is to assign the property values to the component’s prop-
erties. The properties and their values are passed in using the string-object
syntax that is highlighted in Listing 3.10. Instead of using the string-object
syntax, we could have used object creation code as shown in Listing 3.11,
but the string-object syntax is a shorter and more comprehensible syntax
in this situation.

Listing 3.11 Creating Properties Object Using Variables

var initialProperties = new Object;
initialProperties.id = "ApplicationErrorHandler";
initialProperties.disableErrorPublication = true;

var errorHandler =
$create(

ErrorHandler,
initialProperties,
null,

Chapter 3: Components140

http://lib.ommolketab.ir
http//lib.ommolketab.ir

null,
null);

Using either method, our code indicates that we want to set two prop-
erties: id and disableErrorPublication.

To do this, the $create method delegates control to another method,
Sys$Component_setProperties. This is a global method available within the
Microsoft AJAX Library, whose purpose is to set properties on a component.
It accepts two parameters: the target object and the properties object.

Within this method, each of the expando properties attached to the
properties parameter is accessed and successively processed according to
a series of rules.

The first rule determines whether there is a getter method for the prop-
erty. It does this by prefixing the current property name, id, with the string
get_. In our example, the get_id method exists on the base Sys.Component
class, so this rule is met.

After the getter method has been established as existing, the setter
method is looked for. It does this by prefixing the current property name
with the string set_. Again, in our example, the set_id method exists on
the base Sys.Component class.

After the setter method has been determined to exist, the setter method
is executed on the target, passing in the value of the current property. In our
example, the value passed in is ApplicationErrorHandler.

The process repeats until all properties have been successfully applied
to the component or an error occurs, such as the getter not existing, a set-
ter not taking in the correct number of parameters, or a whole host of other
possibilities. In our example, the disableErrorPublication property is ini-
tialized with the value true.

Sys.Component 141

NOTE Iterating over the Properties

The expando properties attached to the properties parameter are
accessed by using a for…in loop. As we discussed in Chapter 1,
“Programming with JavaScript,” the for…in loop iterates over the prop-
erties of an object, placing the current property name into a variable.

After the property name is placed in a variable, the value associated
to the property name is accessed using the associative array principle
discussed in Chapter 1.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Calling the Setter Method
As mentioned, the setter method for a property is executed during the cre-

ation of a component. Just as in .NET, the setter method can contain any

code it wants. If you write the method to execute a long-running process,

the component creation waits until that process has completed.

With that in mind, you need to be careful to make the setter method as

efficient as possible for the component creation to complete quickly.

If there is extra code that should not execute during the component cre-

ation process, one way to avoid executing it is to check the value of

_updating, as shown here:
…
set_disableErrorPublication: function(value) {
if (!this.get_updating()) {
this.raisePropertyChanged

("disableErrorPublication");
}
this._disableErrorPublication = value;

},
…

In this code example, we make sure that the component is not updat-

ing before we raise the propertyChanged event. Checking the _updating

flag is less expensive than going through the process of raising the event.

Caution: This is just test code. Make sure that you really don’t want the

propertyChanged event to be raised when the component is updating

before using this code.

Complex Property Setting
Setting the id and the disableErrorPublication of our ErrorHandler

instance are simple examples of property settings through the $create

method, but there are four advanced scenarios of property setting that

we can use to our advantage to create complex components in a single

statement.

Chapter 3: Components142

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Setting a value that has no setter or getter, such as an attribute on a

DOM element or a property attached to a prototype

2. Appending items to an array

3. Setting properties on a subcomponent; a component contained

within another component

4. Adding properties to an existing object

Each of these concepts is illustrated with a new dummy component

MyComplexComponent:

MyComplexComponent = function() {
MyComplexComponent.initializeBase(this);
this.city = null;
this._areaCodes = [];
this._myObject = { firstName: "Harry" };
this.subComponent =
$create(ErrorHandler,
null,
null,
null,
null);

};

MyComplexComponent.prototype = {
someExpandoProperty: null,
get_address: function() {
return this._address;

},
set_address: function(value) {
this._address = value;

},
get_areaCodes: function() {
return this._areaCodes;

},
get_myObject: function() {
return this._myObject;

}
};

MyComplexComponent.registerClass(
"MyComplexComponent",
Sys.Component);

var newComponent =
$create(

Sys.Component 143

http://lib.ommolketab.ir
http//lib.ommolketab.ir

MyComplexComponent,
{
id: "MyNewComplexComponent",
city: "San Diego",
areaCodes: [619, 858, 760],
someExpandoProperty: "My Expando's Value",
subComponent:
{
id: "ApplicationErrorHandler",
disableErrorPublication: "true"

},
myObject: { lastName: "Houdini" }

},
null,
null,
null);

1. Setting a value that has no getter or setter

This scenario is exemplified through the setting of the city and

someExpandoProperty properties. These properties can be set

because they are existing fields on the object. If they didn’t already

exist, the setProperties routine wouldn’t add them for us.

2. Appending items to an array

The second advanced scenario is exemplified through the areaCodes

property. Here, we define a new array of three elements (619, 858, and

760) and assign it to the areaCodes property. For the elements to be

appended to the existing array, there must be a getter for the prop-

erty, but no setter. If there is a setter, it will be used instead, and it will

be up to the setter’s code to append the items to the array. Also, the

array must already be instantiated. If the variable points to null or

undefined, an error is thrown.

3. Setting properties on a subcomponent

The third advanced scenario is exemplified through the sub

Component property. Here, we define a subobject that contains an id

and disableErrorPublication property, both properties on our

previously defined ErrorHandler component. When the set

Properties method encounters this property, it accesses the

Chapter 3: Components144

http://lib.ommolketab.ir
http//lib.ommolketab.ir

subcomponent, and then recursively calls the setProperties

method using the subcomponent as the target parameter and the

subobject containing the id and address properties as the proper-

ties parameter. This type of recursive call could continue an infinite

number of levels deep if we had set up our properties parameter

that way.

We could have supplied a getter here and had the same effect, but if

we had supplied a setter, too, setting the properties of the subcom-

ponent would not have worked as expected.

When we call the setProperties method recursively using a com-

ponent as the target parameter, it calls beginUpdate on that compo-

nent before it enters the for…in loop and endUpdate when it exits.

This is something to be aware of if you’re using the get_updating

method in your code.

4. Setting properties on a simple JavaScript object

The fourth and final advanced scenario is exemplified through the

myObject property. The myObject property defines a simple object

containing the property lastName that has the value Houdini. When

the setProperties method encounters this property, it makes a

recursive call into the setPropertiesmethod to apply the new prop-

erties to the myObject member. Here, rather than pass in a compo-

nent as the target, myObject is passed in as the target parameter

and the new properties object is passed in as the properties

parameter.

As you can see, the properties parameter of the $create method can

handle some advanced scenarios. You’ll find use for them in your code, if

you remember that they’re there.

Using the events Parameter

In this example, let’s assign an event handler to the available initialized
event using the events parameter. The code in Listing 3.12 demonstrates
how to do this.

Sys.Component 145

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.12 Passing in Event Handlers

$create(
ErrorHandler,
{

id:"ApplicationErrorHandler",
disableErrorPublication: true

},
{

unhandledErrorOccurred:
function(sender, args) {

alert(args._stackTrace);
}

},
null,
null);

events
Expected type: Object
Required: No
Description: An object containing key-value pairs, where the key is
the name of an event on the component to assign to, and the value
is an event handler to add to the event

In this example, the initial steps of the $create method are the same as
they were in the previous properties example. The type is validated, the
component is created, beginUpdate is executed, and then the properties are
set.

After the properties are set, the events parameter is processed. Similar
to the properties property, the events parameter is an object that contains
a series of key-value pairs. The events object is iterated over, and each key-
value pair is used to add an event handler to an event until they are all
added or an error occurs. Again, similar to the properties parameter, the
event handlers are added to events by executing the appropriate method.
In this case, the key, unhandledErrorOccurred, is automatically prefixed
with add_ to create add_unhandledErrorOccurred. This string is then
looked for as a function contained within the component’s definition. If the
method add_unhandledErrorOccurred is successfully found and the value
of the key-value pair contained in the object is a Function object, the value
is passed into the add_unhandledErrorOccurred method as its parameter
and executed, adding the event handler to the event.

Chapter 3: Components146

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In our example $create statement, we defined the event handler in line
with the $create statement, and our event handler is successfully added
to the unhandledErrorOccurred event. Another way to do this is to prede-
fine an event handler function, as we show in Listing 3.13.

Listing 3.13 Predefining an Event Handler

function unhandledErrorHandler(sender, args) {
alert(args._stackTrace);

}

$create(
MyComponent,
{address: "123 N. Fake Street" },
{

unhandledErrorOccurred:
unhandledErrorHandler

}
},
null,
null);

Predefining the event handler allows it to be reused for other compo-
nents or to be called procedurally.

In addition, if we want to handle an event with a method that is con-
tained within our component, rather than use a global function as we did in
Listing 3.13, we have to go through an extra step of creating a delegate to
wrap our event handler method so that context gets pointed back to the
intended component, as shown in Listing 3.14.

Listing 3.14 Wrapping an Event Handler in a Delegate

MyOtherComponent = function() {
MyOtherComponent.initializeBase(this);
this._subComponent = null;

};

MyOtherComponent.prototype = {
_unhandledErrorOccurred: function(sender, args) {

var stackTrace = args._stackTrace;
if (typeof(stackTrace) != "undefined") {
alert ("The Stack Trace of the error was: " + stackTrace);

}
},

Sys.Component 147

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.14 continued

initialize: function() {
MyOtherComponent.callBaseMethod(this, "initialize");

this._errorHandler =
$create(
ErrorHandler,
{

id:"ApplicationErrorHandler",
disableErrorPublishing: true

},
{

unhandledErrorOccurred:
Function.createDelegate (

this,
this._unhandledErrorOccurred

)
},
null,
null);

// cause an error to be thrown
var nullObj = null;
nullObj.causeError;

}
};

MyOtherComponent.registerClass("MyOtherComponent", Sys.Component);

As shown in the highlighted text, we create an instance of the Error
Handler component in MyOtherComponent’s initialize method. When we
assign the event handler to the unhandledErrorOccurred event, we wrap
it in a delegate so that when the code goes to execute the _unhandled
ErrorOccurred method it executes is using the correct context.

Chapter 3: Components148

NOTE Functional Prefixes

Now that we’ve covered setting properties and adding event handlers
through the $create method, we can see how the property prefixes
get_ and set_ and the event handler prefix add_ are not only aesthetic
prefixes but also functional.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the references Parameter

With the references parameter, we can assign one component to a property
on another, thus linking them together. You might wonder why we would
need a separate parameter for this when we could already accomplish this
using the properties parameter. We need this parameter because when we
start using server code to create instances of client components, we won’t
know what order the components will be created in. If we use a separate
parameter, the initialization process that Sys.Application goes through to
create our components treats component references differently and delays
assigning them until all components have been created. Doing this eliminates
the problem of a component attempting to access an uncreated component.

To illustrate how to use the references parameter, we pass in one com-
ponent as a reference to another component in the $create statement using
the references parameter. To do that, we must first create a component
that can act as a reference to our second component. Listing 3.15 shows the
two $create statements. In this example, we use two fictitious components
to keep the example clear.

Listing 3.15 Assigning References

// create the first component
$create(

MyComponent,
{

id: "MyFirstComponent"
},
null
null,
null

);

// create the second component and assign the first component
// to a property called subComponent
$create(

MyComponent,
{

id: "MySecondComponent"
},
null,
{

subComponent:"MyFirstComponent"
},
null

);

Sys.Component 149

http://lib.ommolketab.ir
http//lib.ommolketab.ir

references
Expected type: Object
Required: No
Description: An object that contains key-value pairs, where the key
represents a component property, and the value represents a com-
ponent to assign to this property. The value is the id of the
component.

After the $create statement has passed the event’s assignment code, it
processes the references parameter. Similar to the properties and events

parameters, the references parameter is an object that contains key-value
pairs. The key is the property we want to assign, and the value is an id of
a component we want to assign to the property.

In Listing 3.15, the references object is highlighted. The object states
that we want to assign the component that has the id MyFirstComponent to
the subComponent property of the component being created. Just like the
setProperties method we discussed earlier, the setReferences method
looks for a setter method that’s defined by prefixing set_ to the property
name. In our example, this method’s name is set_subComponent. When this
method is found, the component id, MyFirstComponent, is looked for
within Sys.Application’s managed components. If the component is
found, the setter method is executed with the found component as its
parameter.

Chapter 3: Components150

NOTE Finding Managed Components

Through Sys.Application.find, we can find registered components
by ID. When we cover Sys.Application in Chapter 4, we cover the
find method in detail.

TIP Creation Order

As mentioned earlier, for this code sample to work correctly, MyFirst
Component must be available before the second $create statement exe-
cutes. References to uncreated components can be used if Sys.
Application is in its initialization phase. This is something we cover in
Chapter 4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the element Parameter

The last parameter of the $create method is element, which is used as a
pointer to a DOM element. Because the element parameter is valid only
when we’re creating a new behavior or a new control, we cover the element
parameter when we cover defining and creating those types.

Wrapping Up Components
A component is not just defined as an object that inherits from Sys.
Component, but also as being managed by Sys.Application. Creating an
instance of a type that inherits from Sys.Component using the new keyword
will not automatically register the instance with Sys.Application. We have
to use the $create method for this to happen. Using $create also facilitates
setting properties, wiring up event handlers, assigning references to other
components, and associating it with a DOM element, as we see with con-
trols and behaviors. It also automatically calls the initialize method on
the component, enabling you to create user-defined code that executes after
all the properties have been set, event handlers added, and component ref-
erences assigned.

Controls

A control is a special type of component directly associated to a DOM ele-
ment. A DOM element can have only one associated control, and a control
must be associated to a DOM element.

In practical terms, because we can have only one control associated to
a given DOM element, their use is intended for situations where you want
to have full power over the DOM element. In those cases where you’re not
sure whether that’s your intention, start off with a behavior, and then move
to a control if needed. In reality, switching back and forth between a control
and a behavior is not too difficult and doesn’t require too much code to be
altered.

Because a control is directly tied to a DOM element, it has methods that
are useful for accessing and manipulating the associated DOM element.
Table 3.5 details the methods available to a control that access and manip-
ulate the associated DOM element.

Controls 151

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 3.5 Sys.UI.Control Methods

Method Name Description Syntax

set_id Overrides component’s no valid usage
set_id method. Throws
an error because a con-
trol’s id is always the asso-
ciated DOM element’s id.

get_id Overrides component’s return ctrl.get_id();
get_id method. Returns
the id of the associated
DOM element.

get_visible Returns the value returned return ctrl.get_visible();
by calling Sys.UI.
DOMElement.getVisible
on the associated DOM
element.

set_visible Calls Sys.UI.DomElement. ctrl.set_
setVisible using the visible(visibility);
control’s associated DOM
element and the Boolean
value passed into the
set_visible call.

get_visibilityMode Calls Sys.UI.DomElement. return ctrl.get_
getVisibilityMode using visibilityMode();
the control’s associated
DOM element.

set_visibilityMode Calls Sys.UI.DomElement. ctrl.set_visibilityMode(
setVisibilityMode using Sys.UI.VisibilityMode
the control’s associated);
DOM element and Sys.
UI.VisibilityMode
parameter passed in to the
set_visibilityMode call.

get_element Returns the associated return ctrl.get_
DOM element. element();

Chapter 3: Components152

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Method Name Description Syntax

addCssClass Calls Sys.UI.DomElement. ctrl.addCssClass
addCssClass using the (cssClassName)
control’s associated DOM
element and the name of
the CSS class to add.

removeCssClass Calls Sys.UI.DomElement. ctrl.removeCssClass
removeCssClass using the (cssClassName);
control’s associated DOM
element and the name of
the CSS class to remove.

toggleCssClass Calls Sys.UI.DomElement. ctrl.toggleCssClass
toggleCssClass using the (cssClassName);
control’s associated DOM
element and the name of
the CSS class to toggle.

dispose Overrides Sys.Component’s ctrl.dispose();
dispose. Calls base class
dispose, sets element’s
control expando property
to undefined, and deletes
reference to the DOM
element from the
component.

New Concepts
Besides the methods that access and manipulate the associated DOM ele-
ment, other methods introduce two new concepts: a control’s parent and
ASP.NET-like event bubbling.

Control’s Parent

A control’s parent property provides a pointer to another control. The par-
ent can be calculated in one of two ways. If a parent has been explicitly set
using the set_parent method, that is the control’s parent. If a parent has
not been explicitly set, the control’s associated DOM element’s parentNode
pointer is walked until an element with a control attached to it is reached,
and that is considered the control’s parent.

Table 3.6 details the methods involved with the parent pointer concept.

Controls 153

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 3.6 Sys.UI.Control Methods Related to Control’s Parent

Method Name Description Syntax

get_parent Returns the explicitly set var parent = ctrl.get_parent();
parent or the first control
encountered by walking
up the DOM element’s
parentNode pointer

set_parent Explicitly sets the parent ctrl.set_parent(otherCtrl);

Event Bubbling

Event bubbling is a method of passing events up through the parent pointer
and giving parent controls the opportunity to handle those events.

Event bubbling in the Microsoft AJAX Library is similar to event bub-
bling using controls in ASP.NET. A control starts the process by calling
raiseBubbleEvent, passing in a source and event arguments. In the raise
BubbleEvent method, the control’s parent is retrieved using the get_parent
method attached to the control, and onBubbleEvent is called on it. The
default implementation of Sys.UI.Control’s onBubbleEvent method
returns false, which indicates that the control did not handle the event and
the bubbling should continue up the hierarchy.

If the control wants to handle the bubbled event, it may do so by over-
riding the default implementation of onBubbleEvent. In the overridden
method, it can decide whether the bubbling should continue or stop. If it
wants to stop the event’s propagation up the parent hierarchy, it returns
true. If it wants to allow other controls higher up in the control’s parent tree
the opportunity to handle the event, too, it returns false.

Table 3.7 details the methods involved with the event bubbling concept.

Chapter 3: Components154

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 3.7 Sys.UI.Control Methods Related to Event Bubbling

Method Name Description Syntax

onBubbleEvent Part of the event bubbling Is automatically called by
framework. Needs to be raiseBubbleEvent
overridden to provide
functionality. Returns
false by default.

raiseBubbleEvent Part of the event bubbling ctrl.raiseBubbleEvent
framework. Walks the (source, args);
control’s parent list, firing
the onBubbleEvent on
each parent object.

Controls 155

NOTE Additional Methods

Because Sys.UI.Control inherits from Sys.Component, all the methods
available to Sys.Component are available to Sys.UI.Control.

Defining a New Control
Like defining a new component, defining a new control follows the Proto-
type Model we covered in Chapter 2. To illustrate how to define a new con-
trol, we create a new control that attaches to a textbox and allows only
numbers to be entered. Listing 3.16 shows the code necessary to define the
new NumberOnlyTextBox control.

Listing 3.16 Defining a New Control Type

/// <reference name="MicrosoftAjax.js"/>
NumberOnlyTextBox = function(element) {

NumberOnlyTextBox.initializeBase(this, [element]);
this._keyDownDelegate = null;

};

NumberOnlyTextBox.prototype = {
initialize: function() {

NumberOnlyTextBox.callBaseMethod(this,'initialize');
this._keyDownDelegate =
Function.createDelegate(this, this._keyDownHandler);

$addHandler(this.get_element(), "keydown", this._keyDownDelegate);
},

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.16 continued

dispose: function() {
$removeHandler

(this.get_element(), "keydown", this._keyDownDelegate);
this._keyDownDelegate = null;
NumberOnlyTextBox.callBaseMethod(this, 'dispose');

},

_keyDownHandler: function(e) {
return ((e.keyCode >= 48 && e.keyCode <= 57) || (e.keyCode == 8));

}
};

NumberOnlyTextBox.registerClass("NumberOnlyTextBox", Sys.UI.Control);

As shown in Listing 3.16, we can see that there are two major differences
between our NumberOnlyTextBox control and our ErrorHandler component
we declared previously.

First, the base class of our NumberOnlyTextBox control is Sys.UI.Control
and not Sys.Component.

Second, the constructor takes an element parameter and passes it to the
base class’s constructor through the initializeBase method. This param-
eter is the DOM element that is going to be associated to the control.

When the element is passed to Sys.UI.Control’s constructor, three
things happen. First, the DOM element is checked to make sure that there
is no other control already associated to it. If this test fails, the constructor
throws an error, and the control’s creation fails. If it passes, the second step
the constructor takes is to assign the DOM element to the internal member
_element. Finally, the control is assigned to the DOM element using the
expando property control. If we created a reference to the associated ele-
ment, we could access the assigned control using the following code:
$get("TextBox1").control;

Using our newly minted control type, Listing 3.17 demonstrates the
association requirements we just discussed.

Listing 3.17 Creating an Instance of MyControl Using new

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Control Testing!</title>
</head>

Chapter 3: Components156

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<body>
<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />

// omitted NumberOnlyTextBox definition for brevity.

<asp:TextBox ID="txtBox1" runat="server" Width="150px" />

<script type="text/javascript">

var numberOnlyTextBox =
new NumberOnlyTextBox($get("txtBox1"));

// alerts "txtBox1"
alert ("numberOnlyTextBox's associated element's id: " +

numberOnlyTextBox.get_element().id);

// alerts "txtBox1"
alert ("numberOnlyTextBox's associated control's id: " +

$get("txtBox1").control.get_id());

// throws a JavaScript error because a
// control is already associated to txtBox1.
var numberOnlyTextBox2 =
new NumberOnlyTextBox ($get("txtBox1"));

</script>

</form>
</body>
</html>

Creating a Control
In Listing 3.17, we used the new keyword to create a new instance of our
NumberOnlyTextBox type. From our component discussion, we know that
the $create method performs a whole host of tasks besides creating a new
instance of the type, and because our new type inherits from Sys.UI.
Control, which inherits from Sys.Component, we can use the $create state-
ment in the same manner as we did for our ErrorHandler component.

Instead of walking through the entire $create method again, we need to
discuss only the use of the element parameter because that’s the only dif-
ference. Using the example we created in Listing 3.17 as a basis, we can
modify the code to use the $create method. Listing 3.18 shows the altered
code.

Controls 157

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.18 Creating an Instance of MyControl Using $create

<html>
<head runat="server">

<title>Control Testing!</title>
</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />

// omitted NumberOnlyTextBox definition for brevity.

<asp:TextBox ID="txtBox1" runat="server" Width="150px" />

<script type="text/javascript">
$create(
NumberOnlyTextBox,
null,
null,
null,
$get("txtBox1")

);
</script>

</form>
</body>
</html>

The highlighted code shows the $create method call. Notice how
$get("txtBox1") is passed in as the element parameter of the $create
method. When the $create method instantiates the new instance of the
NumberOnlyTextBox, it determines whether the NumberOnlyTextBox inher-
its from Sys.UI.Control or Sys.UI.Behavior. If it does, and in our exam-
ple it does, it uses the element parameter as the parameter for the
constructor call; similar to what we did in Listing 3.17 before we used the
$create method to create our new control.

Chapter 3: Components158

NOTE Setting the Control’s id

Unlike a component or behavior, setting the id of a control is not
allowed. The id of the control is always the id of the associated DOM
element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Wrapping Up Controls
Controls are not too different from their base component type. The main
difference is that a control must be associated to a DOM element, whereas
a component must not be.

Behaviors

A behavior is another special type of component that is related to DOM ele-
ments. Like controls, a behavior must be associated to a DOM element.
However, unlike a control, there can be more than one behavior attached
to a DOM element.

In a practical sense, behaviors define how we want a DOM element to
behave. We want the DOM element to collapse to a single line, we want the
DOM element to float on the page, and we want the DOM element to fill all
the available screen space. These are all examples of behaviors that we
might attach to a DOM element.

To help us define new behaviors and use instantiated behaviors, the
base Sys.Behavior type includes a few more methods than its base
Sys.Component type. Table 3.8 details these methods.

Table 3.8 Sys.UI.Behavior Methods

Method Name Description Syntax

get_element Returns the DOM return behavior.get_
element associated to element();
the behavior.

get_name Returns the name of the return behavior.get_name();
behavior. If the name
has been explicitly set,
that’s the name re-
turned. If it has not
been explicitly set, the
name returned is the
short type name of the
behavior.

Behaviors 159

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 3.8 continued

Method Name Description Syntax

set_name Sets the name of the behavior.set_
behavior. Explicitly set name("HiddenElm");
behavior names must
be unique. The name of
a behavior cannot be set
after the behavior has
been initialized. The
behavior name must
not start with a blank
space, end with a blank
space, or be an empty
string.

initialize Calls the base class’s behavior.initialize();
initialize method.
Attaches the behavior
to its associated DOM
element by adding an
expando property to the
DOM element that’s the
name of the behavior.

dispose Overrides Sys. behavior.dispose();
Component’s dispose.
Calls base class dispose,
removes the DOM
element’s expando
property that is in the
name of the behavior,
and deletes the reference
to DOM element from
the behavior.

get_id Returns the underlying return behavior.get_id();
component’s id if it’s
set. If it’s not set, the
value returned is the
associated DOM ele-
ment’s id appended
with the behavior’s
name.

Chapter 3: Components160

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Method Name Description Syntax

Sys.UI.Behavior. Returns all behaviors return Sys.UI.Behavior.
getBehaviorsByType attached to a DOM getBehaviorsByType

element that are of a (element, typeName)
particular type.

Sys.UI.Behavior. Returns a behavior return Sys.UI.Behavior.
getBehaviorByName attached to a DOM getBehaviorByName

element if it was found. (element, behaviorName)

Sys.UI.Behavior. Returns a copy of the return Sys.UI.Behavior.
getBehaviors behaviors attached to a getBehaviors

DOM element. If there (element);
are no behaviors for a
particular DOM element,
returns an empty array.

Defining a Behavior
Like defining a new component and control, defining a new behavior fol-
lows the Prototype Model we covered in Chapter 2. Rather than create a
brand new example, we modify the NumberOnlyTextBox control example
we used in the previous section to work as a behavior instead. Listing 3.19
shows the code necessary to define the NumberOnlyTextBox behavior.

Listing 3.19 Defining a Behavior Type

/// <reference name="MicrosoftAjax.js"/>
NumberOnlyTextBox = function(element) {

NumberOnlyTextBox.initializeBase(this, [element]);
this._keyDownDelegate = null;

};

NumberOnlyTextBox.prototype = {
initialize: function() {

NumberOnlyTextBox.callBaseMethod(this,'initialize');
this._keyDownDelegate =
Function.createDelegate(this, this._keyDownHandler);

$addHandler(this.get_element(), "keydown", this._keyDownDelegate);
},

dispose: function() {
$removeHandler
(this.get_element(), "keydown", this._keyDownDelegate);

Behaviors 161

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.19 continued

this._keyDownDelegate = null;
NumberOnlyTextBox.callBaseMethod(this, 'dispose');

},

_keyDownHandler: function(e) {
return ((e.keyCode >= 48 && e.keyCode <= 57) || (e.keyCode == 8));

}
};

NumberOnlyTextBox.registerClass("NumberOnlyTextBox", Sys.UI.Behavior);

As you can see, the code to define our NumberOnlyTextBox behavior is
almost identical to the code necessary to define the NumberOnlyTextBox as
a new control. The only difference is that a behavior inherits from
Sys.UI.Behavior rather than Sys.UI.Control.

Sys.UI.Behavior’s constructor, like Sys.UI.Control’s, takes in an ele-
ment as a parameter. In its constructor, the internal member _element is
assigned to the element parameter, associating the DOM element to the
behavior. Then, the behavior is added to the element’s _behaviors expando
property. The _behaviors expando property is like the control’s control
property except that it is defined as an array so that more than one behav-
ior can be associated to the DOM element.

Creating a Behavior
From our component and control discussion, we know that using the
$create method is the correct way of instantiating a new instance of a type
that inherits from Sys.Component, and a behavior is no different.

In fact, creating a behavior is exactly the same as creating a control, and
the code shown in Listing 3.18 will suffice for an example of how to do this.

Unlike controls, however, a couple of problems could appear when
creating behaviors, and they both have to do with the uniqueness of the
behavior.

Behavior Uniqueness Problems

The first problem is that if a behavior’s id is not set, the id is automatically
generated based on the id of the associated DOM element and the name of
the behavior. Because this is a generated value, it’s likely that it could be the

Chapter 3: Components162

http://lib.ommolketab.ir
http//lib.ommolketab.ir

same for more than one behavior. If the same id is generated for more than
one behavior, when the second behavior attempts to register itself with
Sys.Application, the registration fails because components managed by
Sys.Application must have unique ids. Listing 3.20 demonstrates this
problem.

Listing 3.20 Creating Behaviors That Have the Same id

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Behavior Testing!</title>
</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />

// … NumberOnlyTextBox omitted for brevity.

<asp:TextBox ID="txtBox1" runat="server" Width="150px" />

<script type="text/javascript">
$create(
NumberOnlyTextBox,
null,
null,
null,
$get("txtBox1")

);

// this will cause an error because the id of the component will
// be the same as the previous behavior.
$create(
NumberOnlyTextBox,
null,
null,
null,
$get("txtBox1")

);
</script>

</form>
</body>
</html>

In this example, because we’re not explicitly setting the name or the id
of either behavior, the id of each behavior is txtBox1$NumberOnlyTextBox.
The behaviors’ ids are computed based on the DOM element’s id

Behaviors 163

http://lib.ommolketab.ir
http//lib.ommolketab.ir

(txtBox1), appended with $, followed by the name of the behavior, which
when it’s not explicitly set is the type name minus any namespaces.

Chapter 3: Components164

NOTE NumberOnlyTextBox

In our example, the name of our behavior is just the full name of the
type: NumberOnlyTextBox.

If we were using a namespace for our behavior, for example MyProject.
Behaviors.NumberOnlyTextBox, the calculated name of the behavior
would still be NumberOnlyTextBox.

When the second behavior tries to register itself with Sys.Application,
an error occurs because a component is already registered with that id.

To rectify this problem, either the name or id of the behavior has to be
explicitly set. In either case, the id or the name needs to be unique. In the
case of the id, it needs to be unique among all components. In the case of
the name, it needs to be unique among behaviors attached to the associated
DOM element. Listing 3.21 shows code that would successfully create the
two behaviors and attach them to the same textbox.

Listing 3.21 Setting a Behavior’s id

<script type="text/javascript">
$create(

NumberOnlyTextBox,
{id: "Behavior1" },
null,
null,
$get("txtBox1")

);

$create(
NumberOnlyTextBox,
{id: "Behavior2" },
null,
null,
$get("txtBox1")

);
</script>

The second problem with creating behaviors can occur when we attach
multiple instances of the same behavior to a DOM element and don’t set

http://lib.ommolketab.ir
http//lib.ommolketab.ir

their names. Because their names will be the same calculated value (i.e.,
NumberOnlyTextBox), we won’t be able find one or more of them through
the Sys.UI.getBehaviorByName method.

Attaching the multiple instances of the same behavior to a single DOM
element might be a rarer case than most, but it can occur. Listing 3.22 shows
how we’re only able to find one of the NumberOnlyTextBox behaviors
attached to our textbox.

Listing 3.22 Problems Finding Behaviors by Name

<html>
<head runat="server">

<title>Behavior Testing!</title>
</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />

// NumberOnlyTextBox omitted for brevity

<asp:TextBox ID="txtBox1" runat="server" Width="150px" />

<script type="text/javascript">
$create(
NumberOnlyTextBox,
{id: "Behavior1"},
null,
null,
$get("txtBox1")

);

$create(
NumberOnlyTextBox,
{id: "Behavior2"},
null,
null,
$get("txtBox1")

);

var beh = Sys.UI.Behavior.getBehaviorByName
($get("txtBox1"), " NumberOnlyTextBox ");

alert (beh.get_name());

var behaviorsAssignedToDom =
Sys.UI.Behavior.getBehaviors($get("txtBox1"));

var behaviors = '';

Behaviors 165

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.22 continued

for (var i=0; i<behaviorsAssignedToDom.length; i++) {
behaviors += behaviorsAssignedToDom[i].get_name() + " ";

}

// alerts NumberOnlyTextBox NumberOnlyTextBox because
// there are two behaviors of that name
alert (behaviors);

</script>

</form>
</body>
</html>

To correct this problem we need to explicitly set the name of any behav-
iors we create.

To conclude this section on problems with creating behaviors, although
an error won’t be thrown if a behavior doesn’t have its id/name set when
it’s created, it’s clearly better to do so to avoid some of the rarer problems
with behaviors. Therefore, we suggest that you always set the id and name

of a behavior whenever you create an instance of one. Listing 3.23 shows
this pattern.

Listing 3.23 Assigning ids and names to Behavior Instances

<script type="text/javascript">
$create(

NumberOnlyTextBox,
{id: "Behavior1",
name: "Behavior1"},

null,
null,
$get("txtBox1")

);

$create(
NumberOnlyTextBox,
{id: "Behavior2",
name: "Behavior2"},

null,
null,
$get("txtBox1")

);
</script>

Chapter 3: Components166

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Wrapping Up Behaviors
Behaviors are not too different from their base component type. The main
difference is that a behavior must be associated to a DOM element, whereas
a component must not be. The main difference between a control and a
behavior is that a DOM element can have only one control associated to it,
whereas a DOM element can have multiple behaviors.

SUMMARY

In this chapter, we examined components, controls, and behaviors. We
looked at how the base component type contains commonly used objects
and how controls and behaviors extend components to include a reference
to a DOM element. We also looked at how you can build them by hand and
how they’re created using the $create function.

In the next chapter, we cover Sys.Application, which is the manager
object for all components, controls, and behaviors. After we examine
Sys.Application, we begin to tie the Microsoft AJAX Library into the
server portion of ASP.NET AJAX with a chapter on how to create compo-
nents, controls, and behaviors through .NET code. Finally, we wrap up
components, controls, and behaviors with an in-depth look on how to local-
ize them and how they react to being placed inside an UpdatePanel.

Summary 167

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4
Sys.Application

I N CH A P T E R 2, “MI C R O S O F T AJAX Library Programming,” we
explored the new programming constructs that the Microsoft AJAX

Library provides. In Chapter 3, “Components,” we used the skills we
learned in Chapter 2 to create components, derived types, controls, and
behaviors.

The next step is to learn about Sys.Application and how it acts as a
JavaScript client runtime and how it works with components. In this chap-
ter, we cover the three functional pieces of Sys.Application: how it man-
ages components, how it goes through an initialization routine, and how it
goes through a disposal routine. When we’ve covered these three pieces,
you’ll have learned everything you need to know about how to properly
build new client components using the Microsoft AJAX Library and how to
create instances of them so that they participate properly in the client
runtime.

Background Information

Before we jump into Sys.Application’s three areas of functionality, let’s
first go over some background information.

169

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Sys.Application
Sys.Application is a global variable of type Sys._Application. The global
variable is automatically created when MicrosoftAjax.js is parsed.
Sys.Application = new Sys._Application();

Chapter 4: Sys.Application170

NOTE Sys.Application versus Sys._Application

Because Sys.Application is an instance of Sys._Application, all the
type information we’re providing in this section really applies to
Sys._Application and not Sys.Application. But, because everybody
else refers to Sys.Application as a quasi-type, we do, too, just so we
don’t confuse you. But remember, Sys.Application is an instance of
Sys._Application.

Also note that the Application in Sys._Application is prefixed with
an underscore. As we covered in Chapter 2, an underscore indicates
the private assessor level. This means that Sys._Application is not
intended to be accessed by your code. You should never create
an instance of Sys._Application yourself. Rather the global Sys.
Application object should be used.

Creating another instance of Sys._Application wouldn’t be disas-
trous unless you reassigned Sys.Application to the new instance, but
it still should not be done because of its intended privacy.

In Sys.Application’s constructor, two important things take place.
First, all the internal members detailed in Table 4.1 are defined and

initialized.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 4.1 Sys.Application Internal Members

Member Type Purpose

_components Object A list of components currently managed by
the application. It’s an object rather than an
array, so components can easily and effi-
ciently be accessed by an id rather than an
array position.

_disposableObjects Array A list of objects that dispose should be
called on when Sys.Application is
disposed.

_createdComponents Array A list of components that have been created
during the current component creation
process. This list is important because the
list of created components is an event argu-
ment to the load event.

_secondPassComponents Array A list of components that require their ref-
erences to be processed after all compo-
nents have been created.

_creatingComponents Boolean Indicates whether components are in the
process of being created.

_disposing Boolean Indicates whether the dispose method has
been entered.

We cover these internal members in more detail as we cover how each
functional component is implemented.

Second, event handlers are created and attached to the window’s load
and unload events. The event handler attached to the window’s load event
is used to trigger Sys.Application’s initialization routine, and the event
handler attached to the window’s unload event is used to trigger the
unload routine. Listing 4.1 displays Sys.Application’s full constructor.

Listing 4.1 Sys.Application Constructor

Sys._Application = function Sys$_Application() {
Sys._Application.initializeBase(this);

this._disposableObjects = [];

Background Information 171

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 4.1 continued

this._components = {};
this._createdComponents = [];
this._secondPassComponents = [];

this._unloadHandlerDelegate =
Function.createDelegate(this, this._unloadHandler);

this._loadHandlerDelegate =
Function.createDelegate(this, this._loadHandler);

Sys.UI.DOMEvent.addHandler
(window, "unload", this._unloadHandlerDelegate);

Sys.UI.DOMEvent.addHandler
(window, "load", this._loadHandlerDelegate);

}

Attaching event handlers to the window is an important step because
this couples Sys.Application to the DOM’s window object. When the
window loads, it starts up Sys.Application’s initialization routine, and
when the window unloads it starts up Sys.Application’s unload routine.
This coupling gives Sys.Application a runtime-like feel.

Type Information
Sys.Application inherits from Sys.Component. Inheriting from Sys.
Component provides it with all the members and methods available to com-
ponents, including the event handler list, the disposing event, and the
propertyChanged event.

Sys.Application also implements the interface Sys.IContainer, which
provides the methods addComponent, removeComponent, getComponents,
and findComponent. The Sys.IContainer methods are used to implement
the component manager functionality of Sys.Application, which we cover
in detail in the “Component Manager” section later in this chapter.

Method Information
To provide the three pieces of functionality that we’ve described,
Sys.Application uses the internal members detailed in Table 4.1 and the
methods described in Table 4.2.

Chapter 4: Sys.Application172

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 4.2 Sys.Application Methods

Method Name Description Syntax

get_ Returns Sys.Application.get_
isCreatingComponents _creatingComponents isCreatingComponents()

internal member.

beginCreateComponents Sets the Sys.Application.
_creatingComponents beginCreateComponents();
value to true.

endCreateComponents Iterates through the list of Sys.Application.
_secondPassComponents, endCreateComponents();
calling _setReferences
on each object in the list.
Clears the list of
_secondPassComponents.
Sets _creatingComponents
to false.

add_load Adds the event handler to Sys.Application.
the load event. add_load(fn);

remove_load Removes the event handler Sys.Application.
from the load event. remove_load(fn);

raiseLoad Raises the load event. Sys.Application.
Calls the global pageLoad raiseLoad();
method if it’s present.

add_init Adds the event handler Sys.Application.
to the init event. add_init(fn);

remove_init Removes the event handler Sys.Application.
from the init event. remove_init(fn);

add_unload Adds the event handler Sys.Application.
to the unload event. add_unload(fn);

remove_unload Removes the event handler Sys.Application.
from the unload event. remove_unload(fn);

addComponent Adds a component to the Sys.Application.
managed components. addComponent(comp);

removeComponent Removes a component Sys.Application.
from Sys.Application removeComponent
managed component’s (comp);
object.

Background Information 173

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 4.2 continued

Method Name Description Syntax

findComponent Finds a managed Sys.Application.
component. findComponent

(parent, componentId);

getComponents Copies the managed Sys.Application.
components into an getComponents();
array and returns the
array.

initialize Sets the Sys.Application.
_initialization initialize();
internal member to
true. Calls
_doInitialize.

dispose Called when the page Sys.Application.
is destroyed. Raises dispose();
the unload event.
Iterates over the list
of disposable objects
and calls dispose on
each object. Calls
dispose on the
ScriptLoading object.
Calls base class dispose.

notifyScriptLoaded Calls the Sys.Application.
ScriptLoader’s notifyScriptLoaded();
notifyScriptLoaded
so that it knows that
the currently
processing script
is done.

registerDisposableObject Registers an object Sys.Application.
to have dispose registerDisposableObject
called on it when (object);
Sys.Application is
disposed.

Chapter 4: Sys.Application174

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Method Name Description Syntax

unregisterDisposableObject Removes an object Sys.Application.
from the list of objects unregister
that need to have DisposableObject
dispose called on (object);
them when the
Sys.Application is
disposed.

_addComponentToSecondPass Registers a Private method
component as
needing to have its
references set after
all components have
been created.

_doInitialize Internal method that Private method
fires the init and
load events.
Responsible for
creating components.

_loadHandler Event handler for Private method
the window’s load
event.

_unloadHandler Event handler for Private method
the window’s unload
event. Calls the
dispose method.

Sys.Application has access to all the methods defined in Sys.
Component and those that are detailed in Table 4.2. Because Sys.
Application is a global variable versus a type, all the method calls are pre-
fixed with Sys.Application.

Now that we’ve covered how Sys.Application is created and what
members and methods are available to it, let’s examine how it uses those
members and methods to provide you with a client runtime you can inter-
act with.

Background Information 175

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Component Manager

One of Sys.Application’s main features is that of a component manager.
As a component manager, it maintains an internal collection of components
and provides functionality to add, remove, and find components.

Chapter 4: Sys.Application176

NOTE Sys.Application.notifyScriptLoaded

We do not cover Sys.Application.notifyScriptLoaded in this chap-
ter. Instead, we cover it in Chapter 7, “Control Development in a
Partial Postback Environment,” because its purpose is to instruct the
script loader during a partial postback to move on to the next file.

NOTE Why Use a Central Location to Manage Components?

Having a central location to manage components serves two purposes.

First, if we want to ensure that all components have a unique id, it
would be difficult if not impossible to do so if we didn’t have a central
location that maintained the list of already used ids. You could debate
that having a unique id for a component might not be necessary, but
it is a requirement for the Microsoft AJAX Library.

Second, by having a central location to manage components and pro-
viding methods to retrieve a component by id, you eliminate the need
to maintain global variables that point to the components. Instead,
only the id of a component is needed to retrieve a variable that points
to a component on demand. It’s like having a key hook. Instead of hav-
ing keys spread throughout the house, I place them all in one place.
When I need my car key, I don’t have to look all over the place for it; I
just go to the key hook. I still need to know that I want my car key and
not my house key, however.

To manage components, Sys.Application uses the internal member
_components, which is of type Object, to maintain the collection of compo-
nents. Using the associative array property of objects, components are stored
in the _components member using the component’s id as the key and the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

component as the value. Storing the components this way provides for the
fastest possible lookups. Listing 4.2 demonstrates how Sys.Application
adds components to its managed list.

Listing 4.2 Adding a Component to the _components Object

this._components["MyComponentId"] = MyComponent;
this._components["SomeOtherComponentId"] = SomeOtherComponent;

The _component member is the underlying storage mechanism, but
rather than allow outside code to manipulate it directly, Sys.Application
exposes methods to interact with it. These methods are addComponent,
removeComponent, findComponent, and getComponents.

Component Manager 177

NOTE Sys.IContainer

Coincidentally, these are the methods that are required by the
Sys.IContainer interface, which Sys.Application implements. We
guess that these methods are what Microsoft defines as container
behavior.

Adding a Component
Adding a component to Sys.Application’s collection of managed compo-
nents is done through the addComponent method. We used the add
Component method once before in a Chapter 3 example, so let’s import the
source code from that example. The code is redisplayed in Listing 4.3

Listing 4.3 Using the addComponent Method

var newComponent =
Sys.Component.create(

MyComponent,
null,
null,
null,
null);

newComponent.set_id("MyNewComponent");
Sys.Application.addComponent(newComponent);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In this example, we created a new component, but didn’t provide a com-
ponent id. Because we failed to provide an id, addComponent is not auto-
matically called by the Sys.Component.createmethod, and our component
is just an object assigned to a variable, rather than a component managed
by Sys.Application. We can manually add it to Sys.Application’s man-
aged components collection by setting the id through the set_id method
and then calling the addComponent method using the component as the
method call’s parameter.

The addComponent method does two things before it adds the compo-
nent to the managed component collection. First, it makes sure that id is set.
If it isn’t, an invalidOperation error is thrown stating the component’s id
is missing. The error causing code is shown in Listing 4.4.

Listing 4.4 Component id Is Missing

var newComponent =
Sys.Component.create(

MyComponent,
null,
null,
null,
null);

// causes an invalidOperation error.
Sys.Application.addComponent(newComponent);

Second, if the id is set, but a component is already registered with the
same id, an invalidOperation error is thrown stating a component is
already registered with that id, as shown in Listing 4.5.

Listing 4.5 Component id Is Already Defined

var newComponent =
$create(

MyComponent,
null,
null,
null,
null);

newComponent.set_id("MyNewComponent");
Sys.Application.addComponent(newComponent);

var myOtherComponent =

Chapter 4: Sys.Application178

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sys.Component.create(
MyComponent,
null,
null,
null,
null);

myOtherComponent.set_id("MyNewComponent");

// causes an invalidOperation error.
Sys.Application.addComponent(myOtherComponent);

If the ID is set and another component is not already registered using
that ID, the component is added to the internal _components member.

Component Manager 179

TIP Delaying the Addition of a Component to
Sys.Application’s Managed Components

Every once in a while, you’ll come across a situation where you don’t
want the component to be added to Sys.Application’s list of man-
aged components right away. For whatever reason, you want to cre-
ate a component, manipulate it or use it in some way, and then add it
to Sys.Application’s list of managed components. By not setting the
component’s ID when you create it, you can cause the component to
not be added to Sys.Application’s object of managed components
automatically. Then, whenever you’re ready you can set its ID and add
it to the component’s list through addComponent. This process, unfor-
tunately, does not work for controls or behaviors because their com-
ponent ID is automatically determined based upon their associated
element’s ID.

Finding a Component
After we have registered a component, we can use the findComponent
method to retrieve it so that a method can be called on it, so that it can be
removed from the application, or for some other application-specific rea-
son. Listing 4.6 demonstrates a findComponent call.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 4.6 findComponent Call

$create(
MyComponent,
{id: "MyNewComponent"},
null,
null,
null);

var myNewComponent = Sys.Application.findComponent("MyNewComponent");
alert (myComponent.get_id());

Chapter 4: Sys.Application180

NOTE $find

Because finding a component by ID is so common, the Microsoft AJAX
Library provides a shortcut method name, $find, which points to
Sys.Application.findComponent. We’ll use $find almost exclusively.

Finding a component is done by passing the component’s ID into the
find method. If the component is found, it is returned by the method; if it
isn’t found, null is returned.

Alternative Uses of $find
In all the code examples to this point, we’ve used the $findmethod to find

a component registered within Sys.Application. Although this is by far

the most common usage, the $find method can be used in two other

ways.

The first alternative use is to find a component within any object that

implements the Sys.IContainer interface. This is similar to how we’ve

used the $find method already, except that rather than default to finding

a component within Sys.Application, which implements Sys.

IContainer, we specify a different parent object that implements Sys.

IContainer. We can do this by passing in a second parameter to our

$findmethod call. The following code details how we might use the $find

method in this way:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SimpleContainer = function() {
SimpleContainer.initializeBase(this);
this._components = {};

};

SimpleContainer.prototype = {
addComponent: function(component) {
this._components[component.get_id()] = component;

},

removeComponent: function(component) {
this._components[component.get_id()] = null;

},

findComponent: function(componentId) {
return this._components[componentId];

},

getComponents: function() {
var compArr = [];
for (var compName in components) {

compArr[compArr.length] = components[compName];
}

return compArr;
}

}

SimpleContainer.registerClass("SimpleContainer",
null , Sys.IContainer);

var simpleContainer = new SimpleContainer();

NewObject = function() {
this._id = null;

};

NewObject.prototype = {
set_id: function(value) {
this._id = value;

},
get_id: function() {
return this._id;

}
};

// create a new component
var myNewObject = new NewObject();

Component Manager 181

http://lib.ommolketab.ir
http//lib.ommolketab.ir

myNewObject.set_id("MyNewObject");

simpleContainer.addComponent(myNewObject);

// wipe out what myNewObject points to
// for demonstration purposes.
myNewObject = null;

// retrieve myNewObject from simpleContainer
myNewObject = $find("MyNewObject", simpleContainer);

In this example, we first declare a new type, SimpleContainer.

SimpleContainer implements the Sys.IContainer interface and pro-

vides implementations for the required methods. Next, we create an

instance of the SimpleContainer type and assign to the variable

simpleContainer. Next, we define a new object, NewObject, and add the

set_id and get_id methods to its prototype. We then create an instance

of NewObject and add it to SimpleContainer using SimpleContainer's

addComponent method. After the MyNewObject has been added to

SimpleContainer, we retrieve it using the $findmethod, passing in the ID

MyNewObject and simpleContainer as the parent container to search in.

When the $find method begins to execute, it determines that the

parent parameter is present and that it implements the Sys.IContainer

interface. After it determines this, it executes the findComponent method

on the parent parameter, passing in the id of the component to look for.

It’s then up to the implementation of the findComponentmethod to return

the correct object.

Because Sys.Application implements Sys.IContainer, we can

also pass it in as the parent parameter and have the same effect as not

passing in a parent parameter at all.

var simpleContainer =
$find("SimpleContainer", Sys.Application);

One thing to note about the Sys.IContainer interface is that although

the method names all reference components (addComponent, find

Component, and so on), there’s nothing that prohibits noncomponents

from being stored in an object that implements the Sys.IContainer inter-

face. This is actually what we did in the previous example. To us, it seems

Chapter 4: Sys.Application182

http://lib.ommolketab.ir
http//lib.ommolketab.ir

like the method names on this interface are poorly named and should not

refer to components at all.

The second alternative use of the $find method is to find a value of a

property that is attached to an object.

If an ID and a parent are supplied to the $find method and the parent

doesn’t implement the Sys.IContainer interface, the ID is used as a

property name on the parent, and the value assigned to that property is

returned. The following listing demonstrates this idea:

var someObject = { name: "MyName" };
var objectsName = $find("name", someObject);

// alerts "MyName"
alert (objectsName);

This alternative use of the $find method is simple and relies on the

associative array property of objects. For our code example above, the exe-

cuted code that returns the property’s value is equivalent to the following:

var id = "name"
return someObject[id];

These are the two alternative uses of the $find method.

Removing a Component
After we have a component registered, we can remove it using the remove
Component method. This is done by passing in the component we want to
remove to the method call, as shown in Listing 4.7.

Listing 4.7 Using removeComponent

$create(
MyComponent,
{id: "MyNewComponent"},
null,
null,
null);

var foundComponent = $find("MyNewComponent");
alert (foundComponent.get_id());

Sys.Application.removeComponent(foundComponent);

Component Manager 183

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 4.7 continued

foundComponent = $find("MyNewComponent");

if (foundComponent !== null) {
alert ("Found Component");

}
else {

alert ("Didn't find Component");
}

A common reason we’ll want to remove a component is that we’re done
with it and are ready to remove it from memory. Cleaning up unneeded
components from Sys.Application is a good way to keep your application
running smoothly and to keep its memory footprint small.

Getting Components
Because the components are stored in an object versus an array, getting a
list of the currently registered components requires a for…in loop.
Sys.Application provides a method, getComponents, which executes the
for…in loop for us, which we can use to retrieve an array of the currently
registered components. Listing 4.8 shows an example using this method.

Listing 4.8 Using getComponents

$create(
MyComponent,
{id: "MyNewComponent"},
null,
null,
null);

$create(
MyComponent,
{id: "MyOtherComponent"},
null,
null,
null);

var registeredComponents =

Chapter 4: Sys.Application184

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sys.Application.getComponents();

alert ("Number of Components Registered: " +
registeredComponents.length);

If we need a list of all registered components, such as for debugging pur-
poses, using the getComponents method is much easier than trying to find
a component using the for…in loop.

Initialization Routine

As we stated in the “Background Information” section, when the window
raises its load event, Sys.Application’s initialization routine starts (this is
only partially true, see the following sidebar “Starting the Initialization
Routine”). The initialization routine is primarily responsible for marking
Sys.Application as initialized, creating components, and raising the load
event. The routine starts with a call to Sys.Application’s initialize

method, which is shown in Listing 4.9.

Listing 4.9 Sys.Application’s initialize Method

initialize: function() {
if(!this._initialized && !this._initializing) {

this._initializing = true;
window.setTimeout(
Function.createDelegate(this, this._doInitialize), 0);

}
}

The initialize method prevents the initialization routine from being
executed twice by ensuring that two internal members, _initialized and
_initializing, are both false before continuing. If it determines that
Sys.Application is not initialized and it’s not in the process of initializing,
it calls the _doInitialize method using a timeout with a wait value of 0.
(We’ll see why we use a timeout in the “The init Event” section later in the
chapter.)

Initialization Routine 185

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Starting the Initialization Routine
The Client Framework is set up to enter the initialization routine through

a call to Sys.Application.initialize. However, there are two different

ways that initialize can be called.

The first way is through the method that is wired to the window’s load

event. The following code shows the code that’s attached to the window’s

load event:

_loadHandler: function() {
if(this._loadHandlerDelegate) {
Sys.UI.DOMEvent.removeHandler

(window, "load", this._loadHandlerDelegate);
this._loadHandlerDelegate = null;

}
this.initialize();

}

The second way is through an explicit call that the ScriptManager con-

trol automatically includes in the page markup. Listed here is the code

from the Render method of ScriptManager:

protected internal override void Render
(HtmlTextWriter writer)

{
this.PageRequestManager.Render(writer);
if (!this.IsInAsyncPostBack)
{
this.IPage.ClientScript.RegisterStartupScript(
typeof(ScriptManager), "AppInitialize",
"Sys.Application.initialize();\r\n", true);

}
base.Render(writer);

}

At first glance, having two different ways of executing Sys.

Application.initialize might seem unnecessary, but they are both

necessary for different reasons.

The first method, calling it from the load event handler, is necessary

because the Microsoft AJAX Library is supposed to be a stand-alone library

that does not require the server portion of ASP.NET AJAX to work properly.

If the library didn’t contain code for executing Sys.Application.

initialize when the window’s load event occurred and the developer

Chapter 4: Sys.Application186

http://lib.ommolketab.ir
http//lib.ommolketab.ir

wasn’t using the ScriptManager server control to register the library with

the page, the developer would be responsible for figuring out when to call

Sys.Application.initialize, which the developer may or may not

do correctly. So, because Microsoft wanted to ensure that the library

could stand alone without the server portion, they wired the Sys.

Application.initialize call to the window’s load event to ensure that

it was called once the window loaded.

The second method, using the ScriptManager to emit a call to

initialize, is necessary because calling Sys.Application.

initialize earlier than waiting for the window’s load event to fire is sig-

nificantly better performing. Because the ScriptManager control will

almost always be used to register the library with the page, emitting this

call gives the best performance to the majority of the users.

So now that you know that both methods are used for different rea-

sons, which one will be called when using the ScriptManager server

control?

In the case where you are using the ScriptManager server control

to register the library with the page, the explicit Sys.Application.

initialize call always wins because the window’s load event fires only

after the page is done loading. Done loading means the page’s entire HTML

has been parsed and all binary data has been downloaded. The first part of

that phrase, “the page’s entire HTML has been parsed,” includes JavaScript

being parsed and executed. If the call to Sys.Application.

initialize() is included on the page, and it always is when using the

ScriptManager control, it will be executed when it’s parsed, which will

always occur before the window’s load event is reached. Therefore, the

initialize method call attached to the window’s load event will never

execute before the explicit call to Sys.Application.initialize().

You might be wondering why the explicit call is even necessary. Why

shouldn’t the application wait for the window’s load event to fire and then

execute the initialize method? There are actually two reasons why we

shouldn’t wait for the load event to fire before calling the initialize

method. The first reason is to ensure proper functionality across all

browsers in all situations, and the second reason is performance.

Initialization Routine 187

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The situation where the explicit call is necessary to ensure proper func-

tionality is when the browser doesn’t raise the window’s load event as

expected. An example of this is that older versions of Opera don’t fire the

load event when the user presses the Back or Forward buttons. Because

of this, if a page is loaded because the user navigated to a previously vis-

ited page, Sys.Application does not initialize based on the window’s

load event firing; hence, the explicit call ensures proper functionality.

The reason the explicit call is necessary for best possible performance

is we want to execute our initialize method as soon as the DOM is

ready (i.e., all HTML is parsed and elements are created) to provide the

best possible experience to the user. As previously stated, the window’s

load event fires only after the page’s entire HTML has been parsed and all

binary data has been downloaded. That binary data download could take

a long time if the page is image heavy or has other binary elements such as

Silverlight or Flash objects. While the binary data downloads, the page

appears to be ready to use, but the window’s load event is waiting to fire.

It’s possible and actually very likely that the user will be able to read the

screen and attempt to execute functionality on the screen before all binary

data has been loaded. If that happens, and the functionality the user is try-

ing to execute requires some sort of library functionality that gets attached

only after Sys.Application.initialize executes, the functionality is

not available (if initialization didn’t occur) until the window’s load event

fires. Because we want Sys.Application to be initialized as soon as

legally possible, the explicit call provides the best way of ensuring that ini-

tialization doesn’t wait until all binary data is downloaded.

Chapter 4: Sys.Application188

NOTE DOMContentLoaded?

Some browsers supply another event, DOMContentLoaded, which is
raised after all the DOM elements have been created but before the
binary data download begins. Unfortunately, the event is not standard
yet, and not all browsers support it, so it can’t be relied on.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When the timeout expires, which happens right away, and the
JavaScript execution engine transfers control to the timeout’s callback,
which in this case is the _doInitialize method shown in Listing 4.10, the
method execution begins.

Listing 4.10 Sys.Application’s _doInitialize Method

_doInitialize: function() {
Sys._Application.callBaseMethod(this, 'initialize');

var handler = this.get_events().getHandler("init");
if (handler) {

this.beginCreateComponents();
handler(this, Sys.EventArgs.Empty);
this.endCreateComponents();

}
this.raiseLoad();
this._initializing = false;

}

When the _doInitialize method is entered, the base class’s, which is
Sys.Component, initialize method is executed. This call marks the com-
ponent as initialized. From there, the handler for the init event is retrieved.
If the handler for the init event is found, the component creation process
begins.

Component Creation Process
The component creation process is the portion of the initialization routine
dedicated to creating components. The process consists of three steps: exe-
cuting the beginCreateComponents method, executing the init handler,
and executing the endCreateComponents method.

The first step in the process is the execution of the beginCreate
Components method. The only thing this method does is set the _creating
Components member to true. This might not seem like much, but it has an
effect on how the actual creation of components occurs, which we cover
later in this section.

The next step is the execution of the init event handler. The init event,
like other .NET-style events, executes functions that have been added to it
through the add_init method. In the init event’s case, it is intended that

Initialization Routine 189

http://lib.ommolketab.ir
http//lib.ommolketab.ir

functions containing $create method calls have been added to it. Let’s take
a closer look at the init event and detail what it does and how it works.

The init Event

With the init event, we’ve reached the first point in the initialization rou-
tine where outside code can execute. As you might have deduced from the
methods that are called before and after the init handler is executed,
beginCreateComponents and endCreateComponents, respectively, and from
the fact that we’re inside the component creation portion of this chapter, the
init event’s purpose is to create components.

It is the init event’s purpose to create components because it is raised
at a point when we’re ensured that it is safe to alter the DOM. Altering the
DOM, creating new DOM elements, moving existing DOM elements, and
so on, are actions a component or its derived types control and behavior
may do when they are initialized and if done too early may cause unre-
coverable browser errors.

We know that when we reach the init event it is safe to modify the
DOM because the method we’re in, _doInitialize, was executed as a time-
out’s callback, and this ensured that the JavaScript execution engine trans-
ferred control back to the DOM creation call stack before calling the
_doInitialize method. Therefore, the DOM has had a chance to fully cre-
ate itself.

Chapter 4: Sys.Application190

NOTE Timeouts and Call Stacks

See the “Delayed Code Execution Using Timeouts and Intervals” sec-
tion in Chapter 1, “Programming with JavaScript” for more informa-
tion on how timeouts actually work.

To further explain this point, Listing 4.11 demonstrates code that causes
an operation aborted error in Internet Explorer because our component
modifies the DOM at an unsafe point.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 4.11 Code Causing an Operation Aborted Error

<html>
<head>

<title>Operation Aborted</title>
</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="ScriptManager1" runat="server" />
<script type="text/javascript">

MyDivComponent = function() {
this._newDiv = null;

};

MyDivComponent.prototype = {
initialize: function() {

this._newDiv = document.createElement("div");
document.body.appendChild(this._newDiv);
this._newDiv.style.backgroundColor = "#2af5ea";

}
};

MyDivComponent.registerClass("MyDivComponent", Sys.Component);

$create(
MyDivComponent,
{id:"MyDivComponent"},
null,
null,
null

);
</script>

</form>
</body>
</html>

This code caused an operation aborted error because our component
appended a new element to the DOM before the DOM was fully created.
For more information about when it is safe and unsafe to modify the DOM,
see the following sidebar “Illegally Modifying the DOM.”

Initialization Routine 191

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Illegally Modifying the DOM
There is one main culprit in illegally modifying the DOM: modifying a par-

ent DOM element from within a child element before the child element has

been closed. The following code performs this illegal operation using an

innerHTML replace. (We can also perform this illegal operation using DOM

manipulation methods such as appendChild.)

<html>
<head>
</head>
<body>
<div>
<script type="text/JavaScript">

document.body.innerHTML +=
"invalid operation!";

</script>
</div>

</body>
</html>

This code tries to modify the innerHTML of the body tag from within a

child tag before the body tag has closed. This can lead to the page failing

to load and the error message displayed in Figure 4.1.

Chapter 4: Sys.Application192

Figure 4.1 The Operation Aborted error in Internet Explorer

NOTE Not All Browsers Are Equal

Not all browsers treat illegal DOM manipulations the same. Internet
Explorer in particular is problematic with modifying a DOM element
illegally, and this error applies to Internet Explorer 5.5, 6, and 7. Firefox
seems to be okay with this type of manipulation, but there is no guar-
antee that other browsers and future versions of Firefox will success-
fully process this command.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There are a few ways to rectify this mistake.

1. Modify the DOM element from within itself, not within a child element:

<html>
<body>
<div>
</div>
<script type="text/JavaScript">
document.body.innerHTML +=

"invalid operation!";
</script>

</body>
</html>

2. Modify the DOM element after it’s been closed:

<html>
<body>
<p id='myParagraph'>
</p>
<script type="text/JavaScript">
document.getElementById
('myParagraph').innerHTML +=
"invalid operation!";

</script>
</body>
</html>

3. Attach the code that manipulates the DOM element to the window’s

load event:

<html>
<body onload=
" document.getElementById

('myParagraph').innerHTML +=
'invalid operation!';"

<p id='myParagraph'>
</p>

</body>
</html>

All methods of fixing this problem are available for us to use, but the third

method, attaching the code to the window’s load event, is the safest and

most consistent. Using ASP.NET AJAX, we do something like the third

method when we attach our JavaScript code to Sys.Application's init

method.

Initialization Routine 193

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To correct this error, we need to make sure that our component is not
created until the DOM is fully created. To do this, we add our $create
method call to Sys.Application’s init event, which we know will be
raised only after it is safe to modify the DOM. Listing 4.12 shows the cor-
rected code.

Listing 4.12 Using add_init to Create a Component

<html>
<head runat="server">

<title>Using the Init Event</title>
</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="ScriptManager1" runat="server" />

<script type="text/javascript">

MyDivComponent = function() {
this._newDiv = null;

};

MyDivComponent.prototype = {
initialize: function() {

this._newDiv = document.createElement("div");
document.body.appendChild(this._newDiv);
this._newDiv.style.backgroundColor = "#2af5ea";
this._newDiv.style.width = "100px";
this._newDiv.style.height = "100px";

}
};

MyDivComponent.registerClass("MyDivComponent", Sys.Component);

Sys.Application.add_init(
function() {

$create(
MyDivComponent,
{id:"MyDivComponent"},
null,
null,
null

)
}

);
</script>

</form>
</body>
</html>

Chapter 4: Sys.Application194

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As the highlighted code in Listing 4.12 shows, we wrapped the $create
method call in an anonymous function and added it to the init event. By
doing this, we delayed the $create method’s execution until the init event
is raised, which we know is done at a safe point.

So as a rule, we always create components by wrapping the $create
method call in an anonymous function and passing it into Sys.

Applciation’s add_init method.
We follow this rule even after Sys.Application has been through its ini-

tialization routine because the add_initmethod works differently than other
add event handler methods. Listing 4.13 shows add_init’s body.

Listing 4.13 Sys.Application’s add_init Method

add_init: function(handler) {
if (this._initialized) {

handler(this, Sys.EventArgs.Empty);
}
else {

this.get_events().addHandler("init", handler);
}

}

As the code shows, add_init works differently if Sys.Application is
already initialized. If it is initialized, it immediately executes the handler.
If the handler contains a $create statement, this has the effect of executing
the $create method right away when the anonymous function containing
it is passed into the add_init method. If Sys.Application isn’t initialized,
the add_init method works like other add event handler methods, adding
the handler to the init event.

Initialization Routine 195

NOTE Sys.Application and Partial Postbacks

It’s important to note that during a partial postback caused by an
UpdatePanel, Sys.Application is not destroyed and re-created because
the window isn’t unloaded and loaded again. This might seem obvious,
but it means that during a partial postback Sys.Application’s initializa-
tion routine isn’t re-executed. However, because add_init isn’t adding
event handlers to the init event due to Sys.Application being already
initialized, $create statements should still be wrapped in an anonymous
function and passed to Sys.Application’s add_init method. That way,
if the $create statements happen to be executed when Sys.Application
isn’t already initialized, they’ll still work properly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting References

Now that we’ve covered the init event, let’s talk about the effect that set-
ting _creatingComponents to true, which happens in the beginCreate
Components method, has on creating components.

In Chapter 3, when we covered the $create method, we discussed how
the references parameter allows one component to be assigned to another
component as a reference. We stated that for a component to be successfully
assigned, the component must exist before the assignment occurs. This
process is straightforward if you can guarantee the order in which compo-
nents will be created. If we’re writing $create statements by hand in a web
page or in a JavaScript file, we can pretty much control the order that the
$create statements are executed and therefore ensure that Component A
is created before Component B and that Component A is available to be
assigned as a reference to Component B.

However, as we discuss in Chapter 5, “Adding Client Capabilities to
Server Controls,” it’s possible to create components through server code.
With this capability, we can no longer ensure that Component A will be cre-
ated before Component B because we really don’t know in what order the
server will emit the $create statements.

Given that we can no longer guarantee the order that the $create state-
ments will be executed and their related components created, it becomes
problematic to assign a component as a reference to another component.

However, the component creation process provides a workaround for
this problem. It does this by setting _creatingComponents to true when the
component creation process begins. When this value is set to true, the
$create method performs differently with regard to references. Rather than
process the references parameter and assign references to the creating
component, an object is created containing the current component and the
references it wants to be assigned. This object is then added to the
_secondPassComponents object maintained by Sys.Application. The
$create method then moves on without calling endUpdate, which as you
might remember triggers the initialize method on the component.

After all the components have been created, the _secondPass

Components objects are processed by the endCreateComponents method. It

Chapter 4: Sys.Application196

http://lib.ommolketab.ir
http//lib.ommolketab.ir

is safe to do so now because all components will be available as references
to other components, and the order they were created in no longer matters.

The endCreateComponents method iterates over the secondPass

Components member and calls the global _setReferences method we
described in Chapter 3 using the object that contains the component and the
references it wants to be assigned as the method call’s parameters.

When the _setReferences method completes, endUpdate is called on
the component, triggering the component’s initialize method.

Listing 4.14 demonstrates this idea in action by creating a component
that references another component that is created after it. However, because
they utilize the Sys.Application’s init event, the reference is assigned
successfully.

Listing 4.14 Setting a Forward Reference

<html>
<head>

<title>Forward References</title>
</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="ScriptManager1" runat="server" />

<script type="text/javascript">

MyReferencedComponent = function() { };
MyReferencedComponent.registerClass
("MyReferencedComponent", Sys.Component);

MyOtherComponent = function() {
this._referencedComponent = null;

};

MyOtherComponent.prototype = {
get_referencedComponent: function() {

return this._referencedComponent;
},
set_referencedComponent: function(value) {

this._referencedComponent = value;
}

};
MyOtherComponent.registerClass
("MyOtherComponent", Sys.Component);

Sys.Application.add_init(

Initialization Routine 197

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 4.14 continued

function() {
$create(

MyOtherComponent,
{id:"MyOtherComponent"},
null,
{referencedComponent: "MyReferencedComponent" },
null

)
}

);

Sys.Application.add_init(
function() {
$create(

MyReferencedComponent,
{id:"MyReferencedComponent"},
null,
null,
null

)
}

);

Sys.Application.add_load(
function(sender, args) {
var myOtherComponent = $find("MyOtherComponent");
alert (myOtherComponent.get_referencedComponent().get_id());

}
);

</script>
</form>

</body>
</html>

So, as Listing 4.14 demonstrates, forward references to components are
allowed if we use the init event.

Load Event
When the component creation process concludes, the _doInitialize
method continues and raises the load event. The load event is important
because it is the first time we have the ability to interact with the initializa-
tion routine after all the components that were to be created by the init
event have been created.

Chapter 4: Sys.Application198

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Like all other .NET-style events, the first argument in a load event han-
dler is the sender or the object that raised the event. In this case, the sender
is Sys.Application. However, unlike most of the other events that we’ve
seen so far, the load event does not use the empty event argument type,
Sys.EventArgs.Empty, as the second parameter. Instead, it uses the event
arguments type, Sys.ApplicationLoadEventArgs, as the second parameter.

Table 4.3 details Sys.ApplicationLoadEventArgs members.

Table 4.3 Sys.ApplicationLoadEventArgs Members

Member Name Type Purpose

_components Array Contains the components that were created during
the most recent component creation process

_isPartialLoad boolean Value indicating whether the most recent compo-
nent creation process occurred due to a partial post-
back (i.e., UpdatePanels)

Using Sys.ApplicationLoadEventArgs as the second parameter pro-
vides information to the event handler. It provides a list of the components
that were created during the component creation process and a boolean
value indicating whether the component creation process was kicked off
due to a partial-postback.

Initialization Routine 199

NOTE raiseLoad

The load event is raised through the helper function raiseLoad. This is
done so that other objects can raise the load event without having
access to Sys.Application’s internals.

We used the load event in the Listing 4.14 in a simple manner, but List-
ing 4.15 expands on this example and uses the custom event arguments to
extract other information.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 4.15 Using the load Event

<html>
<head>

<title>Forward References</title>
</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="ScriptManager1" runat="server" />

<script type="text/javascript">
MyReferencedComponent = function() { };
MyReferencedComponent.registerClass
("MyReferencedComponent", Sys.Component);

MyOtherComponent = function() {
this._referencedComponent = null;

};

MyOtherComponent.prototype = {
get_referencedComponent: function() {

return this._referencedComponent;
},
set_referencedComponent: function(value) {

this._referencedComponent = value;
}

};
MyOtherComponent.registerClass
("MyOtherComponent", Sys.Component);

Sys.Application.add_init(
function() {

$create(
MyOtherComponent,
{id:"MyOtherComponent"},
null,
{referencedComponent: "MyReferencedComponent" },
null

)
}

);

Sys.Application.add_init(
function() {

$create(
MyReferencedComponent,
{id:"MyReferencedComponent"},
null,
null,
null

Chapter 4: Sys.Application200

http://lib.ommolketab.ir
http//lib.ommolketab.ir

)
}

);

Sys.Application.add_load(
function(sender, args) {

var createdComponents = args.get_components();
if (createdComponents !== null) {
for (var i=0; i<createdComponents.length; i++) {

alert (
"Component #" +
(i+1) +
": " +
createdComponents[i].get_id()

);
}

}
}

);
</script>
</form>

</body>
</html>

After the load event is raised, the raiseLoad method looks for a global
method called pageLoad. pageLoad is a kind of default event handler for the
load event that you can create to handle the load event. Listing 4.16 demon-
strates how you can use it.

Listing 4.16 Using window.pageLoad

<html>
<head runat="server">

<title>Forward References</title>
</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="ScriptManager1" runat="server" />

<script type="text/javascript">

MyReferencedComponent = function() { };
MyReferencedComponent.registerClass
("MyReferencedComponent", Sys.Component);

MyOtherComponent = function() {
this._referencedComponent = null;

};

Initialization Routine 201

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 4.16 continued

MyOtherComponent.prototype = {
get_referencedComponent: function() {
return this._referencedComponent;

},
set_referencedComponent: function(value) {
this._referencedComponent = value;

}
};
MyOtherComponent.registerClass

("MyOtherComponent", Sys.Component);

Sys.Application.add_init(
function() {
$create(

MyOtherComponent,
{id:"MyOtherComponent"},
null,
{referencedComponent: "MyReferencedComponent" },
null

)
}

);

Sys.Application.add_init(
function() {
$create(

MyReferencedComponent,
{id:"MyReferencedComponent"},
null,
null,
null

)
}

);

function pageLoad(sender, args) {
var createdComponents = args.get_components();
if (createdComponents !== null) {

for (var i=0; i<createdComponents.length; i++) {
alert (

"Component #" +
(i+1) +
": " +
createdComponents[i].get_id()

);
}

}
}

Chapter 4: Sys.Application202

http://lib.ommolketab.ir
http//lib.ommolketab.ir

</script>
</form>

</body>
</html>

Frankly, we don’t think that you should ever use it and that you should
attach to the load event instead. It might be good for an initial test of what
the load event arguments look like, but it becomes pointless in a real appli-
cation’s architecture.

Finally, when the load event is done executing, the _initializing flag
is set back to false, and the initialization routine concludes.

The Unload Routine

The final piece of functionality that Sys.Application provides is an unload
routine triggered when the window’s unload event is raised. As it turns out,
the Sys.Application.disposemethod contains all the code that is executes
in the unload routine.

Sys.Application.dispose
Sys.Application.dispose is responsible for ensuring that everything is
cleaned up as the page is destroyed. Because you might want to write code
that gets triggered when the page is disposing, the dispose method pro-
vides two ways of executing custom code.

First, like the global window.pageLoad method that is called during ini-
tialization if it is present, dispose calls the global window.pageUnload
method if it’s found. If we implement the method as shown in Listing 4.17,
we can write code that gets executed when dispose starts.

Listing 4.17 window.pageUnload

window.pageUnload = function(sender, args) {
alert ("Sys.Application is being destroyed!");

}

However, rather than use the global pageUnload method, if you want to
be notified of when Sys.Application is unloading, you should add an
event handler to the Sys.Application.unload event. This event is raised

The Unload Routine 203

http://lib.ommolketab.ir
http//lib.ommolketab.ir

from within the dispose method right after the pageUnload method is exe-
cuted. An example of wiring up to the unload event is shown in
Listing 4.18.

Listing 4.18 Wiring to the unload Event

function unloadHandler(sender, args) {
alert ("Sys.Application is being destroyed!");

}

Sys.Application.add_unload(unloadHandler);

Common uses of registering your own code for the dispose method are
if you have noncomponent objects that need to be destroyed or global
timers that need to be stopped.

Besides providing the unload event, dispose calls dispose on all dis-
posable objects. Disposable objects are normally components, but they can
be any object that implements the Sys.IDisposable interface, which guar-
antees the object has a dispose method to call.

We can manually add and remove from the list of disposable objects
through two methods attached to Sys.Application: registerDisposable
Object and unregisterDisposableObject.

registerDisposableObject

registerDisposableObject takes one parameter, the disposable object to
add. Listing 4.19 shows a call to the registerDisposableObject method.

Listing 4.19 Registering a Disposable Object

MyObject = function() {};

MyObject.prototype = {
dispose: function() {

alert ("My Object was disposed.");
}

};
MyObject.registerClass("MyObject", null, Sys.IDisposable);

var myObject = new MyObject();
Sys.Application.registerDisposableObject(myObject);

Chapter 4: Sys.Application204

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now, with myObject registered as a disposable object, dispose will auto-
matically be executed on our myObject instance.

unregisterDisposableObject

Just as we add to the list of disposable objects, we can remove from the list
using the unregisterDisposableObject method. Listing 4.20 shows a call
to the unregisterDisposableObject method.

Listing 4.20 Unregistering a Disposable Object

MyObject = function() {};

MyObject.prototype = {
dispose: function() {

alert ("My Object was disposed.");
}

};
MyObject.registerClass("MyObject", null, Sys.IDisposable);

var myObject = new MyObject();
Sys.Application.registerDisposableObject(myObject);

// unregister myObject
Sys.Application.unRegisterDisposableObject(myObject);

For the most part, you probably won’t manually add or remove dispos-
able objects from the list of disposable objects. Instead, you will automati-
cally add to this list whenever you create an instance of a new component,
because adding to the list of disposable objects is built in to Sys.
Component’s constructor. Sys.Component’s constructor is shown in Listing
4.21, and the highlighted code is the call to register the component as a dis-
posable object.

The Unload Routine 205

NOTE Checking for Sys.IDisposable

The registerDisposableObject and unregisterDisposableObject
methods expect a parameter that implements Sys.IDisposable.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 4.21 Sys.Component’s Automatic Registration as a Disposable Object

Sys.Component = function Sys$Component() {
if (Sys.Application)

Sys.Application.registerDisposableObject(this);
}

By automatically registering as a disposable object, a component is set
up to be disposed of when the window is unloaded.

After the disposable object list has been iterated over and dispose has
been called on each of the disposable objects, the dispose method contin-
ues.

The next step the dispose method performs is to unwire Sys.
Application from the window. It does this by destroying the handlers that
are attached to the window’s load and unload events.

Finally, the dispose method calls the base class’s dispose method,
which is Sys.Component. If any event handlers have been registered for its
disposing event, they are executed.

SUMMARY

In this chapter, we covered Sys.Application, the client runtime of the
Microsoft AJAX Library. We started with how it can be used to manage
components in an organized manner. We then covered how it provides an
initialization routine with which we can interact to execute our own code in
a safe manner. Finally, we covered how it provides an unload routine with
which we can interact and register our own disposable objects.

Chapter 4: Sys.Application206

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5
Adding Client Capabilities to
Server Controls

T H E P O W E R O F ASP.NET development has always been the devel-
opment approach of using an event model that mirrors that of

Windows Forms. This meant you did the majority of your development by
dragging server controls onto the designer surface, setting properties of
server controls, creating event handlers in code behind to handle postback
events, and writing code to access a data source of some kind. This model
of server-centric development has worked well for a long time, but increas-
ingly users are demanding a richer UI experience that does not rely on post-
backs and the slow response they tend to have. This presents an interesting
dilemma for developers who have spent the majority of their development
career working in the backend and have little experience writing JavaScript
code. Then, to make matters worse, each browser tends to behave a little
differently, and a tangled mess of StringBuilder-based JavaScript code
turns your development experience into a nightmare. ASP.NET 2.0 AJAX
Extensions make a lot of this easier now by providing a nice framework to
work with to add browser-independent JavaScript code to your controls. In
this chapter, we look at how to add client-side functionality to our server-
based controls using ASP.NET 2.0 AJAX Extensions and how the frame-
work provides many new features that make this easier than before.

207

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Script-Generation Architecture

In Chapter 3, “Components,” we looked at creating component-based
behaviors and controls and how they can add new functionality to an exist-
ing DOM element using JavaScript and the Microsoft AJAX Library. As we
turn our attention to building server-based controls that contain JavaScript
functionality, there is a need to merge the client-centric JavaScript-based
programming model with the server-centric .NET-based programming
model. We need a way to be able to assign values to our server controls and
have those values flow down to the client, influencing the client capabilities
of our control on the client. This is where the script-generation architecture
of ASP.NET 2.0 AJAX Extensions comes into play. The ASP.NET 2.0 AJAX
Extensions provide a rich code-generation model for initializing behaviors
and controls in the ScriptBehaviorDescriptor class and the Script
ControlDescriptor class, respectively. These classes provide all the func-
tionality needed to initialize the behavior and control classes with .NET-
based data captured during the control development process. The
ScriptBehaviorDescriptor and ScriptControlDescriptor classes actu-
ally work in conjunction with the ScriptManager control, which is respon-
sible for managing all ASP.NET AJAX-related resources on a page. As we
will shortly see, this control is the central figure in managing all script-
related resources for a page, including but not limited to downloading
Microsoft AJAX Library scripts to the client, generating web service
JavaScript proxies, and registering controls that support IExtenderControl
and IScriptControl interfaces so that the ScriptBehaviorDescriptor- and
ScriptControlDescriptor-based information contained in them can be
used to generate script initialization code.

Behavior and Control Script Generation
The focus of the ScriptBehaviorDescriptor and ScriptControlDescriptor

classes is to generate the $create statement that initializes the
Sys.UI.Behavior and Sys.UI.Control JavaScript classes on the client. The
$create statement, as mentioned in Chapter 3, is responsible for assigning
initial property values, adding event handlers to events, assigning other
components as references, and associating a DOM element to a Sys.UI.

Chapter 5: Adding Client Capabilities to Ser ver Controls208

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Component-based class. During the development of our server controls, we
use these classes to add data that we have captured to be included in the
$create statement generation. If we take a look at Figure 5.1, we can see a
class hierarchy for the script-generation classes anchored by the Script
Descriptor abstract class and the inherited ScriptComponentDescriptor
class. It is the ScriptComponentDescriptor class that contains much of the
functionality for the script generation, and the ScriptBehaviorDescriptor
and ScriptControlDescriptor classes utilize this functionality to provide
unique classes for their respective JavaScript counterparts.

Script-Generation Architecture 209

ScriptComponentDescriptor

Class

 ScriptDescriptor

Fields

Fields

Properties

Methods

Nested Types

ClientID

AddComponentProperty

AddElementProperty

AddScriptProperty

AppendPropertiesScript

ScriptDescriptor

Abstract Class

Methods

GetScript

RegisterDisposeForDescriptor

AddEvent

AddProperty (+ 1 overload)

ElementIDInternal

Properties

Serializer

Type

Events

ID

RegisterDispose

AppendEventsScript

AppendReferencesScript

RegisterDisposeForDescriptor

ScriptComponentDescriptor (+ 1 overload)

GetScript

ScriptControlDescriptor

Class

 ScriptComponentDescriptor

Properties

Methods

ClientID

ScriptControlDescriptor

ElementID

ID

ScriptBehaviorDescriptor

Class

 ScriptComponentDescriptor

Properties

Fields

Methods

ClientID

ElementID

ID

_name

GetTypeName

GetScript

ScriptBehaviorDescriptor

Figure 5.1 Script-generation class structure

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ScriptComponentDescriptor

The ScriptComponentDescriptor class, which inherits from the Script
Descriptor abstract class, provides most of the functionality for its inher-
ited classes ScriptBehaviorDescriptor and ScriptControlDescriptor.
The goal of this class is to merge the server-based .NET world with the
JavaScript-based client world by providing properties, see Table 5.1, that
identify the component and its type and methods, see Table 5.2, that create
lists of properties, events, component references, DOM references, and
JavaScript fragments and then use those lists to build up a complete
Sys.Component.Create $create statement used to initialize a
Sys.UI.Behavior or Sys.UI.Control.

The most common method you will deal with is the AddProperty
method, which assigns an object-based value to a property on your behav-
ior or control class. This method will be used to assign values specific to the
client-side functionality of your control that are gathered as a user config-
ures the control for use. The method signature, see Listing 5.1, takes two
parameters: the name of the property on the component and the value to
assign.

Chapter 5: Adding Client Capabilities to Ser ver Controls210

NOTE Property Names Used in Descriptors

Throughout this chapter, you will see property names used during
assignments. The names used should not include the associated get_
or set_ prefixes that were describe in Chapter 3. The GetScript
method of the ScriptComponentDescriptor class will append the set_
prefix to these values automatically.

Table 5.1 ScriptComponentDescriptor Properties

Property Description

ClientID When overridden in a derived class, gets the identifier of the client
component

ID Gets or sets the ID of the current ScriptComponentDescriptor
instance

Type Gets or sets the type of the target client component

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Script-Generation Architecture 211

Table 5.2 ScriptComponentDescriptor Methods

Method Description

AddComponentProperty Adds the specified property and associates that
property with the specified component

AddElementProperty Adds the specified property and associates that
property with the specified element

AddEvent Adds the specified event and handler

AddProperty Adds the specified property and value

AddScriptProperty Adds the specified property and associates the prop-
erty with the specified script

Listing 5.1 ScriptComponent Method Signatures

AddProperty(string PropertyName, object MyControl.Property);
AddComponent(string PropertyName, string JavaScriptComponentID);
AddElement(string PropertyName, string DomElementID);
AddEvent(string EventName, string JavaScriptFunctionName);
AddScriptProperty(string PropertyName, string JavaScriptCodeFragment);

The next two methods, AddComponentProperty and AddElement

Property, are what we call reference-setting methods. These set a property
to a component or element reference. The AddComponentProperty method
takes the component ID that you pass in and on the client sets the property
to a reference of the component using the $find shortcut method to get a
reference to a component object that has been registered with the applica-
tion through the addComponent method of the Sys.Application class. The
AddElementProperty method takes the element ID that you pass in and on
the client sets the property to a reference of a DOM element using the
$get shortcut method to get a reference to a DOM element through the
getElementById method of the Sys.UI.DomElement class.

The AddEvent method is used to attach an external JavaScript event han-
dler to your component. The ability to attach events comes in handy when
you have a control that needs to provide client-side events to the consumer
of your control. The added ability that the Microsoft AJAX Library provides

http://lib.ommolketab.ir
http//lib.ommolketab.ir

with the Sys.EventArgs and Sys.CancelEventArgs that are passed to each
event handler brings a level of programming that matches what we have
become used to in .NET development. The name of the event passed in to
this method will correspond to the event on the component, and the
JavaScript function name is the name of an external handler that will be
called when the event occurs.

Chapter 5: Adding Client Capabilities to Ser ver Controls212

NOTE Event Names Used in Descriptors

Throughout this chapter, you will see event names used during assign-
ments. The names used should not include the associated add_ or
remove_ prefixes that were describe in Chapter 3. The GetScript
method of the ScriptComponentDescriptor class will append the add_
prefix to these values automatically.

The AddScriptProperty method provides an interesting feature in those
hard-to-fit situations where the value assigned to the property needs to be
evaluated on the client by the JavaScript eval method. In these cases, the
value assigned to the property will be the result of an eval being applied
to the contents of the second parameter before it is assigned to the prop-
erty on the client. This can be helpful in situations where normal property
assignment using the AddProperty method starts to break down, like when
the data passed in is too complex for the JavaScriptSerializer or the
value assigned is a combination of many different types that are brought
together in an array.

The end result of all these values being assigned to various internal col-
lections is a $create statement returned from the GetScript method, which
is called by the ScriptManager during page processing. This abstract way
of building up the component initialization code is much simpler than cre-
ating a big string using the StringBuilder class and hoping that everything
gets created correctly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

GetScript Internals
You probably won’t be surprised to see just what is going on under the

hood with the GetScriptmethod. It’s surprising that no matter how far we

get we still have to build up script one way or another. The calls to Append

PropertiesScript, AppendEventScript, and AppendReference

Script just loop through the internal collections of the properties, events,

and references entries we added, converting the data types into JSON,

where appropriate, and assigning them to the $create statement that is

built up using the StringBuilder:

protected internal override string GetScript()
{

if (!string.IsNullOrEmpty(this.ID))
{

this.AddProperty("id", this.ID);
}
StringBuilder builder = new StringBuilder();
builder.Append("$create(");
builder.Append(this.Type);
builder.Append(", ");
this.AppendPropertiesScript(builder);
builder.Append(", ");
this.AppendEventsScript(builder);
builder.Append(", ");
this.AppendReferencesScript(builder);
if (this.ElementIDInternal != null)
{

builder.Append(", ");
builder.Append("$get(\"");
builder.Append(
JavaScriptString.QuoteString(
this.ElementIDInternal));

builder.Append("\")");
}
builder.Append(");");
return builder.ToString();

}

ScriptBehaviorDescriptor

The ScriptBehaviorDescriptor class is designed to generate a $create
statement for use with a Sys.UI.Behavior class. The constructor, see List-
ing 5.2, takes the namespace and class name of the Sys.UI.Behavior class

Script-Generation Architecture 213

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and the ID of the current associated control. The class is primarily used
when creating controls that support the IExtenderControl interface or
inherit from the ExtenderControl class. These types of controls are
designed to allow adding client-side behavior to existing server controls
and use the ScriptBehaviorDescriptor class to gather information used in
the initialization of their corresponding behavior class.

Listing 5.2 ScriptBehaviorDescriptor Constructor

ScriptBehaviorDescriptor("Namespace.Class", ID)

ScriptControlDescriptor

The ScriptControlDescriptor class is designed to generate a $create
statement for use with a Sys.UI.Control class. The constructor, see Listing
5.3, takes the namespace and class name of the Sys.UI.Control class and
the ID of the current associated control. The class is primarily used when
creating controls that support the IScriptControl interface or inherit from
the ScriptControl class. These types of controls are designed to allow
adding client-side functionality internally to the controls and use the
ScriptControlDescriptor class to gather information used in the initial-
ization of their corresponding control class.

Listing 5.3 ScriptComponentDescriptor Constructor

ScriptComponentDescriptor ("Namespace.Class", ID)

Script Resources
ASP.NET 2.0 introduced the ability for external resources to be embedded
within web applications and controls and then accessed through the
WebResource.axd URL. This functionality opened the door for developers
to embed images, JavaScript files, and CSS files into the assembly, elimi-
nating the need to have these files located on the file system. ASP.NET 2.0
AJAX Extensions rely heavily on this feature to deliver the various
JavaScript files embedded in the System.Web.ExtensionsDLL that contains
all its functionality.

Chapter 5: Adding Client Capabilities to Ser ver Controls214

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adding Script Resources

The process to add script resources to your project is relatively simple. The
only requirement is that your project compile to a DLL. This limits the pos-
sibilities to web applications, which are the default in Visual Studio 2008,
and control libraries. To properly configure a script resource, you must
complete these two steps:

1. Make the JavaScript file a resource.

2. Add the WebResource attribute to the assembly.

Embedding a JavaScript File

To make a script file an embedded resource is a simple process that entails
selecting the script file, selecting the properties for the file, and changing the
build action to Embedded Resource (see Figure 5.2).

Script-Generation Architecture 215

Figure 5.2 Selecting the Embedded Resource option of the build action

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the WebResource Attribute

The WebResource attribute is used to identify an embedded resource that
can be used as a web resource. The first parameter specifies the name of the
resource, and should be named using the pattern RootNamespace.PathTo
JavaScriptFile, with the root namespace being the namespace of the proj-
ect and path to JavaScript file being the full path, including folder names if
not in the root of the project. In the sample in Listing 5.4, the Image
Rotator.js file is contained in a project called ImageRotatorExtender, and
the file is at the root of the project. If the file were below, for instance, the
Scripts folder, the entry would be ImageRotatorExtender.Scripts.Image
Rotator.js instead. The second parameter specifies the MIME type to be
used. In our case, we are referring to JavaScript files, so a content type of
text/javascript is used.

Listing 5.4 WebResource Attribute Usage

[assembly: WebResource("ImageRotatorExtender.ImageRotator.js",
"text/javascript")]

ScriptReference

The ScriptReference class is designed to contain information about a
script resource that is intended to be registered with the ScriptManager.
The class contains a rich set of properties, as shown in Table 5.3, that pro-
vide a wealth of information about the script file and its intended use. Some
of the entries are similar to the entries used in the WebResource attribute
and, in fact, if the script file to be used is an embedded resource, it must
have a corresponding WebResource attribute entry so that the Script
Manager can find the resource during page processing. The constructor
takes the name of the JavaScript file in the same format as the WebResource
attribute and the type that contains the resource. In the case of Listing 5.5,
the ImageRotator.js file we used in the WebResource is used, and the type for
the current project’s assembly is used as the type.

There are a few properties that are of interest as you work with the
ScriptReferences class. The NotifyScriptLoaded property is used to add
the notifyScriptLoaded method to the end of a script file and is used to
notify the Sys.Application that the script has loaded. The Microsoft AJAX

Chapter 5: Adding Client Capabilities to Ser ver Controls216

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Library uses this to ensure that scripts are loaded in the correct order when
dependent scripts are used. If you have a script file that already contains
this method, the property should be set to false; otherwise, a value of true
will instruct the ScriptManager to append the notifyScriptLoaded
method to the end of the script file. The ScriptMode property indicates
whether to use the debug or release version of the script. The naming con-
vention of ScriptFile.debug.js is used to indicate that a script file is the
debug version.

Table 5.3 ScriptReference Properties

Property Description

Assembly Gets or sets the name of the assembly that contains the
client script file as an embedded resource

IgnoreScriptPath Gets or sets a value that indicates whether the Script
Path property is included in the URL when you regis-
ter a client script file from a resource

Name Gets or sets the name of the embedded resource that
contains the client script file

NotifyScriptLoaded Gets or sets a value that indicates whether the Script
ResourceHandler object automatically adds code at the
end of the ECMAScript (JavaScript) file to call the
notifyScriptLoaded method of the Sys.Application
class

Path Gets or sets the path of the referenced client script file,
relative to the web page

ResourceUICultures Gets or sets a comma-delimited list of UI cultures that
are supported by the Path property

ScriptMode Gets or sets the version of the client script file (release
or debug) to use

Listing 5.5 ScriptReference Constructor

ScriptReference("ImageRotatorExtender.ImageRotator.js",
this.GetType().Assembly.FullName)

Script-Generation Architecture 217

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ScriptManager
The ScriptManager control is the central figure in the server-side function-
ality of ASP.NET 2.0 AJAX Extensions. The control provides functionality
for registering scripts compatible with partial page updates, registering
web services and application services, and scripts associated with server
controls that implement the IExtenderControl and IScriptControl
interfaces.

In this chapter, we cover setting up the ScriptManager and the core
script-generation features. In Chapter 6, “ASP.NET AJAX Localization,” we
cover localization. In Chapter 7 “Control Development in a Partial Postback
Environment” we cover how the ScriptManager participates in partial page
rendering. In Chapter 8, “ASP.NET AJAX Communication Architecture,”
we cover the support for web services and in Chapter 9, “Application
Services,” we cover working with the application services.

Configuring the ScriptManager

The ScriptManager control is required on all pages that will support
ASP.NET AJAX functionality. The default configuration shown in Listing
5.6 enables downloading of the core Microsoft AJAX Library scripts and
scripts that are registered in server controls that implement the IExtender
Control and IScript interfaces to the browser.

Listing 5.6 ScriptManager Registration

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>

Master Pages, Controls, and the ScriptManagerProxy

In cases where you register the ScriptManager in a master page or a par-
ent page that contains user controls, these lower-level controls in the con-
trol hierarchy can’t have an additional ScriptManager, which can present
a problem with content pages and user controls that are contained in a mas-
ter page scenario. In cases such as this, the ScriptManagerProxy control
shown in Listing 5.7 can be used to configure additional functionality at the
content page or user control level. The use of this control also provides an
additional level of abstraction in configuring functionality at these levels. It

Chapter 5: Adding Client Capabilities to Ser ver Controls218

http://lib.ommolketab.ir
http//lib.ommolketab.ir

enables you to do things such as register web services used in a specific user
control in the user control itself without requiring users of the control to
know what the web service dependencies are and requiring their registra-
tion in the ScriptManager control on the parent.

Script-Generation Architecture 219

NOTE Default Behavior

Unlike the ScriptManager control, there is no default behavior of the
ScriptManagerProxy control, so adding one to a content page or user
control without adding additional configuration entries won’t do
anything.

Listing 5.7 ScriptManagerProxy Registration

<asp:ScriptManagerProxy ID="ScriptManagerProxy1" runat="server">
</asp:ScriptManagerProxy>

Working with Scripts

One of the areas most utilized by the ScriptManager is its capability to gen-
erate script and script registration entries. In the case of script generation,
the ScriptManager enables you to generate JavaScript proxy classes for reg-
istered web services and to generate $create statements for server controls
that implement the IExtenderControl and IScriptControl interfaces. In
the case of script registration, the ScriptManager is responsible for adding
script source entries and script block entries into the associated page so that
they are available on the client.

The ScriptManager control contains a ScriptReferenceCollection that
contains ScriptReference entries for scripts that will be included on the
page. The markup in Listing 5.8 shows how to add a script reference to
ScriptManager. The addition of these script files enables the Script
Manager to create a script source entry on the page that then accesses the
script file through the ScriptResource.axd URL and associated HTTP han-
dler that processes the request. It is through this process that the script files
are downloaded to the browser and made available for use.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 5.8 Script Registration

<asp:ScriptManager ID="ScriptManager1" runat="server">
<Scripts>

<asp:ScriptReference Path="~/MyScript.js" />
</Scripts>

</asp:ScriptManager>

Adding Client-Side Behavior Using the ExtenderControl

Extender controls help maintain a server-centric development experience
by enabling ASP.NET 2.0 developers to add client-side functionality to an
existing server control. In this section, we cover how to create extender con-
trols, the techniques for adding client-side functionality, and how to use
existing server control development techniques to provide a rich develop-
ment experience for a developer using your extender control.

Chapter 5: Adding Client Capabilities to Ser ver Controls220

NOTE Processing ScriptResource.axd Requests

In Chapter 8, we cover in detail how script requests are processed
when we discuss the ASP.NET AJAX communication architecture.

NOTE ASP.NET AJAX Control Toolkit

The ASP.NET AJAX Control Toolkit also provides a framework for cre-
ating extender controls and script controls. The difference between the
two is that extender control and script control development using
ASP.NET 2.0 Extensions directly provides the greatest amount of flex-
ibility without the added need of additional binaries but at the cost of
a slightly longer development cycle. If a more controlled and rapid
development experience is what you are looking for, you might want
to look at the ASP.NET AJAX Control Toolkit, which is covered in
Chapter 10, “ASP.NET AJAX Control Toolkit Architecture,” and Chap-
ter 11, “Adding Client Capabilities to Server Controls Using the
ASP.NET AJAX Control Toolkit.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ExtenderControl Overview
The ExtenderControl class enables you to add AJAX functionality to a
server control using the server-centric model that developers have become
accustomed to. In Figure 5.3, we can see that the System.Web.UI.
ExtenderControl class gets its start by extending the functionality pro-
vided by the System.Web.UI.Control class. This is important because the
Control class is the basis for all server controls in ASP.NET 2.0. By inherit-
ing from the Control class, the extender control gains all the functionality
we have come to rely on when using server controls such as data binding,
control state, view state, design-time support, smart tags, and integration
with the Properties window. The ExtenderControl also implements the
System.Web.UI.IExtenderControl interface, which provides the hooks the
ExtenderControl needs to integrate with ASP.NET 2.0 AJAX Extensions
and to provide client-side script. The GetScriptDescriptor and GetScript

References methods are called by the ScriptManager as the extender con-
trol is created, returning the behavior initialization script and script refer-
ences, respectively, that are needed to ensure the client-side behavior of the
control is properly configured.

Creating an Extender Control
The extender control we build is designed to work with an image control
and provides the added behavior of looping through an additional set of
images, adding image rotation behavior to the standard ASP.NET image
control. The process of creating the extender control consists of four main
tasks.

1. Creating the template classes

2. Providing implementation for the inherited extender control class

3. Providing implementation for the Sys.UI.Behavior-based
JavaScript class

4. Attaching the extender control to an existing server control

Adding Client-Side Behavior Using the ExtenderControl 221

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 5.3 ExtenderControl class hierarchy

Chapter 5: Adding Client Capabilities to Ser ver Controls222

IComponent
IDisposable
IParserAccessor
IUrlResolution Service
IDataBindingsAccessor
IControlBuilderAccessor
IControlDesignerAccessor
IExpressionsAccessor

IExtenderControl

Class

Control

ExtenderControl

Abstract Class

 Control

Fields

Properties

Methods

ScriptManager

TargetControlID

Visible

ExtenderControl (+ 1 overload)

_targetControlID

_scriptManager

GetScriptDescriptors

GetScriptReferences

OnPreRender

Render

IExtenderControl

Interface

Methods

GetScriptDescriptors

GetScriptReferences

FindUpdatePanel

IExtnderControl.GetScriptDescriptors

IExtenderControl.GetScriptReferences

RegisterWithScriptManager

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Visual Studio 2008 Extender Control Library Template

The new extender control library template shown in Figure 5.4 provides a
great start to creating an extender control. The template creates a library
project, see Figure 5.5, with an ExtenderControl class, a client behavior
JavaScript class, and a resource file. The template also adds a WebResource
entry and ScriptResource entry for the embedded client behavior script
file so that it is available on the client.

Adding Client-Side Behavior Using the ExtenderControl 223

Figure 5.4 ExtenderControl project template

The ExtenderControl class that is generated, see Listing 5.9, contains a
few entries we need to cover. The System.Web.UI.TargetControl attri-
bute that is on the ExtenderControl class is used to limit the types of server
controls the extender can be associated with. The use of the Control type
in the template allows the extender control to be associated with any con-
trol because Control is the base class for all server controls. In our example,
you will see that we change this value to a more specific type, which is rec-
ommended when creating your control. The template also creates over-
rides for the GetScriptDescriptors and GetScriptReferences methods
(which we describe in more detail shortly).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 5.5 ExtenderControl project template structure

Listing 5.9 ExtenderControl Template Class

[TargetControlType(typeof(Control))]
public class ExtenderControl1 : ExtenderControl
{

public ExtenderControl1()
{
}
protected override IEnumerable<ScriptDescriptor>

GetScriptDescriptors(System.Web.UI.Control targetControl)
{

ScriptBehaviorDescriptor descriptor =
new ScriptBehaviorDescriptor(

"AjaxControlExtender5.ClientBehavior1",
targetControl.ClientID);
yield return descriptor;

}

Chapter 5: Adding Client Capabilities to Ser ver Controls224

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// Generate the script reference
protected override IEnumerable<ScriptReference>

GetScriptReferences()
{

yield return new ScriptReference(
"AjaxControlExtender5.ClientBehavior1.js",

this.GetType().Assembly.FullName);
}

}

Adding Client-Side Behavior Using the ExtenderControl 225

NOTE Using the yield Keyword

The yield keyword is used to return an enumerated value as a code
block performs a custom iteration over an array or collection. In the
case of the GetScriptDescriptors method, the yield statement is
used as a shortcut to return the descriptor as an enumerated value.

The ClientBehavior JavaScript class shown in Listing 5.10 contains the
basic elements of a behavior class, including a namespace registration, con-
structor, prototype, class registration, and notifyScriptLoaded call. The
constructor is a bare-bones implementation that consists of an intialize
Base call and requires additional coding for things such as member variable
declaration. The prototype is also a bare-bones implementation with a call
to callBaseMethod to initialize the behavior base class and a dispose func-
tion with a call to callBaseMethod and will also require additional coding
for any properties, methods, or events that your behavior will implement.

Listing 5.10 Sys.UI.Behavior Template Class

/// <reference name="MicrosoftAjax.js"/>

Type.registerNamespace("AjaxControlExtender5");

AjaxControlExtender5.ClientBehavior1 = function(element) {
AjaxControlExtender5.ClientBehavior1.initializeBase(

this, [element]);
}

AjaxControlExtender5.ClientBehavior1.prototype = {
initialize: function() {

AjaxControlExtender5.ClientBehavior1.callBaseMethod(
this, 'initialize');

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 5.10 continued

// Add custom initialization here
},
dispose: function() {

//Add custom dispose actions here
AjaxControlExtender5.ClientBehavior1.callBaseMethod(

this, 'dispose');
}

}
AjaxControlExtender5.ClientBehavior1.registerClass(

'AjaxControlExtender5.ClientBehavior1',
Sys.UI.Behavior);

if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

Inheriting from the ExtenderControl-Based Class

The ImageRotator class, shown in Listing 5.11, is an extender control that
provides the added behavior of looping through an additional set of
images, adding image rotation capabilities to the standard ASP.NET image
control. The class inherits from the ExtenderControl base class, which pro-
vides the ability to add client-side behavior to the attached control. The
type of control the extender control supports is important in determining
the client-side behavior, and the TargetControlType attribute should be
used to ensure consumers of the extender control attach to a control of the
proper type. In the ImageRotator extender, the TargetControlType of
Image is used to ensure the extender is attached only to Image controls that
the extender is designed to support.

Chapter 5: Adding Client Capabilities to Ser ver Controls226

NOTE Target Type and Client-Side Behavior

When selecting a type to use, consider the properties and events of the
HTML element it represents to ensure that the behavior will support
them and any additional properties or events of any inherited type.
The use of this attribute will provide you a compile-time check that can
ensure you are associating your extender control with the correct type
of control.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you approach the development of an extender control, you need to
consider the experience consumers of your control will have as they
develop. The control should be easy to configure and should cleanly inte-
grate with the behavior class that will provide the client-side functionality.
The ImageRotator extender contains two main properties, Rotation
Interval and ImageList. These provide configuration points for the con-
trol. The ImageRotator property determines the interval in seconds that the
images in the Image control will be swapped out, and the ImageList prop-
erty contains the images used during the swapping process. When creat-
ing properties, remember that the properties will be accessible in the
Properties window during design time, so special attention should be paid
to the data types used to ensure their compatibility with the Properties win-
dow. The System.ComponentModel and System.ComponentModel.Designer

namespaces can come in handy when working with some data types, pro-
viding attributes and designers that can be applied to a property and thus
ensuring a richer design-time experience for users of the extender control.
An example of a ComponentModel attribute is the DefaultValue attribute
used on the RotationInterval property to inform the designer that the
default value of 3 should be used. The use of defaults can help ensure that
the default implementation of your extender control has a desirable effect
for users who might want an attach-and-run experience.

The information gathered from the properties is used by the GetScript
Descriptors method and the ScriptBehaviorDescriptor class that is cre-
ated inside it. The ScriptBehaviorDescriptor class contains all the elements
needed to compose the $create statement used to initialize the behavior
class for the extender control. The class contains the name of the behavior
class, the control id of the attached control, and a collection of property
assignments for the RotationInterval and ImageList values that were col-
lected by the extender control. As the page is processing, the Script
Manager control looks for child controls that implement the IExtender
Control interface and calls the GetScriptDescriptors method on them,
extracting out the $create statement that the descriptor contains and embed-
ding it onto the page. This ability to assign property values on an extender
control and have them participate in the client experience is what makes
extender controls so appealing.

Adding Client-Side Behavior Using the ExtenderControl 227

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The GetScriptReference method creates a ScriptReference class
designed to register the script file for use on an ASP.NET page. The class takes
the full name of the client behavior file and the full name of the assembly and
uses this information to register the script file. Because the Extender
Control implements the IExtenderControl interface, the ScriptManager
calls the GetScriptReferences method and adds the ScriptReference class
to the ScriptReferenceCollection so that it is included on the page.

Listing 5.11 ImageRotator ExtenderControl-Based Class

[TargetControlType(typeof(Image))]
public class ImageRotator : ExtenderControl
{

public ImageRotator(){ }
int _rotationInterval = 0;
[DefaultValue(3), DisplayName("RotationInterval(seconds))")]
public int RotationInterval
{

get
{
if (_rotationInterval == 0)
{

//set the default
_rotationInterval = 3;
return _rotationInterval;

}
else
{

return _rotationInterval;
}

}
set
{
_rotationInterval = value;

}
}

public string ImageList { get; set; }

private string CreateImageListArray()
{

string[] imageList = ImageList.Split(',');
if (imageList.Length == 0)
return "";

StringBuilder arrayList = new StringBuilder();

Chapter 5: Adding Client Capabilities to Ser ver Controls228

http://lib.ommolketab.ir
http//lib.ommolketab.ir

bool first = true;
arrayList.Append("new Array(");
foreach (string value in imageList)
{

if (first)
{
first = false;

}
else
{
arrayList.Append(",");

}
arrayList.Append("'");
arrayList.Append(value);
arrayList.Append("'");

}
arrayList.Append(")");
return arrayList.ToString();

}
protected override IEnumerable<ScriptDescriptor>

GetScriptDescriptors(System.Web.UI.Control targetControl)
{

ScriptBehaviorDescriptor descriptor = new
ScriptBehaviorDescriptor(
"ImageRotatorExtender.ImageRotator",
targetControl.ClientID);

descriptor.AddProperty("rotationInterval", RotationInterval);
if (!string.IsNullOrEmpty(ImageList))
{

descriptor.AddProperty("imageList",ImageList.Split(','));
}
yield return descriptor;

}

// Generate the script reference
protected override IEnumerable<ScriptReference>

GetScriptReferences()
{

yield return new ScriptReference(
"ImageRotatorExtender.ImageRotator.js",
this.GetType().Assembly.FullName);

}
}

Creating the Sys.UI.Behavior Class

The client behavior of the extender control is represented by the
Sys.UI.Behavior-based ImageRotator class shown in Listing 5.12. This

Adding Client-Side Behavior Using the ExtenderControl 229

http://lib.ommolketab.ir
http//lib.ommolketab.ir

class adds the behavior to the Image of switching the image source period-
ically through an internal list of images.

Chapter 5: Adding Client Capabilities to Ser ver Controls230

NOTE Detailed Explanation of the Behavior Class

The makeup of the behavior class was covered in Chapter 3, so we con-
centrate only on the functionality as it relates to our example as we
move forward.

The class contains the RotationInterval and ImageList properties that
were part of the ScriptBehaviorDescriptor class and an internal _set
Rotation method that sets up the behavior to call back into itself using the
window.setInterval method to rotate the image. Notice that we are build-
ing up the JavaScript expression to be called by the setInterval method.
This is required due to the source of the this value when calling methods.
As you recall from Chapter 3, the behavior is actually a property of the ele-
ment itself, so the code builds up a method call directly to the behavior by
getting the element id and constructing an expression that calls the
rotateImage method, ensuring we have the correct this context as the
method is executed. Inside the rotateImage method, we access the image
element and change to image source, and thus ensure the functionality we
need to rotate the images.

Listing 5.12 ImageRotator Sys.UI.Behavior-based Class

/// <reference name="MicrosoftAjax.js"/>

Type.registerNamespace("ImageRotatorExtender");

ImageRotatorExtender.ImageRotator = function(element) {
ImageRotatorExtender.ImageRotator.initializeBase(this, [element]);
this._imageIndex = 0;
this._imageList = null;
this._rotationInterval = 3;

}

ImageRotatorExtender.ImageRotator.prototype = {
initialize: function() {
ImageRotatorExtender.ImageRotator.callBaseMethod(this,'initialize');
this._setupRotation();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

},
dispose: function() {

ImageRotatorExtender.ImageRotator.callBaseMethod(this, 'dispose');
},
get_rotationInterval: function(){

return this._rotationInterval;
},
set_rotationInterval: function(value){

this._rotationInterval = value;
},
get_imageList: function(){

return this._imageList;
},
set_imageList: function(value){

this._imageList = value;
},
_setupRotation: function(){

var expression = "$get('" + this.get_element().id +
"').ImageRotator._rotateImage()";

setInterval(expression,this.get_rotationInterval()*1000);
},
_rotateImage: function(){

var element = this.get_element();
if(element)
{

element.src = this._imageList[this._imageIndex++];
if(this._imageIndex > this._imageList.length - 1)
this._imageIndex = 0;

}
}

}
ImageRotatorExtender.ImageRotator.registerClass(

'ImageRotatorExtender.ImageRotator', Sys.UI.Behavior);

if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

Attaching the Extender to a Control

With the creation of the extender control library completed, it is now time
to cover the design-time experience of using our ImageRotator extender
control. The first thing we want to talk about is the new Extender Control
Wizard, shown in Figure 5.6, that comes with Visual Studio 2008. The
Extender Control Wizard is used to automate the assignment of an exten-
der control to a server control. The wizard is used when a page is in design
mode and is accessible from the smart tag Extender Wizard option on the
controls on a page. The wizard displays a list of available extender controls

Adding Client-Side Behavior Using the ExtenderControl 231

http://lib.ommolketab.ir
http//lib.ommolketab.ir

from which you can select and name the extender control before the wizard
creates the HTML markup that attaches the extender control to the current
control. After the extender control has been attached, it is easy to move to
the Properties window and fill in the appropriate entries, easily customiz-
ing the extender control for any particular situation. The HTML markup in
Listing 5.13 shows a configured ImageRotator extender that was attached
to an image control using the Extender Control Wizard, and Figure 5.7
shows the complete page.

Chapter 5: Adding Client Capabilities to Ser ver Controls232

Figure 5.6 Extender Control Wizard

Listing 5.13 Sample Web Page with an Image Control and Associated ImageRotator Control

...
<%@ Register assembly="ImageRotatorExtender"

namespace="ImageRotatorExtender" tagprefix="cc1" %>
...
<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
<h3>Pictures of Florence provided by <asp:Image ID="Image2" runat="server"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ImageUrl="~/images/freeDigitalPhotoslogo.gif" /></h3>
<div>

<asp:Image ID="Image1" runat="server" ImageUrl="~/images/1.jpg" />
<cc1:ImageRotator ID="Image1_ImageRotator" runat="server"

ImageList="images/1.jpg,images/2.jpg,images/3.jpg,images/4.jpg"
TargetControlID="Image1" />

</div>
...

Adding Client-Side Functionality Using the ScriptControl 233

Figure 5.7 ImageRotator sample page

Adding Client-Side Functionality Using the ScriptControl

The need to add client-side functionality to server controls has been around
since the early days of ASP.NET and has been accomplished in many ways.
The combined use of the ClientScriptManager class and the String
Builder class to build up dynamic JavaScript code worked, but the incon-
sistencies among the various browsers led to code that intermittently

http://lib.ommolketab.ir
http//lib.ommolketab.ir

worked and was hard to debug. ASP.NET 2.0 AJAX Extensions and the
Microsoft AJAX Library provide a much better way to add browser-
independent client-side functionality to server controls by utilizing the
ScriptControl and the Sys.UI.Control classes. In this section, we look at
how we can create server controls that are built on these frameworks that
can provide a browser-independent rich user experience on the client.

ScriptControl Overview
The ScriptControl class, shown in Figure 5.8, is an abstract class designed
for use by developers who are creating server controls that require client-
side functionality. If we look back at extender controls, the idea behind
them was to add client-side behavior to an already existing server control
without modifying that control. With the ScriptControl, we are interested
in creating a completely contained control that provides a server-side
design-time experience with integrated client-side functionality.

WebControl Class

The WebControl class builds on the functionality provided by the Control
class and is the class of choice for building controls that provide UI and
styling. The WebControl class adds the rendering and styling features
needed by most server controls, providing a full service abstract class to
build server controls from. In our discussion of the WebControl class to fol-
low, we concentrate on the styling and rendering concepts needed to
understand how to create a ScriptControl-based control.

The WebControl class provides a type-safe way of adding styles to your
control by either setting a limited set of CSS attributes or by creating your
own style class and exposing its properties. Some of the more common style
properties of the WebControl class, see Listing 5.14, are BackColor, Border
Color, BorderStyle, BorderWidth, CssClass, Font, ForeColor, Height, and
Width. These are normally used to set the style of the control in a type-safe
way. If these properties expose too few CSS attributes, the WebControl class
can be extended to add additional CSS attributes based on custom style
classes that expose all the attributes you need.

Chapter 5: Adding Client Capabilities to Ser ver Controls234

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 5.8 ScriptControl class hierarchy

Adding Client-Side Functionality Using the ScriptControl 235

IComponent
IDisposable
IParserAccessor
IUrlResolution Service
IDataBindingsAccessor
IControlBuilderAccessor
IControlDesignerAccessor
IExpressionsAccessor

IScriptControl

Class

Control

ScriptControl

Abstract Class

 WebControl

Fields

Properties

Methods

ScriptManager

_scriptManager

GetScriptDescriptors

GetScriptReferences

OnPreRender

ScriptControl (+ 1 overload)

IScriptControl

Interface

Methods

GetScriptDescriptors

GetScriptReferences

IScriptControl.GetScriptDescriptors

IScriptControl.GetScriptReferences

Render

Class

 Control

WebControl

IAttributeAccessorIAttributeAccessorIAttributeAccessor

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 5.14 WebControl Style Properties

public virtual Color BackColor { get; set; }
public virtual Color BorderColor { get; set; }
public virtual BorderStyle BorderStyle { get; set; }
public virtual Unit BorderWidth { get; set; }
public virtual FontInfo Font { get; }
public virtual Color ForeColor { get; set; }
public virtual Unit Height { get; set; }
public virtual Unit Width { get; set; }

The WebControl class also provides a richer model for generating HTML
content by providing virtual methods, see Listing 5.15, that are designed
to break up the generation into meaningful chunks, providing a cleaner
approach to HTML generation. The TagKey property is quite useful in sit-
uations where the default span element is not desired as the root element
for the control. The AddAttributesToRender method enables you to add
both CSS and non-CSS attributes to the output stream when the normal
behavior of working with the style property settings is not desired. The
RenderBeginTag and RederEndTab work as a pair to insert an additional
containing element in cases where a more elaborate visual tree is required.
Finally, the RenderContents method enables you to render HTML content
that is inside the containing element for the control and serves as a replace-
ment for the Render method.

Listing 5.15 WebControl Rendering Overrides

protected virtual HtmlTextWriterTag TagKey { get; }
protected virtual void AddAttributesToRender(HtmlTextWriter writer);
public virtual void RenderBeginTag(HtmlTextWriter writer);
protected internal virtual void RenderContents(HtmlTextWriter writer);
public virtual void RenderEndTag(HtmlTextWriter writer);

ScriptControl Details

The ScriptControl class brings to the table a much different programming
experience than the ExtenderControl class. The goal with the Script
Control is to build HTML content and the supported client-side function-
ality that goes with it while keeping the user experience during design time
the same as the extender control. The ScriptControl class brings to the
table the same JavaScript-related functionality as the ExtenderControl

Chapter 5: Adding Client Capabilities to Ser ver Controls236

http://lib.ommolketab.ir
http//lib.ommolketab.ir

abstract class, except the GetScriptDescriptors method deals with
the ScriptControlDescriptor class rather than the ScriptExtender
Descriptor class. The difference between descriptor classes is the type of
JavaScript class they are designed to work with. The ScriptControl
Descriptor is designed to work with a class based on Sys.UI.Control,
which is the type of class needed to provide client-side functionality to our
ScriptControl. The ScriptControl class is also geared toward generating
HTML with functionality it inherits from the WebControl class and should
be used as a replacement to the WebControl when developing ASP.NET 2.0
AJAX Extensions controls that generate HTML content.

Creating a Script Control
The script control we build provides help support for an associated textbox.
When a user clicks the help icon, an alert is shown containing contextual
information about the textbox entry. The control contains a textbox and a
help icon that is associated with the textbox and provides support for pre-
filling the textbox value, setting the help text, and selecting the help icon.
The process of creating the script control consists of four main tasks.

1. Creating the template classes

2. Providing implementation for the inherited script control class

3. Providing implementation for the Sys.UI.Control-based JavaScript
class

4. Adding the control to a web page

Visual Studio 2008 Server Control Library Template

The new server control library template, shown in Figure 5.9, provides a
great start to creating a script control. The template creates a library project,
see Figure 5.10, with a ScriptControl class, a client control JavaScript class,
and a resource file. The template also adds a WebResource entry and Script
Resource entry for the embedded client control script file so that it is avail-
able on the client.

Adding Client-Side Functionality Using the ScriptControl 237

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 5.9 ScriptControl project template

The ScriptControl class that is generated contains the template code
needed to get started in creating a script control (see Listing 5.16). The tem-
plate makes no assumptions about how the control will be developed, pro-
vides no default overrides for the WebControl methods we discussed
earlier, and will require at a minimum overriding the RenderContents
method. The GetScriptDescriptors and GetScriptReferences methods
we have discussed before, so we do not cover them again in this section.

Listing 5.16 ScriptControl Template Class

public class ServerControl1 : ScriptControl
{

public ServerControl1()
{
}
protected override IEnumerable<ScriptDescriptor>

GetScriptDescriptors()
{

ScriptControlDescriptor descriptor = new
ScriptControlDescriptor("AjaxServerControl1.ClientControl1",

this.ClientID);
yield return descriptor;

Chapter 5: Adding Client Capabilities to Ser ver Controls238

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

// Generate the script reference
protected override IEnumerable<ScriptReference>

GetScriptReferences()
{

yield return new
ScriptReference("AjaxServerControl1.ClientControl1.js",
this.GetType().Assembly.FullName);

}
}

Adding Client-Side Functionality Using the ScriptControl 239

Figure 5.10 ScriptControl project template structure

The control’s JavaScript class, shown in Listing 5.17, contains the basic
elements of a Sys.UI.Control class, including a namespace registration,
constructor, prototype, class registration, and notifyScriptLoaded call,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and will need implementation added to them just as the extender control
JavaScript file did.

Listing 5.17 Sys.UI.Control Template Class

/// <reference name="MicrosoftAjax.js"/>

Type.registerNamespace("AjaxServerControl1");

AjaxServerControl1.ClientControl1 = function(element) {
AjaxServerControl1.ClientControl1.initializeBase(this, [element]);

}

AjaxServerControl1.ClientControl1.prototype = {
initialize: function() {

AjaxServerControl1.ClientControl1.callBaseMethod(this,
'initialize');

// Add custom initialization here
},
dispose: function() {

//Add custom dispose actions here
AjaxServerControl1.ClientControl1.callBaseMethod(this, 'dispose');

}
}
AjaxServerControl1.ClientControl1.registerClass(

'AjaxServerControl1.ClientControl1', Sys.UI.Control);

if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

Inheriting from the ScriptControl-Based Class

The TextBoxInfo class, shown in Listing 5.18, is the control that provides
the textbox and associated help functionality for our sample control. The
creation of the control consists of many of the development tasks we per-
formed for the extender control with the addition of drawing the UI
elements.

We begin our discussion of the TextBoxInfo control with the subject of
HTML rendering and the role of the TagKey property and the Render
Contents method. The TagKey property was overridden in the control to
provide support for a table root element rather than a span. The use of
a table provided a more flexible layout approach than working with the
span, and the ability to override the TagKey property made it simple to

Chapter 5: Adding Client Capabilities to Ser ver Controls240

http://lib.ommolketab.ir
http//lib.ommolketab.ir

implement this change. The RenderContents method was also overridden
to draw the table rows and columns and the textbox and image HTML ele-
ments. The method utilizes the HtmlTextWriterTag and HtmlTextWrite

Attribute classes to emit the HTML content to the HtmlTextWriter, which
represents the output stream of the control. This implementation uses nor-
mal HTML tags, but you can also insert ASP.NET Server controls.

Adding Client-Side Functionality Using the ScriptControl 241

NOTE HTML Generation

The subject of HTML generation has been around since ASP.NET 2.0
and prior knowledge of the mechanics involved are assumed. For
a more detailed explanation of building HTML content inside a
WebControl-based class, see “Developing Custom Server Control” on
the MSDN web site at http://msdn2.microsoft.com/en-us/library/
zt27tfhy.aspx.

The InformationText, Text, and ImageUrl properties of this control
enable you to configure the control using the Properties window during
design time and in code and markup. The InformationText property holds
the value that is displayed to users when they select the help icon. The Text
property provides a way to prepopulate the textbox value on the server.
And the ImageUrl property enables consumers of the control to add any
image they choose. The ImageUrl property provides some additional
design features that offer another example of how to add a richer design-
time experience to your controls. The control utilizes the ImageUrlEditor
and the UrlProperty attributes to provide design-time support when
adding the image URL for the help icon. The ImageUrlEditor, see Figure
5.11, provides the user with a clean way to find an image that is located in
a web application and to assign the value to a property that accepts a URL.
The UrlProperty attribute provides a filter that identifies specific file types
that can be used to filter against the ImageUrl property. The use of these two
items greatly enhances the design-time experience of assigning a URL to
the ImageUrl property field and is something that is easy to do.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 5.11 ImageURL Editor

The ScriptControl class provides the same hooks into the script-
generation process as the ExtenderControl. The support for the IScript
Control interface and the GetScriptDescriptors method allows a control
built on this class to be included in the list of controls the ScriptManager
will extract script information from as script entries are bound to the page.
The ScriptControl relies on the ScriptControlDescriptor to gather infor-
mation for the $create statement generation. This class is designed to emit
a $create statement that initializes a Sys.UI.Control class and requires the
name of the control class, the control id of the associated control, and a col-
lection of property assignments for the InformationText, Text element,
and Image element properties. The GetScriptReference method structure
and behavior is the same as in the extender control.

Chapter 5: Adding Client Capabilities to Ser ver Controls242

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 5.18 TextBoxInfo ScriptControl-Based Class

public class TextBoxInfo : ScriptControl
{

private const string TextBoxId = "DataEntryTextBox";
private const string ImageId = "InformationImageButton";

public TextBoxInfo(){ }

public string Text { get; set; }

public string InformationText { get; set; }
[Editor("System.Web.UI.Design.ImageUrlEditor, System.Design,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a",
typeof(UITypeEditor)), UrlProperty]

public string ImageUrl { get; set; }

protected override HtmlTextWriterTag TagKey
{

get
{
return HtmlTextWriterTag.Table;

}
}

protected override void RenderContents(HtmlTextWriter writer)
{

writer.RenderBeginTag(HtmlTextWriterTag.Tr);
writer.RenderBeginTag(HtmlTextWriterTag.Td);
writer.AddAttribute(HtmlTextWriterAttribute.Id, TextBoxId);
writer.AddAttribute(HtmlTextWriterAttribute.Type, "text");
writer.AddAttribute(HtmlTextWriterAttribute.Value, Text);
writer.RenderBeginTag(HtmlTextWriterTag.Input);
writer.RenderEndTag();

Adding Client-Side Functionality Using the ScriptControl 243

NOTE Order of Property Assignment in the $create Statement

The decision to add the Text and ImageUrl properties to the HTML ele-
ments directly was due to an assignment order condition that could
occur in this configuration. When the ScriptManager builds up the
$create statement, the order of the entries can’t be controlled. In the
case of our control class, see Listing 5.19, if the element entries for the
TextBox and Image were not added before the property assignments
for the element references, the member values would be undefined as
the get_ assignments are made.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 5.18 continued

writer.RenderEndTag();
writer.RenderBeginTag(HtmlTextWriterTag.Td);
writer.AddAttribute(HtmlTextWriterAttribute.Id, ImageId);
writer.AddAttribute(HtmlTextWriterAttribute.Src, ImageUrl);
writer.RenderBeginTag(HtmlTextWriterTag.Img);
writer.RenderEndTag();
writer.RenderEndTag();
writer.RenderEndTag();

}

protected override IEnumerable<ScriptDescriptor>
GetScriptDescriptors()

{
ScriptControlDescriptor descriptor = new

ScriptControlDescriptor("TextBoxInfoControl.TextBoxInfo",
this.ClientID);

descriptor.AddElementProperty("textBoxElement", TextBoxId);
descriptor.AddElementProperty("imageElement", ImageId);
descriptor.AddProperty("informationText", InformationText);
yield return descriptor;

}

// Generate the script reference
protected override IEnumerable<ScriptReference>

GetScriptReferences()
{

yield return new
ScriptReference("TextBoxInfoControl.TextBoxInfo.js",
this.GetType().Assembly.FullName);

}
}

Sys.UI.Control Class

The TextBoxInfo JavaScript class in Listing 5.19 inherits from Sys.UI.
Control to provide the client-side functionality for our server control. The
class is made up of four properties, an event handler, and initialization code
that attaches the image element’s click event to the event handler.

The goal in creating the control class should be to provide all the func-
tionality needed to work with the associated HTML elements. In the ini-
tialization code of the control class, we are attaching an internal handler to
the click event of the button, which follows a common pattern of associ-
ating event handlers during initialization. The get_text method is pro-
vided to access the value of the textbox element on the control, providing

Chapter 5: Adding Client Capabilities to Ser ver Controls244

http://lib.ommolketab.ir
http//lib.ommolketab.ir

a clean way to access the contents of the textbox without directly accessing
the element. As you develop your control classes, think of the user interac-
tion on the client and how the control will be used and try to provide all the
necessary properties and methods needed to work with the control in
JavaScript.

Listing 5.19 TextBoxInfo Sys.UI.Control-Based Class

/// <reference name="MicrosoftAjax.js"/>

Type.registerNamespace("TextBoxInfoControl");

TextBoxInfoControl.TextBoxInfo = function(element) {
TextBoxInfoControl.TextBoxInfo.initializeBase(this, [element]);
this._textBoxElement;
this._imageElement;
this._informationText;

}

TextBoxInfoControl.TextBoxInfo.prototype = {
initialize: function() {

TextBoxInfoControl.TextBoxInfo.callBaseMethod(this, 'initialize');
$addHandlers(this._imageElement,
{"click":this._imageElementClickHandler},this);

},
get_informationText: function(){

return this._informationText;
},
set_informationText: function(value){

this._informationText = value;
},
get_textBoxElement: function(){

return this._textBoxElement;
},
set_textBoxElement: function(value){

this._textBoxElement = value;
},
get_imageElement: function(){

return this._imageElement;
},
set_imageElement: function(value){

this._imageElement = value;
},
_imageElementClickHandler: function(e){

alert(this._informationText);
},
get_text: function(){

if(this._textBoxElement === "undefined")

Adding Client-Side Functionality Using the ScriptControl 245

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 5.19 continued

return "";
else

return this._textBoxElement;
},
set_text: function(value){

if(this._textBoxElement !== "undefined")
this._textBoxElement = value;

},
dispose: function() {

//Add custom dispose actions here
TextBoxInfoControl.TextBoxInfo.callBaseMethod(this, 'dispose');

}
}
TextBoxInfoControl.TextBoxInfo.registerClass('TextBoxInfoControl.TextBoxInfo
', Sys.UI.Control);

if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

Add the Control to a Page

Adding the control to a page is the same as adding any other ASP.NET server
control. Your design-time experience will consist of dragging the control onto
the designer surface and then adding an ImageUrl entry for the help icon and
then adding your custom InformationText value to be displayed to the user.
The complete page shows the textbox and help icon (see Figure 5.12). Figure
5.13 shows the simple alert that displays with the information text.

Chapter 5: Adding Client Capabilities to Ser ver Controls246

Hello ?

Figure 5.12 TextBoxInfo control

Figure 5.13 TextBoxInfo control help alert

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adding Client-Side Functionality to Composite Controls
Using the IScriptControl Interface

One more scenario warrants discussion when we talk about adding client-
side functionality to a server control: composite controls. These are controls
that contain other ASP.NET server controls and build on the containment
model to provide a server control. In this section, we cover creating a com-
posite control version of our TextBoxInfo class that is developed using
ASP.NET server controls rather than HTML elements. To create a control
that supports adding server controls, we will use the System.Web.UI.Web
Controls.CompositeControl class and a base and implement the IScript
Control interface to provide the client-side functionality hooks needed for
us to get the script onto the browser.

Adding Client-Side Functionality to Composite Controls Using

the IScriptControl Interface 247

NOTE Composite Control Details

There is an assumed level of knowledge of the CompositeControl in
this section. If it has been a while since you worked with one or if you
are new to composite controls, refer to “Developing a Composite
Control” at http://msdn2.microsoft.com/en-us/library/aa719968.
aspx for more information.

Composite Control Overview
The CompositeControl class was introduced in ASP.NET 2.0 and provides
functionality that most composite controls will need. The class is designed
to contain ASP.NET server controls and uses them to generate HTML con-
tent. This control is the base class for many controls in ASP.NET, including
the Wizard, Login, and LoginStatus controls that were introduced in
ASP.NET 2.0. The TextBoxInfo ScriptControl example from earlier in this
chapter shows that in the RenderContents method we had to code quite a
few lines just to render the textbox and image HTML elements. Later in this
section, you will see that by basing our server control on the Composite
Control class we can reduce the code size required to generate a control
with similar functionality.

Looking at the class hierarchy in Figure 5.14, it will come as no surprise
how familiar this class is to work with. Recall that the WebControl class is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the one that provided us with all the rendering methods that simplified
emitting HTML to the client. The CompositeControl class builds on this
model by implementing the INamingContainer interface that provides a
naming container for us to create our child controls in. The naming con-
tainer is what ensures that the ASP.NET server control we create inside the
composite control will have unique IDs throughout the page and will not
collide with other controls. The CompositeControl class also provides func-
tionality that you need when working with embedded controls, such as
ensuring that child controls are created before they are accessed and in
binding situations ensuring that all controls have been created before they
are bound to a data source. There is more to cover with the Composite
Control class when we get into the source code for our example, so let’s talk
about the IScriptControl interface quickly before we get into some code.

Chapter 5: Adding Client Capabilities to Ser ver Controls248

IComponent
IDisposable
IParserAccessor
IUrlResolution Service
IDataBindingsAccessor
IControlBuilderAccessor
IControlDesignerAccessor
IExpressionsAccessor

INamingContainer
ICompositeControlDesignerAccessor

Class

Control

Class

 Control

WebControl
Composite Control

Abstract Class

 WebControl

IAttributeAccessorIAttributeAccessorIAttributeAccessor

Properties

Methods

Controls

CompositeControl

DataBind

RecreateChildControls

Render

Figure 5.14 CompositeControl class hierarchy

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Naming Container
In a web application, each page contains a hierarchy of controls that are

both visible and nonvisible. The naming container for a given control is the

parent control above it in the hierarchy that implements the INaming

Container interface. A server control that implements this interface cre-

ates a unique namespace for the ID property values of its child server con-

trols. This feature comes in handy when you bind data against some of the

list controls, such as the Repeater and DataList controls. In these cases,

when multiple entries in the data source create multiple instances of a

server control inside these list controls, we need to ensure that each con-

trol has a unique ID and won’t conflict with another control. This is what the

naming container concept brings to the table and why it is so important.

IScriptControl Interface
The GetScriptDescriptors and GetScriptReferences methods on the
ScriptControl class were provided by the IScriptControl interface and
implemented by the ScriptControl. This pattern is the same when work-
ing with the CompositeControl class, but some other functionality that was
buried in the internal implementation of the OnPreRender and Render over-
ride methods of these classes is not. When working directly with the
IScriptControl interface, you need to ensure that the class itself is regis-
tered with the ScriptManager and that the script descriptors are extracted
from your class and processed property. This requires overriding the
default implementation of the OnPreRender and Render methods and pro-
vides functionality to properly register the control with the ScriptManager.

Creating the Composite Control
The TextBoxInfo class inherits from CompositeControl and implements
the IScriptControl interface, creating a server control that provides the
same functionality that we saw in the ScriptControl version earlier in this
chapter.

The first thing we look at with this control is how we create the internal
server controls and how we ensure they are created before we access them.
The CompositeControl class has a virtual method AddChildControls that is

Adding Client-Side Functionality to Composite Controls Using

the IScriptControl Interface
249

http://lib.ommolketab.ir
http//lib.ommolketab.ir

responsible for creating all your internal ASP.NET server controls. In our
example, see Listing 5.20, we have three internal controls (Table, TextBox,
and Image) that will need to be created in this method. The first thing you
do when implementing this method is to clear out the internal controls col-
lection to reset the controls in the collection to ensure only the controls you
want are created. Next, you create the Table, TextBox, and Image controls,
assign them IDs, add them to the internal control collection, and set the
internal ChildControlsCreated flag to true to indicate that the controls
have been created. At this point, the controls are created and are ready to be
accessed. If you take a look at the Text and ImageUrl properties, you will
notice that their implementation calls the EnsureChildControls method
before any of the controls they work with are accessed. This is a pattern you
must follow when working inside a CompositeControl-based class to
ensure that your controls are created before you access them. Now let’s
move to the next thing on our list, rendering of the contents.

Listing 5.20 Creating Internal Controls

public class TextBoxInfo : CompositeControl, IScriptControl
{

ScriptManager scriptManager;
TextBox dataEntryTextBox;
Image informationImageButton;
Table pageLayoutTable;

public TextBoxInfo()
{
}

public string Text
{

get { EnsureChildControls(); return dataEntryTextBox.Text; }
set { EnsureChildControls(); dataEntryTextBox.Text = value; }

}

public string ImageUrl
{

get { EnsureChildControls();
return informationImageButton.ImageUrl; }

set { EnsureChildControls(); informationImageButton.ImageUrl =
value; }

}

Chapter 5: Adding Client Capabilities to Ser ver Controls250

http://lib.ommolketab.ir
http//lib.ommolketab.ir

public string InformationText { get; set; }

protected override HtmlTextWriterTag TagKey
{

get
{

return HtmlTextWriterTag.Div;
}

}

protected override void CreateChildControls()
{

Controls.Clear();

pageLayoutTable = new Table();
pageLayoutTable.ID = "pageLayoutTable";
Controls.Add(pageLayoutTable);

dataEntryTextBox = new TextBox();
dataEntryTextBox.ID = "DataEntryTextBox";
Controls.Add(dataEntryTextBox);

informationImageButton = new Image();
informationImageButton.ID = "HelpIconImageButton";
Controls.Add(informationImageButton);

ChildControlsCreated = true;
}
...

}

In the WebControl-based version of this control, we added code to the
RenderContents method to create the HTML content that would be sent to
the browser. In the case of our CompositeControl-based class, see Listing
5.21, we do the same thing but render our Table, TextBox, and Image con-
trols a little differently. When working the ASP.NET server controls, ren-
dering is as simple as calling the RenderControl method on the control
itself and passing the HtmlTextWriter as a parameter. This delegates the
responsibility of adding the control to the output stream to the control, sim-
plifying the task of generating that HTML content. In our example, we
build up the table that will contain the textbox and image controls, assign
the controls to the controls collection of the table, and then render the table
with all its contents.

Adding Client-Side Functionality to Composite Controls Using

the IScriptControl Interface 251

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 5.21 Internal Control Rendering

public class TextBoxInfo : CompositeControl, IScriptControl
{

...
protected override void RenderContents(HtmlTextWriter writer)
{

TableRow row = new TableRow();
TableCell textBoxCell = new TableCell();
textBoxCell.Controls.Add(dataEntryTextBox);
TableCell informationImageCell = new TableCell();
informationImageCell.Controls.Add(informationImageButton);
row.Cells.Add(textBoxCell);
row.Cells.Add(informationImageCell);
pageLayoutTable.Rows.Add(row);
pageLayoutTable.RenderControl(writer);

}
...

}

When we discussed the IScriptControl interface earlier, we covered the
need to override the OnPreRender and Rendermethods to ensure our control
is properly registered with the ScriptManager and our ScriptControl
Descriptor entries are included in the script-generation process. If we take
a look at the OnPreRender method, see Listing 5.22, we are registering the
control with the ScriptManager using the RenderScriptControl generic
method of the ScriptManager. This method takes your control as the generic
type with a reference to your control as a parameter. This call registers the
control with the ScriptManager so that the ScriptManager can call back into
our control and get the ScriptDescriptors and ScriptReferences. It is the
actual call to the RegisterScriptDescriptors method on the Script
Manager in the Render method that triggers the call to GetScript
Descriptors, enabling the JavaScript generation to be performed.

Listing 5.22 IScriptControl Support

public class TextBoxInfo : CompositeControl, IScriptControl
{

...

#region IScriptControl CompositeControl Overrides

protected override void OnPreRender(EventArgs e)
{

if (!DesignMode)

Chapter 5: Adding Client Capabilities to Ser ver Controls252

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{
scriptManager = ScriptManager.GetCurrent(Page);

if (scriptManager == null)
throw new HttpException("ScriptManager must be on the page for

the TextBoxInfo control to work properly");

scriptManager.RegisterScriptControl<TextBoxInfo>(this);
}

base.OnPreRender(e);
}

protected override void Render(HtmlTextWriter writer)
{

if (!base.DesignMode)
scriptManager.RegisterScriptDescriptors(this);

base.Render(writer);
}

#endregion

#region IScriptControl Members

IEnumerable<ScriptDescriptor> IScriptControl.GetScriptDescriptors()
{

ScriptControlDescriptor descriptor = new
ScriptControlDescriptor("TextBoxInfoCompositeControl.TextBoxInfo",
this.ClientID);

descriptor.AddElementProperty("textBoxElement",
dataEntryTextBox.ClientID);

descriptor.AddElementProperty("imageElement",
informationImageButton.ClientID);

descriptor.AddProperty("informationText", InformationText);
yield return descriptor;

}

IEnumerable<ScriptReference> IScriptControl.GetScriptReferences()
{

yield return new ScriptReference(
"TextBoxInfoCompositeControl.TextBoxInfo.js",
this.GetType().Assembly.FullName);

}

#endregion
}

Adding Client-Side Functionality to Composite Controls Using

the IScriptControl Interface 253

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We leave out the JavaScript class because it so similar to the Script
Control counterpart, using the same properties and event handler. If we
reflect back on this particular control, we can see that the use of internal
ASP.NET server controls can make things easier and enables you to build
up some really complex controls that can provide a rich client-side
experience.

SUMMARY

In this chapter, we covered three ways to add client-side functionality to
server controls. The ExtenderControl approach was the most evasive of all
by providing a way to alter the client behavior of a server control without
changing its internal workings. The second approach we looked at builds
on the longstanding WebControl approach, which enables you to build
complex server controls using an HTML generation pattern that has been
around for a while combined with new functionality provided by the
ASP.NET AJAX framework. Finally, we looked an approach that builds on
the ASP.NET server model that promotes encapsulation of server controls
while providing client functionality to the control as a whole.

Chapter 5: Adding Client Capabilities to Ser ver Controls254

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6
ASP.NET AJAX Localization

I N T H E P R E V I O U S C H A P T E R S, we covered how to build a server control
that corresponds to a client control. In this coverage, we also discussed

how to embed JavaScript files in our server control using web resources so
that our control’s functionality was fully encapsulated.

In this chapter, we cover ASP.NET AJAX’s localization capabilities.
Because localization in ASP.NET AJAX works in coordination with local-
ization in ASP.NET, we start with localization in ASP.NET and work our
way into localization in ASP.NET AJAX.

We start with JavaScript’s limited localization capabilities, and then we
cover ASP.NET AJAX’s new JavaScript features that fill the holes left by
JavaScript.

From there, we walk through an example where we utilize ASP.NET
AJAX’s localization capabilities by developing a new ASP.NET AJAX con-
trol, the CurrencyTextBox. Finally, we update the page we localized in the
first part of the chapter to include our new CurrencyTextBox control, and
we show how we can add client localizable features at the page level.

Localization in ASP.NET

So what is localization? Localization is the process of making an application
usable by different cultures. In .NET, a culture is a defined by the combi-
nation of a language and country or region. For instance, the en-US culture

255

http://lib.ommolketab.ir
http//lib.ommolketab.ir

represents the English language and United States. Another example is the
es-MX culture, which represents the Spanish language and Mexico.

Chapter 6: ASP.NET AJA X Localization256

TIP Cultures

In this chapter, when we refer to a specific culture, we list the language
first and then the country or region in parentheses. For instance,
es-MX is equivalent to Spanish (Mexico).

There are also noncountry or region-specific cultures called neutral cul-
tures. Examples of these are en for English, it for Italian, and fr for French.

In .NET, each culture has a language associated to it; a set of formatting
rules for common things such as numbers, currencies, and dates; and rules
on how things are sorted.

When we localize an application, we want to apply a culture to it. We
want the dates formatted properly, currencies to use the proper symbol and
number formatting, and strings to be presented in the correct language. We
accomplish this by following the three general steps of internationalization.

1. Determining what needs to be localized

2. Getting your application to run under a particular culture

3. Localizing displayed values

Let’s walk through these steps.

NOTE Internationalization Compared with Localization

There is some debate on what internationalization is and what local-
ization is. In our opinion, internationalization is the process of alter-
ing your application to accept a culture. This means removing
hard-coded strings, telling dates and numbers to format accordingly,
and also setting your application up to select a particular culture to run
under.

In contrast, localization is a particular culture’s translated strings and
formatted dates and numbers. You only internationalize an application
once, but you localize many times.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Determining What Needs to Be Localized
Determining what needs to be localized is a straightforward process. With
regard to a web page, anything that you would want to change when the
culture changes needs to be localizable. Normally, this includes currencies,
dates and times, numbers, strings, and graphics, but can also include other
things such as what files are available to download and the overall layout
of the page.

Let’s take a look at an example web page and see what on it needs to be
localized. Figure 6.1 shows our example web page, Transactions.aspx, with
the items needing to be localized circled.

Localization in ASP.NET 257

Figure 6.1 The Transactions page with what needs to be localized circled

In our Transactions page, we’ve circled the table’s title; the table’s head-
ers: Name, Date, Amount, and Paid; and the date and dollar amounts. That
covers almost the entire page!

NOTE Transaction Names

We’re not going to localize the transaction’s name because most likely
the transaction name is data driven, and if we wanted to localize the
name, the translated name would come from a data source containing
all the possible values.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 6.1 shows Transactions.aspx’s markup.

Listing 6.1 Transactions.aspx Markup

<%@ Page Language="C#"
AutoEventWireup="true"
CodeBehind="Transactions.aspx.cs"
Inherits="Localization.Transactions" %>

<html>
<head id="Head1" runat="server">

<title>Transactions</title>
</head>
<body>

<form id="form1" runat="server">
<asp:Label ID="TransactionGridLabel"

runat="server"
Font-Names="Arial"
Font-Bold="true"
Text="Transactions" />

<asp:GridView ID="TransactionsView"
runat="server"
AutoGenerateColumns="False"
CellPadding="4"
ForeColor="#333333"
GridLines="None"
Width="748px"
DataSourceID="TransactionDataSource">

<Columns>
<asp:BoundField

HeaderText="Name"
DataField="Name" />

<asp:BoundField
HeaderText="Date"
DataField="Date"
DataFormatString="{0:d}" />

<asp:BoundField
HeaderText="Amount"
DataField="Amount"
DataFormatString="{0:c}" />

<asp:CheckBoxField
DataField="Paid"
HeaderText="Paid"
ReadOnly="True" />

</Columns>
</asp:GridView>
<asp:ObjectDataSource
ID="TransactionDataSource"
runat="server"

Chapter 6: ASP.NET AJA X Localization258

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SelectMethod="GetTransactions"
TypeName="Localization.Transaction" />

</form>
</body>
</html>

Because we’re going to be modifying this code to localize it, let’s take a
closer look at the markup.

After the normal page and form declarations, the first thing we do is add
a label to the page and set its text to “Transactions”, as shown in Listing 6.2.

Listing 6.2 Transaction Label

<asp:Label
ID="TransactionGridLabel"
runat="server"
Font-Names="Arial"
Font-Bold="true"
Text="Transactions" />

Next, we declare the GridView control, shown in Listing 6.3, which will
display the table of transactions.

Listing 6.3 Transactions GridView

<asp:GridView ID="TransactionsView"
runat="server"
AutoGenerateColumns="False"
CellPadding="4"
ForeColor="#333333"
GridLines="None"
Width="748px"
DataSourceID="TransactionDataSource">

<Columns>
<asp:BoundField

HeaderText="Name"
DataField="Name" />

<asp:BoundField
HeaderText="Date"
DataField="Date"
DataFormatString="{0:d}" />

<asp:BoundField
HeaderText="Amount"
DataField="Amount"
DataFormatString="{0:c}" />

<asp:CheckBoxField

Localization in ASP.NET 259

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 6.3 continued

DataField="Paid"
HeaderText="Paid"
ReadOnly="True" />

</Columns>
</asp:GridView>

In the GridView’s declaration, we declare four columns: Name, Date,
Amount, and Paid. The columns are all bound to data contained in the data
source identified by the data source id TransactionDataSource. Important
to recognize is that we apply a DataFormatString to the Date and Amount

columns so that the information is formatted to display a short date and a
currency, respectively.

Finally, we define our ObjectDataSource named TransactionData

Source that will provide the grid with its data, as shown in Listing 6.4.

Listing 6.4 Transactions ObjectDataSource

<asp:ObjectDataSource
ID="TransactionDataSource"
runat="server"
SelectMethod="GetTransactions"
TypeName="Localization.Transaction" />

The TransactionDataSource uses the GetTransactions method that is
available on the Localization.Transaction type. Listing 6.5 shows the
Localization.Transaction type and its static GetTransactions method.

Listing 6.5 Transaction Class

using System;
using System.Collections.Generic;

namespace Localization
{

public class Transaction
{

public string Name { get; set; }
public DateTime Date { get; set; }
public decimal Amount { get; set; }
public bool Paid { get; set; }

public static List<Transaction> GetTransactions()
{
List<Transaction> transactions = new List<Transaction>{

Chapter 6: ASP.NET AJA X Localization260

http://lib.ommolketab.ir
http//lib.ommolketab.ir

new Transaction
{ Name = "Cleaners",
Amount = 35.32M,
Date = new DateTime(2007, 10, 18),
Paid = false },

new Transaction
{ Name = "Movies",
Amount = 22.00M,
Date = new DateTime(2007, 11, 30),
Paid = true },

new Transaction
{ Name = "Gas",
Amount = 43.16M,
Date = new DateTime(2007, 9, 11),
Paid = false },

new Transaction
{ Name = "Groceries",
Amount = 127.56M,
Date = new DateTime(2007, 11, 04),
Paid = false },

new Transaction
{ Name = "Liquor Store",
Amount = 41.69M,
Date = new DateTime(2007, 12, 25),
Paid = true },

new Transaction
{ Name = "Book Store",
Amount = 35.98M,
Date = new DateTime(2007, 8, 13),
Paid = true }

};
return transactions;

}
}

As you can see from the listing, a Transaction contains four proper-
ties—Name, Amount, Date, and Paid—and the GetTransactions method
returns six hard-coded transactions.

Now that we’ve shown the Transactions page markup and shown what
we’re going to localize, let’s go over how to get your application to run
under different cultures.

Running under a Particular Culture
So, in ASP.NET terms, what does it mean to run under a particular culture?
It means that the thread that the current request is running on has its

Localization in ASP.NET 261

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CurrentCulture/CurrentUICulture properties assigned to the System.
Globalization.CultureInfo instance that corresponds to a particular
culture. Setting these values can occur in one of two ways: implicitly or
explicitly.

Implicitly Setting the Current Culture

Implicitly setting the current culture means that ASP.NET uses a value
passed in by the browser to automatically set the current culture. The
browser passes in the languages it supports using the Accept-Language
header, as shown in Figure 6.2.

Chapter 6: ASP.NET AJA X Localization262

Figure 6.2 Fiddler view of a request’s Accept-Language header

In a default browser installation, the Accept-Language header value is
set based on the installation language you choose or the language your
operating system is running under. However, you also have the option of
modifying it manually by altering the language preference within the
browser. Altering the language preference within the browser will change
which values are passed in with the Accept-Language header. Figure 6.3
shows the Accept-Language header for our request after we altered our
browser’s language setting to use English (Other Culture) [en-OC], a ficti-
tious culture we’re using as an example, English (Great Britain) [en-GB],
and Arabic (Oman) [ar-OM].

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.3 Fiddler’s view of a request’s Accept-Language header with multiple languages

specified

When we provide multiple languages in the Accept-Language header,
the browser sends along a quality value attached to each language. The
quality values, indicated by the q= that proceeds each culture, can range
from the high of 1 to the low of 0. The quality value tells the request
receiver, in this case ASP.NET, which language to try first. In our example,
the highest quality value is 1, which is associated to the en-OC culture (a
blank quality value indicates 1), so this is the culture that ASP.NET will try
first. If ASP.NET fails to create a CultureInfo object based on that value
because it either isn’t supported, which is the case because en-OC is a fic-
titious culture, or for some other reason, it moves on to the next culture
based on the quality value. In our case, this is en-US, which has the qual-
ity value .8. If that culture fails, too, ASP.NET tries en-GB and then ar-OM.
If all cultures fail, ASP.NET defaults to the server’s culture.

Localization in ASP.NET 263

NOTE Setting the Language Preference

Setting the browser’s language preference is different with each
browser, but in most of them the preference is available under an
options screen.

Explicitly Setting the Current Culture

In most applications, we want to provide a way for the user to override the
implicit culture defined by the user’s browser language preference. We do
this because our users may want to run our application under a different
culture, but not have that culture applied to every website they visit, which
is what would happen if they alter their browser’s settings. We can provide

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this ability by providing a way for users to explicitly set the culture of just
our application.

Let’s alter our Transactions page to provide a way to set the culture the
request is running under. We start by adding a drop-down to our page that
allows the user to select the current culture, as shown in Figure 6.4.

Chapter 6: ASP.NET AJA X Localization264

Figure 6.4 Transactions page with culture selector

Whereas our culture drop-down displays friendly values, the values
corresponding to each drop-down item are the actual culture codes. The
markup that specifies the drop-down’s list items is displayed in Listing 6.6.

Listing 6.6 Select Culture Drop-Down

…

<form id="form1" runat="server">
<div id="CultureSelector"

style="position: absolute; left: 610px;">
<asp:Label

ID="SelectCultureLabel"
runat="server"
Text="Select Culture" />

<asp:DropDownList

ID="CultureSelectorDropDown"
runat="server"
AutoPostBack="True">
<asp:ListItem

Text="English / United States"
Value="en-us" />

<asp:ListItem
Text="Spanish / Mexico"
Value="es-mx" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<asp:ListItem
Text="French"
Value="fr" />

</asp:DropDownList>
</div>
<div id="TransactionPanel"

style="position: absolute; top: 50px;">
…

Now that we have our drop-down on the page, we need to change the
thread’s current culture based on the drop-down’s selected value. In our
example, we do this by overriding the page’s InitializeCulture method,
as shown in Listing 6.7.

Listing 6.7 InitializeCulture Method Override

protected override void InitializeCulture()
{

base.InitializeCulture();
if (Request.Form["CultureSelectorDropDown"] != null)
{

CultureInfo newCulture =
CultureInfo.CreateSpecificCulture(
Request.Form["CultureSelectorDropDown"]

);

// enables different culture info
//(date formats, currency formats)
Thread.CurrentThread.CurrentCulture = newCulture;

// enables different resource files
// (i.e. resources.es-mx.resx)
Thread.CurrentThread.CurrentUICulture = newCulture;

}
}

In this InitializeCulture override, we pull the value posted back
by the drop-down out of the request’s form collection and create a new
CultureInfo object based on the value. We then take our new CultureInfo
object and assign it to the current thread’s CurrentCulture and Current

UICulture properties, effectively changing the culture the thread is
running on.

Localization in ASP.NET 265

http://lib.ommolketab.ir
http//lib.ommolketab.ir

InitializeCulture

There are a couple points worth noting regarding the InitializeCulture
method.

First, it executes early in the page’s lifecycle. It’s called early in the life-
cycle so that the correct culture can be set before any controls are created
in case a control needs to be localized. Because it’s called before any con-
trols are created, we can’t access CultureSelectorDropDown’s current value
because the control doesn’t exist yet. Because the control doesn’t exist, we
can only access the value posted back by our drop-down by pulling it out
of the form’s parameter collection.

Second, overriding the page’s InitializeCulture method is only one
way of setting the thread’s current culture. It would be tedious to do this on
every page. If your application consistently uses a few master pages, maybe
you would put it into the master page’s code, but this could grow out of
hand. A more scalable solution is to use an HttpModule’s PreRequest

HandlerExecute event or an application’s global.asax Application_

BeginRequest method. If you set the culture in either of those places, you
have to code it only once.

Now that we’ve shown how to get our application to run under differ-
ent cultures, let’s go back and localize our Transactions page.

Chapter 6: ASP.NET AJA X Localization266

NOTE CurrentCulture and CurrentUICulture

The reasons and history for having both CurrentCulture and Current
UICulture are beyond the scope of this book. Leaving their history for
another book, we will say, however, that CurrentCulture provides
culture-specific formatting for dates and numbers, and CurrentUI
Culture provides the ability for the ResourceManager to access
resources related to a particular culture. Having two different proper-
ties gives us the option of using resources from one culture and for-
matting dates and numbers using a different one. An English (U.S.)
speaking user running an application that needs to display a cost in
euros is a common application of assigning different CultureInfo
objects to the CurrentUICulture and CurrentCulture properties.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Localizing Displayed Values
As Figure 6.1 showed, we need to localize the table title, its column head-
ers, its date column values, and its amount column values. We’ve also
added a way to change the culture using a drop-down, so we add to our
localization list the drop-down title and its display values.

To localize these parts of our page, we use two difference mechanisms.
First, we use .NET’s built-in formatting capabilities to automatically format
the date and amount values. Second, we use local resources to translate the
strings to the correct language.

Date and Amount

With the date and amount values, we don’t have to do anything for our dis-
played values to be localized other than set the CurrentCulture property,
as we did in Listing 6.7. Because we’re using a DataFormatString for each
column, our values will automatically be localized for us by .NET’s built-
in formatting capabilities. We get this for free because by default .NET
applies the current culture to all its string formatting expressions. When our
GridView is data bound, the underlying code that .NET automatically exe-
cutes to create the date values looks something like what is displayed in
Listing 6.8.

Listing 6.8 Example Code for Applying a DataFormatString to a BoundField

DateTime date1 = new DateTime(2007, 10, 18);
string dateString1 = string.Format("{0:d}", date1);

When string.Format executes, it takes into account the current culture
and automatically applies formatting rules based on the formatting expres-
sion. For instance, Listing 6.3 uses the "{0:d}" format expression. In using
this expression, .NET automatically applies the formatting rule stored in
Thread.CurrentThread.CurrentCulture.DataTimeFormat.ShortDate

Pattern to the DateTime object date1, thus creating the string 10/18/2007.

Localization in ASP.NET 267

NOTE Formatting the Amount Field

The same type of formatting occurs for the amount field except that the
formatting rule is stored in Thread.CurrentThread.CurrentCulture.
NumberFormat.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

String Display

To localize our Transactions page’s strings, we’re going to provide the
strings that .NET should use in place of our hard-coded values and then
have .NET automatically apply those strings for us whenever we switch
cultures. We do this using ASP.NET’s local resource feature.

Local Resources

We apply the local resource feature through two tasks:

1. Create individual local resource files for our page and each culture.

2. Update our page markup to automatically use the resources.

.NET comes with a handy tool to apply the local resource feature, so
we’re going to use it and then talk about what it did.

To access the tool, we first need to open our Transactions.aspx page in
either markup or design mode. Once the page is open, we can access the
Generate Local Resource tool from Visual Studio’s Tool menu, as shown in
Figure 6.5.

Chapter 6: ASP.NET AJA X Localization268

Figure 6.5 Accessing Visual Studio 2008’s Generate Local Resource tool

After we select the Generate Local Resource tool, Visual Studio inspects
our page for us and does two things. First, it generates a default local
resources file, named Transactions.aspx.resx, and places it in the special
App_LocalResources folder, as shown in Figure 6.6. Second, it adds
meta:resourcekey attributes to all the page controls. Listing 6.9 shows the
modified markup with the new meta:resourcekey tags highlighted.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.6 Newly Created Transactions.aspx.resx file in App_LocalResources

Listing 6.9 meta:resourcekey Tags

<%@ Page Language="C#"
AutoEventWireup="true"
CodeBehind="Transactions.aspx.cs"
Inherits="Localization.Transactions"
meta:resourcekey="PageResource1" %>

<html>
<head id="Head1" runat="server">

<title>Transactions</title>
</head>
<body>

<form id="form1" runat="server">
<div id="CultureSelector"

style="position: absolute; left: 610px;">
<asp:Label

ID="SelectCultureLabel"
runat="server"
Text="Select Culture"
meta:resourcekey="SelectCultureLabelResource" />

<asp:DropDownList

ID="CultureSelectorDropDown"
runat="server"
AutoPostBack="True"
meta:resourcekey="CultureSelectorDropDownResource1">

<asp:ListItem
Text="English / United States"
Value="en-us"
meta:resourcekey="ListItemResource1" />

<asp:ListItem
Text="Spanish / Mexico"
Value="es-mx"
meta:resourcekey="ListItemResource2" />

<asp:ListItem
Text="French"
Value="fr"
meta:resourcekey="ListItemResource3" />

</asp:DropDownList>
</div>
<div

id="TransactionPanel"
style="position: absolute; top: 50px;">

Localization in ASP.NET 269

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 6.9 continued

<asp:Label
ID="TransactionGridLabel"
runat="server"
Font-Names="Arial"
Font-Bold="true"
meta:resourcekey="TransactionGridLabelResource" />

<asp:GridView ID="TransactionsView"
runat="server"
AutoGenerateColumns="False"
CellPadding="4"
ForeColor="#333333"
GridLines="None"
Width="748px"
DataSourceID="TransactionDataSource"
meta:resourcekey="TransactionsViewResource1">

<Columns>
<asp:BoundField

HeaderText="Name"
DataField="Name"
meta:resourcekey="BoundFieldResource1" />

<asp:BoundField
HeaderText="Date"
DataField="Date"
DataFormatString="{0:d}"
meta:resourcekey="BoundFieldResource2" />

<asp:BoundField
HeaderText="Amount"
DataField="Amount"
DataFormatString="{0:c}"
meta:resourcekey="BoundFieldResource3" />

<asp:CheckBoxField
DataField="Paid"
HeaderText="Paid"
ReadOnly="True"
meta:resourcekey="CheckBoxFieldResource1" />

</Columns>
</asp:GridView>

</div>
<asp:ObjectDataSource ID="TransactionDataSource"

runat="server"
SelectMethod="GetTransactions"
TypeName="Localization.Transaction" />

</form>
</body>
</html>

Chapter 6: ASP.NET AJA X Localization270

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Our Default Resource File

Opening up our new Transactions.aspx.resx resource file, shown in Figure
6.7, we see that Visual Studio has added a series of string resources and
supplied values for some of them. What Visual Studio has done is go
through each of the controls that are on our Transactions page and created
a resource for all the localizable properties of that control. It has also auto-
matically assigned the current value of the localizable property to the
resource.

Localization in ASP.NET 271

NOTE Localizing the Culture Selector Drop-Down

We’re going to localize the Culture Selector drop-down we added in
the previous section and the transaction grid we started out with ini-
tially. We’ll localize its header and its list items.

NOTE Localizable Properties

A property on a control is localizable if it is marked with the Localize
attribute.

We can see this pattern more clearly by taking a closer look at the first
three resources on our page, shown in Figure 6.7. In Figure 6.8, we see that
each of the resource names begins with BoundFieldResource1, and then
there is a dot followed by another string. Those appended strings that fol-
low the dot operator are the localizable properties of the control to which
BoundFieldResource1 is mapped.

In Figure 6.8, we see that the BoundFieldResource1.HeaderText
resource has the value of Name. Name was automatically assigned to the
resource because it was the current value of the mapped control’s Header
Text property.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.7 Resources in Transactions.aspx.resx

Chapter 6: ASP.NET AJA X Localization272

Figure 6.8 BoundFieldResource1 in Transactions.aspx.resx

The meta:resourcekey Tags

So, to which control is BoundFieldResource1 mapped? It’s mapped to the
first BoundField in our TransactionsView GridView control. We know
it’s mapped to this control because the BoundField specifies the meta:
resourcekey="BoundFieldResource1" in its markup. This meta:

resourcekey attribute is what links the control to the resources in the local
resource file.

Adding the meta:resourcekey to our BoundField is all we need to do for
the BoundFieldResource1 resources to be applied to our BoundField. Each
of the individual BoundFieldResource1 resources: AccessibleHeaderText,
FooterText, and HeaderText will automatically be applied to our Bound
Field.

Now, when we execute our page in the browser, the default resource file
will automatically be applied to the page. The initial output looks exactly

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the same as it did in Figure 6.4 because our resource file contains the same
values as the control’s hard-coded values, but in the background .NET is
using our Transactions.aspx.resx file to set the associated properties on our
page’s controls.

We can see that .NET is using the Transactions.aspx.resx file to set the
associated properties by either removing the hard-coded value of one of
our properties or changing the value of one of our resources. Listing 6.10
shows the GridView’s first BoundField without a HeaderText property spec-
ified, and Figure 6.9 shows the output of running the page. Of course, the
page looks exactly the same as it did before.

Listing 6.10 BoundField Using meta:resourcekey and No HeaderText

<asp:BoundField
DataField="Name"
meta:resourcekey="BoundFieldResource1" />

Localization in ASP.NET 273

Figure 6.9 Transactions page using Transactions.aspx.resx

Culture-Specific Resource Files

At this point, we’ve created the default local resource file for our Transac-
tions page, but we still need to create our culture-specific resource files.

We start this process by copying our default resource file twice so
that we have three copies of it. We then need to rename the copies to
Transactions.aspx.fr.resx and Transactions.aspx.es-mx.resx. Figure 6.10
shows our solution explorer with the three local resource files created.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.10 The three local resource files

As the specific filenames might suggest, .NET determines which local
resource file to use through the resource file’s name. The names follow a
specific pattern:
PageName.culture.resx

In creating local resource files for our Transactions page, we use the
Transactions.aspx as the PageName, and then replace the culture with the
cultures we’re supporting: es-MX and fr to end up with local resource files
that support the Transactions page and the es-MX and fr cultures.

Chapter 6: ASP.NET AJA X Localization274

NOTE Resolving Resources

.NET follows a specific pattern when attempting to resolve a resource.
It starts with the most specific culture file it can find and looks for the
resource value there. In the case we’re running under the es-MX cul-
ture, it looks for the resource in the Transactions.aspx.es-mx.resx file. If
it can’t find the file or the resource within the file, it moves on to
searching within the neutral culture file, Transactions.aspx.es.resx. If it
can’t find that file or the resource within it, it moves on to the default
culture file, Transactions.aspx.resx. If it can’t find the resource here, it
gives up and returns null.

NOTE Missing en-US Local Resource File

You might have noticed that we do not have a file named Transactions.
aspx.en-us.resx for the English (United States) culture. We don’t need
to create this file because our default resource file is already translated
to English, so we can just have .NET use that file for the en-US culture.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that we have our two new resource files the last step is to replace
the English versions of the strings with their translated versions. Figure 6.11
and Figure 6.12 show the Spanish (Mexico) and French local resource files,
respectively, after the English strings have been translated. (We’ve also
removed the blank values.)

Localization in ASP.NET 275

Figure 6.11 The Spanish (Mexico) local resource file

Figure 6.12 The French local resource file

http://lib.ommolketab.ir
http//lib.ommolketab.ir

With the completion of our local resource files, our Transactions page is
fully localized. Figure 6.13 and Figure 6.14 show what the Transactions
page looks like after the current culture has been changed to Spanish
(Mexico) and French, respectively.

Chapter 6: ASP.NET AJA X Localization276

Figure 6.13 The Transactions page under the Spanish (Mexico) culture

Figure 6.14 The Transactions page under the French culture

A Few Final Words about Resources

We’ve only scratched the surface of what resource files can do for you. They
can store not just strings but also files, audio clips, icons, images, and other
items. Almost anything that should change based on the currently running
culture can be stored in a resource file and automatically applied.

Besides the local resource feature that we walked through in localizing
our Transactions page, .NET provides another type of resource file called
global resources. These files aren’t tied to a specific page, but float in the
application’s global space, available for any page or control to use them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Finally, the resource features provided by default in ASP.NET are an
implementation of the resource provider pattern. .NET supplies a set of
interfaces that you can implement to provide your own resource manage-
ment infrastructure. A common use of this pattern is to pull resources from
the database rather than physical files. After all, if you’re supporting 30 cul-
tures, managing local resource files for each page and user control can be
cumbersome.

Localization in ASP.NET AJAX

Now that we’ve walked through localization in ASP.NET, we’re going to
walk through the new localization capabilities ASP.NET AJAX provides.

The localization capabilities that ASP.NET AJAX provides all relate to
the client, so all the new localization code we will be writing is going to be
in JavaScript. However, the localization features completely rely on
ASP.NET to work properly, so this isn’t one of the client features that
although contained within the Microsoft AJAX Library can work without
the server counterpart.

The new localization features provided by ASP.NET AJAX are similar
to the features provided by ASP.NET and revolve around dates, numbers,
and strings.

Before we begin covering the new localization capabilities provided by
ASP.NET AJAX, let’s walk through the existing localization capabilities of
normal JavaScript and point out some of its shortcomings.

JavaScript Localization Capabilities
JavaScript is not a culture-aware programming language. It almost never
alters its behavior based on the operating system language or the browser’s
assigned languages. Furthermore, there isn’t a consistent way to program-
matically query the JavaScript runtime for any sort of culture information.
The built-in navigator object provides some language information, but the
availability and values of the language properties— language, browser
Language, and userLanguage—are not uniform across browsers, so they
can’t be used reliably.

Localization in ASP.NET AJA X 277

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Not taking the browser’s language or operating system’s current culture
into account causes problems when working with numbers and dates.
These problems arise because different cultures have different ways of writ-
ing numbers and dates, and JavaScript just doesn’t have the capabilities of
understanding or outputting different formats.

Chapter 6: ASP.NET AJA X Localization278

NOTE English Formatting

Although JavaScript understands some basic English formatting, it
really doesn’t even have the capabilities of understanding English-
formatted numbers and dates consistently.

Numbers

The problem with numbers in JavaScript is that different cultures use dif-
ferent values for their decimal and number-group separators. For instance,
in the French culture, the number six and thirty-six one-hundredths is writ-
ten as 6,36 because they use a comma as the decimal separator. The same
number written in English is 6.36. If we want to code a page to understand
6,36 as six and thirty-six one-hundredths, we have to write special parsing
code to initially treat it as a string and then convert it into a number. How-
ever, 6.36 is automatically recognized as six and thirty-six one-hundredths
because JavaScript understands that the decimal point is the decimal num-
ber separator.

A similar problem occurs with the number-group separator. In the
French culture, they use a blank space, whereas in English they use a
comma. The number four thousand three hundred and six is written 4 306
in the French culture, but 4,306 in the English culture. In this case,
JavaScript doesn’t understand either of the formatted numbers because it’s
expecting the number to be unformatted and written 4306. In this case, if
the user entered either the English or French formatted number, we’d have
to write special parsing code to convert it into a value understood by
JavaScript.

As you can see, those wanting to write numbers in their own culture-
specific format are limited because JavaScript only understands the
English culture’s decimal formatting and doesn’t understand any culture’s
number separator.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript does provide the ability to format numbers based on the cur-
rent culture, however. Using the toLocaleString method, a number object
can be converted into a string according to the host environment’s current
culture. That is, if my machine is running under the French culture, Listing
6.11 would produce Figure 6.15.

Listing 6.11 JavaScript Formatting Numbers Using toLocaleString

<script type="text/javascript">
var num1 = 4305;
alert(num1.toLocaleString());

</script>

Localization in ASP.NET AJA X 279

Figure 6.15 The toLocaleString output of a number when the operating system is

running in French

Dates

Just as we saw problems with JavaScript numbers, the same sort of prob-
lems appears with dates. The date December 26, 2007 is written as
12/26/2007 in the English culture, whereas it is written 26/12/2007 in the
French culture. If we try to create dates from these strings using the code
shown in Listing 6.12, only the English version would successfully create
the date we were expecting. This is because the Date type doesn’t take the
current culture into account.

Listing 6.12 Incorrectly Creating Dates in JavaScript

// successfully creates the date we expect
var date = new Date("12/26/2007");

// creates a date somewhere in 2009
var date2 = new Date("26/12/2007");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As with numbers, the one thing the Date type will do correctly accord-
ing to the host environment’s current culture is provide the ability to format
the date and time according to the default format for the culture. In the
Windows world, at least, this means that if my operating system is running
under the French language and my system clock is set to the Pacific stan-
dard time (PST) time zone, a Date type created and displayed using the
code listed in Listing 6.13 will output Figure 6.16.

Listing 6.13 Formatting Dates in JavaScript Using toLocaleString

<script type="text/javascript">
var d = new Date("12/26/2007 12:25PM");
alert (d.toLocaleString());

</script>

Chapter 6: ASP.NET AJA X Localization280

Figure 6.16 The toLocaleString output of a date when the operating system is

running in French

The toLocaleString, toLocaleDateString, and toLocaleTimeString
methods are better than nothing, but it doesn’t do much for helping us
turns strings written in a particular culture’s format into Date objects. It also
only uses the operating system’s language setting and is not affected by the
browser’s language preferences.

That pretty much wraps it up for JavaScript’s built-in capabilities for
localizing dates and numbers.

ASP.NET AJAX Localization Capabilities
Now that we’ve walked through JavaScript’s limited localization capabili-
ties and seen its problems, let’s cover what ASP.NET AJAX provides to sup-
plement those localization capabilities.

ASP.NET AJAX splits localization into two sections: script globalization
and script localization. Script globalization fixes the problems with

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript’s Date and Number types, and script localization provides an easy
way to use translated versions of strings.

Localization in ASP.NET AJA X 281

NOTE Localization Feature Split

You can compare ASP.NET AJAX localization feature separation to
how ASP.NET separates localization based on the CurrentCulture and
CurrentUICulture properties of the executing thread. CurrentCulture
provides date and number localization, and CurrentUICulture pro-
vides access to a specific culture’s resource file.

Because we just went over JavaScript’s Date and Number type short-
comings, let’s start with script globalization, and then cover script
localization.

Script Globalization

Script globalization adds capabilities to the Date and Number types so that
date and number strings written in a specific culture’s format can be con-
verted into date and number objects. It also adds capabilities to the Date,
Number, and String types so that dates and numbers can be formatted
according to a particular culture’s formatting rules.

Enabling these capabilities is a two-step process. First, we need to set
the ScriptManager control’s EnableScriptGlobalization property to
true, as shown in Listing 6.14; it is set to false by default.

Listing 6.14 Enabling Script Globalization

<asp:ScriptManager
ID="ScriptManager"
runat="server"
EnableScriptGlobalization="True">

Second, we need to set the CurrentCulture property of the ASP.NET
thread that is handling the request to the correct culture. Setting the
CurrentCulture property to a particular CultureInfo object is the control-
ling factor of what culture will be available on the client and how dates and
numbers are parsed and formatted. So, if we want the Number and Date

http://lib.ommolketab.ir
http//lib.ommolketab.ir

types’ new capabilities to use the French culture’s date and number for-
matting, we need to set the CurrentCulture property of the thread to the
French CultureInfo object. We’ve shown how to do this in previous exam-
ples, but Listing 6.15 shows how to set the current thread’s CurrentCulture
property to the neutral French culture.

Listing 6.15 Setting the Thread’s CurrentCulture to the Neutral French Culture

CultureInfo newCulture = CultureInfo.CreateSpecificCulture("fr");
Thread.CurrentThread.CurrentCulture = newCulture;

Now that we’ve enabled script globalization on the ScriptManager con-
trol and set our thread’s CurrentCulture property, ASP.NET AJAX is ready
to parse and format dates and numbers according to a specific culture. We
first walk through the new capabilities, and then give a brief explanation on
how it all works.

Numbers

ASP.NET AJAX provides four new functions to work with numbers. They are
the two static functions, Number.parseInvariant and Number.parseLocale,
and the two instance functions, number.format and number.localeFormat.
The methods’ purpose, description, and syntax are detailed in Table 6.1.

Table 6.1 New Number Type Methods

Method Name Description Syntax

Number.parseInvariant Attempts to convert var num = Number.
the stringValue parseInvariant
parameter into a (stringValue);
number based on
the Invariant
culture’s number
formatting rules

Number.parseLocale Attempts to convert var num = Number.
the stringValue parseLocale (stringValue);
parameter into a
number based on
the current culture’s
number formatting
rules

Chapter 6: ASP.NET AJA X Localization282

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Method Name Description Syntax

format Formats the number var str = number.
using the Invariant format("formatString");
culture’s number
formatting rules and
the format string
provided and returns
a string

localeFormat Formats the number var str = number.
using the current localeFormat
culture’s number ("formatString");
formatting rules and
the format string
provided and returns
a string

Listing 6.16 shows examples of the new methods’ use, and Figure 6.17
and Figure 6.18 show the respective alert boxes.

Localization in ASP.NET AJA X 283

NOTE Using the French Culture

We’re hard-coding our InitializeCulture method to set the Current
Culture property to the French CultureInfo object.

Listing 6.16 Using Number.parseLocale and Number.parseInvariant

<asp:ScriptManager ID="ScriptManager"
runat="server"
EnableScriptGlobalization="true" />

<script type="text/javascript">
Number.parseLocaleFixed = function(value) {

return Number.parseLocale(value.replace(" "," "));
}

// convert "4,305" into a number using the invariant culture
var num1 = Number.parseInvariant("4,305");

// convert "4 305" into a number using the local culture
// (which is French)
var num2 = Number.parseLocaleFixed("4 305");

// format num1 as a currency using the local culture

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 6.16 continued

alert(num1.localeFormat("c"));

// format num2 as a currency using the invariant culture
alert(num2.format("c"));
</script>

Chapter 6: ASP.NET AJA X Localization284

Figure 6.17 The localeFormat output of a number when the operating system is

running in French

Figure 6.18 The format output of a number when the operating system is running in French

parseLocale Bug
As you can see from the code displayed in Listing 6.16, rather than call

Number.parseLocale directly, we’re using an intermediate function called

Number.parseLocaleFixed. We’re using this function because there’s a

bug in the provided French formatting information that the server passed

down to the client, and because of it parseLocale fails to work properly

when we’re using the French culture information.

The parseLocale method works by attempting to convert the string

into a number it understands. To do this, it strips away the number sepa-

rators, in the English culture commas and in the French culture spaces, and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

replaces any decimal separator it finds with a decimal point. So, the first

step in parseLocale is to change 4 305 into 4305. This is where the bug

lies. The code fails to remove the space because it is looking for the wrong

type of space.

If you or I type a space on the keyboard using the spacebar, we’re actu-

ally telling the computer we want to enter ASCII code 0032. We can actu-

ally manually enter this code by holding down the Alt key and typing in

0032. If you do this and you’re inside a text-editing program, you should

see a space appear on the screen. This is the type of space that we nor-

mally use when we type out 4 305, and this is the space you would expect

the parseLocale code to strip out.

However, because of a bug in how Microsoft generated the information

that contains the character to strip out, the French culture number sepa-

rator is not ASCII code 0032, but is rather ASCII code 0160, which is a non-

breaking space (in HTML). If we type Alt 0160, the space looks no

different from a normal space, but it is actually a completely different char-

acter, and because it’s a completely different character, parseLocale fails

to work properly.

Understanding what the problem is, parseLocaleFixed goes ahead

and replaces any ASCII code 0032 characters in the string with ASCII code

0160. Therefore, when the value is sent off to the parseLocale method,

it is parsed successfully.

Caveat: We know the French culture has this problem, but we don’t

know whether any other cultures that use the space as the number sepa-

rator also have this problem. If you’re planning on using this method,

investigate the cultures you’re supporting to make sure that the parse

methods work as expected.

Furthermore, when Microsoft fixes this bug, you will need to either

change your code to call the parseLocale method directly or write a bet-

ter parseLocaleFixed method that takes into consideration that it may

have been fixed.

Localization in ASP.NET AJA X 285

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dates

ASP.NET AJAX provides four new functions to work with dates. They are
the two static functions, Date.parseInvariant and Date.parseLocale, and
the two instance functions, date.format and date.localeFormat. The
methods’ purpose, description, and syntax are detailed in Table 6.2.

Table 6.2 New Date Type Methods

Method Name Description Syntax

Date.parseInvariant Attempts to convert the var date = Date.
stringValue parameter parseInvariant
into a date based on the (stringValue);
Invariant culture’s date
formatting rules.

Date.parseLocale Attempts to convert the var date = Date.
stringValue parameter parseLocale
into a date based on the (stringValue,
current culture’s date dateFormat);
formatting rules. Can
optionally take a date
format string that over-
rides the current culture’s
date formatting rules and
uses that string to try and
create the date instead.

format Formats the date using var str = date.
the Invariant culture’s format("formatString");
date formatting rules and
the format string provided
and returns a string.

Chapter 6: ASP.NET AJA X Localization286

NOTE Invariant Culture

The Invariant culture is a hard-coded culture definition. Using this
hard-coded culture definition provides predictable results because it is
the same across all computers using the same system. In this case,
ASP.NET AJAX mostly uses English culture conventions in the
Invariant culture.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Method Name Description Syntax

localeFormat Formats the date using var str = date.
the current culture’s date localeFormat
formatting rules and the ("formatString");
format string provided
and returns a string.

Listing 6.17 shows examples of the new methods’ use, and Figure 6.19
and Figure 6.20 show the respective alert boxes.

Listing 6.17 Using Date.parseLocale and Date.parseInvariant

<asp:ScriptManager ID="ScriptManager"
runat="server"
EnableScriptGlobalization="true" />

<script type="text/javascript">
// convert "12/22/2007" into a date using the invariant culture
var date1 = Date.parseInvariant("12/22/2007");

// convert "22/12/2007" into a date using the local culture
var date2 = Date.parseLocale("22/12/2007");

// format date1 as a short date using the local culture
alert(date1.localeFormat("d"));

// format date2 as a short date using the invariant culture
alert(date2.format("d"));

</script>

Localization in ASP.NET AJA X 287

Figure 6.19 The localeFormat output of a date when the operating system

is running in French

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.20 The format output of a date when the operating system is running in French

Strings

The two new static methods that ASP.NET AJAX provides for the String
type, format and localeFormat, mimic .NET’s string.format method.
They format strings using argument replacement. Listing 6.18 shows a
basic string.format expression.

Listing 6.18 Using String.format

for (var i=0; i<5; i++) {
alert (string.format(

"My current number {0} is greater than {1}",
i, i-1));

}

Chapter 6: ASP.NET AJA X Localization288

NOTE string.format overloading

.NET’s string.format method was split into two methods because
JavaScript lacks method overloading.

As you can see, the syntax is identical to .NET’s. The format and
localeFormat methods also allow us to provide data format strings just as
we would in .NET. Listing 6.19 shows examples of these.

Listing 6.19 Using Data Format Strings

var dateTime = Date.parseInvariant("SAT, 22 DEC 2007 12:15:00 GMT");

// alerts 12/22/2007
alert (String.format(

"The current invariant formatted date is {0:d}", dateTime));

// alerts 12:15:00

http://lib.ommolketab.ir
http//lib.ommolketab.ir

alert (String.format("
The current invariant formatted time is {0:T}", dateTime));

// alerts 22/12/2007
alert (String.localeFormat(

"The current locale formatted date is {0:d}", dateTime));

// alerts 12:15:00
alert (String.localeFormat(
"The current locale formatted time is {0:T}", dateTime));

Localization in ASP.NET AJA X 289

TIP Data Format Strings

The format strings that are appropriate are data type dependent just
like they are in .NET. We’re able to use d and T here because we’re
working with dates, but these format strings wouldn’t be appropriate
if our argument were a number object.

The data format strings available for the Date and Number types in
JavaScript are the same as those that are available in .NET for the Date
Time and Double types.

Briefly, let’s discuss how the formatting takes place. When the string is
read, the format items (i.e., {0:d}) are parsed and processed. In the case of
the String.format method, each argument’s replacement variable, which
is a Date, has format called on it passing in the data format string. So, when
the first String.format method executes, the code listed here is executed to
format the dateTime variable properly and replace the format item:
dateTime.format("d");

Likewise, when the String.localeFormat method executes, the
localeFormat method is executed on the dateTime variable and the value
replaces the format item:
dateTime.localeFormat("d");

This pattern can be used to create our own formattable objects. If we
define a type that implements a format method or a localeFormat method,
those methods will be executed whenever a String.format or a
String.localeFormat call contains an object of that type. Listing 6.20
demonstrates this idea.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 6.20 Defining Our Own Formattable Object

MyObject = function(value) { this._value = value; };

MyObject.prototype = {
format: function(argFormat) {

if (argFormat === "abc") {
return "You applied ABC to " + this._value;

}
return this._value;

},
localeFormat: function(argFormat) {

if (argFormat = "123") {
return "You applied 123 to " + this._value;
}
return this._value;

}
};

var newObj = new MyObject(65);

// alerts "You applied ABC to 65"
alert (String.format("{0:abc}", newObj));

// alerts "You applied 123 to 65"
alert (String.localeFormat("{0:123}", newObj));

So that explains the new localization capabilities available with the
Number, Date, and String types, but how does it all work? How does
Number.parseLocale know that it should use a comma or a blank space as
the number-group separator?

These new features rely on a special object called Sys.CultureInfo to
provide information about the current and invariant cultures. Let’s look at
Sys.CultureInfo in a bit more detail.

Sys.CultureInfo

A Sys.CultureInfo object is equivalent to .NET’s CultureInfo object. Like
the .NET object, it contains properties that hold the culture’s name, number
formatting information, and date-time formatting information. Table 6.3
describes these properties.

Chapter 6: ASP.NET AJA X Localization290

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 6.3 Sys.CultureInfo Properties

Property Name Description

name Contains the name of the culture. For instance, "en-us",
"fr", or "es-mx".

numberFormat Contains information about how numbers should be format-
ted. For instance, the number separator is a comma (,), a dec-
imal point is a period (.), the currency symbol is $, and there
should be two digits after the decimal point.

dateTimeFormat Contains information about how dates should be formatted.
For instance, the abbreviated month names are Jan, Feb,
Mar… Dec; the default date format is m/d/yyyy, and the
short time pattern is h:mm tt.

There are always two statically available Sys.CultureInfo objects avail-
able through expando properties on Sys.CultureInfo. The Invariant cul-
ture, which is accessed through Sys.CultureInfo.InvariantCulture, and
the current culture, which is accessed through Sys.CultureInfo.Current
Culture, are always available.

The Sys.CultureInfo object attached to the Sys.CultureInfo.

InvariantCulture property never changes and is read-only. All ASP.NET
AJAX implementations will have the same Invariant culture object.

The Sys.CultureInfo object attached to the Sys.CultureInfo.Current
Culture property changes based on the CultureInfo object that is assigned
to the CurrentCulture property of the executing .NET thread. This means
that if you have enabled script globalization through the ScriptManager,
ASP.NET AJAX’s server code will read the CultureInfo object assigned to
the currently executing thread’s CurrentCulture property and automati-
cally generate JavaScript code that mimics this CultureInfo object. Listing
6.21 is the extracted source code from ScriptManager that creates the client
culture information.

Listing 6.21 Registering Globalization Script Block in ScriptManager

private void RegisterGlobalizationScriptBlock()
{

if (this.EnableScriptGlobalization)
{

Localization in ASP.NET AJA X 291

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 6.21 continued

string clientCultureScriptBlock =
ClientCultureInfo.GetClientCultureScriptBlock(
CultureInfo.CurrentCulture

);
if (clientCultureScriptBlock != null)
{

ScriptRegistrationManager.RegisterClientScriptBlock(
this,
typeof(ScriptManager),
"CultureInfo",
clientCultureScriptBlock,
true

);
}

}
}

We can see the culture information being set by examining the rendered
HTML of our Transactions page after the CurrentCulture has been set to
France’s CultureInfo object. Listing 6.22 shows part of this code. (We cut
out most of the code due to length.)

Listing 6.22 The Abbreviated __cultureInfo Declaration

<script type="text/javascript">
//<![CDATA[
var __cultureInfo = '{"name":"fr-
FR","numberFormat":{"CurrencyDecimalDigits":2,"CurrencyDecimalSeparator":","
,"IsReadOnly":false,"CurrencyGroupSizes":[3],"NumberGroupSizes":[3],"Percent
GroupSizes":[3], … ,
"NativeDigits":["0","1","2","3","4","5","6","7","8","9"],"DigitSubstitution"
:1},"dateTimeFormat":{"AMDesignator":"","Calendar":{"MinSupportedDateTime":"
\/Date(-
62135568000000)\/","MaxSupportedDateTime":"\/Date(253402300799999)\/","Algor
ithmType":1,"CalendarType":1, … ,
"MonthGenitiveNames":["janvier","février","mars","avril","mai","juin","juill
et","août","septembre","octobre","novembre","décembre",""]}}';//]]>
</script>

Chapter 6: ASP.NET AJA X Localization292

NOTE __cultureInfo

The __cultureInfo variable created here is automatically parsed by
the Microsoft AJAX Library and assigned to the Sys.CultureInfo.
CurrentCulture property.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that we’ve walked through what Sys.CultureInfo contains and
how the static property Sys.CultureInfo.CurrentCulture is set, we can
begin to understand how the Number, Date, and String methods that parse
strings or create formatted strings based on the current or Invariant cul-
ture do so by using the Sys.CultureInfo object.

Script Localization

Script localization is composed of two different features. The first provides
a way to replace an entire script with a localized version. This is called the
static-file model. The second provides a way to automatically generate a
JavaScript object based on a resource file and have it combined with a script
library to produce a localized library. This is called the embedded-resource
model and works similarly to the resource manager feature provided by
ASP.NET.

Unlike script globalization, script localization is enabled by default. It
is controlled by the EnableScriptLocalization property on the Script
Manager control, and that property is set to true by default. Listing 6.23
shows how to set the property explicitly.

Listing 6.23 Enabling Script Localization Explicitly

<asp:ScriptManager ID="ScriptManager"
runat="server"
EnableScriptLocalization="true" />

Rather than explain the static and embedded resource models in an
abstract manner, let’s walk through an example, using our previously cre-
ated Transactions page, that uses both models, and we explain as we go.

Localization in ASP.NET AJA X 293

NOTE ASP.NET AJAX Script Globalization Requires ASP.NET

Because ASP.NET AJAX requires ASP.NET to emit the correct Sys.
CultureInfo object based on the CurrentCulture assigned to the cur-
rently running .NET thread, ASP.NET AJAX script globalization is one
of the few client features that is specifically tied to ASP.NET and can-
not be used properly without it. Number.parseLocale and the other
methods won’t cause an error, but they also won’t be able to parse any-
thing but English (United States) either.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Filtering the Transactions Page

In this example, we add the ability to filter our Transactions by amount.
(We’re not actually going to implement the filtering part of the example,
just the user interface portion.) Figure 6.21 shows our Transactions page
with our amount filter added.

Chapter 6: ASP.NET AJA X Localization294

Figure 6.21 The Transactions page with the amount filter

The user will enter numbers into the two textboxes and then press the
Filter Transactions button to submit the page with the intention of filtering
the list of transactions based on the amounts entered. The page will check
to make sure the numbers are valid and if not present the user with a use-
ful error message (in the user’s language of course) stating the problem.
Example errors are shown in Figure 6.22 and Figure 6.23.

Figure 6.22 An English error message stating the amount values are invalid

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.23 A French error message stating the amount values are invalid

Our currency filter is implemented using two instances of a new control:
CurrencyTextBox. Its requirements are as follows:

1. Users can type numbers in their local format (i.e., 3,456 or 3 456) or
without any formatting (3456).

2. When the textbox loses focus, the numbers convert to currency for-
mat. Figure 6.24 shows the textbox with focus, and Figure 6.25
shows the textbox after it loses focus.

Localization in ASP.NET AJA X 295

Figure 6.24 A focused and unformatted CurrencyTextBox

Figure 6.25 An unfocused and formatted CurrencyTextBox

3. When the textbox regains focus, the currency string is converted to a
number in the original format the user typed it in (i.e., 3456, 3 456, or
3,456).

4. If the user enters an invalid number into the textbox, a JavaScript
alert is displayed telling the user about the error. The message needs
to be in the correct language. Figure 6.26 and Figure 6.27 demon-
strate two of the possible alerts.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.26 An English error message displayed after entering an invalid number

Chapter 6: ASP.NET AJA X Localization296

Figure 6.27 A French error message displayed after entering an invalid number

To develop this control we’re going to use a new class project called
Localization.Controls. After we get our project created and have deleted
the initial Class.cs file, we need to create the three parts of our control.

1. A server control contained in a C# file

2. A client control contained in a JavaScript file

3. The resource files that contain the translated versions of our strings

Figure 6.28 shows the files inside our new class project in Visual
Studio.

Figure 6.28 Our project’s layout in Visual Studio

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Localization.Controls.CurrencyTextBox Server Control

To start, let’s create our new server control called Localization.Controls.
CurrencyTextBox and place it in a C# file called CurrencyTextBox.cs. Its
code is listed in Listing 6.24.

Listing 6.24 CurrencyTextBox Server Control

using System;
using System.Collections.Generic;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Localization.Controls
{

public class CurrencyTextBox : TextBox, IScriptControl
{

private ScriptManager _scriptManager;
protected ScriptManager PageScriptManager
{
get
{

if (_scriptManager == null)
{

_scriptManager = ScriptManager.GetCurrent(this.Page);
}
return _scriptManager;

}
}

protected override void OnPreRender(EventArgs e)
{
base.OnPreRender(e);
if (!DesignMode)
{

if (PageScriptManager == null)
{

throw new InvalidOperationException(
"ScriptManager not present on page.");

}
PageScriptManager.RegisterScriptControl<CurrencyTextBox>(this);

}
}

protected override void Render(HtmlTextWriter writer)
{
base.Render(writer);
if (!DesignMode)
{

Localization in ASP.NET AJA X 297

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 6.24 continued

if (PageScriptManager == null)
{
throw new InvalidOperationException(
"ScriptManager not present on page.");

}
PageScriptManager.RegisterScriptDescriptors(this);

}
}

#region IScriptControl Members

public IEnumerable<ScriptDescriptor> GetScriptDescriptors()
{

ScriptControlDescriptor scd =
new ScriptControlDescriptor(
"Localization.Controls.CurrencyTextBox",
this.ClientID);

if (!string.IsNullOrEmpty(this.Text))
{

scd.AddProperty("nonFormattedValue", this.Text);
}
yield return scd;

}

public IEnumerable<ScriptReference> GetScriptReferences()
{

yield return new
ScriptReference(
"Localization.Controls.ClientScript.CurrencyTextBox.js",
typeof(CurrencyTextBox).Assembly.FullName);

}

#endregion
}

}

Localization.Controls.CurrencyTextBox has three main features.
First, it inherits from System.Web.UI.WebControls.TextBox, so it will

have the look and feel of a normal textbox.
Second, it implements IScriptControl. In the GetScriptDescriptors

method, we return a ScriptControlDescriptor that will automatically cre-
ate a new client control of type Localization.Controls.CurrencyTextBox. In
the GetScriptReferencesmethod, we return a ScriptReference that refers to
the embedded JavaScript class that contains our Localization.

Controls.CurrencyTextBox client type.

Chapter 6: ASP.NET AJA X Localization298

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Finally, in the OnPreRender method, it registers itself with the Script
Manager as a ScriptControl, and in the Render method, it registers itself
with the ScriptManager as having ScriptDescriptors.

Localization.Controls.CurrencyTextBox Client Control

Next, let’s create the client control, Localization.Controls.Currency
TextBox, and place it in the new JavaScript file CurrencyTextBox.js. Listing
6.25 shows the skeleton of our new client control.

Listing 6.25 CurrencyTextBox JavaScript Skeleton Declaration

/// <reference name="MicrosoftAjax.js">
Number.parseLocaleFixed = function(value) {

return Number.parseLocale(value.replace(" "," "));
}
Type.registerNamespace("Localization.Controls");
Localization.Controls.CurrencyTextBox = function(element) {

Localization.Controls.CurrencyTextBox.initializeBase
(this, [element]);

};

Localization.Controls.CurrencyTextBox.prototype = {
initialize: function() {

Localization.Controls.CurrencyTextBox.callBaseMethod
(this, 'initialize');

},

dispose: function() {
Localization.Controls.CurrencyTextBox.callBaseMethod

(this, 'dispose');
},

};

Localization.Controls.CurrencyTextBox.registerClass(
"Localization.Controls.CurrencyTextBox",
Sys.UI.Control);

Localization in ASP.NET AJA X 299

NOTE Number.parseLocaleFixed

We’re going to need Number.parseLocaleFixed again for this sample.
See the sidebar “parseLocale Bug” earlier in the chapter for more infor-
mation about the need for this method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We need to add event handlers to the textbox’s focus and blur events so
that we can change the value from a formatted to an unformatted value and
vice versa. To assist with these features, we’re going to keep track of the
unformatted version. Keeping track of the unformatted version also pro-
vides us the ability to set it from server code as the textbox’s initial value.
Listing 6.26 adds the private members to our JavaScript class and the unfor-
matted value’s getters and setters.

Listing 6.26 Defining the Private Members and Properties

Localization.Controls.CurrencyTextBox = function(element)
{

Localization.Controls.CurrencyTextBox.initializeBase
(this, [element]);

this._focusDelegate = null;
this._blurDelegate = null;
this._unFormattedValue = null;

};

Localization.Controls.CurrencyTextBox.prototype = {
get_unFormattedValue: function() {

return this._unFormattedValue;
},

set_unFormattedValue: function(value) {
this._unFormattedValue = value;

}
};

Our initialize method is responsible for wiring the event handler
methods to the focus and blur events and formatting any initial unfor-
matted value. Our dispose method is responsible for removing the event
handlers from our textbox. Listing 6.27 shows the initialize and dispose

methods.

Listing 6.27 initialize and dispose Methods

… // prototype
initialize: function() {

Localization.Controls.CurrencyTextBox.callBaseMethod
(this, 'initialize');

var elm = this.get_element();

// set the formatted value to an initial value if provided.

Chapter 6: ASP.NET AJA X Localization300

http://lib.ommolketab.ir
http//lib.ommolketab.ir

if (this._unFormattedValue !== null &&
this._unFormattedValue !== "") {
this._format(this._unFormattedValue, elm);

}

// create and wire the focus and blur delegates to the element.
this._focusDelegate = Function.createDelegate(this, this._onFocus);
this._blurDelegate = Function.createDelegate(this, this._onBlur);

$addHandler(elm, "focus", this._focusDelegate);
$addHandler(elm, "blur", this._blurDelegate);

},

dispose: function() {
$clearHandlers(this.get_element());
this._focusDelegate = null;
this._blurDelegate = null;
Localization.Controls.CurrencyTextBox.callBaseMethod

(this, 'dispose');
}

Our initialize method specifies three methods that we still need to
define: _format, _onFocus, and _onBlur. These methods are responsible for
converting our textbox’s value to and from a formatted version and dis-
playing an error message if we enter an invalid number into the textbox.
Listing 6.28 displays the code for the _format method.

Listing 6.28 _format Method

_format: function(value, elm) {
var parsedNumber = Number.parseLocaleFixed(value);
if (!isNaN(parsedNumber)) {

elm.value = parsedNumber.localeFormat("c");
return true;

}
return false;

}

The _format method replaces the textbox’s value with a currency for-
matted version of the number and returns a boolean value indicating
whether it was successful. It does this by first attempting to parse the value
as a Number using the parseLocaleFixed method. If the parsedNumber is in
fact a number, testing it using the built-in isNaN method, the number is for-
matted as a currency using the localeFormat method and assigned to the

Localization in ASP.NET AJA X 301

http://lib.ommolketab.ir
http//lib.ommolketab.ir

element’s value. It then returns true to indicate success. If the parsed
Number is not a number, the method returns false to indicate failure.

Listing 6.29 displays the code for the _onFocus method.

Listing 6.29 _onFocus Method

_onFocus: function(args) {
if (this._unFormattedValue !== null) {

var elm = this.get_element();
elm.value = this._unFormattedValue;
elm.select();

}
}

The _onFocus method simply takes the unFormattedValue and if it’s not
null assigns it to the element. It then selects the textbox’s text using the
select method.

Listing 6.30 displays the code for the _onBlur method.

Listing 6.30 _onBlur Method

_onBlur: function(args) {
var elm = this.get_element();
var textBoxValue = elm.value;

// update the non-formatted value.
this._unFormattedValue = textBoxValue;

if (textBoxValue !== null && textBoxValue !== "") {
if (!this._format(textBoxValue, elm)) {
alert (

String.format(
CurrencyTextBox.Res.InvalidNumberMessage,
textBoxValue

)
);

}
}

}

The _onBlur method is responsible for taking the textbox’s current value
and replacing it with the currency formatted version of the value. If it fails
to format the textbox’s value, the method needs to display an error message
stating that the value in the textbox is an invalid number. Listing 6.31 high-
lights the code that displays this alert.

Chapter 6: ASP.NET AJA X Localization302

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 6.31 Displaying the Error Message Alert

alert (
String.format(

CurrencyTextBox.Res.InvalidNumberMessage,
textBoxValue

)
);

As the code shows, it uses the String.format method to build a string
that contains the error message. It does this, however, using a string stored
in CurrencyTextBox.Res.InvalidNumberMessage, an object we have yet to
define. When String.format executes, it evaluates the string stored in
InvalidNumberMessage and replaces its {0} argument with textBoxValue.

To understand the CurrencyTextBox.Res.InvalidNumberMessage

object, we need to cover the JavaScript resources for the CurrencyTextBox
and then cover how these resources become available on the client.

CurrencyTextBox Resources

Creating our CurrencyTextBox resources starts off by creating a new
default resource file. Unlike with local resources in ASP.NET where the first
part of the resource filename related the resource to the page, these resource
filenames can be called whatever we want. But, for consistency, we name
our resource file CurrencyTextBox.resx and place it in the ClientResources
directory. Figure 6.29 shows our newly created file sitting in its directory.

Localization in ASP.NET AJA X 303

Figure 6.29 The CurrencyTextBox resource file

NOTE Global Resources

JavaScript resource files act more like global resource files. We haven’t
covered them, but they’re just resource files that aren’t associated to a
particular ASP.NET page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that we have our resource file created, we need to add the
InvalidNumberMessage to it as a string resource. We do this by opening up
the resource file in design mode and adding a name-value pair. Figure 6.30
shows our resource file after we’ve added our InvalidNumberMessage
resource.

Chapter 6: ASP.NET AJA X Localization304

Figure 6.30 The InvalidNumberMessage resource

Having the InvalidNumberMessage written in English is a start, but we
need to support our other two cultures: es-MX and fr. To support these cul-
tures, we need to create resource files that support those cultures. To do
this, we just copy our resource file a couple of times, alter the filenames to
reflect the associated culture, and update the InvalidNumberMessage with
a translated version. Figure 6.31 shows Visual Studio with the three
resource files, and Figure 6.32. and Figure 6.33 show the translated version
of the files.

Figure 6.31 Visual Studio with the three resource files

Figure 6.32 The CurrencyTextBox.es-mx.resx resource file

Figure 6.33 The CurrencyTextBox.fr.resx resource file

http://lib.ommolketab.ir
http//lib.ommolketab.ir

So, we’ve created our three resource files, one for each culture, but we
still have a final step of associating them to a particular JavaScript. This
final step takes place in AssemblyInfo.cs, where we use a ScriptResource
attribute to associate the resource files with a JavaScript file and provide a
type name. Figure 6.34 shows the IntelliSense for the ScriptResource
attribute, and Listing 6.32 shows the ScriptResource attribute that associ-
ates our resource files with our JavaScript file.

Localization in ASP.NET AJA X 305

Figure 6.34 ScriptResource attribute in AssemblyInfo.cs

Listing 6.32 ScriptResource Attribute in AssemblyInfo.cs

[assembly: ScriptResource(
"Localization.Controls.ClientScript.CurrencyTextBox.js",
"Localization.Controls.ClientResources.CurrencyTextBox",
"CurrencyTextBox.Res")

]

The ScriptResource attribute takes three parameters. The first param-
eter is the name of the JavaScript file to which we want to associate the
resources. The second is the unlocalized name of the resource file that con-
tains the resources. It also doesn’t contain the .resx extension. Finally, the
final parameter is the client type name that we want to assign the resources
to. You can pick anything you want for the final parameter, but this type
name is the prefix for any of your resources when you want to access them
on the client. In this example, we picked CurrencyTextBox.Res so when we
want to access the InvalidNumberMessage resource on the client we access
it as CurrencyTextBox.Res.InvalidNumberMessage.

So, that covers how we wire up our resources to our JavaScript file.
What we still don’t know, however, is how ASP.NET AJAX makes Currency
TextBox.Res.InvalidNumberMessage available to us on the client.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Providing Localized Scripts

Providing the resource CurrencyTextBox.Res.InvalidNumberMessage to us
on the client is a two-step process.

First, the correct ScriptResource.axd URL, which provides access to our
embedded script, has to be built and placed on the client. The Script
Resource.axd URL build process, which occurs in the ScriptResource
Handler, determines what culture this URL supports by examining the
CurrentUICulture property of the current thread. It then encodes the
CurrentUICulture into the URL. Listing 6.33 gives two examples of a
request for a script library. The only difference between the two requests is
that the first request supports the en-US culture, whereas the second
request supports the es-MX culture. The highlighted portions show how
they are slightly different.

Listing 6.33 ScriptResource.axd Paths for CurrencyTextBox.js with Different Cultures

http://joel-
pc/Localization/ScriptResource.axd?d=y0FpvlbR8rvCNIvjznmXr8afiNyFTtTqcbECtPx
EmFGxuSOO_5l5U-Vhi9JVx4FrLRqtsDHMoCl36Aj-a1pckaLf79Lsrvmp9fe9QNdUekM1&
t=ffffffff957fb73d

http://joel-pc/Localization/ScriptResource.axd?d=
y0FpvlbR8rvCNIvjznmXr8afiNyFTtTqcbECtPxEmFGxuSOO_5l5U-Vhi9JVx4FrLRqt
DHMoCl36Aj-a1pckTA_GsG6CN_yvUOcVAEkIO81&t=ffffffff957fb73d

Chapter 6: ASP.NET AJA X Localization306

NOTE Script Caching

Because the ScriptResource.axd URL changes based on the CurrentUI
Culture, each requested culture-specific script will have a cached copy
on the client.

Now that we’ve covered that it’s up the ScriptResource.axd URL build
process to encode the CurrentUICulture information into the URL, we can
look at the second step in the process.

The second step of the process is handling the HTTP request for the
ScriptResource.axd URL. As was the case with building the ScriptResource.
axd URL, ScriptResourceHandler handles the request.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ScriptResourceHandler starts by decrypting the request’s parameters
and determining what file and what culture the request contains. After it
determines the culture, it reads the correct resource file and combines it
with the JavaScript file that was also specified in the request. What ends up
being emitted in the response is code like that shown in Listing 6.34.

Listing 6.34 Embedded CurrencyTextBox.Res

/// <reference name="MicrosoftAjax.js">
Number.parseLocaleFixed = function(value) {

return Number.parseLocale(value.replace(" "," "));
}

Type.registerNamespace("Localization.Controls");
Localization.Controls.CurrencyTextBox = function(element)
{

Localization.Controls.CurrencyTextBox.initializeBase
(this, [element]);

this._focusDelegate = null;
this._blurDelegate = null;
this._unFormattedValue = null;

};

Localization.Controls.CurrencyTextBox.prototype = {
… // PROTOTYPE BODY OMITTED FOR BREVITY

};

Localization.Controls.CurrencyTextBox.registerClass (
"Localization.Controls.CurrencyTextBox",
Sys.UI.Control

);
Type.registerNamespace('CurrencyTextBox');
CurrencyTextBox.Res={"InvalidNumberMessage":"\u0027{0}\u0027 n\u0027est
pas un nombre valide"};
if(typeof(Sys)!=='undefined')Sys.Application.notifyScriptLoaded();

Localization in ASP.NET AJA X 307

TIP ScriptResourceHandler

We’re leaving out a lot of the details about how ScriptResource
Handler works. It’s a very important part of ASP.NET AJAX, and we
cover it in depth in Chapter 8, “ASP.NET AJAX Communication
Architecture,” and Chapter 9, “Application Services.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As the highlighted portion of Listing 6.34 shows, ASP.NET AJAX
automatically inserted the CurrencyTextBox.Res object with the Invalid-
NumberMessage property and assigned it the value \u0027{0}\u0027 n\
u0027est pas un nombre valide. This is how we’re able to access Currency
TextBox.Res.InvalidNumberMessage.

Chapter 6: ASP.NET AJA X Localization308

NOTE \u0027

ASP.NET AJAX encoded the string’s single quotations.

TIP ASP.NET AJAX and ASP.NET Correlation

Just as script globalization used the thread’s CurrentCulture property
to create the correct Sys.CultureInfo object for the Sys.Culture
Info.CurrentCulture property, script localization uses the thread’s
CurrentUICulture property to choose the correct resource file for the
script library. This is functionally similar to how ASP.NET uses
CurrentCulture to format dates and numbers and uses CurrentUI
Culture to choose the correct resource file.

Adding the Filters to the Page

Now that we’ve walked through our CurrencyTextBox control, let’s create
our amount filter. Listing 6.35 shows the markup that adds two Currency
TextBox controls and a Filter Transactions button to the page to build our
amount filter.

Listing 6.35 Defining the Amount Filter

<div id="FilterPanel"
style="position: relative; top: 2px; left: 5px;">

<div id="CurrencyFilterPanel"
style="position: absolute;">

<div id="CurrencyRangeFilterHeader"
style="position: relative">

<asp:Label ID="CurrencyRangeLabel"
runat="server"
Text="Amount Filter"
meta:resourcekey="CurrencyRangeLabelResource1" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

</div>
From:
<cc1:CurrencyTextBox ID="FromCurrencyTextBox"

runat="server"
Width="75px"
Wrap="False" />

To:
<cc1:CurrencyTextBox ID="ToCurrencyTextBox"

runat="server"
Width="75px"
Wrap="False" />

<asp:Button ID="FilterButton"
runat="server"
Text="Filter Transactions"
OnClientClick="return checkAmounts();"
meta:resourcekey="FilterButtonResource1" />

</div>
</div>

Our CurrencyTextBoxes are self-contained and will validate user input
as the user leaves the textbox. However, we still need to do a little valida-
tion when the user presses the Filter Transactions button. We want to vali-
date two things. First, because the user could have entered an invalid value
in the textbox and not changed it to a valid value even after we’ve dis-
played the initial error message, we want to revalidate that the Currency
TextBoxes contain valid values. Second, after their values have been vali-
dated, we want to make sure that the From CurrencyTextBox has a value
less than or equal to that of the To CurrencyTextBox. Allowing the From
value to be greater than the To value just doesn’t make any sense.

If at any point the code finds a problem with the CurrencyTextBox
values, a localized message should be displayed to the user stating the
problem.

We apply our validation logic by creating a JavaScript method called
checkAmounts and wiring it to the OnClientClick property of our Filter
Transactions button. We’re going to place our checkAmounts method inside
its own JavaScript file called Filter.js. Figure 6.35 shows Visual Studio with
the new JavaScript file added.

Localization in ASP.NET AJA X 309

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.35 Our new Filter.js file

Chapter 6: ASP.NET AJA X Localization310

NOTE OnClientClick

Wiring to the OnClientClick results in the checkAmounts function
being applied to the input tag’s onclick event.

We also need to add a ScriptReference to our page’s ScriptManager
control. Listing 6.36 shows the new ScriptReference inside our Script
Manager control.

Listing 6.36 Adding the Filter.js ScriptReference

<asp:ScriptManager ID="ScriptManager"
runat="server"
EnableScriptGlobalization="true"
EnableScriptLocalization="true">

<Scripts>
<asp:ScriptReference Path="~/ClientScript/Filter.js" />

</Scripts>
</asp:ScriptManager>

Now that we’ve got our Filter.js file wired up to our ScriptManager con-
trol, we need to write the checkAmounts function. Listing 6.37 shows the full
method body of checkAmounts.

Listing 6.37 Defining checkAmounts

/// <reference name="MicrosoftAjax.js">
function checkAmounts() {

var fromAmount = $find("FromCurrencyTextBox");
var unFormattedFrom = fromAmount.get_unFormattedValue();
var formattedFrom = null;

if (unFormattedFrom !== null && unFormattedFrom !== "") {
formattedFrom = Number.parseLocaleFixed(unFormattedFrom);
if (isNaN(formattedFrom)) {

alert (

http://lib.ommolketab.ir
http//lib.ommolketab.ir

String.format(
Filter.Res.InvalidCurrencyFilterMessage,
Filter.Res.FromAmount

)
);
return false;

}
}

var toAmount = $find("ToCurrencyTextBox");
var unFormattedTo = toAmount.get_unFormattedValue();
var formattedTo = null;

if (unFormattedTo !== null && unFormattedTo !== "") {
formattedTo = Number.parseLocaleFixed(unFormattedTo);
if (isNaN(formattedTo)) {

alert (
String.format(
Filter.Res.InvalidCurrencyFilterMessage,
Filter.Res.ToAmount

)
);
return false;

}
}

if (formattedFrom !== null && formattedTo !== null) {
if (formattedFrom > formattedTo) {

alert (Filter.Res.ToAmountGreaterThanFromAmountMessage);
return false;

}
}

return true;
}

The checkAmounts method performs three tasks.
First, it determines whether the value of the From CurrencyTextBox is

valid. It does this by reparsing the unformatted value stored in the client
control using parseLocaleFixed and testing it as a number using the isNaN
method. If the value isn’t a valid number, a message is alerted stating that
the From amount is invalid and the method returns false.

The second task repeats the first step, but uses the To CurrencyTextBox
instead.

The final task is to compare the values of the two CurrencyTextBoxes
(if both have been set) and make sure that the From value is less than or

Localization in ASP.NET AJA X 311

http://lib.ommolketab.ir
http//lib.ommolketab.ir

equal to the To value. If this test fails, a message is alerted stating that the
“From Amount must be less than or equal to the To amount,” and the
method returns false.

Finally, the method returns true if it passes all tests.
In Listing 6.37, we highlighted the code that produces the messages dis-

played to the user when the code finds a problem with one of the filters’
values. We highlighted it because we use an object to store the strings rather
than hard-code them directly into the code.

We store them in an object called Filter.Res that is also placed in our
Filter.js file. Listing 6.38 shows the definition of Filter.Res.

Listing 6.38 Defining Filter.Res

Type.registerNamespace("Filter");
Filter.Res = {

FromAmount: "From Amount",
InvalidCurrencyFilterMessage:

"The filter can't be applied because
the '{0}' is not a valid number.",

ToAmount: "To Amount",
FromAmountGreaterThanToAmountMessage:

"The From Amount must be less
than or equal to the To Amount."

};

Filter.Res is similar to the CurrencyTextBox.Res object we accessed
from within our CurrencyTextBox client control. The main difference
between the two is that we are declaring Filter.Res directly in our Filter.js
file instead of using an external resource file and having ASP.NET AJAX
generate the object and attach it to our rendered JavaScript. This is one of
the main differences between the embedded resource model and the static
file model.

Figure 6.36 shows our Transactions page with an error message dis-
played after we’ve clicked the Filter Transactions button.

The problem with the current state of our Transactions page with our
new filter added is that no matter what culture we select using our Select
Culture drop-down, the error messages produced by the Filter Transactions
button are always in English. To fix this, we need to localize our Filter.js file.
We do this by using ASP.NET AJAX’s static file localization model.

Chapter 6: ASP.NET AJA X Localization312

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.36 Transactions page with “Invalid From Amount” error message

We’ve already started the process by placing our error messages in the
separate Filter.Res object. The next step is to create copies of the Filter.js
file for each culture and to rename them accordingly. Figure 6.37 shows our
ClientScript folder after we’ve created the two new Filter.js files.

Localization in ASP.NET AJA X 313

Figure 6.37 Localized Filter.js files

As Figure 6.37 shows, the naming convention for the static files is
FileName.culture.js.

As you might have deduced, changing the values stored in Filter.Res
is how we’re going to localize each Filter.js file for the Spanish (Mexico) and
French cultures. Listing 6.39 and Listing 6.40 show the Filter.Res object in
the Spanish (Mexico) and French Filter.js files.

Listing 6.39 Defining Filter.Res for Spanish(Mexico)

Filter.Res = {
FromAmount: "De Cantidad",
InvalidCurrencyFilterMessage: "El filtro no puede ser aplicado porque '

{0} ' no es un número válido.",
ToAmount: "A la Cantidad",
FromAmountGreaterThanToAmountMessage: "De cantidad debe estar menos que o

el igual al a ascender."
};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 6.40 Defining Filter.Res for French

Filter.Res = {
FromAmount: "De la Quantité",
InvalidCurrencyFilterMessage: "Le filtre ne peut pas être appliqué parce

que '{0} 'n'est pas un nombre valide.",
ToAmount: "À la Quantité",
FromAmountGreaterThanToAmountMessage: "De la quantité doit être inférieur

ou égal à pour s'élever."
};

Replacing Filter.Res values with localized versions isn’t the last step
in the static file model. We need to modify our ScriptReference to include
information about what culture-specific versions of our static file exist. We
do this by setting the ResourceUICultures property. Listing 6.41 shows
how we set this property to support the es-MX and fr cultures.

Listing 6.41 Setting ResourceUICultures on the Filter.js ScriptReference

<Scripts>
<asp:ScriptReference Path="~/ClientScript/Filter.js"

ResourceUICultures="es-mx, fr" />
</Scripts>

Now when we run our page, ASP.NET AJAX automatically substitutes
the appropriate localized version of our Filter.js file. Figure 6.38 shows the
Script Documents loaded by Internet Explorer when we navigate to our
Transactions page and select the Spanish / Mexico value from the Select
Culture drop-down.

Chapter 6: ASP.NET AJA X Localization314

Figure 6.38 Script Documents showing Filter.es-mx.js file use

Having the actual Filter.es-mx.js file loaded into the Script Documents
list means that there is an actual script tag on the page that points back to
this file. Listing 6.42 shows an excerpt of our Transactions page’s rendered
HTML that holds this script tag.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 6.42 The Filter.es-MX.js script Tag

<script src="ClientScript/Filter.es-MX.js"
type="text/javascript"></script>

Localization in ASP.NET AJA X 315

NOTE Static File Localization Model

With the static file model, replacing strings with translated versions is
the most common use of the script localization capability, but we’re not
constrained to just replacing strings because we’re replacing the entire
file. We could alter the way our methods work based on which culture
is being used, or we could have a completely different file body.

Finally, when we click our Filter Transactions button when the From
value is greater than the To value, an error message in Spanish will display.
Figure 6.39 shows this error message.

Figure 6.39 Our Spanish error message

TIP Missing Localized JavaScript File

Suppose, for instance, that we deleted the Filter.es-MX.js file from the
ClientScript directory, but left the es-MX value in the ResourceUI
Cultures property of the Filter.js ScriptReference. If you changed the
running culture to Spanish (Mexico), ASP.NET AJAX would still
update the Filter.js script tag to use the Filter.es-mx.js file. At the point
where ASP.NET AJAX makes a decision to use this file, it has no idea
what static files are available, because they could be anywhere on the
file system. Because of this, no Filter.js file would be loaded at all, and
our checkAmounts function would not be available to us.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that we’ve updated our page to automatically load the localized
version of our Filter.js file, we’ve successfully localized the ASP.NET AJAX
portion of our now filter Transactions.aspx page.

SUMMARY

In this chapter, we covered ASP.NET AJAX localization. Because its inner
workings rely heavily on regular ASP.NET localization, we started with one
method of localization and localized an ASP.NET page using local
resources.

We then moved on to ASP.NET AJAX’s localization capabilities by cov-
ering what new JavaScript methods support localization in client code and
how the server portion of ASP.NET AJAX supports these new JavaScript
methods through the Sys.CultureInfo object.

We then developed a brand new ASP.NET AJAX control that used the
new localized JavaScript methods and a new ability that enables us to mod-
ify embedded script files on-the-fly by associating a resource file to the
script file through the new ScriptResource attribute.

Finally, we brought our new control to the page and used it to provide
filtering capabilities. In addition to using our new localized control, the fil-
tering capabilities relied on the ASP.NET AJAX static file localization model
to provide culture-specific resources at the page level.

Chapter 6: ASP.NET AJA X Localization316

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7
Control Development in a
Partial Postback Environment

I N T H E P R E C E D I N G C H A P T E R S , we covered how to create ASP.NET
AJAX server controls that contain AJAX capabilities. We added AJAX

capabilities to a server control by creating custom client components,
behaviors, and controls that used and extended the Microsoft AJAX Library
and then used a ScriptDescriptor to automatically create an instance of
the client component, behavior, or control whenever that server control was
added to a page.

Whenever we walked through an example, we always looked at how the
server control worked during a full page load. We always fully replaced the
content of the page with new content and discussed what the server control
was doing. However, we’re sure that you are aware that ASP.NET AJAX pro-
vides a way to partially update a page through the UpdatePanel server con-
trol. Using an UpdatePanel changes things a bit. Because we’re replacing
parts of the DOM, rather than fully replacing it with new content, our client
components, controls, and behaviors can be disposed of and created during
a partial postback. We might not have anticipated them being used this way,
and they may have some unexpected problems when they are.

So, in this chapter, we talk about what happens when we place an
ASP.NET AJAX server control inside an UpdatePanel.

317

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We start with an overview of how an UpdatePanel behaves both on the
client and the server and then move on to how a partial postback affects a
component, control, or behavior.

From there, we cover how registering a client script changes in a partial
postback environment, because this is a common task for control develop-
ers, and then we conclude with how Sys.Application reacts to a partial
postback.

UpdatePanel Behavior

To understand how an ASP.NET AJAX server control is affected by placing
it in an UpdatePanel and how our code might need to change to accommo-
date the partial postback environment, we need to first understand the gen-
eral behavior of an UpdatePanel.

An UpdatePanel control is used to partially render portions of a page
without the need to write any JavaScript code. The ease of adding AJAX
capabilities to an application while still utilizing the server-based develop-
ment skills developers already have has made the UpdatePanel the most
rapidly adopted piece of ASP.NET AJAX.

Chapter 7: Control Development in a Partial Postback Environment318

NOTE Coverage of the UpdatePanel

In this chapter, we focus on the UpdatePanel from the perspective of a
control developer and not as a general page developer. This means that
we do not go into a lot of detail about how to use the UpdatePanel but
instead focus on how it affects the controls contained within it.

The goal of this section is to give you just enough details on the inner
workings of the UpdatePanel to explain how a component, behavior,
or control can be affected by a partial postback.

The diagram in Figure 7.1 shows the high-level steps that occur on both
the client and the server when a partial postback occurs.

A triggering event from the UpdatePanel begins the process that builds
up a request and sends it to the server for processing. When the server
receives the request, it is processed just like any other page request. The
page lifecycle executes as it normally does with the page and its child

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7.1 High-level steps during partial page rendering

Upon receiving the response from the server, the client replaces the con-
tents of the updating UpdatePanels with the response received from the
server. In addition, any associated scripts that were part of the response are
processed.

From this brief description, you can see that there are many steps that
occur on both the client and the server to process a partial postback; and as
you will learn, many factors have to be considered for ASP.NET AJAX con-
trols contained within an UpdatePanel to work correctly.

UpdatePanel Behavior 319

Client

1. Partial postback is triggered.
2. Request is composed.
3. The request is sent to the server.

Server

1. Page is loaded.
2. Controls are loaded.
3. Controls are rendered (only ones that are
contained within an updating UpdatePanel are
rendered to the real HTMLTextWriter).
4. Page rendered.
5. Partial postback response sent back.

4. The response is received by the client.
5. DOM elements contained within an
updating UpdatePanel are destroyed.
6. UpdatePanel contents are replaced
with returned content.
7. Scripts are processed.

1 The main difference that occurs during a partial postback versus a normal postback is
that when a control is not contained within an updating UpdatePanel, the HtmlText
Writer that it renders to is not the one that is used to compose the response. Rather, it is
a throw-away writer.

controls rendering their contents to an appropriate HtmlTextWriter1 and
then sends the response back to the client.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To demonstrate a little further how the UpdatePanel behaves, let’s exam-
ine a simple page that contains an UpdatePanel, a label, a textbox, and two
buttons. Listing 7.1 shows the page layout, and Figure 7.2 shows its
browser output. On our example page, the label shows the last time the
page was updated, the textbox shows the last time the UpdatePanel was
updated, Button1 causes a partial postback and UpdatePanel1 to be
updated, and Button2 causes a complete page postback.

Listing 7.1 Sample UpdatePanel Page Markup

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
Inherits="SimpleUpdatePanelDemo._Default" %>

<html>
<head runat="server">

<title>Sample Update Page</title>
</head>
<body>

<form id="form1" runat="server">
<asp:Label ID="Label1" runat="server">

<%=DateTime.Now %>
</asp:Label>
<asp:ScriptManager ID="ScriptManager1" runat="server" />
<asp:UpdatePanel ID="UpdatePanel1"

runat="server"
UpdateMode="Conditional">

<ContentTemplate>
<asp:TextBox ID="TextBox1" runat="server" />

</ContentTemplate>
<Triggers>

<asp:AsyncPostBackTrigger ControlID="Button1"
EventName="Click" />

</Triggers>
</asp:UpdatePanel>
<div>

<asp:Button ID="Button1"
runat="server"
Text="Update Panel Refresh" />

</div>
<div>

<asp:Button ID="Button2"
runat="server"
Text="Complete Page Refresh" />

</div>
</form>

</body>
</html>

Chapter 7: Control Development in a Partial Postback Environment320

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7.2 Sample UpdatePanel page browser display

When we press Button1, a partial postback occurs. Using Web Devel-
opment Helper, Figure 7.3 shows the partial postback HTTP request and
response. Looking at the information contained in the request, which is the
top portion of Figure 7.3, we can see that the request includes TextBox1 and
its value, the page’s ViewState, Button1 and its value, the event validation
information, which is used to ensure the validity of the controls’ values on
the server, and ScriptManager1 and its value, which has been updated to
include the button’s ID that caused the postback.

When the server processes the partial postback request, the page and
controls are processed just as if we had initiated a normal postback. What
this boils down to is that during a partial postback, the page’s controls will
be performing the same steps they did when our page was first created,
essentially re-creating the controls from scratch again. The fact that all
controls are reprocessed just as they were on the page’s first load is an

UpdatePanel Behavior 321

http://lib.ommolketab.ir
http//lib.ommolketab.ir

important consideration because, as you will see later in this chapter, some
of our development practices that would work fine during a complete page
refresh will not work anymore.

Chapter 7: Control Development in a Partial Postback Environment322

Figure 7.3 Web Development Helper view of a partial postback

TIP ScriptControls and ExtenderControls

Recalling our earlier discussions about ExtenderControl and Script
Control, the two base server types we use to create ASP.NET AJAX
controls, we know that when these controls process they create
ScriptDescriptor objects that will eventually be translated to client
code and register as requiring certain script files by creating Script
Reference objects.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

After our controls have completed processing and the page has com-
pleted rendering, the response, shown in the bottom portion of Figure 7.4
in its text form, is sent back to the client for processing. The response’s
pipe-delimited format is specific to a partial postback and contains the
information needed by the Microsoft AJAX Library to partially update the
DOM tree.

UpdatePanel Behavior 323

Figure 7.4 Web Development Helper view of a partial postback in text form

NOTE Missing Details

Yes, we’re completely glossing over the details of how the partial post-
back response is actually created. The point we’re trying to stress is
that all server controls, whether they are contained within an updating
UpdatePanel or not, are processed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Web Development Helper to view the response in a formatted
manner, shown in Figure 7.3, we can see the HTML content that will replace
the UpdatePanel1 leaf of the DOM tree as the response is processed. The
other data contained within the response will also affect how the
UpdatePanel behaves, but this replacing a DOM element’s content with
new HTML is essentially the main behavior of the UpdatePanel.

The Effects of a Partial Postback on Client Components

As stated earlier, we must be cognizant that our ASP.NET AJAX server con-
trols can be placed inside an UpdatePanel. We need to understand how our
controls will react when placed inside an UpdatePanel because there might
be unexpected results when the server control’s associated client compo-
nent is disposed of and re-created during the partial postback.

To begin to understand how a client component can be affected by a par-
tial postback, we first need to have a clear picture of what happens to them
during a partial postback.

Generally, if the server control that a client component was created by
is reprocessed during a partial postback and its output is sent down to the
client because it is contained within an updating UpdatePanel, the client
component is automatically disposed of and re-created.

The disposal re-creation process is best illustrated through a quick
demonstration. In the following code, we define a client component, create
an instance of it using a server control and a ScriptComponentDescriptor,
and then place the control within an UpdatePanel. When we click a button
also contained within our UpdatePanel, we’ll see through debug messages
that our component is disposed and then re-created.

Chapter 7: Control Development in a Partial Postback Environment324

NOTE Components versus Behaviors and Controls

At this level of abstraction, it does not matter whether the client com-
ponent is a true component inheriting directly from Sys.Component or
whether it is a behavior or control. They are affected in much the same
way by a partial postback.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 7.2, Listing 7.3, and Listing 7.4 show the code pieces of our
example.

Listing 7.2 Component.js

/// <reference name="MicrosoftAjax.js" />
MyComponent = function() {

MyComponent.initializeBase(this, null);
}
MyComponent.prototype = {

initialize: function() {
Sys.Debug.trace(
String.format("Component: {0} initialized", this.get_id()));

MyComponent.callBaseMethod(this, 'initialize');
},
dispose: function() {

Sys.Debug.trace(
String.format("Component: {0} disposed", this.get_id()));

MyComponent.callBaseMethod(this, 'dispose');
}

}
MyComponent.registerClass("MyComponent", Sys.Component);

The Effects of a Partial Postback on Client Components 325

NOTE Debug Messages

Notice that we output debug messages when our component goes
through its initialize and dispose methods. These messages will
appear in the Visual Studio output window.

Listing 7.3 SimpleComponent.cs

using System.Web.UI;
using System.Collections.Generic;

[assembly: WebResource ("Controls.JavaScript.Component.js",
"text/javascript")]

namespace Controls
{

public class SimpleComponent : ScriptControl
{

protected override IEnumerable<ScriptDescriptor>
GetScriptDescriptors()

{
ScriptComponentDescriptor scd =
new ScriptComponentDescriptor("MyComponent");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 7.3 continued

scd.ID = "Comp 1";
yield return scd;

}

protected override IEnumerable<ScriptReference>
GetScriptReferences()

{
yield return
new ScriptReference("Controls.JavaScript.Component.js", "Controls");

}
}

}

Listing 7.4 SimpleComponent.aspx

<%@ Page Language="C#"
AutoEventWireup="true"
CodeBehind="SimpleComponent.aspx.cs"
Inherits="Chapter_7.SimpleComponent" %>

<%@ Register Assembly="Controls"
Namespace="Controls"
TagPrefix="cc1" %>

<html>
<head runat="server">

<title>Untitled Page</title>
</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />
<asp:UpdatePanel ID="UP1"

runat="server"
UpdateMode="Conditional">

<ContentTemplate>
<cc1:SimpleComponent ID="Component" runat="server" />
<asp:Button ID="tstButton" Text="Update" runat="server" />

</ContentTemplate>
</asp:UpdatePanel>
</form>

</body>
</html>

When we execute our page from within Visual Studio, we see the com-
ponent’s initialization message in the Visual Studio output window. Fig-
ure 7.5 shows the initialization message.

Chapter 7: Control Development in a Partial Postback Environment326

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7.5 The initialization message in the Visual Studio Debug window

When we click the Update button, two more messages are appended to
the Visual Studio output window, as shown in Figure 7.6.

The Effects of a Partial Postback on Client Components 327

Figure 7.6 The dispose and second initialization messages in the Visual Studio Debug

window

The second message in the window indicates that dispose was called on
component Comp 1, and the third message indicates that initialize was
called again. This output indicates that our component was disposed and
re-created again when the partial postback response was received. If we
repeatedly click the Update button, Comp 1 will be repeatedly disposed and
re-created, going through its initialization process each time.

Comp 1 is re-created again when we click the Update button because, as
covered in the “UpdatePanel Behavior” section, Comp 1’s owner server con-
trol, which in our example is the SimpleComponent control that was added
to the page through markup, is processed again and therefore emits the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

same $create statement it did on the initial page load. Figure 7.7 shows the
response received after clicking the Update button. The highlighted portion
shows the $create statement that was emitted by the ScriptComponent
Descriptor.

Chapter 7: Control Development in a Partial Postback Environment328

Figure 7.7 Re-creating Comp 1 during a partial postback

Whereas a client component is re-created in a partial postback when
its containing server control is re-rendered and the control’s Script
Descriptors are processed, how a client component is automatically dis-
posed differs depending on whether the component is truly a component,
directly inheriting from Sys.Component, or whether it is a control or behav-
ior. Because the disposal methods differ and because knowing how and
when your client component is disposed allows you to correct disposing
problems and tweak the disposal pattern, let’s take a closer look at them.
First, we focus on how controls and behaviors are automatically disposed,
and then we focus on how components are automatically disposed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Automatic Disposal of Behaviors and Controls
Automatic disposal of a behavior or control occurs during a partial postback
when the behavior’s or control’s associated DOM element is destroyed.
DOM elements are destroyed when they are contained within a section of
the DOM tree that is being replaced by a partial postback response.

To illustrate this, we place an ASP.NET AJAX server control that creates
a client behavior inside an UpdatePanel and then cause the UpdatePanel to
update.

Listing 7.5, Listing 7.6, and Listing 7.7 highlight the code for our Simple
Behavior test page and control.

Listing 7.5 SimpleBehavior.js

SimpleBehavior = function(element) {
SimpleBehavior.initializeBase(this, [element]);

};
SimpleBehavior.prototype = {

dispose: function() {
Sys.Debug.trace
(String.format("Behavior: {0} disposed", this.get_id()));

SimpleBehavior.callBaseMethod(this, 'dispose');
}

};
SimpleBehavior.registerClass("SimpleBehavior", Sys.UI.Behavior);

Listing 7.6 SimpleBehavior.cs

using System.Web.UI;
using System.Collections.Generic;

[assembly: WebResource ("Controls.JavaScript.SimpleBehavior.js",
"text/javascript")]

namespace Controls
{

public class SimpleBehavior : ScriptControl
{

protected override IEnumerable<ScriptDescriptor>
GetScriptDescriptors()

{
yield return

new ScriptBehaviorDescriptor("SimpleBehavior", this.ClientID);
}

The Effects of a Partial Postback on Client Components 329

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 7.6 continued

protected override IEnumerable<ScriptReference>
GetScriptReferences()

{
yield return new
ScriptReference(

"Controls.JavaScript.SimpleBehavior.js",
"Controls");

}
}

}

Listing 7.7 SimpleBehavior.aspx

<%@ Page Language="C#"
AutoEventWireup="true"
CodeBehind="SimpleBehavior.aspx.cs"
Inherits="Chapter_7.SimpleBehavior" %>

<%@ Register Assembly="Controls"
Namespace="Controls"
TagPrefix="cc1" %>

<html>
<head runat="server">

<title>Simple Behavior</title>
</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />
<asp:UpdatePanel ID="UP1" runat="server" UpdateMode="Conditional">

<ContentTemplate>
<cc1:SimpleBehavior ID="Beh1" runat="server" />
<asp:Button ID="tstButton" Text="Update" runat="server" />

</ContentTemplate>
</asp:UpdatePanel>
</form>

</body>
</html>

Looking at Listing 7.8, which partially shows the HTML created when
the Simple Behavior page is first rendered, we can see that the UpdatePanel,
represented by the div tag with id="UP1", contains the span tag that repre-
sents the Beh1 instance of the SimpleBehavior server control. There is also

Chapter 7: Control Development in a Partial Postback Environment330

http://lib.ommolketab.ir
http//lib.ommolketab.ir

a SimpleBehavior behavior attached to that span tag by the highlighted
$create statement.

Listing 7.8 Rendered HTML from SimpleBehavior.aspx

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>

<title>
Simple Behavior

</title>
</head>
<body>

<form name="form1"
method="post"
action="SimpleBehavior.aspx"
id="form1">

…

<div id="UP1">

<input type="submit"

name="tstButton"
value="Update"
id="tstButton" />

</div>
…

<script type="text/javascript">
//<![CDATA[
Sys.Application.initialize();
Sys.Application.add_init(function() {

$create(SimpleBehavior, null, null, null, $get("Beh1"));
});
//]]>
</script>
</form>

</body>
</html>

When we click the Update button, UpdatePanel UP1’s content, which
includes the span tag created for the Beh1 SimpleBehavior, is going to be
replaced with new content. We can see this by using Web Development
Helper to capture the HTTP traffic. Figure 7.8 shows the captured response
and highlights the portion that indicates that UP1’s content will be replaced.

The Effects of a Partial Postback on Client Components 331

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7.8 UpdatePanel UP1’s content being replaced

Right before UP1’s content is replaced with the new content, a method on
the client PageRequestManager object called _destroyTree is executed.
_destroyTree’s responsibility is to find any behaviors or controls that are
attached to any DOM element contained within UP1’s DOM tree and call
dispose on it. The method does this by recursively iterating through UP1’s
DOM tree and determining whether there is a control or behaviors attached
to the current DOM element. It finds controls through the control expando
property that will be attached to the DOM element if a control is attached,
and it finds behaviors by using the static method Sys.UI.Behavior.get
Behaviors, which returns all behaviors attached to a given DOM element.
If it finds attached controls or attached behaviors, it calls dispose on each
control or behavior and moves on.

This is how behaviors and controls are automatically disposed.

Chapter 7: Control Development in a Partial Postback Environment332

NOTE PageRequestManager

The client PageRequestManager object is the object that is responsible
for handling UpdatePanels. It is contained within the MicrosoftWeb
Forms.js file and is responsible for creating the partial postback request
and for processing the partial postback response.

Problems with the ImageRotator Extender

Now that we understand how placing an ASP.NET AJAX server control
inside an UpdatePanel affects when and how behaviors and controls will

http://lib.ommolketab.ir
http//lib.ommolketab.ir

automatically be disposed and re-created, let’s take a look at one of our pre-
vious examples, the ImageRotator extender that we created in Chapter 5,
“Adding Client Capabilities to Server Controls,” and see how it acts when
we place it inside an UpdatePanel. Walking through this example will allow
us to see how a common programming mistake hidden in a normal
postback environment can have a drastic impact in a partial postback
environment.

To start, Listing 7.9 shows the page with the ImageRotator extender
inside an UpdatePanel.

Listing 7.9 ImageRotator Extender in an UpdatePanel

<%@ Page Language="C#"
AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
Inherits="PartialPostBackWeb._Default" %>

<%@ Register assembly="ImageRotatorExtender"
namespace="ImageRotatorExtender"
tagprefix="cc1" %>

<html>
<head runat="server">

<title>Image Rotator Update Panel Example</title>
</head>
<body>

<form id="form1" runat="server">
<h2>Pictures of Florence provided by
<asp:Image ID="Image2"

runat="server"
ImageUrl="~/images/freeDigitalPhotoslogo.gif" />

</h2>
<h3> Page Last Updated:
<asp:Label ID="Label1" runat="server"

Text="Label" />
</h3>
<asp:ScriptManager ID="ScriptManager1" runat="server" />
<asp:UpdatePanel ID="UpdatePanel1"

runat="server"
UpdateMode="Conditional">

<ContentTemplate>
<h4>Update Panel Last Updated <%=DateTime.Now %>
</h4>
<asp:Image ID="Image1"

runat="server"
ImageUrl="~/images/1.jpg" />

The Effects of a Partial Postback on Client Components 333

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 7.9 continued

<cc1:ImageRotator ID="Image1_ImageRotator"
runat="server"
ImageList="images/2.jpg,

images/3.jpg,
images/4.jpg,
images/1.jpg"

TargetControlID="Image1" />
</ContentTemplate>
<Triggers>
<asp:AsyncPostBackTrigger

ControlID="Button1"
EventName="Click" />

</Triggers>
</asp:UpdatePanel>
<div>

<asp:Button ID="Button1"
runat="server"
Text="Post Back Update Panel" />

</div>
<div>

<asp:Button ID="Button2"
runat="server"
Text="Post Back Page" />

</div>
<p>

Royalty free stock
Photography for websites, PowerPoint, newletters, forums,
blogs, schools and homework - FreeDigitalPhotos. net

</p>
</div>

</form>
</body>

</html>

When we cause the UpdatePanel to refresh multiple times by clicking
Button1 (Postback Update Panel), we start to get some interesting results.
Figure 7.9 shows the odd-looking image that we get after we’ve caused the
UpdatePanel to refresh a few times.

We see this odd-looking image because whenever an instance of the
ImageRotator is created, which occurs every time we cause the
UpdatePanel to refresh, a new interval is attached to the window. Listing
7.10 highlights the code that creates the interval.

Chapter 7: Control Development in a Partial Postback Environment334

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7.9 ImageRotator extender in an UpdatePanel

Listing 7.10 Improperly Disposed Window.setInterval call

_setupRotation: function(){
var expression = String.format("$get('{0}').

ImageRotator._rotateImage()", this.get_element().id);

window.setInterval(expression,this.get_rotationInterval()*1000);
}

The Effects of a Partial Postback on Client Components 335

NOTE Full Source Code

Chapter 5 contains the full source code of the ImageRotator extender.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Because we do not clear the interval when the ImageRotator behavior
disposes, we create a race condition of sorts between the different regis-
tered intervals. One interval expires, and it updates the image; the next one
expires shortly thereafter, and it updates the image; and so on. The more
times we refresh the UpdatePanel, the more intervals that get attached and
the faster the image is updated. Cause the UpdatePanel to refresh enough
and the image becomes a blur.

If we had not placed the ImageRotator extender in an UpdatePanel, not
clearing the interval really isn’t a problem because when the page unloads
the window object is destroyed and therefore so are all of its registered inter-
vals. But now that we are effectively causing our ImageRotator behavior
to go through repeated initialize and dispose cycles without the page fully
unloading, our programming mistake becomes obvious.

We can easily solve our interval problem by properly clearing the inter-
val in the dispose method. The highlighted sections in Listing 7.11 show
the changes needed to save the interval’s ID and then use it in a
window.clearInterval call in the dispose method.

Listing 7.11 Clearing the Interval

/// <reference name="MicrosoftAjax.js"/>
Type.registerNamespace("ImageRotatorExtender");

ImageRotatorExtender.ImageRotator = function(element) {
ImageRotatorExtender.ImageRotator.initializeBase(this, [element]);
this._imageIndex = 0;
this._imageList = null;
this._rotationInterval = 3;
this._intervalId = null;

}

ImageRotatorExtender.ImageRotator.prototype = {
...

dispose: function() {
this._imageList = null;
if (this._intervalId !== null) {
window.clearInterval(this._intervalId);
this._intervalId = null;

}
ImageRotatorExtender.ImageRotator.callBaseMethod(this, 'dispose');

},
...
_setupRotation: function(){

Chapter 7: Control Development in a Partial Postback Environment336

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var expression =
String.format(
"$get('{0}').ImageRotator._rotateImage()",
this.get_element().id);

this._intervalId =
window.setInterval(expression,this.get_rotationInterval()*1000);

},
...
}
...

Automatic Disposal of Components
As discussed in the “Automatic Disposal of Behaviors and Controls” sec-
tion, behaviors and controls can be automatically disposed of during par-
tial postback processing. This occurs when the DOM element the control
or behavior is attached to is replaced by the results of the partial postback.
Disposing of the behavior or control is a necessary step because it’s possi-
ble, and actually very likely, that the server code that executes to generate
the partial postback response will emit JavaScript statements to create the
same controls and behaviors again, which will result in errors if the previ-
ous controls and behaviors haven’t been destroyed.

But what about components? Because they aren’t attached to a DOM
element, how are they affected by a partial postback?

Like behaviors and controls, components can be automatically
destroyed during a partial postback. They are destroyed if they were cre-
ated by a server control whose output is contained within an updating
UpdatePanel. Because a component is not associated to a DOM element,
there’s no way that a component can be disposed of due to a DOM element
being destroyed (as happens for a behavior or control). Instead, a compo-
nent is disposed through a mechanism called a dispose script.

Dispose Scripts

A dispose script is a JavaScript statement associated to an UpdatePanel such
that when the UpdatePanel refreshes, it is automatically executed.

When we create an instance of a component using a ScriptComponent
Descriptor and the associated server control has an UpdatePanel as a par-
ent control, a dispose script that disposes the component is automatically

The Effects of a Partial Postback on Client Components 337

http://lib.ommolketab.ir
http//lib.ommolketab.ir

created and attached to the parent UpdatePanel. Listing 7.12 shows the dis-
pose script that is automatically emitted because of the ScriptComponent
Descriptor in Listing 7.3.

Listing 7.12 Comp 1’s Dispose Script

<script type="text/javascript">
//<![CDATA[
Sys.Application.initialize();
Sys.WebForms.PageRequestManager.getInstance()._registerDisposeScript

("UP1", "$find(\u0027Comp 1\u0027).dispose();");
Sys.Application.add_init(function() {

$create(MyComponent, {"id":"Comp 1"}, null, null);
});
//]]>
</script>

In Listing 7.12, the dispose script registration is highlighted. Using the
_registerDisposeScript method available on the PageRequestManager
object, the dispose script $find(\u0027Comp 1\u0027).dispose(); is reg-
istered to execute when UpdatePanel UP1 refreshes.

Chapter 7: Control Development in a Partial Postback Environment338

NOTE Escaped Quotes

\u0027 is the escaped value for the single quote (‘).

It is important to understand that the dispose script shown in Listing
7.12 is registered with the UpdatePanel during the initial execution of the
page and not when the partial postback response is received. When the par-
tial postback response is received, the dispose scripts that were previously
registered with an UpdatePanel are executed, cleared, and then new dis-
pose scripts are registered. This makes sense because the previously created
components need to be destroyed. Components that are to be created based
on the partial postback response will register new dispose scripts that will
be executed during the next partial postback.

To illustrate this point, we can modify Listing 7.3 to create a different
component when the code is executing within a partial postback. Listing
7.13 shows the updated code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 7.13 Creating Different Components Based on Partial Postback

protected override IEnumerable<ScriptDescriptor>
GetScriptDescriptors()

{
if (ScriptManager.GetCurrent(this.Page).IsInAsyncPostBack)
{

ScriptComponentDescriptor scd =
new ScriptComponentDescriptor("MyComponent");

scd.ID = "Partial Postback Component";
yield return scd;

}
else
{

ScriptComponentDescriptor scd =
new ScriptComponentDescriptor("MyComponent");

scd.ID = "Non-Partial Postback Component";
yield return scd;

}
}

Now, when we click the Update button, the nonpartial postback com-
ponent will be disposed, and the partial postback component will be cre-
ated. Figure 7.10 shows the debug messages displayed in the Visual Studio
output window when each component is initialized and disposed.

The Effects of a Partial Postback on Client Components 339

Figure 7.10 The disposal and initialization of each component

In addition to containing the code to create the partial postback compo-
nent, the partial postback response contains a new dispose script that will
dispose of the partial postback component the next time the UP1
UpdatePanel is refreshed. Figure 7.11 shows the partial postback response
and highlights the dispose script registered to dispose the partial postback
component.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7.11 The dispose script for the partial postback component

Finally, just to summarize, a component will be automatically destroyed
due to a partial postback if it was created using a ScriptComponent
Descriptor and its owner server control has an updating UpdatePanel as
an ancestor.

Manual Disposal of a Component, Control, or Behavior
In the previous two sections, we covered how a client component can be
automatically disposed due to a partial postback. These automatic disposal
patterns cover most of the situations where you’ll use a client component,
but sometimes you’ll want manual control of the disposal.

These situations fall into one of two categories. Either the behavior or
control isn’t disposed automatically because of something that it does inter-
nally to itself or you want to prevent the automatic disposal in certain sit-
uations. When these situations arise, you must take manual control of the
disposal process.

Chapter 7: Control Development in a Partial Postback Environment340

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Manual Disposal of Control and Behaviors

The first situation that we cover is when automatic disposal of a behavior
or control doesn’t occur as expected because of something it does internally
to itself. This primarily happens for one reason: The DOM element associ-
ated to the control or behavior was initially a child of an UpdatePanel, but
was moved to a different part of the DOM tree. When the UpdatePanel
updates, the automatic destruction code fails to find the DOM element and
therefore fails to destroy the control or behavior. This can easily cause an
error because a control or behavior with the same ID is going to be created
and added to Sys.Application.

Let’s walk through an example in which you need to move the DOM
element to another location in the tree to get some functionality to work
properly, and because of this you need to manually dispose of the behav-
iors and controls associated to the DOM element.

HoverCard

In this example, we want to create a draggable panel that displays infor-
mation about a person. We’ll call this draggable panel a HoverCard, and we
want to encapsulate all the necessary functionality in a control so that we
can reuse it as needed.

To start, let’s take a look at the server control’s code that we’ll store in
HoverCard.cs. Listing 7.14 shows the server control’s code.

Listing 7.14 HoverCard Server Control

public class HoverCard : ScriptControl
{

private Panel _dragHandle = new Panel();

protected override void OnInit(System.EventArgs e)
{

base.OnInit(e);
_dragHandle.Width = Unit.Pixel(200);
_dragHandle.Height = Unit.Pixel(30);
_dragHandle.BackColor = Color.DarkSlateBlue;

}

protected override IEnumerable<ScriptDescriptor>
GetScriptDescriptors()

{
yield return

The Effects of a Partial Postback on Client Components 341

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 7.14 continued

new ScriptControlDescriptor("HoverCard", this.ClientID);
}

protected override IEnumerable<ScriptReference>
GetScriptReferences()

{
yield return new ScriptReference

("Controls.JavaScript.HoverCard.js", "Controls");
}

protected override HtmlTextWriterTag TagKey
{

get
{

return HtmlTextWriterTag.Div;
}

}

protected override void AddAttributesToRender
(HtmlTextWriter writer)

{
base.AddAttributesToRender(writer);
writer.AddStyleAttribute

(HtmlTextWriterStyle.Width, "200px");
writer.AddStyleAttribute

(HtmlTextWriterStyle.Height, "150px");
writer.AddStyleAttribute

(HtmlTextWriterStyle.BackgroundColor, "Gainsboro");
}

protected override void OnPreRender(System.EventArgs e)
{

base.OnPreRender(e);
this.Controls.Add(this._dragHandle);
DragPanelExtender dpe = new DragPanelExtender();
dpe.ID = this.ID + "DragPanelExtender";
dpe.DragHandleID = this._dragHandle.ClientID;
dpe.TargetControlID = this.ClientID;
this.Controls.Add(dpe);

}
protected override void RenderContents(HtmlTextWriter writer)
{

base.RenderContents(writer);
writer.Write(@"

Name: Joel Rumerman

Hometown: Silver Spring, Md

Chapter 7: Control Development in a Partial Postback Environment342

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Spouse: Stacey

Siblings: Keri");

}
}

This server control does a few things. First, it renders output that looks
something like Figure 7.12.

The Effects of a Partial Postback on Client Components 343

Figure 7.12 A HoverCard’s visual output

It does this by hard coding some output values in the Render method
and setting some of the control’s attributes in the AddAttributesToRender
method.

Second, it creates and wires up a DragPanelExtender, one of the exten-
ders available in the AJAX Control Toolkit, to the control in the OnPre
Render method. This gives the control its dragging capabilities by attaching
a behavior to the DOM element.

Finally, it creates a client control of type HoverCard by registering a
ScriptReference to the HoverCard.js JavaScript file, shown in Listing 7.15,
and using a ScriptControlDescriptor to create an instance of the control.

Listing 7.15 HoverCard Client Control

HoverCard = function(element) {
HoverCard.initializeBase(this, [element]);

};
HoverCard.prototype = {

initialize: function() {
HoverCard.callBaseMethod(this, 'initialize');

},
dispose: function() {

Sys.Debug.trace
(String.format("Control: {0} disposed", this.get_id()));

HoverCard.callBaseMethod(this, 'dispose');
}

};
HoverCard.registerClass("HoverCard", Sys.UI.Control);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

So far, so good. When we add a HoverCard to a test page, shown in List-
ing 7.16, it works as expected. We can drag it around by the title bar and it
displays the information correctly.

Listing 7.16 HoverCard Test Page

<%@ Page Language="C#"
AutoEventWireup="true"
CodeBehind="HoverCardTester.aspx.cs"
Inherits="Chapter_7.HoverCardTester" %>

<%@ Register Assembly="Controls"
Namespace="Controls"
TagPrefix="cc1" %>

<html>
<head runat="server">

<title>HoverCard Tester</title>
</head>
<body style="width:100%;height:750px">

<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />
<cc1:HoverCard ID="HC" runat="server" />
</form>

</body>
</html>

Figure 7.13 shows the HoverCard’s initial position, and Figure 7.14
shows the HoverCard’s position after we’ve dragged it a bit to the right.

Chapter 7: Control Development in a Partial Postback Environment344

Figure 7.13 The HoverCard’s initial location

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7.14 The HoverCard after we’ve dragged it a bit

However, problems start to occur when the HoverCard is placed within
a div tag that is positioned somewhere on the page. The HoverCard’s initial
position seems to be offset by the div tag’s position on the screen, and click-
ing its header causes the HoverCard to initially move by the same offset.

Listing 7.17 shows the modifications to our test page with the div tag.

Listing 7.17 HoverCard Test Page with div Tag

<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />
<div style="position: absolute;

top: 50px;
left: 50px;
height: 200px;
width: 200px;
border: solid 1px black;">

<cc1:HoverCard ID="HC" runat="server" />
</div>
</form>

Figure 7.15 shows the original position of the HoverCard, and Figure 7.16
shows the position of the HoverCard right after we clicked the HoverCard’s
header. Notice how the cursor is in one spot, but the HoverCard is not under it.

The Effects of a Partial Postback on Client Components 345

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7.15 Initial position of the HoverCard in the div tag

Chapter 7: Control Development in a Partial Postback Environment346

Figure 7.16 The HoverCard’s position after we’ve clicked the header

This is obviously not good. If we play around with our div tag, we can
make the problem even more pronounced.

NOTE The Purpose of Wrapping the HoverCard in a div Tag

Wrapping the HoverCard control in a div tag simulates it being con-
tained within another control, a situation that is most likely going to
come up.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Without delving into the causes of the positioning problems too deeply,
we’ll tell you two things. First, the cause of the problem is the DragPanel
Extender. Second, if we move our HoverCard’s associated DOM element so
that it is a child of the body element rather than a child of the div tag, the
problem is corrected.

The Effects of a Partial Postback on Client Components 347

NOTE DragPanelExtender

We’re not trying to pick on the DragPanelExtender with this example.
We may be using it incorrectly, but it does help us elucidate the
concept we’re trying to cover very nicely.

In light of this knowledge, we’re going to alter our HoverCard.js file a
bit so that it automatically moves the HoverCard’s associated DOM element
to be a child of the body tag instead of where it was originally positioned in
the DOM tree. Listing 7.18 highlights the changes needed to accomplish this.

Listing 7.18 Altering HoverCard’s initialize Method to Move the Element to the Body

initialize: function() {
HoverCard.callBaseMethod(this, 'initialize');
var elm = this.get_element();
elm.parentNode.removeChild(elm);
document.body.appendChild(elm);

},

Now when we view our test page, our HoverCard works as it did before
and is positioned correctly.

But (there’s always a but, isn’t there?), we caused ourselves a hidden
problem. We caused the problem by moving the HoverCard from its origi-
nal DOM location and therefore it won’t automatically be destroyed when
it is contained within an updating UpdatePanel. Listing 7.19 sets up this sit-
uation by updating our page’s markup and wrapping our HoverCard in an
UpdatePanel.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 7.19 Placing Our HoverCard in an UpdatePanel

<asp:UpdatePanel ID="UP1"
runat="server"
UpdateMode="Conditional">

<ContentTemplate>
<div style="position: absolute;

top: 50px;
left: 50px;
height: 200px;
width: 200px;
border: solid 1px black;">

<cc1:HoverCard ID="HC" runat="server" />
</div>
<asp:Button ID="tstButton" Text="Update" runat="server" />

</ContentTemplate>
</asp:UpdatePanel>

When we initially run the page, the HoverCard is displayed properly and
we’re able to move it about. Figure 7.17 displays the initial view of the page.

Chapter 7: Control Development in a Partial Postback Environment348

Figure 7.17 The initial view of the page wrapped in an UpdatePanel

However, when we cause the UpdatePanel to update by clicking the
Update button, we receive a JavaScript error. Figure 7.18 shows the error
that we received.

The error states that “Two components with the same id ‘HCDrag
PanelExtender’ can’t be added to the application.” This is essentially telling
us that there is a component with the ID HCDragPanelExtender already in
Sys.Application’s list of managed components and that we’re trying to
add a second one. Adding more than one component to Sys.Application
with the same ID is illegal, as we covered in Chapter 4, “Sys.Application.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7.18 The JavaScript error after we clicked the Update button

If we click Continue on our Visual Studio JavaScript error prompt, we
receive a second error, shown in Figure 7.19: “Two components with the
same id ‘HC’ can’t be added to the application.” This second error mes-
sages indicates that we have another conflict.

The Effects of a Partial Postback on Client Components 349

Figure 7.19 The second JavaScript error after we clicked the first error’s Continue button

These errors occurred because when we moved the HoverCard’s associ-
ated DOM element from its original location in the DOM tree to a child of
the body element instead in the initialize method, we broke its capabil-
ity to be automatically disposed when the containing UpdatePanel was
updated.

However, by manually registering a dispose script with the
UpdatePanel that disposes of the HoverCard, we can correct the problem.
Listing 7.20 shows the code necessary to dispose of our HoverCard properly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 7.20 Placing Our HoverCard in an UpdatePanel

protected override void OnPreRender(System.EventArgs e)
{

base.OnPreRender(e);
this.Controls.Add(this._dragHandle);
DragPanelExtender dpe = new DragPanelExtender();
dpe.ID = "HCDragPanelExtender";
dpe.DragHandleID = this._dragHandle.ClientID;
dpe.TargetControlID = this.ClientID;
this.Controls.Add(dpe);

ScriptManager sm = ScriptManager.GetCurrent(this.Page);
string manualDisposeScript = string.Format(@"

var elm = $get('{0}');
if (elm !== null) {{
elm.control.dispose();
var behaviors = Sys.UI.Behavior.getBehaviors(elm);
for (var i=0; i < behaviors.length; i++) {{

behaviors[i].dispose();
}}
elm.parentNode.removeChild(elm);

}}
", this.ClientID);
sm.RegisterDispose(this, manualDisposeScript);

}

We take care of three things in the dispose script. First, we dispose of the
control attached to the element using the control expando property that’s
attached to it. Second, we retrieve all behaviors attached to the element using
the Sys.UI.Behavior.getBehaviorsmethod and then iterate over them call-
ing dispose on each behavior. Finally, we remove the element from the DOM
tree so that we don’t have the same HoverCard on the page more than once.

We register the dispose script using the RegisterDispose instance
method available on the current ScriptManager. RegisterDispose takes
two parameters. The first parameter is the control that we want to associ-
ate the dispose script to. The second is the script to execute.

Chapter 7: Control Development in a Partial Postback Environment350

TIP RegisterDispose When Not Inside an UpdatePanel

Dispose scripts are useful only when the control is contained within an
UpdatePanel. Executing the RegisterDispose method when the con-
trol is not contained within an UpdatePanel ends up having no effect.
In fact, no JavaScript that represents the dispose script is emitted to the
client even if we registered one on the server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When our page renders, the dispose script is registered with the
PageRequestManager, just as for a component. Listing 7.21 shows the dis-
pose script being registered.

Listing 7.21 The HoverCard’s Dispose Script Registered with the PageRequestManager

Sys.WebForms.PageRequestManager.getInstance()._registerDisposeScript
("UP1", "var elm = $get(\u0027HC\u0027); if (elm !== null) {
elm.control.dispose(); var behaviors = Sys.UI.Behavior.getBehaviors(elm);
for (var i=0; i\u003cbehaviors.length; i++) { behaviors[i].dispose();}
elm.parentNode.removeChild(elm); }");

The Effects of a Partial Postback on Client Components 351

NOTE Reformatted

We reformatted Listing 7.21 to make it somewhat legible.

Now, when we click the Update button, the existing HoverCard is com-
pletely disposed, and when the partial postback response is received and
a new HoverCard is created, there are no JavaScript errors.

Preventing Automatic Disposal of Components

As we covered so far in this chapter, there are two reasons your component,
behavior, or control will automatically be disposed. One, it’s contained
within a portion of the DOM tree that is being replaced by a partial post-
back response. Two, the server control that created the component is con-
tained within an UpdatePanel and that UpdatePanel is being updated.

Unfortunately, unless you move the associated DOM element to some
other part of the DOM tree, there is no way to prevent the automatic dis-
posal of a control or a behavior.

There is a way, however, to prevent the automatic disposal of a compo-
nent. It might seem obvious after we cover it, but the way to prevent auto-
matic disposal of a component is to not use a ScriptComponentDescriptor
to create the component. Using the ScriptComponentDescriptor is what
automatically registers a dispose script with the containing UpdatePanel.
If we don’t use a ScriptComponentDescriptor, but instead manually create
our component by emitting our own JavaScript, we can leave the dispose
script out altogether or create our own that works differently than the
default.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ErrorHandler Component

A good example of when we’ll want to do this is when we have a compo-
nent represented by a server control that we intend to be global to the appli-
cation. An example of this is the ErrorHandler component we created in
Chapter 3, “Components.” We intend that this component will be created
once when the page initializes, will live throughout the page’s life, and
be disposed of when the page unloads. However, if the ErrorHandler com-
ponent is created by a related server control, which internally uses a
ScriptComponentDescriptor, and that control is placed within an
UpdatePanel, every time that UpdatePanel updates, our ErrorHandler
component will be disposed of and re-created. The re-creation of the
ErrorHandler component won’t cause errors itself, but if it’s disposed of
and then JavaScript code throws an error before it’s re-created, the
ErrorHandler component won’t be around to handle that error. Also, dis-
posing of and re-creating it is a waste of processing and resources.

To start, let’s assume that we have the ErrorHandler component’s code
available to us in a JavaScript file. (Its full source is available in Appendix
D, “Client Error Handling Code.”) We create an instance of the component
using a related server control, which uses a ScriptComponentDescriptor.
Listing 7.22 shows the server control’s code.

Listing 7.22 The ErrorHandler Server Control

using System.Collections.Generic;
using System.Web.UI;
using System;

namespace ErrorHandlerLibrary
{

public class ErrorHandler : ScriptControl
{

protected override IEnumerable<ScriptReference>
GetScriptReferences()

{
yield return

new ScriptReference("ErrorHandlerLibrary.ErrorHandler.js",
typeof(ErrorHandler).Assembly.FullName);

}

protected override IEnumerable<ScriptDescriptor>
GetScriptDescriptors()

{

Chapter 7: Control Development in a Partial Postback Environment352

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ScriptComponentDescriptor scd =
new ScriptComponentDescriptor("ErrorHandler");

scd.ID = "ErrorHandler";
yield return scd;

}
}

}

The Effects of a Partial Postback on Client Components 353

NOTE Abbreviated Version

Appendix D has the full version of the ErrorHandler’s server control.
For brevity, we’re just displaying the pertinent parts of it.

Next, we place our ErrorHandler server control inside an UpdatePanel,
as shown in Listing 7.23.

Listing 7.23 The ErrorHandler Test Page

<%@ Page Language="C#"
AutoEventWireup="true"
CodeBehind="ErrorHandler.aspx.cs"
Inherits="Chapter_7.ErrorHandler" %>

<%@ Register Assembly="Controls"
Namespace="Controls"
TagPrefix="cc1" %>

<html>
<head runat="server">

<title>Error Handler Test Page</title>
</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />
<asp:UpdatePanel ID="UP1" runat="server" UpdateMode="Conditional">

<ContentTemplate>
<cc1:ErrorHandler ID="ErrorHandler" runat="server" />
<asp:Button ID="tstButton" Text="Update" runat="server" />

</ContentTemplate>
</asp:UpdatePanel>
</form>

</body>
</html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you might have guessed, every time we click the Update button, the
ErrorHandler component is disposed of and re-created. Figure 7.20 shows
the initialization and disposal debug messages in the Visual Studio output
window.

Chapter 7: Control Development in a Partial Postback Environment354

Figure 7.20 ErrorHandler’s initialization and disposal messages

We can prevent this unwanted disposal and re-creation by not using a
ScriptComponentDescriptor and emitting our own JavaScript component
$create statement. Listing 7.24 shows how we can alter our ErrorHandler
server control to control the disposal of the component.

Listing 7.24 Updating ErrorHandler to Manually Create the ErrorHandler Component

protected override IEnumerable<ScriptDescriptor> GetScriptDescriptors()
{
return null;

}

protected override void OnPreRender(EventArgs e)
{
base.OnPreRender(e);
string createErrorHandler = @"

Sys.Application.add_init(
function() {

var errHandler = $find('ErrorHandler');
if (errHandler === null) {
$create(ErrorHandler, {id:'ErrorHandler'}, null, null, null);

}
}

);";
ScriptManager.RegisterStartupScript(

this,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

typeof(ErrorHandler),
"ErrorHandlerCreate",
createErrorHandler,
true);

}

The first thing we do in the server control is not use a ScriptComponent
Descriptor to create the ErrorHandler component. Instead, we use the
OnPreRender method to register a startup script that will create the
ErrorHandler if it does not already exist.

Now, our component will be disposed of only when the page unloads,
and it will be created only if it doesn’t already exist. We can cause partial
postbacks as many times as we want and our component will not be dis-
posed of and re-created.

Loading of JavaScript Statements and Files

The way the UpdatePanel processes your scripts as they are returned from
a partial page rendering can be a bit confusing at first. In many cases, some
of the techniques you have used in the past for registering scripts no longer
function correctly during a partial postback, and worse yet, some script reg-
istration techniques will work during the page’s initial request and during
a postback but will not work during a partial postback. The goal of this sec-
tion is to understand why this is happening and how to adjust your cod-
ing approach to have a consistent client script registration experience
during all these cases.

ScriptManager Registration Methods
The ClientScriptManager’s static RegisterXXX methods that we access
through the page’s ClientScript property have been the preferred way of
registering scripts since the release of ASP.NET 2.0. However, with the new
partial postback capabilities provided by ASP.NET AJAX, the
ClientScriptManager and its RegisterXXX methods no longer work across
all page-rendering situations. Specifically, the ClientScriptManager’s
RegisterXXX methods do not work properly during a partial postback.

This is the case because the UpdatePanel, ScriptManager, and a private
object of type PageRequestManager take over responsibility for generating

Loading of JavaScript Statements and Files 355

http://lib.ommolketab.ir
http//lib.ommolketab.ir

a partial postback response, and those objects don’t have access to the
scripts that were registered using the ClientScriptManager. (The primary
reason for this is because of the way ClientScriptManager was written and
not anything that was programmed wrong in ASP.NET AJAX.)

Because of ClientScriptManager’s shortcomings, ASP.NET AJAX
comes with a new way of registering client scripts that successfully regis-
ters scripts in all rendering environments (normal postback and partial
postback): through ScriptManager’s static RegisterXXX methods.

Fortunately, it’s pretty easy to learn the new RegisterXXX methods,
detailed in Table 7.1, because they are direct replacements for the
ClientScriptManager methods that we previously used to register scripts.

Table 7.1 ScriptManager Script Registration Methods

Method Description

RegisterArrayDeclaration Provides the ability to register a JavaScript
array that will be properly registered when
using an UpdatePanel and comes in handy
when the client needs information that is
obtainable only during runtime.

RegisterClientScriptBlock Provides the ability to register a script block
that is properly registered when using an
UpdatePanel and provides the ability to have
the script tags added automatically or be
included in the script block for cases where
you want to control the script tag attributes.

RegisterClientScriptInclude Provides the ability to register a script file
that is properly registered when using an
UpdatePanel. The script file is registered
using the src attribute on the script tag and
must be in the web folder structure of your
application, because this method of registra-
tion does not work with embedded
resources.

RegisterClientScriptResource Provides the ability to register a script file
that is embedded in an assembly and needs
to be properly registered when using an
UpdatePanel. In cases of an Extender
Control or ScriptControl registering with
the ScriptReference class.

Chapter 7: Control Development in a Partial Postback Environment356

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Method Description

RegisterOnSubmitStatement Provides the ability to register script frag-
ments that will be included in the
WebForm_OnSubmit method on a page. When
you use this registration method, all script
fragments that are registered will run when
the page is partially updating or doing a full
postback.

RegisterStartupScript Provides the ability to register script frag-
ments that will be run when the page is ini-
tially created or after a partial rendering has
occurred.

In some cases, however, these new methods have a slightly different sig-
nature and behavior than the ClientScriptManager methods they
replaced.

To demonstrate these differences, let’s take a look at the three different
ways we can register a client script block. Listing 7.25 shows the three
method calls.

Listing 7.25 ClientScriptManager versus ScriptManager Script Registration

this.ClientScript.RegisterClientScriptBlock
(this.GetType(),
"MyOriginalAlert",
"alert('We are loaded with ClientScript.ClientScriptBlock');",
true);

ScriptManager.RegisterClientScriptBlock(
this,
this.GetType(),
"MyOriginalScriptManagerAlert",
"alert('We are loaded with

ScriptManager.RegisterClientScriptBlock');",
true);

ScriptManager.RegisterClientScriptBlock(
this.TextBox2,
typeof(TextBox),
"TextBox2Script",
"alert('TextBox2 based script is here')",
true);

Loading of JavaScript Statements and Files 357

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first method registers the script with the page using ASP.NET’s
ClientScriptManager. When the page is first created or when the page is
posted back, the script will run; however, the script will not run in a par-
tial postback.

The second method uses the new ScriptManager method of registering
a script block. This script will run when the page is first loaded, during a
normal postback, and during a partial postback.

The final method shows the power of the new methods and how they
are specifically tuned to the UpdatePanel. In this case, we can associate the
script to a control and run that script only when the control is part of the
response. What this means is that when the page is first created and when
the page is in a normal postback, the script will run. The script will also run
when TextBox2 is included in a partial postback response. This ability
becomes handy when you have multiple UpdatePanel controls on a page
and want to run a script only when the control is contained in an
UpdatePanel that is being partially rendered.

Chapter 7: Control Development in a Partial Postback Environment358

TIP Always Use the ScriptManager for Client
Script Registration

Now that we’re in a partial postback world, you should always use
ScriptManager to register your scripts. Getting in this habit will allow
your scripts to work seamlessly in both a normal rendering and in a
partial rendering environment. The only catch to this rule is if you’re
a third-party control developer. In that case, you might want to con-
firm that ASP.NET AJAX is installed in the environment your code is
executing in before using ScriptManager to register the scripts.

To get a better feel for how scripts are affected by a partial postback, let’s
walk through a quick example in which we register a couple of scripts
using ClientScriptManager and ScriptManager. We start with the
UpdatePanel sample page we used earlier in the chapter (redisplayed in
Listing 7.26) and update its code behind to register the scripts in its
Page_Load method. Listing 7.27 shows the updated code behind, and Fig-
ure 7.21 shows the page’s visual output.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 7.26 Page-Rendering Markup

<%@ Page Language="C#"
AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
Inherits="SimpleUpdatePanelDemo._Default" %>

<html>
<head runat="server">

<title>Untitled Page</title>
</head>
<body>

<form id="form1" runat="server">
<asp:Label ID="Label1" runat="server">
<%=DateTime.Now %>

</asp:Label>
<asp:ScriptManager ID="ScriptManager1" runat="server" />
<asp:UpdatePanel ID="UpdatePanel1"

runat="server"
UpdateMode="Conditional">

<ContentTemplate>
<asp:TextBox ID="TextBox1" runat="server" />

</ContentTemplate>
<Triggers>

<asp:AsyncPostBackTrigger ControlID="Button1"
EventName="Click" />

</Triggers>
</asp:UpdatePanel>
<div>
<asp:Button ID="Button1"

runat="server"
Text="Update Panel Refresh" />

</div>
<div>
<asp:Button ID="Button2"

runat="server"
Text="Complete Page Refresh" />

</div>
</form

</body>
</html>

Loading of JavaScript Statements and Files 359

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 7.27 Script Registration Code Behind

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

this.TextBox1.Text = DateTime.Now.ToLongTimeString();

this.ClientScript.RegisterClientScriptBlock
(this.GetType(),
"MyOriginalAlert",
"alert('We are loaded with ClientScript.ClientScriptBlock');",
true);

ScriptManager.RegisterClientScriptBlock
(this,
this.GetType(),
"MyOriginalScriptManagerAlert",
"alert('We are loaded with

ScriptManager.RegisterClientScriptBlock');",
true);

}
}

Chapter 7: Control Development in a Partial Postback Environment360

Figure 7.21 Partial page-rendering sample

http://lib.ommolketab.ir
http//lib.ommolketab.ir

During the page’s initial execution both scripts run successfully and
show the alerts shown in Figure 7.22 and Figure 7.23, respectively.

Loading of JavaScript Statements and Files 361

Figure 7.22 Alert from ClientScriptManager registration in page load

Figure 7.23 Alert from ScriptManager registration in page load

However, when we initiate a partial postback by clicking Button1, the
script registered using the ScriptManager will execute successfully, redis-
playing Figure 7.22, but the script registered using the ClientScriptManager
will not. This is because scripts registered with the ClientScriptManager are
not considered in the processing of the partial postback request and do not
affect the response sent to the client.

Viewing the partial postback response in Web Development Helper,
shown in Figure 7.24 we can clearly see that the script registered using the
ScriptManager is included in the partial postback response and is treated
as a ScriptContentNoTags script block.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7.24 UpdatePanel response shown in Web Development Helper

Sys.Application.notifyScriptLoaded()
When you are using the RegisterClientScriptInclude method, take spe-
cial care to ensure that the ASP.NET AJAX Library correctly loads your
scripts during a partial postback. When the Microsoft AJAX Library
processes script files, it needs a reliable way to know when a script file has
completely loaded so that it can move on to the next one. Unfortunately,
there is no cross-browser compliant way of knowing when a script file has
completely loaded. Therefore, the Microsoft AJAX Library requires that
when a script file is loaded during a partial postback it has a call to
Sys.Application.notifyScriptLoaded()at the end of the script file. Exe-
cuting this method at the end of the script file tells the script-loading object
inside the Microsoft AJAX Library that the current script has completed
loading and the next available script can start.

This method was briefly mentioned in Chapter 5 when we were dis-
cussing the ScriptReference class and how the Sys.Application.notify
ScriptLoaded method was used when you registered your behavior or con-
trol scripts. In those cases, the JavaScript files were embedded resources,
and the ScriptManager automatically added the method call to the end of
our scripts as they were downloaded to the client.

Chapter 7: Control Development in a Partial Postback Environment362

http://lib.ommolketab.ir
http//lib.ommolketab.ir

However, when we manually register a file using the Register
ClientScriptInclude method, we need to manually add the call to
Sys.Application.notifyScriptLoaded at the end of the script file for it to
be loaded successfully during a partial postback.

If the Sys.Application.notifyScriptLoaded method is absent or more
than one call to the method is within a single file, the Microsoft AJAX
Library throws an error as it tries to load the script.

When using the notifyScriptLoaded method, always check for the
presence of the Microsoft AJAX Library on the client (to prevent the call
from failing). The check, done by detecting whether Sys is defined and
shown in Listing 7.28, should be placed before the Sys.Application.
notifyScriptLoaded call to ensure it will work correctly. This check is espe-
cially important when a script file may be used outside an ASP.NET AJAX-
enabled application. In that case, if the check is not there, the script file will
throw an error when one really should not be thrown.

Listing 7.28 Check for Sys.Application

if (typeof(Sys) !== 'undefined')
Sys.Application.notifyScriptLoaded();

Finally, as stated earlier, if more than one call to Sys.Application.
notifyScriptLoaded is made by a single script file, an error will occur. This
subtle issue can come up when you have a common script file that you are
using that can be registered using both the ScriptReference class and the
RegisterClientScriptInclude methods of registration. In this case, you
must set the NotifyScriptLoaded property of the ScriptReference class to
false to suppress the default injection of the Sys.Application.notify
ScriptLoaded method into your script. Listing 7.29 shows an example
of creating a ScriptReference where it won’t inject the Sys.

Application.notifyScriptLoaded call automatically.

Listing 7.29 Turning Off the Automatic Sys.Application.notifyScriptLoaded Injection

protected override IEnumerable<ScriptReference> GetScriptReferences()
{

ScriptReference sr = new ScriptReference("Common.js", "Controls");
sr.NotifyScriptLoaded = false;
yield return sr;

}

Loading of JavaScript Statements and Files 363

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sys.Application Events

One of common ways that we interact with Sys.Application is through its
events. We register $create statements with the init event, we wire up
handlers to the load event so that we can execute code after all components
have been created, and we watch the unload event to execute custom
cleanup code or to persist changes the user made during the course of using
the page.

We covered the use of these events in Chapter 4, and we covered them
under the presumption that Sys.Application was first initializing. We cov-
ered them under this presumption because with partial postbacks these
events are used again and they act and work differently than when the page
is first initializing. To be more precise, the init event works differently and
the load event is re-raised. The unload event does not factor into the pro-
cessing of a partial postback.

The init Event
In Chapter 4, when we covered the init event, we stated that the add_init
method was different from other add_eventName methods. As you learned
in that chapter, if Sys.Application was already initialized, the add_init
method executed the handler parameter instead of adding it to the list of
handlers to execute when the init event was raised. Listing 7.30 displays
the body of the add_init method.

Listing 7.30 Sys.Application’s add_init Method

function Sys$_Application$add_init(handler) {
var e = Function._validateParams(arguments,

[{name: "handler", type: Function}]);
if (e) throw e;
if (this._initialized) {

handler(this, Sys.EventArgs.Empty);
}
else {

this.get_events().addHandler("init", handler);
}

}

This change in behavior is important to understand when working
within a partial postback environment. It’s important because control

Chapter 7: Control Development in a Partial Postback Environment364

http://lib.ommolketab.ir
http//lib.ommolketab.ir

developers often face this concern: If I use one of the ScriptDescriptors
as the mechanism for creating client components, it will emit a $create
statement that is added to the init event using the add_init method. If I
know that the init event is not re-raised during a partial postback, my
component will not be created during a partial postback, and I must handle
the partial postback situation differently.

Because the add_init method takes into account whether the applica-
tion is already initialized, which it will be if the method is executed during
a partial postback, we do not need to alter how we create client components
during a partial postback.

The load Event
As covered in Chapter 4, the load event is raised during Sys.Application’s
initialization cycle after all components have been created. The event’s
arguments that it is raised with are of type Sys.ApplicationLoadEventArgs
and contain an array of all the components that were created during the ini-
tialization cycle and a Boolean flag that indicates whether the event is being
raised during a partial postback.

During a partial postback, the load event is raised again. However, this
time the event argument parameter contains a list of the components that
were created during the partial postback, and the inPartialLoad property
is set to true.

To illustrate this, let’s set up a simple example in which we watch the
load event. Reusing our existing HoverCard control, Listing 7.31 sets up a
test page where we have two HoverCards: one within an UpdatePanel and
one outside it. We also add an event handler to Sys.Application’s load

event where using trace statements we output the contents of the event
arguments passed into the handler.

Listing 7.31 The Load Event Test Page

<%@ Page Language="C#"
AutoEventWireup="true"
CodeBehind="LoadEvent.aspx.cs"
Inherits="Chapter_7.LoadEvent" %>

<%@ Register Assembly="Controls"
Namespace="Controls"
TagPrefix="cc1" %>

Sys.Application Events 365

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 7.31 continued

<html>
<head runat="server">

<title>Load Event Test Page</title>
</head>
<body style="width: 1024px; height: 768px">

<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />
<asp:UpdatePanel ID="UP1" runat="server" UpdateMode="Conditional">

<ContentTemplate>
<div style="position:absolute;

top:100px;
left:225px">

<cc1:HoverCard ID="InsideUpdatePanelHC" runat="server" />
</div>
<asp:Button ID="tstButton" Text="Update" runat="server" />

</ContentTemplate>
</asp:UpdatePanel>
<cc1:HoverCard ID="OutsideUpdatePanelHC" runat="server" />
</form>

</body>

<script type="text/javascript">
function loadHandler(sender, args) {

Sys.Debug.trace(String.format
("In partial postback: {0}", args.get_isPartialLoad()));

var comps = args.get_components();
for (var i=0; i<comps.length; i++) {
Sys.Debug.trace(String.format

("Created Component: {0}", comps[i].get_id()));
}

}
Sys.Application.add_load(loadHandler);

</script>
</html>

Figure 7.25 shows the Visual Studio output window after we load the
page.

As Figure 7.25 shows, we are not in a partial load, and both HoverCard
controls and their respective DragPanelExtenders are contained within the
list of components that were created.

When we click the Update button and cause a partial postback, load
Handler executes again because the load event is re-raised. Figure 7.26
shows the new messages that are appended to the Visual Studio output
window.

Chapter 7: Control Development in a Partial Postback Environment366

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7.25 The output of the loadHandler method

Summary 367

Figure 7.26 The output of the loadHandler method

As Figure 7.26 shows, we are in a partial load and only the Inside
UpdatePanelHC and its respective DragPanelExtender were created during
processing of the partial postback response.

SUMMARY

In this chapter, we covered how the partial postback environment affects
our control development. Knowing how and when components are auto-
matically disposed of and re-created due to a partial postback allows us to
alter this pattern as needed to our advantage when we are working outside
the default development situations.

We also covered the new script registration methods available from the
ScriptManager and how they work during a partial postback. These enable
us to register JavaScript that works during all rendering environments.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Finally, we covered how Sys.Application’s load and init events react
to a partial postback and how we can use them to successfully attach code
during a partial postback.

Chapter 7: Control Development in a Partial Postback Environment368

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PART III
Communication

369

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8
ASP.NET AJAX Communication
Architecture

T H E C O M M U N I C AT I O N A R C H I T E C T U R E of ASP.NET AJAX is a must
know for any developer. The way the client communicates with the

server can influence many of your design decisions during development
and can be the difference between having an efficient and easily config-
urable communication channel or one that is slow and hard to work with.

The communication layer that ASP.NET AJAX provides enables you to
easily communicate between the client and the server and includes features
such as automatic proxy generation for web services and page methods;
built-in proxies for working with the ASP.NET 2.0 application services such
as the authentication service, profile service, and role service; and the abil-
ity to work with JavaScript Object Notation (JSON)-based data.

In this chapter, we cover the server-based ASP.NET 2.0 AJAX Extensions
communication architecture and the client-based Microsoft AJAX Library
communication architecture. We begin our discussions with the ASP.NET
2.0 AJAX Extensions, describing the new Window Communication Foun-
dation (WCF) web services features, page methods, JSON serialization, and
the server framework components that provide the underlying functional-
ity for communication on the server. Then, we move on to the Microsoft
AJAX Library and discuss service proxies, JSON serialization, and the web
request core components.

371

http://lib.ommolketab.ir
http//lib.ommolketab.ir

New Communication Paradigm

The method of communication in ASP.NET AJAX is a paradigm shift from
the standard postback model of ASP.NET 2.0. That model consisted of
server-side event handlers processing requests that originated on the client.
In ASP.NET AJAX, the focus is on fine-grain communication that can
accomplish a specific task using a lightweight call to the server that does
not require a postback. This model of the client calling back to the server is
similar in a lot of ways to how client/server programming works, where
the client makes a call to the server for data and then processes the data
locally. This emphasis on client-side functionality is why we spent the first
part of this book covering JavaScript and the Microsoft AJAX Library, so we
would have a solid foundation of client-side programming. The first
instinct most people have when hearing of this new approach to develop-
ment is to completely rewrite their application to be client-centric. This is
not what we are proposing. In our experience, you will see a combination
of these two models during development, with ASP.NET 2.0 AJAX
Extensions and the Microsoft AJAX Library providing the foundation for
smaller request types such as dynamic data population and data validation,
and ASP.NET 2.0 providing the foundation for working with postbacks and
page transitions. As we think about these lightweight calls that ASP.NET
AJAX relies on, we can’t help but discuss the REST architectural pattern
that is the guiding principal for this type of communication.

Chapter 8: ASP.NET AJA X Communication Architecture372

NOTE The Meaning of Postback

The term postback in our case means calling back to the page and run-
ning through a complete page lifecycle. This page lifecycle incurs a
huge cost on small page requests because ASP.NET loads up view
state, the control tree, and fires event handlers that cause the page to
call back to the server. Calling a web service using ASP.NET AJAX does
not do this and is therefore a much more efficient way to call back to
the server without incurring a complete page lifecycle.

Representational State Transfer (REST) is an architectural pattern used
in the World Wide Web and can be loosely described as a pattern that relies
on resources to expose an addressable interface, enabling you to transmit
data over HTTP without the need of an additional layer. The term REST

http://lib.ommolketab.ir
http//lib.ommolketab.ir

originated in Roy Fielding’s1 doctoral dissertation about the web and has
become a widely adopted pattern used by many web developers. The exact
implementation of REST can vary, so to appeal to the purists we discuss
REST as it relates to ASP.NET AJAX. After all, this is the implementation
that we really care about in this book.

REST is used heavily in ASP.NET AJAX to support calling web services,
page methods, and application services. The key to this type of communi-
cation is exposing functionality through unique URLs that represent a
unique resource on the server. In the case of a REST-based web service call,
your request header might look like Listing 8.1, where the HTTP verb is
POST, the URL is /WCFAjaxService.svc/Echo, and the content type is
application/json.

Listing 8.1 REST-Based Web Service Header

POST /WCFAjaxService.svc/Echo HTTP/1.1
Accept: */*
Accept-Language: en-us
Referer: http://localhost:1472/Default.aspx
Content-Type: application/json; charset=utf-8
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1; .NET
CLR 2.0.50727; InfoPath.2; MS-RTC LM 8; .NET CLR 3.5.21022; .NET CLR
3.0.04506)
Host: localhost:1472
Content-Length: 17
Connection: Keep-Alive
Cache-Control: no-cache

{"value":"Hello"}

So, what makes this call RESTful? The first characteristic is that the URL
is distinct. If we were to call another REST-based web service, we would
have to change our URL by replacing the /Echo ending with another one.
The next characteristic is the use of a constrained set of well-defined oper-
ations. In ASP.NET AJAX, you can use the HTTP GET or POST verb, both part
of the HTTP protocol, to make requests to the server. The final characteris-
tic is a constrained set of content types that must be used. ASP.NET AJAX
supports the JSON and XML content types and distinguishes between them

New Communication Paradigm 373

1 Roy Fielding’s doctoral dissertation can be found at www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

by using the Content-Type HTTP header. In cases of JSON, the content type
is application/json, for XML returned from an ASMX-style web service
the content type is text/xml, and for WCF-style web services the content
type is application/xml.

The influence that REST has on both the server and client communica-
tion stacks will be evident as we discuss web services, page methods, and
the client proxy classes. The focus during our discussions in these areas is
on lightweight calls consisting of JSON content, with the subject of SOAP
excluded from our discussion not only for RESTful reasons but also due to
a lack of support for it in the Microsoft AJAX Library.

ASP.NET AJAX 2.0 Extensions Communication
Architecture

The server communication architecture of ASP.NET 2.0 AJAX Extensions
encompasses many layers that provide various services to the request as it
is processed. The diagram in Figure 8.1 shows the different layers that make
up the communication stack on the server. The web service, page method,
and application services serve as the three main ways of interacting with
the server and provide varying levels of interaction. The serialization layer
provides support for converting .NET data types to and from JSON. The
HTTP Modules and Handlers layer provides the underlying support that
makes all this happen and builds on the services of ASP.NET 2.0 to provide
support for the REST-based communication paradigm of ASP.NET AJAX.

Chapter 8: ASP.NET AJA X Communication Architecture374

NOTE Application Services Covered Later

In our discussion to follow, we will leave the subject of application ser-
vices for our next chapter, where we cover the Authentication Service,
Profile Service, and Role Service, along with creating a custom appli-
cation service.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8.1 ASP.NET AJAX server communication architecture

With Figure 8.1 as our guide, let’s take a look at the various layers and
their respective components with a goal of understanding web services and
page methods, serialization, and the underlying technologies that comprise
the server communication stack.

Web Services
The big news in ASP.NET 2.0 AJAX Extensions is the support for WCF and
the new enhancements it contains for creating RESTful web services. The
ability to call web services from a JavaScript client without the overhead of
SOAP and the ability to work with JSON-based data have opened the door
for WCF-based web services to be consumed by ASP.NET AJAX, just as
their ASMX counterparts were in the previous version. Because WCF is a
new technology, we should start our discussion with a description of what
it is and what it was designed to accomplish.

What Is Windows Communication Foundation?

The story of WCF and what it provides goes way beyond the normal
client/server usage you will encounter in ASP.NET AJAX. However, an
overview will help you understand the importance of the technology in the
enterprise and why you should create services using it.

With regard to how we communicated between processes and machines
in the past, we had quite a few choices, including web services, .NET remot-
ing, and sockets, each resulting in a different programming experience. The
goal of WCF is to consolidate the programming experience associated with
these various technologies into one application programming interface (API),

ASP.NET AJA X 2.0 Extensions Communication Architecture 375

Web Services Page Methods Application Services

JSON Serialization

HTTP Handlers and Modules

http://lib.ommolketab.ir
http//lib.ommolketab.ir

allowing us to code the same way no matter what the communication
mechanism is. This approach of one API is a huge advantage over ASMX,
which was designed to work only with web services. This consistent
programming experience would then be supplemented by a flexible config-
uration model that would provide the ability to communicate in various
ways just by changing configuration information for the endpoint. This
“code-once configure for many” approach is what makes WCF so appealing
to developers and why it is supported in ASP.NET AJAX. If we take this
approach of flexible configuration to the enterprise, we can conceivably
change the configuration information for any service and have that service
communicate with an ASP.NET AJAX client using JSON with no code
changes to the service.

Anatomy of a Web Service

A service is composed of a contract, address, binding, and behavior that
come together to represent an endpoint. It is through this endpoint that all
communication with the service occurs and client access to the functional-
ity is provided. The contract for the endpoint identifies the operations that
are supported, the address indicates where the endpoint can be found, the
binding specifies how the client communicates with the endpoint, and the
behavior specifies implementation details. To better understand the com-
position of an endpoint, let’s take a look at these pieces individually. The
following subsections describe the functionality they provide and how they
integrate with each other.

Contracts

There are two types of contracts you will deal with in WCF: One is a service
contract, and the other is a data contract. The service contract describes the
operations supported by the web service, and the data contract describes
the data the web service works with.

Service Contracts

A service contract is composed of two components: a contract and an
implementation of that contract. The contract is normally represented by an
interface, and the implementation is provided by a class that implements
the methods of the interface.

Chapter 8: ASP.NET AJA X Communication Architecture376

http://lib.ommolketab.ir
http//lib.ommolketab.ir

An interface contains the method signatures that make up the operations
the web service will support. The IService1 interface in Listing 8.2 is a sim-
ple interface that we will use to describe a typical contract interface. The first
thing to notice about this interface is the ServiceContract attribute applied
to it. The ServiceContract attribute is used to indicate that the interface
defines a service contract and contains methods that will be exposed by the
contract. The second thing to notice is the OperationContract attribute
applied to the EchoNumbermethod. The OperationContract attribute is used
to indicate that a method is part of the service contract and should be placed
on all methods that are part of the service contract. As far as the interface
goes, this is all you have to do to enable an interface to be a service contract.

Listing 8.2 Service Contract Interface

[ServiceContract]
public interface IService1
{

[OperationContract]
string EchoNumber(int value);

}

A service class contains the implementation details for the method sig-
natures of the service contract it is associated with. If we refer to the ser-
vice class in Listing 8.3, we can see the beauty of this design. The Service1
class contains pure implementation code without the need for any WCF-
specific attributes, which greatly simplifies the service class and cleanly
separates the contract from the implementation. If there were a need to cre-
ate an additional service class that provided a different implementation to
the same method signature, it would be as simple as creating another ser-
vice class that implements the IService1 interface.

Listing 8.3 Service Implementation Class

public class Service1 : IService1
{

public string EchoNumber(int value)
{

return string.Format("You entered: {0}", value);
}

}

ASP.NET AJA X 2.0 Extensions Communication Architecture 377

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the beginning of the section, we made the statement that the contract
is normally represented by an interface. However, there is actually another
way to create a service contract that combines the contract with the imple-
mentation. The Service2 class in Listing 8.4 combines the contract with the
implementation by using the ServiceContract and OperationContract

attributes directly on the service class. This more compact version of a ser-
vice resembles the ASMX approach to web services and might be a good
alternative to someone who is more familiar with that style of
programming.

Listing 8.4 Combines Contract and Implementation Class

[ServiceContract]
public class Service2
{

[OperationContract]
public string EchoNumber(int value)
{

return string.Format("You entered: {0}", value);
}

}

Using Classes or Interfaces
The question of whether to combine your services contract (interface) and

implementation (service class) into a single class or follow the practice of

separating the contract from the implementation is a subjective one. A

good rule of thumb is if the service will be used by clients other than

ASP.NET AJAX, the approach of separating the interface from the imple-

mentation will give you much more flexibility in the long run. If the goal is

to create a single service similar to an ASMX service that will be used only

by ASP.NET AJAX, however, an all-in-one approach is an option. In fact, as

you will see later, this is what the templates in Visual Studio 2008 do when

creating AJAX-enabled WCF web services.

Data Contracts

The service contract in Listing 8.2 used simple data types that WCF can
handle natively as the message is serialized into JSON. When more

Chapter 8: ASP.NET AJA X Communication Architecture378

http://lib.ommolketab.ir
http//lib.ommolketab.ir

complex data types are used, however, WCF needs some help in determin-
ing how to serialize the data. This is where data contracts are used. A data
contract is used by WCF to determine the format of data as it is serialized
and deserialized during normal message processing. The data contract
itself is defined by adding the DataContract and DataMember attributes to
a class, structure, or enumeration.

The DataContract attribute is used to specify that a class, structure, or
enumeration defines or implements a data contract and is capable of being
serialized. A simple implementation of this attribute can be seen in Listing
8.5, where the Address class uses the DataContract attribute to inform WCF
that this class is a data contract. By using this attribute, WCF knows that
this class contains items that can be serialized. The DataContract attribute
is only part of the serialization story and requires a DataMember attribute to
identity fields and properties that will be part of the complete data contract
to be serialized. This method of explicit opt-in is in stark contrast to the
BinaryFormatter and the XmlSerializer we have used in the past. In the
case of the BinaryFormatter, all public and private fields of a type were
included during serialization. And in the case of the XmlSerializer, all
public fields and properties of a type were included during serialization.
In Listing 8.5, we see that all the properties have the DataMember attribute
applied to them, so all the properties will be serialized. If we were to
remove the DataMember attribute from, say, the Zip property, for example,
we would see that this property would not be included in the serialization
process and therefore would not be part of the object post serialization.

Listing 8.5 Simple Data Class

[DataContract]
public class Address
{

[DataMember]
public int Id { get; set; }
[DataMember]
public string Street { get; set; }
[DataMember]
public string City { get; set; }
[DataMember]
public string State { get; set; }
[DataMember]
public string Zip { get; set; }

}

ASP.NET AJA X 2.0 Extensions Communication Architecture 379

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Address

All endpoints have an address associated with them that is used to locate
and identify the endpoint. This address consists primarily of a Uniform
Resource Identifier (URI), which specifies the location of the endpoint. In
the case of WCF and ASP.NET 2.0 AJAX Extensions, the endpoint is hosted
by ASP.NET, which fixes the address to your web application and elimi-
nates the need to specify an address.

Binding

We previously talked about how WCF separates how a web service is writ-
ten from how it communicates with a client. A binding is one of the ways
this separation is achieved. A binding is used to specify how to communi-
cate with an endpoint and consists of protocol, transport, and message
encoding elements that define how WCF channels are built up to provide
the required communication features for an endpoint. The protocol ele-
ments determine the security and reliability of the communication with the
endpoint. The transport elements determine whether TCP, HTTP, or HTTPS
is used. And message encoding determines whether JSON or Plain Old
XML (POX) is used by the endpoint.

Behavior

Behaviors provide the ability to alter the service, contract, endpoint, and
operational behavior of the WCF runtime and provide another way to con-
figure how a WCF service works. The service behaviors provide the ability
to change the entire WCF service runtime, including transaction support,
authorization support, metadata publishing support, and throughput
throttling support. The contract behaviors provide the ability to set the
queuing requirements a binding must meet and whether the binding sup-
ports ordered messaging. The endpoint behaviors provide the ability to
specify debugging support, support for callbacks when working with
duplex clients, and optimization of receiving messages that are transac-
tional, to name a few. The operation behaviors provide the ability to spec-
ify the behavior of serialization and whether to accept incoming
transactions from a client.

Chapter 8: ASP.NET AJA X Communication Architecture380

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Implementing Services

Now that you understand the ABCs (address, binding, and contract) of
WCF web services, it is time to create an AJAX-enabled WCF service. The
AJAX-enabled WCF service we create provides the ability to look up a
product number and return the details of the product that can then be used
to populate entries on a web form. An application using a service to dynam-
ically populate the UI is a pattern you will see many times when working
with ASP.NET AJAX. This surgical use of web services is what makes the
technology so appealing and enables you to provide a rich experience to
your users.

As we describe how to implement the service, we focus on the server-
side aspects only and leave the client-side portion for the second half of this
chapter, where we discuss the Microsoft AJAX Library communication
features.

The construction of a service follows three main steps that build on what
you have learned so far:

1. Create the service contract.

2. Create the data contract.

3. Configure the service.

Creating a Service Contract

The product service class, shown in Listing 8.6, is designed to return prod-
uct information based on a single product number or a SearchCriteria
class that potentially contains values for product number, description, and
price. The service itself is decorated with the ServiceContract attribute
with the namespace property set to ajaxbooksamples.com, which is used to
distinguish our product service from another one with the same name. The
method signatures are decorated with the OperationContract attribute,
which designates they are part of the contract for the service and consum-
able by the client. When creating a combined service such as this, remem-
ber that only methods marked with the OperationContract attribute will
be included in the contract. This means that if you have additional methods
that help support the service, they are by default not included in the service
contract.

ASP.NET AJA X 2.0 Extensions Communication Architecture 381

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8.2 AJAX-enabled WCF service template

Chapter 8: ASP.NET AJA X Communication Architecture382

NOTE AJAX-Enabled WCF Service Template

The good news about creating an AJAX-enabled WCF service is that
Visual Studio 2008 comes with the AJAX-enabled WCF Service tem-
plate, shown in Figure 8.2, which makes creating them easy. The tem-
plate, which is available when adding a new item to the project, is
designed to create a single class service, which is similar to the ASMX
approach.

NOTE AspNetCompatibilityRequirements Attribute

You many notice the use of the AspNetCompatabilityRequirements
attribute on the service class. This is added by the template and is
required by all services that are to participate in AJAX-enabled web
service calls.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 8.6 Product Service Class

[ServiceContract(Namespace = "http://ajaxbooksamples.com")]
[AspNetCompatibilityRequirements(

RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]
public class Product
{

[OperationContract]
public ProductDetail Lookup(string productNumber)
{

if (string.IsNullOrEmpty(productNumber))
throw new ArgumentNullException("productNumber");

return ProductSearch.Lookup(productNumber);
}

[OperationContract]
public ProductDetail AdvancedLookup(SearchCriteria criteria)
{

if (criteria == null)
throw new ArgumentNullException("criteria");

return ProductSearch.Lookup(criteria.ProductNumber);
}

}

Creating a Data Contract

The ProductDetail and SearchCriteria classes used by our product service
need to be decorated with the DataContract and DataMember attributes to
ensure proper serialization as the service processes requests. The Product
Detail class in Listing 8.7 demonstrates how to do this and must be dupli-
cated on the SearchCriteria class before the types can be used.

Listing 8.7 ProductDetail Data Class

[DataContract]
public class ProductDetail
{

public ProductDetail() { }
public ProductDetail(string productNumber, string description,

decimal price)
{

ProductNumber = productNumber;
Description = description;
Price = price;

}

ASP.NET AJA X 2.0 Extensions Communication Architecture 383

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 8.7 continued

[DataMember]
public string ProductNumber { get; set; }
[DataMember]
public string Description { get; set; }
[DataMember]
public decimal Price { get; set; }

}

Configuring the Service

To properly configure an AJAX-enabled WCF service, you have to register
the service with ASP.NET 2.0 AJAX Extensions, ASP.NET, and IIS. The reg-
istration with ASP.NET 2.0 AJAX Extensions is required to ensure the client
has a proxy to use when calling the service from JavaScript. The registration
with ASP.NET and IIS ensures the endpoint is properly configured and the
web service is accessible by the client.

Registering the Service with the ScriptManager

We talked about the ScriptManager in Chapter 5, “Adding Client
Capabilities to Server Controls.” In that chapter, we covered the role that
the ScriptManager plays in managing all ASP.NET AJAX resources on a
page, but deferred the topic of web service registration until now.

The role of the ScriptManager when working with web services is to
generate the JavaScript proxy class that the client uses to interact with the
service. To register your web service with the ScriptManager, you must cre-
ate a ServiceReference class that represents your web service and add it to
the Services collection of the ScriptManager. The ServiceReference class
comes with two properties that are used to identify the location of the ser-
vice and indicate how the script is generated (see Table 8.1). In Listing 8.8,
we see that the product service is declaratively registered with the
ScriptManager, which creates a script reference for the proxy class.

Chapter 8: ASP.NET AJA X Communication Architecture384

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 8.1 Properties of the ServiceReference Class

Method Description

InlineScript Gets or sets a value that indicates whether the proxy-
generation script is included in the page as an inline script
block or is obtained by a separate request

Path Gets or sets the path of the referenced web service

ASP.NET AJA X 2.0 Extensions Communication Architecture 385

NOTE InlineScript Property Usage

The ServiceReference class contains the InlineScript property used
to determine how the proxy script is generated. If you look in the SDK,
you will see that you can have either the proxy referenced on the page
in a script block or by a script reference on the server. When using
WCF, you should use the default setting of InlineScript=false,
which references the proxy using a script reference on the server.

Listing 8.8 Service Registration with the ScriptManager

<form id="form1" runat="server">
<asp:ScriptManager ID="ScriptManager1" runat="server">

<Services>
<asp:ServiceReference Path="~/Product.svc" />

</Services>
</asp:ScriptManager>
...

</form>

Registering the Service with ASP.NET and IIS

In the previous sections on service binding and behavior, we discussed the
ability to configure a service to work with any varying number of clients.
In ASP.NET 2.0 AJAX Extensions, this configuration is done in the web.
config file or your web application. If you use the AJAX-enabled WCF ser-
vice template, the configuration settings for the service will be created for
you automatically. However, knowing what the entries do is still impor-
tant, especially when you start modifying the template-generated code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In Listing 8.9 the System.ServiceModel element contains the behavior
and service configuration information for our product service. The behav-
ior information is contained in the behaviors element, and the service bind-
ings are contained in the services element. The behaviors of a service
influence the WCF runtime characteristic of the service. In our case, the
enableWebScript behavior makes it possible for the web service to be con-
sumed from an ASP.NET AJAX page. The service address, binding, and
contract influence how the client communicates with the service. Setting
the binding to webHttpBinding enables the service to communicate using
HTTP requests using the REST-based communication pattern. And setting
the contract to the ProductLookupDemo.Product class specifies that this
class contains the contract for our service.

Listing 8.9 Product Service Configuration Settings

<system.serviceModel>
<behaviors>

<endpointBehaviors>
<behavior name="ProductLookupDemo.ProductAspNetAjaxBehavior">

<enableWebScript />
</behavior>

</endpointBehaviors>
</behaviors>
<serviceHostingEnvironment aspNetCompatibilityEnabled="true" />
<services>

<service name="ProductLookupDemo.Product">
<endpoint address=""

behaviorConfiguration="ProductLookupDemo.
ProductAspNetAjaxBehavior"
binding="webHttpBinding"
contract="ProductLookupDemo.Product" />

</service>
</services>

</system.serviceModel> is

Page Methods
The use of page methods in ASP.NET 2.0 AJAX Extensions can be thought
of as a special type of web service that enables you to create a method on an
ASP.NET 2.0 page and expose it as a REST resource. The appeal of page
methods is that they provide a familiar coding experience to developers
used to programming ASP.NET pages and allow them to call back to the

Chapter 8: ASP.NET AJA X Communication Architecture386

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server without creating a web service and, more important, without incur-
ring the overhead of the page lifecycle.

ASP.NET AJA X 2.0 Extensions Communication Architecture 387

NOTE Page Method Issues

As we begin our discussion about page methods, you should keep a
few things in mind. First, page methods work only on pages and are
not supported in controls. Second, the underlying serialization tech-
nology used by page methods is being replaced by the WCF JSON seri-
alizer. If you plan to use page methods, you should use types that are
easy to serialize and avoid using complex types that require additional
coding to serialize properly.

The implementation of page methods is simple, requiring the method to
be declared as static and the System.Web.Services.WebMethod attribute to
be applied. The code in Listing 8.10 shows the declaration for the Product
Lookup and AdvancedProductLookup page methods that provide the same
functionality as their AJAX-enabled WCF service counterparts.

Listing 8.10 Page Method Declaration

[WebMethod]
public static ProductDetail ProductLookup(string productNumber)
{

if (string.IsNullOrEmpty(productNumber))
throw new ArgumentNullException("productNumber");

return ProductSearch.Lookup(productNumber);
}

[WebMethod]
public static ProductDetail AdvancedProductLookup(SearchCriteria criteria)
{

if (criteria == null)
throw new ArgumentNullException("criteria");

return ProductSearch.Lookup(criteria.ProductNumber);
}

As with web services, registration with the ScriptManager is required to
generate the proxy class needed to call the page methods from the client.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The registration process, as seen in Listing 8.11, is simple and only requires
setting the EnablePageMethods property to true to get all page methods on
the page to be callable.

Listing 8.11 ScriptManager Setting for Page Methods

<asp:ScriptManager ID="ScriptManager1" runat="server"
EnablePageMethods="true">
</asp:ScriptManager>

Serialization
The support for serialization in ASP.NET 2.0 AJAX Extensions spans not
only web services but also into many of the supporting classes responsible
for transmitting proxy and initialization data to the client. In most cases, the
serialization of objects happens automatically. In more complex scenarios,
however, some additional work is required to properly convert data to and
from JSON. In this section, we cover the complex subject of serialization
and how ASP.NET 2.0 AJAX Extensions support working with JSON data
of varying complexities.

JavaScript Object Notation

Before we go into how to serialize JSON, it might be wise to talk about what
JSON is. JSON, JavaScript Object Notation, is a lightweight data inter-
change format that is both easy to read and compact. The composition of
JSON data follows two patterns:

1. Name and value pairs of data in the format of name:value inside a
left brace, {, and right brace, }, and separated by commas

2. Arrays containing comma-separated data inside a left bracket, [, and
right bracket,]

To get a better feel for how an object is composed in JSON, let’s take a
look at the ProductDetail class from earlier. The JSON representation of
the ProductDetail class, shown in Listing 8.12, uses name:value pairs to
represent the ProductNumber, Description, and Price values of the object.
What makes working with JSON so appealing is its tight integration with
JavaScript and how it leverages the object notation that is natively sup-
ported, making it easy to turn JSON data into an object by applying the
JavaScript eval operator to the data.

Chapter 8: ASP.NET AJA X Communication Architecture388

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 8.12 JSON Representation of the ProductDetail Class

{"ProductNumber":"200","Description":"Black XBox Controller","Price":50}

DataContractJsonSerializer

The DataContractJsonSerializer provides services to serialize and dese-
rialize JSON data and is the replacement for the JavaScriptSerializer
used in previous versions. The move to the DataContractJsonSerializer
in ASP.NET 2.0 AJAX Extensions centralizes all the serialization services to
a common platform contained in the System.Runtime.Serialization
namespace, thus providing a consistent method of serialization shared
between services and internal classes.

JavaScriptSerializer Usage Internally by ASP.NET AJAX
Extensions
The use of the JavaScriptSerializer has been deprecated in this new

version, but internally some areas of ASP.NET 2.0 AJAX Extensions are still

using the serializer. Examples include the ScriptComponentDescriptor,

ScriptBehaviorDescriptor, ScriptControlDescriptor, and page

methods, which can lead to additional serialization work if you work with

types that are shared between web services, behaviors, and controls. A

good rule of thumb is to limit your usage of types that need custom seri-

alization to web services and leave property assignments in behaviors and

controls to simple types or types that can easily be serialized.

To demonstrate how to work with the serializer, we take a string repre-
sentation of our ProductDetail class and convert it into a ProductDetail
instance, as shown in Listing 8.13, and then convert it back into a JSON
string, as shown in Listing 8.14, illustrating the steps required to serialize
and desterilize JSON data using the DataContractJsonSerializer. The
productDetailJSON is a JSON string that represents our ProductDetail
class. The escape sequences embedded in the string are required to ensure
the values are formatted correctly for the serializer. The interesting thing
about the DataContractJsonSerializer is that it works with a memory

ASP.NET AJA X 2.0 Extensions Communication Architecture 389

http://lib.ommolketab.ir
http//lib.ommolketab.ir

stream rather than strings and therefore requires our string data to be con-
verted into a memory stream before we can begin the serialization process.

Listing 8.13 Reading JSON Data

string productDetailJson =
"{\"ProductNumber\":\"200\",\"Description\":\"Xbox Live
360\",\"Price\":\"50\"}";

//read from JSON string
byte[] stream = System.Text.Encoding.GetEncoding(

"iso-8859-1").GetBytes(productDetailJson);
MemoryStream memoryStream = new MemoryStream(stream);
DataContractJsonSerializer jsonSerializer = new
DataContractJsonSerializer(typeof(ProductDetail));
ProductDetail productDetail = (ProductDetail)jsonSerializer.ReadObject
(memoryStream);

The DataContractJsonSerializer comes with over nine constructors.
The two you will use most frequently when working with JSON are in
Table 8.2. The first constructor is designed to initialize the serializer to work
with a single type and is used when you have an object to serialize that is
relatively simple. The second constructor takes not only a type but also a
collection of known types that may be present during serialization. This
constructor is useful when your data type is more complex in nature and
requires some help in determining how to serialize the data. In Listing 8.14,
we are using the single constructor to create an instance of the serializer that
is set up to work with the ProductDetail class.

Table 8.2 Constructors of the DataContractJsonSerializer

Constructor Description

DataContractJsonSerializer(Type) Deserializes JSON data and returns the
deserialized object

DataContractJsonSerializer(Type, Initializes a new instance of the
IEnumerable<(Of <(Type>)>)) DataContractJsonSerializer class to

serialize or deserialize an object of the
specified type, with a collection of
known types that may be present in the
object graph

Chapter 8: ASP.NET AJA X Communication Architecture390

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The next step in our process is to deserialize, or read in DataContract
JsonSerializer speak, the memory stream into a ProductDetail class
instance. This is performed by the ReadObject method, which reads in the
memory stream, providing an output capable of being cast to an instance of
a ProductDetail type (see Table 8.3). At this point, you can work with the
productDetail variable in its .NET data form.

Table 8.3 Subset of Methods of the DataContractJsonSerializer

Method Description

ReadObject Deserializes JSON data and returns the deserialized object

WriteObject Serializes an object to a JSON document

Now that we have the data in a .NET data type, we will walk through
the steps to convert it back to JSON. The use of memory streams is contin-
ued during the serialization process when the serializer writes, in Data
ContractJsonSerializer speak, the ProductDetail type to a JSON string.
The process entails writing the .NET type to a memory stream and then
encoding a byte array into a string. The encoding class in the System.Text
namespace comes in handy during this step, providing the ability to encode
the memory stream to an ISO-based string. So at this point, we have now
successfully converted a JSON representation of the ProductDetail class
into an object and then back into JSON.

Listing 8.14 Writing JSON Data

//write from object back to string
memoryStream = new MemoryStream();
jsonSerializer.WriteObject(memoryStream, productDetail);
string productDetailJSON2 = Encoding.GetEncoding(
"iso-8859-1").GetString(memoryStream.ToArray());

Complex Data and Serialization

So far, we have worked with a scenario that is simple, and the Data
ContractJsonSerializer can easily determine the type we are working
with. However, this is not always the case. Consider, for instance, the

ASP.NET AJA X 2.0 Extensions Communication Architecture 391

http://lib.ommolketab.ir
http//lib.ommolketab.ir

BusinessEntity class in Listing 8.15. It contains one property, Entities,
that is of type ArrayList, which stores items as objects. If we were passed
a JSON string that contains items of varying types in this ArrayList, the
DataContractJsonSerializer would have a hard time determining the
true data types of these entries because there is no type information asso-
ciated with JSON. This is where the concept of known types comes into
play to help the serializer figure out the true data types of these JSON
strings.

Chapter 8: ASP.NET AJA X Communication Architecture392

NOTE Type Information in JSON

We just made a statement that type information is not in JSON. In the
true sense of things, it is not. However, Microsoft does include type
information in JSON that is passed between the client and the server.
The ASP.NET AJAX Extensions and Microsoft AJAX Library use this
information to assist in the serialization process.

The KnownType attribute, when applied to a class, assists the serializer
in determining the types that could be involved during the serialization
process. When the serializer starts the deserialization process, it looks for
CLR types that implement the data contract passed in and uses a list of
known types to figure out the correct type to use. By applying the
KnownType attribute to your class, you are adding types to this known type
list, letting the serializer know that these particular types should be con-
sidered during serialization. In Listing 8.16, we can see that the KnownType
attribute has been applied to the BusinessEntities class, adding the
Vendor and Customer types to the list of known types. Now when the seri-
alizer encounters a type in the ArrayList, it uses these types to help deter-
mine the correct type to be serialized.

Listing 8.15 BusinessEntities Class

public class BusinessEntities
{

public BusinessEntities() { Entities = new ArrayList(); }

[DataMember]
public ArrayList Entities { get; set; }

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 8.16 BusinessEntity Class with KnownType Attribute

[DataContract]
[KnownType(typeof(Customer))]
[KnownType(typeof(Vendor))]
public class BusinessEntities
{

public VariousEntities() { Entities = new ArrayList(); }

[DataMember]
public ArrayList Entities { get; set; }

}

In some cases, applying the KnownType attribute to a class is not possi-
ble or desired (for example, when the data classes are already created and
they can’t be modified). In this case, you have two options, depending on
the usage of the data. If the DataContractJsonSerializer is natively being
used, as in our previous examples, adding the known types to a collection
and passing them into the overloaded constructor of the DataContract
JsonSerializer will enable the serializer to use these types during the seri-
alization process. If the types are being used in web services, modifying the
web.config file is the best approach.

The web.config file approach adds entries of known types to the data
ContractSerializer element, making them available during the serializa-
tion process. The configuration entries shown in Listing 8.17 declare the
BusinessEntities type and then add the Customer and Vendor as known
types for it. An entry of a declared type and associated known types would
be added for each data type that requires known types to be correctly
serialized.

Listing 8.17 DataContractSerializer Configuration Option

<system.runtime.serialization>
<dataContractSerializer>

<declaredTypes>
<add type="ServiceData.Complex.BusinessEntities,

ServiceData, Version = 1.0.0.0, Culture = neutral,
PublicKeyToken=null">
<knownType type="ServiceData.Complex.Business,

ServiceData, Version = 1.0.0.0, Culture = neutral,
PublicKeyToken=null" />

<knownType type="ServiceData.Complex.Customer,
ServiceData, Version = 1.0.0.0, Culture = neutral,
PublicKeyToken=null" />

ASP.NET AJA X 2.0 Extensions Communication Architecture 393

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 8.17 continued

<knownType type="ServiceData.Complex.VendorEntity,
ServiceData, Version = 1.0.0.0, Culture = neutral,
PublicKeyToken=null" />

</add>
</declaredTypes>

</dataContractSerializer>
</system.runtime.serialization>

Server Framework Components
ASP.NET 2.0 AJAX Extensions provide a series of HTTP handlers and mod-
ules designed to assist in the communication between the client and the
server. These handlers and modules provide services such as processing
web requests, processing application service requests, returning dynami-
cally generated web service JavaScript proxy classes, and returning script
resources that are embedded in assemblies. In the sections to follow, we
look at how these handlers and modules work in conjunction with
ASP.NET to process incoming requests and thus additional functionality
needed by ASP.NET 2.0 AJAX Extensions. We begin our discussion by
reviewing how the ASP.NET 2.0 application lifecycle works. This overview
will help you better understand where handlers and modules fit into the
overall request processing cycle. The discussion then transitions to the han-
dlers and modules and the functionality they provide.

ASP.NET Application Lifecycle

The application lifecycle that ASP.NET 2.0 goes through when processing
a request consists of quite of few layers. As you can see in Figure 8.3, the
flow of a request from a client starts with the request coming into IIS and
logic being applied to determine whether the ASP.NET runtime will be pro-
cessing the request. If the file extension of the request ends with .aspx, .ascx,
.ashx, .asmx, or .svc, the ASP.NET 2.0 runtime handles the request, and the
Application Manager creates an application domain for the request. This
application domain is used to provide isolation between the various web
applications in IIS and allows each web application to be managed sepa-
rately. The byproduct of creating an application domain is the creation of
the HTTP runtime, which consists of the HttpContext, HttpRequest,

Chapter 8: ASP.NET AJA X Communication Architecture394

http://lib.ommolketab.ir
http//lib.ommolketab.ir

HttpResponse, and HttpApplication objects that work together to process
the request. The HttpContext class contains objects specific to the current
application request, such as the HttpRequest and HttpResponse objects. The
HttpRequest object contains information about the current request, includ-
ing cookies and browser information. The HttpResponse object contains the
response sent to the client, including all rendered output and cookies. It is
the HttpApplication pipeline contained in the HttpApplication object that
is of most interest to us, because the pipeline is responsible for the instanti-
ation of the HTTP handlers and modules for the ASP.NET 2.0 AJAX
Extensions framework.

ASP.NET AJA X 2.0 Extensions Communication Architecture 395

Application Domain

HTTP Runtime

HTTP Request

HTTP Response

HTTP
Application

Pipeline

Application Manager

Cloud

IIS

Request

Response

Figure 8.3 ASP.NET application lifecycle

NOTE More Information about HTTP Handlers and Modules

For a more detailed explanation about HTTP handlers and modules
that are discussed in the next sections, see Appendix C, “ASP.NET
Handlers and Modules.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

HTTP Handlers

In their simplest form, HTTP handlers run in response to a request into
an ASP.NET application and are part of the HttpApplication pipeline
illustrated in Figure 8.3. In the course of processing the request, the
HttpApplication pipeline loads the specific handler based on the file exten-
sion of the request and uses it to process the request. It is during this pro-
cessing that the ASP.NET 2.0 AJAX Extensions handlers provide added
functionality to the request, providing support for handling REST-based
web services, application services, and script resource requests.

ScriptHandlerFactory

The ScriptHandlerFactory is designed to handle the entire suite of REST-
based service requests for the authentication service, profile service, and
role service. It also provides support for working with the older ASMX-
style REST web services. The handler is designed to handle requests with
file extensions consisting of the *_ApplicationService.axd or *.asmx wild-
card pattern, which are for the application services and ASXM-style web
services, respectively. In the course of processing, the handler looks for two
conditions to determine whether the request is something it can handle:

1. Is the header content type application/json?

2. Does the path end with /js or /jsdebug?

If the content type is application/json, the handler calls either the
internal application service or the ASMX service to process the request. If
the handler encounters file extensions that meet the *.asmx pattern and also
end with /js or /jsdebug, it generates the JavaScript proxy class for the
web service. Services that are registered with the ScriptManager and select
the InlineScript=false option rely on this feature to process requests for
JavaScript proxy classes from the client.

ScriptResourceHandler

The ScriptResourceHandler is used by ASP.NET 2.0 AJAX Extensions to
process requests for script resources that contain the ScriptResource.axd
filename. Scripts that are embedded assembly resources and are registered
with the ScriptManager rely on this handler to get loaded onto the page.

Chapter 8: ASP.NET AJA X Communication Architecture396

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In fact, this is how the framework JavaScript files MicrosoftAjax.js,
MicrosoftAjaxWebForms.js, and MicrosoftAjaxTimer.js are delivered to the
client. How the requests are formatted and how the handler processes the
requests is interesting.

If you look at the source of your pages, you will see a script reference
like the one in Listing 8.18 that the handler is designed to work with. As the
handler processes the request, it first decrypts the d parameter, which con-
tains information such as whether the script file should be GZip com-
pressed, the name of the assembly that contains the embedded JavaScript
resource, and whether the handler should add a call to Sys.Application.
notifyScriptLoaded at the end of the script block to notify the application
that the script has been loaded. The handler then uses this information to
create an instance of the type that contains the script resource, composes the
output, compresses the output if needed, and then returns the final result to
the client.

Listing 8.18 Page Script Reference

<script src="/ScriptResource.axd?d=Sl3Kr-
7xWWkkjj5ukGgAiCB2QH_y5ShPnuPcE9X_hwycHPq4qQVE6dFU6GXJ5Y7fD5xllEai_EA_iwv2nk
JkNWtIXT-SnVWidtzFxWE8roE1&t=633127670283933053"
type="text/javascript"></script>

System.ServiceModel.Activation.HttpHandler

The System.ServiceModel.Activation.HttpHandler is the WCF counter-
part to the ScriptHandlerFactory handler. This handler is designed to
process both REST-based requests and standard SOAP-based requests for
files with the *.svc wildcard pattern. The handler processes two types of
requests with respect to AJAX-enabled WCF services:

1. Requests that contain the application/json header content type

2. Requests with file extensions that end in /js or /jsdebug

As with the ScriptHandlerFactory, requests with the application/
json are handled as REST-based requests, using the DataContractJson
Serializer to serialize and deserialize the message. Requests that end with

ASP.NET AJA X 2.0 Extensions Communication Architecture 397

http://lib.ommolketab.ir
http//lib.ommolketab.ir

/js or /jsdebug return the JavaScript proxy class for the web service. If any
of these conditions are not met, the handler processes the request as a stan-
dard WCF SOAP-based request.

HTTP Modules

An HTTP module is similar in concept to the HTTP handler in the sense
that it runs in response to a request into an ASP.NET application. In the case
of a module, however, it runs with every request regardless of the HTTP
verb or the path of the URL. The HTTP module works with the Http
Application pipeline as it goes through the various events that occur dur-
ing processing, providing extensibility points as events occur, much like an
event handler.

ScriptModule

The ScriptModule module works with three HttpApplication events
that are of importance to ASP.NET 2.0 AJAX Extensions: PreSend
RequestHeader, PostAcquireRequestState, and AuthenticateRequest.
The PreSendRequestHeaders event is used in cases where the UpdatePanel
is posting back to the server. When this event occurs, the module rewrites
the HTTP headers and formats the content posted back into a pipe-
delimited format that the client-side code uses to redraw the invalidated
region with the new content. The PostAcquireRequestState event is used
to handle page method calls to the server. When this event occurs, the mod-
ule first verifies the request by ensuring the file extension is .aspx and the
content type is application/json, and then processes the request using the
same internal code the ScriptHandlerFactory uses to process a request.
The AuthenticateRequest event is used to set the SkipAuthorization
property of the HttpContext in situations where a script resource is being
requested or in cases where the authentication service is being called.

Configuration

The configuration of an ASP.NET AJAX web application is automatic in
Visual Studio 2008 because all web applications are ASP.NET AJAX enabled
by default. This makes working with web applications a lot easier in this

Chapter 8: ASP.NET AJA X Communication Architecture398

http://lib.ommolketab.ir
http//lib.ommolketab.ir

version and eliminates the need to add ASP.NET 2.0 AJAX Extensions con-
figuration entries by hand. In this section, we show how the handler and
modules are registered in ASP.NET AJAX, closing the loop on the server
framework components.

The configuration of ASP.NET 2.0 AJAX Extensions, see Listing 8.19,
is contained in two sections of the web.config file: ConfigSections and
System.Web. The ConfigSection defines the various subsections that con-
tain ASP.NET AJAX-specific information such as the authentication service,
profile service, and role service information for the application services.
The System.Web section contains the handler and module registration for
the ScriptHandlerFactory, ScriptResourceHandler, and the Script
Module. If we take a look at the handlers section inside the System.Web ele-
ment, we can see that the default handler for all ASMX files is removed.
This is how ScriptHandlerFactory can override the default implementa-
tion for these file types and either process the REST-based requests or pass
them back to the default handler. The next thing to note in this section is the
registration of the ScriptHandlerFactory for the ASMX web application
services. By registering the file paths with ASP.NET, these handlers are now
responsible for processing requests that match these extensions. The last
entry in this element is the registration of the ScriptResourceHandler for
the files with the ScriptResource.axd path name. The last item to talk about
in the web.config is the httpmodules element, which contains the registra-
tion of the ScriptModule, which provides implementation for the PreSend
RequestHeader, PostAcquireRequestState, and AuthenticateRequest
events of the HttpApplication.

ASP.NET AJA X 2.0 Extensions Communication Architecture 399

NOTE Where Is the WCF Handler?

The one item you will see missing in the System.Web section is the
System.ServiceModel.Activation.HttpHandler for WCF. This han-
dler is actually registered in the master web.config file, which the
web.config file builds on.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 8.19 ASP.NET AJAX Configuration

<?xml version="1.0"?>
<configuration>
...

<configSections>
<sectionGroup name="system.web.extensions" ...>

<sectionGroup name="scripting" ...>
<section name="scriptResourceHandler" .../>

<sectionGroup name="webServices" ...>
<section name="jsonSerialization" .../>
<section name="profileService" ... />
<section name="authenticationService" .../>
<section name="roleService" ... />

</sectionGroup>
</sectionGroup>

</sectionGroup>
</configSections>
<system.web>

<httpHandlers>
<remove verb="*" path="*.asmx"/>
<add verb="*" path="*.asmx" validate="false"

type="System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>

<add verb="*" path="*_AppService.axd" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>

<add verb="GET,HEAD" path="ScriptResource.axd"
type="System.Web.Handlers.ScriptResourceHandler,
System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"
validate="false"/>

</httpHandlers>
<httpModules>

<add name="ScriptModule"
type="System.Web.Handlers.ScriptModule,
System.Web.Extensions,
Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>

</httpModules>
</system.web>
...

</configuration>

Chapter 8: ASP.NET AJA X Communication Architecture400

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Communication Architecture

The Microsoft AJAX Library communication architecture builds on a lay-
ered approach, just like the ASP.NET 2.0 AJAX Extensions communication
architecture, to provide various services to the client as it integrates with
the server. The diagram in Figure 8.4 shows the different layers that make
up the communication stack on the client. The service proxy layer provides
a browser-independent way to access web services, application services,
and page methods. The serialization layer provides support for converting
JavaScript types to and from JSON. And web request core components pro-
vide the underlying support that makes all this happen.

Microsoft AJA X Library Communication Architecture 401

Service Proxies
(WCF, Application Services, Page Methods)

JSON Serialization

WebRequest

WebRequest Core
(WebRequestManager, XmlHttpExecutor, XmlHttp)

Figure 8.4 Microsoft AJAX Library communication architecture

With Figure 8.4 as our guide, let’s take a look at the various layers and
their respective components with a goal of understanding service proxies,
JSON serialization, and the web request core components that comprise the
client communication stack.

Service Proxies
The Microsoft AJAX Library provides proxy services for WCF, application
services, and page methods, providing functionality for the client to call
into all these server-side services in a browser-independent way. In this sec-
tion, we explore how these proxy services work and how to interact with
them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Product Service Proxy

The product class provides the method signatures and data type declara-
tions for the product service we covered earlier. This proxy class is similar
in concept to the web service proxy class generated when working with
web services in .NET and provides many of the abstractions that have
made that model so successful. The product class generated by the server is
constructed to operate as an instance class, which is initialized using the
new operator, or a static class providing two distinct ways of interacting
with the product service. The instance implementation provides a flexible
way to call the service using a unique set of settings for each call. The static
implementation provides a more global approach to calling the service,
consolidating the settings, and using them for each call. In our discussion
of the product class to follow, we point out the differences in the approaches
as we go along and what advantages they provide.

The JavaScript functions in Listing 8.20 demonstrate a common pattern
when calling a static proxy class, with a method handling the calling of the
service and two callback functions handling the asynchronous response.
The first thing to understand when working with the product class is where
the namespace comes from. The namespace that all proxy classes will use is
dictated by the Namespace property of the ServiceContract attribute
applied to the service class. In our case, we are using ajaxbooksample.com,
which is the name we used when creating our AJAX-enabled WCF service.

During proxy generation, a method is created on the proxy class for each
operation that is exposed by the service. The method itself consists of a
slightly different signature from the one on the server, which is due in part
to the underlying services of the WebServiceProxy class that our product
class derives from. In the case of our Lookup method, we have an additional
set of parameters, including an optional success callback function pointer,
an optional failed callback function pointer, and an optional user context
parameter. The two callback functions are used by the proxy class to call

Chapter 8: ASP.NET AJA X Communication Architecture402

NOTE Application Services

The subject of application services is the topic of the next chapter, so
they are not covered here.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

back into our JavaScript code as the asynchronous request completes. The
user context parameter provides a way to pass user-defined data to the
asynchronous call and have it available when the call completes. This
comes in handy when you have a common callback function that processes
requests for all service operations and you need additional context infor-
mation to successfully wrap up the call.

The onSuccess callback function is called when the web service request
is successful and is passed the JavaScript object representation of the JSON
deserialized result, the user context value, and the name of the web service
method called. The onFailed callback function is called when the web ser-
vice request has failed and is passed an instance of the WebServiceError
object, the user context value, and the name of the web service method
called. The WebServiceError object that is passed in contains a flag indi-
cating whether the request has timed out, the error message, the stack trace,
the exception type, and the status code of the request (see Table 8.4). These
values can then be used to help determine the type of error that occurred
during transmission. When processing requests that contain errors, the sta-
tus code will be the most beneficial in determining the type of error that
occurred. A status code in the 400 range is a client-centric error status and
can be anything from the request timing out (408) to an unsupported media
type (415) for a message that is in the incorrect format. A status code in the
500 range is a server-centric error status and can be anything from an inter-
nal server error (500) to a service unavailable (503), which can occur when
the server is to busy or shut down.

Table 8.4 Properties of the WebServiceError Class

Method Description

exception Gets the exception type of the error

message Gets the error message returned by the error

statusCode Gets the status code for the HTTP response

stackTrace Gets the stack trace returned by the server

timedOut Gets a value that indicates whether the web service failed
because it timed out

Microsoft AJA X Library Communication Architecture 403

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The example of the product class in Listing 8.20 provides one way to
implement a static calling pattern. As we stated earlier, however, there are
a few ways we can implement this class. The proxy class comes with a few
properties that enable us to configure some of the behavioral aspects of the
class (see Table 8.5). In Listing 8.21, the product class has been set up in the
page load to use a global calling pattern with the onSuccess and onFailed

callbacks being set up globally. Then, our calling method simply passes in
the data to be sent using those default values. Not to confuse the matter
more, but it is possible to provide an override to the configuration in List-
ing 8.21 by calling the product class in the manner shown in Listing 8.20,
which overrides any of the onSuccess and onFailed settings that were
globally set. The final pattern we talk about is the instance pattern, which is
demonstrated in Listing 8.22, where the product service is being called by
creating a new instance of the product class.

Table 8.5 Proxy Class Properties

Property Description

defaultFailedCallback Gets or sets the default failed callback function
for the service

defaultSucceededCallback Gets or sets the default succeeded callback func-
tion for the service

path Gets or sets the path to the service

timeout Gets or sets the timeout in milliseconds for the
service

Chapter 8: ASP.NET AJA X Communication Architecture404

NOTE Properties in Classes

In Chapter 3, “Components,” we discussed that the Microsoft AJAX
Library uses get_ and set_ prefixes for properties to provide the same
effect of a property setter and getter in .NET. In the properties above
and throughout this section, we just designate the name of the prop-
erty with the assumption that the prefixes are the understood access
method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Request Timeouts
The proxy class supports the ability to set the timeout of a request using

the set_timeout property. In the default static implementation of the

proxy, the value is a global setting and will be used by all requests. If a per-

incidence setting is needed, you must create a new instance of the proxy

class and call the request through that instance. Setting the timeout is not

the hardest part of the equation. What value to use, and what to do when

the request times out, is. There is no hard and fast rule for setting timeout

values, and each situation will differ. However, you should consider some

things when approaching how to handle timeouts, such as whether the

request should automatically resend or whether the user should be

required to do this manually. If the request is re-sent, how many times

should this happen, and do you inform the user? If the user is required to

manually resend, what information do you provide, and is it appropriate to

interrupt the use case such as when a request is made as a user leaves a

textbox to do an automatic lookup that prepopulates form fields?

Listing 8.20 Product Service JavaScript Proxy Calling Functions

function LookupProduct()
{

var criteria = new ProductLookupDemo.SearchCriteria();
criteria.ProductNumber = $get("productNumber").value;
ajaxbooksamples.com.product.AdvancedLookup(criteria,

onSuccess,onFailed);
}

function onSuccess(result, userContext, methodName)
{

$get("productDescription").value = result.Description;
$get("productPrice").value = result.Price;

}

Microsoft AJA X Library Communication Architecture 405

NOTE Path of Service

The path of the service in all these samples defaults to the path set by
the proxy-generation code on the server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 8.20 continued

function onFailed(result, userContext, methodName)
{

alert("An error occured \n" + result.get_message());
}

Listing 8.21 Product Service Global Setup Calling Pattern

function pageLoad()
{

ajaxbooksamples.com.product.set_defaultSucceededCallback(onSuccess);
ajaxbooksamples.com.product.set_defaultFailedCallback(onFailed);

}

function LookupProduct()
{

var criteria = new ProductLookupDemo.SearchCriteria();
criteria.ProductNumber = $get("productNumber").value;
jaxbooksamples.com.product.AdvancedLookup(criteria);

}
...

Listing 8.22 Product Service Instance Calling Pattern

function LookupProduct()
{

var criteria = new ProductLookupDemo.SearchCriteria();
criteria.ProductNumber = $get("productNumber").value;
ajaxbooksamples.com.product.AdvancedLookup(criteria);

}
...

Product Service Proxy Class Details

The proxy class generated for our product service class is the same type of
class we discussed in Chapter 3 and uses many of the features of the client-
side framework such as namespaces, type declaration, inheritance, and
type registration. As we begin this section, you might be wondering why
we would cover this class. After all, the proxy is automatically generated,
and its use is simple. In our experience, we have seen that a solid under-
standing of the proxy class structure is a valuable asset when it comes time

Chapter 8: ASP.NET AJA X Communication Architecture406

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to troubleshoot communication errors. Being able to step through the proxy
class as it is processing the request and understanding what is going on can
help in those tough situations where your web service calls are failing. In
our discussions of the product service class to follow, we begin with the reg-
istration of the class, and then move on to the methods and properties of the
class, which are declared in the class’s prototype, and finally consider the
static representation of the proxy.

The namespace and type declaration of the class are shown in Listing
8.23. The namespace that the proxy uses comes directly from the Service
Contract attribute’s Namespace property assigned to each service class. In
the case of our product service class, refer to Listing 8.6, the namespace
value is ajaxbooksamples.com and is what the proxy class uses when reg-
istering the namespace. The type declaration for the class initializes the
timeout, userContext, succeeded and failed properties inherits from the
System.Net.WebServiceProxy class, which the proxy class derives from.

Microsoft AJA X Library Communication Architecture 407

NOTE Changing Namespace in ServiceContract

It will not be uncommon during development to change the name-
space on the web service as a final name is decided on. When this is
done, you need to go back to your JavaScript code and change the
namespace used to call the proxy class.

Listing 8.23 Product Service Namespace Registration and Proxy Initialization

Type.registerNamespace('ajaxbooksamples.com');

ajaxbooksamples.com.product=function() {
ajaxbooksamples.com.product.initializeBase(this);
this._timeout = 0;
this._userContext = null;
this._succeeded = null;
this._failed = null;
}

The proxy class’s prototype, shown in Listing 8.24, is composed of all
operations of the web service that are decorated with the Operation
Contract attribute. In the case of our product service, we have two opera-
tions declared in the proxy class’s prototype: Lookup and AdvancedLookup.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These methods use the functionality of the WebServiceProxy base class to
invoke the service, passing in the path of the service, the name of the oper-
ation to call, the parameters for the call, a succeed callback function refer-
ence, a failed callback function reference, and the user context. The path of
the service is dynamically generated using the web application as the base
and is assigned during later stages of the proxy class initialization using the
set_path property setter. The name of the method to call comes directly
from the name of the web service operation and is also used by the gener-
ator to create the method stub in the proxy. The parameters for the method
will match entry for entry with the operation on the web service. The gen-
eration process actually combines these values into an object initialization
string that is then used as a parameter into the invoke method. The remain-
ing parameters are the optional callback and user context parameters,
which can either be provided on a per-call basis or added globally to the
static representation of the proxy, which we talk about shortly.

Chapter 8: ASP.NET AJA X Communication Architecture408

NOTE Changing Operation Names

The names of the web service operations are tightly tied to the proxy
class, and any changes in the web service operation require a change in
your code that implements the proxy class.

Listing 8.24 Product Service Proxy Prototype

ajaxbooksamples.com.product.prototype={
_get_path:function(){

var p = this.get_path();
if (p)
return p;

else
return ajaxbooksamples.com.product._staticInstance.get_path();

},

Lookup:function(productNumber,succeededCallback, failedCallback,
userContext){
return this._invoke(this._get_path(),

'Lookup',false,{productNumber:productNumber},
succeededCallback,failedCallback,userContext);

},
AdvancedLookup:function(criteria,succeededCallback, failedCallback,

userContext){

http://lib.ommolketab.ir
http//lib.ommolketab.ir

return this._invoke(this._get_path(),
'AdvancedLookup',false,{criteria:criteria},
succeededCallback,failedCallback,userContext);

}
}

The proxy class registration, shown in Listing 8.25, registers the prod-
uct service class and associates it with the WebServiceProxy class it inher-
its from. To reduce the number of proxy class instances created and to
simplify use, the proxy generator provides a static reference of the proxy
class with overrides to the standard WebServiceProxy properties that call
back into this static reference. It is through these static properties that the
global callback function pointers and user context values are assigned.

Listing 8.25 Product Class Registration

ajaxbooksamples.com.product.registerClass('ajaxbooksamples.com.product',Sys.
Net.WebServiceProxy);

ajaxbooksamples.com.product._staticInstance =
new ajaxbooksamples.com.product();

ajaxbooksamples.com.product.set_path = function(value) {
ajaxbooksamples.com.product._staticInstance.set_path(value);

}

ajaxbooksamples.com.product.get_path = function() {
return ajaxbooksamples.com.product._staticInstance.get_path();

}

ajaxbooksamples.com.product.set_timeout = function(value) {
ajaxbooksamples.com.product._staticInstance.set_timeout(value);

}

ajaxbooksamples.com.product.get_timeout = function() {
return ajaxbooksamples.com.product._staticInstance.get_timeout(); }

ajaxbooksamples.com.product.set_defaultUserContext = function(value) {
ajaxbooksamples.com.product._staticInstance.set_defaultUserContext(

value);
}

ajaxbooksamples.com.product.get_defaultUserContext = function() {
return

ajaxbooksamples.com.product._staticInstance.get_defaultUserContext();
}

Microsoft AJA X Library Communication Architecture 409

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 8.25 Continued

ajaxbooksamples.com.product.set_defaultSucceededCallback = function(value){

ajaxbooksamples.com.product._staticInstance.set_defaultSucceededCallback(val
ue);
}

ajaxbooksamples.com.product.get_defaultSucceededCallback = function() {
return

ajaxbooksamples.com.product._staticInstance.get_defaultSucceededCallback();
}

ajaxbooksamples.com.product.set_defaultFailedCallback = function(value)
{
ajaxbooksamples.com.product._staticInstance.set_defaultFailedCallback(
value);
}
ajaxbooksamples.com.product.get_defaultFailedCallback = function() {
return
ajaxbooksamples.com.product._staticInstance.get_defaultFailedCallback();
}
ajaxbooksamples.com.product.set_path("/Product.svc");

ajaxbooksamples.com.product.Lookup=
function(productNumber,onSuccess,onFailed,userContext) {

ajaxbooksamples.com.product._staticInstance.Lookup(
productNumber, onSuccess,onFailed,userContext);

}

The proxy class also registers all the data types that are part of the web
service interface, providing the client-side types for use in JavaScript. In
Listing 8.26 we see that the ProductDetail and SearchCriteria types from
our product service are registered with their .NET-specific namespace
information. This registration provides the type information that Microsoft
AJAX uses when serializing or deserializing the JSON data as it is passed
between the client and the server.

Chapter 8: ASP.NET AJA X Communication Architecture410

NOTE JSON Type Information

This added type information was the subject of our “Type Information
in JSON” note in the “Complex Data and Serialization” section earlier
in the chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 8.26 Product Service Data Type Registration

var gtc = Sys.Net.WebServiceProxy._generateTypedConstructor;

Type.registerNamespace('ProductLookupDemo');

if (typeof(ProductLookupDemo.ProductDetail) === 'undefined') {
ProductLookupDemo.ProductDetail=gtc(

"ProductDetail:http://schemas.datacontract.org/2004/07/
ProductLookupDemo");

ProductLookupDemo.ProductDetail.registerClass(
'ProductLookupDemo.ProductDetail');

}

if (typeof(ProductLookupDemo.SearchCriteria) === 'undefined') {
ProductLookupDemo.SearchCriteria=gtc(

"SearchCriteria:http://schemas.datacontract.org/2004/07/
ProductLookupDemo");

ProductLookupDemo.SearchCriteria.registerClass(
'ProductLookupDemo.SearchCriteria');

}

The format of the JSON data passed between the client and the server
depends on the direction of the request. In the case of outbound requests, the
JSON format looks like Listing 8.27, with the criteria parameter signifying the
parameter name on the web service operation that will be receiving the data,
and the remaining portion detailing the data type and content sent. The type
is declared using the type information that was generated by the proxy
generation on the server, shown in Listing 8.26, using the format __type
as the property and SearchCriteria:http://schemas.datacontract.

org/2004/07/ProductLookupDemo as the value of the __type property. The
format of the type value follows the pattern of an XML namespace, which the
WCF service expects as its processing the parameter. The remaining portion
of the JSON value contains the name:value pairs that represent the
SearchCriteria object. In the case of incoming requests, the JSON format
looks like Listing 8.28, with the d parameter signifying the overall data that
was received, and the remaining portion detailing the data type and content.
The type is declared using the format __type as the property
and Type:#Namespace as the value of the __type property. The format
Type#Namespace consists of the server-based .NET type of the object and the

Microsoft AJA X Library Communication Architecture 411

http://lib.ommolketab.ir
http//lib.ommolketab.ir

namespace that the type resides in. The remaining values of the JSON string
contain the name:value pairs for the properties of the ProductDetail object
and their values.

Chapter 8: ASP.NET AJA X Communication Architecture412

NOTE Inconsistencies in Type Format

The inconsistency in type formatting between requests and responses
is a little confusing at first because it’s hard to understand why this
would have been done. I guess since the WCF team owns the web ser-
vice portion of things now, they can dictate what they want.

NOTE Changing Type Information

One common practice performed during development is refactoring,
where you modify your code as you go along, making small tweaks
that enhance the maintainability and readability of the code. During
these times, classes can change names and namespaces. Be sure to keep
in mind that any changes performed on the server that affect the data
types on the client could warrant changing your proxy calling code.

Listing 8.27 Type-Based JSON

{"criteria":{"__type":"SearchCriteria:http://schemas.datacontract.org/2004/0
7/ProductLookupDemo","ProductNumber":"200"}}

Listing 8.28 Type-Based JSON

{"d":{"__type":"ProductDetail:#ProductLookupDemo","Description":"Black XBox
Controller","Price":50,"ProductNumber":"200"}}

Known Type and Proxy Type Registration

The KnownType attribute that we discussed in the “Complex Data and
Serialization” section earlier in the chapter also comes into play when types
are generated for the proxy class. The use of the KnownType attribute adds
that type to the registered types in the proxy. In Listing 8.29, we can see that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

not only is the BusinessEntities type registered, but also the Customer and
Vendor types, even though they are not directly used by any of the methods
on the web service. The inclusion of known types in the proxy class assists
the JSON serializer in determining the data type to use when converting the
data before it is sent back to the server and then on the server when the Data
ContractJsonSerializer attempts to convert the JSON to a .NET data
type.

Listing 8.29 KnownType Type Declarations

var gtc = Sys.Net.WebServiceProxy._generateTypedConstructor;

Type.registerNamespace('AjaxServiceDemo');

if (typeof(AjaxServiceDemo.BusinessEntities) === 'undefined') {
AjaxServiceDemo.BusinessEntity=gtc(
"BusinessEntities:http://schemas.datacontract.org/2004/07/
AjaxServiceDemo");

AjaxServiceDemo.BusinessEntities.registerClass(
'AjaxServiceDemo.BusinessEntities');

}

if (typeof(AjaxServiceDemo.Customer) === 'undefined') {
AjaxServiceDemo.Customer=gtc(

"Customer:http://schemas.datacontract.org/2004/07/
AjaxServiceDemo");

AjaxServiceDemo.Customer.registerClass(
'AjaxServiceDemo.Customer');

}
if (typeof(AjaxServiceDemo.Vendor) === 'undefined') {

AjaxServiceDemo.Vendor=gtc(
"Vendor:http://schemas.datacontract.org/2004/07/
AjaxServiceDemo");

AjaxServiceDemo.Vendor.registerClass(
'AjaxServiceDemo.Vendor');

}

Using the Page Method Proxy Class

The page methods proxy class provides the method signatures and data
type declarations for the ProductLookup and AdvancedProductLookup page
methods we covered earlier. The generation of this proxy class follows the
same pattern as the web service proxy class, including a static representa-
tion and the reliance of the WebServiceProxy class to provide the underly-
ing request and response functionality.

Microsoft AJA X Library Communication Architecture 413

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In Listing 8.30, we can see that the calling pattern is similar to the web
service proxy class and uses a similar static class approach to methods. The
name of the proxy class when using page methods will always be
PageMethods, and the methods to call will always match the method names
on the page. The use of callbacks and user context is the same as in our web
service proxy class, and so is the ability to set these values globally. The one
thing that page method proxy classes do not provide is a varying imple-
mentation approach using both instance and static representations. The
default static usage is all that is supported.

Listing 8.30 Page Method JavaScript Proxy Calling Functions

function PageMethodLookupProduct()
{

criteria.ProductNumber = $get("productNumber").value;
PageMethods.AdvancedLookupProduct(criteria,onSuccess,onFailed);

}

function onSuccess(result, userContext, methodName)
{

$get("productDescription").value = result.Description;
$get("productPrice").value = result.Price;

}

function onFailed(result, userContext, methodName)
{

alert("An error occured \n" + result.get_message());
}

WebServiceProxy Class

The Sys.Net.WebServiceProxy class is the base class used for proxies gen-
erated by the ScriptManager and provides the web service request and
response functionality for inherited classes. The class contains properties to
set the path of the service to call, the timeout for each request, the default
user context data passed through the request call and made available to the
callback functions, the default success callback function, and the default
failure callback function (see Table 8.6). The class also contains an invoke
method that calls the specified web service dependent on the path and han-
dles all the pre- and post-processing that occurs during the call (see
Table 8.7).

Chapter 8: ASP.NET AJA X Communication Architecture414

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJA X Library Communication Architecture 415

Table 8.6 WebServiceProxy Class Properties

Property Description

defaultFailedCallback Gets or sets the default failed callback function
for the service

defaultSucceededCallback Gets or sets the default succeeded callback func-
tion for the service

path Gets or sets the path to the service

timeout Gets or sets the timeout in milliseconds for the
service

Table 8.7 WebServiceProxy Class Methods

Method Description

invoke Calls the specified web service method

If we refer back to the product proxy class prototype in Listing 8.24, the
_invoke method that provides the functionality for the Lookup method is
actually a reference to the invoke method of the WebServiceProxy class. The
product class uses this method to call the service, using the pre- and post-
processing that the invoke method provides, including setting the content
type, serializing the parameter data to JSON, submitting the response, han-
dling the response from the asynchronous request, and calling the regis-
tered succeeded and failed callback functions.

The abstraction to the underlying HTTP transport that the WebService
Proxy class provides makes it a great class to not only inherit from but to
directly use when you need to communicate with a web service in a cus-
tomized way.

Serialization
The Sys.Serialization.JavaScriptSerializer provides JSON serializa-
tion services to the Microsoft AJAX Library. This JavaScript-based serializer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

is a much simpler type of serializer than the .NET-based DataContract
JsonSerializer on the server and is designed to work with JavaScript
Objects, Dates, Numbers, Booleans, and String values. The serializer has
two static methods, serialize and deserialize, that are used to serialize
and deserialize JavaScript types to and from JSON strings. The sample in
Listing 8.31 demonstrates how to use the serializer, taking the Product
Detail class from our product service and converting it to JSON. The out-
put of the serializer, which should look familiar by now, contains the type
of the object and the name:value pairs representing the properties.

Chapter 8: ASP.NET AJA X Communication Architecture416

NOTE Prototype Classes and Serialization

The Microsoft AJAX classes you create using the prototype model do
not serialize by default using the JavaScriptSerializer. The reason
for this is the serializer is designed to use the expando properties of an
object to extract the property names and values to be serialized (see
Chapter 3). In the Prototype Model, the properties are set up using the
get_ and set_ naming convention and do not follow the expando pat-
tern. One way to get around this is to create a method on the Microsoft
AJAX class that can return an expando version of your class and pass
that to the JavaScriptSerializer.

Listing 8.31 Serializing JavaScript Objects

//create product detail using type from proxy
var productDetail = new ProductLookupDemo.ProductDetail();
productDetail.ProductNumber = "200";
productDetail.Description = "Black XBox Controller";
productDetail.Price = 50;

//serialize to JSON string
var productDetailJSON =
Sys.Serialization.JavaScriptSerializer.serialize(productDetail);

//send to output
Sys.Debug.trace(productDetailJSON);

//Results from Sys.Debug.trace window
{"__type":"ProductDetail:http://schemas.datacontract.org/2004/07/Product
LookupDemo","ProductNumber":"200","Description":"Black XBox
Controller","Price":50}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

WebRequest
The Sys.Net.WebRequest class provides browser-independent asynchro-
nous communication support to the Microsoft AJAX Library. In most cases,
you will not use this class directly. Instead, you will use its services when
calling the web service proxy classes that are automatically generated for
you. Sometimes, however, its direct use is required (for example, when you
need to make network requests that are not simple web service calls, when
you need to set HTTP request properties directly, or when you need to use
a custom executor).

Microsoft AJA X Library Communication Architecture 417

NOTE Custom Executor

The Microsoft AJAX Library provides a plug-in model that enables
developers to create custom asynchronous executors that provide
request and response services to the WebRequest class. The XMLHttp
Executor class is an example of a custom executor that uses the ser-
vices of the browser’s XMLHttp object to make calls to the server.

The WebRequest class comes with properties that expose the various
parts of a request. The properties in Table 8.8 represent such items as the
request body, the headers of the request, the HTTP verb, and the URL of the
request. The class also comes with a set of methods, shown in Table 8.9, that
enable the registration of completion handler and provide the ability to
invoke the request. To get a feel for how different coding directly against
the WebRequest object is, let’s re-create the call to the AdvancedLookup oper-
ation on our product service.

Table 8.8 WebRequest Class Properties

Property Description

body Gets or sets the HTTP body of the web request

executor Gets or sets the executor of the associated web request instance

headers Gets the HTTP headers for the web request

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 8.8 continued

Property Description

httpVerb Gets or sets the web request HTTP verb used to issue the web
request

timeout Gets or sets the timeout value for the web request instance

url Gets or sets the URL of the web request instance

userContext Gets or sets the user context associated with the web request
instance

Table 8.9 WebRequest Class Methods

Method Description

add_completed Registers an event handler to associate with the web
request instance

completed Raises the completed event for the associated
Sys.Net.WebRequest instance

getResolvedUrl Gets the resolved URL of the web request instance

invoke Issues a network call for the web request instance

remove_completed Removes the event handler associated with the web
request instance

In Listing 8.32, we can see what is required to create the AdvancedLookup
request to the product service. The web service proxy class did quite a bit
for us, including serializing the parameters to JSON, setting the content
type header, setting the URL of the service, composing the request body,
determining the HTTP verb to use for the request, invoking the request,
and handling the post-processing of the request before it was sent to the

Chapter 8: ASP.NET AJA X Communication Architecture418

http://lib.ommolketab.ir
http//lib.ommolketab.ir

onSuccess or onFailed callback functions. In the case of the WebRequest
class, we will have to perform all these things by hand.

The majority of the items in the code in Listing 8.32 are self-explanatory
based on knowledge you have gained throughout this chapter, but there are
a few things that require a more detailed explanation. The JSON data that
is placed into the body of the request requires a certain format. The data
must be in the format of parameterName:ParameterData, with the param-
eter name being the name of the of the parameter in the web service oper-
ation, and the parameter data being the JSON representation of the data
expected.

The role of the onCompleted callback function and the parameters passed
into it is a new concept introduced with this class and a sign of how close we
are getting to the executor that handles the request. The onComplete function
takes two arguments: an executor and event arguments. The executor is of
most interest to us because it contains all the information about the request
that was made. The executor, unless overridden, will be the default XML
HttpExecutor class, which handles calling the XMLHttp object directly. This
class contains a rich set of properties that contain a wealth of information
about the request including the status of the request, whether it timed out or
was aborted, and the response data, just to name a few (see Table 8.10). The
amount of work required to properly process a request is substantial, with
the majority of the work devoted to figuring out what the response really
is. The fact that a result was returned does not mean the result is actually
valid. Checks to determine whether the header contains a jsonerror entry,
if the status code returned is in a valid range, and whether the request timed
out or was aborted are needed to ensure the request is processed correctly.
If we are successful and get a result that was converted to JSON correctly
by calling the get_object method on the executor, we can work with the
result to populate the form. The one catch to the result is the format it is in.
If you recall from Listing 8.28, the JSON returned is composed of a d param-
eter that contains the JSON data from the web service. When assigning val-
ues to the form, we have to drill into the ProductDetail properties, which
are contained in the d parameter.

Microsoft AJA X Library Communication Architecture 419

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 8.32 WebRequest Version of the AdvancedLookup Web Service Call

// Call WebRequest
CallServiceWithWebRequest();

// WebRequest Wrapper
function CallServiceWithWebRequest()
{

var searchCriteria = new ProductLookupDemo.SearchCriteria();
searchCriteria.ProductNumber = "200";
searchCriteria.Description = "Black XBox Controller";
searchCriteria.Price = 50;

var searchCriteriaJSON =
Sys.Serialization.JavaScriptSerializer.serialize(
searchCriteria);

var request = new Sys.Net.WebRequest();
request.get_headers()['Content-Type'] = 'application/json;

charset=utf-8';
request.set_url("Product.svc/AdvancedLookup");
request.set_body("{\"criteria\":" + searchCriteriaJSON + "}");
request.set_httpVerb("POST");
request.add_completed(onCompleted);
request.invoke();

}

// Completion Handler
function onCompleted(executor, eventArgs)
{
if (executor.get_responseAvailable())
{

var statusCode = executor.get_statusCode();
var result = null;
try
{

result = executor.get_object();
}
catch (ex) {}
var error = executor.getResponseHeader("jsonerror");
var errorObj = (error === "true");
if (errorObj)
{
//display error
var errorMessage = String.format("An error occurred with a message

of {0} with a stact trace of {1} and an execption type of
{2}",result.Message, result.StackTrace, result.ExceptionType);
alert(errorMessage);

}
if (((statusCode < 200) || (statusCode >= 300)) || errorObj)

Chapter 8: ASP.NET AJA X Communication Architecture420

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{
var error;
if (result && errorObj)
{

//display error
var errorMessage = String.format("An error of type {0} occurred
with a message of {1}",result.get_exceptionType(),
result.get_message());

alert(errorMessage);
}
else
{

//display error
alert(executor.get_responseData());

}
}
else
{

//update the UI
$get("productDescription").value = result.d.Description;
$get("productPrice").value = result.d.Price;

}
}
else
{

var errorMessage;
if (executor.get_timedOut())
{

//display error
errorMessage = "Request timed out";

}
else if(executor.get_aborted())
{

errorMessage = "Request was aborted";
}
else
{

//display error
errorMessage = "Error occurred no result returned";

}
}

}

Web Request Core
The web request core components make up the underlying plumbing that
supports the asynchronous communication model in the Microsoft AJAX

Microsoft AJA X Library Communication Architecture 421

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Library. The components provide services such as abstracting the interac-
tion with the XMLHttpExecutor, providing low-level network support for
calling web services, and selecting the XMLHttp object for a specific browser.

WebRequestManager

The Sys.Net.WebRequestManager class provides an abstraction above
the low-level Sys.Net.WebRequestExecutor-based class that performs the
actual interaction with the network stack. In a typical case, this class is
used by the WebRequest class in its invoke method to call the Sys.Net.
xmlhttpexecutor class to process the request. In this scenario, the executor
calls the web service and on completion calls the registered completion
handler in the WebRequest class to process the response. The real work of
processing the request is done by the executor and the WebRequest object,
with the WebRequestManager acting as a broker between these two classes.

XMLHttpExecutor

The Sys.Net.XMLHttpExecutor class is the default executor in the Microsoft
AJAX Library and provides access to the browser’s underlying XMLHttp
object. This class is responsible for composing the raw HTTP request and
calling the proper XMLHttp object to send the request to the server. The class
comes with properties that provide all kinds of information, including
whether a response is available, the response data, the JSON representation
of the response, and whether it timed out (see Table 8.10). The class also
comes with methods that support an asynchronous calling model, provid-
ing the ability to execute a request by calling the executeRequest method
and then aborting the request if needed by calling the abort method (see
Table 8.11). As the request is processing, the started and aborted properties
can be used to determine processing status.

Table 8.10 XMLHttpExecutor Class Properties

Property Description

aborted Returns a value that indicates whether the executor was
aborted

responseAvailable Returns a value that indicates whether the network
request returned without being aborted or timing out

Chapter 8: ASP.NET AJA X Communication Architecture422

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Property Description

responseData Gets the text representation of the response body

started Returns a value that indicates whether the executor has
forwarded the request to the browser’s XMLHTTP object

statusCode Gets the status code of the browser’s XMLHTTP object

statusText Gets the status text from the browser’s XMLHTTP object

timedOut Returns a value that indicates whether the executor
timed out

object Gets the JSON-evaluated object from the response

xml Returns an XMLDOM object that contains the XML response
from the browser’s XMLHTTP object

Table 8.11 XMLHttpExecutor Class Methods

Method Description

abort Stops the pending network request issued by the
executor

executeRequest Executes a network request as specified in the associ-
ated WebRequest instance

getAllResponseHeaders Returns the response headers

getResponseHeader Gets the value of a specified response header

XmlHttp

The XMLHTTP object has been around since Internet Explorer 5.0, where it
was first introduced as a mechanism to perform out-of-bound HTTP
request to the web server. Over the years, various other browsers have pro-
vided the same support, implementing it in various ways. The renewed
interest in this object came about with the advent of AJAX and the need to
provide a rich user experience. In the Microsoft AJAX Library, the usage of

Microsoft AJA X Library Communication Architecture 423

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this underlying object is now provided in a browser-agnostic way, enabling
the platform to provide a rich user experience on a number of popular
browsers.

SUMMARY

The communication architecture of ASP.NET 2.0 AJAX Extensions and the
Microsoft AJAX Library is enormous, providing a wide array of services,
from web services support, JSON serialization, and custom processing on
the server side to proxy classes, JSON serialization, and browser-
independent access to web services on the client. This rich communication
infrastructure provides the services needed to create the rich REST-based
communication between the client and the server, which is paramount to
creating a rich user experience on the web.

Chapter 8: ASP.NET AJA X Communication Architecture424

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9
Application Services

A SP.NET 2.0 M E M B E R S H I P, R O L E, and user profile services and their
companion ASP.NET AJAX application services provide a complete

membership, role, and profiles offering on both the client and the server.
The addition of the application services and the supporting proxy classes
contained in the Microsoft AJAX Library extend the ability to work with
these server-based technologies onto the client, providing a much needed
lightweight alternative to an otherwise heavy server control–based expe-
rience. In this chapter, we look at the ASP.NET 2.0 membership, role, and
user profile services and what they provide from a server perspective, with
a goal of understanding at a high level how these features work. We then
move on to the ASP.NET AJAX application services, detailing how they
work and integrate with their server counterparts. In the final section of this
chapter, we show how to create custom application services and the bene-
fits they provide.

ASP.NET 2.0 Membership, Role, and User Profile
Services

ASP.NET 2.0 membership, role, and user profile services are built on many
different technologies that come together to provide a unified approach to
working the authentication, authorization, and user-specific data. In this
section, we cover many of the components that make up these offerings,

425

http://lib.ommolketab.ir
http//lib.ommolketab.ir

including Forms authentication, the ASP.NET Provider Model, and the Web
Site Administration Tool, along with membership, role, and user profile
services.

Forms Authentication
Before we consider ASP.NET 2.0 membership, role, and user profile ser-
vices, we need to talk about authentication, and in particular Forms authen-
tication. Windows authentication, Passport authentication, and Forms
authentication are the three types of authentication modes supported in
ASP.NET 2.0. Windows authentication makes use of the local Windows
users and groups to store user credentials, which are then used to authen-
ticate users during page requests. Passport, or Windows Live ID, is the
Microsoft initiative for a single authentication point and is used on sites
such as Hotmail and MSN. Forms authentication is a cookie-based authen-
tication model that relies on a membership-based provider to store and
authenticate users during page requests. In ASP.NET 2.0, it is Forms
authentication that ASP.NET membership uses to authenticate users during
page requests; we focus on this technique when discussing authentication
with ASP.NET 2.0 membership.

Forms authentication works by issuing a cookie and using that cookie to
validate a user as that user navigates through a site. If a request is made and
a cookie does not exist or is invalid, the user is redirected to a configured
login page to provide a username and password verifiable against the
membership provider–based user store. After the user has been authenti-
cated, the user is redirected back to the originally requested page, from
which the user can continue navigating through the site.

If we look at the request processing a little closer, we will see it’s actually
IIS and ASP.NET that work together to determine access to your site. The
IIS side of things uses the settings in the IIS metabase to determine its
authentication mode, which will be the first that is applied to the request.
With Forms authentication, you should set IIS to use anonymous access as
the authentication mode, which delegates the authentication to ASP.NET
and Forms authentication instead. The ASP.NET side of things then uses
Forms authentication to authenticate the request and determine whether
the user is valid. To enable Forms authentication, you must add the

Chapter 9: Application Ser vices426

http://lib.ommolketab.ir
http//lib.ommolketab.ir

configuration entry shown in Listing 9.1 to your web.config file. The
authentication element sets the mode to Forms, and the forms element is
used to configure the authentication behavior. The forms element comes
with quite a few entries that control things such as the URL that contains the
login page, the name of the cookie on the client, a default URL to send users
to after successful login, and many more (see Table 9.1).

Listing 9.1 Forms Authentication Configuration

<system.web>
<authentication mode="Forms">

<forms loginUrl="Login.aspx"
protection="All"
timeout="30"
name=".ASPXAUTH"
path="/"
requireSSL="false"
slidingExpiration="true"
defaultUrl="default.aspx"
cookieless="UseDeviceProfile"
enableCrossAppRedirects="false" />

</authentication>
</system.web>

Table 9.1 Forms Authentication Elements

Element Description

loginUrl Points to your application’s custom login page.
You should place the login page in a folder that
requires Secure Sockets Layer (SSL) to help ensure
the integrity of the credentials when they are
passed from the browser to the web server.

protection Specifies the type of encryption, if any, to use for
cookies. Valid values are All, Encryption, None,
and Validation. All specifies that the application
uses both data validation and encryption to help
protect the cookie.

timeout Specifies the time, in integer minutes, after which
the cookie expires.

ASP.NET 2.0 Membership, Role, and User Profile Ser vices 427

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 9.1 continued

Element Description

name Specifies the HTTP cookie to use for authentica-
tion. The default is ".ASPXAUTH".

path Specifies the path for cookies that are issued by the
application. The default is a slash (/), because
most browsers are case sensitive and will not send
cookies back if there is a path case mismatch.

requireSSL Specifies whether an SSL connection is required to
transmit the authentication cookie.

slidingExpiration Specifies whether sliding expiration is enabled.

defaultUrl Defines the default URL that is used for redirec-
tion after authentication.

cookieless Defines whether cookies are used and their behav-
ior. Valid values are UseCookies, UseUri,
AutoDetect, and UseDeviceProfile. The default
is UseDeviceProfile.

enableCrossAppRedirects Indicates whether authenticated users are redi-
rected to URLs in other web applications.

The default behavior of the preceding configuration is to allow any
anonymous user to access the site, which, as you can tell, is not what we
would want for Forms authentication. This is where the companion
web.config entry of authorization comes into play. The authorization ele-
ment, see Listing 9.2 and Table 9.2, enables us to map authorization to web
resources using the allow and deny subelements and thus limit the access
of users, roles, and HTTP verbs to all web resources. This element, in com-
bination with the authentication and forms elements, is what makes
Forms authentication possible.

Listing 9.2 Authorization Element Configuration

<system.web>
<authorization>

<deny users="?" />
</authorization>

</system.web>

Chapter 9: Application Ser vices428

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ASP.NET 2.0 Membership, Role, and User Profile Ser vices 429

Table 9.2 Deny and Allow Element Entries

Element Description

users A comma-separated list of usernames that are denied access to the
resource. A question mark (?) denies anonymous users, and an aster-
isk (*) indicates that all user accounts are denied access.

roles A comma-separated list of roles that are denied access.

verbs A comma-separated list of HTTP transmission methods that are
granted access to the resource. Verbs that are registered to ASP.NET
are GET, HEAD, POST, and DEBUG.

ASP.NET 2.0 Provider Model
The ASP.NET 2.0 Provider Model provides a uniform way for the mem-
bership, role, and profile services to provide common functionality regard-
less of the underlying system providing the services. This uniform
approach enables developers to easily exchange out backend systems that
provide the underlying services without having to change the calling APIs.
This type of functionality enables the membership provider to be switched
from the default SQL membership provider to a provider that works with
Active Directory or Oracle, without any modifications to the web applica-
tion. ASP.NET comes with a default set of SQL providers that provide sup-
port for working with a SQL database to store the membership, role, and
profile information for your web site (see Table 9.3). These providers are
configured in the machine.config file, as shown in Listing 9.3, and are
shared across all web applications. These providers by default are config-
ured to work with the LocalSqlServer connection string entry, which
points to a SQLExpress database. If you want to use a standard SQL data-
base, just override the LocalSqlServer connection string entry in your
web.config file, as shown in Listing 9.4, to point to a SQL database server
of your choice. The database that you use must contain a predefined set of
tables and stored procedures, and the aspnet_reqsql.exe application is used
to initialize the database with this information. The application works
either as a command-line application or as a wizard and simply creates the
tables and stored procedures used by the services to store and retrieve data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 9.3 Provider Services and Default Classes

Provider Service Default Provider Class

Membership System.Web.Security.SqlMembershipProvider

Role System.Web.Security.SqlRoleProvider

Profile System.Web.Profile.SqlProfileProvider

Listing 9.3 Default Provider Registration and Configuration

<configuration>
...

<connectionStrings>
<add name="LocalSqlServer"
connectionString="data source=.\SQLEXPRESS;Integrated
Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;User
Instance=true" providerName="System.Data.SqlClient" />

</connectionStrings>
<system.web>

<membership>
<providers>

<add name="AspNetSqlMembershipProvider"
type="System.Web.Security.SqlMembershipProvider, System.Web,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a"
connectionStringName="LocalSqlServer"
enablePasswordRetrieval="false" enablePasswordReset="true"
requiresQuestionAndAnswer="true" applicationName="/"
requiresUniqueEmail="false" passwordFormat="Hashed"
maxInvalidPasswordAttempts="5" minRequiredPasswordLength="7"
minRequiredNonalphanumericCharacters="1"
passwordAttemptWindow="10"
passwordStrengthRegularExpression="" />

</providers>
</membership>
<profile>
<providers>

<add name="AspNetSqlProfileProvider"
connectionStringName="LocalSqlServer" applicationName="/"
type="System.Web.Profile.SqlProfileProvider, System.Web,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" />

</providers>
</profile>
<roleManager>

Chapter 9: Application Ser vices430

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<providers>
<add name="AspNetSqlRoleProvider"

connectionStringName="LocalSqlServer" applicationName="/"
type="System.Web.Security.SqlRoleProvider, System.Web,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" />

<add name="AspNetWindowsTokenRoleProvider" applicationName="/"

type="System.Web.Security.WindowsTokenRoleProvider,System.Web,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" />

</providers>
</roleManager>

</system.web>
...
</configuration>

Listing 9.4 Default LocalSqlServer Override in web.config

<connectionStrings>
<remove name="LocalSqlServer"/>
<add name="LocalSqlServer" connectionString="DataSource=localhost;

Initial Catalog=aspnetdb;Integrated Security=True"
providerName="System.Data.SqlClient"/>

</connectionStrings>

Web Site Administration Tool
The Web Site Administration Tool provides an easy way to manage your
web site configuration without having to edit the web.config file manually.
You can access the tool off the Project menu by selecting the ASP.NET
Configuration menu option, which will open the Web Site Administration
Tool page, shown in Figure 9.1, providing a Forms-based way to edit con-
figuration information about your site. The tool contains three main tabs
that provide specific UIs for managing entries in each of these areas:
Security, Application, and Provider. The Security tab, shown in Figure 9.2,
enables you to manage all the security settings for your application, includ-
ing setting up users and passwords, creating roles, and creating access rules
for the various web resources in your application. The Application tab is
focused on managing application settings and SMTP settings, configuring
debugging and tracing, and managing whether the application is online or
offline. The Provider tab enables you to select from a list of configured
providers and select the global provider that will be used on your site or

ASP.NET 2.0 Membership, Role, and User Profile Ser vices 431

http://lib.ommolketab.ir
http//lib.ommolketab.ir

individually select a specific provider for membership or roles. The Secu-
rity tab will be of most interest to us as we cover working with membership
and roles because it contains all the UIs needed to manage entries of this
type.

Chapter 9: Application Ser vices432

Figure 9.1 Web Site Administration Tool

Figure 9.2 Web Site Administration Tool Security tab

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Membership
ASP.NET membership was introduced in ASP.NET 2.0 and provides ser-
vices that work in conjunction with Forms authentication to manage and
authenticate users using either a rich API or a set of built-in server controls
that connect to a provider-based data store. The use of membership either
with the APIs or with the built-in server controls enables you to create new
users, manage user-related information such as username and password,
authenticate users as they access your site, integrate membership with roles
and profiles, and use a custom membership provider.

The Membership static class is the foundation for the membership ser-
vices in ASP.NET and provides a wealth of properties shown in Table 9.4
and methods shown in Table 9.5 that provide all you need to manage users.
The class provides all the functionality needed to validate users and handle
all the maintenance tasks such as creating, updating, and deleting users.
You can also enhance the user authentication experience in this class; you
can set password length, maximum number of invalid login attempts,
whether the user is able to reset a password, and many more. The page in
Figure 9.3 is a sample login screen that shows the two methods of logging
in a user. The API version is what we talk about now and consists of cap-
turing the usernames and passwords for users and whether the users want
to set a cookie to remember them. The Login button has some companion
code, shown in Listing 9.5, that shows the steps needed to authenticate the
user, set the Forms authentication cookie, and redirect back to the calling
page. The configuration of Forms authentication ensures that this page will
be called whenever an anonymous user accesses the site. The ReturnUrl
parameter in the query string contains the page the user tried to access
while not logged in.

Table 9.4 Common Membership Class Properties

Property Description

EnablePasswordReset Gets a value indicating whether the
current membership provider is
configured to allow users to reset
their passwords

ASP.NET 2.0 Membership, Role, and User Profile Ser vices 433

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9: Application Ser vices434

Table 9.4 continued

Property Description

EnablePasswordRetrieval Gets a value indicating whether the
current membership provider is
configured to allow users to retrieve
their passwords

MaxInvalidPasswordAttempts Gets the number of invalid pass-
word or password-answer attempts
allowed before the membership
user is locked out

MinRequiredNonAlphanumericCharacters Gets the minimum number of spe-
cial characters that must be present
in a valid password

MinRequiredPasswordLength Gets the minimum length required
for a password

PasswordAttemptWindow Gets the time window between
which consecutive failed attempts
to provide a valid password or
password answer are tracked

RequiresQuestionAndAnswer Gets a value indicating whether the
default membership provider
requires the user to answer a pass-
word question for password reset
and retrieval

UserIsOnlineTimeWindow Specifies the number of minutes
after the last-activity date/time
stamp for a user during which the
user is considered online

Table 9.5 Common Membership Class Methods

Method Description

CreateUser Overloaded. Adds a new user to the data store.

DeleteUser Overloaded. Deletes a user from the database.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Method Description

FindUsersByName Overloaded. Gets a collection of membership users where
the username contains the specified username to match.

GetUser Overloaded. Gets the information for a membership user
from the data source.

UpdateUser Updates the database with the information for the specified
user.

ValidateUser Verifies that the supplied username and password are valid.

Membership also comes with a rich set of server controls that perform
many of the same tasks as the APIs and provide a user interface to accom-
plish these tasks (see Table 9.6). The Login control, shown at the bottom of
the Login page in Figure 9.3, provides the exact same functionality as the
API version above it but requires no coding. To use the control, you just
drag and drop it onto the designer and you are ready to go. The nice thing
about using many of these controls is that they support templates that
enable you to customize the look and feel of the controls.

Table 9.6 Membership Controls

Control Description

Login Provides UI elements for logging in to a website

LoginView Displays the appropriate content template for a given
user, based on the user’s authentication status and role
membership

PasswordRecovery Provides UI elements that enable a user to recover or reset
a lost password and receive it in e-mail

LoginStatus Detects the user’s authentication state and toggles the
state of a link to log in to or log out of a web site

LoginName Displays the value of the
System.Web.UI.Page.User.Identity.Name property

ASP.NET 2.0 Membership, Role, and User Profile Ser vices 435

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 9.6 continued

Control Description

CreateUserWizard Provides a user interface for creating new web site user
accounts

ChangePassword Provides a user interface that enable users to change their
website password

Chapter 9: Application Ser vices436

Figure 9.3 Membership login sample screen

Listing 9.5 Login Using Membership API

public partial class login : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e) { }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

protected void ButtonLogin_Click(object sender, EventArgs e)
{

if (Membership.ValidateUser(TextBoxUserName.Text,
TextBoxPassword.Text))

{
FormsAuthentication.SetAuthCookie(TextBoxUserName.Text,

CheckBoxRememberMe.Checked);
Response.Redirect(Request.Params["ReturnUrl"].ToString());

}
else
{

LabelInvalidLogin.Visible = true;
}

}
}

The Web Site Administration Tool provides a complete no-code solution
to managing users and comes in handy when user administration will not
be an exposed feature of your site. The Create User screen shown in Figure
9.4 enables you to add users to the site and assign roles at the same time.
The Manage User screen shown in Figure 9.5 enables you to search for users
and optionally edit them using the Edit User screen in Figure 9.6. This out-
of-the-box type functionality can come in handy when full-blown manage-
ment screens using the server controls and API are not possible.

ASP.NET 2.0 Membership, Role, and User Profile Ser vices 437

Figure 9.4 Create users using the Web Site Administration Tool

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 9.5 Managing users using the Web Site Administration Tool

Chapter 9: Application Ser vices438

Figure 9.6 Editing users using the Web Site Administration Tool

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Roles
The section on membership was all about authenticating users and ensur-
ing their identity. Roles, on the other hand, are about authorization and the
act of authorizing a valid user to access a resource. Role management
enables you to specify access rights to groups (roles) and then assign users
to those groups. Roles typically have names such as manager, supervisor,
and administrator, and relate to functions a user will perform on a site. It
is then through roles that you manage access to resources on your web site,
restricting access based on a role and not a specific user. In some cases, a
user can perform many roles in a web site, and role management supports
this by enabling users to be in more than one role at a time.

To begin working with roles, you must add the roleManager element to
the web.config file, as shown in Listing 9.6. This entry turns on roles and
uses the default provider to interact with the data store. After roles have
been turned on, you have to add entries to the authorization element, as
shown in Listing 9.7, to limit access to web resources. These entries follow
the same allow and deny pattern as Forms authentication, but take a role
name. As you can imagine, adding entries by hand into the web.config file
can be tedious, and this is where the Web Site Administration Tool comes in
handy.

The Web Site Administration Tool is another option you can use to add
authorization entries and follows a more graphical approach. The man-
agement of roles can be accessed on the Security tab by clicking any of the
links under Roles or Access Rules (refer to Figure 9.2). The Role Manage-
ment screen shown in Figure 9.7 makes it easy to add roles and manage
users in roles. The Manage Access Rules screen shown in Figure 9.8 enables
you to manage access to web resources by folder. This screen is used along
with the Add New Access Rule screen to set permissions on folders and
manage access to all resources in the folder (see Figure 9.9). As you add
restrictions to folders, a separate web.config entry following the same pat-
tern as Listing 9.7 is added to the affected folder. The ordering of roles is
important during evaluation, with the first match being the one that is
processed, and the move up and move down buttons provide an easy way
to set the correct evaluation order of the roles entered.

ASP.NET 2.0 Membership, Role, and User Profile Ser vices 439

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.6 Configuring Roles

<roleManager
enabled="true"

</roleManager>

Listing 9.7 Configuring Role Access

<configuration>
<location path="Managers">

<system.web>
<authorization>

<allow roles="Manager" />
<deny users="*" />

</authorization>
</system.web>

</location>
<configuration>

Chapter 9: Application Ser vices440

Figure 9.7 Role management using the Web Site Administration Tool

NOTE Access Rights to Folders and Web Service Proxies

The access rules you apply to folders that contain web services can
limit your ability to load the client-side proxies. This type of situation
occurs when a user is in a role that does not have permission to a sup-
porting service that is contained in a separate folder. In this case the
web service proxy will not be brought down to the client and when the
application tries to access the proxy the object will not be set.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 9.8 Managing access using roles

ASP.NET 2.0 Membership, Role, and User Profile Ser vices 441

Figure 9.9 Restricting access using roles

The Role class, which is the center of all this functionality, contains many
properties and methods that will be used as you interact with roles. The
access rules you can create with the Web Site Administration Tool will only

http://lib.ommolketab.ir
http//lib.ommolketab.ir

go so far before you have to work with the Roles class directly to perform
addition logic. The properties shown in Table 9.7 center on configuring roles,
enabling you to specify the cookie name, set a sliding expiration for the
cookie, and set the cookie timeout, to name a few. In a typical situation, all
these values use the defaults. If you need to modify any of them, however,
just add them to the roleManager element, as shown in Listing 9.6. The
methods shown in Table 9.8 are used more frequently and enable you to
manage roles and validate membership in a role and check whether a role
exists. The page code in Listing 9.8 demonstrates a common use for roles in
limiting user access to page content. In this example, users are restricted
from adding a discount to an order if they are not in the Managers role. The
SetSecurityMessage function demonstrates how to show the roles users are
in so that in a case like this they can ask to be added if appropriate.

Table 9.7 Common Roles Class Properties

Property Description

CacheRolesInCookie Gets a value indicating whether the current user’s
roles are cached in a cookie.

CookieName The name of the cookie where role names are
cached. The default is .ASPXROLES.

CookiePath The path of the cookie where role names are cached.
The default is /.

CookieProtectionValue One of the CookieProtection enumeration values
indicating how role names that are cached in a
cookie are protected. The default is All (validation
and encryption).

CookieRequireSSL true if SSL is required to return the role names
cookie to the server; otherwise, false. The default is
false.

CookieSlidingExpiration true if the role names cookie expiration date and
time will be reset periodically; otherwise, false.
The default is true.

CookieTimeout An integer specifying the number of minutes before
the roles cookie expires. The default is 30 minutes.

MaxCachedResults The maximum number of role names to be cached
for a user. The default is 25.

Chapter 9: Application Ser vices442

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 9.8 Common Roles Class Methods

Method Description

AddUserToRole Adds the specified user to the specified role.

CreateRole Adds a new role to the data source.

DeleteCookie Deletes the cookie where role names are cached.

DeleteRole Overloaded. Removes a role from the data source.

FindUsersInRole Gets a list of users in a specified role where the user-
name contains the specified username to match.

GetAllRoles Gets a list of all the roles for the application.

GetRolesForUser Overloaded. Gets a list of the roles that a user is in.

GetUsersInRole Gets a list of users in the specified role.

IsUserInRole Overloaded. Gets a value indicating whether a user is in
the specified role.

RemoveUserFromRole Removes the specified user from the specified role.

RoleExists Gets a value indicating whether the specified role name
already exists in the role data source.

Listing 9.8 Using the Role API

public partial class OrderEntry : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (User.IsInRole("Managers"))
{
DropDownListDiscount.Enabled = true;
LinkButtonManagerEnable.Visible = false;

}
else
{
DropDownListDiscount.Enabled = false;
SetSecurityMessage();

}
}

ASP.NET 2.0 Membership, Role, and User Profile Ser vices 443

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.8 continued

private void SetSecurityMessage()
{

string[] roles = Roles.GetRolesForUser();
StringBuilder securityMessage = new StringBuilder();
securityMessage.Append("You are not in the Managers role and

therefore your usage of this page is limited. ");

securityMessage.Append("You are currently in the following
roles: ");

int roleCount = roles.Length;

if (roleCount == 0)
{

securityMessage.Append("None");
}
else
{

foreach (string role in roles)
{
securityMessage.Append(role);
if (—roleCount != 0)
{

securityMessage.Append(", ");
}

}
}

LabelSecurityMessage.Text = securityMessage.ToString();
}

}

Profiles
The need to store user-specific information is a common one that occurs
often when creating sites. To implement a solution to achieve this might
require creating a database table, a series of store procedures, and a data
class that can be called from your pages to work with the information gath-
ered. Then, add to this the need to store this information about a per-user
basis and the solution becomes even more complex. This is where profiles
come in and provide a clean way to work with user-specific data.

Chapter 9: Application Ser vices444

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Profiles are used with membership to maintain user-specific informa-
tion persisted between requests by the profile provider. As you interact
with your profile information, the provider takes care of saving and retriev-
ing your user-based data through the services provided by the ProfileBase
class, eliminating the need to directly interact with the data store.

To start working with profiles, you need to create a class that inherits
from ProfileBase, which provides all the base services for working with
profiles. The UserProfile class shown in Listing 9.9 inherits from Profile
Base to provide a series of both simple and complex properties that repre-
sent user information. The FavoriteColor, PetsName, and HomePage
Settings properties comprise the information our UserProfile class will
work with. They rely on the services provided by the base class for storing,
retrieving, and saving property information. The static GetUserProfile
method is how you get a reference to the profile data and start working
with the profile data. This method uses membership to get the current
user’s name, which is used when accessing the profile data. After the pro-
file data class has been created you can enable profiles and associate your
new class with the profile service by adding the profile configuration entry
to the web.config file and assigning the UserProfile class as the inherits
class attribute, as shown in Listing 9.10. This configuration entry enables
profiles and sets the data type used to store and retrieve data to the User
Profile type.

The interface that the UserProfile class provides makes it easy to work
with profile information. The Profile Maintenance page shown in Figure
9.10 and the companion code shown in Listing 9.11 demonstrates how to
work with the UserProfile class. This page is used to manage user profiles.
It provides a simple UI that enables users to manipulate entries and have
them saved for later use.

ASP.NET 2.0 Membership, Role, and User Profile Ser vices 445

NOTE Profiles in Visual Studio 2008

The Web Application Project Model is the only model supported by
Visual Studio 2008 using .NET 3.5, which precludes it from dynami-
cally generating the Profile class based on web.config entries. In this
section, we deal with this by creating our own ProfileBase-based
class and using it to represent our profile data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.9 UserProfile Class

public class UserProfile : ProfileBase
{

public static UserProfile GetUserProfile()
{

return Create(Membership.GetUser().UserName) as UserProfile;
}

[SettingsAllowAnonymous(false)]
public string FavoriteColor
{

get { return base["FavoriteColor"] as string; }
set { base["FavoriteColor"] = value; }

}
[SettingsAllowAnonymous(false)]
public string PetsName
{

get { return base["PetsName"] as string; }
set { base["PetsName"] = value; }

}
[SettingsAllowAnonymous(false)]
public HomePageSettings HomePageSettings
{

get
{
HomePageSettings pageSettings = base["HomePageSettings"] as

HomePageSettings;
if (pageSettings == null)
{

pageSettings = new HomePageSettings();
base["HomePageSettings"] = pageSettings;

}
return pageSettings;

}

set { base["HomePageSettings"] = value; }
}

}

public class HomePageSettings
{

public string News { get; set; }
public string Weather { get; set; }
public string Sports { get; set; }

}

Chapter 9: Application Ser vices446

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 9.10 Profile Maintenance page

Listing 9.10 Profile Configuration

<profile
enabled="true"
inherits="ApplicationServicesDemo.UserProfile"/>

Listing 9.11 Using the UserProfile Class

public partial class ProfileMaintenance : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{
UserProfile userProfile = UserProfile.GetUserProfile();
TextBoxFavoriteColor.Text = userProfile.FavoriteColor;
TextBoxPetsName.Text = userProfile.PetsName;
TextBoxNews.Text = userProfile.HomePageSettings.News;

ASP.NET 2.0 Membership, Role, and User Profile Ser vices 447

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.11 continued

TextBoxWeather.Text = userProfile.HomePageSettings.Weather;
TextBoxSports.Text = userProfile.HomePageSettings.Sports;

}
}

protected void ButtonSaveClick(object sender, EventArgs e)
{

UserProfile userProfile = UserProfile.GetUserProfile();
userProfile.FavoriteColor = TextBoxFavoriteColor.Text;
userProfile.PetsName = TextBoxPetsName.Text;
userProfile.HomePageSettings.News = TextBoxNews.Text;
userProfile.HomePageSettings.Weather = TextBoxWeather.Text;
userProfile.HomePageSettings.Sports = TextBoxSports.Text;
userProfile.Save();

}
}

ASP.NET AJAX Application Services

The application services are an extension of the membership, role, and pro-
file services previously discussed. These application services provide
access into membership, roles, and profiles using a client-side API. The
power of these services is their tight integration and the reliance on the
same server-based APIs that membership, roles, and profiles rely on. Often
working on an application, you will need to verify a user’s role or tem-
porarily log a user in to perform some task. This was all possible before, but
required a postback that made the effort much slower. With application ser-
vices, we can now perform these tasks without a postback; we just use the
client-side proxies that come with the Microsoft AJAX Library.

Authentication Service
The authentication service is an extension of ASP.NET membership on the
client and provides a limited subset of the functionality of its server coun-
terpart. The functionality provided concentrates on logging a user in to and
out of the site and determining whether the current user is logged in.

Configuration

By default, the authentication service is not enabled and must be
configured. As discussed in Chapter 8, “ASP.NET AJAX Communication
Architecture,” all the services are already there and part of your standard

Chapter 9: Application Ser vices448

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ASP.NET AJAX application and just need to be activated. The web.config
entries shown in Listing 9.12 are needed to configure authentication ser-
vices. The authentication, role, and profile services are all configured in the
system.web.extensions element. In the case of the authentication service,
we need to add the authenticationService element and set its enabled
attribute to true.

Listing 9.12 Authentication Service Configuration

<system.web.extensions>
<scripting>

<webServices>
<authenticationService enabled="true" />

</webServices>
</scripting>

</system.web.extensions>

The Sys.Services.AuthenticationService Class

The Sys.Services.AuthenticationService class is a proxy class contained
in the MicrosoftAjax.js file. This class is a static class that inherits from the
Sys.Net.WebProxy class covered in Chapter 8 and exhibits the same static
behavior. The properties are listed in Table 9.9 and provide support for
adding callback functions and validating whether a user is logged in. The
methods are listed in Table 9.10 and provide the limited ability to log in and
log out.

Table 9.9 AuthenticationService Properties

Property Description

defaultLoginCompletedCallback The default handler that will be called
when the login attempt is completed.
Once set, this handler will be called for
each request.

defaultLogoutCompletedCallback The default handler that will be called
when the logout attempt is completed.
This handler will be called for each
request.

isLoggedIn Returns true or false based on whether
the user is logged in.

ASP.NET AJA X Application Ser vices 449

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 9.10 AuthenticationService Methods

Method Description

login Used to log in to membership

logout Used to log out of membership

Using the Authentication Service

In most applications that are using membership, there are additional fea-
tures that would be nice to have on the client. The ability to change the
logged-in user without causing a postback is one of them. Often in business
applications, there is a need to have a manager override entries made in a
data-entry screen by a user of limited rights. The ability to switch user con-
text using the authentication service without causing a postback would
provide a nice alternative to the longer process of switching users via the
membership controls.

To demonstrate this, we look at an order-entry screen that provides the
ability to add a discount. In most cases, you would not want just any
employee to do this. Therefore, we need a manager override to accomplish
this. This is where the ability to log in on the client comes into play. In this
case, we enable a manager to log in to the application, make a change, and
then log out, thus resetting the credentials to the user. The order-entry
screen shown in Figure 9.11 contains a Discount drop-down, access to
which requires a user with manager rights. The Enable link next to the
drop-down brings up the Login screen shown in Figure 9.12, which enables
a user to log in with manager credentials, enabling the drop-down and
enabling the user to discount the order. The call to the authentication ser-
vice is shown in Listing 9.13. It passes in the username and password pro-
vided by the user and attempts to log the user in. A successful login
validates the user and enables the drop-down. One thing that we are not
checking for in this case is the role that the newly logged-in user is in. This
will be the topic of the next section, as we cover more of what the applica-
tion services provide on the client.

Chapter 9: Application Ser vices450

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 9.11 Order entry screen

ASP.NET AJA X Application Ser vices 451

Figure 9.12 Client-side login

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.13 Authentication Service Call

//Server Control Constant code from OrderEntry.aspx
<script type="text/javascript">

var DropDownListDiscountID = "<%= DropDownListDiscount.ClientID %>";
var LinkButtonManagerEnableID = "<%=LinkButtonManagerEnable.ClientID

%>";
</script>

//code in javascript file
function ManagerLogin()
{

var userName = $get("LoginUserName").value
var password = $get("LoginPassword").value
var linkButtonText = $get(LinkButtonManagerEnableID).innerHTML;

Sys.Services.AuthenticationService.login(userName,password,false,
null,null,onSuccessManagerLogin,onFailed,linkButtonText);

ResetLogin()
}

function onSuccessManagerLogin(result, userContext, methodName)
{

if(result == true)
{

if(userContext == "Enable")
{
EnableOverrideSection();

}
else
{
DisableOverrideSection();

}
}

}

function EnableOverrideSection()
{

$get(DropDownListDiscountID).disabled = "";
$get(LinkButtonManagerEnableID).innerHTML = "Disable";

}

function DisableOverrideSection()
{

$get(DropDownListDiscountID).disabled = "disabled";
$get(LinkButtonManagerEnableID).innerHTML = "Enable";

}

function ResetLogin()

Chapter 9: Application Ser vices452

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{
$get("LoginUserName").value = "";
$get("LoginPassword").value = "";

}

function onFailed(result, userContext, methodName)
{

alert("An error occurred \n" + result.get_message());
}

Role Service
The role service provides a client-side subset of the functionality provided
by the ASP.NET Roles class. The primary focus of roles on the client is
viewing and verifying the roles of the current logged-in user.

Configuration

Because all the application services are not enabled by default, the same
process of enabling the service as we did with the authentication service is
needed here. The roleService entry shown in Listing 9.14 must be added
to the System.Web.Extensions element and the enabled attribute set to
true. This will now enable the service and allow communication with the
client.

Listing 9.14 Role Service Configuration

<system.web.extensions>
<scripting>

<webServices>
<roleService enabled="true" />

</webServices>
</scripting>

</system.web.extensions>

The Sys.Services.RoleService Class

The Sys.Services.RoleService class is a proxy class just like the
Authentication class and is contained in the MicrosoftAjax.js file. Just like
the Authentication class, this class is a static class that inherits from the
Sys.Net.WebProxy class. The properties listed in Table 9.11 provide support

ASP.NET AJA X Application Ser vices 453

http://lib.ommolketab.ir
http//lib.ommolketab.ir

for adding callback functions and viewing the roles the currently logged-
in user is a member of. The methods listed in Table 9.12 enable you to load
all the roles a user is a member of and verify that a user is in a specific role.

Table 9.11 RoleService Properties

Property Description

defaultLoadCompletedCallback The default handler that will be called
when the call to load is completed. Once
set, this handler will be called for each
request.

roles Returns an array of roles the user is in.

Table 9.12 RoleService Methods

Method Description

isUserInRole Determines whether the user is in the role passed in

load Gets the roles for the current user

Using the Role Service

In our authentication example, we noticed a huge hole in our implementa-
tion. After we logged a user in, we failed to validate the role the user was
in before allowing the user to apply a discount to the order. Now we add
some additional validation, using the role service to validate that the user
is in the correct role. The new version of our manager override is shown in
Listing 9.15, with the common code removed for brevity. In this new ver-
sion, after we have successfully logged in to the application, we use the role
service to load up the available roles for the user. The call to the load

Chapter 9: Application Ser vices454

http://lib.ommolketab.ir
http//lib.ommolketab.ir

method actually loads the available roles into the static RoleService class,
where they are available to the isUserInRole method used to validate that
a user is in the specified role. We use this method to verify that our newly
logged-in user is actually a member of the Managers role before we enable
the discount drop-down.

Listing 9.15 Role Service Call

function onSuccessManagerLogin(result, userContext, methodName)
{

if(result == true)
{

GetRoles("Enable");
}

}

function GetRoles(callingContext)
{

Sys.Services.RoleService.load(onSuccessGetRoles,
onFailed,callingContext);

}

function onSuccessGetRoles(result, userContext, methodName)
{

if(userContext == "Enable")
{

if(Sys.Services.RoleService.isUserInRole("Manager"))
{
EnableOverrideSection();

}
else
{
alert("User does not have manager rights");

}
}
else
{

DisableOverrideSection();
}

}

ASP.NET AJA X Application Ser vices 455

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Profile Service
The profile service builds on the functionality we used on the server to pro-
vide client-side access to the profile properties. The nice thing about work-
ing with profiles is that we can actually modify the values on the client,
something we could not do with the other services.

Configuration

The profile service configuration is probably the most problematic of all ser-
vice configurations due to the fine detail that needs to be addressed dur-
ing configuration. The addition of the profileService element to the
System.Web.Extensions section shown in Listing 9.16 not only requires set-
ting the enabled attribute to true, it also requires all the properties you will
work with to be registered as being readable and optionally writable. This
double entry can make things a little difficult if you have a lot of properties.

Listing 9.16 Profile Service Configuration

<system.web.extensions>
<scripting>

<webServices>
<profileService enabled="true"

writeAccessProperties="FavoriteColor,PetsName,
HomePageSettings/>

</webServices>
</scripting>

</system.web.extensions>

The Sys.Services.ProfileService Class

The Sys.Services.ProfileService class is a proxy class just like the
Authentication and Role class and is contained in the MicrosoftAjax.js file.
Just like the other classes, this class is a static class that inherits from
the Sys.Net.WebProxy class. The properties listed in Table 9.13 enable you
to add callback functions and interact with the profile properties via the
properties property. The methods listed in Table 9.14 enable you to load
and save the specified profile properties that are associated with the cur-
rently logged-in user.

Chapter 9: Application Ser vices456

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 9.13 ProfileService Properties

Property Description

defaultLoadCompletedCallback The default handler that will be called when
the load attempt is completed. Once set, this
handler will be called for each request.

defaultSaveCompletedCallback The default handler that will be called when
the save attempt is completed. This handler
will be called for each request.

properties Preloaded properties from the LoadProperties
setting using the ScriptManager.

Table 9.14 ProfileService Methods

Method Description

load Calls to the server to get the property names passed in. The result
parameter on the loadCompleted handler contains the entries for the
properties.

save Saves the properties passed in to the server.

Using the Profile Service

The AJAX Profile Maintenance page shown in Figure 9.13 is the ASP.NET
AJAX version of the Profile Maintenance page we created earlier. The page
starts up with no profile information and enables you to get profiles and
save profiles based on the logged-in user. The profile service works with the
profile properties by downloading and uploading specific values based on
the property array passed into the load and save method. This method of
working with profile properties is a little different from on the server, where
the values are always there, so pay special attention to the properties you
currently have downloaded to ensure they are there. The profile service
calls are shown in Listing 9.17, where we first bring down the profiles and

ASP.NET AJA X Application Ser vices 457

http://lib.ommolketab.ir
http//lib.ommolketab.ir

assign them to the textbox entries and then send them back when we have
completed modifying them.

One more option is available when bringing down profile properties.
The ScriptManager provides a LoadProperties attribute off the Profile
Service entry that enables you to bring down a select list of profile prop-
erties when the page is loaded (see Listing 9.18).

Chapter 9: Application Ser vices458

Figure 9.13 AJAX Profile Maintenance page

Listing 9.17 Profile Service Calls

function ButtonGetProfile_onclick()
{

Sys.Services.ProfileService.load(["FavoriteColor","PetsName",
"HomePageSettings"],onSuccess,onFailed,"gettingData");

}

function ButtonSaveProfile_onclick()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{
Sys.Services.ProfileService.properties.FavoriteColor =

$get("TextFavoriteColor").value;
Sys.Services.ProfileService.properties.PetsName =

$get("TextPetsName").value;
Sys.Services.ProfileService.properties.HomePageSettings.News =

$get("TextNews").value;
Sys.Services.ProfileService.properties.HomePageSettings.Weather =

$get("TextWeather").value;
Sys.Services.ProfileService.properties.HomePageSettings.Sports =

$get("TextSports").value;

Sys.Services.ProfileService.save(["FavoriteColor","PetsName",
"HomePageSettings"],onSuccess,onFailed,"savingData");

}

function onSuccess(result, userContext, methodName)
{

if(userContext == "gettingData")
{

$get("TextFavoriteColor").value =
Sys.Services.ProfileService.properties.FavoriteColor;

$get("TextPetsName").value =
Sys.Services.ProfileService.properties.PetsName;

$get("TextNews").value =
Sys.Services.ProfileService.properties.HomePageSettings.News;

$get("TextWeather").value =
Sys.Services.ProfileService.properties.HomePageSettings.Weather;

$get("TextSports").value =
Sys.Services.ProfileService.properties.HomePageSettings.Sports;

}
}

function onFailed(result, userContext, methodName)
{

alert("An error occured \n" + result.get_message());
}

Listing 9.18 Profile Preload

<asp:ScriptManager ID="ScriptManager1" runat="server">
<ProfileService LoadProperties="FavoriteColor,PetsName" />

</asp:ScriptManager>

ASP.NET AJA X Application Ser vices 459

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Custom Application Services

As we worked with the application services in the previous section, you
might have wondered just where the services that we are calling are. There
were no web services that had to be copied to our project, and aside from
a few configuration entries in the web.config file to turn the services on,
there was really no setup on our part. So, how was this done?

The authentication, role, and profile application services are provided as
internal services accessed by submitting a request using the *_AppService.
axd URL pattern, with the beginning of each URL entry containing the
authentication, role, or profile name. The ScriptResourceHandler is con-
figured by default to listen for requests with this type or URL and auto-
matically processes them. From the client perspective, we are using the web
service proxy infrastructure we used for our WCF services. However,
instead of calling a web service, we are calling an internal service contained
in the System.Web.Extensions DLL. The alternative to this approach
requires that we set up a web service for each of these services in every
application we create. This laborious task is fraught with implementation
issues as each developer works through potential issues of an incorrectly
configured service. This internal service approach to creating application
services is the topic of this section as we cover how to develop a custom
application service.

Chapter 9: Application Ser vices460

NOTE Already Covered Material

This section touches many of the concepts described in Chapter 8,
including HTTP handlers, application services architecture, web ser-
vices, and web service proxies. If you have not had a chance to read
Chapter 8, which covered the ASP.NET AJAX communication archi-
tecture, we suggest you read it before continuing with this section. If
it has been a while since you worked with HTTP handlers, you should
also read Appendix C, “ASP.NET Handlers and Modules.”

The composition of a custom application service builds on much of what
we have covered already in this chapter, Chapter 8, and Appendix C.

The diagram in Figure 9.14 shows the server architecture for the custom
application service. The layers are built using the same technologies

http://lib.ommolketab.ir
http//lib.ommolketab.ir

described in Chapter 8, with the custom application services being built
as WCF services, the JSON serialization being provided by WCF, and the
ServiceHandlerFactory HTTP handler providing the processing for the
request. It might seem odd that we would build our application service
using WCF, but this is similar to how application services are implemented
internally. The application services are actually ASMX web service classes
used to provide the functionality for each service. The ScriptHandler
Factory uses reflection to instantiate and call the service based on the
*_ApplicationService.axd-based URL passed in. The service then calls the
Membership, Roles, or ProfileBase class to process the various requests.
The other aspect of this approach is that we are following a familiar and
repeatable pattern to building the custom application service, which builds
on a rich attribute-based approach that has made WCF so popular.

The diagram in Figure 9.15 shows the client architecture for the custom
application service. The client architecture also builds on the same tech-
nologies, such as the WebServiceProxy class, the WebRequest class, and the
web request core classes. The proxy class used to call the custom applica-
tion services will inherit from the WebServiceProxy class and exhibit the
same behavior as any other web service proxy.

Custom Application Ser vices 461

Custom Application Services

JSON Serialization

ServiceHandlerFactory HTTP Handler

Figure 9.14 Custom application service server architecture

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 9.15 Custom application service client architecture

The goal of the sections to follow is to demonstrate some of the high-
level components required when processing requests and some of the chal-
lenges you will face implementing a solution of this type. We start with the
HTTP handler factory and its use to validate requests and create the appro-
priate HTTP handler. Then we turn our focus to the processing logic, where
we detail the steps involved with calling the internal services and JSON
serialization and the challenges faced in this area. With the server aspect of
the solution covered, we move our attention to the client and the web ser-
vice proxy that provides client-side access to the custom application service
and the registration of the supporting JavaScript files. The sample applica-
tion used in this section was designed to address most of the issues you will
face when creating a custom service. However, the core functionality pro-
vided by the CommunicationSupport namespace would need some addi-
tional work in the area of error handling and performance tuning before
being rolled out as part of a complete solution.

HTTP Handler Factory and Supporting Classes
The diagram in Figure 9.16 shows the ServiceHandlerFactory HTTP han-
dler factory and the supporting ServiceRequestProcessor. The Service
HandlerFactory is responsible for handling all requests that meet the
*_InternalService.axd format and use the ServiceRequestProcessor as a
pipeline to perform the actual processing of the request. The Service
RequestProcessor consist of four main stages that comprise the actual

Chapter 9: Application Ser vices462

Custom Application Service Proxies

JSON Serialization

WebRequest

WebRequest Core
(WebRequestManager, XmlHttpExecutor, XmHttp)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

request processing: working with the service cache to obtain a reference to the
service metadata, deserializing and assigning parameters that were passed
in, instantiating the service and calling the requested method, and finally
serializing the result to send back as a response. As we focus on how the
request is processed, we cover the ServiceHandlerFactory, the WCFHandler,
and the classes in the CommunicationSupport namespace and the part they
play in processing the service request.

Custom Application Ser vices 463

WCFHandler

Extract Service Metadata
from Cache

Deserialize and Assign
Parameters

Instantiate Service and
Invoke Method

Serialize Results and
Assign Return
Parameters

Cloud

ServiceHandlerFactory

ServiceRequestprocessor

Request

Response

Figure 9.16 ServiceHandlerFactory HTTP handler

ServiceHandlerFactory Class

The ServiceHandlerFactory shown in Listing 9.19 provides the ability to
validate the request URL and create an HTTP handler that can process the
specific service request. The URL is expected to be in the format Service
Name_InternalService.axd/methodname, with the ServiceName being the
name of the service to call, and the methodname being the name of the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

method. The factory uses this information to determine the service type
that will be used, and instantiates a handler that can process the request.
The simple URL format that we are using is similar to the one used by the
application services and makes it really easy to work with any number of
services using a common URL pattern.

Listing 9.19 Service Handler Factory

class ServiceHandlerFactory : IHttpHandlerFactory
{

public IHttpHandler GetHandler(HttpContext context,
string requestType, string url, string pathTranslated)

{
//check for context
if (context == null)
{
throw new ArgumentNullException("context",

"Context can't be null");
}

//get class name from url "/xyz_InternalService.axd/methodname"
string serviceName;
string methodName;

if (context.Request.RawUrl.Contains("_InternalService.axd") ==
false)

throw new ArgumentException("Url is in the wrong format");

GetServiceAndMethodNameFromUrl(context.Request.RawUrl,
out serviceName, out methodName);

switch (serviceName.ToLower())
{
case "simplewcfservice":

return new WCFHandler(typeof(SimpleWCFService), methodName);
case "complexwcfservice":

return new WCFHandler(typeof(ComplexWCFService), methodName);
default:

throw new InvalidOperationException("Invalid Service
Operation");

}

}

public void ReleaseHandler(IHttpHandler handler)
{
}

void GetServiceAndMethodNameFromUrl(string rawUrl,

Chapter 9: Application Ser vices464

http://lib.ommolketab.ir
http//lib.ommolketab.ir

out string serviceName, out string methodName)
{

int lastForwardSlash = rawUrl.LastIndexOf("/");
int firstUnderScore = rawUrl.IndexOf("_");

serviceName = rawUrl.Substring(1, firstUnderScore - 1);
methodName = rawUrl.Substring(lastForwardSlash + 1);

}
}

WCFHandler Class

The WCFHandler class shown in Listing 9.20 provides the implementation
for the IHttpHandler interface-based class returned from the Service
FactoryHandler. The handler implements the ProcessRequest method of
the IHttpHandler interface, which is called by the ASP.NET runtime as the
request is processed. It is during this call that the handler calls into the
RequestProcessor to perform the actual request processing. The IRequire
SessionState interface is used to indicate that the handler will work with
session state. The inclusion of this interface can come in handy if any of
your code needs to access session state. If you choose not to include this
interface, session state will not be available in your services, which might
not be expected in the services themselves. When designing the Service
HandlerFactory and WCFHandler classes, references to the services are
needed to get the type information from them. In most cases, the partner-
ship between the handlers and the services is so tight that they are included
in the same project, ensuring you have a proper reference. This is the
approach we used by including the services and handlers in the Service
Communication project shown in Figure 9.17.

Listing 9.20 WCF Handler

internal class WCFHandler : IHttpHandler, IRequiresSessionState
{

public WCFHandler() { }
public WCFHandler(Type serviceType, string serviceMethodName)
{

ServiceType = serviceType;
ServiceMethodName = serviceMethodName;

}

public Type ServiceType { get; set; }
public string ServiceMethodName { get; set; }

Custom Application Ser vices 465

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.20 continued

public bool IsReusable
{

true;
}

public void ProcessRequest(HttpContext context)
{

ServiceRequestProcessor.ProcessRequest(context,
ServiceType, ServiceMethodName);

}
}

Chapter 9: Application Ser vices466

Figure 9.17 ServiceCommunication project structure

CommunicationSupport Namespace Classes

The classes contained in the CommunicationSupport namespace provide
all the functionality needed to process the request (see Figure 9.18). The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ServiceHandlerFactory and the WCFHandler classes provide the ASP.NET
pipeline hooks needed to capture the request, but the RequestProcessor
class and the other supporting classes in this namespace are the ones that
do the actual work.

The ProcessRequest method of the RequestProcessor is the entry point
for processing the request and serves as the orchestrator for the various
steps required in the request processing pipeline (see Listing 9.21). The indi-
vidual stages shown in Figure 9.16 of the RequestProcessor are performed
in this function and will serve as our guide as we walk through processing
a service request.

Custom Application Ser vices 467

ServiceInfo

Class

Properties

Methods

JsonMessageClasses

KnownTypes

Methods

ServiceType

AddJsonMessageClass

AssignKnownTypes

GetCallableMethods

SetService

CheckIfServiceIsCallable

GetCallableMethodFromInterface

ServiceInfo (+ 1 overload)

JsonMessageClassAttribute

Class

 Attribute

Properties

Methods

ClassType

JsonMessageClassAttribute

ServiceRequestProcessor

Static Class

Methods

ProcessRequest

ServiceMethodInfo

Class

Properties

Methods

Method

Parameters

ServiceMethodInfo (+ 1 overload)

AssignParameters

SetMethod

ServiceUtility

Static Class

Methods

ConvertObjectToAjaxStyleString

AssignParameters

CreateExceptionString

WriteException

FormatJsonToAjaxString

WriteJsonToResponseStream

Figure 9.18 CommunicationSupport namespace classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.21 ProcessRequest Method

public static void ProcessRequest(HttpContext context, Type
serviceType, string methodName)

{
//check for service info in cache
ServiceInfo serviceInfo = context.Cache.Get(serviceType.Name) as

ServiceInfo;
if (serviceInfo == null)
{

serviceInfo = new ServiceInfo(serviceType);
//save service to cache
context.Cache.Add(serviceType.Name, serviceInfo, null,
DateTime.Now.AddYears(5), Cache.NoSlidingExpiration,
CacheItemPriority.AboveNormal, null);

}

//get reference to method
ServiceMethodInfo serviceMethodInfo;
if (serviceInfo.Methods.TryGetValue(methodName,

out serviceMethodInfo) == false)
throw new InvalidOperationException("Method is not supported");

//make sure method has an associated JsonMessageBodyClass
Type jsonMessageBodyClassType;
if (serviceInfo.JsonMessageClasses.TryGetValue(methodName,

out jsonMessageBodyClassType) == false)
throw new ArgumentOutOfRangeException("Method " + methodName +

"does not have an associated JsonMessageClass");

//assign values to parameters
object[] methodParameters = ServiceUtility.AssignParameters(context,

jsonMessageBodyClassType, serviceMethodInfo.Parameters,
serviceInfo.KnownTypes);

//create class
object service = Activator.CreateInstance(serviceType);

//Invoke Method
object returnValue = serviceMethodInfo.Method.Invoke(service,

methodParameters);

//Send data back to client
ServiceUtility.WriteJsonToResponseStream(context, returnValue,

serviceMethodInfo.Method.ReturnParameter.ParameterType,
serviceInfo.KnownTypes);

}

Chapter 9: Application Ser vices468

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Service Metadata

The use of reflection is a slow process. Therefore, when you need to reflect
into a class numerous times, caching the values for later use is a recom-
mended approach. The ServiceInfo class does just that by reflecting into
the service and extracting out the OperationContract-decorated methods
and the KnownType and JsonMessageClass attribute entries associated with
the methods and the service as a whole. The OperationContract and
KnownType entries should be familiar to you by now, but the JsonMessage
Class attribute is something new. This attribute is a custom attribute cre-
ated for this solution that is placed along with the OperationContract
attribute on the operation of the service contract. The attribute is used dur-
ing the parameter assignment phase of processing to inform the Data
ContractJsonSerializer of the overall data type that it will be working
with. Without this attribute, it becomes extremely difficult to dynamically
determine the desired data type from the JSON data passed in.

The inclusion of the service metadata in the ServiceInfo class makes
working with the service a lot easier. The ServiceInfo class categorizes the
service information by method, making it easy to determine whether the
method passed in is valid, the associated JsonMessageClass for deserializ-
ing parameters, and the actual parameters of the method. This combined
set of information can then be used to build up the actual parameter list that
is then passed into the service method.

Reconstructing Method Call

The one real trick when working with JSON data is getting it into a format
that the DataContractJsonSerializer can use. The JSON data in Listing
9.22 represents the data passed to a call to SaveCustomer shown in Listing
9.23. The format of the data consists of the parameter name and the data to
assign to the parameter. If we were to try to deserialize this data using the
DataContractJsonSerializer, passing in CustomerEntity as our type, the
call would fail because the composition of the data does not follow the cor-
rect name:value format for the type. What we really need is a wrapper type
that contains a customer property of the type CustomerEntity. This added
type would then be correctly aligned with the JSON data, and the deseri-
alization would work correctly. This is where the CustomerEntitySave
Customer type shown in Listing 9.24 and the JsonMessageClass attribute

Custom Application Ser vices 469

http://lib.ommolketab.ir
http//lib.ommolketab.ir

come into play. The CustomerEntitySaveCustomer type directly matches the
JSON data format and ensures that the DataContractJsonSerializer will
properly deserialize the data. The use of the JsonMessageClass attribute is
how the correct data type for the JSON data is determined. By assigning this
attribute to the operation contract, you are specifying in the contract the data
type for the message to be received. The AssignParameters method then
uses this information along with any known types during the deserializa-
tion process to ensure a proper conversion to the CustomerEntity type (see
Listing 9.25).

The parameter array created as a result of the parameter assignment is
then passed into the invoke method that is called on the MethodInfo of our
service method. This reflection call executes our service and returns the
results of the operation.

Listing 9.22 JSON Parameter

{"customer":{"__type":"CustomerEntity:#ServiceData.Complex",
"FirstName":"Joe","LastName":"Dirt","Address":"1525 Faraday Suite
250","City":"Carlsbad","State":"CA","Zip":"92009"}}

Listing 9.23 SaveCustomer Contract

[ServiceContract]
public interface IComplexWCFService
{

...
[OperationContract]
[CommunicationSupport.JsonMessageClass(

typeof(CustomerEntitySaveCustomer))]
CustomerEntity SaveCustomer(CustomerEntity customer);
...

}

Listing 9.24 CustomerEntitySaveCustomer Type

[DataContract]
public class CustomerEntitySaveCustomer
{

[DataMember]
public CustomerEntity customer { get; set; }

}

Chapter 9: Application Ser vices470

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.25 Parameter Assignment

public static object[] AssignParameters(HttpContext context,
Type messageBodyClassType, Dictionary<string, ParameterInfo>
methodParms, Collection<Type> knownTypes)

{
DataContractJsonSerializer jsonSerializer = new

DataContractJsonSerializer(messageBodyClassType, knownTypes);

object jsonMessageBodyClass = jsonSerializer.ReadObject(
context.Request.InputStream);

object[] assignedParms = new object[methodParms.Count];
int i= 0;
ParameterInfo parmInfo;
PropertyInfo propertyInfo;

foreach (KeyValuePair<string, ParameterInfo> parmInfoDictionary in
methodParms)

{
parmInfo = parmInfoDictionary.Value;
propertyInfo = jsonMessageBodyClass.GetType().

GetProperty(parmInfo.Name);
assignedParms[i] = propertyInfo.GetValue(jsonMessageBodyClass,

null);
i++;

}
return assignedParms;

}

Processing Method Result

The challenges presented when serializing the data returned from the ser-
vice method call are similar to the ones during deserialization. The JSON
format needed by the Sys.Serialization.JavaScriptSerializer can’t be
created by the DataContractJsonSerializer (see Listing 9.26). The JSON
emitted by the DataContractJsonSerializer does not contain any type
information and is not in the correct format (see Listing 9.27). To create the
correct JSON format, we need to construct the JSON using the combined
functionality provided by the WriteJsonToResponseStreammethod and the
DataContractSerializer. The WriteJsonToResponseStream method,
shown in Listing 9.28, builds up the JSON data by first serializing the
returned data from the service method call using the DataContractJson
Serializer and then formatting the response into the JSON representation

Custom Application Ser vices 471

http://lib.ommolketab.ir
http//lib.ommolketab.ir

shown in Listing 9.26. When the JSON is in the correct format, we can send
it back to the client, where the JavaScriptSerializer will convert it back
to the Customer type.

Listing 9.26 JSON Format Expected by the Sys.Serialization.JavaScriptSerializer

{"d":{"__type":"Customer:#ServiceData.Simple",
"Address":"1525 Faraday Suite 250","City":"Carlsbad",
"CustomerId":1901817923,"FirstName":"Joe","LastName":"Dirt",
"State":"CA","Zip":"92009"}}

Listing 9.27 DataContractJsonSerializer JSON String

{"Address":"1525 Faraday Suite 250","City":"Carlsbad",
"CustomerId":570278328,"FirstName":"Joe","LastName":"Dirt",
"State":"CA","Zip":"92009"}

Listing 9.28 WriteJsonToResponseStream Method

public static void WriteJsonToResponseStream(HttpContext context,
object data, Type dataType, Collection<Type> knownTypes)

{
StringBuilder ajaxAdditions = new StringBuilder();

ajaxAdditions.Append("{");
ajaxAdditions.Append("\"");
ajaxAdditions.Append("d");
ajaxAdditions.Append("\"");

//check data for null
string json = ConvertObjectToAjaxStyleString(data,

dataType, knownTypes);
if (json == "null")
{

ajaxAdditions.Append(":");
ajaxAdditions.Append(json);

}
else
{

ajaxAdditions.Append(":{");
ajaxAdditions.Append("\"");
ajaxAdditions.Append("__type");
ajaxAdditions.Append("\"");
ajaxAdditions.Append(":");
ajaxAdditions.Append("\"");
ajaxAdditions.Append(dataType.Name);
ajaxAdditions.Append(":");

Chapter 9: Application Ser vices472

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ajaxAdditions.Append("#");
ajaxAdditions.Append(dataType.Namespace);
ajaxAdditions.Append("\"");
ajaxAdditions.Append(",");
ajaxAdditions.Append(json);

}
ajaxAdditions.Append("}");

context.Response.AddHeader("Content-Type", "application/json");
context.Response.Output.Write(ajaxAdditions.ToString());

}

Service Proxy
The generation of the proxy class for each web service we create has until
now been done by registering the WCF web service with the Script
Manager. This registration instructed the ScriptManager to add a reference
to a dynamically created proxy class that we could use on the client to call
our web service. In the case of our custom application services, this proxy
class will not be created for us automatically and will require us to create
our own proxy class.

Creating and Using the WebServiceProxy Base Class

The SimpleWCFService proxy class shown in Listing 9.29 represents the
SimpleWCFService that was created in our example. The class contains
many of the same sections we have seen before with the namespace regis-
tration, the class constructor, and the class prototype. In previous discus-
sion of the proxy class, the namespace was generated by the ScriptManager
and was pulled from the ServiceContract namespace setting. In the case of
our custom application service, this namespace name must be created man-
ually, and any name will do as long as it’s unique within the application.
Another automatic setting that we must address is the path of the service.
The path of the service must match the URL pattern that our Service
HandlerFactory handler is expecting. In the case of a proxy, the path points
to the SimpleWCFService, which tells the handler that we want to use that
application service. The remaining portion of the URL creation actually
happens by the WebServiceProxy class, which appends the name of the
method called to the end of our path to complete the URL. This complete

Custom Application Ser vices 473

http://lib.ommolketab.ir
http//lib.ommolketab.ir

buildup is performed during our call to the _invoke method of the Web
ServiceProxy base class for each of our service operations, which are cre-
ated in the class prototype. An entry for each service operation supported
by the proxy must be created. In our case, we have a method for the Save
Customer and LookupCustomer service operations, which are the two oper-
ations supported by our service. The format of these method signatures is
the same as in the previous proxies because all of them inherit from the
same base class. The last thing we discuss concerning the proxy class is the
registration of the supporting types that will be passed back and forth
between the client and the server. Again referring back to the automatic
proxy generation, the types used by the web service operations were auto-
matically added to the proxy class. In this case, however, the entries again
need to be added by hand. This requires a multistep process that consists of
creating a reference to the WebServiceProxy type generator, adding a name-
space entry for the type, and registering the type. The use of the custom
type name in the format Type:#Namespace is required by the DataContract
JsonSerializer on the backend to properly deserialize the type.

Listing 9.29 SimpleWCFService Proxy Class

Type.registerNamespace('ServiceCommunication');

ServiceCommunication.SimpleWCFService=function() {
ServiceCommunication.SimpleWCFService.initializeBase(this);
this._timeout = 0;
this._userContext = null;
this._succeeded = null;
this._failed = null;
this._path = "/SimpleWCFService_InternalService.axd";

}

ServiceCommunication.SimpleWCFService.prototype={
saveCustomer:function(customer,succeededCallback, failedCallback,

userContext) {
return this._invoke(this.get_path(),'SaveCustomer',

false,{customer:customer},succeededCallback,failedCallback,
userContext);

},

lookupCustomer:function(customerId,succeededCallback, failedCallback,
userContext) {
return this._invoke(this.get_path(), 'LookupCustomer',false,

{customerId:customerId},succeededCallback,failedCallback,

Chapter 9: Application Ser vices474

http://lib.ommolketab.ir
http//lib.ommolketab.ir

userContext);
}

}

ServiceCommunication.SimpleWCFService.registerClass(
'ServiceCommunication.SimpleWCFService',Sys.Net.WebServiceProxy);

var gtc = Sys.Net.WebServiceProxy._generateTypedConstructor;

Type.registerNamespace('ServiceData.Simple');

if (typeof(ServiceData.Simple.Customer) === 'undefined') {
ServiceData.Simple.Customer=gtc("Customer:#ServiceData.Simple");
ServiceData.Simple.Customer.registerClass(

'ServiceData.Simple.Customer');
}

The use of the SimpleService proxy class shown in Listing 9.30 should
be familiar enough by now. The service calling code is in the save function
and follows the same pattern of supplying the parameter data and the call-
back functions. The one difference between the proxy class created here and
the one generated by the ScriptManager is the optional static usage pattern.
This implementation requires the new operator to instantiate the class, but
a simple modification to the proxy class can easily solve this if needed.

Listing 9.30 SimpleService Proxy Calling Code

/// <reference path="../SimpleService/SimpleService.aspx" />
...
function saveForm(e)
{

//create new customer
var customer = new ServiceData.Simple.Customer();

//get data from form
customer.CustomerId = ("customerId").value;
if(customer.CustomerId === "")

customer.CustomerId = 0;
customer.FirstName = $get("firstName").value;
customer.LastName = $get("lastName").value;
customer.Address = $get("address").value;
customer.City = $get("city").value;
customer.State = $get("state").value;
customer.Zip = $get("zip").value;

save(customer);
}

Custom Application Ser vices 475

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.30 continued

function save(customer)
{

var service = new ServiceCommunication.SimpleWCFService();
service.saveCustomer(customer,onSuccessSave,onFailed);

}

function onSuccessSave(result)
{

//send new date to table builder
createTableEntries(result);
clearForm();

}

function onFailed(error)
{

alert("An error occured \n" + error.get_message());
}
...

Script Files and Assemblies

The proxy class that you create needs a mechanism to pass it to the client,
and the combination of registering the script file with the assembly using
the WebResource attribute and registering the script file with the Script
Manager achieves this. You can see the registering of the script file with the
assembly in Listing 9.31, where we register both the debug and release ver-
sions of the proxy class. If you recall from our discussions about register-
ing scripts in Chapter 8, the ScriptManager will use the appropriate script
file based on a debug or release build of the source code. When you are cre-
ating library classes, the project that has the script files in it will be the one
that has the WebResource attribute applied to its assembly file. The second
part of this process is registering the proxy file with the ScriptManager,
which is shown in Listing 9.32. The most likely method for this registration
will be using the APIs rather than a declarative method. The reason behind
this is that you will most likely be doing this inside your controls class, and
you won’t want to expose this out to the consumer of your control. You can
get a reference to the ScriptManager via the contained page object using the
static ScriptManager.GetCurrent method. This method returns a reference

Chapter 9: Application Ser vices476

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to a ScriptManager without having to know what the ID is and provides a
clean and dynamic way to get a reference. With the ScriptManager refer-
ence, all you need to do is add the script file to the Scripts collection by cre-
ating a ScriptReference class and using the verbose overloaded
constructor syntax consisting of the full name of the script file as it was
entered using the WebResource attribute and the name of the assembly that
contains the script resource. With these two steps completed, your script
proxy class is now available on the client.

Listing 9.31 WebResource Assignment in Assembly

[assembly: WebResource(
"ServiceCommunication.SimpleService.SimpleWCFServiceProxy.js",
"text/javascript")]

[assembly: WebResource(
"ServiceCommunication.SimpleService.SimpleWCFServiceProxy.debug.js",
"text/javascript")]

Listing 9.32 ScriptManager Registration of Proxy Class

ScriptManager scriptManager = ScriptManager.GetCurrent(this);
scriptManager.Scripts.Add(new ScriptReference(

"ServiceCommunication.SimpleService.SimpleWCFServiceProxy.js",
"ServiceCommunication",
"ServiceCommunication"));

Configuration
When using HTTP handlers, you must configure them in your web.config
file for them to be included in the processing. The configuration fragment
in Listing 9.33 is simple and requires only a single entry in the HTTP han-
dlers section of your web.config file. The path for the handler is *_Internal
Service.axd, which means that any URL that follows this pattern will be han-
dled by this handler. The type for the handler is ServiceCommunication.
ServiceHandlerFactory, which resides in the ServiceCommunication
assembly where the handlers and application services are located. This sim-
ple one-line configuration entry is all that is needed to enable communica-
tion with the service.

Custom Application Ser vices 477

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.33 HTTP Handler Configuration

<configuration>
<system.web>

<httpHandlers>
<add verb="*" path="*_InternalService.axd" validate="false"

type="ServiceCommunication.ServiceHandlerFactory,
ServiceCommunication, Version=1.1.0.0, Culture=neutral,
PublicKeyToken=null"/>

</httpHandlers>
</system.web>

</configuration>

SUMMARY

The work that Microsoft has done with ASP.NET membership, role, and
user profile services and their integration with the ASP.NET AJAX appli-
cation services demonstrates a strong commitment to extending these fea-
ture-rich service-based technologies to the client. The services that are now
available on the client provide much more flexibility when designing solu-
tions that need to tightly integrate with the server.
The new world that application services opens for us also extends to cus-
tom service development, where we can apply the techniques of integrated
services to provide a cleaner and more resilient service-based approach to
programming on the client.

Chapter 9: Application Ser vices478

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PART IV
AJAX Control Toolkit

479

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10
ASP.NET AJAX Control Toolkit
Architecture

T H E ASP.NET AJAX CO N T R O L TO O L K I T is a shared source joint
project between Microsoft and the developer community that is hosted

on CodePlex, www.codeplex.com, which is the Microsoft open source proj-
ect hosting website. The Toolkit builds on the foundation of ASP.NET AJAX
to provide a framework that simplifies the development of extender and
script controls we covered in Chapter 5, “Adding Client Capabilities to
Server Controls.” In addition to the framework, the Toolkit also comes with
numerous pre-built extender and script controls that provide varying lev-
els of functionality that can be used on your projects.

The power of the Toolkit is in the increased productivity that the frame-
work provides, in comparison to coding against the raw API as we did in
Chapter 5. Features like attribute-based programming, rich design-time
support, and support for animation provide a compelling reason to choose
the Toolkit as a basis for building your controls. In this chapter, we cover
the overall architecture of the Toolkit, including many of the building
blocks you need to understand to use it.

481

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Overview of the Toolkit

The ASP.NET AJAX Control Toolkit provides a framework for building
ASP.NET AJAX extenders and script controls that run on a wide range of
browsers. The idea behind the framework was to provide a rich foundation
that abstracts some of the more mundane details associated with creating
extenders and script controls, making it easier to develop feature-rich com-
ponents. This section provides a high-level overview of the Toolkit and
what it has to offer. The following sections address the three key areas of the
Toolkit: reliance on attributes, rich set of .NET classes, rich set of JavaScript
classes, and support for animations. It provides you with an overall under-
standing of how the Toolkit is composed, setting the stage as we delve
deeper into the architectural details later in the chapter.

Reliance on Attributes to Simplify Development
The Toolkit relies heavily on attributes for things such as registering scripts,
determining which properties to include in your ScriptComponent
Descriptor, and much more. This reliance on attributes simplifies the
development approach compared to coding directly against the Extender
Control and ScriptControl base classes. The use of these classes directly
requires the developer to add overrides for the GetScriptDescriptor and
GetScriptReferences methods and build up ScriptComponentDescriptor
and ScriptReference entries by hand, which can be tedious and error
prone. The use of attributes simplifies this approach by relying on attributes
to decorate your classes and properties, instructing the Toolkit to
apply those values appropriately when constructing ScriptComponent
Descriptor and ScriptReference entries.

Rich Set of .NET Classes
The Toolkit builds on the class structure provided by the ASP.NET 2.0 AJAX
Extensions, providing the additional functionality required to build con-
trols in the Toolkit. The System.Web.UI.ExtenderControl and System.Web.

UI.ScriptControl classes have been replaced with the AjaxControl
Toolkit.ExtenderControlBase and AjaxControlToolkit.ScriptControl

Base abstract classes, which are designed to support the increased func-
tionality that the Toolkit provides to inheritors of these classes. The Toolkit

Chapter 10: ASP.NET AJA X Control Toolkit Architecture482

http://lib.ommolketab.ir
http//lib.ommolketab.ir

version of these classes provides support working with ASP.NET themes,
building ScriptReference and ScriptComponentDescriptor entries, work-
ing with client state, working with control view state, working with client
callbacks, and working with form-based data during postback, just to name
a few. The Toolkit also comes with classes that support a rich design-time
experience, adding functionality such as editing extender properties on the
target control without writing any code.

Rich Set of JavaScript Classes
The JavaScript class structure has changed, too, with the Toolkit, provid-
ing its own base classes for Sys.UI.Behavior and Sys.UI.Control. The
AjaxControlToolkit.BehaviorBase class provides additional support for
working with client state and interacting with the Sys.WebForms.
PageRequestManager class during postbacks. The AjaxControlToolkit.
ControlBase class includes support for client state and interaction with the
PageRequestManager, too, but also provides support for working with
client callback, which was introduced in ASP.NET 2.0. There are also
JavaScript classes that provide support for working with drag and
drop and timers, providing a clean API for implementing this type of
functionality.

Support for Animations
The ASP.NET AJAX Control Toolkit comes with a framework that provides
rich animation support for creating visual effects on your pages. The ani-
mation framework consists of a set of JavaScript and .NET classes that you
can use to build up animations of all types. There is support for building
animations using the JavaScript API directly or using a declarative
approach, animations that run sequentially or run in parallel, and a vast
array of animation types ranging from animations that fade the opacity of
a control in and out to animations that transition from one color to the next.

Composition of the Toolkit

The ASP.NET AJAX Control Toolkit is a shared source project that devel-
opers can use from the standpoint of a consumer of the controls included or
as a foundation that can be built on to develop your own controls. In this

Composition of the Toolkit 483

http://lib.ommolketab.ir
http//lib.ommolketab.ir

section, we cover installing the Toolkit and the layout of the solution. The
layout of the solution is of most concern to us because it will make it eas-
ier to understand where things are as we detail the architecture in later
sections.

Installation
You can download the Ajax Control Toolkit from the CodePlex website,
www.codeplex.com, as a stand-alone DLL installation or as an installation
that includes source code. The stand-alone version is great if you want to
use the control Toolkit as a consumer of the controls or do simple control
development. It even comes with the sample test website that the source
version uses. The installation for the stand-alone version is as simple as
extracting the Zip file to a directory and optionally running the Ajax
ControlExtender.vsi file contained in the AjaxControlExtender subdirec-
tory to add the project and item templates to Visual Studio. The version that
includes source contains not only the Toolkit library project but also a sam-
ple website project, unit test harness project, and a template project. This
version contains everything you need to create your own controls and fully
debug and test them. The installation for this version also includes extract-
ing the Zip file to a directory and optionally running the AjaxControl
Extender.vsi file located in the same directory. After you complete this, you
can open the AjaxControlToolkit.sln file contained in the root directory you
extracted to and run the application with all the projects contained in one
solution.

Layout of the Solution
The solution file for the Toolkit is broken into three main projects, consist-
ing of the Toolkit library project, the sample website, and the ToolkitTest
website.

Toolkit Library Project

The Toolkit library project contains all the currently created controls and the
foundation classes that you will use to create your own controls. As we look
at this project, the Animation, Common, and ExtenderBase folders are of
most interest to us since we will cover how to use the framework to build
custom controls.

Chapter 10: ASP.NET AJA X Control Toolkit Architecture484

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Animation Folder

The Animation folder contains not only the Animation extender but also all
the animation-related classes that you will use when creating animations.
The files in this folder that you will use the most are the animation.cs and
the animation.js files. The animation.cs file represents the object model for
the animations and is used to convert the XML representation of an ani-
mation to JavaScript Object Notation (JSON). The animation.js file contains
all the animation-related JavaScript code used to perform the various ani-
mations on the client.

Common Folder

The Common folder is used to place files that provide common function-
ality that can be used by all the controls in the Toolkit. If you are creating a
control you might consider to be included by the Toolkit, you would place
your common code in this folder. The common.js file can be used to place
simple scripts, or you can create a separate file like DateTime.js, which con-
tains a rich timer API, and Threading.js, which contains a rich asynchro-
nous API, and add them to the folder.

ExtenderBase Folder

The ExtenderBase folder contains the vast majority of .NET and JavaScript
files you will use when developing controls. We cover many of the files in
this folder as we dive into the Toolkit, so we do not list them individually
here, but do note that all the base classes, helper classes, and JavaScript
classes used by the Toolkit are contained in this folder. The classes that sup-
port the rich designer features for the Toolkit are also included in this folder
in the Design subfolder.

Sample Website

This website contains the samples for all the controls in the Toolkit and is
a great way to see the controls in action. If you are considering adding con-
trols to the Toolkit, you will want to add them to this project, making sure
they operate in the site.

Composition of the Toolkit 485

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ToolkitTest Website

This website contains the test scripts for all the controls in the Toolkit and
demonstrates a nice approach for unit testing web controls. Just as with the
sample website, if you are considering adding controls to the Toolkit, you
want to create unit test and add them to this website.

Server-Based Architecture

The ASP.NET AJAX Control Toolkit comes with many classes, interfaces,
and attributes that support the rich foundation that the Toolkit provides.
These classes, interfaces, and attributes can be broken into three main areas:
attributes, base classes, and designer classes. In this section, we cover these
three areas, describing how they fit into the overall foundation of the
Toolkit and its code structure.

Attributes
The use of attributes to describe functionality has become common in
frameworks such as Windows Communication Foundation (WCF), and
ASP.NET AJAX Control Toolkit continues with this trend to simplify creat-
ing extenders and script controls. The Toolkit comes with many attributes,
as shown in Figure 10.1, that help in reducing the amount of code you need
to write. As an example, refer back to Chapter 5, when we were creating the
ImageRotator extender. If we take a look at Listing 10.1, we can see that we
create properties that captured values on the server side and then override
the GetScriptDescriptors method to add those values to the Script
BehaviorDescriptor. If we contrast that experience to Listing 10.2, we can
see that when working with the Toolkit all we need to do is add the
ExtenderControlProperty attribute and the ClientPropertyName attribute
to the same properties, and the functionality provided by the Toolkit takes
care of creating the ScriptBehaviorDescriptor entries for us, greatly sim-
plifying our development experience.

Chapter 10: ASP.NET AJA X Control Toolkit Architecture486

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 10.1 ASP.NET AJAX Control Toolkit attributes

Listing 10.1 Code without Attributes

//Property Signatures
[DefaultValue(3), DisplayName("RotationInterval(seconds))")]
public int RotationInterval { get; set; }

public string ImageList { get; set; }
....
//GetScriptDescriptors method override
protected override IEnumerable<ScriptDescriptor>

GetScriptDescriptors(System.Web.UI.Control targetControl)
{

ScriptBehaviorDescriptor descriptor =
new ScriptBehaviorDescriptor(

"ImageRotatorExtender.ImageRotator",
targetControl.ClientID);

descriptor.AddProperty("rotationInterval", RotationInterval);
if (!string.IsNullOrEmpty(ImageList))
{
descriptor.AddProperty("imageList",ImageList.Split(','));

}
yield return descriptor;
}

}

Ser ver-Based Architecture 487

SealedClass

 Attribute

ComponentReferenceAttribute

SealedClass

 Attribute

ElementReferenceAttribute

SealedClass

 Attribute

RequiredPropertyAttribute

ExtenderControlPropertyAttribute

Sealed Class

 Attribute

Properties

IsScriptProperty

ClientPropertyNameAttribute

Sealed Class

 Attribute

Properties

PropertyName

ExtenderControEventAttribute

Sealed Class

 Attribute

Properties

IsScriptEvent

ExtenderControlMethodAttribute

Sealed Class

 Attribute

Properties

IsScriptMethod

ClientScriptResourceAttribute

Sealed Class

 Attribute

Properties

ComponentType

LoadOrder

ResourcePath

RequiredScriptAttribute

Sealed Class

 Attribute

Properties

ExtenderType

LoadOrder

ScriptName

ClientCssResourceAttribute

Sealed Class

 Attribute

Properties

LoadOrder

ResourcePath

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 10.2 Code with Attributes

[ExtenderControlProperty]
[ClientPropertyName("rotationInterval")]
[DefaultValue(3), DisplayName("RotationInterval(seconds))")]
public int RotationInterval { get; set; }

[ExtenderControlProperty]
[ClientPropertyName("imageList")]
public string ImageList { get; set; }

Attributes That Replace ScriptComponentDescriptor Methods

In Chapter 5, the ScriptComponentDescriptor class contained a series of
methods that provided functionality to add properties, events, compo-
nents, and element references to it so that they could be included in the
$create statement that was generated for us by the ScriptManager. To
add these entries, we override the GetScriptDescriptors method in the
ExtenderControl- or ScriptControl-based class and add entries for prop-
erties, events, components, and elements matching our class properties to
the Sys.Component-based classes on the client. This type of work was
tedious and is where attributes provide a simpler approach. The Toolkit
comes with a series of attributes that are applied to a property that simplify
the registration of properties with the ScriptComponentDescriptor. The list
in Table 10.1 compares the attributes to their ScriptComponentDescriptor
method counterparts and provides a good reference as we detail the
attributes.

Table 10.1 Attributes and ScriptComponentDescriptor Methods Comparison

Attribute ScriptComponentDescriptor Method

ExtenderControlProperty AddProperty

ExtenderControlEvent AddEvent

ElementReference AddElementProperty

ComponentReference AddComponentProperty

Chapter 10: ASP.NET AJA X Control Toolkit Architecture488

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The ExtenderControlProperty attribute shown in Listing 10.3 is used
to decorate a property that is going to be registered with the Script
ComponentDescriptor. If the ClientPropertyName attribute is not used, the
name of the property with its current casing is used by the Script
ComponentDescriptor. If the ClientPropertyName attribute is used, the
name provided to the attribute is used instead.

Ser ver-Based Architecture 489

NOTE Property Names

The naming structure for JavaScript is a little different from .NET,
which should be taken into consideration if you leave the Client
PropertyName attribute blank. In .NET, a property for a person’s first
name would be FirstName, whereas in JavaScript it would be
firstName.

Listing 10.3 ExtenderControl and ClientPropertyName Attribute Usage

[ExtenderControlProperty]
[ClientPropertyName("rotationInterval")]
public int RotationInterval
{

get { return rotationInterval; }
set { rotationInterval = value; }

}

The RequiredProperty attribute (not shown in Table 10.1) enables you
to ensure that a particular property has a value. In fact, the Toolkit goes
through a validation check before continuing with the attribute-processing
step to ensure that all fields that require a value actually have one. If you do
not add a value, you receive an error during runtime as the page containing
the control is rendered.

To round out the remaining attributes, the ExtenderControlEvent
attribute is used to decorate a property that contains the name of a func-
tion that will be handling an event. The ElementReference attribute is used
to decorate a property that contains the name of an HTML element that will
be referenced. Finally, the ComponentReference attribute is used to decorate
a property that contains the name of a control that will be referenced.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ScriptReference-Related Attributes

In Chapter 5, we were forced to add script entries by building up a strongly
typed collection of ScriptReference values and return them in our
GetScriptReferences override. Just as in the case with the Script
ComponentDescriptor, this method was tedious and error prone. The
Toolkit comes with three attributes that are applied at the class level that
make adding script references easy (see Table 10.2).

Table 10.2 ScriptReference-Related Attributes

Attribute Description

ClientScriptResource Creates a ScriptReference for the specified script

RequiredScript Ensures referenced script is included

ClientCSSResource Includes a CSS file in the control

The ClientScriptResource attribute is used to create a ScriptReference
entry for the specified script. The attribute assigns the script type to the
Assembly property and path to the Name property of the ScriptReference
and leaves all the other values at their defaults. The one nice feature about
this attribute is the ability to order the scripts so that they are loaded in a spe-
cific order, which can help in situations where dependencies occur.

The RequiredScript attribute shown in Listing 10.4 is designed to
ensure that the referenced script is included before the scripts that are
included with the ClientScriptResource attribute. This attribute can
accept a type or a script name and is mostly used with the type overload,
which provides the ability to drill down into the type and extract associated
ClientScriptResource attributes applied to the type. The attribute also
enables you to set the order that it is loaded, which again helps in situations
where dependencies occur.

Listing 10.4 RequiredScript Attribute Usage

[RequiredScript(typeof(TimerScript))]
public class ImageRotatorExtender : ExtenderControlBase
{
...

}

Chapter 10: ASP.NET AJA X Control Toolkit Architecture490

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The ClientCssResource attribute brings in a particular CSS file using a
full resource name or a type and a resource name. The attribute supports
the ability to dictate the load order, just like the other script-related attrib-
ute we have discussed so far, assisting in situations where dependencies
occur.

Base Classes for Extenders and ScriptControls
The Toolkit comes with its own extender and script control base classes that
build on the functionality provided by the ExtenderControl and Script

Control classes (see Figure 10.2). The ExtenderControlBase class provides the
base functionality for creating extender controls, and the ScriptControl
Base class provides the base functionality for creating script controls.

Ser ver-Based Architecture 491

AbstractClass

 Control

ExtenderControl ExtenderControlBase

Abstract Class

 ExtenderControl

IExtenderControl

AbstractClass

 WebControl

ScriptControl

IScriptControlIControlResolver

INamingContainer
IControlResolver
IPostBackDataHandler
ICallbackEventHandler
IClientStateManager

Properties

Methods

Methods

CheckIfValid

EnsureValid

FindControl

FindControlHelper

AllowScriptPath

BehaviorID

ClientControlType

ClientState

ClientStateFieldID

EnableClientState

Enabled

IsRenderingScript

ProfileBindings

ScriptPath

SkinID

TargetControl

GetClientID

GetPropertyValue<V>

OnResolveControlID

RenderInnerScript

RenderScriptAttributes

ResolveControl

SetPropertyValue<V>

ShouldSerializeClientStateFieldID

SuppressUnusedParameterWarning

ResolveControlID

ScriptControlBase

Class

 ScriptControl

Properties

Methods

ClientControlType

ClientStateFieldID

IsRenderingScript

ScriptManager

ScriptPath

SupportsClientState

DescribeComponent

FindControl

GetCallbackResult

LoadClientState

LoadPostData

RaiseCallbackEvent

RaisePostDataChangedEvent

ResolveControl

SaveClientState

ScriptControlBase (+ 5 overloads)

Figure 10.2 ASP.NET AJAX Control Toolkit extender and ScriptControl base classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ExtenderControlBase Class

The ExtenderControlBase abstract class provides the base functionality to
extender controls in the Toolkit and is the class your extender will inherit
from. The class builds on the functionality of the System.Web.UI.
ExtenderControl class to provide support for working with ASP.NET
themes, building ScriptReference and ScriptComponentDescriptor

entries, working with client state, and working with control view state, to
name a few. In this section, we cover how you can take advantage of these
features when building an extender control and show how these features
are implemented.

The ExtenderControlBase class provides a couple of core properties to
the inherited extender that we will talk about first (see Table 10.3). The
BehaviorID property is the property used to provide a unique ID for your
JavaScript behavior class and defaults to the ClientID of the control if one
is not set. The TargetControlID, which comes from ExtenderControl, iden-
tifies the target of the extender and the control that will be the focus of its
added functionality. The resolution of the TargetControlID can sometimes
be a little problematic, despite the base class’s efforts of looking for it in the
naming container the extender is contained in and the page. In the case that
the base class can’t find the control, it will raise the ResolveControlID
event, which you can handle in your extender to implement your own
searching logic. The event is passed a ResolveControlEventArgs argument
that consists of a ControlID property that identified the target control and
a Control property that will be assigned the instance of the target control
after it has been found.

Table 10.3 ExtenderControlBase Core Properties

Attribute Description

BehaviorID The unique ID of the behavior class

TargetControlID Target of the extender control

A property can be accessed in many ways, such as by the designer
engine, in HTML source, and in your code behind class. If we look at the

Chapter 10: ASP.NET AJA X Control Toolkit Architecture492

http://lib.ommolketab.ir
http//lib.ommolketab.ir

designer engine and HTML source, they are both the same, using the
default persistence mechanism of the designer to store the entries so that
they are available when the page is accessed. The code behind class
approach is a little different because the value you set in code by default
will not be persisted by the extender. This is where control view state comes
into the picture and the functionality the base class provides for using it.
The base class provides two generic methods GetPropertyValue<T> and
SetPropertyValue<T> that are used to access view state values in a type-
safe way. By using these methods in your property setter and getter, you are
ensuring that your property values will be available on subsequent post-
backs (see Listing 10.5). The one drawback of this approach is its depend-
ence on view state being enabled. If view state is disabled, this approach
will not work.

Ser ver-Based Architecture 493

NOTE Control State versus View State

The concept of control state was introduced in ASP.NET 2.0 and is
designed to give developers of a control a “view state”-like storage
mechanism intended for critical data that is guaranteed to be there
even if view state is turn off for a page or the control. You can find more
information about this topic at http://msdn2.microsoft.com/
en-us/library/1whwt1k7.aspx, which includes a sample application
contrasting the use of both approaches.

Listing 10.5 Property Setter and Getter Using the GetPropertyValue<T> Approach

[ExtenderControlProperty]
[ClientPropertyName("rotationInterval")]
public int RotationInterval
{

get { return GetPropertyValue<int>("RotationInterval", 3); }
set { SetPropertyValue<int>("RotationInterval", value); }

}

In some cases, you need to work with client state on both the client and
on the server in a clean way, and the base class, in conjunction with the
BehaviorBase JavaScript class, provides a way to work with data on both
sides. To work with client state, you need to set the EnableClientState
property on the base class to true and then use the ClientState property

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to interact with the string-based data. The base class implements this
functionality using a hidden field and will take care of creating the field,
giving it a unique ID, and reading and writing to it during postbacks. The
BehaviorBase JavaScript class then provides access to this value, providing
support for reading and writing on the client. At first you might think that
storing a string value is a little limiting, but if you use JSON to represent
your data, the sky is the limit as to what type of data you can work with. All
you need to do is handle the JSON serialization and deserialization on both
ends and you are done.

The need to validate the data your extender is based on can sometimes
be a little tricky, especially in cases where the interaction between multiple
values comes into play. The base class provides a nice overload that works
in conjunction with the RequiredProperty attribute to ensure that your
extender data is valid. The EnsureValid method can be overloaded to add
additional validation logic to your extender, and when used in conjunction
with the base implementation also ensures that you have entered all
required data.

The concept of themes and skins was introduced in ASP.NET 2.0 and
greatly simplifies the approach of styling web applications. Themes pro-
vide a common foundation for storing skins, CSS information, images, and
other resources that can be applied at the page level or globally so that they
can be used by all sites on a web server. Skins are applied to controls and
consist of the control markup with the properties you want to be part of a
theme. The base class has all the appropriate attributes and properties to
support themes and skins and provides a SkinID property that can be used
to override a page-level or global-level theme’s skin setting to a new value.

Our final topic in this section is debugging. The base class supports
script debugging by enabling you to specify a different script path than the
one specified in your ClientScriptResource attribute applied to your
class. This enables you to set breakpoints and debug script without having
to recompile your application to the debug version. If this behavior is not
desired or you want to provide additional logic to determine whether the
ScriptPath property value should be used, override the AllowScriptPath
property and implement your custom logic there.

Chapter 10: ASP.NET AJA X Control Toolkit Architecture494

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ScriptControlBase Class

The ScriptControlBase abstract class provides the base functionality to
script controls in the Toolkit and is the class your script control will inherit
from. The class builds on the functionality of the System.Web.UI.Script
Control class to provide support for working with ScriptReference and
ScriptComponentDescriptor entries, working with client state, support for
a naming container, enabling the control to be the target of a callback, and
ensuring that the ScriptManager is present to name a few. In this section,
we cover how you can take advantage of these features when building an
extender control and explain how these features are implemented.

Ser ver-Based Architecture 495

NOTE Duplicate Functionality

The ScriptControlBase class provides all the same functionality the
ExtenderControlBase class did for working with attributes, Script
ComponentDescriptor, and ScriptReference entries and working
with client state, so we do not address these topics again in this section.

The main features that the ScriptControlBase class provides are a nam-
ing container and support for client callbacks. The ScriptControlBase class
implements the INamingContainer interface, creating a new namespace,
and ensuring that all container elements have a unique ID throughout the
page. The use of this interface eases development when adding additional
child controls to your script control by providing an infrastructure that
eliminates the risk of ID collisions on the page. The base class also provides
support for client callbacks, which were introduced in ASP.NET 2.0, to pro-
vide a mechanism for the client to call back to the ASP.NET web page,
where it runs in a modified version instantiating the ICallbackEvent
Handler.RaiseCallbackEvent and ICallbackEventHandler.GetCallback

Result methods to process the request.

Designer Classes
The introduction of the Extender Wizard in Visual Studio 2008, which we
talked about in Chapter 5, has enhanced the design-time experience for
working with extenders, and this section covers the supporting classes that
provide the ability to add design-time features to extender controls, giving

http://lib.ommolketab.ir
http//lib.ommolketab.ir

them that professional feel users have become accustomed to (see
Figure 10.3).

Chapter 10: ASP.NET AJA X Control Toolkit Architecture496

ExtenderControlBaseDesigner<T>

Generic Class

 ExtenderControlDesigner

IExtenderProvider

Class

 HtmlControlDesigner

ControlDesigner

Class

 ControlDesigner

ExtenderControlDesigner

Properties

Methods

Nested Types

ExtenderPropertyName

CanExtend

Dispose

GetExtender

DesignerFeaturesEnabled

ExtenderControl

Initialize

PreFilterAttributes

PreFilterProperties

Class

 FilterTypeDescriptionProvider<IComponent>

ExtenderPropertyRenameDescProv

ExtenderControlBaseDesigner<T>

Generic Class

 ExtenderControlDesigner

IExtenderProvider

Properties

Nested Types

ActionLists

Class

 DesignerActionList

PageMethodDesignerActionList

PageMethodSignatureAttribute

Sealed Class

 Attribute

Properties

FriendlyName

IncludeContextParameter

ServiceMethodProperty

ServicePathProperty

UseContextKeyProperty

Figure 10.3 ASP.NET AJAX Control Toolkit design-time classes

NOTE Designer Support Limitations

Currently, the Toolkit offers only designer support for working with
extenders, so our discussion in this section is limited to extenders only.

NOTE Designer Changes in Visual Studio 2008

The bulk of the functionality in ExtenderControlBaseDesigner<T>
was developed to work with Visual Studio 2005; in Visual Studio 2008,
however, the implementation for extending properties is now
included, so that functionality is no longer needed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ExtenderControlBaseDesigner<T>

This class is the base class that all extender designers will inherit from. This
class was designed to make it possible for the properties of your extender
control to show up in the Properties window while the design-time focus
was on the control you were extending. This ability to project the properties
onto the extended control provides one-stop editing for the control being
extended and the control providing the added behavior. If we take a look at
Figure 10.4, we can see the design-time experience for working with exten-
ders as we look at the user experience with the TextBoxWaterMark exten-
der on a textbox. In this figure, the Text1 control is selected in the designer,
and the Properties window for the Text1 control is shown on the right with
an arrow pointing to the TextBoxWaterMark extender property, which con-
tains all the subproperties for the extender. Exposing properties for the
TextBoxWaterMark extender while keeping the focus on the Text1 control
simplifies the experience of working in the designer and reduces context
switching between control and extender. If you take a look at Figure 10.4,
one thing you might also notice is the UI representation for the extender is
gone. Extenders in Visual Studio 2008 no longer show up in the design sur-
face, which makes page layout much easier.

Ser ver-Based Architecture 497

Figure 10.4 Design-time experience with extender controls

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you look at the class declaration, you will realize that it is a partial
class that has a second counterpart in the ExtenderControlBaseDesigner.
PageMethodSignatures.cs file. This partial class is responsible for adding
designer actions to the smart tags that are associated with the control you
are extending. The class works in conjunction with the PageMethod
Signature attribute to build up a set of commands that can be invoked in
the smart tag. If we take the AutoComplete extender as an example, it
requires a callback to the server to get lookup values. During design, if you
choose to implement that call as a page method, you select the Add Auto-
Complete page method action item from the smart tag (see Figure 10.5),
which generates the code fragment in the code behind of the page (see List-
ing 10.6), when the link is selected, giving you a method signature to then
code against.

Chapter 10: ASP.NET AJA X Control Toolkit Architecture498

Figure 10.5 Adding the AutoComplete page method smart tag action

Listing 10.6 AutoComplete Extender Generated Page Method

[System.Web.Services.WebMethodAttribute(),
System.Web.Script.Services.ScriptMethodAttribute()]

public static string[] GetCompletionList(string prefixText, int count,
string contextKey)
{

return default(string[]);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To get this functionality to work, you need to add some code to the
designer class of your extender. In your designer class (see Listing 10.7) for
the AutoCompleteDesigner class, add a delegate that contains the signature
needed for the page method and decorate that delegate with a PageMethod
Signature attribute that contains the display name shown in the designer’s
smart tag action item, the name of the ServicePath property on your exten-
der (which is used to verify that a path does not already exist), and the
name of the ServiceMethod property on your extender (which is used to set
the page method name). After you have added this code, the designer will
show a smart tag action item (refer to Figure 10.5), which will allow you to
generate a page method (see Listing 10.7) in the code behind of your page,
providing a simple method signature that you can then code against.

Listing 10.7 AutoCompleteDesigner Class

public class AutoCompleteDesigner :
ExtenderControlBaseDesigner<AutoCompleteExtender>
{

/// <summary>
/// Signature of the page method for AutoComplete's web service
/// that is used to support adding/navigating to the page
/// method fromthe designer
/// </summary>
/// <param name="prefixText">Text already entered</param>
/// <param name="count">Number of items to return</param>
/// <param name="contextKey">Optional user specific
/// context</param>
/// <returns>Possible completions of the prefix text</returns>
[

PageMethodSignature("AutoComplete", "ServicePath",
"ServiceMethod", "UseContextKey")

]
private delegate string[] GetCompletionList(string prefixText,

int count, string contextKey);

}

Client-Based Architecture

The Ajax Control Toolkit comes with a set of JavaScript classes that build on
the Microsoft AJAX Library to provide the added functionality the Toolkit

Client-Based Architecture 499

http://lib.ommolketab.ir
http//lib.ommolketab.ir

provides for developing extenders and script controls. The class diagram in
Figure 10.6 shows the structure of the BehaviorBase and ControlBase base
classes that the JavaScript behavior and control classes for your extenders
and script controls are based on. In this section, we cover these base classes
and the functionality they provide.

Chapter 10: ASP.NET AJA X Control Toolkit Architecture500

Behavior

Class

 Component

Properties

Methods

name

get_elemtent

get_id

BehaviorBase

Class

 Behavior

Properties

Methods

ClientState

_partialUpdateBeginRequest

_partialUpdateEndRequest

ClientStateFieldID

registerPartialUpdateEvents

Component

Class

Properties

Methods

id

add_disposing

add_propertyChanged

get_events

beginUpdate

endUpdate

get_isInitialized

remove_disposing

get_isUpdating

raisePropertyChanged

remove_propertyChanged

Control

Class

 Component

Properties

Methods

id

addCssClass

get_element

removeCssClass

onBubbleEvent

raiseBubbleEvent

toggleCssClass

parent

visibilityMode

visible

ControlBase

Class

 Control

Properties

Methods

clientStateField

_invoice

_oncomplete

findElement

_onerror

_onsubmit

loadClientState

saveClientState

Figure 10.6 ASP.NET AJAX Control Toolkit JavaScript class hierarchy

NOTE Property and Method References

Throughout this section, we refer to properties using the single prop-
erty name rather than functions with the set_ and get_ prefixes and
methods to refer to all other functions associated with a JavaScript
class.

BehaviorBase Class
The BehaviorBase class is the base class for the JavaScript behavior classes
that are associated with your extender controls. This class inherits from the
Sys.UI.Behavior class and provides functionality for working with client
state and interacting with the asynchronous request events of the Sys.Web
Forms.PageRequestManager. The client state functionality, which we talked

http://lib.ommolketab.ir
http//lib.ommolketab.ir

about earlier, is supported by the ClientState and ClientStateFieldID

properties, which are set by the $create statement that is generated by the
ScriptComponentDescriptor entry for the ClientState and ClientState

FieldID properties. The ClientStateFieldID property contains the name
of the hidden field and interacting with the ClientState field reads or
writes values to this hidden field. During postback, the hidden field is read,
and the contents are assigned to the ClientState field where they are avail-
able on the server. The _partialUpdateBeginRequest and _partialUpdate

EndRequest are methods called when the beginRequest and endRequest

events are raised by the PageRequestManager. The base class registers these
methods as handlers for those events, in turn providing the inheritor a set
of override methods that can be used to implement custom logic when the
events occur.

ControlBase Class
The ControlBase class is the base class for the JavaScript control classes
associated with your script controls. The ControlBase class inherits from
Sys.UI.Control and provides functionality for working with client state
and working with client callbacks. Client callbacks are supported by both
the ControlBase and ScriptControlBase classes, with each of them pro-
viding a complementary piece of functionality. The ControlBase class pro-
vides functionality to compose the callback parameter, call the web page,
and process the return value. The _invoke method is responsible for build-
ing up the JSON data, consisting of the client state and the arguments
passed in, and calling back to the web page. The _oncomplete method is the
callback method that processes the return value and assigns the client state
value back to the hidden input element on the page.

Animations

The animation support in the ASP.NET AJAX Control Toolkit is extensive
and constitutes the largest grouping of JavaScript classes in the Toolkit. In
this section, we look at animations, what they are and how they work.
Then, we look at the JavaScript classes that make up the animation foun-
dation and how they are used. Finally, we look at how developers can use
the Toolkit for animation support as they build their classes.

Animations 501

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Animation Structure and Types
The animations in the Toolkit can be used in many different ways, ranging
from declaring and executing a simple animation from your behavior or
control to creating a complex sequence of animations declaratively in your
page. In this section, we cover the different types of animations and the
options the Toolkit provides for working with them.

Execution Structure

An animation can be run as a single animation or a group of animations
that are run either sequentially or in parallel. The ability to create a group
of animations, which can be a mix of sequential and parallel execution
paths, contributes to the rich foundation the Toolkit provides for building
complex visual effects on your pages.

The basic concepts of setting up and running an animation are simple.
An animation will contain a target that is the ID of the DOM element it will
be working with, a duration that specifies in seconds how long the anima-
tion will last, and the number of frames per second that will be played dur-
ing the animation. All animations also have start, pause, and stop methods
that are used to manipulate the animation after it has been created. As
stated previously, the power of animations is the ability to group them
together to construct an animation sequence, and this is where the
Sequence and Parallel animations come into play.

The Sequence and Parallel animations are parent animations that con-
tain children animations inside them that they run. They are designed to
run the animations sequentially, one by one, or in parallel, running them all
at the same time, providing a rich containment model capable of running
any number of animations. As you build up these complex animations, you
will soon need the ability to add some type of control flow to them (a
dynamic way to control the flow of the animations as they run). The
Condition and Case animations, which are also considered parent anima-
tions, are used to control which of their containing child animations will
play. The Condition animation is designed to run either the first or second
animation, depending on the true or false result of an external script that
is run similar to an “if then else” statement. The Case animation is designed

Chapter 10: ASP.NET AJA X Control Toolkit Architecture502

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to run the child animation that contains the matching index returned from
an external script that is run, which is similar to a case statement in .NET.

Animation Types

The Toolkit comes with two categories of animations: those that perform
animations, and those that perform an action and are nonanimating. The
types that perform some type of animation include the Fade animation,
which is used to fade an element in and out of view, the Color animation,
which transitions the value of a property between two colors, and the Pulse
animation, which repeatedly fades an element in and out to create a pul-
sating effect. The actions include the EnableAction, which changes whether
an element is disabled, the HideAction, which hides an element from view,
and the ScriptAction, which runs a script. These two categories of anima-
tions are what you use when adding animations to the Sequence, Parallel,
Condition, and Case parent animations we have discussed so far.

Client Architecture
The client architecture for animations consists of a rich set of JavaScript
classes that provide the animation functionality on the client. The classes
come with animations that can contain other animations, animations that
can be run sequentially or in parallel, animations that perform explicit
actions, and animations that can scale and fade elements. In this section, we
cover the base animation class, animation containers, various discrete ani-
mations, and animations that perform actions.

Animation Base Class

The animation, which inherits from Sys.Component, is the base class for all
animations in the Toolkit. The class comes with a set of properties that are
shown in Table 10.4, methods that are shown in Table 10.5, and events that
are shown in Table 10.6 and are common to all animations.

Animations 503

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 10.4 Animation Properties

Property Description

target The element ID of the target of the animation.

duration The duration of the animation in seconds. The default is 1.

fps Frames per second, which defaults to 25.

Table 10.5 Animation Methods

Method Description

play Plays the animation

pause Pauses the animation, with the ability to start again from the
point it was paused

stop Stops the animation and resets it to the beginning

Table 10.6 Animation Events

Event Description

started Raised when the play method has been called

ended Raised when the stop method is called

Containers

The animation foundation comes with animations that can contain other
animations, providing a model for extremely versatile configurations. In
this section, we detail these parent animations and the functionality they
provide. The class diagram in Figure 10.7 shows the hierarchy for the
ParallelAnimation, SelectionAnimation, and SequenceAnimation classes,

Chapter 10: ASP.NET AJA X Control Toolkit Architecture504

http://lib.ommolketab.ir
http//lib.ommolketab.ir

which support child animations. The SequenceAnimation class is designed
to run its child animations one at a time until they all have been completed.
In some cases, it might be desired to run the sequence multiple times or
maybe even in a repeating loop. The iterations property controls the
number of times a SequenceAnimation series will run, and providing a
value greater than 1 will cause the sequence to run more than one time;
a value of 0 will cause the sequence to run indefinitely. The Parallel
Animation is designed to run its child animations concurrently and can be
used in situations where you need to have many items run at one time. The
SelectionAnimation is really just a base class for the ConditionAnimation
and CaseAnimation classes, which provide control flow for child anima-
tions. The ConditionAnimation provides the functionality to execute one of
two child animations, depending on the result of the script set in the
conditionScript property. If a value of true is returned, the first animation
is run; if a value of false is returned, the second one runs. The Case
Animation provides the functionality to run one of many child animations,
depending on the index value returned from the script set in the
selectScript property. If the script returns a valid index value, the corre-
sponding animation at that index position will run; otherwise, no anima-
tions will run.

Animations 505

Class

 ParentAnimation

ParallelAnimation

Class

 Animation

ParentAnimation

Class

 Component

Animation

Class

 ParallelAnimation

MoveAnimation

Class

 ParallelAnimation

ResizeAnimation

Class

 ParentAnimation

SelectionAnimation

Class

 SelectionAnimation

ConditionAnimation

Class

 SelectionAnimation

CaseAnimation

Class

 ParentAnimation

SequenceAnimation

Class

Component

Class

 SequenceAnimation

PulseAnimation

Figure 10.7 ASP.NET AJAX Control Toolkit animation containers

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Animations in the Toolkit

The animations that come with the Toolkit provide a wide range of func-
tionality that can add amazing visual effects to your web page (see Figure
10.8). In this section, we cover the animation class and what animations
offer.

The ScaleAnimation is designed to scale the size of the target element by
setting the scaleFactor property to a specific value. The animation will
scale the element down in size if the scaleFactor property is set to a value
less than 1, and up in size if the value is greater than 1. The animation also
has a scaleFont property that controls whether the font size associated
with the element will scale, too. A value of true will size the font; false will
leave it alone. Finally, the animation has a center property that controls
whether the element’s center will move when it is scaled. A value of false,
yes false, causes the element’s center to move, but only if the target ele-
ment was positioned using absolute positioning; otherwise, the effect will
not work.

The FadeAnimation is a generic fade animation designed to fade an ele-
ment into or out of view depending on the value of the effect property. Set-
ting the property to FadeEffect.FadeIn causes the element to fade in to
view, and setting it to a value of FadeEffect.FadeOut causes the element
to fade out of view. If you are targeting Internet Explorer, setting the force
LayoutInIE property to true will handle some issues that can occur on that
browser. If you already know the direction of the fade, you can use the
more direct versions FadeInAnimaiton or the FadeOutAnimation to simplify
things a bit, especially when you are declaratively setting up the animation.

The PropertyAnimation is a base animation that enables you to assign
a value to a specified property. The DiscreteAnimation and the
InterpolatedAnimation inherit from this class to provide property-
assigning functionality in their animations. The PropertyAnimation
enables you to assign a value to a specified property using the property
name. This animation also enables you to assign the name of the property,
which is useful in situations where the property takes the format
property[propertyKey]. The DiscreteAnimation is designed to set the
value of the targeted element’s designated property to an array of values
using the property-assignment properties of the PropertyAnimation base
class.

Chapter 10: ASP.NET AJA X Control Toolkit Architecture506

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The InterpolatedAnimation is a base class designed to assign a range of
values to a specified property. The startValue property is used to assign
the starting value, and the endValue property is assigned the ending value.
The property the value is assigned to is set using the property options of the
PropertyAnimation base class. The ColorAnimation, which inherits from
the InterpolatedAnimation, is designed to transition a color value between
two seven-character hex string values assigned to the startValue and
endValue properties. The LengthAnimation, which also inherits from
InterpolatedAnimation, is designed to assign a range of values that have
been converted to units to the assigned property.

The MoveAnimation and ResizeAnimation, shown previously in Figure
10.7, inherit from the ParallelAnimation to provide functionality for mov-
ing and resizing elements. MoveAnimation is designed to move the target
element both horizontally and vertically. The animation treats the horizon-
tal and vertical entries, as long as absolute positioning is used, as offsets if
the relative property is set to true, and a coordinate if the value is set to
false. The ResizeAnimation is designed to change the target element’s size
from its current height and width value to the height and width set in the
corresponding properties on the animation.

Animations 507

Class

 Component

Animation

Class

 Animation

ScaleAnimation

Class

 Animation

FadeAnimation

Class

 FadeAnimation

FadeInAnimation

Class

 FadeAnimation

FadeOutAnimation

Class

 PropertyAnimation

DiscreteAnimation

Class

 PropertyAnimation

InterpolatedAnimation

Class

 InterpolatedAnimation

ColorAnimation

Class

 InterpolatedAnimation

InterpolatedAnimation

Class

 Animation

PropertyAnimation

Figure 10.8 ASP.NET AJAX Control Toolkit animations

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Actions

Sometimes you will need to make a property assignment or possibly call a
script that doesn’t fall into the standard structure of an animation. In these
cases, you use what is called an action to perform a task. An action is an ani-
mation that does not animate; instead, an action executes it function instan-
taneously, not progressively over time. In this section, we cover the actions
that come with the Toolkit and what they have to offer (see Figure 10.9).

The ActionAnimation is the base class that all actions inherit from. The
EnableAction changes the target element to disabled depending on the
value of the enabled property (true or false) and is useful at the beginning
and ending of a Sequence animation when you want to disable an element
such as a button. The HideAction is a simple action that sets the style’s dis-
play attribute of the target element based on the visible property setting.
The StyleAction is designed to set the style attribute on an element. The
attribute property contains the attribute to change, and the value property
is set to the value to change it to. The OpacityAction is designed to set
the opacity of the target element to the value set on the opacity property.
The valid values for this property are 0 to 1. The final action we cover is the
ScriptAction, which is designed to execute the JavaScript contained in the
script property.

Chapter 10: ASP.NET AJA X Control Toolkit Architecture508

Class

 Component

Animation

Class

 Animation

Action

Class

 Action

EnableAction

Class

 Action

HideAction

Class

 Action

StyleAction

Class

 Action

OpacityAction

Class

 Action

ScriptAction

Figure 10.9 ASP.NET AJAX Control Toolkit animation actions

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Server Architecture
The server architecture for animations enables you to add animation script
references to your controls to enable client-side programming, create JSON
representation of the animations, and declaratively create animation
sequences in the HTML source editor. In this section, we cover how to add
script references and declaratively create animations in the HTML source
editor.

Script Registration for JavaScript API -Based Programming

The act of registering script references for client-side programming is sim-
ple. If you are creating an extender that will use the client-side functional-
ity only, all you need to do is add a RequiredScript attribute to your class
with a reference to the AnimationScripts type as a parameter. This will
include all the animation scripts as part of the script references for the con-
trol, making them available on the client. Once the scripts are on the client,
the animations are now available for you to use, enabling you to create and
run animations using the JavaScript animation API.

Declarative Animations

The ability to work with the animation API on the client is powerful, but
not all developers like to write JavaScript. This is where the declarative
approach to animations comes in and the base classes that support this
functionality. The AnimationExtenderControlBase class, the Animation
class, and the AnimationJavaScriptCoverter class shown in Figure 10.10
provide the declarative animation functionality for the Toolkit and will be
the classes you will use as you create an extender that supports declarative
animation. Before we get started discussing the classes, let’s cover the over-
all approach to working with animations declaratively in the Toolkit.

Animations 509

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 10.10 ASP.NET AJAX Control Toolkit declarative animation support classes

The declarative approach to working with animations follows a pattern
of creating a series of animations related to an event on the target element.
The HTML fragment in Listing 10.8 shows an AnimationExtender designed
to work with the OnClick event. The listing shows how an animation is cre-
ated that will respond to an OnClick event of the element the extender is
associated with. If we walk through the sample, each animation begins
with an Animations tag that is the parent for all the events and subsequent
animations they contain. In the case of our example, we have created a
Sequence animation that has a target element of info to which the anima-
tion will be applied. This Sequence animation then contains a series of child
animations that will be applied to the target element. The following is a list
of actions that occur in the Sequence animation:

• The StyleAction sets the overflow property to hidden.

• A nested Parallel animation simultaneously scales the element to 5
percent of its size and fades out the opacity of the element to 0.

• A series of StyleActions sets the display to none, the width to 250px,
the height to nothing, and the font size to 12px.

• An OpacityAction sets the opacity of the btnCloseParent button to 0.

• An EnableAction enables the btnInfo button.

Chapter 10: ASP.NET AJA X Control Toolkit Architecture510

AbstractClass

 Control

ExtenderControl

AnimationExtenderControlBase

Class

 ExtenderControlBase

AbstractClass

 ExtenderControl

ExtenderControlBase

IExtenderControl IControlResolver

Properties

Methods

Animations

GetAnimation

ResolveControlIDs

SetAnimation

ShouldSerializeAnimations

Animation

Class

Properties

Methods

Children

Animation (+ 1 overload)

Deserialize (+ 1 overload)

GetLineNumber

Name

Properties

Parse

Serialize

ToString

Properties

Methods

SupportedTypes

Deserialize (+ 1 overload)

Serialize (+ 1 overload)

AnimationJavaScriptConverter

Class

 JavaScriptConverter

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The style of adding these tags is similar to other patterns we have seen
in ASP.NET, making this approach familiar to someone who has been pro-
gramming in ASP.NET for a while. Now let’s look at how the Toolkit classes
in Figure 10.7 enable us to work with this declarative data.

Listing 10.8 AnimationExtender Sample

<ajaxToolkit:AnimationExtender id="CloseAnimation" runat="server"
TargetControlID="btnClose">
<Animations>

<OnClick>
<Sequence AnimationTarget="info">

<StyleAction Attribute="overflow" Value="hidden"/>
<Parallel Duration=".3" Fps="15">

<Scale ScaleFactor="0.05" Center="true"
ScaleFont="true" FontUnit="px" />

<FadeOut />
</Parallel>
<StyleAction Attribute="display" Value="none"/>
<StyleAction Attribute="width" Value="250px"/>
<StyleAction Attribute="height" Value=""/>
<StyleAction Attribute="fontSize" Value="12px"/>
<OpacityAction AnimationTarget="btnCloseParent"

Opacity="0" />
<EnableAction AnimationTarget="btnInfo"

Enabled="true" />
</Sequence>

</OnClick>
</Animations>

</ajaxToolkit:AnimationExtender>

The AnimationExtenderControlBase class contains support for working
with declarative animations in the form of the Animations property and the
GetAnimation and SetAnimation properties. The Animations property is
tied to the Animations tag in the declarative animation that is created
and handles converting the XML representation of the animation to an
Animation class representation. The GetAnimation and SetAnimation meth-
ods are used in the properties that represent each event being handled and
provide functionality to convert animations to and from JSON. The OnClick
event handler property in Listing 10.9 comes from the AnimationExtender
and shows how the methods are called inside the property.

The Animation class provides the functionality to convert the XML rep-
resentation of animations into an object format. The class provides a Parse

Animations 511

http://lib.ommolketab.ir
http//lib.ommolketab.ir

method that is called from the Animations property to parse the XML string
into an Animation class and then assigns the individual event handler ani-
mations to the event handler properties on the extender. The class is also
designed to convert its representation to and from JSON, which, by the
way, happens when the GetAnimation and SetAnimation methods on the
AnimationExtenderControlBase class are called by the inherited extender.
This last step is important because a .NET developer can code against your
extender, in which case they would be working with Animation classes
rather than XML.

Listing 10.9 OnClick Event Handler Property

[DefaultValue(null)]
[Browsable(false)]
[ExtenderControlProperty]
[DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)]
public Animation OnClick
{

get { return GetAnimation(ref _onClick, "OnClick"); }
set { SetAnimation(ref _onClick, "OnClick", value); }

}

SUMMARY

The Ajax Control Toolkit comes with a tremendous amount of functionality
that not only assists in the development of controls but also adds additional
features that are needed in most of your development scenarios. The
reliance on attributes to decorate your classes and properties greatly sim-
plifies the task of interacting with the ScriptComponentDescriptor and
ScriptReference classes, by providing a no-code solution for creating
entries of those types. The designer support also stands out as one of the
features that give your controls the professional feel, and the new wizards
in Visual Studio add to that experience. Finally, the animation support pro-
vides a fantastic foundation for building complex visual effects for your
pages. In the next chapter, we cover how to build extender controls using
the ASP.NET AJAX Control Toolkit that utilizes many of the features
described in this chapter.

Chapter 10: ASP.NET AJA X Control Toolkit Architecture512

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11
Adding Client Capabilities to
Server Controls Using the
ASP.NET AJAX Control Toolkit

I N T H E P R E C E D I N G C H A P T E R , we covered the architecture of the AJAX
Control Toolkit, describing at a high level what it has to offer and the

attributes, classes, and interfaces that make it all happen. The enhanced
functionality you get in the toolkit, from attribute-based programming to
rich animations, provides a compelling alternative to coding against the
ASP.NET 2.0 AJAX Extensions and the Microsoft AJAX Library directly. In
this chapter, we delve into the details of the toolkit a little further as we
develop as series of extender controls that demonstrate the rich features the
toolkit provides.

Adding Client-Side Behavior Using the
ExtenderControlBase

The ASP.NET AJAX Control Toolkit provides many features to assist in the
development of extender controls, such as the automatic creation of
$create statements, the use of attributes to decorate extender control prop-
erties that should be included in the $create statement creation, built-in

513

http://lib.ommolketab.ir
http//lib.ommolketab.ir

designer support, and many more. In this section, we revisit the Image
Rotator extender we created in Chapter 5, “Adding Client Capabilities to
Server Controls,” and re-create it using the ASP.NET AJAX Control Toolkit.
This approach enables us to compare the alternatives as we build the new
extender.

The process of building an extender control using the ASP.NET AJAX
Control Toolkit consists of four main steps.

1. Create the template classes.

2. Provide implementation for the inherited extender control class.

3. Provide implementation for the Sys.UI.BehaviorBase-based
JavaScript class.

4. Attach the extender control to an existing server control.

Visual Studio 2008 Extender Control Library Template
The ASP.NET AJAX Control Toolkit comes with full support for Visual
Studio 2008 in the form of a project template that is geared toward creating
an extender control library project. The template, shown in Figure 11.1, cre-
ates a library project structure (see Figure 11.2) that contains an extender
control class, a designer class, and a JavaScript behavior class. In this sec-
tion, we look at the ImageRotatorExtender.cs, ImageRotatorDesigner.cs,
and ImageRotatorBehavior.js files that the template generated for us as we
begin to discuss creating a new and improved ImageRotator extender.

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

514

NOTE Additional Template

The toolkit also comes with a template that generates the same files
that can be used when you need to add additional extenders to an
existing project, which can be found when you select Add New Item
from a project.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 11.1 Extender control project template

Adding Client-Side Behavior Using the ExtenderControlBase 515

Figure 11.2 Extender control project template structure

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The ImageRotatorExtender class shown in Listing 11.1 serves as the basis
for our ImageRotator extender control. The class inherits from Extender
ControlBase and provides a template that contains most of the required
entries for us, such as the web resource registration of our associated behav-
ior class, class attributes that associate the designer for the extender,
the client script to be downloaded, and the target type for the extender. The
template also creates a default property, demonstrating the use of the
ExtenderControlProperty and DefaultValue attributes and the use of
the GetPropertyValue method inside the property setter and getter.

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

516

NOTE GetPropertyValue Method Version

The version of the GetPropertyValue method used by the template is
an outdated one. When building out the class, we will change the
implementation to use the GetPropertyValue<T> version instead.

Listing 11.1 ImageRotatorExtender Class

[assembly: System.Web.UI.WebResource(
"ImageRotator.ImageRotatorBehavior.js","text/javascript")]
namespace ImageRotator
{

[Designer(typeof(ImageRotatorDesigner))]
[ClientScriptResource("ImageRotator.ImageRotatorBehavior",

"ImageRotator.ImageRotatorBehavior.js")]
[TargetControlType(typeof(Control))]
public class ImageRotatorExtender : ExtenderControlBase
{

[ExtenderControlProperty]
[DefaultValue("")]
public string MyProperty
{
get
{

return GetPropertyValue("MyProperty", "");
}
set
{

SetPropertyValue("MyProperty", value);
}

}
}

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The ImageRotatorDesigner class shown in Listing 11.2 will be the
designer class for our ImageRotator extender control. The designer class
provides default designer functionality for our extender control during
design time. We associate the designer with our ImageRotatorExtender
class by using the Designer attribute, which is automatically added when
we use the template. The ExtenderControlBaseDesigner<T> class that the
ImageRotatorDesigner class inherits from makes it possible for the prop-
erties of our extender control to show up in the Properties window while
the design-time focus is on the image control we are extending. This default
behavior provides a more efficient way of working with extenders and the
controls they are extending.

Listing 11.2 ImageRotatorDesigner Class

namespace ImageRotator
{

class ImageRotatorDesigner : AjaxControlToolkit.Design.
ExtenderControlBaseDesigner<ImageRotatorExtender>

{
}

}

The ImageRotatorBehavior class shown in Listing 11.3 will be the client-
side behavior class for our ImageRotator extender control. The class con-
sists of the same structure we used in Chapter 5, but now inherits from the
AjaxControlToolkit.BehaviorBase class, which provides added function-
ality for working with client state and interacting with the asynchronous
request events of the Sys.WebForms.PageRequestManager.

Listing 11.3 ImageRotatorBehavior Class

/// <reference name="MicrosoftAjaxTimer.debug.js" />
/// <reference name="MicrosoftAjaxWebForms.debug.js" />
/// <reference name="AjaxControlToolkit.ExtenderBase.BaseScripts.js"

assembly="AjaxControlToolkit" />

Type.registerNamespace('ImageRotator');

ImageRotator.ImageRotatorBehavior = function(element) {
ImageRotator.ImageRotatorBehavior.initializeBase(this, [element]);

Adding Client-Side Behavior Using the ExtenderControlBase 517

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 11.3 continued

// TODO : (Step 1) Add your property variables here
this._myPropertyValue = null;

}

ImageRotator.ImageRotatorBehavior.prototype = {
initialize : function() {

ImageRotator.ImageRotatorBehavior.callBaseMethod(this,'initialize');
// TODO: Add your initialization code here

},

dispose : function() {
// TODO: Add your cleanup code here
ImageRotator.ImageRotatorBehavior.callBaseMethod(this, 'dispose');

},

// TODO: (Step 2) Add your property accessors here
get_MyProperty : function() {

return this._myPropertyValue;
},
set_MyProperty : function(value) {

this._myPropertyValue = value;
}

}

ImageRotator.ImageRotatorBehavior.registerClass(
'ImageRotator.ImageRotatorBehavior', AjaxControlToolkit.BehaviorBase);

Inheriting from the ExtenderControlBase Class
The ASP.NET AJAX Control Toolkit comes with its own version of the
System.Web.UI.ExtenderControl class, which provides additional func-
tionality that supports the development pattern the toolkit is designed to
work with. The AjaxControlToolkit.ExtenderControlBase class provides
the inheritor support for serialization of property values, support for work-
ing with the toolkit-based attributes, seamless integration with control-
based view state, support for working with client state, and the ability to
specify an alternate script path for debugging and working with themes.
The ImageRotatorExtender class in Listing 11.4 shows a much different-
looking class than we saw in Chapter 5. The class no longer requires over-
rides for the GetScriptDescriptors and GetScriptReferences methods,
it has class-level attributes, it has property-level attributes, and the property
setters and getters are referencing their values through a method. So, let’s

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

518

http://lib.ommolketab.ir
http//lib.ommolketab.ir

go over these changes and see how we develop an extender control build-
ing on the structure the template provided for us.

The setting of the assembly-based WebResource attribute in our extender
class is a pattern that all the extenders and script controls in the toolkit fol-
low. This pattern helps centralize all the pieces for the component in one
location instead of having to add an entry to the assembly when a new con-
trol is added to the toolkit. The attributes applied to the class that we cover
in this section are the Designer, ClientScriptResource, RequiredScript,
and TargetControlType attributes. The Designer attribute is used to spec-
ify the class that will provide design-time services to our extender. The
ClientScriptResource attribute is used to include the client-side scripts for
our extender and consists of the resource type and the full resource name
and should refer to an embedded resource. The RequiredScriptResource
attribute brings in the timer script file that is associated with the Timer
Script class that we will use in our behavior class. Finally, the Target
ControlType attribute is used to limit the types of controls our extender can
be associated with.

The RotationInterval and ImageList properties of our class have also
changed with the use of attributes and the reliance on the GetProperty
Value<T> and SetPropertyValue<T> methods to access our property data.
The ExtenderControlProperty attribute is used to indicate that the prop-
erty should be added to the ScriptComponentDescriptor as a property and
later included in the $create statement that creates the behavior class on
the client. The ClientPropertyName attribute is used to change the name
of the property that is used when the property is added to the Script
ComponentDescriptor from the default value of the property name to the
name provided to the attribute. The DefaultValue attribute, which comes
from the System.CompnentModel namespace, is used to indicate to design-
ers and code generators the default value of the property. The Extender
ControlBase class provides the GetPropertyValue<T> and GetProperty

Value<T> generic methods that get and set the property value directly from
the control view state. By using these methods in our property setters and
getters, a consumer of our extender can work with it in the designer, declar-
atively in the HTML editor, or in code and be assured that during a post-
back the values will be available.

Adding Client-Side Behavior Using the ExtenderControlBase 519

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 11.4 ImageRotatorExtender Class

[assembly:System.Web.UI.WebResource("ImageRotator.ImageRotatorBehavior.js",
"text/javascript")]
namespace ImageRotator
{

[ParseChildren(true, "ImageList")]
[Designer(typeof(ImageRotatorDesigner))]
[ClientScriptResource("ImageRotator.ImageRotatorBehavior",

"ImageRotator.ImageRotatorBehavior.js")]
[RequiredScript(typeof(TimerScript))]
[TargetControlType(typeof(Image))]
public class ImageRotatorExtender : ExtenderControlBase
{

[ExtenderControlProperty]
[ClientPropertyName("rotationInterval")]
[DefaultValue(3), DisplayName("RotationInterval(seconds))")]
[DesignerSerializationVisibility(
DesignerSerializationVisibility.Visible)]

public int RotationInterval
{
get { return GetPropertyValue<int>("RotationInterval", 3); }
set { SetPropertyValue<int>("RotationInterval", value); }

}

private ImageUrlList _imageList;
[ExtenderControlProperty]
[ClientPropertyName("imageList")]
[DesignerSerializationVisibility(
DesignerSerializationVisibility.Content)]

[PersistenceMode(PersistenceMode.InnerDefaultProperty)]
public ImageUrlList ImageList
{
get
{

if (_imageList == null)
{

_imageList = GetPropertyValue<ImageUrlList>(
"ImageList", null);
if (_imageList == null)
{

_imageList = new ImageUrlList();
SetPropertyValue<ImageUrlList>(
"ImageList", _imageList);

}
}
return _imageList;

}
}

}
}

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

520

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating the AjaxControlToolkit.BehaviorBase Class
The ASP.NET AJAX Control Toolkit comes with its own version of the
Sys.UI.Behavior class, which provides additional functionality and sup-
ports the development pattern the toolkit is designed to work with. The
AjaxControlToolkit.BehaviorBase class provides inheritor support for
working with client state and interacting with the asynchronous request
events of the Sys.WebForms.PageRequestManager. The support for working
with client state is provided by the get_ClientState and set_ClientState

methods that can be used to work with the string-based hidden field asso-
ciated with your extender. The class also provides two methods tied to the
beginRequest and endRequest events of the PageRequestManager, which
can be overridden to provide specific functionality in your behavior in sit-
uations where an UpdatePanel is being used.

The ImageRotatorBehavior class shown in Listing 11.5 inherits from the
BehaviorBase class and provides the client-side behavior for our extender
control. The structure of this class is exactly the same as in Chapter 5, with
the rotationInterval property used to set the interval at which the images
will be swapped out and the imageList property containing an array of the
images. The one change to the class is in the use of the Sys.Timer class,
which is part of the ASP.NET AJAX Control Toolkit. This class, which is
contained in the Compat/Timer folder, wraps the window.setInterval call,
providing a cleaner interface for this timer-specific functionality. The
Sys.Timer class is just one of many that come with the toolkit that provide
added functionality to the existing Microsoft AJAX Library. If you look in
the Compat and Common folders in the toolkit library project, you will find
classes for working with dates, drag and drop, and threading, just to name
a few.

Listing 11.5 ImageRotator Behavior Class

Type.registerNamespace('ImageRotator');

ImageRotator.ImageRotatorBehavior = function(element) {
ImageRotator.ImageRotatorBehavior.initializeBase(this, [element]);

this._imageIndex = 0;
this._imageList = new Array();
this._rotationInterval = null;
this._timer = null;

Adding Client-Side Behavior Using the ExtenderControlBase 521

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 11.5 continued

}
ImageRotator.ImageRotatorBehavior.prototype = {

initialize : function() {
ImageRotator.ImageRotatorBehavior.callBaseMethod(this,
'initialize');

var element = this.get_element();

if(this._imageList)
{
this._imageList =

Sys.Serialization.JavaScriptSerializer.deserialize(
this._imageList);

this._imageList[this._imageList.length] = element.src;
}

if(this._rotationInterval == null)
this._rotationInterval = 3;

if(this._timer == null)
this._timer = new Sys.Timer();

this._timer.set_interval(this._rotationInterval * 1000);
this._timer.add_tick(Function.createDelegate(this,

this._rotateImage));
this._timer.set_enabled(true);

},

dispose : function() {
ImageRotator.ImageRotatorBehavior.callBaseMethod(this, 'dispose');
if (this._timer)
{
this._timer.dispose();
this._timer = null;

}

this._imageList = null;

},
get_rotationInterval: function(){

return this._rotationInterval;
},
set_rotationInterval: function(value){

this._rotationInterval = value;
},
get_imageList: function(){

return this._imageList;
},

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

522

http://lib.ommolketab.ir
http//lib.ommolketab.ir

set_imageList: function(value){
this._imageList = value;

},
_rotateImage: function(){

var element = this.get_element();
if(element)
{

element.src = this._imageList[this._imageIndex++];
if(this._imageIndex > this._imageList.length - 1)
this._imageIndex = 0;

}
}

}
ImageRotator.ImageRotatorBehavior.registerClass(
'ImageRotator.ImageRotatorBehavior', AjaxControlToolkit.BehaviorBase);

Attaching the Extender to a Control
You can attach the ImageRotator extender to an image control by using the
new Extender Control Wizard (see Figure 11.3) that comes with Visual
Studio 2008 and thus provide the same design-time experience we saw in
Chapter 5. The wizard is available from the smart tag of the image control
by selecting the Add Extender option, which opens the wizard. The wiz-
ard enables the user to select an extender control from a list and associate
it with a control. In our case, we would select the ImageRotator extender
to associate it with the image control. After we do that, we add values to the
RotationInterval property and ImageList property using the Properties
window of the image control.

Final Thoughts
If we compare our experience of creating extender controls using the
ASP.NET AJAX Control Toolkit to using the classes provided by the
ASP.NET 2.0 AJAX Extensions, we can see that our development experi-
ence is much simpler. The use of attributes to register our properties to be
included in the $create statements and to register our associated script files
dramatically reduces the complexity of our code compared to implement-
ing logic in the GetScriptDescriptors and GetScriptReferencesmethods.
This convenience alone makes it worth using the toolkit, but if we tack on
the added design-time features, support for working with client state, and
the numerous added JavaScript files such as the Sys.Timer class, the

Adding Client-Side Behavior Using the ExtenderControlBase 523

http://lib.ommolketab.ir
http//lib.ommolketab.ir

reasons to switch get greater. The use of the toolkit can be compared to the
use of the ActiveX Template Library (ATL) that was used to create ActiveX
controls in C++. The template provided a ton of base classes and Visual
Studio templates that made creating them a lot easier.

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

524

Figure 11.3 Extender Control Wizard

Adding Design-Time Support to Your Extender Control

The introduction of the Extender Wizard in Visual Studio 2008 has
enhanced the design-time experience with regard to working with extender
controls, and this section explains how to add design-time features of your
own to give your controls that professional feel that users have become
accustomed to.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Default Design-Time Experience
The ImageRotatorDesigner class shown in Listing 11.2 provides everything
we need to get a basic design-time experience for our extender control. The
ExenderControlBaseDesigner<T> that it inherits from makes it possible for
the properties of our extender control to show up in the Properties window
while the design-time focus is on the image control we are extending. Fig-
ure 11.4 shows the RotationInterval and ImageList properties that appear
in the Properties window while the image control has focus in the designer.
This default feature addresses one issue, which is being able to work with
the ImageRotator properties in an integrated way, but still does not address
the issue of data entry for the properties themselves and how that experi-
ence can be enhanced.

Adding Design-Time Support to Your Extender Control 525

Figure 11.4 Extender properties on the image control

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adding Designers and Editors to Properties
In this section, we look at how to extend the design-time behavior of our
ImageRotator ImageList property. The ImageList property that we
worked with in Chapter 5 was rudimentary and prone to errors as a user
entered in the values. In this version of the extender, we want to extend the
functionality to support design-time editing and HTML source editing.

The road to these modifications requires a few steps as we add the
functionality:

1. Add attributes to the class.

2. Add attributes to the property.

3. Add editors to assist in assigning values.

4. Create a type converter to support serialization.

Add Attributes to the Class

Most users expect when adding multiple entries to a control to be able to
add them in the body of the HTML element. This is the experience we
have when adding web service references or script references to the Script
Manager and one we want to have in our control.

The ParseChildren attribute enables us to add multiple entries inside
our ImageRotator HTML tag and treat those entries as a single property
assignment. By setting the ChildrenAsProperties property to true and the
DefaultProperty to ImageList, as in Listing 11.6, we are effectively telling
the designer that we want to have all the items contained in the body of our
ImageRotator tag parsed and assigned to the ImageList property. The
HTML fragment in Listing 11.7 shows what this looks like when the HTML
editor is opened and the ImageRotator tag has entries.

Listing 11.6 ParseChildren Attribute Assignment

[ParseChildren(true, "ImageList")]
...
public class ImageRotatorExtender : ExtenderControlBase
{

...
}

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

526

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 11.7 ImageList Assignment in HTML

...
<asp:Image ID="BannerImage" runat="server" ImageUrl="~/images/1.jpg" />
<cc2:ImageRotatorExtender ID="BannerImage_ImageRotatorExtender"

runat="server" Enabled="True" TargetControlID="BannerImage">
<cc2:ImageUrl Url="~/images/2.jpg" />
<cc2:ImageUrl Url="~/images/3.jpg" />
<cc2:ImageUrl Url="~/images/4.jpg" />

</cc2:ImageRotatorExtender>
...

Adding Design-Time Support to Your Extender Control 527

NOTE ASP.NET Server Control Designer References

The addition of designer features to your extenders requires
some knowledge of how designers work. MSDN has some great
information about this at http://msdn2.microsoft.com/en-us/
library/aa719973%28VS.71%29.aspx that covers adding design-time
support to ASP.NET server controls.

Add Attributes to the Property

To fully implement the ability to add nested image entries to our Image
Rotator extender, we need to add a couple of attributes, as shown in List-
ing 11.8, to our ImageList property, which provides hooks for the designer
to integrate with our property and properly assign the image values.

The DesignerSerializationVisibility attribute is added to the prop-
erty to ensure that the designer will serialize the contents of the property
during design time. The setting of DesignerSerializationVisibility.
Content instructs the designer to generate code for the contents of the tag
and not the tag itself.

The PersistenceMode attribute is the other piece to this puzzle and is
responsible for adding the <ImageUrl .. /> entries inside our ImageRotator
tag as we add values to the property in the Properties window. The setting of
PersistenceMode.InnerProperty specifies that the property is persisted as
a nested tag inside the ImageRotator, as shown in Listing 11.7.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

528

Listing 11.8 Designer-Specific Attributes for the ImageRotatorExtender Class

[ParseChildren(true, "ImageList")]
...
public class ImageRotatorExtender : ExtenderControlBase
{

...

[DesignerSerializationVisibility(
DesignerSerializationVisibility.Content)]

[PersistenceMode(PersistenceMode.InnerDefaultProperty)]
public ImageUrlList ImageList
{

...
}

}

Add Editors to Assist in Assigning Values

The use of editors in your extenders can greatly enhance the user experi-
ence during design time and in some cases can lead to more accurate entry
of data. Recall from Chapter 5 that we entered images to the ImageList
property by adding URL entries and separating them using commas. This
rudimentary approach would not be expected by a consumer of a profes-
sional control. In this version of the ImageRotator, we want to enhance the
data entry of the images by providing an editor that can be used to add
image URL entries and have those entries placed into the body of our
ImageRotator HTML tag. If we go back to the ScriptManager control, this
is the experience it provides when adding web service or script references
while in the Properties window.

The ImageList property in this version of the ImageRotator uses two
editors to provide a rich design-time experience when adding ImageUrl
entries. The first editor is a Collection editor, shown in Figure 11.5, and is
designed to assist in adding, editing, and removing values that are based on
a Collection. The editor is automatically associated with our ImageList
property because the type of the property is a Collection. The second edi-
tor we will use is the ImageUrlEditor, shown in Figure 11.6, which the
ImageUrl entry uses to assist the user in entering a URL. This editor is asso-
ciated with the Url property of the ImageUrl class, as shown in Listing 11.9,
by adding the Editor attribute to the property. We use the Editor attribute

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to configure which editor to use when adding values to the property in the
designer. In our case, we are using the ImageUrlEditor to provide the user
with a clean way to find an image located in a web application and assign
the value to the ImageUrl property. The use of the associated UrlProperty
attribute provides a filter that identifies specific file types that can be used
to filter against the ImageUrl property.

Adding Design-Time Support to Your Extender Control 529

Figure 11.5 Image URL Collection Editor

Listing 11.9 ImageUrl Class

[Serializable]
public class ImageUrl
{

[DefaultValue(""),Bindable(true),
Editor("System.Web.UI.Design.ImageUrlEditor,

System.Design, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a", typeof(UITypeEditor)),
UrlProperty]

public string Url { get; set; }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 11.6 Image URL Editor

Create a Type Converter to Support Serialization

The use of complex types presents a few challenges in the ASP.NET AJAX
Control Toolkit during the script generation process. The problem arises in
how the ASP.NET AJAX Control Toolkit serializes your extender control
properties as it creates the $create statement. By default, the toolkit tries
to get the default string representation of the value your property repre-
sents. In most cases, this is an easy task because most simple types convert
to a string relatively easily. If you are using complex types, however, this
can present a problem because the default ConvertToString() representa-
tion of a complex object is its type name. To resolve this issue, you must cre-
ate a type converter and associate it with the complex type. When the
ASP.NET AJAX Control Toolkit encounters a type during script generation,
it looks to see whether the type has a converter. If it does, it uses the con-
verter to convert the data instead of using the default ConvertToString()
method. In this section, we walk through creating a System.Component
Model.TypeConverter that will be used to convert our ImageUrlList type

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

530

http://lib.ommolketab.ir
http//lib.ommolketab.ir

into a JavaScript Object Notation (JSON) string that can be consumed on
the client.

The ImageListConverter, shown in Listing 11.10, is designed to convert
the ImageList to a JSON array of image URLs that are then passed back to
the client. The creation of this type converter now enables us to return a
data format that the client can use instead of a string that contains the type
name of the ImageList. For the type converter to be used, we need to asso-
ciate it with the ImageList type. We do this by adding the TypeConverter
attribute to the ImageList class, as shown in Listing 11.11, and assigning the
type of the ImageList to it. Now when the toolkit performs a Convert
ToString on the ImageList, the JSON string representation of the Image
List will be returned.

Adding Design-Time Support to Your Extender Control 531

NOTE Use of the DataContractJsonSerializer

In more complex situations, you might use the DataContract
JsonSerializer that we discussed in Chapter 8, “ASP.NET AJAX
Communication Architecture,” which replaces theSystem.Web.UI.
JavaScriptSerializer class as the new JSON serializer to convert your
data to JSON format.

Listing 11.10 ImageListConverter Type Converter Class

public class ImageListConverter : TypeConverter
{

public override object ConvertTo(ITypeDescriptorContext context,
System.Globalization.CultureInfo culture, object value,
Type destinationType)

{
Collection<ImageUrl> imageList = value as Collection<ImageUrl>;
if (imageList != null && destinationType == typeof(string))
{
StringBuilder builder = new StringBuilder();
builder.Append("[");
bool first = true;
foreach (ImageUrl imageUrl in imageList)
{

if(first)
{

first = false;
}
else

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 11.10 continued

{
builder.Append(",");

}

builder.Append("\"");
builder.Append(imageUrl.Url.Replace("~/", ""));
builder.Append("\"");

}
builder.Append("]");
return builder.ToString();

}
return base.ConvertTo(context, culture, value, destinationType);

}
}

Listing 11.11 ImageUrlList Collection Class

[Serializable]
[TypeConverter(typeof(ImageListConverter))]
public class ImageUrlList : Collection<ImageUrl>
{

}

Adding Animations to Your Extender Control

The ASP.NET AJAX Control Toolkit comes with a rich animation frame-
work that provides support for creating cool visual effects on your pages.
The animation framework consists of a set of JavaScript and .NET classes
that enable you to build up animations of all types, including animations
that run sequentially or in parallel, animations that fade the opacity of a
control in and out, and animations that transition from one color to the
next. The framework provides support for building these animations using
the JavaScript API directly or using a declarative approach that consists of
adding markup in the HTML editor. The following sections examine how
to add animation functionality to extender controls.

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

532

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Animations Using the JavaScript API
The ImageRotator extender we created earlier provided little in the area of
effects as the images switched and resulted in very fast transition from one
image to the next, which wouldn’t catch a viewer’s attention. In this sec-
tion, we create a new version of the ImageRotator, called the Animated
ImageRotator, that fades in the image as it switches from one image to the
next and provides this feature in addition to the existing functionality of the
ImageRotator. As we cover how to add this new animation functionality,
we gloss over the topics we have already covered, focusing only on imple-
menting the animation pieces.

To add this functionality to the AnimatedImageRotator, we need to reg-
ister the animation scripts with the AnimatedImageRotatorExtender class
and add logic to the behavior class to call the animation when the image
changes.

Registering the Animation Scripts

To register the script files so that they are downloaded to the browser, we
need to add the RequiredScript attribute to the AnimatedImageRotator
Extender class, as shown in Listing 11.12. We use the RequiredScript
attribute in this case to ensure that the animation.js, timer.js, and common.js
script files associated with the AnimationScripts type are included with
the scripts brought down to the browser for our control. This style of
adding scripts associated with a type is a common practice in the toolkit
and is clean way to include dependent scripts associated with a type.

Listing 11.12 AnimatedImageRotator Extender Class

...
[RequiredScript(typeof(AnimationScripts))]
...
public class AnimatedImageRotatorExtender : ExtenderControlBase
{

...
}

Adding Animations to Your Extender Control 533

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Calling Animation APIs

The ASP.NET AJAX Control Toolkit contains a JavaScript API that you can
use to provide animation support on the client. In the case of our Animated
ImageRotator extender, we will use the FadeAnimation, which is part of the
animation API, to provide a fade-in effect when the images on our image
control change. The JavaScript code to implement this functionality will be
contained in our behavior class and will integrate with the existing features
of the ImageRotator.

The AnimatedImageRotator behavior class, shown in Listing 11.13, takes
the ImageRotator behavior and adds a fade animation when the image
changes, to fade the image into view. The constructor of the FadeAnimation
takes the target of the animation, the duration of the animation, the number
of steps per second, the effect, the minimum opacity, the maximum opacity,
and whether to adjust for layout in Internet Explorer. In our case, the
BannerImage image control will be the target of our animation, and the
duration of our animation will be hard coded to 20% of the time the image
is visible. To provide a clean animation, we will set the animation steps to
150, and combine that with a fade-in effect that will cause the image to tran-
sition in when the image changes. During this transition, we will start off
with an opacity of 0, which will give us a full view of the image back-
ground, and then through the 150 steps work our way to a full view of the
image with an opacity of 1. Table 11.1 lists some of the FadeAnimation prop-
erties and provides a little more information about what they do.

After we associate the animation to the element, starting, stopping, and
pausing the animation is just a method call away, making it simple to
manipulate the animation. In the AnimatedImageRotator, the load event of
the image is used to trigger the animation to play because it will be fired
each time our Sys.Timer calls the _rotateImage method. To do this, we
associated the _onLoadImage event handler with the onLoad event of the
image and called the play method on the animation inside the function.
Now each time the load event occurs, the animation plays, transitioning the
image into view. One of the side effects of working with an animation in a
situation like this is a potential race condition if the duration was set too
long. When working with transition-type animations like the FadAnimation,
pay close attention to how you are using it to ensure the animation will work
in all cases.

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

534

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 11.13 AnimatedImageRotator Behavior Class

...

AnimatedImageRotator.AnimatedImageRotatorBehavior = function(element) {
...
this._fadeAnimation = null;
this._timer = null;
this._onImageLoadHandler = null;

}
AnimatedImageRotator.AnimatedImageRotatorBehavior.prototype = {

initialize : function() {
...

if(this._fadeAnimation == null)
{
this._fadeAnimation =

new AjaxControlToolkit.Animation.FadeAnimation(
element, this._rotationInterval/20, 150,
AjaxControlToolkit.Animation.FadeEffect.FadeIn,
0, 1, true);

}
if (element)
{
this._onImageLoadHandler = Function.createDelegate(this,

this._onImageLoad);
$addHandler(element, 'load', this._onImageLoadHandler);

}
...

},

dispose : function() {
...
var element = this.get_element();
if (element) {
if (this._onImageLoadHandler) {

$removeHandler(element, 'load',
this._onImageLoadHandler);

this._onImageLoadHandler = null;
}

}

...

if (this._fadeAnimation)
{
this._fadeAnimation.dispose();
this._fadeAnimation = null;

}

...

Adding Animations to Your Extender Control 535

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 11.13 continued

},
_onImageLoad: function(){

if(this._fadeAnimation)
this._fadeAnimation.play();

},
...

}
...

Table 11.1 Partial List of Fade Animation Class Properties

Property Description

target Target of the animation.

duration Length of the animation in seconds. The default is 1.

fps Number of steps per second. The default is 25.

effect Determine whether to fade the element in or fade the ele-
ment out. The possible values are AjaxControlToolkit.
Animation.FadeEffect.FadeIn and AjaxControlToolkit.
Animation.FadeEffect.FadeOut. The default value is
FadeOut.

minimumOpacity Minimum opacity to use when fading in or out. Its value
can range from 0 to 1. The default value is 0.

maximumOpacity Maximum opacity to use when fading in or out. Its value
can range from 0 to 1. The default value is 1.

forceLayoutInIE Whether we should force a layout to be created for Internet
Explorer by giving it a width and setting its background
color (the latter is required in case the user has ClearType
enabled). The default value is true.

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

536

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Animations Using the Declarative Method
The declarative approach to animation in the toolkit provides a nice exten-
sibility path for consumers of your extender. In our previous example, we
hard coded all the animation functionality inside our extender, providing
little support for developer customization. In some cases, this might be all
that is needed. In other cases, however, you might need to provide a more
robust solution that provides a JavaScript-free way to customize anima-
tions. In this section, we replicate the same functionality we created in the
preceding section, but we provide a more extensible approach consumers
of our extender can use when they are configuring it in the designer. The
extender we create has just one feature: the capability to run a FadeIn ani-
mation when the onLoad event of an associated image control occurs. This
new extender will be used in addition to the ImageRotator extender we cre-
ated earlier, which had no animation functionality. This refined approach to
adding animation support builds on the principle that many extenders can
be placed on a single control to provide combined client-side capabilities.
To get started, let’s take a look at what the declarative syntax or our con-
trol will look like before we go into the implementation details. Just as in
the preceding section, as we cover how to add this new animation func-
tionality we gloss over the topics we have already covered, focusing only
on implementing the declarative animation pieces.

Overview of Declarative Syntax

To get started, let’s look at the HTML source we will be working toward
being able to work with in our ImageAnimation extender. The source in List-
ing 11.14 contains an ImageAnimationExtender tag that contains in its body
an Animations tag. As you might guess, the approach here is to add various
animations that are driven by events raised by the image control we are
extending. In our case, we are working with the OnLoad event and adding
a Sequence animation that will call a child Fade animation. A Sequence ani-
mation is designed to run all its child animations one at a time until all have
finished. So, what this source tells us is that our extender will have an ani-
mation that will be tied to the OnLoad event of the image control and will
run the child Fade animation whenever the OnLoad event occurs.

Adding Animations to Your Extender Control 537

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 11.14 AnimationImageExtender Declarative Syntax

<asp:Image ID="BannerImage" runat="server" ImageUrl="~/images/1.jpg" />
<cc3:ImageAnimationExtender ID="Banner_ImageAnimationExtender"

runat="server" Enabled="True" TargetControlID="BannerImage">
<Animations>

<OnLoad>
<Sequence>

<FadeIn AnimationTarget="BannerImage" Duration=".3"/>
</Sequence>

</OnLoad>
</Animations>

</cc3:ImageAnimationExtender>
<cc2:ImageRotatorExtender ID="Image1_ImageRotatorExtender"

runat="server" Enabled="True" TargetControlID="Banner">
<cc2:ImageUrl Url="~/images/2.jpg" />
<cc2:ImageUrl Url="~/images/3.jpg" />
<cc2:ImageUrl Url="~/images/4.jpg" />

</cc2:ImageRotatorExtender>

Providing Declarative Support in Your Extender Class

The AnimationExtenderControlBase class provides most of the function-
ality we need to parse the Animation tag and all its contents. This class pro-
vides internal methods that convert the XML representation of the
animation into JSON format, which our behavior will then use to run the
animation, and also provides the Animation property that we see in List-
ing 11.15. The following sections cover the steps needed to ensure the exten-
der will work correctly.

1. Add attributes to the class.

2. Create a property for the event.

3. Add attributes to the property.

Add Attributes to the Class

This type of extender has a couple of added class attribute entries of inter-
est to us. The first is the inclusion of the RequiredScript attribute for the
AnimationExtender type. The AnimationExtender class provides a lot of
the client-side functionality we will be using in our extender control, and by
using this type in our RequiredScripts attribute, we are guaranteed that

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

538

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the scripts will be present on the client for us to use. The second attribute
is the System.Web.UI.Design.ToolboxItem attribute, which enables our
control to show up in the toolbox of Visual Studio. It might seem strange
that we have to add this because all our other extenders didn’t. If we look
at the attributes on the AnimationExtenderControlBase class, however, the
support for viewing in the toolbox has been turned off. Therefore, we must
reset this value on our control so that it will show up in the toolbox.

Create a Property for the Event

The pattern when creating extenders of this type is to add a property for
each event you want to interact with. In our case, we are working with the
OnLoad event, so we create a property named OnLoad (to make it easy to
understand what the event is). If we were to choose other events, we would
name them based on the DOM event they represent. The property accessor
for these events must use the GetAnimation and SetAnimation methods to
ensure proper data conversion into JSON as the data is stored and retrieved
out of the extender’s view state.

Add Attributes to the Event Property

The event property must have the Browsable, DefaultValue, Extender

ControlProperty, and DesignerSerializationVisibility attributes
applied to it. The Browsable attribute stops the property from showing up in
the Properties window and therefore excludes the property from being
assigned in the Properties window. This is needed because no editor is asso-
ciated with this property, and we don’t want users to try to add anything into
the Properties window that would corrupt the values. The Designer
SerializationVisibility attribute with a value of DesignerSerialization
Visibility.Hidden is used to indicate that the property value should not be
persisted by the designer because the Animation property will take care of
that for us. The DefaultValue attribute indicates to the designer that the
default value will be null, and the ExtenderControlProperty attribute is
used to register the property with the ScriptComponentDescriptor.

Adding Animations to Your Extender Control 539

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 11.15 ImageAnimationExtender Class

[Designer(typeof(ImageAnimationDesigner))]
[ClientScriptResource("ImageAnimation.ImageAnimationBehavior",

"ImageAnimation.ImageAnimationBehavior.js")]
[RequiredScript(typeof(AnimationExtender))]
[ToolboxItem("System.Web.UI.Design.WebControlToolboxItem, System.Design,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a")]
[TargetControlType(typeof(Image))]
public class ImageAnimationExtender : AnimationExtenderControlBase
{

private Animation _onLoad;

[DefaultValue(null)]
[Browsable(false)]
[ExtenderControlProperty]
[DesignerSerializationVisibility(

DesignerSerializationVisibility.Hidden)]
public new Animation OnLoad
{

get { return GetAnimation(ref _onLoad, "OnLoad"); }
set { SetAnimation(ref _onLoad, "OnLoad", value); }

}
}

Adding Declarative Support to Your Behavior Class

The ImageAnimationBehavior class, shown Listing 11.16, provides all the
client-side functionality for our extender with support from the animation
script files associated with the AutomationExtender class. These associated
scripts provide support for converting the JSON representation of the
FadeIn animation that was captured on the server to an actual animation,
support for associating the animation with the high-level OnLoad event, and
support for playing the animation when the OnLoad event occurs.

You need to complete a few steps for each event you plan to work with:

1. Add variables to the class.

2. Create functions.

3. Add handlers.

Add Variables to the Class

Each event that your behavior will work with needs a variable that refer-
ences the GenericAnimationBehavior for the event and a delegate that will

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

540

http://lib.ommolketab.ir
http//lib.ommolketab.ir

be called for the event that will be processed. In the ImageAnimation
Behavior class, we use the _onLoad variable to store a reference to the
GenericAnimationBehavior class and the _onLoadHandler variable to store
a reference to the delegate that will handle the onLoad event. The guidelines
established so far in the toolkit use a naming convention that includes the
event name in all the variable names.

Create Functions

The behavior needs a series of functions for each event you will work with.
The get_OnLoad and set_OnLoad functions in our case take care of working
with the JSON-based data for the FadeIn animation and utilize the func-
tionality provided by the GenericAnimationBehavior class to store and
retrieve that data. The get_OnLoadBehavior function returns a reference to
the GenericAnimationBehavior instance that was created for our FadeIn
animation, providing the ability to work with the behavior that directly
exposes the play, stop, and quit methods common to all animations.

Add Handlers

Handlers must be added for each event the behavior will process and
should correspond to the events exposed on the extender control. In our
case, we are working with the onLoad event, so we need to create the
_onLoadHandler delegate and associate it with the onLoad event of the
image using the $addHandler shortcut. The opposite of this must happen in
the dispose of our behavior, when we use the $removeHandler shortcut to
ensure proper memory cleanup.

Listing 11.16 ImageAnimationBehavior Class

Type.registerNamespace('ImageAnimation');

ImageAnimation.ImageAnimationBehavior = function(element) {
ImageAnimation.ImageAnimationBehavior.initializeBase(this, [element]);
this._onLoad = null;
this._onLoadHandler = null;

}
ImageAnimation.ImageAnimationBehavior.prototype = {

initialize : function() {
ImageAnimation.ImageAnimationBehavior.callBaseMethod(this,
initialize');

var element = this.get_element();

Adding Animations to Your Extender Control 541

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 11.16 continued

if (element)
{

this._onLoadHandler = Function.createDelegate(this,
this.OnLoad);

$addHandler(element, 'load', this._onLoadHandler);
}

},

dispose : function() {
ImageAnimation.ImageAnimationBehavior.callBaseMethod(this,

'dispose');

var element = this.get_element();
if (element) {

if (this._onLoadHandler) {
$removeHandler(element, 'load', this._onLoadHandler);
this._onLoadHandler = null;

}
}

this._onLoad = null;

},
get_OnLoad : function() {

return this._onLoad ? this._onLoad.get_json() : null;
},
set_OnLoad : function(value) {

if (!this._onLoad) {
this._onLoad = new
AjaxControlToolkit.Animation.GenericAnimationBehavior(

this.get_element());
this._onLoad.initialize();

}
this._onLoad.set_json(value);

this.raisePropertyChanged('OnLoad');
},
get_OnLoadBehavior : function() {

return this._onLoad;
},
OnLoad : function() {

if (this._onLoad) {
this._onLoad.play();

}
}

}
ImageAnimation.ImageAnimationBehavior.registerClass(

'ImageAnimation.ImageAnimationBehavior',
AjaxControlToolkit.BehaviorBase);

Chapter 11: Adding Client Capabilities to Ser ver Controls
Using the ASP.NET AJA X Control Toolkit

542

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Final Thoughts

The HTML source for our sample, shown Listing 11.14, contains a Fade ani-
mation that targets the BannerImage control and runs for a duration of
.3 seconds. We could have chosen almost any type of animation as long as
it occurred when the OnLoad event fired on the BannerImage image control.
This flexibility provides a JavaScript-free way to set up animations of any
type when a pattern such as this is used. In fact, this is exactly how the
Animation extender works; and if it weren’t for the way it handles the
OnLoad event, we would have used it in our example.

SUMMARY

The AJAX Control Toolkit comes with quite a bit of functionality that you
can use to create truly interactive extenders that require much less coding
than if you were to use the ASP.NET 2.0 AJAX Extensions directly. As you
learned in this chapter, the toolkit provides a much richer environment for
creating extender controls than using the ASP.NET 2.0 AJAX Extensions
alone. In addition, the toolkit includes myriad controls you can either use
or build on, making the toolkit a compelling alternative.

Summary 543

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PART V
Appendixes

545

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A
JavaScript in Visual Studio 2008

U P U N T I L VI S UA L ST U D I O 2008 , JavaScript support in the Visual
Studio IDE was at best bad, and at worst you switched to a different

development environment for JavaScript programming and debugging.
Microsoft has made great JavaScript support improvements in Visual
Studio 2008 and has fully integrated it with ASP.NET AJAX. Let’s go over
the main JavaScript upgrade in Visual Studio 2008: IntelliSense.

IntelliSense

We’ve had good IntelliSense in Visual Studio for the non-JavaScript lan-
guages for years. It’s gotten better with each subsequent release, but the
JavaScript IntelliSense didn’t improve equally compared to other
languages. With Visual Studio 2008, we finally get improved JavaScript
IntelliSense, and it’s a good thing, too, because we now have to deal with
a large file in the Microsoft AJAX Library, and we’ll be writing a lot more
JavaScript as our AJAX-enabled applications expand.

IntelliSense works much better, but there are some specific techniques
that are important to know to make it work to its fullest capabilities. Let’s
cover those.

547

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Referencing Libraries and Web Services
One of the great things about Visual Studio 2008 IntelliSense is its capabil-
ity to provide IntelliSense on objects that aren’t present in the current work-
ing file. Visual Studio does this through two different methods: an explicit
reference directive and inference.

References

References work on external JavaScript files. They link the working
JavaScript file to other JavaScript files or service definitions (web or
Windows Communication Foundation [WCF]) so that the objects and
methods contained within the linked files and definitions are available
through IntelliSense when developing in the working file.

To link to another file or a service definition, you place a reference direc-
tive for each link at the top of the working JavaScript file. Listing A.1
demonstrates the three different types of references supported.

Listing A.1 Referencing External Files from an External File

/// <reference path="Books.js" />
/// <reference path="~/DataService.asmx" />
/// <reference name="EmbeddedBooks.js" assembly="Books" />
/// <reference name="MicrosoftAjax.js" />

Appendix A: JavaScript in Visual Studio 2008548

NOTE Placement

You must place references at the top of your JavaScript files for them to
work. As soon as nonreference code is parsed by Visual Studio, it no
longer picks up any new references.

Reference Types

1. A free-standing JavaScript file: Books.js.

2. A reference to a web service: ~/DataService.asmx.

3. A reference to an embedded JavaScript file, EmbeddedBooks.js,
located in the Books assembly.

4. A reference to the embedded MicrosoftAjax.js assembly. When no
assembly is listed, the reference automatically uses the
System.Web.Extensions assembly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inferences

The inference method reads the files that have been registered on the page
and adds them to the IntelliSense list. Registering the files can occur in two
ways. One is to use the HTML script tag. The other is to use the Script
Manager server control to add ScriptReferences and ServiceReferences

to the page. Listing A.2 demonstrates the two ways of registering files.

Listing A.2 Referencing External Files from a Page

<html>
<head>

<script type="text/javascript" src="Books.js" />
</head>
<body>
<form id="form1" runat="server">

<asp:ScriptManager id="SM1" runat="server">
<Scripts>
<asp:ScriptReference Path="Books.js" />
<asp:ScriptReference Name="EmbeddedBooks.js" Assembly="Books" />

</Scripts>
<Services>
<asp:ServiceReference Path="~/WebService.asmx" />

</Services>
</asp:ScriptManager>

</form>
</body>
</html>

IntelliSense 549

NOTE ASP.NET AJAX Client Libraries

When a ScriptManager server control is added to the page, the
Microsoft AJAX Library files, MicrosoftAjax.js, MicrosoftAjaxWeb
Forms.js, and others, are automatically available through IntelliSense.

When we include references to external resources, our JavaScript pro-
gramming becomes easier. Figure A.1 and Figure A.2 show IntelliSense
examples after we’ve referenced a JavaScript file that contains the
Books.Publishers.Publisher type and a web service method that contains
the method ProcessData.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure A.1 ProcessData IntelliSense

Appendix A: JavaScript in Visual Studio 2008550

Figure A.2 Books.Publishers.Publisher IntelliSense

Problems with JavaScript IntelliSense
Although JavaScript IntelliSense in Visual Studio is much improved, there

are some issues with it:

1. When working with external files, IntelliSense isn’t fully available on

ASP.NET AJAX style types from within the file they are declared. For

instance, if we declare type A inside MyTypes.js, there will be almost

no IntelliSense available on type A and instances of type A inside the

MyTypes.js file. If Type A is attached to a namespace, then no

IntelliSense is available on the type at all. Normal functions and

variables declared in that file do have IntelliSense capabilities. This is

a huge issue, and we hope Microsoft will release a patch that

addresses it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. IntelliSense information is updated only when the file you’re working

in “reparses” the references. Reparsing doesn’t happen automatically

when a referenced file changes. From our experiments, it definitely

occurs when the working file is reopened, and it occurs at other times,

too, but inconsistently. The referenced file must be saved for the

changes to be seen by other files. You can also force JavaScript

IntelliSense to update by pressing Ctrl+Shift+J or selecting Update

JScript IntelliSense from the Edit > IntelliSense menu.

XML Comments

XML comments are now available to JavaScript methods. Just as with .NET
methods, we follow a specific schema to create the comments, and when
our JavaScript methods appear in IntelliSense, the comments appear in
both the completion list and underneath the function as we complete the
method call. The following statements hold true for XML comments too:

1. They start with a triple slash.

2. They go inside the method body, unlike for .NET comments, which
go outside.

3. They can be applied to all JavaScript methods, not just methods that
are declared using ASP.NET AJAX programming style.

4. They are localizable.

5. The listed parameters should be in the same order as the method’s
parameters.

The schema for XML comments is actually large, and we’re not going to
be able to cover all of it. Let’s walk through a few common situations that
will appear in your code.

In Listing A.3, we comment our class by adding a summary tag. When we
bring up our type’s constructor in IntelliSense we’re shown the summary
comment. Figure A.3 shows the IntelliSense we receive when we’re com-
pleting our constructor selection, and Figure A.4 shows the IntelliSense we
receive as we complete the constructor call.

XML Comments 551

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing A.3 Comments Applied to a Type Declaration

Books.Publishers.Publisher = function(name, city) {
/// <summary>
/// A business class that holds attributes related to a publisher.
/// </summary>
}

Appendix A: JavaScript in Visual Studio 2008552

Figure A.3 Constructor’s IntelliSense for completion list

Figure A.4 Constructor’s IntelliSense underneath during selection

In Listing A.4, we comment a method using three different tags:
summary, param, and returns.

Listing A.4 Comments Attached to a Method

changeInformation: function(newName, newCity) {
/// <summary>Updates the publisher's information</summary>
/// <param name="newName" type="String" optional="false" mayBeNull="false">
/// The publisher's new name
/// </param>
/// <param name="newCity" type="String" optional="false" mayBeNull="false">
/// The publisher's new city
/// </param>
/// <returns type="Boolean">A Boolean value indicating if the update was
successful </returns>
}

The summary element is the same as it was in the class constructor and
appears when we display the method in the completion list and under-
neath the function as we type.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XML Comments 553

The param elements match the method’s parameters. The element’s
inner text describes the parameter’s use, and the attributes we used in this
example, name, type, integer, mayBeNull, and optional, provide additional
parameter details. Table A.1 describes the attributes we used.

Table A.1 Param Element Attributes

Attribute Name Description Default Value

name Associates the parameter to the parameter in None
the arguments list.

type The type of the parameter. This can be a built-in None
type such as Number or String, but can also be a
user-defined type such as Books.Publishers.
Publisher.

integer Indicates whether the Number parameter is false
expected to be an integer or a double.

mayBeNull Indicates whether the method will accept a null false
value for the parameter.

optional Indicates whether the method will work false
appropriately if the parameter is not included
in the method call.

The returns element provides information on what the method returns.
If the method returns nothing, the returns element shouldn’t be used. The
inner text can provide some description of the return information, and the
two attributes we used, type and integer, serve the same purpose as they
did for the parameter element.

Figure A.5 shows the method completion IntelliSense, and Figure A.6
shows the parameter information for the method. Notice how the return
type, Boolean, is also available during this IntelliSense phase.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure A.5 IntelliSense completion list

Appendix A: JavaScript in Visual Studio 2008554

Figure A.6 Parameter IntelliSense

Listing A.5 shows how we should comment properties.

Listing A.5 Comments on an ASP.NET AJAX Property and Event

get_name: function() {
/// <value>The name of the publisher</value>
/// <returns type="String" />
…

},
set_name: function(value) {
// no commenting here
…

},
add_updated: function(handler) {
/// <summary>Adds handler for the Updated event, which fires
/// whenever the Update method is called.
/// </summary>
/// <param name="handler" type="Function" >
…

},
remove_updated: function(handler) {
// no commenting here
…

}

Because properties are split into separate get_ and set_ methods, only
the get_ method needs to be commented. Likewise, because events are split
into separate add_ and remove_ methods, only the add_ method needs to
be commented.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

B
Validating Method Parameters

W I T H XML C O M M E N T S , we can annotate our methods with infor-
mation on the parameters we expect and their valid range of values

using the param element and its attributes. However, the param element is
informational only and does not enforce the requirements it specifies in its
markup. If a parameter was expected to be a non-null integer, we could
pass a null or a string in on that parameter, and our method would happily
accept the parameter. To us .NET statically typed developers, this is unde-
sirable because the method might behave unexpectedly with unexpected
values for inputs. Microsoft must have felt the same way and built a mech-
anism to perform parameter checking at the beginning of the method that
we can use, too.

555

WARNING Private Function!

The method we’re about to discuss, Function._validateParams, is a
private method attached to the Function type (notice the underscore).
This means that Microsoft can change its functionality at any time or
even completely eliminate the method. Because using it is such a com-
mon practice among ASP.NET AJAX developers, we believe that the
risk is minimal that Microsoft will eliminate it or change it in a major
way as to compromise the code written against it. But be warned!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If we’ve been able to write XML comments that specify the variation of
parameters our method can accept, we can create a call to the Function.
_validateParams method fairly easily. We just need to translate the infor-
mation that is stated in our comments into a method call. Listing B.1, which
shows the fancyParameterChecker method, demonstrates how we convert
our IntelliSense parameter information into actionable code.

Listing B.1 Checking a Function’s Parameters

function fancyParameterChecker (val1, val2, val3, val4, val5) {
/// <summary>Adds two integers</summary>

/// <param name="val1" type="Books.BookType" />

/// <param name="val2" type="Books.Publishers.IPublisher" />

/// <param name="val3" type="Number" integer="true" mayBeNull="true" />

/// <param name="val4" optional="true" />
/// <param name="val5" type="Array" elementType="String" />

var e = Function._validateParams(arguments, [
{name: "val1", type: Books.BookType },
{name: "val2", type: Books.Publishers.IPublisher },
{name: "val3", type: Number, integer: true, mayBeNull: true},
{name: "val4", optional: true},
{name: "val5", type: Array, elementType: String}

]);
if (e) throw e;

}

The _validateParams method takes two parameters: params and
expectedParams. We pass the method’s special arguments parameter in as
the params parameter and an array of expectedParam objects in as the
expectedParams parameter. Each expectedParam object in the expected
Params array represents one of the param tags in the method’s comment.

Appendix B: Validating Method Parameters556

NOTE Using Function._validateParams

Microsoft only uses the Function._validateParams method in the
debug version of the library. They don’t validate parameters in the
release version. If you use both debug and release versions of a script
this is something you might consider doing to eke out the last bit of
performance.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When the _validateParams function executes, it performs a number of
steps ensuring that the parameter values passed in through the params
argument meet the criteria defined by the expectedParams values. If during
the execution of a step the code recognizes a parameter value that does not
meet the criteria set forth by the related expectedParam, an Error object is
created and returned. The type of error that is created depends on the type
of criteria that wasn’t met, but the errors are similar to the ones we might
throw during argument checking in a .NET method: ArgumentException,
ArgumentNullException, ArgumentTypeException, and others. When an
Error is created, it is returned as the method’s return value, and execution
control is returned to the calling method. From there, it is up to the method
to determine what to do with the Error object, but most of the time the
method throws the Error and lets the code’s error handling mechanism
handle the error.

But, if the method finds no errors in the parameters, it returns null.
The basic steps of the _validateParams method are as follows:

1. Determine whether the number of arguments included in the params
parameter is valid based on the definition of the expectedParams.
The number of parameters and expected parameters may not match
exactly because some parameters may be optional or may be a spe-
cial kind of parameter called a parameterArray.

2. Loop through the params and compare the current param against the
expectedParam at the same array position.1

a. Type and value comparison is performed on each param:

• Ensures that if the parameter isn’t allowed to be null, the
value isn’t

• If the expected type is an enumeration, that the value is a
valid value of the enumeration

• If the expected type is a DOM element, that the value is a
valid DOM element

• If the expected type is not an enumeration or DOM element,
that the value is an instance of the expected type (i.e., the
value is a valid Books.Publisher.IPublisher)

Validating Method Parameters 557

1 When the expected parameter is a parameterArray, the actual compared parameter is a
parameter in the correct position within that array.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix B: Validating Method Parameters558

NOTE What’s a parameterArray?

AparameterArray is a concept in the Microsoft AJAX Library that’s used
only for validation. If an expectedParam is marked as a parameter
Array, the validation routine knows to treat any parameter that isn’t
directly assigned to a named parameter as a member of an array of end-
ing arguments. For instance, in the registerClassmethod, we can pass
in 0 to n interface types that our class implements. We do this by pro-
viding the interface types in a comma-separated list at the end of the
method. Simply put, we just pass them in to the method as we would a
normal parameter. In the registerClass method, the interfaceTypes
expectedParam is marked as a parameterArray. When the validation
routine loops through the expectedParams array and reaches the
interfaceTypes expectedParam, it validates the remaining arguments
passed in to the method call against the interfaceTypes expectedParam
definition. In this case, the definition states that if the parameter passed
in isn’t an interface, throw an error.

The parameterArray idea is similar to the params[] keyword in C#, but
C# uses the param keyword to define a method that can take 0 to n
parameters. As we now know, JavaScript doesn’t care how many argu-
ments are passed in to a method; so unlike C#, where the params[]
keyword changes how the method accepts parameters, the parameter
Array idea is used only for validation purposes.

Finally, for the parameterArray validation to occur properly, the
parameterArray must be the last parameter of the method.

b. If the expected type is an Array, it loops through the array ele-
ments and executes step (a) for each array element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C
ASP.NET Handlers and Modules

A SP.NET handlers and modules provide the underlying support that
makes ASP.NET AJAX function, and a good understanding of how

they work can go a long way. In this appendix, we cover how HTTP han-
dlers and modules work and how they fit into the overall ASP.NET 2.0
application lifecycle.

ASP.NET Application Lifecycle

The application lifecycle that ASP.NET 2.0 goes through when processing a
request consists of quite of few layers. As shown in Figure C.1, the flow of
a request from a client starts with the request coming into IIS and logic
being applied to determine whether the ASP.NET runtime will be process-
ing the request. If the file extension of the request ends with .aspx, .ascx,
.ashx, .asmx, or .svc, the ASP.NET 2.0 runtime will handle the request, and
the ApplicationManager will create an application domain for the request.
This application domain is used to provide isolation between the various
web applications in IIS and allows each web application to be managed sep-
arately. The byproduct of creating an application domain is the creation of
the HTTP runtime, which consists of the HttpContext, HttpRequest,
HttpResponse, and HttpApplication objects that work together to
processes the request. The HttpContext class contains objects that are

559

http://lib.ommolketab.ir
http//lib.ommolketab.ir

specific to the current application request, such as the HttpRequest and
HttpResponse objects. The HttpRequest object contains information about
the current request, including cookies and browser information. The
HttpResponse object contains the response that is sent to the client, includ-
ing all rendered output and cookies. It is the HttpApplication pipeline that
is contained in the HttpApplication object that is of most interest to us
because the pipeline is responsible for the instantiation of the HTTP han-
dlers and modules for ASP.NET 2.0.

Appendix C: ASP.NET Handlers and Modules560

Application Domain

HTTP Runtime

HTTP Request

HTTP Response

HTTP
Application

Pipeline

Application Manager

Cloud

IIS

Request

Response

Figure C.1 ASP.NET application lifecycle

HTTP Handlers

In their simplest form, HTTP handlers run in response to a request into
an ASP.NET application and are part of the HttpApplication pipeline
illustrated in Figure C.1. In the course of processing the request, the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

HttpApplication pipeline loads the specific handler based on the file exten-
sion of the request and uses it to process the request.

Overview of HTTP Handlers
HTTP handlers are custom classes you create in any .NET language to
process specific types of HTTP requests. These handlers provide a low level
of interaction, much like ISAPI extensions but with a simpler programming
model. To create a handler, you need to create a class that implements the
IHttpHandler interface and provide implementation for the IsReusable
property and ProcessRequest method. The IsReusable property is called
by the ASP.NET 2.0 runtime to determine whether this instance of the
HTTP handler can be reused for processing another request of the same
type. The property returns either true if it can be reused or false if not. The
ProcessRequest method is the workhorse of the handler and is responsi-
ble for processing the request. The method takes one parameter of type
HttpContext that encapsulates all the HTTP-specific information about the
request, providing access to everything from the Application object to the
Request and Response objects. With access to this kind of information, it’s
not hard to see how powerful handlers are. In Listing C.1, we show a sim-
ple HTTP handler designed to write back “Hello World” to the output
stream. In the ProcessRequest method, you can see that we are setting the
content type to text/plain, which sets the Content-Type HTTP header of
the response, and then writing “Hello World” to the response buffer. The
IsReusable property in our case is returning false, which means that it
can’t be shared across all requests of its type. The next topic we cover is how
we set the types of requests a handler can process.

Listing C.1 HTTP Handler

namespace SimpleHandler
{

public class MyHandler : IHttpHandler
{

#region IHttpHandler Members
public bool IsReusable
{
get { return false; }

}
public void ProcessRequest(HttpContext context)

HTTP Handlers 561

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing C.1 continued

{
context.Response.ContentType = "text/plain";
context.Response.Write("Hello World");

}
#endregion

}
}

The types of requests a handler can process are determined when you
register the handler in the web.config file of your application. Handlers can
be registered to respond to specific HTTP verbs such as POST and GET and
a specific path that can be represented by a specific URL or by using wild-
card strings such as *.axd. In Listing C.2, we show a handler being added
to the HttpHandlers section of the web.config file with a verb of *, which
means all, a path of Handler.axd, and finally a type of SimpleHandler.
MyHandler, which is the name of the class including the namespace. With
this registration in place, the handler is set up to handle all types of requests
that contain a path of MyHandler.axd.

Listing C.2 HTTP Handler Registration

<system.web>
<httpHandlers>

<add verb="*" path="MyHandler.axd" type="SimpleHandler.MyHandler"/>
</httpHandlers>

</system.web>

Appendix C: ASP.NET Handlers and Modules562

NOTE Path Does Not Have to Exist

In Listing C.2, the path is MyHandler.axd, but in the Web project, that
file does not exist. The path used does not have to physically exist for
the handler to respond to it. This is how ASP.NET AJAX processes all
the ASP.NET 2.0 application services because the URL references don’t
physically exist.

Overview of HTTP Handler Factory
If you look at the common web.config file located in your Windows direc-
tory under \Microsoft.NET\Framework\[version]\CONFIG, you will

http://lib.ommolketab.ir
http//lib.ommolketab.ir

notice an entry under the HttpHandlers section that relates to the handler
that processes ASPX pages:
<add path="*.aspx" verb="*" type="System.Web.UI.PageHandler
Factory" validate="True"/>

The interesting thing about this entry is that it refers to a class called
PageHandlerFactory and not Page (as you might think, because Page does
implement the IHttpHandler interface). This is because the creation of the
Page class is delegated to the factory, which in this case knows how to cre-
ate the class and return an instance of it. This factory pattern is used
throughout ASP.NET 2.0 by classes that implement the IHttpHandler
Factory interface. The IHttpHandlerFactory interface is implemented by
classes that create and manage HTTP handlers for processing requests. It
is possible, therefore, to create a class that implements the IHttpHandler
Factory interface, and then use that class just as you would use an HTTP
handler. This approach can allow finer control over the processing of an
HTTP request by mapping a URL to an HTTP handler factory that creates
different handlers based on a complex set of conditions. For example, with
an HTTP handler factory, you can create a limited number of HTTP handler
objects that access expensive or limited resources, such as a database, and
then reuse those handler objects in future requests.

In Listing C.3, the MyHandlerFactory class provides implementation for
the GetHandler and ReleaseHandler methods of the IHttpHandlerFactory
interface. The GetHandler method is responsible for creating and returning
a handler that implements the IHttpHandler interface. The method accepts
an HttpContext, which as we have stated before encapsulates all the HTTP-
specific information about the request, a string that represents the request
type, a string that represents the raw URL for the request, and a string that
represents the physical file system path of the request. In our example, the
GetHandler method determines what the request type is and returns a han-
dler for a POST or GET request type and a null reference for any others. The
ReleaseHandler method in our example does nothing because both of our
handlers are simple. In cases where the handlers have references to expen-
sive resources, however, this is where you would clean things up.

HTTP Handlers 563

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing C.3 HTTP Handler Factory

namespace SimpleFactory
{

public class MyHandlerFactory : IHttpHandlerFactory
{

#region IHttpHandlerFactory Members
public IHttpHandler GetHandler(HttpContext context,

string requestType, string url,
string pathTranslated)

{
switch (requestType)
{

case "POST":
return new PostHandler();
break;

case "GET":
return new GetHandler();
break;

}
return null;

}
public void ReleaseHandler(IHttpHandler handler)
{
//not implemented

}
#endregion

}
}

The second part to working with the factory handler is the same as han-
dlers and relates to registration in the web.config file of your application.
Factories, just like handlers, can be configured to respond to specific HTTP
verbs such as POST and GET, and a specific path that can represented by a
specific URL or by using wildcard strings such as *.axd. In Listing C.4, we
show a factory being added to the HttpHandlers section of a web.config file
with a verb of *, which means all, a path of MyFactory.axd, and finally a
type of SimpleFactory.MyFactory, which is the name of the class including
the namespace.

Appendix C: ASP.NET Handlers and Modules564

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing C.4 HTTP Handler Factory Registration

<system.web>
<httpHandlers>
<add verb="*" path="MyFactory.axd"

type="SimpleFactory.MyHandlerFactory"/>
</httpHandlers>

</system.web>

HTTP Modules

An HTTP module is similar in concept to the HTTP handler in the sense
that it runs in response to a request into an ASP.NET application. In the case
of a module, however, it runs with every request regardless of the HTTP
verb or the path of the URL. The HTTP module works with the Http
Application pipeline as it goes through the various events that occur dur-
ing processing, providing extensibility points as events occur, much like an
event handler.

Overview of HTTP Modules
An HTTP module is a managed class that implements the IHttpModule
interface. An HTTP module can preprocess and post-process a request by
intercepting and handling system events and events raised by other mod-
ules. The IHttpModule interface defines two methods: Init and Dispose.
The Init method initializes the module and prepares it to handle requests.
It is during this method call that you subscribe to the events (see Table C.1)
that you want to work with, which in turn plugs the module into the
ASP.NET 2.0 request processing pipeline and enables the ASP.NET 2.0 run-
time to invoke the event handlers so that they can participate in the request
processing. The Dispose method of the module is where you clean up
resources that the module uses.

HTTP Modules 565

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table C.1 HttpApplication Events

Event Description

BeginRequest Occurs as the first event in the HTTP pipeline
chain of execution when ASP.NET responds to
a request.

AuthenticateRequest Occurs when a security module has established
the identity of the user.

PostAuthenticateRequest Occurs when a security module has established
the identity of the user.

AuthorizeRequest Occurs when a security module has verified
user authorization.

PostAuthorizeRequest Occurs when the user for the current request
has been authorized.

ResolveRequestCache Occurs when ASP.NET completes an authoriza-
tion event to let the caching modules serve
requests from the cache, bypassing execution of
the event handler (for example, a page or an
XML web service).

PostResolveRequestCache Occurs when ASP.NET bypasses execution of
the current event handler and allows a caching
module to serve a request from the cache.

PostMapRequestHandler Occurs when ASP.NET has mapped the current
request to the appropriate event handler.

AcquireRequestState Occurs when ASP.NET acquires the current
state (for example, session state) that is associ-
ated with the current request.

PostAcquireRequestState Occurs when the request state (for example,
session state) that is associated with the current
request has been obtained.

PreRequestHandlerExecute Occurs just before ASP.NET begins executing
an event handler (for example, a page or an
XML web service).

PostRequestHandlerExecute Occurs when the ASP.NET event handler (for
example, a page or an XML web service) fin-
ishes execution.

Appendix C: ASP.NET Handlers and Modules566

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Event Description

ReleaseRequestState Occurs after ASP.NET finishes executing all
request event handlers. This event causes state
modules to save the current state data.

PostReleaseRequestState Occurs when ASP.NET has completed execut-
ing all request event handlers and the request
state data has been stored.

UpdateRequestCache Occurs when ASP.NET finishes executing an
event handler to let caching modules store
responses that will be used to serve subsequent
requests from the cache.

PostUpdateRequestCache Occurs when ASP.NET completes updating
caching modules and storing responses that are
used to serve subsequent requests from the
cache.

EndRequest Occurs as the last event in the HTTP pipeline
chain of execution when ASP.NET responds to
a request.

Listing C.5 shows a class that inherits from IHttpModule and provides
implementation for the Init method. In this method, a handler is created
that responds to the PostAcquireRequestState event, which is an Http
Application-level event that occurs after the request state has been
acquired. In this handler, we are adding a value to the session object that
contains a simple string that incorporates the request path so that this value
would be available for a page to use as it is processing.

Listing C.5 HTTP Module

namespace SimpleHttpModule
{

public class MyModule : IHttpModule
{

#region IHttpModule Members

public void Dispose()
{

//not implemented
}

HTTP Modules 567

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing C.5 continued

public void Init(HttpApplication context)
{

context.PostAcquireRequestState +=
new EventHandler(context_PostAcquireRequestState);

}

void context_PostAcquireRequestState(object sender,
EventArgs e)

{
HttpApplication application = sender as HttpApplication;
if (application.Context.Session != null)
{

application.Context.Session.Add("ModuleData",
"hello for a request path of " +
application.Request.Path.ToString());

}
}

#endregion
}

}

The second part of this example, shown in Listing C.6, relates to the reg-
istration of the module in the web.config file of your application. The reg-
istration entry is simpler than the handlers or factories and requires only a
name, which in this case is SimpleHttpModule, and a type, which in our case
is SimpleHttpModule.MyModule, which is the name of the class including
the namespace.

Listing C.6 HTTP Module Registration

<system.web>
<httpModules>
<add name="SimpleHttpModule"

type="SimpleHttpModule.MyModule"/>
</httpModules>

</system.web>

Appendix C: ASP.NET Handlers and Modules568

http://lib.ommolketab.ir
http//lib.ommolketab.ir

D
Client Error Handling Code

A S W E M E N T I O N E D I N CH A P T E R 3 , “Components,” here’s the full
source code for creating the ErrorHandler client and server controls.

Included at the end of this appendix is a sample ASPX page that tests the
error handler’s capabilities.

ErrorHandler Client Class
/// <reference name="MicrosoftAjax.js"/>
/// <reference name="StackTrace.js" assembly="ErrorHandlerLibrary"/>

ErrorHandler = function ErrorHandler() {
///<summary>
///Publisher for handled and unhandled exceptions
///</summary>
ErrorHandler.initializeBase(this);
this._disableErrorPublication = false;

};

ErrorHandler.prototype = {
initialize: function ErrorHandler$initialize() {

ErrorHandler.callBaseMethod(this, 'initialize');
window.onerror =
Function.createDelegate(this, this._unhandledError);

},
dispose: function ErrorHandler$dispose() {

window.onerror = null;
ErrorHandler.callBaseMethod(this, 'dispose');

},

569

http://lib.ommolketab.ir
http//lib.ommolketab.ir

get_disableErrorPublication: function() {
return this._ disableErrorPublication;

},

set_disableErrorPublication: function(value) {
if (!this.get_updating()) {

this.raisePropertyChanged("disableErrorPublication");
}
this._disableErrorPublication = value;

},

_unhandledError:
function ErrorHandler$_unhandledError(msg, url, lineNumber) {
try {

var stackTrace = StackTrace.createStackTrace(arguments.callee);
if (!this._disableErrorPublication) {
ErrorDataService.PublishError
(stackTrace, msg, url, lineNumber);

}
var args = new ErrorEventArgs(stackTrace, msg, url, lineNumber);
this._raiseUnhandledErrorOccured(args);

}
catch (e) { }

},

add_unhandledErrorOccurred: function(handler) {
this.get_events().addHandler("unhandledErrorOccurred", handler);

},

remove_unhandledErrorOccurred: function(handler) {
this.get_events().removeHandler("unhandledErrorOccurred", handler);

},

_raiseUnhandledErrorOccured: function(args) {
var evt = this.get_events().getHandler("unhandledErrorOccurred");
if (evt !== null) {

evt(this, args);
}

},

publishError: function ErrorHandler$handledError(error) {
/// <summary>Publishes a handled error to the server</summary>
/// <param name="error" type="Error" />
try {

var e = Function._validateParams(arguments, [
{name: "error", type: Error }

]);
if (e) throw e;

Appendix D: Client Error Handling Code570

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var stackTrace;
if (error.stack) {
stackTrace = error.stack;

}
else {
stackTrace = StackTrace.createStackTrace(arguments.callee);

}
ErrorDataService.PublishError(stackTrace, null, null, null);

}
catch (e) { }

}
};
ErrorHandler.registerClass ('ErrorHandler', Sys.Component);

ErrorEventArgs Client Class
ErrorEventArgs = function(stackTrace, message, url, lineNumber) {

ErrorEventArgs.initializeBase(this);
this._message = message;
this._stackTrace = stackTrace;
this._url = url;
this._lineNumber = lineNumber;

}
ErrorEventArgs.registerClass("ErrorEventArgs", Sys.EventArgs);

ErrorHandler Server Control
using System.Collections.Generic;
using System.Web.UI;
using System;

namespace ErrorHandlerLibrary
{

public class ErrorHandler : ScriptControl
{

protected override IEnumerable<ScriptReference>
GetScriptReferences()

{
yield return new
ScriptReference("ErrorHandlerLibrary.ErrorHandler.js",
typeof(ErrorHandler).Assembly.FullName);

yield return new
ScriptReference("ErrorHandlerLibrary.StackTrace.js",
typeof(ErrorHandler).Assembly.FullName);

ErrorHandler Ser ver Control 571

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

protected override IEnumerable<ScriptDescriptor>
GetScriptDescriptors()

{
ScriptComponentDescriptor scd =
new ScriptComponentDescriptor("ErrorHandler");

scd.ID = "ErrorHandler";
yield return scd;

}

protected override void OnPreRender(System.EventArgs e)
{

base.OnPreRender(e);
ScriptManager.GetCurrent(this.Page).Services.Add(
new ServiceReference("~/ErrorDataService.asmx"));

}

protected override void OnInit(System.EventArgs e)
{

base.OnInit(e);
if (Page.Items.Contains(typeof(ErrorHandler)))
{
throw new InvalidOperationException(

@"Only one ErrorHandler control is
allowed on the page at a time.");

}
Page.Items.Add(typeof(ErrorHandler), this);

}
}

}

StackTrace Client Class
/// <reference name="MicrosoftAjax.js"/>
// StackTrace adapted from www.helephant.com/Article.aspx?ID=675

_StackTrace = function() {
_StackTrace.initializeBase(this);
this._maxRecursion = 20;

};

_StackTrace.prototype = {
_getFunctionName: function _StackTrace$_getFunctionName (func) {

if(func.name) {
return func.name;

}
var fnText = func.toString();

Appendix D: Client Error Handling Code572

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var fnName = fnText.substring(
fnText.indexOf('function') + 8, fnText.indexOf('('));

if(fnName !== null && fnName !== "") {
return fnName;

}
return "anonymous";

},

_getSignature: function _StackTrace$_getSignature(func) {
var signature = new Sys.StringBuilder(this._getFunctionName(func));
signature.append("(");
for(var i=0; i < func.arguments.length; i++) {

var nextArgument = func.arguments[i];
if(nextArgument.length > 30) {
nextArgument = String.format("{0}...",

nextArgument.substring(0, 27));
}
signature.append(String.format("'{0}'", nextArgument));

// parameter separator
if (i < func.arguments.length - 1) {
signature.append(", ");

}
}
signature.append(")");
return signature.toString();

},

createStackTrace: function
_StackTrace$createStackTrace(startingPoint) {

/// <summary>Creates a Stack Trace from the startPoint</summary>
/// <param name="startingPoint" type="Function" />
var e = Function._validateParams(arguments, [

{name: "startingPoint", type: Function }
]);
if (e) throw e;

var numberOfRecursions = 0;
var stackTraceMessage = new Sys.StringBuilder("Stack Trace");
stackTraceMessage.appendLine();
var nextCaller = startingPoint;

while(nextCaller && (numberOfRecursions < this._maxRecursion)) {
stackTraceMessage.appendLine(this._getSignature(nextCaller));
nextCaller = nextCaller.caller;
numberOfRecursions++;

}
stackTraceMessage.appendLine();
stackTraceMessage.appendLine();

StackTrace Client Class 573

http://lib.ommolketab.ir
http//lib.ommolketab.ir

return stackTraceMessage.toString();
}

};
_StackTrace.registerClass("_StackTrace");

Sys.Application.add_init(
function() {

StackTrace = new _StackTrace();
}

);

ErrorDataService Web Service
using System.Web.Script.Services;
using System.Web.Services;

[ScriptService]
public class ErrorDataService : WebService
{

[WebMethod()]
public bool PublishError(

string stackTrace,
string message,
string url,
int? lineNumber)

{
// Do whatever you want at this point.
// Log it, create an exception, etc.
return true;

}
}

Test Error Page
<%@ Page Language="C#" AutoEventWireup="true"

CodeBehind="ErrorHandlerTest.aspx.cs"
Inherits="ErrorHandler.ErrorHandlerTest" %>

<%@ Register Assembly="ErrorHandlerLibrary"
Namespace="ErrorHandlerLibrary"
TagPrefix="cc1" %>

<html>
<head runat="server">

<title>Error Handler Test Page</title>

Appendix D: Client Error Handling Code574

http://lib.ommolketab.ir
http//lib.ommolketab.ir

</head>
<body>

<form id="form1" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />
<cc1:ErrorHandler ID="ErrorHandler1" runat="server" />
<asp:Button runat="server"

OnClientClick="tester();"
Text="Test Client Error Handling" />

<asp:Button ID="Button1"
runat="server"
OnClientClick="testHandled();"
Text="Test Handled Error Handling" />

<script type="text/javascript">
function testHandled() {

$find("ErrorHandler").publishError(Error.create("test", "error"));
}
function tester() {

var test = null;
test.err = 4;

};
</script>
</form>

</body>
</html>

Test Error Page 575

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

Symbols
_ (underscore), 64
_component object, adding

components to, 177
_doInitialize method, 189
_format method, 301
_onBlur method, 302
_onFocus method, 302
_validateParams function, 557
__cultureInfo variable, 292
$create statements, 243
$find method, 180

A
abstract data types, 40-45
Accept-Language headers, 262
accessing
base class methods, 80
enumerations, 73
folders, 440
private members, 81
properties, 47
raw events, 112
roles, 440

AcquireRequestState event, 566
actions, animations, 508-509
ActiveX Template Library (ATL), 524
add_init method, 195, 364

Add User screen, 437
AddAttributesToRender method, 343
addComponent method, 177
AddComponentProperty

method, 211
AddElementProperty method, 211
adding
animations to extender controls,

532-543
attributes, 538
AutoComplete page methods, 498
behavior, ExtenderControl class,

220-233
client-side behavior,

ExtenderControlBase, 513-523
client-side functionality, 247-254
components, 177-178
controls, 246
custom events, 90
design-time support to extender

controls, 524-532
designers to properties, 526-532
editors to properties, 526-532
error publishing feature, 133
filters, 308-310
functionality, ScriptControl class,

233-246
handlers, 130, 541

577

http://lib.ommolketab.ir
http//lib.ommolketab.ir

multiple handlers, 91
properties
Expando, 75
instances, 40

references, 526
script resources, 215
users, 437
variables, 540

addresses, URIs, 380
AddScriptProperty method, 212
administration
components, 123
roles, 439-441
Web Site Administration Tool,

431-432, 437
AJAX-enabled WCF services, 382
AjaxControlExtender.vsi file, 484
AjaxControlToolkit.BehaviorBase

class, creating, 521-522
alerts
error messages, 302
timeouts, 32

Allow element, 429
amounts
filters, defining, 308
localization, 267

AnimatedImageRotator class, 534
AnimatedImageRotatorExtender

class, 533
Animation class, 485, 503
AnimationExtenderControlBase

class, 511, 539
animations
extender controls, adding to, 532-543
support for, 483
Toolkit (ASP.NET AJAX Control),

501-503
client architecture, 503-508
server architecture, 509-512

anonymous functions, generating, 34

APIs (application programming
interfaces), 375

JavaScript, 533-536
membership login, 436
roles, 443

ApplicationManager, 559
applications
ASP.NET 2.0, 425-433. See also

ASP.NET 2.0
ASP.NET AJAX application

services, 448
authentication, 448-452
profiles, 456-459
roles, 453-454

HTTP
handlers, 560-565
modules, 565-568

lifecycles, 394-395, 559-560
localization, 255-256
determining what needs to be

localized, 257-261
displayed values, 267-276
running under particular cultures,

261-266
services, 460-466, 469-478
Sys.Application class. See

Sys.Application class
web, xxvii, 398-400
Web Site Administration Tool,

431-432, 437
applying
authentication services, 450
event parameters, 145-148
getBaseType, 84
inheritsFrom types, 83
instanceOfType, 84
interfaces, 86-88
intervals, 38
IScriptControl interfaces, 247-254
KnownType attributes, 392

Index578

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 579

load events, 200
pageload method, 201
profile services, 457
property parameters, 140-145
references parameters, 149-150
role services, 454
scripts, 219
type parameters, 136-139
WebResource attribute, 216

architecture
ASP.NET 2.0 AJAX Extensions, 374
page methods, 386-387
serialization, 388-394
server framework components,

394-400
web services, 375-386

ASP.NET AJAX Control Toolkit, 481
animations, 501-512
client-based, 499-501
composition of, 483-486
overview of, 482-483
server-based, 486-487, 491-499

Microsoft AJAX Library
communication architecture, 401

serialization, 415-416
service proxies, 401-415
WebRequest class, 417-424

new communication paradigm,
372-373

script-based, 208
behavior and control, 208-218
resources, 214-219

arguments
dynamic, 22
explicit, 22
implicit, 21
JavaScript, 16-25
undefined, 22

arrays
associative, comparing objects, 10
extending, 55-59

ASP.NET
application lifecycles, 394-395
services, registering, 385

ASP.NET 2.0
AJAX Extensions, xxx, 374
page methods, 386-387
serialization, 388-394
server framework components,

394-400
web services, 375-386

membership, role, and user profile
services, 425-436

Provider Model, 429-431
ASP.NET AJAX, 448
authentication, 448-452
localization in, 277-280
profiles, 456-459
roles, 453-454

ASP.NET AJAX Control Toolkit, xxx
architecture, 481
animations, 501-512
client-based, 499-501
composition of, 483-486
overview of, 482-483
server-based, 486-499

extender controls, creating, 220
AspNetCompatabilityRequirements

attribute, 382
assemblies, 476-477
assigning
null, 12
properties, 243
references, 149

associative arrays, 10
ATL (ActiveX Template Library), 524
attaching
event handlers, 107
extenders to controls, 231-233, 523
Sys.UI.DomEvent, 110

http://lib.ommolketab.ir
http//lib.ommolketab.ir

attributes
adding, 538
AspNetCompatabilityRequirements,

382
ClientCssResource, 491
code with, 488
code without, 487
DataContract, 379
development, simplification of, 482
ExtenderControlEvent, 489
ExtenderControlProperty, 489
JavaScript, 4-6
primitive data types, 6
objects, 9-15

KnownType, 392, 412-413
OperationContract, 407
param element, 553
ParseChildren, 526
RequiredProperty, 489
ScriptResource, 305
server-based architecture, 486-491
UrlProperty, 241
WebResource, 216

AuthenticateRequest event, 566
authentication
forms, 426-429
services, 448-452

authorization element, configuring,
428-429

AuthorizeRequest event, 566
AutoComplete page method,

adding, 498
AutoCompleteDesigner class, 499
automatic disposal
of behaviors and controls, 329-337
of components, 337-339, 351-355

AutomationExtender class, 540

B
backslash (\), 8
backspace character, 8
base class methods
accessing, 80
calling, 82
ErrorHandler components, 132-133
overriding, 81
redefining, 48
server-based architecture, 491-494

beginCreateComponents
method, 189

BeginRequest event, 566
beginUpdate method, 129
BehaviorBase class, 500, 521
behaviors, 159-161, 380
client-side, 513-523
components, 122-124
creating, 162-167
defining, 161-162
ExtenderControl class, adding,

220-233
partial postbacks, 324-328
automatic disposal, 329-339
manual disposal, 340-355

script-based architecture, 208-218
UpdatePanel, 318-324

bindings, 380
blocks, finally, 28
booleans, 6, 52
bubbleSort method, 68
defining, 70
testing, 71

bubbling, event, 154
bugs, parseLocale method, 284-285
built-in types, extending, 52
arrays, 55-59
booleans, 52
dates and numbers, 53
strings, 54-55

Index580

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 581

C
C# base class methods, calling, 82
caching scripts, 306
call stacks, 190
callbacks, 115-116
callee property, 24
caller property, 24
calling
animation scripts, 534-536
base class methods, 82

canceling timeouts, 30
capabilities
localization, 280-281
script globalization, 281-291

capitalization, constructors, 63
carriage return characters, 8
categories of JavaScript, 4
central locations, managing

components, 176
characters, special, 8
checkAmounts function, 310
checking function parameters, 555
classes
AjaxControlToolkit.BehaviorBase,

521-522
AnimatedImageRotator, 534
AnimatedImageRotatorExtender, 533
Animation, 503
AnimationExtenderControlBase,

511, 539
attributes, adding, 538
AutoCompleteDesigner, 499
AutomationExtender, 540
BehaviorBase, 500, 521
ControlBase, 501
designer, 495, 498-499
ErrorEventArgs Client, 571
ErrorHandler Client, 569-575
ExtenderControl, 220-233

ExtenderControlBase, 492-494
attaching extenders to controls, 523
creating AjaxControlToolkit.

BehaviorBase class, 521-522
inheriting from, 518-520

ExtenderControlBaseDesigner{T},
497-499, 517

GenericAnimationBehavior, 541
Image URL, 530
JavaScript, 483
Microsoft AJAX Library, 60-67
MyHandlerFactory, 563
.NET, 483
ProfileBase, 445
prototype serialization, 416
proxy services, 473-477
registering, 79
ScriptBehaviorDescriptor, 213
ScriptComponentDescriptor,

210-213, 488-489
ScriptControl, 233-246
ScriptControlBase, 495
ScriptControlDescriptor, 208, 214
ScriptControls, 491-494
ScriptManager, 218-219
ScriptReference, 216
SearchCriteria, 381
Service1, 377
ServiceReference, 385
SimpleWCFService, 473
StackTrace Client, 572-573
Sys.Application, 169. See also

Sys.Application class
Sys.Component, 125, 129
creating components, 134-151
defining new components, 129-134

Sys.EventArgs, 93
Sys.Net.WebProxy, 449, 456
Sys.Net.WebRequestManager, 422
Sys.Net.XMLHttpExecutor, 422

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sys.Services.AuthenticationService,
449

Sys.Services.ProfileService, 456
Sys.Services.RoleService, 453
Sys.UI.Behavior, 122, 208-218
creating, 229-230
methods, 159
template, 225

Sys.UI.Control, 122, 152, 208-218
SysCultureInfo, 290-293
TextBoxInfo, 244-246
Transactions, 260-261
UserProfile, 445
WCFHandler, 465
WebControl, 234
WebRequest, 417-424
WebServiceError, 403
WebServiceProxy, 415

clearing intervals, 38, 336
clickEventHandler method, 114-116
client-based architecture, 499
BehaviorBase class, 500
ControlBase class, 501

client-side behavior
adding, 513-523
ExtenderControl class, 220-233
functionality
ExtenderControl class, 233-246
IScriptControl interface, 247-254

client-side JavaScript. See CSJS
ClientCssResource attribute, 491
ClientPropertyName attribute, 489
clients
application lifecycles, 559-560
components. See components
controls, HoverCard, 343
ErrorHandler code, 569-575
libraries, IntelliSense, 549
login, 451
Sys.Application class, 169
creating, 170-172

initialization routines, 185-198
load events, 198-203
managing components, 177-185
method information, 172-175
type information, 172
unload routines, 203-206

closures, 45
code
delayed code execution, 30-38
Errorhandler client, 569-575
with/without attributes, 487-488

comments, XML, 551-554
Common folder, 485
communication
architecture, 372. See also architecture
WCF, 375-386

CommunicationSupport
namespace, 466

comparing null and undefined
values, 18

complex data and serialization, 391
components, xxix
adding, 177-178
ASP.NET 2.0 AJAX Extensions, xxx
ASP.NET AJAX Control Toolkit, xxx
behaviors, 122-124, 159-161
creating, 162-167
defining, 161-162

controls, 122-124, 151-154
creating, 157-159
defining, 155-157

creating, 189-191, 193-198
defining, 178
definition of, 121-122
deleting, 183-184
ErrorHandler, 129-134, 351-355
Microsoft AJAX Library, xxix
partial postbacks, 324-328
automatic disposal, 329-339
manual disposal, 340-355

retrieving, 184-185

Index582

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 583

searching, 179-183
server frameworks, 394-400
Sys.Application class, 169
creating, 170-172
initialization routines, 185-198
load events, 198-203
managing, 177-185
method information, 172-175
type information, 172
unload routines, 203-206

Sys.Component class, 125, 129
creating, 134-151
defining new components, 129-134

composite controls, 247-254
concatenation, strings, 9
configuring
AjaxControlToolkit.BehaviorBase

class, 521-522
ASP.NET
application services, 449
web applications, 398-400

authorization element, 428-429
behaviors, 159-167
components, 134-151, 189-198
skeletons, 129-130

composite controls, 250
controls, 157-159
creating script controls, 237-246

current cultures, 262-266
data contracts, 383-384
dataContractSerializer element, 393
error types, 58
Forms authentication, 427
functions, 5
handlers, 541
HTTP handlers, 477
ImageRotator extenders, 514-517
inheritance, 79-84
instances with parameters, 42
internal controls, 250
namespaces, 61

objects, 9
profiles, 447
services, 456-459

references, 196-198
roles
accessing, 440
services, 453

ScriptManager control, 218-219
services
contracts, 381-383
registering, 384-385

Sys.Application, 170-172
Sys.UI.Behavior class, 229-230
type converters, 530-532
web applications, 398-400

consoles, Sys.Debug, 98
constructors
capitalization, 63
DataContractJsonSerializer, 390
parameters, 41, 63
properties, 15
ScriptControlDescriptor class, 214
ScriptReference class, 217
Sys.Application, 170-171

containers
animations, 504-505
naming, 249

contracts
data, creating, 383-384
services, creating, 381-383
types of, 376
data, 378-379
service, 376-378

ControlBase class, 501
controls, 151-154
adding, 246
components, 122-124
composite, adding functionality,

247-254
creating, 157-159
CurrencyTextBox.cs, 297

http://lib.ommolketab.ir
http//lib.ommolketab.ir

defining, 155-157
ExtenderControl class, 220-233
ExtenderControlBase, 513-523
extenders
animations, 532-543
attaching, 231-233
design-time support, 524-532

GridView transactions, 259
internal
creating, 250
rendering, 251

membership, 435
partial postbacks, 324-328
automatic disposal, 329-339
manual disposal, 340-355

ScriptManagerProxy, 218-219
scripts
architecture, 208-218
creating, 237-246

servers, xxvii, xxxiii
ErrorHandler, 571-572
HoverCard, 341-351

SimpleComponent, 327
state, 493
TextBoxInfo, 240
UpdatePanel behavior, 318-324
WebControl class, 234

conversion, implicit, 14
converters, creating type, 530-532
CSJS (client-side JavaScript), 4
Culture Selector drop-down, 271
cultures. See also localization
Invariant, 286
resource files, 273-276

CurrencyTextBox, 295-312
current cultures, configuring, 262-266
curry methods, 36
customizing
application services, 460-478
asynchronous executors,

creating, 417
events, adding, 90
Sys.EventArgs class, 93

D
data contracts, 378-379, 383-384
data format strings, 289
data types
abstract, 40-45
primitive, 6
wrapper objects, 14

DataContractJsonSerializer, 389, 416
constructors, 390
methods, 391

DataContractSerializer element, 393
dates
extending, 53
JavaScript, 279-280
localization, 267
script globalization, 286-287

debugging
messages, 325
_validateParams function, 556

declarative animations, 509-512,
537-543

declaring
namespaces, 61-62
page methods, 387
public interfaces, 65-66
string variables, 8
types, 62-65

default design-time, extender
controls, 525

default resource files, 271
default ScriptManager control

behavior, 218
default values, private members, 41
defining
amounts, filtering, 308
behaviors, 161-162
bubblesSort method, 70
components, 129-134, 178
constructors with parameters, 63
controls, 155-157
enumerations, 73
error types, 58
Filter.Res objects, 312

Index584

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 585

formattable objects, 289
initializeBaseType function, 46
interfaces, 68
private members, 300
properties, 300
protocol-based methods, 43
pubic members, 42
TestType, 83
types, 40-41, 63

delayed code execution, 30-38
delegates, 113, 147
deleting
components, 183-184
multiple handlers, 91
Sys.UI.DomEvent, 110

Deny element, 429
descriptors
event names in, 212
property names used in, 210

deserialize method, 416
design, adding extender controls,

524-532
designer classes
server-based architecture
Toolkit (ASP.NET AJAX Control),

495-499
designers
properties, adding to, 526-532
references, 527

development
simplification of, 482
UpdatePanel, behavior, 318-324

dictionaries, passing in, 116
disabling error publishing

features, 133
displayed values, localizing, 267-276
dispose method, 130, 300
dispose scripts, 337-339
div tags, wrapping HoverCards

in, 346

DOM (Document Object Model)
behaviors, 159-161
creating, 162-167
defining, 161-162

controls, 151-154
creating, 157-159
defining, 155-157

elements, 9, 557
modifying, 192

double quote (“), 8
downloading Ajax Control

Toolkits, 484
DragPanelExtender, 347
duplicate functionality, 495
duration property, 536
dynamic arguments, 22
dynamically typed languages, 4-5

E
ECMAScript standard, 4
Edit User screen, 437
editing users, 438
editorAdded event, 93
editorAddedHandler method, 92
editors
ImageURL, 242
properties, adding to, 526-532

effect property, 536
effects of partial postbacks, 324-328
automatic disposal, 329-339
manual disposal, 340-355

elements. See also controls
Allow, 429
authorization, configuring, 428-429
Deny, 429
DOM, 9, 557
Forms authentication, 427
param attributes, 553

embedding JavaScript files, 215
EnableScriptLocalization

property, 293

http://lib.ommolketab.ir
http//lib.ommolketab.ir

enabling
CurrencyTextBox.Res, 307
script globalization, 281

EndRequest event, 567
endUpdate method, 129
English
error messages, 294
formatting, 278

enumerations
items, accessing, 73
Microsoft AJAX Library, extending,

72-78
equality, 16
Error objects, 27
Error.create statement, 59
ErrorDataService Web service, 574
ErrorEventArgs Client Class, 571
ErrorHandle component, 351-355
ErrorHandler client code, 569-575
ErrorHandler component, 129-134
errors
handlers, adding, 130
invalidationOperation, 70
JavaScript, 25-29
Microsoft AJAX Library error types,

57-59
nonPositive, 59
notImplemented, 68
popStackFrame, 59
publishing, 27, 133
throwing, 27, 59-60

evaluations, typeof, 20-21
events
Animation class, 504
bubbling, 154
customizing, 90
editors, 93
errors, 28

handlers
adding, 130
attaching, 107
predefining, 147
wrapping in delegates, 147

HttpApplication, 566
init, 190
load, Sys.Application, 198-203
names, descriptors, 212
normalizing, 108, 111
OnLoad, 537
Parameters, applying, 145-148
raising, 91
raw, accessing, 112
Sys.Application, 364-367
UpdatePanel, 318

exceptions, unhandled, 28-29
executing
base class methods, 48
initializebase method, 64
initializeBaseType method, 47
structures, 502
timeouts, 37

Expando properties, 12, 75
explicit anonymous functions, 31-32
explicit arguments, 22
Extender Control Wizard,

231-233, 523
ExtenderBase folder, 485
ExtenderControl class, 220-233, 322
ExtenderControlBase class, 492-494,

513-523
ExtenderControlBaseDesigner{T}

class, 497-499, 517
ExtenderControlEvent attribute, 489
ExtenderControlProperty

attribute, 489

Index586

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 587

extenders
base classes for, 491-494
controls
animations, 532-543
attaching, 231-233
design-time support, 524-532

ImageRotator, 227, 332-337
TextBoxWaterMark, 497

extending
ASP.NET 2.0 AJAX Extensions, xxx
built-in types, 52
arrays, 5559
booleans, 52
dates and numbers, 53
strings, 54-55

Function objects, 65
Microsoft AJAX Library
classes, 60-67
enumerations, 72-78
inheritance, 78-87
interfaces, 67-72

F
factory, HTTP handlers, 562-565
FadeAnimation properties, 534
Fielding, Roy, 373
files
AjaxControlExtender.vsi, 484
default resource, 271
JavaScript
embedding, 215
loading, 355-363

machine.config, 429
scripts, 476-477
web.config, 429

Filter.es-MX.js script tag, 315
Filter.js file, 310
Filter.Res object, 312
filtering
amounts, defining, 308
Transactions page, 294

finally blocks, 28
findComponent method, 179
first-class objects, 5
folders
accessing, 440
Animation, 485
Common, 485
ExtenderBase, 485

for…in loops, 11
forceLayoutInIE property, 536
forEach method, 56-57
form feed characters, 8
format method, 55
formatting
English, 278
numbers, 279
objects, defining, 289
strings, 288

forms, authentication, 426-429
forward references, configuring, 197
fps property, 536
frameworks, server components,

394-400
French
culture Transaction page, 276
error messages, 295
local resource file, 275

Function.createDelegate method, 114
Function object, 5
extending, 65
types, declaring, 62-65

functionality
ASP.NET 2.0 Provider Model,

429-431
duplicate, 495
ScriptControl class, adding, 233-246
WebControl class, 234

functions
anonymous, generating, 34
arguments, 16-25
checkAmounts, 310

http://lib.ommolketab.ir
http//lib.ommolketab.ir

creating, 5, 541
get_OnLoadBehavior, 541
objects, 11
onComplete, 419
private, 555
scope, inducing, 36
SetSecurityMessage, 442
troubleshooting, 33
_validateParams, 557

G
Generate Local Resources tool, 268
generating
anonymous functions, 34
HTML, 241

GenericAnimationBehavior
class, 541

getBaseType, 84
getBounds, 104
getComponents method, 184-185
getInterfaces type, 87
getLocation, 104
GetPropertyValue method, 516
GetScript method, 213
GetScriptDescriptors method, 488
GetTransactions method, 260-261
get_ prefix, 66
get_OnLoadBehavior function, 541
get_text method, 244
globalization, scripts, 281-293
globally handling errors, 29
GridView control transactions, 259

H
handlers
adding, 541
errors, 130
events
predefining, 147
wrapping in delegates, 147

HTTP, 396-398, 477, 560-565

headers, Accept-Language, 262
HeaderText property, 271
hexadecimal sequences

(2 hex digits), 8
hierarchies
CompositeControl class, 248
ExtenderControl class, 222

horizontal tabs, 8
Hovercard server controls, 341-351
HTML (Hypertext Markup

Language) generation, 241
HTTP (Hypertext Transfer Protocol)
handlers, 396-398, 477, 560-565
modules, 398, 565-568
REST, 372-373

HttpApplication events, 566

I
IHttpHandlerFactory interface, 563
IHttpModule interface, 565
IIS (Internet Information Service),

registering, 385
Image URL Collection Editor, 529
Image URL Editor, 530
ImageRotator extender, 227
creating, 514-517
troubleshooting, 332-337

ImageURL Editor, 242
implementing
interfaces, 78-87
services, 381

implementsInterface type, 86
implicit arguments, 21
implicit conversion, 14
inferences, 549
inheritance, 46-49
components. See components
ExtenderControlBase class, 518-520
ExtenderControl class, 226-229
initializing, 64
interfaces, 68

Index588

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 589

Microsoft AJAX Library, 78-87
properties, accessing, 47
ScriptControl class, 240-243
types, 226

init events, 190, 364-367
initialize method, 129-130, 300
initializeBase method, 64
initializeBaseType function, 46
initializeBaseType method, 47
InitializeCulture method,

265-266, 283
initializing
components, 339
inheritance, 64
messages, 327
routines, 185-191, 195-198
Sys.Application, 136

InlineScript property, 385
installing Ajax Control Toolkits, 484
instances
objects, creating, 9
parameters, creating, 42
properties, adding, 40
System.Globalization.CultureInfo,

262
IntelliSense, 547
client libraries, 549
references, 548-549
troubleshooting, 550

interfaces
APIs, 375
membership login, 436
roles, 443

IHttpHandlerFactory, 563
IHttpModule, 565
implementing, 78-87
IScriptControl, 247-254
IService1, 377
Microsoft AJAX Library, 67-72
public, declaring, 65-66
REST, 372-373

service contracts, 377
Sys.Component class, 125, 129
creating components, 134-151
defining new components, 129-134

Sys.Icontainer class, 177
internals
controls
creating, 250
rendering, 251

GetScript method, 213
Sys.Application, 170

Internet Explorer, Operation Aborted
error, 192

interpreting JavaScript, 5
intervals
clearing, 336
delayed code execution, 30-38

invalidationOperation error, 70
InvalidNumberMessage resource

file, 304
Invariant culture, 286
IscriptControl interface, 247-254
IService1 interface, 377
isImplementedBy type, 87
isNaN method, 311
isIntanceOfType, 84
IsReusable property, 561
isUserInRole method, 455
items, accessing enumerations, 73

J
JavaScript
APIs, 533-536
arguments, 16-20
attributes, 4-6
classes, 483
delayed code execution, 30-38
error handling, 25-29
files, embedding, 215
functions, arguments, 21, 24-25

http://lib.ommolketab.ir
http//lib.ommolketab.ir

localization, 277
dates, 279-280
numbers, 278-279

object-oriented programming, 39-49
objects, 9-15
overview of, 4
primitive data types, 6
statements and files, loading, 355-363
types, extending built-in, 52-59

JavaScript Object Notation.
See JSON

JavaScriptSerialize, 389
JSON (JavaScript Object Notation),

12-14, 531
parameters, 470
serialization, 388-394

K–L
keywords, yield, 225
KnownType attribute, 392, 412-413

labels, transactions, 259
languages, 4-6. See also JavaScript
libraries. See also Microsoft

AJAX Library
ATL (ActiveX Template Library), 524
clients, IntelliSense, 549
Extender Control template, 514-517
parameterArray, 558
references, IntelliSense, 548-549
templates, extender controls, 223-225

lifecycles, applications, 394-395,
559-560

line numbers, 29
load events, Sys.Application class,

198-203
loadHandler method, 367
loading JavaScript statements and

files, 355-363
local resources, 268-276
localeFormat method, 55

localization
ASP.NET AJAX, 277-288
determining what needs to be

localized, 257-261
displayed values, 267-276
JavaScript, 277
dates, 279-280
numbers, 278-279

overview of, 255-256
running under particular cultures,

261-266
scripts, 293-315
static file models, 315

Localization.Transaction type, 260
logins
clients, 451
membership APIs, 436

Lookup method, 402
loops, for…in, 11

M
machine.config file, 429
maintenance
Profile Maintenance page, 457
profiles, 447
scope, Microsoft AJAX Library,

112-116
make parameter, 22
Manage User screen, 437
management
application lifecycles, 559-560
components, 123, 177-185
roles, 439-441
users, 438
Web Site Administration Tool,

431-432, 437
manual disposal, 340-355
master pages, 218
maximumOpacity property, 536
mechanisms, try-catch-finally, 25-27

Index590

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 591

members
internal, Sys.Application, 170
private
accessing, 81
default values, 41
defining, 300

public, defining, 42
Sys.Component class, 126
Types, defining, 41

membership, ASP.NET 2.0, 425-437
merging .NET ScriptComponent-

Descriptor classes, 210-213
messages
debugging, 325
ErrorHandle components, 354
error alerts, 302
initialization, 327

meta:resourcekey tags, 272-273
metadata services, 469
methods
$find, 180
add_init, 195, 364
AddAttributesToRender, 343
addComponent, 177
AddComponentProperty, 211
AddElementProperty, 211
AddScriptproperty, 212
Animation class, 504
arrays, extending, 55-59
base class
accessing, 80
calling, 82
ErrorHandler components, 132-133
executing, 48
overriding, 81

beginCreateComponents, 189
beginUpdate, 129
bubbleSort, 68
defining, 70
testing, 71

clickEventHandler, 114-115

curry, 36
declarative, animations using,

537-543
deserialize, 416
dispose, 130, 300
doInitialize, 189
editorAddedHandler, 92
endUpdate, 129
findComponent, 179
forEach, 56-57
format, 55, 301
Function.createDelegate, 114
get_text, 244
getComponents, 184-185
GetPropertyValue, 516
GetScript, 213
GetScriptDescriptors, 488
GetTransactions, 260-261
initialize, 129-130, 300
initializeBase, 64
initializeBaseType, 47
InitializeCulture, 265-266, 283
isNaN, 311
isUserInRole, 455
loadHandler, 367
localeFormat, 55
Lookup, 402
Membership class, 434
notifyScriptLoaded, 216
_onBlur, 302
onBubbleEvent, 154
_onFocus, 302
pageload, 201
pages, 386-387
parameters
validating, 555-558
zero, 31

parse, 52, 75-78
parseLocale, 284-285
ProcessRequest, 467, 561
raiseBubbleEvent, 154

http://lib.ommolketab.ir
http//lib.ommolketab.ir

recursive anonymous, 24
registerClass, 86
registerDisposableObject, 204-205
registerEnum, 74
registerInterface, 68
registration, ScriptManager, 355-361
removeComponent, 183-184
Render, 236
RenderContents, 240
rotateImage, 230
ScriptComponentDescriptor class,

211, 488-489
serialize, 416
set_parent, 153
shortcuts, 104
string.format, 288
strings, extending, 54-55
Sys.Application, 172-175
Sys.Application.notifyScriptLoaded(),

362-363
Sys.Component class, 127
Sys.Component.create, 135
Sys.Debug, 96
Sys.EventHandlerList, 89
Sys.Services.AuthenticationService

class, 449
Sys.Services.ProfileService class, 456
Sys.Services.RoleService class, 453
Sys.StringBuilder, 95
Sys.UI.Behavior class, 159
Sys.UI.Control class, 152
Sys.UI.DomElement, 101
Sys.UI.DomEvent, 109
toLocaleString, 279
toString, 77
unregisterDisposableObject, 205
WebRequest class, 417
WebServiceProxy class, 415
window.clearTimeout, 30
window.pageLoad, 203
XML comments, 551-554

Microsoft AJAX Library, xxix
architecture, 401
serialization, 415-416
service proxies, 401-415
WebRequest class, 417-424

programming, 51-52, 60
classes, 60-67
enumerations, 72-78
extending built-in types, 52-59
inheritance, 78-87
interfaces, 67-72

scope, 112-116
types, 88
Sys.Debug, 96-101
Sys.EventHandlerList, 88-94
Sys.StringBuilder, 94-95
Sys.UI.DomElement, 101-106
Sys.UI.DomEvent, 107-111

minimumOpacit property, 536
models
ASP.NET 2.0 Provider Model,

429-431
equality, 16
Prototype, 60
classes, 60-67
enmuerations, 72-78
inheritance, 78-87
interfaces, 67-72

Web Application Project Model, 445
modifying
DOM, 192
enumerations, 72
multiple handlers, 91
namespaces, 407
prototypes, 44
types, 412

modules
HTTO, 565-568
HTTP, 398
ScriptModule, 398

Index592

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 593

Mozilla Foundation
implementation, 4

multiple handlers, modifying, 91
multiple interfaces, implementing,

85-87
MyHandler.axd path, 562
MyHandlerFactory class, 563

N
names
events, 212
properties, 210

namespaces
CommunicationSupport, 466
declaring, 61-62
modifying, 407
System.Runtime.Serialization, 389

naming
containers, 249
operations, 408
properties, 489

.NET
classes, 483
merging, 210-213

Netscape, 4
new communication paradigm,

372-373
new components, defining, 129,

132-134
new line characters, 8
nonPositive error, 59
nonstandard error properties, 26
normalizing
event, 111
events, 108

notation
JSON, 12-14
parameters, 470
serialization, 388-394

Object Literal Notation, 11
notifyScriptLoaded method, 216

notImplemented error, 68
null, 18
assigning, 12

Number.parseLocaleFixed, 299
NumberOnlyTextBox type, 164
numbers, 7
extending, 53
JavaScript, localization, 278-279
line, 29
script globalization, 282

O
Object Literal Notation, 11
object-oriented JavaScript

programming, 39-49
objects
components. See components
Error, 27
first-class, 5
formatting, defining, 289
Function

declaring types, 62-65
extending, 65

functions, 11
inheritance, 46-49
instances, creating, 9
JavaScript, 9-15
JSON serialization, 388-394
properties, 10
prototypes, modifying, 44
serializing, 416
Type, 61
wrappers, 53
XMLHTTP, 423

octal sequences (3 digits), 8
onBubbleEvent method, 154
OnClientClick, 310
onComplete function, 419
OnLoad event, 537
onSuccess callback function, 403
operation aborted errors, 191

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OperationContract attribute, 407
operations, naming, 408
operators, equality, 16
output, HoverCard server controls,

343-351
overriding base class methods, 81

P
pageload method, 201
pages
controls, adding, 246
methods, 386-387
script references, 397

Parallel animations, 502
param element attributes, 553
parameterArray, 558
parameters
$create method, 136
constructors, 41, 63
events, applying, 145-148
instances, creating, 42
JSON, 470
make, 22
methods
validating, 555-558
zero, 31

properties, 140-145
references, applying, 149-150
types, applying, 136-139

parent properties, controls, 153
parentNode pointer, 153
parse method, 52, 75-78
ParseChildren attribute, 526
parseLocale method, 284-285
partial page rendering, 318
partial postbacks, 195, 318-324
effects of, 324-328
automatic disposal, 329-339
manual disposal, 340-355

viewing, 322
passing in dictionaries, 116

paths
MyHandler.axd, 562
ScriptResource.axd, 306

patterns
JSON serialization, 388-394
REST, 372-373

placement of references, 548
pointers, parentNode, 153
popStackFrame error, 59
post back, definition of, 372
PostAcquireRequestStat event, 566
PostAuthenticateRequest event, 566
PostAuthorizeRequest event, 566
postbacks
partial, 195
viewing, 322

PostMapRequestHandler event, 566
PostReleaseRequestState event, 567
PostRequestHandlerExecute

event, 566
PostResolveRequestCache event, 566
PostUpdateRequestCache event, 567
predefining
event handlers, 147
functions, 31

prefixes, 148
properties, 66

PreRequestHandlerExecute
event, 566

preventing automatic disposal of
components, 351-355

primitive data types, 6, 14
privacy, 63
private functions, 555
private members
accessing, 81
default values and, 41
defining, 300

ProcessData IntelliSense, 550
processing method results, 471-473
ProcessRequest method, 561

Index594

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 595

Profile Maintenance page, 457
ProfileBase class, 445
profiles
ASP.NET 2.0, 425-433
services, 456-459

programming
APIs, 375
JavaScript
arguments, 16-20
attributes, 4-6
delayed code execution, 30-38
error handling, 25-29
function arguments, 21-25
object-oriented, 39-49
objects, 9-15
overview of, 4
primitive data types, 6

Microsoft AJAX Library, 51-52, 60
classes, 60-67
enumerations, 72-78
extending built-in types, 52-59
inheritance, 78-87
interfaces, 67-72
scope, 112-116
Sys.Debug type, 96-101
Sys.EventHandlerList type, 88-94
Sys.StringBuilder type, 94-95
Sys.UI.DomElement type, 101-106
Sys.UI.DomEvent type, 107-111
types, 88

properties
$create statements, assigning, 243
accessing, 47
Animation class, 503
callee, 24
caller, 24
ClientPropertyName, 489
constructor, 15
CurrentCulture/CurrentUICulture,

262
defining, 300

designers, adding to, 526-532
editors, adding to, 526-532
EnableScriptLocalization, 293
Expando, 12, 75
extender controls, 525
ExtenderControlBase class, 492
HeaderText, 271
InlineScript, 385
instances, adding, 40
IsReusable, 561
localization, 271
Membership class, 433
naming, 210, 489
nonstandard error, 26
objects, 10
parameters, applying, 140-145
parent controls, 153
prefixes, 66
proxy class, 404
Roles class, 442
ScriptReference class, 217
ServiceReference, 385
standard error, 26
Sys.CultureInfo class, 290
Sys.Net.XMLHttpExecutor class, 422
Sys.Services.AuthenticationService

class, 449
Sys.Services.ProfileService class, 456
Sys.Services.RoleService class, 453
undefined, 41
WebControl class, 236
WebRequest class, 417
WebServiceError class, 403
WebServiceProxy class, 415

properties property, 456
protocol-based methods, defining, 43
protocols, HTTP
handlers, 396-398
modules, 398
REST, 372-373

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Prototype Model, 60
classes, extending, 60-67
enumerations, extending, 72-78
inheritance, extending, 78-87
interfaces, extending, 67-72

prototypes, 44
serialization, 416

proxy classes, services, 401-415,
473-477

public interfaces, declaring, 65-66
public members, defining, 42
publishing errors, 27

Q–R
raiseBubbleEvent method, 154
raising events, 91
raw events, accessing, 112
reading JSON data, 390
reconstructing method calls, 469-471
recursive anonymous methods, 24
references
assigning, 149
configuring, 196-198
designers, 527
IntelliSense, 548-549
page scripts, 397
parameters, applying, 149-150
types, 548

regions, 255. See also localization
registerClass method, 86
registerDisposableObject method,

204-205
registerEnum method, 74
registerInterface method, 68
registration
animation scripts, 533
classes, 79
enumeration, 74
globalization script blocks, 291
HTTP Handler, 562-565
methods, ScriptManager, 355-361

product class, 409
ScriptManager control, 218-219
scripts, 220, 509
services, 384-385
types, 66-67

ReleaseRequestState event, 567
removeComponent method, 183-184
Render method, 236
RenderContents method, 240
rendering
internal controls, 251
partial page, 318

Representational State Transfer
(REST), 372-373

requests
HTTP
handlers, 560-565
modules, 565-568

timeouts, 405
RequiredProperty attribute, 489
RequiredScripts attribute, 538
requirements, registration, 67
ResolveRequestCache event, 566
resources
local, 268-276
REST, 372-373
scripts, 214-219

REST (Representational State
Transfer), 372-373

restricting access, using roles, 441
retrieving components, 184-185
roles
ASP.NET 2.0, 425-433
services, 453-454

RootNamespace.PathTo-
JavaScriptFile, 216

rotateImage method, 230
routines
Sys.Application, initializing, 185-198
unload, Sys.Application, 203-206

Index596

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 597

S
sample website, 485
scope
anonymous functions, 34
Microsoft AJAX Library, 112-116
troubleshooting, 35
variables, 16-18

script-generation architecture, 208
behavior and control, 208-218
resources, 214-219

ScriptBehaviorDescriptor class,
213, 389

ScriptComponentDescriptor class,
210-213, 389

methods, 488-489
ScriptControl class, 233-246, 322,

491-494
ScriptControlBase class, 495
ScriptControlDescriptor class, 208,

214, 389
ScriptHandlerFactory class, 396
ScriptManager class, 218-219
page methods, configuring, 387
registration methods, 355-361
services, registering, 384

ScriptManagerProxy control, 218-219
ScriptModule module, 398
ScriptReference class, 216
ScriptReference values, 490-491
ScriptResource attribute, 305
ScriptResource.axd paths, 306
ScriptResourceHandler, 307, 396
scripts
animation
calling, 534-536
registration, 533

caching, 306
controls, creating, 237-246
dispose, 337-339
files, 476-477
Filter.es-MX.js, 315

globalization, 281-293
JSON, 12-14
localization, 293-315
page references, 397
registering, 509

SearchCriteria class, 381
searching components, 179-183
security, Forms authentication,

426-429
Sequence animations, 502
serialization
ASP.NET 2.0 AJAX Extensions,

388-394
DataContractJsonSerializer, 531
Microsoft AJAX Library

communication architecture,
415-416

type converters, creating to support,
530-532

serialize method, 416
server-based architecture, Toolkit

(ASP.NET AJAX Control), 486
attributes, 486-491
base classes for extenders, 491-494
designer classes, 495-499

server-side JavaScript. See SSJS
servers
controls, xxvii, xxxiii
ErrorHandler, 571-572
HoverCard, 341-351

framework components, 394-400
Service1 class, 377
ServiceCommunication

assembly, 477
ServiceHandlerFactory HTTP

handler factory, 462
ServiceReference class

properties, 385
services
AJAX-enabled WCF, 382
applications, customizing, 460-478

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ASP.NET 2.0, 425-433
ASP.NET AJAX application

services, 448
authentication, 448-452
profiles, 456-459
roles, 453-454

contracts, 376-378
creating, 381-383

implementing, 381
metadata, 469
proxies, 401-415
proxy classes, 473-477
registering, 384-385
web, 375-386
Web Site Administration Tool,

431-437
set_parent method, 153
SetSecurityMessage function, 442
setTimeout, 31
shortcuts, methods, 104
signatures, methods, 211
SimpleBehavior, 329
SimpleComponent control, 327
SimpleWCFService proxy class, 473
single quote (‘), 8
skeletons, creating, 129-130
Spanish
culture Transaction page, 276
error messages, 315
local resource file, 275

special characters, 8
special number values, 7
SSJS (server-side JavaScript), 4
stacks, call, 190
StackTrace Client class, 572-573
standard error properties, 26
standards, ECMAScript, 4
starting initialization routines, 186
state, 493

statements
$create, assigning properties, 243
Error.create, 59
JavaScript, loading, 355-363
try-catch, 26

static file models, 315
string.format method, 267, 288
strings, 8
concatenation, 9
data format, 289
extending, 54-55
JSON, 531
script globalization, 288-290
variables, declaring, 8
viewing, 268-276

structures
animations, 502-503
execution, 502

styles, WebControl class, 236
summary tag, 551
Sun Microsystem Java programming

language, 4
support
animations, 483
declarative methods, 538
extender controls, adding

design-time to, 524-532
IScriptControl interfaces, 252
type converters, creating, 530-532

syntax, declarative methods, 537
Sys.Application class, 169
components, managing, 177-185
creating, 170-172
events, 364-367
initialization routines, 136, 185-198
load events, 198-203
method information, 172-175
type information, 172
unload routines, 203-206

Index598

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 599

Sys.Application.dispose, 203-206
Sys.Application.notifyScriptLoaded()

method, 362-363
Sys.ApplicationLoadEventArgs

members, 199
Sys.Component class, 125, 129
components, 134-151
new components, defining, 129-134

Sys.Component.create method, 135
Sys.CultureInfo class, 290-293
Sys.Debug type, 96-101
Sys.EventArgs class, 93
Sys.EventHandlerList type, 88-94
Sys.IContainer interface, 177
Sys.Net.WebProxy class, 449, 456
Sys.Net.WebRequestManager

class, 422
Sys.Net.XMLHttpExecutor class, 422
Sys.Serialization.JavaScript-

Serializer, 415
Sys.Services.AuthenticationService

class, 449
Sys.Services.ProfileService class, 456
Sys.Services.RoleService class, 453
Sys.StringBuilder type, 94-95
Sys.UI.Behavior class, 208-218
creating, 229-230
method, 159

Sys.UI.Behavior template class, 225
Sys.UI.Control class, 122, 152,

208-218, 244-246
Sys.UI.DomElement type, 101-106
Sys.UI.DomEvent type, 107-111
System.ComponentModel.

EventHandlerList, 89
System.Globalization.CultureInfo

instance, 262
System.Runtime.Serialization

namespace, 389
System.ServiceModel.Activation.

HttpHandler, 397-398
System.Web.UI.Design.ToolboxItem

attribute, 539

T
tags
div, wrapping HoverCards in, 346
Filter.es-MX.js, 315
meta:resourcekey, 272-273
summary, 551

target property, 536
templates
AJAX-enabled WCF service, 382
ATL, 524
Extender Control library, 514-517
libraries, extender controls, 223-225

testing
bubbleSort method, 68-71
error pages, 574-575

TestType, defining, 83
TextBoxInfo class, 244-246
TextBoxInfo control, 240
TextBoxWaterMark extender, 497
throwing errors, 27, 59-60
timeouts, 190
delayed code execution, 30-38
requests, 405

toLocaleString method, 279
Toolkit (ASP.NET AJAX Control)

architecture, 481
animations, 501-512
client-based, 499-501
composition of, 483-486
overview of, 482-483
server-based, 486-499

Toolkit library project, 484-485
tools
ASP.NET AJAX Control Toolkit, xxx
Generate Local Resources, 268
Web Site Administration Tool,

431-440
toString method, 77
tracing Sys.Debug, 97-98
TransactionDataSource, 260

http://lib.ommolketab.ir
http//lib.ommolketab.ir

transactions
GridView control, 259
labels, 259
localization, 257

Transactions.aspx file, 257-260,
271-273

Transactions class, 260-261, 294
transfers, REST, 372-373
troubleshooting
DOM, modifying, 192
functions, 33
ImageRotator extenders, 332-337
IntelliSense, 550
operation aborted errors, 191
page methods, 387
scope, 35
variables, 33

try-catch-finally mechanism, 25, 27
try-catch statements, 26
types
animations, 502-503
behaviors, 159-161
creating, 162-167
defining, 161-162

built-in
arrays, 55-59
booleans, 52
dates and numbers, 53
extending, 52
strings, 54-55

of contracts, 376
data, 378-379
service, 376-378

controls
creating, 157-159
defining, 155-157

converters, creating, 530-532
data, abstract, 40-45
declaring, 62-65
defining, 40, 63
EventArgs, creating custom, 93

getBaseType, 84
getInterfaces, 87
information
JSON, 392
Sys.Application, 172

inheritance, 226
inheritsFrom, 83
instanceOfType, 84
isImplementedBy, 87
of JavaScript, 4
KnownType attribute, 412-413
Localization.Transaction, 260
members, defining, 41
Microsoft AJAX Library, 88
Sys.Debug, 96-101
Sys.EventHandlerList, 88-94
Sys.StringBuilder, 94-95
Sys.UI.DomElement, 101-106
Sys.UI.DomEvent, 107-111

modifying, 412
NumberOnlyTextBox, 164
parameters, applying, 136-139
primitive data, 6, 14
references, 548
registration, 66-67
Type object, 61

U
undeclared variables, 18
undefined arguments, 18, 22
undefined properties, 41
underscore (_), 64
unhandled exceptions, 28-29
Unicode sequence (4 hex digits), 8
Uniform Resource Identifiers.

See URIs
unload routines, Sys.Application

class, 203-206
unregisterDisposableObject

method, 205

Index600

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 601

UpdatePanel
behavior, 318-324
JavaScript statements and files,

loading, 355-363
partial postbacks
effects of, 324-328
automatic disposal, 329-339
manual disposal, 340-355

UpdateRequestCache event, 567
URIs (Uniform Resource

Identifiers), 380
UrlProperty attribute, 241
UserProfile class, 445
users
adding, 437
ASP.NET 2.0, 425-433
editing, 438
managing, 438

V
validating
method parameters, 555-558
parameterArray, 558

values
displayed, localizing, 267-276
private members, 41
ScriptReference, 490-491
special number, 7
undefined, 18

variables
adding, 540
arguments, 16-20
__cultureInfo, 292
strings, declaring, 8
troubleshooting, 33

view state, 493
viewing
error messages, 302
partial postbacks, 322
strings, 268-276

Visual Studio
control library template, 237-240
Extender Control library template,

223-225, 514-517
IntelliSense, 547
client libraries, 549
references, 548-549
troubleshooting, 550

resource files, 304

W
WCF (Windows Communication

Foundation), 375-386, 486
WCFHandler class, 465
Web Application Project Model, 445
web applications, xxvii
configuring, 398-400

web.config file, 429
Web Development Helper, 322
web services, 375-386
ErrorDataService, 574

Web Site Administration Tool,
431-432, 437

role management, 440
WebControl class, 234
WebRequest class, 417-424
WebResource attribute, 216
WebServiceError class

properties, 403
WebServiceProxy class

properties, 415
Website Administration Tool

Security tab, 432
websites
samples, 485
Toolkit, 486

window.pageLoad method, 203
Windows Communication

Foundation (WCF), 375-386, 486

http://lib.ommolketab.ir
http//lib.ommolketab.ir

wizards, Extender Control Wizard,
231-233, 523

wrappers, objects, 14, 53
wrapping
event handlers in delegates, 147
HoverCards in div tags, 346

writing JSON data, 391

X–Z
XML (Extensible Markup Language)

comments, 551-554
XMLHTTP object, 423

yield keyword, 225

zero parameter methods, 31

Index602

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Contents
	Acknowledgments
	About the Authors
	I: Client Code
	1 Programming with JavaScript
	Generally JavaScript
	Strings
	Object-Oriented JavaScript Programming

	2 Microsoft AJAX Library Programming
	Extending the Built-In JavaScript Types
	Extending the Microsoft AJAX Library
	Important New Types
	Maintaining Scope

	II: Controls
	3 Components
	Components Defined
	Sys.Component
	Controls
	Behaviors

	4 Sys.Application
	Background Information
	Component Manager
	Initialization Routine
	The Unload Routine

	5 Adding Client Capabilities to Server Controls
	Script-Generation Architecture
	Adding Client-Side Behavior Using the ExtenderControl
	Adding Client-Side Functionality Using the ScriptControl
	Adding Client-Side Functionality to Composite Controls Using the IScriptControl Interface

	6 ASP.NET AJAX Localization
	Localization in ASP.NET
	Localization in ASP.NET AJAX

	7 Control Development in a Partial Postback Environment
	UpdatePanel Behavior
	The Effects of a Partial Postback on Client Components
	Loading of JavaScript Statements and Files
	Sys.Application Events

	III: Communication
	8 ASP.NET AJAX Communication Architecture
	New Communication Paradigm
	ASP.NET AJAX 2.0 Extensions Communication Architecture
	Microsoft AJAX Library Communication Architecture

	9 Application Services
	ASP.NET 2.0 Membership, Role, and User Profile Services
	ASP.NET AJAX Application Services
	Custom Application Services

	IV: AJAX Control Toolkit
	10 ASP.NET AJAX Control Toolkit Architecture
	Overview of the Toolkit
	Composition of the Toolkit
	Server-Based Architecture
	Client-Based Architecture
	Animations

	11 Adding Client Capabilities to Server Controls Using the ASP.NET AJAX Control Toolkit
	Adding Client-Side Behavior Using the ExtenderControlBase
	Adding Design-Time Support to Your Extender Control
	Adding Animations to Your Extender Control

	V: Appendixes
	A: JavaScript in Visual Studio 2008
	IntelliSense
	XML Comments

	B: Validating Method Parameters
	C: ASP.NET Handlers and Modules
	ASP.NET Application Lifecycle
	HTTP Handlers
	HTTP Modules

	D: Client Error Handling Code
	ErrorHandler Client Class
	ErrorEventArgs Client Class
	ErrorHandler Server Control
	StackTrace Client Class
	ErrorDataService Web Service
	Test Error Page

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K–L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Z

