
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Laurence Moroney

Foundations
of Atlas
Rapid Ajax Development
with ASP.NET 2.0

6471fmfinal.qxd 5/10/06 11:23 PM Page i

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Foundations of Atlas: Rapid Ajax Development with ASP.NET 2.0

Copyright © 2006 by Laurence Moroney

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-647-0

ISBN-10 (pbk): 1-59059-647-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Keith Smith
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: Nancy Sixsmith
Indexer: Michael Brinkman
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

6471fmfinal.qxd 5/10/06 11:23 PM Page ii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This book is dedicated to my brother, Niall, all-round cool guy and

great big brother, as well as provider of free accommodation

whenever I visit Ireland; to his wife, Sandra, among the warmest

and most loving people I have ever met; to his son, Sean, the local

guitar god; and to his daughter, Aideen, the sweetest girl in Ireland.

6471fmfinal.qxd 5/10/06 11:23 PM Page iii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6471fmfinal.qxd 5/10/06 11:23 PM Page iv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents at a Glance

Foreword . xiii

About the Author . xv

About the Technical Reviewer . xvi

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 Introducing Ajax . 1

■CHAPTER 2 Atlas: Taking Ajax to the Next Level . 17

■CHAPTER 3 Atlas: Making Client-Side JavaScript Easier . 33

■CHAPTER 4 Introducing Client Controls in Atlas . 53

■CHAPTER 5 Using Client Controls in Atlas . 77

■CHAPTER 6 Introducing Server Controls in Atlas . 125

■CHAPTER 7 Using Server Controls in Atlas . 165

■CHAPTER 8 Data Binding in Atlas . 197

■CHAPTER 9 Using the AtlasUIGlitz Library . 231

■CHAPTER 10 Mapping with Atlas . 249

■CHAPTER 11 Building a Sample Application with ASP.NET and Atlas 269

■INDEX . 305

v

6471fmfinal.qxd 5/10/06 11:23 PM Page v

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6471fmfinal.qxd 5/10/06 11:23 PM Page vi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents

Foreword . xiii

About the Author . xv

About the Technical Reviewer . xvi

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 Introducing Ajax . 1

Delving into the History of Web Application Technology. 1

Thin Client Applications Arriving to Save the Day . 8

Ajax Entering the Picture . 9

Using the XMLHttpRequest Object . 10

Using Visual Studio 2005 . 12

Seeing a Simple Example in Action . 12

Summary. 15

■CHAPTER 2 Atlas: Taking Ajax to the Next Level . 17

Introducing ASP.NET 2.0 Server Controls . 17

Introducing the Atlas Architecture . 22

Atlas Client Script Library . 23

JavaScript Object Notation (JSON) . 24

Atlas Web User Interfaces . 24

Atlas Web UI Data Binding . 25

Creating Atlas Components . 28

Atlas Behaviors. 30

Summary. 31

■CHAPTER 3 Atlas: Making Client-Side JavaScript Easier 33

Using JavaScript in Atlas . 33

Creating Your First Atlas Application . 33

Adding a Custom JavaScript Class . 35

Using the Atlas Script Manager to Deliver Your Custom Class 37

Coding and Running the Application. 41
vii

6471fmfinal.qxd 5/10/06 11:23 PM Page vii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Namespaces in JavaScript . 43

Using Inheritance in JavaScript. 44

Implementing Interfaces in JavaScript . 46

Accessing Server Resources from JavaScript . 48

Summary. 52

■CHAPTER 4 Introducing Client Controls in Atlas . 53

Seeing a Basic Example in Action . 53

Using the Atlas UI Client Controls . 56

The UI Control . 56

The Label Control. 57

The Button Control. 59

The InputControl Control. 60

The TextBox Control . 62

The Image Control . 63

The HyperLink Control. 64

The CheckBox Control. 66

The Select Control . 67

Using Atlas Script . 69

Summary. 76

■CHAPTER 5 Using Client Controls in Atlas . 77

Manipulating Controls Using CSS . 77

Using JavaScript . 78

Using Atlas Script. 83

Manipulating Controls Directly . 87

Using JavaScript to Manipulate Controls Directly 87

Using Atlas Script to Manipulate Controls Directly. 89

Data Binding with a Transform . 92

Using Atlas Script. 92

Using JavaScript . 94

Data Binding with a Custom Transform. 95

Performing JavaScript Custom Binding. 100

Performing Basic Text Validation—Required Fields 103

Performing Basic Text Validation—Checking for Types and Ranges. . . 106

Using the Click Behavior . 111

Using the Mouse Hover Behavior . 113

■CONTENTSviii

6471fmfinal.qxd 5/10/06 11:23 PM Page viii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Pop-up Behavior When You Hover Over an Element 116

Implementing Drag-and-Drop Behaviors . 119

Summary. 123

■CHAPTER 6 Introducing Server Controls in Atlas. 125

Adding the Atlas Server Controls to Visual Studio 2005 125

Creating an Atlas Web Site. 125

Adding the Server Controls to the Toolbox . 126

Introducing the ScriptManager Control . 129

Using the ScriptManager Designer Interface 129

Programming with the Script Manager . 130

Introducing the ScriptManagerProxy Control . 138

Introducing the UpdatePanel Control . 141

Using the UpdatePanel Designer. 142

Programming with the UpdatePanel. 144

Introducing the UpdateProgress Control . 146

Introducing Control Extenders . 147

Introducing the AutoCompleteExtender . 147

Using the DragOverlayExtender. 148

Introducing the ProfileScriptService Control . 152

Introducing the Timer Control . 153

Introducing the Gadget Control . 155

Summary. 163

■CHAPTER 7 Using Server Controls in Atlas . 165

Using the UpdatePanel Control . 165

Using a Task List Manager . 168

Using the Atlas Wiki Application . 180

Getting Started with the Wiki Application . 180

Running the Wiki Application . 182

Understanding the Login Asynchrony. 184

Creating a Wiki User . 187

Understanding the Create Article Asynchrony 191

Understanding the Table of Contents Asynchrony 193

Summary . 196

■CONTENTS ix

6471fmfinal.qxd 5/10/06 11:23 PM Page ix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■CHAPTER 8 Data Binding in Atlas . 197

Introducing the Sys.Data Controls . 198

Introducing the DataSource Control . 198

Introducing the DataView Control . 199

Introducing the DataTable Control . 199

Introducing the DataColumn Control . 200

Introducing the DataRow Control . 201

Introducing the Sys.UI.Data Controls . 201

Introducing the ItemView Control . 201

Introducing the ListView Control . 203

Getting Started with Data Binding . 205

Using the DataSource Control . 212

Reading and Writing Data from a DataSource Control 221

Summary. 230

■CHAPTER 9 Using the AtlasUIGlitz Library . 231

Using Opacity . 231

Using Layout Behaviors . 233

Using Fade Animations. 234

Using Length Animations . 238

Using Number Animations . 241

Using Discrete Animations. 244

Summary. 247

■CHAPTER 10 Mapping with Atlas . 249

Seeing Some Mapping Functionality in Action . 249

Getting Started with Atlas Maps . 250

Programming the Map Control . 257

Setting Longitude and Latitude . 257

Setting the Zoom Level . 259

Choosing a Map Type . 260

Panning to a Location . 263

Panning by an Amount . 265

Using Pushpins . 266

Summary . 268

■CONTENTSx

6471fmfinal.qxd 5/10/06 11:23 PM Page x

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■CHAPTER 11 Building a Sample Application with ASP.NET and Atlas . . . 269

Understanding the Application Architecture . 270

Creating the Company Information Pane . 272

Creating the Price History Pane. 280

Generating the Price History Graph. 285

Generating an Analytics Graph . 293

Using Atlas Client Controls for an Enhanced UI . 298

Summary. 303

■INDEX . 305

■CONTENTS xi

6471fmfinal.qxd 5/10/06 11:23 PM Page xi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6471fmfinal.qxd 5/10/06 11:23 PM Page xii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Foreword

The last year has seen a series of incredible advances in user experiences on the Web. As the
Web continues to grow as a marketplace for web applications and services, the user experi-
ence has become a key differentiator in attracting and retaining users and in driving revenue
and productivity. This has led to an explosion of richer, more personalized, more interactive
sites that fully exploit the capabilities of the browser platform.

What is all the more remarkable about this trend is that it is built on a technology foun-
dation that has been around for a long time and has only recently acquired the name Ajax.
Microsoft pioneered both Dynamic HTML and CSS in Internet Explorer nearly a decade ago,
and the current edition of the JavaScript language is several years old. And the cornerstone of
Ajax—the XMLHttpRequest object, which enables more flexible communication between the
browser and server—was built into Internet Explorer in 1998 to support pioneering applica-
tions such as Outlook Web Access.

So why has Ajax suddenly started to catch on now? Clearly, the technology has matured
and standardized; Ajax’s capabilities are available on more platforms and browsers than ever
before and can now be found on the vast majority of desktop computers. The computing
power of the desktop computer has also grown significantly. And, finally, the Web itself has
evolved into a rich platform. These trends have, in turn, driven the need to invest in better,
more differentiated experiences.

With these experiences, however, come greater challenges for the developer. It is no
secret that developers often lack the frameworks, tools, and skills to be effective with DHTML
and JavaScript. Differences in browsers are also a frequent cause for trouble. Finally, these
applications are also harder to develop because the Ajax model is inherently asynchronous in
nature. To try to address these kinds of challenges, Ajax libraries have become commonplace,
but few provide a rich framework and the tools that are integrated with today’s web program-
ming models and tools.

When we began building Atlas in the summer of 2005, we set out to build an end-to-end
framework and the tools that would bring unparalleled productivity to web application devel-
opment and make it easy for anyone to build a rich web experience on the standards-based
web client platform. At a high level, we designed Atlas with the following goals in mind:

A rich framework for web experiences: Allow anyone to develop an interactive, personal-
ized web experience by easily wiring together controls and components. Provide a rich
toolbox of built-in components, and allow developers to easily develop their own. Even
developers who are familiar with scripting should benefit from patterns that enable easier
manageability and reuse.

Seamless integration with the .NET programming model: Deliver an end-to-end experience
that allows Atlas applications to have easy access to the richness of the programming
model of ASP.NET and the .NET Framework on the server.

xiii

6471fmfinal.qxd 5/10/06 11:23 PM Page xiii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Choice of server-centric or client-centric application models: Allow developers who use
server-centric models such as ASP.NET to easily enrich their applications with Atlas, with-
out learning scripting or asynchronous client communications. At the same time, allow
anyone to use the richness of Atlas to take full advantage of the browser.

Fully cross-platform and standards-based: We expect that developers using Atlas will want to
build applications that can run on any browser. Atlas is designed to work on a wide variety
of modern browsers and platforms and includes functionality that takes much of the worry
out of browser compatibility. The Atlas Script framework also works with any web server.

No installation footprint: Atlas doesn’t require any new client installation; it works on the
browser you have on your desktop computer today. The Atlas “client” consists of a set of
JavaScript files that are downloaded by the browser like any other web content.

In trying to achieve these goals, we built a free, cross-platform, standards-based framework
that lets you easily build richer, more interactive, more personalized experiences on the Web.

In developing Atlas, we also took an open approach that sets a new example for how we
hope to build developer tools and frameworks at Microsoft. From early in the product cycle, we
began making Atlas available to the developer community as a Community Technology Preview
(CTP) release—the first release was less than eight weeks after the start of the project—and have
continued to release previews every four to six weeks since then. Through these CTPs, we have
gathered an incredible amount of early feedback that has helped shape the product profoundly,
and we are indebted to our developer community for their participation. As we continue to work
toward the full release of Atlas, we have started to invite community partnership in new ways,
such as by releasing the Atlas Control Toolkit, a collection of samples that we will develop in
collaboration with the developer community.

Such an open development model has not come without its growing pains. In the first pre-
view releases of Atlas, we had a raw product with little documentation and few samples. The
small number of early adopters and partners who used Atlas in these early days had to dig deep
to understand it and have stood by us over the months as we developed it into what it is today.

As an author, Laurence was one of those early partners, and his knowledge of the product
clearly shows in this definitive guide to Atlas. This book gives you everything you need to get
started building rich web experiences with Atlas. It covers all the concepts, starting with a clear
explanation of the Ajax model and of ASP.NET. It then guides you through the Atlas framework
in great breadth, exploring the client script framework, the Atlas server controls for ASP.NET,
and the rich toolbox of built-in controls and components.

He covers each topic with a straightforward, step-by-step narrative, accompanied by code
examples and illustrations that present concepts in a clear and practical way. A special feature
is Chapter 11, which illustrates how to apply Atlas effectively to develop a rich real-world
application.

I am very excited about Atlas and the potential it delivers for building rich web experiences.
If you are looking for tools to unleash your creativity and help you build new, differentiated
experiences on the Web, you will find Atlas and this book invaluable. I sincerely hope you have
as much fun working with Atlas as we had building it.

Shanku Niyogi
Product Unit Manager, UI Framework and Services Team

Microsoft Corporation

■FOREWORDxiv

6471fmfinal.qxd 5/10/06 11:23 PM Page xiv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

About the Author

■LAURENCE MORONEY is the director for technology evangelism at Mainsoft,
the cross-platform company. He specializes in evangelizing the power of
ASP.NET and Visual Studio .NET through Mainsoft technology for the
development and maintenance of J2EE applications. Prior to Mainsoft,
he worked as an architect for Reuters developing financial and communi-
cations applications for the Wall Street community. An experienced
developer and architect, he has designed and implemented software for

a variety of applications spanning the spectrum from casinos to banks to jails to airports.
He’s a big fan of professional sports, particularly soccer, and is still waiting for Bruce Arena
to call him up for the U.S. World Cup squad.

xv

6471fmfinal.qxd 5/10/06 11:23 PM Page xv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

About the Technical Reviewer

■KEITH SMITH is a senior product manager at Microsoft Corporation in Redmond, Washington.
Keith joined Microsoft in 1998 as a software engineer on Microsoft Visual J++ where he was
responsible for the Windows Foundation Class’s DHTML controls. Today he focuses on ASP.NET,
Atlas, and the web development technologies and components of Visual Studio (VS) and
Visual Web Developer Express Edition (VWD). Keith’s ASP.NET involvement dates back to ver-
sion 1.0 when he was a member of the engineering team responsible for the core ASP.NET
controls and when he led the team responsible for ASP.NET performance and stress testing.
More recently, Keith managed the entire VWD quality assurance engineering team. Following
the release of VS 2005 and ASP.NET 2.0, Keith moved to his current product management role,
in developer marketing, where he owns the overall marketing strategy and execution of cre-
ative programs that drive the adoption of Microsoft’s web platform and tools.

xvi

6471fmfinal.qxd 5/10/06 11:23 PM Page xvi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Acknowledgments

I’d like to take this time to acknowledge some people who were amazing in helping to
construct this book:

• Scott Guthrie owns the Atlas technology at Microsoft and was a terrific supporter in
writing it and in getting access to the technology.

• Shanku Niyogi, the ASP.NET group program manager at Microsoft, was there to meet
with me when I was shaping ideas for the construction of the book, to listen to my feed-
back on where the technology should be going, and to help fix bugs in my code when
Atlas was at an early stage.

• Keith Smith, the product manager for ASP.NET and Atlas at Microsoft, was hands down
the best technical reviewer I have ever worked with. Straight to the point, factual, and
extraordinarily pleasant, he helped hone this book into what it is today.

• Simon Calvert, a developer on the Atlas project, was there to help me navigate the
undocumented sections. I thanked him profusely for being the technical reviewer
before realizing I had mixed him up with Keith! (Sorry, guys.)

• Wilco Bauwer is the joint-best Atlas blogger there is (http://www.wilcob.net).

• Nikhil Kothari is also the joint-best Atlas blogger there is (http://www.nikhilk.net).

• Joel Bonette, a researcher at Lousiana State University, discovered the book through
my blog and, through being the first purchaser of it, strongly encouraged me through
the dark and frustrating days when I couldn’t make head or tail of the undocumented
features.

• Ewan Buckingham, editor at Apress, is the perfect editor—hands-off and completely
trusting.

• Kylie Johnston, project manager at Apress, kept me sane and having fun as I wrote.

• Kim Wimpsett, the copy editor, made me feel really good by not making too many
corrections to the text.

Thank goodness this isn’t the Oscars, because I just have too many people to thank; it is a
book, so I can take my time to name them all!

xvii

6471fmfinal.qxd 5/10/06 11:23 PM Page xvii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6471fmfinal.qxd 5/10/06 11:23 PM Page xviii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introduction

Ajax is fast becoming the buzzword in web development for 2006. It’s also becoming a
de facto standard for developing user-centric web applications. It’s an evolutionary step in
the user experience and is being used in more and more web applications from Google Local
maps to Live.com to Amazon and beyond.

But how do you write Ajax applications? You’ve got to be a JavaScript expert and use tools
that are not as sophisticated as those your C# or Java friends use. As such, it can be difficult
and time-consuming to develop, debug, and maintain Ajax applications despite their innate
user friendliness.

Microsoft is contributing to the solution for this problem with its Atlas framework. This
builds on top of the best-of-breed ASP.NET technology and Visual Studio 2005 integrated
development environment (IDE) to bring major productivity leaps to Ajax development.

With Atlas you can easily convert your existing ASP.NET applications to Ajax ones, and
you can add sophisticated user interface elements such as drag and drop, networking, and
browser compatibility layers with simple declarative programming (or, if you prefer to use
JavaScript, you can do that too).

This book is a primer on this technology. It will take you through the evolution of web
applications to where they are today, introduce you to Ajax, put it in context, and then take
you into how to build Ajax applications quickly and simply, taking advantage of the IDE pro-
ductivity and full debugging offered by Visual Studio 2005.

It’s going to be a fun ride, and by the end of it, you’ll be an expert in Web 2.0 and hungry
to start developing for it. And who knows? You may even start shaping Web 3.0!

Who This Book Is For
This book is for anybody who is interested in developing next-generation web application
interfaces that make the most of Ajax-style asynchronous functionality. Anybody who has ever
coded a web page will understand the latency problems associated with postbacks and main-
taining state and will be able to gain valuable new tools for their programming arsenal by
reading this book.

Even if you don’t know ASP.NET, C#, or Visual Basic .NET, you should still be able to
understand and follow along with this book, but it would be helpful to get a good grounding
in these technologies first.

How This Book Is Structured
This book starts by describing the evolution of user interface software from the earliest punch
cards to the modern Ajax applications. It describes how the thin client model can be used to
cut costs and complexity and tells the true story of how a thin client, Ajax-style application got
the Wall Street community up and running quickly after September 11, 2001. xix

6471fmfinal.qxd 5/10/06 11:23 PM Page xix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It then dives into what Ajax is and how it works so that if you aren’t familiar with it, you
can see what all the fuss is about.

Next, it introduces Atlas and how it works in the context of ASP.NET. It describes the
client-side and server-side functionality of Atlas, showing each of the libraries and controls
and describing how you can use them.

It is packed with sample code and figures, so you’ll learn by example. The final chapter is
devoted to a single example of a large-scale application that brings all the concepts together.
It’s very much a hands-on book.

Prerequisites
You’ll need Visual Studio 2005; any edition is fine. You’ll also need the Atlas binaries and add-
ins to Visual Studio 2005, which can be downloaded from http://atlas.asp.net.

Downloading the Code
You will be able to download chapter-by-chapter source code from the Apress web site at
http://www.apress.com. This is compressed in a single zip file for your convenience.

Contacting the Author
You can reach Laurence Moroney via ljpm@philotic.com or at http://www.philotic.com/blog.

■INTRODUCTIONxx

6471fmfinal.qxd 5/10/06 11:23 PM Page xx

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing Ajax

Welcome to Foundations of Atlas. This book is intended to get you up and running with the
new framework from Microsoft that allows you to build web 2.0 applications that implement
Ajax functionality. If you’ve been working in the web field at all, you will have found Ajax hard
to avoid—and even harder to implement. Microsoft has thrown its hat into the Ajax arena by
doing what it does best—giving you, the developer, tools that allow you to be productive and
solve your business needs.

This chapter will bring you up-to-date on web application technology from the dawn of
computing history to today, putting Ajax and Atlas in context. It’s the beginning of what I hope
will be a fun and informative ride.

Delving into the History of Web Application
Technology
The user interface has evolved along a cyclical path from a light footprint to a heavy foot-
print and back again. Users’ requirements and demands for extra functionality drive the
heavier footprint, and users’ requirements and demands for an easy installation, upgrade,
and maintenance drive the lighter footprint. With each iteration, the “lighter” user inter-
faces gain rich functionality, and the “heavier” user interfaces become easier to install,
upgrade, and maintain.

The original user interfaces were probably the lightest clients of all—punch cards that
were fed into a central server that in turn printed results, resulting in a simple request/
response architecture (see Figure 1-1).

As computers became more sophisticated, the punch card and printer were replaced by
a terminal that fed results into and rendered results from the central server (see Figure 1-2).
For basic processing this was useful, but as computers’ needs increased—for example, to
handle the new requirements of email or network news—the terminals had to get smarter.
If you remember the old terminal-based email programs such as elm or the network news-
readers, you’ll remember needing three or four extra fingers to do anything useful! Architec-
turally, this wasn’t much different from the punch card request/response architecture, but it
unified the point of contact with the mainframe and changed the medium from paper to elec-
trons. So, although the architecture did not change, the implementation did—and it was this
change in implementation that was a driving factor in improving the overall user experience
of applications, a fact that is still true today.

1

C H A P T E R 1

■ ■ ■

6471ch01final.qxd 5/11/06 12:41 AM Page 1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

With the advent of the personal computer, much of the old server functionality wasn’t
necessary anymore. This was because the main use of servers at that time was for functions
that could easily take place on a personal computer, such as calculations or analyses (see
Figure 1-3). Functionality that required connectivity, such as email and network newsreaders,
could still be achieved on a personal computer through terminal emulation.

Then someone had the bright idea of using the power of the personal computer to
enhance the online experience, taking it away from the green-and-black terminal and allowing
features such as email, news, and graphics to appear in full four-color glory (see Figure 1-4).
The personal computer flourished in power, and the early personal computers gave way to
much more powerful machines with better graphics, faster processing chips, more memory,
and persistent storage through hard drives.

CHAPTER 1 ■ INTRODUCING AJAX2

Figure 1-1. Punch card request/response architecture

Figure 1-2. Terminal-based request/response architecture

6471ch01final.qxd 5/11/06 12:41 AM Page 2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

With this steadily exponential increase in computing power at the desktop, applications
became more sophisticated, complex, and functional than anything before on centralized
mainframe supercomputers. Full GUIs soon became the norm. Microsoft Windows appeared,
following Apple, Atari, and other GUI-focused computers. Soon after, office productivity
applications exploded onto the scene; and as people began using these applications daily,
they required even faster and more sophisticated platforms, and the client continued to
evolve exponentially.

CHAPTER 1 ■ INTRODUCING AJAX 3

Figure 1-3. Personal computer request/response online and offline

Figure 1-4. Request/response architecture of graphical user interface (GUI) application talking
to mainframe

6471ch01final.qxd 5/11/06 12:41 AM Page 3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It’s important to note that the more sophisticated applications were disconnected appli-
cations. Office productivity suites, desktop-publishing applications, games, and the like, were
all distributed, installed, and run on the client via a fixed medium such as a floppy disk or CD.
In other words, they weren’t connected in any way.

The other breed of application, which was evolving much more slowly, was the con-
nected application, where a graphical front end wrapped a basic, text-based communication
back end for online applications such as email. CompuServe was one of the largest online
providers, and despite the innovative abstraction of its simple back end to make for a more
user-centric, graphical experience along the lines of the heavy desktop applications, its
underlying old-school model was still apparent. Remember the old Go commands? Despite
the buttons on the screen that allowed a user to enter communities, these simply issued a
Go <communityname> command behind the scenes on your behalf.

Although this approach was excellent and provided a rich online experience, it had to be
written and maintained specifically for each platform, so for a multiplatform experience, the
vendor had to write a client application for Windows, Unix, Apple, and all other operating
systems and variants.

But in the early 1990s, a huge innovation happened: the web browser.
This innovation began the slow merger of these two application types (connected and

disconnected)—a merger that still continues today. We all know the web browser by now, and
it is arguably the most ubiquitous application used on modern computers, displacing solitaire
and the word processor for this storied achievement!

But the web browser ultimately became much more than just a new means for abstract-
ing the textual nature of the client/server network. It became an abstraction on top of the
operating system on which applications could be written and executed (see Figure 1-5). This
was, and is, important. As long as applications are written to the specification defined by that
abstraction, they should be able to run anywhere without further intervention or installation
on behalf of the application developer. Of course, the browser would have to be present on the
system, but the value proposition of having a web browser available to the operating system
was extremely important and ultimately launched many well-known legal battles.

The problem, of course, with this abstraction was that it was relatively simple and not
originally designed or implemented for anything more complex than laying out and format-
ting text and graphics. I am, of course, referring to Hypertext Markup Language (HTML). This
specification, implemented by a browser, meant that simple text could be placed on a server,
transferred from a server, interpreted by a browser, and laid out in a far more pleasing way
than simple green-on-black on a page, giving the user a better experience. More important,
however, it could generate a whole new breed of application developers; all a developer had
to do for an online, connected application to have a graphical experience was to generate it as
HTML, and the browser would do the rest. You wouldn’t need the resources of a CompuServe
or an America Online to build an application that rendered the text for you! All you had to do
was generate HTML, either by coding it directly or writing a server-side application (in C) that
would generate it for you. Although the Internet had been around for a long time, only at this
point was it really being born.

CHAPTER 1 ■ INTRODUCING AJAX4

6471ch01final.qxd 5/11/06 12:41 AM Page 4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

And guess what happened? The cycle began again.
Everybody jumped on the browser bandwagon, and Common Gateway Interface (CGI)

applications, written on a server and delivered to a browser, were hot. The user experience,
with the only interaction being postbacks to the server (in much a similar vein to terminals,
only prettier), soon became too limiting, and new technologies began to emerge to improve
the user experience.

Enter Java and the applet. Java, a virtual machine on top of a virtual machine (the
browser) on top of a virtual machine (the operating system) on top of a real machine
(the underlying hardware), gave a greater abstraction, and it introduced a new platform that
developers could code to and have even richer applications running within the browser. This
was important, because it accelerated what could be done within a browser, delivered using
the simple transport mechanisms of the Internet but again without requiring the resources
of a huge company writing your own GUI platform on which to do it. Of course, it suffered
from constraints; namely, to achieve a cross-platform experience, developers had to follow
a lowest common denominator approach. The clearest example of this was in its support
for the mouse. The Apple operating systems supported one button, the Microsoft Windows–
based ones supported two, and many Unix platforms supported three. As such, Java applets
could support only one button, and many Unix users found themselves two buttons short!

The Java virtual machine and language evolved to become a server-side implementation and
a great replacement for C on the server. In addition to this, HTML continued to evolve, allowing
for more flexibility, and its big brother, Dynamic HTML (DHTML), was born. In addition, script-
ing was added to the platform (at the browser level), with JavaScript (unrelated to Java despite the
name) and VBScript being born. To handle these scripting languages, parsers were bolted onto
the browser, and the extensible browser architecture proved to be a powerful addition.

CHAPTER 1 ■ INTRODUCING AJAX 5

Figure 1-5. Web browser–based request/response architecture

6471ch01final.qxd 5/11/06 12:41 AM Page 5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Thanks to extensibility, applications such as Macromedia Flash added a new virtual
machine on top of the browser, allowing for even more flexible and intense applications. The
extensible browser then brought about ActiveX technology on the Windows platform, whereby
native application functionality could be run within the browser when using Microsoft browsers
(or alternative ones with a plug-in that supported ActiveX). This was a powerful solution,
because it enabled native functionality to be accessible from networked applications (see
Figure 1-6). This got around the restrictions imposed by the security sandbox and lowest
common denominator approach of the Java virtual machine, but this ultimately led to
problems in the same vein as distributing client-only applications; specifically, a heavy
configuration of the desktop was necessary to get them to work. Although this configura-
tion could be automated to a certain degree, it gave two show-stopping points for many.

First, it didn’t always work, and the nature of configuration, changing the Windows
registry, often failed—or worse, broke other applications. ActiveX controls were rarely self-
contained and usually installed runtime support files. Different versions of these support
files could easily be installed on top of each other, a common occurrence leading to broken
applications (called DLL Hell).

The second problem was security. A user’s computer, when connected to the Internet,
could effectively allow code to run, written by anybody, and the ActiveX technology was fully
native, not restricted by the Java or HTML sandboxes (more about these in a moment); there-
fore, a user could innocently go to a web page that downloaded an ActiveX control that wrought
havoc or stole vital information from their system. As such, many users refused to use them,
and many corporate administrators even disallowed them from use within the enterprise. The
virtual nature of Java and HTML—where applications and pages were coded to work on a spe-
cific virtual machine—offered better security; these machines couldn’t do anything malicious,

CHAPTER 1 ■ INTRODUCING AJAX6

Figure 1-6. Sophisticated browser architecture

6471ch01final.qxd 5/11/06 12:41 AM Page 6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and therefore applications written to run on them also couldn’t. The user was effectively safe,
though limited in the scope of what they could do.

At the end of the 1990s, Microsoft unveiled the successor to ActiveX (among others) in
its Java-like .NET Framework. This framework would form Microsoft’s strategic positioning
for many years. Like Java, it provided a virtual machine (the common language runtime
[CLR]) on which applications would run. These applications could do only what the CLR
allowed and were called managed applications. The .NET Framework was much more sophis-
ticated than the Java virtual machine, allowing for desktop and web applications with
differing levels of functionality (depending on which was used). This was part of “manag-
ing” the code. With the .NET Framework came a new language, C#, but this wasn’t the only
language that could be used with .NET—it was a multilanguage, single-runtime platform
that provided great flexibility.

The .NET Framework was revolutionary because it united the client-application experi-
ence and connected-application experience across a unified runtime, which ActiveX tried but
ultimately failed to do. Because the same platform could be written for both, the result was that
the user experience would be similar across both (see Figure 1-7). Coupled with the emergence
of Extensible Markup Language (XML), a language similar to HTML but specialized for han-
dling data instead of presentation, web application development was finally coming of age.

Thus, the pendulum has swung back toward the thin client/fat server approach. Ironi-
cally, the thin client is probably fatter than the original servers, because it’s an operating
system that can support a browser that is extended to support XML (through parsers), script-
ing (through interpreters), and other plug-ins, as well as Java or .NET virtual machines! With
all these runtime elements available to developers and a consistent server-side API (through
the .NET Framework or Java server side), rich, high-performing applications built on a
client/server model are now fully possible.

CHAPTER 1 ■ INTRODUCING AJAX 7

Figure 1-7. The .NET Framework provides consistent browser, desktop, and server application
programming interfaces (APIs).

6471ch01final.qxd 5/11/06 12:41 AM Page 7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Thin Client Applications Arriving to Save the Day
It was in the summer of 2001 that I had my first “wow” experience with the power of what
could be done with a browser-based interface using asynchronous XML, DHTML, and script-
ing. I was working for a product development group in a large financial services company in
New York and was invited by one of their chief technical officer (CTO) teams to take a look at
their new prototype of zero-footprint technology for delivering financial information, both
streaming and static. They claimed they could stream news, quotes, and charts to a browser
with no installation necessary at the desktop, and they could do it in such a manner that it
met all the requirements of a typical client. In those days, the biggest support problems were
in the installation, maintenance, and support of heavy Component Object Model (COM)
desktop applications, and this would wipe them all out in a single blow.

Naturally I was skeptical, but I went to see it anyway. It was a prototype, but it worked.
And it largely preserved the user experience that you’d expect from a heavier application with
drag-and-drop functionality; streaming updates to news, quotes, and charts; and advanced
visualization of data. If anything, it was almost superior to the heavy desktops we were using!

And it was all built in DHTML, JavaScript, DHTML behaviors, and a lot of server-side
functionality using Microsoft-based server products. It was pretty revolutionary.

In fact, it was too revolutionary—and it was too hard for the development management
to take a risk on it because it was so beyond their understanding of how applications should
work and how the market would accept it. (To be fair, part of their decision was based on my
report of concerns about how well the streaming part would scale, but that was nothing that
couldn’t be fixed!)

But then something terrible happened: September 11, 2001. On that fateful day, a group
of individuals turned airliners into missiles, crashing into the World Trade Center and the
Pentagon and killing thousands of people. Part of all this destruction was the loss of many
data distribution centers that our company ran for the Wall Street community. With the
country having a “get-up-and-running” attitude, wanting the attack to have as little impact
on day-to-day affairs as possible, the pressure was on our company to start providing news,
quotes, charts, and all the other information that traders needed to get the stock market up
and running. The effort to build new data centers and switch the Wall Street users over to
them by having staff reconfigure each desktop one by one would take weeks.

The CTO group, with its zero-footprint implementation, ran a T3 line into the machines
in their lab that were hosting the application, opening them to the Internet; set up a Domain
Name System (DNS) server; and were off and running in a matter of hours. Any trader—from
anywhere—could open Internet Explorer, point it at a uniform resource locator (URL), and
start working. No technical expertise required!

Thanks to an innovative use of technology, a business need was met. And that is what our
business is all about. Thanks to this experience, and what that group did, I was hooked. I real-
ized the future was again with the thin client and massive opportunities existed for developers
and companies that could successfully exploit it.

CHAPTER 1 ■ INTRODUCING AJAX8

6471ch01final.qxd 5/11/06 12:41 AM Page 8

fa938d55a4ad028892b226aef3fbf3dd

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax Entering the Picture
Ajax, which once stood for Asynchronous Java and XML, is a technique that has received a lot
of attention recently because it has been used to great success by companies such as Amazon
and Google. The key word here is asynchronous, because, despite all the great technologies
available in the browser for delivering and running applications, the ultimate model of the
browser is still the synchronous request/response model. As such, the refreshing and updating
of applications that the user is used to is hard to achieve. The typical web application involves
a refresh cycle where a postback is sent to the server and the response from the server is reren-
dered. This is a drawback of this type of architecture, because the round-trip to and from the
server is expensive in user time and bandwidth cost, particularly for applications that require
intensive updates.

What is interesting about the Ajax approach is that nothing is really new about it. The
core technology—the XMLHttpRequest object—has been around since 1999 with Microsoft
Internet Explorer, when it was implemented as an ActiveX plug-in. More recently, it has been
added to the Mozilla and Safari browsers, increasing its ubiquity, and has been covered in a
World Wide Web Consortium (W3C) specification (DOM Load and Save). With the popularity
of web applications that use XMLHttpRequest such as Google Local, Flickr, and Amazon A9,
XMLHttpRequest is fast becoming a de facto standard.

The nice part about this is that it doesn’t require any proprietary or additional software
or hardware to enable richer applications. The functionality is built right into the browser. As
such, it is server agnostic, and besides needing to make some minor browser security restric-
tions, you can use it straightaway, leveraging coding styles and languages you already know.

To see an example of how it works, refer to Google Local (see Figure 1-8). As you use the
mouse to drag the map around the screen, the new sections of the map that were previously
hidden come into view quickly; this is because they were cached on your first viewing of the
map. Now, as you are looking at a new section (by having dragged the mouse), the sections
bordering the current one are downloading in the background, as are the relevant satellite
photographs for the section of map you are viewing.

It is this background downloading, using the XMLHttpRequest object, that makes using
Google Local such a smooth and rewarding experience. Remember, nothing is new here; it’s
just that having an object built into the browser that can do this asynchronously makes it
easier to develop applications like this. For full details on how to develop in Ajax, check out
Foundations of Ajax (Apress, 2005).

You will be looking at Ajax from a high level in this book and delving more deeply into
how Microsoft ASP.NET Atlas will allow you to quickly and easily build Ajax-type applications.

CHAPTER 1 ■ INTRODUCING AJAX 9

6471ch01final.qxd 5/11/06 12:41 AM Page 9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the XMLHttpRequest Object
As mentioned, the XMLHttpRequest object is the heart of Ajax. This object sends requests to
the server and processes the responses from it. In current versions of Internet Explorer, it is
implemented using ActiveX, whereas in other browsers, such as Firefox, Safari, and Opera, it
is a native JavaScript object. Unfortunately, because of these differences, your JavaScript code
has to be coded to inspect the browser type and create an instance of it using the correct tech-
nology. (In Internet Explorer 7, Microsoft will be supporting XMLHttpRequest as a native
JavaScript object.)

Thankfully, this process is a little simpler than the spaghetti code you may remember hav-
ing to write when using JavaScript functions that heavily used the Document Object Model
(DOM) that had to work across browsers:

CHAPTER 1 ■ INTRODUCING AJAX10

Figure 1-8. Google Local uses Ajax extensively.

6471ch01final.qxd 5/11/06 12:41 AM Page 10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var xmlHttp;
function createXMLHttpRequest() {

if (window.ActiveXObject) {
xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

}
else if (window.XMLHttpRequest) {

xmlHttp = new XMLHttpRequest();
}

}

In this case, the code is simple. If the browser doesn’t support ActiveX objects, the win-
dow.ActiveXObject call will return null, and therefore the xmlHttp object will be set to a new
instance of XMLHttpRequest (the native JavaScript object); otherwise, a new ActiveXObject
of type Microsoft.XMLHTTP will be created.

Now that you have an XMLHttpRequest object at your beck and call, you can start playing
with its methods and properties. I discuss some of the more common methods you can use in
the next few paragraphs.

The open method sets up the call to your server to initialize your request. It takes two
required arguments (the Http command of GET, POST, or PUT and the URL of the resource
you are calling) and three optional arguments (a Boolean indicating whether you want the call
to be asynchronous, which defaults to true, and strings for the username and password if the
server requires these for security). It returns void.

xmlHttp.open("GET" , "theURL" , true , "MyUserName" , "MyPassword");

The send method makes the request to the server and passes it a single argument con-
taining the relevant content. Had the original request been declared as asynchronous (using
the boolean flag mentioned earlier), the method would immediately return; otherwise, this
method would block until the synchronous response could be received. The content argu-
ment (which is optional) can be a DOM object, an input stream, or a string.

xmlHttp.send("Hello Server");

The setRequestHeader method takes two parameters: a string for the header and a string
for the value. It sets the specified Hypertext Transfer Protocol (HTTP) header value with the
supplied string.

xmlHttp.setRequestHeader("Referrer","AGreatBook");

The getAllResponseHeaders method returns a string containing the complete set of
response headers from the XMLHttpRequest object. Examples of this include the HTTP head-
ers of Content-Length and Date, with their appropriate values. This is accompanied by the
getResponseHeader method, which takes a parameter representing the name of the header
you want to query, and its value is returned as a string.

var strCL;
strCL = xmlHttp.getResponseHeader("Content-Length");

In addition to supporting these methods, the XMLHttpRequest object supports a number
of properties, as listed in Table 1-1.

CHAPTER 1 ■ INTRODUCING AJAX 11

6471ch01final.qxd 5/11/06 12:41 AM Page 11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 1-1. The Standard Set of Properties for XMLHttpRequest

Property Description

onreadystatechange Specifies the name of the function to call whenever the state of the
XMLHttpRequest object changes

readyState The current state of the request (0=uninitialized, 1=loading, 2=loaded,
3=interactive, and 4=complete)

responseText The current response from the server as a string

responseXML The current response from the server in XML

status The current HTTP status code from the server (for example, 404 for Not
Found)

statusText The text version of the HTTP status code (for example, Not Found)

Using Visual Studio 2005
Throughout this book you’ll be using Visual Studio 2005 for developing Ajax applications
using the Atlas extensions for ASP.NET 2.0. Several editions of this application are applicable
to different tasks.

You can download the free edition, Visual Web Developer 2005 Express, from the Micro-
soft Developer Network (http://msdn.microsoft.com/vstudio/express/vwd/). From this page
you can also navigate to the downloads for the other Express editions including ones for C#,
VB .NET, and C++ development.

You may also use any of the other editions of Visual Studio 2005, including Standard,
Professional, or Team System, to use and build the samples included in this book.

If you are following along with the figures in this book, you’ll see these have been cap-
tured on a development system that uses the Team System edition of Visual Studio 2005.

Seeing a Simple Example in Action
Understanding how this technology all hangs together is best shown using a simple example.
In this case, say you have a client application that uses JavaScript and an XMLHttpRequest
object that calls a server to perform the simple addition of two integers. As the user types the
values into the text boxes on the client, the page calls the server to have it to add the two val-
ues and return a result that it displays in a third text box. You can see the application in action
in Figure 1-9.

CHAPTER 1 ■ INTRODUCING AJAX12

6471ch01final.qxd 5/11/06 12:41 AM Page 12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To create this client, start a new Visual Studio 2005 web site, and edit the default
WebForm1.aspx content to match Listing 1-1.

Listing 1-1. Creating Your First Ajax Application

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="Atlas1_1.WebForm1" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
<HEAD>
<title>WebForm1</title>
<script language="javascript">
var xmlHttp;

function createXMLHttpRequest() {
if (window.ActiveXObject) {

xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
}
else if (window.XMLHttpRequest) {

xmlHttp = new XMLHttpRequest();
}

}

CHAPTER 1 ■ INTRODUCING AJAX 13

Figure 1-9. The Ajax addition client

6471ch01final.qxd 5/11/06 12:41 AM Page 13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

function updateTotal() {
frm = document.forms[0];
url="WebForm2.aspx?A=" + frm.elements['A'].value +

"&B=" + frm.elements['B'].value;
xmlHttp.open("GET",url,true);
xmlHttp.onreadystatechange=doUpdate;
xmlHttp.send();
return false;

}

function doUpdate() {
if (xmlHttp.readyState==4) {

document.forms[0].elements['TOT'].value=xmlHttp.responseText;
}

}
</script>
</HEAD>
<body onload="createXMLHttpRequest();">

<form>
<TABLE height="143" cellSpacing="0" cellPadding="0"

width="300" border="0" >
<TR vAlign="top">

<TD height="32">First Value</TD>
<TD><INPUT type="text" id="A" value="0"

onkeyup="updateTotal();"></TD>
</TR>
<TR vAlign="top">

<TD height="32">Second Value</TD>
<TD><INPUT type="text" id="B" value="0"

onkeyup="updateTotal();"></TD>
</TR>
<TR vAlign="top">

<TD height="23">Returned Total</TD>
<TD><INPUT type="text" id="TOT" value="0"></TD>

</TR>
</TABLE>
</form>

</body>
</HTML>

When the web page loads, the createXMLHttpRequest function is called (from onload=
in the body tag) to initialize the object. After that, whenever a key is pressed in the A or B text
boxes, the updateTOT function is called (by trapping the onkeyup event).

This function then takes the values of A and B from their form elements and uses them to
build the URL to WebForm2.aspx, which will look something like WebForm2.aspx?A=8&B=3.
It then calls the open method on XMLHttpRequest, passing it this URL and indicating that this

CHAPTER 1 ■ INTRODUCING AJAX14

6471ch01final.qxd 5/11/06 12:41 AM Page 14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

will be an asynchronous transaction. Next, it specifies the dotheupdate function to handle
the readystate changes on the XMLHttpRequest object.

The dotheupdate function checks to see whether the readyState is 4, indicating that the
process is complete, and if it is, it updates the TOT field with the returned value from the
XMLHttpRequest object.

To get this application to work, add a new C# web form to the project, and keep the
default name of WebForm2.aspx. In the page designer, delete all the default HTML so that
the page contains just the ASPX declaration:

<%@ Page language="c#" Codebehind="WebForm2.aspx.cs"
AutoEventWireup="false" Inherits="Atlas1_1.WebForm2" %>

Then, add the following code to the C# code file:

private void Page_Load(object sender, System.EventArgs e)
{

int a = 0;
int b = 0;
if (Request.QueryString["A"] != null)
{

a = Convert.ToInt16(Request.QueryString["A"].ToString());
}
if (Request.QueryString["B"] != null)
{

b = Convert.ToInt16(Request.QueryString["B"].ToString());
}

Response.Write(a+b);
}

This handles the request from WebForm1.aspx, getting the values of A and B, and writes
them back to the response buffer. The XMLHttpRequest object within WebForm1.aspx then
handles the communication and asynchronously updates the Returned Total box.

Summary
In this chapter, you got a brief history lesson on the methodologies for building user inter-
faces to servers that process your data and on the constantly swinging pendulum from thin
client to fat client. You were brought up to date on what the newest trend in this develop-
ment is—web-based thin clients with rich functionality thanks to the asynchrony delivered
by the XMLHttpRequest object. This object is the core of Ajax, and in this chapter you built
a simple demonstration that used it. This example was straightforward and barely scratched
the surface of what you can do with Ajax; however, it demonstrated one of the drawbacks of
using this methodology, namely, that it is heavy on the scripting. JavaScript, although power-
ful, is difficult and onerous to debug and manage when compared to languages such as C#,
VB .NET, and Java. As such, the application benefits you receive by using an Ajax approach
may be nullified by the application development getting bogged down in thousands (or
more) lines of JavaScript.

CHAPTER 1 ■ INTRODUCING AJAX 15

6471ch01final.qxd 5/11/06 12:41 AM Page 15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It is with this problem in mind that Microsoft is attempting to bring the productivity of
ASP.NET with Visual Studio 2005 to the Ajax space, and thus Atlas was born. In the next chap-
ter, you’ll be introduced to the wonderful world of Atlas, you will look at the architecture of it,
you will learn how it allows you to use Visual Studio 2005 and ASP.NET 2.0 controls to generate
client-side code from server-side controls, and you will see how this can give you the best of
Ajax while avoiding the worst of it.

CHAPTER 1 ■ INTRODUCING AJAX16

6471ch01final.qxd 5/11/06 12:41 AM Page 16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Atlas: Taking Ajax to the
Next Level

In Chapter 1 you were introduced to the methodology of using Ajax and saw a code example
on how you can use Ajax to build a web page that responds to user input asynchronously. In
this chapter, you will be introduced to Atlas, Microsoft’s extension to ASP.NET 2.0 that allows
you to build Ajax applications more easily and manage their development, deployment, and
debugging through Visual Studio 2005.

ASP.NET Atlas is a package of technologies including some script libraries that get
deployed to the client and that implement a number of common functions and programming
features for you. You simply need to include them in your JavaScript scripts, and you are good
to go. Perhaps more important, it also includes web server controls that, when used on a web
page, generate HTML and JavaScript that run on the browser. Through the use of web server
controls, the developer can orchestrate which JavaScript code gets delivered to the client with-
out actually doing much hand-coding—the server-side ASP.NET controls generate the HTML
and JavaScript. This is one of the fundamental underpinnings of ASP.NET and is essential to
understanding Atlas. In this chapter, you will learn about the entire architecture of Atlas and
how it all hangs together under ASP.NET 2.0.

Introducing ASP.NET 2.0 Server Controls
To better understand Atlas and its architecture, it’s best to understand ASP.NET 2.0 server
controls. These are a fundamental part of the ASP.NET framework. At their core, server con-
trols are classes in the .NET Framework that represent visual elements on a web form. Some
of them are straightforward and map closely to standard HTML tags, effectively providing
server-side implementations of those tags. Others are larger-scale abstractions that encapsu-
late complex GUI tasks such as grids but represent them using HTML. It’s important to note
that applications using server controls are rendered in the browser. Specifically, the server,
using the control, compiles its logic and representation in HTML and/or JavaScript that gets
delivered to the browser to render.

17

C H A P T E R 2

■ ■ ■

6471ch02final.qxd 5/10/06 11:21 PM Page 17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Several types of server controls exist:

HTML server controls: These classes wrap standard HTML tags but are declared with the
runat=“server” attribute. An example is the HtmlAnchor control, which is a server-side
representation of the <a>, or anchor, tag.

Web controls: These classes duplicate the functionality of basic HTML tags but have
methods and properties that have been standardized across their entire range, making
it easier for developers to use them. Many of them are analogous to HTML server controls
(for example, the button), but their APIs have been designed to be used by C# and other
.NET developers, as opposed to being an echo of the API used by the standard HTML
controls. As such, they are more consistent to use when developing applications, partic-
ularly if you don’t have much experience hand-coding HTML.

Rich controls: These are a special class of web controls that are complex in nature and
generate large amounts of HTML and JavaScript. An example of this is the Calendar
control.

Validation controls: These controls validate input against a predetermined criteria, such
as a telephone number or a ZIP code. Should they fail validation, they encapsulate the
logic to represent this on the web form.

Data controls: These encapsulate and display large amounts of data. They include con-
trols such as grids and lists, and they support advanced features such as using templates,
editing, sorting, paginating, and filtering.

Navigation controls: These display site maps and allow users to navigate a site.

Login controls: These have built-in logic for forms authentication, providing a turnkey
solution for authentication in your web sites.

WebPart controls: These build components for web portals running under Windows
SharePoint Services.

Mobile controls: These are for applications that render on portable devices such as
personal digital assistants (PDAs) and smart phones.

The power of server controls is best demonstrated by example. Fire up Visual Studio 2005,
and create a new ASP.NET web site called Atlas2. Drag a calendar from the Standard folder in
the Toolbox to the design surface of the Default.aspx file that was created for you by Visual
Studio. You should have something that resembles Figure 2-1.

If you look at the source for this page, you will see some pretty straightforward HTML,
and there isn’t a whole lot of it—certainly not enough to render the calendar you just saw,
much less the interactivity of selecting dates and paging back and forward through the
months. You can see the code in Figure 2-2.

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL18

6471ch02final.qxd 5/10/06 11:21 PM Page 18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL 19

Figure 2-1. Adding a calendar to the default form

Figure 2-2. Inspecting the server-side code behind the calendar page

6471ch02final.qxd 5/10/06 11:21 PM Page 19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The workhorse line is this one:

<asp:Calendar ID="Calendar1" runat="Server"></asp:Calendar>

At runtime, the ASP.NET engine takes this and uses its built-in Calendar control to gener-
ate the HTML. Similarly, VS .NET uses the Calendar control within ASP.NET to create the visual
representation within the integrated development environment (IDE). This HTML looks vastly
different from what you saw in Figure 2-2, because it is the output of the rendering of the server
control as HTML. Figure 2-3 shows the page being rendered in Internet Explorer.

Using the Browser’s View ➤ Source functionality, you can inspect the HTML and
JavaScript (see Figure 2-4). You can see that it is vastly different from what was shown at
design time in Figure 2-2. The <asp:Calendar> control has been replaced by an HTML <div>
containing all the layout and information for the calendar; showing the days, dates, and
month; and showing the JavaScript that handles the links to move forward and backward
by month.

This is an example of the power of server-side controls, and it is with controls such as
these that you will be able to deliver Ajax functionality to the browser without going through
overly complex hand-coding, as demonstrated in Chapter 1. You will also be able to take
advantage of using a professional IDE so that you can debug and manage your Atlas pages
as easily as standard web forms or Windows applications.

This has been one of the premier design goals of Atlas. It is well understood that creating
Ajax-based web applications can be complex and requires extensive knowledge of client-side
script, which is slow to develop and debug. It is here where Microsoft is diverging its develop-
ment of an Ajax API, which allows developers to continue using the great productivity charac-
teristics that they are used to using in Visual Studio to build web applications for greater user
flexibility.

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL20

Figure 2-3. Viewing the calendar page in a browser

6471ch02final.qxd 5/10/06 11:21 PM Page 20

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Atlas extends the Ajax concept in two significant ways. First, it encapsulates much of the
commonly used JavaScript into client script libraries that simplify the task of creating rich
user interfaces (UIs) and remote procedure calls as well as provides you with true object-
oriented APIs that you can use in a JavaScript environment. You can use these libraries as they
are to enhance web sites built on any platform via Ajax-style techniques. You’ll be looking at
these in more detail in Chapter 3. This client-side framework also introduces a new method-
ology for building your client-side applications—a declarative XML-based markup called
Atlas Script.

Using this script, you map XML elements to underlying HTML ones. These XML elements
can then be attributed, or have behaviors and actions associated with them, using child tags.
The Atlas runtime will then parse this script and generate the appropriate runtime behavior.

Second, Atlas provides a server development platform, which is integrated with ASP.NET
2.0. When used with ASP.NET 2.0, Atlas provides a programming model that makes it simple to
create rich Ajax user experiences on the Web, and it allows you to easily extend your existing
ASP.NET applications to provide this functionality. This is the most important part of the
server-side aspect of Atlas. It allows you to “wrap” your existing applications with server con-
trols called UpdatePanels that empower that part of your page to be updated asynchronously
and without a complete-page refresh. This is extremely important because it allows you to
turn your existing ASP.NET web applications into Ajax applications with asynchronous,
partial-page updates!

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL 21

Figure 2-4. Viewing the client-side code behind the calendar page

6471ch02final.qxd 5/10/06 11:21 PM Page 21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Atlas Architecture
The Atlas architecture consists of two major pieces. First is the Atlas client script library, which
makes it more productive for you to build the client-side functionality of your web applications.
It has a rich component model and allows for object-oriented scripting. It provides many
classes that add value to your applications, including network access, user interface enhance-
ments, behaviors, actions, string manipulation, and more. It also provides an XML-based
scripting platform with which you can declaratively put together client-side behavior. You can
use it to map actions, behaviors, and data-binding functionality to your applications. Because
it is based on XML and is declarative, it will provide the future basis for visual tools to generate
Ajax UIs for Atlas.

Second is the set of server extensions; these extensions allow you to integrate the applica-
tion model between the client and the server. You can use existing ASP.NET applications and
target the Atlas runtime on the client.

You can see this architecture in Figure 2-5.

Thus, when building an application with Atlas, the process is similar to what you do today
when building an ASP.NET web forms application. Server controls send the HTML UI as well
as the declarative script, and the pages run on the client using the Atlas client framework. Your
applications can then run richly on the client without doing a lot of postbacks. They can also
connect directly to web services or Windows Communication Foundation (WCF) services
using the Atlas service proxies and provide a richer experience on the client.

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL22

Figure 2-5. Atlas architecture

6471ch02final.qxd 5/10/06 11:21 PM Page 22

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This architecture allows for increased productivity where you use fewer lines of code, with
server controls generating much of the code for you. It allows for the clean separation of con-
tent, style, behavior, and code. A typical design pattern for an Atlas application may involve it
consuming web services or WCF services directly from the client without requiring an inter-
mediary web application layer that slows down communication and complicates the applica-
tion design, implementation, and deployment. Finally, it is multibrowser compatible, being
based on known standards and using a browser compatibility layer script library that supports
all modern browsers including Mozilla/Firefox, Safari, and of course Internet Explorer. You’ll
learn more about this in Chapter 3.

Atlas Client Script Library
Atlas presents a rich client API that has a rich type system. JavaScript itself has a basic concept
of classes but doesn’t have a rich type system. To allow developers to build classes and com-
ponents more easily, Atlas provides some libraries within JavaScript that give a richer set of
libraries and types, which in turn allow you to use namespaces, classes, interfaces, inheri-
tance, and other artifacts that are usually associated with modern high-level languages. The
script libraries also include a base class library with helper classes that make it easier to write
scripts. It includes string builder, serializers, debugging, and tracing classes as well as net-
working classes. Microsoft will be providing tools that integrate with the tracing and debug-
ging classes to provide a better experience in debugging scripted applications. Chapter 3 will
cover the script library in depth.

Atlas has a client-side networking stack built upon XMLHTTPRequest that allows you
to access server functionality. For example, classes such as WebRequest, WebResponse, and
MethodRequest are available within the client-side script libraries. These classes, built to work
across different browsers, abstract the use of XMLHTTPRequest and provide a consistent pro-
gramming layer that allows you to build Ajax applications that are protected from the different
implementations of XMLHTTPRequest on different browsers.

Additionally, the framework provides a web services bridge to the server side, which
allows services to be accessed directly from a browser. It does this by generating a JavaScript
proxy that gets downloaded to the client when the service is invoked using a special URI.

These JavaScript proxies provide the interface layer, are automatically generated by the
web services bridge, and are called by appending “/js” to the service URI like this: http://
servername/servicename/service.asmx/js.

Adding the tag <script src="http://servername/servicename/service.asmx/js" /> to
your JavaScript will then include the proxy code within your application so that you can call
the service via its proxies.

So if you have wrapped or exposed your middleware as a web service using the .NET
Framework, when using Atlas, you can now access that web service directly from the browser.
Previously you would have had to write a web application that consumed the web service and
provided services to the browser.

Additionally, if you have an existing web application built on ASP.NET, you can expose
methods on your page using attributes and expose them as web services. This allows you to
take your existing non-service-oriented applications and expose atomic units of functionality
from them to be consumed by Ajax applications on the browser! This provides an excellent
alternative to using page callbacks, and you’ll see more of this in Chapters 6 and 10.

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL 23

6471ch02final.qxd 5/10/06 11:21 PM Page 23

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript Object Notation (JSON)
To allow for a more efficient transfer of data and classes, Atlas supports the JavaScript Object
Notation (JSON) format. This is lighter weight than XML and SOAP, and because of differences
in the implementation of the XML/SOAP parsers on various browsers, these formats may not
always give a consistent experience. JSON turns the object into the syntax you would use to
create an instance of the object in JavaScript.

For example, the following code shows the object representing a person’s name and age
in typical class notation:

Public class MyDetails{
Public string FirstName;
Public string LastName;
Public in Age;

}

You can represent an instance of this object in JSON like this:

{ FirstName : "Landon"
LastName : "Donovan"
Age : 22 }

Atlas Web User Interfaces
Ajax applications traditionally use HTML and its associated technologies such as DHTML
and Cascading Style Sheets (CSS) to build user interfaces. Where the interfaces need to change
dynamically, they typically call the server using XMLHTTPRequest, and the server delivers
new markup language that gets inserted into the DOM and rerendered by the browser.

For example, consider the case of implementing a financial portal using Ajax. You will see
a full example of this in Chapter 11. When you change the company you want to inspect, sev-
eral areas of the page should update. Figure 2-6 shows the basic application with a basic quote
and a couple of charts. Consider the scenario where you want the user to decide whether they
want to see more detailed quotation information for the company; if they do, they click a but-
ton to get it. You want this information to appear on the same page but don’t want to refresh
the whole page to get it—you just want it to appear (see Figure 2-7). Even if your round-trip is
fast, if you don’t use an Ajax technique, your entire page will “blink” as the new data is rendered.
The browser will clear and redraw the entire page, even though most of it doesn’t need it.

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL24

Figure 2-6. Loading extended quote details

6471ch02final.qxd 5/10/06 11:21 PM Page 24

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part of the problem with this approach is that it doesn’t give a clean separation of the
presentation from the business logic. The server that manages the chat also effectively man-
ages the UI, and the presentation layer dumbly inserts what the server dispatched to it. Of
course, the server doesn’t have to send the markup and could simply send text, but it is gener-
ally more onerous to have a JavaScript program parse this text and generate the UI from it
than it is to do it on the server side where you can make the most of Visual Studio and C#
or VB .NET—or indeed Java and any Java IDE.

Atlas follows the model where the data stays on the server side, where it belongs, and the
presentation, after the first rendering, remains on the client side. It has components and con-
trols that run within the browser and take care of all the rendering on the page. They are
higher-level classes that fall into two categories:

• Components are reusable building blocks that can be created declaratively or program-
matically. They can easily be wired up to each other through bindings or events and
manage their own lifetime.

• Controls are user interface elements that are associated with DHTML elements. They
can manage and control all the rendering for that element.

You’ll see the Atlas web UI in a lot more detail in Chapter 7.

Atlas Web UI Data Binding
Atlas provides a data-binding structure that allows you to wire components to each other and
to data sources to allow them to integrate. It supports such features as two-way data binding
that allows data sources to be edited and transforming that allows you to apply basic business
logic to the data upon binding to change it from one value to another.

Figure 2-8 shows an example of a data-bound control in Atlas. This comes from an exam-
ple in Chapter 5, where I discuss data binding in more detail.

Within Atlas, you can attribute your web services with the [DataObjectMethod()] attrib-
ute, which allows you to specify whether the connection is a select, insert, update, or delete
operation.

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL 25

Figure 2-7. Rendering the extended quote without a page blink

6471ch02final.qxd 5/10/06 11:21 PM Page 25

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here’s an example that specifies a select operation:

[DataObjectMethod(DataObjectMethodType.Select)]
public SampleRow[] SelectRows() {

return SampleDataService.Data.ToArray();
}

This will integrate with the client-side data binding to provide an end-to-end data
experience. You would use it within an Atlas client using server-side controls and an Atlas
script like this:

<atlas:ScriptManager runat="server" ID="scriptManager" />

<h3>Data-Bound ListView</h3>

<div id="dataContents"></div>

<div style="visibility:hidden;display:none">
<div id="masterTemplate">

<div id="masterItemTemplate">

<asp:linkbutton id="LinkButton1" runat="server">

</asp:linkbutton>

</div>

</div>
<div id="masterNoDataTemplate">No data</div>

</div>

</form>

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL26

Figure 2-8. Data binding a control in Atlas

6471ch02final.qxd 5/10/06 11:21 PM Page 26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<dataSource id="dataSource" serviceURL="DataService.asmx"
propertyChanged="onChange"/>

<listView id="masterRepeater" targetElement="dataContents"
itemTemplateParentElementId="masterTemplate"
propertyChanged="onChange">
<bindings>
<binding dataContext="dataSource" dataPath="data"
property="data"/>

</bindings>
<layoutTemplate>
<template layoutElement="masterTemplate"/>

</layoutTemplate>
<itemTemplate>
<template layoutElement="masterItemTemplate">
<label targetElement="masterName">
<bindings>

<binding dataPath="Name" property="text"/>
</bindings>

</label>
<hyperLink targetElement="masterDescription">
<bindings>

<binding dataPath="Description" property="text"/>
</bindings>

</hyperLink>
</template>

</itemTemplate>
<emptyTemplate>
<template layoutElement="masterNoDataTemplate"/>

</emptyTemplate>
</listView>

<application>
<load>

<invokeMethod target="dataSource" method="select"/>
</load>

</application>
</components>

</page>
</script>

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL 27

6471ch02final.qxd 5/10/06 11:21 PM Page 27

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A lot of this may not make much sense right now, but don’t worry; as you work through
this book and see how elegantly Atlas Script matches to the underlying HTML and empowers
it with GUI logic, and you see how the server-side controls mesh neatly with this, it will soon
become second nature.

This code first sets up a ScriptManager called MyManager to make sure the correct scripts
and script libraries are downloaded to the client. Next comes the HTML markup that defines
the user interface, which is a simple list derived from the master template for the page. Follow-
ing this you’ll see your first example of Atlas Script.

The first step this script takes is to set up the data source. You do this with the
<dataSource> tag like this:

<dataSource id="dataSource" serviceURL="DataService.asmx"
propertyChanged="onChange"/>

This uses attribution to set up the data source’s name and the URL of the web service
that provides the data. Finally, it defines an event to call (called an action in Atlas parlance)
when a property of the data source changes. It then sets up a listView control that is bound
to this data source, which generates a list off of the response from the web service. You’ll see
a lot more of this in Chapters 5, 6, and 7.

The last part to notice is where the binding is actually triggered. This happens upon appli-
cation loading and is defined in the Atlas script like this:

<application>
<load>
<invokeMethod target="dataSource" method="select"/>

</load>
</application>

It’s pretty straightforward and self-explanatory—invoke the select method on the data
source when the page loads. This triggers the binding, and the list gets refreshed with the
new data.

The data source control is very rich for handling client-side editing. It is effectively a dis-
connected data set, implemented in JavaScript, that has concepts of tables, columns, rows,
and so on. It also supports batched updates that allow changes to be made locally to the client
before a single batched update commit. It also provides optimistic concurrency, keeping track
of the changes so they can be posted back to the server to resolve conflicts.

Chapter 7 discusses how Atlas handles data.

Creating Atlas Components
You have two ways to construct components on the client and connect them to each other
using Atlas. You can build them programmatically, where you use JavaScript to create instances
of these objects and connect them using a script. Or you can build them declaratively using an
Atlas declarative script, an XML variant that describes an Atlas page.

On the server side you can turn your existing ASP.NET server-side controls into panes on
the page that update asynchronously by wrapping them in UpdatePanel controls, which are
provided by the Atlas server-side suite.

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL28

6471ch02final.qxd 5/10/06 11:21 PM Page 28

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here is an example of programmatically constructing Atlas elements using JavaScript:

Var myTextBox = new Web.UI.TextBox(document.getElement('TextBox1'));
myTextBox.initialize();

var myLabel = new Web.UI.Label(document.getElement('Label1'));

var myBinding = new Web.Binding();
myBinding.set_dataContext(myTextBox);
myBinding.set_dataPath('text');
myBinding.set_property('text');
myBinding.set_direction(Web.BindingDirection.In);

myLabel.get_bindings().add(myBinding);

myLabel.Initialize();

This is suitable if you are a script developer who wants to develop new components or
aggregations of existing components using code you already know how to use. The previous
listing instantiates two Atlas components, one for an HTML text box and the other for an
HTML label. The script then binds the contents of the text box to the label so any changes
made to the text box will be updated on the label.

As you can see, the extensions to JavaScript that come with Atlas provide a consistent
model for programming, which will look familiar to C# or VB .NET developers. It makes for
scripts that are easier to maintain and debug, but it is still quite verbose in terms of the
number of lines of code.

Using the declarative format, you can set up the same bindings and connect them using
XML like this:

<script type="text/xml-script>
<page xmlns := http://schemas.microsoft.com/xml-script/2005">
<components>
<script:label targetElement="MyLabel"/>
<bindings>
<binding dataContext="MyTextBox" dataPath="text"

property="text" direction="In" />
</bindings>

</script:label>
<script:textbox targetElement="MyTextBox"/>

</components>
</page>

</script>

If you simply want to provide the asynchronous update functionality with the partial-
page refreshes that are promised by the Ajax methodology, perhaps the easiest approach is
to wrap your existing ASP.NET markup with UpdatePanel controls. Here’s an example:

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL 29

6471ch02final.qxd 5/10/06 11:21 PM Page 29

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<atlas:UpdatePanel ID="THTextPanel" runat="server">
<ContentTemplate>
<asp:Panel ID="Panel1" runat="Server"

ScrollBars="auto" Width="200px" Height="100px">
<asp:Label ID="lblPH" runat="server" Text="">
</asp:Label>

</asp:Panel>
</ContentTemplate>

</atlas:UpdatePanel>
<atlas:UpdateProgress runat="server" ID="Prog3">
<ProgressTemplate>
Loading...

</ProgressTemplate>
</atlas:UpdateProgress>

In this example, a standard ASP.NET Panel control contains an ASP.NET Label control.
The Label control contains HTML markup that points to an image server (you’ll see more

of this in Chapter 11), and the Panel control provides scrollbars on this.
By placing these controls within the <ContentTemplate> element of the UpdatePanel,

the Atlas runtime will provide partial-page refreshes whenever the contents change. So, if your
application code generates new content for the Label control, only this part of the page will
refresh, and you will not get a full-page “blink.”

Additionally, you can present content while you are waiting for the asynchronous update.
In this case, it shows “Loading….” Refer to Figures 2-6 and 2-7 to see this in action.

Atlas Behaviors
Beyond simple data access and updates, presentation layers generally present some more
sophisticated UIs, intended to ease a user’s workflow. One of the technologies to this end
offered by Atlas is behaviors. These are similar to DHTML behaviors, but they are greatly
improved because they are not limited to Internet Explorer. They work on all browsers
because they are built using standard JavaScript. An Atlas behavior attaches itself to
DHTML elements using controls. They dynamically change the behavior of the control
based on this attachment.

So, for example, if you want to add drag-and-drop functionality to a control, you can
do this by attaching the appropriate behavior. Other typical GUI enhancements such as
tooltips, floating windows, autocomplete, and some animations and visual effects are
implemented as Atlas behaviors for you to use.

So, for example, you can specify an area of the page, contained within a <div>, to be
draggable and droppable around the page using a behavior like this:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<references>
<add src="AtlasUIDragDrop.js" />

</references>

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL30

6471ch02final.qxd 5/10/06 11:21 PM Page 30

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<components>
<control targetElement="popup">
<behaviors>
<popupBehavior id="popupBehavior"

parentElement="hoverLink"
positioningMode="BottomLeft"/>

<floatingBehavior handle="popup" />
</behaviors>

</control>

<hyperLink targetElement="hoverLink">
<behaviors>
<hoverBehavior unhoverDelay="1000" hoverElement="popup">
<hover>
<invokeMethod target="popupBehavior" method="show"/>

</hover>
<unhover>
<invokeMethod target="popupBehavior" method="hide"/>

</unhover>
</hoverBehavior>

</behaviors>
</hyperLink>

</components>
</page>
</script>

You’ll see many more demos and discussions of the various behaviors that come with
Atlas in Chapter 5.

Summary
In this chapter, you were introduced to the overall architecture of Atlas, and you went on
a tour of the various features of this architecture and how Atlas can empower your develop-
ment of richer browser-based clients. Atlas is based on two pillars: the script library, which
encapsulates many common functions as well as provides an object-oriented API layer for
JavaScript developers and proxies to network services, and the server extensions, which pro-
vide server-based controls that can be used to implicitly generate JavaScript code that uses
the libraries to implement your application on the client but that can also be debugged and
maintained as server-side web applications.

I also introduced the concepts of components and controls.
In addition, I introduced data binding and gave a simple demonstration of how to con-

nect client applications directly to web services or other middleware. In addition, I showed
how to use Atlas behaviors—browser-independent, JavaScript-based enhancements to UI
elements that are implemented on those elements using attribution.

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL 31

6471ch02final.qxd 5/10/06 11:21 PM Page 31

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the next chapter, you’ll see in more detail how Atlas makes JavaScript much easier.
You’ll be introduced to the various libraries and how they create and present a unified
design and coding framework with ASP.NET server pages. You’ll get an overview of the
libraries and each of their functions and will learn about details such as the namespaces,
inheritance, and various interfaces that these libraries offer you as a developer.

CHAPTER 2 ■ ATLAS: TAKING AJAX TO THE NEXT LEVEL32

6471ch02final.qxd 5/10/06 11:21 PM Page 32

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Atlas: Making Client-Side
JavaScript Easier

In the first two chapters, you began to get a sense for the power of Ajax and Altas and how
they can help you build responsive web applications using asynchronous JavaScript and XML.
Chapter 2 gave you an overview of ASP.NET 2.0 and in particular the server controls, including
how you can use them to generate client-side JavaScript. This methodology is used through-
out Atlas to make developing, deploying, and debugging rich client web applications as easy
as possible. You also looked at some JavaScript code and how you can use this within Atlas.
This chapter will go into more detail on the JavaScript libraries and APIs that Atlas provides.
The chapter will start with a tour of the new features that have been added to JavaScript, such
as namespaces and inheritance, so you can get a feel for how they work.

Using JavaScript in Atlas
In the following sections, you’ll learn how to use JavaScript in Atlas by creating your first Atlas
application.

Creating Your First Atlas Application
To get started with JavaScript in Atlas, fire up Visual Studio .NET, and create a new blank Atlas
web site by selecting File ➤ New Website and then selecting ASP.NET ‘Atlas’ Web Site from the
New Web Site dialog box (see Figure 3-1).

When you click OK, Visual Studio .NET will create a new workspace for you that contains
everything you need to get started with Atlas. You can see the structure it sets up in Figure 3-2.

The template copies the Microsoft.Web.Atlas.dll assembly dependency into your \Bin
directory so that your dependencies when running the application will be straight. You’ll have
to deploy this file with your application if you are moving it to a production server.

33

C H A P T E R 3

■ ■ ■

6471ch03final.qxd 5/10/06 11:16 PM Page 33

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER34

Figure 3-1. Creating a new Atlas web site

Figure 3-2. Default Atlas solution structure

6471ch03final.qxd 5/10/06 11:16 PM Page 34

http://lib.ommolketab.ir
http//lib.ommolketab.ir

At runtime, this DLL generates the script libraries and downloads them to the browser.
The libraries are broken down into the following:

• The core libraries (Atlas.js and AtlasRuntime.js) provide the lowest-level runtime sup-
port for the other libraries as well as base functionality for your JavaScript (such as the
Type.registerNamespace and Type.registerClass functions in this example).

• The compatibility libraries offer a compatibility layer for a graceful Atlas experience
across different browsers. This is an area where Atlas excels—you can code your
application without worrying about the differing underlying implementations of
XMLHttpRequest. Atlas handles that for you.

• The Atlas UI libraries offer UI services to your applications, allowing functionality such
as maps, drag and drop, and UI glitz to make your presentation layers sparkle!

Adding a Custom JavaScript Class
Next, you will create your own .js file that includes the code for a namespace that contains
a class definition for a car. As you will see in the next sections, Atlas brings object-oriented
programming to JavaScript, providing namespaces, inheritance, interfaces, and other goodies.
If you are familiar with using object orientation, the advantages are obvious. If you aren’t,
then the next sections, which show how namespaces, inheritance, and so on, work with
JavaScript, should help you understand how they make your code simpler to write, debug,
and understand.

To create this file, right-click the project within Solution Explorer, and select Add New
Item (see Figure 3-3).

In the ensuing dialog box, you then select Jscript File and name it. In this case I have
called it AtlasBook.js (see Figure 3-4). You can of course call it anything you like, but this is the
name I’ll use in this book’s examples.

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER 35

6471ch03final.qxd 5/10/06 11:16 PM Page 35

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER36

Figure 3-3. Adding a new script to your application

Figure 3-4. Creating a new Atlas Script library

6471ch03final.qxd 5/10/06 11:16 PM Page 36

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can now add the code that implements the Car class. When you use Visual Studio
2005 to create and edit JavaScript code, you get syntax coloring to make your code easier to
understand and maintain. Figure 3-5 shows the Car class code in the editor.

Using the Atlas Script Manager to Deliver Your Custom Class
To implement a web form that uses this class, use the same procedure as earlier to add a new
item, except this time add a new web form, and call it TestAtlasNamespace.aspx (see Figure 3-6).

To this web form, you will add an Atlas ScriptManager. This server-side control manages
the downloading of scripts to the client side so that the support files for Atlas code will be
automatically installed when the user hits your Atlas-enabled web site. For example, your
JavaScript uses the following command:

Type.registerNameSpace("AtlasBook");

The Type object is implemented in these script libraries, so you’ll need them on the client
before you can run your test application. The easiest way to do this is with the ScriptManager.
You can add this using simple drag-and-drop functionality in the page designer.

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER 37

Figure 3-5. Implementing your class in JavaScript

6471ch03final.qxd 5/10/06 11:16 PM Page 37

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If this is your first time using Atlas, you will likely not have the controls available to
you in your Visual Studio 2005 Toolbox. Adding them is simple. First, make sure your
TestAtlasNameSpace.aspx file is open in Design view. Your Toolbox will likely have tabs
for Standard, Data, Navigation, and HTML, among others, and will look something like
Figure 3-7.

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER38

Figure 3-6. Adding a web form to test your JavaScript

6471ch03final.qxd 5/10/06 11:16 PM Page 38

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Right-click anywhere in this window, and select New Tab. A new tab will be created with a
text editor in it that you can use to name it. Call it Atlas, and hit Enter. The Atlas tab will now
be selected with no controls in it.

Right-click anywhere in this Atlas tab, and select Choose Items. The Choose Toolbox Items
dialog box will appear (see Figure 3-8).

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER 39

Figure 3-7. Visual Studio .NET Toolbox

6471ch03final.qxd 5/10/06 11:16 PM Page 39

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Click the Browse button, and look in your application directory for the C:\Program Files\
Microsoft ASP.NET\Atlas directory. Find the file called Microsoft.Web.Atlas.dll, and choose it.
Some new items will be added to the .NET Framework Components tab in the Toolbox Items
folder. Click the Assembly Name column to sort it in order of namespace, and find the
Microsoft.Web.Atlas items (see Figure 3-9). Check each of them, and click OK.

You’ll now see the suite of Atlas controls in your Toolbox. I’ll discuss these controls
throughout this book, but for now, I’ll just show how to use the ScriptManager control. Drag
and drop this control onto the designer for TestAtlasNameSpace.aspx (or whatever you called
the file). Also drag and drop (from the HTML tab) an Input (Button) control to the web form.
You can see the result in Figure 3-10.

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER40

Figure 3-8. Choosing Toolbox items to add to your Atlas project

6471ch03final.qxd 5/10/06 11:16 PM Page 40

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Coding and Running the Application
If you double-click the button in the designer, Visual Studio .NET will create the onclick attrib-
ute on the HTML element to point to the Button1_onclick function and implement the stub of
the function within the HTML head.

You can then put the following script into this function:

function Button1_onclick() {
var testCar = new AtlasBook.Car('Honda','Pilot','2005');
alert(testCar.getMakeandModel());
alert(testCar.getYear());
return false;

}

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER 41

Figure 3-9. Adding the Atlas web controls

Figure 3-10. The Atlas ScriptManager control

6471ch03final.qxd 5/10/06 11:16 PM Page 41

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The last step you have to take is to add a reference containing the class definition for
Car to the JavaScript. It is important to place this after the reference to the ScriptManager;
otherwise, once the browser sees the Type.registerNamespace command, it will get confused
and throw an error.

So, look through the HTML code on TestAtlasNameSpace.aspx for the <div> element that
contains the <atlas:ScriptManager> declaration. Immediately after this, add the following
line:

<script language="javascript" src="AtlasBook.js"
type="text/javascript">

</script>

Note how Visual Studio .NET provides autocompletion for you so you can select which
JavaScript file to use (see Figure 3-11).

You can now run your application to get a pretty dull web form with a single button that,
when clicked, returns the values for the properties of make, model, and year for this instance
of a Car object (see Figure 3-12).

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER42

Figure 3-11. Adding your JavaScript class to your application

6471ch03final.qxd 5/10/06 11:16 PM Page 42

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Namespaces in JavaScript
The Atlas core library (AtlasCore.js) contains the facility to register namespaces and classes
using the Type.registerNamespace and Type.registerClass commands. You can use these to
build objects in JavaScript and assign them to namespaces for clearer, easier-to-read, and
easier-to-debug code. Listing 3-1 shows the definition of the Car class you used earlier. This
class is registered to the AtlasBook namespace.

Listing 3-1. Creating a Car Namespace

Type.registerNamespace("AtlasBook");
AtlasBook.Car = function(strMake, strModel, strYear) {

var m_Make = strMake;
var m_Model = strModel;
var m_Year = strYear;

this.getMake = function() {
return m_Make;

}

this.getModel = function() {
return m_Model;

}

this.getMakeandModel = function() {
return m_Make + ' ' + m_Model;

}

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER 43

Figure 3-12. Running your first Atlas application using JavaScript objects and namespaces

6471ch03final.qxd 5/10/06 11:16 PM Page 43

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this.getYear = function() {
return m_Year;

}

this.dispose = function() {
alert('bye ' + this.getName());

}
}
Type.registerClass('AtlasBook.Car', null, Web.IDisposable);

In this code, first the namespace is registered as AtlasBook using the
Type.registerNamespace command. Next, the class is implemented using a JavaScript
function. Properties of the class are implemented using var declarations, and methods
of the class using functions within the master function are assigned to the “this” object.

So to implement a getModel method, you would simply use the following:

this.getModel = function() {
// Add Implementation here
}

Finally, the class is registered to the namespace using the Type.registerClass command.
This takes three parameters, the first being the fully qualified name of the class, the second
being the base type of the class (so if it inherits from another type, you would specify that
here), and the last being the base interface of the class. You will learn more about inheritance
and interfaces in the next sections.

In this case, the base class is null, as Type doesn’t inherit from any base class, and the
interface is Web.IDisposable, which is an interface defined in Atlas.js that defines that
the class will call the dispose method (if implemented) when it is being destroyed.

Now, any JavaScript that includes this page will be able to create an instance of an
AtlasBook.Car object by using the following script:

var testCar = new AtlasBook.Car('Honda', 'Pilot', '2005');

Your code can then invoke methods on this object in the usual manner:

Alert(testCar.getYear());

Using Inheritance in JavaScript
As you saw in the previous section, when you register your class, you can specify the base class
type from which your class derives. One of the goals of Atlas is to make your JavaScript easier
to read and debug, and inheritance is a useful methodology to prevent replication of member
variables and methods amongst your classes, helping you achieve this goal.

This is probably best demonstrated by example. Earlier you created a Car class for a
generic car. Lots of different types of cars exist; for example, a sports utility vehicle (SUV) is
different from a sports car in that it will usually have a four-wheel drive (4WD) and the sports
car will not. If you want to implement car classes, where you will query the type of 4WD the
car has, it makes sense to have a subclass of Car called SUV that has a 4WD property.

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER44

6471ch03final.qxd 5/10/06 11:16 PM Page 44

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can try this by adding the following code to the bottom of the .js file you created
earlier:

AtlasBook.SUV=function(strMake, strModel, strYear, strDriveType)
{

AtlasBook.SUV.initializeBase(this,[strMake,strModel,strYear]);
var m_DriveType = strDriveType;
this.getDriveType = function() {

return m_DriveType;
}

}
Type.registerClass('AtlasBook.SUV', AtlasBook.Car, Web.IDisposable);

The earlier code implemented an AtlasBook.Car class that took a make (strMake), model
(strModel), and year (strYear) as constructors. This code now implements the SUV class that
takes the same parameters, as well as an additional one (strDriveType) that specifies the type
of 4WD the vehicle will use.

The first line passes the make, model, and year up to the base class, so this instance will
handle initialization through the base class, and initializors for these properties don’t need to
be rewritten:

AtlasBook.SUV.initializeBase(this,[strMake,strModel,strYear]);

It then implements its distinct property (for DriveType) and the method to read that
property:

var m_DriveType = strDriveType;
this.getDriveType = function() {

return m_DriveType;
}

Finally, it registers this class and specifies the base class to be AtlasBook.Car and hence
derives from the AtlasBook.Car class:

Type.registerClass('AtlasBook.SUV', AtlasBook.Car, Web.IDisposable);

To see it in action, return to the web form you created earlier, and change the
Button1_onclick script to this:

function Button1_onclick() {
var testCar = new AtlasBook.Car('Honda','Pilot','2005');
alert(testCar.getMakeandModel());
alert(testCar.getYear());

var testSUV = new AtlasBook.SUV('Honda','Pilot','2005','Active');
alert(testSUV.getMakeandModel());
alert(testSUV.getYear());
alert(testSUV.getDriveType());

return false;
}

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER 45

6471ch03final.qxd 5/10/06 11:16 PM Page 45

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The testSUV stuff is added, and methods for getMakeandModel as well as getYear are
called. These methods are implemented on the base (Car) class and inherited by the derived
(SUV) class. Run the application, and you’ll see them in action (see Figure 3-13).

Implementing Interfaces in JavaScript
Earlier you saw that when you define a class, you can also define the interfaces it implements.
By implementing these interfaces, an object of this class will have those functions available to
it. So, as an example, consider the following case. This definition has two types of sports cars:
a “real” sports car that implements a manual stick shift that can be set to whatever you like
and a “cheap” sports car that doesn’t and is just a standard car in a sleek body.

Here is the code that defines the stick shift interface:

AtlasBook.IStickShift = function() {
this.setGear = Function.abstractMethod;
this.getGear = Function.abstractMethod;
this.getGearCount = Function.abstractMethod;

}
Type.registerInterface('AtlasBook.IStickShift');

It defines three methods that any class using this interface will support. These are to set
the current gear, to get the current gear, and to get the count of available gears to the car.

Now, a good sports car is one that implements this interface and these functions:

AtlasBook.SportsCar=
function(strMake, strModel, strYear, strGears)

{
AtlasBook.SportsCar.initializeBase(this,

[strMake, strModel, strYear]);
var m_Gears = strGears;
var m_CurrentGear = 0;

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER46

Figure 3-13. Calling a method from the base class on the derived class

6471ch03final.qxd 5/10/06 11:16 PM Page 46

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this.setGear = function(strGearToSet){
m_CurrentGear = strGearToSet;
return true;

}
this.getGear = function(){

return m_CurrentGear;
}
this.getGearCount = function(){

return m_Gears;
}

}
Type.registerClass('AtlasBook.SportsCar',

AtlasBook.Car, AtlasBook.IStickShift);

You can see from the Type.registerClass call that the sports car is being subclassed from
a Car class and implements the AtlasBook.IStickShift interface.

Conversely, a cheap sports car is just a normal car, so its definition will look like this:

AtlasBook.CheapSportsCar =
function(strMake, strModel, strYear, strGears)

{
AtlasCheapSportsCar.initializeBase(this,

[strMake, strModel, strYear]);
}
Type.registerClass('AtlasBook.CheapSportsCar',

AtlasBook.Car, Web.IDisposable);

In code, you can check your class to see whether it implements the IStickShift interface
so you can derive which type of sports car the car is or to check whether it implements a stick
shift before you try to use it.

The following example uses the web form from earlier but changes the code-handling
onclick event of the button to this:

function Button1_onclick() {
var testSportsCar = new

AtlasBook.SportsCar('Porsche','999','2005','6');
var testCheapSportsCar = new

AtlasBook.CheapSportsCar('Shorspe','123','2005');
ProcessCar(testSportsCar);
ProcessCar(testCheapSportsCar);
return false;
}

This calls a helper function named ProcessCar that looks like this:

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER 47

6471ch03final.qxd 5/10/06 11:16 PM Page 47

http://lib.ommolketab.ir
http//lib.ommolketab.ir

function ProcessCar(theCar)
{
if(AtlasBook.IStickShift.isImplementedBy(theCar))
{
alert("Current Car: "

+ theCar.getMakeandModel()
+ " This is a good sports car "
+ " -- I can set the gear with a stick shift.");

theCar.setGear(5);
alert(theCar.getMakeandModel()

+ " is now cruising in gear number: "
+ theCar.getGear());

}
else
{
alert("Current Car: "

+ theCar.getMakeandModel()
+ " This is a cheap sports car "
+ " -- it's an automatic with a sleek body.");

}
}

This function looks at the car that is being passed into it. If it is a “real” sports car, it
implements the IStickShift interface (AtlasBook.IStickShift.isImplementedBy(theCar) returns
true), and you know you can call the setGear and getGear methods on it. Otherwise it doesn’t,
and if you try to call these methods, you’ll get an exception.

You can see it in action in Figure 3-14.

Accessing Server Resources from JavaScript
A typical design pattern in web applications is that your application consumes a web service
and presents an interface to this web service to your user. This forms a typical n-tier architec-
ture, with the web service and the information resources it consumes being a resource tier for
your web application, which is a presentation tier. To consume the web service, you would
require a server application because the ASP.NET technology doesn’t have a pure client-side
implementation of web service proxies. You would build a web application, create a proxy

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER48

Figure 3-14. Using the IStickShift interface

6471ch03final.qxd 5/10/06 11:16 PM Page 48

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to the web service using Visual Studio .NET or the wsdl.exe tool, and implement this proxy
within your application.

With Atlas, you can now have a pure client-side implementation of a web service consumer.
When you build your Atlas client, you can use the <Services> tag within the ScriptManager and
embed an <atlas:ServiceReference> element in this to point to your web service. You’ll see this
in action in a demonstration shortly.

Web services are ideally suited for business logic that has to be shared amongst a num-
ber of applications. For example, in this case, I will show how to write a web service that
calculates the value of a car based on its make and model and how much it has depreciated
in value because of its age. Depreciation is interesting here, because it is date-specific, and
hence it is ideal for a hosted business analytic and therefore a web service. This simple algo-
rithm deducts $2,000 in value for each year the car has aged (a real service would have a far
more complex formula).

Now you may think you can do the same thing from a client-side application, but the
problem with this approach is that everybody has a different clock on their computer, and
the time-based calculation of the value should come from a master clock; hence, having a
master process to manage the calculation makes sense, and web services are the ideal tech-
nology on which to do it, because they are designed for remote accessibility.

So, to see this in action, you should first implement a web service. Add a new web service
to your project, and call it CarService.asmx.

To this web service you can add a new WebMethod called getCarValue with the following
code:

[WebMethod]
public int GetCarValue(string strCarMake,

string strCarModel,
int strCarYear)

{
int nReturn = 0;
if (strCarMake == "Honda")
nReturn = 30000;

else
nReturn = 20000;

if (strCarModel == "Pilot")
nReturn += 10000;

int nDepreciation =
(System.DateTime.Now.Year - strCarYear) * 2000;

nReturn -= nDepreciation;
return Math.Max(0,nReturn);

}

This crude calculation establishes the value of a Honda at $30,000, unless it is a Pilot, in
which case it is $40,000. Other makes have a base value of $20,000, unless they are Pilots, in
which case they are $30,000. Depreciation is counted as $2,000 per year of age.

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER 49

6471ch03final.qxd 5/10/06 11:16 PM Page 49

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Next, create a new web form, and call it CalcCarValue.aspx. Drag an Atlas ScriptManager
control to the design surface, and add HTML Input (Text) controls and an Input (Button)
control to it. Label the three test fields as Make:, Model:, and Year:, and call them txtMake,
txtModel, and txtYear, respectively. Give the button the text Get Value.

Your screen should look like Figure 3-15.

Next, go to the Source view for this form, and find the <atlas:ScriptManager> tag. Enter
a new <Services> tag inside this one, and create a ServiceReference instance that points to
CarService.asmx. The code to do this should look like this:

<atlas:ScriptManager ID="ScriptManager1" runat="server">
<Services>
<atlas:ServiceReference Path="CarService.asmx" />

</Services>
</atlas:ScriptManager>

Finally, you will create the code that invokes the Service proxy and passes it the parame-
ters derived from the text fields on the form. In Design view, double-click the button to wire
up the event handler function for it. You will automatically be returned to the Source view and
will be inside the Button1_onclick function.

Add the following code to this function:

function Button1_onclick() {
requestValue = CarService.GetCarValue(

form1.txtMake.value,
form1.txtModel.value,
form1.txtYear.value,
OnComplete,
OnTimeOut);

return false;
}

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER50

Figure 3-15. Designing the web services client application

6471ch03final.qxd 5/10/06 11:16 PM Page 50

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In JavaScript, you refer to an HTML control by prefixing it with the name of the form that
it is on. In this case, the form is called form1, and hence you can get the value of the txtMake
field using form1.txtMake.value.

Your web service proxy has the same name as the service itself. In this case, the service is
called CarService and thus so is the proxy. In many cases you may have a dot-separated hier-
archy of names for your web service (that is, MathFunctions.Services.DepreciationService), in
which case you would use that as the name of your proxy too. The rule of thumb you can use,
if in doubt, is to look up the value of the Class= attribute in the .asmx file and use that.

Now, you may notice that your getCarValue web method took only three parameters, but
now you are passing five parameters. The additional ones are the callback functions that you
specify upon successful completion of the service call and upon a timeout of the service call.
This handles Ajax asynchrony for you completely under the hood!

In this example, you implement the callback functions like this:

function OnComplete(result)
{

alert("Car is worth: $" + result);
}

function OnTimeOut(result)
{

alert("Timeout: " + result);
}

The web method returns a value, and this is passed as “result” to both the successful and
the timeout callbacks. In the case of a successful request/response, this will contain the calcu-
lated value of the car.

Figure 3-16 shows the application calculating the price of a 2005 Honda Pilot at $38,000,
with the client JavaScript invoking the web service and displaying the result.

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER 51

Figure 3-16. Running the JavaScript web service consumer

6471ch03final.qxd 5/10/06 11:16 PM Page 51

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary
In this chapter, you began looking at the power of JavaScript in Atlas. You learned about the
extensions to JavaScript implemented in the Atlas.js library that allow you to use true object
orientation within your JavaScript, enabling such technologies such as inheritance, name-
spaces, and interfaces. Through hands-on coding, you saw how these features work and how
you can use them to make JavaScript easier to code, debug, and maintain. Additionally, you
looked at the JavaScript features that automatically encapsulate asynchronous web service
calls from your browser application. You saw how to implement and consume a web service
as well as how to wire up the asynchronous call to it. Comparing the complexity of this call to
the Ajax code in Chapter 1, you can see it is accomplishing a more complex task (a SOAP call
to a web service as opposed to a straight HTTP GET) with less code and in an easier-to-read
and easier-to-maintain manner.

From here you can begin to see the value that Atlas brings to Ajax-style applications.
In the following chapters, you will start looking into the libraries of controls that Atlas offers,
including looking at the client-side controls in Chapters 4 and 5.

CHAPTER 3 ■ ATLAS: MAKING CLIENT-SIDE JAVASCRIPT EASIER52

6471ch03final.qxd 5/10/06 11:16 PM Page 52

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing Client Controls
in Atlas

In the first three chapters, you looked at Ajax and Atlas and how you can use them to build
web applications that provide slick, clean, high-performing user interfaces by restricting the
need for postbacks to the server and that use the intelligence of the browser on the client side.
In this chapter, and the next, you will learn more details about the controls that Atlas gives you
to empower your development skills. Although Atlas provides a foundation for building rich
client applications using scripting, Atlas implements many common functionalities for you
via client-side controls. I will cover these controls in this chapter and cover the server-side
controls in Chapter 5.

Specifically, in this chapter you will learn how to use the following:

Atlas client-side controls: You will learn how to use the built-in client-side controls avail-
able to JavaScript or the XML-based Atlas Script.

Atlas Script: You will learn how to construct client-side interfaces using XML with the new
Atlas Script. You will define how controls appear on the page and hook them up to events,
also defined in XML.

In Chapter 5, I’ll cover actions, behaviors, and data binding, and I’ll cover how to extend
existing controls and how to create new controls.

Seeing a Basic Example in Action
When writing web pages that use client-side controls in Atlas, you define the controls within
the HTML code as usual and then create references to these controls using Atlas Script or
JavaScript. You can then manipulate these references via code to affect the underlying objects;
this process is much easier than if you were to manipulate the underlying object directly.

In this example, you will create a page that contains a button and a label, and you’ll toggle
the visibility of the label by clicking the button:

1. To create this page, first add a blank page (ChangeVisibility.aspx) to your project, and
drag an Atlas ScriptManager control onto it.

2. Next, add a <div> element (you can drag and drop it from the HTML section in the
Toolbox), and give it the ID of panel. Add some text to it.

53

C H A P T E R 4

■ ■ ■

6471ch04final.qxd 5/10/06 11:13 PM Page 53

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Finally, drag and drop an Input (Button) control onto the page. Your screen should look
like Figure 4-1.

The code behind this page should look something like this:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="ChangeVisibility.aspx.cs" Inherits="ChangeVisibility" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Untitled Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<atlas:ScriptManager ID="ScriptManager1" runat="server">
</atlas:ScriptManager>

</div>
<div id="panel" style="width: 100px; height: 100px">

This is the text that is going to be made invisible</div>
<input id="Button1" type="button" value="button" />

</form>
</body>
</html>

The next task is to add the Atlas code that allows you to change the visibility of the panel
whenever the user clicks the button. You will do this using some JavaScript. Add the following
JavaScript to the bottom of the page, beneath the closing </form> element and above the
</body> element:

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS54

Figure 4-1. Designing the page

6471ch04final.qxd 5/10/06 11:13 PM Page 54

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<script language="JavaScript">
var g_panel;
function pageLoad()
{

// Set up the atlas panel and set up the initial css
g_panel = new Sys.UI.Control($('panel'));
g_panel.initialize();
g_panel.set_cssClass('normal');

var btnVisibility = new Sys.UI.Button($('Button1'));
btnVisibility.initialize();
btnVisibility.click.add(onSetVisibilityClick);

}
function onSetVisibilityClick() {

g_panel.set_visible(!g_panel.get_visible());
}

</script>

■Note When you create a new Sys.UI.Control, you pass it the name of the underlying HTML element
prefixed with $ like this:

g_panel = new Sys.UI.Control($('panel'));

Control constructors take an element reference, not the string with the ID. Using the
prototype function ($(‘elementname’)) generates the reference so it can be recognized
correctly.

This script triggers when the page loads (pageLoad() event in Atlas) and creates a new
instance of a Sys.UI.Control, which is constructed using the panel element. This constructor
must be an existing control that is on the page. Should you try to call it with something else—
for example, panel999—Atlas will throw an error. So, in this case g_panel is a reference to the
actual HTML control that is defined in the <div> tag. It makes life much easier to then man-
ipulate this reference to change the underlying object.

Similarly, a reference of type Sys.UI.Button is created to point to the button you created
earlier. Interestingly enough, you can add events to controls, and in this case, the click event
is given the handler onSetVisibilityClick. Whenever the user clicks the button, the Atlas frame-
work will call this function to handle the click.

The function is then implemented in this script. It simply uses the set_visible and
get_visible methods of the Sys.UI.Control class (of which g_panel is an instance) to set the
visibility of the object to the logical inverse (using the not, or !, operator) of its current state,
thus toggling its visibility.

Running the page gives the results in Figure 4-2.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS 55

6471ch04final.qxd 5/10/06 11:13 PM Page 55

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, when using client-side GUI objects, the Atlas framework gives you a nice,
script-based, object-oriented approach that will make your coding a lot simpler.

Using the Atlas UI Client Controls
The file Atlas.js contains the JavaScript definition for each of the UI control objects. In the
following sections, you will look at each of these UI objects and how you can use them to
manipulate HTML objects to form true object-oriented client-side controls.

The UI Control
The UI control, from which all the other controls in this chapter derive, provides the founda-
tional functionality shared by all client controls.

It exposes the methods described in Table 4-1.

Table 4-1. UI Control Methods

Method Name Function

addCSSClass(String className) Attaches the class specified in className to the control.
It must be a valid, defined CSS class available to the
host page.

focus() Passes focus to the control.

scrollIntoView() If the control is off the page, scrolls the page until it is in
view.

removeCSSClass(String className) Unattaches the CSS class specified in className.

toggleCSSClass(String className) If the CSS className is currently attached, unattaches
it; otherwise, attaches it.

The properties described in Table 4-2 are available.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS56

Figure 4-2. Now you see me…and now you don’t (after clicking the button).

6471ch04final.qxd 5/10/06 11:13 PM Page 56

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 4-2. UI Control Properties

Property Name Function

bindings Returns an array of strings indicating the data bindings for this control.

dataContext Gets the data context for the binding associated with the control.

id Returns the ID for the control.

accessKey Allows the access key for quick access to this control to be set or read.

associatedElement Returns an object reference to the associated element.

behaviors Returns an array of strings indicating the behaviors associated with this
control.

cssClass Gets or sets the cssClass for this control. You can also use the various CSS
methods of the control to manipulate its CSS class.

enabled Gets or sets whether the control is enabled. When true, the control is
enabled; when false, the control is grayed out.

style Returns an object containing the element’s style settings.

tabIndex Gets or sets the value of the control in the tab index.

visible Gets or sets the visibility of the control. If true, the control is visible; if false,
it is invisible.

visibilityMode Returns a string containing the CSS definition for the object’s visibility.

The event described in Table 4-3 is available.

Table 4-3. UI Control Event

Event Name Function

propertyChanged Fires upon the changing of a property. Supports actions (for more about
actions, see Chapter 5).

The Label Control
The Label control is defined in the Sys.UI.Label class. It encapsulates the functionality used
to manipulate an HTML element as an object within JavaScript.

You define the label in HTML like this:

This is the label

You can also define it using a <label> tag like this:

<label id="MyLabel">This is the label</label>

The script to create an instance of an Atlas Label control from this HTML upon the page
loading looks like this:

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS 57

6471ch04final.qxd 5/10/06 11:13 PM Page 57

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<script language=javascript>
var g_label
function pageLoad()

{
g_label = new Sys.UI.Label($('MyLabel'));

}
</script>

The Label control exposes the methods described in Table 4-4.

Table 4-4. Label Control Methods

Method Name Function

addCSSClass(String className) Attaches the class specified in className to the
element. It must be a valid, defined CSS class available to
the host page.

focus() Passes focus to the element.

scrollIntoView() If the element is off the page, scrolls the page until
it is in view.

removeCSSClass(String className) Unattaches the CSS class specified in className.

toggleCSSClass(String className) If the CSS className is currently attached, unattaches it;
otherwise, attaches it.

The properties described in Table 4-5 are available.

Table 4-5. Label Control Properties

Property Name Function

bindings Returns an array of strings indicating the data bindings for this control.

dataContext Gets the data context for the binding associated with the control.

id Returns the ID for the control.

accessKey Allows the access key for quick access to this control to be set or read.

associatedElement Returns an object reference to the associated element.

behaviors Returns an array of strings indicating the behaviors associated with this
control.

cssClass Gets or sets the cssClass for this control. You can also use the various CSS
methods of the control to manipulate its CSS class.

enabled Gets or sets whether the control is enabled. When true, the control is
enabled; when false, the control is grayed out.

style Returns an object containing the element’s style settings.

tabIndex Gets or sets the value of the control in the tab index.

visible Gets or sets the visibility of the control. If true, the control is visible; if false,
it is invisible.

visibilityMode Returns a string containing the CSS definition for the object’s visibility.

text Gets or sets the text within the Label control.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS58

6471ch04final.qxd 5/10/06 11:13 PM Page 58

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The event described in Table 4-6 is available.

Table 4-6. Label Control Event

Event Name Function

propertyChanged Fires upon the changing of a property. Supports actions (for more about
actions, see Chapter 5).

The Button Control
The Button control is a Sys.UI.Button that corresponds to and controls an HTML button object.

You define it in HTML using the <input> tag, like this:

<input id="Button1" type="button" value="button" />

or using the <button> tag, like this:

<button id="Button1">button</button>

You can then set up the script in Atlas like this:

var g_button = new Sys.UI.Button($('Button1'));

The Button control exposes the methods described in Table 4-7.

Table 4-7. Button Control Methods

Method Name Function

addCSSClass(String className) Attaches the class specified in className to the Button
control. It must be a valid, defined CSS class available to
the host page.

focus() Passes focus to the Button control.

scrollIntoView() If the Button control is off the page, scrolls the page until it
is in view.

removeCSSClass(String className) Unattaches the CSS class specified in className.

toggleCSSClass(String className) If the CSS className is currently attached, unattaches it;
otherwise, attaches it.

The Button control has the properties described in Table 4-8.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS 59

6471ch04final.qxd 5/10/06 11:13 PM Page 59

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 4-8. Button Control Properties

Property Name Function

bindings Returns an array of strings indicating the data bindings for this control.

dataContext Gets the data context for the binding associated with the control.

id Returns the ID for the control.

accessKey Allows the access key for quick access to this control to be set or read.

associatedElement Returns an object reference to the associated element.

behaviors Returns an array of strings indicating the behaviors associated with this
control.

cssClass Gets or sets the cssClass for this control. You can also use the various CSS
methods of the control to manipulate its CSS class.

enabled Gets or sets whether the control is enabled. When true, the control is
enabled; when false, the control is grayed out.

style Returns an object containing the element’s style settings.

tabIndex Gets or sets the value of the control in the tab index.

visible Gets or sets the visibility of the control. If true, the control is visible; if false,
it is invisible.

visibilityMode Returns a string containing the CSS definition for the object’s visibility.

command Gets or sets the command associated with this button (it can be a regular
button, a Submit button, or a Reset button).

argument The argument associated with the button, such as the URL of the submis-
sion processor page for the form.

The Button control can fire the events shown in Table 4-9.

Table 4-9. Button Control Events

Event Name Function

propertyChanged Fires upon the changing of a property. Supports actions (for more about
actions, see Chapter 5).

click Fires upon the user clicking the button.

The InputControl Control
The Atlas InputControl control is analogous to an HTML input control that can be used for
buttons, text boxes, or text fields. You can use it for a text box by defining it in HTML using the
following markup:

<input id="Text1" type="text" />

This then gets associated with an Atlas client InputControl object like this:

var g_textbox = new Sys.UI.InputControl($('Text1'));

The InputControl control exposes the methods shown in Table 4-10.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS60

6471ch04final.qxd 5/10/06 11:13 PM Page 60

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 4-10. InputControl Control Methods

Method Name Function

addCSSClass(String className) Attaches the class specified in className to the
InputControl control. It must be a valid, defined CSS class
available to the host page.

focus() Passes focus to the InputControl control.

scrollIntoView() If the control is off the page, scrolls the page until it is in
view.

removeCSSClass(String className) Unattaches the CSS class specified in className.

toggleCSSClass(String className) If the CSS className is currently attached, unattaches it;
otherwise, attaches it.

The InputControl control has the properties described in Table 4-11.

Table 4-11. InputControl Control Properties

Property Name Function

bindings Returns an array of strings indicating the data bindings for this control.

dataContext Gets the data context for the binding associated with the control.

id Returns the ID for the control.

accessKey Allows the access key for quick access to this control to be set or read.

associatedElement Returns an object reference to the associated element.

behaviors Returns an array of strings indicating the behaviors associated with this
control.

cssClass Gets or sets the cssClass for this control. You can also use the various CSS
methods of the control to manipulate its CSS class.

enabled Gets or sets whether the control is enabled. When true, the control is
enabled; when false, the control is grayed out.

style Returns an object containing the element’s style settings.

tabIndex Gets or sets the value of the control in the tab index.

visible Gets or sets the visibility of the control. If true, the control is visible; if false,
it is invisible.

visibilityMode Returns a string containing the CSS definition for the object’s visibility.

validators InputControls can have validators that automatically validate the data that
is being input against programmed criteria such as a number range, a
number format, or specific text.

The InputControl can fire the event described in Table 4-12.

Table 4-12. InputControl Control Event

Event Name Function

propertyChanged Fires upon the changing of a property. Supports actions (for more about
actions, see Chapter 5).

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS 61

6471ch04final.qxd 5/10/06 11:13 PM Page 61

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The TextBox Control
The Atlas TextBox is analogous to a text box, which uses the underlying HTML
<input type="text"> tag.

You can define a TextBox control in HTML using the following markup:

<input id="Text1" type="text" />

This then gets associated with an Atlas client TextBox object like this:

var g_textbox = new Sys.UI.TextBox($('Text1'));

The TextBox control exposes the methods shown in Table 4-13.

Table 4-13. TextBox Control Methods

Method Name Function

addCSSClass(String className) Attaches the class specified in className to the text box.
It must be a valid, defined CSS class available to the host
page.

focus() Passes focus to the text box.

scrollIntoView() If the text box is off the page, scrolls the page until it is in
view.

removeCSSClass(String className) Unattaches the CSS class specified in className.

toggleCSSClass(String className) If the CSS className is currently attached, unattaches it;
otherwise, attaches it.

The TextBox has the properties shown in Table 4-14.

Table 4-14. TextBox Control Properties

Property Name Function

bindings Returns an array of strings indicating the data bindings for this control.

dataContext Gets the data context for the binding associated with the control.

id Returns the ID for the control.

accessKey Allows the access key for quick access to this control to be set or read.

associatedElement Returns an object reference to the associated element.

behaviors Returns an array of strings indicating the behaviors associated with this
control.

cssClass Gets or sets the cssClass for this control. You can also use the various CSS
methods of the control to manipulate its CSS class.

enabled Gets or sets whether the control is enabled. When true, the control is
enabled; when false, the control is grayed out.

style Returns an object containing the element’s style settings.

tabIndex Gets or sets the value of the control in the tab index.

visible Gets or sets the visibility of the control. If true, the control is visible; if false,
it is invisible.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS62

6471ch04final.qxd 5/10/06 11:13 PM Page 62

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Property Name Function

visibilityMode Returns a string containing the CSS definition for the object’s visibility.

validators TextBox controls can have validators that automatically validate the data
that is being input against programmed criteria such as a number range,
a number format, or specific text.

Text A string containing the text contained in the TextBox.

The TextBox can fire the event described in Table 4-15.

Table 4-15. TextBox Control Event

Event Name Function

propertyChanged Fires upon the changing of a property. Supports actions (for more about
actions, see Chapter 5).

The Image Control
The Atlas Image control corresponds to an HTML image tag, , which can be used to place
pictures on a web page.

You define an image tag in your page like this:

The src attribute indicates the path to the image for the browser to render. It can be a
relative path on the web site that the page is hosted on or an absolute path to another server
or the physical location of the image on the hard drive of the machine hosting the browser
that is viewing the page.

You associate this with an Atlas Image control like this:

var g_image = new Sys.UI.Image($('Image1'));

The Image control exposes the methods described in Table 4-16.

Table 4-16. Image Control Methods

Method Name Function

addCSSClass(String className) Attaches the class specified in className to the image.
It must be a valid, defined CSS class available to the host
page.

focus() Passes focus to the image.

scrollIntoView() If the image is off the page, scrolls the page until it is in view.

removeCSSClass(String className) Unattaches the CSS class specified in className.

toggleCSSClass(String className) If the CSS className is currently attached, unattaches it;
otherwise, attaches it.

The Image control has the properties described in Table 4-17.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS 63

6471ch04final.qxd 5/10/06 11:13 PM Page 63

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 4-17. Image Control Properties

Property Name Function

bindings Returns an array of strings indicating the data bindings for this control.

dataContext Gets the data context for the binding associated with the control.

id Returns the ID for the control.

accessKey Allows the access key for quick access to this control to be set or read.

associatedElement Returns an object reference to the associated element.

behaviors Returns an array of strings indicating the behaviors associated with this
control.

cssClass Gets or sets the cssClass for this control. You can also use the various CSS
methods of the control to manipulate its CSS class.

enabled Gets or sets whether the control is enabled. When true, the control is
enabled; when false, the control is grayed out.

style Returns an object containing the element’s style settings.

tabIndex Gets or sets the value of the control in the tab index.

visible Gets or sets the visibility of the control. If true, the control is visible; if false,
it is invisible.

visibilityMode Returns a string containing the CSS definition for the object’s visibility.

alternateText If the browser cannot render the image, this text will appear in its place.

height The height of the rendered image (in pixels). Every image has an
underlying size, but the browser can draw the image in a different size and
will stretch or shrink the image accordingly.

imageURL The source URL for the image. This is analogous to the src attribute on the
 tag.

width The width of the rendered image (in pixels). Every image has an underlying
size, but the browser can draw the image in a different size and will stretch
or shrink the image accordingly.

The Image control can fire the event described in Table 4-18.

Table 4-18. Image Control Event

Event Name Function

propertyChanged Fires upon the changing of a property. Supports actions (for more about
actions, see Chapter 5).

The HyperLink Control
The Atlas HyperLink control corresponds to an HTML anchor tag, <a>, which can be used to
place hyperlinks to external sites or to place internal bookmarks on your page.

You define an image tag in your page like this:

Hyperlink

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS64

6471ch04final.qxd 5/10/06 11:13 PM Page 64

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The href attribute indicates the path to the page or bookmark that the browser will navi-
gate to when the user clicks the hyperlink. It can be a relative path on the web site that the
page is hosted on, an absolute path to another server, a reference to a JavaScript function to
call, or the location of a bookmark on this specific page.

You associate this <a> with an Atlas HyperLink control like this:

var g_href = new Sys.UI.HyperLink($('Href1'));

The HyperLink control exposes the methods described in Table 4-19.

Table 4-19. HyperLink Control Methods

Method Name Function

addCSSClass(String className) Attaches the class specified in className to the anchor. It
must be a valid, defined CSS class available to the host page.

focus() Passes focus to the anchor.

scrollIntoView() If the anchor is off the page, scrolls the page until it is in view.

removeCSSClass(String className) Unattaches the CSS class specified in className.

toggleCSSClass(String className) If the CSS className is currently attached, unattaches it;
otherwise, attaches it.

The HyperLink control has the properties described in Table 4-20.

Table 4-20. HyperLink Control Properties

Property Name Function

bindings Returns an array of strings indicating the data bindings for this control.

dataContext Gets the data context for the binding associated with the control.

id Returns the ID for the control.

accessKey Allows the access key for quick access to this control to be set or read.

associatedElement Returns an object reference to the associated element.

behaviors Returns an array of strings indicating the behaviors associated with this
control.

cssClass Gets or sets the cssClass for this control. You can also use the various CSS
methods of the control to manipulate its CSS class.

enabled Gets or sets whether the control is enabled. When true, the control is
enabled; when false, the control is grayed out.

style Returns an object containing the element’s style settings.

tabIndex Gets or sets the value of the control in the tab index.

visible Gets or sets the visibility of the control. If true, the control is visible; if false,
it is invisible.

visibilityMode Returns a string containing the CSS definition for the object’s visibility.

text The text associated with this anchor. This is the text that will appear on the
web page. In the previous example, the text property will be HyperLink.

navigateURL The location of the destination for this link. This is the text that appears
within the href attribute on the HTML tag.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS 65

6471ch04final.qxd 5/10/06 11:13 PM Page 65

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The HyperLink control can fire the events described in Table 4-21.

Table 4-21. HyperLink Control Events

Event Name Function

propertyChanged Fires upon the changing of a property. Supports actions (for more about
actions, see Chapter 5).

click Fires upon the user clicking the hyperlink. Can be used to preprocess actions
before the browser navigates to the destination.

The CheckBox Control
The Atlas CheckBox control corresponds to an HTML input tag, <input>, with the CheckBox
type set.

You define the HTML in your page like this:

<input id="CheckBox1" type="CheckBox" />

One of the neat features of Atlas client controls is that they make your code more read-
able. Instead of dealing with lots of different <input> controls of different types, each type is
assigned its own control type.

You associate this CheckBox with an Atlas CheckBox control like this:

var g_chk = new Sys.UI.CheckBox($('CheckBox1'));

The CheckBox control exposes the methods described in Table 4-22.

Table 4-22. CheckBox Control Methods

Method Name Function

addCSSClass(String className) Attaches the class specified in className to the CheckBox.
It must be a valid, defined CSS class available to the host
page.

focus() Passes focus to the CheckBox.

scrollIntoView() If the CheckBox is off the page, scrolls the page until it is in
view.

removeCSSClass(String className) Unattaches the CSS class specified in className.

toggleCSSClass(String className) If the CSS className is currently attached, unattaches it;
otherwise, attaches it.

The CheckBox control has the properties described in Table 4-23.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS66

6471ch04final.qxd 5/10/06 11:13 PM Page 66

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 4-23. CheckBox Control Properties

Property Name Function

bindings Returns an array of strings indicating the data bindings for this control.

dataContext Gets the data context for the binding associated with the control.

id Returns the ID for the control.

accessKey Allows the access key for quick access to this control to be set or read.

associatedElement Returns an object reference to the associated element.

behaviors Returns an array of strings indicating the behaviors associated with this
control.

cssClass Gets or sets the cssClass for this control. You can also use the various CSS
methods of the control to manipulate its CSS class.

enabled Gets or sets whether the control is enabled. When true, the control is
enabled; when false, the control is grayed out.

style Returns an object containing the element’s style settings.

tabIndex Gets or sets the value of the control in the tab index.

visible Gets or sets the visibility of the control. If true, the control is visible; if false,
it is invisible.

visibilityMode Returns a string containing the CSS definition for the object’s visibility.

checked Gets or sets the state of the CheckBox. True means the CheckBox is
checked; false means it is clear.

The CheckBox control can fire the events described in Table 4-24.

Table 4-24. CheckBox Control Events

Event Name Function

propertyChanged Fires upon the changing of a property. Supports actions (for more about
actions, see Chapter 5).

click Fires upon the user clicking the CheckBox. Can be used to preprocess
actions before the form on which the CheckBox appears is submitted.

The Select Control
The Atlas Select control corresponds to an HTML select tag, <select>, which implements vari-
ous forms of drop-down lists.

You define a select tag in your page like this:

<select id="Select1">
<option selected="selected">Option 1</option>
<option>Option 2</option>
<option>Option 3</option>

</select>

The select tag specifies the list, and the child option tags specify the elements. The previ-
ous snippet defines a selection list with three options, the first option being selected by default.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS 67

6471ch04final.qxd 5/10/06 11:13 PM Page 67

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You associate this CheckBox with an Atlas Select control like this:

var g_sel = new Sys.UI.Select($('Select1'));

The Select control exposes the methods described in Table 4-25.

Table 4-25. Select Control Methods

Method Name Function

addCSSClass(String className) Attaches the class specified in className to the select list.
It must be a valid, defined CSS class available to the host
page.

focus() Passes focus to the list.

scrollIntoView() If the list is off the page, scrolls the page until it is in view.

removeCSSClass(String className) Unattaches the CSS class specified in className.

toggleCSSClass(String className) If the CSS className is currently attached, unattaches it;
otherwise, attaches it.

The Select control has the properties described in Table 4-26.

Table 4-26. Select Control Properties

Property Name Function

bindings Returns an array of strings indicating the data bindings for this control.

dataContext Gets the data context for the binding associated with the control.

id Returns the ID for the control.

accessKey Allows the access key for quick access to this control to be set or read.

associatedElement Returns an object reference to the associated element.

behaviors Returns an array of strings indicating the behaviors associated with this
control.

cssClass Gets or sets the cssClass for this control. You can also use the various CSS
methods of the control to manipulate its CSS class.

enabled Gets or sets whether the control is enabled. When true, the control is
enabled; when false, the control is grayed out.

style Returns an object containing the element’s style settings.

tabIndex Gets or sets the value of the control in the tab index.

visible Gets or sets the visibility of the control. If true, the control is visible; if false,
it is invisible.

visibilityMode Returns a string containing the CSS definition for the object’s visibility.

data Specifies the Web.Data.DataTable associated with this control. This is used
to automatically populate the list. For more about data binding and
control population, see Chapter 5.

firstItemText Gets or sets the text for the first item on the list.

selectedValue Specifies the value for the currently selected item.

textProperty Specifies the text for a specific item on the list.

valueProperty Specifies the value for a specific item on the list.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS68

6471ch04final.qxd 5/10/06 11:13 PM Page 68

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Select control can fire the events described in Table 4-27.

Table 4-27. Select Control Events

Event Name Function

propertyChanged Fires upon the changing of a property. Supports actions (for more about
actions, see Chapter 5).

selectionChanged Fires upon the user changing the current selection. This property supports
actions (for more about actions, see Chapter 5).

Using Atlas Script
The typical and familiar method for managing the interaction between controls on your web
page and updating their states based on various stimuli is to write Javascript to do so. You saw
examples of this in Chapter 3, where you declared a button like this:

<input id="Button1" type="button" value="Get Value"
onclick="return Button1_onclick()" />

Within the HTML declaration of the button, the property onclick was set to point to a func-
tion, which in this case is called Button1_onclick. Somewhere else on your page you would define
a script block that implements the function Button1_onclick, something like this:

<script language="javascript" type="text/javascript">
function Button1_onclick() {

// Do Whatever
return false;

}
</script>

This can be a little difficult to track and debug, so Atlas introduces a new methodology,
Atlas Script, for defining the controls on your page and for defining how they can interact with
each other using a simple XML-based syntax. It is also intended for future designer applica-
tions so that you can use a visual designer to define the page layout and the actions, bindings,
and behaviors of the controls in a similar manner to what you may be familiar with when
using web forms.

When using Atlas Script, you follow the same process as you did with the JavaScript-based
approach in the previous sections; namely, you define the controls in HTML and then create
references to them. You then manipulate these references to manipulate the underlying con-
trols. This is best shown by example. All of the code listings in this chapter are available in the
download on the Apress web site at http://www.apress.com. You’ll be looking at snippets of the
full pages, so if you are following along, you may want to download the code first.

These examples use a CSS file called intro.css, shown in Listing 4-1.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS 69

6471ch04final.qxd 5/10/06 11:13 PM Page 69

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 4-1. intro.css

body { text-align:left; margin:20,0,0,0;}
table, td { font-size:10pt;font-family:Verdana; }
td.products td { text-align:center; font-size:8pt;

vertical-align:top; height:248 }

td.select { color:#ffffff; background-color:#000000;
font-size:14pt;}

td.select select { width:130 }
td.cart { height:2500 }
td.cart td { font-size:9pt; font-weight:700}
td.cart a { font-size:11pt; font-weight:700}

h3 { font-size:22 }
h2 { font-size:22 }
a:link { color:blue; }
a:visited { color:blue; }

div.details {background-color:#ffffcc; padding-top:15;
padding-bottom:20; }

div.details table { width:280; }
div.details table td { font-family:Verdana; font-size:8pt; }
div.demosample {width:250px;height:75px;

border: dashed 2px black;}
div.demosample1 {width:50%;height:200px;

border: dashed 2px black;
text-align:center;
vertical-align:bottom;}

div.normal {font-size:14pt;text-align:center;
vertical-align:middle;background-color:yellow;
border:dotted 3px black}

div.description {padding-top:15; padding-bottom:20;
font-family:Verdana;background-color:white}

div.title {background-color:#ffffcc; padding-top:15;
padding-bottom:20; font-family:Verdana;}

table.nutr td { font-family: Verdana; font-size:8pt; }

img.selected { border-color:#DC6035;border-style:solid;}
img.unselected { border-color:#ffffcc;border-style:solid;}

table.details td { font-family: Verdana; font-size:12pt;
padding-right:50; width:50% }

span.blurb { font-size:9pt;}
table.form td { padding-right:15 }

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS70

6471ch04final.qxd 5/10/06 11:13 PM Page 70

http://lib.ommolketab.ir
http//lib.ommolketab.ir

select.itemselect { font-size:12pt; text-align:left;
background-color:lightyellow }

.buttonstyle { font-size:12pt;font-family:Verdana;
background-color:Gray;color:White}

.buttonstyle2 { margin:4px;padding:4px;text-align:center;
vertical-align:middle;cursor:hand;
font-size:12pt;font-family:Verdana;
background-color:Gray;color:White}

.normal {font-size:14pt;color:black;text-align:center;
width:100%; height:200px;background-color:yellow;
border:dotted 3px black}

div.red {font-size:14pt;color:white;width:100%;
height:200px;text-align:center;
vertical-align:bottom;background-color:red;
border:dotted 3px black}

.blue {font-size:14pt;width:100%; height:200px;
color:white;text-align:center;
vertical-align:middle;background-color:blue;
border:dotted 3px black}

.special {cursor: hand;}

.notset {border:dotted 3px black}

.textBox {width:400px;font-size:20pt;text-align:center;
background-color:yellow}

.result {color:white;background-color:green;
font-size:20pt;font-weight:bold;}

.input {color:black;background-color:yellow;
font-size:20pt;font-weight:bold;}

.draghandle{background-color:lightblue;
font-size:12pt;font-weight:bold;
color:black;
cursor:move;border:solid 1px black;
text-align:center;width:100%}

.floatwindow{background-color:#eeeeee;font-size:14pt;
border:solid 1px black;padding:4px;}

.popupwindow{border:solid 1px black;background-color:lightyellow;}

.hoverlabel {background-color:lightgreen;cursor:pointer;}

The following code defines a <div> element on a page and a number of Button controls
that will be used to manipulate the <div> element:

<div class="description">
<h3><u>Example 1:</u></h3>
<div id="panel">Click the buttons to affect this element</div>

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS 71

6471ch04final.qxd 5/10/06 11:13 PM Page 71

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<input type="button" id="hideButton"
class="buttonstyle" value="Hide" />

<input type="button" id="showButton"
class="buttonstyle" value="Show" />

<input type="button" id="disableButton"

class="buttonstyle" value="Disable" />
<input type="button" id="enableButton"

class="buttonstyle" value="Enable" />

<input type="button" id="largeButton"

class="buttonstyle" value="Large" />
<input type="button" id="smallButton"

class="buttonstyle" value="Small" />
</div>

You can see how this appears in Figure 4-3.

To affect the <div> element when clicking the buttons, you could write a JavaScript
function that would be referenced in the onclick attribute of the button, or you could create
an Atlas control reference to the button as in the previous section and manage the click
event of that reference. The third option is to specify how you want the buttons to behave
using Atlas Script.

Please note that you need to add a ScriptManager control to the page to be able to use
Atlas Script.

Listing 4-2 shows the full Atlas Script for these buttons; you can find this script at the bot-
tom of the listing before the closing </body> tag.

Listing 4-2. Button Script

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<control targetElement="panel" cssClass="start" />
<button targetElement="hideButton">
<click>
<setProperty target="panel" property="visible" value="false" />

</click>
</button>

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS72

Figure 4-3. The sample web form

6471ch04final.qxd 5/10/06 11:13 PM Page 72

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<button targetElement="showButton">
<click>
<setProperty target="panel" property="visible" value="true" />

</click>
</button>
<button targetElement="disableButton">
<click>
<setProperty target="panel" property="enabled" value="false" />

</click>
</button>
<button targetElement="enableButton">
<click>
<setProperty target="panel" property="enabled" value="true" />

</click>
</button>
<button targetElement="largeButton">
<click>
<invokeMethod target="panel" method="removeCssClass">
<parameters className="small"/>

</invokeMethod>
<invokeMethod target="panel" method="addCssClass">
<parameters className="large"/>

</invokeMethod>
</click>

</button>
<button targetElement="smallButton">
<click>

<invokeMethod target="panel" method="removeCssClass">
<parameters className="large"/>

</invokeMethod>
<invokeMethod target="panel" method="addCssClass">
<parameters className="small"/>

</invokeMethod>
</click>

</button>
</components>
</page>
</script>

To define XML-based Atlas Script, you first define the <script> element. You should set
this element to be of type text/xml-script so that the browser recognizes it as an XML-based
script.

Next, you need to define the page and the namespace that will be used for this page.
You do this using the <page> element. The current schema for XML Atlas Script is defined at
http://schemas.microsoft.com/xml-script/2005 and as such is associated with the <page>
element here. This ensures that the browser will be able to correctly parse the XML.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS 73

6471ch04final.qxd 5/10/06 11:13 PM Page 73

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Next, you define the components on the page. If you look at the HTML for the page,
you will see that it comprises a <div> element, called panel, and six buttons, called
hideButton, showButton, disableButton, enableButton, largeButton, and smallButton.

Atlas Script defines each of these. A base <div> control is defined as an Atlas control
named Control. Thus, the tag to define it in Atlas Script is <control>. Thus, to create a refer-
ence to the <div> element, you use the following script:

<control targetElement="panel" cssClass="start" />

This targetElement property specifies the ID of the raw HTML element at which this
control is pointing. This is equivalent to the script you saw earlier:

var g_ctrl = new Sys.UI.Control($('panel'));

Next, you define the buttons, and the neat feature of Atlas Script is that you can define the
response to various events directly with the button. So, for example, when defining the Atlas
Script for hideButton, you create the <click> child element and specify what happens upon
this event:

<button targetElement="hideButton">
<click>
<setProperty target="panel" property="visible" value="false" />

</click>
</button>

The <click> element’s children specify what should happen upon the button being
clicked. In this case, it has the child element <setProperty> that, as you may have guessed,
causes properties to be set somewhere. Which properties, and where they should be set, are
specified in the attributes of the <setProperty> element. In this case, the target is panel, the
property to be set is visible, and the value that should be set on it is false. At runtime, when the
button is clicked, Atlas parses this script and follows it, setting the visible property on panel to
false, thus rendering the panel invisible. You can see this in Figure 4-4.

You can see that similar behavior occurs on showButton, disableButton, and enableButton.
One interesting and powerful aspect of this script is that multiple commands may be

issued upon an event firing. Take a look at the script for the largeButton control:

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS74

Figure 4-4. The panel has vanished.

6471ch04final.qxd 5/10/06 11:14 PM Page 74

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<button targetElement="largeButton">
<click>
<invokeMethod target="panel" method="removeCssClass">
<parameters className="small"/>

</invokeMethod>
<invokeMethod target="panel" method="addCssClass">
<parameters className="large"/>

</invokeMethod>
</click>

</button>

The <click> node has two child elements. They are both <invokeMethod> elements, which,
as you may have guessed, call a method on a control. As with setProperty, you define, using
attributes, which method on which control uses which parameters.

The base Control class supports methods called removeCssClass and addCssClass. These
methods expect a parameter, being the name of the class you want to remove or add, respec-
tively. To call them using the <invokeMethod> element, you can use the following Atlas Script:

<invokeMethod target="panel" method="removeCssClass">
<parameters className="small"/>

</invokeMethod>

As you can probably derive, this specifies that the method to be called is removeCssClass;
it should be called on the control referenced as panel. The parameter to be passed to the
method is className=“small”.

When clicking largeButton, the user then triggers two actions; the first is that Atlas will
invoke the removeCssClass method on the panel, telling it to remove the small Css class. It
will then invoke the addCssClass method on the same control and pass it the parameter
large. Thus, the effect is to dynamically change the CssClass of the object at runtime. You
can see this effect in Figure 4-5.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS 75

Figure 4-5. Dynamically changing CSS at runtime

6471ch04final.qxd 5/10/06 11:14 PM Page 75

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary
In this chapter, you started looking at client-side controls in Atlas, investigating the common
HTML controls that are available as Atlas controls and how you can use and manipulate these
using JavaScript or Atlas Script. These controls make the page-level manipulation of objects
easier to handle, but they go far beyond just being a scripting methodology for existing func-
tionality. With Atlas you can add new functionality to your client-side controls using behaviors,
actions, data binding, and lots of user interface features such as drag and drop. In Chapter 5,
you will take what you started with in this chapter and learn in more depth about how to use
Atlas Script to associate this functionality with client-side controls.

CHAPTER 4 ■ INTRODUCING CLIENT CONTROLS IN ATLAS76

6471ch04final.qxd 5/10/06 11:14 PM Page 76

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Client Controls in Atlas

The first three chapters of this book gave you an overview of Ajax and Atlas and discussed how
you can use them to build web applications using this technology to restrict unnecessary post-
backs and processing on your web pages, thus improving the performance and polish of your
web applications. In Chapter 4 you began to look at how Atlas provides controls—such as HTML
text areas, anchors, input controls, and more—that help you manage the entities on your web
page. The controls framework that Atlas layers on top of HTML standards allows you to write
JavaScript code that is easier to maintain than if you were to code directly against the HTML
representation of the controls. If you aren’t familiar with how this works or don’t understand
how this helps, it is well worth returning to Chapter 4 before you continue with this chapter.

Additionally, Chapter 4 introduced Atlas Script, which is an XML-based declarative model
for programming your web pages. This is a powerful yet easy-to-use construct whereby you
specify each of your controls as an XML tag and then, using various child tags such as
<invokeMethod>, declaratively control the behavior of these controls and how they interact
with others. You’ll be looking at advanced functionality that uses both forms of manipulation
in this chapter, including the following:

Actions: Actions are collections of tasks, bundled into an atomic unit for managing com-
plex tasks in a simple manner.

Behaviors: Behaviors allow you to create specific functionality that can be reused and
attached to specific controls and elements on your page.

Data binding: As it sounds, data binding is the built-in facility that allows you to wire
controls together to pass data between them.

This chapter will walk you through many examples of web pages that use Atlas to provide
sophisticated GUI functionality. You will start with some simple examples and work your way
up to more complex ones that use binding, behaviors, and more. I have found this to be the
best way to understand the power of Atlas—to work through examples and then to dissect
them in order to understand how they work.

Manipulating Controls Using CSS
In this example, you will look at how you can use JavaScript Atlas Script to manipulate the
underlying properties of a <div> element that contains text and colors on your page. You’ll
see how Atlas interfaces with CSS styles and how, through the programmatic manipulation
of these styles, you can affect how your page looks and performs.

77

C H A P T E R 5

■ ■ ■

6471ch05final.qxd 5/10/06 10:51 PM Page 77

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using JavaScript
First, you need to create your web page, containing the <div> tag, and the various controls that
will be used to manipulate it.

The page will look like Figure 5-1.

To construct this page, you use the following HTML code:

<form id="form1" runat="server">
<atlas:ScriptManager runat="server" ID="ScriptManager1" />
<div class="description">
<h3><u>Example 1:</u></h3>
<div id="panel">This panel (div element) will be affected
by color selection and clicking the cursor button.
</div>

Select a color for the panel:
<select id="colorSelect" class="itemselect">
<option value="normal">Normal</option>
<option value="red">Red</option>
<option value="blue">Blue</option>
<option value="notset">NotSet</option>

</select>
<input type="button" id="cursorButton" class="buttonstyle"

value="Set the hover cursor for the panel" />

</div>
</form>

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS78

Figure 5-1. Example screen for changing properties of a <div> element

6471ch05final.qxd 5/10/06 10:51 PM Page 78

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page uses a number of CSS classes. The CSS file is available in the download for this
chapter and should be set up in the <head> element of the page using a link tag as follows
(the full listing of this CSS file is also available in Chapter 4):

<link href="intro.css" type="text/css" rel="Stylesheet" />

To edit this page, you can use JavaScript to declare each of the elements as Atlas client
controls, and you can then manipulate these controls in code.

First you create holder variables for the <div> element (also called a panel), the selection
list where you pick the color, and the label where you place the status of the cursor—it will
display whether you are using a regular cursor or a hand cursor:

var g_panel;
var g_selColor;
var g_label;

The pageLoad() function will fire upon the page being loaded and rendered. This is where
you initialize the controls. A <div> element is represented by the Sys.UI.Control class, a selec-
tion list is represented by the Sys.UI.Select class, a button is represented by the Sys.UI.Button
class, and a label is represented by the Sys.UI.Label class (each of these classes is documented
in Chapter 4):

function pageLoad()
{
// Set up the Atlas panel, and set up the initial css
g_panel = new Sys.UI.Control($('panel'));
g_panel.initialize();
g_panel.set_cssClass('normal');

// Set up the select list, and hook up a selection changed event
g_selColor = new Sys.UI.Select($('colorSelect'));
g_selColor.initialize();
g_selColor.selectionChanged.add(onSelectColor);

// Set up the buttons, and attach the click event
var btnCursor = new Sys.UI.Button($('cursorButton'));
btnCursor.initialize();
btnCursor.click.add(onCursorButtonClick);

g_label = new Sys.UI.Label($('cursorLabel'));
g_label.initialize();
g_label.set_text("Regular pointer cursor");

}

To initialize a control, you first assign it to a local variable and then call the initialize()
method to set it up. Calling the set_cssClass method on the control will assign the control to
the named CSS class. In the previous listing, you can see that g_panel is initialized with the
class called normal. If you look at the CSS class file, you can see that this is declared as follows:

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 79

6471ch05final.qxd 5/10/06 10:51 PM Page 79

http://lib.ommolketab.ir
http//lib.ommolketab.ir

.normal {font-size:14pt;color:black;text-align:center;width:100%;
height:60px;background-color:yellow;border:dotted 3px black}

Referring to Figure 5-1, you can see that this describes how the box is set up, with a yellow
background, a dotted border, and so on.

Next you initialize the selection box. To do this, you assign the variable called g_selColor
to a new Sys.UI.Select control. You construct this using the colorSelect parameter, which, if
you refer to the HTML, is the ID for the select tag. After initializing, this code is called like this:

g_selColor.selectionChanged.add(onSelectColor);

This creates an action on g_selColor (and by extension the underlying HTML select
control), which adds an event delegate. Whenever the selection changes on the control, the
method defined in the parentheses (in this case onSelectColor) will be called. This method
is defined like this:

function onSelectColor(sender, args) {
g_panel.set_cssClass(g_selColor.get_selectedValue());

}

Therefore, when the user makes a selection, this function is called. What it does is to
call the set_cssClass method on the panel, passing it a parameter—the value of the current
selectedValue of the selection list. Again, look at the HTML code; the values associated with
the various options on the list are normal, red, blue, and notset. These correspond directly
with classes defined in the CSS file:

.normal {font-size:14pt;color:black;text-align:center;width:100%;
height:60px;background-color:yellow;border:dotted 3px black}

.red {font-size:14pt;color:white;width:100%; height:60px;text-align:center;
vertical-align:bottom;background-color:red;border:dotted 3px black}

.blue {font-size:14pt;width:100%; height:60px;color:white;text-align:center;
vertical-align:middle;background-color:blue;border:dotted 3px black}

.notset {border:dotted 3px black}

Thus, for example, if you select the Red option on the list, Atlas will call the onSelectColor
function, because it has been added as the event delegate for a selection on the list. The
onSelectColor function will receive the value red, because it is the associated value for this
selection on the list. The function then will call set_cssClass on the g_panel, passing it the
value red, which, as you can see from the previous CSS, sets the background color of the panel
to red.

You can see how this appears in Figure 5-2.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS80

6471ch05final.qxd 5/10/06 10:51 PM Page 80

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Another style you can change on the <div> element is the cursor that is used when the
mouse hovers over it. You can do this in this example with a click of the button to toggle it
between the default cursor and a hand cursor. The label indicates the status of the current
cursor. You’ll now look at how these controls are initialized.

First the button—you set this up by constructing a Sys.UI.Button control with
cursorButton, which is the ID of the underlying HTML control:

// Set up the buttons, and attach the click event
var btnCursor = new Sys.UI.Button($('cursorButton'));
btnCursor.initialize();
btnCursor.click.add(onCursorButtonClick);

Then you assign the onCursorButtonClick function as the delegate event for when the
user clicks the button. This function looks like this:

function onCursorButtonClick() {
if (g_panel.containsCssClass('special'))
{
g_panel.removeCssClass('special');
g_label.set_text("Regular cursor");

}
else
{
g_panel.addCssClass('special');
g_label.set_text("Hand pointer cursor");

}
}

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 81

Figure 5-2. The effect of choosing Red in the selection box

6471ch05final.qxd 5/10/06 10:51 PM Page 81

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This function toggles the hover cursor for the panel. To do this, it inspects the panel using
the containsCssClass method of the g_panel control. This is a great example of how useful
client-side controls are. With Atlas, all the underlying plumbing is handled for you, so you
can just call methods like this one to inspect the CSS classes that are attached to a control.
If the panel contains the class special, that means it currently has this CSS attached to it:

.special {cursor: hand;}

And as you can see, this sets the cursor to be a hand. So, if it currently contains this CSS
class, the way to toggle it is simply to remove this class from the panel, therefore reverting the
panel to its default. You also set the text of the label to Regular Cursor. Otherwise, if it isn’t
present, you add it and update the label accordingly. Very simple, right?

You can see the effect of clicking this button in Figure 5-3. The button has been clicked to
set the cursor to be a hand (first image). Note the state of the label and the cursor as it hovers
over the <div> element. In the second image, the button has been clicked again, the special
class has been removed, and both the label and the cursor have been updated.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS82

Figure 5-3. The effect of clicking the button

6471ch05final.qxd 5/10/06 10:51 PM Page 82

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This example was a simple one, showing how you can manipulate CSS classes on the
underlying controls by using the various methods available to Atlas client-side controls. In
addition, you saw how event delegates can be added to controls to allow for complex func-
tionality to be performed upon an event. As you work through this chapter, I will expand
on this example to show you how to achieve more sophisticated functionality.

Using Atlas Script
You can achieve the same functionality using Atlas Script instead of JavaScript. In this case,
the same HTML is used, but the following XML-based Atlas Script is used instead of the
JavaScript code you saw earlier:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>

<control targetElement="panel" cssClass="normal">
<bindings>
<binding id="setCss" dataContext="colorSelect"

dataPath="selectedValue" property="cssClass" />
</bindings>
</control>

<select targetElement="colorSelect">
<selectionChanged>
<invokeMethod target="setCss" method="evaluateIn" />

</selectionChanged>
</select>

<button targetElement="cursorButton">
<click>
<invokeMethod target="panel" method="toggleCssClass">
<parameters className="special" />

</invokeMethod>
<setProperty target="cursorLabel"

property="text" value="Cursor set" />
<setProperty target="cursorButton"

property="enabled" value="true" />
</click>

</button>

<label targetElement="cursorLabel" text="Regular cursor" />

</components>
</page>
</script>

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 83

6471ch05final.qxd 5/10/06 10:51 PM Page 83

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This script declaratively achieves the same functionality you saw in the previous expres-
sion that used explicit programming. Let’s go through it piece by piece so you can understand
completely what is happening.

First, you set up the outside tags that define the page:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">

The script tag informs the browser that the processor for the type text/xml-script should
be used for the following sections. The Atlas runtime handles this script for you.

Next, the tag appears that defines to Atlas that what is following is Atlas Script defining
the page and the controls that are on the page. It uses the xml-script/2005 schema for valida-
tion, again informing Atlas to validate the page according to this schema.

Within the page is a <components> tag, within which each of the components resides.

Using Data Binding to Map the Select Box to the Panel
The first component to be initialized within the XML is the panel. You set it up like this:

<control targetElement="panel" cssClass="normal">
<bindings>
<binding id="setCss" dataContext="colorSelect"

dataPath="selectedValue" property="cssClass" />
</bindings>
</control>

The <control> tag defines a client-side control. It contains a targetElement property that
is analogous to the constructor parameter of the JavaScript version. In other words, you should
set up this attribute to point to the physical HTML control that this script should reference. In
this case, the <div> element you will be manipulating is called panel (see its ID property in the
HTML), and therefore this <control> tag will reference that. Its cssClass will be initialized to
normal, which sets it up with a yellow background and dotted border. This class resides in the
CSS file associated with this page. If you read the previous section, about how to manipulate
this page using JavaScript, you have seen this CSS class.

A child of the <control> tag is the <bindings> tag. Note the plural—any control may have
multiple bindings, each of which is specified using a <binding> child tag of the bindings. This
example has only a single binding, but you’ll see examples of multiple bindings shortly, when
the text box is initialized.

It is important to understand how to set up the binding. First, you give the binding an
identity so it can be referenced from elsewhere. In this case, you give the binding the ID of
setCss. Remember this, because you will be referring to it later. You also give the binding a
dataContext. This is a reference to the source control to which this binding is bound. Next,
you set up the dataPath—this is the property on the target control to which you are binding.
Finally, you declare the property on this control to which you are binding the other control’s
data path, and this is cssClass. So, in this case, you want to bind the local property cssClass to
the selectedValue property of the colorSelect control. You are giving this binding the identity
setCss.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS84

6471ch05final.qxd 5/10/06 10:51 PM Page 84

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To see the other side of this binding, take a look at how the colorSelect control is handled
in Atlas Script:

<select targetElement="colorSelect">
<selectionChanged>
<invokeMethod target="setCss" method="evaluateIn" />

</selectionChanged>
</select>

Here the <select> tag specifies that this control is a selection list (analogous to Sys.UI.Select),
with its target element being set to colorSelect, which is the ID for the selection control specified
in the HTML.

You will notice that this element has a child element called selectionChanged. This is the
name of an event that the control supports. For a list of the available properties, methods, and
events on this control, see Chapter 4.

Here you are declaring what should happen on a selectionChanged event. What it does
is invoke a method on a target. The target in this case is the setCSS binding, which is declared
as a binding on the panel. The method itself is evaluateIn (exposed by the binding element),
which returns the default value of this control, which, in the case of a select control, is the
value (not the text) of the current selection. So, this code, upon the selection change, calls the
data binding that was specified on the <panel> control, passing it the value of the current
selection. Looking back at the definition for the panel control, you will see that the binding
is set up to take this value and assign it to the cssClass property of the panel. If you look at the
values of the selection options in the HTML (normal, red, blue, and notset), you will see these
are the class names in the CSS:

.normal {font-size:14pt;color:black;text-align:center;width:100%; height:60px;
background-color:yellow;border:dotted 3px black}

.red {font-size:14pt;color:white;width:100%; height:60px;text-align:center;
vertical-align:bottom;background-color:red;border:dotted 3px black}

.blue {font-size:14pt;width:100%; height:60px;color:white;text-align:center;
vertical-align:middle;background-color:blue;border:dotted 3px black}

.notset {border:dotted 3px black}

Thus, the binding sets the CSS class of the panel element to one of these, directly bound
to the select control, and updates the appearance of the panel.

Using Method Invocation to Map the Button Box to the Cursor Type
In the JavaScript-based example in the previous section, you saw that clicking the button on
the page toggled the cursor for the panel between using a hand and using a normal cursor.
You can also achieve this using declarative XML markup.

Let’s look at the markup:

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 85

6471ch05final.qxd 5/10/06 10:51 PM Page 85

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<button targetElement="cursorButton">
<click>
<invokeMethod target="panel" method="toggleCssClass">
<parameters className="special" />

</invokeMethod>
<setProperty target="cursorLabel"

property="text" value="Cursor set" />

</click>
</button>

<label targetElement="cursorLabel" text="Regular cursor" />

This markup resides within the <components> tag, which itself resides within the <page>
tag, so Atlas will assign these to the identified controls within the HTML. This script has two
component-level tags: <button> and <label>. These map to the target elements of
cursorButton and cursorLabel, respectively. If you inspect the HTML, you will see these are
the IDs that have been assigned to the button and the label.

Let’s first look at the <button> element. It has one child: <click>. This defines the action
for the click event. This action does two things; first it toggles the state of the CSS class called
special, turning it on or off, and second, it sets the property of the label to indicate that the
property has been set.

It achieves this using the <invokeMethod> tag to invoke the toggleCssClass method on the
panel. For more details on the methods, properties, and events of the Panel control, see Chap-
ter 4. This method will turn the specified CSS class on or off when called. In this case,
the class called special contains a hand cursor.

The CSS code for the special class looks like this:

.special {cursor: hand;}

Turning it on will give a hand cursor for the panel; turning it off will revert to the default
arrow.

Also, it uses the <setProperty> tag to set the text of the label. You specify the control you
are using with the targetElement attribute, and the property attribute should contain the name
of the property you want to set. Finally, the value attribute contains the information you want
to place in the specified property. Therefore, to set the text property of the cursor label to the
text Cursor Set, you use the following markup:

<setProperty target="cursorLabel"
property="text" value="Cursor set" />

And because this markup is a child of the <click> node for the button, this action will take
place upon the button being clicked.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS86

6471ch05final.qxd 5/10/06 10:51 PM Page 86

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Manipulating Controls Directly
In this example, you will learn how to manipulate controls directly.

Using JavaScript to Manipulate Controls Directly
In the previous sections, you saw how to use CSS and Atlas client controls to manipulate how
a <div> element on your page behaves. When you use Atlas client-side controls, you can also
manipulate the controls directly using JavaScript, as you saw in the previous chapter. See
Chapter 4 for all the properties, methods, and events on each control.

To manipulate controls, you can call these properties, methods, and events directly. This
example is a simple one, showing how you can change the visibility and enabled state of a text
box by using Atlas client-side controls and setting their respective properties.

The page will look like Figure 5-4.

The HTML to set up this page is as follows:

<form id="form1" runat="server">
<atlas:ScriptManager runat="server" ID="ScriptManager1" />
<div>
<h3><u>Example 2:</u></h3>
<input id="textBox" type="text"/>

<input type="button" id="visibilityButton" class="buttonstyle"

value="Toggle Visibility Property" />

<input type="button" id="enabledButton" class="buttonstyle"

value="Toggle Enabled Property" />
</div>
</form>

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 87

Figure 5-4. Simple example for manipulating controls directly

6471ch05final.qxd 5/10/06 10:51 PM Page 87

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Take note of the ID tags, because you will use them to construct the client-side controls in
JavaScript using Atlas.

When the page loads, it calls the following script:

function pageLoad()
{
// Set up the textBox, and set some properties on it
g_tbx = new Sys.UI.TextBox($('textBox'));
g_tbx.initialize();
g_tbx.set_text("This is a simple text box.");

var btnVisibility = new Sys.UI.Button($('visibilityButton'));
btnVisibility.initialize();
btnVisibility.click.add(onSetVisibilityClick);

var btnEnabled = new Sys.UI.Button($('enabledButton'));
btnEnabled.initialize();
btnEnabled.click.add(onSetEnabledClick);

}

This sets up each of the controls. First, a Sys.UI.TextBox is constructed from the control
called textbox, which as you may guess is the text box. Next, the two buttons are initialized
based on the <input> controls on the page. Note that the two <input> controls were called
visibilityButton and enabledButton; these IDs are passed to the Sys.UI.Button controls as con-
structors, thus setting them up. Each button is then initialized, and event delegates are set up
for the click events on each, mapped to the onSetVisibilityClick and onSetEnabledClick func-
tions, respectively.

Let’s take a look at onSetVisibilityClick:

function onSetVisibilityClick() {
g_tbx.set_visible(!g_tbx.get_visible());

}

This function calls the set_visible method of the TextBox control. The current instance of
the TextBox control is called g_tbx, which was set up in the pageLoad event as you saw earlier.
To toggle visibility, you call the current visibility state, using the get_visible() method, and set
it to the opposite by using the not operator (!) to invert the value.

In a similar manner, you can enable the TextBox control in script like so:

function onSetEnabledClick() {
g_tbx.set_enabled(!g_tbx.get_enabled());

}

Viewing the page now allows you to manipulate the visibility and of the text box and
whether its enabled by clicking the buttons. This demonstrates simple interaction with a
control by calling its methods and events directly.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS88

6471ch05final.qxd 5/10/06 10:51 PM Page 88

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Atlas Script to Manipulate Controls Directly
In the previous section, you looked at using JavaScript and Atlas controls to manipulate the
underlying HTML controls directly—showing that you aren’t limited to manipulating them
through CSS. Now you will learn how to perform the same actions without programming—
simply by defining the controls and associated bindings and actions using Atlas Script XML
markup.

Figure 5-4 showed the page. The markup that generates this page is as follows:

<form id="form1" runat="server">
<atlas:ScriptManager runat="server" ID="ScriptManager1" />
<div>
<h3><u>Example 2:</u></h3>
<input id="textBox" type="text"/>

<input type="button" id="visibilityButton" class="buttonstyle"

value="Toggle Visibility Property" />

<input type="button" id="enabledButton" class="buttonstyle"

value="Toggle Enabled Property" />
</div>
</form>

The three controls are all HTML <input> controls, which can get a little confusing if you
aren’t familiar with HTML. Buttons are considered <input> controls, but the distinguishing
factor that makes them buttons is that the type attribute is set to button. Atlas Script clarifies
this by defining them as buttons and by defining the text box as a text box. This makes it a lot
easier to understand and read your code.

Let’s look at the script that sets these up. First, this is the text box:

<textBox targetElement="textBox"
text="This is a simple text box "
cssClass="textBox">

<bindings>
<binding id="setEnabled" dataContext="textBox"

dataPath="enabled" property="enabled"
transform="Invert" automatic="false" />

<binding id="setVisibility" dataContext="textBox"
dataPath="visible" property="visible"
transform="Invert" automatic="false" />

</bindings>
</textBox>

The top-level tag here is the <textBox> tag, and its target element is the control with
the ID textBox, which means the <textBox> control becomes associated with the underlying
<input> control called textBox. Take a look at the previous HTML code, and you will see this.
The other attributes on the <textBox> tag initialize the control, setting its default text and
cssClass.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 89

6471ch05final.qxd 5/10/06 10:51 PM Page 89

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Next comes the <bindings> tag, which contains a couple of <binding> tags. These tags
demonstrate how you can specify compound bindings on a single object. The desired func-
tionality is that clicking the Enable/Disable button should enable or disable the textbox and
that clicking the Show/Hide button should show or hide the TextBox.

If you think of this in terms of properties and data binding, what you want to happen is
that the click event of the button should be bound to the appropriate property of the text box.
Automatic data validation and transformation of the property at the binding level can handle
the toggling behavior.

This is probably a little confusing at first, because you are used to binding controls to data
sources, but with Atlas you can actually bind the value of a control to an event. In doing this,
what you are saying is that when an event fires, it should do something to the bound control.
Because the functionality you want to invoke is a change of visibility or enabled state, no
inherent value change takes place—just the toggling of existing Boolean value states. And then
you can bind the property to an event. It’s enormously useful, but it takes a little while to get
used to it.

So, as you look at the <binding> element, you will see that each has a number of proper-
ties set:

id: This specifies the identity of the binding. When you want to attach something to this
binding, you use this ID.

dataContext: This specifies the context to which the binding will occur. In this case, it is
mapped to itself.

dataPath: This is the name of the property on the control specified by the dataContext to
which the binding will occur. If you were binding to a different control, the dataContext
and the dataPath would point to that control and its property, respectively.

property: This is the name of the property on this control to which the binding will occur.

transform: This is the name of the transform that will take place when the binding occurs.
The invert transform has the effect of toggling the property specified in the property tag.

automatic: When true, the binding occurs automatically on this control. It defaults to
true. Because in this case the control is binding to itself, it is best to make this false, or
unexpected results will occur, namely, that it will continue binding to itself!

As you can see, this is a special case. When you want to invert the property of the control
based on an external stimulus, you bind the control to itself, you bind the dataContext prop-
erty of the control to the intended property (thus binding the enabled or visible property to
itself), and you turn off automatic binding.

This probably seems a little odd, but currently it is the only way to change a property
between known values such as true or false instead of setting it to free-form values such as 1,
2, Hello, or Goodbye. But how do you trigger this?

You can see this by inspecting the button markup. First, here is the button that sets visibility:

<button targetElement="visibilityButton">
<click>
<invokeMethod target="setVisibility" method="evaluateIn" />

</click>
</button>

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS90

6471ch05final.qxd 5/10/06 10:51 PM Page 90

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The <click> tag specifies the action to follow when the button is clicked. In this case, a
method needs to be invoked. The method is defined by the binding specified in the target
attribute. In this case, the binding is the setVisibility one. So, when the button is clicked, the
binding causes a message to be sent to the text box; this message is captured by the binding,
which is defined as binding the visibility property to itself. The transform property inverts it,
so the Boolean property gets toggled.

Next, the enabled button does the same thing, except it targets the binding called
setEnabled:

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 91

WHAT YOU’VE LEARNED FROM THESE EXAMPLES

You may have noticed that there is nothing Ajax about these examples. Atlas is much more than just a
methodology for implementing applications that have asynchronous updates. It provides not one but two
frameworks on which client-side applications can be coded more easily than ever before. Thus far you’ve
begun to look at these frameworks and how they work.

In the JavaScript-based client controls framework, you learned how to instantiate controls and map
them to their corresponding, underlying HTML. You saw how to set properties and call methods on these and,
more powerfully, how to assign event delegates to these controls, define these events, and call them.

Alternatively, the Atlas Script–based client controls framework was able to provide the same functional-
ity, but entirely declaratively. Each control has a tag associated with it in the XML script, and these tags have
child tags that specify actions and bindings. You looked at the action of what to do when handling a click of a
button; the binding that specifies the relationships between, such as a selection list; and the control that the
selection would occupy, or the action to take upon pushing a button to trigger an internal binding on a differ-
ent control to toggle one of its properties.

Although the JavaScript approach is certainly more traditional and you can hit the ground running
straightaway with your existing JavaScript skills, I strongly recommend you look at Atlas Script and start get-
ting used to it. The world is heading in the direction of declarative development, allowing for the separation of
design and implementation through various forms of XML markup, perhaps the most popular of which will be
XML Application Markup Language (XAML), available with the WinFX framework. This separation allows for
more fluid design and implementation of applications, as well as easier maintenance, updating, international-
ization, and a whole host of other work streams that typically require redevelopment, recompilation, and
redeployment.

Additionally, though no tools are available at this time, some will appear that allow applications to be
visually designed and wired up to each other, generating Atlas Script. As such, it will be a powerful and
prevalent way of designing ASP.NET applications in the future.

As this chapter progresses, you will see more sophisticated examples, continue to dissect them, and
then stop to see exactly what you’ve been seeing.

In the previous examples, you did some basic data binding—binding actions to properties and perform-
ing internal binding within a control. In the next two examples, you will look at data binding in a little more
detail and start exploring transforms, declarative and programmatic data binding, and directions of data bind-
ing. You’ll also look into how Atlas Script and JavaScript can work together to help you build the best,
easiest-to-maintain application.

6471ch05final.qxd 5/10/06 10:51 PM Page 91

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<button targetElement="enabledButton">
<click>
<invokeMethod target="setEnabled" method="evaluateIn" />

</click>
</button>

Data Binding with a Transform
In this example, you will look at converting the data from one format to another, as well as at
a two-way binding, where the binding maps in both directions. It isn’t a case of changing one
control to update another, as you saw earlier with the selection box updating the panel, but of
either bound control updating the other.

The page looks like Figure 5-5.

By selecting the checkbox on the left, the checkbox on the right will change its value, and
it will be the opposite value of the left one. In addition, the text box on the right will change its
text to reflect the value of the left checkbox. Coolest of all, you can type in the text box, and if
you change false to true, or vice versa, the checkboxes will update accordingly. So, if you type
true, the left checkbox will be selected, and the right one will be cleared.

How does this work? Well, let’s first look at the Atlas Script that implements it.

Using Atlas Script
The following is the complete Atlas Script for this page (you can see the whole page, including
the HTML markup, in the download for this chapter):

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<textBox targetElement="textBox">

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS92

Figure 5-5. Two-way binding with transforms

6471ch05final.qxd 5/10/06 10:51 PM Page 92

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<bindings>
<binding dataContext="checkBoxBoolean" dataPath="checked"

property="text" transform="ToString"
direction="InOut"
transformerArgument="Checkbox is {0}" />

</bindings>
</textBox>
<checkBox targetElement="checkBoxBoolean" />
<checkBox targetElement="checkBoxDisabled">
<bindings>
<binding dataContext="checkBoxBoolean" dataPath="checked"

property="checked" transform="Invert" />
</bindings>

</checkBox>
</components>
</page>
</script>

First, the <textBox> tag gets associated with the <input> control called textBox in the
HTML markup. This has a binding set up with it. This binding has some new attributes set
up that you haven’t seen before, so let’s go through the full set of attributes:

dataContext: This specifies the control to which this binding will happen. In this case,
it is set to checkBoxBoolean, which is the checkbox on the left.

dataPath: The property on the dataContext control to which the binding will occur. In
this case, the property is checked, so you will be binding to its value.

property: The property on this control that is bound to the control specified in the data-
Context. In this case, it is the text property of the text box.

transform: The transform to apply to the data. Because you are binding a text box to a
checkbox, you want to transform the raw value of the checkbox from true or false to its
string representation of true or false.

direction: The direction can be In, Out, or InOut. In this case, you are using InOut, which
creates a two-way binding. This means that not only do changes in the control pointed
to by the dataContext change this control, but changes to this control will also change the
other one. This is how the functionality whereby editing the checkbox will change the sta-
tus of how the checkbox works.

transformerArgument: Using a transformer argument is a little like using a printf statement
in C. You can embed the arguments {0}, {1}, and so on, in this string and have the relevant
properties assigned at runtime. In this case, you have bound to the value of the checkbox,
and this value is transformed into a string. This then gets inserted into the string at the
position of the argument. So, the string “Checkbox is {0}” will become “Checkbox is True”
or “Checkbox is False.” The underlying Boolean value of the checkbox is transformed into
the string True or False.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 93

6471ch05final.qxd 5/10/06 10:51 PM Page 93

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Next you set up a <checkBox> control and map it to the checkbox on the left, which has the
ID checkBoxBoolean in the HTML markup. It requires no further scripting. Because it is
bound to the text box by the markup in the text box (see the earlier explanation), it handles all
of the desired functionality.

Finally, you need to configure the other checkbox. Remember, this checkbox is intended
to always show the opposite value of the other checkbox, and the best way to achieve this is to
bind it to the other checkbox and apply an inversion transform.

You achieve this using the following binding:

<binding dataContext="checkBoxBoolean" dataPath="checked"
property="checked" transform="Invert" />

The dataContext is set up to be the other checkbox (called checkBoxBoolean). The prop-
erty on this control that you want to bind to is configured in the dataPath attribute—so this is
set to checked, which is the property that stores the state of the checkbox. Next, the property
on this control that you are binding the data to needs to be configured. And because this is
also a checkbox, the property you want to bind is the checked property. Finally, you have to
apply a transform to make this control have the opposite value of the other one. The Invert
transform will perform this, so you configure it using the transform attribute.

Thus, simply by configuring the data bindings for the text box and the check box, all of the
functionality to handle the two-way data binding, the updating of the text box, and the inver-
sion of property between the two checkboxes takes place without writing or maintaining any
code.

Using JavaScript
You can also implement this functionality in JavaScript by using the client-side control
libraries in Atlas.

You do this by creating Atlas controls that reference the underlying HTML controls, as
well as using some new controls that you haven’t seen before—those that represent the bind-
ings themselves. The best way to understand this is to examine the script itself in detail.

First you need to create the controls that represent the checkboxes and the text box:

var textBox = new Sys.UI.TextBox($('textBox'));
var checkBoxBoolean =

new Sys.UI.CheckBox($('checkBoxBoolean'));
var checkBoxDisabled =

new Sys.UI.CheckBox($('checkBoxDisabled'));

Next you create the binding. This is a control in the Web namespace. You create it using
the following code:

var binding_1 = new Web.Binding();

Next you need to set up the properties for the binding, setting up the dataContext, data-
Path, local property, transformer argument, direction, and transform type:

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS94

6471ch05final.qxd 5/10/06 10:51 PM Page 94

http://lib.ommolketab.ir
http//lib.ommolketab.ir

binding_1.set_dataContext(checkBoxBoolean);
binding_1.set_dataPath('checked');
binding_1.set_property('text');
binding_1.set_transformerArgument("Checkbox is {0}.");
binding_1.set_direction(Web.BindingDirection.InOut);
binding_1.transform.add(Web.Binding.Transformers.ToString);

This is the same as how you set it up in the Atlas Script earlier, pointing the binding at the
checkBoxBoolean control’s checked property. This is then bound to the text property of this
control. Note that the binding hasn’t yet been associated with the text box, but this will happen
shortly. The transformer argument is set up to create the text that will show in the text box after
the binding occurs, as well as the direction type for the binding. The values for the binding
direction are available in the Web.BindingDirection enumeration. Additionally, the transform
Web.Binding.Transformers.ToString is applied. Other values for the transform are available in
the Web.Binding.Transformers enumeration.

To associate this binding with the text box, you need to call the get_bindings() method to
get the collection of bindings associated with this control and call its add method, passing it
this binding. You do that like this:

textBox.get_bindings().add(binding_1);

Another binding connects the checkboxes to each other. Again, this is a Web.Binding con-
trol, which supports methods that allow you to set the data context, data path, transform, and
property to which to bind. You set it up like this:

var binding_2 = new Web.Binding();
binding_2.set_dataContext(checkBoxBoolean);
binding_2.set_dataPath('checked');
binding_2.set_property('checked');
binding_2.transform.add(Web.Binding.Transformers.Invert);
checkBoxDisabled.get_bindings().add(binding_2);

It is vitally important to then call the initialize() method on the controls after all the bind-
ing is set up to make sure it works correctly. Sometimes by habit you may initialize them
directly after construction, but in this case you should wait until all of the bindings have been
configured first:

g_checkBoxBoolean.initialize();
g_checkBoxDisabled.initialize();
g_textBox.initialize();

Data Binding with a Custom Transform
In this example, you will continue looking at binding information between controls but will
look a little further into the data transformation by using a custom transformation. In this
page there is a text box, a selection list, and a label. When you type something into the text box
and tab out of it, the label will display the text you typed using the color specified in the selec-
tion list. You can achieve this, as you would expect, through a binding between the label and

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 95

6471ch05final.qxd 5/10/06 10:51 PM Page 95

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the text box. Additionally, if you change the selection on the list, the label will get updated
again, with the new color as well as with a text indicator showing that the update came from
the selection list. To do this, you will write a custom transform (using JavaScript) and map it to
the binding.

You can see the page in Figure 5-6.

The complete script for this page is as follows:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<textBox targetElement="textBoxText" />
<select targetElement="selectStyle">
<selectionChanged>
<invokeMethod target="setCss" method="evaluateIn" />

</selectionChanged>
</select>
<label targetElement="labelText">
<bindings>
<binding dataContext="textBoxText"

dataPath="text"
property="text" />

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS96

Figure 5-6. Page containing the custom transform

6471ch05final.qxd 5/10/06 10:51 PM Page 96

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<binding id="setCss"
dataContext="selectStyle"
dataPath="selectedValue"
property="cssClass"
transform="DoAdditionalHandling" />

</bindings>
</label>

</components>
</page>
</script>

In this script you can see the initialization of the three components—the text box, the
select, and the label.

The initialization of the text box is straightforward—you don’t need to do anything spe-
cial, just point the Atlas control at the underlying HTML tag, which is called textBoxText. You
don’t specify an ID for the Atlas control, so Atlas gives it the default ID, which is the same as
the underlying HTML ID: textBoxText.

To initialize the selection list, you use the <select> tag. This is pointed at the underlying
HTML <select> list, which is called selectStyle, using the targetElement attribute to specify it.
On this you specify an action that occurs upon the selection change. You do this using the
<selectionChanged> child tag. This in turn will call a method using the <invokeMethod> tag.
The target for this method is setCSS, which, as you will see in a moment, is the name of a
binding on the label element. The method attribute is set to evaluateIn, which means the data
to be used in this method call is the value of the select box. You will evaluate this input to the
selection box and pass that to the setCSS binding.

The workhorse of this application is the label element. You can achieve the functionality
I have been discussing—the update of the label via binding with the text and via binding with
the selection list—by creating a couple of bindings on the label. The first of these bindings is
associated with the element called textBoxText, which is the Atlas identifier for the text box
control (see its declaration). The dataPath attribute specifies the property on that control to
bind to, which in this case is its text property. The label has a text property too, and you want
to update this with whatever is in the text property of the text box. Therefore, you specify the
property attribute to be text. With this in place, you have now bound the label to the text box.

The second binding on the label is worth another look:

<binding id="setCss"
dataContext="selectStyle"
dataPath="selectedValue"
property="cssClass"
transform="DoAdditionalHandling" />

This binding has a specific ID, called setCss. You will notice that the other binding wasn’t
given a specific ID, because it is never being explicitly called from elsewhere. This binding,
however, is called from the <invokeMethod> on the selection list. For Atlas to be able to identify
it, it needs this identifier.

The dataContext attribute points to the control to which you are binding. In this case you
want to bind to the selection control, and it is called selectStyle.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 97

6471ch05final.qxd 5/10/06 10:51 PM Page 97

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The dataPath attribute points to the property on the bound control that provides the data
to which you are interested in binding. In this case, the property is selectedValue, which con-
tains the value for the item that is currently selected.

The property on the label you want to pass the bound data into is cssClass. If you look at
the HTML for the select list, the reason for this will become apparent. Here’s the HTML:

<select id="selectStyle" class="input">
<option value="redLocal">Red</option>
<option value="greenLocal">Green</option>
<option value="blueLocal">Blue</option>
</select>

So, if the user selects Red, the property selectedValue will contain redLocal. This will then
be bound to the label, so its cssClass property will become redLocal. On the page you specify
the following CSS:

<style>
.redLocal{background-color:red;color:white;font-size:24pt;}
.greenLocal{background-color:green;color:white;font-size:24pt;}
.blueLocal{background-color:blue;color:white;font-size:24pt;}

</style>

Therefore, the binding will set the label to use the redLocal class in the CSS and thus have
a red background.

You can see this in Figure 5-7.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS98

Figure 5-7. Binding the Label control to the text box and the select list

6471ch05final.qxd 5/10/06 10:51 PM Page 98

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Perhaps the most interesting attribute in this example is transform. You may remember
earlier that you were able to do some basic transforms such as invert, but now you have a
transform called DoAdditionalHandling. This is a custom transform where the transform is a
JavaScript function on the page, and you specify the name of that function in this attribute.

Let’s look at the DoAdditionalHandling function. You’ll find this on the same page as the
rest of the code:

<script type="text/javascript">
function DoAdditionalHandling(sender, eventArgs)
{
var tbxElem = $('textBoxText').control;
if (tbxElem.get_text().length > 0)
{
// The value is that from the select, so let's ensure it's set
// The property here is the cssClass
eventArgs.set_value(eventArgs.get_value());

// Add text to the output:
var textElem = $('labelText').control;
textElem.set_text(tbxElem.get_text() +

" (You used the style selector)");
}

}
</script>

This script first creates a reference to the text box. It then queries the length of the text in
this text box to see whether anything has been typed into it. If it has (the length is less than 0),
then you want to update the label with the value of this text plus the custom data, which in
this case means you simply add the text that indicates the style selector was used.

You can see the effect of this in Figure 5-8.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 99

6471ch05final.qxd 5/10/06 10:51 PM Page 99

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Performing JavaScript Custom Binding
In this example, you will perform a similar binding to that in the previous example but use
JavaScript throughout instead of Atlas Script. This custom binding will update the contents of
the label with the inverse of the text that is typed into the text box.

You can see it in action in Figure 5-9.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS100

Figure 5-8. Running the custom transform on the page

6471ch05final.qxd 5/10/06 10:51 PM Page 100

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The script that implements this functionality is as follows:

<script type="text/javascript">
function pageLoad()
{
var textBoxString = new Sys.UI.TextBox($('textBoxString'));
var spanLabel2 = new Sys.UI.Label($('spanLabel2'));
textBoxString.set_text("Hello, World!");

// Create the binding
var binding_1 = new Web.Binding();
binding_1.set_dataContext(textBoxString);
binding_1.set_dataPath('text');
binding_1.set_property('text');
binding_1.transform.add(customTransform);

// Add the binding
spanLabel2.get_bindings().add(binding_1);

// Initialize the controls
textBoxString.initialize();
spanLabel2.initialize();

}

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 101

Figure 5-9. Custom transform to invert text in JavaScript

6471ch05final.qxd 5/10/06 10:51 PM Page 101

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you’ve seen before, the first step you need to take is to create Atlas control objects
based on the underlying HTML. This is what the first two lines of the code do, and they create
an object based on the underlying HTML input called textBoxString and the underlying HTML
span (for a label) called spanLabel2.

Next you need to set up the binding.
First, create a new instance of a binding control:

var binding_1 = new Web.Binding();

Next, you need to initialize the binding with dataContext, dataPath, and property, which
specify the control you are binding to, the property on that control that you are binding to,
and the property on this control you are binding to it, respectively.

So, this binding has its context as the text box, and you are binding its text property to the
text property of the control that the binding will be associated with. (You will be associating
this binding with the label—and will see this in a moment.)

binding_1.set_dataContext(textBoxString);
binding_1.set_dataPath('text');
binding_1.set_property('text');

Next, you specify the transform. You could use a fixed transform here, such as invert or
toString. However, you want a custom binding that reverses the string. No such binding is
built into Atlas, but you can write our own and specify it here. On the page is a script called
customTransform, so you specify it as the desired transform for this binding like this:

binding_1.transform.add(customTransform);

Finally, you want to associate this binding with the label. You do this by getting the collec-
tion of bindings for the label using the get_bindings() method and adding to this collection
with its add() method:

spanLabel2.get_bindings().add(binding_1);

The custom transform is simple JavaScript that takes the string (passed in as the
eventArgs) and uses the Web.StringBuilder Atlas class to build a new string that is the inverse
of the original:

function customTransform(sender, eventArgs)
{
var value = eventArgs.get_value();

var reverseStr = new Web.StringBuilder();
for (var i=value.length-1; i>=0; i--)
reverseStr.append(value.charAt(i));

eventArgs.set_value(reverseStr.toString());
}
</script>

Because this function is called from the binding, it will automatically be called whenever
the text box loses focus (the trigger for the binding), so if you type into the text box and tab out
of it, you will see the label updated with the inverse of what you had typed in the text box.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS102

6471ch05final.qxd 5/10/06 10:51 PM Page 102

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Performing Basic Text Validation—Required Fields
A common function of a client web application is data entry through forms. The typical work-
flow for forms is that the user will enter information, and a special type of input tag called a
submit button triggers an HTTP post of the information to a server. The server then processes
the submitted information and returns a response. If the data is invalid, the server will return
a message indicating this, and the page developer will write a script that emphasizes this to
the user. This transaction involves at least one round-trip to the server. You can also perform
basic validation in JavaScript prior to form submission; this can be very effective and certainly
faster for the user.

However, performing validation using JavaScript can be a complex task, and thus it’s a
problem that Atlas components lend themselves naturally to for a fix.

In this example, you will perform the most basic validation there is—checking whether
the user has entered any information into a text box. You can see it in action in Figure 5-10.

This form will validate the text box and give feedback to the user by putting a red aster-
isk on the screen beside the text box once the user tabs out of it. It also provides a tooltip on
this asterisk, so that if you hover over the asterisk with your mouse, a tooltip will tell you the
problem.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 103

WHAT YOU’VE LEARNED FROM THESE EXAMPLES

The first examples you saw in this chapter introduced you to the concepts of bindings and actions. You were
able to take these to the next level using these examples. First, you were introduced to the concepts of direc-
tional binding. Traditionally you would see a binding as a control being associated with data from a data
source, so if the data in the source changes, the control would be updated. This is considered an In binding.
With Atlas you can also have Out binding, where the destination control updates the source control, and InOut
binding, where the data binding is bidirectional. You saw this in the first example where by checking a check-
box, you could update a text field with text indicating its state and by typing into the text box you could also
change the state of the checkbox.

This in turn introduced the concepts of transforming during binding. A checkbox has the Boolean value
true or false associated with it. When binding to a text box, this doesn’t have the desired semantic meaning,
so the ToString transform was used to convert this to a literal string containing true or false. Atlas is smart
enough when using an InOut function to reverse this when the text box is updated, so if you type the string
“true” or “false” into the text box, the two-way binding will translate this into a Boolean true or false and
update the checkbox accordingly.

Additionally, these examples introduced the concept of custom transformation. In this case, if the trans-
formation is set up with the name of a JavaScript function, Atlas will use this function to perform the
transformation. You saw a couple of examples of this, where the custom transformation in one case added
new content to the string and in another case reversed the string.

The next suite of examples will expand further on this, showing how you can perform validation and
specify it on controls when using Atlas and how you can associate automatic behaviors with controls, pro-
viding functionality such as drag and drop or creating pop-up menus.

6471ch05final.qxd 5/10/06 10:51 PM Page 103

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s look at how to implement this functionality.
First, here is the HTML that defines the controls:

<input type="text" id="value1TextBox" class="input" />
*
Text:

The HTML is composed of an Input control, which gives you the text box and a couple
of tags. The first span contains the asterisk that will appear when the validation rules
trip. The second contains nothing currently, but it will be updated with the valid text for the
text box once it has been entered.

Now let’s look at the Atlas Script that implements this functionality:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<textBox targetElement="value1TextBox">
<validators>
<requiredFieldValidator errorMessage="You must enter some text." />
</validators>
</textBox>

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS104

Figure 5-10. Basic text validation

6471ch05final.qxd 5/10/06 10:51 PM Page 104

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<validationErrorLabel targetElement="validator1"
associatedControl="value1TextBox" />

<label targetElement="value1Label">
<bindings>
<binding dataContext="value1TextBox"

dataPath="text"
property="text" />

</bindings>
</label>

</components>
</page>
</script>

Most of this will look familiar, but you haven’t seen a couple of new elements in here.
First, a <textBox> control points to value1TextBox, which as you will see from the HTML is
the <input> control. A new child element called <validators> is attached to this element.
The <validators> tag can contain a number of validators that can be rangeValidator,
requiredFieldValidator, typeValidator, rangeValidator, or regexValidator, among others.

In this case, you are using a requiredFieldValidator, which fires an error if the field on
which the validator is configured is empty. You specify the error message using the
errorMessage attribute.

A validation error needs to have a source on the page that it uses to represent the error
to the user, or it will not be seen. In this example, you have a that contains an asterisk
that appears when an error occurs. To achieve this, you use the <validationErrorLabel> tag
and associate it with this span. The span is called validator1, so the validationErrorLabel is
given this as its targetElement. Finally, this validationErrorLabel needs to be tied to the control
that it is the error message destination for, and you achieve this with the associatedControl
attribute.

Figure 5-11 shows this page after a validation error has been hit. You can see the red aster-
isk and the tooltip that appears when the user hovers over it.

Note that you didn’t have to write any code to make this asterisk appear or disappear, and
you don’t have to write explicit code for the tooltip. The Atlas framework handles all of this for
you!

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 105

6471ch05final.qxd 5/10/06 10:51 PM Page 105

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Performing Basic Text Validation—
Checking for Types and Ranges
In the previous example, you checked to see whether a field was present in your validation
rules. This is useful, but for more serious applications, more sophisticated validation is neces-
sary. In this example, you will see what is involved in applying multiple validation rules to a
control to not only validate whether you have entered something into it but also to check the
data type to ensure you have put in a numeric value and to check that the numeric value falls
within a specific range.

You can see the page in Figure 5-12.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS106

Figure 5-11. Running the basic validation sample

6471ch05final.qxd 5/10/06 10:51 PM Page 106

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To understand how this compound validation works, let’s inspect the code. The HTML is
identical to that used in the previous example, so you’ll skip straight to the Atlas Script that
manages the compound validation:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<textBox targetElement="value1TextBox">
<validators>
<requiredFieldValidator

errorMessage="You must enter a number." />
<typeValidator type="Number"

errorMessage="You must enter a valid number." />
<rangeValidator lowerBound="10" upperBound="20"

errorMessage="You must enter a number between 10 and 20." />
</validators>

</textBox>
<validationErrorLabel targetElement="validator1"

associatedControl="value1TextBox" />

<label targetElement="value1Label">
<bindings>
<binding dataContext="value1TextBox"

dataPath="text" property="text" />

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 107

Figure 5-12. Compound validation

6471ch05final.qxd 5/10/06 10:51 PM Page 107

http://lib.ommolketab.ir
http//lib.ommolketab.ir

</bindings>
</label>

</components>
</page>
</script>

The interesting stuff here is in the <validators> tag for the <textBox> tag, which has three
child tags.

The first, <requiredFieldValidator>, is similar to what you saw earlier. Should the text
box be empty, this validator will fire, and the red asterisk will appear, as shown in Figure 5-13.

The second, <typeValidator>, is configured to recognize a Number (which can also be
String or Boolean). Should you type something that isn’t recognized as a numeric into the text
box and tab out, this validator will fire, the red asterisk will appear, and the error tag will
appear as “You must enter a valid number.”

See Figure 5-14.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS108

Figure 5-13. Tripping the required field validator

6471ch05final.qxd 5/10/06 10:51 PM Page 108

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The third validator is a <rangeValidator> that, when used with a number, allows you to
specify a maximum and a minimum so that if the value falls outside this range, the validation
will trip. You configure these with the lowerBound and upperBound attributes. In this case,
these values are set to 10 and 20, respectively. Note that these are inclusive, so 10 and 20 are
valid values.

You can see where this validator is tripped in Figure 5-15. In this case, the text box con-
tains something, so the requiredFieldValidator is OK. It contains a valid number, so the
typeValidator is also satisfied. However, the number, 8, is outside the range specified by the
rangeValidator, so the red asterisk will appear, and the tooltip gives details of why the data is
considered invalid.

So, as you can see from this example, you can set up some pretty sophisticated validation
rules by stacking validators on top of each other. Where typically you may have programmed
rules like this with JavaScript and nested if statements, this declarative approach lends itself
nicely for tools to generate these rules.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 109

Figure 5-14. Tripping the type validator

6471ch05final.qxd 5/10/06 10:51 PM Page 109

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS110

Figure 5-15. Tripping the range validator

WHAT YOU’VE LEARNED FROM THESE EXAMPLES

Atlas provides a powerful validation framework for your client-side data. This validation is centered on valida-
tion controls, which, when configured with the control, allow for the automatic and declarative validation of
the data that is entered into these controls. You looked at validating the presence of the data using the
requiredFieldValidator where if the data hasn’t been entered, you want to take an action to inform the user.

Additionally, you looked at the typeValidator, which can inspect the data for a specific type. This is par-
ticularly useful for filtering input boxes (which are free-format text boxes) for numeric values. Consider the
difficulty of this in normal circumstances where you would have to evaluate the contents of the box and use
them if they were greater than zero!

Finally, you looked at the range validator, which is used for numeric values and which trips an error if
the data falls outside the range. These are also useful for many common tasks and mean you don’t need to
write any code on either the server or the client.

Another validator that is available is the regExValidator, which validates the input data against a regular
expression. Regular expressions are similar to wildcard specifiers but are much more powerful and flexible.
They are used to specify search criteria. So, for example, if you want to match a field against a valid U.S.
telephone number, you would use this regular expression:

/\(\d{3}\)(\)\d{3}-\d{4}/

If you are not familiar with regular expressions, this probably looks a little strange. However, regular
expressions are incredibly useful for validating data against a fixed structure such as a telephone number or
an email address. You can find a great resource on regular expressions at http://
www.regular-expressions.info/.

6471ch05final.qxd 5/10/06 10:51 PM Page 110

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Click Behavior
Many controls support click events that you can use to handle user input. But not everything
has a click event that will allow you to specify a handler. If you want to associate an action
with a click on an element that doesn’t support this, you can use the click behavior. So, for
example, you can associate a click behavior with a piece of text on the page by creating a label
out of it and applying the click behavior to that.

You can see this example in Figure 5-16.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 111

Finally, AppleScript also supports custom validators. A custom validator is a function written in
JavaScript. This function should accept an eventArgs variable. After performing your custom validation, you
should call the set_IsValid function on this with true or false as a parameter. Here’s an example:

function onValidateValue(sender, eventArgs) {
var names = ['Engineer', 'Manager', 'Performer',

'Construction Engineer', 'Chef'];
var valid = names.contains(eventArgs.get_value());

eventArgs.set_isValid(valid);
}

This function contains a list of valid names. The eventArgs sent to the function contains the data that is
being validated. This is checked against the string of valid values. If it is found, the validation is successful,
and the valid var will be true; otherwise, it will be false. At the end of the function, the eventArgs will have its
isValid set with this value, and the custom validation will be complete.

Figure 5-16. Two HTML elements that have click behaviors associated with their
Atlas controls

6471ch05final.qxd 5/10/06 10:51 PM Page 111

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The HTML for this page is as follows:

<div class="description">
<h3><u>Example 8: Click behavior</u></h3>
<div id="panel">The hide and show elements here are
not buttons -- they are HTML spans, but they can
support clicking through use of the click behavior
on their associated Atlas labels.</div>

Hide
Show

</div>

You can see that the Hide text and the Show text are implemented as elements and
are given the IDs hideLabel and showLabel, respectively. Keep these in mind as you look at the
Atlas Script for this page, shown here:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<control targetElement="panel" cssClass="start" />
<label targetElement="hideLabel">
<behaviors>
<clickBehavior>
<click>
<setProperty target="panel"

property="visible"
value="false" />

</click>
</clickBehavior>

</behaviors>
</label>
<label targetElement="showLabel">
<behaviors>
<clickBehavior>
<click>
<setProperty target="panel"

property="visible"
value="true" />

</click>
</clickBehavior>

</behaviors>
</label>

</components>
</page>
</script>

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS112

6471ch05final.qxd 5/10/06 10:51 PM Page 112

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Each of the elements you saw in the underlying HTML has a Label control
(<label> tag) associated with it. To configure behaviors for these, you use the <behaviors> tag.
Because you are using a <clickBehavior>, you configure this within the <behaviors> tag.
Finally, upon a click, you want to set a property on a panel, so you use a <click> action and
define it with <setProperty>, which points to the panel. Upon clicking the hideLabel
element, the behavior will call a <setProperty> action that will set the visible property of the
panel to false. As you’d expect, you use a similar setup to configure the click behavior on the
other label to set the visible property of the panel to true.

Thus, using behaviors, you can add click handlers to controls that normally wouldn’t sup-
port them. You can see the result of clicking the Hide text in Figure 5-17.

Using the Mouse Hover Behavior
You can associate the mouse hover behavior with any element, which allows you to specify an
action that should take place when the mouse hovers over an element. A typical use for this
would be to implement a custom tooltip, a context menu, a smart tag, or similar. When using
Atlas client-side controls, this is straightforward. You can see the mouse hover example in
Figure 5-18.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 113

Figure 5-17. Using the click behavior on a element

6471ch05final.qxd 5/10/06 10:51 PM Page 113

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The HTML for this page is here:

<div class="description">
<h3><u>Example 9: Hover behavior</u></h3>
<div id="panel2">This element is associated
to the hoverBehavior.</div>

</div>

As you can see, it is straightforward. You simply create a <div> element on the page and
enter the text into it. In this example, you will change the style of this element when you hover
over it for 500 milliseconds. To achieve this, you can use Atlas Script to define the client-side
controls and their associated behaviors:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<control targetElement="panel2" cssClass="start">
<behaviors>
<hoverBehavior unhoverDelay="500">

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS114

Figure 5-18. Example page for the hover behavior

6471ch05final.qxd 5/10/06 10:51 PM Page 114

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<hover>
<setProperty target="panel2"

property="cssClass"
value="hover"/>

</hover>
<unhover>
<setProperty target="panel2"

property="cssClass"
value="start"/>

</unhover>
</hoverBehavior>

</behaviors>
</control>

</components>
</page>
</script>

When configuring hover behaviors, you should also configure the unhover event, which
will typically return control to its default state if you change it (as in this case) or make any
pop-up menus disappear.

To configure the hover behavior, you use the <hoverBehavior> tag and set its
unHoverDelay attribute to the number of milliseconds you want to wait before the action
will take place. The action in this case involves changing the CSS class of the target element
when you hover over it, changing its CSS class to hover when you hover over it, and changing
its CSS class to start once you leave it:

You can see the styles here:

<style>
.start{background-color:yellow;border:dashed 2px black;}
.hover{font-size:40pt;background-color:yellow;border:dashed 2px black;}
</style>

As you can see from the styles, after hovering over the panel, the font size gets set to
40 points. Returning to the start class removes this and sets the panel to its default view.

You can see the effect of the hover behavior in Figure 5-19.
You will see an extension to this, allowing for a custom context menu, in the next section.

This will demonstrate how you can use the pop-up behavior to generate a clickable pop-up
menu that can be used for a linkable tooltip, context menu, or smart tag.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 115

6471ch05final.qxd 5/10/06 10:51 PM Page 115

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Pop-up Behavior When You
Hover Over an Element
In this example, you will use the hover behavior to trigger the appearance of a context menu
that pops up when you hover over a specific word. The context menu will be a list of three
hyperlinks. This can be a useful navigational structure where the links are hidden until you
need them, instead of them taking up valuable screen real estate when they are not needed.
You can see this in action in Figure 5-20.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS116

Figure 5-19. The hover behavior in action

6471ch05final.qxd 5/10/06 10:51 PM Page 116

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To better understand how this is implemented, let’s take a look at the source code. This is
the HTML for the page:

<form id="form1" runat="server">
<atlas:ScriptManager runat="server" ID="ScriptManager1">
<Scripts>
<atlas:ScriptReference ScriptName="AtlasUIDragDrop" />

</Scripts>
</atlas:ScriptManager>
<div class="description">
<hr />
<h3><u>Example 10: Pop-up component and hover behavior</u></h3>

The following example demonstrates the pop-up menu that will appear when the mouse
hovers over the highlighted element. You can use it to implement a custom menu for multiple
hyperlinks on an element:

<p></p>
A terrific resource for technical information is the
Microsoft
family of web sites
<div id="popup"
style="visibility:hidden;display:none;border:solid 1px black;

background-color:lightyellow;filter:alpha(opacity=80);">

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 117

Figure 5-20. Using the pop-up behavior to implement a link menu

6471ch05final.qxd 5/10/06 10:51 PM Page 117

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<table width="200px">
<tr><td>
MSDN Online

</td></tr>
<tr><td>

Microsoft Research

</td></tr>
<tr><td>
Atlas Web Site

</td></tr>
</table>
</div>
</div>
</form>

What is noteworthy here is that an explicit reference is necessary to the AtlasUIDragDrop
library. This is because the ScriptManager doesn’t include this in your page by default. The
<floatingBehavior> that you will see in a moment is implemented in this library, so it is nec-
essary to make this reference, or Atlas will throw an error.

Next you will see that the menu is implemented in a <div> element with the ID of popup
but is hidden at first because its CSS style implements this (see the visibility:hidden in the
style definition). Within this <div> element is a table containing the three links.

Now let’s look at the Atlas Script and how it uses the behavior to implement this as
a pop-up menu:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<references>
<add src="AtlasUIDragDrop.js" />

</references>
<components>
<control targetElement="popup">
<behaviors>
<popupBehavior id="popupBehavior"

parentElement="hoverLink"
positioningMode="BottomLeft"/>

<floatingBehavior handle="popup" />
</behaviors>

</control>

<hyperLink targetElement="hoverLink">
<behaviors>
<hoverBehavior unhoverDelay="1000" hoverElement="popup">

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS118

6471ch05final.qxd 5/10/06 10:51 PM Page 118

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<hover>
<invokeMethod target="popupBehavior" method="show"/>

</hover>
<unhover>
<invokeMethod target="popupBehavior" method="hide"/>

</unhover>
</hoverBehavior>

</behaviors>
</hyperLink>

</components>
</page>
</script>

First you use a <control> tag to create an Atlas client control that is targeted at the ele-
ment called popup. This is the <div> element that contains the menu you looked at earlier.
It has a <popupBehavior> associated with it, and this is given the ID popupBehavior. The other
attributes on this behavior are parentElement, which specifies the element on the page to
which to attach the pop-up menu. If you refer to the HTML, you will see that the anchor for
the word Microsoft over which the menu will appear has the same ID. Also, later in the script
you will see where an Atlas control gets associated with this element. Finally, there is the
positioningMode attribute, which determines how the pop-up menu will appear relative to
the anchor. Setting this to BottomLeft means the tag will appear over the bottom-left corner
of the element to which the menu is attached. You can also use other values in this field:
Absolute, Center, TopLeft, BottomRight, and TopRight.

Finally, a floating behavior gets associated with the pop-up menu, allowing it to float on
the page. To assign this behavior to this element, you tag it with its handle.

The next part that is necessary is to connect this menu to the anchor tag. You achieve this
using the <hyperlink> tag, which is associated with the element called hoverLink. As you can
see in the HTML, this is the word Microsoft; if you hover over the word, you will get the menu.
Now that you have a control associated with this element, it is straightforward to implement
a pop-up on it. You attach a hoverBehavior element to this control and implement actions for
<hover> and <unhover>.

These actions then simply call the show and hide methods of the <popupBehavior> to
make it appear and disappear when hovering over and hovering off, respectively.

Implementing Drag-and-Drop Behaviors
In the previous example, you saw the floatingWindowBehavior and how you can use it to
implement a pop-up menu. You can also use this behavior to implement true floating win-
dows where you can drag and drop to rearrange information on your screen. You are probably
familiar with this if you have used portals such as Live.com or Start.com that allow you to
arrange the screen according to your preferences.

In this example, you’ll do exactly that. You’ll have a page with a number of HTML panes
in it that can be rearranged as you desire. This uses the <floatingBehavior> control to imple-
ment this functionality. This is the power of behaviors. You simply have to identify an element
and add the behavior to it.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 119

6471ch05final.qxd 5/10/06 10:51 PM Page 119

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can see this example in action in Figure 5-21.

Implementing this using behaviors is easy. Before you begin, however, make sure you
have the full stylesheet called intro.css that defines the styles used by these panes. You can find
it listed in Chapter 4, and it is also available as part of the download with this book. First you
need to implement the panes in HTML and assign identities to them. You can see the two
panes from the example here:

<div id="Description">
<div id="DragHandle">
Drag by clicking on this element
</div>
<div style="text-align:center;font-weight:bold;">
Pane 1
</div>

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS120

Figure 5-21. Panes that may be floated and drag and dropped

6471ch05final.qxd 5/10/06 10:51 PM Page 120

http://lib.ommolketab.ir
http//lib.ommolketab.ir

HTML For Pane 1.
</div>
<div id="Description2">
<div id="DragHandle2">
Drag by clicking on this element
</div>
<div style="text-align:center;font-weight:bold;">
Pane 2
</div>
HTML For Pane 2.
</div>

This simply sets up the HTML and associates the IDs Description and Desription2 with
the panes and DragHandle and DragHandle2 with the draggable title area in each pane.

You then configure the Atlas Script for these panes, attaching the behavior and imple-
menting the draggable functionality like this:

<control targetElement="DragHandle" cssClass="draghandle" />
<control targetElement="Description" cssClass="floatwindow">
<behaviors>
<floatingBehavior handle="DragHandle">
</floatingBehavior>
</behaviors>
</control>

<control targetElement="DragHandle2" cssClass="draghandle" />
<control targetElement="Description2" cssClass="floatwindow">
<behaviors>
<floatingBehavior handle="DragHandle2">
</floatingBehavior>
</behaviors>
</control>

First you want to create a control that maps to the element containing the title of each
pane. These elements are called DragHandle and DragHandle2, respectively. You associate
these with the cssClass dragHandle, which gives them their appearance.

Next, you need to associate floatingBehavior with the content of the panes, which are
called Description and Description2. To implement a draggable functionality, you simply
use this and tag a handle to it. This specifies the name of the element that is used to handle
the drag.

And that’s all you have to do. As long as you drop the element over a part of the page that
currently has markup, it will drop in place; otherwise, it will snap back to where you started
from. As you drag the pane over the page, you will see its contents (see Figure 5-22).

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 121

6471ch05final.qxd 5/10/06 10:51 PM Page 121

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS122

Figure 5-22. Dragging a pane across the page using the <floatingBehavior> element

6471ch05final.qxd 5/10/06 10:51 PM Page 122

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary
This chapter intended to take you through many simple examples of using Atlas client-side
controls and demonstrate how to implement and manipulate them using Atlas Script and
JavaScript. It was intended to be very hands-on; in other words, you learned by doing. You
went through 11 examples of different functionalities, using data binding, actions, behaviors,
and more, to implement some complex GUI functionality.

You’ll get into more client controls and client functionality later in the book, particularly
as you work through the full example in Chapter 12. However, now is a good time to put these
new tools that you’ve learned into your pencil box and move onto the other side—the server
side. In the next few chapters, you will start looking at implementing Atlas applications using
the ASP.NET Atlas server-side controls.

CHAPTER 5 ■ USING CLIENT CONTROLS IN ATLAS 123

WHAT YOU’VE LEARNED FROM THESE EXAMPLES

Behaviors are enormously powerful and immensely useful aspects of the Atlas framework that you can use
to give your applications more sophisticated GUIs but keep them easy to develop and maintain.

You looked at how to use the click behavior to add click event handling to elements that may not nor-
mally have this, enable more complex functionality to be implemented on simple elements such as <div>
tags, and make them clickable without needing to use buttons or custom JavaScript hyperlink workarounds.

Next, you looked at the behaviors that allow for mouse hovering and hot tracking. This allows you to
update your UI or implement features such as tooltips that improve the user experience upon hovering over
various elements of the page. You saw how you can use these behaviors to trigger style updates or imple-
ment custom actions. You used this to implement a pop-up menu that contained a list of hyperlinks. You
could use such functionality to implement custom smart tags on your pages, context menus, or more.

Finally, you extended on the floatingWindow behavior that was used for the pop-up menu to learn how
easy it is to implement panes that can be dragged and dropped across your page.

Ultimately, behaviors give you the facility to implement complex GUI functionality without explicitly
coding it. As you progress through this book, you will see where the behaviors are used extensively to
empower the GUI.

6471ch05final.qxd 5/10/06 10:51 PM Page 123

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6471ch05final.qxd 5/10/06 10:51 PM Page 124

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing Server Controls
in Atlas

The first three chapters of this book gave you an overview of Ajax and Atlas and how you can
use them to build web applications using this technology to restrict unnecessary postbacks
and processing on your web pages, thus improving the performance and polish of your web
applications. Chapters 4 and 5 introduced you to the client-side controls presented by Atlas
and stepped you through many examples of how to use these controls in JavaScript and in
a new XML-based script called Atlas Script.

You looked at some advanced aspects of the scripting framework, including actions, which
are compound commands associated with an event or stimulus on a control; behaviors, which
are automatic units of functionality that can be associated with a control, enabling things such
as drag and drop; and data binding, which allows for controls to be wired up to each other or
to themselves in order to pass data between them.

In this chapter, you will go to the other side of the action—the server—and begin explor-
ing the various server-side controls available to you when building your Atlas applications.
You have seen one of these controls, the ScriptManager control, already. In this chapter you
will look at ScriptManager in more detail. In Chapter 7, you will start learning about how
these controls work by navigating through some examples.

Adding the Atlas Server Controls to
Visual Studio 2005
Visual Studio 2005 and ASP.NET offer some great design tools that allow you to visually con-
struct pages. This fits in neatly with the concepts that Atlas introduces; developers can place
controls on a page, and these controls generate the JavaScript that is necessary to implement
the Ajax functionality. In the following sections, you’ll look at how to use these controls within
the integrated development environment (IDE).

Creating an Atlas Web Site
If you haven’t done so already, now is a good time to take a look at Atlas projects in Visual
Studio 2005. You can create a new web site by selecting File ➤ New Web Site in the Visual Stu-
dio 2005 IDE. This opens the dialog box shown in Figure 6-1. To create an Atlas-based web site,
select the ASP.NET ‘Atlas’ Web Site template.

125

C H A P T E R 6

■ ■ ■

6471ch06final.qxd 5/10/06 11:07 PM Page 125

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This creates a solution containing references to the Atlas binaries as well as the Atlas
script libraries. For more on this, see Chapter 3.

Adding the Server Controls to the Toolbox
On the Toolbox, if you right-click, you will find an option called Add Tab (see Figure 6-2).

Selecting this adds a new tab to the Toolbox. This tab has a text box where you can type
in a new title. Call the tab Atlas, and you will see a new, empty tab with no controls in it (see
Figure 6-3).

To populate this tab with the suite of Atlas server controls, right-click it, and select Choose
Items, which opens the dialog box shown in Figure 6-4. It may take a few moments if it is the
first time you’ve done this, because the dialog box will be evaluating all the references and
type libraries for the .NET and COM controls. Make sure the .NET Framework Components
tab is selected.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS126

Figure 6-1. Creating a new ASP.NET Atlas web site

6471ch06final.qxd 5/10/06 11:07 PM Page 126

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 127

Figure 6-2. Using the Toolbox Add Tab
functionality

Figure 6-3. Your new, empty tab

Figure 6-4. Choosing Toolbox items

6471ch06final.qxd 5/10/06 11:07 PM Page 127

http://lib.ommolketab.ir
http//lib.ommolketab.ir

By default, this dialog box lists the controls in alphabetical order of name. Click the
Namespace column header to sort by namespace.

The Atlas controls appear in the Microsoft.Web.UI and Microsoft.Web.UI.Controls name-
spaces. If these namespaces are missing, click the Browse button, and find the
Microsoft.Web.Atlas.DLL file in the \Bin directory of your web site.

You can see the Atlas controls from this assembly in Figure 6-5.

Once you’ve added these controls, you’ll see them on the tab you created earlier (see
Figure 6-6).

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS128

Figure 6-5. The Atlas server controls

Figure 6-6. Your Toolbox tab containing Atlas server controls

6471ch06final.qxd 5/10/06 11:07 PM Page 128

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that you have the controls in your Toolbox, you can drag and drop them onto your
web forms. For the rest of this chapter, I’ll discuss these controls and their object models, and
in Chapter 7 you will start using these controls in hands-on examples.

Introducing the ScriptManager Control
The ScriptManager control is at the heart of Atlas. This control, as its name suggests, manages
the deployment of the various JavaScript libraries that implement the client-side runtime
functionality of Atlas.

Using the ScriptManager Designer Interface
You’ve used the ScriptManager control already to create references on the client side to the
Atlas script libraries. Using the control is simple. When you drag and drop the control onto
a page, you get a design-time user interface that allows you to set up some of the common
elements of the ScriptManager control (see Figure 6-7).

This designer allows you to visually set up partial rendering, which is a tag that enables
partial-page updates and is specified in UpdatePanel controls; this designer also allows you
to create error templates and manage other ScriptManager templates. You’ll be seeing more
about these features throughout this chapter.

Now, if you take a look at the code behind this .aspx page, you will see that placing the
ScriptManager control has led to the following script being added to the page:

<atlas:ScriptManager ID="ScriptManager1" runat="server">
</atlas:ScriptManager>

When you run the page, you’ll see the following source code when you select the
View ➤ Source command in the browser:

<script src="ScriptLibrary/Atlas/Debug/Atlas.js" type="text/javascript"></script>
<div>
</div>
<script type="text/xml-script">

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 129

Figure 6-7. ScriptManager design-time user interface

6471ch06final.qxd 5/10/06 11:07 PM Page 129

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components />

</page></script>
<script type="text/javascript">
</script>

In this case, at runtime, ASP.NET renders the server-side control as a number of statements.
The first is a reference to the script library Atlas.js, which will get downloaded automatically.
Next is a <script> tag containing any client-side Atlas Script for the page components. Finally,
another script tag appears for any JavaScript you may want to use on the page, such as custom
actions or transforms.

Programming with the Script Manager
The ScriptManager control is in many ways the core of an Atlas-enabled ASP.NET page. In
addition to managing the download of the scripts to the client, it also orchestrates how the
page updates and refreshes.

Performing Partial Rendering
The EnablePartialRendering property of this control sets how your page will behave insofar
as updates are concerned. If this is false (the default), full-page refreshes will occur on round-
trips to the server. If this is true, then postbacks and full-page refreshes are suppressed and
replaced with targeted and partial updates. Instead of the application performing a full post-
back, the application will simulate full postbacks using the XMLHttpRequest object when this
is set to true (as you would expect from an Ajax application).

On the server side, the page will be processed in the normal way, responding to any con-
trols that call _doPostBack(). Existing server-side postback events will continue to fire, and
event handlers will continue to work as they always have. It is intended, by design, that Atlas-
enabled applications change existing ASP.NET applications as little as possible.

The power of the ScriptManager control, when partial rendering is enabled, comes at
render time. It determines, with the aid of the UpdatePanel control, which portions of the
page have changed. The UpdatePanel, which you will see more of later in this chapter,
defines regions in the page that get updated as a chunk. If, for example, you have a page
containing a number of chat rooms and you want to update only a single chat room, you
would surround that area of the page with an UpdatePanel control.

The ScriptManager control will override the rendering of the page and instead will send
HTML down to the XMLHttpRequest object for each of the UpdatePanel controls on the page.

Enabling Script Components
When you browse to an Atlas-enabled application, two script libraries get downloaded to the
client; these are Atlas.js for Internet Explorer and AtlasCompat.js for other browsers. These
script libraries effectively bootstrap Atlas functionality on the client side. The ScriptManager
control handles the rendering of these references on the page (as <script> tags), so you don’t
need to manually add them to your page.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS130

6471ch06final.qxd 5/10/06 11:07 PM Page 130

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you add a ScriptManager control to a blank page and then execute the application,
you’ll see the following tag embedded in your page (in this case, it is running in debug mode)
when running Internet Explorer:

<script src="ScriptLibrary/Atlas/Debug/Atlas.js"
type="text/javascript">

</script>

And you’ll see this one when running it in Firefox:

<script src="ScriptLibrary/Atlas/Debug/AtlasCompat.js"
type="text/javascript">

</script>
<script src="ScriptLibrary/Atlas/Debug/Atlas.js"

type="text/javascript">
</script>

Specifying Additional Script Components
The ScriptManager control has a <Scripts> child tag that can specify additional scripts to
download to the browser. This should contain one or more <atlas:ScriptReference> tags that
specify the path to the script and the browser the script targets.

This tag has three parameters:

Browser: This attribute allows you to target the script at a specific browser. Here’s an
example that instructs the ScriptManager control to download the script at the path
myff.js to Firefox-based callers:

<atlas:ScriptReference Browser="FireFox" Path="myff.js" />

Path: This specifies the path where the ScriptManager control can find the script file to
download. In the previous example, myff.js was in the same directory as the page con-
taining the <ScriptManager> tag.

ScriptName: If you want to target one of the built-in Atlas scripts, instead of a custom one,
you can reference them by name here. This means you don’t have to specify the directory
of the script, so you can have consistent <atlas:ScriptReference> tags on your pages
regardless of their location within the directory structure on the page. Here’s an example
that instructs the ScriptManager control to download the script AtlasUIGlitz.js to Firefox-
based browsers:

<atlas:ScriptReference Browser="FireFox" ScriptName="AtlasUIGlitz" />

So when using the optional script components on a page, your ScriptManager control will
look something like this:

<atlas:ScriptManager ID="ScriptManager1" runat="server">
<Scripts>
<atlas:ScriptReference Browser="Firefox"

Path="hello.js" ScriptName="Custom" />

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 131

6471ch06final.qxd 5/10/06 11:07 PM Page 131

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<atlas:ScriptReference Browser="Firefox"
ScriptName="AtlasUIGlitz" />

</Scripts>
</atlas:ScriptManager>

When you run the page containing this script on Internet Explorer, you will see this:

<script src="ScriptLibrary/Atlas/Debug/Atlas.js"
type="text/javascript">

</script>

When you run the page containing this script on Firefox, you will see this:

<script src="ScriptLibrary/Atlas/Debug/AtlasCompat.js"
type="text/javascript">

</script>
<script src="ScriptLibrary/Atlas/Debug/Atlas.js"

type="text/javascript"></script>
<div> </div>

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<references>
<add src="hello.js" />
<add src="ScriptLibrary/Atlas/Debug/AtlasUIGlitz.js" />

</references>
<components />

</page></script>

Specifying Services
In Chapter 2 you saw how a service can be directly consumed in a client application through
a script-based proxy to it. You can use the ScriptManager control to reference this using the
<Services> child tag. This tag should contain one or more <atlas:ServiceReference> tags that
specify the service you want to reference.

This tag has two attributes:

Path: This specifies the path to the service. You saw in Chapter 2 that JavaScript proxies
to web services on Atlas web sites can be automatically generated by postfixing “/js” at
the end of its URI. So, for example, the web service at test.asmx would return a JavaScript
proxy that could be used to call it at test.asmx/js. When using the <atlas:ServiceReference>
tag to specify the service, this would automatically be generated for you on the client side
when the ScriptManager control is rendered. Here’s an example:

<atlas:ServiceReference Path="wstest.asmx"/>

GenerateProxy: This is a Boolean value (true or false) that specifies whether the service
reference should generate a proxy class or not. The default is true.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS132

6471ch06final.qxd 5/10/06 11:07 PM Page 132

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When running a page that contains this within a ScriptManager control, you will get the
following code on the client:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<references>
<add src="wstest.asmx/js" />

</references>
<components />

</page>
</script>

As you can see, a <reference> tag has been added to the Atlas Script, and this references
the JavaScript proxy for the wstest.asmx web service. You’ll see some examples on how to use
web services and their proxies in Chapter 7.

Using Error Templates
The ScriptManager control provides an error handling mechanism whereby you can specify
the HTML to render when an error condition is met. This is particularly useful for the client
experience because you can then help your users gracefully handle errors. Within the Script-
Manager control, you can use the <ErrorTemplate> tag to define your error message in HTML.
So, for example, the following script will produce a user-friendly response to an error:

<atlas:ScriptManager ID="ScriptManager1" runat="server">
<ErrorTemplate>

There was an error processing your action.

<hr />
<button type="button" id="okButton">OK</button>

</ErrorTemplate>
</atlas:ScriptManager>

The HTML defined within the <ErrorTemplate> element will render in a simulation of
a modal dialog box. This is achieved by the rest of the page being partially obscured using a
semitransparent overlay. The HTML within the <ErrorTemplate> element is enabled and
active. This allows you to design a pretty rich error display according to your preferences.

■Note The <ErrorTemplate> element is meaningful only when used in conjunction with an UpdatePanel
control because it triggers the asynchronous communication used by the UpdatePanel control. So, although
the <ErrorTemplate> is defined on the ScriptManager control, it will do nothing until an error is received
during an asynchronous update.

It’s important to remember the ID values used in this example. You must always use these
values (errorMessageLabel and okButton). The ScriptManager control generates XML script

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 133

6471ch06final.qxd 5/10/06 11:07 PM Page 133

http://lib.ommolketab.ir
http//lib.ommolketab.ir

that uses these controls to bind controls to the error message property and to clear error
methods on the PageRequestManager control.

You can also design this HTML using the Visual Studio 2005 IDE. When you mouse over
the ScriptManager control in the page designer, you’ll see a small right-pointing arrow on its
top-right corner (see Figure 6-8).

If you click this arrow, the ScriptManager Tasks Assistant will appear. From this assistant,
you can configure or remove the error template and enable partial rendering (see Figure 6-9).

As in this case, the ScriptManager control already has a template associated with it, and
the option Remove Error Template is present. Figure 6-10 shows how the ScriptManager Tasks
Assistant will appear when no template is present.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS134

Figure 6-8. The ScriptManager control

Figure 6-9. The ScriptManager Tasks Assistant when an <ErrorTemplate> element is already
configured

Figure 6-10. The ScriptManager Tasks Assistant when there is no <ErrorTemplate> element present

6471ch06final.qxd 5/10/06 11:07 PM Page 134

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To create an error template, click the Create Error Template link. This will not only create
a new Error Template for you, but it will also populate it with the standard error message
HTML you saw earlier.

If you select Edit Templates, the ScriptManager control surface will open a basic HTML
editor that you can use to customize your error template (see Figure 6-11).

As mentioned earlier, you can use the HTML editor to specify how you want this error box
to appear. Figure 6-12 shows a customized version of the error template.

The designer then generates the <ErrorTemplate> code for you. Here is the code associ-
ated with the custom error template shown in Figure 6-12:

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 135

Figure 6-11. Editing the HTML for your <ErrorLayout> tag on your ScriptManager control

Figure 6-12. A custom error template

6471ch06final.qxd 5/10/06 11:07 PM Page 135

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<atlas:ScriptManager ID="ScriptManager1" runat="server">
<ErrorTemplate>
<div style="padding: 12px; width: 400px; height: 140px;

border: #000000 1px solid;background-color: white; text-align: justify">

Your application encountered an error.

For support, please call the information hotline at (555) 555 1234.

You can also email us by clicking
here.

<input id="okButton" type="button" value="OK"
style="font-weight: bold; font-size: 10pt; font-family: Verdana" />
<spanstyle="font-size: 10pt; font-family: Verdana">

</div>
</ErrorTemplate>

</atlas:ScriptManager>

To run an application that creates an error, you can add a button to the page. This button,
when clicked, will trigger the error.

First add a button:

<asp:Button runat="server"
ID="MyButton"
Text="Click Me!"
OnClick="MyButton_Click" />

When you click this button, you will call the MyButton_Click event. You define this using
a server-side script:

<script runat="server">
private void OnScriptManagerPageError(object sender,

PageErrorEventArgs e)
{
e.ErrorMessage = "Please do not press that button again.";

}

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS136

6471ch06final.qxd 5/10/06 11:07 PM Page 136

http://lib.ommolketab.ir
http//lib.ommolketab.ir

void MyButton_Click(object sender, EventArgs e)
{
throw new ArgumentException("Please do not press

that button again.", "MyButton");

}
</script>

This script throws an exception when you click the button. The ScriptManager control
is also configured to call OnScriptManagerPageError when a page error occurs:

<atlas:ScriptManager runat="server"
ID="scriptManager"
EnablePartialRendering="true"
OnPageError="OnScriptManagerPageError">

Now when you click the button, the error will fire, and your page will display the HTML
defined in the error template (see Figure 6-13).

This concludes the tour of the ScriptManager control. In the rest of this chapter, you will
look at the other server-side controls offered by the Atlas framework, and in the next chapter
you will go through several examples that use these controls.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 137

Figure 6-13. Atlas showing an error

6471ch06final.qxd 5/10/06 11:07 PM Page 137

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the ScriptManagerProxy Control
The ScriptManagerProxy control is available as an additional script manager for a page. Only
one ScriptManager control is allowed, and if you, for example, place a ScriptManager control
on a master page but need to add script references to your content page, then you can use the
ScriptManagerProxy control.

So, if you have the following master page:

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="MasterPage.master.cs" Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Untitled Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<atlas:ScriptManager ID="ScriptManager1" runat="server">
</atlas:ScriptManager>

This is the Master Page.

It contains this ScriptManager control:

<asp:contentplaceholder id="ContentPlaceHolder1" runat="server">

</asp:contentplaceholder>

</div>
</form>

</body>
</html>

and you create a new content page based on this master page, your new page will look like this
at design time:

<%@ Page Language="C#" MasterPageFile="~/MasterPage.master" AutoEventWireup="true"
CodeFile="Default3.aspx.cs" Inherits="Default3" Title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">
</asp:Content>

When you run this page and look at the source code that is generated by ASP.NET from
this design-time definition, you will see this:

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS138

6471ch06final.qxd 5/10/06 11:07 PM Page 138

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head><title>

Untitled Page
</title></head>
<body>

<form name="aspnetForm" method="post" action="Default3.aspx" id="aspnetForm">
<div>
<input type="hidden" name="__VIEWSTATE"

id="__VIEWSTATE"
value="/wEPDwULLTEwMDUyNjYzMjhkZERQ3hQz51DsahcItBSVyAcTtqP7" />

</div>

<script src="ScriptLibrary/Atlas/Debug/Atlas.js" type="text/javascript"></script>
<div>

This is the Master Page.

It contains this ScriptManager control:

</div>

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components />

</page></script>
<script type="text/javascript">
</script>
</form>
</body>
</html>

You can see here where the <script> tag is generated, referencing the Atlas.js core libraries.
However, if this page requires using the AtlasUIGlitz library and you don’t want to add a refer-
ence to that library to the template (because this page is the only one on your site that needs it),
then you can use a ScriptManagerProxy control.

So, if you return to the content page that was generated by the master page, you can add a
ScriptManagerProxy control to it in the designer (see Figure 6-14).

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 139

6471ch06final.qxd 5/10/06 11:07 PM Page 139

http://lib.ommolketab.ir
http//lib.ommolketab.ir

By adding the ScriptManagerProxy control to the content page, you added the following
code to the page; you can see this in the Source view:

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">

<atlas:ScriptManagerProxy ID="ScriptManagerProxy1" runat="server">
</atlas:ScriptManagerProxy>

</asp:Content>

Now you can simply add the scripts that you want to this page using the <Scripts> child
tag in the same manner as you did with the ScriptManager control.

Here’s an example:

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">

<atlas:ScriptManagerProxy ID="ScriptManagerProxy1" runat="server">
<Scripts>

<atlas:ScriptReference ScriptName="AtlasUIDragDrop" />
</Scripts>

</atlas:ScriptManagerProxy>
</asp:Content>

So now when you run the page, you will see that AtlasUIDragDrop has been included in
this page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS140

Figure 6-14. Adding a ScriptManagerProxy control to a content page

6471ch06final.qxd 5/10/06 11:07 PM Page 140

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<html xmlns="http://www.w3.org/1999/xhtml" >
<head><title>

Untitled Page
</title></head>
<body>

<form name="aspnetForm" method="post" action="Default3.aspx" id="aspnetForm">
<div>
<input type="hidden" name="__VIEWSTATE"

id="__VIEWSTATE"
value="/wEPDwUKLTc4NzcwODI3NmRk9YXV49GLEVNvGzvlq/8dm4TNJOg=" />

</div>
<script src="ScriptLibrary/Atlas/Debug/Atlas.js" type="text/javascript"></script>

<div>
This is the Master Page.

It contains this ScriptManager control:

</div>

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<references>
<add src="ScriptLibrary/Atlas/Debug/AtlasUIDragDrop.js" />

</references>
<components />

</page></script>
<script type="text/javascript">
</script>
</form>
</body>
</html>

Introducing the UpdatePanel Control
In typical ASP.NET 2.0 applications, if you do a postback on the web page, the entire page
will be rerendered. This causes a “blink” or a “flash” in the client or browser. On the server,
the postback is detected, which triggers the page life cycle. This ends up raising the specific
postback event handler code for the control that caused the postback, and this calls upon
the page’s event handler.

When you use UpdatePanel controls along with a ScriptManager control, you eliminate
the need for a full-page refresh. The UpdatePanel control is similar to a ContentPanel control
in that it marks out a region on the web page that will automatically be updated when the
postback occurs (but without the aforementioned postback behavior on the client).

It will instead communicate through the XMLHttpRequest channel—in true Ajax style.
The page on the server still handles the postback as expected and executes, raising event
handlers, and so on, but the final rendering of the page means that only the regions speci-
fied in the UpdatePanel control’s regions will be created.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 141

6471ch06final.qxd 5/10/06 11:07 PM Page 141

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the UpdatePanel Designer
Visual Studio 2005 provides a designer for the UpdatePanel control, including a Tasks pane
that helps you set up the control. To use an UpdatePanel control, you simply drag and drop
it onto the design surface of your web form (see Figure 6-15).

As you can see from Figure 6-15, the only task associated with the UpdatePanel control
is to add a ScriptManager control. The UpdatePanel control cannot function without a Script-
Manager control on the page. Additionally, the ScriptManager control must be located before
any UpdatePanel controls on your page. In other words, as you read your source code from
top to bottom, the ScriptManager reference should appear before the UpdatePanel ones. Using
the Tasks Assistant will ensure that it is placed correctly. If your ScriptManager control is not
present or is incorrectly placed, you will get an error (see Figure 6-16).

The UpdatePanel control contains a designer surface where you can place HTML. This
code will be the only code updated upon a postback if the ScriptManager control is enabled
for partial updates.

Consider Figure 6-17, where several text boxes and a button appear on the screen.
This application has two text boxes, two labels, and a button outside the UpdatePanel

control, and it has a label inside the UpdatePanel designer. The label on the inside is called
lblResult. The code behind the button reads as follows:

int x = Convert.ToInt16(txt1.Text.ToString());
int y = Convert.ToInt16(txt2.Text.ToString());
int z = x+y;
lblResult.Text = z.ToString();

As you can see, the label for the result will get updated to the value of the sum of the val-
ues of the text in the text boxes. Because lblResult is in the UpdatePanel control and the
ScriptManager control is set to enable partial rendering, clicking the button will update only
the text within the UpdatePanel control. You will see and dissect more examples of this in
Chapter 7.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS142

Figure 6-15. Using the UpdatePanel designer

6471ch06final.qxd 5/10/06 11:07 PM Page 142

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 143

Figure 6-16. Error page when the UpdatePanel and ScriptManager controls aren’t properly
configured

Figure 6-17. Simple application that uses the UpdatePanel control

6471ch06final.qxd 5/10/06 11:07 PM Page 143

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Programming with the UpdatePanel
If you look at the code behind the designer for the UpdatePanel control from the previous
example, you’ll see the following:

<atlas:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
<asp:Label ID="lblResult" runat="server" Text="Label"></asp:Label>

</ContentTemplate>
</atlas:UpdatePanel>

The <atlas:UpdatePanel> tag supports two child tags: the <ContentTemplate> tag and the
<Triggers> tag.

Using the ContentTemplate Tag
The <ContentTemplate> tag simply defines the HTML or ASP.NET that will get updated by the
UpdatePanel control. You can use the designer to generate this HTML. If, for example, you
drag and drop a Calendar control onto the UpdatePanel control’s content template area (see
Figure 6-18), it will be defined within the <ContentTemplate> tag area.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS144

Figure 6-18. Adding controls to the UpdatePanel control’s content template

6471ch06final.qxd 5/10/06 11:07 PM Page 144

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can see the code that is produced by adding the calendar as follows:

<atlas:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
<asp:Label ID="lblResult" runat="server" Text="Label"></asp:Label>
<asp:Calendar ID="Calendar1" runat="server"></asp:Calendar>

</ContentTemplate>
</atlas:UpdatePanel>

Using Triggers
The other child tag for the UpdatePanel control is <Triggers>. This allows you to define trig-
gers for the update. The UpdatePanel control has a mode property attribute, and if you set
this to Conditional (the other option is Always), then updates to the rendering of the markup
will occur only when a trigger is hit. This tag contains the collection of trigger definitions.
Two types of trigger exist, defined next.

Using ControlEventTrigger

When using a ControlEventTrigger trigger type, you define a trigger that has an associated
control (specified by ControlID) and an event name (specified by the EventName) on that
control. If the event is raised on that control, then the trigger fires, and the UpdatePanel
control will be rendered.

You specify a ControlEventTrigger with the <atlas:ControlEventTrigger> tag. Here’s an
example:

<atlas:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
<asp:Label ID="lblResult" runat="server"

Text="Label">
</asp:Label>
<asp:Calendar ID="Calendar1" runat="server">
</asp:Calendar>

</ContentTemplate>
<Triggers>
<atlas:ControlEventTrigger ControlID="btnAdd"

EventName="Click" />
</Triggers>

</atlas:UpdatePanel>

Here the ControlEventTrigger specifies that the source for the trigger is the button called
btnAdd, and the event on which to trigger is the Click event. Therefore, when the button is
clicked, the ControlEventTrigger will fire, and the partial update will occur.

Using ControlValueTrigger

ControlValueTrigger defines a trigger that fires when the value of a property (specified by
PropertyName) for the associated control (specified by ControlID) changes. Upon the change
happening, the trigger fires, and the UpdatePanel control will be rendered during the partial

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 145

6471ch06final.qxd 5/10/06 11:07 PM Page 145

http://lib.ommolketab.ir
http//lib.ommolketab.ir

rendering of the page on the server. You specify a ControlValueTrigger trigger type with the
<atlas:ControlValueTrigger> tag.

Here’s an example:

<atlas:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
<asp:Label ID="lblResult" runat="server"

Text="Label">
</asp:Label>
<asp:Calendar ID="Calendar1" runat="server">
</asp:Calendar>

</ContentTemplate>
<Triggers>
<atlas:ControlValueTrigger ControlID="txt1"

PropertyName="Text" />
</Triggers>

</atlas:UpdatePanel>

Here the ControlValueTrigger specifies that the source for the trigger is the txt1 control
and that the trigger should fire whenever its text property changes.

Introducing the UpdateProgress Control
Another control that Atlas provides is the UpdateProgress control. This indicates the progress
of an asynchronous transaction taking place. Typically the browser’s status bar serves as an
indicator of activity. With the partial-rendering model, this is no longer applicable, but to
make Ajax activity simple and user-friendly, the UpdateProgress control is provided.

■Note As with the <ErrorTemplate> element you saw earlier, the UpdateProgress control is meaningful
only when there is at least one UpdatePanel control on the page. This is because the control is triggered off
the asynchronous communication of the underlying XMLHttpRequest object.

To use an UpdateProgress control, you drag and drop it onto your page. This will create
an <atlas:UpdateProgress> tag on your page.

The HTML to display when the call is taking place is then defined using the
<ProgressTemplate> tag.

When your application executes calls to the server, the HTML defined in the
<ProgressTemplate> tag is then displayed.

Here’s an example that specifies showing the image of a smiley face while the server
is being called:

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS146

6471ch06final.qxd 5/10/06 11:07 PM Page 146

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<atlas:UpdateProgress runat="server" ID="updateProgress1">
<ProgressTemplate>

Contacting Server...
</ProgressTemplate>

</atlas:UpdateProgress>

Introducing Control Extenders
A number of control extenders are available as server-side controls in Atlas. These provide
a way to attach rich client-side functionality to the server controls. The available extenders
are AutoCompleteExtender and DragOverlayExtender.

Introducing the AutoCompleteExtender
The AutoCompleteExtender control works in conjunction with an AutoCompleteProperties
control. It provides for autocomplete functionality on client-side controls, so if you want
a text box to provide autocomplete functionality, for example, you would create an
AutoCompleteExtender control and an AutoCompleteProperties control. The former would
define the extender; the latter would define the target of the autocomplete (in this case the
text box) as well as the service and service method that provide the autocomplete values.

This is best demonstrated with a simple example. Here is the HTML for a web form
containing a single text box, along with ScriptManager, AutoCompleteExtender, and
AutoCompleteProperties controls:

<form id="form1" runat="server">
<div>
<atlas:ScriptManager ID="ScriptManager1"

runat="server"
EnablePartialRendering="True">

</atlas:ScriptManager>
<asp:TextBox ID="TextBox1" runat="server">
</asp:TextBox>
<atlas:AutoCompleteExtender ID="AutoCompleteExtender1"

runat="server">
<atlas:AutoCompleteProperties Enabled="True"

ServiceMethod="GetWordList"
ServicePath="wordlst.asmx"
TargetControlID="TextBox1" />

</atlas:AutoCompleteExtender>
</div>
</form>

You can see that the AutoCompleteProperties control points at a web service called
wordlst.asmx and a method on this service called GetWordList. You will need to create this
service in your project. The code for the GetWordList web method is as follows:

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 147

6471ch06final.qxd 5/10/06 11:07 PM Page 147

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[WebMethod]
public string[] GetWordList()
{

String[] theWordList = new String[6];
theWordList[0] = "Bob";
theWordList[1] = "Bobby";
theWordList[2] = "Bobbette";
theWordList[3] = "Bobbit";
theWordList[4] = "Bobbles";
theWordList[5] = "Boba Fett";
return theWordList;

}

This is pretty straightforward, returning a hard-coded list of words. The autocomplete
behavior kicks in once you’ve typed three characters into the text box. So, at runtime, if you
type the letters bob into the text box (in memory of Microsoft Bob), you will see the auto-
complete list appear (see Figure 6-19).

Using the DragOverlayExtender
The DragOverlayExtender control allows you to add drag-and-drop functionality to any con-
trol in a similar manner to the drag-and-drop behaviors discussed in Chapters 4 and 5. What
is nice about this one is that you can declare it on the server side to enhance your existing

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS148

Figure 6-19. Demonstrating the AutoCompleteExtender control

6471ch06final.qxd 5/10/06 11:07 PM Page 148

http://lib.ommolketab.ir
http//lib.ommolketab.ir

applications. This demonstrates one of the design tenets of Atlas—it can enhance your exist-
ing ASP.NET applications without significantly changing them, so if you have an ASP.NET
Label control that you want to add drag and drop to, you can do so, without touching its code.
You simply add a DragOverlayExtender control and its associated DragOverlayProperties
control and configure them to extend that control.

Consider the following page:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="ex4.aspx.cs" Inherits="ex4" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
<title>Untitled Page</title>
<style type="text/css">
body{font-family:Verdana;}
.label{font-weight:bold;}
.dropArea{height:500px;border:solid 2px Black;background:#ccc;}

</style>
</head>
<body>
<form id="form1" runat="server">
<div class="dropArea">

<asp:Label ID="lbl" runat="server" CssClass="label">
Drag Me with your mouse!
</asp:Label>

</div>
</form>

</body>
</html>

This will provide a simple ASP.NET page containing a gray <div> element with a single
label on it (see Figure 6-20).

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 149

6471ch06final.qxd 5/10/06 11:07 PM Page 149

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can now make the label draggable and droppable using the DragControlExtender
control. You achieve this by first adding a ScriptManager control to the page so that the Atlas
runtime components will be downloaded to the client.

Once you’ve done that, you can add a DragOverlayExtender control to the application
(see Figure 6-21).

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS150

Figure 6-20. Simple ASP.NET page with a <div> element and a <label> element

6471ch06final.qxd 5/10/06 11:07 PM Page 150

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This will add the ScriptManager code and the following snippet for the
DragOverlayExtender control:

<atlas:DragOverlayExtender ID="DragOverlayExtender1" runat="server">
</atlas:DragOverlayExtender>

You then use the DragOverlayProperties control to configure this to make the label drag-
gable and droppable. There is no visual designer for this, so you need to add it to the page
code like this:

<atlas:DragOverlayExtender ID="DragOverlayExtender1" runat="server">
<atlas:DragOverlayProperties TargetControlID="lbl" Enabled="true" />

</atlas:DragOverlayExtender>

Now if you view the page in your browser, you can drag and drop the label anywhere
within the gray area (see Figure 6-22).

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 151

Figure 6-21. Adding the ScriptManager control and the DragOverlayExtender control to the
web form

6471ch06final.qxd 5/10/06 11:07 PM Page 151

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the ProfileScriptService Control
ASP.NET 2.0 provides a profile application service for persisting custom, per-user data across
browser sessions. You add a profile property variable to the Web.config file like this:

<profile defaultProvider="AspNetSqlProfileProvider">
<properties>
<add name="labelLocation" />

</properties>
</profile>

In this manner, the profile variable will be persisted for you in a SQL Server database. You
must have a SQL Server or SQL Server Express Edition already set up to be able to use profiles.
For more information on profiles, you can read Pro ASP.NET 2.0 in C# 2005 (Apress, 2005) or
Pro ASP.NET 2.0 in VB .NET 2005 (Apress, 2006) or refer to Chapter 24 of Pro ASP.NET 2.0 in
VB .NET 2005.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS152

Figure 6-22. Dragging a label using the DragControlExtender control

6471ch06final.qxd 5/10/06 11:07 PM Page 152

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once you are using profiles, you can then integrate them with Atlas using the
ProfileScriptService control.

To do this, you can drag and drop a ProfileScriptService control onto the design surface
for your web form (see Figure 6-23).

This will add the following tag to your page:

<atlas:ProfileScriptService ID="ProfileScriptService1" runat="server">
</atlas:ProfileScriptService>

Your page is now able to access profile variables through Atlas.
For an example of this, the DragOverlayProperties control allows you to specify a profile

variable that can be used to persist the location of the control that you are dragging and drop-
ping between sessions. So, if you amend the previous drag-and-drop example to specify the
profile property that you want to use to persist the location like this:

<atlas:DragOverlayExtender ID="DragOverlayExtender1" runat="server">
<atlas:DragOverlayProperties TargetControlID="lbl"

Enabled="true" ProfileProperty="labelLocation" />
</atlas:DragOverlayExtender>

then you will be able to persist the location of the control between page sessions.

Introducing the Timer Control
Atlas provides a simple-to-use Timer control that can be configured to perform operations
repeatedly based on the time elapsed.

You can add a Timer control to a page by dragging and dropping it onto the control
surface. To use a Timer control, you will of course need a ScriptManager control on the page.
A good use for timers is to update the contents of an UpdatePanel control when the timer
ticks.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 153

Figure 6-23. Adding a ProfileScriptService control

6471ch06final.qxd 5/10/06 11:07 PM Page 153

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To see the Timer control in action, you can add an UpdatePanel control to a blank page
and use its Tasks pane to add a ScriptManager control to the page. Once you’ve done this, you
can drag and drop a Timer control onto the page. You can see what this looks like in the
designer in Figure 6-24.

The code behind your page will now have the <Timer> tag already defined.
Here’s an example of a timer that has been customized with a 5,000-millisecond interval

(5 seconds in other words), with the name tc1 and the event handler tc1_tick:

<atlas:TimerControl ID="tc1" runat="server"
Interval="5000" OnTick="tc1_Tick">

</atlas:TimerControl>

Now, within the tc1_Tick function, you can write a handler for the timer. Additionally, a
useful case for this is to use it to feed a ControlEventTrigger trigger type on an UpdatePanel
control. Here’s an example:

<atlas:UpdatePanel ID="UpdatePanel1" runat="server">
<Triggers>
<atlas:ControlEventTrigger ControlID="tc1"

EventName="Tick" />
</Triggers>
<ContentTemplate>
<asp:Label ID="Label1"

runat="server"
Text="Label">

</asp:Label>
</ContentTemplate>
</atlas:UpdatePanel>

And now, whenever the timer ticks, the UpdatePanel control will have an update triggered
automatically.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS154

Figure 6-24. Using a Timer control in the designer

6471ch06final.qxd 5/10/06 11:07 PM Page 154

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Gadget Control
Atlas is designed to work with the new technologies that Microsoft is using to extend public
portals at Live.com and Start.com. These sites aggregate panes of information on the screen
using a technology called gadgets.

Figure 6-25 shows the Live.com site with a number of gadgets, including sports headlines
and weather.

You can use the Atlas Gadget server control to implement your own gadgets for Live.com
using Atlas.

Doing this is extremely easy. In Visual Studio .NET, you simply drag the Gadget control
onto the design surface for an ASP.NET web form. You’ll also need to have a ScriptManager
control on the web form. You can see this in Figure 6-26.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 155

Figure 6-25. Live.com showing weather and sports gadgets

6471ch06final.qxd 5/10/06 11:07 PM Page 155

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This generates the following ASP.NET code:

<body>
<form id="form1" runat="server">
<div>
<atlas:ScriptManager ID="ScriptManager1"

runat="server"
EnablePartialRendering="True">

</atlas:ScriptManager>
</div>
<atlas:Gadget ID="Gadget1" runat="server">
<ContentTemplate>
This is my gadget

</ContentTemplate>
</atlas:Gadget>

</form>
</body>

As you can see, as with other controls, a templated area within the control tag specifies
what appears at runtime when the control is rendered.

Listing 6-1 shows an example of a full page that hosts a gadget containing an RSS reader.
It comes from the Atlas samples download at http://atlas.asp.net.

Listing 6-1. ASP.NET Page Containing RSS Gadget

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Untitled Page</title>
</head>

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS156

Figure 6-26. Adding a gadget to an ASP.NET web form

6471ch06final.qxd 5/10/06 11:07 PM Page 156

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<body>
<form id="form1" runat="server">
<div>
<atlas:ScriptManager runat="server" ID="scriptManager" />

<atlas:gadget runat="server" ID="AspNetRssFeed"
Title="ASP.net Forums"
Description="RSS feeds from ASP.NET forums">

<ContentTemplate>

<div style="visibility:hidden;display:none;">
<div id="RssItemNoDataTemplate">
Loading ...

</div>

<!-- Layout template for item links -->
<div id="RssViewLayout">
<!-- item -->
<div id="RssItemLayout">
<div id="RssItemView">
<span id="RssItemDate"

style="font-weight:bold;">
:
<a target="_blank" href="#"

id="RssItem" class="ForumLink">

</div>
</div>
</div>
</div>

<div id="RssViewList" class="Dialog"
style="position:absolute;width:95%;overflow:auto;">

<div class="DialogBanner">

<div id="ForumTitle"

style="display:inline;">
ASP.net "Atlas" Discussion and Suggestions

</div>

<a onclick="javascript: return false;"
href="#" id="RefreshForum">

<img alt="Get forum feed"
src="images/refresh.jpg" />

</div>

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 157

6471ch06final.qxd 5/10/06 11:07 PM Page 157

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<!-- List -->
<div id="RssView"></div>
</div>

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<!-- Data -->
<timer id="sizeTimer" interval="500"

tick="OnTimerTick" enabled="true" />

<xmlDataSource id="FeedSource" autoLoad="true"
xpath="//item"
serviceURL="aspnetforums.asbx?mn=Get">

<parameters
feedURL="http://forums.asp.net/rss.aspx?ForumID=1007" />

</xmlDataSource>

<!-- Get feed -->
<button id="RefreshForum">
<click>
<invokeMethod target="FeedSource" method="load" />

</click>
</button>

<!-- List of links -->
<control id="RssViewList" visibilityMode="Collapse" />
<listView id="RssView"

itemTemplateParentElementId="rssItemLayout">
<bindings>
<binding id="BindListView" property="data"

dataContext="FeedSource" dataPath="data" />
</bindings>

<layoutTemplate>
<template layoutElement="RssViewLayout" />

</layoutTemplate>

<emptyTemplate>
<template layoutElement="RssItemNoDataTemplate"/>

</emptyTemplate>
<itemTemplate>
<template layoutElement="RssItemView">
<hyperLink id="RssItem">
<bindings>

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS158

6471ch06final.qxd 5/10/06 11:07 PM Page 158

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<xpathBinding property="text"
xpath="./title/text()" />

<xpathBinding property="navigateURL"
xpath="./link/text()" />

</bindings>
</hyperLink>
<label id="RssItemDate">
<bindings>
<xpathBinding property="text"

xpath="./pubDate/text()"
transform="ToDateString" />

</bindings>
</label>
</template>
</itemTemplate>
</listView>

</components>
</page>

</script>
</ContentTemplate>

<Scripts>
<atlas:scriptreference path="rssgadget_wt.js" />

</Scripts>

<Styles>
<atlas:StyleReference Path="rssgadget.css" />

</Styles>

</atlas:gadget>
</div>
</form>
</body>
</html>

Figure 6-27 shows this page in action, reading the RSS string and rendering it using the
<ContentTemplate> tag.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 159

6471ch06final.qxd 5/10/06 11:07 PM Page 159

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you run this and append the text ?gadget=true to the URI, you will receive the
output shown in Figure 6-28.

Figure 6-29 shows Live.com when you are signed in. You can sign into this site using
Microsoft Passport. To add this gadget to Live.com, you use the Add Stuff link at the top left
of the page.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS160

Figure 6-27. Running the RSS reader gadget

6471ch06final.qxd 5/10/06 11:07 PM Page 160

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 161

Figure 6-28. Running the Gadget control with Gadget=True set

Figure 6-29. Signed into Live.com

6471ch06final.qxd 5/10/06 11:07 PM Page 161

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can then use the Advanced options to add the URL of your gadget, and you will see it
rendered on your Live.com portal. You can see this in Figure 6-30.

One thing to note is permissions and security. If you have trouble viewing the gadget,
make sure you have *.live.com and *.start.com in your trusted sites settings within IE.

As you can see, with Atlas creating gadgets is easy. You can integrate these gadgets into
Live.com, Start.com, and a number of up-and-coming sites. They’ll also be able to be inte-
grated directly into the sidebar of Windows Vista!

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS162

Figure 6-30. Adding your gadget to Live.com

6471ch06final.qxd 5/10/06 11:07 PM Page 162

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary
This chapter introduced you to the server controls that are available to Atlas programmers.
It walked you through using the ScriptManager control, which is at the heart of Atlas. This
control empowers the download of the runtime as well as handles things such as error display
messages. Additionally, you looked at the UpdatePanel control, which is at the heart of how
Atlas enables Ajax functionality in existing ASP.NET pages using partial-page updates.

Other controls such as the Timer control and the UpdateProgress control are available
on the server side to make your UI friendlier. Finally, you looked at some of the control exten-
ders, which provide valuable client-side functionality to existing controls. The extenders are
important in that they allow you to easily amend your existing ASP.NET applications unob-
trusively. To extend ASP.NET controls for drag and drop, for example, you then simply add
an extender to the page and point it at that control.

This chapter gave you a high-level overview of each control and how it works. In the next
chapter, you will look at some applications and samples that use this functionality, as well as
at the client-side controls you saw in Chapters 4 and 5, dissecting them to understand how
you can program similar applications of your own in Atlas.

CHAPTER 6 ■ INTRODUCING SERVER CONTROLS IN ATLAS 163

6471ch06final.qxd 5/10/06 11:07 PM Page 163

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6471ch06final.qxd 5/10/06 11:07 PM Page 164

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Server Controls in Atlas

This chapter follows on from Chapter 6, which introduced you to the Atlas server controls
and showed you how to use them. In this chapter, you will look at several Atlas applications
and will dissect them to see how they work. In the process, you will glean lots of new infor-
mation about how to use the Atlas extensions to ASP.NET to build powerful Ajax-style applica-
tions and how to extend your existing applications with asynchrony. At the end of the chapter,
you will look into the reference application that was built by Microsoft for Atlas—the Atlas wiki.
This application demonstrates how you can put together a powerful and high-performing
application using many of the Atlas techniques.

Using the UpdatePanel Control
The first example uses the UpdatePanel control to show a partial refresh of a page. For this
example, you will need a web form containing the HTML shown in Listing 7-1.

Listing 7-1. Partially Refreshing a Page Using the UpdatePanel Control

<%@ Page Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<script runat="server">
protected void btnCopy_Click(object sender, EventArgs e)
{

lblFirstLineShipping.Text = lblFirstLineBilling.Text;
lblSecondLineShipping.Text = lblSecondLineBilling.Text;
lblThirdLineShipping.Text = lblThirdLineBilling.Text;

}
</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">

<style type="text/css">
.start{background-color:yellow;border:dashed 2px black;}
.hover{font-size:40pt;background-color:yellow;border:dashed 2px

black;}
</style>

165

C H A P T E R 7

■ ■ ■

6471ch07final.qxd 5/10/06 11:03 PM Page 165

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<link href="intro.css" type="text/css" rel="Stylesheet" />
<title>ASP.NET "Atlas" Demo: UpdatePanel Control</title>

</head>
<body>

<form id="form1" runat="server">

<div id="Div1" class="title">
<h2>ASP.NET "Atlas" Demo: Server-side
Controls</h2>
The following ASP.NET "Atlas" server-side controls
are shown in this example:

<atlas:UpdatePanel>

</div>
<div class="description">

<atlas:ScriptManager runat="server"
ID="ScriptManager1" EnablePartialRendering="true" />

<hr />
<h3>Example 1: Atlas:UpdatePanel</u></h3>
The UpdatePanel shown in this example updates the 'Shipping
Address' once the 'Same
As Billing Address' button is clicked. Notice that the page
doesn't postback and
the refresh happens without requiring to reload all the
current content on the page.

Billing Address
:

<asp:Label ID="lblFirstLineBilling"

runat="server" Font-Bold="False"
Text="One Microsoft Way,"></asp:Label>

<asp:Label ID="lblSecondLineBilling"
runat="server"
Text="Redmond,"></asp:Label>

<asp:Label ID="lblThirdLineBilling"
runat="server"
Text="WA - 98052"></asp:Label>

<atlas:UpdatePanel runat="server" ID="UpdatePanel1">

<ContentTemplate>

Shipping Address:

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS166

6471ch07final.qxd 5/10/06 11:03 PM Page 166

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<asp:Label ID="lblFirstLineShipping"
runat="server"
Font-Bold="False"></asp:Label>

<asp:Label ID="lblSecondLineShipping"
runat="server"></asp:Label>

<asp:Label ID="lblThirdLineShipping"
runat="server"></asp:Label>

</ContentTemplate>
</atlas:UpdatePanel>

<asp:Button ID="btnCopy" runat="server"

Text="Same As Billing Address"
OnClick="btnCopy_Click"
CausesValidation="False" />

</div>
</form>

</body>
</html>

This page contains an UpdatePanel control whose content template contains three
labels: lblFirstLineShipping, lblSecondLineShipping, and lblThirdLineShipping. When the
user clicks the button, called btnCopy, the function btnCopy_Click gets called.

As you can see in this function, the values of the labels outside the UpdatePanel control
get copied into the labels inside. This triggers a partial refresh on the page, where the server
updates only the contents of those three labels.

If you run the page, you’ll see a screen like that in Figure 7-1.
Typically in an application like this, if you click the button to change the value of the

shipping address labels, the entire page will be posted to and from the server. As the page
is rerendered, the entire page will “blink” as the browser deletes the current markup and
replaces it with the new one.

With Ajax, you could place the shipping address content within a named <div> element,
and then the click of the button could make a call to a JavaScript function that does the copy
and builds a new innerHTML property of that <div> element. Or, if the functionality was
server side, it would generate a request on XMLHttpRequest and a callback for when the
request is complete. The callback would then build HTML code to put on the innerHTML
property of the named <div> element.

The latter is exactly how the Atlas UpdatePanel control works under the hood. It uses
Web.WebForms.PageRequestManager to set up an asynchronous callback. If you use an
HTTP sniffer and run the page in Listing 7-1, you will see the following markup at the bot-
tom of the page:

<script type="text/javascript">

Web.WebForms.PageRequestManager._setupAsyncPostBacks(
document.getElementById('form1'),
'ScriptManager1', ['UpdatePanel1'], []);

</script>

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 167

6471ch07final.qxd 5/10/06 11:03 PM Page 167

http://lib.ommolketab.ir
http//lib.ommolketab.ir

But all the intricacies of building the HTML and updating the region of the page are han-
dled for you, so you don’t have to explicitly code all the asynchronous handling and HTML
updating yourself.

Using a Task List Manager
The first reference application publicly available for Atlas was Scott Guthrie’s task list man-
ager, ToDo List. This application is a simple yet powerful demonstration of the power of the
ASP.NET 2.0 framework and how easy it is to extend it for Ajax-style functionality using Atlas.

Figure 7-2 shows the main screen for this application. It shows a sortable list of tasks that
you can add to, edit, or delete. It contains links to another page containing the subitems for a
particular item (which you will look at a little later) and a link to an RSS document that is gen-
erated from this list.

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS168

Figure 7-1. UpdatePanel demonstration

6471ch07final.qxd 5/10/06 11:03 PM Page 168

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now, let’s take a look at this page in the designer. You can see that in Figure 7-3.
The content is stored within a content pane that is hosted by the master page. Master

pages in ASP.NET provide template functionality to your pages. If you look at the runtime
in Figure 7-2, you will see that the page has a black header and styling that are missing in
Figure 7-3. That’s because they are implemented on the master page, and the master page
defines a content area that changes from implementation page to implementation page.
The master page also contains the Atlas ScriptManager control, so in case you noticed you
couldn’t see it in Figure 7-3, you’ll find it on the master page.

This content area is what you see in Figure 7-3 as Content1.
Right at the bottom of the designer you’ll see an ObjectDataSource control. An

ObjectDataSource control allows you to create a declarative link between your web page
controls and data access components that query and update data. It’s flexible and can work
with many different components, making it suitable for an application such as this one. This
ObjectDataSource control ties to a SQL Server Express Edition database that contains the
tables for the tasks and items lists.

As far as Atlas controls are concerned, you’ll see that there are two UpdatePanel controls
on this web form.

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 169

Figure 7-2. The task list manager application

6471ch07final.qxd 5/10/06 11:03 PM Page 169

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The top UpdatePanel control contains an ASP.NET GridView control. Because it is in an
UpdatePanel control and partial rendering is enabled, postbacks caused by actions on this
panel should incur only partial refreshes, improving the user experience.

Let’s take a look at the code for this UpdatePanel control. First you define the UpdatePanel
control and give it the ID of up1:

<atlas:UpdatePanel ID="up1" runat="server">

Then you use the <ContentTemplate> child tag to insert the content you want to partially
update. This will be a GridView control, called ListGrid, that will bind to the ObjectDataSource
control you saw earlier. This object data source is called ListDataSource and is configured
using the <DataSourceID> tag:

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS170

Figure 7-3. Editing the task list in the ASP.NET designer

6471ch07final.qxd 5/10/06 11:03 PM Page 170

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<ContentTemplate>

<asp:GridView ID="ListGrid" BorderWidth="0px"
runat="server" AutoGenerateColumns="False"
DataKeyNames="ListId"
DataSourceID="ListDataSource"
AllowPaging="True"
AllowSorting="True"
EnableViewState="False"
GridLines="None">

A GridView control defines its content using the <Columns> tag, and each child of this tag
defines a column. The <EditItemTemplate> tags define what to present when the grid is in edit
mode, and you will see that Update and Cancel link buttons are defined:

<Columns>
<asp:TemplateField ShowHeader="False">
<EditItemTemplate>
<asp:LinkButton ID="LinkButton1" runat="server"

CausesValidation="True" CommandName="Update"
Text="Update">

</asp:LinkButton>
<asp:LinkButton ID="LinkButton2" runat="server"

CausesValidation="False" CommandName="Cancel"
Text="Cancel">

</asp:LinkButton>
</EditItemTemplate>

The <ItemTemplate> tag defines what is visible when you are in view mode, showing the
grid and the data on it:

<ItemTemplate>
<asp:LinkButton ID="LinkButton1" runat="server"

CausesValidation="False" CommandName="Edit"
Text="Edit">

</asp:LinkButton>
<asp:LinkButton ID="DeleteBtn"

Visible='<%# IsDeleteBtnVisible((int) Eval("ItemCount")) %>'
runat="server" CausesValidation="False"
CommandName="Delete" Text="Delete">

</asp:LinkButton>
</ItemTemplate>
<ControlStyle CssClass="buttons" />
<HeaderStyle CssClass="commands" />
</asp:TemplateField>

And here is the rest of the grid definition. You can see that it is a standard <asp:GridView>
definition and that nothing special for Atlas has been added to it.

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 171

6471ch07final.qxd 5/10/06 11:03 PM Page 171

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<asp:BoundField DataField="Name" HeaderText="List"
SortExpression="Name" >

<ControlStyle CssClass="name_edit" />
<ItemStyle CssClass="name" />
<HeaderStyle CssClass="name" />

</asp:BoundField>

<asp:TemplateField HeaderText="Pri"
SortExpression="Priority">

<EditItemTemplate>
<asp:DropDownList ID="DropDownList1" Width="75"

SelectedValue='<%# Bind("Priority") %>'
runat="server">

<asp:ListItem Text="High" Value="3" />
<asp:ListItem Text="Medium" Value="2" />
<asp:ListItem Text="Low" Value="1" />

</asp:DropDownList>
</EditItemTemplate>
<ItemTemplate>
<asp:Label ID="pri"

Text='<%# FormatPriority((int) Eval("Priority")) %>'
runat="server" />

</ItemTemplate>
<ItemStyle CssClass="priority" />
<HeaderStyle CssClass="priority" />

</asp:TemplateField>

<asp:BoundField DataField="DateCreated"
DataFormatString="{0:MM/dd/yyyy}"
HtmlEncode="False" HeaderText="Started"
ReadOnly="True" SortExpression="DateCreated" >

<ItemStyle CssClass="started" />
<HeaderStyle CssClass="started" />

</asp:BoundField>

<asp:TemplateField HeaderText="Done"
SortExpression="IsComplete">

<EditItemTemplate>
<asp:CheckBox ID="CheckBox1" runat="server"

Checked='<%# Bind("IsComplete") %>' />
</EditItemTemplate>
<ItemStyle CssClass="iscomplete" />
<HeaderStyle CssClass="iscomplete" />
<ItemTemplate>
<asp:Label ID="Done"

Text='<%# FormatDone((bool) Eval("IsComplete")) %>'
runat="server" />

</ItemTemplate>
</asp:TemplateField>

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS172

6471ch07final.qxd 5/10/06 11:03 PM Page 172

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<asp:HyperLinkField DataTextField="ItemCount"
DataTextFormatString="{0} active items"
DataNavigateUrlFields="ListId"
DataNavigateUrlFormatString="Items.aspx?ListId={0}" >

<ItemStyle CssClass="viewitems" />
</asp:HyperLinkField>

</Columns>
<EmptyDataTemplate>
No lists

</EmptyDataTemplate>

</asp:GridView>

</ContentTemplate>

Finally, you close the Atlas UpdatePanel control:

</atlas:UpdatePanel>

So, from the point of view of Atlas, this is a simple UpdatePanel control. No control event
or control value triggers are defined, so postbacks caused by using the controls on the grid for
sorting and editing will cause only a partial refresh on this page.

The other UpdatePanel control is a little more interesting. This is where you add a new
item to the list and thus affect the grid and the first UpdatePanel that contains it.

Let’s inspect the code for it. The first thing you will notice is that on the definition of the
panel itself, Mode is set to Conditional. This means it will use triggers for updates. You’ll look
at the triggers in a moment.

<atlas:UpdatePanel ID="AddPanel"
Mode="Conditional"
runat="server">

The <ContentTemplate> element contains the definition of the HTML to show in the
UpdatePanel control. From Figure 7-3 you can see that this is a text box where you can type
a new item and an action button that allows you to define it. Here’s the code:

<ContentTemplate>

Add New List:
<asp:TextBox ID="AddItemTxt"

cssclass="newitem" runat="server">
</asp:TextBox>
<asp:Button ID="AddListBtn" runat="server"

OnClick="AddListBtn_Click" Text="Add" />

</ContentTemplate>

Now come the triggers. The idea here is that you want to trigger an update upon the
button being clicked. You define that as a ControlEventTrigger control (because the click

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 173

6471ch07final.qxd 5/10/06 11:03 PM Page 173

http://lib.ommolketab.ir
http//lib.ommolketab.ir

is an event) using the <atlas:ControlEventTrigger> tag. The name of the button, as you saw
previously, is AddListBtn, so you define the trigger like this:

<Triggers>
<atlas:ControlEventTrigger ControlID="AddListBtn"
EventName="Click" />

</Triggers>

Finally, you close the tag defining the UpdatePanel control:

</atlas:UpdatePanel>

Now what you might find interesting about this is that there is nowhere that you explicitly
update the first panel. So how does it occur? If you look at the definition of AddListBtn, you’ll
see that it defines an event to happen when you click it with the OnClick attribute. Atlas is
smart enough not to override this with the trigger, so two actions happen when you click the
button. The ASP.NET onclick behavior fires and trips the server-side event handler, and the
Atlas trigger fires to refresh UpdatePanel2.

The code on the server side for that button looks like this:

protected void AddListBtn_Click(object sender, EventArgs e) {

ListsTableAdapters.ListsTableAdapter lists =
new ListsTableAdapters.ListsTableAdapter();

lists.Insert(Server.HtmlEncode(AddItemTxt.Text),
1, false, DateTime.Now);

AddItemTxt.Text = "";
ListGrid.DataBind();

}

This code inserts a new field into the database, but it’s the last two lines that are the most
important when looking at this from an Atlas perspective. The first clears out the text box. But
because the text box is in an UpdatePanel control, only a partial-page refresh will be triggered.
The second binds the ListGrid to the data source; thus, the new item will be rendered. This
also is in an UpdatePanel control, so it also will trigger only a partial-page update.

So, if you run the page and play with manipulating the grid by sorting and adding new items,
you will see the partial updates in action, based on how they don’t “blink” in the way you’d usually
expect when adding or manipulating a GridView.

Figure 7-4 shows what happens when you add a new item, called My New Item, to the grid.

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS174

6471ch07final.qxd 5/10/06 11:03 PM Page 174

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 175

Figure 7-4. Adding a new item to the list of tasks (first image). The new item now appears on the
list (second image).

6471ch07final.qxd 5/10/06 11:03 PM Page 175

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The grid had defined an EditItemTemplate that shows how it should behave upon enter-
ing the edit context. This changes the Priority field from a straight text field to a drop-down
list. If you click Edit beside the My New Item field you just added, you will see this in action
(see Figure 7-5).

You can see that you can edit the text, the priority, or the status of the item (done or not).
Each of these actions will result in new data being passed to the database through the data
binding against the ObjectDataSource control and as such will trigger an update on the grid.
Again, because the grid is defined within an UpdatePanel control, this will just be a partial
update and will be cleaner, smoother, and in the style of Ajax.

Another web form in this application is the one that shows your active items under a
particular task. If you look at the Write Blog Post task, you will see that on the right side it has
a hyperlink that says “3 active items.” If you click this link, you will be taken to the Items.aspx
page (see Figure 7-6).

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS176

Figure 7-5. Editing an item

6471ch07final.qxd 5/10/06 11:03 PM Page 176

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s look at how this page is constructed. Figure 7-7 shows how it appears in the ASP.NET
designer.

You will see some similarities between this and the tasks page discussed earlier. It derives
from the same master page, so there is no ScriptManager control present. But it does have two
UpdatePanel controls: one containing the data grid and one containing the controls that allow
you to add a new item to the dataset to which the grid is bound. The data source is represented
by an ObjectDataSource control in the same way as the earlier web form.

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 177

Figure 7-6. Viewing items for a task

6471ch07final.qxd 5/10/06 11:03 PM Page 177

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first UpdatePanel control works the same way as the one on the tasks page. Here’s the
code, with much of the details of the GridView definition omitted for clarity:

<atlas:UpdatePanel ID="up1" runat="server">

<ContentTemplate>

<asp:GridView ID="ItemGrid" BorderWidth="0"
runat="server" AutoGenerateColumns="False"
DataKeyNames="ItemId" DataSourceID="ObjectDataSource1"
AllowPaging="True" AllowSorting="True"
EnableViewState="False" GridLines="None">

<Columns>
// Items Omitted for Clarity of text

</Columns>

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS178

Figure 7-7. Designing the items page

6471ch07final.qxd 5/10/06 11:03 PM Page 178

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<EmptyDataTemplate>
There are no items in this list

</EmptyDataTemplate>

</asp:GridView>

</ContentTemplate>

</atlas:UpdatePanel>

The GridView control is bound to ObjectDataSource1, which in turn is bound to the Items
dataset. Columns are set up as before with bindings to fields within the dataset and with an edit
item template that provides the controls that allow these fields to be changed.

Because the grid is bound, changes to the underlying dataset will trigger a refresh to the grid
and as such an update of the content. The only Atlas amendment you can see is that the whole
thing has been embedded within an <atlas:UpdatePanel> element. This means that changes to
the grid will trigger only a partial-page refresh.

The second UpdatePanel control contains the fields for adding new content to this grid
within its <ContentTemplate> tag. Also, it is defined as a Conditional UpdatePanel control,
meaning that the stimulus to update it will be a trigger.

<atlas:UpdatePanel ID="AddPanel"
Mode="Conditional" runat="server">

<ContentTemplate>

Add New Item:
<asp:TextBox ID="AddBtnTxt" cssclass="newitem"

MaxLength="50" runat="server">
</asp:TextBox>
<asp:Button ID="AddItemBtn" runat="server"

OnClick="AddItemBtn_Click" Text="Add" />

</ContentTemplate>

The <Triggers> tag contains the trigger(s) used to invoke an update to this panel. Because
you want to update based on clicking the Add button, you use the ControlEventTrigger type:

<Triggers>
<atlas:ControlEventTrigger

ControlID="AddItemBtn" EventName="Click" />
</Triggers>

</atlas:UpdatePanel>

Also, as you saw earlier, two things happen when you click the button. The click handler
defined in the button’s OnClick attribute will fire, as will the trigger defined on the UpdatePanel
control. Again, and it is important to emphasize this, using Atlas to provide partial update and

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 179

6471ch07final.qxd 5/10/06 11:03 PM Page 179

http://lib.ommolketab.ir
http//lib.ommolketab.ir

asynchronous functionality is extremely unobtrusive. You don’t intercept or override the
existing click functionality (or any other functionality, for that matter) and just enhance it
by providing the additional tags used for the update functionality.

ToDoList is an excellent example of a small ASP.NET application and how it can be
enhanced with Ajax functionality using Atlas. The server control set you saw in Chapter 6 has
been carefully designed and implemented to allow you to enhance existing applications as
easily as possible and in a manner that involves touching your existing code as little as possi-
ble. Additionally, for new applications, it involves reusing your existing skills in ASP.NET and
lowers the learning curve drastically.

In the next example, you will look at the official reference application for Atlas—the
Atlas wiki.

Using the Atlas Wiki Application
The Atlas wiki application is a reference application that demonstrates what a fully featured
ASP.NET 2.0 application looks like and how it can be enhanced using Atlas.

Getting Started with the Wiki Application
If you don’t have it already, download the wiki template add-in for Visual Studio .NET from
http://atlas.asp.net. Once you have installed this, you will be able to create the wiki
application.

If you have this template installed, when you issue a File ➤ New command in Visual
Studio .NET, you will be presented with the New Web Site dialog box, and it will give you an
option to create a Wiki ASP.NET ‘Atlas’ Web Site, as shown in Figure 7-8.

This will create the entire wiki site for you. Select a location, and click OK.
The example is pretty comprehensive. Figure 7-9 shows the Solution Explorer for this site,

and you can see that it contains a lot of good stuff, including master pages, templates, visual
themes, back-end databases, controls, and of course web forms. Remember, this is first and
foremost an ASP.NET application, built with existing ASP.NET skills and enhanced using
Ajax/Atlas functionality.

When running the application, you should consider a number of issues.
Sometimes you will find that the browser renders this home page incorrectly when it is

loaded for the first time. If this appears to be happening to you, simply click the browser’s
Refresh button. This should correct the page display. This problem, if it occurs at all, generally
is a problem only once: when you load the wiki for the first time in a browser.

The wiki uses SQL Server 2005 Express Edition by default. The initial connection to the
wiki’s database sometimes times out in SQL Server. You will see a message in the browser
about this if it happens. Simply click Refresh in the browser in this case.

If you have other database-related error messages, check that the wiki’s App_Data
directory permits write access for the anonymous Internet account on the computer. If you
are running Windows XP, you will need to add the [server]\ASPNET account to the list of
users allowed to write/modify the App_Data folder.

If you are running Windows Server 2003, you should add the [server]\NETWORK SERVICE
account. Usually, however, the security settings on this folder are correct by default.

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS180

6471ch07final.qxd 5/10/06 11:03 PM Page 180

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 181

Figure 7-8. Creating the wiki web site

Figure 7-9. Atlas wiki project structure

6471ch07final.qxd 5/10/06 11:03 PM Page 181

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Running the Wiki Application
When you run the wiki application, you will see a screen like in Figure 7-10.

The first case where you can see some Ajax functionality in action is when you attempt to
log in. If you haven’t yet used the application or registered any users, try logging in with the
username Arnie and any password (see Figure 7-11).

When you attempt to do this and log in, you’ll see that the Login pane updates without a
complete page refresh (see Figure 7-12).

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS182

Figure 7-10. The wiki application

6471ch07final.qxd 5/10/06 11:03 PM Page 182

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 183

Figure 7-11. Logging into the wiki application

Figure 7-12. A failed login using only a partial-page update

6471ch07final.qxd 5/10/06 11:03 PM Page 183

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Understanding the Login Asynchrony
Let’s take a look at how the Login pane realizes this functionality.

The Login pane, along with many of the others, is actually implemented on the master
page. This makes sense because you should be able to log in from anywhere. If you view the
page Default.master in the ASP.NET designer, you’ll see something like Figure 7-13.

If you look through the code for this page, you’ll find the markup for the Login button.
It looks like this:

<input type="button"
class="button affirmative"
id="loginBtn"
onclick="return OnLogin();"
value="Login" />

You can see that when you click this button, it calls the return Onlogin(); script. Let’s take
a look at that:

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS184

Figure 7-13. The master page viewed using the designer

6471ch07final.qxd 5/10/06 11:03 PM Page 184

http://lib.ommolketab.ir
http//lib.ommolketab.ir

function OnLogin() {

var usernameCtrl = $('username').control;
var passwordCtrl = $('password').control;
var loggingInMsgCtrl = $('loggingInMsg').control;
var loginFailureMsgCtrl = $('loginFailureMsg').control;
Web.TypeDescriptor.setProperty(loggingInMsgCtrl, 'style',

'inline', 'display');
Web.TypeDescriptor.setProperty(loginFailureMsgCtrl, 'style',

'none', 'display');
Web.Services.AuthenticationService.login(

usernameCtrl.get_text(),
passwordCtrl.get_text(),
OnLoginComplete);

return false;
}

This script first sets up four vars, each an instance of a control. The first two are the
TextBox controls where the username and password are entered. The next two are simple
Label controls that are used to mark the progress of the login. When you first click the button,
it displays a “Logging in…” message. Later upon a failure, it indicates that you failed (as in
Figure 7-12). These labels get referenced using the controls loggingInMsgCtrl and
loginFailureMsgCtrl. The script then sets up how they should appear using their style
properties.

Most interesting is the call to the web service that processes the login. This is performed
in this line:

Web.Services.AuthenticationService.login(
usernameCtrl.get_text(),
passwordCtrl.get_text(),
OnLoginComplete);

Web.Services.AuthenticationService is a static class contained in the AtlasRuntime.js file
that allows you to authenticate using the ASP.NET 2.0 membership application service. You
pass it the username and password and the name of the function to call once the logging in is
complete. This allows your Atlas applications to use the standard ASP.NET 2.0 authentication
system.

As you can see in this call, the script defines OnLoginComplete to handle the callback
once the login is complete. Here’s the OnLoginComplete script:

function OnLoginComplete() {
var usernameCtrl = $('username').control;
var passwordCtrl = $('password').control;

Web.Services.AuthenticationService.validateUser(
usernameCtrl.get_text(),
passwordCtrl.get_text(),
OnLoginValidationComplete);

return false;
}

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 185

6471ch07final.qxd 5/10/06 11:03 PM Page 185

http://lib.ommolketab.ir
http//lib.ommolketab.ir

So, once the login is complete, the next thing it will do is validate the user, establishing
not just their identity but also their permissions. You achieve this using the validateUser web
method on the authentication service. This method also defines a function to call upon the
service completion, again implementing asynchrony.

The function defined as the callback is OnValidationComplete. You can see it here:

function OnLoginValidationComplete(result) {
var loggingInMsgCtrl = $('loggingInMsg').control;
Web.TypeDescriptor.setProperty(loggingInMsgCtrl,
'style', 'none', 'display');

var usernameCtrl = $('username').control;
var passwordCtrl = $('password').control;
passwordCtrl.set_text('');
if (result)
{
g_rolesRequest =
RolesWebService.GetRoles(OnRolesObtained,

OnRolesAcquisionTimeout);
}
else
{
loginFailure();

}
}

This creates a var that references the logging in the message control and sets its style.
It then clears the username and password boxes. The function receives a Boolean value from
the validation web service that will be true if the user is valid and false otherwise.

Should it be false, as in the case I’m demonstrating, the loginFailure() function will be
called:

function loginFailure()
{
var loginFailureMsgCtrl = $('loginFailureMsg').control;
Web.TypeDescriptor.setProperty(loginFailureMsgCtrl,

'style', 'inline', 'display');
}

This creates a control from the loginFailureMsg region of the page and sets its style to
be visible:

<span id="loginFailureMsg"
style="color: Red; display: none;">
Login failed.

Please try again.

So, from this flow you can see how Atlas client-side controls, using web services, are pro-
viding asynchrony in a simple-to-use, simple-to-follow, and simple-to-understand manner.

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS186

6471ch07final.qxd 5/10/06 11:03 PM Page 186

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a Wiki User
Now that you’ve investigated the asynchronous login functionality, before you look into the
rest of the functionality of Atlas, it’s a good idea to create a real user.

You do this by first clicking the Register tab of the Login pane (see Figure 7-14).

Fill these out with details for a wiki user. This will add the user to the database, but it will
not give them any permissions. You’ll see a dialog box like the one in Figure 7-15 when you
create a user.

Note that at this point you can log in to the wiki using the username and password you
used when registering, but you cannot contribute to the wiki or be an administrator. To get

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 187

Figure 7-14. Filling out the Register tab

Figure 7-15. Status dialog box when creating a new user

6471ch07final.qxd 5/10/06 11:03 PM Page 187

http://lib.ommolketab.ir
http//lib.ommolketab.ir

these privileges, you use the ASP.NET 2.0 role management service to configure these users
into roles that give them the required functionality.

To do this, select ASP.NET Configuration from the Website menu in Visual Studio .NET.
This will take you to the ASP.NET Web Site Administration tool (see Figure 7-16).

Clicking the Security link on this screen will take you into the user configuration and
security tool (see Figure 7-17).

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS188

Figure 7-16. The Web Site Administration tool

6471ch07final.qxd 5/10/06 11:03 PM Page 188

http://lib.ommolketab.ir
http//lib.ommolketab.ir

From here, you can select Manage Users to put your new user(s) into their specific roles.
This will take you to the user administration settings (see Figure 7-18).

You can see a list of users on this screen. In Figure 7-18, you can see the user Arnie that
was created earlier. You can also see that Arnie isn’t in any roles yet, so although he can log in
and browse the wiki, he cannot be an administrator or contribute content.

If you click Edit User on this screen, you’ll be taken to the screen shown in Figure 7-19,
which allows you to set his role.

In this case, set the user to be an administrator. You can then sign in with Arnie and take
a look at some more features of the wiki and in particular how you can make them Ajax-
oriented using Atlas.

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 189

Figure 7-17. Administering security

6471ch07final.qxd 5/10/06 11:03 PM Page 189

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS190

Figure 7-18. User administration

Figure 7-19. Administration for a user

6471ch07final.qxd 5/10/06 11:03 PM Page 190

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Understanding the Create Article Asynchrony
Now that you have a new user who can log in and create articles, you can see a neat piece of
asynchronous functionality. Click the New Article tab at the top of the page (see Figure 7-20).

When you type letters in the New Article Title text box, autocomplete will kick in and ren-
der similar articles in the space beneath. See Figure 7-21 for an example that works if you
enter the letters CRE.

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 191

Figure 7-20. Creating a new article

Figure 7-21. The autocomplete functionality for the New Article Title text box

6471ch07final.qxd 5/10/06 11:03 PM Page 191

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s take a look at how this has been implemented using Atlas. This functionality, similar to
the login functionality you saw earlier, is implemented on the master page. In this case, Atlas
Script is used, and you can see the script here:

<textBox id="<%= titleTB.ClientID %>">
<behaviors>
<wiki:readOnlyAutoComplete

completionList="newArticleTitleCompletionList"
serviceURL="<%=ResolveUrl
("~/WebServices/ArticleTitleWebService.asmx") %>"

serviceMethod="GetRelatedDocumentTitlesAsLinks"
autoHideCompletionListElementParent="true" />

</behaviors>
<validators>
<regexValidator regex="/[A-Za-z\d \,\.\?]+/" />

</validators>
</textBox>

First it assigns the text box to point at a specific control. It does this using an evaluator
that assigns the ID to the bizarre-looking <%= titleTB.ClientID %>, which evaluates the ID
of the titleTB control and assigns it to the ID of the Atlas TextBox control.

This is good practice when you are using a master page scenario; because the ID is eval-
uated at runtime, you don’t hard-code it at design time.

To get autocomplete functionality with this control, you use a behavior. However, as
you’ll see from the code, the behavior is a new one you haven’t seen yet and is tagged as a
<wiki:readOnlyAutoComplete> behavior.

The wiki: prefix indicates that it is a control in the wiki namespace, and this namespace
is defined in JavaScript libraries as you saw in earlier chapters. In this case, the Editor.js and
ReadOnlyAutoComplete.js files in the Controls directory define this namespace. If you look
at ReadOnlyAutoComplete.js, you’ll see this code:

Type.registerNamespace('Wiki');

Wiki.ReadOnlyAutoCompleteBehavior = function(associatedElement) {
Wiki.ReadOnlyAutoCompleteBehavior.initializeBase(this);

…
Type.registerSealedClass('Wiki.ReadOnlyAutoCompleteBehavior',

Web.UI.Behavior);
Web.TypeDescriptor.addType('wiki', 'readOnlyAutoComplete',

Wiki.ReadOnlyAutoCompleteBehavior);

This implements the complete behavior. As you can see at the bottom, it is registered as
a sealed class that derives from Web.UI.Behavior, making it an overridden behavior.

So, now that you know where this comes from, let’s take a look at the behavior declaration
again:

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS192

6471ch07final.qxd 5/10/06 11:03 PM Page 192

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<wiki:readOnlyAutoComplete
completionList="newArticleTitleCompletionList"
serviceURL="<%=ResolveUrl
("~/WebServices/ArticleTitleWebService.asmx") %>"

serviceMethod="GetRelatedDocumentTitlesAsLinks"
autoHideCompletionListElementParent="true" />

The first parameter passed to it is the ID of another control: completionList. This specifies
the target control for the results to get loaded into. If you recall from Figure 7-21, there’s a big
space under the text box where the results get loaded. This is the completion list, and the con-
trol loads the results of the autocomplete query into it.

The next parameter is serviceURL. This is the location of the web service that hosts the
supporting functionality. Again, an evaluator is used to locate the absolute URI from the rela-
tive ~/WebService/ArticleTitleWebService.asmx. The control and behavior could conceivably
be used on any page in the directory structure of the web site, so it’s a good idea to use an
absolute URI to describe the location of the web service.

The next parameter is serviceMethod, which as you can guess is the name of the service
method to call. Now, you may remember that typing three letters into the text box triggered
this behavior, so these letters should somehow be passed to the web service to determine the
correct list of articles to return, but this isn’t happening in any of these parameters, so how
does the web service get them?

The answer is in the behavior definition itself. If you take a look at the this_onTimerTick
definition in the implementation code, you’ll see that it pulls the text from the parent control
of the behavior. In this case, the parent control for the behavior is the text box, so it gets the
text from there and passes it to the service to get the related articles.

Finally, the autoHideCompletionListElementParent attribute is set to True. This is a
property on the behavior that overrides the base autocomplete behavior where a drop-down
list appears on the parent control. When set to true, the list is hidden, which is logical, because
in this case you don’t want to show it and instead want to display the friendlier, richer text
including the formatting and hyperlinks shown in Figure 7-21.

This example demonstrated the asynchronous updating of an area of the page using
Atlas Script, custom behaviors, and back-end web services. You can see how straightforward
it was to implement using scripting, with more complex functionality implemented using
a custom behavior. It’s recommended that you take a look at how the custom behavior was
implemented to get a better understanding of how you can implement your own. In this case,
the custom behavior was used to replace the base autocomplete behavior, as you’ve seen in
earlier chapters, where the results are rendered in a drop-down list that’s attached to the con-
trol. If you want to override this type of functionality (or any other behavior) with something
different, then the object orientation that Atlas brings to JavaScript is an obvious candidate,
and this is a great example. Here, the requirement was to render the results in a separate
<div> element, where you can add formatting, hyperlinks, and so on, to the results.

Understanding the Table of Contents Asynchrony
Another place in the application where asynchrony occurs, powered by Atlas-style Ajax, is in
rendering the table of contents for the wiki. You can see this screen by selecting the Contents
tab at the top of the page (see Figure 7-22).

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 193

6471ch07final.qxd 5/10/06 11:03 PM Page 193

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you select the links across the top, the subcategories pane gets populated, and as you
select a subcategory, the pages section gets populated. This all happens cleanly and quickly
without “blinks” or long refresh cycles due to full-page postbacks.

Let’s take a look at how it works. The content pane is divided into three areas. The one at
the top (which simply reads Start in Figure 7-22) is the breadcrumb trail showing the category
and the path of subcategories used to get to the current position.

The second one, in the middle, is the list of subcategories of the currently selected
category.

The third one, at the bottom, is the list of pages within the selected subcategory.
Each of these panes use Atlas-based data binding. (Chapter 8 covers data binding in

more detail.)
All three use the same methodology to achieve this result. We’ll look at the breadcrumb,

because the principles are the same for the others.
The breadcrumb gets rendered in the <div> tag called results5. This tag has a control

associated with it in Atlas Script:

<listView targetElement="results5"
itemTemplateParentElementId="resultsTemplateParent5">

<bindings>
<binding dataContext="breadCrumbSource5"

dataPath="data"
property="data"/>

</bindings>
<layoutTemplate >
<template layoutElement="resultsTemplate5"/>

</layoutTemplate >

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS194

Figure 7-22. The table of contents page

6471ch07final.qxd 5/10/06 11:03 PM Page 194

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<itemTemplate>
<template layoutElement="resultsItemTemplate5">
<label targetElement="resultsItemDelimiter5">
<bindings>
<binding dataPath="CategoryID"

property="text"
transform="XFormBreadCrumbDelimeter" />

</bindings>
</label>
<hyperLink targetElement="resultsItemLink5">
<bindings>
<binding dataPath="CategoryID"

property="navigateURL"
transform="XFormSubcategoryLink" />

</bindings>
</hyperLink>
<label targetElement="resultsItemLinkText5">
<bindings>
<binding dataPath="Title" property="text"/>

</bindings>
</label>

</template>
</itemTemplate>

</listView>

This control uses a binding called breadCrumbSource5, which is defined here:

<dataSource id="breadCrumbSource5"
serviceURL="<%= ResolveUrl

("~/WebServices/BreadCrumbWebService.asmx") %>">
<bindings>
<binding dataContext="<%= navCategoryID.ClientID %>"

dataPath="text"
property="selectParameters"
propertyKey="lowestCategoryID"/>

<binding dataContext="<%= navDefaultDocumentTitle.ClientID %>"
dataPath="text" property="selectParameters"
propertyKey="defaultDocumentTitle"/>

</bindings>
</dataSource>

This data source control defines its main data source as a web service at
BreadCrumbWebService.asmx. It then binds the navCategoryID control and the
navDefaultDocumentTitle control to the lowestCategoryID and defaultDocumentTitle
fields returned by the selectParameters method on that web service.

Now, back at the results5 control, you can see that the listView control binds itself to
this data source and implements a template that renders a number of hyperlinks. These

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS 195

6471ch07final.qxd 5/10/06 11:03 PM Page 195

http://lib.ommolketab.ir
http//lib.ommolketab.ir

links get bound to the navigateURL field coming back from the data source. They use a
custom transform called XFormSubCategoryLink, which is defined using JavaScript on the
master page like this:

function XFormSubcategoryLink(sender, eventArgs)
{
var value = eventArgs.get_value();
var str =
'javascript:$("<%= navCategoryID.ClientID %>")
.control.set_text(' + value + ');
OnNavCategoryIDChanged(); void(0);';

eventArgs.set_value(str);
}

For more about custom transforms, see Chapters 4 and 5.
Thus, using Atlas data binding, accompanied by custom transforms, the wiki application

has been able to provide partial-page updates and refreshes using the data binding methodol-
ogy. In the next chapter, you’ll start looking at this data binding functionality in more detail
and how it works in Atlas.

Summary
This chapter took you through some examples of realistic applications that use Atlas controls
on the server and on the client. You began by looking at how you can do partial refreshes using
the UpdatePanel control, before quickly moving into a couple of real-world use cases for
ASP.NET applications, including how they can be enhanced by using Atlas.

In the first case you looked at a simple but powerful task list manager. You looked at how
you can use ASP.NET to build this data-driven application and then how you can use Atlas to
improve the user experience, making updates cleaner and more straightforward. You saw the
important design concept of Atlas—that it can be used to enhance existing ASP.NET applica-
tions as unobtrusively as possible. You place new tags in parallel to your existing ones and
point them at the existing ones to enable Ajax functionality, or you wrap your existing controls
and markup in UpdatePanel controls to give them partial-refresh functionality. You also saw
how by assigning triggers to common events such as button clicks, you can enhance the exist-
ing behavior on those events without rewriting the existing code that handles them.

In addition, you looked at the excellent Atlas wiki reference application that is one of the
de facto applications for Atlas. This is a huge application, so the entire code wasn’t explored,
but three important areas that use three different technologies that empower Ajax functional-
ity were explored: the login functionality, the article creation functionality, and the table of
contents area.

It is strongly recommended that you look further into these examples using this chapter
as a jumping-off point. Your ASP.NET and Atlas applications will be all the better for it!

CHAPTER 7 ■ USING SERVER CONTROLS IN ATLAS196

6471ch07final.qxd 5/10/06 11:03 PM Page 196

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Data Binding in Atlas

Data is at the heart of every application. The key to providing productivity to the developer is
making programming your application for data access as easy and as robust as possible. Micro-
soft tools, from the early days of Visual Basic, have had data binding at the core of the developer
experience. The philosophy has been that data should be treated as an appliance. You plug your
controls into the data, and they just work. How you achieve this is through defining your data
source, pointing your controls at the data points on that data source that you want them to
render and/or update, and letting the data binding engine take care of the rest.

Atlas is no different. It empowers your applications to use data to provide asynchronous
updates to your pages (amongst other things), including direct connections to web services
directly from your client applications. This alone is huge functionality. Previously if you wanted
to present data from web services to your applications, you would have to create a server-side
application such as a web form and use this to consume a server-side proxy that speaks to the
web service on your behalf. Now you can go directly to the web service from your browser by
using some of the Atlas client-side libraries or more implicitly by using data source controls that
consume the web service on your behalf and to which you bind your controls. This is important
because it brings a rich experience to your web application without involving postbacks to a
web server application because the data transfer occurs between the browser and the data web
service, without requiring a middle tier.

In this chapter, you will look at the client-side classes that are available to Atlas for man-
aging data binding and how you can use them to build applications.

Specifically, you’ll look into the following:

• The objects in the Sys.Data and Sys.UI.Data namespaces

• Manually binding the results from a web service to a ListView

• Using the DataSource control to connect to a database

• Using a ListView control to render items from a DataSource control

• Using an ItemView control to present single items from a DataSource control

• Using a DataTable control to render a grid of items

197

C H A P T E R 8

■ ■ ■

6471ch08final.qxd 5/10/06 11:28 PM Page 197

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Sys.Data Controls
The controls you can use for binding to databases and web service–based datasets are available
in the Sys.Data namespace. They include the DataSource control for managing the connection
and various controls for looking at columns, rows, tables, and views.

Introducing the DataSource Control
At the heart of all data binding in Atlas is the Sys.Data.DataSource control. This control creates
the “connection” between your controls and the back-end datasets. It is an object and is
implemented in Atlas in the Atlas.js script library.

The DataSource control exposes the events shown in Table 8-1.

Table 8-1. DataSource Events

Event Name Function

propertyChanged Fires when a property changes on the control

dataAvailable Fires when the data source has data available to return

The DataSource control exposes the properties shown in Table 8-2.

Table 8-2. DataSource Properties

Property Name Function

bindings Returns an array of controls that are bound to this one.

dataContext Gets or sets the current data context for this control. This is a specific object
to which you want to pass the results.

id Gets or sets the ID for this control.

data Gets the data for this control.

isDirtyAndReady Gets the status of the DataSource control. If it is dirty and ready, the control
has data to write to the database and is ready to do so.

isReady Gets the status of the data control and lets you know whether it is in a ready
state to read or write data.

rowCount Returns the number of rows that the source will expose on the next read.

serviceURL Specifies the URI of the web service that will supply the data.

selectParameters Gets the parameters that can be used for the select query.

serviceType Gets or sets the type of service. This can be DataService or Handler.
DataService can support reading and writing; Handler supports only read-
ing. So if you have an XML data source that doesn’t support updates, you can
set serviceType to Handler.

The DataSource control exposes the methods shown in Table 8-3.

CHAPTER 8 ■ DATA BINDING IN ATLAS198

6471ch08final.qxd 5/10/06 11:28 PM Page 198

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 8-3. DataSource Methods

Method Name Description

Select() Explicitly performs the selection of records according to the current criteria

Update() Explicitly performs the writing and updating of the data source according to the
current criteria

Introducing the DataView Control
The Sys.Data.DataView control offers a filtered view of your data. You can bind controls to this
as an alternative to the data source should you want to filter the data. You can create filters using
the DataFilter and PropertyFilter controls, which you will see in a moment.

This control exposes a single event (as shown in Table 8-4).

Table 8-4. DataView Event

Event Name Description

propertyChanged Fires when a property changes on the control

The DataView exposes the properties shown in Table 8-5.

Table 8-5. DataView Properties

Property Name Description

bindings Returns an array of controls that are bound to this one.

dataContext Gets or sets the current data context for this control. This is a specific object
to which you want to pass the results.

id Gets or sets the ID for this control.

data Returns a Sys.Data.DataTable control that contains the data for this control.

filteredData Returns a Sys.Data.DataTable control that contains the filtered data for this
control.

Filters Specifies an array of filters. This uses .NET data filters that are similar in syn-
tax to SQL. For more information, check your ASP.NET documentation for
filtering and sorting.

length Specifies the number of records to return.

You will have noticed that the DataSource and DataView controls return
Sys.Data.DataTable objects. Let’s look at these next.

Introducing the DataTable Control
This control is returned by the data and filteredData methods of the DataSource and
DataView controls.

It exposes the events shown in Table 8-6.

CHAPTER 8 ■ DATA BINDING IN ATLAS 199

6471ch08final.qxd 5/10/06 11:28 PM Page 199

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 8-6. DataTable Events

Event Name Description

collectionChanged This event fires whenever the collection of columns has a change. It can be
associated with an action to perform when this happens.

propertyChanged This event fires whenever a property on the control changes. It can be used
to trigger a custom action.

The properties shown in Table 8-7 are also available.

Table 8-7. DataTable Properties

Property Name Description

columns A read-only array of Sys.Data.DataColumn objects that contain the data
columns.

keys An array of strings containing the keys for this table.

length The number of records in this table.

isDirty If the table has updates that need to be written to the database, this flag will be
true.

The DataTable control supports the methods shown in Table 8-8.

Table 8-8. DataTable Methods

Method Name Description

Add() Adds a new Sys.Data.DataRow to this table

Clear() Removes all Sys.Data.DataRow items from this table

Remove(item) Removes a specific Sys.Data.DataRow item from this table

Introducing the DataColumn Control
This control represents a column in a table. The columns property of the DataTable control
will return an array of DataColumn controls.

The DataColumn control supports the properties shown in Table 8-9.

Table 8-9. DataColumn Properties

Property Name Description

columnName Returns a string containing the column name

dataType Returns a Sys.Type object containing the data type

defaultValue Returns the default value for this column

The control doesn’t support any methods or events. It is simply used to get a better under-
standing of a specific column, returning its name, type, and default value.

CHAPTER 8 ■ DATA BINDING IN ATLAS200

6471ch08final.qxd 5/10/06 11:28 PM Page 200

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the DataRow Control
This control allows you to query the specifics of a particular row. It supports three properties
(as shown in Table 8-10).

Table 8-10. DataRow Properties

Property Name Description

_isDirty Returns true if the row has updated data that hasn’t yet been written to the data
source

_index Returns the current index for this row

_rowObject Returns the object containing the underlying row data

It also supports the event shown in Table 8-11.

Table 8-11. DataRow Events

Event Name Description

propertyChanged Fires whenever one of the properties of the event changes

Introducing the Sys.UI.Data Controls
Several controls within the Sys.UI.Data namespace provide visual links to your data. You will
see examples of using these controls later in the chapter. But before you use them, it’s a good
idea to understand their interfaces.

Introducing the ItemView Control
You can bind the ItemView control to a <div> element in HTML and update it according to the
settings within its <itemTemplate> child tag. This tag defines a series of controls and their bind-
ings to the data property of the ItemView control. It is designed for viewing a single record at a
time and is complemented by the ListView control, which is designed for viewing a range of
records at a time.

The control exposes the properties shown in Table 8-12.

Table 8-12. ItemView Properties

Property Name Description

Bindings Returns an array specifying all the bindings of this control. When used in
Atlas Script, this is a child tag that contains <binding> tags that define the
bindings for this control.

dataContext Gets or sets the dataContext for the binding.

id Gets or sets the ID for the ItemView control.

associatedElement Specifies the underlying <div> tag to which this ItemView control will push
content.

Continued

CHAPTER 8 ■ DATA BINDING IN ATLAS 201

6471ch08final.qxd 5/10/06 11:28 PM Page 201

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 8-12. Continued

Property Name Description

behaviors Returns the behaviors associated with this control. When using Atlas Script,
you can specify these behaviors using the <behaviors> child tag.

cssClass Gets or sets the CSS class for this control.

enabled Gets or sets the enablement of this control.

style Reads the current CSS style for the control.

tabIndex Gets or sets the position of this control in the tab index. This is the position
that it occupies when the user moves through the UI using the Tab key.

visible Gets or sets the visibility of the control. If this is false, you will not see the
control.

visibilityMode This can be set to Hide so the control is not seen or to Collapse so the
control is minimized to its top label.

canMoveNext If the current record is the last one in the record set, then you cannot move
to the next record, and this will be false; otherwise, it will be true.

canMovePrevious If the current record is the first one in the record set, then you cannot move
to the previous record, and this will be false; otherwise, it will be true.

data This is a Sys.Data.DataTable that contains the complete set of data that is
currently loaded into the ItemView control. This is returned by a select
query against the underlying data source.

dataIndex Specifies the index of the currently selected item in the data source.

dataItem Specifies the currently selected row on the data source.

length Specifies the number of rows in the data table within the data property.

itemTemplate Specifies the template for the items that will be rendered within the
ItemView control. It uses the <itemTemplate> child tag within Atlas Script,
and each <itemTemplate> will contain a number of child controls.

emptyTemplate Specifies what to render within the ItemView control if there are no records
within the data.

The ItemView control exposes a single event (as shown in Table 8-13).

Table 8-13. ItemView Event

Event Name Description

propertyChanged Fires whenever a property of the ItemView control changes

CHAPTER 8 ■ DATA BINDING IN ATLAS202

6471ch08final.qxd 5/10/06 11:28 PM Page 202

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The ItemView control provides several methods (as shown in Table 8-14).

Table 8-14. ItemView Methods

Method Name Description

addCssClass(String className) Adds the specified CSS class to the ItemView control. Can be
used to (for example) change the style of the control based
on the current circumstances, such as changing the color to
red if the dataset is currently dirty.

focus() Passes the cursor to this control.

scrollIntoView() If the control is off the screen, scrolls the browser until it is
visible.

removeCssClass(String className) Removes the specified CSS from the ItemView control. In a
similar manner to addCssClass, you can change the visual
state of the control based on the current circumstances.

toggleCssClass Complements the add and remove CSS class methods. If the
class is currently active, this will turn it off; otherwise, it will
turn it on.

addItem() Adds a new item to the underlying dataset. This will make
the dataset dirty.

deleteCurrentItem() Removes the current item. This will make the dataset dirty.

moveNext() Moves to the next record in the dataset and triggers the
binding of all controls within the ItemTemplate that are
bound to it.

movePrevious() Moves to the previous record in the dataset and triggers the
binding of all controls within the ItemTemplate that are
bound to it.

Introducing the ListView Control
The Sys.UI.Data.ListView control complements the ItemView control. This allows you to view
a range of records that are selected by the bound DataSource control.

The control exposes the properties shown in Table 8-15.

Table 8-15. ListView Properties

Property Name Description

Bindings Returns an array specifying all the bindings of this control. When used
in Atlas Script, this is a child tag that contains <binding> tags that
define the bindings for this control.

dataContext Gets or sets the data context for the binding.

id Gets or sets the ID for the ListView control.

associatedElement Specifies the underlying <div> tag to which this ListView control will
push content.

behaviors Returns the behaviors associated with this control. When using Atlas
Script, you can specify these behaviors using the <behaviors> child tag.

Continued

CHAPTER 8 ■ DATA BINDING IN ATLAS 203

6471ch08final.qxd 5/10/06 11:28 PM Page 203

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 8-15. Continued

Property Name Description

cssClass Gets or sets the CSS class for this control.

enabled Gets or sets the enablement of this control.

style Reads the current CSS style for the control.

tabIndex Gets or sets the position of this control in the tab index. This is the
position that it occupies when the user moves through the UI using
the Tab key.

visible Gets or sets the visibility of the control. If this is false, you will not see
the control.

visibilityMode This can be set to Hide so the control is not seen or to Collapse so the
control is minimized to its top label.

canMoveNext If the current record is the last one in the record set, then you cannot
move to the next record, and this will be false; otherwise, it will be
true.

canMovePrevious If the current record is the first one in the record set, then you cannot
move to the previous record, and this will be false; otherwise, it will
be true.

data This is a Sys.Data.DataTable that contains the complete set of data
that is currently loaded into the ListView control. This is returned by
a select query against the underlying data source.

dataIndex Specifies the index of the currently selected item in the data source.

dataItem Specifies the currently selected row on the data source.

length Specifies the number of rows in the data table within the data
property.

alternatingItemCssClass As this control renders a range of items, you can create a different
style for alternating rows, giving a “striped” appearance that makes it
easier to distinguish the data from different rows. You specify that
using a CSS class with this property.

layoutTemplate This specifies how the range of items will be laid out. It is
implemented in Atlas Script using the child tag <layoutTemplate>
that specifies the HTML for how the bound controls will appear.

itemCssClass This specifies the CSS for individual items within the range. It is
complemented by alternatingItemCssClass.

itemTemplate Specifies the template for the items that will be rendered within the
ItemView control. It uses the <itemTemplate> child tag within Atlas
Script, and each <itemTemplate> will contain a number of child
controls.

emptyTemplate Specifies what to render within the ListView control if there are no
records within the data.

selectedItemCssClass Specifies the CSS class for the selected item. Can be used to highlight
the selected item against the range of existing items.

separatorCssClass This specifies how columns will be visually separated.

separatorTemplate Defines the HTML code for the column separators. Complements
separatorCssClass.

CHAPTER 8 ■ DATA BINDING IN ATLAS204

6471ch08final.qxd 5/10/06 11:28 PM Page 204

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The ListView control exposes a single event (as shown in Table 8-16).

Table 8-16. ListView Events

Event Name Description

propertyChanged Fires whenever a property of the ListView control changes

The ListView control provides several methods (as shown in Table 8-17).

Table 8-17. ListView Methods

Method Name Description

addCssClass(String className) Adds the specified CSS class to the ListView control. Can
be used to (for example) change the style of the control
based on the current circumstances, such as changing the
color to red if the dataset is currently dirty.

focus() Passes the cursor to this control.

scrollIntoView() If the control is off the screen, scrolls the browser until it is
visible.

removeCssClass(String className) Removes the specified CSS from the ItemView control. In a
similar manner to addCssClass, you can change the visual
state of the control based on the current circumstances.

toggleCssClass Complements the add and remove CSS class methods. If
the class is currently active, this will turn it off; otherwise,
it will turn it on.

addItem() Adds a new item to the underlying dataset. This will make
the dataset dirty.

deleteCurrentItem() Removes the current item. This will make the dataset dirty.

moveNext() Moves to the next record in the dataset and triggers the
binding of all controls within the ItemTemplate that are
bound to it.

movePrevious() Moves to the previous record in the dataset and triggers
the binding of all controls within the ItemTemplate that
are bound to it.

Getting Started with Data Binding
This example implements a simple search engine that allows you to query a list of animals.
You can search for a particular type of animal, and it will return a list of animals of that type,
including data about the animal such as its name and color.

You can see it in action in Figure 8-1.
This example also implements autocomplete functionality, as shown in Figure 8-2.

CHAPTER 8 ■ DATA BINDING IN ATLAS 205

6471ch08final.qxd 5/10/06 11:28 PM Page 205

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Both of these pieces of functionality are served by a web service to which the controls will
bind. Listing 8-1 shows the complete code for the web service.

Listing 8-1. Data Web Service

using System;
using System.Web;
using System.Collections;
using System.Collections.Generic;
using System.Web.Services;
using System.Web.Services.Protocols;

CHAPTER 8 ■ DATA BINDING IN ATLAS206

Figure 8-1. The simple data-bound search engine showing results

Figure 8-2. The data-bound application showing autocomplete functionality

6471ch08final.qxd 5/10/06 11:28 PM Page 206

http://lib.ommolketab.ir
http//lib.ommolketab.ir

namespace Quickstart.Samples.Data
{

public class Animal
{
String _name;
String _category;
String _color;

public Animal()
{
}
public String Name
{
get { return _name; }
set { _name = value; }

}

public String Category
{
get { return _category; }
set { _category = value; }

}

public String Color
{
get { return _color; }
set { _color = value; }

}

public Animal(String name, String category, String color)
{
_name = name;
_category = category;
_color = color;

}
}

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class AnimalService : System.Web.Services.WebService
{
[WebMethod]
public string[] GetCompletionList(string prefixText, int count)
{
prefixText = prefixText.ToLower();
string[] categories = {

CHAPTER 8 ■ DATA BINDING IN ATLAS 207

6471ch08final.qxd 5/10/06 11:28 PM Page 207

http://lib.ommolketab.ir
http//lib.ommolketab.ir

"Cat",
"Dog",
"Cow",
"Parrot",

};

List<string> suggestions = new List<string>();
foreach (string category in categories)
{
if (category.ToLower().StartsWith(prefixText))
{
suggestions.Add(category);

}
}
return suggestions.ToArray();

}

[WebMethod]
public Animal[] GetAnimals(String searchText)
{
List<Animal> _data = GetAllAnimals();

if (String.IsNullOrEmpty(searchText))
{
return _data.ToArray();

}

List<Animal> _dataFiltered = new List<Animal>();
foreach (Animal animal in _data)
{
if (searchText.ToLower().

CompareTo(animal.Category.ToLower()) == 0)
_dataFiltered.Add(animal);

}

return _dataFiltered.ToArray();
}

List<Animal> GetAllAnimals()
{
List<Animal> _data = new List<Animal>();

_data.Add(new Animal("Felix", "Cat", "Gray"));
_data.Add(new Animal("Fido", "Dog", "Brown"));
_data.Add(new Animal("Rover", "Dog", "Brown"));
_data.Add(new Animal("Daisy", "Cow", "Black and White"));
_data.Add(new Animal("Polly", "Parrot", "Green"));

CHAPTER 8 ■ DATA BINDING IN ATLAS208

6471ch08final.qxd 5/10/06 11:28 PM Page 208

http://lib.ommolketab.ir
http//lib.ommolketab.ir

return _data;
}
}
}

You can also find this code in the download for this book or in the QuickStart samples
at http://atlas.asp.net.

This web service implements two web methods that will be used in the data binding
scenario. The first, GetCompletionList, services the autocomplete functionality of the text
box that is used in the application.

The autocomplete functionality is straightforward; you’ve seen an example of the
<autoComplete> behavior:

<textBox id="Text1" targetElement="Text1">
<behaviors>
<autoComplete serviceURL="AnimalService.asmx"

serviceMethod="GetCompletionList"
minimumPrefixLength="1"
completionList="Text1__autocomplete" />

</behaviors>
</textBox>

As you can see, the <autoComplete> behavior points the serviceURL at the web service
that was listed in Listing 8-1. The serviceMethod attribute specifies which web method to
call, and in this case it is GetCompletionList, which you can see in Listing 8-1. The
minimumPrefixLength attribute specifies the number of characters that the user will enter
before the autocompletion behavior kicks in. Finally, the completionList parameter specifies
the name of the control that contains the completion list. On this page, it is a element
immediately after the text box, as shown in the HTML markup here:

<div id="header">
Search:
<input id="Text1" type="text" />

<input id="Button1" type="button"

value="Search"
onclick="Button1_onclick();" />

(enter Cat, Cow, Dog or Parrot)
</div>

The search results works in a similar way. The HTML markup that specifies how the page
will appear is as follows:

<!-- Main Content -->
<div id="content">
<div class="left">
<div id="searchResults">
</div>
<div style="display: none;">
<div id="searchResults_layoutTemplate">

CHAPTER 8 ■ DATA BINDING IN ATLAS 209

6471ch08final.qxd 5/10/06 11:28 PM Page 209

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<ul id="searchResults_itemTemplateParent">
<li id="searchResults_itemTemplate">

</div>
</div>
</div>
</div>

And here is the Atlas Script that creates the list on the page using this HTML markup:

<listView id="searchResults"
cssClass="listView"
targetElement="searchResults"
itemTemplateParentElementId="searchResults_itemTemplateParent"
alternatingItemCssClass="alternatingItem" itemCssClass="item">

<layoutTemplate>
<template layoutElement="searchResults_layoutTemplate" />

</layoutTemplate>
<itemTemplate>
<template layoutElement="searchResults_itemTemplate">
<label targetElement="searchResults_Name">
<bindings>
<binding dataPath="Name" property="text" />

</bindings>
</label>
<label targetElement="searchResults_Category">
<bindings>
<binding dataPath="Category" property="text" />

</bindings>
</label>
<label cssClass="bar" targetElement="searchResults_Color">
<bindings>
<binding dataPath="Color" property="text" />

</bindings>
</label>
</template>

</itemTemplate>
</listView>

This uses a ListView control that wraps the underlying markup on the page, which is
shown here:

CHAPTER 8 ■ DATA BINDING IN ATLAS210

6471ch08final.qxd 5/10/06 11:28 PM Page 210

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<div style="display: none;">
<div id="searchResults_layoutTemplate">
<ul id="searchResults_itemTemplateParent">
<li id="searchResults_itemTemplate">

</div>
</div>

As you can see, this is an HTML list () containing a number of list items ().
The ListView control contains an item template that fills out this list with three Label

controls, with each Label control corresponding to one of the elements (such as
searchResults_Name) and binding it to a field from the data source.

For example, the name of the animal gets bound to the correct element using this
definition:

<label targetElement="searchResults_Name">
<bindings>
<binding dataPath="Name" property="text" />

</bindings>
</label>

Now you might be wondering, how does it get the data? There is no binding to the web
service here, so what is going on?

The answer lies in the functionality of the page. This list gets populated upon clicking
the button, so let’s look at the code behind the button.

It’s implemented as a JavaScript function, as shown here:

<script language="javascript" type="text/javascript">
function Button1_onclick()
{
Quickstart.Samples.Data.AnimalService.

GetAnimals(document.getElementById("Text1").value,
onSearchComplete);

}

function onSearchComplete(results)
{
var searchResults = document.getElementById("searchResults");
searchResults.control.set_data(results);

}
</script>

You can see that when you click the button, the web method GetAnimals is called. The
web service is available to script using the following include command (earlier in the page):

CHAPTER 8 ■ DATA BINDING IN ATLAS 211

6471ch08final.qxd 5/10/06 11:28 PM Page 211

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<atlas:ScriptManager ID="scriptManager" runat="server">
<Services>
<atlas:ServiceReference Path="AnimalService.asmx" />

</Services>
</atlas:ScriptManager>

Creating this service reference means that JavaScript functions can now call the web serv-
ice using its fully qualified name. You can see that the contents of the Text1 text box are passed
as the first parameter to the web service, and the second parameter is the name of the callback
function.

The callback function, onSearchComplete, then gets the searchResults element and calls
the set_data function on it.

The set_data function allows you to explicitly define the data for a control. It uses the same
mechanism as data binding but can be used to perform late binding. In other words, you may
not have the data at the beginning of the page session, and it arises only as a result of user input.
In this case, the data is returned as a parameterized query that involves the user specifying the
parameter.

As such, it is ideally suited for this late binding of data, and when the set_data() method
is called on the control, it triggers all the bindings as if it were a typical data binding scenario,
and the data gets written to the page.

In the next example, you will look at the DataSource control and see how you can use it
to consume data that has been exposed.

Using the DataSource Control
In this example, you will create a web service that exposes two special types of web methods
(GetData and SaveData) that a data source can use to bind to them. In this case, the web serv-
ice behaves like a database, so the binding can occur along with Select, Insert, Update, and
Remove statements.

The first example will show an HTML list being bound to the data source. This will
demonstrate a Select statement being used to show a large range of data. Later you will look
at an ItemSelect control that allows you to perform similar functionality to a DataNavigator
control, such as moving through a dataset, editing records, and updating records.

Figure 8-3 shows the HTML list, which is bound to the DataSource control.

CHAPTER 8 ■ DATA BINDING IN ATLAS212

6471ch08final.qxd 5/10/06 11:28 PM Page 212

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Before seeing the client-side code that provides the binding, you’ll look at the data service
itself so you can understand how the data gets bound to it.

Listing 8-2 shows the full source code for the service.

Listing 8-2. Data Service

using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.IO;
using System.Web;
using System.Web.Caching;
using System.Web.Services;
using System.Web.Services.Protocols;
using Microsoft.Web.Services;

CHAPTER 8 ■ DATA BINDING IN ATLAS 213

Figure 8-3. A ListView control bound to the web service DataSource control

6471ch08final.qxd 5/10/06 11:28 PM Page 213

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class SampleDataService : DataService
{
static List<SampleRow> _data;
static int _nextId;
static object _dataLock = new object();

private static List<SampleRow> Data
{
get
{
if (_data == null)
{
lock (_dataLock)
{
if (_data == null)
{
_data = new List<SampleRow>();
_data.Add(new SampleRow(0, "A. Datum Corporation",

"http://www.adatum.com"));
_data.Add(new SampleRow(1, "Adventure Works",

"http://www.adventure-works.com"));
_data.Add(new SampleRow(2, "Alpine Ski House",

"http://www.alpineskihouse.com"));
_data.Add(new SampleRow(3,

"Baldwin Museum of Science",
"http://www.baldwinmuseumofscience.com"));

_data.Add(new SampleRow(4, "Blue Yonder Airlines",
"http://www.blueyonderairlines.com"));

_data.Add(new SampleRow(5, "City Power & Light",
"http://www.cpandl.com"));

_data.Add(new SampleRow(6, "Coho Vineyard",
"http://www.cohovineyard.com"));

_data.Add(new SampleRow(7, "Contoso, Ltd",
"http://www.contoso.com"));

_data.Add(new SampleRow(8, "Graphic Design Institute",
"http://www.graphicdesigninstitute.com"));

_nextId = 9;
}

}
}

return _data;
}

}

CHAPTER 8 ■ DATA BINDING IN ATLAS214

6471ch08final.qxd 5/10/06 11:28 PM Page 214

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[DataObjectMethod(DataObjectMethodType.Delete)]
public void DeleteRow(int id)
{
foreach (SampleRow row in _data)
{
if (row.Id == id)
{
lock (_dataLock)
{
_data.Remove(row);

}
break;

}
}

}

[DataObjectMethod(DataObjectMethodType.Select)]
public SampleRow[] SelectRows()
{
return SampleDataService.Data.ToArray();

}

[DataObjectMethod(DataObjectMethodType.Insert)]
public SampleRow InsertRow(string organization, string url)
{
SampleRow newRow;
lock (_dataLock)
{
newRow = new SampleRow(_nextId++, organization, url);
_data.Add(newRow);

}
return newRow;

}

[DataObjectMethod(DataObjectMethodType.Update)]
public void UpdateRow(SampleRow updateRow)
{
foreach (SampleRow row in _data)
{
if (row.Id == updateRow.Id)
{
row.Name = updateRow.Name;
row.Description = updateRow.Description;
break;

}
}

}
}

CHAPTER 8 ■ DATA BINDING IN ATLAS 215

6471ch08final.qxd 5/10/06 11:28 PM Page 215

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A helper class, called SampleRow, represents the data:

using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
public class SampleRow
{
private string _name;
private string _description;
private int _id;

[DataObjectField(true, true)]
public int Id
{
get { return _id; }
set { _id = value; }

}

[DataObjectField(false)]
[DefaultValue("New row")]
public string Name
{
get { return _name; }
set { _name = value; }

}

[DataObjectField(false)]
[DefaultValue("")]
public string Description
{
get { return _description; }
set { _description = value; }

}

public SampleRow()
{
_id = -1;

}

public SampleRow(int id, string name, string description)
{
_id = id;
_name = name;
_description = description;

}
}

CHAPTER 8 ■ DATA BINDING IN ATLAS216

6471ch08final.qxd 5/10/06 11:28 PM Page 216

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You’ll notice that the web service doesn’t expose web methods in a typical manner. In
this case, the web service is derived from DataService, and the methods are attributed using
[DataObjectMethod]. These are used by the ObjectDataSource control to expose methods
that are treated as Select, Insert, Update, or Delete.

For more information about these, take a look at MSDN (in particular at http://msdn2.
microsoft.com/en-us/library/57hkzhy5.aspx).

Also note that for the sake of simplicity, this example uses an in-memory data source,
which is a static array of SampleRow objects. This makes it a stateful web service, which typi-
cally isn’t good practice!

Now let’s look at the data source control and how it is used to bind the HTML list to this
data so that you can get results like those you saw in Figure 8-3.

Let’s start by looking at the HTML for the page:

<div id="dataContents">
</div>

<div style="visibility:hidden;display:none">
<div id="masterTemplate">
<div id="masterItemTemplate">
Row

</div>

</div>
<div id="masterNoDataTemplate">No data</div>
</div>

This defines two <div> elements. The first is dataContents, which will contain the ren-
dered results. The second is masterTemplate, which defines the template for how the data will
appear. Both of these elements will have Atlas client controls mapped to them.

Let’s look at the Atlas Script code that maps to these elements and binds to the data
source:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<dataSource id="dataSource"

serviceURL="SampleDataService.asmx"
propertyChanged="onChange"/>

<listView id="masterRepeater"
targetElement="dataContents"
itemTemplateParentElementId="masterTemplate"
propertyChanged="onChange">

<bindings>
<binding dataContext="dataSource"

dataPath="data" property="data"/>
</bindings>

CHAPTER 8 ■ DATA BINDING IN ATLAS 217

6471ch08final.qxd 5/10/06 11:28 PM Page 217

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<layoutTemplate>
<template layoutElement="masterTemplate"/>

</layoutTemplate>
<itemTemplate>
<template layoutElement="masterItemTemplate">
<label targetElement="masterIndex">
<bindings>
<binding dataPath="Id"

transform="Add"
property="text"/>

</bindings>
</label>
<label targetElement="masterName">
<bindings>
<binding dataPath="Name"

property="text"/>
</bindings>

</label>
<label targetElement="masterDescription">
<bindings>
<binding dataPath="Description"

property="text"/>
</bindings>

</label>
</template>

</itemTemplate>
<emptyTemplate>
<template layoutElement="masterNoDataTemplate"/>

</emptyTemplate>
</listView>

<application>
<load>
<invokeMethod target="dataSource"

method="select"/>
</load>

</application>
</components>
</page>
</script>

You can see at the bottom of the script that the action to invoke upon the application
loading is the select method on the dataSource control. This will bind the dataSource to the
data service and call the select method, which returns all the available rows.

Now, if you remember the HTML, there was this peculiar-looking tag:

<div id="dataContents">
</div>

CHAPTER 8 ■ DATA BINDING IN ATLAS218

6471ch08final.qxd 5/10/06 11:28 PM Page 218

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It seems pretty odd that there would be a <div> element on the page that contains noth-
ing. All is explained when you look at the Atlas ListView control as defined in the script. It
wraps this underlying <div> element, as you can see here:

<listView id="masterRepeater"
targetElement="dataContents"
itemTemplateParentElementId="masterTemplate"
propertyChanged="onChange">

The target element for the ListView control is specified as dataContents, which means
the underlying <div> element, which appears empty, will be treated by Atlas as a ListView
control. This list will use an item template to define its contents. The item template is called
masterTemplate. Additionally, the bindings for the ListView control are set up, and in this
case the control is being bound to the DataSource control. You can see this in the <bindings>
tag, as shown here:

<bindings>
<binding dataContext="dataSource"

dataPath="data" property="data"/>
</bindings>

By setting the dataPath to data, you are binding to the data property that is being
exposed by the data source. As you saw earlier in this chapter, that property returns the
dataset that the dataSource exposes from the underlying data source. It binds it to the data
property of the ListView control. As shown in the earlier example, this property was explic-
itly set in the JavaScript that fires when the page loads.

When the data property is set on a control, as is the case with the ListView control here,
template properties can then be bound to the local data property, and the columns on that
property can be specified using the dataPath property. So the following item on the template
will create a <label> element that is bound to the Name column on the data property of the
parent control, which in this case is bound to the Name column on the data source:

<label targetElement="masterName">
<bindings>
<binding dataPath="Name"

property="text"/>
</bindings>

</label>

This maps to the text property of the <label> element.
As a result, the template drives the generation of labels within its parent control, and the

empty <div> element you saw earlier gets filled up with the data that is served by the under-
lying data source.

As such, the web service, which is hard-coded to return nine data items, will cause nine
sets of labels to be generated within this <div> element, rendering the results of the selection
against the data in the manner specified by the template. If you refer to Figure 8-3 again, the
code-behind that gets generated at runtime doesn’t contain any of the data. The <div> element
is still empty.

What happens when the query is made for the binding is that the following data gets
posted back to Atlas. This data then gets drawn on the innerHTML of the <div> element at

CHAPTER 8 ■ DATA BINDING IN ATLAS 219

6471ch08final.qxd 5/10/06 11:28 PM Page 219

http://lib.ommolketab.ir
http//lib.ommolketab.ir

runtime but isn’t visible in Source view. If you perform an HTTP sniff of the interaction
between the browser and the server, you’ll see it, as shown here:

new Sys.Data.DataTable(
[{"Id":0,
"Name":"A. Datum Corporation",
"Description":"http://www.adatum.com"},
{"Id":1,
"Name":"Adventure Works",
"Description":"http://www.adventure-works.com"},
{"Id":2,
"Name":"Alpine Ski House",
"Description":"http://www.alpineskihouse.com"},
{"Id":3,
"Name":"Baldwin Museum of Science",
"Description":"http://www.baldwinmuseumofscience.com"},
{"Id":4,
"Name":"Blue Yonder Airlines",
"Description":"http://www.blueyonderairlines.com"},
{"Id":5,
"Name":"City Power & Light",
"Description":"http://www.cpandl.com"},
{"Id":6,
"Name":"Coho Vineyard",
"Description":"http://www.cohovineyard.com"},
{"Id":7,
"Name":"Contoso, Ltd",
"Description":"http://www.contoso.com"},
{"Id":8,
"Name":"Graphic Design Institute",
"Description":"http://www.graphicdesigninstitute.com"}],

[new Sys.Data.DataColumn("Id",Number,null),
new Sys.Data.DataColumn("Name",String,"New row"),
new Sys.Data.DataColumn("Description",String,"")],
["Id"])

The binding to the data source created a query to the data source that returns a
Sys.Data.DataTable that contains a list of constructors for records, which are specified using
name/value pairs. It then also specifies the Sys.Data.DataColumn types that represent these
and finally the key column.

As you can see, this can be turned into an object at runtime that represents the data.
Changing any of these data items on the browser renders the dataset dirty, and when it is
considered dirty, you can explicitly write code to update the underlying data source.

In the next example, you’ll do exactly that—you’ll take a look at an example that not only
returns and renders data from the underlying data source but also allows you to create new
records, update existing records, and delete unwanted records.

An interesting note is that the web service in this example was explicitly coded for the
return of data using the GetData and SaveData web methods. If the underlying service returns

CHAPTER 8 ■ DATA BINDING IN ATLAS220

6471ch08final.qxd 5/10/06 11:28 PM Page 220

http://lib.ommolketab.ir
http//lib.ommolketab.ir

a DataTable type, they aren’t necessary; therefore, for example, a web service with the follow-
ing web method would be able to serve a similar data experience and would be interoperable
with other technologies. Note that in this case the data is different—it will return employees
from the Northwind database:

[DataObjectMethod(DataObjectMethodType.Select)]
public DataTable GetDataTable()
{
SqlConnection connection =
//Replace server, username, password with
// your own SQL Server credenials

new SqlConnection("Server=(local); Database=Northwind;
User ID=username; Password=password");

SqlCommand command =
new SqlCommand("SELECT FirstName, LastName,

Title FROM Employees WHERE region = 'WA'
AND Title LIKE '%pres%'");

command.Connection = connection;
connection.Open();

SqlDataAdapter adapter = new SqlDataAdapter(command);
DataSet dataSet = new DataSet();

adapter.Fill(dataSet);
command.Connection.Close();

return dataSet.Tables[0];
}

Reading and Writing Data from a
DataSource Control
This example provides a standard client-side data control that allows you to navigate through
a data source. It displays the contents of the fields for the current record and provides read
and write binding between them. Therefore, when you navigate to a field, you can edit that
field, and your edit will automatically update the underlying dataset.

You can see it in action in Figure 8-4.
The < and > buttons will move you forward and backward through the dataset. If you

change an item either within the name field or within the description field, the dirty flag will
be set. This enables the Save button so that the changes can be written to the database, as
shown in Figure 8-5.

CHAPTER 8 ■ DATA BINDING IN ATLAS 221

6471ch08final.qxd 5/10/06 11:28 PM Page 221

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Similarly, the * button, which adds a new row at the end of the dataset, and the X button,
which deletes the current row, will enable the dirty flag and thus the Save button to commit
the changes. Finally, the Refresh button will reload the data from the underlying dataset,
which will lose all unsaved changes.

The back-end data source is the same web service as you used in the previous example, so
you’ll now look at the client-side code for this to see how it is implemented.

The UI is implemented using the following HTML:

<!-- First Section -->
<div id="detailsView"></div>

CHAPTER 8 ■ DATA BINDING IN ATLAS222

Figure 8-4. Viewing and editing data items

Figure 8-5. The Save button is enabled after changes are made to the data.

6471ch08final.qxd 5/10/06 11:28 PM Page 222

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<!-- Second Section -->
<input type="button" id="previousButton"

value="<" title="Go to previous row" />

<input id="nextButton" type="button"
value=">" title="Go to next row" />

|
<input type="button" id="addButton"

value="*" title="Create a new row" />

<input type="button" id="delButton"
value="X" title="Delete the current row" />

|
<input type="button" id="saveButton"

value="Save" title="Save all pending changes" />

<input type="button" id="refreshButton"
value="Refresh"
title="Discard pending changes and

get the latest data from the server" />

<!-- Third Section -->
<div style="visibility:hidden;display:none">
<div id="detailsTemplate">

Name:
<input id="nameField" size="30" />

Description:

<textarea id="descriptionField" rows="4" cols="40">
</textarea>

</div>
</div>

This is divided into three sections. The first is an empty <div> tag, which will be populated
using an Atlas ItemView control, as you will see in a moment.

The second section contains the definitions for all the buttons that are used for navigat-
ing, creating new records, deleting records, and saving and refreshing.

The third, and final, section is hidden, but it specifies the UI for the template that will
drive the content for the first.

The content for this UI will be driven from the data binding specified in the Atlas Script.
Let’s take a look at these scripts now. Listing 8-3 shows the entire script for the page. In later
pages you will look at this script section by section.

CHAPTER 8 ■ DATA BINDING IN ATLAS 223

6471ch08final.qxd 5/10/06 11:28 PM Page 223

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 8-3. Data Binding Page Script

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<dataSource id="dataSource" serviceURL="SampleDataService.asmx"/>

<itemView targetElement="detailsView">
<bindings>
<binding dataContext="dataSource" dataPath="data" property="data"/>
<binding dataContext="dataSource" dataPath="isReady"

property="enabled"/>
</bindings>
<itemTemplate>
<template layoutElement="detailsTemplate">
<textBox targetElement="nameField">
<bindings>
<binding dataPath="Name" property="text" direction="InOut"/>
</bindings>
</textBox>
<textBox targetElement="descriptionField">
<bindings>
<binding dataPath="Description" property="text" direction="InOut"/>
</bindings>
</textBox>
</template>
</itemTemplate>
</itemView>

<button targetElement="previousButton">
<bindings>
<binding dataContext="detailsView" dataPath="canMovePrevious"

property="enabled"/>
</bindings>
<click>
<invokeMethod target="detailsView" method="movePrevious" />
</click>
</button>

<label targetElement="rowIndexLabel">
<bindings>
<binding dataContext="detailsView" dataPath="dataIndex"

property="text" transform="Add" />
</bindings>
</label>

CHAPTER 8 ■ DATA BINDING IN ATLAS224

6471ch08final.qxd 5/10/06 11:28 PM Page 224

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<button targetElement="nextButton">
<bindings>
<binding dataContext="detailsView" dataPath="canMoveNext"

property="enabled"/>
</bindings>
<click>
<invokeMethod target="detailsView" method="moveNext" />
</click>
</button>

<button targetElement="addButton">
<bindings>
<binding dataContext="dataSource" dataPath="isReady"

property="enabled"/>
</bindings>
<click>
<invokeMethod target="detailsView" method="addItem" />
</click>
</button>

<button targetElement="delButton">
<bindings>
<binding dataContext="dataSource" dataPath="isReady"

property="enabled"/>
</bindings>
<click>
<invokeMethod target="detailsView" method="deleteCurrentItem" />
</click>
</button>

<button targetElement="saveButton">
<bindings>
<binding dataContext="dataSource" dataPath="isDirtyAndReady"

property="enabled"/>
</bindings>
<click>
<invokeMethod target="dataSource" method="update" />
</click>
</button>

<button targetElement="refreshButton">
<bindings>
<binding dataContext="dataSource" dataPath="isReady"

property="enabled"/>
</bindings>

CHAPTER 8 ■ DATA BINDING IN ATLAS 225

6471ch08final.qxd 5/10/06 11:28 PM Page 225

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<click>
<invokeMethod target="dataSource" method="select" />
</click>
</button>

<application>
<load>
<invokeMethod target="dataSource" method="select"/>
</load>
</application>
</components>
</page>
</script>

First you define the script and start laying out the components. The first component is a
data source called dataSource that binds to the web service for its data:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<dataSource id="dataSource"
serviceURL="SampleDataService.asmx"/>

Second you create the <itemView> control that will wrap the empty <div> element you saw
earlier. This control will use two bindings. The first binding is to bind the data returned from
the data source to the data property of the ItemView control. This ensures that the ItemView
control will receive a full, compatible dataset from the data source through the binding.

The second binding is an interesting and useful one. It ties the enabled property of the
ItemView control to the isReady property of the data source. This means that although the
data source is not in its ready state—such as when it is in the middle of a read or write cycle—
the ItemView control will automatically get disabled, and once the data source is ready, it will
be automatically enabled. Thus, functionality that might typically be programmed by hand is
managed for you through data binding. This isn’t a typical use case for data binding, but as
you can see, it’s is a handy one!

<itemView targetElement="detailsView">
<bindings>
<binding dataContext="dataSource"

dataPath="data"
property="data"/>

<binding dataContext="dataSource"
dataPath="isReady"
property="enabled"/>

</bindings>

The <itemTemplate> specifies the template for how the bound data will appear on the
<itemView> control. An Atlas <textbox> element is defined that wraps the underlying HTML
<input> control called nameField. This gets bound to the parent <itemView> control’s data
property (which in turn is bound to the data source specified by the dataSource control).

CHAPTER 8 ■ DATA BINDING IN ATLAS226

6471ch08final.qxd 5/10/06 11:28 PM Page 226

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It binds to the field called Name and connects it to its Text property. The direction attribute
is set to InOut, which means changes to the data source will be reflected in the text box and
changes to the text box will affect the underlying data source. Note that these changes will
make the data dirty, meaning that the isDirty flag will be set on the data source, which can
trigger the Save button. You’ll see this a little later.

<itemTemplate>
<template layoutElement="detailsTemplate">
<textBox targetElement="nameField">
<bindings>
<binding dataPath="Name"

property="text"
direction="InOut"/>

</bindings>
</textBox>

You can see that the specification for the description field is similar, except that its target
element is an HTML text field instead of an Input control. However, in Atlas parlance the two
are both treated as <textBox> controls, which is more logical:

<textBox targetElement="descriptionField">
<bindings>
<binding dataPath="Description"

property="text"
direction="InOut"/>

</bindings>
</textBox>

Now you can define the buttons that allow you to navigate. These show some interesting
functionality. Let’s first look at the Move Previous button (labeled < in the application):

<button targetElement="previousButton">
<bindings>
<binding dataContext="detailsView"

dataPath="canMovePrevious"
property="enabled"/>

</bindings>
<click>
<invokeMethod target="detailsView" method="movePrevious" />

</click>
</button>

When the <itemView> control has a set of records loaded in it (using its data property),
it exposes a number of properties for navigating that data. One of these properties is
canMovePrevious, which is false if you are currently looking at the first record in the dataset
and true otherwise. Thus, if you bind a button to this property and tie that binding to the
button’s enabled property, the button will automatically be disabled if you are currently look-
ing at the first record. As such, you can create, declaratively, a set of navigation buttons around
a dataset. This is exactly what is being done here. Additionally, you want to implement an

CHAPTER 8 ■ DATA BINDING IN ATLAS 227

6471ch08final.qxd 5/10/06 11:28 PM Page 227

http://lib.ommolketab.ir
http//lib.ommolketab.ir

action to perform once the button is clicked. Naturally, in this case the action to perform will
be to move to the previous record. This is implemented on the <itemView> control as the
movePrevious method. As such, you can tie an action on the <click> of this button to this
method on the <itemView> and declaratively implement navigational functionality that man-
ages the move to the previous record.

As you can see, the functionality to move to the next record is similar:

<button targetElement="nextButton">
<bindings>
<binding dataContext="detailsView"

dataPath="canMoveNext"
property="enabled"/>

</bindings>
<click>
<invokeMethod target="detailsView"

method="moveNext" />
</click>

</button>

You can render the index of the current record by using the dataIndex property of the
connected dataset. You can bind this to a label like this:

<label targetElement="rowIndexLabel">
<bindings>
<binding dataContext="detailsView"

dataPath="dataIndex"
property="text"
transform="Add" />

</bindings>
</label>

When it comes to adding a new record to the dataset, you need to use the addItem
method that the itemView exposes. This should be called only when the data source is
considered ready for adding data.

You do this by binding the enablement of the control to the isReady property of the
dataSource (not the itemView), and then upon clicking the button, you invoke the addItem
method of the itemView to which the data is bound. You do it this way because the readiness
of the data to be written to is best established by looking at the dataSource, because it is closer
to the data.

<button targetElement="addButton">
<bindings>
<binding dataContext="dataSource"

dataPath="isReady"
property="enabled"/>

</bindings>
<click>
<invokeMethod target="detailsView" method="addItem" />

</click>
</button>

CHAPTER 8 ■ DATA BINDING IN ATLAS228

6471ch08final.qxd 5/10/06 11:28 PM Page 228

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deleting a record is similar. If the data source is ready, you can invoke the
deleteCurrentItem method on the parent ItemView control. You control access to the
button (and thus the deletion) by disabling the button when the dataSource isn’t ready:

<button targetElement="delButton">
<bindings>
<binding dataContext="dataSource"

dataPath="isReady"
property="enabled"/>

</bindings>
<click>
<invokeMethod target="detailsView"

method="deleteCurrentItem" />
</click>

</button>

Saving data is a little more complex. You should save data only when the dataset is con-
sidered dirty and the dataSource is considered ready. Remember that the binding is two-way,
so when you type something into either of the text boxes, their binding to the itemView will
update the dataset within the itemView, and it, in turn, will update the dataset within the
dataSource control. Thus, the dataSource will be considered dirty. Once it is also ready, then
the isDirtyAndReady flag will be true. You can bind the enablement of the Save button to this
flag, and you will then be protected from bad writes. Thus, when the dataSource is dirty and it
is ready for writing, the button will be enabled; otherwise, it will be disabled and unavailable
for user interaction. When you click the button, the action to update the dataSource should
take place.

<button targetElement="saveButton">
<bindings>
<binding dataContext="dataSource"

dataPath="isDirtyAndReady"
property="enabled"/>

</bindings>
<click>
<invokeMethod target="dataSource" method="update" />

</click>
</button>

Refreshing the data involves running another query on the data source to perform
another select and get a refreshed dataset. This should happen only when the dataSource
is ready to receive the request.

Thus, you bind the enablement of the button to the isReady property of the dataSource,
and when you click it, you invoke the select method to get the data. This will trigger all the
bindings and refresh the controls on the screen with new data.

All this refreshing and updating of controls of course happens asynchronously using Ajax
techniques. Thus, only the <itemView> will update, and the entire page will not blink.

<button targetElement="refreshButton">
<bindings>

CHAPTER 8 ■ DATA BINDING IN ATLAS 229

6471ch08final.qxd 5/10/06 11:28 PM Page 229

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<binding dataContext="dataSource"
dataPath="isReady"
property="enabled"/>

</bindings>
<click>
<invokeMethod target="dataSource" method="select" />

</click>
</button>

Finally, you want to specify what should happen when the page first loads. This applica-
tion performs a simple action in this circumstance, and that is to do a select against the data
source to generate a new dataset and trigger all the bindings, initializing the UI.

<application>
<load>
<invokeMethod target="dataSource"

method="select"/>
</load>

</application>

Summary
Data binding is vital to any application, and how a programming language or framework
implements data binding is a great gauge of its usefulness. If the data binding APIs handle all
the complexities of passing data around controls including reading, writing, and protecting
data updates yet give you the flexibility you need to write your applications, then it’s a winner.

In this circumstance Atlas is strong; it provides a rich declarative model that gives you
powerful but easy-to-use data binding functionality.

In this chapter, you took a tour of the controls that are implemented in the Atlas libraries
that give you a data binding API. You started by looking at the nonvisual controls, which imple-
ment tables, records, views, filters, and the like. You next moved on to the visual controls of
ItemView and ListView and learned how you can use them to render bound data in the browser.

You then put the theory into practice by looking at several examples. First you looked at
simple data binding where a DataSource control isn’t used and your Atlas controls are simply
bound to a back-end web service.

Next you looked at binding a ListView control to a set of data and how you can use it to
render a large snapshot of data asynchronously to your page.

Finally, I presented an example of using the ItemView control, and you learned about dis-
playing the data on a web page and providing a user interface that allows for data entry, where
you write data back to the service that provided it without going through an intermediary. In
addition, you used data protection, controlling access to the write cycles upon the readiness
and dirtiness of the local data cache.

After reading this chapter, you should have a good grasp of how to start implementing
your own data-aware web applications that use Atlas to provide Ajax-style asynchrony.

In the next chapter, you’ll start looking at another client-side library—one that provides
additional user interface functionality, or “glitz,” to your applications.

CHAPTER 8 ■ DATA BINDING IN ATLAS230

6471ch08final.qxd 5/10/06 11:28 PM Page 230

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the AtlasUIGlitz Library

One of the libraries that comes with Atlas is the AtlasUIGlitz library. This library contains a
number of behaviors and controls that you can use to “glitz up” your Atlas applications. This
includes setting and changing the opacity of areas of the screen in your application; program-
matically setting the layout of areas of the screen, giving you control over the left, top, height,
and width of layers on the screen; and running various custom animations on your layers,
including property animations, discrete animations, number animations, and more. As you
work through this chapter, you’ll learn by example, going through each animation and func-
tionality that this library offers you and finding out how to use them in your applications.

Using Opacity
Figure 9-1 shows a page containing two layers that are set to different levels of opacity. You can
set these programmatically using JavaScript, or you can use Atlas Script. For example, you could
attach behaviors to affect the opacity of a component when the mouse is moving over it.

231

C H A P T E R 9

■ ■ ■

Figure 9-1. Showing the opacity behavior on two elements

6471ch09final.qxd 5/10/06 11:29 PM Page 231

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see in Figure 9-1, these elements have opacities 0.2 and 0.5. So how do you
achieve this?

Let’s take a look at the code; first, here is the HTML that defines the elements:

<div id="Description">
<div id="DragHandle">Drag by clicking on this element</div>
<div style="text-align:center;font-weight:bold;">Pane 1</div>
HTML For Pane 1. This is set to opacity 0.2</div>

<div id="Description2">
<div id="DragHandle2">Drag by clicking on this element</div>
<div style="text-align:center;font-weight:bold;">Pane 2</div>
HTML For Pane 2. This is set to opacity 0.5</div>

You need to make sure Atlas loads the AtlasUIGlitz library. You do this using a
ScriptReference control. In this case, the code is referencing the AtlasUIGlitz library as well
as the drag-and-drop library (called AtlasUIDragDrop), which will be used a little later in this
chapter.

<atlas:ScriptManager runat="server" ID="ScriptManager1">
<Scripts>
<atlas:ScriptReference ScriptName="AtlasUIDragDrop" />
<atlas:ScriptReference ScriptName="AtlasUIGlitz" />

</Scripts>
</atlas:ScriptManager>

This is the Atlas Script that builds the application from this HTML:

<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>

<control targetElement="DragHandle" cssClass="draghandle" />
<control targetElement="Description" cssClass="floatwindow">
<behaviors>
<floatingBehavior handle="DragHandle">
</floatingBehavior>
<opacity value="0.2">
</opacity>

</behaviors>

</control>

<control targetElement="DragHandle2" cssClass="draghandle" />
<control targetElement="Description2" cssClass="floatwindow">
<behaviors>
<floatingBehavior handle="DragHandle2">
</floatingBehavior>
<opacity value="0.5">
</opacity>

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY232

6471ch09final.qxd 5/10/06 11:29 PM Page 232

http://lib.ommolketab.ir
http//lib.ommolketab.ir

</behaviors>
</control>

</components>
</page>

Each of these elements is assigned a <control> element in Atlas. Control elements can
have behaviors associated with them. In this case, two behaviors are attached to the elements.
The first, floatingBehavior, allows for the layer to be dragged and dropped around the page.
(You can see more about this in Chapters 4 and 5.)

The second, opacity, comes from the AtlasUIGlitz library. It takes a parameter, called value,
that determines the opacity. This is a number from 0 to 1, with 0 being completely transparent
and 1 being completely opaque.

And that’s it—it is very straightforward, as you can see!

Using Layout Behaviors
The next behavior that is available from the AtlasUIGlitz library is the layout behavior, which
allows you to specify the dimensions and location of an element. As you can see in Figure 9-2,
you can declaratively specify how the content will appear using Atlas Script.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY 233

Figure 9-2. Setting the layout for controls using the “glitzy” layout behavior

6471ch09final.qxd 5/10/06 11:29 PM Page 233

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting this effect is easy; you simply attach the layout behavior to the control in
Atlas Script and then specify the left, top, width, and height properties.

You can see this here:

<control targetElement="DragHandle" cssClass="draghandle" />
<control targetElement="Description" cssClass="floatwindow">
<behaviors>
<floatingBehavior handle="DragHandle">
</floatingBehavior>
<opacity handle="myOp" value="0.2">
</opacity>
<layout handle="myLo"

top="100"
left="100"
height="100"
width="100">

</layout>
</behaviors>

</control>

<control targetElement="DragHandle2" cssClass="draghandle" />
<control targetElement="Description2" cssClass="floatwindow">
<behaviors>
<floatingBehavior handle="DragHandle2">
</floatingBehavior>
<opacity value="0.5">
</opacity>
<layout handle="myLo"

top="100"
left="300"
height="100"
width="100">

</layout>
</behaviors>

</control>

Thus, if you attach the layout behavior to your control, you can specify the visual appear-
ance of it. Should you not specify a parameter, the HTML layout properties will be used. You
can use a partial set of parameters (for example, you can set the left but not the top), and it
will still work.

Using Fade Animations
The first animation that you will look at is the fade animation, where the opacity of a layer is
changed going either toward value 1 (fade-in) or toward value 0 (fade-out).

Figure 9-3 and Figure 9-4 show the state of a layer at the beginning and at the end of a
fade-in animation.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY234

6471ch09final.qxd 5/10/06 11:29 PM Page 234

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY 235

Figure 9-3. The layer at the beginning of a fade-in

Figure 9-4. The layer at the end of a fade-in

6471ch09final.qxd 5/10/06 11:29 PM Page 235

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You achieve this fade using Web.UI.FadeAnimation. Tied to the button’s OnClick event is
the following JavaScript:

function FadeIn()
{

var a = new Web.UI.FadeAnimation();
a.set_target(Web.Application.findObject('Description'));
a.set_effect(Web.UI.FadeEffect.FadeIn);
a.play();

}

Here an instance of a new Web.UI.FadeAnimation is created and gets tied to the
Description object. The effect is set to Web.UI.FadeEffect.FadeIn, and when the play method is
called, the animation trips, and the layer fades in. In a similar manner, you can fade out a layer
using Web.UI.FadeEffect.FadeOut like this:

function FadeOut()
{

var a = new Web.UI.FadeAnimation();
a.set_target(Web.Application.findObject('Description2'));
a.set_effect(Web.UI.FadeEffect.FadeOut);
a.play();

}

You can see the effect of this in Figure 9-5 and Figure 9-6.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY236

Figure 9-5. Beginning the fade-out on the second layer

6471ch09final.qxd 5/10/06 11:29 PM Page 236

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can also set up your animation using Atlas Script. In this case, you create an abstract
animation control in Atlas Script and tie that control to the area you want to animate. Then
you can, for example, attach an action to a button that triggers the animation.

Considering the previous example, the markup for the Fade-In button will look like this:

<input id="btnFadeIn" type="button" value="Fade-In" />

The important thing to note is its ID, which is btnFadeIn. This is what you will use to ref-
erence it in Atlas Script.

Next, you create the animation control. Within your Atlas Script controls declaration, you
will have markup like this:

<fadeAnimation id="thefadeAnimation"
target="Description" effect="FadeIn" />

The FadeAnimation controls description uses the attributes shown in Table 9-1.

Table 9-1. FadeAnimation Attributes

Attribute Name Description

ID The identity for this animation, used by other controls to trigger actions on
this control.

Target The page element to which to apply the animation.

Effect Can be FadeIn or FadeOut. Defines how the fade animation runs. FadeIn takes
it from Invisible to Visible; FadeOut does the opposite.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY 237

Figure 9-6. Continuing the fade-out on the second layer

6471ch09final.qxd 5/10/06 11:29 PM Page 237

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In this case, you can see that the animation is called thefadeAnimation, it is set to target
the <div> element on the HTML page that is called Description, and the effect that will be
used to animate it is FadeIn.

You can then trigger the animation to take place upon clicking the Fade-In button using
an <invokeMethod> on its <click> action like this:

<button id="btnFadeIn">
<click>
<invokeMethod target="thefadeAnimation" method="play" />

</click>
</button>

Then when you click the button, you get the same behavior as earlier.

Using Length Animations
Another animation that you can use is the length animation, which changes the state of a
property between a start and an end value that you can specify. You can typically use this to
animate the setting of the width or height of a control that uses them.

However, because it simply sets the property of a control to the numeric value between
the start value and the end value, it can also perform countups or countdowns if applied to
the text property of a control.

Table 9-2 lists the properties of the animation.

Table 9-2. LengthAnimation Properties

Property Name Description

Target Specifies the target control for the animation.

Property Specifies which property will be the target for the animation.

StartValue Specifies the start value for animation.

EndValue Specifies the end value for animation.

Unit Text specifying the unit to use. Examples are px for pixels or % for percentage.

Duration Specifies the duration (in seconds) that it should take to play the animation.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY238

6471ch09final.qxd 5/10/06 11:29 PM Page 238

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can see the length animation in action in Figure 9-7, Figure 9-8, and Figure 9-9.
Figure 9-7 shows the application before the animation begins, Figure 9-8 shows the animation
as it is in progress and the image is growing, and Figure 9-9 shows the completed animation.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY 239

Figure 9-7. Beginning the animation

Figure 9-8. The animation as it progresses

6471ch09final.qxd 5/10/06 11:29 PM Page 239

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In this case, the animation is set to change the width property of the image. Let’s see how
this works.

First, here is the markup that defines the page, including the image:

<form id="form1" runat="server">
<div>
<atlas:ScriptManager ID="ScriptManager1" runat="server"

EnablePartialRendering="True">
<Scripts>
<atlas:ScriptReference ScriptName="AtlasUIGlitz" />

</Scripts>
</atlas:ScriptManager>

<input type="button" id="startButton" value="Start"/>

</div>
</form>

As you can see, this simply creates a button using the <input> tag and an image using the
 tag. The initial state of the image is set to have the width be 100.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY240

Figure 9-9. The completed animation

6471ch09final.qxd 5/10/06 11:29 PM Page 240

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Next comes the Atlas Script that defines these controls and specifies the animation, tying
its launch to the click action of the button:

<script type="text/xml-script">
<page xmlns:demo="demo">
<components>
<image id="i" />

<lengthAnimation id="l"
target="i" property="width"
startValue="100" endValue="800"
duration="30" />

<button id="startButton">
<click>
<invokeMethod target="l" method="play" />

</click>
</button>

</components>
</page>
</script>

Here you create an instance of a Web.UI.Image control using the <image> tag and point
it at the underlying HTML element called i.

Next you define the animation. Give the ID l and target it at i. The property you are speci-
fying to change on the animation is width. The default unit on the lengthAnimation property
is px, so the animation will change the width property to a number of pixels.

You define this number by specifying startValue and endValue. In this case, set startValue
to 100, and set endValue to 800. Finally, set the duration to 30. This means the values
100px–800px will be sent to the width property of the image over a duration of 30 seconds.
Changing the duration to a smaller value will mean that the image will grow to its final size
more quickly, and changing it to a larger value will mean that it grows more slowly!

Additionally, the animation is smart enough to know that if startValue is greater than
endValue, the animation will play backward, reducing the text from startValue to endValue,
and in a case like this, the image will shrink in size over the specified duration.

Using Number Animations
Another animation provided by the AtlasUIGlitz framework is the number animation. This is
similar to the length animation in that it provides an animation between a start value and an
end value over a specified duration.

An important difference with the number animation is that it allows for fractional values
as it goes through the animation. This can give you some nice effects for progress meters and
other elements that may require numerics.

The NumberAnimation control supports the properties shown in Table 9-3.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY 241

6471ch09final.qxd 5/10/06 11:29 PM Page 241

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 9-3. Number Animation Properties

Property Name Description

Target Specifies the target control for the animation.

Property Specifies which property that will be the target for the animation.

StartValue Specifies the start value for animation.

EndValue Specifies the end value for animation.

IntegralValues Boolean that specifies whether whole numbers will be presented. If true, then
the animation will cycle through whole values. If false, then it will render
fractional numbers.

Duration Specifies the duration (in seconds) that it should take to play the animation.

You can see the animation in action in Figure 9-10, Figure 9-11, and Figure 9-12. This
shows the animation causing a countdown from 30 to 1 with IntegralValues set to False, thus
rendering fractional numbers.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY242

Figure 9-10. The countdown animation has begun.

Figure 9-11. The animation continues.

6471ch09final.qxd 5/10/06 11:29 PM Page 242

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s see how this works. Here is the markup that defines the page content:

<form id="form1" runat="server">
<div>
<atlas:ScriptManager ID="ScriptManager1" runat="server"

EnablePartialRendering="True">
<Scripts>
<atlas:ScriptReference ScriptName="AtlasUIGlitz" />

</Scripts>
</atlas:ScriptManager>

<hr />
<input type="button" id="startButton" value="Start"/>

</div>
</form>

As you can see, it is straightforward. It defines a element called simpleLabel that
will contain the text to be animated and the button that will trigger the action that invokes the
animation.

The Atlas Script that defines the controls for this HTML, the animation, and the action to
perform when the button is pressed is as follows:

<script type="text/xml-script">
<page xmlns:demo="demo">
<components>
<label id="sampleLabel" />

<numberAnimation id="nAnimation"
target="sampleLabel" property="text"
startValue="30" endValue="0"
integralValues="false"
duration="30" />

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY 243

Figure 9-12. The animation completes.

6471ch09final.qxd 5/10/06 11:29 PM Page 243

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<button id="startButton">
<click>
<invokeMethod target="nAnimation" method="play" />

</click>
</button>

</components>
</page>
</script>

In this script, you can see that an Atlas Label control gets assigned to the element
called sampleLabel. The Label control has a text property, and if this is set, its contents will get
loaded into the element, thus rendering the text on the page.

You then set up the <numberAnimation> element, targeting this label. You specify the prop-
erty on this label to target in the property attribute; it is the text property.

Then you specify the values to animate. You state to start at the value 30 and end at the
value 0.

IntegralValues is set to false, so fractional values will be rendered (as you can see in
Figures 9-10 through 9-12).

As such, a simple numeric progression is easy to implement and to tie to a web element
using the NumberAnimation control.

Using Discrete Animations
Discrete animations are similar to length and number animations in that they will cycle
through a range of values during a fixed duration. For both of these, you specify start and end
values, and the Atlas framework calculates the interim values for the animation.

For example, you could specify a range of letters from a to z and cycle the animation
through them, or you could specify a range of names or words to animate through.

Table 9-4 lists the properties that the DiscreteAnimation control supports.

Table 9-4. DiscreteAnimation Properties

Property Name Description

Target Specifies the target control for the animation.

Property Specifies which property that will be the target for the animation.

Values Specifies a range of values to cycle through when animating. This should be a
comma-separated list of string values.

You can see the animation in action in Figure 9-13, Figure 9-14, and Figure 9-15. These
show a discrete animation cycling the text of a label from values a through z.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY244

6471ch09final.qxd 5/10/06 11:29 PM Page 244

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY 245

Figure 9-13. Beginning the animation. The label reads a.

Figure 9-14. Continuing the animation. The label now reads r.

Figure 9-15. The animation is finished. The label now reads z.

6471ch09final.qxd 5/10/06 11:29 PM Page 245

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s take a look at how this works. First, here is the markup defining the HTML:

<form id="form1" runat="server">
<div>
<atlas:ScriptManager ID="ScriptManager1" runat="server"

EnablePartialRendering="True">
<Scripts>
<atlas:ScriptReference ScriptName="AtlasUIGlitz" />

</Scripts>
</atlas:ScriptManager>
a
<hr />
<input type="button" id="startButton" value="Start"/>

</div>
</form>

Here you define a element called sampleLabel. This will be the target for the ani-
mation. The discrete animation works by changing a property on the target control through
a series of predefined values. The element can be represented by an Atlas Label con-
trol. This control exposes a text property so that when you change the text property of this
control, the contents of the underlying element get set to this text, and thus it is writ-
ten to the page.

Here is the Atlas Script that defines this control, the animation, and the action to link to
the button to trigger the animation effect:

<script type="text/xml-script">
<page xmlns:demo="demo">
<components>
<label id="sampleLabel" />

<discreteAnimation id="letterAnimation"
target="sampleLabel" property="text"
values="'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',

'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q'
'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'"

duration="3" />

<button id="startButton">
<click>
<invokeMethod target="letterAnimation"

method="play" />
</click>

</button>
</components>

</page>
</script>

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY246

6471ch09final.qxd 5/10/06 11:29 PM Page 246

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In this script, you can see that the Label control gets assigned to the element by
using the ID attribute and pointing it at the name of the element, which in this case is
sampleLabel.

Next you set up the <discreteAnimation> control by pointing it at the text property of the
<sampleLabel> control using the property and target attributes, respectively.

The important property here to understand is the values property. You set this to a comma-
separated list of the desired values, enclosed within a string. In this case, it is the full alphabet,
but it can be anything; for example, to animate through the names Andrew, Bob and Claire,
you would set it to the following:

" 'Andrew', 'Bob', 'Claire' "

The duration attribute specifies the time in seconds that it should take to cycle through
the defined values.

Finally, a Button control points at the underlying <input> control that renders a button in
HTML. It has an invoke method behavior associated with its click action that triggers the play
method of the animation. Thus, clicking the button starts the animation and the behavior
exhibited in Figures 9-13 to 9-15.

Summary
The AtlasUIGlitz library is a nice add-on library that provides a number of UI behaviors that
you can use to make your user interfaces more attractive and, well, glitzy. The library offers
two behaviors that you can manipulate: opacity and layout.

The former, opacity, allows you to set the alpha level of transparency/opacity of your page
elements. You can create whizzy user interfaces that make the most of modern graphics cards
and browsers to render complex UIs that have controls overlaid on each other, with the hid-
den controls visible through slight transparency on the overlaying controls, allowing the user
to look “through” them.

The latter, layout, allows you to easily and explicitly place controls on the page. It allows
you to set the top, left, height, and width properties of an element through properties of the
behavior. This gives you fine-grained control over how your interface is laid out.

In addition, the AtlasUIGlitz library offers a number of animation effects that can be
applied to controls on your page:

• The fade animation allows you to fade the opacity of a control in or out. You can use
this to smoothly make controls appear or disappear or to provide a nice visual indicator
of inactive controls by smoothly making them more transparent.

• Length animations allow you to map a range of numbers to a control’s property where
the framework automatically drives the value of the property from the start value to the
end value and appends a text unit to the end, such as px allowing you to specify image,
table, or other element’s width and height properties through an animated range.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY 247

6471ch09final.qxd 5/10/06 11:29 PM Page 247

http://lib.ommolketab.ir
http//lib.ommolketab.ir

• Number animations are similar to length animations but don’t append the text to the
end and instead offer the facility to use fractional values. In this case, you can animate
through a range of values that aren’t limited to whole numbers.

• Discrete animations also allow you to change the value of a control’s property auto-
matically through a predefined range. You could, for example, automatically cycle the
contents of a text field through the values a through z by specifying these as a list to
a property on the animation and then triggering that animation.

From this chapter you have gleaned some great new tools to make your UIs more sophis-
ticated and easy to use for your users. In the next chapter, you will look at another value-added
client-side library that Atlas gives you—the Mapping library. This library allows you to instantly
and easily add mapping and geocoding functionality to your applications that will update in
an asynchronous, Ajax-like manner.

CHAPTER 9 ■ USING THE ATLASUIGLITZ L IBRARY248

6471ch09final.qxd 5/10/06 11:29 PM Page 248

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Mapping with Atlas

Perhaps it is natural that a framework called Atlas has a built-in set of libraries for handling
mapping functionality! In this chapter, you will look at this functionality and how you can use
and leverage it in your own applications.

Seeing Some Mapping Functionality in Action
Mapping is a huge part of the new Windows Live Local web application, which you can use
to look at what services are available at a particular location and have them all mapped out
for you.

Figure 10-1 shows an example of this; you can see that the context of this map is Seattle,
Washington; the image is zoomed in to the famous Pike Place Market; and the search term is
coffee.

If you look at Figure 10-1, you’ll see that two text boxes appear at the top of the page. You
use the one on the right to set your current map context by searching for a location. So, for
example, you could search for Pike Street, Seattle, WA. You use the text box on the left to search
for the services you are interested in, such as coffee or soccer. The search results appear in the
left pane, and their numbered icons appear on the map. These icons are called pushpins, and
you’ll see how to implement them in the “Using Pushpins” section, as well as how to use the
same mapping libraries for your own applications.

Atlas incorporates mapping functionality via the script library called AtlasUIMap. This
script library installs with Atlas; you can find it in the C:\Program Files\Microsoft ASP.NET\
Atlas\v2.0.50727\Atlas\ScriptLibrary directory. Previous releases of Atlas—prior to the
Go Live license version issued in 2006 as the March Community Technology Preview (CTP)—
included the scripts in your Visual Studio 2005 solution, so you would be able to find them
there. If you cannot see them in your solution file, you’ll be able to find them in the afore-
mentioned directory.

249

C H A P T E R 1 0

■ ■ ■

6471ch10final.qxd 5/10/06 11:31 PM Page 249

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started with Atlas Maps
To use Atlas maps on a page, you follow the typical procedure as when using client-side con-
trols in Atlas. For more about this, see Chapters 3, 4, and 5. Typically you create an HTML page
and place controls and <div> tags on this page. You give these controls and tags IDs, which you
use to map the Atlas control to an underlying element.

So, to use an Atlas map on an area of your page, you would use some HTML like this:

<div id="MyMap" style="height:400px;width:400px; ">
</div>

Atlas map controls are called virtualEarthMap, and you can assign one to this <div> ele-
ment using the following Atlas Script:

<virtualEarthMap id="MyMap" latitude="48"
longitude="-122" mapStyle="Road"
zoomLevel="9">

</virtualEarthMap>

CHAPTER 10 ■ MAPPING WITH ATLAS250

Figure 10-1. Using Windows Live Local

6471ch10final.qxd 5/10/06 11:31 PM Page 250

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The March CTP of Atlas has a minor bug that requires you to use a Virtualearth.net CSS
script on the page; otherwise, you will have problems dragging and zooming the map. You
can include this script in your page using the following tag in your HTML <head> section:

<link type="text/css" href=http://dev.virtualearth.net/standard/v2/MapControl.css
rel="stylesheet" />

Listing 10-1 shows the complete code for a simple page that includes everything you
need to display a simple Atlas map, including references and the necessary Atlas
ScriptManager control.

Listing 10-1. Simple Page Containing an Atlas-Based Map

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Atlas Map of Seattle Area</title>
<link type="text/css"

href="http://dev.virtualearth.net/standard/v2/MapControl.css"
rel="stylesheet" />

</head>

<body>
<form id="form1" runat="server">
<atlas:ScriptManager ID="ScriptManager1" runat="server" >
<Scripts>
<atlas:ScriptReference ScriptName="AtlasUIMap" />

</Scripts>
</atlas:ScriptManager>

<div id="MyMap"
style="height:400px;width:400px; ">

</div>

</form>

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">

<components>
<virtualEarthMap id="MyMap" latitude="48"

longitude="-122" mapStyle="Road"
zoomLevel="9">

CHAPTER 10 ■ MAPPING WITH ATLAS 251

6471ch10final.qxd 5/10/06 11:31 PM Page 251

http://lib.ommolketab.ir
http//lib.ommolketab.ir

</virtualEarthMap>
</components>
</page>
</script>

</body>
</html>

Figure 10-2 shows the results of running this page.

The virtualEarthMap control contains all the code necessary to handle mouse interaction.
If you hold the mouse button down on the map, you can then drag the map. This demon-
strates an important principle of Ajax and Atlas, namely, that asynchronous updates can

CHAPTER 10 ■ MAPPING WITH ATLAS252

Figure 10-2. Running your first Atlas UI map

6471ch10final.qxd 5/10/06 11:31 PM Page 252

http://lib.ommolketab.ir
http//lib.ommolketab.ir

improve the user experience. In this case, the map you are viewing consists of a number of
tiles. As you are viewing the map surface, the tiles for the surrounding areas are downloaded
and cached. If you drag the map around, another download for these tiles isn’t necessary.
However, if you drag really fast to see areas that are far away, you’ll see the Atlas Script working
to catch up, caching the tiles as it goes. See Figure 10-3 for an example of this.

If you look at an HTTP trace of what is happening as you run this application, you’ll see
the following. (I have removed a lot of this for brevity, but the full trace is available with the
download for this book. It is called Chapter10sniff.txt.) Take note that the Microsoft Virtual
Earth service implements the mapping functionality, returning the correct map tiles upon
requests from this client library.

CHAPTER 10 ■ MAPPING WITH ATLAS 253

Figure 10-3. Caching map tiles asynchronously

6471ch10final.qxd 5/10/06 11:31 PM Page 253

http://lib.ommolketab.ir
http//lib.ommolketab.ir

First the browser issues the initial request to a page:

#1 10:34:27.328 127.0.0.1:4611
GET /chapter10test/Default.aspx HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

Then the server responds with this:

#2 10:34:27.390 127.0.0.1:4611
HTTP/1.1 200 OK
Server: ASP.NET Development Server/8.0.0.0
Date: Fri, 24 Mar 2006 18:34:27 GMT
X-AspNet-Version: 2.0.50727
Cache-Control: private
Content-Type: text/html; charset=utf-8
Content-Length: 1624
Connection: Close
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
...

The page uses the Atlas ScriptManager control to manage the scripts, so another call
is made to the server to download them. Scripts are web resources embedded within the
Microsoft.Web.Atlas.dll binary, and thus WebResource.axd is called with the request:

#3 10:34:27.796 127.0.0.1:4611
GET /chapter10test/WebResource.axd?d=9V0ZqrVZBFaNFGS19
FcxXx2zoT5SJYkcU2s4XaRKcMXB5bDsUzdwcKoRnoZ_LF022lm
sieXK9Fsqq9E_Dfc8EzoHpAMm7Aed1y8IsODBeX81&t=6327821
66040000000 HTTP/1.1
Accept: */*
Referer: http://localhost:4611/chapter10test/Default.aspx

The server then responds with the JavaScript libraries:

#4 10:34:27.796 127.0.0.1:4611
HTTP/1.1 200 OK
...

After this, the CSS file is downloaded, followed by the AtlasUIMap.js file. Note that this
file isn’t a default script managed by the Atlas ScriptManager control—it is instead requested
using the <Scripts> tag within <atlas:ScriptManager> and thus is downloaded later.

Once the page has completed downloading, the map control kicks in and starts making
the asynchronous requests for the map tiles using XMLHttpRequest.

CHAPTER 10 ■ MAPPING WITH ATLAS254

6471ch10final.qxd 5/10/06 11:31 PM Page 254

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can see this here; this is the request, issued by the map control:

#11 10:34:28.656 65.55.241.30:80
GET /tiles/r021230000.png?g=15 HTTP/1.1
Accept: */*
Referer: http://localhost:4611/chapter10test/Default.aspx
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .
NET CLR 2.0.50727; WinFX RunTime 3.0.50727)

Host: r0.ortho.tiles.virtualearth.net

Connection: Keep-Alive

This is the response from the Virtual Earth Map server:

#12 10:34:28.859 65.55.241.30:80
HTTP/1.1 200 OK
Content-Length: 17055
Content-Type: image/png
Expires: Sat, 24 Mar 2007 01:39:58 GMT
Server: Microsoft-IIS/6.0

Srv: 31300
Date: Fri, 24 Mar 2006 18:34:28 GMT

As you pan around the map, you see the same functionality—the images being
requested, downloaded, and cached asynchronously.

In addition to panning around the map, you can zoom in and out because Atlas also
caches images when you zoom, providing what is effectively a smart multilevel cache of the
current map context. In other words, Atlas looks at the current context of the map and caches
the area outside the current view in the current zoom context as well as a zoom-in context and
a zoom-out context.

If you have a mouse with a wheel, you can roll the wheel to zoom in and out. You can see
this for the current application in Figure 10-4.

Now that you’ve gotten a feel for the functionality of the map, you’ll see some of the pro-
grammatic features that are available to application developers when using the map.

CHAPTER 10 ■ MAPPING WITH ATLAS 255

6471ch10final.qxd 5/10/06 11:31 PM Page 255

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10 ■ MAPPING WITH ATLAS256

Figure 10-4. Zooming into the map

6471ch10final.qxd 5/10/06 11:31 PM Page 256

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Programming the Map Control
In the previous section, you saw how to create a simple page that hosts the Atlas map control,
which probably whetted your appetite for some juicy APIs that you can use to finely control
the map.

Setting Longitude and Latitude
Places on a map have a latitude and a longitude. These are values that vary from –180 to +180,
respectively. Using these values, you can calculate and locate any position in the world. Longi-
tude determines how far east or west a location is, and latitude determines how far north or
south a location is.

So, to determine any location, you need only these two values. Locations at a latitude of 0
are on the equator, locations with a latitude of +180 are at the North Pole, and locations with
a latitude of –180 are at the South Pole. Locations with a longitude of 0 are either directly north
or directly south of the Royal Observatory in Greenwich (a suburb of London, England), with
negative values being to the west and positive values being to the east.

So, if you look at the map shown in Figure 10-1, you will see that it is specified with a latitude
of 48 (48 degrees north of the equator) and a longitude of –122 (122 degrees west of Greenwich,
England), which brings you to the Seattle area:

<virtualEarthMap id="MyMap" latitude="48"
longitude="-122" mapStyle="Road"
zoomLevel="9" />

You don’t have to use whole numbers when specifying longitude and latitude, because it’s
a big world and you may want some fine-grained control over locations. The Atlas control uses
the JavaScript Number type, which is a 64-bit floating-point value. So, you can quite happily
control your location like this:

<virtualEarthMap id="MyMap" latitude="47.7512121212"
longitude="-122.43234" mapStyle="Road"
zoomLevel="9" />

You can see this in Figure 10-5.

CHAPTER 10 ■ MAPPING WITH ATLAS 257

6471ch10final.qxd 5/10/06 11:31 PM Page 257

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10 ■ MAPPING WITH ATLAS258

Figure 10-5. Map using detailed latitude and longitude

6471ch10final.qxd 5/10/06 11:31 PM Page 258

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting the Zoom Level
You can set the zoom level of a map using the ZoomLevel property. This property can take an
integer value from 0, which corresponds to the map view from 5,000 miles altitude, to 19,
which corresponds to the map view from 30 yards altitude. Please note that not all zoom levels
are available for all locations in the world. However, the maximum zoom level is available for
all U.S. mainland locations.

Using the following definition for the map, you will see the map shown in Figure 10-6:

<virtualEarthMap id="MyMap" latitude="47.7512121212"
longitude="-122.43234" mapStyle="Road"
zoomLevel="0" />

CHAPTER 10 ■ MAPPING WITH ATLAS 259

Figure 10-6. Viewing the map at ZoomLevel 0

6471ch10final.qxd 5/10/06 11:31 PM Page 259

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Changing the ZoomLevel property to 12, as shown here, will produce the map shown in
Figure 10-7:

<virtualEarthMap id="MyMap" latitude="47.7512121212"
longitude="-122.43234" mapStyle="Road"
zoomLevel="12" />

Choosing a Map Type
In addition to setting the location of the map, you can also specify the map type. Three types
are available:

Road: This gives the typical road-type map. All the examples used so far in this chapter
use this type.

Aerial: This gives you a photograph of the location from above.

Hybrid: This gives you a combination of the previous two—an aerial photograph of the
location with roads, names, and locations superimposed on it.

CHAPTER 10 ■ MAPPING WITH ATLAS260

Figure 10-7. Programatically zooming into the map

6471ch10final.qxd 5/10/06 11:31 PM Page 260

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You set the type using the mapStyle property attribute. In all the previous sections of this
chapter, this attribute was set to Road, and as such, all the maps so far in this chapter have
been road maps.

Here’s an example of how to specify an aerial map:

<virtualEarthMap id="MyMap" latitude="47.69"
longitude="-122.08" mapStyle="Aerial"
zoomLevel="16" />

You can see the map in Figure 10-8.

CHAPTER 10 ■ MAPPING WITH ATLAS 261

Figure 10-8. An aerial map of the location from Figure 10-7

6471ch10final.qxd 5/10/06 11:31 PM Page 261

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Specifying this as a hybrid map is also straightforward. Here’s the script:

<virtualEarthMap id="MyMap" latitude="47.69"
longitude="-122.08" mapStyle="Hybrid"
zoomLevel="16" />

You can see the results in Figure 10-9.

CHAPTER 10 ■ MAPPING WITH ATLAS262

Figure 10-9. A hybrid map of the same location

6471ch10final.qxd 5/10/06 11:31 PM Page 262

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Panning to a Location
You can programmatically use the PanTo method of the map control to create a button that,
when clicked, will pan the map to a location specified in longitude and latitude. You cannot
set the zoom level with this method, so you will be panning across the current zoom level.

The following is the Atlas Script that invokes this method. This uses an HTML <input>
control called GoHome on the page.

<button id="GoHome">
<click>
<invokeMethod target="MyMap" method="panTo">
<parameters longitude="-122.08" latitude="47.69" />

</invokeMethod>
</click>
</button>

In Atlas, the button component has a <click> behavior that can be used to invoke a
method on it or on any other named control. In this case, the invokeMethod is configured for
the MyMap control, which is the map control you’ve been using throughout this chapter. The
code specifies the PanTo method, which accepts two parameters (longitude and latitude).
These are specified in the <parameters> child tag as attributes.

Thus, when you click the button, the map will pan to the specified coordinates.

CHAPTER 10 ■ MAPPING WITH ATLAS 263

6471ch10final.qxd 5/10/06 11:31 PM Page 263

http://lib.ommolketab.ir
http//lib.ommolketab.ir

So, when viewing another location—for example, the Kennedy Space Center that you can
see in Figure 10-10—if you click the GoHome button and invoke the PanTo method as speci-
fied earlier, you will be taken directly to the specified coordinates, in this case the coordinates
near Seattle, as shown in Figure 10-11.

CHAPTER 10 ■ MAPPING WITH ATLAS264

Figure 10-10. Viewing the Kennedy Space Center

6471ch10final.qxd 5/10/06 11:31 PM Page 264

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Panning by an Amount
In addition to panning to a particular location, you can also pan relative to the current loca-
tion by a number of pixels. It takes two parameters, deltaX and deltaY, with which you specify
the direction.

CHAPTER 10 ■ MAPPING WITH ATLAS 265

Figure 10-11. The results of calling the PanTo method

6471ch10final.qxd 5/10/06 11:31 PM Page 265

http://lib.ommolketab.ir
http//lib.ommolketab.ir

For deltaX, negative values pan to the left of the map, and positive values pan to the right.
For deltaY, negative values pan toward the bottom of the map, and positive ones pan to

the top.
Here’s the Atlas Script that manages two buttons and invokes this method to pan the map

left or right by 100 pixels each way:

<components>
<virtualEarthMap id="MyMap" latitude="47.7512121212"

longitude="-122.43234" mapStyle="Hybrid"
width="400px" height="400px"
zoomLevel="12" />

<button id="GoLeft">
<click>
<invokeMethod target="MyMap" method="panBy">
<parameters deltaX="-100" deltaY="0" />
</invokeMethod>

</click>
</button>
<button id="GoRight">

<click>
<invokeMethod target="MyMap" method="panBy">
<parameters deltaX="100" deltaY="0" />
</invokeMethod>

</click>
</button>
</components>

Using Pushpins
Maps are all very nice, but without any kind of attribution and labeling, they lose their useful-
ness after a while. Fortunately, Atlas maps support graphical pushpins that allow you to high-
light specific locations on the map.

Figure 10-12 shows an example of a map containing four pushpins.

CHAPTER 10 ■ MAPPING WITH ATLAS266

6471ch10final.qxd 5/10/06 11:31 PM Page 266

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This map uses four pushpins, which are transparent GIFs of a baseball, specified based on
their longitude and latitude.

Here is how you implement this using Atlas Script:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">

<components>
<virtualEarthMap id="MyMap" latitude="48"

longitude="-122" mapStyle="Road"
zoomLevel="9">

<pushpins>
<pushpin id="1" latitude="48" longitude="-122"

imageURL="images/bb.gif" />

CHAPTER 10 ■ MAPPING WITH ATLAS 267

Figure 10-12. A map using pushpins

6471ch10final.qxd 5/10/06 11:31 PM Page 267

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<pushpin id="2" latitude="48.25" longitude="-121"
imageURL="images/bb.gif" />

<pushpin id="3" latitude="47.75" longitude="-121.5"
imageURL="images/bb.gif" />

<pushpin id="4" latitude="48" longitude="-121.75"
imageURL="images/bb.gif" />

</pushpins>
</virtualEarthMap>

</components>
</page>
</script>

In this case, the map contains a child tag, <pushpins>, that contains a list of <pushpin>
tags. Each of these defines a single pushpin.

Defining a pushpin is straightforward—you need only to give it a latitude, a longitude,
and the URL of an image. Then, at render time the specified image will be placed on the map
at the specified location.

Summary
In this chapter, you looked at the Atlas libraries for mapping and how you can use them to
build your own mapping applications. You looked at how to create and invoke an Atlas map
on a page and how you can set its location using latitude and longitude. You looked at how to
zoom in and out of a page programmatically and how to use its object model to move the map
pane from place to place. Finally, you learned how to annotate the map using the built-in
pushpin technology.

With all this in your toolbox, you can now start building your own mapping applications.

CHAPTER 10 ■ MAPPING WITH ATLAS268

6471ch10final.qxd 5/10/06 11:31 PM Page 268

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Building a Sample Application
with ASP.NET and Atlas

Throughout this book, you’ve been exploring the technologies underpinning Atlas, including the
client-side libraries that enable the encapsulation of HTML and JavaScript, the object-oriented
controls, the addition of animation and mapping functionality, and the server-side enabling of
asynchronous update functionality through the use of server-side ASP.NET controls.

In this chapter, you’ll go through, in detail, what it takes to build an application that makes
the most of these features to deliver a real-world application. The application you will build will
be a financial research tool that delivers stock quotes, extended stock information, and some
price history analytics. This is the information that is typically used in technical analysis stock
trading. Stock traders use a number of methodologies to determine a good buying or selling
price of a stock, including fundamental analysis where you look at company fundamentals such
as dividends, profits, earnings per share, gross sales, and more. This is typically a good method-
ology when investing in a company for medium- to long-term investments. Day traders, who are
looking for a quick in and out, typically use technical analyses where they want to look at the
momentum of the stock based on how it has performed in similar situations recently. The clos-
ing price for a stock over time is called the price history, and by applying various mathematical
transforms to it, a day trader can guess where it is going to go. It’s an inexact science, but when
carefully applied, it can be effective.

In this chapter, you’ll be building a Bollinger band–based analysis of price history and
delivering it in an Atlas application. You’ll also see how technical traders use this to determine
potential times to get in and out of a stock. This should not be construed as investment advice;
it is provided for informational use only and as a demonstration of the ASP.NET technology.

Figure 11-1 shows the application.

269

C H A P T E R 1 1

■ ■ ■

6471ch11final.qxd 5/10/06 11:34 PM Page 269

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Understanding the Application Architecture
The application is built as a typical n-tier application comprising a resource tier that contains
the back-end resources. In this case, the resources are the Company Information web service
(courtesy of Flash-db.com) and the Price History web service that provides comma-separated
values (CSV) over HTTP from Yahoo. You can see the architecture in Figure 11-2.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS270

Figure 11-1. An Atlas-based stock application

6471ch11final.qxd 5/10/06 11:35 PM Page 270

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In a multitiered architecture like this, the resource tier is where the information that drives
your service comes from. In many applications, and this one is no exception, the information is
read-only—you are simply presenting the resources to the end user. However, rarely are the raw
resources presented. Some value has to be added to show how you visually present them and also
how you enhance them for presentation using business logic. Many applications blur the distinc-
tion between business logic and presentation logic, but it is important to distinguish these, and
indeed, when using Atlas, the ability to distinguish them becomes a lot easier.

This is because before Ajax and Atlas, a developer would have to make a full-page refresh
whenever the user interacted with the page. Then, with the advent of DHTML, they could make
a decision—for a simple interaction and for a simple business logic, it might be easier not to do
it on the server but instead to do it using a script on the page. For example, if the current price
for the stock is on the page, the current earnings are known to the page, and the user wants to
display the profit/earnings (P/E) ratio (which divides the former by the latter), why not just cal-
culate it using an on-page JavaScript and then render it in a <div> element instead of performing
yet another round-trip to the server and producing a “blink” as the page refreshes?

This can quickly lead to a maintenance nightmare and is a common problem that has
been solved by asynchronous updates. Now, even though in the previous scenario you may

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 271

Figure 11-2. Application logical architecture

6471ch11final.qxd 5/10/06 11:35 PM Page 271

http://lib.ommolketab.ir
http//lib.ommolketab.ir

incur another request to the server, the packet of information will be a lot smaller because you
are just going to update part of the page; the entire page will not “flash” as it refreshes the user
interface with the update.

Beneath the resource tier comes the data retrieval tier. In a clean architecture, this is kept
separate from the logic so that if data sources change, you do not need to get into the business
logic plumbing and rip it out. It should provide a clean interface to the data layer. Visual
Studio 2005 offers you the facility to create a proxy to an existing web service, which you can
use to implement a data retrieval tier. In this application, the Price History web service from
Yahoo provides CSV over HTTP, so you will implement a web service that wraps this function-
ality and can easily be proxied.

The business logic tier is where you add value to your resources through aggregation,
integration, and calculation. For example, in the case of calculating the P/E discussed earlier,
with price information coming from one resource and earnings from another, instead of inte-
grating and calculating these on the page level, you would aggregate the information in the
business logic tier where the function performing the calculation would call the data retrieval
tier to get the information from both resources and then perform the calculation. It would
then provide the resultant information to the presentation tier as a response to the original
request for the P/E analytic.

The presentation tier is typically server-side logic that provides the markup and/or graph-
ics that will get rendered in the browser. This can be anything from a C-based CGI service that
generates raw HTML to an advanced control-based ASP.NET 2.0 server application. In this case,
the example will use a variety of technologies, from ASP.NET controls that will render HTML
that is generated by server-side C# code to advanced graphics functionality that renders the
time series chart (you can see these charts in Figure 11-1).

Finally, what appears to the user is the output of this presentation tier, and it is a docu-
ment that contains HTML, graphics, JavaScript, style sheets, and anything else the browser
needs to render.

As I show how to construct the application, you’ll see each of these tiers in a little more
detail.

Creating the Company Information Pane
Flash-db.com provides several hosted web services free of charge. One of these services is the
excellent Company Information Web service. This provides basic and extended stock price infor-
mation, as well as the name of the company associated with a stock ticker. Accessing this from a
Visual Studio 2005 application is straightforward. The WSDL for the web service is hosted at the
following location:

http://www.flash-db.com/services/ws/companyInfo.wsdl

To create a proxy to this, right-click your project in Solution Explorer, and select Add Web
Reference (see Figure 11-3).

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS272

6471ch11final.qxd 5/10/06 11:35 PM Page 272

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This will present a dialog box in which you specify the WSDL of the service you are refer-
encing (see Figure 11-4).

When you enter a valid WSDL here, the description pane will update with the supported
functions on the web service, as well as the services that are available to this WSDL (multiple
services can be published to a single WSDL). In the Web Reference Name field, you should
enter a friendly name, because this is the name that will be generated for the proxy that talks
to the web service on your behalf.

The Company Information web service is used in the application to present the name of
the company as well as the current price information (see Figure 11-5).

Additionally, when the button to the right of the current price is clicked, some extended
stock price information appears. This demonstrates a partial update of the page. When run-
ning it, you will see that this segment updates without incurring a full-page refresh and
associated “blink.” It also provides a status that the application is loading while the asynchro-
nous update is taking place (see Figure 11-6).

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 273

Figure 11-3. Adding a web reference

6471ch11final.qxd 5/10/06 11:35 PM Page 273

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once the update is complete, the extended price information appears, as shown in
Figure 11-7.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS274

Figure 11-4. Specifying the WSDL

Figure 11-5. The company and current price information

Figure 11-6. The progress messages during the asynchronous update

Figure 11-7. Showing the extended price information

6471ch11final.qxd 5/10/06 11:35 PM Page 274

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The extended price information includes the bid and ask prices. These are, respec-
tively, the current price that is being bid on the stock by prospective buyers and the one
that is being asked for by sellers. When you make a purchase at the current market price,
it will usually be between these two values, provided you are buying a large amount of
shares in the stock. It also provides the opening price for the day, as well as the year’s high
and low. As you can see in Figure 11-7, Microsoft stock was quoted at 26.93, but pressure is
moving it downward (the ask price and the bid price are both lower than this); however, it
is up on its opening price of 26.80.

Now let’s take a look at the code that implements this.
Figure 11-8 shows the ASP.NET web form that contains the server-side controls used to

implement this functionality.

As you can see in Figure 11-8, the application uses two UpdatePanel controls. Each of
these contains a label. Each has an associated UpdateProgress control. The ScriptManager
control on the page has Enable Partial Rendering set to true, meaning that updates to these
UpdatePanel controls will not incur a full-page refresh. Finally, a timer control on the left trig-
gers a timed update to the basic quote information every minute. Listing 11-1 shows the
markup for these controls.

Listing 11-1. Markup for the UpdatePanel Controls

<table width="100%" cellpadding="2" style="border-width: 0">
<tr>
<td style="width: 117px" class="style1">
Stock Ticker

</td>
<td style="width: 133px">
<asp:TextBox ID="TextBox1" runat="server"

OnTextChanged="TextBox1_TextChanged">MSFT
</asp:TextBox>

</td>
<td class="style1" style="width: 289px">

<atlas:UpdatePanel ID="UpdatePanel3" runat="server">
<ContentTemplate>

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 275

Figure 11-8. The ASP.NET designer view of the company information

6471ch11final.qxd 5/10/06 11:35 PM Page 275

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<asp:Label ID="lblQuote" runat="server"
Text="Label" Width="144px">

</asp:Label>
<asp:Button ID="btnMore" runat="server"

Text="..." OnClick="btnMore_Click"
CausesValidation="False" />

</ContentTemplate>
</atlas:UpdatePanel>

<atlas:UpdateProgress runat="server" ID="prog1">
<ProgressTemplate>
Loading...

</ProgressTemplate>
</atlas:UpdateProgress>

<atlas:TimerControl runat="server"
Interval="60000"
ID="quotetimer"
OnTick="quoteTimer_tick" />

</td>
<td class="style1" style="width: 147px">
<atlas:UpdatePanel ID="UpdatePanel4" runat="server">
<ContentTemplate>
<asp:Label ID="lblMoreQuote" runat="server">
</asp:Label>

</ContentTemplate>
</atlas:UpdatePanel>
<atlas:UpdateProgress runat="server" ID="prog2">
<ProgressTemplate>
Loading...

</ProgressTemplate>
</atlas:UpdateProgress>

</td>
</tr>

</table>

The first UpdatePanel control (called UpdatePanel3) contains a Label control and a
Button control. The Label control will contain the company name and current stock price,
as you saw in Figure 11-6 and Figure 11-7. This gets updated whenever you enter a new stock
ticker in the text box, and you’ll see from the markup that this fires an event, called
TextBox1_TextChanged, whenever the text changes.

The code for this event is simple—it calls the DoUpdate() function:

protected void TextBox1_TextChanged(object sender, EventArgs e)
{

DoUpdate();
}

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS276

6471ch11final.qxd 5/10/06 11:35 PM Page 276

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This DoUpdate() function is as follows:

private void DoUpdate()
{

GetCompanyInfo(TextBox1.Text);

lblPH.Text = GetPriceHistoryText(TextBox1.Text);

lblPHGraph.Text = "<img src='PH.aspx?ticker="
+ TextBox1.Text
+ "&days=100' />";

lblAnalyticGraph.Text = "<img src='PHBB.aspx?ticker="
+ TextBox1.Text
+ "&days=100' />";

lblMoreQuote.Text = "";
}

This function updates the company information pane as well as the price history text and
graphs. In what you are exploring here—the company information—the first line is the most
important; it’s a call to the helper function called GetCompanyInfo.

Here’s what this function looks like:

private void GetCompanyInfo(string strTicker)
{

companyInfo.CompanyInfoService svc =
new companyInfo.CompanyInfoService();

companyInfo.CompanyInfoResult rslt =
svc.doCompanyInfo("anything", "anything", strTicker);

lblQuote.Text = rslt.company
+ " Current Price: "
+ rslt.lastPrice;

}

The proxy to the Flash-db.com web service is called companyInfo. An instance of this proxy
is first created, called svc. This exposes an object of type CompanyInfoResult that is used to store
the returned information from the service. The second line creates an instance of this type, called
rslt, into which the results of a doCompanyInfo web method call are loaded. This web method
takes three parameters; the first two are user name and password. The web service is open, so you
can put anything in for the user name and password parameters. The third parameter is the ticker
for which you are seeking the company information.

The company name (rslt.company) is then appended to a string containing text (Current
Price:), which in turn is appended to the last traded price for the stock (rslt.lastPrice). This is
then assigned to the text property of lblQuote.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 277

6471ch11final.qxd 5/10/06 11:35 PM Page 277

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you look back at the markup in Listing 11-1, you’ll see that lblQuote is contained within
the UpdatePanel control’s <ContentTemplate> setting. Because the ScriptManager control has
enabled partial rendering and because the label is within the UpdatePanel control, this enables
the Ajax-style update of the page whenever lblQuote has its text property changed.

You can see that there is no explicit coding for a partial-page update. Everything is handled
under the hood by the Atlas runtime. You concentrate on building your application, and by
wrapping standard ASP.NET controls with an <UpdatePanel>, you can enable the asynchronous
functionality.

You’ll now see what happens when you click the ellipsis button in this page to render the
extended price information.

You can see from the markup that the button is called btnMore and that it has a click
event handler called btnMore_Click. Here’s a snippet from the markup as a reminder:

<asp:Button ID="btnMore" runat="server"
Text="..." OnClick="btnMore_Click"
CausesValidation="False" />

This btnMore_Click event handler looks like this:

protected void btnMore_Click(object sender, EventArgs e)
{

GetExtendedQuote(TextBox1.Text);
}

It simply calls a helper function, passing it the contents of the text box containing the
ticker information entered by the user.

This function looks like this:

private void GetExtendedQuote(string strTicker)
{
companyInfo.CompanyInfoService svc = new
companyInfo.CompanyInfoService();

companyInfo.CompanyInfoResult rslt =
svc.doCompanyInfo("anything", "anything", strTicker);

StringBuilder theHTML = new StringBuilder();
theHTML.Append("<table width='100%' cellspacing='0'

cellpadding='0' style='border-width: 0'>");
theHTML.Append("<tr><td width='40%'>");
theHTML.Append("Bid ");
theHTML.Append("</td><td width='40%'>");
theHTML.Append(rslt.bid);
theHTML.Append("</td></tr>");

theHTML.Append("<tr><td width='40%'>");
theHTML.Append("Ask ");
theHTML.Append("</td><td width='40%'>");
theHTML.Append(rslt.ask);
theHTML.Append("</td></tr>");

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS278

6471ch11final.qxd 5/10/06 11:35 PM Page 278

http://lib.ommolketab.ir
http//lib.ommolketab.ir

theHTML.Append("<tr><td width='40%'>");
theHTML.Append("Open ");
theHTML.Append("</td><td width='40%'>");
theHTML.Append(rslt.open);
theHTML.Append("</td></tr>");

theHTML.Append("<tr><td width='40%'>");
theHTML.Append("Year High ");
theHTML.Append("</td><td width='40%'>");
theHTML.Append(rslt.yearHigh);
theHTML.Append("</td></tr>");

theHTML.Append("<tr><td width='40%'>");
theHTML.Append("Year Low ");
theHTML.Append("</td><td width='40%'>");
theHTML.Append(rslt.yearLow);
theHTML.Append("</td></tr>");

theHTML.Append("</table>");
lblMoreQuote.Text = theHTML.ToString();

}

This function is similar to what you saw earlier. It creates an instance of the proxy to the
Flash-db.com web service and an instance of the object type that contains the results to the
doCompanyInfo() web method call. It then generates HTML for a table using a StringBuilder
control and places this HTML into the Text property of the lblMoreQuote control.

In a similar manner to earlier, because this control is contained within the content tem-
plate of an UpdatePanel control, the refreshing of this information on the page is handled
asynchronously; in addition, because it is using Ajax techniques through the underlying Atlas
mechanisms, the page will not blink as the update is received.

In both cases, an <UpdateProgress> control is used. Here’s an example:

<atlas:UpdateProgress runat="server" ID="prog2">
<ProgressTemplate>
Loading...

</ProgressTemplate>
</atlas:UpdateProgress>

This provides the specification for what is displayed as the asynchronous update is taking
place. It can contain flat text (as in this case) or HTML, so you could, for example, have an ani-
mated GIF showing the progress through a blinking light or similar and then embed that on
the page using an tag within the ProgressTemplate.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 279

6471ch11final.qxd 5/10/06 11:35 PM Page 279

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating the Price History Pane
The price history pane on the page renders the 100-day price history (the closing price for the
stock over the past 100 days) in a simple text table. You can see it in Figure 11-9.

This information is ultimately sourced from Yahoo as CSV over HTTP. This CSV file is
returned from a call to the iFinance server at Yahoo using a URL call like this:

http://ichart.finance.yahoo.com/table.csv?s=MSFT&d=2
&e=4&f=2006&g=d&a=2&b=13&c=1986&ignore=.csv

This returns a CSV file whose format is like this:

Date,Open,High,Low,Close,Volume,Adj. Close*
3-Mar-06,26.81,27.16,26.74,26.93,45218800,26.93
2-Mar-06,27.02,27.10,26.90,26.97,41850300,26.97
1-Mar-06,26.98,27.20,26.95,27.14,53061200,27.14
28-Feb-06,26.95,27.30,26.87,26.87,65036100,26.87

Each data item is separated by a comma, and each line is separated by a carriage return.
To make this data easier to consume by the data retrieval and business logic tiers, a web serv-
ice consumes this HTTP service and exposes it as a structured DataTable. You’ll see this in the
next section.

Creating the Wrapper Web Service
This web service will provide a web method that makes a call to the Yahoo iFinance server on
your behalf, takes the CSV that is returned from it, and serializes it as a DataTable. It is designed
to be consumed by a .NET-based client, so using a DataTable object works nicely. If you want to
expose a web service that is easily interoperable with other platforms, you should serialize the
returned data using straight XML that can be parsed on the client side.

Here is the code for the web method:

[WebMethod]
public DataTable GetFullPriceHistory(string strTicker, int nDays)
{
WebClient client = new WebClient();
StringBuilder strURI = new

StringBuilder("http://ichart.finance.yahoo.com/table.csv?s=");
strURI.Append(strTicker);

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS280

Figure 11-9. The price history pane

6471ch11final.qxd 5/10/06 11:35 PM Page 280

http://lib.ommolketab.ir
http//lib.ommolketab.ir

strURI.Append("&d=1&e=22&f=2006&g=d&a=8&b=28&c=1989&ignore=.csv");
Stream data = client.OpenRead(strURI.ToString());
StreamReader reader = new StreamReader(data);
string s = reader.ReadToEnd();
DataTable theTable = CsvParser.Parse(s);
if (nDays > 0)
{
int i = nDays + 1;
while (theTable.Rows.Count > i)
{
theTable.Rows.RemoveAt(i);

}
}
data.Close();
reader.Close();
return theTable;

}

This makes the connection to the Yahoo server by using an object derived from the
WebClient class. To use this, you use its OpenRead method, which is pointed at a URI. This
returns a stream, which can be read by a StreamReader. The contents of this can be parsed
into a string using a CsvParser abstract helper class.

This helper class provides the parsing functionality that reads the CSV information and
returns it as a DataTable. The download for this book includes a version of this class that was
derived from one published in the excellent blog from Andreas Knab at http://knab.ws/blog/.

The call to the Yahoo iFinance server provides the entire price history for the stock, which
can be thousands of days worth of information. It provides an additional layer that allows you
to crop this data to the specified number of days. It does this by iterating through the
DataTable and removing rows beyond what you are interested in. So if you want to pull
100 days worth of data, you remove all rows beyond number 100.

That’s about it. This web method is present in a web service called DataTier.

Consuming the Web Service
Figure 11-10 shows the design for the price history pane.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 281

Figure 11-10. Designing the price history pane

6471ch11final.qxd 5/10/06 11:35 PM Page 281

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see from Figure 11-10, it contains a simple HTML table that contains the
headers for the table. Then, under this an UpdatePanel control is placed, which contains a
single label. This label will be loaded with the HTML for the rest of the table, as you will see
in a moment. Although it isn’t visible in the designer, this is contained within an ASP.NET
Panel control that allows you to put this in a fixed dimension area with scrollbars that allow
you to scroll through the data. This has two benefits. First, the header fields for the data and
price will not scroll off the screen. Second, if the table has several hundred rows and is not
contained in a scrollable pane like this, then it will dominate the UI, and you will need to
scroll way down in the browser to see the rest of the page content.

You can see it in action using the scrollbars in Figure 11-11.

Let’s take a look at the markup that is used to implement this:

<li id="PHItem">
<div id="PHDiv">
<table cellspacing='0' cellpadding='0'

class='style1' style='border-width: 0'>
<tr class='style2'>
<td style='background-color: #1077ad; '

width="100px">
Date</td>

<td style='background-color: #1077ad; '
width="100px">
Price</td>

</tr>
</table>
</div>
<div id="PHContents">
<atlas:UpdatePanel ID="THTextPanel" runat="server">
<ContentTemplate>
<asp:Panel ID="Panel1" runat="Server"

ScrollBars="auto" Width="200px"
Height="100px">

<asp:Label ID="lblPH" runat="server" Text=""></asp:Label>
</asp:Panel>
</ContentTemplate>
</atlas:UpdatePanel>

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS282

Figure 11-11. The price history text pane in action with a scrollbar

6471ch11final.qxd 5/10/06 11:35 PM Page 282

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<atlas:UpdateProgress runat="server" ID="Prog3">
<ProgressTemplate>
Loading...

</ProgressTemplate>
</atlas:UpdateProgress>
</div>

At the top of this listing you can see the table that contains the header cells. This is
implemented as a separate table so that it doesn’t scroll off the screen when you scroll
through the data, effectively locking the titles. At the top is an tag, indicating this is
an item in an HTML list. This is used for drag-and-drop functionality, which you will see
later in the “Using Atlas Client Controls for an Enhanced UI” section.

Further down in the markup you can see the UpdatePanel control that contains two
controls in its content template. These are an <asp:Panel> control and an <asp:Label> control
called lblPH. The latter is contained within the former, meaning that the panel creates the scroll
pane area for the contents of the label. You can see that the panel is specified as being 200 pix-
els wide and 100 pixels high. Anything that appears outside this will generate scrollbars on the
panel.

Earlier, when looking at the company and extended quote information, you saw a func-
tion called DoUpdate. Let’s look at this function again:

private void DoUpdate()
{
lblPH.Text = GetPriceHistoryText(TextBox1.Text);

GetCompanyInfo(TextBox1.Text);

lblPHGraph.Text =
"";

lblAnalyticGraph.Text =
"";

lblMoreQuote.Text = "";
}

The first line sets the value of lblPH. Setting this value triggers the partial update because
this control is embedded within the content template of the UpdatePanel control.

So when the user enters a new ticker and changes the contents of the text box, this function
is called. The new value for lblPH.Text is then set to the response from GetPriceHistoryText when
the value of the text box is passed to it.

Let’s take a look at this function and see what it does:

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 283

6471ch11final.qxd 5/10/06 11:35 PM Page 283

http://lib.ommolketab.ir
http//lib.ommolketab.ir

private String GetPriceHistoryText(string strTicker)
{
DataTier theData = new DataTier();
DataTable theTable =
theData.GetFullPriceHistory(strTicker, 300);

StringBuilder theHTML = new StringBuilder();
theHTML.Append("<table>");
int nRows = theTable.Rows.Count;
for (int i = 1; i < nRows; i++)
{
theHTML.Append("<tr><td width='100px'>");
theHTML.Append(theTable.Rows[i].ItemArray[0].ToString());
theHTML.Append("</td><td width='100px'>");
theHTML.Append(theTable.Rows[i].ItemArray[1].ToString());
theHTML.Append("</td></tr>");

}
theHTML.Append("</table>");
return theHTML.ToString();

}

At the top of the function, you can see where it creates a reference to the web service that
wraps the Yahoo CSV service. It calls this, passing it the ticker and the value 300 and thus get-
ting back a DataTable containing 300 days worth of data.

It then iterates through this DataTable and generates the HTML markup for a two-column
table with 300 rows. Each row contains a day’s worth of data with the date in the first column
and the value in the second. These are derived from the ItemArray exposed by the Rows col-
lection of a DataTable. It is zero-based, so the first column’s contents are in .ItemArray[0], the
next are in .ItemArray[1], and so on.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS284

6471ch11final.qxd 5/10/06 11:35 PM Page 284

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Generating the Price History Graph
You are no doubt familiar with seeing price history graphs on business TV shows on CNN or
the Bloomberg channel. Figure 11-12, Figure 11-13, and Figure 11-14 show the price history
charts for companies such as Microsoft (MSFT), Google (GOOG), and Starbucks (SBUX),
respectively.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 285

Figure 11-12. 300-day price history for MSFT

Figure 11-13. 300-day price history for GOOG

6471ch11final.qxd 5/10/06 11:35 PM Page 285

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These charts are useful in determining where a stock is going, what its recent trend is,
and what its long-time trend is. Many stocks move between high and low values in what
sometimes looks as a sine wave, and this is typically called its trading envelope. This is
apparent in Figure 11-12, which shows a cycle from 26 to 28. It indicates that March 2006
may be a good time to purchase the stock because it is at the lower end of the trading enve-
lope. This is no guarantee that the stock will not break from the trading envelope and fall
far below 26. Also, typically when a stock breaks from its trading envelope, it tends to move
quickly outside the trading range, which can lead to it rocketing either upward or down-
ward. A more reliable methodology for using price history analysis is to use the Bollinger
band method, which you will see in the “Generating Analytics” section later.

But, back to the technology—how is this implemented?
The resource and data retrieval tiers are the same as for the text-based price history pane

you saw previously. If you’ve skipped ahead to see how the pretty pictures are drawn, it’s a
good idea to return to the “Creating the Price History Pane” section, which describes the
DataTier web service and how you can use it to retrieve the price history of a stock.

To implement the charts, the example uses the ZedGraph open source library.

Using the ZedGraph Library Charting Engine
ZedGraph (http://zedgraph.org) is an open source set of classes, written in C#, that enable
the creation of various 2D graphs of arbitrary datasets. Because the set is class-based, it has
a high degree of programmatic flexibility, and you can modify almost every aspect of a graph
including features such as scale ranges, scale types, step sizes, and so on, to be overridden
from their defaults. It also allows for multirange, multitype, multiaxis graphs to be overlaid
in a single chart. See Figure 11-15 for an example of a single chart that includes stacked bars,
transparent overlays, and filled lines. It also includes legends and annotations.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS286

Figure 11-14. 300-day price history for SBUX

6471ch11final.qxd 5/10/06 11:35 PM Page 286

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As such, ZedGraph makes an excellent choice for use in an Atlas-based project and is easy
to implement in your applications. You simply make a reference to the ZedGraph.DLL in your
solution and add the ZedGraph tools to your Toolbox in the standard way.

Drawing the Price History Graph with ZedGraph
To implement the price history graph, you can use a new web form. The download contains
the web form in a file called PH.aspx. This web form contains a single ZedGraph control.

When you place a ZedGraph control from your Toolbox onto a Web form, it draws the
default chart you saw in Figure 11-15. You can see the PH.aspx page in the web form designer
in Figure 11-16.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 287

Figure 11-15. Sample ZedGraph chart

Figure 11-16. Placing the ZedGraph on a web form

6471ch11final.qxd 5/10/06 11:35 PM Page 287

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The ZedGraph fires an event upon rendering, which occurs when the page is loaded or
refreshed. This event is called RenderGraph.

In this case, the page is going to take two parameters, one for the ticker of the stock to be
rendered and the other for the number of days to render. These will be used to make a call to
the DataTier web service to get the DataTable back. The DataTable will then load the graph
with the appropriate data.

Listing 11-2 shows the full code for the ZedGraphWeb1_RenderGraph event handler.

Listing 11-2. Rendering the Graph

protected void ZedGraphWeb1_RenderGraph(
System.Drawing.Graphics g, ZedGraph.MasterPane mPane)

{
int nDays = 0;
int nRows = 0;
GraphPane pane = mPane[0];
PointPairList pt = new PointPairList();
double nx;
double ny;

string days = (string)Page.Request.Params["days"];
string ticker = (string)Page.Request.Params["ticker"];

if (ticker != null)
{
ticker = ticker.Trim();
DataTier theDataTier = new DataTier();
if (days == null)
nDays = 0;

else
nDays = Convert.ToInt32(days);

DataTable dtTable =
theDataTier.GetFullPriceHistory(ticker,nDays);

nRows = dtTable.Rows.Count;

for (int i = 1; i < nRows; i++)
{
ny = Convert.ToDouble(dtTable.Rows[i].ItemArray[1]);
XDate tmpDate = new XDate(
Convert.ToDateTime(dtTable.Rows[i].ItemArray[0]));

nx = (double)tmpDate;
pt.Add(nx, ny);

}

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS288

6471ch11final.qxd 5/10/06 11:35 PM Page 288

http://lib.ommolketab.ir
http//lib.ommolketab.ir

pane.XAxis.Type = AxisType.Date;
pane.XAxis.GridDashOff = 0;
LineItem priceCurve = pane.AddCurve(
"Closing Price", pt, Color.SlateBlue,
SymbolType.None);

priceCurve.Line.Width = 2.0F;
pane.AxisFill = new Fill(Color.White, Color.AntiqueWhite);
pane.XAxis.MinGrace = 0;
pane.XAxis.MaxGrace = 0;
pane.YAxis.MinGrace = 0;
pane.YAxis.MaxGrace = 0;
pane.AxisChange(g);

}
}

This event handler takes two parameters. The first is the base System.Drawing.Graphics
object. To render the graph, right at the bottom of the event handler, the System.Drawing.
Graphics object is passed to the AxisChange method of a ZedGraph pane to refresh and
redraw the graph. The second parameter is a reference to the ZedGraph master pane, which
is the collection of drawing surfaces that the ZedGraph exposes. Check out the ZedGraph doc-
umentation for information about how to use the panes to create different drawing surfaces.
This graph will be a simple line chart that uses only one pane, which is the one at the zero
index of this collection.

You refer to the pane with this line:

GraphPane pane = mPane[0];

The subsequent graphical operations will then be performed on this pane object.
To draw a line curve, it is a good idea to use the PointPairList collection that the ZedGraph

library gives you. This allows you to create a single collection of data items that correspond to
the X and Y values of a chart. The PointPairList supports many data types, including dates, so
is perfect for the example’s needs.

Once the input parameters (ticker and days) have been read in and sanitized, the DataTier
service is called to return a DataTable containing the results of the query for that stock and the
number of days of price history you want for it.

You then iterate through the DataTable and pull this information out like this:

for (int i = 1; i < nRows; i++)
{
ny = Convert.ToDouble(dtTable.Rows[i].ItemArray[1]);
XDate tmpDate = new XDate(
Convert.ToDateTime(dtTable.Rows[i].ItemArray[0]));

nx = (double)tmpDate;
pt.Add(nx, ny);

}

The closing price for the stock should go on the Y axis, so it comes from .ItemArray[1]
and is converted to a Double value. The original source from Yahoo, and the column on the
DataTable, encodes the value as a string. This is retrieved and loaded into the ny variable.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 289

6471ch11final.qxd 5/10/06 11:35 PM Page 289

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The date for the closing price should go onto the X axis. This uses the XDate class (also
part of the ZedGraph library), which is the data type used by ZedGraph to store dates in a
chart and automatically generate axes from them. When using a PointPairList, you encode
the XDate into a Double. You can see this being encoded in the variable nx.

Finally, you add the values for nx and ny to the PointPairList (called pt).
To finalize drawing the chart, you load the PointPairList, set the visual configuration of

the chart, and trigger the AxisChange method, which refreshes it. First set the XAxis to be
date encoded so that it recognizes the Doubles as dates:

pane.XAxis.Type = AxisType.Date;

Then load the PointPairList onto the chart. You do this using the AddCurve method of the
pane. This method takes four parameters. The first is a string with the name of the data range.
In this case, it is Closing Price. If you were superimposing data ranges on the chart (as in
Figure 11-15), you would give them their distinct names here. The second parameter is the
PointPairList. The third is the color for this range, which in this case is Color.SlateBlue, and
the final parameter is the SymbolType used to indicate a point on the line. If you refer to
Figure 11-15, you will see that some points are indicated with triangles or diamonds. You
would specify these here. Because the graph has a lot of points, these would cause it to look
cluttered, so you won’t use a symbol type for this example.

LineItem priceCurve =
pane.AddCurve("Closing Price", pt,
Color.SlateBlue, SymbolType.None);

Next set the line width to 2 pixels to make the chart stand out a little more clearly, and fill
the background for the pane with a graded fill between white and antique white:

priceCurve.Line.Width = 2.0F;
pane.AxisFill = new Fill(Color.White, Color.AntiqueWhite);

Finally, call the AxisChange event to render the graph:

pane.AxisChange(g);

This will draw the graph to the web form. Figure 11-17 shows this in action for the stock
ticker SBUX with no date specified, thus showing the entire price history that Yahoo offers,
going back to 1992.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS290

6471ch11final.qxd 5/10/06 11:35 PM Page 290

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Integrating with the Atlas Form
Integrating this with the Atlas-based web form you saw earlier and enabling it for asynchro-
nous updates, Ajax style, is easy.

Figure 11-18 shows the designer for the web form.

The UpdatePanel control contains a label, which is a server-side control that allows you to
set its contents. You will be setting it to be an tag and pointing the image source at the
PH.aspx page so that it will return the graphic into the pane wrapped by the UpdatePanel con-
trol, thus achieving an asynchronous update.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 291

Figure 11-17. The price history form in action

Figure 11-18. The price history graph designer

6471ch11final.qxd 5/10/06 11:35 PM Page 291

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here’s the markup:

<li id="PHGraph">
<div id="PHGraphDiv">
<table width="400px" cellspacing="0"

cellpadding="0" style="border-width: 0">
<tr>
<td style="background-color: #1077AD">

Price History Graph

</td>
</tr>
<tr>
<td>
<atlas:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
<asp:Label ID="lblPHGraph"

runat="server"
Text="Label">

</asp:Label>
</ContentTemplate>

</atlas:UpdatePanel>
<atlas:UpdateProgress runat="server" ID="Prog4">
<ProgressTemplate>
Loading...

</ProgressTemplate>
</atlas:UpdateProgress>

</td>
</tr>
</table>

</div>

The tag denotes this section as being part of an HTML list. The drag-and-drop mech-
anism, which I’ll discuss later in the “Using Atlas Client Controls for an Enhanced UI” section,
uses this.

The markup defines a table with a header row containing the text Price History Graph and
a second row containing the graph itself. The graph is implemented using a Label control,
which is contained within the content template of an UpdatePanel control. The UpdatePanel
control is contained within a <td> element, putting it within a cell in the table. The name of
this Label control is lblPHGraph.

As you probably remember, the entire page update is triggered by the user changing the con-
tents of the text box to select a new stock ticker. This calls the DoUpdate() function on the server.

Within this function, you’ll find this line of C# code:

lblPHGraph.Text = "<img src='PH.aspx?ticker="
+ TextBox1.Text +
"&days=100' />";

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS292

6471ch11final.qxd 5/10/06 11:35 PM Page 292

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This sets the text of the label to contain the HTML markup for an image. The image uses
the src attribute to call PH.aspx, and it passes the ticker that had been entered in the text box
and the days=100 parameter to call for a 100-day price history graph. By setting it this way, the
contents of the UpdatePanel change, which triggers an asynchronous update on the page.
This update rerenders the image, providing a new chart. And of course it all happens with
an Ajax-style asynchrony.

You can see it in action in Figure 11-19.

Generating an Analytics Graph
A methodology for determining good buy and sell prices for a stock comes from a technical
analysis of the stock’s trading envelope through the use of Bollinger bands. These bands are
based on a calculation of the moving average of the stock—the moving average being the aver-
age price of the stock over a number of periods preceding the current one. For example, a
30-day moving average on any day is the average of closing prices for the stock over the previ-
ous 30-day period. Thus, today’s average will be slightly different from yesterday’s, which is
slightly different from the day before; hence, it is called a moving average.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 293

Figure 11-19. Price history integrated with the Atlas page

6471ch11final.qxd 5/10/06 11:35 PM Page 293

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Bollinger bands are calculated from this value, with the “upper” band being the average
over the preceding period plus two times the standard deviation and the “lower” band being
the average over the preceding period minus two times the standard deviation. Figure 11-20,
Figure 11-21, and Figure 11-22 show the price history overlaid with Bollinger bands for MSFT,
GOOG, and SBUX.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS294

Figure 11-20. Bollinger bands for MSFT over 150 days

Figure 11-21. Bollinger bands for GOOG over 150 days

6471ch11final.qxd 5/10/06 11:35 PM Page 294

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These bands are sometimes used to predict the value of a stock based on a projection of
its future value based on its past behavior. A typical rule is to buy the stock when it penetrates
the lower band moving upward or when it “bounces off” the lower band, and to sell it when it
penetrates the upper band moving downward or when it bounces off the upper band.

Consider Figure 11-20; if a trader were using this technique, they would have bought MSFT
stock in October 2005 at about 24 per share when it penetrated the lower line moving upward
and would have sold it when it hit the top line about four weeks later at 25.50. More aggressive
traders may have waited until the reverse trailing upper line caught up with the stock (this is
called momentum tracking) and then sold it in mid-November at the point where it bounced
off the upper line moving downward, selling at around 28 and making a nice profit.

It’s a useful methodology for assessing the value of a stock, and as such this application
includes a Bollinger band graph.

Implementation-wise it is identical to that used for the price history graph. A web form
called PHBB.aspx hosts a ZedGraph control. This form accepts the stock ticker and number of
days parameters in the same manner as earlier. Instead of adding a single curve to the chart,
you add three curves: the price history, the upper Bollinger band, and the lower Bollinger
band. Listing 11-3 shows the code to do all this.

Listing 11-3. Generating Bollinger Band Analytics

int nDays = 0;
int nRows = 0;
GraphPane pane = mPane[0];

string days = (string)Page.Request.Params["days"];
string ticker = (string)Page.Request.Params["ticker"];

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 295

Figure 11-22. Bollinger bands for SBUX over 150 days

6471ch11final.qxd 5/10/06 11:35 PM Page 295

http://lib.ommolketab.ir
http//lib.ommolketab.ir

if (ticker != null)
{
ticker = ticker.Trim();
DataTier theDataTier = new DataTier();
if (days == null)
nDays = 0;

else
nDays = Convert.ToInt32(days);

DataTable dtTable = theDataTier.GetFullPriceHistory(ticker, nDays);
nRows = dtTable.Rows.Count;
double[] nx = new double[nRows-1];
double[] ny = new double[nRows-1];
double[] bbh = new double[nRows-1];
double[] bbl = new double[nRows-1];
double[] pht = new double[20];
int nIndex = 0;
for (int i = nRows-1; i > 0; i--)
{
ny[nIndex] = Convert.ToDouble(dtTable.Rows[i].ItemArray[1]);
XDate tmpDate = new

XDate(Convert.ToDateTime(dtTable.Rows[i].ItemArray[0]));
nx[nIndex] = (double)tmpDate;
if (nIndex > 20)
{
int x = 0;
for (int n = nIndex - 20; n < nIndex; n++)
{
pht[x] = ny[n];
x++;

}
bbh[nIndex] = GetAverage(pht)

+ (2 * GetStandardDeviation(pht));
bbl[nIndex] = GetAverage(pht)

- (2 * GetStandardDeviation(pht));

}
else
{
bbh[nIndex] = ny[nIndex];
bbl[nIndex] = ny[nIndex];

}
nIndex++;

}
pane.XAxis.Type = AxisType.Date;
pane.XAxis.GridDashOff = 0;
pane.AddCurve("Closing Price", nx,

ny, Color.SlateBlue, SymbolType.None);

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS296

6471ch11final.qxd 5/10/06 11:35 PM Page 296

http://lib.ommolketab.ir
http//lib.ommolketab.ir

pane.AddCurve("High BB", nx,
bbh, Color.Red, SymbolType.None);

pane.AddCurve("Low BB", nx,
bbl, Color.Red, SymbolType.None);

pane.AxisFill = new Fill(Color.White, Color.AntiqueWhite);
Axis.Default.MinGrace = 0;
Axis.Default.MaxGrace = 0;
pane.AxisChange(g);

The GetAverage and GetStandardDeviation helper functions that the application uses are
as follows:

public double GetAverage(double[] num)
{
double sum = 0.0;
for (int i = 0; i < num.Length; i++)
{
sum += num[i];

}
double avg = sum / System.Convert.ToDouble(num.Length);

return avg;
}

public double GetStandardDeviation(double[] num)
{
double Sum = 0.0, SumOfSqrs = 0.0;
for (int i = 0; i < num.Length; i++)
{
Sum += num[i];
SumOfSqrs += Math.Pow(num[i], 2);

}
double topSum = (num.Length * SumOfSqrs) - (Math.Pow(Sum, 2));
double n = (double)num.Length;
return Math.Sqrt(topSum / (n * (n - 1)));

}

To integrate this with the Atlas-based form, allowing for asynchronous updates,
the process is the same as you saw for the price history graph. A Label control (called
lblAnalyticGraph) is embedded within an UpdatePanel control. When the user types a new
ticker value into the text box, the DoUpdate() function is called on the server side. This func-
tion contains the following C# code:

lblAnalyticGraph.Text =
"<img src='PHBB.aspx?ticker="
+ TextBox1.Text
+ "&days=100' />";

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 297

6471ch11final.qxd 5/10/06 11:35 PM Page 297

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This changes the text for the label, which triggers the asynchronous update. The text, in
the same way as earlier, is an HTML tag, pointing the image source at the PHBB.aspx
page to generate the graphic. This gives an asynchronous update to the Bollinger bands chart.
You can see it in action in Figure 11-23.

Using Atlas Client Controls for an Enhanced UI
This application implements some Atlas client controls and associated behaviors to empower
a drag-and-drop functionality. Figure 11-24 shows the price history graph being dragged over
the Bollinger band analytics graph. You can drag and drop the three panes (the two graphs
plus the price history text pane) around the page and arrange them vertically.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS298

Figure 11-23. The Bollinger bands chart in action

6471ch11final.qxd 5/10/06 11:35 PM Page 298

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can see that while you are dragging one item over the other, the dragged item
becomes partially transparent. All this functionality is provided in the Atlas libraries. You’ll
see how it is done as you dissect the code.

First, let’s look at the Atlas Script that is on this page:

<script type="text/xml-script">
<page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
<components>
<control id="MasterList">
<behaviors>
<dragDropList dataType="HTML"

acceptedDataTypes="'HTML'"
dragMode="Move">

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 299

Figure 11-24. Dragging one chart over the other

6471ch11final.qxd 5/10/06 11:35 PM Page 299

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<dropCueTemplate>
<template layoutElement="dropCueTemplate" />

</dropCueTemplate>
</dragDropList>

</behaviors>
</control>

<control id="PHItem">
<behaviors>
<draggableListItem handle="PHDiv" />

</behaviors>
</control>

<control id="PHGraph">
<behaviors>
<draggableListItem handle="PHGraphDiv" />

</behaviors>
</control>

<control id="PHAnalytic">
<behaviors>
<draggableListItem handle="PHAnalyticDiv" />

</behaviors>
</control>

</components>

</page>
</script>

When using Atlas Script, you define controls, behaviors, and actions using an XML docu-
ment. You can see a lot more detail about it in Chapter 5.

This script defines four Atlas controls. Each control is associated with an underlying
HTML element.

The first—MasterList—is an HTML list element. Each of the three panes is defined
within a list element (tag). This allows the panes to be dragged and dropped and locked
into portions of the page. It’s a three-item HTML list, and when you drag and drop the items,
you simply rearrange how the elements are represented on the list.

You associate the <dragdropList> behavior with this element to turn it into a list where
the items can be rearranged using drag and drop. The Atlas Script that provides this is as
follows:

<dragDropList dataType="HTML"
acceptedDataTypes="'HTML'"
dragMode="Move">

<dropCueTemplate>
<template layoutElement="dropCueTemplate" />

</dropCueTemplate>
</dragDropList>

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS300

6471ch11final.qxd 5/10/06 11:35 PM Page 300

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This defines the behavior and specifies it as having an HTML type, accepting HTML data
being dropped on it. It also specifies a dropCuetemplate, which points at a page element that
will render status and debug information while you are dragging an element around the page.
You can see the dropCueTemplate in action in Figure 11-25.

Each of the three panes is a list item (tag), and each one contains a table header,
implemented as an HTML table contained within a <div> element. If you look at the Atlas
Script, the list item is associated with a control, and the <div> element wrapping the corre-
sponding table header within the list item is given the handle of a draggableListItem.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 301

Figure 11-25. Using the dropCueTemplate to provide debugging information

6471ch11final.qxd 5/10/06 11:35 PM Page 301

http://lib.ommolketab.ir
http//lib.ommolketab.ir

So if you look at the following HTML:

<li id="PHItem">
<div id="PHDiv">
<table cellspacing='0' cellpadding='0'

class='style1' style='border-width: 0'>
<tr class='style2'>
<td style='background-color: #1077ad; ' width="100px">Date</td>
<td style='background-color: #1077ad; ' width="100px">Price</td>

</tr>
</table>

</div>
<div id="PHContents">
<atlas:UpdatePanel ID="THTextPanel" runat="server">
<ContentTemplate>
<asp:Panel ID="Panel1" runat="Server"

ScrollBars="auto" Width="200px"
Height="100px">

<asp:Label ID="lblPH" runat="server" Text="">
</asp:Label>

</asp:Panel>
</ContentTemplate>
</atlas:UpdatePanel>
<atlas:UpdateProgress runat="server" ID="Prog3">
<ProgressTemplate>
Loading...

</ProgressTemplate>
</atlas:UpdateProgress>

</div>

and then examine the Atlas Script associated with it:

<control id="PHItem">
<behaviors>
<draggableListItem handle="PHDiv" />

</behaviors>
</control>

you can see that the control gets mapped to the list item containing the entire table. The title
for the table or graph is then assigned as the handle for the <draggableListItem> behavior.
Thus, when you hold the mouse down on the title bar of any of the controls, you’ll be able to
drag them around the screen as you saw earlier. When you drop them, they will “snap” into
place in the nearest available slot on the list. Thus, when you drag one control over another
and drop it, it will snap into place either above or below the control depending on where the
mouse was when you released the mouse button.

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS302

6471ch11final.qxd 5/10/06 11:35 PM Page 302

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary
This chapter covered a typical real-world ASP.NET application and showed how you could
drastically enhance it using the Atlas server and client libraries. It demonstrated a full n-tier
architecture, with diverse resource tiers exposed via web services; a data retrieval layer that
abstracted the complexity of talking to the resources; a business logic tier that applied busi-
ness logic such as the calculation of financial analytics; and a presentation tier that
implemented the presentation logic. The code that was written to implement this func-
tionality was straight ASP.NET and C#.

You then enhanced this application using Atlas server-side controls. You used
UpdatePanel controls throughout to wrap the different page panes that get updated to provide
partial asynchronous page updates. A button on the page provided a drill down into some
more advanced data, and this demonstrated how you could add an update to the page with-
out triggering a full-page refresh and the associated “blink.”

The example showed how to embed graphics—generated using a third-party control, the
open source ZedGraph—within the page by hosting them on external pages and generating
the HTML markup that would reference them on the main page. This HTML was embedded
within an UpdatePanel, so again it didn’t cause a full-page refresh when the graphic was
downloaded and rendered on the page.

The example implemented two graphics: the first was a basic line graph containing the
price history of the stock, and the second was a compound line graph containing three lines
(the price history, the lower Bollinger band, and the upper Bollinger band).

Finally, you added some Atlas Script to the page that provided some typical Web 2.0 func-
tionality where the user can set their preferences for the page by dragging and dropping its
contents into their preferred layout.

With that, this book is now complete. I hope you have enjoyed learning about the
Foundations of Atlas, including the tour of the philosophy of developing Ajax-style applica-
tions and the unique and powerful approach to this that ASP.NET Atlas gives you. You looked
through how JavaScript has become object oriented when using Atlas client libraries; how to
use Atlas Script, an XML variant that allows for powerful page-level functions to be declara-
tively developed; how to use server-side controls that empower asynchronous functionality
with as little intrusion on your existing code as possible; and how to use the various value-
added libraries that Atlas give you for UI glitz, animation, and mapping. Finally, in this
chapter you looked at a real-world application and how you would implement it as an Ajax
application quickly, simply, and powerfully using Atlas.

Welcome to the world of Web 2.0!

CHAPTER 11 ■ BUILDING A SAMPLE APPLICATION WITH ASP.NET AND ATLAS 303

6471ch11final.qxd 5/10/06 11:35 PM Page 303

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6471ch11final.qxd 5/10/06 11:35 PM Page 304

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■Symbols
.NET Framework, 7

■A
accessKey property

Button control, 60
HyperLink control, 65
Image control, 64
InputControl control, 61
Label control, 58
Select control, 68
TextBox control, 62
UI control, 57

actions, 77
ActiveX

DLL Hell, 6
security issues, 6

Add method
DataTable control, 200

addCSSClass method
Button control, 59
HyperLink control, 65
Image control, 63
InputControl control, 61
ItemView control, 203
Label control, 58
ListView control, 205
Select control, 68
TextBox control, 62
UI control, 56

addItem method
ListView control, 205

aerial map type
VirtualEarthMap control, 260

Ajax
Atlas, introduction to, 17
introduction, 1, 9
simple example, 12–15
using with Visual Studio 2005, 12
web user interfaces, 24–25
XMLHttpRequest object, 10–11

alternateText property
Image control, 64

alternatingItemCssClass property
ListView control, 204

argument property
Button control, 60

<asp:GridView>tags, 171

ASP.NET 2.0 and server controls, 17–21
<asp:Label> tags, 283
<asp:Panel> tags, 283
associatedElement property

Button control, 60
HyperLink control, 65
Image control, 64
InputControl control, 61
ItemView control, 201
Label control, 58
ListView control, 203
Select control, 68
TextBox control, 62
UI control, 57

Asynchronous Java and XML. See Ajax.
Atlas

Atlas-based stock application, 269–303
client-side controls, 53, 77

basic example, 53–56
data binding with custom transform,

95–99
data binding with transform, 92–95
drag-and-drop behaviors, 119–121
JavaScript custom binding, 100–103
manipulating directly, 87–91
manipulating using CSS, 77–86
text validation, 103–111
using click behavior, 111–113
using mouse hover behavior, 113–115
using pop-up behavior when hovering

over element, 116–119
context of, 1
creating web site in Visual Studio 2005,

125
data binding, 197

DataSource control, 212–230
getting started, 205–212
Sys.Data controls, 198–201
Sys.UI.Data controls, 201–205

frameworks, 91
introduction, 17
mapping, 249

functionality in action, 249
getting started, 250–255
programming map control, 257–266
pushpins, 266–268

server controls, 125
See also individual controls.
adding to Visual Studio 2005, 125–128

Index

305

6471idxfinal.qxd 5/10/06 10:55 PM Page 305

http://lib.ommolketab.ir
http//lib.ommolketab.ir

UI client controls, 56
Button control, 59–60
CheckBox control, 66–67
HyperLink control, 64–66
Image control, 63–64
InputControl control, 60–61
Label control, 57–59
Select control, 67–69
TextBox control, 62–63
UI control, 56–57

using JavaScript
Accessing server resources, 48–51
creating Atlas application, 33–42
implementing interfaces, 46–48
inheritance, 44–46
namespaces, 43–44

Wiki application, 180–196
Atlas application using JavaScript, 33

adding custom JavaScript class, 35, 37
coding and running application, 41–42
using ScriptManager to deliver custom

JavaScript class, 37–40
Atlas architecture, 22–23

Atlas behaviors, 30–31
Atlas client script library, 23
creating Atlas components, 28–30
JSON format, 24
web user interfaces, 24–25

data binding, 25–28
Atlas behaviors, 30–31
Atlas client script library, 22–23
Atlas controls

Microsoft.Web.UI namespace, 128
Microsoft.Web.UI.Controls namespace,

128
Atlas Script, 53

client controls framework, 91
data binding client-side controls with a

transform, 92–94
manipulating client-side controls directly,

89–91
manipulating client-side controls using

CSS, 83–84
using data binding to map select box to

panel, 84–85
using method invocation to map button

box to cursor, 85–86
mapping pushpins, 267–268
setting opacity levels, 231
using, 69–75

Atlas-based stock application, 269
architecture, 270–272
company Information Web service,

272–279
generating analytics graph, 293–298
generating Price History graph, 285–286

integrating with Atlas form, 291–293
ZedGraph library charting engine,

286–290
Price History pane, 280

consuming web service, 281–284
wrapper web service, 280–281

using Atlas client controls for enhanced
UI, 298–302

<atlas:ControlEventTrigger> tags, 145, 173
<atlas:ControlValueTrigger> tags, 145–146
<atlas:ScriptReference> tags, 131
<atlas:ServiceReference> tags, 132
<atlas:UpdatePanel> tags, 179
<atlas:UpdateProgress> tags, 146
Atlas.js

Web.IDisposable interface, 44
AtlasUIDragDrop control, 140
AtlasUIDragDrop library

referencing, 118, 232
AtlasUIGlitz library, 231

discrete animations, 244–247
fade animations, 234–238
layout behaviors, 233–234
length animations, 238–241
number animations, 241–244
opacity, 231–233

AuthenticationService class, 185
autoComplete behavior, 209
AutoCompleteExtender control

introducing, 147–148
AutoCompleteProperties control, 147–148
automatic property

<binding> tags, 90

■B
Behavior class, 192
behaviors, 77

affecting opacity when mouse hovers,
231–233

behaviors property
Button control, 60
HyperLink control, 65
Image control, 64
InputControl control, 61
ItemView control, 202
Label control, 58
ListView control, 203
Select control, 68
TextBox control, 62
UI control, 57

<behaviors> tags, 113
BindingDirection enumeration, 95
<binding> tags, 90

initializing, 102
properties, 90, 93

■INDEX306

6471idxfinal.qxd 5/10/06 10:55 PM Page 306

http://lib.ommolketab.ir
http//lib.ommolketab.ir

bindings property
Button control, 60
DataSource control, 198
DataView control, 199
HyperLink control, 65
Image control, 64
InputControl control, 61
Label control, 58
ListView control, 201, 203
Select control, 68
TextBox control, 62
UI control, 57

<bindings> tags, 84, 90
Browser attribute

<atlas:ScriptReference> tags, 131
Button control, 55, 59, 79, 81, 276

events, 60
methods, 59
properties, 59

<button> tags, 86

■C
Calendar control

using to generate HTML, 20
canMoveNext property

ItemView control, 202
ListView control, 204

canMovePrevious property
ItemView control, 202
ListView control, 204

CGI (Common Gateway Interface)
development of web application

technology, 5
<checkBox> tags, 94
Clear method

DataTable control, 200
click event

Button control, 60
HyperLink control, 66

<click> tags, 74, 86, 91, 113, 238
<clickBehavior> tags, 113
client-side controls, 53, 77

See also individual controls.
data binding with a transform, 92

using Atlas Script, 92–94
using JavaScript, 94–95

data binding with custom transform,
95–99

drag-and-drop behaviors, 119–121
example, 53–56
manipulating directly, 87

using Atlas Script, 89–91
using JavaScript, 87–88

manipulating using CSS, 77
using Atlas Script, 83–86
using JavaScript, 78–83

text validation
checking for types and ranges, 106–109
required fields, 103–105

using
click behavior, 111–113
mouse hover behavior, 113–115
pop-up behavior when hovering over

element, 116–119
CLR (common language runtime), 7
collectionChanged event

DataTable control, 200
columnName property

DataColumn control, 200
columns property

DataTable control, 200
<columns> tags, 171
COM applications

support problems of, 8
command property

Button control, 60
Common Gateway Interface (CGI), 5
common language runtime (CLR), 7
Company Information Web service

creating, 272–279
Component Object Model. See COM

applications.
components

creating Atlas components, 28–30
definition, 25

<components> tags, 84, 86
connected applications, 4
<ContentTemplate> tags, 30, 144, 170, 173,

179
UpdatePanel control, 278

Control class, 55, 79
<div> tags are represented by, 79

control extenders
AutoCompleteExtender control, 147–148
AutoCompleteProperties control, 147–148
DragOverlayExtender control, 148–151

<control> tags, 74, 84, 119
associating behaviors with, 233

controls, definition, 25
cssClass property

Button control, 60
HyperLink control, 65
Image control, 64
InputControl control, 61
ItemView control, 202
Label control, 58
ListView control, 204
Select control, 68
TextBox control, 62
UI control, 57

■INDEX 307

Find
itfasterathttp://superindex.apress.com

/

6471idxfinal.qxd 5/10/06 10:55 PM Page 307

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■D
data binding, 77, 197

Atlas web user interfaces, 25–26, 28
DataSource control, 212–221

reading and writing data from, 221–230
getting started, 205–212

data controls, 18
data property

DataSource control, 198
DataView control, 199
ItemView control, 202
ListView control, 204
Select control, 68

dataAvailable event
DataSource control, 198

DataColumn control
introduction, 200

dataContext property
<binding> tags, 90, 93, 102
Button control, 60
DataSource control, 198
DataView control, 199
HyperLink control, 65
Image control, 64
InputControl control, 61
ItemView control, 201
Label control, 58
ListView control, 203
Select control, 68
TextBox control, 62
UI control, 57

dataIndex property
connected dataset, 228
itemView control, 202
ListView control, 204

dataItem property
ItemView control, 202
ListView control, 204

DataNavigator control
compared to ItemSelect control, 212

dataPath property
<binding> tags, 90, 93, 102

DataRow control
introduction, 201
properties, 201
PropertyChanged event, 201

DataSource control
events, 198
example of using, 212–221
introduction, 198
IsDirtyAndReady property, 229
IsReady property, 226, 228–229
methods, 198
properties, 198
reading and writing data from, 221–230

<dataSource> tags, 28

<DataSourceID> tags, 170
DataTable control, 202, 280

events, 200
introduction, 199
methods, 200
properties, 200

dataType property
DataColumn control, 200

DataView control
introduction, 199
properties, 199
PropertyChanged event, 199

defaultValue property
DataColumn control, 200

deleteCurrentItem method
ItemView control, 229
ListView control, 205

Description object
FadeAnimation gets tied to, 236

direction property
<binding> tags, 93

disconnected applications, 4
discrete animations, 244, 246–247
DiscreteAnimation control

properties, 244
<div> tags, 74, 78, 82, 84, 87, 114, 119, 167,

193–194, 250, 301
populating with ItemView control, 223
represented by Control class, 79
VirtualEarthMap control, assigning to, 250

DLL Hell, 6
DoUpdate() function, 276
DragOverlayExtender control, 148–151
Duration property

LengthAnimation control, 238
NumberAnimation control, 242

■E
<EditItemTemplate> tags, 171
effect attribute

FadeAnimation control, 237
emptyTemplate property

ItemView control, 202
ListView control, 204

enabled property
Button control, 60
HyperLink control, 65
Image control, 64
InputControl control, 61
ItemView control, 202, 226
Label control, 58
ListView control, 204
Select control, 68
TextBox control, 62
UI control, 57

■INDEX308

6471idxfinal.qxd 5/10/06 10:55 PM Page 308

http://lib.ommolketab.ir
http//lib.ommolketab.ir

EnablePartialRendering property
ScriptManager control, 130

EndValue property
LengthAnimation control, 238
NumberAnimation control, 242

<ErrorTemplate> tags, 133–137

■F
fade animations, 234–238
FadeAnimation control, 236

attributes, 237
FadeEffect control

FadeOut function, 236
FadeIn class

FadeOut function, 236
FadeOut function

FadeEffect class, 236
FadeIn class, 236

filteredData property
DataView control, 199

Filters property
DataView control, 199

firstItemText property
Select control, 68

Flash and development of web application
technology, 6

floatingBehavior behavior, 233
focus method

Button control, 59
HyperLink control, 65
Image control, 63
InputControl control, 61
ItemView control, 203
Label control, 58
ListView control, 205
Select control, 68
TextBox control, 62
UI control, 56

fundamental analysis, 269

■G
Gadget control

introducing, 155–156, 159–160, 162
GenerateProxy attribute

<atlas:ServiceReference> tags, 132
getAllResponseHeaders method

XMLHttpRequest object, 11
getResponseHeader method

XMLHttpRequest object, 11
get_visible method

TextBox control, 88
Graphics class

System.Drawing namespace, 289
GridView control

binding to ObjectDataSource, 179

■H
height property

Image control, 64
<hover> tags, 119
<hoverBehavior> tags, 115
HTML server controls, 18
hybrid map type

VirtualEarthMap control, 260
HyperLink control, 64

Click event, 66
events, 66
methods, 65
properties, 65
PropertyChanged event, 66

<hyperlink> tags, 119

■I
ID attribute

FadeAnimation control, 237
id property

<binding> tags, 90
Button control, 60
DataSource control, 198
DataView control, 199
HyperLink control, 65
Image control, 64
InputControl control, 61
ItemView control, 201
Label control, 58
ListView control, 203
Select control, 68
TextBox control, 62
UI control, 57

IDisposable interface, 44
Image control, 63, 241

methods, 63
properties, 63–64
PropertyChanged event, 64

<image> tags, 241
imageURL property

Image control, 64
 tags, 240, 279, 291, 298
_index property

DataRow control, 201
inheritance in JavaScript, 44–46
initialize method

Sys.UI.Control class, 79
<input> tags, 88–89, 93, 240, 247

validators contained, 105
InputControl control, 60

methods, 60–61
properties, 61
PropertyChanged event, 61

IntegralValues property
NumberAnimation control, 242

■INDEX 309

Find
itfasterathttp://superindex.apress.com

/

6471idxfinal.qxd 5/10/06 10:55 PM Page 309

http://lib.ommolketab.ir
http//lib.ommolketab.ir

interfaces, implementing in JavaScript, 46–48
<invokeMethod> tags, 75, 77, 86, 97, 238
isDirty property

DataTable control, 200, 201
isDirtyAndReady property

DataSource control, 198, 229
isReady property

DataSource control, 198, 226, 228–229
itemCSSClass property

ListView control, 204
ItemSelect control

compared to DataNavigator control, 212
itemTemplate property

ItemView control, 202
ListView control, 204

<itemTemplate> tags, 171
ItemView control, 201, 227

DeleteCurrentItem method, 229
Enabled property, 226
methods, 203
MovePrevious method, 228
populating <div> tags, 223
properties, 201
PropertyChanged event, 202

■J
Java and JVM

development of web application
technology, 5

Java virtual machine (JVM), 5
JavaScript

accessing server resources, 48–51
client controls framework, 91
creating Atlas application, 33

adding custom JavaScript class, 35, 37
coding and running application, 41–42
using ScriptManager to deliver custom

JavaScript class, 37, 39–40
custom binding, 100–103
data binding client-side controls with a

transform, 94–95
implementing interfaces, 46–48
inheritance, 44–46
manipulating client-side controls

directly, 87–88
using CSS, 78–80, 82–83

namespaces, 43–44
setting opacity levels, 231
using in Atlas, 33

JavaScript Object Notation (JSON), 24
JSON, supported by Atlas, 24
JVM (Java virtual machine)

development of web application
technology, 5

■K
keys property

DataTable control, 200

■L
Label control, 57, 79, 276

methods, 58
properties, 58
Text property, 244

<label> tags, 86, 113
layout behaviors

using, 233–234
layoutTemplate property

ListView control, 204
length animations, 238–241
length property

DataTable control, 200
DataView control, 199
ItemView control, 202
ListView control, 204

LengthAnimation control
properties, 238

 tags, 283, 300–301
ListDataSource class, 170
ListGrid control

binding to data source, 174
ListView control

introduction, 203
Item template, 211
methods, 205
properties, 203–204
PropertyChanged event, 205

login controls, 18

■M
Macromedia Flash, 6
map control

See also virtualEarthMap control.
programming, 257–266

mapping, 249–255
functionality in action, 249
getting started, 250–255
pushpins, 266–268

March CTP
solving bug problem, 251

MethodRequest class
available within the client-side script

libraries, 23
Microsoft.Web.UI namespace

Atlas controls, 128
Microsoft.Web.UI.Controls namespace

Atlas controls, 128
mobile controls, 18
mouse hover behavior, 113–115
moveNext method

ListView control, 205

■INDEX310

6471idxfinal.qxd 5/10/06 10:55 PM Page 310

http://lib.ommolketab.ir
http//lib.ommolketab.ir

movePrevious method
ItemView control, 228
ListView control, 205

multitiered architecture, 271

■N
namespaces in JavaScript, 43–44
navigateURL property

HyperLink control, 65
navigation controls, 18
.NET Framework, 7
not operator (!), using to invert values, 88
number animations, 241–244
NumberAnimation control

properties, 241

■O
ObjectDataSource control, 169–170, 176

Binding GridView control to, 178–179
representing data source, 177

onCursorButtonClick function, 81
onreadystatechange property

XMLHttpRequest object, 12
OnScriptManagerPageError

ScriptManager control, 137
onSearchComplete function, 212
onSelectColor function, 80
onSetEnabledClick function, 88
onSetVisibilityClick function, 88
OnValidationComplete function, 186
opacity, attaching behaviors to affect,

231–233
OpenRead method

WebClient class, 281

■P
<page> tags, 86
PageRequestManager class, 167
PanTo method

VirtualEarthMap control, 263–265
Path attribute

<atlas:ScriptReference> tags, 131
<atlas:ServiceReference> tags, 132

personal computer request/response
architecture, 2

PointPairList collection, 289
pop-up behaviors

using when hovering over element,
116–119

<popupBehavior> tags, 119
price history, 269
ProfileScriptService control

introducing, 152–153
Property property

<binding> tags, 90, 93, 102
DiscreteAnimation control, 244

LengthAnimation control, 238
NumberAnimation control, 242

propertyChanged event
Button control, 60
DataRow control, 201
DataSource control, 198
DataTable control, 200
DataView control, 199
HyperLink control, 66
Image control, 64
InputControl control, 61
ItemView control, 202
Label control, 59
ListView control, 205
Select control, 69
TextBox control, 63
UI control, 57

punch card request/response architecture, 1

■R
<rangeValidator> tags, 109
readyState property

XMLHttpRequest object, 12
Remove method

DataTable control, 200
removeCSSClass method

Button control, 59
HyperLink control, 65
Image control, 63
InputControl control, 61
ItemView control, 203
Label control, 58
ListView control, 205
Select control, 68
TextBox control, 62
UI control, 56

removetoggleCSSClass method
InputControl control, 61

RenderGraph event
ZedGraph controls, 288

request/response architecture of GUI talking
to main frame, 3

<requiredFieldValidator> tags, 108
responseText property

XMLHttpRequest object, 12
responseXML property

XMLHttpRequest object, 12
rich controls, 18
road map type

VirtualEarthMap control, 260
rowCount property

DataSource control, 198
_rowObject property

DataRow control, 201

■INDEX 311

Find
itfasterathttp://superindex.apress.com

/

6471idxfinal.qxd 5/10/06 10:55 PM Page 311

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■S
<sampleLabel> tags

Text property, 247
<script> tags, 130–131
ScriptManager control

delivering custom JavaScript class, 37,
39–40

design-time user interface, 129–130
EnablePartialRendering property, 130
introduction, 129
managing scripts, 254
programming with, 130

enabling script components, 130
performing partial rendering, 130
specifying additional script

components, 131–133
specifying services, 132
using error templates, 133–137

setting up, 28
ScriptManagerProxy control

introduction, 138
ScriptName attribute

<atlas:ScriptReference> tags, 131
ScriptReference control

Loading AtlasUIGlitz library, 232
<scripts> tag, 254
scrollIntoView method

Button control, 59
HyperLink control, 65
Image control, 63
InputControl control, 61
ItemView control, 203
Label control, 58
ListView control, 205
Select control, 68
TextBox control, 62
UI control, 56

Select control, 67, 79
assigning g_selColor variable to, 80
events, 69
methods, 68
properties, 68

Select method
DataSource control, 199

<select> tags, 97
TargetElement attribute, 97

selectedItemCssClass property
ListView control, 204

selectedValue property
Select control, 68

selectionChanged event
Select control, 69

selectParameters property
DataSource control, 198

separatorCssClass property
ListView control, 204

separatorTemplate property
ListView control, 204

server controls, 125
adding to Visual Studio 2005, 125–128
control extenders

AutoCompleteProperties control,
147–148

DragOverlayExtender control, 148–151
example, 18–21
Gadget control, 155–156, 160, 162
introduction, 17–18
ProfileScriptService control, 152–153
ScriptManager control, 129–137
ScriptManagerProxy control, 138–141
Timer control, 153–154
UpdatePanel control, 141–146
UpdateProgress control, 146
using in Atlas, 165

Task list manager, 168–180
UpdatePanel control, 165–168

server extensions, 22
server resources, accessing from JavaScript,

48–51
serviceType property

DataSource control, 198
serviceURL property

DataSource control, 198
<setProperty> tags, 74, 86, 113
setRequestHeader method

XMLHttpRequest object, 11
set_cssClass method

Sys.UI.Control class, 79
set_data function, 212
set_visible method

TextBox control, 88
 tags, 105, 112–113, 243–244, 246–247
StartValue property

LengthAnimation control, 238
NumberAnimation control, 242

status property
XMLHttpRequest object, 12

statusText property
XMLHttpRequest object, 12

StringBuilder class, 102
style property

Button control, 60
HyperLink control, 65
Image control, 64
InputControl control, 61
ItemView control, 202
Label control, 58
ListView control, 204
Select control, 68
TextBox control, 62
UI control, 57

■INDEX312

6471idxfinal.qxd 5/10/06 10:55 PM Page 312

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sys.Data namespace
controls, 198–201
DataTable class, 202

Sys.UI.Button class, 55, 59, 79
constructing with a cursorButton, 81

Sys.UI.Control class, 55, 79
Sys.UI.Data namespace

controls, 197, 201–205
ItemView control, 201
ListView control, 203

Sys.UI.Label class, 57, 79
Sys.UI.Select class, 79
Sys.UI.TextBox class

constructing from textbox control, 88
System.Drawing namespace

Graphics class, 289

■T
tabIndex property

Button control, 60
HyperLink control, 65
Image control, 64
InputControl control, 61
ItemView control, 202
Label control, 58
ListView control, 204
Select control, 68
TextBox control, 62
UI control, 57

Target attribute
FadeAnimation control, 237

Target property
DiscreteAnimation control, 244
LengthAnimation control, 238
NumberAnimation control, 242

targetElement attribute
<select> tags, 97

task list manager, 168–180
Tasks Assistant

ScriptManager control, 134
technical analysis, 269
terminal-based request/response

architecture, 2
text property

HyperLink control, 65
Label control, 58, 244
TextBox control, 63

TextBox control, 62, 63, 192, 227
constructing Textbox class, 8
Get_visible method, 88
methods, 62
properties, 62–63
PropertyChanged event, 63
Set_visible method, 88

<textBox> tags, 89, 93, 108
validators contained, 105

textProperty property
Select control, 68

thin client applications, 8
Timer control

introducing, 153–154
<timer> tags, 154
ToDo List application, 168–180
toggleCSSClass method

Button control, 59
HyperLink control, 65
Image control, 63
Label control, 58
ListView control, 205
Select control, 68
TextBox control, 62
UI control, 56

Toolbox, adding server controls to, 126, 128
ToString value

Web.Binding.Transformers enumeration,
95

transform property
<binding> tags, 90, 93

transformerArgument property
<binding> tags, 93

<triggers> tags, 145, 179
Type.registerClass command, 43–44, 47
Type.registerNamespace command, 43–44
<typeValidator> tags, 108

■U
UI control

methods, 56
properties, 56
PropertyChanged event, 57

<unhover> tags, 119
Unit property

LengthAnimation control, 238
Update method

DataSource control, 199
UpdatePanel control, 173–174, 179, 276

<contentTemplate> tags, 30, 278
defining, 174
introducing, 141
programming with, 144

<atlas:ControlEventTrigger> tags, 145
<atlas:ControlValueTrigger> tags,

145–146
<contentTemplate> tags, 144
<triggers> tags, 145

setting contents of, 291
using, 165–168, 170
using designer, 142

UpdateProgress control, 279
introducing, 146

■INDEX 313

Find
itfasterathttp://superindex.apress.com

/

6471idxfinal.qxd 5/10/06 10:55 PM Page 313

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■V
validation controls, 18
<validationErrorLabel> tags, 105
validators property

InputControl control, 61
TextBox control, 63

<validators> tags, 108
validators contained, 105

valueProperty property
Select control, 68

Values property
DiscreteAnimation control, 244

virtualEarthMap control
assigning to <div> tags, 250
choosing map type, 260, 262
panning by an amount, 265–266
panning to a location, 263–265
setting lontitude and latitude, 257
setting ZoomLevel property, 259–260

visibilityMode property
Button control, 60
HyperLink control, 65
Image control, 64
InputControl control, 61
ItemView control, 202
Label control, 58
ListView control, 204
Select control, 68
TextBox control, 63
UI control, 57

visible property
Button control, 60
HyperLink control, 65
Image control, 64
InputControl control, 61
ItemView control, 202
Label control, 58
ListView control, 204
Select control, 68
TextBox control, 62
UI control, 57

Visual Studio 2005
adding server controls, 125–126
creating Atlas web site, 125
developing Ajax applications, 12, 33
simple Ajax example, 12, 14–15

■W
web application technology history, 1–7

thin client applications, 8
web browser

introduction of, 4
sophisticated browser architecture, 6

web browser-based request/response
architecture, 4

web controls, 18
web user interfaces

Atlas and, 24–25
Web.Binding.Transformers enumeration

ToString value, 95
Web.BindingDirection enumeration, 95
Web.IDisposable interface, 44
Web.Services.AuthenticationService class,

185
Web.StringBuilder class, 102
Web.UI.Behavior class, 192
Web.UI.FadeAnimation control, 236
Web.UI.FadeEffect control, 236
Web.UI.Image control, 241
Web.WebForms.PageRequestManager class,

167
WebClient class

OpenRead method, 281
WebPart controls, 18
WebRequest class, 23
WebResponse class, 23
width property

Image control, 64
wiki application

create article asynchrony, 191–193
creating a wiki user, 187–189
getting started, 180
running application, 182
table of contents asynchrony, 193–196
understanding login asynchrony, 184–186

wiki:ReadOnlyAutoComplete behavior, 192

■X
XMLHttpRequest object

client-side networking stack built upon,
23

dynamically updating user interfaces, 24
generating request on, 167
properties, 11
simple Ajax example, 12, 14–15
using, 10–11

■Z
ZedGraph controls

drawing Price History graph, 287–290
hosting in web form, 295

ZedGraph library
charting engine, 286
PointPairList collection, 289

ZoomLevel property
VirtualEarthMap control, 259–260

■INDEX314

6471idxfinal.qxd 5/10/06 10:55 PM Page 314

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Foundations of Atlas: Rapid Ajax Development with ASP.NET 2.0
	Contents
	CHAPTER 1 Introducing Ajax
	CHAPTER 2 Atlas: Taking Ajax to the Next Level
	CHAPTER 3 Atlas: Making Client-Side JavaScript Easier
	CHAPTER 4 Introducing Client Controls in Atlas.
	CHAPTER 5 Using Client Controls in Atlas
	CHAPTER 6 Introducing Server Controls in Atlas
	CHAPTER 7 Using Server Controls in Atlas.
	CHAPTER 8 Data Binding in Atlas
	CHAPTER 9 Using the AtlasUIGlitz Library
	CHAPTER 10 Mapping with Atlas
	CHAPTER 11 Building a Sample Application with ASP.NET and Atlas
	INDEX

