

•
Table of

Contents

• Index

• Reviews

• Examples

•
Reader

Reviews

• Errata

Programming Visual Basic for Palm OS

By Patrick Burton, Matthew Holmes, Roger Knoell

Publisher: O'Reilly

Pub Date: April 2002

ISBN: 0-596-00200-9

Pages: 375

Slots: 1

Programming Visual Basic for the Palm OS is the only book designed to help
the Visual Basic desktop programmer to break into the Palm market. With
Programming Visual Basic for the Palm OS, Visual Basic programmers can
become Palm programmers almost over night.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

•
Table of

Contents

• Index

• Reviews

• Examples

•
Reader

Reviews

• Errata

Programming Visual Basic for Palm OS

By Patrick Burton, Matthew Holmes, Roger Knoell

Publisher: O'Reilly

Pub Date: April 2002

ISBN: 0-596-00200-9

Pages: 375

Slots: 1

 Copyright

 Preface

 Who Should Read This Book

 Organization of This Book

 Required Software

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments

 Part I: Programming with AppForge

 Chapter 1. Introducing AppForge

 Section 1.1. Palm Software

 Section 1.2. Main Features of AppForge

 Section 1.3. Installing AppForge

 Section 1.4. Using AppForge

 Section 1.5. Resources

 Chapter 2. Application Development

 Section 2.1. User Interface Design

 Section 2.2. Basic Application Layout Example

 Section 2.3. Language and Libraries Support

 Chapter 3. Palm Database Programming

 Section 3.1. The Palm Database

 Section 3.2. AppForge PDB Library

 Section 3.3. The AppForge Database Converter

 Section 3.4. Resources

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Part II: Data Connectivity

 Chapter 4. Conduit Development

 Section 4.1. Applications and Conduits

 Section 4.2. Conduit Design

 Section 4.3. Installing the CDK

 Section 4.4. Nuts and Bolts

 Section 4.5. Synchronization Logic

 Section 4.6. Data Formats

 Section 4.7. Resources

 Chapter 5. SQL Databases

 Section 5.1. SQL Publishing

 Section 5.2. Universal Conduit

 Section 5.3. Resources

 Chapter 6. Web Clipping Applications

 Section 6.1. Palm.Net Wireless Architecture

 Section 6.2. Simple WCA Tour

 Section 6.3. Building a Large Application

 Section 6.4. Palm OS 4.0

 Section 6.5. Resources

 Part III: Advanced Topics

 Chapter 7. Operating System Access

 Section 7.1. Fuser Mechanics

 Section 7.2. A Data Encryption Program

 Section 7.3. Resources

 Chapter 8. Shared Libraries

 Section 8.1. Memory Concepts

 Section 8.2. Memory Management Functions

 Section 8.3. DBSLib Shared Library

 Section 8.4. DBSLib Driver Application

 Section 8.5. DBSLib Fuser

 Section 8.6. AppForge Driver Application

 Chapter 9. Piedmont

 Section 9.1. Obtaining Piedmont

 Section 9.2. Architecture Overview

 Section 9.3. Module and Interface Definition

 Section 9.4. Component Code Generation

 Section 9.5. Windows Component Implementation

 Section 9.6. Palm Component Implementation

 Section 9.7. AppForge VM Integration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 10. Debugging

 Section 10.1. Conditional Compilation

 Section 10.2. Palm Reporter

 Section 10.3. Palm Buttons

 Section 10.4. Debug Database

 Part IV: Appendixes

 Appendix A. Ingot and Enumeration Summary

 Section A.1. Basic Ingot Components

 Section A.2. Enhanced Ingots

 Section A.3. Multimedia Ingots

 Section A.4. Data Communication Ingots

 Section A.5. AFTone Ingot Pitch values

 Section A.6. Database Error Codes

 Appendix B. DBSLib Sample Project Setup

 Section B.1. Target Settings

 Section B.2. Access Paths

 Section B.3. 68K Target

 Section B.4. C/C++, Processor, and Global Optimizations Settings

 Section B.5. PalmRez Post Linker

 Section B.6. Configuring and Adding Files

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps. The association between the image of flying fish and the topic of programming Visual Basic for Palm
OS is a trademark of O'Reilly & Associates, Inc.

Palm Computing, Palm OS, Palm.Net, HotSync, Graffiti, and Web Clipping Application are registered
trademarks of Palm Computing, Inc. AppForge and Booster are registered trademarks of AppForge, Inc.
ActiveX, BackOffice, FoxPro, FrontPage, IntelliSense, Microsoft Internet Information Services, SQL
Server, Visual Basic, Visual C++, Visual Studio, Win32, and Windows are registered trademarks of
Microsoft Corporation. CodeWarrior is a registered trademark of Metroworks, Inc.

While every precaution has been taken in the preparation of this book, the publisher and author(s) assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface

This book provides comprehensive coverage of software application development for the Palm, using the
Visual Basic (VB) language. In this book, we'll illustrate Palm development using a variety of software
techniques, but we'll focus on a new Visual Basic compiler for the Palm: the AppForge Add-in for Microsoft
Visual Basic.

This book shows you how to leverage your existing skills as a VB programmer into a new market and
toolset. If you're a typical VB programmer with a decent understanding of GUI application development,
you should be running code on the Palm within a day or two of reading this book.

In this book, we'll focus on high-level design and user-interface issues of building mobile handheld
applications, not the intricacies of the Palm OS or the programming interface of yet another list view
control. The entire appeal of developing in VB is that the programmer is insulated to some degree from the
underlying hardware and operating system. Rather than provide another tutorial, the book will explain how
VB programming for the Palm device is similar to VB development for Windows, and how it is different.

We'll cover all the techniques necessary for building a complete application. And we'll also address the
larger concerns of the corporate software developer: data management, synchronization with internal
networks and the Internet, integration with other Palm applications, and development of shared libraries,
tools, and components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Who Should Read This Book

This book is written for the corporate software developer who uses Microsoft Visual Basic to develop
Windows applications and is interested in, or needs to develop for, the Palm. While the reader should
have experience with the property-method-event model of VB programming, no familiarity with Palm
products is assumed or required.

Some later chapters assume familiarity with C/C++, including COM. These chapters are intended for
system-level programmers who need to go beyond the limits of VB to develop custom or shared
components.

Others who will benefit from this book are software architects, middle-ware developers, and engineering
managers who need to understand the strengths and limits of VB on the Palm, and how to integrate VB-
based Palm applications into their corporate IT infrastructure or product offerings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Organization of This Book

This book is structured into three sections. Developers new to the Palm should read at least the first three
chapters in order; more seasoned programmers can dive into the later sections and chapters in pretty
much any sequence.

Part I, Programming with AppForge

The first section covers Palm application development using the AppForge add-in for Microsoft Visual
Basic: how to obtain and install a development environment, principles and techniques of user interface
programming, and how to access the Palm's primary storage feature, its database.

Chapter 1, Introducting AppForge

This chapter introduces the basic software used throughout the book: the AppForge add-in for Visual
Basic and the Palm OS Emulator. We look briefly at the architecture of AppForge. Then we cover
obtaining and installing the necessary software components and walk through using AppForge to build a
simple Palm application.

Chapter 2, Application Development

In this chapter, we focus on how to design and develop Palm applications. We introduce almost all the
features common to Palm applications. The emphasis is on using AppForge ingots to create the user
interface and leveraging the libraries provided by AppForge to access Palm native functions within Visual
Basic.

Chapter 3, Palm Database Programming

In this chapter, we cover the Palm OS database manager and how it works. Then we show how to access
the Palm database features via the AppForge PDB library. We also explain the AppForge database
schema extensions, which free the developer from many bookkeeping chores normally associated with
Palm database programming.

Part II, Data Connectivity

The second section covers moving techniques for moving local and network data into and out of the
device: how to use the Palm Conduit Development Kit, how to develop applications that leverage the use
of SQL data repositories, and how to access the Internet through the Palm.Net wireless infrastructure. This
section covers a variety of development techniques: Microsoft VB on the desktop, AppForge VB on the
Palm, and VBScript on the Web server. Because this section is data-centric, there is a fair amount of SQL
as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4, Conduit Development

This chapter covers building conduits using Microsoft VB and the Palm COM Conduit Development Kit.
We show how to design a proper conduit, and we cover all the required interfaces and features that a
conduit must implement. We also show how to interactively debug a conduit and how to use the HotSync
Manager log.

Chapter 5, SQL Databases

This chapter shows how to develop data-intensive applications using Microsoft SQL Server. We
demonstrate a variety of techniques, including preprocessing the data on the desktop and implementing
on-device manipulation. The chapter also covers the AppForge Universal Conduit, which is used to
automatically synchronize Palm and Microsoft ODBC-compliant databases.

Chapter 6, Web Clipping Applications

In this chapter, we cover web development using Palm's wireless Palm.Net functionality. Note that this is
not WAP-these are full-featured HTML applications. We show how to integrate the Palm VII handheld
into Microsoft web applications, and how to format HTML pages especially for the handheld. Special
attention is paid to security for wireless devices.

Part III, Advanced Topics

The third section diverges a little from the VB mainstream and shows how to extend the reach of VB Palm
applications using features accessible only to the C/C++ language. Topics covered include developing
callable applications that access operating system internals and using shared libraries to package
common functionality. An exciting feature of AppForge-Piedmont, a portable COM-based framework that
extends AppForge itself-is covered as well. We also include a chapter on debugging techniques.

Chapter 7, Operating System Access

In this chapter, we look at how to use features of the Palm OS that cannot be accessed from the standard
AppForge libraries. We build a complete fuser application that encrypts and decrypts Palm record
databases using the DES libraries in the Palm OS.

Chapter 8, Shared Libraries

In this chapter, we look at extending an application's functionality through the use of shared
libraries-units of reusable code that contain frequently used sets of functionality.

Chapter 9, Piedmont

This chapter covers the AppForge Piedmont Framework, which is a component development kit for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handheld devices. We cover building system-level ingots, which are similar to Windows COM DLL servers,
and we lay the foundation for U/I Ingots, which are similar to ActiveX controls.

Chapter 10, Debugging

This chapter covers some simple debugging techniques, such as using conditional compilation variables
to optionally include or exclude debugging code. We show how to use the Palm Reporter tool to trace
through a program. Finally, we provide sample code that logs information to a database for later analysis.

Part IV, Appendixes

The book concludes with two appendixes that provide some reference material.

Appendix A, Ingot and Enumeration Summary

This appendix enumerates the many properties and methods of the AppForge Ingots for the Palm OS.

Appendix B, DBSLib Sample Project Setup

This appendix provides detailed instructions on configuring the Metrowerks Code Warrior compiler to build
shared libraries.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Required Software

This book covers a lot of ground, from straight Palm development to SQL to wireless Internet to C++ Ingot
construction. As you might imagine, you are going to need a lot of software if you want to build and run all
the applications in this book.

Microsoft Visual Basic 6.0

Almost any version (Enterprise, Professional, Learning) can be used. There is a specific service
pack requirement documented on the AppForge web site (http://www.appforge.com). We use
service pack 4.

AppForge 2.0 for Palm OS

This product is available for purchase or as a 30-day evaluation from the AppForge web site. There
is a personal edition, which we do not recommend, as it lacks many of the features used in this
book.

Palm Operating System Emulator 3.3

This freeware tool lets you test almost all your Palm code on the Windows desktop. Earlier releases
will not work with AppForge 2.0.

Palm Desktop Software 4.01

This freeware software suite allows you to install software to real Palm hardware and to develop and
test conduits for data synchronization. We use release 4.01, but most any version is acceptable.

Microsoft SQL Server 2000

Several of the applications in Chapter 4, Chapter 5, and Chapter 6 use SQL Server to demonstrate
the use of relational data. We used the 2000 release, but 7.0 should work as well. If you want to use
a different database manager, make sure it supports stored procedures.

Microsoft Internet Information Server (IIS) 5.0

We use IIS for the wireless applications developed in Chapter 6; IIS 4.0 is also adequate. If you use
a different web server, make sure it supports a script environment that allows the creation of VB
objects.

Metrowerks CodeWarrior for Palm OS Platform 7.0

We use this C++ compiler to develop the shared libraries and other advanced components in
Chapter 7, Chapter 8, and Chapter 9.

Microsoft Visual C++ 6.0

We use this compiler to build and test AppForge components in Chapter 9 with normal VB on the
Windows desktop.

http://www.appforge.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

The following typographical conventions are used in this book:

Constant width

Indicates command-line computer output and code examples, as well as constants, variables,
enumerations, objects, controls, menu options, menu titles, classes, and flow-control statements
such as if.

Constant width bold

Indicates code input that a reader should type verbatim.
Italic

Introduces new terms and indicates URLs, user-defined files and directories, commands, file
extensions, filenames, directory or folder names, properties, methods, attributes, events,
parameters, and UNC pathnames.

This is an example of a note, which signifies valuable and timesaving information.

This is an example of a warning, which alerts you to a potential pitfall in the
program. Warnings can also refer to a procedure that might be dangerous if not
carried out in a specific way.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). Please let us know about any errors you
find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. You
can access this page at:

http://www.oreilly.com/catalog/vbpropalm/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

http://www.oreilly.com/catalog/vbpropalm/
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

Collectively, we would like to thank our editors at O'Reilly: Tim O'Reilly, Troy Mott, Frank Willison, and Bob
Herbstman. There many events during this project that we were sure signaled the end: blown deadlines,
rewrites necessitated by new software releases from AppForge and Palm, the sad and demanding events
of September 11th, and simple changes in the market. Through it all we were encouraged to stay the
course, in particular by Bob and Troy. We also love the flying fish on the cover, and we thank the design
department at O'Reilly for finding them.

This book benefited greatly from the efforts of our formal technical reviewers, Bob Holt and Neil Rhodes.
Both caught many small and not-so-small errors; of course, we assume responsibility for any remaining
errors. Neil, in particular, seemed almost omniscient. We also had the help of a longtime AppForge
developer, John Bonin, who provided great feedback on the usability of the first three chapters. And there
are many indirect contributors who posted remarks and comments to the user forums; we learned a great
deal simply studying these postings.

Matthew Holmes

I would like to thank first my long-suffering family, particularly my beautiful and patient wife Liz and my
children Jonathan, Molly, and Claire. They tolerated and encouraged this effort, providing many boosts
when the going was difficult.

I've been fortunate to have a great number of managers who have provided the guidance, insight, and
sometimes sobering advice over the past decade that made writing this book possible: Thomas Joost,
Gary Kerr, Mike Wagner, Jim McClave, and John Casey stand out in this regard. I have also been
fortunate to work with an eclectic group of developers on some wonderful-and some dismal-software
products: Bob Kline, Curtis Jones, Todd Morris, Adam Blum, Kevin Smith, Brian Williams, Robb Butler, Bill
Ericson, Bill Eisner, and Tony Tocci.

And special thanks go to Bob Walson, whose sure career guidance and personal example has been a
blessing over the years.

Patrick Burton

I would like to thank my family for their support throughout this endeavor. Thanks especially to my wife
Paula, who encouraged me and kept me on schedule when I was getting weary. Thanks to Matthew
Holmes, who spearheaded this effort, and kept us focused amidst the ups and downs. Bob Holt at
AppForge was an invaluable resource for getting us the latest beta releases of the software, and for
providing technical guidance on my writing and sample code. I would also like to thank a number of
colleagues with whom I have had the privilege of working, and who have inspired and influenced me along
the way to writing this book: Pat O'Neill, Steve Wolter, John Palm, Phil Eichensehr, and Phil Muhlenkamp.

Roger Knoell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For me, this is my first book. It took a lot more time and effort to produce than I ever imagined. If it were
not for the diligent support of my wife Christine, I would never have finished. Thanks also go to my children
Alexa and Jenna for their understanding of why Daddy spent more time working on the book than playing
with them. Thanks, of course, to my coauthors, our O'Reilly editors, the great people at AppForge, and our
technical reviewers, John Bonin and Neil Rhodes. I would like to also thank a few people who provided the
inspiration over the years necessary to complete this book: Gordon Blankenship, Brett Johnson, Time
Henderson, Mario Martins, Shelley Meredith, and my longtime friends Jack Baron and especially John
Staudt.

I would like to dedicate my efforts on this book to my mom, Barbara, whose passing during this project,
while very difficult, provided me with the determination to do the very best I could. Finally, special thanks to
my dad and my three brothers Bob, Richard, and Kevin, for helping me through the rough times.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part I: Programming with AppForge

Chapter 1

Chapter 2

Chapter 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introducing AppForge

Over the past five years, the Palm PDA has zoomed to prominence as the handheld device of choice for
the consumer and the enterprise. In that time, the Visual Basic developer has been relegated to the
sidelines-the Palm doesn't run the Microsoft Windows operating system, and its processor isn't based on
a design from Intel. The available development tools mostly favored the C/C++ developer, or they required
an individual or corporate investment in a proprietary scripting language.

All that changed when AppForge introduced its flagship product, a VB compiler for the Palm. AppForge
calls its product a "family of visual software tools that enables virtually anyone to write engaging GUI
software for non-PC computer devices." (In this chapter and throughout this book, when we mention
AppForge, we mean the add-in for VB for Palm OS.)

AppForge is an add-in for Microsoft's Visual Basic. With AppForge, developers build applications that
execute on the Palm PDA from within the native VB integrated development environment (IDE). Instead of
compiling code into a Windows executable, AppForge generates a Palm Resource (PRC) file-roughly
speaking, a program file.

From a practical perspective, this means that it is very easy to come up to speed with the AppForge tool.
Developers can focus right away on forms and controls, events and procedures, without learning a new
development environment.

In this chapter, we take a quick look at what it means to develop software for the Palm handheld device,
which is very different from the Windows desktop. We provide an overview of the AppForge product-what
it is and how it works. We cover installing AppForge onto a development system, and we explain how it
integrates into the VB IDE.

After all that, we'll walk through getting a simple project up and running. Along the way, we'll touch on
some things that are different from desktop VB development, such as cross-platform emulation tools and
the user interface controls for the Palm.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1 Palm Software

If you are reading this book, the chances are high that you are new to Palm software development or to
the AppForge product, or very likely both. Writing software for embedded devices-such as the Palm, the
Pocket PC, or pagers like the RIM Blackberry-was once the exclusive territory of the professional C
developer. Every bit was counted, and every screen pixel hoarded.

This approach is still important-you simply cannot write software for the handheld market as if it were the
Windows desktop. Microsoft has been trying that for years with dismal results. Consumers and corporate
users do not buy handheld devices for the quality of the Web browser; instead, they want focused tools
that enhance personal productivity or enable key business processes, and they want applications that run
quickly.

Look in a typical PDA, and you will see organizer software, notepad programs, diet and exercise planners,
newsreaders, games and entertainment software, stock applications, and so on. In fact, one of the major
reasons for the success of the Palm device is its thousands and thousands of quality software products.

All these successful applications share at least one common factor: they are focused on providing exactly
what the user wants, and little else. They do not provide a feature list bloated with nice-to-have features;
they do provide timely access to information that really matters-a telephone number, a stock quote, a
photograph, or directions to the shopping center.

This book cannot tell you which features are critical to your users and your market-only you can do that.
This book will, however, show you when and how to use the available Palm features to structure a
program that works well on the handheld device.

If you are completely new to the Palm, you should stop right now and get a book on using the Palm
handheld device. This will give you a better foundation for developing software that fits the Palm device.
There are many important differences between desktop and Palm development that will force you to
rethink the way software is engineered and used.

There is just no way around the fact that handheld devices are small. The Palm OS currently supports a
screen that measures 160 pixels tall by 160 pixels wide. The majority of Palm devices have monochrome
screens that can display four shades of gray, two of which are black and white.

By way of contrast, consider the font selection listbox in Microsoft Office's Word application. That single
feature of Word is about 240 pixels wide by 270 pixels tall-over two and a half times the available screen
size for an entire Palm application. Figure 1-1 shows the listbox with the Palm screen superimposed on it.

Figure 1-1. Sizes of Microsoft Word font selection listbox and Palm screen

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Palm device has no keyboard and no mouse-only a stick that functions as both. The stick is referred
to as a stylus. Text entry is done in the Graffiti language-sort of a block alphabet-that the serious user
will master. Novices will use the virtual keyboard and tap out their words one letter at a time. Even with
practice, it is difficult to key in more than a dozen words per minute.

But there are also many advantages to working with the Palm PDA. The screen is touch-sensitive, which
means that you can be very creative in how your application handles user input. The hardware buttons,
particularly the scroll buttons, provide other opportunities for innovative input techniques. There are add-on
keyboards available if your application relies on significant data input. And the screen limitations
themselves impose a discipline-you should constantly consider why a certain feature needs to be on the
screen, or if there is a more effective way to present it.

Many Windows applications are open and idle in the background for extended periods of time. The user
can probably spare a few minutes to get some coffee while your application is opening files or running a
data-mining query. Since the application might be open for several hours, these moments are insignificant
over the course of a business day.

The Palm user, however, accesses an application such as the Address Book very frequently during the
day, even though she may only use the application for a few seconds each time. Since the Palm runs only
one program at a time, an application is always starting and stopping-an inordinate delay in either
process can be excruciating. Your design must address response times, in particular how quickly the user
can navigate and access the really vital functionality.

Here is something else to think about: most Windows applications are used on a stable desktop, with the
user seated in a chair. Consider where the Palm device is most often used-the hand. The user might be
in an elevator, or stopped at a traffic light. He is not going to wait 10 or 20 seconds for your splash screen
to initialize-after all, the light might change.

Now consider the basic Palm device itself. Entry-level models have a 16 MHz central processor, 2 MB of
memory, a couple of AAA batteries. This represents computing power that was nearly obsolete in the
1980s, when the Apple Macintosh was a fast machine. On the positive side, the device contains fully
functional serial and infrared ports that offer standards-based communication with computers, cellular
phones, and printers.

When designing software for the Palm, you must consider these factors if your application is to have the
"Zen of Palm"-that combination of features and ease of use that can make the handheld so compelling.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2 Main Features of AppForge

Before we get down to installing AppForge, let's review the versions of the product. First of all, AppForge
supports multiple handheld platforms: the Palm Computing Platform and the Microsoft Pocket PC. In this
book, we are only going to cover AppForge for the Palm OS. AppForge for the Palm comes in two flavors:
Personal and Professional. We'll look at what comes with each edition, and how each is different.

Both editions ship with the AppForge Visual Basic add-in, which is the compiler. [1] Like Microsoft VB,
compiled AppForge programs on the Palm require a runtime component to function-the Booster. This is
the equivalent of Msvbvm60.dll, the Microsoft VB Runtime. The Booster for Palm OS is freely available for
download and redistribution from the AppForge Web site. [2]

[1] Since the AppForge compiler runs on Windows, it is actually a cross-compiler-a program that produces executable code for a different

runtime platform. This executable code can be targeted at either the Palm OS or the Pocket PC environments.

[2] The Booster for other platforms has a runtime fee, although you can download evaluation copies for development at no charge.

There are costs and benefits associated with the use of the AppForge Booster:

Execution speed

Calling into another layer of code can impact performance. The performance penalty on a Windows
machine is trivial, but it can be significant on the low-powered Palm PDA.

Code size

The Booster is large-more than 350 KB of memory. Even though 8 MB of memory is more
common now, this is still a big amount.

Shared code

If more than one AppForge application is installed on the Palm PDA, then there is an advantage to
using the Booster, because library and common code is not duplicated between applications.

Maintenance

Bug fixes to the common functions in the Booster need only be distributed once to patch all
AppForge applications on a Palm PDA.

The AppForge Booster consists of three core components that provide basic services analogous to the
Microsoft Component Object Model (COM): pCOM.prc, AFCore.prc, and ByteStream.prc. These
components must be installed on the Palm device in order to run any AppForge application. In addition,
AppForge libraries and services are implemented in separate components; these are only necessary if
your application uses their functionality. AppForge provides a detailed explanation of the components in
the Booster in their Knowledge Base, available at http://www.appforge.com; see article number 010926-
0000039.

Each edition of AppForge ships with a set of ingots. Ingots are like the ActiveX controls that you normally
would drop on VB forms. AppForge includes a basic set of ingots that provide the functions of the VB
intrinsic controls and some advanced ingots for other features.

http://www.appforge.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You cannot use the VB intrinsic controls on the Palm, nor can you use third-party
ActiveX controls. The AppForge add-in will issue an error if you try to reference one
of these controls in the VB editor.

Each edition includes a set of libraries that provide extra functionality to an application on the Palm PDA.
These libraries offer functions similar to the Microsoft Win32 API, such as the ability to access databases
or call other applications

Each edition also ships with a set of tools to help automate software development tasks outside of the VB
IDE. One tool generates Palm database (PDB) files from a Microsoft Access database. This is useful
because the Palm doesn't have a traditional filesystem-all persistent data for an application must be
stored in a PDB file. Also included with some editions are programs that convert images and True Type
fonts to AppForge's native format.

1.2.1 Ingots

As we said earlier, ingots are the AppForge equivalent of the VB intrinsic controls. In fact, ingots have a
dual existence. When in the VB IDE, they are ActiveX controls, just like any other control in the toolbox.
When running on the Palm, however, they are part of the Booster runtime.

When used in an application, ingots support most-but not all-of the properties of the Microsoft intrinsic
controls. This makes a great deal of sense, as many of the graphical features of Windows do not exist on
the Palm. And of course, there is a runtime penalty for supporting extra features that are simply too much
overhead for the Palm PDA and its tiny CPU. We won't cover every unsupported or changed property in
this book, but we will point out the important differences between Windows and the Palm.

For example, the command button on Windows supports several properties that govern how the button
appears when it is pushed, disabled, or transparent. These properties are not supported in the
corresponding AppForge ingot-they have no meaning on the Palm, and their sudden appearance in an
application would be disconcerting to the user. And don't even think about drag and drop technology.

Overall, AppForge has struck a reasonable balance between supporting the native Palm interface style
and providing the extra functionality that VB developers are used to having. Note that the different ingots
are implemented by different components of the AppForge Booster. We present them in the following
sections, grouped by Booster component.[3]

[3] When deploying your applications, you will only want to install those Booster components truly necessary to run, so that you can

conserve memory on the Palm device.

1.2.1.1 Basic ingots

The following ingots are implemented in BasicIngots.prc.

Form

This is the familiar Form object.
AFButton

This is a Palm-style command button, flat with rounded corners. There is no cancel or default

http://lib.ommolketab.ir
http://lib.ommolketab.ir

property.
AFCheckbox

This is a Palm-style checkbox, flat with an extended check mark.
AFComboBox

This is a multimode Combo box. One mode supports the native Palm style, and two others support a
more Windows-like appearance and behavior.

AFLabel

This ingot implements the Label control.
AFListBox

This is like the VB ListBox control. This control is used sparingly on the Palm because it is so
space-intensive.

AFRadioButton

This is a Palm-style radio button.
AFShape

This is like the VB Shape control. This is a useful ingot, because there is no support for the VB Line
or Frame controls.

AFTextBox

This is a Palm-style text box, complete with dotted lines in multiline mode.
AFTimer

This is a standard timer. Like the VB timer, it measures intervals in milliseconds.

1.2.1.2 Enhanced ingots

These ingots are implemented in EnhancedIngots.prc.

AFGraphic

This is similar to the VB Image or VB PictureBox, which have no corresponding Palm interface
element. There is no control container support.

AFGraphicButton

This is a graphical style command button that allows an image to be used instead of a textual
caption. The button supports different states, such as disabled or down.

AFGrid

This is like the MS Grid control, which is similar in function, but not in appearance, to the Palm table
interface element. There is no data binding support for this or any other AppForge control.

AFHScrollBar

This ingot implements a horizontal scroll bar. Professional only.
AFSlider

This ingot provides a Palm-style slider control. Professional only.
AFVScrollBar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This ingot implements a vertical scroll bar. Professional only.

1.2.1.3 Communications ingots

The following ingots are implemented in DataCommIngots.prc.

AFClientSocket

This ingot is used to perform socket-based communications over a wireless or network connection.
Professional only.

AFInetHTTP

This ingot provides access to the native wireless Internet library on radio-enabled Palm devices
(InetLib). Professional only.

AFScanner

This is a special-purpose ingot for accessing the barcode hardware on the Symbol SPT1500 and
1700, as well as plug-in Springboard scanner modules for the Visor. Professional only.

AFSerial

This ingot accesses the serial and infrared ports on the Palm device. It is similar to the VB Comm
control.

AFSignatureCapture

This ingot is used to record user handwritten signatures via the stylus. Professional only.

1.2.1.4 Multimedia ingots

These ingots are implemented in MultimediaIngots.prc.

AFFilmStrip

This is like the VB Animation control, which has no corresponding Palm interface element.
AFMovie

This ingot plays converted AVI movies. Professional only.
AFTone

This ingot plays surprisingly good tones of a fixed frequency for a specified duration.

1.2.2 Libraries

The AppForge libraries also have a dual existence. When in the VB IDE, they are ActiveX servers, and all
their features are available from the Object Browser. When running on the Palm, they are part of the
Booster runtime. Because these libraries are integrated into the AppForge Booster, a new release of the
Booster must be installed on the Palm PDA whenever AppForge adds or changes libraries. Of course, this
is only true if your application needs to access those new features.

Here are the basic libraries that ship with all editions of AppForge (all implemented in afExtLib.prc):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PDB library

This library provides functions that wrap the Palm OS database manager. This includes a schema
capability that simplifies reading and writing fielded data records.

Numeric library

This library provides a random number generator.
System library

This library includes miscellaneous functions, such as the Palm username. It also provides a way to
access extended keycodes on the Palm PDA.

Extended functions library

This library provides a raft of functions for accessing or changing settings on the Palm PDA. This
includes features like the Graffiti handwriting state and a listing of all the databases.

If you are new to Palm software development, it might surprise you to learn that inter-process
communication is quite difficult on the Palm. This is because the Palm was designed as a single-tasking
computer-the user is generally focused on one program, not sharing data between multiple windows.

The operating system doesn't provide direct support for dynamic data exchange or object linking. Instead,
you invoke a Palm application as a sub-routine call, with a special launch code. [4] AppForge provides a
library to support this capability:

[4] Unfortunately, few applications publish their database formats or launch codes, so accessing other programs usually involves a reverse-

engineering effort, or poring through the source code if it's available.

Extensibility library

This library is used to launch other Palm applications. Professional only.

You can also use this library to call functions in the Palm operating system. AppForge has a sample
application, Fuser, which demonstrates this capability. We'll look at the extensibility library in depth in
Chapter 8. This library is implemented in afPalmOS.prc.

1.2.3 Utilities

AppForge provides a raft of utility programs to support application development. Many of the software aids
that VB developers take for granted do not exist yet for the Palm. These AppForge utilities fill voids in the
range of available software tools.

For example, there is no Active Data Object support on the Palm, so all record and database access must
be coded by hand. This is similar to programming directly to the ODBC function specification. The
AppForge Database Converter, however, not only converts an Access table to native Palm format, it also
generates VB source code to read and write records in the converted database. [5] This is not quite object-
oriented, but it is much better than rolling your own ADO or OLE-DB layer.

[5] It is important to note that the Database Converter only works with a single table at a time; you have to run the converter multiple times to

process all the tables in an Access MDB file.

The following basic utilities ship with all editions of AppForge:

Database Converter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This utility converts a single Microsoft Access table into a Palm database.
Graphics Converter and Viewer

This utility converts BMP graphics to the AppForge format, a 4-bit monochrome image. Converted
graphic files can be used with the Graphic, Graphic button, and Filmstrip ingots.

As with the libraries, AppForge provides some special-purpose utilities available only with the Professional
Edition of the product:

Font Converter and Viewer

This utility converts True Type fonts to the AppForge format. Converted fonts can be used with any
ingots that have a Font property. Professional only.

Movie Converter and Viewer

This utility converts AVI movie formats to the AppForge format. Converted movie files can be used
with the Movie ingot. Professional only.

Universal Conduit

This utility interfaces Palm databases to any ODBC-compliant data source, using the standard Palm
HotSync technology. Professional only.

A conduit is software that replicates or synchronizes databases on the Palm with personal or corporate
data on the desktop. As you will see in Chapter 4, developing a conduit is a significant amount of work. If
your application data is in a relational or tabular format and doesn't require a lot of special-case
processing, then the Universal Conduit can save a lot of effort. We address the Universal Conduit in
Chapter 5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3 Installing AppForge

There are a few prerequisites for installing and using the AppForge compiler. Most importantly, AppForge
will only work with Microsoft Visual Basic 6. Fortunately, it will work with just about any flavor of
VB-Learning/Working Edition, Professional Edition, or Enterprise Edition.

AppForge requires that Visual Studio Service Pack 4 be applied prior to installation. The service pack is
freely downloadable from the Microsoft Visual Studio web site; this is a large download of more than 50
megabytes. AppForge includes the service pack on some of its CD-ROM distributions.

Most Palm users have a version of the Palm Desktop software installed on their computers. From the
developer's perspective, the most important components of the Palm Desktop are the installation
application and the HotSync manager, which install programs and databases on the Palm PDA. This is
usually accomplished using the Palm cradle and a serial connection. The Palm Desktop is not required for
development, although having it can simplify the compile-debug-test cycle. The latest version of the Palm
Desktop software can be freely downloaded from the Palm web site:
http://www.palm.com/software/desktop/.

If you don't have a Palm PDA, don't worry-we cover how to use the Palm Operating System Emulator
(POSE) to run your Palm programs later in this chapter. The Emulator is a Windows application that
simulates the Palm PDA's hardware and software down to the last detail-even including the Palm VII
radio.[6]

[6] There are versions of the Emulator for the Macintosh and Linux platforms as well, but we will discuss the Windows version in this book.

Installing AppForge itself is straightforward. There is a license screen that requires a registration key,
which you should have obtained with your version of AppForge. If you downloaded an evaluation copy, you
can install the software immediately, but you cannot run it until you receive a key from AppForge (usually
via email). If you later purchase AppForge, you can apply the new license information from within the
product; you do not need to reinstall.

After installation, all the AppForge tools are accessible from the Windows Start menu, as shown in Figure
1-2. We installed the Professional version of AppForge, so you may or may not have the same tools.

Figure 1-2. Windows AppForge menu

http://www.palm.com/software/desktop/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

But the real beauty of AppForge is that most of your development is done from with-in the VB IDE. The
ingots discussed earlier are integrated into the standard VB Toolbox, as shown in Figure 1-3.

Figure 1-3. VB Toolbox with AppForge Ingots

Note that we added the AppForge tab to the Toolbox manually; this useful trick will help break us of the
habit of dropping the wrong controls on the AppForge form.

The AppForge functionality that is specific to producing software for the Palm is combined into a single VB
menu choice appropriately labeled AppForge. This menu, shown in Figure 1-4, deals mainly with
configuring, compiling, and packaging program files, or accessing AppForge-specific help.

Figure 1-4. VB AppForge Add-In Menu

Of course, this special menu is only available when working on an AppForge project. We'll describe how to
create an AppForge project in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4 Using AppForge

Now that the software is installed, let's look at how to build a Palm PRC program from within VB. Start by
launching the VB IDE. Notice that there is now an AppForge project type available from the New Project
dialog, as shown in Figure 1-5.

Figure 1-5. New AppForge Project

You might have to scroll the dialog a little to see the AppForge project icon, especially if you have a lot of
other project types and wizards installed. Once you select AppForge, you will get another dialog asking
you to select a runtime target-Palm OS or Pocket PC. Since this is a book about Palm software
development, choose Palm OS.

Alternatively, you can use the Start AppForge menu option that is accessible from the AppForge program
group. This starts the VB IDE and brings up a history of recent Palm OS projects, as shown in Figure 1-6.
Choose the New Project button, and once again select Palm OS as the runtime target.

Figure 1-6. AppForge project manager

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first thing you will see after creating a new AppForge project is a very small form. Get used to
it-that's all there is on the Palm PDA. We'll look into the user interface issues imposed by the Palm's
stark 160 x 160 pixel screen in Chapter 2.

We're going to build the simplest possible application, so add the following code to the usual Form1:

Option Explicit

Private Sub Form_Load()

 MsgBox "Hello, Hand-held World!"

End Sub

Push F5 to run the program, and note that the form and message box come up. AppForge
projects-ingots, database libraries, and all-run almost as well on Windows as on the Palm. With
judicious use of conditional compilation, this capability is a great debugging technique. Many of the
AppForge tutorial projects use this idea, although we don't stress it in this book.

1.4.1 Configuring the Project

Before compiling, we need to configure the project. From the AppForge menu, select the AppForge
Settings option. This brings up a dialog window to target a selected Palm device, configure the PRC file
setting as necessary, and update any dependencies for the project. See Figure 1-7 for an example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 1-7. AppForge project settings

Note that this dialog supports two possible devices: Palm OS and Pocket PC. Select Palm OS. If you do
not have the Palm Desktop software installed, you will see an error similar to that shown in Figure 1-8.
This simply means that AppForge will not be able to install software directly to the HotSync manager.

Figure 1-8. Missing Palm Desktop warning dialog

The dialog supports two settings for the PRC file: the Creator ID and a profile for the Palm Desktop. [7] The
Creator ID is a four-byte string that uniquely identifies an application and any associated databases. Enter
a Creator ID of CH01 for this simple application. If you plan to distribute your applications, you must reserve
a unique Creator ID with Palm. See "The Palm Creator ID" sidebar, later in this chapter.

[7] The profile drop-down combo box will be disabled if the Desktop software is not installed.

The Dependency tab on the Project Setting window is used to identify any dependencies that the PRC
will need during operation, such as:

Associated PDB files

Converted graphics, movies, or fonts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are no dependencies for this simple application. We will discuss dependencies in greater detail in
Chapter 2.

The Palm Creator ID

The Creator ID is used to uniquely identify ownership of Palm applications and databases. All
Palm databases have a Creator ID. In this sense, the Creator ID is very much like a Windows
globally unique identifier (GUID). One major difference: Microsoft has distributed code that
can-in theory-generate a GUID. Palm, however, requests that all Creator IDs be registered
with a central repository.

You can do this with no fee at the Palm web site. The Creator ID registration page is
http://dev.palmos.com/creatorid. This page provides some background information and allows
the registration of new Creator IDs. After choosing a Creator ID, use the simple search engine
to ensure that your Creator ID has not already been used. Then fill out the form and submit a
request. The entire process takes just a few minutes.

Palm has reserved Creator IDs that consist solely of lowercase letters and numbers, such as
abc1. Your Creator ID may use any combination of ASCII characters in the range of 32 to 127,
as long as you use at least one uppercase letter-for example, AbC2.

You really only need to register the Creator ID if you plan to distribute your application. We
haven't registered with Palm any of the Creator IDs that we use in the sample projects in this
book.

1.4.2 Compiling a Project

Before compiling with AppForge, be sure to save your project. The AppForge compiler is distinct from the
VB compiler, and it only sees files-or file content-that have been saved to disk. Note that the Palm
application name is taken from the VB project name, which you set from the VB Project Properties
menu option. We use the name Hello for this example.

Select Compile and Validate from the AppForge Add-In menu (which was previously shown in Figure 1-
4). AppForge displays status information as it validates and compiles your project. All compilation errors in
your project are displayed in a dedicated error window, which floats at the top of the screen. If an error has
a line number, double-clicking the error message opens the corresponding code module, and highlights
the offending entity. This is a nice feature when sifting through a lot of open code windows, and much
better than the VB compiler, which stops at the first error.[8]

[8] You can also compile your application for Windows using the traditional File Make EXE commands. This is useful if you want to

build a prototype or debug your logic right in Windows.

The compilation process by itself doesn't produce a PRC file, unlike the VB Make command that builds an
EXE file. Instead, compilation has validated the syntax of your AppForge project files and generated
intermediate code, which is saved in the project directory.

The last step when building is to link the intermediate code into the PRC file. To do this, select either
Deploy to Device or Save Project Package from the AppForge menu. Chose the first option if you have
the Palm Desktop installed and you want the new program installed with the next HotSync. Choose the
second option to save the PRC file locally. AppForge will combine the intermediate code; when that

http://dev.palmos.com/creatorid
http://lib.ommolketab.ir
http://lib.ommolketab.ir

successfully completes, AppForge prompts for a directory to store the new PRC file. If you have a Palm
PDA and the Desktop software, you can now install and run this PRC file as you would any other
application.

Remember, to run an AppForge program, you must have the Booster on your Palm PDA. You can do this
by selecting the Install Booster on Device menu choice. Note that the Booster requires initialization to
function correctly. After it is installed, the Palm PDA will perform a soft reset, which will allow the Booster
to configure itself.

You can use the Upload Project menu choice to queue the application file for installation. If all went well
and you chose the Deploy to Device option, you are prompted to synchronize the device to install the
software.

At this point, the program and Booster are installed and ready to run on the Palm PDA. When launched,
the application displays the simple message box, as shown in Figure 1-9.

Figure 1-9. Hello, Handheld World message box

1.4.3 Palm Emulator

If you don't have a Palm PDA, then you can run the application in the Palm Operating System Emulator.
As implied by its name, the Emulator mimics the hardware and software of the Palm PDA.

If you study the various models of Palm PDA available on the market, you will notice that most share a
common hardware base-the Motorola Dragonball chip, a touch screen, some buttons, infrared, and serial
ports. What is different between the models is the memory architecture-the read-only memory, or ROM,
and the operating system.

The Emulator can load different ROM images, allowing it to simulate any device in the Palm PDA family.
And it can load different bitmapped skins, allowing the software to take on the appearance of any Palm
PDA. See Figure 1-10 for an example of the Emulator configured as a Palm IIIc.

Figure 1-10. Emulation of Palm IIIc

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By using the Emulator, it is possible to develop and test many features of an application without ever
uploading the PRC to a physical Palm PDA.

The Emulator software is freely downloadable from the Palm web site,
http://www.palmos.com/dev/tools/emulator. There are several WinZip archives that need to be
downloaded, one for the Emulator itself and another that contains the skins. Un-zip both the archives into
the same directory; and be certain to use the subdirectory paths defined in the files.

You must use POSE version 3.3 or higher when testing AppForge programs. Earlier
versions of POSE have bugs that prevent the AppForge Booster from running
properly.

At this point, the Emulator will not run because it is missing the ROM image file. Having the Emulator
alone is like having a computer with no operating system. There are two ways to get ROM files:

Download the ROM image from a Palm PDA. You must have an actual device to use this technique

Get the ROM image from Palm. You must join the Palm OS Developer Program and sign a non-
disclosure agreement

The first method is a little tricky; it requires the installation of a special ROM transfer application onto the
Palm PDA. This is useful if you need to debug something, because by transferring the device ROM into
the Emulator, an exact copy of the Palm PDA is made. Refer to the documentation that comes with the
ROM transfer application for more details.

After you complete the legal paperwork for the Palm OS Developer program and are accepted into the
program, you will be able to download various ROM images from the Resource Pavilion web site. [9]

[9] You can sign up at http://www.palmos.com/dev/programs/pdp/join.html. Be warned that the acceptance process often takes a day or

more.

Running Emulator.exe for the first time will open the New Session dialog, as shown in Figure 1-11. Select

http://www.palmos.com/dev/tools/emulator
http://www.palmos.com/dev/programs/pdp/join.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

one of the ROM files previously downloaded from the Palm Alliance Pavilion.

Figure 1-11. Emulator New Session dialog

The Emulator determines which device types are compatible with the chosen ROM. For example, if you
select Palm OS 3.5-en-color.rom, the Emulator knows that the device can only be a Palm IIIc. Likewise,
the Emulator knows which skins to use, based on information in the ROM. The RAM size selection allows
you to control how much memory is in the simulated Palm PDA; any setting is fine.

Press OK to create a new emulator session. To save the session, select the Save As choice from the
Emulator context menu.

You interact with the Emulator as if it were an actual Palm PDA-the Windows mouse even functions as a
stylus! Substitute the mouse for a finger when pressing the four main buttons or the power switch. To
change any settings, right-click anywhere on the Emulator to access a context menu with all settings and
options.

There are several ways to install applications into an Emulator session. The simplest is to drag-and-drop a
PRC file onto the Emulator. To run the sample application, drag it and the necessary Booster files into
your session. Our simple application requires the following Booster files: AFCore.prc, ByteStreamVM.prc,
pCOM.prc, and BasicIngots.prc.[10]

[10] These files are located in the directory where you installed AppForge, in the Platforms\PalmOS\TargetImage subdirectory.

After installing the Booster files, you must do a soft reset of the Emulator before
running AppForge applications. This is easily done by bringing up the context menu
and selecting the Reset option.

One of the features of the Emulator is to report dangerous application behavior. The AppForge Booster
requires direct access to certain Palm system functions, such as processor registers and screen memory
addresses usually controlled by the operating system. Occasionally you will see an error message from
the Emulator when running AppForge applications.

You can disable these messages from the Emulator context menu. Select Settings Debug Menu and
then unselect the checkboxes, as shown in Figure 1-12.

Figure 1-12. Emulator Debug Options screen

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that the Debug Options screen changes between releases; don't worry if your screen doesn't look
exactly like Figure 1-12. We aren't going to explain every setting for the Emulator in this book, since it is
well documented by Palm. The Emulator does have some special features that make it a great
complement to testing only on actual hardware.

The ROM images obtained from Palm contain debugging information for the Emulator, allowing it to trap
many kinds of programming errors. Other features include Gremlins, a powerful application stress test,
and Reporter, an application log tool. We'll cover how to use the Emulator to test and debug applications
in Chapter 10.

At this point, you can run the sample application in this chapter in the Emulator. When running, you should
see an "Hello World" screen like that shown earlier in Figure 1-9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5 Resources

In addition to the online documentation, the AppForge installation includes example projects, each of
which highlights a specific AppForge feature or function:

Extensibility library

Illustrates how to call another Palm application in AppForge to obtain system-specific information;
professional edition only

Palm DB samples

Illustrates how to read and write the native Palm application databases, such as the Address and
To-do databases

PDB library

Illustrates how to use most of the AppForge database library calls, including database and record
manipulation and sorting

Recipes to go

Illustrates how to build a large, multiform application that supports several databases with
categories

Slide

Illustrates simple graphical programming, using the traditional 15-piece puzzle
Unit converter

Illustrates a data-driven application, using the AppForge Database Converter

Even after months of using AppForge, we still find ourselves coming back to the samples to review code
snippets. In addition, there is a comprehensive tutorial that is nicely organized into lessons that cover
almost all aspects of AppForge development.

The AppForge Developers Sector is an online resource that contains documentation, the knowledge base,
and a code library. The knowledge base contains bug reports, fixes, and other technical articles. Of
course, it is searchable. The code library contains example applications and techniques posted by both
AppForge and members of the development community. See http://www.appforge.com/dev/index.html for
details.

Two active user groups on Yahoo! are dedicated to AppForge development; one is moderated and one is
completely open. See http://groups.yahoo.com/group/appforge for more information. AppForge actively
monitors the lists as well, and will often provide clarification or support in this forum.

http://www.appforge.com/dev/index.html
http://groups.yahoo.com/group/appforge
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Application Development

Creating Palm applications requires you to consider many different design aspects, as discussed in
Chapter 1. The success of your applications, however, will ultimately ride on their usability by the end
users, so it is important to understand both the style of a typical Palm application and how to achieve that
using Visual Basic and AppForge.

This chapter will explain how to design and develop Palm applications that provide most or all the features
common to other Palm applications. The emphasis is on using AppForge ingots to create your user
interface and leveraging the libraries provided by AppForge, which give you access to many native Palm
functions within Visual Basic. The chapter offers a building block approach, in which we will present
several topics and then incorporate them into an application. Where appropriate, we will build on previous
examples. However, the goal is to teach you specific concepts and not focus on building a large monolithic
application by chapter's end. It is intended that the source code be generic enough that you can cut and
paste code into your applications as you see fit. The source code and compiled versions of all examples
presented in this chapter are available for download at http://www.oreilly.com/catalog/vbpropalm/.

http://www.oreilly.com/catalog/vbpropalm/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1 User Interface Design

User interface design is one of the most challenging aspects of Palm programming. Creating a usable
interface is the key to user acceptance; if an interface is too hard to work with, people won't use it.

There are many styles of Palm interfaces, especially for custom applications never intended for public
distribution. However, style guidelines do exist for the Palm OS, just as they do for Windows programming.
Palm has a programming design and style guide posted on their web site that covers some of the topics in
this chapter.

Your applications should be designed to provide quick execution and data retrieval, to minimize data entry
and provide selection lists where appropriate, to reduce the number of taps to navigate to key screens,
and to find data quickly via sorts and filters.

Time is critical to Palm users, since they often need to keep up with external activities such as
conversations while they look up an address, enter a new phone number, or jot down a quick note.

You also want your interface to operate in a similar fashion to other Palm applications, thus providing the
user with a common look, feel, and operation. Let's review some of the basic user interface (UI) elements
and how they can be used to achieve these goals.

Your basic application layout will usually have a title bar, an application workspace, and operation buttons
along the bottom. This screen is sometimes referred to as the base screen. The following list provides
more information about the elements in the base screen.

Title/information bar

You should put either the application name or some other pertinent information based on the
application context in the upper left of the screen. Figure 2-1 shows the Palm scheduler application
with the title set to the current day being viewed. This title changes based on the currently selected
view format. This area could also be used for quick navigation controls (in this case, day and week
navigation push buttons). This is also where an application menu bar will reside. Menus on the Palm
are normally hidden to save space and are usually displayed by tapping the title bar tab or the
silkscreen menu button. The typical height of the menu bar is 15 pixels.

Application workspace

The main thing to remember is to maximize space by using as much space as you can from edge to
edge and top to bottom. The actual device screen has an unusable border frame that keeps your
interface from looking crowded, even if the controls are right to the edge.

Operation buttons

Buttons placed along the bottom of the screen typically perform an operation on the data from the
current view. The use of an ellipsis (...) to indicate a secondary entry screen is optional in order to
save space. Button text should have at least one pixel between it and the button border.

Figure 2-1. Basic window layout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are several types of button styles: command, push (or toggle), and repeating. A command button is
just that: it initiates a specific action when clicked, such as opening up a dialog window. Push buttons are
usually associated with actions that are mutually exclusive to each other, with only one active at a time.
The active button in a push button group is usually highlighted or indicates in some manner that it is the
current selection. For example, a collection of push buttons could each define a distinct data view for the
user, of which only one can be active at a time. Repeating buttons perform a repetitive action when
pushed. Scroll or increment buttons are examples of this style.

Buttons are usually left-aligned within the form. This is also the case for dialog windows in which standard
buttons like OK, Cancel, Yes, No, Abort, Retry, and Ignore are aligned left to right.

Dialog windows have their own look and feel, which provide visual feedback to a user that this operation is
modal. Normally, dialog windows should be sized to neatly contain the applicable controls, and dialog
windows that are not full-sized are usually aligned along the bottom. However, AppForge currently does
not correctly support forms smaller than the full screen size, which can overlap and be visible at the same
time (more on this later), so use full-screen forms for your dialog windows. Figure 2-2 shows the key
features of the dialog window.

Figure 2-2. Dialog window layout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tip screens are normally triggered by the information icon located in the upper right corner of a dialog
window. However, you may link to tip windows via the application menu or from the command and graphic
buttons. Figure 2-3 shows a basic tip screen.

Figure 2-3. Tip window layout

2.1.1 Other Important Guidelines

There are many other principles to keep in mind when designing your application.

Use command buttons for important tasks.

Use push buttons to quickly change data presentation to better suit the needs of the user, especially
when sorting or filtering data for easier access.

Use pop-up lists instead of manual input when users have many options from which to select. Be
cautious, however, to not create pop-up lists that are too long and require extended time to traverse.

Avoid having too many buttons on the form, which could create clutter and confusion for the user.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Avoid nesting dialog windows (in which a dialog calls another dialog, etc.) unless it is for an
infrequently used functionality.

Don't gray out unavailable menu items or controls; consider removing (i.e., hiding) them instead.

Consider overloading the hard buttons if your application may benefit from it.(This could be the case
with a game program.) Remember to always release control of these buttons when your application
terminates.

If possible (and desirable), allow for finger navigation by making buttons wide enough for clear
recognition by the Palm OS. The calculator is a classic example.

Create consistent default behavior when an application starts. For example, if the user's first action is
to enter in some text, ensure that the cursor is active in the text control and ready for the user to start
scribing.

Minimize taps for navigation as much as possible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2 Basic Application Layout Example

Our first application's purpose will be to set up a typical base window with a title bar and a command
button. Our goals for this application are to:

Introduce the Shape, Label, and Command button ingots

Compile and run in Visual Basic

Generate a PRC file and run it on a Palm device

Start by opening an AppForge project in Visual Basic. Your first form, like regular Visual Basic
applications, will be autogenerated. What you will see is a form that's 160 x 160 pixels in size, with a blank
title bar. Of course, Windows-style title bars do not exist in the Palm OS. This title bar is there to provide
you with a means to drag the window around your desktop and close the form if you are test-running it in
the Visual Basic IDE. This size and color of the title bar provide a common foundation for developing forms
for the typical Palm or Pocket PC device that match the actual screen size of those devices. Change the
name to frmBase.

The next step is to add a title bar that is common to almost all Palm applications. There are two methods
to produce a title bar, custom or automatic. First, let's look at creating a custom title bar. There are only a
few reasons why you may want to create your own custom title bar, and you'll most likely find that letting
AppForge create it automatically will meet your needs. But it's worth a quick review just in case you do
want to create your own. (Automatic title bar creation was introduced in AppForge version 2.0.) We are
going to create our title bar by using a label and two Shape ingot controls. You may be wondering why you
need to use so many controls, but remember, you are responsible for painting everything you see on the
screen. As we stated previously, the standard height for a title bar is 15 pixels, so we can create our title
bar using the following method. Other methods are possible, such as using a graphic ingot, but the method
we'll use produces an exact replica of a title bar that has no overlapping controls (an issue discussed in
the next section) and that takes up less memory that a graphic ingot and its associated external graphic.

The layout of the controls is shown in Figure 2-4.

Figure 2-4. Form title bar layout

Place a Label and two Shape ingots on the form as shown and make the changes shown in Table 2-1 to
create your title bar:

Table 2-1. Custom title bar ingots and settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Shape 1 Shape 2 Label

Name ShpTitleTop ShpTitleBorder LblTitleBar

Left 1 55 0

Top -1[1] 13 2

Width 53 103 55

Height 2 2 14

Alignment Center

BackColor Black

Font Palm5Bold

ForeColor Background

[1] We place it offscreen by 1 pixel, since minimum height for a Shape ingot is 2 pixels.

That's really all there is to creating a custom title bar, but AppForge provides a quick and easy method to
satisfy 99% of developers who just need a simple title bar. AppForge uses the contents of the form's
Caption property as the label for the title bar. It automatically sizes the title tab to fit the caption size and
also creates the title bar border. Its size is always 15 pixels and you can still place controls on top of it
(although you will get a warning at compile time). By default, a new form has an empty caption property,
and leaving it empty signals AppForge not to create a title bar.

Why would you want a custom title bar? The simple answer is that you might need control over the title
bar. Since a custom title bar is comprised of ingots, you can manipulate them as you would any other
ingot. For example, you could "move" them as you scroll a form to keep their normal position, have them
respond to events, or have them perform any other action you deem necessary based on the needs of
your application. However, these situations are rare, and that is why AppForge added the automatic title
bar feature.

To complete your application, place another Label and Command Button ingot on the form and name them
lblMessage and cmdShow, respectively. Change the button caption to Show. Finally, add the following code
to the form:

Option Explicit

Private Sub cmdShow_Click()

 lblMessage.Caption = "Hello HandHeld World!"

End Sub

That's it! We're now ready to test-run our application in Visual Basic. Push F5 to run the program, and click
the Show button. Your message will display. It will look something like the screen shown in Figure 2-5.

Figure 2-5. The layout application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since AppForge projects run on Windows just as they do on the Palm, this is a great debugging technique.
However, certain processes, such as connecting to databases, have different call structures for each
platform, so make judicious use of conditional compilation to take advantage this debugging capability.
Many of the AppForge tutorial projects use this idea. A note of caution: what may run flawlessly in Visual
Basic may not compile and/or run correctly in the Palm environment. This is due to the Palm environment's
potentially limited or nonexistent support for certain Visual Basic language features. The best advice is to
compile with AppForge often, and don't be surprised if you need to implement some workarounds. We'll
cover language support later in this chapter.

2.2.1 Configuring, Compiling, and PRC Generation

As we discussed in Chapter 1, you must configure the application, compile it, fix any errors, and then
generate the PRC file for upload to the Palm device or for installation on the Palm Emulator.

From the AppForge menu, select the AppForge Settings option. Select Palm OS Settings from the
available setting list. Change the Current User as appropriate (based on your Palm Desktop
configuration) and set the Creator ID to OR21.

Thie AppForge Settings dialog box has a setting that allows you to register your
Creator ID from within the VB IDE. Just click the Register Creator ID button, which
will link you to the appropriate Palm registration form.

That's all there is to project configuration. We'll cover the ins and outs of application dependencies,
names, and icons later, so disregard the rest of the settings for now and select OK. Select Compile and
Validate from the AppForge menu. You should not receive any compiler errors, but if you do, they would
be displayed at this time. If successful, select Save Project Package Palm OS from the AppForge
menu to generate the Palm application file.

At this point, the PRC file is ready for use. We can upload it to the Palm device by selecting Deploy To
device Palm OS from the AppForge menu or installing it into an open Palm Emulator session. The
upload function from AppForge will take the PRC and any dependencies (like images or databases) and
programmatically run the install function of the Palm Desktop using the User and Creator ID from the
project properties. This places a copy of the files physically in the Palm user directory on the hard drive
and informs the HotSync manager that new files are ready for upload.

To install files on the Palm Emulator, open a session and right-click on the emulator skin to access the
context menu. Choose Install Application Database and select the files to install, or simply drag
and drop the desired files to load directly onto the emulator skin. Run the application to confirm correct
operation by clicking the command button to display the hello message.

You've now successfully developed a Palm application using Visual Basic and AppForge. Let's look at the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

basic building block of an application, the ingot, and review the ingots introduced in this example.

2.2.2 What's an Ingot?

Ingots are specialized, reusable, ActiveX-like components and controls that are designed to operate in
both the Windows and Palm environments. This is achieved through a platform-independent component
object model called the Piedmont Framework. Piedmont provides all the functionality necessary to operate
on the Palm OS while bridging the gap to underlying COM services on the Windows OS. As you've seen
from the sample application, ingots have a look, feel, and function similar to their Windows counterparts. It
is important to note that standard Visual Basic controls cannot be used in AppForge projects, but ingots
can be used in both. This makes them versatile controls if you find a need for them in desktop
applications.

2.2.2.1 Common ingot attributes

Each ingot may have its own special purpose, but most share common traits.

Color

Many ingots have color-oriented properties such as ForeColor and BackColor. These properties
take a long value in the form of &HBBGGRR where BB is blue, GG is green, and RR is red (e.g., green
would be &H00FF00). You could also use the original AppForge grayscale color constants:
Background (green or white, depending on the device), Light Gray, Dark Gray, and Black.

Fonts

The FontName, FontSize, FontStyle, and FontColor compose the total definition of the desired font.
The FontName property expects the name of a valid, converted font. FontSize expects an integer
for indicating the font size in pixels. [2] FontStyle can be four possible constants: Plain (0), Bold (1),
Italic (2), Bold & Italic (4). FontColor is a long, as described previously. If you change any of
these properties to create an invalid combination (i.e., the font doesn't exist), no text will be
displayed. Also, if you dynamically change fonts at runtime, the compiler will not pick them up as a
dependency. Add them manually via AppForge Settings User Dependencies.

[2] Keep this is mind when you are converting TrueType fonts to AppForge Fonts, since TrueType fonts aren't based on width in

pixels (i.e., size 12 TrueType font characters are larger than 12 pixels in width per character, so adjust accordingly). This does not

apply to Form, the font size attribute that still uses points as the unit of measurement.

Text Alignment

For those ingots that display text, there is an Alignment property that allows for Left, Center, or
Right alignment of the text; the default varies based on the ingot but is usually either Center or
Left.

Almost every ingot has a Left, Top, Width, Height, Tag, Index, Enabled, and Visible attribute that
operates exactly as in native Visual Basic.

Let's review the ingots used in our first application.

2.2.2.2 Command Button ingot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Command Button ingot is the workhorse control in many applications. Its purpose is to provide the
user with a triggering mechanism to execute or stop a task.

There are several key differences between the Palm command button and the Windows version, beyond
the contrast in appearance.

The Appearance property has three possible styles based on the target OS: Rounded (Palm OS), 3D
(Windows), and Flat (Pocket PC). There is another style called Native that changes the style based
on the OS the ingot is running, thus providing cross-OS compatibility.

There are no Cancel or Default attributes, since these are not applicable in the Palm context.

2.2.2.3 Label ingot

The Label ingot is another control that is common to all applications. Its purpose is to label some data or
controls, and it is not directly modifiable by users. It is also commonly used to display application status
information at runtime.

The Label ingot supports the same font and color characteristics as does the Command Button ingot. It
doesn't support the following characteristics available in the VB label control.

AutoSize and WordWrap for variable length strings

Transparency to other controls

UseMnemonic to make the control act as shortcut-accessible

Data binding or DDE targeting

Right-to-left caption direction (for use with other languages)

2.2.2.4 Shape ingot

The Shape ingot is potentially the most commonly used ingot, since it is the primary mechanism to
customize your interface. The Shape ingot also uses much less memory than the Graphic ingot, since the
Graphic ingot requires an external graphic file.

The Shape ingot cannot be transparent to other ingots. If FillStyle is set to transparent, it does not
show overlapping control. It fills the shape using the color value from the BackColor property.

The Shape ingot supports the Rectangle, Square, Oval, Circle, Rounded Rectangle, and Rounded
Square types. However, unlike in VB, there is no Line ingot and therefore no way to draw a diagonal
line. Lines can be drawn programmatically using the Graphic ingot, but the minimum area the control
would take up is the bounding rectangle encompassing the two endpoints of the line. This could lead
to a considerable number of overlapping controls and would certainly use lots of memory while most
likely adding little value to your application.

Remember, ingots are designed to provide as much functionality and behavior as possible from their

http://lib.ommolketab.ir
http://lib.ommolketab.ir

standard Windows counterpart, controls. However, the differences usually exist because there really is no
direct functional or visual "translation" to a Windows control, or because this was left out on purpose to
minimize the size (in bytes) of the control, ultimately affecting the size of the PRC generated.

2.2.3 Forms Management

When we talk about forms management, we really want to focus on understanding the altered use of
Visual Basic form objects by the AppForge runtime known as the Booster. The Booster runtime consists of
several PRC files that execute your Visual Basic code, which has been altered to operate as best as
possible under the Palm OS.

With this in mind, it is important to understand what the Palm OS expects and how you, the programmer,
will help the Booster achieve those expectations. There are clear, fundamental differences between
Windows forms (VB forms running under the Windows OS) and AppForge forms (VB forms running under
Palm OS). We'll discuss these differences in the following sections.

2.2.3.1 Form characteristics

AppForge forms are much simpler than Visual Basic forms for a good reason: they don't need all the
functionality that a Windows form needs (even for basic operation).

Your basic Windows form requires support for border, title bars (which include the control box, caption,
minimize, maximize, and close buttons), and a host of other functionalities, such as background images,
font, and drawing support.

The AppForge form under the Palm OS requires much less functionality. Below is the total set of form
properties, methods, and events supported by AppForge forms.

Properties

BackColor, Caption, Enabled, ForeColor, Height, KeyPreview, Left, ScaleHeight, ScaleLeft,
ScaleTop, ScaleWidth, StartUpPosition, Tag, Top, Visible, Width

Methods

Hide, Move, Refresh, Show, Zorder
Events

Activate, Click, Deactivate, Initialize, KeyDown, KeyPress, KeyUp, Load, QueryUnload, Resize,
Terminate, Unload

As you can plainly see, this is a small subset of the properties, methods, and events supported by the
Visual Basic form under Windows. This is simply because size and performance are the most critical
aspects of any Palm application. To add support for other functionalities will ultimately affect both of these
design traits. Of course, you may eventually need to add some unsupported functionalities in other ways
(such as by using workarounds), depending on the needs of your individual application.

One of the most noticeable differences with the AppForge form, visually, is its size. As stated previously,
Palm application forms are a maximum of 160 x 160 pixels. AppForge supports a larger-sized form (240 x
269) for the Pocket PC only. If you attempt to set the AppForge form StartupPosition to Manual and change
the ScaleTop property, you will find that it will run Visual Basic, but will throw an AppForge compiler error

http://lib.ommolketab.ir
http://lib.ommolketab.ir

telling you that the ScaleMode property must be set to Pixels, and a compiler warning that indicates the
form may not be visible on the device. Since changing the size is only a warning, resetting the ScaleMode
to Pixels, generating the PRC, and running on a Palm device will display a smaller form, as you specified.
However, the form displays centered in the display area (or where you place it using the form's Move
method) and will lock the application if you tap anywhere outside the smaller form. The answer is to make
all forms full-sized.

2.2.3.2 Displaying forms correctly

As an AppForge developer, it is important for you to understand how to correctly code your forms for
display. Any normal combination of the Unload or Load event, Show or Hide method, or the form's Visible
property setting will correctly display forms under the Palm OS. Realize that setting a form's Visible
property is equivalent to using the Hide or Show method.

When considering how to code a form's operation, remember the following principles.

Only one form should be visible at any given time under AppForge. However, any number of forms
may be loaded depending on available memory.

You want to minimize the number of simultaneously loaded forms.

One AppForge form limitation that was alluded to earlier during our discussion of dialog windows was the
correct display of forms smaller than full screen size. It appears that, although a form can be smaller and
placed at a desired point on the screen, there is a problem with the form's input focus if the user taps
outside the bounds of the smaller dialog form onto the underlying form. To avoid this problem, it's best to
keep all forms full-sized.

Another thing to consider is the device model. If you are deploying an application to older model devices,
such as the Palm III series, Heap memory is very limited. Dynamic Heap memory is analogous to
Windows RAM, which is used by running applications to store various data and resources. There are
physical limits to Heap memory based on your OS version, despite how much overall free memory you
have. These limits are listed in Table 2-2.

Table 2-2. Heap size versus OS version

Palm OS version Maximum Heap size

3.0 96K

3.02, 3.1, 3.2, 3.3 128K

3.5 or greater 256K[3]

[3] As of version 3.5, dynamic Heap space is now sized based on the amount of memory available to the system: 64K for less than 2Mb,

128K for greater than or equal to 2Mb,and 256K for greater than or equal to 4Mb.

AppForge leverages the Palm stack and dynamic heap data structures as best as possible in order to
maximize performance and efficiency. To achieve this, AppForge loads all forms and ingots on the
dynamic heap, while placing all variables and function parameters on the stack. This approach allows the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Palm Memory Manager to use smaller chunks of contiguous memory for each structure, thus improving
performance, especially for large applications.

2.2.3.3 Threads of execution and events

Earlier versions of the AppForge Booster had two threads of execution while running in the Palm OS. The
first thread was for the execution of code and the second was used to handle all form display requests. For
example, code residing in a form's Load event might not have executed correctly before the form appeared
because certain code might have required the form to be visible to execute. However, since version 2.0,
the Booster has been changed to a single-threaded model so that event callbacks happened properly.

Applications running under AppForge operate identically to their Windows counterparts with respect to
event handling. Code that triggers an event is immediately executed without waiting for the currently
executing code block (function, subroutine, or event) to be finished.

The AppForge form doesn't support every event of the standard VB form, but it provides almost all that you
will need for Palm applications. To receive the form's KeyPress, KeyDown, and KeyUp events, the form's
KeyPreview property must be set to True. ioAlso, the device's built-in hard scroll up and down keys
automatically generate KeyDown events. We will cover how to use and intercept all the hard and
silkscreen keys, including Graffiti strokes, later in this chapter.

Finally, let's review a form's event life cycle to understand how code will be executed and in what order.
See Figure 2-6 for a pictorial chart of the life cycle.

Figure 2-6. Form event life cycle

Initialize

This event is triggered on the creation of a new instance of the form. Upon completion of the event,
the form is created but not loaded. Use this event to execute code you want to run before the form's
Load event, such as initializing form-level variables.

Load

This event occurs before the form is made visible. Check to ensure that you don't run into any

http://lib.ommolketab.ir
http://lib.ommolketab.ir

execution problems, as previously discussed. This is also your chance to perform any initialization
of the form prior to it being displayed. It is a good place to open databases and retrieve records for
initial viewing.

Activate

This event happens after the form is visible or receives focus. Place any code that is having
problems running in the form's Load event here. Activate is not triggered by just loading a form; it
must be visible to be triggered. This is a good place for code that updates ingots. Shifting code
normally performed in the Load event to this event gives the appearance of faster performance,
since the form appears quicker.

Deactivate

This event happens when focus is removed from the form, for example, by hiding a form and
showing a new form. This event is not triggered before the Unload event.

QueryUnload

This event provides an opportunity to perform any final actions before the Unload event occurs. It
also allows you to cancel the Unload event, including determining how the unload was triggered.

Unload

This event is used to unload a form from memory and reclaim any used memory from form-level
variables and structures. There is more to this event than meets the eye, though. First, this event is
not triggered automatically if you move focus to another application on the device. The Unload event
must be explicitly called in order for the event handler to execute. In code, this would involve using
the Unload statement. However, if you wish to have your application end gracefully when a user
opens another application, you will need to intercept button calls and trigger the Unload event from
there. We will cover button interception later in this chapter.

Terminate

This event occurs when the form is destroyed in memory, such as when an application ends.

2.2.3.4 Form refreshing

Form ingots are normally refreshed automatically during periods of inactivity. Unlike the VB Refresh
method, the effect of the refresh is not guaranteed to happen immediately. Visible ingots will get repainted,
while non-visible ingots will force an update to the data associated with the ingot.

AppForge does not perform the refresh immediately in an effort to increase performance, but you can still
force a refresh by using the DoEvents function. The DoEvents function executes all pending events under
AppForge (on the Palm) as it does under Windows. [4]

[4] This was not the case under AppForge 1.x, since calling DoEvents did not interrupt execution of code (say, a loop) to process pending

message events.

To force a refresh of a component, you need to execute a direct refresh of the component followed by a
call to DoEvents. For example:

Form1.AFLabel1.Refresh

DoEvents

Using DoEvents will lengthen execution time, but it gives you the ability to perform other tasks while

http://lib.ommolketab.ir
http://lib.ommolketab.ir

waiting for the lengthy operation. An example of this would be loading a grid control with a large amount of
data. If you must have an application that takes an extended period of time to load a database/grid,
incorporating some form of indicator that the application is working is prudent. This could be in the form of
a status field change or a spinner animation (shown in Chapter 3Chapter 3, when we focus on databases).
In any case, the indicator will not be updated without calls to DoEvents.

2.2.3.5 Form scrolling

With the limited size of the application workspace, it makes sense that an important design consideration
would be to create forms that are scrollable, if necessary. There are several methods of scrolling that we'll
review in this chapter.

Paging a form that is larger than 160 pixels (in either width or height)

Scrolling a form that is larger than 160 pixels (in either width or height)

Scrolling the controls on a form that is standard size (160 x 160 pixels)

The first two methods are easier to implement, since they don't involve per-ingot changes; they involve
manipulating the Top property (or Left property for Horizontal scrolling). However, a note of caution:
AppForge warns that this functionality, while working at present, is not guaranteed to work in future
releases of AppForge.

The last method, while more involved, is supported since it manipulates the ingots on the form and not the
form itself. The sample code shows a scrolling application to demonstrate the techniques described below.

2.2.3.6 Paging a large form

This is the simplest method and involves first developing a form with width, height, or a combination of
both, in increments of 160 pixels. You can accomplish this by dragging the form boundaries out to the
proper ScaleWidth and ScaleHeight properties.

Changing these values in the Properties window does not resize the form, but
instead changes the ScaleMode property to User mode.

Your mechanism for changing pages can vary greatly. The most common approach would be to place next
and previous buttons or up and down arrow graphic buttons on each "form." The code to place behind
these buttons is as follows:

'Vertical Paging

Me.Top = Me.Top + 160 'use for the Up (or Previous) Button

Me.Top = Me.top - 160 'use for the Down (on Next) Button

'Horizontal Paging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Me.Left = Me.Left - 160 'use for Left (or Next) Button

Me.Left = Me.Left + 160 'use for Right (or Previous) Button

Creating control arrays for the up and down buttons allows you to write the code only once for each
procedure. It also allows you to check if you are at either end of the form by examining the control index
parameter in the buttons click event.

Private Sub cmdNext_Click(Index As Integer)

 'move to next page unless this is last page

 If Index <> 2 Then Me.Left = Me.Left - 160

End Sub

Private Sub cmdPrev_Click(Index As Integer)

 'move to previous page unless this is first page

 If Index <> 0 Then Me.Left = Me.Left + 160

End Sub

To optimize the form and reduce the number of navigation button ingots, just create one set of buttons (up
and down) and simply reposition them each time they are clicked. Figure 2-7 provides an example of a
horizontally paging form.

Figure 2-7. Paging form

2.2.3.7 Scrolling a large form

This method is similar to the paging example. It simply involves manipulating the Top and/or Left
properties of the form, except that the increment is much less than 160 pixels, thus producing a scrolling
effect. Scrolling large forms can get easier or harder depending on how much style and function you wish
to implement in your application. For example, the form shown in Figure 2-8 keeps the entire title bar in
place while scrolling the form. In reality, two things are happening: the form is shifted vertically and the
ingots comprising the title bar are moved by the specified increment to keep them stationary.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-8. Vertical scrolling

The code to support this scrolling effect is:

Const MAX_UP As Integer = -80

Dim miCurrent As Integer

Private Sub ScrollDown(ByVal Amount As Integer)

 'only scroll form to point that you desire as defined by MAX_UP

 If Me.Top > MAX_UP Then

 Me.Top = Me.Top + Amount

 AdjustTitleBar -Amount

 End If

End Sub

Private Sub ScrollUp(ByVal Amount As Integer)

 'stop once top shape has return to home posititon

 If Me.Top + Amount <= 0 Then

 Me.Top = Me.Top + Amount

 AdjustTitleBar -Amount

 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

Private Sub AdjustTitleBar(ByVal Amount As Integer)

 'move controls to keep them stationary

 shpTitleBorder.Top = shpTitleBorder.Top + Amount

 lblTitleBar.Top = lblTitleBar.Top + Amount

 shpTitleTop.Top = shpTitleTop.Top + Amount

 cmdExit.Top = cmdExit.Top + Amount

 Vscroll.Top = Vscroll.Top + Amount

End Sub

Private Sub VScroll_Change()

 'user clicked above scrollbar thumb

 If miCurrent > Vscroll.Value Then

 'is change large or small?

 If Abs(miCurrent - Vscroll.Value) > Vscroll.SmallChange Then

 ScrollUp Vscroll.LargeChange

 Else

 ScrollUp Vscroll.SmallChange

 End If

 Else

 If Abs(miCurrent - Vscroll.Value) > Vscroll.SmallChange Then

 ScrollDown -Vscroll.LargeChange

 Else

 ScrollDown -Vscroll.SmallChange

 End If

 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'store current value

 miCurrent = Vscroll.Value

End Sub

MAX_UP is the desired amount of pixels from the bottom you wish the form to stop scrolling. The miCurrent
variable stores the current value of the Scrollbar ingot. Let's take a quick look at the Scrollbar ingot that
this example uses.

2.2.3.8 Scrollbar (horizontal or vertical) and Slider ingots

The Scrollbar ingots are very simple and are perfectly suited for form scrolling. The ingots differ only in
their directional orientation. Their property, method, and even set is identical. They can take on one of two
styles based on the Appearance property. They can be Borderless (Palm style) or Borders (Pocket PC
style). There is also a Native setting that sets the appearance to match that of the native operating
system. Visually, the ingot can change the background and the scroll thumb's color.

The Scrollbar ingot operates like its Windows counterpart. Simply set the desired bounding Max and Min
values and adjust the default SmallChange (1) and LargeChange (10) properties as desired. A Change
event is triggered for each tap of the scrollbar. As you can see from the preceding code segment, you will
need to determine direction by comparing the value before the tap with the new value if direction is
important. The ingot also doesn't indicate if the tap resulted in a large or small change, so you'll need to
determine this on your own (as shown).

Another control that operates identically to the horizontal scrollbar ingot is the Slider ingot. The only major
differences are in the Slider ingot's appearance attributes. The ingot can have several Appearance types:
Pointer Up, Pointer Down, Rectangle (Pocket PC), and Rounded (Palm OS). These styles can all have a
series of tick marks displayed next to the slider track. These ticks can be turned off if desired, and their
frequency can be adjusted. Operationally, the only difference between the Scrollbar and Slider ingots is
that the Slider ingot triggers a SliderMoved event that supplies an input parameter indicating the slider's
new value. This is identical to the contents of the Value property.

2.2.3.9 Scrolling ingots on a normal-sized form

This method does not involve moving the form itself, but rather the ingots on the form. As you can expect,
this method can become very tedious to code and maintain for forms with a lot of ingots, so use this
method appropriately. This method is, however, guaranteed to work in future versions of AppForge, since
we are not manipulating the form's Left and Top properties.

The form in Figure 2-9 contains only a few ingots, and a Scrollbar ingot is used to control the movement of
the form.

Figure 2-9. Ingot scrolling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The code is relatively simple. Making calls to the ScrollForm method shifts the ingots the appropriate
amount and adjusts the scrollbar ingots.

Public Sub ScrollForm(ByVal Increment As Integer)

 'stop before top control reaches bottom OR

 'bottom control reaches top

 If (lblMsg(0).Top + Increment < 150) And _

 (lblMsg(2).Top + Increment > 20) Then

 AdjustIngots Increment

 End If

End Sub

The code for the scrollbar is identical to that shown in the last listing.

2.2.3.10 Control layering

The layering of ingots on a form at design time is identical to the process of layering controls in a Windows
application. Every ingot on a form has not only an X or Y position, but also a position along the Z-axis, in
what is called the form's Z-order. The ZOrder method can be manipulated at runtime to establish the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ordering of the controls on the form. You can set an ingot's ZOrder implicitly at design time when placing
the ingots on a form, by using each ingot's right-mouse context menu's Bring To Front and Send To Back
commands.

2.2.3.11 Icons and title for Palm applications

Palm applications can have two distinct icons: one for the icon view and one for the list view of the main
launcher window. The icons should be 22 x 22 pixels for the Icon view and 15 x 9 for the List view.
AppForge does support color icons.

The Palm OS application icon title can be any length, but on average fits about 9 characters in Icon view
and about 12 in the List view. The Palm application name and icon title are derived from the VB project
object name, not the Application Title property nor the actual Visual Basic Project (.VBP) filename. Since
the Project name property doesn't allow spaces, AppForge built in a way for you to get spaces into your
deployed application name. Simply use an underscore (_) in the project name wherever you want a
space and ensure that the Convert spaces in project name option is checked on the AppForge Settings

 App Name/Icon dialog.

Finally, if you upload an application that is already physically deployed on your Palm device, but for which
you've changed the Project name, then the new application will be a separate and distinct application
reflecting the changes you've made. It will be linked to the original application record in the Palm's
application database. This link is generated because the applications have the same Creator ID. Changing
the ID for each application will ensure a separate entry for each application in the Palm's application
database. Deleting the application from the device will remove all instances of the application, including all
corresponding icons.

2.2.4 The Basic Application Layout Example, Continued

This example extends our first basic application to demonstrate how to display multiple forms, how to
implement a menu system, and how to provide a template dialog and tip window for you to use in your own
applications.

The new controls added in this example are the Graphic and Textbox ingots. The Graphic ingot is not just
a graphic image container, it also provides you with a drawing area that you can leverage in your code to
draw a variety of things, such as charts or graphs. The Textbox ingot is your primary textual input control
and, as you will see, has quite a bit of functionality.

First, let's look at the application's two new forms, the dialog and the tip windows (shown in Figure 2-10).
The dialog window is your primary mechanism to collect information from the user in a "modal" fashion,
while the tip window provides textual help about the dialog window's (or application's) purpose or
operation. Both window types provide a visual cue to the user with their distinctive title bars and form
borders. AppForge does not support an autogenerated dialog title bar, so these must be custom-made for
Shape and Graphic ingots.

Figure 2-10. Dialog and tip windows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By convention, the dialog typically has an information icon in the upper righthand corner, signifying that a
stylus tap will open a tip window (or some other means of displaying information). Tip windows generally
have a text box with repeat buttons on the form. These buttons actually leverage the text boxes' inherent
text paging capability.

Use the Hide method for the dialog form instead of unloading, since tip windows are generally open for a
small duration and are not resource-intensive.

frmDialog.Hide

frmHelp.Show

Figure 2-10's tip window contains two repeat style buttons, the page up and page down buttons. These
buttons simply repeat the action for each stylus tap. Each tap moves the text up or down, using the
Textbox's TopLine and TotalLines properties.

'code for down button

txtHelpText.TopLine = txtHelpText.TopLine + 10

'code for up button

txtHelpText.TopLine = txtHelpText.TopLine - 10

Set the page increment to whatever you desire. Setting the TopLine property to a negative number or to a
number greater than TotalLines does not cause an error, but sets TopLine to the first or last line, as
appropriate.

2.2.4.1 Form menus

AppForge provides excellent menu support for the Visual Basic developer. To build a menu for any form,
simply use the built-in Visual Basic menu editor off the Tools menu. Since Windows menus support some
actions that Palm menus do not, it's important to understand what gets translated from the menu built
through the menu editor.

Menus can have as many top-level menu titles as desired, limited only by what is visible on the Palm
device display. Menu items that are onscreen will still work.

Menus can only be one level deep; they do not support any cascading sub-menus.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There can be any number of menu items, limited only by what is visible on the Palm device display.

Adding an accelerator (&) will display the stroke-character combination to invoke the menu item.

AppForge does not recognize the Shortcut, Checked, WindowList, NegotiatePosition, and
HelpContextID attributes.

Operationally, the menu works as follows:

Tapping the application title bar tab displays the menu bar.

Tapping a menu title displays the drop menu portion; subsequent taps hide it.

Tapping a menu item invokes the appropriate functionality and hides the drop menu portion and
menu bar in its entirety.

Tapping on the form while the menu is visible hides the drop menu portion and menu bar in its
entirety.

Tapping the menu silkscreen button displays the menu bar; subsequent taps hide it.

The only special circumstance to remember when developing your menus is that top-level menu titles do
not trigger events.

The menu shown in Figure 2-11 is a simple menu with one menu title (App) and a drop-down portion
containing two menu items. Note that the menu items have a shift accelerator available. Simply performing
the menu shift scribe brings up the command menu at the bottom of the form. Following it by the specified
letter will trigger the menu item.

Figure 2-11. Example menu structure and command menu

Our end result is an application that can be used as a template for all future applications, whatever their
size. Let's review the ingots that were added to this project.

2.2.4.2 Graphic ingot

The Graphic ingot is one of the most versatile ingots in the toolkit. This is because it not only can display a
graphic image, but also can be used as a drawing surface at runtime to create a wide range of things, such
as charts and graphs. It also can interact with a user's stylus taps by capturing the stylus coordinates.

The ingot's primary job is to display a graphic image. The image that the Picture property can be assigned
is an AppForge Graphic (.rgx), a bitmap (.bmp), or a JPEG (.jpg). The RGX file is an AppForge proprietary
format. AppForge provides a graphics conversion tool that converts bitmaps (BMP) to the AppForge
Graphics (RGX) format. The converted files have the following limitations:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

They cannot exceed 64K in size (this includes raw BMP and JPG files).

The conversion creates a monochrome image.

The RGX file must reside in the same directory as the project source files. When AppForge creates
the PRC file, it only looks in the project directory for the RGX files to bundle into the PRC, so no path
should be specified in the Picture property or PaintPicture method.

Let's expand on the last point. When including graphics in an application, only the files specified by the
ingot's properties will be included in the generated PRC file. In order to also include additional files
assigned to ingots at runtime (i.e., by code assignment), you must manually include them. This is done
from the AppForge Settings window.

On the User Dependencies tab, use the Add and Delete buttons to manually modify the dependencies list.
The Automatic Dependencies tab shows the resources that have been found during a search of the
project files for any image files assigned to ingots at design time.

Some points to remember about the Graphic ingots operation:

The ingot will not auto-resize for a picture assigned at runtime.

Issuing a refresh after changing the Picture property or invoking the PaintPicture method will force
the image to refresh more quickly.

Picture scrolling can be achieved using the PaintPicture method by manipulating the X and Y
coordinate parameters instead of moving the entire control. Specifying negative coordinates is
supported, and the image will be clipped appropriately if it is moved outside the ingot boundaries.

DrawCircle, DrawLine, DrawRectangle, DrawText, or SetPixel will draw on top of any picture
assigned to the ingot.

The Graphic ingot is the only ingot that directly responds to stylus actions. These actions trigger the
MouseMove and MouseDown events. These events occur before the Click event.

The Cls method clears the ingot of all graphics.

2.2.4.3 AppForge color support

AppForge supports up to 24-bit color for all images assigned to ingots. However, with this capability come
some caveats that you must heed if you want to see good performance on image loading:

1-, 2-, 4-, and 8-bit/pixel monochrome images (i.e., up to 256 shades of gray) will load the fastest.
The RGX format is 2 bit/pixel, so its performance should be very good.

Loading a color image on a monochrome device will increase memory use and display times, since
the device must now convert and map every pixel's color to a grayscale value supported by the
device. Consider deploying your application with a color and monochrome set of images displaying
the appropriate image based on the device's color support.

Image size will affect display time. Try to reduce the image size as best as possible for faster
performance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The higher the color depth, the longer the image will take to load. For best load performance of color
images, the optimal color depth is 8 bits, and the image should use the Netscape-safe Web palette.

The real performance hit comes from the color depth of an image. Palm uses its default color palette to
display a provided image. If the colors from the image are not in the Palm palette, the Palm must then
apply an algorithm to convert the palette, which runs against all pixels n the image for every color in the
palette. (For 2-, 4-, or 8-bit color images, it only has to map every color, not every pixel.) This operation
can take tens of seconds, depending on the color complexity of the image.

Needless to say, the best strategy is to use the Palm palette for your color images targeted for the device.
Many graphics packages provide the Palm color palette, or you can load the Palm palette manually. But
what if the Palm palette is not suitable for your image? Load your own! AppForge does not supply a
method to load a palette for you, but it can be easily done by tapping into the AFCore library. What is
required is an 8-bit color, 1 x 1 pixel bitmap, using your desired palette, that you will package with the
application for upload to the device. You can then change the palette by calling the following procedure:

Public Sub LoadPalette(ByVal PaletteTemplate As String)

 Dim objShell As New CShell

 Dim objPaletteImage As CImage

 If (objShell.ScreenDepth = 8) Then

 Set objPaletteImage = objShell.LoadImage(PaletteTemplate)

 Set objShell.ScreenPalette = objPaletteImage.Palette

 End If

End Sub

Pass it the name of your palette file:

LoadPallete "MyPalette.bmp"

Now, the device is optimized for your images, and all images loaded from now on will use the newly
loaded palette. You can switch to other palettes or back to the Palm palette at any time. The Palm palette
bitmap template is available from AppForge Support at http://support.appforge.com and will also be posted
on this book's web site.

2.2.4.4 Textbox ingot

The Textbox ingot is designed to provide most of the functionality of its Windows counterpart. The control
provides a unique "lined paper" format and has some built- in methods to identify and set individual lines
when multiple lines of text are present.

Keep the following points in mind:

http://support.appforge.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Textbox ingot has the same font and color characteristics as the Command Button ingot.

The entire text content can only have one font style (i.e., it is not a rich text box).

The DisplayableLines method returns the total number of lines that will fit into a Textbox ingot. This
number is determined by the ingot's selected size and font.

Set the PasswordChar property to any desired mask character. The Text property still contains the
actual text. Set the PasswordChar property and empty string to return the ingot to default behavior.[5]

[5] Palm discourages the use of masked characters for one obvious reason: you will not get immediate feedback that you correctly

Graffiti-scribed the correct characters. Why bother when you can just as easily shield the device from possible onlookers?

Use the Top property to set the specified line of text to be displayed at the top of the ingot. The
TotalLines property returns the total number of lines in the ingot.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3 Language and Libraries Support

The Palm OS is considerably different from the Windows OS in many aspects. Its underlying structure, memory model, and data storage are
radically different and require an "application abstraction layer" to provide easier access to the underlying OS. This abstraction layer is
provided to the VB programmer via the AppForge libraries. These libraries provide access to native Palm OS functions, including complete
support for creating and maintaining Palm databases.

There is considerable support for the VB language constructs. However, there also has been a conscious effort to increase application
efficiency by limiting or eliminating (i.e., ignoring) certain aspects of VB by the AppForge compiler. There are many reasons for this, but they
are related to the sheer fact that mobile handheld devices are limited by available power. Applications that require the device to perform
resource-intensive processes, such as continually accessing RAM, will draw more power than usual. Another power-limiting factor is the use
of slower processors to conserve energy. Consequently, some Windows features were either optimized to provide satisfactory response
times or were eliminated altogether.

2.3.1 Visual Basic Language Support

In this section, we will cover the Visual Basic functionality that is not supported by the AppForge compiler.

2.3.1.1 Object support

AppForge does allow the creation of user-defined classes (i.e., class modules), using the New keyword in the Dim statement. You can also
create object references to the libraries and ingots provided by AppForge, but you cannot create new ingots. No external references can be
made to other objects and, as you may have guessed, the CreateObject method is not available (since it attempts to create an ActiveX
object, which is obviously not supported by the Palm OS).

AppForge requires all objects to be early-bound. Even though AppForge supports the Object type, it does not allow you to directly call
properties or methods of a generic object unless it is recast to the correct object. For example, let's say we have a class object, clsCalc ,
which has a method called Square that takes an integer and returns its squared value. The following code would generate an AppForge
compiler error (but works fine in VB on the desktop):

Dim x As Object

Dim y As New clsCalc

Set x = y

x.Square 5

Set x = Nothing

Set y = Nothing

The compiler error indicates that the member function Square does not exist in IUnknown (the default object interface), since x was a late-
bound object. Avoid this by ensuring that all objects are early-bound (as in the earlier Dim y statement). AppForge also supports the use of
the generic VB library control class, which, like the object class, is a generic class for all controls. However, only the extender properties
and methods can be called with the Control type: Top , Left , Height , Width , Move , and SetFocus . Unlike the object class, an ingot cast
to the control class can have the methods called directly:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim a As Control

Set a = AFButton1

a.Left = a.Left + 50

Set a = Nothing

There is also some limited support for control (ingot) collections. Controls in a collection can be accessed only through explicit use of the
Item property. The Count property is also supported; however, as we've already discussed, AppForge does not allow the creation of controls
at runtime. Therefore, the Add method is not supported. When accessing a control via the collection, only the extender functions are
available (as described above). Finally, the With and For-Each constructs are not currently supported.

2.3.1.2 Limitations of ingots

Ingots cannot act as container classes for other ingots, as a frame does for a group of checkboxes in Windows, for example. Ingots also
have no data awareness, whereas their Windows counterparts can have their source data derived from database queries.

Of course, you already know that most ingots differ from their Windows counterparts (when appropriate) by the subset of methods,
properties, and events supported. These differences, however, are mainly due to the limitations of what can actually be implemented under
the Palm OS, since it differs drastically from the Windows OS.

Drag-and-drop support is also not provided for ingots. It is unsure if AppForge will include this support in future versions, since it's not critical
to making efficient applications. (It would also require significant overhead to track the status of drag-and-drop operations-something to
avoid on handheld devices.)

2.3.1.3 Unsupported types and limitations

Currently, Decimal and Variants are not supported types.

User-Defined Types (UDTs) cannot be passed by value (must be by reference) or specified as a function's return type.

There are some unique issues with strings that pertain solely to operating on the Palm OS:

Although string length is typically limited by available device memory, no string within AppForge may exceed 65,000 characters.

Variable length strings are stored using heap memory.

If any characters in variable-length strings require Unicode, all characters in the string are stored in Unicode format.

Locally scoped strings are stored on the stack. Avoid creating large, fixed-length strings, since they would use considerable stack
space.

All characters stored in fixed-length strings are Unicoded.

2.3.1.4 Arrays

The biggest restriction is the lack of support for dynamic arrays. All arrays must be statically dimensioned arrays. AppForge made a
conscious decision to not store any bookkeeping information about the array during runtime in order to increase speed and save memory.
Since bookkeeping information is not stored, the Lbound and Ubound methods are not applicable. Array bounds must be positive and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dimensioned with at least one element. Bounds checking at runtime was dropped to increase array access speed.

Finally, arrays cannot be passed as parameters to procedures or functions due to the lack of bookkeeping information. A convenient
workaround is to define a UDT with the only member being the array and pass the UDT to the procedure by reference.

Arrays can consist of any supported types, including user-defined types and other static arrays.

2.3.1.5 Intrinsic user interaction

The familiar MsgBox method will produce a Palm message box when run on the device or in the emulator. However, it will produce a
standard Windows message box when run under the VB IDE. The difference is that the method supports only two parameters: the Prompt
and a subset of the button constants. The title of the message box is determined by the severity of the message. The HelpFile and Context
parameters are unsupported.

The following button constants are available to customize your message box: vbAbortRetryIngnore , vbCritical , vbExclamation ,
vbInformation , vbOKCancel , vbOKOnly , vbQuestion , vbRetryCancel , vbYesNo , and vbYesNoCancel .

For those of you who like to pop up a quick InputBox , you're currently out of luck since it is not supported for some strange reason (although
there's nothing from stopping you from making your own!).

2.3.1.6 Error handling

AppForge supports all variations of the VB On Error error handling statement. This includes the use of the Resume statement in error
handlers. Error handling operates just as it does in VB, with one exception. If AppForge encounters a second error within an error handler, it
returns execution to the last active error handler. (VB would throw a runtime error.) This is because AppForge resets the error state as soon
as the error is caught.

Err.Raise is supported and operates as it does in VB, with one little twist. Under AppForge, a call to Err.Raise produces a specialized
message box, as shown in Figure 2-12 , if there are no remaining active error handlers.

Figure 2-12. Error Raise message box

The error message box can be customized by providing your own error number, source, and description. The title is based on the severity of
the error.

AppForge has also defined a built-in compiler constant, APPFORGE , which you can use judiciously through your code to differentiate code that
is to be run under the AppForge Booster on the device or emulator or under the VB IDE. A classic use is in opening a Palm database that
has two call signatures based on whether it is opening on Windows or on the Palm OS.

#If APPFORGE Then

 'open Device way

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 x = PDBOpen(Byfilename, "MyDB", 0, 0, 0, 0, afModeReadWrite)

#Else

 'open Windows way

 x = PDBOpen(Byfilename, App.Path & "\MyDB", 0, 0, 0, 0, afModeReadWrite)

#End If

2.3.1.7 Events

Triggering an event under AppForge works the same as under Windows. Events are handled as soon as they are triggered. Events no
longer have to wait for the currently executing procedure to complete, as they did in AppForge version 1.x.

2.3.1.8 Miscellaneous

There are many small nuances that we'll leave to you to discover. In the meantime, here are some other things to keep in mind:

There is no intrinsic context-sensitive help mechanism or the concept of a help file. Certainly a "context-like" help system can be created by
changing a label or text box to display a value in a controls Tag property as the control's receive focus, but unless absolutely necessary, this
should be avoided because it takes up valuable real estate. A better approach is to include a help option from the menu that displays a tip
window with all the help information you want to show.

The Static keyword is not supported. This is because static variables will remain in memory for the entire time the application is open and
thereby take up heap space, which is a valuable commodity.

AppForge supports a large number of Visual Basic's intrinsic functions. When functions are not supported, it's usually because they are not
applicable to the Palm OS (such as functions dealing with PC filesystems) or simply because their convenience in Windows is not worth the
overhead under the Palm OS.

However, there are some functions that would be useful and are unsupported. Spend time reviewing the AppForge documentation on what
is and is not supported. You certainly don't want to waste time creating code around an approach that is not supported.

2.3.2 AppForge Library Support

AppForge has provided a set of libraries to gain access to the Palm OS, including other Palm applications.

2.3.2.1 Numeric and System libraries

The Numeric library's purpose is to contain math-related functions. Currently, the Numeric library supports only two methods: RandomLong
and SeedRandomLong . Both are based on the underlying Palm OS random number functions.

Using SeedRandomLong with any number greater than zero will set the random generator to a random starting point. Setting
SeedRandomLong equal to zero will reinitialize the generator.

Calling RandomLong (N), where N is the desired range from 0 to N-1, generates a random long value. Thus:

X = RandomLong(100) + 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

will yield a number between 1 and 100. Calling SeedRandomLong with the same number before each RandomLong call will continually yield
the same set of random numbers, so set it once "per session." A session would be a series of calls to RandomLong . For example, setting
the seed to 10 may yield 91,43,56,79,89 for each call to RandomLong . Calling SeedRandomLong again with 10 will yield the same set of
numbers.

To help create a random seed, the System library contains a method called TimerMS that returns a long representing the number of
milliseconds since the device was powered on. Continual calls to this method will return increasing numbers as long as the device is on.

This library will hopefully begin to fill with other useful methods in later versions of AppForge.

There are three other methods in the System library besides TimerMS . The RegisterKeyCode is used to hook into the Palm OS to receive
the device's hard and silkscreen button activations created by the user. These methods take only one parameter, the desired keycode .
Once hooked, the application can then catch the button activation via the Form's KeyDown event.

You need to register the keycode only once in the application. However, for each form to respond to the keycode
hook, the form's KeyPreview property must be set to true and each form's KeyDown event must be coded to
react to the capture.

Table 2-3 lists the keycodes for all the device buttons.

Table 2-3. Device keycodes

Device component Hex Decimal

Menu button (silkscreen) &H105 261

Command bar (via Graffiti stroke) &H106 262

Launch button (silkscreen) &H108 264

Keyboard button (silkscreen) &H109 265

Find button (silkscreen) &H10A 266

Calculator button (silkscreen) &H10B 267

Alphabet keyboard (silkscreen) &H110 272

Numeric keypad (silkscreen) &H111 273

Leftmost device button (hard) &H204 516

Center-left device button (hard) &H205 517

Center-right device button (hard) &H206 518

Rightmost device button (hard) &H207 519

Power button (hard) &H208 520

Cradle button (hard) &H209 521

Contrast button (hard) &H20B 523

Antenna switch (when raised) &H20C 524

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once your application registers a keycode, it no longer responds to its default behavior (unless you pass the request on to the Palm OS;
we'll discuss how to do this shortly). If you want to regain the keycode's original functionality, run the ReleaseKeyCode method to release it
back to the OS. Of course, it's recommended that you release all the keycodes your application has registered when it unloads.

The last method in the System library, GetDeviceUserName , returns the current HotSync username (if this is important to your application).

2.3.2.2 Extended Functions library

The Extended Functions library contains a wide variety of methods that expose native Palm functions critical to making your application truly
an enterprise-worthy application. Almost all the methods fall into groups that perform or assist in performing a certain task. Let's review this
library by grouping:

2.3.2.2.1 Text editing and sizing

There are four methods to aid you in capturing and displaying text. The ClipBoardGetString and ClipBoardSetString methods copy and paste
strings between your application and the native Palm clipboard.

The other two methods, StringWidth and FontHeight , help you determine the height and width of a string in pixels. You can then use this
information to resize a text box, caption, grid cell, or any other text-oriented control in order to maximize screen space. When calling these
methods, you provide them with the font name, size, and type. StringWidth also requires the actual string to size.

2.3.2.2.2 Capturing user and device actions

As we have previously seen with the RegisterKeyCode method from the System library, we can hook our application to receive many
different Palm device actions, such as hard and silkscreen button captures. But what if you want to trigger these actions programmatically?
Enter the EnqueueKey method. This method takes a KeyAscii value and a modifier flag (see Table 2-4) as parameters and places the
simulated hardware action (e.g., a key press) on the Palm message queue for processing just as if a user did it. So, if you were to take a
keycode that was previously shown in Table 2-3 , such as the Launch button (264), and set the modifier flag to afExtLibCommandKeyMask (8),
as follows:

EnqueueKey 264, afExtLibCommandKeyMask

then your application will close and the device will return to the application launcher view. Table 2-4 shows the full listing of the available
modifiers.

Table 2-4. Enqueue modifiers

Value Constant Description

1 afExtLibShiftKeyMask Simulates Graffiti as being in case-shift mode when sending the KeyAscii character

2 afExtLibCapsLockMask Simulates Graffiti as being in caps-lock mode when sending the KeyAscii character

4 afExtLibNumLockMask Simulates Graffiti as being in numeric-shift mode when sending the KeyAscii character

8 afExtLibCommandKeyMask
Signifies that KeyAscii is a virtual keycode or simulates a Graffiti menu command preceding the
KeyAscii character

16 afExtLibOptionKeyMask Not implemented

32 afExtLibControlKeyMask Not implemented

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Constant Description

64 afExtLibAutoRepeatKeyMask Indicates that the event was generated by an auto-repeat

128 afExtLibDoubleTapKeyMask Not implemented

256 afExtLibPoweredOnKeyMask Indicates that the key press caused the device to be powered on

512 afExtLibAppEvtHookKeyMask System use only

1024 afExtLibLibEvtHookKeyMask System use only

The other set of methods deal specifically with the Graffiti shift mechanism. The Graffiti shift states include several possible modes:

Uppercase mode

The shift stroke was entered and the next character will be a capitalized letter. The shift indicator shows an up arrow, usually in the
lower right of the screen (or wherever the Graffiti shift indicator is positioned).

Lowercase mode

Not used.
Caps-lock mode

A double shift stroke was entered, and all characters entered will be capitalized. The shift indicator shows a segmented up arrow in
the lower right of the screen.

Number-lock mode

Not used.
Punctuation mode

A dot (.) was tapped and the shift indicator will show a filled dot in the lower right of the screen. The next character typed will be a
punctuation character.

Extended mode

A backslash (\) was entered and provides access to the extended character set, such as copyright and trademark characters. The shift
indicator shows a backslash in the lower right of the screen.

None

The Graffiti shift is not activated (normal mode).

All of these states can be captured by using the GetGraffitiShiftState method, but only Upper, Caps-lock, and None can be set
programmatically using the SetGraffitiShiftState method.

To access and use the Graffiti shift mechanism in your code, call the following three methods, in order, in the Form_Activate event:

GraffitiShiftIndicatorInitialize

GraffitiShiftIndicatorEnable True

GraffitiShiftIndicatorSetLocation 135, 150

The GraffitiShiftIndicatorInitialize method will return the shift state to normal. The GraffitiShiftIndicatorEnable will enable the shift indicator to
display when activated. The GraffitiShiftIndicatorSetLocation allows you to move it from its default position at 135,150, which is the lower
right corner of the display. If you do decide to move the shift indicator, remember the icon is 8 pixels wide x 10 pixels high, so make sure

64 afExtLibAutoRepeatKeyMask Indicates that the event was generated by an auto-repeat

128 afExtLibDoubleTapKeyMask Not implemented

256 afExtLibPoweredOnKeyMask Indicates that the key press caused the device to be powered on

512 afExtLibAppEvtHookKeyMask System use only

1024 afExtLibLibEvtHookKeyMask System use only

The other set of methods deal specifically with the Graffiti shift mechanism. The Graffiti shift states include several possible modes:

Uppercase mode

The shift stroke was entered and the next character will be a capitalized letter. The shift indicator shows an up arrow, usually in the
lower right of the screen (or wherever the Graffiti shift indicator is positioned).

Lowercase mode

Not used.
Caps-lock mode

A double shift stroke was entered, and all characters entered will be capitalized. The shift indicator shows a segmented up arrow in
the lower right of the screen.

Number-lock mode

Not used.
Punctuation mode

A dot (.) was tapped and the shift indicator will show a filled dot in the lower right of the screen. The next character typed will be a
punctuation character.

Extended mode

A backslash (\) was entered and provides access to the extended character set, such as copyright and trademark characters. The shift
indicator shows a backslash in the lower right of the screen.

None

The Graffiti shift is not activated (normal mode).

All of these states can be captured by using the GetGraffitiShiftState method, but only Upper, Caps-lock, and None can be set
programmatically using the SetGraffitiShiftState method.

To access and use the Graffiti shift mechanism in your code, call the following three methods, in order, in the Form_Activate event:

GraffitiShiftIndicatorInitialize

GraffitiShiftIndicatorEnable True

GraffitiShiftIndicatorSetLocation 135, 150

The GraffitiShiftIndicatorInitialize method will return the shift state to normal. The GraffitiShiftIndicatorEnable will enable the shift indicator to
display when activated. The GraffitiShiftIndicatorSetLocation allows you to move it from its default position at 135,150, which is the lower
right corner of the display. If you do decide to move the shift indicator, remember the icon is 8 pixels wide x 10 pixels high, so make sure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

your coordinates keep it on the screen.

There are several events that could cause the shift indicator to become hidden or disabled. This includes
message box activation and ingots overlapping the shift indicator. If you plan to use the shift indicator in a form,
call GraffitiShiftIndicatorEnable every time the desired form is activated (and after a message box has been
displayed) to ensure the indicator will be displayed correctly.

One final method, GraffitiShiftIndicatorIsEnable , will simply return true if the shift indicator is currently enabled. This method can be useful
as a programmatic check to ensure that your shift indicator is enabled per the note above, despite what is seen (or not seen) on the display.

2.3.2.2.3 Data transfer

There are three methods to help you find and locate databases on the device and then send them via beaming to another device. You'll
need to provide the Type ID and Creator ID of the database you are looking for to the GetFirstDatabaseName method, which will search for
and return the first database that matches these parameters. (Database Type and Creator ID values are discussed in detail in Chapter 3 .)
You will notice that the Type and Creator ID parameters are actually long values. What GetFirstDatabaseName expects is the conversion of
the ASCII values of the letters in the parameter's decimal number. To get this number, you first convert the individual letters to hexadecimal
and place them side by side to create a number that then is converted to a decimal. For example, if you created a database and gave it a
type of DATA, then the value is calculated as follows:

(D=44,A=41,T=54,A=41) = 44415441, then converted to decimal = 1145132097

Below is a function from the AppForge web site that performs the conversion for you.

Public Function PalmIDtoLong(PalmID As String) As Long

 Dim myLng As Long, Counter As Integer

 If Len(PalmID) = 4 Then

 For Counter = 1 To Len(PalmID)

 myLng = myLng * 256 + Asc(Mid(PalmID, Counter, 1))

 Next Counter

 PalmIDtoLong = myLng

 End If

End Function

The GetFirstDatabaseName method will also allow you to set a boolean flag that will narrow the search down even further. When the flag is
set to true , the method returns only the latest version of the database for the device (in the event that multiple versions of the database
exist). GetNextDatabaseName will return the next database meeting the criteria. Finally, you can pass a zero in for either the Type or Creator
ID parameter as a wildcard that will return everything.

Once you have the database name, you can beam it via the infrared port to another device using the SendDatabase method. This method
simply needs the database name on the device (as returned from the get methods previously described) and the PC style name to include
the extension (usually .pdb). You can also provide a description to display on the receiving device as the last method parameter, if desired.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, to send the database called MyAppDB to another device, the code would look like the following (we'll use the
GetFirstDatabaseName method, just for kicks):

Dim strDBName As String

strDBName = GetFirstDatabaseName(PalmIDtoLong("DATA"), _

 PalmIDtoLong("MyAppDB"), True)

SendDatabase(strDBName, strDBName & ".pdb", "Transferring" & strDBName)

2.3.2.2.4 Preferences management

This is functionality that many Palm applications leverage for storing state information that is similar to how desktop applications save their
state in the windows registry or in INI files. The Palm OS way is to store them in the application preferences database. The Extended
Functions library provides you with the methods necessary to interact with that database.

There are four methods to access the application preferences database, and another two to access the system preferences database. First,
you must declare a UDT to hold your preferences.

Public Type tPrefs

 A as integer

 B as integer

End Type

Dim MyPrefs as tPrefs

Then, when opening the application, retrieve the settings by first getting the size of the preferences structure using
GetApplicationPreferencesSize .

iPrefsSize = GetApplicationPreferencesSize({your creatorID}, 0, True)

Remember, the method requires your application's Creator ID to be converted to a long . Next, get the application preferences, if available.
If the return from GetApplicationPreferences is not -1, then the preferences were retrieved successfully and are stored in the UDT. If no
preferences were found, let's set new ones immediately using some default values.

iPrefsVer = GetApplicationPreferences({your creatorID}, 0, True, iPrefsSize, VarPtr(MyPrefs))

 If iPrefsVer <> -1 Then

 'UDT now contains the retreived application prefs for you to use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Else

 ' no prefs found, save new set by setting UDT values

 ' manually and setting the preferences now

 iPrefsSize = 4

 MyPrefs.A = 1 : MyPrefs.B = 2

 SetApplicationPreferences {your creatorID}, 0, True, iPrefsSize, VarPtr(MyPrefs), iPrefsVer + 1

 End If

One thing to note is how iPrefsSize gets its value. This represents the size of our structure tPrefs . Every data type takes up a certain
number of bytes. To calculate the size of the structure manually, total the number of bytes per data type for each variable in the structure.
(We'll discuss the various data types and their physical sizes in Chapter 3 .) To dynamically calculate the size correctly, the tPrefs structure
must be altered by adding a delimiter variable, sized as a byte, to the end of the structure. So the structure becomes:

Public Type tPrefs

 A as integer

 B as integer

 EOStruct as byte

End Type

Dim MyPrefs as tPrefs

Then calculate iPrefsSize as follows:

iPrefsSize = VarPtr(MyPrefs.EOStruct) - VarPtr(MyPrefs)

GetApplicationPreferencesVersion can be called to get the version number of the preferences stored for the specified application, but the
same value is returned when the preferences are retrieved successfully. Use this function when you want to get the version without
physically retrieving the preferences.

AppForge has one major limitation to the application preferences functionality: it does not support strings (either variable or fixed-length).
This is due to a problem internally mapping strings to the fixed-size byte blocks required by the Palm OS.

Limited access to system preferences is available via two methods: GetSystemPreference and SetSystemPreference . First, you must
provide a constant that indicates the desired setting you want to retrieve. The return is always a long value. In cases when a string would be
passed, such as a Creator ID, you must reverse the procedure described above to convert from a long to the string representation. Setting a
preference is straightforward: simply provide the setting constant and new value (again, always a long). There are over 50 possible
constants, which are listed in Appendix A . Not all of these settings is available for all devices; they are based on the version of the Palm OS.
To determine what version is available, call the GetSystemPreference method with the afExtLibSysPrefVersion constant. Table 2-5 shows
the relationship between the Preference and OS versions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 2-5. System preference versions

Preference version Palm OS version

-1 N/A

2 2.0

3 3.0

4 3.1

5 3.2

6 3.3

8 3.5

9 4.0

The table in the appendix indicates, where applicable, what preferences have version limitations.

2.3.2.2.5 Device status

These functions will return values about the current status of a part of the device. GetHeapFree , GetHeapLargestFree , and GetHeapSize
provide information about a device's memory. There are two methods to GetRomSerialNumber , if a serial number exists, and one method to
get the booster RuntimeVersion number. Finally, GetBatteryRemaining returns the status of the onboard battery, and KeepAwake will reset
the automatic power-off timer that forces the device to stay powered up for long periods of user inactivity while your application is performing
some task such as reading or writing data to a serial port. This last command is used in the alarm clock example later in the chapter.

2.3.2.3 Palm OS Extensibility library

This library appears unwittingly simple. It contains only two functions: LaunchApp and CallApp . These two functions are the starting point to
gaining access to other Palm applications. The LaunchApp method takes only the name of a Palm aApplication (a PRC file) without the
.PRC file extension. This method's purpose is to launch another application, as if the user clicked on its icon in the launcher, and to close
down the calling application. So if you had a PRC called MyApp installed, then:

AfPalmOS.LaunchApp "MyApp"

would close the calling application and start MyApp . (Remember, we are passing the actual name of the PRC and not the name displayed in
the application launcher.) You can use CallApp to make calls into another PRC and to have it perform functions without closing the calling
application. You still pass it the PRC name, but you must also pass it a Launch Code and the pointer to a defined structure (in VB, this is
accomplished by using the VarPtr function). Here's how this works. Every native Palm application written in C has a PilotMain() that is the
entry point to the application. It accepts a launch code that is evaluated in a C Switch statement that determines what action to take.

For example, if a Palm application called CalcMe took two numbers and returned their sum, you would first declare a UDT.

Private Type CalcMeData

 A As Integer

 B As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Result As Integer

End Type

Then you would define the Const for the application's available launch codes.

Const cmdAdd = 32768

Const cmdSub = 32769

Now, making the call will perform the desired operation on the two numbers.

Dim X as CalcMeData

X.A = 3 : X.B = 6

Call AfPalmOS.CallApp("CalcMe",cmdAdd,VarPtr(X))

The result of 9 is stored in X.Result . Currently, AppForge does not provide a way to define application input parameters, so this must be
accomplished by writing a fuser application. A fuser application provides a "bridge" between your AppForge application and other native
Palm applications.

2.3.2.4 PDB library

This is a specialized library that provides a host of methods to accomplish all your Palm database management requirements. Chapter 3 will
cover this library in detail, so we will defer further discussion until then.

So far, we've seen some example code on how to use these libraries. Now let's get started by using the libraries, the provided ingots, and a
little ingenuity to get around some tasks that are not directly supported by AppForge.

2.3.3 Friction Loss Calculator Example

Our first example is quite simple, but covers a lot of functionality we've discussed to this point. Specifically, this example:

Implements the UI design concepts that we previously discussed to include implementation of a dialog and tip window

Introduces the CheckBox and ComboBox ingots

Implements a complete menu system

Demonstrates how to persist application state

Our basic friction loss calculator's purpose is to calculate the friction loss of water in pounds-per-square inch (PSI), as it travels the distance
of a section of hose line. You might wonder who would use such a calculator. Well, a pump operator of a fire engine, for one. It's his
responsibility to ensure that the correct PSI is being pumped at the nozzle so that the firefighter is discharging water at the correct gallons
per minute (GPM). So, calculating the friction of all the hose sections from the pump to the nozzle (plus some other stuff we're not going into)
can be added to the starting pump PSI to achieve the desired result.

Let's start with the interface, which is shown in Figure 2-13 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-13. FlCalc application windows

As we can see from the main screen, the calculation takes three parameters. Tapping the Compute button updates the label at the bottom.
Checking Round Results will round the value off to the nearest whole number. (For a pump operator, the dial is usually calibrated in 10-PSI
increments, so fractions are kind of meaningless.) As expected, the code for this example was derived from the previous example. Using this
code as a starting point, the application was quickly completed. Since the base code for the menu already existed, it simply needed to be
modified for our specific needs.

The menu items were changed to meaningful labels (as seen in Figure 2-14) and the code for each Click event was modified to either open
the tip or dialog window, respectively.

Figure 2-14. FlCalc Menu

The final addition to the application is storing application state. We've already seen, earlier in this chapter, the framework required to access
and store values to the application preferences database. To recap, we will attempt to access the preferences database for any stored
values. Our preferences structure looks like the following:

Public Type tPrefs

 Flow As Integer

 Length As Integer

 Diameter As Integer

End Type

Dim mudtPrefs As tPrefs

When the application opens, we attempt to retrieve the values from the preferences database. If we find them, they're retrieved into the UDT
and made available for consumption by the application. If they're not found, we immediately set the database with a default set of values as
a baseline for the next time we access it.

Private Sub GetAppPrefs()

 giPrefsSize = afExtLib.GetApplicationPreferencesSize(PalmIDtoLong("OR33"), 0,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

True)

 ' Initialize the state of the app, using saved preferences when possible

 giPrefsVer = afExtLib.GetApplicationPreferences(PalmIDtoLong("OR33"), 0, True,

giPrefsSize, VarPtr(mudtPrefs))

 If giPrefsVer <> -1 Then

 txtFlow.Text = mudtPrefs.Flow

 txtLength.Text = mudtPrefs.Length

 cboDiameter.ListIndex = mudtPrefs.Diameter

 Else

 ' no prefs, save new set

 giPrefsSize = 6 'Calced manually, 2 + 2 + 2 = 6

 mudtPrefs.Flow = 150

 mudtPrefs.Length = 200

 mudtPrefs.Diameter = 1

 afExtLib.SetApplicationPreferences PalmIDtoLong("OR33"), 0, True,

giPrefsSize, VarPtr(mudtPrefs), giPrefsVer + 1

 txtFlow.Text = mudtPrefs.Flow

 txtLength.Text = mudtPrefs.Length

 cboDiameter.ListIndex = mudtPrefs.Diameter

 End If

 giDefFlow = mudtPrefs.Flow

 giDefLength = mudtPrefs.Length

 giDefDiameter = mudtPrefs.Diameter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

Of course, you want the user to be able to store changes to the preferences from the preference dialog window. Once the user makes
changes to the preferences in the window, update the UDT and save to the preference database. This is done using the
SetApplicationPreferences function.

 afExtLib.SetApplicationPreferences PalmIDtoLong("OR33"), 0, True, giPrefsSize,

VarPtr(mudtPrefs), giPrefsVer + 1

The next time the user taps the Clear button on the main form, the fields are replaced with the current values. Exiting and reopening the
application will retrieve and display the new values.

Let's briefly look at the ingots introduced by this example, CheckBox and ComboBox.

2.3.3.1 CheckBox ingot

The CheckBox ingot allows users to make one or more selections that do not depend on the selection of other controls. The checkbox is
used primarily to determine a true or false condition.

The checkbox differs from its Windows counterpart in several checkbox-specific attributes.

The ingot's AllowGreyState property must be explicitly set in order to set the Value property to two (grayed). Windows checkboxes
provide no such restriction.

The ingot does not support the graphical button style that Windows checkboxes do.

Stylistically, controls and menu items are removed instead of being disabled or "grayed out" on the Palm. However, this usage emulates the
third state of a Windows checkbox, in which the gray state usually signifies a subcollection of controls, such as a group of checkboxes,
which have a mix of true and false states.

2.3.3.2 ComboBox ingot

The ComboBox ingot allows the user to enter data via a text box or to select from a list of options. The same three styles from the Windows
combo box are available: simple combination, drop-down combination, or drop-down list. The major combo box-specific differences are:

The ingot supports an Alignment property for the text in the text box portion of the control.

The ingot does not support the NewIndex , TopIndex , Integral Height (auto-height resizing, ensuring no partial item displays), or
Sorted properties.

2.3.4 Cut, Copy, Paste Example

This example details how to implement the cut, copy, and paste functionality using a command bar graffiti entry, which demonstrates the use
of the Graffiti shift display mechanisms. As an added feature, we examine the use of the text sizing functions available from the Extended
Functions library. The application provides for button and menu invocation of the cut, copy, and paste commands. The example also
captures two keycodes during execution: the Menu and Find silkscreen buttons. The Menu button was captured in order to disable the display

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the menu, since we have only one menu title. This is rather unorthodox, but it could have value if you did not want the menu displayed
during operation, as with a game, but you still want your application to respond to menu shortcut commands. We intercept the Find button
and use it to demonstrate how to implement context-sensitive help on the two text boxes, but this could be expanded for any controls you
like.

The form is also configured to display the Graffiti shift state, as necessary. The Graffiti shift state is displayed as special symbols that
visually indicate the mode in which you are operating. Figure 2-15 shows a symbol (.) in the lower right corner of the screen, indicating that
the punctuation mode is active. For more information about the various shift states, refer to Palm's Graffiti help application on the device.

Figure 2-15. Cut, Copy, Paste example

Let's look at the additional code to support this. First we need to register the keycode for the Find and Menu silkscreen buttons in the
Form_Load event. We must also remember to set the KeyPreview property of the form to True .

RegisterKeyCode vchrFind

RegisterKeyCode vchrMenu

A module-level variable, mFocusBox , is dimensioned as an AFTextbox that will be used to store a reference to the current text box to keep
track of which control to get or put the copied text to. There are also other variables defined to store the SelStart, SelLength , and SelText
values of the text box with focus. When a user taps focus to a text box, the following line is executed:

Set mFocusBox = txtSource1

The Graffiti shift mechanism is set up in the Form_Activate event.

GraffitiShiftIndicatorInitialize

GraffitiShiftIndicatorEnable True

GraffitiShiftIndicatorSetLocation 148, 148

GraffitiSetShiftState afExtLibShiftNone

The bulk of the code to handle the cut, copy, and paste in simple procedures is called by the button or menu activation.

Private Sub CopyOp()

 afExtLib.ClipboardSetString mFocusBox.SelText

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub CutOp()

 afExtLib.ClipboardSetString mFocusBox.SelText

 mFocusBox.SelText = ""

End Sub

Private Sub PasteOp()

 If mFocusBox.SelLength = 0 Then

 mFocusBox.Text = Left(mFocusBox.Text, mFocusBox.SelStart) & _

 afExtLib.ClipboardGetString & _

 Mid(mFocusBox.Text, mFocusBox.SelStart + 1)

 Else

 mFocusBox.SelText = afExtLib.ClipboardGetString()

 End If

End Sub

As you can see, selecting Cut or Copy will call ClipBoardSetString , passing it the selected text from the control. You'll note that the cut
operation has the following line:

mFocusBox.SelText = ""

Setting the SelText will replace the string fragment cut with an empty string. Otherwise, the copied text is left in place. The paste operation
will either insert the text from the ClipBoardGetString method at the current insertion point or replace the highlighted text if some text is
selected.

When we capture the menu silkscreen key, we just ignore it; this will prevent our menu from displaying. Each text box's Tag property was set
to a simple help text string. So when the user has focus in one of the text boxes and the Find silkscreen button is clicked, the form intercepts
the request in the Form_KeyDown event as follows:

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)

 'intercept find silkscreen button

 If KeyCode = vchrFind Then MsgBox mFocusBox.Tag

End Sub

A message box with the appropriate help string is displayed. You can expand and enhance this context help concept as much as you desire.

Finally, if you elect to have the text boxes dynamically resized, the text box with focus will resize to fit the string size:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mFocusBox.Width = StringWidth("AFPalm", 12, 0, mFocusBox.Text)

mFocusBox.Height = FontHeight("AFPalm", 12, 0)

2.3.5 Alarm Clock Example

This example focuses on interacting with the device's hardware by implementing a simple alarm clock. Specifically, this example:

Demonstrates how to use push-style buttons and custom fonts

Demonstrates how to access the Palm date or time picker.

Introduces the Timer and Tone ingots

Captures the device's hard buttons

One of the first things you'll notice is the use of custom fonts. The font used is Times New Roman bold, 18- and 36-pixel size (the point
weights are 13 and 26, respectively). The clock continually displays the time as long as the program is loaded. Tapping the Time button to
set the alarm brings up the built-in Palm time picker. The returned time is displayed in the text box, as shown in Figure 2-16 .

Figure 2-16. Alarm clock interface

Taping the On push button will enable the alarm to go off at the specified time. The Snooze button stops the alarm, but will sound the alarm
every five minutes until the alarm is turned off. Simple, right? Let's take a look.

First and foremost, this is a clock, and therefore it displays the current time when the application loads. The clock face needs to be visible at
a distance and therefore requires a larger font than provided. You can use the AppForge Font Conversion Tool to convert any subset of
characters in any font.

The converter tool, which is shown in Figure 2-17 , lets you select the desired True Type font, as well as the pixel size and style (bold, italic,
etc.). You pick the upper and lower range of characters set to convert. This is very important, since the size and number of characters will
determine the size of the resulting AppForge font file (.CMF extension). For example, the Times New Roman, 10-pixel conversion resulted in
a 3K file, while the Clock face font, Times New Roman 36-pixel, converted to a 10K file. That's a big difference, so be wary of the increased
size of your finished application.

Figure 2-17. Font converter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you have Microsoft Plus!® installed, you must disable the "font smoothing" option for the Font Converter to work
correctly.

AppForge also provides a font viewer tool that allows you to view the converted font character set and provides some useful information,
especially the corresponding point weight of the font's pixel size.

The timer is turned on or off by tapping the Alarm On and Off buttons. Notice that these are push-type buttons and are larger than normal to
allow for easier finger activation by the user. The application will also capture the rightmost hard button as another means of turning off the
alarm and clearing the alarm time.

A label control array was used for the push buttons and, based on the state of which one was last clicked, will determine how to set both
ingots' fore and background colors. Labels were used, but other ingot types, like a button, graphic button, or graphic, could have also been
used.

The application operates around two Timer ingots:

Clock Timer (1-second cycle)

The clock timer is used to continually set the time.
Snooze Timer (5-minute cycle)

When the timer expires, the snooze timer sets the clock back to alarm-sounding mode.

For the clock to work, the device must never automatically power off. If it does power off, the clock stops, and when you finally reactivate the
unit, you are back to square one. To avoid this, call the KeepAwake method, which suspends the auto-shutoff timer. It is important to
periodically call this method to avoid potential problems in your application, since processing may nullify the effect of the call. In the clock
example, you will see from the code that it is called at the end of every clock timer cycle.

2.3.5.1 Timer ingot

The Timer ingot operates exactly like the Windows timers, with one major exception: the ingot is not limited to a 65,535-millisecond interval,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as is the Windows Timer control. The limit on the Interval property is due to its internal definition as an unsigned 2-byte integer.

2.3.5.2 Tone ingot

This unique ingot allows you to play tones via the handheld device's audio channel. The Tone ingot is very simple to use. Set the Pitch
property to the desired tone in hertz (cycles per second). Then set the Duration of the tone (in milliseconds). Calling the Play method plays
the tone for the specified duration. AppForge was nice enough to provide a list of approximate values for the notes in five octaves, as shown
in Table 2-6 . The "s" in the Note column of the table indicates a sharp note.

Table 2-6. Pitch values for musical notes

Note 1st octave 2nd octave 3rd octave 4th octave 5th octave

C 262 523 1047 2093 4186

Cs 277 554 1108 2218 -

D 295 587 1175 2349 -

Ds 311 622 1245 2489 -

E 330 659 1319 2637 -

F 349 699 1397 2794 -

Fs 370 740 1480 2960 -

G 392 784 1568 3136 -

Gs 415 831 1661 3322 -

A 440 880 1760 3520 -

As 466 932 1864 3729 -

B 494 988 1976 3951 -

When we enter the alarm state, we get an audible tone, and the time display flashes for every cycle of the clock timer.

Private Sub SoundAlarm()

 'Sounds the alarm and flashes the time display

 Alarm.Pitch = 1760

 Alarm.Duration = 1000

 Alarm.Play

 If lblTime.BackColor = afLabelBackground Then

 lblTime.ForeColor = afLabelBackground

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lblTime.BackColor = afLabelBlack

 Else

 lblTime.ForeColor = afLabelBlack

 lblTime.BackColor = afLabelBackground

 End If

End Sub

2.3.6 Virtual Menu Example

Now let's look at expanding our capabilities to accessing wireless resources via the INetHTTP ingot. This ingot has a variety of methods and
events that give you the means to connect to the Web by using the Palm Internet Library (InetLib) on the device, if it's installed. The library is
part of the Palm OS 4.0 or later versions. If you don't have the library, you will need to install it and have a wireless modem attached to the
target handheld device. This example application:

Introduces the INetHTTP, Filmstrip, and Graphic button ingots

Demonstrates how to access the World Wide Web and interact with an ASP page

Demonstrates how to perform rudimentary parsing on an XML document

Our example application's purpose is to allow users to view a "virtual menu" of what to eat and drink at the fictitious Sterling Brewing
Company's brewpub. It opens to an entry screen with the look-and-feel of a web page. Clicking on the Beers On Tap or Pub Grub buttons will
cause the application to attempt to connect to the Sterling Brewing Company web site and download an XML file containing the desired data.
Clicking the Contact Us button will open a form to collect the user's email address and will interact with an ASP page that would store the
email and respond with a return string that is displayed in a message box to confirm the addition to the company's newsletter mailing list, as
shown in Figure 2-18 .

Figure 2-18. The Sterling Brewing Company wireless interface

In the upper righthand corner, we'll display a spinner (like a browser) that rotates while the request and responses to the Web occur. There
is also the familiar Home button in the lower left corner, which returns you to the main page if tapped.

The application's detail window, frmDetail , is host to all three options from the main page. The buttons on the main page are actually a
control index, so tapping a button hides the main form and shows the detail form calling a form initialization procedure, FormSet , and
passing it the button index. The detail window then changes the UI appropriately for the option selected by the user and makes the HTTP
request via the INtetHTTP ingot. Let's review what this ingot has to offer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3.6.1 INetHTTP ingot

This ingot is very simple to use. What's important is to ensure that you have your device's wireless connection ready to go. Palm devices can
connect to the Internet using an infrared-enabled mobile phone, a modem, or the built-in wireless support in the Palm VII.

Internet content is accessible to Palm devices via web clipping technology. This technology extracts only a subset of a web site's content,
keeping undesirable or unusable information to a minimum. Chapter 6 provides detailed coverage of this topic.

The basic operation for using the ingot involves first setting the URL and Document properties. Table 2-7 shows the relationship between the
two properties.

Table 2-7. Properties versus request type

Request
type

URL property Document property

Get
The fully qualified URL for which to search. Only
http:// or https:// are valid protocol prefixes.

None, leave empty ("").

Post
The fully qualified base URL for which to search.
Only http:// or https:// are valid protocol prefixes.

The parameters of the search to the right of the question mark in the
URL. This usually represents the form data submitted by the user.

For example, the fully qualified URL for a Microsoft stock quote from Bloomberg.com, http://quote.bloomberg.com/analytics/quote.cgi?
ticker=MSFT , would be coded as:

Inet1.URL = "http://quote.bloomberg.com/analytics/quote.cgi"

Inet1.Document = "ticker=MSFT"

In our example, we set the URL property to request the return of an XML document that contains the data for the beers currently on tap at
the pub or the current menu items. The Execute method is called and the request is made. The ingot then monitors the connection and may
trigger any of its three events:

StateChanged event

This event receives notification about the state of the connection. There are 13 different states to capture and respond to.
ReceivedData event

This event is triggered for every new block of data (or a "chunk") that is successfully received by the ingot. The event reports the total
number of bytes received for this request.

Error event

This event is triggered when an error is encountered on the connection. The error number is reported to the SystemError property. The
AppForge documentation lists what these codes mean.

Sometimes the AppForge documentation lists the error numbers incorrectly. The actual error number is 5120 plus
the listed number. For example, if the Palm Internet Library is missing from the device, the INetHTTP ingot will
report 5129, which corresponds to error 9, no connection available.

When the StateChanged event reports a Response Received state, it's time to begin collecting the data from the HTTP inbound stream.

https://
https://
http://quote.bloomberg.com/analytics/quote.cgi
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim strData As String

Dim strChunk As String

Dim bSuccess As Boolean

Select Case newState

 .

 .

 .

 Case afINetHTTPStatusResponseReceived

 lblStatus.Caption = "Response Rcved"

 lblStatus.Refresh

 Ying.Stop

 strData = ""

 strChunk = INet.GetChunk(100)

 Do While strChunk <> ""

 strData = strData + strChunk

 strChunk = INet.GetChunk(100)

 Loop

 'Parse the data and if valid display it

 If ParseData(strData) Then

 Displaydata

 Else

 lblStatus.Caption = "Retrieve Error"

 ClearData

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

 lblStatus.Caption = ""

End Select

We accomplish this by using the GetChunk method. This method takes a long as a parameter, indicating how many bytes to read at a time
from the server. The method returns a string of data with a maximum length based on the size parameter. If no more data is available to be
read, an empty string is returned.

Once you have the string, it is your responsibility to format the data for presentation to the user. In our example, the string is passed to the
ParseData function, where applicable data is parsed out. The parsed data is temporarily stored in an array of UDTs before displaying the
data in the appropriate ingots.

The final operation that our example application performs is interacting with an ASP page on the server. Our example collects an email
address from the user and transmits it to the server via a POST operation: [6]

[6] The "Ying" object referenced in the code is a rotating yin-yang (implemented using the Filmstrip ingot) that is located in the top right corner of the application's forms (see Figure 2-18).

INet.URL = "http://{your server}/processReq.asp"

INet.Document = "email=" & txtEmail.Text

Ying.Play

INet.Execute

On the server, our ASP page receives the request, gets the value from the Form collection, and then responds with a custom message. In
reality, we would potentially store the email in a database for future use.

<%@ Language=VBScript %>

<% Option Explicit %>

<% Response.Buffer = true%>

<html>

<head>

</head>

 <%

 dim strEmail

 strEmail = Request.Form("email")

 %>

<body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <% select case strEmail

 case "" %>

 <p ID="SBCreply">Sorry, your request was not processed

 correctly, please try again!</p>

 <% case else %>

 <p ID="SBCreply">Thanks for Joining SBC On-line. Our

 newsletter will be send to <%=strEmail%></p>

 <%end select%>

</body>

</html>

That's about it. There are other methods and properties from the ingot that you'll want to use for your own applications. If you want to cancel
a transaction in progress, you can check the StillExecuting method to ensure that there is still activity and then call the Cancel method to
close the connection. Another useful property is ConnectionAvailable . This property can be checked at the start of an application to ensure
that the device has the Palm Internet Library installed. If this returns false , the device is not configured to make a connection.

Some additional things you can do are set the RequestTimeout property so that your connection doesn't hang or so that you can provide
additional information to the user via the ResponseCode and ResponseInfo properties. Finally, you can get and access POST header
variables using the GetHeader method. If you need to send non-alphanumeric data, use the URLEncodestring method to make the data
HTTP-compliant.

If you want to use the INetHTTP ingot in an application over a LAN, you must ensure that it can access and
communicate with the Palm.Net proxy server located at http://oasis.palm.com/dev/proxy . This is a requirement for
the Palm Internet Library, since all HTTP transactions must go through this proxy server.

A maximum of four INetHTTP ingots can operate simultaneously on a form.

2.3.6.2 Filmstrip ingot

In our code samples, we used the Filmstrip ingot via the spinner control in the upper right of the screen. This control rotates as the HTTP
transaction is in process. It is relatively simple to use after you configure it. First, convert all the graphics that will be used in the animation to
AppForge RGX format (you can use bitmap files, if desired). Then insert each picture into a frame. A series of frames constitutes the
animation. The frames can be added at design time by selecting and ordering the list of image files into the Frames property. A frame can
also be added or removed at runtime using the AddFrame and RemoveFrame methods, respectively (all frames can be removed by calling
the ClearFrames method). Each frame in an animation has a FrameIndex associated with it, ranging from 0 to - 1. To determine how the
animation is to be played, the AnimationStyle can be set to play in:

Single play mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The animation is played to the end. When the last frame is displayed, the LastFrame event is triggered. The ingot leaves the last
frame displayed.

Loop play mode

The animation is played continuously, looping from the last to the first frame, until the animation is stopped. The LastFrame event is
triggered each time the end frame is displayed.

Bounce mode

The animation plays to the end and then plays in reverse to the beginning frame. The animation continues to play until it's stopped.
The LastFrame event is triggered each time the end frame is displayed.

Finally, the time lag between displaying frames can be set using the Interval property. Its default value is set to 400 milliseconds, but you can
change the value to whatever you like, although the actual hardware will determine how fast the animation can truly be displayed.

To control the animation, call the Play and Stop methods. Stopping an animation leaves it at the last frame displayed. It can be restarted
from the current frame with another call to Play . An animation will also continue to play even if the form that it's on is hidden.

2.3.6.3 Graphic Button ingot

This ingot operates exactly as a command button does. Its only difference is that the button face itself can be a bitmap (for color) or a bitmap
graphic converted to the AppForge RGX format. To configure this ingot, simply select an image file or files for each of the following
properties: FocusPicture , NoFocusPicture , DownPicture , and DisabledPicture .

2.3.7 Signature Collector Example

This application is also rather unique in that its purpose is to collect a signature on the handheld device and to store it in a Palm database.
After the user performs a HotSync to the desktop, the database is then available for access by a standard Windows desktop application. Our
example takes a selected signature, converts it to a bitmap, and displays it in a fictitious sales receipt. The example uses the PDB library,
which is covered in detail in Chapter 3 , so we will not spend time here reviewing the database management code.

As you can see in Figure 2-19 , the Signature Capture ingot takes up most of the screen. The application simply allows you to add, update,
or delete the database records consisting of a name and signature.

Figure 2-19. Signature collector

2.3.7.1 The Signature ingot

This is another ingot that is very simple to use. Most of its properties simply adjust its appearance before and during operation. You can set
a background picture via the BackPicture property or change the background color via the BackColor property. To contrast your background
choices, you can also change the PenWidth and PenColor properties.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The most important property, SignatureData , is where your signature is stored. The property holds the data as a string, where each
character is the x or y coordinate for each point in the signature. A flag character is used whenever the user lifts the pen.

The ingot also supports a Clear method, which clears the data from the display, and the SignatureData property.

The collector is the trivial part of this example, compared to the desktop application, which will convert the string data into a Picturebox
control that will then allow us to save the signature to a bitmap file. The desktop application uses the PDB library to open and access the
signature database. The signature is then rendered into the Picturebox control using a RenderSignature function, provided by AppForge.

Private Type SigPoint

 X As Long

 Y As Long

End Type

Const PENUP As Long = &HFFFF

Public Sub RenderSignature(ByVal SigData As String)

'This is the recommended way to render on

'picture control by AppForge

 Dim I As Long

 Dim lLength As Long

 Dim udtPoint As SigPoint

 Dim udtOldPoint As SigPoint

 lLength = Len(SigData)

 picSig.Cls

 'set point to start values

 udtOldPoint.X = -1

 udtOldPoint.Y = -1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 For I = 1 To lLength

 udtPoint.X = AscW(Mid(SigData, I, 1))

 'if pen is down then render point

 If udtPoint.X <> PENUP Then

 I = I + 1

 udtPoint.Y = AscW(Mid(SigData, I, 1))

 If udtOldPoint.X <> -1 Then

 picSig.Line (udtOldPoint.X, udtOldPoint.Y)-(udtPoint.X,

 udtPoint.Y)

 End If

 udtOldPoint = udtPoint

 Else 'catch next pen down point

 If udtOldPoint.X <> -1 Then

 picSig.PSet (udtOldPoint.X, udtOldPoint.Y)

 End If

 udtOldPoint.X = -1

 udtOldPoint.Y = -1

 End If

 Next I

End Sub

To then save the contents of the Picturebox control, you can employ the services of a seldom-used VB method, SavePicture . The method
requires the contents of the Picturebox's Image property and the name of the file to which it should save.

SavePicture picSig.Image, "c:\temp\sig.bmp"

From there, you can open it into any form of report generator. In our example, it is placed as part of a browser-based receipt (receipt.html)
from our fictitious brewpub. (This example assumes you have the correct paths to both the Internet Explorer and receipt.html files.)

'open example reciept into browser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shell "c:\program files\internet explorer\iexplore.exe

 c:\book\chap3\code\ex6\receipt.html", vbNormalFocus

The receipt with the bitmap is shown in Figure 2-20 .

Figure 2-20. SBC receipt with signature

2.3.8 Specialized Ingots

There are a few ingots that have specialized purposes. This book will not cover them in detail, as we have covered the other ingots.
However, it is important to know some general information about them. These ingots are Movie, Serial, ClientSocket, and Scanner.

2.3.8.1 Movie ingot

The Movie ingot is not difficult to use; it's just that its utility is limited for the average application. Predominantly, this ingot is used to "spice
up" an application, but at a price. This ingot, like the Filmstrip and other graphical ingots, requires an external file for the graphic source that
ultimately increases the size of the deployed application.

The Movie ingot requires that an AVI-formatted movie be converted to an AppForge movie (. rmv) file. This is generated using the AppForge
Movie converter utility. Like the Graphic converter utility, the only requirement is to select the desired AVI file and click the Convert button.
You do have some say in how it's converted by changing the Lossiness and PreQuantize settings on the Settings tab. Changes to these
setting will impact the size of the resulting converted movie. This is important, because if the converted file is larger than 64K, it is not
readable by the device.

2.3.8.2 Serial ingot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Serial ingot's purpose is to provide you with the ability to send and receive data through the device's cradle connection, infrared port, or
modem. The ingot operates similarly to its Windows counterpart, the MS Comm control, but only supports one serial port on the handheld
device.

The model for communicating using the Serial ingot can be either a polling model (where you make direct requests to send or receive data)
or an event-driven model (where incoming data triggers the ingot's DataComm event, at which point you react). Setting the serial ingot's
CommPort property determines the physical means of transmission: RS-232 Serial via the cradle, IrDA raw data via the infrared port, or an
IrCOMM "virtual serial cable" via the infrared port or modem.

There are some limitations to successfully communicating using the Serial ingot. First, unless you're running Palm OS version 3.3 or higher,
you may be missing some of the required components, so check your documentation and the Palm web site for details. Also, if you're using
the IrCOMM protocol, the receiving device must also support that protocol.

2.3.8.3 ClientSocket ingot

This is a great ingot that provides two-way socket communications between a client and a server. It can be set to any port you desire and
supports TCP and UDP protocols. It's named ClientSocket for good reason-it can only participate in a socket session as a client, which
means that the application must open the port and initiate communication. It cannot listen on a port, as a socket server can.

Its operation is quite simple; first, set the RemoteHostIP property with the server's IP address. (The ingot also provides a ResolveHostName
method that returns the resolved IP address for the provided dotted-quad address.) Next, set the RemotePort and Protocol (TCP default)
properties as desired. Finally, call the Connect method to connect the socket to the server.

Once the connection is established, you can send data via any of the following methods: SendByte , SendInteger , SendLong , or
SendString .

When data arrives on the port from the server, a DataWaiting event is triggered, allowing you to retrieve the data via the following methods,
as appropriate: GetByte , GetInteger , GetLong , or GetString .

When you are done communicating, call the Close method to close the socket.

2.3.8.4 Scanner ingot

The Scanner ingot is the most specialized ingot provided by AppForge. It has a wide variety of properties, methods, and events to provide
support for the following scanners:

Symbol Technologies® Model SPT1500

Symbol Technologies® Model SPT1700

Symbol Technologies® Model CSM-150 (Springboard module for Handspring Visor)

Appendix A provides the listings for all ingots.

Palm application development is a challenging task that can provide many benefits to end users-if applications are designed properly.
AppForge provides a foundation on which to build Palm applications to meet almost any requirement. By following some basic Palm UI style
guidelines, the AppForge developer can create dynamic and stimulating applications in the rapid development cycle demanded by today's
software development firms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Palm Database Programming

Palm programs, like other programs, typically use some form of persistent data storage. In Chapter 2, we
examined how to access the application preferences database to store and retrieve state information, but
this form of storage is best suited for small amounts of data. The Palm database manager is the tool of
choice for an application's working data.

In this chapter, we first explain what the Palm OS database manager is and how it works. We'll look at the
different types of databases the Palm supports, and explain the physical layout and characteristics of the
most common database-the Palm data file (PDB).

Then we show you how to access the Palm database features via the AppForge PDB library, which
provides all the functionality needed to create and manipulate databases and records. We introduce many
of the database features with snippets of code showing how the library is used. We also explain the
AppForge database schema extensions, which free you from many bookkeeping chores normally
associated with Palm database programming.

Next, we cover a very useful AppForge database tool: the Database Converter. This Windows program
converts Microsoft Access databases into Palm PDB files for use in your applications.

Finally, we provide an example application that reinforces the material introduced both in Chapter 2 and in
this chapter. We have migrated parts of the North Wind Traders Inventory application-a standard
example program distributed by Microsoft-to the Palm device to show how to support some business
functions on the Palm device.

The North Wind application also introduces the AppForge Grid ingot, which is a powerful method for
displaying record data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1 The Palm Database

There are two main types of databases in the Palm OS:

Palm Record Database (PDB)

This is a record-oriented database that is used to store application data.
Palm Resource Database (PRC)

This database is similar to the PDB, but stores application code and Palm OS resources. Palm
applications themselves are PRC files.

This chapter focuses on the Palm Record databases, which are the main data repositories on the Palm
device.[1] It is important to recognize that Palm databases have different physical implementations,
depending if they are on the desktop or on the Palm device. The PDB is stored on the desktop as a normal
disk file, with a well-defined format. Once uploaded to the Palm device, the PDB has a proprietary in-
memory format, since the Palm OS does not support a filesystem. Instead, the database is organized as
blocks of memory under the control of the Palm database and resource manager, which prevents direct
programmer access to these structures. Most databases are slightly larger than their file size when stored
on the Palm device due to the addition of control information by the memory manager.

[1] There is a third type of Palm database, the Palm Query Application (PQA). This is just a PRC database that is handled specially by the

Palm OS for wireless data access. We discuss building and using PQA files at length in Chapter 6.

Let's look at the logical structure of the Palm database (see Figure 3-1). The database consists of a fixed
header block, a variable-length list of record location entries, and optional application and sort information
blocks, followed by the physical data pages. The structure is essentially an Indexed Sequential Access
Method (ISAM) database, where the record entry section contains indexes (pointers) to the actual record
data blocks. The SortInfo block can also contain a pointer to the records to maintain a logical sorting,
distinct from the physical record order.

Figure 3-1. Palm database logical format

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are used to thinking about databases in relational terms, you should think of each Palm database as
a single table. Because there is no defined structure to a Palm database, the application developer must
provide code that implements any desired relationships. As you might imagine, this is a challenge when
programming data-driven applications in the Palm environment. For now, consider the Palm database to
be a flat-file database. We cover the conversion, use, and synchronization of SQL databases later in
Chapter 4 and Chapter 5.

3.1.1 Database Header Block

The database header contains the administrative information for the PDB file, as shown in Table 3-1.

Table 3-1. PDB header fields

Field Type/size (bytes) Meaning

Name String (32) Internal name used by the Palm OS to reference the PDB

Attributes Integer (2) Flags, such as copy protected or read-only

Version Integer (2) Application-specific entry

CreationDate Long (4) Time database was created, specified in Palm date format [2]

ModificationDate Long (4) Time database was last changed

BackupDate Long (4) Time of most recent backup via the HotSync manager

ModificationNumber Long (4) Application-specific entry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Field Type/size (bytes) Meaning

AppInfoID Long (4) Offset from database header to application info block [3]

SortInfoID Long (4) Offset from database header to sort info block

Type Long (4) Application-specific field, governed by convention

Creator ID Long (4) The identifier of the application creator (registered with Palm)

UniqueIDSeed Long (4) Sequence number used for new records

[2] Palm dates are stored as the number of seconds since 12:00 AM, January 1, 1904.

[3] These offsets are only meaningful in the file representation of a Palm database.

None of these fields are directly accessible to the Palm VB programmer; we discuss how they are
accessed using the AppForge PDB library later in this chapter. Of particular interest, however, are the
Creator ID, Type, and Attributes fields.

The Palm OS uses the Creator ID to differentiate the applications and databases on the Palm device. In
general, it is good practice to assign the same identifier to all the databases that your application creates
and accesses. This is because the database manager uses the Creator ID to aggregate resource and
record databases. For example, this is how the Palm OS application launcher calculates the "size" of an
application. And, by assigning the same Creator ID to an application and its database, you ensure that all
these entities will be removed if the application itself is deleted.

If you specify a Creator ID for a PRC file that is not unique among the applications loaded on a Palm
device, then the Palm OS will not know which application to execute-or even which application to load or
display.[4]

[4] This is why you should always register your application's Creator ID with Palm. We covered registration of Creator IDs in Chapter 1.

The Type field has many uses, most governed by undocumented convention. For resource databases, this
field indicates the type of resource contained in the file: appl for a program; pqa for a wireless application,
and so on. For record databases, the field may have any value, although DATA is common for many Palm
programs.

Since version 3.0, the Palm OS sorts databases by Type, Creator ID, and version
number. If your application accesses multiple databases, then you can increase its
efficiency by changing the type identifier of the most heavily used database to place
it higher in the sort order. Your application must make frequent use of many
databases for this to pay off.

The Type field can be used in conjunction with the Creator ID to locate a database, instead of finding it by
name. This is very useful if you want to use the database name for other purposes, but still be able to
access the database easily from within your code.

The Attributes field consists of bitmapped flags that describe the database and its properties to the
operating system. The flags include such information as the database type (record or resource), or if the
database should be hidden from the user. Other flags control whether a database is read-only, or if it can
be beamed via the infrared port. We'll cover all the available attributes later in the chapter (see Table 3-5).

Next in the logical database layout is the record entries section. In the disk file representation, there can be

AppInfoID Long (4) Offset from database header to application info block [3]

SortInfoID Long (4) Offset from database header to sort info block

Type Long (4) Application-specific field, governed by convention

Creator ID Long (4) The identifier of the application creator (registered with Palm)

UniqueIDSeed Long (4) Sequence number used for new records

[2] Palm dates are stored as the number of seconds since 12:00 AM, January 1, 1904.

[3] These offsets are only meaningful in the file representation of a Palm database.

None of these fields are directly accessible to the Palm VB programmer; we discuss how they are
accessed using the AppForge PDB library later in this chapter. Of particular interest, however, are the
Creator ID, Type, and Attributes fields.

The Palm OS uses the Creator ID to differentiate the applications and databases on the Palm device. In
general, it is good practice to assign the same identifier to all the databases that your application creates
and accesses. This is because the database manager uses the Creator ID to aggregate resource and
record databases. For example, this is how the Palm OS application launcher calculates the "size" of an
application. And, by assigning the same Creator ID to an application and its database, you ensure that all
these entities will be removed if the application itself is deleted.

If you specify a Creator ID for a PRC file that is not unique among the applications loaded on a Palm
device, then the Palm OS will not know which application to execute-or even which application to load or
display.[4]

[4] This is why you should always register your application's Creator ID with Palm. We covered registration of Creator IDs in Chapter 1.

The Type field has many uses, most governed by undocumented convention. For resource databases, this
field indicates the type of resource contained in the file: appl for a program; pqa for a wireless application,
and so on. For record databases, the field may have any value, although DATA is common for many Palm
programs.

Since version 3.0, the Palm OS sorts databases by Type, Creator ID, and version
number. If your application accesses multiple databases, then you can increase its
efficiency by changing the type identifier of the most heavily used database to place
it higher in the sort order. Your application must make frequent use of many
databases for this to pay off.

The Type field can be used in conjunction with the Creator ID to locate a database, instead of finding it by
name. This is very useful if you want to use the database name for other purposes, but still be able to
access the database easily from within your code.

The Attributes field consists of bitmapped flags that describe the database and its properties to the
operating system. The flags include such information as the database type (record or resource), or if the
database should be hidden from the user. Other flags control whether a database is read-only, or if it can
be beamed via the infrared port. We'll cover all the available attributes later in the chapter (see Table 3-5).

Next in the logical database layout is the record entries section. In the disk file representation, there can be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

zero entries or one set of entries. Each record entry consists of the unique record identifier, the record
attributes flag, and an offset to the actual record data located elsewhere in the file.

3.1.2 Application and Sort Info Blocks

Next there is the AppInfo block. This block of memory, which is optional, may be used by the application to
store any desired data, such as custom settings.

Applications that support standard Palm categories must have the initial bytes of the AppInfo block
arranged in a predefined format. The application-defined data then follows this category data. The Palm
categories allow you to group records into standard and user-defined categories.

The AppForge PDB library fully supports categories, which we cover later in the chapter. AppForge does
not, however, support any other access to the AppInfo block, which means that you cannot use this space
for other purposes.

The SortInfo block is another optional section of the database, which may also be used by the application
as it sees fit. This section is usually used to store sort order information for a particular view or queries of
data. AppForge provides no direct access for this section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2 AppForge PDB Library

The Palm database provides a straightforward and efficient mechanism to store application data. In fact, it is the only
way to store large amounts of data on the device because the Palm OS lacks a true filesystem.

AppForge provides the PDB library to encapsulate and extend the Palm database manager. Because the PDB library
is implemented as a Microsoft COM component, you use it by adding a reference to afPDBLib.dll to your VB project.
The PDB library is simple to use. Its methods can be broken into the following groups, which we will explain in turn:

Database management

Performs functions such as creating new databases dynamically, with or without schemas, opening and
closing existing databases, and deleting databases

Record management

Handles most record operations, such as creating, editing, and deleting, as well as record categories
Navigation

Covers moving between records in the database, as well as finding and sorting functions
Other functions

Handles reporting or changing the state of a database or record via specified attributes, as well as record
counts and database error information

3.2.1 Database Management

It is easy to create a database, either programmatically, with code, or by converting from an existing database into a
Palm database, with the following techniques:

Use the AppForge PDB library in a Palm VB application to create an empty database directly on the Palm
device

Use the AppForge PDB converter utility that converts Microsoft Access databases to PDB files on the Windows
desktop

Develop a conduit to synchronize data between a Windows desktop data source and a PDB file on the Palm
device

Develop a VB application that uses the PDB library to create and populate a Palm database on the Windows
desktop

In this chapter, we focus on the first two techniques: using the AppForge PDB library and converter utilities to create
and manipulate Palm databases. We cover the later techniques in Chapter 4 and Chapter 5 .

In Figure 3-2 , we show the various database management functions provided by the AppForge PDB library.

Figure 3-2. PDB management methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To utilize the PDB library, you need to use PDBCreateDatabase to open a new database or PDBOpen to access an
existing one. These methods return handles-long integers-to the just-opened database. Since these handles are
used by almost every other method in the library, they must be carefully preserved.

Use the following code to create a database:

Const Creator ID As Long = &H4F523431 ' translates as "OR41"

Const TypeID As Long = &H44415441 ' translates as "DATA"

Dim lDB as Long

#If APPFORGE Then

 lDB = PDBCreateDatabase("MyDB", TypeID, Creator ID)

#Else

 lDB = PDBCreateDatabase(App.Path & "\MyDB", TypeID, Creator ID)

#End If

The PDBCreateDatabase method (along with others) requires the Creator ID and Type ID parameters to be long
integer values, such as &H44415441 . By convention, however, these identifiers are often expressed in code as string
constants, such as DATA .[5]

[5] Although we have never seen this proven, we suspect that this convention has its origins with the Apple operating system and compilers for the

Macintosh. The Macintosh used a similar nomenclature for its system resources.

Of course, this method also requires a name for the database of 31 characters or less. You do not specify an
extension such as .pdb .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Normally, you assign the PDB the same Creator ID as the PRC appli cation. You cannot
use the same name for both the PDB and PRC, since all database names must be unique.
By convention, Palm developers append DB to get a unique PDB name. To ensure
uniqueness, you might also add the creator to the name: MyDB-OR41 .

We provide a simple function in Chapter 5 that converts from the string representation to a long integer. We convert
each letter of the identifier to its ASCII hexadecimal value, and then place them side by side to create a number. For
the type identifier DATA, this is:

(D=44,A=41,T=54,A=41) = 44415441 (Hex)

Note the use of the conditional compiler directive. The value APPFORGE is automatically defined; the AppForge VB
add-in is compiling the code. This allows us to control the behavior of an application depending on the target runtime
platform. In this case, we use this feature to control where the database is created when we are running on a
Windows system. If a full path is not specified, then the AppForge library creates the file in the default working
directory-often not where you expect it!

We cover the very complicated PDBOpen function, which is used to open existing databases, in detail later in this
chapter.

3.2.1.1 Schemas

Once you have created a database on the Palm, you must consider what sort of data it will hold and how you will
access it. There are two basic approaches:

Treat the record as an unstructured sequence of characters1.

Treat the record like a row in a SQL database2.

Database records appear to the Palm OS as unstructured regions of memory; they have no inherent structure other
than what your program imposes. For some rare applications where the data varies extensively from record to record,
this lack of structure is useful.

The Palm Database Manager supports arbitrary 8-bit character data in records. The
AppForge PDB library, however, does not-it uses a special character encoding sequence
that more easily maps from Windows Unicode to Palm UTF-8. If you need to store binary
data, you will have to code around this.

It is much more likely, however, that you will create records that have a structure similar to the columns in an SQL
table. The AppForge PDB library provides direct support for this in database schemas .

To create a schema for a database, call the PDBCreateTable method on an open database. The method requires
you to provide the database handle, the new schema name, and the schema definition. For example, to create a
database with two columns to hold a string and an integer, use the code shown in Example 3-1 .

Example 3-1. Creating a schema

PDBCreateTable 1DB, "MySchema," "Name string, Age integer"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PDBCreateTable 1DB, "MySchema", "Name string, Age integer"

If the schema creation is successful (that is, it returns non-zero), you can now use several schema-related functions
to read and write whole records or individual columns. We'll provide some concrete examples later.

A schema is simply a string that contains the record definition, in the form of field-name and data type for each
column in the database. You can use any of the VB built-in data types, such as integer, string, or date. Recall our
simple schema above:

"Name string, Age integer"

The format of the schema definition, such as the supported field types, is clearly spelled out in the AppForge
documentation.

If you don't use the AppForge schema, you will have to access all data in the record by computing its offset in the
record and then reading raw data from that location. Storing information is just as cumbersome. We don't provide
tremendous coverage of direct reads and writes in this book; there are plenty of examples of this in the AppForge
Knowledge Base.

Use the AppForge schema if at all possible-it provides an interface to the database that is
powerful, easily comprehensible and maintainable.

One caveat-databases with these schemas are most easily accessed by AppForge applications. This is because
non-AppForge applications cannot understand the schema definition stored in the AppInfo block. For the same
reason, AppForge applications that are reading and writing records in other Palm databases typically cannot use the
schemas either.

Now let's look how to access databases that do not have a schema-those that were not created by the AppForge
PDB library or using the PDB Converter tool, such as the native Palm databases for the Address, Date Book, and To-
Do applications.

The easiest way to access databases like these is to create a temporary database schema that matches the PDB
record structure. A temporary schema is one that is not written into the AppInfo block of the PDB. This is critical,
since you probably don't own this database and cannot risk corrupting its data. AppForge provides for the
construction of a temporary schema using the PDBSetNumFields and PDBSetFieldType methods.

Of course, you will have to do some upfront work to determine the record structure by poking around in the
documentation or by examining the PDB file with a hex editor. We'll illustrate this technique by creating a temporary
schema for the To-Do database.

AppForge ships an example application to read and write the To-Do database. The application declares a data
structure like this:

Public Type tToDoRecord

 DueDate As Date

 Complete As Boolean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Priority As Byte

 Description As String

 Note As String

End Type

There are five fields, each of a different data type, so creating a temporary schema will involve six function calls: one
to specify the size of the schema itself, and five more to define the fields.

Example 3-2 shows how to create a schema for the To-Do database, assuming that the database is open and that
the handle is stored in dbToDo :

Example 3-2. Declaring a temporary schema

PDBSetNumFields dbToDo, 5

PDBSetFieldType dbToDo, 0, eDateField, 4

PDBSetFieldType dbToDo, 1, eBooleanField, 1

PDBSetFieldType dbToDo, 2, eByteField, 1

PDBSetFieldType dbToDo, 3, eStringField, 0

PDBSetFieldType dbToDo, 4, eStringField, 0

Let's look more closely at PDBSetFieldType . Each call specifies a field number, an associated data type, and the
size of the field. Table 3-2 lists the available field types. String data fields require special handling. In Example 3-2 ,
we specified zero for the size of the two string fields-this indicates a variable-length field. If the field width is fixed,
then we need to supply the correct width.

Table 3-2. Field type constants

Constant Type Description

eBooleanField Boolean True/False expression

eByteField Byte Unsigned numbers from 0 to 255

eDateField Date Date/Time expression

eFloatField Single Single-precision IEEE floating-point number

eIntegerField Integer VB Integer

eLongField Long VB Long

3.2.1.2 Closing and deleting databases

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Type Description

eStringField String String data

3.2.1.2 Closing and deleting databases

The other side of database management involves the closing and, occasionally, the deletion of the database. When
you are done working with a database, you should call the PDBClose method in order to allow the AppForge Booster
to clean up resources. This is as simple as:

PDBClose lDB

Open databases are automatically closed when your application exits. Due to the limited resources of the Palm
device, however, you should try to close databases when you are done using them, not when your application exits.

If you want to permanently remove a database-and release the memory taken up by it-you should call the
PDBDeleteDatabase method. A database must be closed before it can be deleted; of course, once a database is
closed, its handle is no longer valid. For this reason, PDBDeleteDatabase requires the name of the database:

PDBDeleteDatabase "MyDB", 0, 0

The method returns a Boolean indicating success or failure of the delete operation.

The AppForge documentation states that the Creator ID and Type ID fields can be used as
wildcards to support deleting multiple databases. In practice, this is impossible, because no
Palm databases can have the same name.

3.2.1.3 The PDBOpen method

Use the PDBOpen method to access existing databases. Here's the method signature:

PDBOpen(Style As tOpenStyle, Filename As String, CardNo As Long, dbID As Long, Type

 As Long, Creator As Long, mode As tOpenMode)

Whew-that's a lot of parameters! Let's look at them one by one.

The Style parameter governs how the method finds the Palm database to open, as shown in Table 3-3 . It also
dictates which of the other parameters are used and which are ignored.

Table 3-3. Database open styles

Style Meaning

ByFileName Open the database named in the Filename parameter.

ByID Open the database referenced by the dbID parameter. This is rarely used by applications.

The Filename parameter is used when the Style parameter is set to ByFilename . On the Palm device, this name is
case-sensitive. Note that this is the only way to open a Palm database on the Windows desktop.

eStringField String String data

3.2.1.2 Closing and deleting databases

The other side of database management involves the closing and, occasionally, the deletion of the database. When
you are done working with a database, you should call the PDBClose method in order to allow the AppForge Booster
to clean up resources. This is as simple as:

PDBClose lDB

Open databases are automatically closed when your application exits. Due to the limited resources of the Palm
device, however, you should try to close databases when you are done using them, not when your application exits.

If you want to permanently remove a database-and release the memory taken up by it-you should call the
PDBDeleteDatabase method. A database must be closed before it can be deleted; of course, once a database is
closed, its handle is no longer valid. For this reason, PDBDeleteDatabase requires the name of the database:

PDBDeleteDatabase "MyDB", 0, 0

The method returns a Boolean indicating success or failure of the delete operation.

The AppForge documentation states that the Creator ID and Type ID fields can be used as
wildcards to support deleting multiple databases. In practice, this is impossible, because no
Palm databases can have the same name.

3.2.1.3 The PDBOpen method

Use the PDBOpen method to access existing databases. Here's the method signature:

PDBOpen(Style As tOpenStyle, Filename As String, CardNo As Long, dbID As Long, Type

 As Long, Creator As Long, mode As tOpenMode)

Whew-that's a lot of parameters! Let's look at them one by one.

The Style parameter governs how the method finds the Palm database to open, as shown in Table 3-3 . It also
dictates which of the other parameters are used and which are ignored.

Table 3-3. Database open styles

Style Meaning

ByFileName Open the database named in the Filename parameter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Style Meaning

ByID Open the database referenced by the dbID parameter. This is rarely used by applications.

ByTypeCreator
Open the database that matches the supplied Type and Creator parameters. This is the most
common way to open a database.

The Filename parameter is used when the Style parameter is set to ByFilename . On the Palm device, this name is
case-sensitive. Note that this is the only way to open a Palm database on the Windows desktop.

The CardNo parameter is always zero, as the AppForge libraries do not support databases on expansion cards.

The dbID parameter is used when the Style parameter is set to ByID . The dbID parameter is almost never used for
AppForge applications, because although each Palm database has a permanent identifier, the PDB library doesn't
provide a way to access it.

The Type and the Creator parameters are used when the Style parameter is set to ByTypeCreator . Occasionally,
you will find that you have these values available to you when the database name is not easily found.

The Mode parameter determines how the database is opened. Possible modes are shown in Table 3-4 .

Table 3-4. Database open modes

Mode Description

AfModeAsciiStrings
Treat strings as 8-bit ASCII strings rather than UTF8 strings. This is useful if you need to
access native Palm databases.

AfModeExclusive Database will only be accessible to current application.

AfModeLeaveOpen Database will be left open when the application exits.

AfModeReadOnly Database is read-only for this application.

AfModeReadWrite Database is read-write for this application.

AfModeShowSecret Application can see any records that are marked as private.

AfModeWrite Database is write-only for this application.

You can combine these constants if necessary. For example, to open the native Palm Address database, the
PDBOpen call should look like this:

lDB = PDBOpen(Byfilename, "AddressDB", 0, 0, 0, 0, _

 afModeAsciiStrings Or afModeReadWrite)

To open an AppForge database in read-only mode with access to private records, the PDBOpen call looks like:

lDB = PDBOpen(Byfilename, "MyDB", 0, 0, 0, 0, afModeShowSecret Or afModeReadOnly)

3.2.1.4 Database attributes

ByID Open the database referenced by the dbID parameter. This is rarely used by applications.

ByTypeCreator
Open the database that matches the supplied Type and Creator parameters. This is the most
common way to open a database.

The Filename parameter is used when the Style parameter is set to ByFilename . On the Palm device, this name is
case-sensitive. Note that this is the only way to open a Palm database on the Windows desktop.

The CardNo parameter is always zero, as the AppForge libraries do not support databases on expansion cards.

The dbID parameter is used when the Style parameter is set to ByID . The dbID parameter is almost never used for
AppForge applications, because although each Palm database has a permanent identifier, the PDB library doesn't
provide a way to access it.

The Type and the Creator parameters are used when the Style parameter is set to ByTypeCreator . Occasionally,
you will find that you have these values available to you when the database name is not easily found.

The Mode parameter determines how the database is opened. Possible modes are shown in Table 3-4 .

Table 3-4. Database open modes

Mode Description

AfModeAsciiStrings
Treat strings as 8-bit ASCII strings rather than UTF8 strings. This is useful if you need to
access native Palm databases.

AfModeExclusive Database will only be accessible to current application.

AfModeLeaveOpen Database will be left open when the application exits.

AfModeReadOnly Database is read-only for this application.

AfModeReadWrite Database is read-write for this application.

AfModeShowSecret Application can see any records that are marked as private.

AfModeWrite Database is write-only for this application.

You can combine these constants if necessary. For example, to open the native Palm Address database, the
PDBOpen call should look like this:

lDB = PDBOpen(Byfilename, "AddressDB", 0, 0, 0, 0, _

 afModeAsciiStrings Or afModeReadWrite)

To open an AppForge database in read-only mode with access to private records, the PDBOpen call looks like:

lDB = PDBOpen(Byfilename, "MyDB", 0, 0, 0, 0, afModeShowSecret Or afModeReadOnly)

3.2.1.4 Database attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Like a file on the Windows desktop, the Palm PDB has a set of attributes that indicate its current state and that
control how the operating system interacts with it. The database has a two-byte attribute field that stores different
states as a set of flags. This field is maintained by the Palm database manager, and is returned by calling the
PDBGetDatabaseAttributes method. There are a lot of flags, as shown in Table 3-5 .

Table 3-5. Database attributes

Attribute Meaning

AfHdrAttrResDB Database is a resource database (PRC).

AfHdrAttrReadOnly Database cannot be modified.

AfHdrAttrAppInfoDirty AppInfo block has been changed since the last HotSync operation.

AfHdrAttrBackup HotSync should use default backup conduit if no custom conduit available.

afHdrAttrOKToInstallNewer
The installation conduit should install a newer version of this database with a
different name if the current database is open [6] .

afHdrAttrResetAfterInstall
Palm device should be reset when database is installed; often used with shared
libraries.

AfHdrAttrCopyPrevention Disable Exchange Manager operations, such as IR beaming.

AfHdrAttrStream Database is emulating a FAT file.

AfHdrAttrHidden
Database should not be displayed although it is still accessible; usually for PRC
and PQA databases.

AfHdrAttrLaunchableData Database can be "launched"; usually a PQA database.

AfHdrAttrOpen Database is open.

[6] This description is from the AppForge PDB Library User's Guide.

Once you have retrieved the attribute field using PDBGetDatabaseAttributes , you can access the individual flags
using the AND operator to determine what states are currently set in the PDB. The attribute flags are members of the
enumeration tDatabaseAttributes .

For example, to see if a database is marked read-only by the Palm, you can use the following code:

If PDBGetDatabaseAttributes(lDB) And afHdrReadOnly Then

 ' Do something here

End If

The flags can be combined using the OR operator. For example, to see if the copy prevention and backup bit are both
set, use the following code:

Dim Mask As Long

Mask = afHdrAttrCopyPrevention Or afHdrAttrBackup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If PDBGetDatabaseAttributes(lDB) And Mask Then

 ' Do something here

End If

You can change attributes using the PDBSetDatabaseAttributes method. Be forewarned: this method is capable of
making potentially catastrophic changes to databases on your Palm device. If you simply call
PDBSetDatabaseAttributes with a single flag, you will accidentally turn off any other database flags that were
enabled. For this reason, it is usually best to first retrieve the current database attributes, and then toggle the flags
you need on or off. Only after this should you call PDBSetDatabaseAttributes with the new set of attributes.

To turn on an attribute, use the OR operator. For example, to make a database read-only while leaving all the other
flags undisturbed, use the following code:

' Get all the current attributes

Dim lCurrent As Long

lCurrent = PDBGetDatabaseAttributes(lDB)

' Toggle ON just the read-only bit

PDBSetDatabaseAttributes lDB, lCurrent Or afHdrAttrReadOnly

To turn off an attribute, use the AND and NOT operators. To remove the copy protection from a database, use this
code:

' Get all the current attributes

Dim lCurrent As Long

lCurrent = PDBGetDatabaseAttributes(lDB)

' Toggle OFF just the copy bit

PDBSetDatabaseAttributes lDB, lCurrent And (Not afHdrAttrCopyPrevention)

Of course, you can also change more than one database attribute at a time. It is easy to combine all the flags to be
changed by building a mask using the Or operator:

Dim lMask As Long

LMask = AfHdrAttrBackup Or AfHdrAttrHidden Or afHdrAttrResetAfterInstall

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can use this mask exactly like the single attributes discussed previously.

3.2.2 Record Management

Record management supports creating, reading, writing, and deleting database records. We consider an update
operation to be a special case of the write operation. Figure 3-3 shows the required relationship between the
methods that create and update records when using the AppForge PDB library. Note that reading and deleting
records are simple actions that do not have any prerequisite operations.

Figure 3-3. Record management methods

3.2.2.1 Creating records

There are several ways to create a database record, depending upon whether the database has an AppForge
schema. If the database has a schema, then you should use the PDBCreateRecordBySchema method. Otherwise,
use the PDBCreateRecord method, which also requires the initial size of the record to be created.

Table 3-6 shows the supported field data types and their respective sizes; you can use this information to calculate a
PDB record size by adding up the sizes of all the fields in the record. Note that for this to work, string fields must have
a fixed length.

Table 3-6. AppForge PDB record fields

PDB data type Field size (bytes)

Boolean 1

Byte 1

Date 4

Integer 2

Long 4

String Characters in string + 1

Single 4 [7]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[7] When specifying the field list parameter for the PDBCreateTable method, the call will fail if you use the word "single" to define a single data type column.

Use the word "float" to correctly define the single data type column.

As we mentioned earlier, it is significantly easier to use databases with schemas than databases without them, since
the AppForge PDB library takes care of calculating records sizes dynamically.

Regardless of how you create the PDB record, the PDBUpdateRecord method must be executed to actually save the
record data to the database. Until this method is called, the library buffers the changes for your application; they may
be lost if you create or manipulate another record.

3.2.2.2 Reading and editing records

The PDB library provides four methods to retrieve record data from an open database. The first three methods
operate on databases that use an AppForge schema; they differ in the amount of data returned. The simplest is to
retrieve the data from a single field using the PDBGetField method. This method accepts field numbers that are zero-
based . Assuming lDB is a handle to the database created earlier in this chapter in Example 3-1 , use this code to
retrieve the second column in the record:

Dim iAge As Integer

PDBGetField lDB, 1, iAge

Of course, you also must supply a variable of the correct data type to hold the results. Remember-no variants. You
can also use this method to retrieve either the field's name or type:

Dim strVal As String

'gets the field name - returns "Age"

PDBGetField ldbState, 1 OR afPDBFieldName, strVal

'gets the field type - returns "integer"

PDBGetField ldbState, 1 OR afPDBFieldType, strVal

When utilizing this technique, you use the numeric OR operator to combine the field number (in this case, 1) with the
appropriate enumeration constant-either afPDBFieldType or afPDBFieldName .

The PDBReadRecord method will read the entire current record into a user-defined type (UDT) that matches the
database schema.[8]

[8] This record type is created automatically if you use either the AppForge Database Converter or the Universal Conduit to create PDB files from Microsoft

Access or SQL data sources. We cover these tools later in this chapter and in Chapter 5 .

Here is how to dimension and read a record for the database described earlier in Example 3-1 :

Public Type MyRecord

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 strName As String

 iAge As Integer

End Type

Dim tRec as MyRecord

PDBReadRecord lDB, VarPtr(tRec)

AppForge does not support the variant data type, so PDBReadRecord must be capable of stashing data into records
of all types. Calling the method with the address of the UDT record, obtained using the VB VarPtr function, does this.
The method then fills the structure with the field values from the record, according to the schema. Exercise care to
ensure that the schema and the field layout of the UDT record are properly aligned-this method does no error
checking, and it is easy to crash your application.

The PDBBulkRead method is similar, except that it reads several records into a VB array. To use this method, first
dimension an array of records of the appropriate type, and then pass the address of the first element of the array:

Dim tRec(10) As MyRecord

Dim NumRecs As Long

NumRecs = PDBBulkRead(lDB, 10, VarPtr(tRec(0))

The method returns the actual number of records read. This method is faster than reading records in a loop, but
should only be used when you really need the entire record, not simply one field. Otherwise you are wasting
processing time and memory.

At this point, you might wonder how the AppForge PDB library knows where to start reading or writing data in the
database? Until now, we have not mentioned the fact that every open AppForge PDB has a current record indicator,
which is similar to the cursor in a relational database. PDBReadRecord and PDBBulkRead move the current record
indicator as they process database records. Record navigation-which involves moving the indicator-is covered in
detail later in this chapter.

To edit a record, first ensure that the PDB is in a state to accept changes. This is accomplished using the
PDBEditRecord method. Once the record is conditioned for change, use the PDBWriteField method for single field
changes and PDBWriteRecord to change an entire record. Here is what the method calls look like for the database
defined earlier in Example 3-1 :

PDBWriteField lDB, 1, iAge

PDBWriteRecord lDB, VarPtr(tRec)

Of course, these methods only work with AppForge schema databases.

Let's look at writing data to a database without an AppForge schema of either the permanent or temporary kind. After
calling PDBEditRecord to enable changes, you have to use the PDBWriteFieldByOffset method to write data into the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

record.

The PDBWriteFieldByOffset method is a low-level routine that writes raw data bytes into a physical offset specified
from the start of the record. This means that you must know where the fields are located in the record, and you must
be sure the record is large enough to store the data. You can use the values in Table 3-2 (shown previously), along
with the functions PDBRecordSize and PDBResizeRecord, to help determine this information. Consider the record
shown in Figure 3-4 .

Figure 3-4. Sample record layout

From Table 3-2 , shown earlier in this chapter, you know that the first field, a Long, occupies the initial four bytes of
the record. And you can use the same reasoning for the next two fields, which are also data fields with fixed lengths.

The mapping gets trickier when the record contains string data, which is the only schema field that can vary in
length.[9] The record shown above in Figure 3-4 is the simplest case-the sole string field is at the end of the record.
More complex databases might have string fields embedded throughout the record. To handle those cases, you need
to figure out the size of each string field or fields, and adjust the offset of any other fields accordingly. As you might
imagine, this is very difficult to do dynamically.

[9] Many Palm applications pack and unpack PDB record data, often using some type of run-length encoding, where a byte or integer indicates how much

data is in the rest of the record. These schemes are very complex and are hard to implement in VB.

Stick with an AppForge schema if at all possible, even if you have to define temporary
schemas on the fly. Your application will be much more maintainable with a minimal loss of
performance.

Calling PDBRecordSize on the record shown in Figure 3-4 will return 12: four bytes for the Long field, one each for
the two Byte fields, and six for the String . Because we are dealing with raw data fields here, the string length
includes an extra byte for the C/C++ null terminator. You must account for this extra byte when sizing non-schema
databases.

To update this record so that the string contains "Hello World ", the record needs to increase in size by six bytes, as
shown in Figure 3-5 .

Figure 3-5. Resized sample record

Before you can write the expanded string into the record, you must first use the PDB library to resize the record to 18
bytes, and then write the new string data to the record at the proper offset:

Dim strVal As String

StrVal = "Hello World"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PDBResizeRecord lDB, 18

PDBWriteFieldByOffset lDB, 6, strVal

To commit the changes to the record, execute the PDBUpdateRecord method. If your application exits without calling
the update routine, your changes will not be stored in the database. You can call the PDBCancelRecordEdit method
at any time while editing a record; this rolls back any changes made to the record data. It also resets the record
attributes to their previous state.

If there is not enough heap storage available, the PDBResizeRecord call will fail. This is not
uncommon on the Palm device, and your application should be able to handle this condition.

3.2.2.3 Deleting records

There are several different ways to delete records from Palm databases; these exist primarily to support Palm's
HotSync technology for synchronizing data between the Palm and the desktop. Table 3-7 summarizes the different
ways to delete records.

Table 3-7. Record deletion modes

Deletion mode Resulting action

AfDeleteModeArchive Sets the record delete flag, but leaves the data intact

AfDeleteModeDelete Same as afDeleteModeArchive ; also sets the record's category to 15 [10]

AfDeleteModePalmDelete Sets the record delete flag and removes the data from the record

AfDeleteModeRemove Immediately removes record from the database

[10] The AppForge documentation says that setting the category to 15 supports the Universal Conduit's ability to delete records from the Windows desktop

during synchronization.

We cover the effect of the various delete modes on the synchronization process in Chapter 4 and Chapter 5 .

The AppForge PDBDeleteRecord method deletes the database current record using the afDeleteModePalmDelete
mode, which is the normal Palm way to delete. The AppForge PDB library also provides a PDBRemoveAllRecords
method that will delete all the records in the database; it also uses afDeleteModePalmDelete .

Deleting the last record from the database will automatically set the current record indicator
to be the first record in the database, if one exists.

If you need to specify one of the other delete modes on the current record, use the PDBDeleteRecordEx method and
supply the desired mode from Table 3-4 (shown earlier in this chapter) as a parameter. For example, if you do not
intend to synchronize your data with the desktop, use afDeleteModeRemove to minimize the resources used by your
application.

3.2.2.4 Categories

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By convention, most Palm applications provide some kind of support for categories, which offer a way to organize
records in a database into manageable groupings.

Although the Palm Application Launcher also uses categories when grouping applications
(such as All , Games , Main, and so on), those are not the categories we discuss in this
chapter.

Usually there is a default Unfiled category, as well any other predefined categories that make sense for the
application. See Figure 3-6 for a list of default categories supplied with the native Palm applications.

Figure 3-6. Default memo categories

The Palm OS Category manager supports up to 15 categories, indexed from zero, that are stored in the AppInfo
block of a PDB. The AppForge PDB library provides methods to change these names. The PDBGetCategoryName
method retrieves the category name for a specific category index from the AppInfo block. PDBSetCategoryName
assigns a category name, overwriting any previous name. The category name may be up to 15 characters in length.

A common task that an application performs when starting up is to populate a ListBox or ComboBox ingot with the
current categories stored in the PDB. Here is the code to do that:

Dim iIndex As Integer

Dim strCatName As String

'Loop through all valid category index values

For iIndex = 0 To 14

 PDBGetCategoryName lDB, iIndex, strCatName

 If strCatName <> "" Then Exit For

 AFListBox1.AddItem strCatName

 AFListBox1.ItemData(AFListBox1.NewIndex) = iIndex

Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Make sure to use a variable like strCatName for the Name parameter, as shown in the preceding code. Setting or
retrieving the category name directly to an ingot property-such as Text -fails silently.

Each record in a PDB has a Category ID ranging from 0 to 15, although AppForge reserves the value 15 .[11] This
means that a record can be in only one category at a time. The Category ID is not part of the record field layout, but
is maintained by the Palm database manager in an internal structure. The Category ID is an index into the category
name table (which saves space).

[11] The AppForge Universal Conduit uses a category index of 15 to indicate that the record has been deleted from the Palm and must also be removed

from the Windows desktop. Note that the Palm OS also reserves the value 15 to indicate "all categories".

Use the PDBRecordCategoryID method to retrieve the Category ID for the current record in a PDB. The
PDBSetRecordCategoryID method assigns the current record to a category.

A common use for categories within an application is to filter records, such as on a form that should only display
records in a Business category. We show how to filter records in the North Wind Traders Inventory application later in
this chapter.

One final note: the AppForge Universal Conduit (UC) does not support categories when synchronizing data to the
Windows desktop. If your application design calls for using the UC to HotSync, then you should probably not use
categories.

3.2.2.5 Attributes

Like databases, Palm PDB records have attributes as well-just not as many. Each record has a one-byte attribute
field that stores the flags. You can use the PDBRecordAttributes or PDBRecordAttributesEx methods to return the
attribute field for the current database record. The individual flags are shown in Table 3-8 .

Table 3-8. Record attributes

Attribute Meaning

AfRecAttrBusy Record is marked as busy and cannot be read (it can be written to, however).

AfRecAttrDelete Record has been marked for deletion at the next HotSync operation.

AfRecAttrDirty Record has been changed since the last HotSync operation.

AfRecAttrSecret Record is secret and should be hidden if privacy is supported.

The only difference between the methods is that the "extended" method lets you specify a particular index, instead of
using the current record index.

Once you have retrieved the attribute field, you can access the individual flags using the AND operator and the flags
listed in Table 3-8 . The attribute flags are members of the tAttributes enumeration.

If you expect to process records with the secret attribute, be certain that you have opened the
database using the afModeShowSecret flag. Otherwise, methods like PDBMoveNext will
silently skip these records.

For example, to see if a record has been changed, but not yet synchronized with the Windows desktop, you can use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the following code:

If (PDBRecordAttributes(lDB) And afRecAttrDiry) Then

 ' Do something here

End If

You can change attributes using the PDBSetRecordAttributes method. Again, exercise caution when setting the
attribute flags, to avoid losing data. You should retrieve all the attributes first, and turn individual flags on or off. Then
call PDBSetRecordAttributes with the new values. Unfortunately there is no extended method for setting attributes,
so you must make the desired record current before updating the flags.

For historical reasons, the attribute field returned by PDBRecordAttributes (and its extended version) has the four
attribute flags in the high bits of the field, and the four-bit record category in the low bits. The
PDBSetRecordAttributes method ignores the category bits when updating the record.

3.2.3 Navigation

Effective database programming on the Palm, as on any platform, requires the ability to process a particular record
or set of records. The AppForge PDB library provides a variety of methods that support moving, searching, or
jumping through the database records. These methods are diagrammed in Figure 3-7 .

Figure 3-7. PDB navigation methods

The AppForge PDB library maintains beginning of file (BOF) and end of file (EOF) markers. The PDBBOF and
PDBEOF methods return a Boolean value if the current record is at either BOF or EOF respectively.

To perform the most basic database operation-processing all the records-use the following code:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PDBMoveFirst dbHandle

Do While Not PDBEOF(dbHandle)

 ' do something here

 PDBMoveNext dbHandle

Loop

Note that having the current record indicator at the first or last record does not set the BOF or EOF flag to TRUE .
These flags are only set if an attempt is made to move beyond the first or last record in the database.

Figure 3-7 shows that the majority of the navigation methods act upon the database by moving the current record
indicator around in the database. These methods are self-explanatory: PDBMoveFirst , PDBMovePrev ,
PDBMoveNext , and PDBMoveLast . We won't discuss these methods further in this chapter.

You may use the PDBCurrentIndex method, which returns the current record indicator, to determine your
application's location in the database. And you can use PDBGoToIndex to seek directly to a specific record.

3.2.3.1 Searching

The simplest way to find a record in a database is to use PDBGotoIndex , which positions the PDB current record
index to the value you supply as a parameter. This method returns TRUE if the desired index and the record exist, and
FALSE otherwise. Since you need the index of the desired record before you access it, the PDBGotoIndex is only
useful if you cache these index numbers someplace in your application. Frequently you may use the ItemData
property of an ingot, and look up the record data when an item in the ingot is selected:

Private Sub AFComboBox1_Click()

 Dim dbIndex As Long

 dbIndex = AFComboBox1.ItemData(AFComboBox1.ListIndex)

 If PDBGotoIndex(lDB, dbIndex) Then

 ' Process record data here...

 End If

End Sub

Of course, this example assumes that you stored the record index in the ItemData property when populating the
combo box.

Every record in a PDB database has a unique identifier (UID). This UID is not part of the record field layout, but is
maintained by the Palm database manager in an internal structure. Unlike the record location within the database,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which will change if the database is sorted or if records are added or deleted, the record UID is constant. [12] Use
PDBRecordUniqueID to retrieve the UID for the current record. Later, when you want to move directly to that record,
call the PDBFindRecordByID method, passing it the UID.

[12] The UID doesn't usually change, but it is only guaranteed to be the same from the time you open the PDB until the time you close it. During a HotSync

operation, the Palm OS will close any open databases and turn control over to a conduit. This conduit is free to change the UID as needed.

Finally, you can find a record by searching within a field for a particular value, using the PDBFindRecordByField
method. Like all field-oriented methods in the AppForge PDB library, this method only works if the database has a
defined schema (permanent or temporary). Call this method with the column index (field) to search and the value for
which to search.

PDBFindRecordByField lDB, Age_Field, Cint(21)

If successful, the method will set the current index to point to the first matching record. Be sure to pass an expression
of the correct type for the value, as PDBFindRecordByField does no error checking.

PDBFindRecordByField always searches from the beginning of the database, not the current
index. This means that you cannot use this method to find the next matching record. To do
that, you need to sort the database, which we address later.

Since PDBFindRecordByField can perform crude string matches, the method can be used to implement search-as-
you-scribe functionality. We show you how to do this in the North Wind Traders Inventory example later in the
chapter.

3.2.3.2 Sorting

AppForge provides a built-in sort capability for databases. PDBSetSortFields sorts a database on a single record
field, and PDBSetSort provides a multi-field sort. As before, these field-oriented functions only work on schema
databases. We'll look at each function in turn, as there are some important differences between them.

Let's look at PDBSetSortFields first. This method is poorly named-it only sorts the database on a single record field.
That field is specified by offset within the record layout, with the first or leftmost record field having offset 0, the next
field having offset 1, and so on:

PDBSetSortFields lDB, Age_Field

The method returns TRUE if the sort succeeded, and FALSE otherwise.

Once you have performed the sort operation, you can skip to the beginning of the database and process all the
records in the new order.

These methods always sort in ascending order: A, then B, and so on. You will need to
process records backward-from the end of the file to the first record-to simulate a
descending sort.

You can use PDBFindRecordByField- specifying the same field used for the sort-to find the first record in a
sequence of matching records, which you then cycle through using PDBMoveNext . Note that
PDBFindRecordByField uses a binary search algorithm when searching a sorted database; this is much faster than
its normal linear search of the database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now, let's look at the PDBSetSort method. This method sorts the database on multiple fields, which are specified in a
specially formatted string. This string actually has two formats, one used with databases that have permanent
schemas, and the other with temporary schemas. [13] Like the single-field sort, PDBSetSort sorts the database records
in ascending order.

[13] Remember, a permanent schema is created with a call to PDBCreateTable , or by using the Database Converter. A temporary schema is defined with

calls to PDBSetNumFields and PDBSetFieldType .

For databases with permanent schemas, the sort field string is a comma-separated list of the field names in the
desired order. Here's how to sort the database created previously in Example 3-1 , first by age, and then by name:

PDBSetSort lDB, "age,name"

For databases with temporary schemas, the sort field string is a comma-separated list of the field offsets. Here's how
to sort the To-Do database shown previously in Example 3-2 , by priority, and then by due date:

PDBSetSort lDB, "2,0"

These are the third and first fields in the record, but, like all the field-oriented methods, the offsets are specified from
zero.

Although sorting a database will dramatically improve the speed of your application, the sort itself is a very time-
consuming operation; you should sort only when absolutely needed. When designing your application and its
database structure, AppForge recommends that you consider the following factors: [14]

[14] See article 010515-000024 in the AppForge Knowledge Base for more detailed information.

Make the sort field the first field in the record layout. If you are sorting on multiple fields, move them all to the
start of the record. This helps speed up record data reads during the sort.

Avoid sorting on string fields; convert them to another data type if possible. When sorting on multiple fields,
place numeric fields first in the sort order and string fields later.

Use PDBSetSortFields instead of PDBSetSort . Sorting on a single field is faster than sorting on multiple fields.

3.2.4 Other Database Topics

We've now covered the most common methods your application is likely to use while manipulating databases and
records. In this section, we look at several other functions that you will need to complete your applications or to
handle some special chores.

3.2.4.1 Errors

Palm database programming is not like Windows file system programming. The PDB exists only as fragments of
memory in a low-powered device. Errors do occur, and it is critical that your application check for them. Only a few of
the methods in the AppForge PDB library return error codes directly. Instead, error information is found by calling the
PDBGetLastError method, which returns the last reported database error.

Like the VB error handler, error information for the PDB is reset with every method call, so you will need to think
carefully about when and how often to check for errors. Certainly it is not unreasonable to check after every PDB
library call, at least until you become comfortable programming on the Palm device.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PDBGetLastError returns a value that is a member of the tPDBError enumeration type. A zero return indicates no
error, while a negative number indicates an error. Unfortunately, there is no function in the PDB library that returns a
string equivalent, so you will have to look up each error in the AppForge PDB Library User Guide.

3.2.4.2 Counting

It is often useful to determine the number of records in a database. You can use the PDBNumRecords method to get
a count of all the records in the database. This method does not distinguish between current records, records marked
for deletion but not yet erased, or records in other states. It simply returns the total number of records in the PDB
(including private ones, regardless of how you opened the database).

Sometimes it is more useful to be able to determine the number of records in the database with a given state. For
example, you might need to how many undeleted records are in the database. We wrote a function, NumRecs, that
uses PDBNumRecords as well as PDBRecordAttributesEx to do just that, as shown in Example 3-3 .

Example 3-3. Counting non-deleted records

Public Function NumRecs(ByVal lDB As Long) As Long

 Dim iIndex As Long

 Dim lRecCnt As Long

 lRecCnt = 0

 For iIndex = 0 To PDBNumRecords(lDB) - 1

 If Not PDBRecordAttributesEx(lDB, iIndex) And afRecAttrDelete Then

 lRecCnt = lRecCnt + 1

 End If

 Next iIndex

 NumRecs = lRecCnt

End Function

The critical test is:

Not PDBRecordAttributesEx(lDB, iIndex) And afRecAttrDelete

This filters out those records that have been deleted, so lRecCnt is only incremented for active records.

3.2.4.3 Unique numbers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although the Palm database manager automatically generates a UID when you create a new record, this UID is not
guaranteed to be unique forever. There are times when you need some unique identifier that will never, ever
change-for example, to provide a bookmark function that will work even if you beam the database to another Palm
device.

The AppForge PDB library has the PDBCreateDBUniqueNumber method for just such purposes. This method uses
the same algorithm as the underlying Palm database manager, but does not assign the new UID to a record. Instead,
it returns the UID directly to the caller. You can then use this UID as the value for any field in the record layout.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3 The AppForge Database Converter

In this chapter, we've looked at how to create and manipulate a database programmatically, but we've ignored the
issue of content-how do you get desktop data into the PDB? Typically, you accomplish this by using the HotSync
process, with a custom conduit for your database, or with a conversion program developed specifically for your
application.

There is an easier way: the AppForge Database Converter. This is a simple tool that moves existing data from the
Windows desktop into Palm databases. This tool will create the PDB, populate its records, and generate VB source
code that contains the Creator ID and Type ID, the record schema, and functions to read and write records.

The Database Converter requires its input to be in Microsoft Access format; it translates the internal tables into
individual Palm PDB files. This is not as restrictive as it sounds, for it is possible to convert almost any data source
into an Access MDB file or link table. [15]

[15] Microsoft Data Transformation Services, available with SQL Server, provide a tremendous number of automatic conversion utilities. And Access itself is

capable of importing data from almost any SQL database, as well as Dbase, Excel, and formatted text.

The conversion is an excellent time to think about what information really needs to be transferred. If your Windows
desktop database has information that will not be relevant to the user, filter it out before it gets to the Palm device.
The more data on the handheld, the slower the handheld will run.

Once the information is in a Microsoft Access database, you must ensure that the tables to be converted to the Palm
have supported data types. Table 3-9 shows how each MS Access data type is converted.

Table 3-9. Supported MS Access data type conversions

MS Access types PDB field type Manual alternate

Text String N/A

Memo String N/A

Number, Byte Byte N/A

Number, Integer Integer N/A

Number, Long Integer Long N/A

Number, Single Single N/A

Number, Double Double N/A

Number, Decimal Not Supported Double, Long

Number, Replication ID Not Supported Double

Date/Time Date N/A

Currency Currency N/A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MS Access types PDB field type Manual alternate

AutoNumber Long N/A

Yes/No Boolean N/A

OLE Object (long binary) Not Supported None

Hyperlink Not Supported Text

For unsupported data types, we suggest an alternate manual conversion in Table 3-9 . You must change or eliminate
all unsupported data fields in the Access file before running the Database Converter.

The converter program is quite simple to use. First, you select the Access database to convert; if the database has
multiple tables, you must select one to convert. The new PDB takes its name from the converted Access table. At this
time, you also supply creator and type identifiers for the database.

When you press the Convert button, you are prompted with the standard Windows file dialog to save the PDB.
Remember, the Windows filename is not the internal PDB name. Figure 3-8 shows the Database Converter in action.

Figure 3-8. AppForge PDB Converter screen

If you didn't change a column into a supported data type, the Database Converter warns you that the column will be
skipped (i.e., it will not be in the PDB record layout). The warning is shown in Figure 3-9 .

Figure 3-9. Unsupported data type warning

AutoNumber Long N/A

Yes/No Boolean N/A

OLE Object (long binary) Not Supported None

Hyperlink Not Supported Text

For unsupported data types, we suggest an alternate manual conversion in Table 3-9 . You must change or eliminate
all unsupported data fields in the Access file before running the Database Converter.

The converter program is quite simple to use. First, you select the Access database to convert; if the database has
multiple tables, you must select one to convert. The new PDB takes its name from the converted Access table. At this
time, you also supply creator and type identifiers for the database.

When you press the Convert button, you are prompted with the standard Windows file dialog to save the PDB.
Remember, the Windows filename is not the internal PDB name. Figure 3-8 shows the Database Converter in action.

Figure 3-8. AppForge PDB Converter screen

If you didn't change a column into a supported data type, the Database Converter warns you that the column will be
skipped (i.e., it will not be in the PDB record layout). The warning is shown in Figure 3-9 .

Figure 3-9. Unsupported data type warning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After the table is converted, you have the option to create a VB module of useful routines to access the new PDB.
The module provides the following:

Public constants for the creator and type identifiers, and a global variable for the database handle.

Public enumeration with named offsets for all the fields in the record layout.

A public record type with properly aligned members for all the fields in the record layout. The member names
correspond to the Access column names.

Public functions to open and close the database, using the global database handle mentioned above.

Public functions to read and write records in the database. These functions use the record type mentioned
above.

The code is straightforward, and will satisfy most basic data access needs. There are two pitfalls to avoid if you use
the AppForge generated code:

If you regenerate the PDB file, be sure to use the new VB module in your application. Many subtle errors arise if
the code (IDs, fields, and so on) doesn't agree with the new PDB file.

1.

If your application uses many converted tables, your application can become bloated with duplicative functions.
Consider writing generic database access functions instead of using the AppForge modules.

2.

From here, you may wish to enhance the module for custom business logic or to consolidate this functionality into a
data access class or module. Its real benefit is to get you running quickly if all you need is basic data access.

The physical order of records in the generated PDB file will match the order in the Access
table. Order the Access table properly before conversion to avoid expensive sorts on the
Palm device.

3.3.1 Inventory Tracking Application

In this section, we'll put what we've learned to work building a mobile inventory application based on the Microsoft
North Wind Traders Inventory sample. [16]

[16] Microsoft distributes the North Wind Traders sample application with its Access and SQL Server products.

This application models a small company that resells products via a regional sales force.Our Palm implementation
offers several interesting features:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A master-detail relationship view of the inventory

Search-as-you-scribe (type-ahead) functionality

PDB sorting by clicking/selecting Grid columns

We have rehosted a small portion of the application on the Palm device to allow the user to browse existing
inventory, review suppliers, and update stock levels. The main user interface is shown in Figure 3-10 .

Figure 3-10. North Wind main screen

To support the on-device inventory, we'll use the Database Converter to process the North Wind Supplier, Product
and Category tables. Prior to conversion, we had to convert the Homepage field in the Suppliers table from Hypertext
-which is not a supported data type-to String . We also removed the Picture field from the Categories table
entirely.

We used OR31 as the creator identifier and DATA as the type identifier for all three databases; the Creator ID matches
the one we're going to use for the PRC. This will cause all three databases to be removed if the user deletes the
application from the Palm device. We had the converter create VB modules for each table, which we will use in the
application. Figure 3-11 shows how these three tables relate to each other.

Figure 3-11. Inventory database relationships

3.3.1.1 Grid ingot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The North Wind application makes heavy use of the Grid ingot to display record data. There are many other ways to
display record data, such as filling ListBox or ComboBox ingots, but the Grid ingot was ideal for this application
because of its inherent support for rows and columns-perfect for tabular data.

Since we didn't cover the Grid ingot in Chapter 2 , let's take a quick tour of its features. The Grid ingot displays data
in cells that are organized into rows and columns. Cells occur at the intersection of a row and a column, which are
referenced using a zero-based index; for example, the top left cell in a grid is (0, 0). The indexes increase as you
move right and down through the grid.

Of course, to include the Grid icon in your project, you must add a reference from the VB Project References
menu. Remember, the Grid ingot requires that the Advanced Ingots Booster PRC is installed on the Palm device.

The Grid ingot supports most of the same display attributes as the ingots we covered in Chapter 2 , such as Border,
Foreground, and Background Color, and font characteristics. Unlike the other ingots, you can only set the text
alignment at runtime, using the ColAlignment property. And the Grid ingot has some specialized properties, such as
grid-line style and horizontal or vertical scrollbars.

Obviously, on a device like the Palm, with its tiny screen, the ability to page or scroll data is critical. The scrollbars are
present for user navigation. You can drive the visible region programmatically by using the LeftCol and TopRow
properties. Setting these properties to an index value that is offscreen causes the ingot to make the indicated region
visible.

In order to minimize the amount of empty space in the Grid ingot, you can change the RowHeight and ColWidth
properties to set the size of an individual cell. Since these properties are only accessible at runtime, you should set
these properties while the form is initializing or when loading data into the Grid ingot.

The ColWidth is only specified once; it immediately affects all columns in the Grid ingot. The
RowHeight property, however, has to be set for each new row if you change it from the
default.

The Grid ingot supports the standard AddItem method to add data. Because the Grid ingot supports rows and
columns, it is nice that AddItem allows you to load an entire row with one call:

gridUserInfo.AddItem "Roger Knoell" & Chr(9) & "Visa", -1

From this example, you can see that separate columns are indicated with the tab character- Chr(9) . Note the last
parameter-this is the index at which to insert the row. The -1 indicates that the new row should be appended to the
Grid data. This is similar to how the list box and combo box control work in VB.

You can use the NewRow property to return the index of the most recent row added. You often use this when setting
the ItemData property, as shown in this simple example:

gridUserInfo.ItemData(gridUserInfo.NewRow, 1) = 1234

The Grid ingot supports the notion of a current cell, which is usually selected by the user with the stylus. To set the
current cell from code, use the Row and Col properties. Note that when the user taps the cell, the ingot fires the
SelectCell event; this doesn't happen if you select the cell programmatically.

To change the contents of a cell, use the Text or TextMatrix properties. The Text property works on the current cell,
while TextMatrix lets you specify a specific cell either on or off the screen.

The Grid ingot doesn't have the normal Clear method, so you will need to remove data rows manually, as shown

http://lib.ommolketab.ir
http://lib.ommolketab.ir

here:

Do While Not (gridInv.Rows = 0)

 gridInv.RemoveItem 0

Loop

gridInv.Refresh

One last note: it is our experience that the Grid ingot loads considerably faster when its Visible property is FALSE .[17]

[17] The Grid ingot, like most controls of its kind, is very complicated. There are quite a few articles in the AppForge Knowledge Base and the user forums

that discuss optimization tips for this Ingot.

3.3.1.2 Application structure

The North Wind application is in the NwindInv.vbp project file; it consists of two forms-frmInv.frm for the inventory
and frmSupplier.frm for the supplier information. The inventory form is the VB project startup object, which means that
it will receive initial control when the application is started.

In addition, there are the three VB modules generated by the Database Converter: Products.bas , Suppliers.bas , and
Categories.bas . And because this is a database application, we must include a reference to the AppForge PDB
library as well.

The source code for our version of the North Wind application is available on this book's web site. If you don't have
Access or the North Wind Traders database from Microsoft, don't worry-we've placed the converted PDB files with
the code.

When the user launches the application, control is passed to the inventory's Form_Load method. This simple routine
(which is not shown here) opens the three databases, initializes the category combo box using InitCategories , and
reads in the Grid data using InitProducts . We'll discuss how the category values are loaded into the combo-box later
in this section.

The InitProducts method is too large to show all at once, so we'll examine it in pieces. First, let's declare variables
needed throughout the routine:

Public Sub InitProducts()

 Dim iRow As Integer

 Dim bSuccess As Boolean

 Dim CurProd As tProductsRecord

Next, let's prepare the Grid ingot to receive data, clearing any old data and setting the width of each column to an
optimum size (determined by trial and error):

gridInv.Visible = False

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Do While Not (gridInv.Rows = 0)

 gridInv.RemoveItem (0)

Loop

gridInv.Refresh

gridInv.ColWidth(ProductID_Field) = 20

gridInv.ColWidth(ProductName_Field) = 150

Next, let's position the database index to the beginning of the PDB, and read in each record:

PDBMoveFirst dbProducts

iRow = 0

Do While Not PDBEOF(dbProducts)

 bSuccess = ReadProductsRecord(CurProd)

 If bSuccess Then

The user might have selected a particular category of record, so before we process the record, let's make sure that
the category values match (category values are stored in the cboCats combo box) before we add the record data to
the Grid ingot, and skip to the next record:

 If CurProd.CategoryID = cboCats.ItemData(cboCats.ListIndex) Or _

 cboCats.ItemData(cboCats.ListIndex) = -1 Then

 gridInv.AddItem CStr(CurProd.ProductID)

 gridInv.Row = iRow

 gridInv.RowHeight(iRow) = 13

 gridInv.Col = ProductName_Field

 gridInv.Text = CurProd.ProductName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 iRow = iRow + 1

 End If

Loop

Because the category value is invariant during this loop, it would be more efficient to store it in a variable just one
time outside the loop. We'd like to do the same with the Grid RowHeight property, but the ingot doesn't work that
way-each row must have this property set individually.

Once all the records are in the grid, we highlight the first row, update the product details, and make the grid visible:

'select the first grid item

If gridInv.Rows > 0 Then

 gridInv.Row = 0

 gridInv.Col = 0

 ShowProdDetails CLng(gridInv.Text)

End If

'show the grid

gridInv.Visible = True

End Sub

In this example, we have loaded all of the PDB data into the grid. This is not a viable technique if your database has
hundreds or thousands of records. In that case, you should implement a paging technique, perhaps reading in only
as many records as would fit onto the screen.

3.3.1.3 Categories

We have implemented a non-standard method of handling categories in this application, because the North Wind
sample already supported categories directly in the database. Sometimes you cannot limit your application to the
maximum 15 categories that are supported by the Palm device; in that case, you can use this technique.

To the user, the combo box with the category names appears quite normal. We load the categories in the
InitCategories routine shown in Example 3-4 . We hardcode All as a special category; this pseudo-category displays
all the product records in the grid. This category goes into the combo box first, followed by the rest of the data read
from the PDB.

Example 3-4. Listing of InitCategories

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Sub InitCategories()

 Dim tRec As tCategoriesRecord

 cboCats.AddItem "All"

 cboCats.ItemData(cboCats.NewIndex) = -1

 Do While Not PDBEOF(dbCategories)

 If ReadCategoriesRecord(tRec) Then

 cboCats.AddItem tRec.CategoryName

 cboCats.ItemData(cboCats.NewIndex) = tRec.CategoryID

 End If

 PDBMoveNext dbCategories

 Loop

 cboCats.ListIndex = 0

End Sub

The tCategoriesRecord UDT and ReadCategoriesRecord function are declared in the AppForge-generated VB
module for the categories PDB, which was created when the database was converted. There are similar declarations
for the other two databases as well.

3.3.1.4 Type-ahead search

Clicking the search button displays an edit field for the user query, which is a lookup of the product name. If the grid
contains a lot of records, we'd like to implement some sort of search-as-you scribe functionality to let the user zero in
on her data with each Graffiti stroke. Unfortunately, the PDBFindRecordByField method doesn't provide a partial
string match. It matches the first character of a field if the search criterion is a single character, or the entire field if the
criterion is longer, but it doesn't match anything in between. Here we use a little ingenuity to provide a partial text
lookup function, by searching the grid first and then looking up the record in the database. This is shown in Example
3-5 .

Example 3-5. Listing for txtSearch_Change

Private Sub txtSearch_Change()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim I As Integer

 Dim lID As Long

 gridInv.Col = 1

 For I = 0 To gridInv.Rows - 1

 gridInv.Row = I

 If LCase(txtSearch.Text) = LCase(Left(gridInv.Text, Len(txtSearch.Text))) Then

 gridInv.TopRow = I

 Exit For

 End If

 Next I

 PDBFindRecordByField dbProducts, ProductName_Field, gridInv.Text

 If PDBCurrentIndex(dbProducts) >= 0 Then

 PDBGetField dbProducts, tProductsDatabaseFields.ProductID_Field, lID

 ShowProdDetails lID

 End If

 gridInv.Col = 0

End Sub

This is a complicated routine, so let's look at it in small pieces. The first thing we do is set up the Grid ingot for our
search. We make the second column in the grid active-the product name column-and then we search all the rows:

gridInv.Col = 1

For I = 0 To gridInv.Rows - 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Remember, virtually every property in the grid uses a zero-based index. Setting the active column once saves a little
time during the scan of the text. Here's the partial match from the left:

LCase(txtSearch.Text) = LCase(Left(gridInv.Text, Len(txtSearch.Text)))

If this matches, then we update the Grid TopRow property to make the matched record visible. If there is no match,
then we redraw the current record. This is simple but clumsy code; a production Palm application would not do this
extra work.

Now that we know there is a match, let's find the corresponding record in the database using the full product name
from the Text of the found Grid cell:

PDBFindRecordByField dbProducts, ProductName_Field, gridInv.Text

We won't discuss the details of the ShowProdDetails method, which reads values from the current database record
and updates the text boxes on the main screen.

After you have completed the search, click the search button again to hide the text window.

3.3.1.5 Suppliers

Most of the user interface is contained on the main form, which was shown previously in Figure 3-10 . There is a lot of
detail in the database about the supplier of any product. To access this information, the user taps on the Supplier
button to display the form shown in Figure 3-12 .

Figure 3-12. The Supplier form

This completes our discussion of the North Wind sample example. If you play with the application, you will discover
other minor features, such as the horizontal scrollbar on the grid, the use of the Graffiti shift indicator to page through
the data, or the option of sorting the data by tapping a column header.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4 Resources

The primary resource is the AppForge PDB library reference, which is part of the product. The reference is
also available on the AppForge web site at http://www.appforge.com/dev/usersguide.html. The Palm File
Format Specification, which describes the layout of databases in great detail, is available from Palm at
http://www.palmos.com/dev/tech/docs/.

AppForge also provides sample applications that read and write the main Palm native application
databases, such as Address Book and To-Do. These are distributed with the product.

There are also some excellent third-party tools that are invaluable for debugging; these provide the ability
to explore and modify the attributes and contents of databases and records on the Palm device. Popular
examples are Z'Catalog and Insider. Both are shareware products that are readily available on the Internet.

http://www.appforge.com/dev/usersguide.html
http://www.palmos.com/dev/tech/docs/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part II: Data Connectivity

Chapter 4

Chapter 5

Chapter 6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Conduit Development

The original concept of the Palm was of a device tethered to data on the desktop. The PDA is an
extension of the desktop, not its replacement. 3Com (the Palm PDA manufacturer) has expanded this
design concept; it now calls the Palm device the "connected organizer." Palm wants you to build
applications that function in today's mobile and connected world.

In this chapter, we look at building conduits using Microsoft Visual Basic (VB). Conceptually, a conduit is
the tether that moves data back and forth, connecting your Palm application and its data store. A conduit is
a piece of software that runs on the desktop when the PDA is synchronizing, under the control of the Palm
HotSync manager.[1] In this book, we are going to build conduits using VB and ActiveX.

[1] There are other HotSync managers for enterprise use that allow remote connections. Conduits can also be built using C/C++ or Java, but

we won't discuss either of those languages in this book.

By design, a conduit is dedicated to a single Palm application, which will have one or more associated
Palm databases. Keep in mind that, even though the conduit is a piece of desktop software, the
application data may be located anywhere-on the desktop, in a relational database, or even on the
Internet. Once you have decided where your application's data resides, it is then your responsibility to build
a conduit capable of delivering that data to the Palm device. The Palm Conduit Development Kit provides
a framework for ActiveX conduit development, which we'll explain in detail later in this chapter.

Note that conduits developed in VB can be used with any application and database on the PDA, not only
those created with AppForge. The high-level HotSync architecture is shown in Figure 4-1.

Figure 4-1. Overview of HotSync COM architecture

The Palm HotSync manager is in control of the synchronization process. It maintains a list of configured
conduits in the system registry, and it handles the interface with the Palm PDA. The HotSync manager
uses a set of COM objects-the Sync Suite API-to communicate with ActiveX conduits. The conduit
manages application-specific data and supplies a userinterface if appropriate.

This chapter covers how to compile and register an ActiveX conduit with the HotSync manager, how to use
the Sync Suite API to synchronize Palm PDA data with the desktop, and how to handle the user interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1 Applications and Conduits

Before we get to the mechanics of conduit development, let's review the concept of data synchronization
as it applies to Palm applications and databases. If the handheld is an extension of the desktop, then it is
natural to ask: How should the data flow between the handheld and the desktop? This is going to depend
in great deal on the design and purpose of your application and its databases.

Entertainment or utility programs rarely have a conduit-they don't have data worth moving to the desktop.
These applications usually save any data in the system Preferences database, which is automatically
backed up and restored by the HotSync manager. We covered application preferences in Chapter 3.

More typical is the unidirectional conduit, in which the data flows from the Palm device to the desktop, or
the other way around. This type of conduit is useful in applications like questionnaires, where the Palm is
used primarily as a remote data collection tool.

The Palm PDA's native applications, like Address and To-Do, use a mirror-image conduit, where changes
on the desktop and the device are replicated in both directions. This type of synchronization is so
important that Palm has documented exactly how a mirror-image conduit should behave. We will cover
mirror-image synchronization in detail later in this chapter.

A transactional conduit processes data to produce intermediate results, which are written back to the Palm
device. The data flow in a transactional conduit can be in one or both directions. You could implement this
sort of conduit for an application that uploads orders to a SQL database for fulfillment processing and then
downloads invoices to the Palm. We discuss this type of conduit in Chapter 5.

Finally, there are system functions such as installation and backup that use special- purpose conduits to
perform their functions. The default backup conduit synchronizes databases whose applications don't have
a custom conduit, or databases that have a conduit but whose type is not DATA. The backup conduit, which
is supplied by the Palm desktop installation, simply makes an exact copy of your application's database or
databases on the desktop. (Technically, to be backed up by the default conduit, a Palm database must
have the backup bit set.)

4.1.1 Conduit Types

Palm had to design the HotSync manager and conduit interface to support a wide variety of data
synchronization and replication needs. Each conduit registers its unique creator identifier and
synchronization type with the HotSync manager. Note that your conduit might support more than one type
of synchronization; in that case, you should provide a user interface to allow the user to customize the
behavior of your conduit. We'll show you how to do this later in the chapter.

Here are the types of conduits supported by the Palm Conduit Development Kit, as documented in the
Conduit Reference manual:

Fast

Performs a fast synchronization
Slow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Performs a slow synchronization
HHtoPC

Copies handheld database to the desktop and overwrites all old records
PCtoHH

Copies desktop database to the handheld and overwrites all old records
Install

Installs new application to the handheld (system function)
Backup

Backs up handheld database to the desktop (system function)
DoNothing

Doesn't perform any synchronization
ProfileInstall

Performs a profile download (system function)

The HotSync manager on the desktop keeps track of when the user last synchronized his or her Palm
device with this desktop. It uses this information to determine which conduits to call, and the type of
synchronization each conduit is to perform.

The HotSync manager supports multiple users on the desktop. It also supports a
single user with multiple Palm devices. The HotSync API provides identifiers during
a HotSync session to enable a conduit to determine which user and/or device is
synchronizing. We don't discuss this capability further in this book, but it is covered
in the Palm Windows Conduit Companion and Reference.

Of course, the user may set the type of synchronization manually, as illustrated in Figure 4-2.

Figure 4-2. User dialog for HotSync preferences

If a conduit does not support a user interface, the HotSync manager uses the conduit's default
synchronization type. We show how to implement a custom user interface for your conduit later in this
chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conduits should always have a UI. Otherwise, your user will click the Change button
in the Custom dialog and nothing will happen. Not only is this rude, it will leave your
user wondering if something is broken.

4.1.2 Mirror Synchronization

As we mentioned earlier, mirror-image synchronization requires that a conduit replicate changes between
the desktop and the Palm device. Mirror-image conduits should support both fast and slow
synchronization. When your conduit is called to do a FastSync, it only needs to look for new or dirty
records in your application's Palm database and on the desktop. If your conduit is called for a slow sync, it
must look at every record on the PDA and the desktop. The HotSync manager requests a slow sync
whenever it determines that the last sync was not with this desktop. Otherwise, it requests a FastSync.

The Palm database manager supports per-record flags that track any changes to records in the database.
These flags are listed in Table 4-1. In order to successfully implement a mirror-image conduit, your
desktop database must support some or all of these flags on a per-record basis.

Table 4-1. Palm database record flags

Flag Meaning

Changed Either create a new record or edit an existing record

Deleted Delete the record

Archived Make an archive copy, then delete the record

Secret Mark record as private

The Windows CDK Companion has a section on design decisions and tradeoffs that you can use to
evaluate the kind of conduit your application can support. We'll summarize a few key questions here:

Do you have unique record identifiers that can be mapped into Palm record identifiers?

Do you support per-record attributes, such as dirty, deleted, and archived?

Is it easy to detect changes to desktop records?

Are the desktop records categorized?

Is it simple to map database records to desktop records or entities?

Is it possible to partition the application and conduit to minimize synchronization times?

Unfortunately, there are no generic answers to these design questions. We will address these questions
as they apply to a sample application and conduit that we will present later in this chapter. You'll have to
consider them from the context of your own application.

If your user has experience with any of the Palm native applications, then he'll expect your conduit to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

replicate changes in the same manner. Palm has gone to great lengths to document this behavior, as it
pertains to the native applications. (The synchronization logic is spelled out in the Palm Conduit
Programmer's Companion for Windows, which is part of the CDK.) Your conduit should emulate as much
of this behavior as makes sense for your application.

Table 4-2 shows the possible states for each record in an application. The desktop record states run along
the top of the table and the Palm record states run down the left side.

Table 4-2. Mirror conduit record states

 No record No change Change New Delete

No record D P

No change D P Remove DP

Change P D Conflict P D

New P D

Delete Remove DP D P

The action that your conduit should take is found in the intersection of each of the possible states, and is
spelled out in the following list:

D P

Desktop record replaces Palm record
P D

Palm record replaces desktop record
Remove (DP)

Delete the record from the desktop and/or the Palm
Conflict

Follow application rule to resolve synchronization conflict

After the conduit takes the indicated action, the record on the desktop is in the same state as the record on
the Palm.

A conflict arises when a record is changed simultaneously on the Palm device and on the desktop. Palm
recommends that this conflict be resolved by migrating the change in both directions. The user can then
edit or delete the data on either the Palm or the desktop. At the next synchronization, the conduit will clean
up all the changes.

Note that the blank cells in Table 4-2 correspond to conditions that Palm considers
logically impossible or irrelevant to conduit design. Palm derived these conditions
from the behavior of its native applications. Your conduit and application might not
need to support all these conditions, or they might need to support different
possibilities.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The situation is slightly more complicated if your application supports archive records. A Palm application
such as Address offers to archive a record when it is deleted. This is an offer to preserve the data
somewhere on the desktop; presumably, the desktop provides the corresponding restore operation.

The ability to archive older records, instead of deleting them forever, was crucial to the early Palm devices,
which sported 128 KB of memory. Users were forever shuffling data between the device and the desktop.
While it is less critical now, memory is still a scarce resource. So if you can support the archive option in
your application, you certainly should.

In general, when a Palm record is marked for archival, the conduit archives the record in an application-
specific fashion, and then deletes the record from both the Palm and the desktop.

Table 4-3 shows how to handle Palm database records that are marked for archiving. In this table, the
desktop record states appear along the top of the table and the Palm record archive states appear on the
left side.

Table 4-3. Mirror sync actions with Palm archive request

 Delete No change No record Change

Archive Archive, Remove DP Archive, Remove DP Archive, Remove DP

Archive, Change Conflict

Archive, No Change D P

A conflict arises if a record has changed in both databases as the same time. In such a case, the conflict is
deepened because the user has also requested that the record be archived-this means that she doesn't
want to see it again any time soon. Here's how the Palm CDK Companion says you should handle the
conflict:

If the changes are identical, archive both the device record and the desktop record. If the changes
are not identical, do not archive the device record; instead, add the desktop record to the device
database, and add the device record to the desktop database.

Table 4-4 shows what to do when a desktop record has been marked for archival. The most common
case, in which the Palm device record has not changed, is handled by archiving the record and then
removing it from both the device and the desktop.

Table 4-4. Mirror sync actions with desktop archive request

 Archive Archive, change Archive, no change

Delete

No change Archive, Remove DP

No record

Not surprisingly, a conflict occurs when the record to be archived has been changed in both databases.
According to the Palm CDK Companion:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Archive Archive, change Archive, no change

Change Conflict P D

Not surprisingly, a conflict occurs when the record to be archived has been changed in both databases.
According to the Palm CDK Companion:

If the changes are identical, archive the device record and then delete the records from both the
device and desktop databases. If the changes are not identical, do not archive the desktop record;
instead, add the desktop record to the device database and add the device record to the desktop
database.

A mirror-image conduit should also support the HHtoPC and PCtoHH synchronization types. Recall that
these sync types cause the handheld data to overwrite the desktop or vice versa. At first it might seem
counter-intuitive that your conduit could be called to blindly overwrite user data, on either the desktop or
the Palm device. But keep in mind that your conduit is almost always called this way as a result of user
intervention.

For example, your user might accidentally delete an entire category of data records on the Palm device.
Instead of then synchronizing these changes, and thereby deleting the data from the desktop as well, the
user can direct the conduit to overwrite all the Palm data, effectively restoring the deleted records.

4.1.3 Categories

A conduit must synchronize changes in category data as well as record data. Because a category is
actually a compound data type-it has both a name and a numeric ID-the synchronization logic is a little
harder. Palm addresses the default logic for the native conduits in the CDK documentation.We summarize
it here:

If the category ID has changed on either the desktop or the PDA, but the name is the same, update
all desktop records to use the PDA category ID.

1.

If the desktop category name has changed, but the category ID is the same, then update the PDA
category name. Note that this only holds true if the new desktop category name is not already in use
on the PDA.

2.

If there is a category with a new name and ID on the desktop, and neither is in use on the PDA, then
create a new category on the PDA. If the index is already in use, then assign a new index from the
PDA, and update all the desktop records with it.

3.

If your application supports categories, give careful consideration to the mapping between category names
and identifiers on the Palm PDA and the desktop. And be aware that there is native support in the Palm
operating system for only 15 active categories.

4.1.4 Other Types of Conduits

Your conduit will never be called for Install, Backup, or ProfileInstall synchronization. These are
reserved to the HotSync manager to perform special system functions. Your conduit can be called for
DoNothing synchronization, always at the user's request.

Change Conflict P D

Not surprisingly, a conflict occurs when the record to be archived has been changed in both databases.
According to the Palm CDK Companion:

If the changes are identical, archive the device record and then delete the records from both the
device and desktop databases. If the changes are not identical, do not archive the desktop record;
instead, add the desktop record to the device database and add the device record to the desktop
database.

A mirror-image conduit should also support the HHtoPC and PCtoHH synchronization types. Recall that
these sync types cause the handheld data to overwrite the desktop or vice versa. At first it might seem
counter-intuitive that your conduit could be called to blindly overwrite user data, on either the desktop or
the Palm device. But keep in mind that your conduit is almost always called this way as a result of user
intervention.

For example, your user might accidentally delete an entire category of data records on the Palm device.
Instead of then synchronizing these changes, and thereby deleting the data from the desktop as well, the
user can direct the conduit to overwrite all the Palm data, effectively restoring the deleted records.

4.1.3 Categories

A conduit must synchronize changes in category data as well as record data. Because a category is
actually a compound data type-it has both a name and a numeric ID-the synchronization logic is a little
harder. Palm addresses the default logic for the native conduits in the CDK documentation.We summarize
it here:

If the category ID has changed on either the desktop or the PDA, but the name is the same, update
all desktop records to use the PDA category ID.

1.

If the desktop category name has changed, but the category ID is the same, then update the PDA
category name. Note that this only holds true if the new desktop category name is not already in use
on the PDA.

2.

If there is a category with a new name and ID on the desktop, and neither is in use on the PDA, then
create a new category on the PDA. If the index is already in use, then assign a new index from the
PDA, and update all the desktop records with it.

3.

If your application supports categories, give careful consideration to the mapping between category names
and identifiers on the Palm PDA and the desktop. And be aware that there is native support in the Palm
operating system for only 15 active categories.

4.1.4 Other Types of Conduits

Your conduit will never be called for Install, Backup, or ProfileInstall synchronization. These are
reserved to the HotSync manager to perform special system functions. Your conduit can be called for
DoNothing synchronization, always at the user's request.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you have a transactional conduit, you will have to masquerade as a mirror-image conduit. We don't
discuss transactional conduits in this book. These conduits have the same structure and logic as the
conduits we have already described, but they must handle distributed transactions and error rollback and
recovery as well. We do cover the use of conduits to manage SQL data in Chapter 7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2 Conduit Design

There are several major design principles for a conduit. The first, and most important, is that the conduit
runs as quickly as possible. No one wants to wait while synchronization grinds on and on. Honoring the
fast and slow sync flags will help you to optimize performance. A fast conduit also minimizes the use of the
Palm device's serial port. This is important, because serial port use can drain the PDA's batteries very
quickly.

The second principle is that a conduit must always move application data in a natural way between the
Palm device and the desktop. Your user relies completely on this behavior. She also relies on the conduit
to restore all data in case of a disaster. If your conduit is not correctly implemented, or has bugs, user
acceptance of your application will suffer greatly.

A third principle is that your conduit must be able to run without attention from the user. While this is a
good design principle for software in general, it is especially important for a conduit. This is because the
user might be synchronizing from a remote location, communicating with the HotSync manager over a
modem or network connection. The user will not be able to respond to any prompts or dialog boxes that a
conduit might display on the desktop. This will cause the entire HotSync session to hang.

Palm provides some more design guidelines in the C/C++ Conduit Companion; you should certainly study
those before implementing your own conduit.

If you are building a mirror-image conduit, then follow the logic diagrammed earlier in Tables Table 4-2, 4-
3, and 4-4, as they apply to your application. If you don't allow desktop editing of data in your application,
for example, then your conduit doesn't have to support it, either.

Having a user interface and allowing the user to override the conduit's default behavior will help you
achieve acceptance. If at all possible, support uploading or downloading all records from your user
interface.

Note that if your Palm database design maps into a relational database, and you used the AppForge
database tools described in Chapter 4, then you can likely use the Universal Conduit. We discuss the pros
and cons of the Universal Conduit in Chapter 5, and show you how to use it to integrate SQL Server data
into your applications.

4.2.1 When Not to Use a Conduit

Not all synchronization situations require you to implement a conduit. It is perfectly appropriate to make a
new database from scratch and download it to the device, if you know that all or most of your application's
data has changed.

Simply generate your database from the new data, and put it in the HotSync installation directory. [2] The
database will be automatically deployed to the device with the next synchronization, overwriting any
existing PDA data in the process. If your application has a database that is read-only, and that is
periodically refreshed, you can use this technique. If your sales department produces a list of prices that
changes monthly, then you don't need to execute a conduit every day.

[2] You can use the InstallAide functions to do this, which are part of the Palm Desktop. These functions are described in the CDK

http://lib.ommolketab.ir
http://lib.ommolketab.ir

documentation; we don't discuss them in this book.

Not having a conduit can greatly simplify the distribution of your application. You don't have to worry about
developing an installation script for your conduit and its associated runtime objects.

If the Palm Desktop is configured properly, the Windows default shell action for PRC and PDB files is to
call the Palm Instapp.exe program, which will copy the file into the Palm desktop installation directory.

This means that you can post your database files on the Web or in ZIP archives. When your user
downloads or extracts your file and double-clicks it, it is queued for installation at the next HotSync.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3 Installing the CDK

The Conduit Development Kit (CDK) is freely downloadable from the Palm web site. [3] The CDK contains
libraries and runtime bindings for VB and COM, as well as the C/C++ language. The InstallShield wizard
puts everything into the directory you select (see Figure 4-3).

[3] You want CDK release 4.01 DR1, which was the latest release available as of this writing. This release is the first that exposes a COM

interface specifically for VB development.

Figure 4-3. CDK directory structure

You can choose to install only the COM libraries, samples, and documentation by using the custom
installation procedure and deselecting the C/API. We recommend performing a full installation, because
the C/API contains some additional documentation you will find useful.

The Com folder contains the VB tutorial and sample projects, an installation tool, and another directory that
simply contains links to the documents mentioned above. Most of the sample projects in the CDK are
primers that focus on explaining at most one or two parts of the CDK. There is also a longer example,
SyncSamp, which replaces the default Memo conduit and illustrates a complete conduit.

The Common folder contains the CDK programs and libraries used when developing conduits. This folder
also contains the documentation, in both Adobe PDF and Microsoft Help formats. Earlier releases of the
CDK runtime are supplied for backward compatibility; these won't help you, because only the most recent
release supports VB development.

If you have the Palm desktop software installed on your development machine, as is required to run
AppForge, there are some issues you should be aware of when you install the CDK. By default, your
system uses the HotSync manager that was installed with the Palm desktop software. Unfortunately, the
ActiveX objects needed to develop and debug conduits are not installed with earlier releases of the Palm
desktop.

If you have the luxury of developing your applications and software on separate computers, the following
step is unnecessary. Otherwise, you will have to alter the desktop configuration so that the new HotSync
manager runs during the synchronization process. Use the Microsoft RegEdit.exe tool, and alter the two
registry keys as shown in Example 4-1. Note that the location of the updated HotSync manager depends
on where you installed the CDK on your filesystem.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-1. Registry settings for HotSync manager

HKEY_CURRENT_USER\Software\U.S. Robotics\Pilot Desktop\Core

 HotSyncPath = C:\CDK401\Common\Bin\C4.01\Hotsync.exe

 Path = C:\CDK401\Common\Bin\C4.01

This is a good time to run the CDK tutorial SimpleDB, which shows how to run and debug a program under
the control of the HotSync manager. This is how all conduits are executed, and it is important that you get
comfortable with this environment. Running the tutorial also ensures that all of the CDK components are
properly installed, and that the new HotSync manager is running correctly.

To run the tutorial, use the CondCfg.exe program to register the VB development environment as a
conduit. Once the HotSync manager calls the VB IDE, you are in control and can test and debug your
conduits with all the powerful VB features to which you are accustomed.

Let's walk through the steps required to configure the tutorial. Start the CondCfg.exetool to show all the
currently registered conduits, and to add, edit, and delete conduits. If you are developing on your own
Palm desktop, be careful not to disturb the settings for the native Palm applications! We disable all
conduits except those actually under development; this both increases the speed of the synchronization
process and provides some security from data corruption. Press the Add button to bring up the Conduit
Information dialog, into which you enter the settings for your conduit (see Figure 4-4). First, you must
enter ComConduit.dll in the name field. The HotSync manager uses this DLL to locate and instantiate
COM conduits.

Figure 4-4. CondCfg.exe registration screen

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because each conduit handles exactly one application on the Palm device, you must enter the unique
Creator ID of your application. (There must be only one conduit registered for any Palm application.
CondCfig.exe will not allow you to register a second conduit for the same application, or, more precisely,
an application with the same Creator ID).

If there is no application on the Palm device with this ID, then the conduit will not
run. You must install your Palm application first.

For our sample conduit, we entered Ch4a as the Creator ID. In addition, we entered Ch4aDB in the optional
remote database field. As we'll see later, the HotSync manager provides the conduit with a more accurate
list of databases during an actual synchronization session.

In the extra information group box at the bottom of the dialog, select the COM Conduit radio option button.
Enter the full path to the VB IDE in the COM client field.

Leave all the other fields blank or with the default values. These settings were shown earlier in Figure 4-4.
Press the OK button to register the new settings, and restart the HotSync manager. Then exit the
configuration tool.

Now put the Palm device into the cradle and press the HotSync button. Although the synchronization
process runs normally, the VB IDE doesn't activate. That is because the HotSync manager could not find
an application on the Palm device with a Creator ID of Ch4a.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You will need to download our sample application for this chapter and install the application file Ch4a.prc.
After the application is installed, perform a HotSync one more time. This time, the HotSync manager on
the desktop displays the message Status: Synchronizing COMConduit, and the VB IDE pops up.

Now you can test your environment by opening SimpleDB.vbp in the CDK Tutorial folder. This VB project
opens the native Memo application, and reads all the records that match a search term. Set a breakpoint
in the button click event, and press F8 to step through the program. Note that Palm device displays
Synchronizing Memo Pad, because the Memo database has been opened during a HotSync session. You
are now communicating as a conduit with the Palm device from VB!

If the VB IDE doesn't appear, put the HotSync manager into its verbose mode. First, stop the HotSync
manager by right-clicking on its icon in the Windows system tray, and select Exit. Next, restart the
HotSync manager with the -v option from the command line. After synchronizing, you can review the
diagnostic log for errors. To do this, right-click on the icon and select View Log.

If the SimpleDB project doesn't connect to the Palm, or exhibits other errors, check that the Palm conduit
references are set correctly (these are shown later in this chapter in Figure 4-7). You do this from the VB
IDE by choosing the References option from the Project menu. If these references are missing, try
registering those ActiveX libraries by hand and restarting VB.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4 Nuts and Bolts

If you stepped through the SimpleDB CDK sample project, you saw that the VB code manipulated the
Palm device's databases and records using COM objects. Let's dig a little deeper into the HotSync
architecture to see how a conduit communicates with the Palm device.

Recall from Figure 4-1 that the COM Sync Suite provides the interface to the HotSync manager and the
Palm device.

The Sync Suite itself has several layers to isolate its interface from the underlying details of the HotSync
application and to support both VB/COM and C/C++ conduits. This layered approach frees the VB
programmer from worrying about messy details such as which serial port the HotSync manager is using to
communicate with the Palm device.

To simplify conduit development, the Sync Suite provides COM objects and classes that encapsulate the
HotSync manager, the user, and databases on the Palm device. A utility class is provided to handle things
like Motorola byte ordering and unique record identifiers. [4] These classes and their relationships are
shown in Figure 4-5.

[4] The Palm device currently uses the Motorola 68000 series processor. This CPU represents numbers in little-Endian order, which is

different from the Intel 80x86 processors. Your conduit must handle the conversion if your application stores numeric data.

Figure 4-5. Sync Suite class hierarchy

There are VB projects in the CDK that cover these objects and interfaces. Rather than enumerate all of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

them here, we will discuss the major ones we encounter as we develop our simple conduit. Once you
understand the framework, you can use the VB Object Browser and the Conduit Reference manual to find
the special properties you need for your conduit.

The HotSync manager expects your ActiveX conduit to implement the IPDClientNotify interface, which it
calls when it needs your services, either to synchronize or to access configuration settings and
preferences.

4.4.1 Sample Application and Conduit

The sample code for this chapter includes an AppForge application project, Ch4a.vbp, and an ActiveX
conduit project, Ch4aCond.vbp.

You can use the application to create, edit and delete records on the Palm device. This application creates
a database that consists of text records with a single field. Figure 4-6 shows the application's user
interface on the Palm PDA. The application has a Creator ID of Ch4a, and the database is named Ch4aDB.

Figure 4-6. Main screen for sample application Ch4a

There is no corresponding Windows application for this example. Instead, we represent desktop records
using text files in a desktop folder. We will use the record identifier from the Palm database as the
filename-this will guarantee uniqueness in our naming system. Synchronized desktop records have the
extension .REC. Newly added desktop records will have the extension .NEW, deleted records will have the
extension .DEL, and changed desktop records will have the extension .CHG.

By following this scheme, we can implement all the synchronization possibilities shown previuosly in Table
4-2. Note that to simplify this example, we aren't going to support archived records or database categories.

Let's outline what this conduit example is going to demonstrate:

How to implement all required COM interfaces

How to support user customization

How to read and write data on the Palm device (FastSync and HHtoPC sync)

Log activity and errors

Ways to demonstrate interactive debugging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4.2 Configure the VB Conduit Project

We start building the conduit by creating a new VB project. Using the New Project Wizard, choose ActiveX
EXE. This will create the conduit as an out-of-process COM server. Normally, this is inefficient due to the
marshaling of data between processes during method calls. But it gives us the ability to debug by running
the conduit as a standalone process, and intercepting HotSync manager calls.

After creating the project, add in the references to two Palm COM Sync Suite type libraries used by all
conduits: ComStandard.dll and ComDirect.dll (see Figure 4-7). As usual, you do this from the VB IDE by
choosing the References option from the Project menu.

Figure 4-7. Sync Suite COM references

Save your project after renaming the default Class1 component and file to something more appropriate;
we use SyncNotifyand Ch4aNotify.cls in the example. We set the project name as Ch4aCond; note that
you should use the default Thread Pool threading model.

4.4.3 Support IPDClientNotify

The HotSync manager expects COM conduits to support the IPDClientNotify public interface. It calls this
interface to get information about your conduit, to allow the user to change settings for your conduit, and to
synchronize your Palm application with its desktop data.

IPDClientNotify has four member routines that must be supported; these are summarized in Table 4-5.

Table 4-5. IPDNotifyClient public interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interface method Functionality

GetConduitInfo Return conduit name, version, and default synchronization type to HotSync manager

CfgConduit Allow user customization of sync type and return new settings to HotSync manager

ConfigureConduit Same as CfgConduit, but called by earlier versions of HotSync manager

BeginProcess Perform synchronization

To support a COM interface in VB, use the Implements keyword. We put this right at the top of our class
module:

Implements IPDClientNotify

Any conduits registered with the HotSync manager as ActiveX or COM clients that do not respond to these
calls are dropped from the list of active conduits. This happens if you don't implement some part of the
interface, or if you throw a runtime error during processing.

You should review the VB documentation if you have never implemented multiple COM interfaces in your
class objects before.

4.4.4 GetConduitInfo

When the HotSync manager is initialized, it looks at all the conduits that have been installed on the
desktop. The HotSync manager calls the function GetConduitInfo for all registered conduits several times,
each time requesting different information. Table 4-6 details the parameters to GetConduitInfo.

Table 4-6. Parameters to GetConduitInfo

Parameter Direction/Type Purpose

InfoType [IN] EgetConduitInfo Type of HotSync request

CreatorId [IN] Long Creator ID of current application

UserId [IN] Long Numeric ID of current user

UserName [IN] String String ID of current user

The HotSync manager passes the Creator ID of the application your conduit is registered to handle. This is
not redundant, as nothing prevents the registration of your conduit for more than one application.

The HotSync manager also passes the identity of the current desktop user in UserId and UserName. Again,
your application might be required to support more than one user. Note that the username is not the
Windows login name; instead, it is whatever name the Palm device user chose when installing the
HotSync software.

The HotSync manager passes a request for information in the infoType parameter. The request is one of
the constants in the public enumeration EGetConduitInfo; GetConduitInfo returns a variant appropriate to
the type of request made by the HotSync manager, as shown in Table 4-7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 4-7. Return data types for GetConduitInfo

Request type Function return value

EgetConduitName String

EgetConduitVersion Double

EgetDefaultAction Value from enumeration ESyncType

EgetMfcVersion Value from enumeration EMfcVersion

We have coded GetConduitInfo using a simple Select Case ... End Case statement, with a case for
each possible request type. The code for GetConduitInfo is shown in Example 4-2.

Example 4-2. Listing for SyncNotify.GetConduitInfo

Private Function _

IPDClientNotify_GetConduitInfo(ByVal infoType As EGetConduitInfo, _

 ByVal dwCreatorId As Long, _

 ByVal dwUserId As Long, _

 ByVal bstrUserName As String) As Variant

 Select Case infoType

 Case eGetConduitName

 IPDClientNotify_GetConduitInfo = "Ch4a Conduit"

 Case eGetConduitVersion

 IPDClientNotify_GetConduitInfo = 3#

 Case eGetDefaultAction

 IPDClientNotify_GetConduitInfo = ESyncTypes.eFast

 Case eGetMfcVersion

 IPDClientNotify_GetConduitInfo = EMfcVersion.ePDMFC_NOT_USED

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Select

End Function

The conduit name is displayed when the user selects the Custom option from the HotSync icon in the
system tray, so this should be a string that is meaningful to your users. Palm does not document how the
HotSync manager uses your conduit version, so it appears that a conduit can supply any double value.

The HotSync manager uses your conduit's default action when synchronizing, unless the user sets a new
default type (see the following section). As with most conduits, we specify fast synchronization as the
default:

Case eGetDefaultAction

 IPDClientNotify_GetConduitInfo = PDDirectlib.eFast

The HotSync manager supports multiple conduit architectures, among them conduits implemented using
the Microsoft Foundation Class framework. ActiveX conduits should return ePDMFC_NOT_USED when asked
for the MFC version, to avoid confusing the HotSync manager.

4.4.5 CfgConduit

When the user needs to change your conduit's behavior, the HotSync manager calls the interface function
CfgConduit. This call is always in response to user interaction with a dialog similar to that shown in Figure
4-2. Table 4-8 details the parameters to CfgConduit.

Table 4-8. Parameters to CfgConduit

Parameter Type/direction Purpose

CreatorId [IN] Long Creator ID of current application

UserId [IN] Long Numeric ID of current user

UserId [IN] String String ID of current user

PathName [IN] String User folder in HotSync directory

SyncPerm [IN/OUT] EsyncTypes See text

SyncTemp [IN/OUT] EsyncTypes See text

SyncNew [IN/OUT] EsyncTypes See text

SyncPref [OUT] ESyncPref Tell HotSync manager that changes are permanent or temporary

Just like GetConduitInfo, the HotSync manager passes CfgConduit the application's Creator ID and the
identity of the current desktop user. In addition, the HotSync manager passes the location of a folder on
the desktop for this user. The folder location is usually relative to the HotSync manager; with our

http://lib.ommolketab.ir
http://lib.ommolketab.ir

configuration, this looks something like:

C:\CDK401\Common\Bin\C4.01\HolmesM

Here's what the Palm Windows Conduit Reference says about the three sync-type parameters:

SyncNew

The type of synchronization to perform for a new device
SyncTemp

The type of synchronization to perform on a onetime (temporary) basis
SyncPerm

The type of synchronization to perform on an ongoing (permanent) basis

The implication is that you set these variables to tell the HotSync manager how to run your conduit under
different circumstances. Unfortunately, reading and setting these variables from a COM conduit does not
work exactly as documented.

On entry, you will find that all the variables have the same value, usually the default
synchronization type for your conduit. On exit, you must set all three variables to
the same value.

The HotSync manager uses the SyncPref variable to determine if the synchronization choice is to be
made permanent, or if it is for the next synchronization session only. Set this value to either
ePermanentPreference or eTemporaryPreference as appropriate.

Let's look at our implementation of this interface function; it is really quite simple. Example 4-3 shows the
code for CfgConduit.

Example 4-3. Listing for SyncNotify.CfgConduit

Private Sub IPDClientNotify_CfgConduit(ByVal nCreatorId As Long, _

 ByVal nUserId As Long, _

 ByVal bstrUserName As String, _

 ByVal bstrPathName As String, _

 ByVal nSyncPerm As ESyncTypes, _

 ByRef nSyncTemp As ESyncTypes, _

 ByRef nSyncNew As ESyncTypes, _

 ByRef nSyncPref As ESyncPref)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Set up the form: type of sync to perform, user directory

 SyncForm.SetFields nSyncNew

 ' Let the user make choices, then retrieve them from the form. The

 ' form must be modal, this is required by COM.

 SyncForm.Show vbModal

 SyncForm.GetFields nSyncNew, nSyncTemp, nSyncPerm, nSyncPref

End Sub

The project includes a form called SyncForm, through which the user makes changes. The first thing we do
is to call SetFields, a public function in the form module. It sets private form variables that are used in the
Load event to initialize the controls. Without it, we'd have to interact with the form elements directly. This is
risky because accessing a form element usually causes the form to be shown before you are ready.

Next, we show the form and let the user interact with the dialog. Note that the form must be shown
modally: a COM object cannot display a non-modal form without a lot of extra steps. The form will fail to
load if you do not supply the VBModal parameter:

SyncForm.Show vbModal

4.4.6 SyncForm

Since this is a mirror-image conduit, our custom user interface is designed to look just like the Palm native
applications.

The form is simple, consisting of a group of radio buttons for the sync types, a checkbox for making the
selected sync preference the default, and OK and Cancel buttons. We added an image control, to depict
graphically what each type of synchronization does. The control's bitmap is taken from a screen shot of the
Palm Address conduit.

The form user interface was shown earlier, in Figure 4-2. In our example, the form name is SyncForm, and
it is saved as Ch4aForm.frm.

Your conduit might not need to support all these synchronization types, so feel free to remove choices. For
example, we have disabled the PCtoHH option in our sample conduit (see Figure 4-2). But you should
always include an option for your conduit to do nothing. We guarantee that this option will be used more
often than you think!

And if your conduit has special requirements or extra configuration options, this is the place to expose
them.

Here is the implementation of SetFields, which was discussed earlier:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Sub SetFields(ByVal nSyncPerm As Long)

 m_nSyncType = nSyncPerm

End Sub

The code for the form Load event is shown in Example 4-4. Load assumes that the private form variables
have already been set to appropriate values-so be sure to call SetFields before loading the form. In Load,
we set the radio buttons and checkbox to the states indicated by the public form variable values.

Example 4-4. Listing for SyncForm.Load

Private Sub Form_Load()

 ' Set the radio buttons based on the HotSync information

 optSync.Value = False

 optHHToPC.Value = False

 optPCToHH.Value = False

 optDoNothing.Value = False

 Select Case m_nSyncType

 Case eHHtoPC

 optHHToPC.Value = True

 Case ePCtoHH

 optPCToHH.Value = True

 Case eDoNothing

 optDoNothing.Value = True

 Case Else

 optSync.Value = True

 End Select

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Set the preference check box - default to temporary by convention

 m_nSyncPref = eTemporaryPreference

 chkDefault.Value = Unchecked

 ' Assume the user will cancel

 m_bCancel = True

End Sub

The only remarkable thing about Load is that it assumes any user changes will be temporary, unless
explicitly made permanent. This is the conventional behavior for the Palm native conduits, and it is a good
idea for your user interface to follow suit:

m_nSyncPref = eTemporaryPreference

chkDefault.Value = Unchecked

The user can exit the form a variety of ways. For this reason, the values in the form controls are only
transferred to the form variables in the OK button's Click event (see Example 4-5). At this time, the
cancellation flag is set to false, the form is unloaded, and control returns to CfgConduit.

Example 4-5. Listing for SyncForm.btn_OK.Click

Private Sub btnOk_Click()

 ' Transfer form variables to

 If optSync.Value Then

 m_nSyncType = ESyncTypes.eFast

 ElseIf optPCToHH.Value Then

 m_nSyncType = ESyncTypes.ePCtoHH

 ElseIf optHHToPC.Value Then

 m_nSyncType = ESyncTypes.eHHtoPC

 ElseIf optDoNothing.Value Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 m_nSyncType = ESyncTypes.eDoNothing

 End If

 If chkDefault.Value = Checked Then m_nSyncPref = ePermanentPreference

 ' Flag used in GetFields() to see if the variables are valid

 m_bCancel = False

 Unload Me

End Sub

If the user exits the form, either by pushing the Cancel button directly or pressing the ESC key, control is
transferred to the Cancel button's Click event. We don't show that routine here, but in it, the cancellation
flag is set to true, the form is unloaded, and control is returned to CfgConduit.

At this point, the user has dismissed the form. Now we retrieve the new variable settings using the
GetFields routine (which is smart enough not to overwrite any values if the user canceled rather than
applied the changes). The code for GetFields is shown in Example 4-6.

Example 4-6. Listing for SyncForm.GetFields

Public Sub GetFields(ByRef nSyncNew As Long, _

 ByRef nSyncTemp As Long, _

 ByRef nSyncPerm As Long, _

 ByRef nSyncPref As Long)

 If m_bCancel Then Exit Sub

 ' Retrieve the "default" setting from the check box

 nSyncPref = m_nSyncPref

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Retrieve the action setting from the radio buttons

 nSyncNew = m_nSyncType

 nSyncTemp = m_nSyncType

 nSyncPerm = m_nSyncType

End Sub

If the user has canceled, then none of the form variables are transferred in GetFields. And note that all
three sync-type parameters are set to the same user-configured value, despite the Conduit Reference
documentation, for the reasons discussed earlier.

4.4.7 ConfigureConduit

This interface function is used by versions of the HotSync manager prior to release 3.0.1. For later
releases of the HotSync manager, this function is only called if your conduit doesn't implement the
CfgConduit interface. Table 4-9 lists the parameters for SyncNotify.ConfigureConduit.

Table 4-9. Parameters for SyncNotify.ConfigureConduit

Parameter Type/direction Purpose

PathName [IN] String User folder in HotSync directory

Registry [IN] String Numeric ID of current user

SyncPref [IN/OUT] EsyncPref Tell HotSync manager that changes are permanent or temporary

SyncType [IN/OUT] EsyncTypes The kind of synchronization to perform

The code for ConfigureConduit simply returns default values for the two output parameters:

Private Sub IPDClientNotify_ConfigureConduit(ByVal bstrPathName As String, _

 ByVal bstrRegistry As String, _

 ByRef nSyncPref As ESyncPref, _

 ByRef nSyncType As ESyncTypes)

 nSyncType = PDdirectlib.eFast

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 nSyncPref = PDdirectlib.ePermanentPreference

End Sub

4.4.8 BeginProcess

The HotSync manager calls the interface function BeginProcess when an actual synchronization should
occur. At this point, you can assume that the Palm device is in the cradle and the user has pressed the
HotSync button.

Our implementation of BeginProcess is intentionally minimal; we delegate all the real work of
synchronization to a private class. The code for BeginProcess is shown in Example 4-7.

Example 4-7. Listing for SyncNotify.BeginProcess

Private Function IPDClientNotify_BeginProcess() As Boolean

 ' Create our sync object and do the work

 Dim Worker As New SyncLogic

 Worker.Synchronize

 ' Return false to signal completion!

 IPDClientNotify_BeginProcess = False

End Function

BeginProcess should return False when it has completed. That signals the HotSync manager that it can
skip to the next conduit. Returning False doesn't indicate that your conduit was successful; instead, it
means that it is finished executing. Later, we will see how to return status information to the user in the
HotSync log.

The real work of synchronization occurs in these lines:

Dim Worker As New SyncLogic

Worker.Synchronize

Right away, you should notice that the Worker.Synchronize method doesn't take any arguments. It gets all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the information it needs to synchronize from publicly creatable COM objects supplied by the Sync Suite
API.

We have finished implementing the IPDClientNotify interface, including the user interface required to
support configuring the conduit. The conduit is complete from the perspective of the HotSync manager: the
conduit can identify itself and its properties, it can be configured, and it responds to synchronization
requests.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5 Synchronization Logic

The SyncLogic object created in the BeginProcess routine encapsulates all of our synchronization logic. In our
example, the class instancing property is set to Private, and the class file is saved as Ch4aLogic.cls . By
partitioning a conduit in this fashion, between the public interface and the internal synchronization logic, we
ensure that the interface code can be reused in other conduits.

Let's look at the Synchronize method, which is called to handle all of the synchronization requests made of this
conduit. The code for Synchronize is shown in Example 4-8 .

Example 4-8. Listing for SyncLogic.Synchronize

Public Sub Synchronize()

 ' Get the HotSync information object for this conduit

 Dim pdSys As New PDSystemAdapter

 Dim pdHSInfo As PDHotsyncInfo

 Set pdHSInfo = pdSys.PDHotsyncInfo

 ' Route the requested synchronization to the local handler

 Select Case pdHSInfo.SyncType

 Case eFast

 FastSync pdSys, pdHSInfo

 Case eSlow

 SlowSync pdSys, pdHSInfo

 Case eHHtoPC

 HHtoPC pdSys, pdHSInfo

 Case Else

 LogSync pdSys, pdHSInfo.SyncType

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Select

End Sub

The first thing the method does is to declare and initialize a Palm Sync Suite COM object:

Dim pdSys As New PDSystemAdapter

The PDSystemAdapter class represents the Palm device. This powerful class provides access to most features
of the device (except databases, which are handled by a separate class). The PDSystemAdapter class has the
methods and properties shown in Table 4-10 .

Table 4-10. Properties and methods of PDSystemAdapter

Property or method name Description

AddLogEntry Makes a local or device HotSync log entry

CallRemoteModule Runs a program on the device

DateTime Retrieves the date/time on the device

HHOsVersion Retrieves the device operating system version

LocalizationID Retrieves the device localization setting

PDHotSyncInfo Object representing current HotSync

PDMemoryCardInfo Object representing device memory

PDUserInfo Object representing current user

ProductId Retrieves the device product ID

ReadAppPreference Retrieves a device application setting

ReadFeature Retrieves device feature memory

RebootSystem Performs a device soft-reset

RomSoftwareVersion Retrieves the device ROM version

SyncManagerAPIVersion Retrieves HotSync API Version

WriteAppPreference Stores an application setting on device

The PDSystemAdapter and its subobjects exist only when synchronization is actually occurring. You cannot
create this object, or its subobjects, outside the scope of BeginProcess . Our example conduit uses only a
fraction of PDSystemAdapter 's features; you can explore the CDK samples to see how to use the other features.

If you look at the Sync Suite class hierarchy shown earlier in Figure 4-5 , you see that one of the subobjects of
the system adapter is PDHSInfo . This object represents the current HotSync session. From it, we can get the
synchronization type that the HotSync manager wants our conduit to run:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim pdHSInfo As PDHotsyncInfo

Set pdHSInfo = pdSys.PDHotsyncInfo

Note that the PDHSInfo class is not a publicly creatable object. You must use the system adapter to get one, as
shown. The PDHSInfo class has the methods and properties shown in Table 4-11 .

Table 4-11. Properties and methods of PDHSInfo

Property or method name Description

CardNum Memory card on device for this application

ConnectionType Indicator of local, modem, or network connection

Creator Application Creator ID for this conduit

DbType Database type for this conduit

FirstSync Indicator of first synchronization for device or desktop

LocalName Application name on device

NameList Database(s) for this Creator ID on device

PathName Path for user area in HotSync directory

RegistryKey Registry key for this conduit

RegistryPath Registry path for this conduit

RemoteNameCount Number of databases for this Creator ID on device

SyncType Type of synchronization to perform

UserName Username on device for this conduit

As with PDSystemAdapter , we use only a couple of features from the PDHSInfo object. While our sample conduit
only has one database, the HotSync manager provides your conduit with a list of all remote databases that
belong to your application. (Even though a conduit might be responsible for synchronizing more than one
database, it can only have one open at a time. This complicates the design if the conduit needs to enforce
relationships between the databases (tables)).

We use the SyncType object property to route program flow to the function that handles the requested
synchronization type, supplying the newly created COM objects as reference parameters:

Select Case pdHSInfo.SyncType

 Case eFast

 FastSync pdSys, pdHSInfo

 Case eSlow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SlowSync pdSys, pdHSInfo

 Case eHHtoPC

 HHtoPC pdSys, pdHSInfo

 Case ePCtoHH

 PCtoHH pdSys, pdHSInfo

Because this conduit only supports Fast , Slow , HHtoPC and PCtoHH synchronization, we direct all other
synchronization types to a function that simply logs the request:

 Case Else

 LogSync pdSys, pdHSInfo.SyncType

End Select

We won't spend any time looking at the code for LogSync ; it consists of a large select statement that builds a
string identifying the conduit and synchronization type, and then uses the pdSystemAdapater.AddLogEntry
method to write the entry to the HotSync log:

pdSys.AddLogEntry "Ch4a - " + strType, eText, False, False

Calling AddLogEntry with an option other than eText , such as eWarning , causes the HotSync manager to alert
the user after all conduits have finished executing, as shown in Figure 4-8 . See the enumeration type
ElogActivitity for the supported log types.

Figure 4-8. HotSync warning dialog

The AddLogEntry method supports writing to either the desktop or the device HotSync log. Set the optional
fourth parameter to True to write to the device. Take care when writing to the device log to keep the amount of
information to a minimum.

That wraps up the high-level presentation of the Synchronize object: we've seen how it is created, how it routes
HotSync commands to the correct internal functions, and how it logs information to the HotSync log. Next, we
are going to look at the low-level synchronization functions HHtoPC and FastSync .

4.5.1 HHtoPC

In our simple conduit, the HHtoPC routine is called only at the user's request. The purpose of this routine
couldn't be simpler: it deletes all records from the desktop and then copies any records from the Palm device.
The code for HHtoPC is shown in Example 4-9 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-9. Listing for SyncLogic.HHtoPC

Private Sub HHtoPC(ByRef pdSys As PDSystemAdapter, _

 ByRef pdHSInfo As PDHotsyncInfo)

 ' Data is under user's directory in HotSync area.

 Dim DBPath As String

 DBPath = pdHSInfo.PathName + "Ch4a"

 ' Purge the PC data - force a new directory if necessary.

 Dim FSO As New FileSystemObject

 On Error Resume Next

 FSO.DeleteFile DBPath + "*.*", True

 FSO.CreateFolder DBPath

 On Error GoTo 0

 ' Get the Palm database from the HotSync manager

 Dim DBName As String

 DBName = pdHSInfo.NameList(0)

 Dim pdQuery As New PDDatabaseQuery

 Dim pdRecords As PDRecordAdapter

 Set pdRecords = pdQuery.OpenRecordDatabase(DBName, "PDDirect.PDRecordAdapter")

 ' Open the handheld database, and iterate over the records

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim Index As Long

 Dim RecordId As Variant

 Dim Category As Long

 Dim Attributes As ERecordAttributes

 Dim Data As Variant

 pdRecords.IterationIndex = 0

 Data = pdRecords.ReadNext(Index, RecordId, Category, Attributes)

 Do While Not pdRecords.EOF

 ' In a HHtoPC sync, process all but deleted records

 If Not CBool(CByte(Attributes) And CByte(eDelete)) Then

 WriteRecContents DBPath, RecordId, Data

 End If

 ' Read the next record and skip to the top of the loop

 Data = pdRecords.ReadNext(Index, RecordId, Category, Attributes)

 Loop

 ' Remove any deleted records, clear flags in Palm database

 pdRecords.RemoveSet eRemoveAllDeletedRecords

 pdRecords.ResetAllModifiedFlags

 LogSync pdSys, pdHSInfo.SyncType

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

Let's examine the HHtoPC routine a little bit at a time. First, the routine locates the desktop data store, which is
located under the user's Palm desktop directory. It is customary for Palm conduits to keep their information in
this directory. The directory is available as the PathName method of the PDHSInfo object; the routine tacks on a
folder name to create a subdirectory.

Dim DBPath As String

DBPath = pdHSInfo.PathName + "Ch4a"

The routine then deletes any files in that folder. Wrapping the delete operation in an error handler is necessary,
because the FileSystemObject throws an error if the folder doesn't exist or if it is empty.

Dim FSO As New FileSystemObject

On Error Resume Next

FSO.DeleteFile DBPath + "*.*", True

FSO.CreateFolder DBPath

Next, HHtoPC creates an instance of the Sync Suite PDDatabaseQuery class:

Dim pdQuery As New PDDatabaseQuery

This class provides programmatic access to the Palm database manager on the device. Remember, instances
of this class are only available when the user is synchronizing the device, not during conduit configuration. This
class has methods and properties, as shown in Table 4-12 , that allow us to manage Palm databases.

Table 4-12. Properties and methods of PDDatabaseQuery

Property or method name Description

AddLogEntry Makes an entry in either the desktop or device HotSync log.

CreateRecordDatabase Creates a data type database. Records are unstructured.

CreateResourceDatabase
Creates a resource-type database. Each record has a structure, such as an icon
or form.

MaxAllowedRecordSize Retrieves maximum supported record size on the device.

OpenRecordDatabase Opens an existing data type database.

OpenResourceDatabase Opens an existing resource-type database.

RamDbCount Retrieves number of databases in device RAM.

ReadDbInfoByCreatorType Retrieves statistics and settings for a database.

ReadDbInfoByName Retrieves statistics and settings for a database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property or method name Description

ReadDbNameList Retrieves list of databases in RAM or ROM.

RemoveDatabase Deletes a RAM or ROM database.

RomDbCount Retrieves number of databases in device ROM.

Again, look at the class hierarchy shown earlier in Figure 4-5 . PDDatabaseQuery is a publicly created object.
Our main interest in this class is its ability to return objects representing actual databases on the Palm device.
We get the name of our database from the PDHSInfo object:

' Get the Palm database from the HotSync manager

Dim DBName As String

DBName = pdHSInfo.NameList(0)

Note that NameList is an array. If your application has more than one database on the Palm PDA, each is listed
in the array. The total number of databases is available in the RemoteNameCount property.

The Sync Suite API provides the PDRecordAdapter to access the contents of any one database on the Palm
device. This object is created in an unusual way, by passing the programmatic identifier of a class factory into
the database query object.

The class factory is responsible for producing an object that satisfies all the interface requirements for an
instance of PDRecordAdapter . The CDK provides this unusual construction technique so developers can
subclass the record adapter, and supply extra capabilities tailored for a specific application. In our conduit, we
use the default record adapter supplied by Palm:

Dim pdRecords As PDRecordAdapter

Set pdRecords = pdQuery.OpenRecordDatabase(DBName, "PDDirect.PDRecordAdapter")

Table 4-13 shows the many methods and properties of PDRecordAdapter . This large class is heavily used in our
sample conduit. In the table, two sets of functions have been grouped together: direct record access, denoted in
the table by ReadBy *, and iterator access, denoted in the table by ReadNext* . The direct access functions
allow the retrieval of a single record, either by index or record identifier. The iterator access functions allow the
sequential retrieval of many records, either by index or by category or other attribute.

Table 4-13. Properties and methods of PDRecordAdapter

Property or method name Description

AccessMode Retrieves mode(s) used to open database

AddLogEntry Makes an entry in either the desktop or device HotSync log

ChangeCategory Changes the Category ID for a group of records

CloseOptions Sets modification date/time on database prior to close

DbName Retrieves the database name

ReadDbNameList Retrieves list of databases in RAM or ROM.

RemoveDatabase Deletes a RAM or ROM database.

RomDbCount Retrieves number of databases in device ROM.

Again, look at the class hierarchy shown earlier in Figure 4-5 . PDDatabaseQuery is a publicly created object.
Our main interest in this class is its ability to return objects representing actual databases on the Palm device.
We get the name of our database from the PDHSInfo object:

' Get the Palm database from the HotSync manager

Dim DBName As String

DBName = pdHSInfo.NameList(0)

Note that NameList is an array. If your application has more than one database on the Palm PDA, each is listed
in the array. The total number of databases is available in the RemoteNameCount property.

The Sync Suite API provides the PDRecordAdapter to access the contents of any one database on the Palm
device. This object is created in an unusual way, by passing the programmatic identifier of a class factory into
the database query object.

The class factory is responsible for producing an object that satisfies all the interface requirements for an
instance of PDRecordAdapter . The CDK provides this unusual construction technique so developers can
subclass the record adapter, and supply extra capabilities tailored for a specific application. In our conduit, we
use the default record adapter supplied by Palm:

Dim pdRecords As PDRecordAdapter

Set pdRecords = pdQuery.OpenRecordDatabase(DBName, "PDDirect.PDRecordAdapter")

Table 4-13 shows the many methods and properties of PDRecordAdapter . This large class is heavily used in our
sample conduit. In the table, two sets of functions have been grouped together: direct record access, denoted in
the table by ReadBy *, and iterator access, denoted in the table by ReadNext* . The direct access functions
allow the retrieval of a single record, either by index or record identifier. The iterator access functions allow the
sequential retrieval of many records, either by index or by category or other attribute.

Table 4-13. Properties and methods of PDRecordAdapter

Property or method name Description

AccessMode Retrieves mode(s) used to open database

AddLogEntry Makes an entry in either the desktop or device HotSync log

ChangeCategory Changes the Category ID for a group of records

CloseOptions Sets modification date/time on database prior to close

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property or method name Description

DbName Retrieves the database name

EOF Indicates end-of-file when using an iterator

InputBufferSize Sets the maximum size for read/write buffers

IterationIndex Sets the start offset in the database for an iterator

PDCategories Represents category data for this database

PDDatabaseInfo Represents database for this record adapter

ReadAppInfoBlock Reads application-specific data, including categories

ReadBy* Gets record information by index or identifier

ReadNext* Gets record information from an iterator

ReadSortInfoBlock Retrieves application-specific data, notionally used for sorting

ReadUniqueIdList Retrieves list of record identifiers in database

RecordCount Retrieves count of records in database

Remove Permanently erases a record from database

RemoveSet Permanently erases a group of records from database

ResetAllModifiedFlags Clears the dirty bit for all records in database

Write Creates or updates a database record and attributes

WriteAppInfoBlock Writes application-specific data, including categories

WriteSortInfoBlock Writes application-specific data, notionally used for sorting

All the iterator functions support a starting index position. In HHtoPC , we use the simple iterator to process all
the records in the database, starting at index zero, and reading both the actual data and other record attributes:

pdRecords.IterationIndex = 0

Data = pdRecords.ReadNext(Index, RecordId, Category, Attributes)

Do While Not pdRecords.EOF

All of the PDRecordAdapter read functions return a VB variant, with the record data actually stored in a byte
array. The read functions also set an attribute byte indicating the status of the current record. If the record is not
marked for deletion, we copy it to the desktop by calling WriteRecContents .

If Not CBool(CByte(Attributes) And CByte(eDelete)) Then

 WriteRecContents DBPath, RecordId, Data

End

If your conduit supports record archival, then you should test for that condition as well, with the eArchive

DbName Retrieves the database name

EOF Indicates end-of-file when using an iterator

InputBufferSize Sets the maximum size for read/write buffers

IterationIndex Sets the start offset in the database for an iterator

PDCategories Represents category data for this database

PDDatabaseInfo Represents database for this record adapter

ReadAppInfoBlock Reads application-specific data, including categories

ReadBy* Gets record information by index or identifier

ReadNext* Gets record information from an iterator

ReadSortInfoBlock Retrieves application-specific data, notionally used for sorting

ReadUniqueIdList Retrieves list of record identifiers in database

RecordCount Retrieves count of records in database

Remove Permanently erases a record from database

RemoveSet Permanently erases a group of records from database

ResetAllModifiedFlags Clears the dirty bit for all records in database

Write Creates or updates a database record and attributes

WriteAppInfoBlock Writes application-specific data, including categories

WriteSortInfoBlock Writes application-specific data, notionally used for sorting

All the iterator functions support a starting index position. In HHtoPC , we use the simple iterator to process all
the records in the database, starting at index zero, and reading both the actual data and other record attributes:

pdRecords.IterationIndex = 0

Data = pdRecords.ReadNext(Index, RecordId, Category, Attributes)

Do While Not pdRecords.EOF

All of the PDRecordAdapter read functions return a VB variant, with the record data actually stored in a byte
array. The read functions also set an attribute byte indicating the status of the current record. If the record is not
marked for deletion, we copy it to the desktop by calling WriteRecContents .

If Not CBool(CByte(Attributes) And CByte(eDelete)) Then

 WriteRecContents DBPath, RecordId, Data

End

If your conduit supports record archival, then you should test for that condition as well, with the eArchive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attribute. After we have processed the record, we read the next record, and skip to the top of the loop:

 Data = pdRecords.ReadNext(Index, RecordId, Category, Attributes)

Loop

Eventually, the read function will cause the record adapter to reach the end-of-file condition and we will exit the
loop after all of the database records have been processed. HHtoPC then purges the Palm database of any
logically deleted records, and clears the modification flag for all dirty records:

pdRecords.RemoveSet eRemoveAllDeletedRecords

pdRecords.ResetAllModifiedFlags

Now let's look at how the WriteRecContents routine stores the Palm device record data to a desktop file. We
aren't going to show all the code in WriteRecContents , but just the highlights. This routine uses a new Sync
Suite object, PDUtility , to transform the Palm Record ID into a string:

Dim pdUtil As New PDUtility

Filename = DBPath + "\" + pdUtil.RecordIdToString(RecordId) + ".REC"

The Palm CDK documentation strongly encourages developers to use this function, rather than dissecting the
variant data type holding a Record ID. This is because the Record ID format, currently a long integer, may
change in the future. The PDUtility class has other methods to convert data between the Palm and desktop
formats. We will see some of these as we pack and unpack string data for our records.

This completes the presentation of the HHtoPC synchronization logic for our simple conduit. Although this
section presented a great deal of information quickly, you should now have an appreciation of how to use the
Sync Suite COM objects to access features and data on the Palm device.

4.5.2 FastSync

The HHtoPC sync didn't require much of a design-just take the Palm records and write them to the desktop,
removing any existing desktop records in the process. Mirror synchronization is much harder.

Before we start into coding the FastSync , let's reexamine what mirror synchronization means for the Ch4a
application. In Table 4-14 , we've recast our table of possibilities to include the desktop file extensions instead
of attribute flags. The code for our conduit has to identify all these possibilities, and then take the action
indicated in the table. Preparing a table or state diagram like this when designing your conduit will prove helpful.

Table 4-14. Ch4a conduit actions

 No record No change .CHG .NEW .DEL

No record D P

No change D P Remove DP

Change P D Conflict P D

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 No record No change .CHG .NEW .DEL

New P D

Delete Remove DP D P

In this simple conduit, the change conflict is handled in a straightforward manner: changes to a record on the
Palm device take precedence over changes to the same desktop record. This is different from the Palm CDK
recommendation of creating two new records, one on each platform that mirrors the changes. Of course, you
will have to decide how to resolve any conflict in a fashion that is appropriate for your application.

Now let's look at FastSync , the low-level function that actually moves the data between the Palm device and
the Windows desktop. It is shown in Example 4-10 .

Example 4-10. Listing for SyncLogic.HHtoPC

Private Sub FastSync(ByRef pdSys As PDSystemAdapter, _

 ByRef pdHSInfo As PDHotsyncInfo)

 Dim Index As Long

 Dim Category As Long

 Dim Data As Variant

 Dim RecordId As Variant

 Dim Attributes As ERecordAttributes

 ' Data is under user's directory in HotSync area.

 Dim DBPath As String

 DBPath = pdHSInfo.PathName + "Ch4a"

 ' Get Palm database name from HotSync manager

 Dim DBName As String

 DBName = pdHSInfo.NameList(0)

New P D

Delete Remove DP D P

In this simple conduit, the change conflict is handled in a straightforward manner: changes to a record on the
Palm device take precedence over changes to the same desktop record. This is different from the Palm CDK
recommendation of creating two new records, one on each platform that mirrors the changes. Of course, you
will have to decide how to resolve any conflict in a fashion that is appropriate for your application.

Now let's look at FastSync , the low-level function that actually moves the data between the Palm device and
the Windows desktop. It is shown in Example 4-10 .

Example 4-10. Listing for SyncLogic.HHtoPC

Private Sub FastSync(ByRef pdSys As PDSystemAdapter, _

 ByRef pdHSInfo As PDHotsyncInfo)

 Dim Index As Long

 Dim Category As Long

 Dim Data As Variant

 Dim RecordId As Variant

 Dim Attributes As ERecordAttributes

 ' Data is under user's directory in HotSync area.

 Dim DBPath As String

 DBPath = pdHSInfo.PathName + "Ch4a"

 ' Get Palm database name from HotSync manager

 Dim DBName As String

 DBName = pdHSInfo.NameList(0)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Open the handheld database, and get the record interface.

 Dim pdQuery As New PDDatabaseQuery

 Dim pdRecords As PDRecordAdapter

 Set pdRecords = pdQuery.OpenRecordDatabase(DBName, "PDDirect.PDRecordAdapter")

 ' Iterate over the *modified* records

 pdRecords.IterationIndex = 0

 Data = pdRecords.ReadNextModified(Index, RecordId, Category, Attributes)

 Do While Not pdRecords.EOF

 Dim strID As String

 Dim pdUtil As New PDUtility

 strID = pdUtil.RecordIdToString(RecordId)

 If CBool(CByte(Attributes) And CByte(eDelete)) Then

 DeletedRec DBPath, strID, Data

 Else

 DirtyRec DBPath, strID, Data

 End If

 ' Get the next record

 Data = pdRecords.ReadNext(Index, RecordId, Category, Attributes)

 Loop

 Dim File As File

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim Folder As Folder

 Dim FSO As New FileSystemObject

 Set Folder = FSO.GetFolder(DBPath)

 For Each File In Folder.Files

 Select Case UCase(FSO.GetExtensionName(File.Name))

 Case "NEW"

 NewFile DBPath, File, pdRecords, pdUtil

 Case "DEL"

 DeletedFile File, pdRecords, pdUtil

 Case "CHG"

 DirtyFile DBPath, File, pdRecords, pdUtil

 End Select

 Next

 pdRecords.RemoveSet eRemoveAllDeletedRecords

 pdRecords.ResetAllModifiedFlags

 LogSync pdSys, pdHSInfo.SyncType

End Sub

We won't go over every line, as we have seen a lot of this code already in HHtoPC . The routine consists of
some setup code, and then two main loops. The first loop pulls changes from the Palm device, and the second
loop writes changes to the Palm device.

One large difference between FastSync and HHtoPC is that with FastSync , we only want to process records
that have changed since the last synchronization. Remember, this is the definition of a FastSync . The
PDRecordAdapter provides the ReadNextModified iterator that is specially designed for this circumstance. Each

http://lib.ommolketab.ir
http://lib.ommolketab.ir

call to this iterator skips through the Palm database, returning only the changed records. As a side effect, the
index variable will be incremented, not by one, but by however many records the iterator skipped over to find
the next changed record.

Data = pdRecords.ReadNextModified(Index, RecordId, Category, Attributes)

In a Palm database, it is possible for a record to be both deleted and dirty at the same time. Actually, it can be
archived as well, but remember that we don't support the Palm archive attribute.

A Palm application usually asks the user if the deleted record should be archived or simply removed from the
database. Deleted records have no data, but they are still present in the physical database; you test for them
using the eDelete attribute.

If CBool(CByte(Attributes) And CByte(eDelete)) Then

 DeletedRec DBPath, strID, Data

Else

 DirtyRec DBPath, strID, Data

End If

Archived records have data in order to support the archive operation; typically, the archived record is also
marked for deletion.

If your application uses the AppForge database library, call the extended delete function
PDBDeleteRecordEx to mark a record as both archived and deleted. You do this by
passing afDeleteModeArchive to the function.

For our conduit, there is no difference between a new record and a changed record; both are dirty relative to the
desktop. Note that the CDK doesn't provide a method to distinguish the two cases (there is no eNew attribute).
You can tell, of course, because a new Palm database record won't have a corresponding desktop file.

At this point, all the changed records from the Palm device are safely written to the desktop folder. As we'll see
later, DirtyRec and DeletedRec take care of any conflicts between desktop and Palm device records. Now
FastSync needs to write any changed data from the desktop to the Palm database.

FastSync loops through the files on the desktop, looking for those with extensions that require some
processing. For each file found, it calls a routine to do the actual work, supplying the file object, the record
adapter, and the utility object as reference parameters:

Select Case UCase(FSO.GetExtensionName(File.Name))

Case "NEW"

 NewFile DBPath, File, pdRecords, pdUtil

Case "DEL"

 DeletedFile File, pdRecords, pdUtil

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Case "CHG"

 DirtyFile DBPath, File, pdRecords, pdUtil

End Select

The last thing the FastSync routine has to do is to clean up deleted records on the Palm device, and clear the
change bit(s). The data is now synchronized, so nothing is dirty! FastSync uses the same calls we saw in
HHtoPC to do this cleanup work.

Now that the top-level structure of FastSync is clear, let's look at the auxiliary functions that move the bits and
bytes. The implementation of DirtyRec is shown in Example 4-11 . To understand its logic, recall that in our
conduit, a change to a Palm record has precedence over a change to the corresponding desktop record.

Example 4-11. Listing for SyncLogic.DirtyRec

Private Sub DirtyRec(ByVal DBPath As String, _

 ByVal strID As String, _

 ByRef Data As Variant)

 Dim Filenum As Integer

 Dim Filename As String

 Dim FSO As New FileSystemObject

 ' Remove any changed or deleted desktop record

 On Error Resume Next

 FSO.DeleteFile DBPath + "\" + strID + ".DEL", True

 FSO.DeleteFile DBPath + "\" + strID + ".CHG", True

 On Error GoTo 0

 ' Write device data to desktop record

 Filenum = FreeFile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Filename = DBPath + "\" + strID + ".REC"

 Open Filename For Output As #Filenum

 Write #Filenum, StrConv(Data, vbUnicode)

 Close #Filenum

End Sub

Because changes to desktop records are stored in files with the extension . DEL or .CHG , DirtyRec simply
removes those files. Then the contents of the Palm record are written into the desktop file. This process
overwrites the old desktop record, if it existed, or creates a new record file with the correct name and extension.

This is in accordance with our design decision that changes to the Palm record have precedence over the
desktop. A conduit that implemented Palm's recommended mirroring strategy would have to reconcile the
contents of the files with the Palm record data.

The implementation of DeletedRec is very similar.

Private Sub DeletedRec(ByVal DBPath As String, _

 ByVal strID As String, _

 ByRef Data As Variant)

 Dim FSO As New FileSystemObject

 On Error Resume Next

 FSO.DeleteFile DBPath + "\" + strID + ".REC", True

 On Error GoTo 0

End Sub

However, note that DeletedRec does not remove the .CHG record, which gets processed later. This is because
a change on the desktop has precedence over deletions on the Palm device. If this seems unclear, look over
Table 4-14 again.

The NewFile function creates a new record in the Palm database when the user has created one on the
desktop:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub NewFile(ByVal DBPath As String, _

 ByRef File As File, _

 ByRef pdRecords As PDRecordAdapter, _

 ByRef pdUtil As PDUtility)

 Dim Data As Variant

 Dim RecordId As Variant

 GetFileContents File, Data, pdUtil

 ' Create a new Palm device record

 RecordId = vbEmpty

 pdRecords.Write RecordId, 0, 0, Data

 File.Move DBPath + "\" + pdUtil.RecordIdToString(RecordId) + ".REC"

End Sub

Despite its simplicity, there is a lot going on in NewFile . First, the routine calls GetFileContents to read the file
data into a variant byte array for uploading to the Palm database record. We'll see how this is done later.

Next, we create a new record in the Palm database. The PDRecordAdapter class doesn't have an explicit record
creation method; instead, you call its Write function with a special record identifier. Passing a variant set to
vbEmpty does the trick. When the Write function returns, it has replaced vbEmpty with the new Record ID.

It is not always possible to create a record on the device-for example the storage heap
could be exhausted. We don't handle that error in our simple conduit, but your conduit
should.

The last thing NewFile does is to rename the .NEW desktop file so we don't process it again later. We generate
a filename using the new Record ID and an extension of .REC . The records are now synchronized on the
desktop and the device. If the user later changes this record on the Palm, our conduit will be able to locate the
corresponding desktop file using the Record ID as filename.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now let's look at GetFileContents , shown in Example 4-12 . Reading in the file contents is simple enough; the
routine assumes all the text is a single input field delimited by quotation marks, and reads it into the string
variable sBuf .

Example 4-12. Listing for SyncLogic.GetFileContents

Private Sub GetFileContents(ByRef File As File, _

 ByRef Data As Variant, _

 ByRef pdUtil As PDUtility)

 Dim Filenum As Integer

 Dim sBuf As Variant

 Dim RecordId As Variant

 Dim bArray() As Byte

 Filenum = FreeFile

 Open File.Path For Input As #Filenum

 Input #Filenum, sBuf

 Close #Filenum

 ' Convert to a byte array

 Data = bArray

 ReDim Data(0 To Len(sBuf))

 pdUtil.BSTRToByteArray Data, 0, sBuf

End Sub

Next, we convert the input string, sBuf (which may or may not be Unicode, depending on your operating
system), into a byte array. To do this, declare an empty byte array and assign the reference parameter Data to
it:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim bArray() As Byte

...

Data = bArray

This effectively converts Data , which is a type-less variant, into a byte array. Re-dimension Data to hold the
input string, and use the utility function BSTRToByteArray to pack the string data into the array:

ReDim Data(0 To Len(sBuf))

pdUtil.BSTRToByteArray Data, 0, sBuf

We resort to this trickery because you cannot pass a VB byte array directly into a COM function call. If your
conduit's data is more complicated, you should look at the other conversion functions in PDUtility .

The conduit calls DeletedFile to handle desktop files that the user has marked for deletion. This function is very
straightforward: convert the desktop filename into a Palm Record ID using the StringToRecordId utility function,
and then call the PDRecordAdapter Remove function to erase the database record. Here's the code for
DeletedFile:

Private Sub DeletedFile(ByRef File As File, _

 ByRef pdRecords As PDRecordAdapter, _

 ByRef pdUtil As PDUtility)

 Dim RecordId As Variant

 Dim FSO As New FileSystemObject

 RecordId = pdUtil.StringToRecordId(FSO.GetBaseName(File.Name))

 On Error Resume Next

 pdRecords.Remove RecordId

 File.Delete True

 On Error GoTo 0

End Sub

We wrap the actual Remove call in an error handler, because it raises a runtime error if the requested record

http://lib.ommolketab.ir
http://lib.ommolketab.ir

does not exist. This is an unlikely condition in a well-designed application, but it happens frequently during
development. A simple On Error Resume Next ensures that we handle that possibility.

The conduit calls DirtyFile to handle desktop files that the user has changed. The code for DirtyFile is shown in
Example 4-13 . This routine repackages some functionality we have seen earlier. It calls GetFileContents to
read in the changed desktop data, and builds a Palm Record ID using the StringToRecordId utility function.

Example 4-13. Listing for SyncLogic.DirtyFile

Private Sub DirtyFile(ByVal DBPath As String, _

 ByRef File As File, _

 ByRef pdRecords As PDRecordAdapter, _

 ByRef pdUtil As PDUtility)

 Dim Data As Variant

 Dim RecordId As Variant

 Dim FSO As New FileSystemObject

 GetFileContents File, Data, pdUtil

 ' Find correct Palm device record based on file name

 RecordId = pdUtil.StringToRecordId(FSO.GetBaseName(File.Name))

 On Error Resume Next

 pdRecords.Write RecordId, 0, eDirty, Data

 If Err.Number <> 0 Then

 ' Record deleted on device without warning.

 RecordId = vbEmpty

 pdRecords.Write RecordId, 0, eDirty, Data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

 On Error GoTo 0

 ' Rename from .CHG to .REC

 File.Move DBPath + "\" + pdUtil.RecordIdToString(RecordId) + ".REC"

End Sub

If DirtyFile encounters an error when updating the Palm database, it assumes that the record no longer exists.
In this case, DirtyFile creates a new record by writing the data using a Record ID of vbEmpty . As we mentioned
before, this is an unlikely condition, but you should take great care to make your conduit very robust. Note that
the original Record ID is lost.

As usual, we rename the desktop file to have the .REC extension. Note the use of the eDirty attribute when
writing the record. Assigning this attribute overwrites any other Palm record attributes, including eDelete . When
FastSync cleans up the Palm database by purging deleted records, these dirty records won't be among them.

4.5.3 Other Sync Types

In contrast to fast synchronization, slow synchronization requires looking at all records, not just those that are
marked as dirty or new. In our simple application, we just had to change the PDRecordAdapter iterator
function-for example, ReadNext instead of ReadNextModified . This causes SlowSync to look at every record
in the Palm database, not simply the changed ones.

Particular care must be taken if you expect your users to synchronize their application data with different
desktops or devices. When that happens, it is easy to lose track of data-usually with very bad results for your
users.[5] Design carefully to avoid this.

[5] The slow sync logic given here fails to handle this important case. If the user syncs with his desktop, then does a delete on the handheld, and

then syncs with another desktop, the deleted record on the handheld is gone. Now, if the user syncs with his desktop, the conduit doesn't see the

deleted record on the handheld, and so it shouldn't delete it on the desktop. Whew. You'll need to iterate through the records on the desktop. Any

that aren't on the handheld (and aren't new) have been deleted, and must be deleted from the desktop (unless, of course, they've been modified on

the desktop).

For the sake of completeness, we support the PCtoHH sync type in the sample application. There is nothing
noteworthy in the code that we haven't already covered, so we won't detail it here.

4.5.4 Running the Conduit

At this point, you have seen all the code in the sample conduit. You can compile it as an ActiveX EXE, and
register it with the HotSync manager using the CondCfg.exe tool covered earlier in this chapter (see Figure 4-4
). Instead of the VB IDE, enter the programmatic identifier of the conduit as the COM client. In the case of our
sample, this is Ch4aCond.SyncNotify .

To debug, stop the HotSync manager, and then run the conduit from the VB IDE. Make sure you have enabled

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the default debug setting: Wait for components to be created . You do this from the VB IDE by choosing the
Properties option from the Project menu, and then selecting the Debugging tab.

Next, set a breakpoint in each of the routines for IPDClientNotify , and then press F5 to run the project. This
generates a new temporary GUID for your public class, but the programmatic id stays the same. Once the
project is running, restart the HotSync manager.

The debugger should launch into the breakpoint in GetConduitInfo first, because the HotSync manager checks
every registered conduit as it initializes. The HotSync manager will call this function several times, once for
each information request type.

You can trigger the other breakpoints by choosing the Custom option for our conduit from the HotSync manager
user interface (in the Windows system tray), or by actually performing a HotSync with the device in the cradle.

Test the conduit by using the Palm application Ch4a.prc to manipulate records on the Palm device, and a text
editor to edit files on the desktop. Then synchronize with the HotSync manager.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6 Data Formats

Until now, our focus has been on how to interface with the HotSync manager, and how to use the Sync
Suite API to synchronize databases and records. It was easy to read and write the actual record data,
because we only supported ASCII strings. A real Palm program is going to have a much more complicated
record structure, with a mixture of string and binary data.

The sample code for this section includes a new AppForge project, Ch4b.vbp., and a new conduit project,
Ch4bCond.vbp. Together, these show how to handle the low-level chores associated with packing and
unpacking record data, converting numbers between the Intel and Motorola formats, and handling
differences between Palm and Windows date formats.

Note that if you use the AppForge database utilities and the Universal Conduit, you don't have to worry
about packing and unpacking records and fields, or converting between Palm PDA and Windows data
types. We covered the database utilities in Chapter 3, and will look at the Universal Conduit in Chapter 5.

4.6.1 Creating Packed Record Data

Our new application creates a database that consists of structured records with four fields: a Date value, a
Time value, a Boolean value, an Integer value, a Long integer, and a String with 20 characters. Figure 4-9
shows the application's user interface on the Palm PDA.

Figure 4-9. Mains screen for sample application Ch4b

First, let's look at how to create a packed record on the Palm. You'll find this code in the form module
Ch4b.frm in the new application.

The AppForge documentation provides the size of each of the built-in data types: four bytes for a Date or
Time field, one byte for a Boolean, two bytes for an Integer, four bytes for a Long, and one byte for each
character in a string variable.

When the user presses the WriteDB button in the application, we use PDBCreateRecord to allocate a
record large enough to hold the six fields.

Dim Count As Long

Count = 4 + 4 + 1 + 2 + 4 + 20

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PDBCreateRecord hPdb, Count

We pack the fields into our record in this order: Date, Time, Boolean, Integer, Long, and then String.
Knowing the layout of the fields-their type, order and size-is critical when unpacking the data. AppForge
lists the sizes of the basic data types in their documentation. As under Windows, both Date and Time
values are stored in the Date data type.

The PDBWriteFieldByOffset stores the binary representation of a value into the record. Here's how to write
a single Long integer field into the Palm record:

Dim lVar As Long

lVar = CLng(AFTextLong.Text)

PDBWriteFieldByOffset hPdb, 5, lVar

Note that this function requires that the field offset into the record be specified. In this example, we are
writing a Long value at offset 5. The AppForge VB runtime engine already knows that the size of this
variable is 4 bytes, so we don't have to pass that also.

After we have written all six fields, we call PDBUpdateRecord to flush the new record into the Palm
database.

4.6.2 Reading Packed Record Data

Now let's look at how to unpack the field data in the conduit. There are two main issues we address when
unpacking the record data: finding the start and end of fields, and converting formats between the Palm
device and Windows. You'll find the code for this section in Ch4bLogic.cls-note the 'b'-in the new
conduit. This conduit is structured just like the first one.

Locating the field data is just the reverse of how the record was created. First we get the record bytes into
the variant array Data, using one of the PDRecordAdapter Read iterator functions. Because the array data
is a byte-wise copy of the Palm record, the offsets used for writing are identical to those used for reading.

If the data is byte- or character-oriented, such as String or Boolean data, simply copy the needed bytes
from the array:

Dim b As Boolean

b = Data(8)

For String data, you need to know the size ahead of time. In this example, we read from offset 15 until the
end of the record data:

Dim s As String

pdUtil.ByteArrayToBSTR Data, 15, UBound(Data) - LBound(Data) + 1 - 15, s

It is probably overkill to use the UBound and LBound functions here. These are two of the rare VB
functions that index from zero, not one, which is why there is an extra +1 in the ByteArrayToBSTR function
call.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Numeric data, such as Integer or Long values, must be converted from Motorola to Intel byte ordering.
The PDUtility object has methods that explicitly do this: SwapWORD and SwapDWORD take 16-bit and
32-bit quantities and reverse the high and low bytes as appropriate.

There is another issue when converting numbers: the data in the array is byte-oriented, while we want
whole Integer or Long values. Here's how we convert both at once in the sample conduit:

Dim i As Integer

pdUtil.ByteArrayToWORD Data, 9, True, i

The ByteArrayToWORD function locates the two bytes at offset 9 in the data array and converts them to
an Integer quantity, and it swaps the byte ordering as well. We request the swapping by passing True as
the third parameter; if you don't want the implicit conversion, pass False instead. To convert a 32-bit
quantity, use the ByteArrayToDWORD function.

4.6.3 Converting Dates and Times

Dates and times are the hardest values to convert, because they are a blend of application code and
operating system convention. Dates and times on the Palm are represented in the Palm operating system
as seconds since January 1, 1904. How these values are stored in database files, however, varies wildly
from application to application.

The Palm native applications, for example, use a packed unsigned 16-bit quantity to represent the date: 7
bits for the year since 1904, 4 bits for the month, and 5 bits for the day. These applications use an
unsigned 16-bit quantity to represent the time: 8 bits for the hour, and 8 bits for the minute. [6]

[6] We don't cover the native Palm date and time formats here. The AppForge knowledge base has an article with a code sample on how to

convert those formats.

Our application stores dates and times exactly as returned by the AppForge VB runtime functions Date
and Time. These values are the Palm operating system values: seconds since January 1, 1904.
Depending on how the value is constructed, a Date value may or may not have the day or time component:

Dim d As Date

d = Date ' No time component

d = Date + Time ' Has time component

Although it's not documented, AppForge Date values are 32-bit quantities.

First we extract the 32-bit date from the packed record data using ByteArrayToDWORD (not shown). Then
we call PalmLongToDate to convert the Long value to a VB Date value. The code for PalmLongToDate is
shown in Example 4-14.

Example 4-14. Listing for PalmLongToDate

Private Function PalmLongToDate(ByVal d As Long) As Date

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim SecsSince1904 As Double

 Dim DaysSince1904 As Double

 Const SecsPerDay As Long = 86400

 Const UnsignedLngMax As Double = 4294967296#

 ' Handle signed/unsigned issues and use a double to prevent overflow.

 If d < 0 Then

 SecsSince1904 = UnsignedLngMax + d

 Else

 SecsSince1904 = d

 End If

 ' Figure out how many days have passed since 1904. Then add to

 ' earliest possible date. Let VB adjust for leap year, etc!

 DaysSince1904 = SecsSince1904 / SecsPerDay

 PalmLongToDate = DateSerial(1904, 1, 1) + CLng(DaysSince1904)

End Function

First we convert the Long argument, which represents seconds since January 1, 1904, into a double. We
also adjust the argument if it is negative. This is necessary because the Palm data type is unsigned, so a
negative number indicates that we have lost a bit! Adding the huge UnsignedLngMax brings it back.[7]

[7] Additionally, this is why we convert to a double internally. The conversion to unsigned 32-bit data would cause a silent overflow and our

dates would be incorrect.

Next, we can calculate how many days have passed since January 1, 1904.

DaysSince1904 = SecsSince1904 / SecsPerDay

http://lib.ommolketab.ir
http://lib.ommolketab.ir

That's the hard part. Finally, we create a VB Date with the initial magic value using the DateSerial function,
and add the correct number of days to it to obtain the converted date:

PalmLongToDate = DateSerial(1904, 1, 1) + CLng(DaysSince1904)

By using VB date arithmetic, we avoid issues such as leap year, which are better handled by the operating
system and runtime libraries.

PalmLongToDate is only accurate if it is given a pure date-one that has no time
component. During normal integer division, the remainder is silently discarded. But
because the calculation to get DaysSince1904 is done in Double arithmetic, this
truncation doesn't occur. This can cause the function to be inaccurate with some
inputs.

Compared to getting the Date, the Time routine is almost trivial. It is shown in Example 4-15.

Example 4-15. Listing for PalmLongToTime

Private Function PalmLongToTime(ByVal T As Long) As Date

 Dim Hours As Integer

 Dim Minutes As Integer

 Dim Seconds As Integer

 ' Strip off any vestigal seconds, handle signed/unsigned issues.

 If T < 0 Then T = T + &H10000

 T = T And &H1FFFF

 ' Calculate hours, minutes and seconds based

 Hours = T \ 3600

 Minutes = (T \ 60) Mod 60

 Seconds = T Mod 60

 PalmLongToTime = TimeSerial(Hours, Minutes, Seconds)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Function

The Time value is stored in the lower 17 bits of the 32-bit quantity. This means that we don't have to worry
about overflow while converting between signed and unsigned formats:

If T < 0 Then T = T + &H10000

T = T And &H1FFFF

We can discard any high-order bits that belong to a Date component, which means that PalmLongToTime
may be safely called with any valid Date.

At this point, the variable T holds the number of seconds since midnight; this is converted to hours,
minutes, and seconds. Adding these together with the VB TimeSerial function gives us the correct time,
which we return as the value of the function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7 Resources

This chapter presented the fundamentals of conduit development using VB. At this point, you should
understand what a conduit is and how it fits into Palm's HotSync architecture. You should be comfortable
with building and running conduits under the Palm HotSync manager, and you should be able to address
the issues encountered when designing a conduit.

There are many resources available from Palm to assist in the conduit development process. The Palm
OS development web site has a page for conduit development at
http://www.palmos.com/dev/tech/conduits. This web page has several resources, including an active
mailing list, the Palm knowledge base, and links to documentation.

There are two sets of official Palm documents for the CDK. One set is based on the COM specification,
and the other is based on the C/C++ language. Like all Palm documentation, the sets come in two parts: a
Reference and a Companion. The companion document explains high-level concepts; the reference
provides a description of every class, method, and property in the CDK. Other documentation on the web
site includes presentations from the PalmSource developer conferences on conduit development.

Palm OS Programming (O'Reilly & Associates, Inc.), now in its second edition, provides a lot of detail and
insight into conduit logic and the inner workings of the HotSync manager. Be aware, however, that the
book is intended primarily for C/C++ developers.

http://www.palmos.com/dev/tech/conduits
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. SQL Databases

In this chapter, we look at several techniques for distributing and manipulating enterprise SQL data on the
Palm handheld device. In keeping with the "Zen of Palm," our aim is to present techniques that provide
timely data for the user, not to burden him or her with the complexities of a desktop application.

Our first example shows how to use the AppForge libraries under Windows to prepare relational data for
use on the road. We build a simple VB desktop application that uses Active Data Objects (ADO) to create
a PDB file from a database query. The database holds thousands of Internet dial-up numbers; the PDB we
create contains only those numbers the user wants.

Our second example shows how to use a powerful tool, the AppForge Universal Conduit, to synchronize
data between a simple application on the Palm and an SQL database. Our application uses a small
database; changes on the Palm device are uploaded to the SQL server, and vice versa. The Universal
Conduit allows synchronization without any VB development-quite an accomplishment, considering that
we devoted all of Chapter 4 to coding custom conduits.[1]

[1] If your application requires a true data replication architecture, you should consider using a tool from a database vendor such as Sybase

or Oracle.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1 SQL Publishing

The Palm device is a very good tool for displaying information to the user, provided that the data display is quick
and pertinent. The mobile user wants a fraction of the SQL database published to his or her Palm device-just the
facts or figures that will be relevant today, not yesterday or next month. This push technology is perfect for the
Palm world, where users are eager to have a relevant subset of data delivered into their hands.

In this section, we build a simple Windows application that migrates read-only data from an enterprise SQL
database to a desktop Palm PDB file. The database stores dial-up access numbers for a global Internet service
provider (ISP) in a simple database, hosted in Microsoft SQL Server. The Windows application uses the AppForge
libraries to write the PDB file. We also build a simple Palm application that reads the PDB file and displays the
data to the user.

This application is ideal for someone who travels frequently to different locations, and needs to have an up-to-date
list of access numbers always available.

5.1.1 Internet Phone Database

Our sample database contains thousands of telephone numbers from more than 50 countries. Table 5-1 shows
example entries for Hungary.

Table 5-1. ISP access numbers for Hungary

Region Number Attributes

Budapest 1-482-9300 (PPP/SLIP/V.90/ISDN)

Budapest 51-301335 (PPP/SLIP/V.90/ISDN)

GSM-direct-nationwide) 20-9000-899 (PPP/SLIP)

Szekesfehervar 22-536-700 (PPP/SLIP/V.90/ISDN)

Szekesfehervar 51-301335 (PPP/SLIP/V.90/ISDN)

The phone database schema is very simple, and is shown in Figure 5-1 . The database is normalized and
supports referential integrity through the use of primary and foreign keys. This stops us from mixing up phone
numbers for Cordoba, Argentina with Cordoba, Spain-that could be a very expensive mistake.

Figure 5-1. ISP database schema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The database has the following tables:

tbNumber

Contains an entry for each of the dial-up access numbers, and other attributes such as country, region and
connection type.

tbRegion

Contains an entry for each region in a country. In the United States, the region data are city and state; for
other countries, the data varies.

tbCountry

Contains an entry for each country supported by the global ISP.

The database is fully scripted in the file ISP.sql , and we have included a physical database backup with the data
in ISPBackup.dat . These files are included with the source code for this chapter on this book's web site. [2]

[2] Our database is implemented with Microsoft SQL Server 7.0, running on Windows 2000 Advanced Server. The create script should be easily

portable to almost any database server, but the physical backup will only work with Microsoft SQL Server.

5.1.2 ISPQuery Program

The ISP database contains thousands of phone numbers. This amount of data is easily managed on the Windows
desktop, but is more of a problem on the Palm. For example, it takes several seconds just to load a combo-box
control with the country names on the Palm.

Instead of loading all the data on the Palm and requiring the user to navigate through it, the ISPQuery desktop
program allows the user to query the database for records of interest. Once the relevant records are identified, a
simple PDB file is generated, and the records are written into it. This PDB file can then be HotSynced onto the
Palm device.

ISPQuery consists of a single form with input fields to limit the query to a single country and, optionally, to a region
or state. The form also contains a large text box for displaying results (see Figure 5-2).

The Get Data button retrieves the record set using the supplied selection criteria, and the Make PDB button creates
the physical PDB file.

Figure 5-2. ISP Query Form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The project file for this example program is ISPQuery.vbp . We start by adding references for several components
to our project. We use the Microsoft ADO library, msado15.dll , to manage interaction with the SQL database, and
the AppForge PDB library, afPDBLib.dll , to create and populate the PDB file.

All the code for this application is in Query.frm . We declare several form-level ADO object variables to manage
our interaction with the SQL database:

Option Explicit

Private ConnObj As ADODB.Connection

Private CmdObj As ADODB.Command

Private RecordObj As ADODB.Recordset

We initialize the connection to the SQL database in the form load event:

Private Sub Form_Load()

 Set ConnObj = New ADODB.Connection

 ConnObj.Open "Provider=sqloledb;Data Source= ..."

End Sub

We have hard-coded the connection string for our Microsoft SQL Server database in the Form_Load routine. You
will have to modify the connection string to a value suitable for your database provider. After entering the desired
country and region parameters, press the Get Data button to trigger the click event handler shown in Example 5-1
.

Example 5-1. Listing for cmdQuery_Click

Private Sub cmdQuery_Click()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim Data As String

 RunQuery

 If RecordObj.RecordCount > 0 Then

 Do While Not RecordObj.EOF

 Data = Data & Trim(RecordObj("R_Name")) & vbTab _

 & Trim(RecordObj("N_PhoneNo")) & vbTab _

 & Trim(RecordObj("N_Attributes")) & vbCrLf

 RecordObj.MoveNext

 Loop

 End If

 txtResults.Text = Data

End Sub

This event first calls RunQuery , which handles most of the work of interfacing to the relational database. The data
rows returned from the query are in an ADO record-set object. This record set is processed in a loop, with each
data row written into a separate line in the txtResults window.

The code for RunQuery is shown in Example 5-2 .

Example 5-2. Listing for RunQuery

Private Sub RunQuery()

 Set CmdObj = New ADODB.Command

 Set CmdObj.ActiveConnection = ConnObj

 CmdObj.CommandText = MakeSQL

 CmdObj.Execute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Set RecordObj = New ADODB.Recordset

 RecordObj.CursorLocation = adUseClient

 RecordObj.CursorType = adOpenStatic

 RecordObj.Open CmdObj

End Sub

First, RunQuery connects a command object to the database server and executes an SQL query. Then it retrieves
the query results and binds them into the form-level ADO record-set object.

Here is the function MakeSQL , which is called from RunQuery to build a SQL statement that reflects the user's
input:

Private Function MakeSQL() As String

 Dim qStr As String

 qStr = "select C.C_Name, R.R_Name, N.N_PhoneNo, N.N_Attributes from tbCountry C,

 tbRegion R, tbNumber N where N.N_Country = C.C_Key and N.N_Region = R.R_Key"

 ' Append the [optional] country

 If txtCountry.Text <> "" Then

 qStr = qStr & " and C.C_Name = '" & Trim(txtCountry.Text) & "'"

 End If

 ' Append the [optional] region. Note the LIKE operator and wildcard

 If txtRegion.Text <> "" Then

 qStr = qStr & " and R.R_Name like '" & Trim(txtRegion.Text) & "%'"

 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MakeSQL = qStr

End Function

The basic SQL query is a three-table join of the country, region, and number tables. If the user has filled in the
form text boxes, the function modifies the SQL statement, building the WHERE clause according to how the user
filled in the form. Handling the country condition is straightforward, but the region is a little trickier:

qStr = qStr & " and R.R_Name like '" & Trim(txtRegion.Text) & "%'"

We use the SQL LIKE operator to force a text search of the region table's name column. We append the wildcard
character % to the query string to force a partial string match from the lefthand side. We do this mainly to simplify
searching within the United States entries. For example, in the US entries, each region corresponds to a state. In
the Belgian entries, however, most regions correspond to a city.

5.1.3 PDB Generation

So far, the code we have presented is vanilla Microsoft VB, using standard techniques to form SQL queries,
retrieve data, and display data. The second half of ISPQuery is a little different: here, we use the AppForge PDB
library under Windows to build Palm databases. These are exactly the same functions we saw in Chapter 3 when
we discussed databases on the Palm device.

Creating the PDB file starts when the user selects the Make PDB button. This triggers the cmdPDB_Click event
handler, which is shown in Example 5-3 .

Example 5-3. Listing of cmdPDB_Click

Private Sub cmdPDB_Click()

 Dim db As Long

 Dim rec As PhoneRecord

 If RecordObj.RecordCount = 0 Then Exit Sub

 db = CreatePDBFile

 RecordObj.MoveFirst

 Do While Not RecordObj.EOF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rec.Region = Trim(RecordObj("R_Name"))

 rec.PhoneNo = Trim(RecordObj("N_PhoneNo"))

 rec.Attributes = Trim(RecordObj("N_Attributes"))

 PDBCreateRecordBySchema db

 PDBWriteRecord db, VarPtr(rec)

 PDBUpdateRecord db

 RecordObj.MoveNext

 Loop

 PDBClose db

End Sub

First, we declare variables for the database reference and a database record. Let's look at the definition of
PhoneRecord , shown in Example 5-4 .

Example 5-4. PhoneRecord data type

Private Type PhoneRecord

 Region As String

 PhoneNo As String

 Attributes As String

End Type

This data type contains all the fields from the ISP database that we want to store on the Palm. The data type forms
the basis for an AppForge schema, which we covered in Chapter 3 .

We ensure that the record set is not empty. If it is, we exit the subroutine, since there's no reason to create an
empty database:

If RecordObj.RecordCount = 0 Then Exit Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next. we call CreatePDBFile to make a PDB file on the Windows filesystem. This function returns a reference to
an open Palm database, which we store in the db variable:

db = CreatePDBFile

We'll see the definition of this function and the AppForge PDB schema later in this section.

Now we process each of the data rows stored in the returned ADO record-set object. First, we populate each field
in the record variable with the corresponding column from the row:

rec.Region = Trim(RecordObj("R_Name"))

rec.PhoneNo = Trim(RecordObj("N_PhoneNo"))

rec.Attributes = Trim(RecordObj("N_Attributes"))

Then we create a new record and write it to the AppForge database manager, which stores it in the PDB file:

PDBCreateRecordBySchema db

PDBWriteRecord db, VarPtr(rec)

PDBUpdateRecord db

Note that we create the new record using the AppForge schema; this makes it simple to write the entire database
record variable in one function call. Don't forget to call PDBUpdateRecord to commit the new record data to the
file. When the loop ends, we call PDBClose to release the database file and to return control to the user.

Let's return to CreatePDBFile , shown in Example 5-5 .

Example 5-5. Listing of CreatePDBFile

Private Function CreatePDBFile() As Long

 Dim db As Long

 Dim schema As String

 On Error Resume Next

 Kill App.Path & "\PhoneDB.pdb"

 db = PDBCreateDatabase(App.Path & "\PhoneDB", Id2Long("DATA"), Id2Long("tISP"))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 schema = "region string, phoneno string, attributes string"

 PDBCreateTable db, "numbers", schema

 CreatePDBFile = db

End Function

First, we remove any existing PDB files using the VB Kill method. The error handler is necessary because VB
throws a runtime error if the file to be removed doesn't exist.

Next, we create the database in the application's working directory, which we obtain from the global VB App.Path
property:

db = PDBCreateDatabase(App.Path & "\PhoneDB", Id2Long("DATA"), Id2Long("tISP"))

You never specify a file extension with PDBCreateDatabase , either on the Palm or under Windows. We use a
Creator ID of tISP , and a database type of DATA . We will need these identifiers later, when we open PhoneDB on
the Palm device.

Finally, we use the AppForge database function PDBCreateTable to create both the PDB file and the schema. Our
schema simply defines the AppForge record format for PhoneDB to have three string fields named region , phoneno
, and attributes:

schema = "region string, phoneno string, attributes string"

PDBCreateTable db, "numbers", schema

Of course, this is exactly the layout of our PhoneRecord data type (see Example 5-4 , shown earlier in this section).
A schema created with PDBCreateTable is permanent; it is stored in the application info block of the database.
This is convenient for us, because it is one less thing to worry about in the Palm application.

The handy Id2Long function, shown in Example 5-6 , is cribbed from an AppForge sample; it converts a four-
character string into a long integer. We've removed all the error checking to make it simpler.

Example 5-6. Listing for Id2Long

Private Function Id2Long(Id As String) As Long

 Dim i As Integer

 Dim value As Long

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 For i = 1 To Len(Id)

 value = value * 256 + Asc(Mid(Id, i, 1))

 Next i

 Id2Long = value

End Function

5.1.4 Palm Display Application

At this point, we have a working Windows application that queries a SQL database and uses the resulting record
set to create and populate a PDB file suitable for installation on a Palm device.

In this section, we build a small AppForge application to read the database and display our Internet access
numbers. Our application-PhoneNo -is shown in Figure 5-3 . The VB project for the application is PhoneNo.vbp ,
and the single form is Phone.frm .

Figure 5-3. Phone number application

The form consists of a list box that displays all the regional entries in the database. The user scrolls through the
list, looking for a nearby number. When an entry is selected in the list, the region, phone, and attributes fields are
populated with the appropriate record details.

The list box is populated when the form is loaded, as shown in Example 5-7 .

Example 5-7. Listing for Phone Form_Load

Private Sub Form_Load()

 Dim rec As PhoneRecord

 db = PDBOpen(ByTypeCreator, "PhoneDB", 0, 0, Id2Long("DATA"), Id2Long("tISP"),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If db = 0 Then MsgBox "Couldn't open PhoneDB database!"

 While Not PDBEOF(db)

 PDBReadRecord db, VarPtr(rec)

 lstRecords.AddItem rec.Region

 PDBMoveNext db

 Wend

End Sub

First, we declare a record variable of type PhoneRecord -the same data type that we used in the Windows
program (see Example 5-4 , earlier in this chapter). This is one of the strengths of the AppForge PDB libraries: the
schema and database operations are completely portable between Windows and the Palm.

After opening the database, we loop through the database, reading records into the rec variable, and appending
the region field to the list box. Note that we do not have to declare the schema for this database, since it was
stored in the AppInfo block of the database when we created the PDB file on Windows. [3]

[3] AppForge documents the record schema, making it possible (but difficult) for non-AppForge applications to use it; they even provide sample code.

See AppForge Knowledge Base articles #010427-0020 and #01028-007.

The only other code in the form is the lstRecords_Click routine, which is triggered when the user taps an entry in
the list box with the stylus:

Private Sub lstRecords_Click()

 Dim rec As PhoneRecord

 PDBGotoIndex db, lstRecords.ListIndex

 PDBReadRecord db, VarPtr(rec)

 txtRegion.Text = rec.Region

 txtPhone.Text = rec.PhoneNo

 txtAttributes.Text = rec.Attributes

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because we added the list elements in the same order as the records in our database, the list index equals the
record's position in the database. We use PDBGotoIndex to skip to the selected item, and then read in the record
data.[4] Finally, we update the text fields with the record data.

[4] If you use the sort capability of the PDB library after you have added records to the list, you will need to store the record's unique identifier in the

ItemData property. This allows unambiguous retrieval even if the database sort order changes.

This completes our first example of getting SQL data onto the Palm device. We could extend the data publishing
model, for example, by using HotSync technology to distribute the new PDB file straight to the Palm device. This
sample could also be combined with an interactive web server that allows customers to build and download
custom content on the fly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2 Universal Conduit

The previous example covered static data, whereas in the following example, data can change on either the Palm
or the SQL database. In Chapter 4 we showed how to build a custom conduit to move data between the Palm and
the desktop. Here, we show how to configure the AppForge Universal Conduit (UC) to synchronize changes
between the PDB files on Palm and a Microsoft SQL server, and how to design around some constraints imposed
by the UC.

The UC works with Microsoft Object Database Connector (ODBC) data sources. It has a wizard-like utility for
selecting SQL data tables to synchronize. The utility takes care of mapping SQL data fields to the appropriate Palm
data types. Like the AppForge Database Converter, which we covered in Chapter 3 , the wizard can produce PDB
files as well as a VB module with record layouts. We'll look at how to configure the UC in detail later in this section.

The UC is only available as a feature of the AppForge Professional edition. You must have
the Professional edition to synchronize SQL data using the techniques we cover in this
section.

Our example program supports a simple sales application, which is loaded onto a Palm device issued to each
member of a sales force. This type of application might be used to sign up customers and take orders. During
synchronization, any new data entered in the field is uploaded to the SQL server. At the same time, new product or
pricing information is downloaded from the SQL server to the Palm device.

5.2.1 Sales Database

The SQL database contains tables of employees, customers, products, and orders. The schema for the Sales
database is shown in Figure 5-4 .

Figure 5-4. Sales database schema

The Sales database has the following tables:

Employees

Contains an entry for each member of the sales team.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Products

Contains each product in the catalog, including description, price, and quantity in stock.
Customers

Contains the customer list for the sales team.
Orders

Contains pending and completed sales. The table is completely normalized, with a foreign key for the
Employees, Customers, and Products tables.

We have provided a database build script and a physical backup file (Sales.sql and SalesBack.dat , respectively)
with the sample code for this chapter. The backup file contains the sample data we use in the examples in this
section.

5.2.2 Palm Sales Application

The Sales application has two main forms: a products form that displays the current product inventory, and an
orders form that records sales orders. The products form is shown in Figure 5-5 .

Figure 5-5. Products form

The Products table is read-only in the application, because the product line is not created in the field. Details for
each product, such as the current price and the amount available in inventory, are displayed when an entry is
selected in the list. This form has a menu with a single choice for switching to the order form, which is shown in
Figure 5-6 .

Figure 5-6. Orders form

The orders form draws its data from the Customers, Products, and Orders tables. Selecting a customer from a drop-
down combo box in the title line populates the central list box of orders. [5] Details and action buttons for an individual
order are displayed at the bottom of the screen-we'll explain what these do later. This form also has a menu with a
single entry that transfers control back to the products form.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[5] Putting controls or other interface gadgets in the title line is common on the Palm, where every pixel counts. This combo box has its top property set to

-1 to exactly fit the title bar on a Palm.

5.2.3 Configuring the UC

Before we look at the code in the Sales application, we need to set up a UC descriptor, which tells the UC how to
synchronize the Palm device with the SQL database. You use the AppForge UC Configuration program to do this.
(Normally, the configuration program is installed only on the development machine. AppForge provides components
that can be used in a set-up program to install the UC settings.) The configuration program has a wizard for new
descriptors, with the following steps:

Naming UC configuration. In this step, you name the configuration and assign a 4-character Creator ID.1.

Select ODBC data source. In this step, you select the ODBC data source that is used with this configuration.2.

Table selection. In this step, you pick the SQL tables to be synchronized.3.

Synchronization type. In this step, you tell the UC how each selected SQL table is to be synchronized (see
Table 5-2 for details).

4.

ID field. The UC needs a field or set of fields that uniquely identify a table row. In a normalized database, this
is the table's primary key.

5.

Support file creation. In this optional step, you can create a VB database module and an empty PDB file.6.

We aren't going to describe all these steps because the AppForge documentation covers them. Instead, we look at
some of the more interesting options.

Initially, we configure a single conduit to synchronize just the Products table. We register the conduit with a Creator
ID of SALE , and select the ID field as the AppForge Table Sync Key . The Sales database on our development
computer has an ODBC data source named Sales, which we use.

5.2.3.1 Synchronization type

The UC supports a slightly different set of synchronization options from those we presented in Chapter 4 . The UC
options are shown in Table 5-2 . The replace and two-way options are the same as the similarly named Palm
standard conduit actions.

Table 5-2. UC synchronization types

Synch type Description

Nothing Conduit is present but doesn't run.

Two-way Full synchronization-the same as the Palm CDK mirror-sync option.

PC appends to Palm New SQL table rows are added to the PDB file.

Palm appends to PC New records on the Palm are inserted in the SQL table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Synch type Description

PC replaces Palm
All records on the Palm are deleted and replaced with the current contents of the SQL
table.

Palm replaces PC All SQL table rows are deleted and are replaced with the current contents of the PDB file.

AppForge has added a new type of synchronization: append . With this option, new records are appended to the
existing data set, and all other records are ignored. This results in efficient transfers of new records, but does not
remove deleted records, nor does it update changed records. Be sure this is the effect you desire before using the
append option.

Even though the Products table is going to be read-only on the Palm, we choose Two-way sync because the price
and inventory can change in the SQL database. Only this synchronization type will result in an update of existing but
changed records in the Palm PDB file.

If a record is changed simultaneously in both the SQL database and the Palm PDB, the
PDB record takes priority, even with two-way synchronization. This is different from the
guidelines in the Palm CDK, but makes sense for relational data. How could one duplicate a
primary key without an integrity constraint violation?

As we saw in Chapter 4 , it is difficult to describe all possible interactions of synchronization type, updates to the
SQL database, and changes to the Palm PDB. You should model the behavior of the UC as you design and
prototype your application to make sure it suits all your needs.

5.2.3.2 PDB and VB module

The configuration wizard has an optional, but useful, step that generates a PDB file and a VB database module for
each configured SQL table. The PDB file is created with an AppForge schema that matches the table column types
from the SQL database. The PDB file is created without any records.

The VB module contains a record type definition that corresponds to the schema in the PDB file (see Example 5-8).
We discuss how the UC maps SQL data types into VB data types later in this chapter.

Example 5-8. tProductRecord definition

Public Type tProductsRecord

 Id As Long

 Name As String

 Description As String

 Price As Single

 Inventory As Long

End Type

PC replaces Palm
All records on the Palm are deleted and replaced with the current contents of the SQL
table.

Palm replaces PC All SQL table rows are deleted and are replaced with the current contents of the PDB file.

AppForge has added a new type of synchronization: append . With this option, new records are appended to the
existing data set, and all other records are ignored. This results in efficient transfers of new records, but does not
remove deleted records, nor does it update changed records. Be sure this is the effect you desire before using the
append option.

Even though the Products table is going to be read-only on the Palm, we choose Two-way sync because the price
and inventory can change in the SQL database. Only this synchronization type will result in an update of existing but
changed records in the Palm PDB file.

If a record is changed simultaneously in both the SQL database and the Palm PDB, the
PDB record takes priority, even with two-way synchronization. This is different from the
guidelines in the Palm CDK, but makes sense for relational data. How could one duplicate a
primary key without an integrity constraint violation?

As we saw in Chapter 4 , it is difficult to describe all possible interactions of synchronization type, updates to the
SQL database, and changes to the Palm PDB. You should model the behavior of the UC as you design and
prototype your application to make sure it suits all your needs.

5.2.3.2 PDB and VB module

The configuration wizard has an optional, but useful, step that generates a PDB file and a VB database module for
each configured SQL table. The PDB file is created with an AppForge schema that matches the table column types
from the SQL database. The PDB file is created without any records.

The VB module contains a record type definition that corresponds to the schema in the PDB file (see Example 5-8).
We discuss how the UC maps SQL data types into VB data types later in this chapter.

Example 5-8. tProductRecord definition

Public Type tProductsRecord

 Id As Long

 Name As String

 Description As String

 Price As Single

 Inventory As Long

End Type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The VB module contains some other code to open and close the database, and to read in records. We chose not to
use that code, preferring to write our own generic database routines instead. This keeps the final application as
small as possible-we don't need the duplicated code for each table in the application.

It is easy for the generated VB record type to get out of sync with the database when the
SQL table definition changes, as often happens during development. This is also true of the
database Creator ID and the type identifiers.

5.2.3.3 HotSync manager

After the UC wizard finishes, a new entry is made in the HotSync manager's list of conduits, and the configuration
settings are stored in the system registry, just as for any other conduit (see Figure 5-7).

Figure 5-7. Product table UC registry settings

In addition, the configuration wizard stores per-table synchronization settings in subkeys in the registry; the subkey
name is the same as the table name. For example, in Figure 5-8 , one subkey is named Products . This subkey
contains settings for UC-specific settings for each table, such as the primary key.

After configuring the conduit, you must perform one more step before synchronization can occur. You must install
an application with a Creator ID of SALE onto the Palm device, and optionally upload a PDB file to the Palm device.
(Instead of uploading a PDB file, you could create one on the Palm the first time the Sales application runs. This
requires that you create the appropriate AppForge schema, however).

The AppForge UC configuration program does not function under the normal HotSync manager user interface. You
must run the program again to reconfigure a universal conduit setting (see Figure 5-8), or to access advanced
settings not available from the wizard. This means that the end user will not usually be able to configure the conduit
herself.

Figure 5-8. Configuration program for Products table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These configuration steps were taken on our development machine. AppForge provides two ways to create or
change these settings in a production environment: the UCmdConfig.exe command-line program or automation
components in the UCConfig.dll COM server. See Section 5.3 at the end of this chapter for articles and sample
programs from AppForge documenting the use of these tools, and instructions on how to install them onto an end
user's computer.

5.2.4 Sales Application: Products

Returning to the Sales application, we have a global VB module-Startup.bas- with a Main function for loading the
product form (see Figure 5-5 , shown earlier):

Sub Main()

 Load Products

 Products.Show

End Sub

The module also contains the record definition for the Products table from Example 5-8 , and the Id2Long routine
from Example 5-6 . (Both examples appeared earlier in this chapter).

The product form consists of a list box for the records; there is one list box entry for each product (see Figure 5-5 ,
which appeared previously in this chapter). The list box is populated during the Form_Load event.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub Form_Load()

 Dim rec As tProductsRecord

 db = PDBOpen(ByTypeCreator, "Products", 0, 0, Id2Long("DATA"), Id2Long("SALE"),

 afModeReadOnly)

 If db = 0 Then MsgBox "Couldn't open Products database!"

 While Not PDBEOF(db)

 PDBReadRecord db, VarPtr(rec)

 lstRecords.AddItem rec.Id & vbTab & rec.Name

 PDBMoveNext db

 Wend

End Sub

We open the Products database using the afModeReadOnly flag; we don't allow the sales force to modify product
data in the field. When the user selects an entry in the list box, code in lstRecords_Click populates the text fields for
price, inventory, and description.

Finally, to switch to the Orders form, the user clicks on the View Orders menu choice.

Private Sub mnuOrders_Click(Index As Integer)

 Me.Hide

 Orders.Show

End Sub

As we pointed out in Chapter 2 , form handling must be carefully managed in VB on the Palm. Hide the current form
first, and then show the next one.

5.2.4.1 Products table synchronization

At this point, we can compile the application and install Sales.prc and Product.pdb onto a Palm device. The next
HotSync operation activates the UC, which connects to the specified data source and downloads the Products table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

data. Opening the Sales application again displays the newly synchronized data.

Two Ways to Simulate A HotSync

It is often necessary to test an application or conduit with more than one type of handheld. Few
developers are lucky enough to have every combination of device and operating system, however.
Here are two ways to test a conduit without any actual device hardware.

First, it is possible to HotSync with the Palm Emulator by using a development computer with two serial
ports. First, connect the two COM ports with a null-modem cable. Then, after configuring the HotSync
manager and the Emulator to use these ports, tap the HotSync button on the Emulator. See Palm KB
articles 1674 and 2069 for more specific details.

However, it's even easier to test with the Palm Emulator using Network HotSync. You need to configure
both the Palm Emulator and the desktop HotSync Manager to use the Local Area Network. See pages
490-491 of Palm OS Programming (O'Reilly & Associates, Inc.) for specifics.

As a simple test of the UC, we sell two laptops by updating our database, using this SQL statement:

update products set inventory=inventory-2 where id = 2

From Figure 5-8 , shown previously in this chapter, you can see that we direct the UC to create a synchronization
log in the file C:\Sales.txt . Our simple update test produces the log file shown in Example 5-9 . Note the boldface
entry for Record ID 2.

Example 5-9. Listing of Sales.txt log file

* Synchronizing: Sales

* Creator: SALE

* Time: 01-09-2001 14:29:52

*

Driver for DSN 'Sales' not mentioned in configuration file.

Using config file 'C:\Program Files\AppForge\Universal Conduit\UCTypes.ini'

----- Begin sync of database Products

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Synchronizing Products

Using synchronization type "Two-way"

Opened host table Products

Opened handheld database Products

Handheld Key Host Key

------------- ---------

[1] [1] => Records match-do nothing

[2] [2] => Overwrote handheld record with PC record

[3] [3] => Records match-do nothing

5.2.5 Design Issues

AppForge developed the UC as a simple tool to manage a common synchronization chore-moving data from the
Palm device to or from an ODBC data source. As the previous example shows, the UC manages this task nicely.

In this section, we extend the Sales application by adding functionality to track, create, change, and delete sales
orders, and to organize the orders by customer. To do this, we need to consider more complicated SQL topics, such
as data integrity, primary key management, foreign key relationships, and replication (synchronization) problems.

5.2.5.1 Minimize on-device data

An order in our Sales application joins three tables: the Employees, Customers, and Products tables. In a
production application, these tables are going to be very large-which makes it prohibitively expensive to store and
access them on the Palm. We decided not to use the Employees table, since all we really need is the ID of the
employee who is using the handheld. We keep the Employee ID as a manifest constant in the source code, but in a
real application, it would be an application preference.

Similar logic can be applied to the Customers and Orders tables. In many sales applications, the customer base can
be divided, either by individual or by territory or some other value. A shortcoming of the UC is that you cannot
access its internal SQL statements to accommodate these criteria, perhaps by adding a WHERE clause. One
workaround is to use SQL views, with the filter based on the user login credentials.(We tested the UC using SQL
views; the view statement had a WHERE clause based on the user login ID. If you take this approach, make sure
your database views can be updated.)

We keep the entire Products table on the Palm device. This is important data to have locally, because in most real-
world applications, prices and inventory are constantly changing.

The method you use to simplify the data sources for your application is up to you. But it is very important to make
good design decisions about which data are truly important. Minimizing the data in the PDB increases the speed of
the application and reduces the time spent synchronizing.

5.2.5.2 Primary key generation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In general, we prefer to use primary key columns with the IDENTITY attribute in our SQL tables. Using the
IDENTITY attribute in Microsoft SQL Server causes the database engine to generate a primary key by incrementing
an internal seed integer. The primary key column is not specified when inserting rows into the database. For
example, to create a new employee, use the following SQL statement:

insert Employees values ('New Employee')

When the UC detects a new record in a PDB file, it generates a SQL statement based on all the fields (columns) in
the schema. The UC generates this statement when it adds a row to the Orders table:

INSERT INTO Orders VALUES (?, ?, ?, ?, { ts '2001-09-05 00:00:00' }, { ts '1904-01-

 01 00:00:00' }, ?)\ 0"

The query looks a little unusual because the UC hasn't bound parameters to the SQL statement values yet, but
there is one entry (the ?) for each table column-including the primary key column.[6]

[6] You can see the SQL statements created by the UC by turning on ODBC tracing. This is done from the Tracing tab of the ODBC Data Source applet in

the Windows Control Panel.

This means that we cannot use identity columns for primary keys. As an alternative, we use an algorithm based on
the employee identifier. Although this works for our simple application, you must design your key routine carefully. It
is difficult to write a function that guarantees a unique number in all circumstances.

It is tempting to try and work around this with an INSERT trigger. That won't work, because
the UC will no longer be able to associate the PDB record with the SQL table row. This is
because the table row has a new primary key that no longer matches the record field on the
Palm.

5.2.5.3 Database foreign key relationships

The Palm database manager does not support or enforce referential integrity between PDB files. An application that
works with SQL data on the Palm device must handle the table relationships by itself. We can't present a general
solution in this section, since that would involve writing a good portion of a relational database manager. But the
PDB library does have sorting functions that speed up record access. We covered these functions in Chapter 3 .

In our Sales application, the Orders table has three foreign keys: the Product ID, the Customer ID, and the
Employee ID. If the user selects a customer, we need to display only the orders for that customer. We use
PDBSetSort to sort the PDB file on the Customer IDcustomer ID field, and PDBFindRecord to seek to the first order
for that particular customer. Now we can read off all the orders sequentially. This is very fast.

One problem with this approach, however, is that a table can only be sorted on one field (or set of fields) at a time,
and resorting the table is very expensive. Later, if we want to access customer orders by date, we must resort the
PDB file. Alternatively, you could have a separate index for each sort order, perhaps stored in a separate database.
Of course, then you have to maintain these indexes as the data changes-which is the function of a relational
database manager! Part of your design should include analyzing the access paths your application takes in order to
serve up data quickly.

The UC itself is only designed to support single table operations; it has no knowledge of database constraints such
as foreign keys. This can make it an unsuitable choice if you need to create a lot of interdependent data on the
Palm device.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Consider the relationship between the Customers table and the Orders table in the Sales database. New customers
must be inserted before new orders can be taken for that customer, because of the foreign-key constraint on the
Orders table. Unless the UC synchronizes the tables in the correct order, the SQL server will reject the Palm data,
because the customer key doesn't yet exist in the database. [7] Of course, there is a similar problem with delete
operations.

[7] The UC appears to synchronize tables in alphabetical order. This is fortunate for the Sales application, because the Customers table precedes the

Orders table, but you cannot rely on this behavior.

If your application data has dependencies that are enforced in your database, you should consider alternatives to
the UC, such as writing a custom conduit. If you don't need to create large amounts of data, you can preallocate a
few table rows and store the new database keys on the Palm. Then when the Palm user needs to sign up a new
customer, they can use one of these reserved entries. This addresses the issue of table dependencies, which you
can now manage using the techniques described in this chapter.

5.2.5.4 UC data types

When we ran the UC configuration wizard for Version 2.0 for the first time, we were surprised by how it handled a
wide range of data types-almost every native MS SQL data type. There are a few data types that are not
supported by the UC, such as the huge Bigint , and fields that contain arbitrary data like Binary , Sqlvariant , and
Image .

The UC has an INI file-UCTypes.ini- that contains mappings for data types based on ODBC driver provider. In
the version of the file we used, there are mappings for most of the Microsoft data-oriented products, including:

Visual Fox Pro

SQL Server

Access

Excel

In addition, there is a common section that contains default values used for other ODBC driver providers. It is
possible to customize these settings for any ODBC driver. For example, the AppForge Knowledge Base article
#010628-0009 shows how to modify the INI file to support Lotus Notes.

Table 5-3 shows how the Universal Conduit maps data values for MS SQL Server.

Table 5-3. Universal Conduit data mappings for SQL Server

SQL data type AppForge data type Remarks

Char, Varchar, Text String The UC handles Unicode strings.

Datetime, Smalldatetime Date There is no support for timestamp fields.

Int Long

Smallint Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL data type AppForge data type Remarks

Tinyint Byte

Bit Boolean

Decimal, Numeric Currency All precisions are mapped to currency.

Money, Smallmoney Currency

Float Double

Real Single

You may need to study the UCTypes.ini file entries for your ODBC provider before relying on the UC to correctly
synchronize your application's data. AppForge provides UCQueryDriver.exe , a command-line tool, to help with this
process; see Section 5.3 at the end of this chapter, for details.

If your application has a legacy database that relies on data types not supported by the UC, you should consider
developing a custom conduit, as shown in Chapter 4 .

5.2.5.5 Replication conflicts

The UC is a general-purpose tool, capable of synchronizing many different data sources. There are two types of
problems it expects to encounter routinely:

SQL conflict

A row couldn't be inserted into the database.
Archival

A PDB record has the archive bit set.

AppForge has a strategy for handling these problems: the UC saves the offending record(s) in a special sync table
in the SQL database. This new table must have the same structure-field types and order-as the base table, with
three additional columns, as shown in Table 5-4 .

Table 5-4. Sync table structure

Column name MS SQL type Remarks

AfsyncDate datetime When HotSync occurred

AfsyncRecordId integer Contains PDB unique Record ID

afsyncDisposition tinyint Flag-Conflict=1, Archive=2

These columns must be the last three columns in the table. In addition, the sync table name must consist of the
original table name with _hh appended.

Let's look at an example using the Orders table in the Sales database (see Figure 5-4 , shown earlier in this
chapter). Each row in the Orders table must contain a valid Product ID. Suppose we create a record on the Palm
that contains good information for each column except for P_Id -the foreign key into the Product table, which we

Tinyint Byte

Bit Boolean

Decimal, Numeric Currency All precisions are mapped to currency.

Money, Smallmoney Currency

Float Double

Real Single

You may need to study the UCTypes.ini file entries for your ODBC provider before relying on the UC to correctly
synchronize your application's data. AppForge provides UCQueryDriver.exe , a command-line tool, to help with this
process; see Section 5.3 at the end of this chapter, for details.

If your application has a legacy database that relies on data types not supported by the UC, you should consider
developing a custom conduit, as shown in Chapter 4 .

5.2.5.5 Replication conflicts

The UC is a general-purpose tool, capable of synchronizing many different data sources. There are two types of
problems it expects to encounter routinely:

SQL conflict

A row couldn't be inserted into the database.
Archival

A PDB record has the archive bit set.

AppForge has a strategy for handling these problems: the UC saves the offending record(s) in a special sync table
in the SQL database. This new table must have the same structure-field types and order-as the base table, with
three additional columns, as shown in Table 5-4 .

Table 5-4. Sync table structure

Column name MS SQL type Remarks

AfsyncDate datetime When HotSync occurred

AfsyncRecordId integer Contains PDB unique Record ID

afsyncDisposition tinyint Flag-Conflict=1, Archive=2

These columns must be the last three columns in the table. In addition, the sync table name must consist of the
original table name with _hh appended.

Let's look at an example using the Orders table in the Sales database (see Figure 5-4 , shown earlier in this
chapter). Each row in the Orders table must contain a valid Product ID. Suppose we create a record on the Palm
that contains good information for each column except for P_Id -the foreign key into the Product table, which we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set to the illegal value of 8888 .

When the UC attempts to insert the new record into the SQL database, an integrity constraint error such as the
following will occur:

DIAG [23000] [Microsoft][ODBC SQL Server Driver][SQL Server]INSERT statement

conflicted with COLUMN FOREIGN KEY constraint 'FK_OrdersProducts'. The conflict

occurred in database 'Sales', table 'Products', column 'Id'. (547)

A query of the Orders_hh table shows the following data (we've removed some columns for clarity):

Id P_Id AfsyncDate afSyncRecordId afSyncDisposition

------ ------ ------------------------ --------------- ------------------

889910 8888 2001-09-08 00:40:00.000 335906 1

Notice that the UC has preserved the PDB record values, such as the invalid P_Id value of 8888 . In addition, the
date of the synchronization is recorded, and the disposition column indicates that the cause of failure was a
conflict.[8] Nothing automatic happens after the replication conflict is logged: it is up to you to determine the
appropriate resolution.

[8] As of this writing, there were some bugs involving two-way sync. In this case, the Palm record is deleted during the next HotSync: since the record is

no longer marked dirty in the PDB, and there is no corresponding table row, the UC concludes that it has been intentionally deleted from the SQL

database, and then synchronizes that deletion.

You can configure the UC to simply discard conflicting records, avoiding the need for a sync table. This is done
using the UC configuration utility. Select a UC descriptor and table to configure, go to the Advanced tab, and check
the Discard Conflict records box. If you choose this option, you don't need a sync table in your database at all.

5.2.5.6 NULL fields

AppForge does not support NULL columns. Most attempts to write records to a Palm PDB using PDBWriteRecord
fail spectacularly with uninitialized or NULL data. This is particularly true of string and date fields.

If your data requires NULL columns, you must write each field to the PDB record by hand using the
PDBWriteFieldByOffset routine. You are responsible for writing a bit-pattern of the correct length, with the correct
value, and to the correct offset in the record.

In general, we do not design SQL databases that use NULL columns. One rare exception is dates. If a date is
unknown, it is best to leave it NULL in the database. When the UC synchronizes an AppForge record with an empty
date, it inserts a value of 1904-01-01 00:00:00:00.000 into the SQL database. You can then have an INSERT or
UPDATE trigger that replaces this pattern with a true NULL.

5.2.5.7 Deleted records

There are three ways to delete records from a Palm PDB, using the AppForge PDBDeleteRecordEx function:

Normal delete

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The record is marked as deleted. Only a placeholder-including the Palm unique identifier-remains in the
database. Use the AppForge constant afDeleteModePalmDelete in the PDBDeleteRecordEx call.

Archival delete

The record is marked as deleted and archived. The record data remains in the database, and is accessible
during HotSync. Use the AppForge constant afDeleteModeArchive .

Physical delete

The record is removed from the database. There is no remaining trace of the record, including its unique
identifier. Use the AppForge constant afDeleteModeRemove .

If you are using two-way synchronization, you should use the archival delete option. This is the only option that
preserves the SQL table primary key in the record data. The other delete operations destroy this data, making it
impossible to locate and remove the appropriate row in the database table. In fact, with two-way synchronization,
the deleted record is recreated on the Palm device during HotSync. This is because the UC has no way of knowing
that the record ever existed on the Palm device, but it does see one in the SQL database.

If you aren't using a sync table, as shown earlier in the chapter, you should instruct the AppForge conduit to discard
archived records. You can do this in the UC configuration program, on the table's Advanced tab.

5.2.6 Sales Application: Orders

We put all these design decisions to the test in the Orders form for the Sales application. The code for this section
is in Order.frm , with the exception of definitions for the Customer and Order records, which are in Startup.bas .

Although functional, the Sales application is not very user-friendly. We omit some important
features, such as refreshing the display after submitting an order, so we can focus on
design issues for the UC.

The Form_Load event is shown in Example 5-10 .

Example 5-10. Listing for Order Form_Load

Private Sub Form_Load()

 Dim rec As tCustomersRecord

 dbC = PDBOpen(ByTypeCreator, "Customers", 0, 0, Id2Long("DATA"), Id2Long("SALE"),

 dbO = PDBOpen(ByTypeCreator, "Orders", 0, 0, Id2Long("DATA"), Id2Long("SALE"),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PDBSetSortFields dbO, C_Id_Field

 While Not PDBEOF(dbC)

 PDBReadRecord dbC, VarPtr(rec)

 cboCustomer.AddItem rec.Name

 cboCustomer.ItemData(PDBCurrentIndex(dbC)) = rec.Id

 PDBMoveNext dbC

 Wend

End Sub

First, we open the Customer and Order PDBs. Like the Products table, the Customers table on the Palm is read-
only. The Orders table is opened in read-write mode because we will be changing it. We sort the Orders table on
the Customer ID field:

PDBSetSortFields dbO, C_Id_Field

This is important because we want to filter our orders by customer, and it would be too slow to scan the PDB file
from beginning to end for each customer.

Next, we read in all the customers, and store each customer name in the combo box. We also keep track of the
Customer ID:

cboCustomer.ItemData(PDBCurrentIndex(dbC)) = rec.Id

When the user selects a customer, we have the ID readily available. This saves us an expensive table lookup to
retrieve the ID. There is a cost of four bytes per customer lookup, but it seems like a reasonable tradeoff if we keep
the number of customers small. This is another reason to seek a design that minimizes the number of records in a
PDB file.

Here is the code for cboCustomer_Click , the event handler triggered when an entry in the customer combo box is
selected:

Private Sub cboCustomer_Click()

 Dim cid As Long

 Dim str As String

 Dim idx As Integer

 Dim rec As tOrdersRecord

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lstRecords.Clear

 ClearFormData

 cid = cboCustomer.ItemData(cboCustomer.ListIndex)

 PDBFindRecordByField dbO, C_Id_Field, cid

 While Not PDBEOF(dbO)

 PDBReadRecord dbO, VarPtr(rec)

 If cid <> rec.C_Id Then Exit Sub

 str = Trim(Products.GetProductName(rec.P_Id)) & _

 " : " & CStr(rec.DateBooked) & " : " & CStr(rec.Quantity)

 lstRecords.AddItem str

 lstRecords.ItemData(idx) = PDBCurrentIndex(dbO)

 idx = idx + 1

 PDBMoveNext dbO

 Wend

End Sub

First, we clear the screen of data from the previous customer. The ClearFormData subroutine (not listed) simply
erases the four text fields on the form. Then we retrieve the Customer ID from the combo box ItemData property,
and use PDBFindRecordByField to look up the relevant sales orders.

Unfortunately, there is no way to know if the lookup succeeded or failed. We read in the current record, and check if
it matches the search criteria. If the IDs do not match, we exit the routine, since there are no orders for this
customer:

PDBReadRecord dbO, VarPtr(rec)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If cid <> rec.C_Id Then Exit Sub

Otherwise, we concatenate the product name, the order date, and the number of items ordered, and add them to
the list box. We also store the record index in the list entry ItemData property:

lstRecords.AddItem str

lstRecords.ItemData(idx) = PDBCurrentIndex(dbO)

Remembering the index allows us to access the record directly when the user wants to update or delete it.

We also need a function that looks up the Product ID from the Orders PDB and returns the corresponding name.
Rather than opening another database, we modify the Products form code, adding the public function
GetProductName :

Public Function GetProductName(ByVal pid As Long) As String

 Dim rec As tProductsRecord

 PDBFindRecordByField db, 0, pid

 PDBReadRecord db, VarPtr(rec)

 If rec.Id = pid Then

 GetProductName = rec.Name

 Else

 GetProductName = ""

 End If

End Function

Remember, the Products form is hidden, not unloaded, so it is perfectly legal to access its public methods. For this
to work, the Products PDB must be sorted, so we added the following line to the Product Form_Load procedure:

PDBSetSortFields db, P_Id_Field

The constant P_Id_Field is zero, which means to sort on the first field in the PDB schema.

Selecting an item in the list box triggers lstRecords_Click , which populates the four text fields with details from the
corresponding order record:

Private Sub lstRecords_Click()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim rec As tOrdersRecord

 PDBGotoIndex dbO, lstRecords.ItemData(lstRecords.ListIndex)

 PDBReadRecord dbO, VarPtr(rec)

 txtProduct.Text = CStr(rec.P_Id)

 txtQuantity.Text = CStr(rec.Quantity)

 txtDtOrdered.Text = CStr(rec.DateBooked)

 txtDtDelivered.Text = CStr(rec.DateFulfilled)

 g_OrderId = rec.Id

End Sub

First, the correct record is located, using the index stored in the ItemData property, and read into a record variable.
Then the form text fields are populated with data from the record. Finally, we save the Record ID-the primary
key-in a global variable:

g_OrderId = rec.Id

We'll explain why we do this later in this chapter.

Now we turn to the action buttons at the bottom of the form. Pressing the New button transfers the values on the
screen into an order record, and adds that record to the database. Here is the code for the btnNew_Click event:

Private Sub btnNew_Click()

 Dim rec As tOrdersRecord

 rec.Id = NewOrderId

 LoadFormData rec

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PDBCreateRecordBySchema dbO

 PDBWriteRecord dbO, VarPtr(rec)

 PDBUpdateRecord dbO

End Sub

Remember, record creation can and will fail if the storage heap is full. Unlike the code shown above, your
application must check for errors and take some appropriate action.

In order to successfully synchronize a new record with the SQL database, the UC must have a unique Record ID for
the new order. The NewOrderId function handles that chore:

Private Function NewOrderId() As Long

 NewOrderId = TimerMS

End Function

TimerMS is an AppForge function that returns the number of milliseconds since the Palm device was last reset.
While this is unique enough for our example Sales application, you will want a more reliable function for a
production application.

The LoadFormData routine is a little more complex:

Private Sub LoadFormData(ByRef rec As tOrdersRecord)

 rec.C_Id = CLng(cboCustomer.ItemData(cboCustomer.ListIndex))

 rec.E_Id = E_Id_Key

 rec.P_Id = CLng(txtProduct.Text)

 rec.Quantity = CLng(txtQuantity.Text)

 rec.DateBooked = CDate(txtDtOrdered.Text)

 If txtDtDelivered.Text <> "" Then

 rec.DateFulfilled = CDate(txtDtDelivered.Text)

 End If

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

First, we retrieve the Customer ID from the combo box ItemData property. This was assigned in the Form_Load
event (see Example 5-10 , shown earlier in this chapter). We have a constant for the Employee ID:

rec.E_Id = E_Id_Key

Normally, this important value wouldn't be a constant, but might be stored in a configuration PDB file or as an
application preference. This latter technique might be used in conjunction with a sign-in screen. The rest of the field
values are read in from the text controls on the form.

Pressing the Update button triggers the btnUpdate_Click event:

Private Sub btnUpdate_Click()

 Dim rec As tOrdersRecord

 rec.Id = g_OrderId

 LoadFormData rec

 PDBEditRecord dbO

 PDBWriteRecord dbO, VarPtr(rec)

 PDBUpdateRecord dbO

End Sub

The code is very similar to btnNew_Click . This is where we use the previously stored order key-g_OrderId
-instead of generating a new primary key. btnUpdate_Click also uses LoadFormData to populate the other record
fields. Of course, we update the PDB record instead of creating a new one.

Here is the code for the mnuProducts_Click event to switch from the Order form to the Product form.

Private Sub mnuProducts_Click(Index As Integer)

 Me.Hide

 Products.Show

End Sub

We clear the form fields, as a reminder to the user that the record no longer exists, and then delete the record from
the PDB. As we discussed earlier in the chapter, it is important to set the archive bit by using afDeleteModeArchive
when deleting the record. If you don't do this, the UC simply replaces the deleted record with a new copy from the
SQL database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3 Resources

Information about the AppForge PDB library and the UC is available as part of the Professional Edition.
This documentation is also available from the AppForge web site.

Installation of the runtime components for the UC is covered generally in the AppForge documentation.
See Knowledge Base article #010419-0023 for more detailed information. Note that the UC assumes that
all the Microsoft data access components, or their equivalents from your database vendor, are already
installed on the machine.

Article #010827-0039 explains how to download and use the UCQueryDriver.exe program as an aid to
configure the UC for non-Microsoft ODBC data sources.

The AppForge Knowledge Base also has several good articles that cover how the UC interacts with the
Palm HotSync manager. See articles #010629-0023 and #010801-0030.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Web Clipping Applications

When the Palm VII was released in 1999, it was a device that took Palm's message of the connected
organizer to the next level. By supplying a device with an integrated cellular radio capable of connecting to
digital wireless networks in the United States and Canada, the ability to attach to data anywhere, anytime
became a reality.

In addition, the Palm VII is poised to revolutionize mobile electronic commerce, by supplying a secure
means of coordinating field automation with customer needs. For example, a company that equips its
sales staff with appropriate web software can enable real-time processing of purchases on the customer
premises-wherever they are.[1]

[1] Currently, the Palm VII uses wireless service from BellSouth. Radio attachments for the Palm III and V use different wireless networks.

Palm also has a Mobile Internet Kit, which works with both cellular telephones and normal modems.

In this chapter, we will look at how to build a distributed application using Palm's Web Clipping technology.
A Web Clipping Application (WCA) is a special type of Palm database that consists of HTML documents
and graphics. Unlike a typical Internet web site, which resides entirely on a web server, the WCA is
precompiled and stored on the Palm PDA. The operating system knows how to display the data and
graphics in a WCA to the device user. And a special library in the Palm-called INetLib-uses the Palm
radio network to access the Internet and retrieve remote data when necessary.

The HTML code that is retrieved over the Internet from the remote web server is called the Web Clipping,
or sometimes simply the clipping.

Occasionally, you will see the Web Clipping Application referred to as a Palm Query Application (PQA).
This is a legacy term, which is still present in the online literature and tools. In their latest documentation,
however, Palm makes it clear that Web Clipping Application is the preferred term.

It is important to note that there is no separate web browser used to display a WCA-rather, an internal
viewer displays the text and graphics in a WCA when the user launches the application. [2] In this sense, a
WCA is just like any other Palm application-the user's attention is entirely devoted to the application's
content, and not to the operation of a software program.

[2] Palm calls its pseudo-browser the Web Clipping Application Viewer. There are several third party web browsers available for the Palm,

but they are not used with WCAs.

Because the user doesn't have a browser, there is no navigation on the Palm VII to a home page on a web
site. Instead, WCA applications are partitioned into two parts: a preinstalled component on the Palm PDA
and a dynamic component on the web server. The preinstalled part contains links to remote web servers
that return static or dynamic HTML pages-web clippings, in Palm's terms. Any web server that supports
the Common Gateway Interface (CGI) can be used for a clipping application.

We will use a variety of tools to build clipping applications. For the client-side application construction,
there is the WCA Builder tool developed by Palm. This application converts HTML documents and
graphical images into the WCA format suitable for upload to the Palm VII. For the server-side components,
we use Microsoft Internet Information Server (IIS), Active Server Pages (ASP), and VB Script. We
construct VB COM objects and SQL queries to handle back-end automation.

Before examining the implementation of a clipping application, we need to look at some features of Palm's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

radio network. Several important things happen when the user extends the antenna of a Palm VII and
connects to a remote web server. To build a responsive and secure WCA, you will need to understand
these events.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1 Palm.Net Wireless Architecture

The wireless industry in North America consists of competing and still emerging standards, radio
frequencies and types, hardware, and, of course, different wireless network operators. Palm decided to
equip its Palm VII with one type of radio and to operate on one network, neatly sidestepping a host of
compatibility and interoperability issues.

As mentioned earlier, the Palm's wireless service-called Palm.Net-uses the BellSouth wireless network.
Palm also maintains a gateway service that connects the wireless network to the Internet. Specialized
proxy servers translate the Palm VII radio packets to the Internet packet format, and forward the packets to
the appropriate web server.[3] Figure 6-1 presents an overview of this network.

[3] Currently, the Palm proxy servers only support Hyper-Text Transfer Protocol (HTTP), in both normal and secure mode.

Figure 6-1. Palm.Net infrastructure

The Palm Web Clipping Developer's Guide spells out exactly what happens when the user selects a
hypertext link in a clipping application:

1. If the linked page or graphic is installed on the Palm VII organizer, the page or graphic is
displayed.

2. Otherwise, the Palm VII organizer compresses the query into a small file in Palm Query Format
and sends this packet over the air to the local base station.

3. The local base station relays the compressed packet to the Web Clipping proxy servers at a
Palm.Net data center.

4. The Web Clipping proxy server translates the query packet into a standard HTTP packet and then
sends the decompressed query to the appropriate Internet address.

5. The HTTP server returns an HTML page to the Web Clipping proxy server.

6. The Web Clipping proxy server compresses the HTML page into a Palm Proxy Format file and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sends it back to the local base station.

7. The local base station relays the clipping to the Palm VII organizer, where the Web Clipping
Application Viewer renders the page.

As you can see, the data passes through a lot of communication links on its way back and forth between
the Palm VII user and a remote web site. Fortunately, the INetLib library on the Palm, the wireless
network, and the proxy server handle almost all the details. The developer of a WCA is only responsible
for the two end-points: the HTML in the WCA resident in the Palm PDA and the ASP code on the remote
web server.

6.1.1 Palm Proxy Server

The Palm network operations center houses the proxy servers that connect the Palm.Net wireless network
to the Internet. All wireless data from a Palm VII passes through the proxy server on its way to and from a
web server. The Palm proxy server has several key functions: it maintains network connections, it provides
data transformation and caching services, and it handles Internet security.

The Palm VII wireless network is completely separate from the Internet. When the proxy server transforms
wireless data into Internet packets, it tracks the origin of the wireless data. When the response data is
received from the web server, the proxy server knows how to send it back to the correct Palm VII radio.
The proxy server must also be able to redirect Internet data to another web server.[4]

[4] The current proxy servers support up to three HTTP redirect operations per connection. After that, they abort the transaction.

Clipping applications and INetLib don't deal with HTML data directly; instead, the data sent between the
Palm VII and the proxy server is in Compressed Markup Language (CML). Palm recognized that HTTP
data is easily compressed and very regular in expression, and invented CML as a way to minimize the
amount of data transmitted on the slow wireless networks. The proxy server does most of the
computationally intensive transformation between HTML and CML. The viewer application decodes the
CML for display, which is a much simpler operation.

The proxy server provides more than a simple compression service. Because the proxy server is aware of
the underlying data formats (CML and HTML), Palm enabled certain data transformations and mappings
as well. These are chiefly aimed at conserving wireless bandwidth or modifying the data to display properly
on the Palm's 160 x 160-pixel screen.

Truncation

HTML pages returned from Internet web servers are truncated after 1 KB, unless special Palm
metatags are used.

Clipping

Images are clipped to a maximum size of 153 x 144 pixels, the largest size available in the WCA
viewer. HTML tables are also clipped at 153 pixels wide, although they have unlimited depth.

Hashing

Hypertext links and other form elements are compressed by computing a simple checksum. In order
to save bandwidth, the much smaller checksum and an index are sent to the WCA viewer, instead
of the more verbose link or form element.

Caching

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Web clippings are cached at the proxy server. If the clipping is static, this caching dramatically
improves application response time. The proxy server can be told not to cache a page.

The proxy server transformation and caching services can sometimes interfere with an application's proper
or desired behavior. For example, if two form elements have the same checksum value, then the proxy
server might be unable to determine which element the user intended to use. For this reason, Palm
advises that all form elements and names be at least two characters in length.

Use of the Palm.Net proxy servers is not optional when developing or deploying Palm OS web
applications, because the Palm InetLib software only understands CML. This means that your
development environment must support a reliable connection to the Internet, so that your web server is
accessible by the Palm proxy server. This is also true if you are using the Palm Emulator to perform
testing-which we discuss later in this chapter.

The Palm proxy servers are configured to use a small range of available ports for normal and secure
HTTP data. This can pose issues for software developers behind corporate firewalls, since those ports
might be blocked. [5]

[5] We won't discuss firewalls or network addressing issues further in this book. Palm documents which ports can be used with the proxy

server and the Emulator in the knowledge base; see articles 1409, 1810, and 1818.

Palm.Net supports both production and development proxy servers. There are two main development
proxy servers. One server runs the same software version as the production servers, and the other server
runs updated software with bug fixes and new features. Which of the two development servers you use
depends on your development and testing needs. The production servers, however, should only be used
for deployed applications.

Palm provides an online web page that contains information for all the proxy servers at
http://oasis.palm.com/dev/proxy/. This information includes the current IP address of the proxy servers,
their operational status and software revision level, and any notes or planned changes.

6.1.2 Wireless Security on Palm.Net

Palm designed its wireless security architecture to support electronic transactions. Its security architecture
has three components: encryption of sensitive data transmitted on the airwaves; secure proxy servers to
bridge the wireless and wired networks; and full support for the Internet Secure Socket Layer (SSL)
protocol.

Data transmitted from the Palm PDA is encrypted before transmission and decrypted only after reception.
The Palm VII uses Elliptic Curve Cryptography (ECC), which forms the basis for a public key
cryptosystem. ECC is significantly smaller and faster than the more traditional public key techniques based
on factoring large prime numbers, and is often used in cellphones and other wireless applications with
limited computing power.

The actual data packets are encrypted using an extension of the DES algorithm. This encryption prevents
eavesdroppers from listening to private data conversations. In addition, each message contains a digital
signature that prevents tampering with data packets, or reusing them. A different encryption key is
generated for each transmission; this session key is then encrypted with the Palm.Net public key and sent
along with the data.

The data packets remain encrypted throughout the wireless carrier's network until they reach the Palm.Net
proxy server. There, they are decrypted, reencrypted using one of the algorithms specified by the SSL

http://oasis.palm.com/dev/proxy/.
http://lib.ommolketab.ir
http://lib.ommolketab.ir

protocol, and sent over the Internet to the specified web server.

Wireless data encryption only occurs when exchanging data using Secure HTTP
(also called HTTPS). Regular HTTP data is sent over the airwaves scrambled, but it
is not encrypted.

There are some procedural issues you should consider before deploying a very sensitive application on
Palm.Net. Foremost, all data passes through the Palm.Net proxy servers. You must trust Palm to preserve
the integrity of ECC public/private key pairs and to not examine your data. Also important is the level of
service that Palm.Net will provide-is the proxy server online when your application needs it? Palm has set
up procedures and policies to provide a high level of security, availability, and redundancy in Palm.Net
data centers. These policies are documented in several white papers, listed at the end of this chapter.

There are also some technical issues to consider, primarily concerning encryption key and certificate
management. The data security in Palm.Net depends on the integrity of the ECC keys-if the private key
is compromised, then many session keys are potentially compromised as well. Palm does not document
how often it replaces the ECC public/private keys or how those keys are distributed. And Palm does not
document how it generates the DES session key used to encrypt each individual transmission. If the key
generation algorithm is even partially predictable, then it is possible for an eavesdropper to guess at the
key and decode the transmitted data.

Internet data security-in particular, HTTPS and SSL-depends upon the exchange of certificates that
vouch for the authenticity of a web site or a user. Encryption occurs only after the web server presents a
valid and trusted certificate to the client that requested secure communications. The user has the
prerogative to review the certificate-to make sure that the server is really hosted by its owner, for
example. Although rarely used, the popular web browsers all provide a means to inspect and reject
certificates.

Unfortunately, the Palm VII user can never directly view the certificate used by the secure web server,
because the proxy server is acting on the user's behalf. This means that the user must trust Palm.Net to
route the HTTPS request to the proper server, and to ensure that the certificate the web server presents is
valid and in fact corresponds to the resource originally requested.

For the same reason, the Palm proxy server automatically handles redirection of a secure request to an
insecure web server. And it is impossible to send client certificates from the Palm PDA through the proxy
server to authenticate the user and his right to access the web server.

Palm has tried hard to provide a secure data center and wireless network useful for the majority of
electronic commerce applications. You need to examine the security requirements of your application
before hosting it on Palm.Net-or any wireless network, for that matter. This is no different from
outsourcing any other aspect of your application's infrastructure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2 Simple WCA Tour

In this section, we build a simple but complete WCA application. The application contains both local HTML
pages and graphical images. In addition, it has a standard HTML form that posts to an ASP on Microsoft's
IIS. The ASP simply reverses the text and writes the data back to the WCA.

We are not going to discuss creating or debugging Microsoft IIS applications in this chapter. We assume
that you know how to build an ASP application, and are reasonably familiar with VB script and object
construction techniques.

The standard tool for building WCA applications is the WCA Builder for Windows: WCABuild.exe.[6] This
application compiles HTML pages and linked graphics into the proprietary PQA format used on the Palm
PDA. The WCA Builder expects your application to be organized in a strict hierarchy with one HTML
document at the top level. Of course, this document may have multiple links to other local (and remote)
pages and images.

[6] Earlier releases of this tool were named QAB.exe. We are using the current release-version 1.5-in this chapter, because it supports

extensions previously available only from the command line.

During compilation, the WCA Builder scans the index page for references to other local HTML pages or
images. It pulls any pages found into the WCA, and then recursively scans those pages looking for more
links. As it compiles, the tool compresses the files to save space on the Palm PDA. If there are no errors,
the WCA Builder creates a PQA file that is ready to run.

Our application consists of a WCA top-level-or index-page, Ch6a.html. In our case, the index page has
a link to another local page, Ch6aAbout.html. The home page also has a standard HTML form that posts
to a remote script, Reverse.asp, which resides on an IIS server and is only available over the Internet.
Figure 6-2 shows the relationship between the PQA, the web server, and the data pages.

Figure 6-2. Structure of Ch6a.pqa

Let's look at the code for Ch6a.html, which is shown in Example 6-1. Note that this is a plain, simple HTML
document. The WCA compiler and viewer are based on a subset of HTML version 3.2.

Example 6-1. Listing of Ch6a.html

<html>

<head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<meta name="PalmLauncherRevision" content="1.1">

<meta name="PalmComputingPlatform" content="true">

<title>Ch6a Home</title>

</head>

<body>

This is the home page. A local page

provides help.

<hr>

<form method="post" action="http://website/Ch6a/Reverse.asp">

Enter a string to reverse on the server:

<input type="text" name="data" size="10">

<input type="submit" value="Reverse">

</form>

</body>

</html>

Next, look at the two metatags in the HTML document header. You use PalmLauncherRevision to set the
version of the application, which is helpful for maintenance. The very important PalmComputingPlatform
indicates that the content in this web page has been optimized for the Palm PDA. In general, the proxy
server and the local viewer do not alter HTML pages with this tag.

The link a href="Ch6aAbout.html" in this context refers to a local page within the PQA itself (see Figure
6-2 above). If the WCA Builder application cannot find the HTML page in the current directory when
compiling, it silently generates a remote link instead. You can detect this error manually, because the local
HTML file will not be present in the list of files scanned by the WCA Builder.

Now let's look at the very simple Ch6aAbout.html.

<html>

<head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<meta name="PalmComputingPlatform" content="true">

<title>Ch6a About</title>

</head>

<body>

This is the about page. This is where you might put static

or reference information.

</body>

</html>

This HTML document has no links at all, not even a back button-that's supplied by the WCA viewer. This
minimalist format is typical in a WCA application, which is focused on content delivery.

Note that Ch6aAbout.html also has the metatag indicating Palm-specific content. Palm recommends that
this tag be placed in all pages of a WCA-both local and remote.

The server-side Reverse.asp is the last piece of our application. It is a very simple script that uses the VB
StrReverse function to reverse the form input:

<%@ Language=VBScript %>

<html>

<head>

<title>Ch6a</title>

<meta name="PalmComputingPlatform" content="true">

<meta name="HistoryListText" content="Reverse-&time">

</head>

<body>

Server says "<%=StrReverse(Request.Form("data"))%>".<p>

Go back to the main page.

</body>

</html>

There is a new metatag in this listing, HistoryListText. Using this metatag causes the string Reverse- to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be added to the viewer's history list. Palm recommends that the history metatag be used in every dynamic
web page.[7] The &time pseudo-variable expands to the current time on the Palm PDA; of course, there is
a corresponding &date as well.

[7] Since the viewer doesn't maintain a history list of precompiled web pages stored in the WCA, you don't need to use this metatag for local

pages. This is a reflection of Palm's minimalist approach: why waste precious cache space for an HTML page that's always available?

Look at the link back to the index page-Ch6a.html-of the WCA:

Go back to the main page.

This is how to refer to the index page of a WCA. Static pages in the application can be addressed directly.
For example, use a href="file:Ch6a.pqa/Ch6aAbout.html" in dynamically generated code to reference
the help page of our WCA. [8] Unlike most hypertext links, references to on-device HTML pages are case-
sensitive.

[8] There is a bug in the newest WCA Builder tool that prevents you from referring to the index page by name if you are not running Palm OS

4.0. For example, a href="file:Ch6a.pqa/Ch6a.html" will not work. If this addressing is necessary for your application, you should use

Qab.exe.

The Palm Web Clipping Guide and WCA Builder documentation discuss the various types of links
supported in a PQA.

That's all the code in our simple WCA, which we will now compile into a PQA. To do this, start the WCA
Builder, and use the File Open Index option to select a top-level page; in our sample, this is
Ch6a.html. The tool will automatically detect the link to the local page, as shown in Figure 6-3.

Figure 6-3. WCA Builder for Ch6a

Notice on the program status line that the two files have been compressed from 876 bytes down to 207
bytes. This is a typical ratio for text; images, however, don't compress nearly as well.

Once all the local files have been recognized, select File Build PQA to bring up the build dialog. You
use this dialog to set the output filename, icons and any special PQA features for your application. By
default, the name of your application that is displayed on the Palm is the same as the output filename.
We'll see how to change these properties later in this chapter.

The Emulator uses the network adapter in the desktop computer to connect to the Internet. By default, this
feature is turned off. To enable it, use the Emulator context menu and select Settings Properties.
On the dialog shown in Figure 6-4, make certain that the check box labeled Redirect NetLib calls to
host TCP/IP is selected.

Figure 6-4. Emulator Properties dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recall that all network traffic for a WCA goes through a Palm.Net proxy server. If you are using the
Emulator with a downloaded ROM, your proxy server address is most likely out of date. [9] You can use the
Wireless Preferences dialog on the real or emulated Palm VII to update the proxy server's Internet
address, as shown in Figure 6-5. (The dialog for Palm OS 4.0 is slightly different; it accepts the proxy
server address using the symbolic machine name, such as proxy.palm.net.)

[9] As previously discussed, there are two types of proxy server at Palm.Net-production servers and development servers. Use the

development server until your application is in production. Palm maintains up-to-date information on the address and status of the Palm.Net

proxy servers at http://www.oasis.palm.com/dev/proxy/.

Figure 6-5. Proxy server preference dialog

Load the Ch6a.pqa into either an actual Palm VII or the Emulator.

The WCA Builder provides default icons for WCA applications, as shown in Figure 6-6. The clipping toolkit
contains template bitmap files that can be customized with any graphical editor. The large bitmap, used in
icon mode, measures 32 x 22 pixels; the small bitmap, used in list view mode, is 15 x 9. These bitmaps
have a color depth of 1 bit-they are monochrome.

Figure 6-6. Application launcher icon for Ch6a.pqa

http://www.oasis.palm.com/dev/proxy/.
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Launching the application brings up the index page, which is shown in Figure 6-7. The viewer has
rendered the local link to Ch6aAbout.html as underlined text, as any browser might do. Note that the
Reverse button, which posts to a remote web site, is adorned with a special glyph indicating a radio
connection. The WCA Builder generates this glyph automatically for links and buttons. An application that
uses images for a remote link should include a similar glyph as a cue to the user that following the link will
take some time and possibly incur airtime charges.

Figure 6-7. Ch6a.html

Pressing the Reverse button causes the viewer to post any form data on the remote web server. The data
is transmitted by the Palm VII radio to a local base station in the BellSouth wireless network. From there,
the data is routed to one of the Palm.Net proxy servers. The proxy server connects to the Internet, and
generates the HTTP Post request to Reverse.asp on the web server.

After the ASP script has finished processing the request, the data is sent back to the proxy server, which
compresses it and transmits it over the wireless network. Finally it is received on the Palm VII, where it is
decompressed and displayed, as shown Figure 6-8. This involved sequence, which occurs with every
remote data access, highlights the need to keep your wireless applications as small and simple as
possible.

Figure 6-8. HTML output of Reverse.asp

In Figure 6-8, you can see that the link to the WCA index page generated by the ASP script does not have
the radio glyph-the link was generated remotely, but it references a local page. And notice that the
History-in the top right corner of the screen-is now active. This is a result of using the PalmHistoryList
metatag in the clipping.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3 Building a Large Application

Our simple example glossed over many design and implementation issues encountered when building large or complex
applications. In this section, we build a more complete example that covers these issues. In particular, we look at HTML 3.2
limitations and extensions in the Palm WCA viewer, application partitioning, security, and access control, as well as some
basic user interface techniques that work well on the Palm.

As we discuss these design topics and present the details of a larger application, we will work in other important details of
Clipping application development using VB. Our focus is how to develop the HTML and ASP code necessary to produce
good distributed applications. When necessary, we will go into the details of COM objects and the SQL database to make a
point.

There are many other techniques, such as the use of XML data and XSL templates or Microsoft
Transaction Server components, which aid the development of efficient ASP applications. However,
we will not cover development using these tools here.

The large example project for this chapter, Ch6b , is an application designed for a hypothetical company that has field
technicians performing jobs at client sites. The technicians of our hypothetical company can use Ch6b to check their daily job
schedule, review customer information, and update work orders in real time. The managers use Ch6b to check on the
progress of customer jobs throughout the day.

Obviously, such an application could do much more. We have purposefully simplified the functionality so that we can focus
on design and implementation techniques. We have also designed Ch6b as an exclusively wireless application, although
normally an application of this nature would have a blended interface accessible from both the radio and the desktop.

Ch6b uses an SQL database to manage the user, customer, and job data. User login and security data are stored in the SQL
database in the session table, which is discussed in detail later in this chapter (see Figure 6-9).

Figure 6-9. SQL table structure for Ch6b

The SQL database structure is considerably simpler than a production database, so we can focus on functionality here. We
won't provide any further discussion of the table attributes or SQL queries.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3.1 User Interface Limitations and Extensions

The WCA viewer implemented by Palm supports a substantial subset of the features in HTML version 3.2. There are a few
things missing, however:

Client-side scripting of any sort. This means no JavaScript, no VBScript, no ActiveX, no Java applets, no cascading
style sheets, no named typefaces. There are no cookies, either.

There is no support for frames or image maps. Image support is limited to regular GIF and JPG formats. Of course,
color is limited to four shades of gray.

There is no horizontal scrolling. This means that tables, images, and other HTML elements are truncated at the right
margin-153 pixels. In addition, tables do not nest. There are no tables within tables.

The Palm Web Clipping Guide and the WCABuild program help file cover these and other unsupported features of HTML
3.2 in detail. Some of these restrictions were lifted with the release of Palm OS 4.0, which we cover later in this chapter.

The Palm proxy server and the WCA Viewer program are very sensitive to even minor errors in an
HTML page. A malformed document can hang a session or display in unexpected ways. You
should validate all static and dynamic HTML before shipping an application. See the Palm
Knowledge Base-article 2049-for how to validate an HTML file for use in Web Clipping.

The Palm screen is very small, and the WCA viewer is quite slow when rendering even simple HTML. Taken together, these
factors demand that a PQA limit user data to just what is most important. For example, our main schedule page for field
technicians is limited to just the current day's jobs.

Not all data can be limited this way, so it is also important to implement a paging strategy for lengthy query results. And, as
we mentioned earlier, there are no client-side techniques we can use for this, which means that paging must be
implemented on the server. We show a simple paging scheme in our managerial reports.

Table 6-1 describes the Palm metatags recognized by the WCA Builder or the WCA viewer program. We show how to use
all these metatags later in this chapter.

Table 6-1. Palm-specific metatags

Metatag Meaning

PalmLauncherName Lists the display name for PQA file on the Palm device

PalmComputingPlatform Causes the proxy server to pass HTML content through largely unaltered

PalmLauncherRevision Provides version information for display on the Palm device

LocalIcon
Causes the WCABuild program to include the indicated resource even if it is not referenced
directly

HistoryListText Places the page in the WCA viewer history list

There are also several Palm-specific keywords that you can use in ASP scripts, as shown in Table 6-2 . When used in an
HTML request, the Palm proxy server expands these keywords before relaying the request to the Web server. We show

http://lib.ommolketab.ir
http://lib.ommolketab.ir

how the %DeviceId keyword can provide authentication later in this chapter.

Table 6-2. Palm.Net keywords

Keyword Meaning

%DeviceId
Unique ID of radio. This keyword is 0.0.0 in the Emulator. The keyword may have a different format on radio
networks other than Palm.Net.

%ZipCode Approximate location of radio. This keyword will be 00000 in the Emulator or for unknown base stations.

The WCA viewer uses the standard Palm user interface controls for the password, date, and time input fields in forms. We
show how to use these input types on HTML forms in the next section.

In place of client-side scripting, the WCA viewer provides two additional types of links that can be used to access local
applications. These links use the palm and palmcall protocol keywords. For example, the following link exits the WCA
viewer and calls the built-in memo pad application:

Memo Pad

It is possible to pass arguments to the application as query parameters. The palmcall keyword is similar, but functions as a
subroutine call to the desired application. These keywords are described in detail in the Web Clipping Guide documentation.

6.3.2 Application Partitioning

Our application, like all Web Clipping applications, is partitioned: one part is the static HTML and images on the Palm PDA,
and the other is the dynamic HTML pages generated on the web server. The goal of application partitioning is to minimize
the amount of data transmitted over the network, while maximizing the user experience-presenting up-to-date information,
and streamlining navigation through the application.

In our application, we store the query screens, application help pages, and other reference materials in the PQA file. This
information does not change frequently enough to warrant downloading it over the wireless network. All volatile information,
such as appointment times and job descriptions, is generated dynamically in response to a user query. We decided to make
the customer information, such as address and phone number, dynamic as well. There is no static HTML content on the
web server in our application. This is typical of Web Clipping applications; if the HTML doesn't change, then is should be
stored in the PQA file on the Palm handheld.

Figure 6-10 shows the high-level application structure. All the HTML pages are stored on the Palm VII, and all the ASP
scripts are executed on the web server.

Figure 6-10. Structure of Ch6b.pqa

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If Ch6b were a real application, you might analyze how frequently the customer information changes before making it
dynamic. Another design question: how often do the users HotSync their Palm devices? If the customers HotSync every
day, then it would be appropriate to place the customer list into the PQA. We might automate a build of the application daily,
with up-do-date customer information, and download it to the Palm VII with each HotSync.

If you do not expect the user to HotSync frequently, or you cannot deliver the PQA file to the desktop for installation, then
the dynamic approach is more appropriate.

6.3.3 Security and Access Control

Security is a critical component in a wireless application. We covered some security aspects of the wireless network and
Palm.Net infrastructure earlier in this chapter. In this section, we discuss methods for implementing security features in a
WCA: data encryption, strong authentication, and session management.

An application should always encrypt sensitive data before sending it over a wireless network or the Internet using SSL
encryption. To do this, you install a recognized certificate in the IIS application, and use the https protocol identifier in the
relevant hypertext links.[10] The WCA viewer automatically adds a special secure glyph to the link; see Figure 6-11 .

[10] We do not cover the process of generating a certificate and configuring the IIS server to use that certificate. Consult the IIS documentation for details. Palm

supports most major signature authorities for certificates; see http://www.palmos.com/security .

Figure 6-11. Secure HTTP link

Encrypting the data is not always sufficient, however. It is also important that sensitive data be restricted to those with
permission to access it. This requires that users be authenticated, so that an application can reject those without the proper
credentials. We support strong user authentication in the Ch6b sample application, using a combination of a token-the
unique Palm VII radio device ID-and a shared secret-the user password.

Our application maintains a list of radios that are authorized to access the Ch6b web site in a SQL database table. The
username and password are also stored in a database table. Whenever a user logs into the application, the login
information-radio device ID, username, and password-is validated against the database. This approach works well when
you know your users in advance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We track authenticated users by creating sessions. Normally, the IIS server and the ASP application handle this through the
default ASP Session object. This approach doesn't work with Web Clipping applications, because it requires the use of
cookies, which are not supported unless you use Palm OS 4.0.

Instead, we maintain session information in a SQL database table, and provide a VB COM object to supply some of the
functionality of the ASP Session object. The logical session in the database joins a single user with a single radio, as shown
in Figure 6-12 .

Figure 6-12. Radio, user, and session SQL tables

We don't support the same interfaces as the Microsoft ASP object; for example, we don't provide a method for the ASP
scripts to store information in the session object. [11] Table 6-3 lists the authentication and security methods of our object.

[11] There are articles in the Microsoft Developer Studio Network and Knowledge Base that discuss the pros and cons of using ASP sessions. And there are several

replacements for the Session object on the Internet that do not depend on cookies.

Table 6-3. Ch6b session security-oriented methods

Method Description

Create
Creates new session in database based on user ID, password, and radio. Fails if session already exists or if the
password is bad.

Attach
Retrieves existing session information from database based on radio ID. Fails if the session doesn't exist or is
expired.

Manager Returns true if the current user is a manager.

Drop Deletes a session in the database.

Our object implements several business rules for user sessions and logins. The first is that a user may only participate in a
single session-no multiple logins. Likewise, a radio may only participate in a single session. Finally, the Session object has
a life of four hours, and any attempts to access an expired session will fail. These rules provide additional security to prevent
unauthorized users from breaking into the application.

Once the user has logged in, a new entry and time stamp are placed in the session table. On each new connection attempt,
our application consults the session table to make sure the user has a valid login. If so, the timestamp is updated to prevent
the session from expiring.

6.3.4 Ch6b Details

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The user's first experience with the schedule application is at the index page, Ch6b.html (see Figure 6-13). This HTML
page prompts the user to resume an existing login session, or to establish a new session. In addition, online help and the
manager's module are provided at the bottom of the page.

Figure 6-13. Ch6b.html

We provide both the login form and a link to a preexisting session as a convenience. A Palm user will launch and shut down
a Clipping application many times during the day-and each time, the WCA viewer places them on Ch6b.html . By providing
links to both the login form and preexisting sessions, we save the user many additional keystrokes and slow page redraws.

The HTML source code for Ch6b.html is shown in Example 6-2 .

Example 6-2. Listing of Ch6b.html

<html>

<head>

<meta name="PalmLauncherName" content="Ch. 6b">

<meta name="PalmLauncherRevision" content="1.03">

<meta name="PalmComputingPlatform" content="true">

<meta name="LocalIcon" content="Codes.html">

<meta name="LocalIcon" content="Status.html">

<title>Ch. 6b Home</title>

</head>

<body>

<h1>Remote Schedule</h1>

If you have already logged in, here are

today's jobs. Otherwise please log in below:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<form method="post" action="http://website/Ch6b/Login.asp">

<center>

<table>

<tr><td>Username: <input name="uid"></td>

<tr><td>Password: <input name="pwd" type="password"></td>

</table>

<input type="submit" value="Login">

<input type="hidden" name="did" value="%deviceid">

</center>

</form>

<hr>

About For Managers

</body>

</html>

As usual, the familiar PalmComputingPlatform metatag indicates that this HTML code is formatted for the Palm PDA. Note
the new metatags for the application name and version information.

<meta name="PalmLauncherName" content="Ch. 6b">

<meta name="PalmLauncherRevision" content="1.03">

Also note the metatag "Local Icon" - this tag is used to include resources in the PQA file that are not directly referenced
by the HTML, but rather, are later used by dynamic Clipping pages. Despite its name, the Local Icons tag can be used to
include HTML pages, as well as icons and other graphical images.

The link to the schedule must be a fully qualified hypertext link, complete with the web server name and a path to the ASP
script, because this is a reference to an off-device page. The same is true of the form action parameter.

Placing the manager's page link at the end of the main screen means that we don't have two separate PQA files, one for
managers and one for employees.

We use the special Palm keyword %deviceid both as a query parameter:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and later as a hidden form variable:

<input type="hidden" name="did" value="%deviceid">

The Palm.Net proxy server then will expand this keyword into a text string, such as 1.16465337.185111781 , that uniquely
identifies the Palm VII radio. This keyword plays an important role in our security architecture, because it allows us to
associate a particular radio with a particular user connection request.

If you are using the Emulator, then this keyword expands to 0.0.0 -effectively limiting your application to one distinct
emulated user.

Let's see what happens when the form is used to sign into the schedule application. Pressing the Login button posts the
form data-including the radio ID-to the web server, where a simple script, Login.asp , handles it.

<%@ Language=VBScript %>

<!-- #include file="_ScriptLibrary\Security.asp" -->

<%

 dim username, password, deviceid

 username = Request.Form("uid")

 password = Request.Form("pwd")

 deviceid = Request.Form("did")

 ' Create a new session.

 NewSession username, password, deviceid

 Server.Transfer("Schedule.asp")

%>

This ASP script retrieves the form variables and calls a VBScript procedure called NewSession , which we'll examine next.
Assuming we established a new session, we call an IIS 5.0-specific function, Server.Transfer. This function immediately
transfers control from the current ASP script to the ASP script named as an argument. This function is performed entirely on
the server side-there is no costly network redirection back to the client. For this reason, we use this feature heavily
throughout Ch6b .

Now, let's see how NewSession authenticates the user and creates a login session. Here is the function, which is
implemented in Security.asp :

function NewSession(uid, pwd, did)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 call CheckIP()

 dim obj

 set obj = Server.CreateObject("Ch6b.Session")

 if obj.Create(uid, pwd, did) <> 0 then Server.Transfer("Failure.asp")

 set NewSession = obj

end function

From NewSession, we call CheckIP , another VBScript function also in Security.asp , to ensure that the user is logging in
from a valid IP address. CheckIP simply screens out requests not originating from the Palm proxy servers.

function CheckIP()

 ' Validate the source IP address. Must be from Palm.Net!

 select case Request.ServerVariables("REMOTE_ADDR")

 case "63.97.179.2"

 case "206.112.114.81"

 case else

 Server.Transfer("Failure.asp")

 end select

end function

Remember that the Emulator IP addresses will reflect one of the Palm.Net development proxy servers. For debugging
purposes, you might also enter any local IP addresses you use when accessing the site with a traditional browser. (Of
course, you can also restrict access using the ASP Application Properties dialog from the IIS server console.)

After the IP address is validated, NewSession allocates an instance of our custom session object. We call the Create method
to log the user into the application. An unsuccessful login attempt results in the transfer to Failure.asp , which displays the
screen shown in Figure 6-14 . We use a generic error screen for simplicity, even though the Session object knows why the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

login attempt failed.

Figure 6-14. HTML output of Failure.asp

If the method completes successfully, a new row is inserted into the SQL database session table. At this point, the user is
authenticated, and Login.asp transfers control to Schedule.asp , which displays the current day's jobs, as shown in Figure 6-
15 .

Figure 6-15. HTML output of Schedule.asp

This simple but important screen is designed to show the highest-priority data quickly to the user. The code for
Schedule.asp is shown in Example 6-3 .

Example 6-3. Listing for Schedule.asp

<%@ Language=VBScript %>

<!-- #include file="_ScriptLibrary\Security.asp" -->

<%

 dim deviceid, objsession, ADO

 deviceid = Request.QueryString("did")

 if deviceid = "" then

 deviceid = Request.Form("did")

 end if

 set objsession = FindSession(deviceid)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if objsession.GetJobList(ADO) <> 0 then

 Server.Transfer("Error.asp")

 end if

%>

<html>

<head>

<title>Schedule</title>

<meta name="palmcomputingplatform" content="true">

<meta name="historylisttext" content="Schedule-&time">

</head>

<body>

Date: <%=datevalue(date)%>

<% if ADO.RecordCount = 0 then %>

No jobs scheduled for today.

<% else %>

<table border=1>

<tr><td>Time</td><td>C</td><td>Desc.</td><td>S</td></tr>

<% do while not ADO.EOF %>

<tr>

<td><a href="Customer.asp?did=%deviceid&cid=<%=ADO("CID")%>">

 <%=ADO("JobTime")%></td>

<td><%=ADO("JobCode")%></td>

<td><a href="JobInfo.asp?did=%deviceid&jid=<%=ADO("JID")%>">

 <%=ADO("Description")%></td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<td><%=ADO("JobStatus")%></td>

</tr>

<% ADO.MoveNext

 loop

%>

 </table>

<% end if %>

<hr>

Refresh

Codes

Status

</body>

</html>

Like all the ASP scripts in the application, we immediately retrieve the radio ID from the HTTP data. Because this script can
be accessed in two ways (directly from Ch6b.html , or by transfer from Login.asp), we check for the device ID in the Form
object first, and then in the Query object.

Once we get the device ID, we look up the user session, using the FindSession function in Security.asp . This function is
similar to NewSession . If this method fails-usually indicating that a session doesn't exist-we transfer control to Failure.asp
.

Now that the session is located, we use it to retrieve the user's jobs by calling the GetJobList method. This method is one of
several data-oriented methods (see Table 6-4). A production application wouldn't have data methods in the session security
object, but we have implemented it that way here for the sake of simplicity.

Table 6-4. Ch6b session data-oriented methods

Method Description

GetJobList Returns listing of jobs for current user

GetJobDetail Returns detailed information about a job

ChangeJob Updates details of a job

GetCustomerList Returns listing of all customers; managers only

The GetJobList method returns a disconnected ADO record set, which contains the daily job list:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Description

GetCustomerDetail Returns detailed information about a customer

The GetJobList method returns a disconnected ADO record set, which contains the daily job list:

if objsession.GetJobList(ADO) <> 0 then Server.Transfer("Error.asp")

Now we are ready to write the HTML data back to the client. As always, we start with the Palm metatags in the HTML
header to indicate proper formatting and to add this page to the WCA History list.

Most of the work in Schedule.asp is writing the job information out to a table, as we loop through the records in the ADO
record set. For efficiency, we display only the most critical fields to the user; the details of each customer appointment and
job are referenced by links such as the following:

<td><a href="Customer.asp?did=%deviceid&cid=<%=ADO("CID")%>">

 <%=ADO("JobTime")%></td>

This keeps the table small enough to display on the Palm screen and minimizes the amount of transmitted data. Note the
use of relative referencing in the hypertext link-again, we try to keep the links as small as possible.

We write the job code field and the job status field as abbreviated codes, not as verbose text strings. We provide local
HTML tables for the codes (see Figure 6-16), using the Palm-specific PQA addressing syntax:

Codes

Status

Figure 6-16. Codes.html

Had we used the full text string instead of the code, the table would have wrapped each row across two lines. There just isn't
enough space on the screen for that. Partitioning the application like this reduces the amount of transmitted data, and
increases the application response time. Accessing a local HTML page is very quick compared to the wireless network.

Our hypothetical field technician has now logged into the system and can review the jobs scheduled for the day. Selecting
the job description shows details about the job, and allows the user to update key information (see Figure 6-17).

Figure 6-17. HTML output of JobInfo.asp

GetCustomerDetail Returns detailed information about a customer

The GetJobList method returns a disconnected ADO record set, which contains the daily job list:

if objsession.GetJobList(ADO) <> 0 then Server.Transfer("Error.asp")

Now we are ready to write the HTML data back to the client. As always, we start with the Palm metatags in the HTML
header to indicate proper formatting and to add this page to the WCA History list.

Most of the work in Schedule.asp is writing the job information out to a table, as we loop through the records in the ADO
record set. For efficiency, we display only the most critical fields to the user; the details of each customer appointment and
job are referenced by links such as the following:

<td><a href="Customer.asp?did=%deviceid&cid=<%=ADO("CID")%>">

 <%=ADO("JobTime")%></td>

This keeps the table small enough to display on the Palm screen and minimizes the amount of transmitted data. Note the
use of relative referencing in the hypertext link-again, we try to keep the links as small as possible.

We write the job code field and the job status field as abbreviated codes, not as verbose text strings. We provide local
HTML tables for the codes (see Figure 6-16), using the Palm-specific PQA addressing syntax:

Codes

Status

Figure 6-16. Codes.html

Had we used the full text string instead of the code, the table would have wrapped each row across two lines. There just isn't
enough space on the screen for that. Partitioning the application like this reduces the amount of transmitted data, and
increases the application response time. Accessing a local HTML page is very quick compared to the wireless network.

Our hypothetical field technician has now logged into the system and can review the jobs scheduled for the day. Selecting
the job description shows details about the job, and allows the user to update key information (see Figure 6-17).

Figure 6-17. HTML output of JobInfo.asp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The code for JobInfo.asp is shown in Example 6-4 .

Example 6-4. Listing for JobInfo.asp

<%@ Language=VBScript %>

<!-- #include file="_ScriptLibrary\Security.asp" -->

<%

 dim deviceid, objsession, jobid, ADO

 deviceid = Request.QueryString("did")

 set objsession = FindSession(deviceid)

 jobid = Request.QueryString("jid")

 if objsession.GetJobDetail(jobid, ADO) <> 0 then

 Server.Transfer("Error.asp")

 end if

 ' Format date, time information from ADO

 dim datestr, timestr

 datestr = datevalue(ADO.Fields("JobTime").Value)

 timestr = timevalue(ADO.Fields("JobTime").Value)

%>

<html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<head>

<title>Job <%=jobid%> Info</title>

<meta name="palmcomputingplatform" content="true">

<meta name="historylisttext" content="Job Info-&time">

</head>

<body>

<form method="post" action="JobChange.asp" id=form1 name=form1>

<table border=1>

<tr><td>Name</td>

 <td><a href=" "Customer.asp?did=deviceid&cid=<%=ADO("CID")%>"><%=ADO("Name")%></td>

<tr><td>Code</td><td><%=ADO("JobCode")%></td>

<tr><td>Desc</td><td><%=ADO("Description")%></td>

<tr><td>Status</td>

 <td><input maxlength=2 name="status" value="<%=ADO("JobStatus")%>"></td>

<tr><td>Date</td>

 <td><input type="datepicker" name="date1" value="<%=datestr%>">

 <input type="timepicker" name="time1" value="<%=timestr%>"></td>

<tr><td>Remarks</td>

 <td><textarea name="remarks" cols=17 rows="2"><%=ADO("Remarks")%></textarea></td>>

</table>

<center><input type="submit" value="Update" id=submit1 name=submit1></center>

<input type="hidden" name="did" value="%deviceid">

<input type="hidden" name="jid" value="<%=jobid%>">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</form>

</body>

</html>

This ASP script first validates the user by looking up the session in the database, and then uses the Session object to
retrieve the details of the job. The unique job identifier and the radio device ID are passed in the query string.

Next, the date and time part of the appointment time are extracted, using the appropriate VBScript functions:

datestr = datevalue(ADO("JobTime"))

timestr = timevalue(ADO("JobTime"))

After writing the standard header information, we create a form and write out the input fields. The HTML layout routines in
the WCA viewer are not as powerful as those on the desktop, so we prefer to place a form's fields within a table. This results
in better alignment of input fields.

Palm's version of HTML 3.2 provides two special input types that are useful for editing dates and times: datepicker and
timepicker . It is easy to use these types. Just set their values to the date and time strings retrieved from the database
earlier:

<td><input type="datepicker" name="date1" value="<%=datestr%>">

 <input type="timepicker" name="time1" value="<%=timestr%>"></td>

These input types correspond to the Palm OS native date and time user interface elements, which will be very familiar to
Palm users. These user interface elements also force the entry of valid data, so error handling in the ASP application is
simplified.

We must store the device ID and job ID as hidden fields on the form, so that we can later validate the post request on the
web server:

<input type="hidden" name="did" value="%deviceid">

<input type="hidden" name="jid" value="<%=jobid%>">

After the user has made any changes to the job details, such as changing the status from SC-scheduled-to FI-finished,
pressing the submit button posts the form data to the IIS server.

On the server, the form data is passed to JobChange.asp (see Example 6-5), which is responsible for updating the
database with the new information.

Example 6-5. Listing for JobChange.asp

<%@ Language=VBScript %>

<!-- #include file="_ScriptLibrary\Security.asp" -->

<%

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dim deviceid, objsession, jobid, dictionary

 deviceid = Request.Form("did")

 set objsession = FindSession(deviceid)

 jobid = Request.Form("jid")

 set dictionary = server.CreateObject("Scripting.Dictionary")

 dictionary.Add 0, Request.Form("status")

 dictionary.Add 1, Request.Form("date1")

 dictionary.Add 2, Request.Form("time1")

 dictionary.Add 3, Request.Form("remarks")

 if objsession.ChangeJob(jobid, dictionary) <> 0 then

 Server.Transfer("Error.asp")

 end if

 Server.Transfer("Schedule.asp")

%>

After validating the user session, the script collects the form parameters into a standard Dictionary object, and calls the
ChangeJob method. This method updates the SQL database row with the information supplied by the user. If the method
fails, then control is passed to Error.asp . If the method succeeds, then control is passed to Schedule.asp , where the user
sees an updated job list.

Let's go back to our main job screen and see what happens when the field user selects the job time from the appointment
list. This link calls Customer.asp to produce the customer detail screen shown in Figure 6-18 .

Figure 6-18. HTML output of Customer.asp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Customer.asp retrieves and displays information about the customer whose database record identifier is supplied in the
query parameter. This includes the customer's name, address, phone number, and remarks. The code for Customer.asp is
shown in Example 6-6 .

Example 6-6. Listing for Customer.asp

<%@ Language=VBScript %>

<!-- #include file="_ScriptLibrary\Security.asp" -->

<%

 dim objsession, ADO

 set objsession = FindSession(Request.QueryString("did"))

 if objsession.GetCustomerDetails(Request.QueryString("cid"), ADO) <> 0 then

 Server.Transfer("Error.asp")

 end if

%>

<html>

<head>

<title>Customer Info</title>

<meta name="palmcomputingplatform" content="true">

<meta name="historylisttext" content="Customer-&time">

</head>

<body>

<table border=1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<tr><td>Name</td><td><%=ADO("Name")%></td>

<tr><td>Address</td><td><%=ADO("Address")%></td>

<tr><td>Phone</td><td><%=ADO("Phone")%></td>

<tr><td>Remarks</td><td><%=ADO("Remarks")%></td>

</body>

</html>

This completes our presentation of the field technician portions of Ch6b .

We have one more area of the application to review-the manager's page. This page contains links to several reports not
available to employees. Manager.html is shown in Figure 6-19 . The page contains links to several ASP scripts, which return
tabular report data to the Palm VII device.

Figure 6-19. Manager.html

It is very important to limit the size of each report, and therefore the amount of data transmitted to the device. We have
implemented a very simple paging strategy to handle even short reports-the Palm will scroll after only a half dozen table
entries.

The following code is attached to the customer report link in Manager.html :

Customers

Notice that this hypertext link contains a query parameter of pag , which is initially set to one. This will start our report at the
first page; from then on, we will manage pagination within the ASP script.

Let's look at the customer report, which is shown in Figure 6-20 . Notice the page count in the first line, and the Next button
at the end of the report.

Figure 6-20. HTML output of AllCust.asp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Our strategy is based on simple properties of the ADO record object: the page size, count, and absolute position. In ADO,
the page size can be set before a query is executed. After the data is returned, you position the record set to the desired
page and print the report.

We will examine snippets of AllCust.asp to see exactly how we page through the data. After creating the Session object (not
shown), we limit access to the report to managers.

if objsession.Manager() = 0 then

 Server.Transfer("Failure.asp")

end if

Next, we initialize the page from the query string, and call the Session object's GetCustomerList method:

size = 5

page = CInt(Request.QueryString("pag"))

if objsession.GetCustomerList(page, size, ADO) <> 0 then

 Server.Transfer("Error.asp")

end if

The method parameters ask that the report start at the supplied value, and the ADO page size is five records. When the
method returns, the ADO record set is positioned to the requested page-page one for the first execution of this ASP script.

As we write the report, it's simple to use properties of the ADO record set to display the current page and size of the report.

Page <%=page%> of <%=ADO.PageCount%>

The body of the report is a simple loop that prints each record in the page.

<% record = 1

 do while not ADO.EOF and record <= ADO.PageSize%>

...

<% ADO.MoveNext

 record = record + 1

 loop %>

After the report body, we display the Prev button if the current page is not the first page.

<% if page > 1 then %>

<a href="AllCust.asp?did=%deviceid&pag=<%=page-1%>" button>Prev

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<% end if %>

Note the useful Palm HTML extension-the button keyword-that turns a hypertext link into a button. We display the Next
button if the current page is not the last page.

<% if page < ADO.PageCount then %>

<a href="AllCust.asp?did=%deviceid&pag=<%=page+1%>" button>Next

<% end if %>

This simple paging scheme is adequate for our sample project, but will not scale for a production application. You will need
to investigate which paging solution works best with your database and display requirements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4 Palm OS 4.0

Palm has recently made changes to its Web Clipping architecture that have been incorporated into the
Palm OS version 4.0. Fortunately, none of the fundamentals have changed-everything we built in this
chapter still works and the design principles are unaltered. Instead, Palm has added features that simplify
developing an application, and that make the delivered application more powerful.

Many of the changes recognize that wireless applications are not hosted only on the Palm VII. In addition to
the wireless attachments offered by other vendors, there is the Palm Mobile Internet Kit (MIK), which allows
Palm OS devices to access Clipping applications using standard modems or cellular phones. The WCA
viewer in Palm OS 4.0 supports color screens. In addition, there are changes that enable an application to
determine other device capabilities, such as pixel depth of the Palm PDA screen in use.

One important change is that devices using the MIK do not necessarily have a unique radio ID like the Palm
VII has. Instead, the Palm device forwards its serial number to the proxy server and then to your web site.
Unfortunately, not all Palm devices have serial numbers! If you want the strong authentication we described
earlier, and you have to support access via devices without serial numbers, you will have to encode
something into the PQA itself.

The WCA viewer and Palm OS 4.0 now support cookies. Besides providing application state, cookies can
often provide authentication. And the WCA viewer also scrolls images that are wider than the earlier
limitation of 153 pixels.

Finally, the proxy server and the WCA viewer for Palm OS 4.0 support text compression using the LZ-77
algorithm. This is enabled automatically for WCA applications. This capability is available with earlier
releases of the Palm OS, but the compression libraries have to be installed by hand.

6.4.1 Database Download

A new hypertext link type-PalmBinary -supports the binary download of applications and databases. The
following HTML listing is a very simple WCA program to download an application:

<html>

<head>

<meta name="PalmComputingPlatform" content="true">

<title>Download</title>

</head>

<body>

<h1>Download PQA</h1>

This application downloads a PQA file from the web server to the Palm handheld.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This feature of Palm OS 4.0 is sure to be a winner!

<hr>

Download PQA

</body>

Compile this HTML code into a Clipping application and install it on the Palm device. Selecting the link
causes Ch6a.pqa to be downloaded into the Palm device and registered as an application. This process is
shown in Figure 6-21 .

Figure 6-21. WCA viewer downloading Ch6a.pqa

This very powerful feature of the new Clipping application supports the distribution of applications over
wireless and dial-up networks with a single link.

6.4.2 Additional Metatags and Keywords

Table 6-5 describes the additional metatags recognized by the WCABuild application or the WCA viewer
program. The new tags provide more flexibility in detecting the device on which an application is running
and the features that are available.

Table 6-5. Additional Palm-specific metatags in OS 4.0

Metatag Meaning

PalmDoNotCache
Causes the WCA viewer not to cache the clipping; useful for sensitive data like
credit card numbers

PalmHREFStyle Causes the proxy server to send full links or indexes to the handheld

PalmPostEncoding
Causes the WCA viewer to format posted data in the specified format (code
page)

PalmPQAVersion
Specifies the minimum version of the WCA viewer required to run an
application

PalmPQABitDepth Causes the WCABuild program to translate images to the indicated pixel depth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Metatag Meaning

PalmLargeIconFilename
Causes the WCABuild program to use the specified file as the large icon,
overriding the default

PalmSmallIconFilename
Causes the WCABuild program to use the specified file as the large icon,
overriding the default

The Palm OS 4.0 version of the WCA viewer recognizes the PalmHREFStyle metatag, which instructs the
proxy server not to hash the hypertext link. This tag is obsolete, however, since the newest releases of the
proxy server no longer index links.

Table 6-6 describes the additional keywords expanded by the proxy server.

Table 6-6. Additional Palm.Net keywords in OS 4.0

Keyword Meaning

%Location International geographic location of radio, including locale and country. Palm OS 4.0 only.

%WCDevCaps
Device capabilities of Palm, such as color screen or operating system memory. Palm OS 4.0
only.

The Location keyword expands into country, state, city, and local province-positioning Palm for global
use. Be aware that the location is only available when using radio devices that communicate with a cellular
tower. This keyword is empty when using a normal modem on a Palm device.

The device capability string encodes all sorts of information about the connecting Palm handheld-the
screen configuration, the version of Palm OS on the device, and even how much global and heap memory
is available. The string format-a sequence of hexadecimal characters such as 87708400 -is interpreted
as a sequence of bits, as shown in Table 6-7 .

Table 6-7. Bit encoding for the %WCDevCaps string

Bits Meaning

0-4 Screen pixel depth

5-6 Reserved

7 LZ-77 compression available

8-11 Radio network

12-15 Free memory

16-20 Palm OS version

21-23 Heap size

Here is a very simple HTML page that passes the %WCDevCaps keyword to the web server:

PalmLargeIconFilename
Causes the WCABuild program to use the specified file as the large icon,
overriding the default

PalmSmallIconFilename
Causes the WCABuild program to use the specified file as the large icon,
overriding the default

The Palm OS 4.0 version of the WCA viewer recognizes the PalmHREFStyle metatag, which instructs the
proxy server not to hash the hypertext link. This tag is obsolete, however, since the newest releases of the
proxy server no longer index links.

Table 6-6 describes the additional keywords expanded by the proxy server.

Table 6-6. Additional Palm.Net keywords in OS 4.0

Keyword Meaning

%Location International geographic location of radio, including locale and country. Palm OS 4.0 only.

%WCDevCaps
Device capabilities of Palm, such as color screen or operating system memory. Palm OS 4.0
only.

The Location keyword expands into country, state, city, and local province-positioning Palm for global
use. Be aware that the location is only available when using radio devices that communicate with a cellular
tower. This keyword is empty when using a normal modem on a Palm device.

The device capability string encodes all sorts of information about the connecting Palm handheld-the
screen configuration, the version of Palm OS on the device, and even how much global and heap memory
is available. The string format-a sequence of hexadecimal characters such as 87708400 -is interpreted
as a sequence of bits, as shown in Table 6-7 .

Table 6-7. Bit encoding for the %WCDevCaps string

Bits Meaning

0-4 Screen pixel depth

5-6 Reserved

7 LZ-77 compression available

8-11 Radio network

12-15 Free memory

16-20 Palm OS version

21-23 Heap size

Here is a very simple HTML page that passes the %WCDevCaps keyword to the web server:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<html>

<head>

<meta name="palmcomputingplatform" content="true">

<title>Ch6d Home</title>

</head>

<body>

Use this feature of

Palm OS 4.0 Web Clipping to see the capabilities of your Palm device.

</body>

</html>

This HTML page uses a simple query variable-named cap -to hold the device capabilities value. When
the user presses the link, control is passed to an ASP script on the server. The code for Colors.asp is
shown in Example 6-7 .

Example 6-7. Listing of Colors.asp

<%@ Language=VBScript %>

<% Response.Expires = -1 %>

<%

 strCaps = Request.QueryString("caps")

 strTemp = Left(strCaps, 2)

 While Len(strTemp) > 0

 C = Mid(strTemp, 1, 1)

 If C <= "9" And C >= "0" Then

 D = Asc(C) - Asc("0")

 Else

 D = 10 + Asc(UCase(C)) - Asc("A")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

 lngVal = (lngVal * 16) + D

 strTemp = Right(strTemp, Len(strTemp) - 1)

 Wend

 If (lngVal And &H1F) <= 7 Then

 isColor = False

 Else

 isColor = True

 End If

%>

<html>

<head>

<title>WCA OS 4.0</title>

<meta name="palmcomputingplatform" content="true">

</head>

<body>

The raw capabilities string is <%=strCaps%>.Only the first 6 hex

bytes are valid.<hr>

According to this string, this device

<% if isColor then %>

DOES support color!

<% else %>

does not support color.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<% end if %>

</body>

</html>

A fair amount of code is dedicated to converting the hexadecimal-formatted input string into a number. In
this case, we are only interested in the 5 bits used to represent the capabilities of the screen, so we peel off
the leftmost 2 characters (each hex character holds 4 bits).

strTemp = Left(strCaps, 2)

Once these two characters are converted to an integer, we mask off the low 5 bits we are interested in, and
test the value like this:

If (lngVal And &H1F) <= 7 Then

Any value above 7 indicates color. Values of 7 and below indicate a monochrome display. You will have to
change the code listed above to get at the other device properties, by indexing into different parts of the
string and masking off different bits.

Bits 0-7 from Table 6-7 (shown previously in this section) are in the first two hex
characters of the string. Bits 8-15 are in the second two characters, and bits 16-24
are in the third two characters. Currently, the final two characters of the string are
unused.

Output is formatted according to the capabilities of the device, and displayed as shown in Figure 6-22 . This
example used a Palm m500 with Palm OS 4.0, connecting to a web server using the MIK.

Figure 6-22. HTML output of Colors.asp

You can now use the isColor variable in an ASP script to set the foreground and background colors for
those HTML elements that accept color. According to the Palm documentation, you must use colors from
the Netscape web-safe color palette.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5 Resources

There are many resources available for the Web Clipping developer. The online resources are especially
useful because this area of the Palm is evolving very quickly. We have mentioned the proxy server status
page several times: http://oasis.palm.com/dev/proxy/. Palm posts fast-breaking news here first.

The two primary developer resources are the Web Clipping Guide and the help file distributed with the
WCA Builder application, available from the Palm developer home page at http://www.palmos.com. These
guides provide in-depth reference material for the developer of wireless applications.

The original white paper on the Palm VII and the Palm.Net wireless service and data centers is
http://www.palm.com/pr/palmvii/7whitepaper.pdf.

Finally, there are two email forums available. One forum has announcements from Palm about the proxy
server status; the other is a developer forum. Details on joining and using the email services are on the
Palm developer home page.

http://oasis.palm.com/dev/proxy/.
http://www.palmos.com
http://www.palm.com/pr/palmvii/7whitepaper.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part III: Advanced Topics

Chapter 7

Chapter 8

Chapter 9

Chapter 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Operating System Access

Some things are not easily done in Visual Basic, and this is especially true when using VB on the Palm.
This chapter and the following chapters show how to program around the limits of the VB language, either
by using the resources of the Palm operating system or by developing reusable components.

You will recall from our discussion in Chapter 3 that AppForge provides many Palm OS features as a
library of functions. In this chapter, we'll look at how to call into the operating system to access features not
exposed by the standard AppForge library. And we'll build an extended example that uses encryption
features in the Palm operating system to secure application data or database records from prying eyes.

In VB for the Windows desktop, accessing OS functions is straightforward once you know a few simple
facts about the subroutine or function you want to call. The information needed-the function name and
result type, the DLL in which the function resides, and the number and type of any arguments-is easily
obtained from the Microsoft Platform SDK.

For example, to retrieve the name of a logged-on Windows user, you might add the following declaration
to any VB form or module:

Declare Function GetUserName Lib "advapi32.dll" (ByVal Buf as String,_

 ByRef Size as Long) as Long

Now, it is possible to call the function as if it were a built-in VB function. There are some issues, such as
passing strings and memory between VB and C/C++, but these are generally well documented.

Unfortunately, things are not so simple when using the AppForge version of VB. Accessing a Palm OS
function requires a lot more work than simply understanding the syntax of the Declare statement. This is
because AppForge didn't build support into the Booster runtime engine to provide this access directly.

You have to understand the Palm inter-process communication (IPC) model to see why AppForge didn't
provide this support. On Windows, the IPC mechanism is usually either the Component Object Model
(COM) or function export from a dynamic library. In general, the VB runtime handles marshaling-copying
and translating-the data between the different components.

On the Palm, IPC is handled by sending a special launch code to an application. The receipt of the launch
code signals the target application to perform the required function. The caller might also pass an
application-specific data structure to the target application. Any parameter copying or
translation-especially for return values-must be handled directly by the programmer through this data
structure.

Because the Palm operating system is single-threaded, this is a natural mechanism: stop the current
application, and start the called application. When done, return to the original process.

The AppForge Extensibility library provides a way to send launch codes to a C/C++ application, and to
pass parameters within VB data structures you define. AppForge calls such an application a f use r -and
gives the application a special type (FUSR). The fuser application, in turn, can call any native operating
system function or third-party application on the Palm.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Extensibility library is only available as a feature of the AppForge Professional
edition. You must have the Professional edition to call the Palm operating system
using the techniques we cover in this chapter.

When writing a fuser to access the operating system, as we do in this chapter, it is easy to define the
launch codes and parameters needed to do the job. This can be more difficult if the fuser is to access
functionality in another application. [1]

[1] Applications developed in C/C++ rarely publish their launch codes or parameters. You must have access to the source code to figure out

how to call these applications. The Palm application source code is available as part of the Palm OS SDK.

Although this seems inefficient, consider the Palm mantra to do only what is absolutely required. AppForge
places this burden only on those applications that need this additional functionality-not on every Palm
that has the Booster runtime. And because every application is resident in memory, calling an application
with a launch code is not as expensive as it initially seems.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1 Fuser Mechanics

In this section, we build a simple AppForge application and a C/C++ fuser to set and retrieve features. A
feature is a persistent 32-bit data value that the Palm operating system maintains. [2] Features are set,
retrieved, or changed through calls to the operating system.

[2] Other operating systems have similar mechanisms. The corresponding Windows system mechanisms are global atoms and shared

memory. Palm also has feature memory, which we'll explore later in the chapter

Since Palm applications cannot access conventional global variables when processing launch codes,
fusers cannot access them either. Using features is one possible solution to this problem.

Features provide a simple way to share small amounts of information between applications. C/C++
applications running on the Palm do not always have access to global variables, while a feature is always
available. These applications can use feature memory as a cache to store global information. Features are
not automatically removed when your application is deleted, so you should exercise caution when using
them. They are, however, removed when the device is reset (hard or soft).

You can also use features to pass parameters between AppForge applications, which is normally hard to
do because the Booster doesn't provide access to any command or launch parameters. Your applications
just need to agree upon a name for the feature, and what each feature ID and value means. All your
applications can share one fuser application to set and retrieve parameters.

7.1.1 CallApp Interface

Our VB application-FtrApp -- has a simple interface that allows the user to set and retrieve feature values
(see Figure 7-1). There are other feature functions in the Palm OS, but we don't use them in this
introductory application.

Figure 7-1. Feature application user interface

While FtrApp handles the display chores, it relies on our C/C++ fuser-FtrFuser -- to do the heavy work.
You include a reference to the AppForge Extensibility library (afPalmOS.dll) in your VB project to access
library functions in a fuser. A call to the fuser application has the following general form:

Function CallApp(AppName, LaunchCommand, [ParameterBlock]) As Boolean

Table 7-1 lists the parameters to this function.[3]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[3] There is another function in afPalmOS.dll, called LaunchApp, which exits the current application and starts another one. You provide the

application to launch as a parameter. LaunchApp is not discussed in this chapter.

Table 7-1. CallApp Parameters

Name Type Purpose

AppName String Fuser application to invoke. This must be a PRC file with type FUSR.

LaunchCommand Long Constant that directs the fuser to take some specific action.

ParameterBlock Long
Address of a user-defined data structure containing additional arguments.
Optional parameter; 0 by default.

Note that the ParameterBlock variable's structure type is often different for each launch code. The address
of this variable is obtained using the VarPtr function. The function returns True if the application is found; it
returns False otherwise.

There is a very tight coupling between the application and the fuser-they share a binary interface that is
fixed when the programs are compiled. This raises an important design question: how much functionality
should be in the VB application and how much should be in the fuser? This is an open issue, but since this
book is about VB, we code as much as possible in VB. Developing a fuser in C/C++ results in an
additional component to be coded, tested, supported and deployed. You should be absolutely certain that
your application needs this functionality before designing it into your application.

7.1.2 Data Access

Table 7-2 shows how the VB types map to native C/C++ types in a fuser. Except for the String and Date
types, the C/C++ types correspond to Visual Basic's underlying representation.

Table 7-2. Visual Basic and C/C++ data type mappings

Visual Basic type Size C/C++ type

Byte 1 byte unsigned char (1 byte)

Boolean 2 bytes unsigned char (1 byte)

Integer 2 bytes short (2 bytes)

Long (long integer) 4 bytes long (4 bytes)

Single (single-precision floating-point) 4 bytes float (4 bytes)

Double (double-precision floating-point) 8 bytes double (8 bytes)

String Variable unsigned long (AFString pointer)

Currency (scaled 64-bit integer) 8 bytes signed long long int (8 bytes)

Strings are mapped to an AFString pointer. AppForge uses the AFString type to store strings within its
VM. Likewise, Dates are mapped to an AFDate pointer. Each pointer is stored as an unsigned long in the
fuser.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic type Size C/C++ type

Date 8 bytes unsigned long (AFDate pointer)

Strings are mapped to an AFString pointer. AppForge uses the AFString type to store strings within its
VM. Likewise, Dates are mapped to an AFDate pointer. Each pointer is stored as an unsigned long in the
fuser.

You must use the Fuser SDK, which comes with AppForge, to convert between these types and native
C/C++ types. The SDK is located in the Platforms\PalmOS\FuserSDK subdirectory of the AppForge
installation directory. The AFFuserGlue.h header file contains functions for working with these types.
There are also libraries for linking into your fuser using CodeWarrior or PRC-Tools.

You can convert strings using these two functions:

MemHandle AFStringToMemHandle(UInt32 AFString)

Extracts an ANSI string from an AFString
Err MemHandleToAFString(MemHandle mhString, UInt32* pAFString)

Assigns the contents of a MemHandle to an AFString

Of course, you need to allocate and free memory as necessary when using these functions. For example,
assume a VB application calls a fuser to retrieve the name of a database. You might declare VB and
C/C++ types like these:

//VB type declaration

Public Type dbNameType

 dbName As String ' IN parameter

End Type

//C/C++ type declaration

#define DB_NAME_LEN 256

typedef struct tag_DBName

{

 UInt32 dbName; // OUT parameter

} DBName;

In the PilotMain routine for handling the getDBName command, we free the incoming string before allocating
memory for, and assigning, the return value.

Date 8 bytes unsigned long (AFDate pointer)

Strings are mapped to an AFString pointer. AppForge uses the AFString type to store strings within its
VM. Likewise, Dates are mapped to an AFDate pointer. Each pointer is stored as an unsigned long in the
fuser.

You must use the Fuser SDK, which comes with AppForge, to convert between these types and native
C/C++ types. The SDK is located in the Platforms\PalmOS\FuserSDK subdirectory of the AppForge
installation directory. The AFFuserGlue.h header file contains functions for working with these types.
There are also libraries for linking into your fuser using CodeWarrior or PRC-Tools.

You can convert strings using these two functions:

MemHandle AFStringToMemHandle(UInt32 AFString)

Extracts an ANSI string from an AFString
Err MemHandleToAFString(MemHandle mhString, UInt32* pAFString)

Assigns the contents of a MemHandle to an AFString

Of course, you need to allocate and free memory as necessary when using these functions. For example,
assume a VB application calls a fuser to retrieve the name of a database. You might declare VB and
C/C++ types like these:

//VB type declaration

Public Type dbNameType

 dbName As String ' IN parameter

End Type

//C/C++ type declaration

#define DB_NAME_LEN 256

typedef struct tag_DBName

{

 UInt32 dbName; // OUT parameter

} DBName;

In the PilotMain routine for handling the getDBName command, we free the incoming string before allocating
memory for, and assigning, the return value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)

{

 Err errVal = 0;

 switch(cmd)

 {

 case getDBName:

 {

 DBName *ptr = (DBName *)cmdPBP;

 Char *pdbName;

 //Extract incoming string

 MemHandle hdbName = AFStringToMemHandle(ptr->dbName);

 //Free incoming string if allocated

 if(hdbName != NULL)

 MemHandleFree(hdbName);

 //Allocate memory for return string

 hdbName = MemHandleNew(DB_NAME_LEN);

 pdbName = (Char *)MemHandleLock(hdbName);

 StrCopy(pdbName, "db_name");

 //Assign return string

 errVal = MemHandleToAFString(hdbName, &(ptr->dbName));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MemPtrUnlock(pdbName);

 }

 break;

 default:

 return 1;

 }

 return errVal;

}

You can convert dates using these four functions:

UInt32 AFDateToSeconds(UInt32 AFDate)

Converts an AFDate to the number of seconds since 1/1/1904
Err AFDateToDateTime(UInt32 AFDate, DateTimePtr pDateTime)

Converts an AFDate to a Palm DateTime structure
Err SecondsToAFDate(UInt32 seconds, UInt32* pAFDate)

Converts seconds since 1/1/1904 to an AFDate
Err DateTimeToAFDate(DateTimePtr pDateTime, UInt32* pAFDate)

Converts a Palm DateTime structure to an AFDate

You also need to be careful when using Boolean values within a fuser. In Visual Basic, a Boolean True is
stored as -1, and False is stored as 0. Since a Boolean is stored as an unsigned char on the Palm, -1 is
stored as decimal 255, or 0xFF, and 0 is stored as decimal 0, or 0x00. If your fuser requires a unique true
or false value, you must first convert the value before using it:

Boolean bValue;

//... bValue passed into fuser from VB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//Convert bValue to true or false

if(bValue)

 bValue = true;

else

 bValue = false;

//Call some function requiring a uniquely true or false value

someVoidFunction(bValue);

7.1.3 Launch Codes and Parameters

In this section, we create our interface to the fuser application, and then call it from the VB form shown
earlier in Figure 7-1. This project is contained in Features.vbp, and is available on this book's web site.
The project consists of a single form, Features.frm, which contains all the source code in this section.

First, we create a constant for our fuser name:

Const FuserName As String = "FtrFuser"

Next, we define three launch codes to tell the fuser which function we wish to execute. The first launch
code retrieves the value of a feature; the second sets its value; and the third allows us to remove the
feature value from the Palm device memory.

Const GetFtrValue = 32768 + 0

Const SetFtrValue = 32768 + 1

Const ClearFtrValue = 32768 + 2

Palm has reserved launch codes in the range 0 to 32767, so our codes start at 32768.

Finally, we define a data structure with the information required to access feature memory: the application
creator and the feature identifier. There is also a data field to hold the feature value itself.

Type FtrData

 CreatorId as Long

 FeatureId as Integer

 FeatureVal as Long

End Type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Of course, this data structure will be different for each kind of operating system call or function to be
executed. We used the Palm OS Reference to find the function calls and parameters needed to access
feature values, and to make certain our data type had fields for all the necessary information.

The code shown in Example 7-1 can retrieve an existing feature value. This code is executed when the
user presses the Get button.

Example 7-1. Listing for BtnFtr_Get_Click

Private Sub BtnFtr_Get_Click()

 Dim Buffer As FtrData

 Buffer.CreatorId = Str2Long(txtCreator.Text)

 Buffer.FeatureId = CInt(txtFeature.Text)

 If afPalmOS.CallApp(FuserName, GetFtrValue, VarPtr(Buffer)) = False Then

 MsgBox "CallApp(" + FuserName + "-Get) Failed!"

 Else

 txtValue.Text = Buffer.FeatureVal

 End If

End Sub

First, we transfer values from the Creator ID and Feature ID text fields to the FtrData structure. These text
fields were shown earlier in Figure 7-1. We coded a special function, Str2Long, which converts a string to
a numeric Creator ID. We'll look at this function later.

The call to the fuser returns False if application is not found, or if the fuser application exits with a non-
zero code; otherwise, it returns True. The driver program displays the message box shown in Figure 7-2 if
an error occurs.

Figure 7-2. Error accessing fuser application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's look closely at the actual call through the AppForge afPalmOS extensibility library to the fuser
application:

RC = AfPalmOS.CallApp(FuserName, GetFtrValue, VarPtr(Buffer))

Note the use of the VarPtr function to pass the data structure's address. It is very important to pass the
data by reference to the fuser application-in C/C++, this means supplying a pointer to the data buffer's
location. Because the fuser is passed the address of the buffer, instead of a copy, the fuser is able to
return results by modifying fields in the variable.

If our call to the fuser application succeeds, we update the feature value text field with the result.
Otherwise, we display a very simple error string using a message box.

As mentioned earlier, the Str2Long function is used to convert the string entered in the screen text field to
a VB long integer. If the user keys in DEMO, then the function returns 1145392463. Let's look at Str2Long:

Private Function Str2Long(ByVal Str As String) As Long

 Dim total As Long

 total = Asc(Mid(Str, 4, 1))

 total = total + (Asc(Mid(Str, 3, 1)) * (2 ^ 8))

 total = total + (Asc(Mid(Str, 2, 1)) * (2 ^ 16))

 total = total + (Asc(Mid(Str, 1, 1)) * (2 ^ 24))

 Str2Long = total

End Function

The function converts each character in the string into its ASCII decimal equivalent-for example, 'A' is 65.
Then the number is multiplied according to its position in the string, effectively shifting that number left by a
specified power of two. The sum of these conversions is the numeric Creator ID.

The code for setting a feature value is very similar, and is run when the user clicks on the Set button (see
Example 7-2).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 7-2. Listing for BtnFtr_Set_Click

Private Sub BtnFtr_Set_Click()

 Dim Buffer As FtrData

 Buffer.CreatorId = Str2Long(txtCreator.Text)

 Buffer.FeatureId = CInt(txtFeature.Text)

 Buffer.FeatureVal = CLng(txtValue.Text)

 If afPalmOS.CallApp(FuserName, SetFtrValue, VarPtr(Buffer)) = False Then

 MsgBox "CallApp(" + FuserName + "-Set) Failed!"

 End If

End Sub

Because we need to pass the user-supplied value into the fuser, we set the feature value field in the buffer
to the value entered on the screen:

Buffer.FeatureVal = CLng(TxtValue.Text)

Of course, we call the C/C++ fuser using the SetFtrValue launch code, which indicates we want to set a
feature value.

Finally, here is the code for clearing a feature value:

Private Sub BtnFtr_Clear_Click()

 Dim Buffer As FtrData

 Buffer.CreatorId = Str2Long(txtCreator.Text)

 Buffer.FeatureId = CInt(txtFeature.Text)

 If afPalmOS.CallApp(FuserName, ClearFtrValue, VarPtr(Buffer)) = False Then

 MsgBox "CallApp(" + FuserName + "-Clear) Failed!"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

End Sub

This completes our VB interface and driver. This project compiles to a sample driver, Features.prc. You
don't need to install it yet, because it won't work without the C/C++ fuser application, which we develop in
the next section.

7.1.4 A Simple Fuser

Now let's see how the C/C++ fuser application calls the operating system to manipulate features. We have
implemented our fuser application using the Metrowerks CodeWarrior compiler. [4] Projects in CodeWarrior
consist of a project file (MCP) and the associated C/C++ source code files. Our fuser project file is
FtrFuser.mcp.

[4] Fuser applications can also be implemented using the GNU suite of C/C++ tools. Although the source code for our fuser application can

be compiled under GNU, using these command-line tools is beyond the scope of this book.

Almost all error handling has been removed from this example to make it easy for a
VB programmer to follow the C/C++ code.

There is only one source code file in our project: FtrFuser.c. First, we include the necessary C/C++ header
files for compiling on the Palm and accessing the feature manager:

#include <PalmOS.h>

#include <FeatureMgr.h>

Then we define an enumeration type with the possible launch codes:

typedef enum

{

 GetFtrValue = 32768,

 SetFtrValue,

 ClearFtrValue

}

FeatureCodes;

We made the enumeration value names the same as those in the VB application, for clarity, even though
this is not necessary. Next, we define a data structure to mirror the VB parameter data structure:

typedef struct

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{

 UInt32 CreatorId;

 UInt16 FeatureId;

 UInt32 FeatureVal;

}

FtrData;

Again, we make the structure field names the same between C/C++ and VB for consistency. This is a
good design practice whenever two or more applications are linked-even if it makes for boring code. It is
critical that the size and layout of this data structure exactly match the one declared in VB. The AppForge
knowledge base has an article that explains how to match up the data types. (The fuser application must
be compiled with data structures aligned on four-byte boundaries as well. We discuss this later in this
chapter.)

Every C/C++ application for the Palm must have a startup function called PilotMain. This function always
takes the three parameters shown in Table 7-3. As indicated in the table, the first two parameters are
supplied by the VB application to the CallApp function, and then passed to the fuser.

Table 7-3. PilotMain parameters

Name Type Purpose

Cmd Integer Command supplied by caller

CmdPBP Pointer Address of parameter structure supplied by caller

LaunchFlags Integer Flags supplied by Palm OS indicating startup mode; e.g., alarm triggered

Like all C/C++ applications, the main routine returns an integer to the caller. This return code is eventually
passed back to the VB application as a Boolean value, where it indicates success or failure.

Because FtrFuser is so straightforward, we have put all the application functionality into the single main
routine, as shown in Example 7-3.

Example 7-3. Listing for PilotMain

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)

{

 Err RC;

 FtrData *ptr = (FtrData *)cmdPBP;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 switch(cmd) {

 case GetFtrValue:

 RC = FtrGet(ptr->CreatorId, ptr->FeatureId, &(ptr->FeatureVal));

 break;

 case SetFtrValue:

 RC = FtrSet(ptr->CreatorId, ptr->FeatureId, ptr->FeatureVal);

 break;

 case ClearFtrValue:

 RC = FtrUnregister(ptr->CreatorId, ptr->FeatureId);

 break;

 default:

 return 1; // Hmmm. Called incorrectly, so return failure.

 }

 return RC;

}

This function is quite simple. First, it retrieves the data structure, and then it calls the proper operating
system feature function. If indicated, it stores the feature value in the structure. In all cases, the function
returns a status code to the caller.

We retrieve the data structure by casting the memory address in cmdPBP to a pointer to our application-
specific data structure:

FtrData *ptr = (FtrData *)cmdPBP;

The command code is evaluated using a case statement, which transfers control to the appropriate code
label. For example, the fragment shown below is ultimately executed from the VB function
btnGetFeature_Click:

switch(cmd) {

case GetFtrValue:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RC = FtrGet(ptr->CreatorId, ptr->FeatureId, &(ptr->FeatureVal));

The Palm OS routine FtrGet uses the creator and feature identifiers to look up the feature value. If the OS
routine finds the feature, it stores the value in our data structure FeatureVal field and returns zero. We
pass the address of FeatureVal, since FtrGet expects a reference parameter.

We immediately return an error if the caller supplies an invalid command code:

default:

 return 1; // Hmmm. Called incorrectly, so return failure

}

Otherwise, we return the result code from the Palm OS feature function call:

 return RC;

}

Before building the fuser application, you must change the following compiler switches, which are located
on the project settings dialog:

Change the structure alignment from the default to 68K 4-byte alignment. Do this on the Code
Generation 68K Processor tab.

1.

Change the database type from the default appl to FUSR. Do this on the Linker PalmRez Post
Linker tab.

2.

After you have made these changes, compile the fuser application into a PRC file and install it onto the
Palm.

This completes both the VB and C/C++ portions of our simple fuser demonstration. Remember that you
must install both the application and the fuser on the Palm device to run this demonstration.

Test the application-use it to set, query, and remove integer feature values. Exit the application, and start
it again. Any features from the last session should still be present. To erase features, do a soft reset on the
device.

There is another Palm API call-FtrGetByIndex-that enumerates feature values on the Palm device. If
you suspect that your Palm device memory is cluttered with features, or you are curious about what other
features are present on the Palm device, you can extend this sample to display a list of all features, along
with their Creator IDs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2 A Data Encryption Program

In this section, we build a more practical example that uses the encryption routines in the Palm OS to
safeguard both memory and database records. We expand on the previous simple example to show how
to use feature memory to store larger data structures. And we package the VB code as a module-a BAS
file-so other applications can use our encryption and decryption routines.

7.2.1 DES

Palm included the US government Data Encryption Standard (DES) as part of its operating system.
Although DES is an older cryptographic standard, it is adequate for providing security in many situations. [5]

Technically, we are using the DES electronic codebook mode (ECM); this means that each block of text
can be encrypted or decrypted independently. We provide some cryptography references at the end of the
chapter that discuss DES and other encryption algorithms in some detail.

[5] DES dates from the late 1960s, when it was developed by the IBM Corporation. Many experts consider original DES to be compromised

by increases in computing power. The standard recognizes different modes of operation, which offer greater security.

DES is a block cipher-it encrypts and decrypts data in blocks of 8 bytes. It requires a key to operate; in
fact, it uses the same key to encrypt and decrypt data. The DES key is 56 bits long and consists of eight 7-
bit bytes (for historical reasons, the algorithm ignores one bit of each key byte). The DES key must be kept
secret, because anyone who has it can decrypt the data. For this reason, we won't store the key in our
code, but instead will require the user to enter it into a program when it is running.

Encryption and decryption of text blocks is simple under DES: merely provide the 56-bit key and 8 bytes of
data on which to operate. Normal text is called the plaintext; text that has been encrypted is called the
ciphertext. Note that DES requires fixed blocks of eight bytes-if the amount of data is not a multiple of
eight, it must be padded. We'll show how to do this when we study the C/C++ fuser application.

Not all Palm devices have the DES routines; they are an optional feature of the operating system. As you
will see, the Palm OS feature manager lets us query for the presence or absence of DES. We'll show how
to do this in the fuser.

7.2.2 Driver Application

We have made a simple application that encrypts and decrypts database records with a password. The
program, DESDriver.prc, works with any Palm database, and is shown in Figure 7-3.

Figure 7-3. DESDriver main screen

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The program has fields for entering the target database, the record index, and the password. There are
buttons for initialization, encryption, decryption, and to display a record using a simple message box.

The driver application is contained in the VB project DESDriver.vbp. We aren't going to present the driver
code in any detail. The buttons for initialization, encryption, and decryption simply call code that is
presented in detail later in this chapter. The button for showing a record uses the AppForge database API
described in Chapter 3 to open a record; it displays the record data using a message box. We use it to
quickly verify the record contents. For example, Figure 7-4 shows the second record in the Memo
database after it has been encrypted.

Figure 7-4. Encrypted record data

7.2.3 VB Encryption Module

We have provided a small package of functions to encrypt and decrypt database records. The VB interface
functions are in the module VBEncrypt.bas, while the actual work is performed in the C/C++ fuser. Both of
these are described later in this chapter.

In general, we would prefer to implement as much of the code as possible in VB, and perform only
operating system calls in the C/C++ fuser. Unfortunately, and unlike our previous example, most of the
functionality for encrypting and decrypting records will reside in the fuser application.

There are two reasons for this. Foremost, AppForge strings don't directly support binary characters. This
makes it hard to return an encrypted string from a fuser application. Efficiency is also a concern: because
DES operates on small 8-byte blocks, many calls to the fuser would be needed to encrypt a single
database record.

The VB encryption module is in VBCrypt.bas. This module must be included in an AppForge project that
wants to encrypt or decrypt records. The AppForge Extensibility and PDB libraries are used in the module
and must be referenced in the project prior to compilation.

7.2.3.1 Fuser interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The interface to the fuser consists of the application name and constants for the supported cryptographic
operations of initialization, encryption, and decryption:

Public Const DES_Fuser = "DESFuser"

Public Const InitDES = 32768 + 0

Public Const Encrypt = 32768 + 1

Public Const Decrypt = 32768 + 2

We'll look at each of these operations in turn later in the chapter. Next, we define the DESParam data
structure that contains parameters we pass for cryptographic operations:

Public Type DESParam

 DbName As String

 DESKey As String

 Index As Integer

 Reserved As Integer

End Type

The DbName field holds the database name we are trying to open. This name must be unique on the device.
The DESKey field holds the encryption key. Index is the physical position of the record within the database.
Note the Reserved field-this is used by the C/C++ fuser application for internal processing. We don't need
to access it in the VB code.

7.2.3.2 Initialization

The DES algorithm, as mentioned earlier, operates on blocks of eight bytes. To encrypt a chunk of data,
you feed it to DES eight bytes at a time. Unfortunately, database records do not normally come sized in
multiples of eight. This means that we will have to do three things while encrypting and decrypting records:

Preserve the original database record size1.

Resize the record to a multiple of eight before encryption2.

Restore the record to its original size after decryption3.

In order to do this, the fuser must know whether or not the record is encrypted. If it is encrypted, then the
fuser also needs to know the original record size. In order to do this, the fuser allocates a data
structure-feature memory, actually-with one element for each record.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The initialization function tells the fuser how many database records it needs to support. It does this by
setting the parameter block field Index to the maximum number of records needed, and by calling the
fuser with the InitDES parameter:

Public Sub StartDES(ByVal MaxRecs As Integer)

 Dim Block As DESParam

 Block.Index = MaxRecs

 afPalmOS.CallApp DES_Fuser, InitDES, VarPtr(Block)

End Sub

In our driver application, this limit is hard-coded to 500.

7.2.3.3 Key generation

All of the security in DES is in the strength of the secret key. This means that we want to select the 56 bits
of the key at random. This makes it hard for a cryptographer to guess at the key. People, however, do not
choose keys at random; instead, they use words, names, or phrases that they can remember.

Our module has a simple function-MakeKey-that accepts a password and scrambles it to generate a
more random string suitable for use as a DES key. The function is shown in Example 7-4. MakeKey
should be called before using other functions in the module, to ensure that a good DES key is available.

Example 7-4. Listing for MakeKey

Public Sub MakeKey(ByVal Password As String, ByRef Key As String)

 Dim i As Integer

 Dim Hi As Single

 Dim Lo As Single

 Hi = 1

 For i = 1 To Len(Password)

 Lo = Lo + Asc(Mid(Password, i, 1)) ^ i

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Hi = Hi * Asc(Mid(Password, i, 1))

 Next i

 While Hi > (2 ^ 31): Hi = Hi / 2: Wend

 While Lo > (2 ^ 31): Lo = Lo / 2: Wend

 Key = Right(Hex(Hi), 4) + Left(Hex(Lo), 4)

End Sub

The initial loop in MakeKey blends different bits from each password character into the two variables Hi
and Lo. Then the two variables are adjusted to fit into a Long. Finally, part of the hexadecimal string
equivalent of each variable is used to make up the key. For example, a password of bottle produces a key
string of F6D07D4F while laptop produces 788073E2.

This function is not intended to be cryptographically strong. For example, it doesn't handle even the trivial
case of an empty password. There are other, better techniques for obtaining good DES encryption keys;
these can be found in Section 7.3 at the end of this chapter.

7.2.3.4 Encryption and decryption functions

The VB module provides functions to encrypt and decrypt individual database records. An application
using the encryption service can call the decrypt routine, manipulate the record, and then encrypt it. These
routines are simple wrappers that call on the C/C++ fuser, which handles all the details.

Most of the work in each routine is initializing the parameter block before calling the fuser. Here is the code
for EncryptRec:

Public Sub EncryptRec(DbName As String, Index As Integer, Key As String)

 Dim Block As DESParam

 Block.DbName = DbName

 Block.Index = Index

 Block.DESKey = Key

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 afPalmOS.CallApp DES_Fuser, Encrypt, VarPtr(Block)

End Sub

The caller provides the database name and record index to encrypt, and the DES key to use. Note that the
record index is zero-based, just like the AppForge database functions.

This is what DecryptRec looks like:

Public Sub DecryptRec(DbName As String, Index As Integer, Key As String)

 Dim Block As DESParam

 Block.DbName = DbName

 Block.Index = Index

 Block.DESKey = Key

 afPalmOS.CallApp DES_Fuser, Decrypt, VarPtr(Block)

End Sub

The only difference between the two functions is the launch code supplied to the fuser application: Encrypt
versus Decrypt.

7.2.4 C/C++ Encryption Fuser

The DESFuser fuser application is more complicated than the modest fuser we presented earlier in the
chapter, but the techniques used to implement it are the same. The project file is DESFuser.mcp, and all
the source code is in the C/C++ file DESFuser.c. The project compiles into DESFuser.prc-a PRC file with
type FUSR, as required by AppForge.

We start with an enumeration for the launch codes that maps into the VB constants declared earlier:

typedef enum

{

 InitDES = 32768, // launch codes

 Encrypt,

 Decrypt,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 GetMem = 0, // internal flags

 SetMem,

}

LaunchCodes;

We also include two additional enumeration constants, GetMem and SetMem, which we have given the
values zero and one. This is outside the legal range for Palm launch codes, as a reminder that they are for
internal use only.

We declare a structure, DESParam, that corresponds to the VB type of the same name. Here, it is translated
as C/C++ structure:

typedef struct

{

 UInt32 DbName;

 UInt32 DESKey;

 UInt16 Index;

 Int16 Data; // internal field

}

DESParam;

The main routine for the fuser application follows the format of the main routine of a C/C++ application,
which we discussed earlier in Table 7-3. Example 7-5 shows the code for PilotMain.

Example 7-5. Listing for PilotMain

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)

{

 Err RC = 1;

 switch(cmd) {

 case InitDES:

 RC = DoFeature(cmd, (DESParam *)cmdPBP);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 break;

 case Encrypt:

 case Decrypt:

 RC = DoDES(cmd, (DESParam *)cmdPBP);

 break;

 }

 return RC;

}

Here, PilotMain is simply a large case statement, which routes the parameter data to the appropriate
function. One function handles the encryption requests and one function handles initialization. Any other
launch code results in an error code being returned to the caller.

Note the cast operation to convert cmdPBP into a DESParam structure. Remember that this pointer is really
the address of a VB data structure passed from the driver application.

7.2.4.1 Feature memory

DES operates on data that is sized in multiples of eight. As we will show later, the fuser code that encrypts
and decrypts records also expands and shrinks the physical record, so that its size is always a multiple of
eight when encrypted.

Because of this change in the record size, the fuser needs a place to store two pieces of information for
each record:

Is the record encrypted or not?1.

If the record is encrypted, how many bytes of padding were added?2.

When the DES library is initialized, feature memory that is large enough for a fixed number of records is
allocated. Although the Palm OS considers feature memory simply a chunk of raw bytes, the C/C++ fuser
can use this memory in any way desired.

In our case, we treat the feature memory as an array of small integers; each array element corresponds to
a database record. Each element is initialized to -1, which indicates that the record at the same location in
the database is not encrypted.

Just before a record is encrypted, its size is adjusted to be a multiple of eight bytes. This adjustment is
always a number from zero to seven. Before encrypting a record, we store the adjustment in the feature

http://lib.ommolketab.ir
http://lib.ommolketab.ir

memory slot that corresponds to the record's physical database index. After decrypting a record, we look
up the adjustment, and shrink the record's size by that amount.

As a bonus, we can use the feature memory to see if a record is encrypted or not. A -1 means that the
record is not encrypted, and any other number means that it is.

Of course, this approach is somewhat wasteful of space, especially for databases with a large number of
records, but it suffices for our simple application.

Anything that alters the location of a record within the physical database will corrupt
our tracking scheme. If you adapt this code, consider using the record's unique
record identifier rather than its index.

Let's look at the code that implements the feature memory operations: DoFeature, shown in Example 7-6.

Example 7-6. Listing for DoFeature

static Err DoFeature(UInt16 cmd, DESParam *Ptr)

{

 Int8 byte;

 Int8 *chunk;

 #define CREATOR 'DESL'

 #define FEATURE 1

 switch(cmd) {

 case InitDES:

 byte = -1;

 if (FtrPtrNew(CREATOR, FEATURE, Ptr->Index, (void **)&chunk) == 0)

 DmSet(chunk, 0, Ptr->Index, byte);

 break;

 case SetMem:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FtrGet(CREATOR, FEATURE, (UInt32 *)&chunk);

 byte = Ptr->Data;

 DmWrite(chunk, Ptr->Index, &byte, 1);

 break;

 case GetMem:

 FtrGet(CREATOR, FEATURE, (UInt32 *)&chunk);

 byte = *(chunk + Ptr->Index);

 Ptr->Data = byte;

 break;

 }

}

We process the three feature memory requests within a case statement. Feature memory, like feature
values, is always associated with a particular Creator ID and feature number. We use a couple of local
constants, CREATOR and FEATURE, to uniquely define our feature memory.

Let's start with the initialization launch code, InitDES:

case InitDES:

 byte = -1;

 if (FtrPtrNew(CREATOR, FEATURE, Ptr->Index, (void **)&chunk) == 0)

 DmSet(chunk, 0, Ptr->Index, byte);

 break;

The Palm OS function FtrPtrNew is simple enough: feature memory has a fixed size. In this case, the
caller has supplied the size in the parameter block Index field. We allocate one byte-an 8-bit integer-
for each record. Because the database manager owns feature memory, an application cannot write it
directly. We use DmSet to set each record flag to -1.

Feature memory is allocated on the storage heap, which is protected against stray
writes by the database manager. DmSet and DmWrite are the only ways to change
the value of feature memory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When we are asked to set the record flag-by receiving the command SetMem-we must first retrieve a
pointer to the requested feature memory. Then we use the DmWrite database routine to write Ptr
Data at the appropriate offset into the feature memory:

case SetMem:

 FtrGet(CREATOR, FEATURE, (UInt32 *)&chunk);

 byte = Ptr->Data;

 DmWrite(chunk, Ptr->Index, &byte, 1);

The Ptr Index value must be within range! A more robust approach would trap this value by storing
the allocated feature memory size in another feature value, or by using the MemPtrSize function.

We process the command to retrieve the record flag-GetMem-in the same fashion, except we read from
the feature memory instead of writing to it. There is no special function necessary for reading feature
memory.

case GetMem:

 FtrGet(CREATOR, FEATURE, (UInt32 *)&chunk);

 byte = *(chunk + Ptr->Index);

 Ptr->Data = byte;

7.2.4.2 The DoDES function

Encryption and decryption of database records is much more complicated than simply encrypting blocks of
text. There is a lot of code simply for database manipulation-opening a database and finding a record
using the Palm database API. And there is the issue of record size; we do a lot of work to read, write and
resize the record in the database.

Finally, we actually have to encrypt and decrypt the records. It's easy to see why so few applications
actually implement meaningful security.

We have coded the DoDES function, shown in Example 7-7, to handle the database functions common to
both encryption and decryption.

Example 7-7. Listing for DoDES

static Err DoDES(UInt16 cmd, DESParam *Ptr)

{

 Err Rc = 1;

 UInt32 value;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 LocalID hId;

 DmOpenRef dbRef;

 MemHandle hRec;

 MemHandle hDbName;

 FtrGet(sysFtrCreator, sysFtrNumEncryption, &value);

 if (!(value & sysFtrNumEncryptionMaskDES))

 return Rc;

 hDbName = AFStringToMemHandle(Ptr->DbName);

 hId = DmFindDatabase(0, MemHandleLock(hDbName));

 MemHandleUnlock(hDbName);

 if (!hId)

 return Rc;

 dbRef = DmOpenDatabase(0, hId, dmModeReadWrite | dmModeShowSecret);

 if (!dbRef)

 return Rc;

 hRec = DmQueryRecord(dbRef, Ptr->Index);

 if (hRec == NULL)

 goto close_db;

 value = MemHandleSize(hRec);

 if (value == 0)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 goto close_db;

 if (cmd == Encrypt)

 Rc = DES_Encrypt(dbRef, value, Ptr);

 else

 Rc = DES_Decrypt(dbRef, value, Ptr);

close_db:

 DmCloseDatabase(dbRef);

 return Rc;

}

First, we test for the presence of the DES encryption libraries-remember, they are optional and might not
be present. The test uses feature manager calls with system constants defined by Palm in the header file
SystemMgr.h:

FtrGet(sysFtrCreator, sysFtrNumEncryption, &value);

If the DES libraries are present, then this call sets a bit in the value parameter. We test for that bit using a
system-defined mask and exit the routine with an error if it is not set.

if (!(value & sysFtrNumEncryptionMaskDES))

 return Rc;

Next, we find and open the database using the name passed in from the VB application. If we can't find the
database, or if another application is using the database exclusively, then we exit with an error. AppForge
strings are passed as UInt32 pointers to internally maintained string interfaces. We first call the fuser SDK
AFStringToMemHandle function to convert the pointer to a memory handle. In the Palm OS, a handle must
be locked before access, and it should be unlocked when no longer needed.

hDbName = AFStringToMemHandle(Ptr->DbName);

hId = DmFindDatabase(0, MemHandleLock(hDbName));

MemHandleUnlock(hDbName);

Note the use of the dmModeShowSecret flag when opening the database:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dbRef = DmOpenDatabase(0, hId, dmModeReadWrite | dmModeShowSecret);

This tells the Palm OS that all records, even those marked private or hidden, should be available. Next, we
look up the requested record, and query the memory manager for its size. If the record doesn't exist, or
has zero length, then we exit, again indicating an error.

If everything has been successful to this point, we are ready to encrypt or decrypt the record:

if (cmd == Encrypt)

 Rc = DES_Encrypt(dbRef, value, Ptr);

else

 Rc = DES_Decrypt(dbRef, value, Ptr);

After the encryption function, the database reference is released and a result code is returned to the caller.

7.2.4.3 The DES_Encrypt function

The DES_Encrypt function, shown in Example 7-8, encapsulates all operations specific to encrypting a
record, such as expanding the record if necessary, doing the actual encryption, and handling error
conditions.

Example 7-8. DES_Encrypt

static Err DES_Decrypt(DmOpenRef dbRef, UInt32 RecSize, DESParam *Ptr)

{

 UInt32 i;

 MemPtr pRec;

 MemPtr pKey;

 MemHandle hRec;

 MemHandle hDESKey;

 Int8 Delta ;

 // A feature setting of -1 indicates record is not encrypted!

 DoFeature(GetMem, Ptr);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (Ptr->Data == -1)

 return 1;

 Delta = Ptr->Data;

 hDESKey = AFStringToMemHandle(Ptr->DESKey);

 pKey = MemHandleLock(hDESKey);

 hRec = DmGetRecord(dbRef, Ptr->Index);

 pRec = MemHandleLock(hRec);

 for (i = 0; i < RecSize; i += 8)

 {

 UInt8 buffer[8];

 UInt8 amount = 8;

 MemMove(buffer, (unsigned char *)pRec + i, 8);

 EncDES(buffer, pKey, buffer, false);

 if ((i + 8) > (RecSize - Delta))

 amount -= Delta;

 DmWrite(pRec, i, buffer, amount);

 }

 MemHandleUnlock(hRec);

 DmReleaseRecord(dbRef, Ptr->Index, true);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MemHandleUnlock(hDESKey);

 if (Delta)

 DmResizeRecord(dbRef, Ptr->Index, RecSize - Delta);

 Ptr->Data = -1;

 DoFeature(SetMem, Ptr);

 return 0;

}

First, we check that this record is not already encrypted. If it is, then we can safely return without doing
anything:

// A feature setting other than -1 indicates record already encrypted!

DoFeature(GetMem, Ptr);

if (Ptr->Data != -1)

 return 1;

Next, we calculate the amount of padding needed for this record, if the record size isn't already a multiple
of eight. If necessary, the record size is adjusted, and the physical record is expanded using a database
API call:

DmResizeRecord(dbRef, Ptr->Index, RecSize);

The DES key string is locked, and the database record is marked as busy using the DmGetRecord API
call.

In the ensuing for loop, we get eight bytes of record data, call the DES routine to encrypt it with the secret
key, and then write the data back into the record:

MemMove(buffer, (unsigned char *)pRec + i, 8);

EncDES(buffer, pKey, buffer, true);

DmWrite(pRec, i, buffer, 8);

The Palm operating system function EncDES handles both the encryption and decryption operations. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function is declared by Palm in the header file Encrypt.h, and has the parameters shown in Table 7-4.

Table 7-4. EncDES parameters

Name Type Purpose

SrcP UInt8 * Pointer to 8-byte input buffer

KeyP UInt8 * Pointer to 8-byte secret key

DstP UInt8 * Pointer to 8-byte output buffer

Encrypt Boolean Flag indicating mode; e.g., true means encrypt, false means decrypt

A nice feature of the DES routine is its ability to encrypt or decrypt data in place. This allows us to pass the
same storage array as both the input and output buffers.

After encrypting the record, we release the encryption key, database record, and associated memory. Now
that the record has been encrypted successfully, we update the feature memory at the appropriate index.

Ptr->Data = Delta;

DoFeature(SetMem, Ptr);

Remember that Delta ranges from zero to seven, and that any non-negative number in the feature memory
indicates that the record is encrypted. We don't need to set the parameter block's Index field, since it
already references the correct record.

7.2.4.4 The DES_Decrypt function

The DES_Decrypt function, shown in Example 7-9, is responsible for decrypting a database record. It is
very similar to DES_Encrypt, which we discussed at length above, so we will only look at the differences
between the two.

Example 7-9. Listing of DES_Decrypt.

static Err DES_Decrypt(DmOpenRef dbRef, UInt32 RecSize, DESParam *Ptr)

{

 UInt32 i;

 MemPtr pRec;

 MemPtr pKey;

 MemHandle hRec;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MemHandle hDESKey;

 Int8 Delta ;

 // A feature setting of -1 indicates record is not encrypted!

 DoFeature(GetMem, Ptr);

 if (Ptr->Data == -1)

 return 1;

 Delta = Ptr->Data;

 hDESKey = AFStringToMemHandle(Ptr->DESKey);

 pKey = MemHandleLock(hDESKey);

 hRec = DmGetRecord(dbRef, Ptr->Index);

 pRec = MemHandleLock(hRec);

 for (i = 0; i < RecSize; i += 8)

 {

 UInt8 buffer[8];

 UInt8 amount = 8;

 MemMove(buffer, (unsigned char *)pRec + i, 8);

 EncDES(buffer, pKey, buffer, false);

 if ((i + 8) > (RecSize - Delta))

 amount -= Delta;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DmWrite(pRec, i, buffer, amount);

 }

 MemHandleUnlock(hRec);

 DmReleaseRecord(dbRef, Ptr->Index, true);

 MemHandleUnlock(hDESKey);

 if (Delta)

 DmResizeRecord(dbRef, Ptr->Index, RecSize - Delta);

 Ptr->Data = -1;

 DoFeature(SetMem, Ptr);

 return 0;

}

If the record is encrypted, then the record size is already a multiple of eight. We test this at the top of the
function. To decrypt data, pass false as the final parameter to the EncDES operation.

EncDES(buffer, pKey, buffer, false);

Because the record was resized, the final decrypted block will contain some padding characters. We test
for this condition, and adjust amount downward before writing the block to the database:

if ((i + 8) > (RecSize - Delta))

 amount -= Delta;

After decryption, we use the Palm database API function DmResizeRecord to physically shrink the record
in the database. And we reset the corresponding feature memory cell to -1, to indicate the record is no
longer encrypted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3 Resources

There are two primary resources for the Palm operating system: the OS Reference and the OS
Companion. The Companion outlines the various operating system capabilities and subsystems. The
Reference provides the details of API data structures and function call syntax.

AppForge provides a sample fuser application. It covers marshaling most data types, including structures
and strings, and also shows how to safely access the device screen from a fuser. See the AppForge
Knowledge Base (reference #010326-0012).

Those interested in the cryptographic ideas presented in this chapter should look at Bruce Schneier's
Applied Cryptography: Protocols, Algorithms and Source Code in C . This book covers the details of DES
encryption and key management, and many other things as well. It also has a very comprehensive
bibliography.

Finally, the National Institute of Standards maintains federal information processing standards (FIPS)
required by the US Government for sensitive data systems. Their web site includes the following useful
references at http://www.nist.gov: FIPS-46.2 (DES), FIPS-81 (DES Modes of Operation), and FIPS 112
(Password Security).

http://www.nist.gov
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Shared Libraries

In this chapter, we look at extending an application's functionality through the use of shared libraries. A
shared library is a unit of reusable code that typically contains a small, but often used, set of functionality.
Instead of compiling the same code into every application, a shared library can be loaded and used by
other programs as necessary.

We show you how to develop a shared library for the Palm that can be used by a conventional Palm
application. Next, we integrate our shared library into an AppForge fuser. A fuser is a Palm application with
modifications to enable marshaling data between it and an AppForge application. The fuser provides a
bridge between your AppForge application and Palm applications or libraries. Depending on the needs of
your application, a fuser can contain substantial functionality of its own.

We assume you are familiar with writing conventional C/C++ applications for the Palm Pilot using the
Metrowerks CodeWarrior development environment for Windows. We also assume you are familiar with
writing AppForge applications and fusers. We covered fuser development in Chapter 7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1 Memory Concepts

Before diving into the shared library model, it is important to understand how shared library memory differs
from memory in a conventional Palm application. One significant difference between Palm applications
and shared libraries is that libraries do not have global variables. Since global variables only make sense
to the current application, a shared library cannot access them.

As an example, in order to implement an object reference counter in a standard Palm application, you
might declare a global reference counter such as:

int g_nRefCount = 0;

or:

static int g_nRefCount = 0;

However, this method is not supported in a shared library. Instead, the general approach is to dynamically
allocate a memory chunk for your globals, then assign the handle to the memory chunk to a globals
pointer that the Palm OS provides when your library is loaded for the first time. Once you have a pointer to
your global memory tucked away, your library can access any variables as needed through this pointer. In
essence, this is equivalent to conventional global memory that is dynamically created and destroyed.
(Although shared libraries do not support conventional global memory, we still use the g or g_ variable
prefix for memory accessed this way, since the shared library can access it globally.)

When working with global or other memory in a shared library, you should use movable memory chunk-
based routines for library globals and other variables to minimize dynamic heap fragmentation. Routines
that use a MemHandle work with movable, or unlocked, chunks, and routines that use a MemPtr work with
nonmovable, or locked, chunks. In addition to using handle-based routines, your library should only lock its
memory each time it accesses the memory. The library unlocks the memory as soon as it is finished with
it. This allows the Palm OS memory manager to reorganize memory chunks to avoid heap fragmentation.

In addition to carefully managing memory, your library must assign ownership of its memory to the
operating system. Although this seems unusual at first, consider how your library is used. You will typically
allocate global memory when the first application opens your library. Since your library is running in the
first application's space, your global memory is owned by that application. Now assume a second
application opens your library. Since you already created global memory, your library may perhaps update
its reference count, and continue working. Now the first application exits and closes your library. Since it
owns the global memory, Palm's memory manager will free that chunk of memory. Your library has just
lost its global memory, and you can no longer access it!

The solution to this problem is to assign ownership of your memory to the Palm OS. The Palm's memory
manager will not automatically reclaim your memory as applications close your library. Of course, it is
important to follow good memory management practices and release all of your library's resources when
no applications are using the library.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2 Memory Management Functions

Let's review some of the common Palm OS SDK functions for managing memory.

To allocate memory, use MemHandleNew as follows:

typedef struct GlobalVarsType

{

 Int16 nOpenCount; // library open count

 Int16 nContextCount; // number of contexts using this library

 //Other library global variables

}GlobalVarsType;

UInt32 nMemSize = sizeof(GlobalVarsType);

//Allocate global memory

MemHandle gHandle = MemHandleNew(nMemSize);

To lock a chunk of memory for read/write access, use the following sequence.

MemPtr gLockPtr;

gLockPtr = MemHandleLock(gHandle);

//read from or write to global memory

MemHandleUnlock(gHandle);

Alternatively, since MemHandleLock returns a MemPtr, you may use the following
MemHandleLock/MemPtrUnlock pair:

MemPtr gLockPtr;

gLockPtr = MemHandleLock(gHandle);

//read from or write to global memory

MemPtrUnlock(gLockPtr);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To set the owner ID of memory so it belongs to the OS, you must first lock the memory chunk, set the
owner ID, and then unlock the memory chunk. You typically set the owner ID immediately after creating
the memory:

MemHandle gHandle = MemHandleNew(nMemSize);

MemPtr gLockPtr = MemHandleLock(gHandle);

//Set the owner to the OS, so it is not freed automatically.

MemPtrSetOwner(gLockPtr, 0);

MemPtrUnlock(gLockPtr);

When your library is done with its global memory-which is typically when the last application unloads it
from memory-the library should free its memory using MemHandleFree, as follows:

//Our library is being closed by the last application,

//so free our globals

MemHandleFree (gHandle);

Alternatively, if you have locked memory , you can use MemPtrFree to unlock and free it in one step:

MemPtr gLockPtr = MemHandleLock(gHandle)

//Access our memory one last time

//Unlock and free our memory in one step

MemPtrFree(gLockPtr)

We will see these functions in use in the next section as we develop the DBSLib sample shared library.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3 DBSLib Shared Library

We illustrate shared library implementation with a library that creates databases and populates them with
records. The database schema and record data come in the form of an XML string. [1] DBSLib can be used by
any conventional Palm application or integrated with an AppForge application using a fuser. We discuss both
approaches later in this chapter.

[1] Although the DBSLib example shared library does not support formal XML constructs and syntax, we refer to the string as an XML string for

the sake of simplicity. We want to focus on the steps required to develop and integrate a shared library, rather than the complex details of

formal XML processing.

DBSLib parses the XML string to determine the database schema, creates the database, and then adds
records according to the schema with data from the XML string. An example of a schema and data in XML
format is shown in Example 8-1 .

Example 8-1. Database schema and record data in XML format

<Database Name=Employee Type=DATA Creator=AFLD>

 <Schema>

 <Field>

 <Num>0</Num>

 <Name>FirstName</Name>

 <Type>6</Type>

 <Length>0</Length>

 </Field>

 <Field>

 <Num>1</Num>

 <Name>LastName</Name>

 <Type>6<Type/>

 <Length>0</Length>

 </Field>

 <Field>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Num>2</Num>

 <Name>Phone</Name>

 <Type>6</Type>

 <Length>0</Length>

 </Field>

 </Schema>

 <Data>

 <Record>

 <FirstName>Bob H.</FirstName>

 <LastName>Smith</LastName>

 <Phone>(703) 555-1212</Phone>

 </Record>

 <Record>

 <FirstName>Lucy D.</FirstName>

 <LastName>Anderson</LastName>

 <Phone>(703) 555-2121</Phone>

 </Record>

 </Data>

</Database>

DBSLib packages its functionality in a reusable library that other applications can load and use as needed.
Applications benefit from using DBSLib because it will work with different schemas and data without being
modified. In addition, the XML schema string can come from anywhere. It can come from a Conduit that
fetches the schema from the desktop, the Internet, or another remote source. Or the XML string can come
from a custom application that loads the string from a web site to provide a field user with database updates.

8.3.1 CodeWarrior Setup

Before getting started, you will need to configure CodeWarrior for the DBSLib project. Appendix B outlines
the steps for creating and configuring the DBSLib shared library project in CodeWarrior.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3.2 Global Memory Management

To manage memory in a shared library, you need to know when to create, destroy, and access the memory.
As discussed previously, your library is responsible for managing its own global memory.

We take Jeff Ishaq's approach to global memory management, outlined in his article "Mastering Shared
Libraries" (see Palm's Knowledge Base at http://oasis.palm.com/dev/kb). We follow the implementation in
the SampleLib project that comes with the Palm OS SDK.

In this approach, you create global memory the first time your library is loaded. Within your global memory,
you maintain a reference count, incrementing it each time your library is loaded. When you need global
memory, you query the Palm OS for your library's system library table entry (see Example 8-2) and obtain
the pointer to memory. When your library is unloaded, you decrement the reference count, finally freeing
global memory when the count goes to zero.

Example 8-2. Palm OS system library table entry

typedef struct SysLibTblEntryType

{

 MemPtr *dispatchTblP; // pointer to library dispatch table

 void *globalsP; // pointer to library global memory

 //other fields...

}SysLibTblEntryType;

typedef SysLibTblEntryType* SysLibTblEntryPtr;

Let's take a look at the global memory structure used in DBSLib.

typedef struct DBSLibGlobalMemType

{

 UInt16 refNum; // our library's reference number

 Int16 libRefCount; // library reference count; number of times it

 // has been opened by client applications

 Int16 clntRefCount; // number of client contexts we are servicing

 //Additional application specific globals

http://lib.ommolketab.ir
http://lib.ommolketab.ir

} DBSLibGlobalMemType;

typedef DBSLibGlobalMemType* DBSLibGlobalMemPtr;

refNum is the OS assigned reference number for our library. libRefCount serves as a reference counter for
our library. We initialize it to zero upon creating our global memory, and increment each time a client
application opens our library. Each time a client closes our library, we decrement this counter. Finally, when it
goes back down to zero, we delete our global memory. clntRefCount is a reference counter for the number
of client applications we are servicing.

The library's functions for managing global memory are summarized in Table 8-1 .

Table 8-1. Global memory management functions

Function Description

CreateGlobalMem
Creates the library's global memory and stores its handle in the globalsP pointer of the
library's system library table entry

FreeGlobalMem Frees global memory that was created by the CreateGlobalMem function

LockGlobalMem Locks global memory for read/write access

UnlockGlobalMem Unlocks global memory

IsDBSLibOpen Determines if the library is open

Let's look at each function in detail. Later we will see how they are integrated to support the DBSLib shared
library.

8.3.2.1 CreateGlobalMem

In this function, we verify that global memory has not already been allocated. We then create global memory
if necessary.

DBSLibGlobalMemPtr CreateGlobalMem(UInt16 refNum)

{

 DBSLibGlobalMemPtr globalMemPtr = NULL;

 MemHandle globalMemHandle;

 SysLibTblEntryPtr libEntryPtr;

 libEntryPtr = SysLibTblEntry(refNum);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ErrFatalDisplayIf(libEntryPtr == NULL, "DBSLib: Invalid refNum.");

 ErrFatalDisplayIf(libEntryPtr->globalsP != NULL,

 "DBSLib: Globals already exist.");

 globalMemHandle = MemHandleNew(sizeof(DBSLibGlobalMemType));

 if (globalMemHandle == NULL)

 return NULL;

 libEntryPtr->globalsP = (void*)globalMemHandle;

 globalMemPtr = LockGlobalMem(refNum);

 ErrFatalDisplayIf(globalMemPtr == NULL, "DBSLib: Failed to lock globals.");

 MemPtrSetOwner(globalMemPtr, 0);

 MemSet(globalMemPtr, sizeof(DBSLibGlobalMemType), 0);

 globalMemPtr->refNum = refNum;

 globalMemPtr->libRefCount = 0;

 return globalMemPtr;

}

We start by calling SysLibTblEntry to obtain a pointer to the library's system library table entry. You will
become very familiar with the SysLibTblEntry function by the end of this chapter. It is almost always called
first so we can access our library's global memory pointer.

After verifying that global memory is not already allocated, we create it with a call to MemHandleNew , and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

save the global memory handle in the globalsP pointer of the SysLibTableEntry structure. Note the call to
MemPtrSetOwner , where we assign ownership of our memory to the operating system. We store the OS
assigned reference number, and initialize the library's reference count to zero. We return the locked global
memory pointer. The calling routine is responsible for unlocking the memory. We use the ErrFatalDisplayIf
routine to report serious or unrecoverable errors.

8.3.2.2 FreeGlobalMem

In this function, we free the global memory that was created in CreateGlobalMem .

void FreeGlobalMem(UInt16 refNum)

{

 MemHandle globalMemHandle;

 SysLibTblEntryPtr libEntryPtr;

 libEntryPtr = SysLibTblEntry(refNum);

 ErrFatalDisplayIf(libEntryPtr == NULL, "DBSLib: Invalid refNum.");

 globalMemHandle = (MemHandle)(libEntryPtr->globalsP);

 if(globalMemHandle != NULL)

 {

 libEntryPtr->globalsP = NULL;

 MemHandleFree(globalMemHandle);

 }

}

First, we obtain the pointer to the library's system library table entry with a call to SysLibTblEntry . Next, we
assign the globalsP variable to NULL , and call MemHandleFree to release the memory.

8.3.2.3 LockGlobalMem

The library calls this function to lock global memory before modifying it. This function is important because it
prevents the OS from reorganizing our memory on the heap while the library is accessing it.

DBSLibGlobalMemPtr LockGlobalMem(UInt16 refNum)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{

 DBSLibGlobalMemPtr globalMemPtr = NULL;

 MemHandle globalMemHandle;

 SysLibTblEntryPtr libEntryPtr;

 libEntryPtr = SysLibTblEntry(refNum);

 if (libEntryPtr != NULL)

 globalMemHandle = (MemHandle)(libEntryPtr->globalsP);

 if (globalMemHandle != NULL)

 globalMemPtr = (DBSLibGlobalMemPtr)MemHandleLock(globalMemHandle);

 return globalMemPtr;

}

We call SysLibTblEntry and get the handle to the global memory from the globalsP pointer. Then we call
MemHandleLock to lock the memory.

8.3.2.4 UnlockGlobalMem

This function is the analog to LockGlobalMem . The library calls this function to unlock global memory after
accessing it.

In LockGlobalMem , the call to MemHandleLock returns a MemPtr . To unlock the memory, use
MemPtrUnlock , since it takes a MemPtr variable as its argument. To simplify things, we implement
UnlockGlobalMem as a macro.

#define UnlockGlobalMem(gP) MemPtrUnlock(gP)

8.3.2.5 IsDBSLibOpen

We use IsDBSLibOpen to determine if the library has been opened.

Boolean IsDBSLibOpen(UInt16 refNum)

{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DBSLibGlobalMemPtr globalMemPtr;

 Boolean isOpen = false;

 globalMemPtr = LockGlobalMem(refNum);

 if (globalMemPtr != NULL)

 {

 isOpen = true;

 UnlockGlobalMem(globalMemPtr);

 }

 return isOpen;

}

If locking the library's global memory succeeds, then the library has been opened. We will see how this
function is used later in this chapter.

8.3.3 Client Memory Management

In addition to the global memory used by the library, we manage memory for each client application. Client
memory is typically used to maintain persistence, or state, between library calls. (By client memory, we mean
memory that the shared library owns and manages on behalf of a particular application. This memory is
typically transparent to the client application.)

There is one important difference between global and client memory. We can store the handle to our global
memory in the globalsP pointer of our library's SysLibTableEntry structure. For client memory, however, we
require that the caller use a context variable to store a handle to their memory. The client maintains the
context variable as long as it uses the library, and passes it as an argument to each of our library's functions
that need to access client memory. The client context variable is just a pointer in which we store the handle
to the client's memory after it is created.

Here is the client memory structure.

#define DB_NAME_LEN 64

#define DB_SCHEMA_LEN 128

typedef struct DBSLibClientMemType

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{

 Int16 nState; //Keep track of where we are

 Char szName[DB_NAME_LEN]; //Name of the database we are creating

 Char szSchema[DB_SCHEMA_LEN]; //Database schema

 Int16 nNumFields; //Number of fields in each record

 Int16 nNumRecords; //Number of records in the database

} DBSLibClientMemType;

typedef DBSLibClientMemType* DBSLibClientMemPtr;

nState maintains state between library function calls. We will see how it is used later to prevent our library
from being called incorrectly. szName and szSchema are the name and schema, respectively, of the database
that the library creates. This information is determined from the <Schema></Schema> tag pair in the XML-
formatted string (see Example 8-1 , earlier in this chapter) that gets passed into our library. nNumFields is the
number of fields per record, and nNumRecords is the number of records that were created, based on the
<Data></Data> tags.

The functions for managing client memory (see Table 8-2) are analogous to those for managing global
memory.

Table 8-2. Client memory management functions

Function Description

CreateClientMem Creates the client memory and initializes the client's context variable (pointer)

FreeClientMem Frees the client memory that was created by the CreateClientMem function

LockClientMem Locks a client's memory for read/write access

UnlockClientMem Unlocks a client's memory

8.3.3.1 CreateClientMem

In this function, we verify that global memory has been created and proceed to create client memory.

Err CreateClientMem(DBSLibGlobalMemPtr globalMemPtr, UInt32 * clientContextPtr)

{

 Err retVal = errNone;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MemHandle clientMemHandle;

 DBSLibClientMemPtr clientMemPtr;

 ErrFatalDisplayIf(globalMemPtr == NULL,

 "DBSLib: NULL global memory pointer.");

 ErrFatalDisplayIf(clientContextPtr == NULL,

 "DBSLib: NULL client context pointer.");

 *clientContextPtr = NULL;

 clientMemHandle = MemHandleNew(sizeof(DBSLibClientMemType));

 if(clientMemHandle == NULL)

 retVal = dbsLibErrMemory;

 else

 {

 *clientContextPtr = (UInt32)clientMemHandle;

 clientMemPtr = (DBSLibClientMemPtr)MemHandleLock(clientMemHandle);

 MemSet(clientMemPtr, sizeof(DBSLibClientMemType), 0);

 UnlockClientMem(clientMemPtr);

 globalMemPtr->clntRefCount++;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 return retVal;

}

The client's context variable is declared as a UInt32 by the client application, and a pointer to this variable is
passed in as the second argument. We verify the parameters passed in and initialize the client context to
NULL . Then we create the client memory using MemHandleNew and store the handle in the client context
variable. Finally we lock the client memory, initialize it, and then unlock it.

8.3.3.2 FreeClientMem

The library calls this function to free the client memory, which was created in CreateClientMem .

Err FreeClientMem(DBSLibGlobalMemPtr globalMemPtr, UInt32 clientContext)

{

 DBSLibClientMemPtr clientMemPtr;

 ErrFatalDisplayIf(globalMemPtr == NULL,

 "DBSLib: NULL global memory pointer.");

 clientMemPtr = LockClientMem(clientContext);

 if(clientMemPtr != NULL)

 {

 MemPtrFree(clientMemPtr);

 globalMemPtr->clntRefCount--;

 ErrFatalDisplayIf(globalMemPtr->clntRefCount < 0,

 "DBSLib: client ref count underflow.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 return errNone;

}

We lock the client's memory with a call to LockClientMem , and free it with a call to MemPtrFree .

8.3.3.3 LockClientMem

The library calls this function to lock client memory before modifying it. As with LockGlobalMem , this function
prevents the OS from reorganizing client memory on the heap while the library is accessing it.

DBSLibClientMemPtr LockClientMem(UInt32 clientContext)

{

 DBSLibClientMemPtr clientMemPtr = NULL;

 ErrFatalDisplayIf(clientContext == NULL, "DBSLib: NULL client context.");

 clientMemPtr = (DBSLibClientMemPtr)MemHandleLock((MemHandle)clientContext);

 ErrFatalDisplayIf(clientMemPtr == NULL,

 "DBSLib: Failed to lock client memory.");

 return clientMemPtr;

}

Here, we simply call MemHandleLock to lock the client memory based on the clientContext argument and
return the memory pointer.

8.3.3.4 UnlockClientMem

This function is the analog to LockClientMem . The library calls this function to unlock client memory after
accessing it.

In LockClientMem , the call to MemHandleLock returns a MemPtr . Thus, to unlock the memory, we use
MemPtrUnlock , since it takes a MemPtr variable as its argument. As with UnlockGlobalMem , we have
implemented UnlockClientMem as a macro.

#define UnlockClientMem(contextP) MemPtrUnlock(contextP)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3.4 Required Functions

A shared library must implement an installation entry point and four standard functions. Together, these five
functions allow the library to be loaded, opened, closed, and notified when the PDA goes idle. Each function
is described in Table 8-3 .

Table 8-3. Required shared library functions

Function Description

__Startup__
Installation entry point, called when an application loads the library for the first time. You
must use this name, and the function must appear at the top of the code resource.

Open
Clients must call this function before calling any other functions. You will use it to perform
initialization, including creating global and client memory.

Close
Clients call this function when they are finished using the library. Here, you decrement your
library's open count and free client memory. If the library's open count is zero, you will also
free global memory.

Sleep The Palm OS calls this function automatically when the system is going to sleep.

Wake The Palm OS calls this function automatically when the system is waking up.

Other than __Startup__ , you may give these functions any name. Open , Close , Sleep , and Wake must be
the first four functions in the library's dispatch table, and must appear in that order. We will discuss dispatch
tables in detail later in this chapter. All of these functions must take the library reference number as their first
argument.

Sleep and Wake are most useful for libraries that must provide device power management. Since our library
does not service any hardware, we provide empty implementations for these functions. (If your library
services hardware, Palm's Developer Knowledge Base article Mastering Shared Libraries (Article ID 1670)
covers these functions in good detail.)

8.3.4.1 __Startup__ function

A shared library's installation entry point is called when an application loads the library for the first time. Your
shared library's entry point must correspond to the following signature, and it must be the first function in your
library's code resource. (CodeWarrior takes care of this for you by automatically placing the __Startup__
function at the beginning of the resource.)

Err __Startup__(UInt16 refNum, SysLibTblEntryPtr entryP)

refNum is an OS-assigned reference number for your library and is used by client applications when calling
your library's functions. entryP is a pointer to a SysLibTableEntry structure shown earlier in Example 8-2
and repeated here:

typedef struct SysLibTblEntryType

{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MemPtr *dispatchTblP; // pointer to library dispatch table

 void *globalsP; // pointer to library global memory

 //other fields...

}SysLibTblEntryType;

typedef SysLibTblEntryType* SysLibTblEntryPtr;

When your library is loaded, the Palm OS creates a corresponding SysLibTableEntry structure and
maintains it in an internal array. As we have seen previously, you can obtain this structure with a call to
SysLibTblEntry .

dispatchTblP is a pointer to the library's dispatch table, which is essentially a lookup table that tells the Palm
OS where to find the library's functions. The dispatch table pointer is a critical piece of the library's
initialization. We cover building the dispatch table in detail later in this chapter. globalsP contains the
library's global memory handle.

We use a #define statement to give the __Startup__ entry point the more intuitive name of DBSLibInstall .

#define DBSLibInstall __Startup__

Err DBSLibInstall(UInt16 refNum, SysLibTblEntryPtr entryP)

{

 entryP->dispatchTblP = (MemPtr*)DBSLibDispatchTable();

 entryP->globalsP = NULL;

 return errNone;

}

We assign the library's dispatch table and initialize the globalsP pointer to NULL .

8.3.4.2 DBSLibOpen (Open) function

As we will see later, however, DBSLib's DBSLibGetAPIVersion function can be safely called first, since it
does not access global or client memory.

Err DBSLibOpen(UInt16 refNum, UInt32 * clientContextPtr)

{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DBSLibGlobalMemPtr globalMemPtr;

 Err retVal = errNone;

 Int16 origRefCount = 0;

 ErrFatalDisplayIf(clientContextPtr == NULL,

 "DBSLib: NULL client context pointer");

 *clientContextPtr = 0;

 globalMemPtr = LockGlobalMem(refNum);

 if (globalMemPtr == NULL)

 {

 globalMemPtr = CreateGlobalMem(refNum);

 if (globalMemPtr == NULL)

 retVal = dbsLibErrMemory;

 }

 if (globalMemPtr != NULL)

 {

 origRefCount = globalMemPtr->libRefCount;

 retVal = CreateClientMem(globalMemPtr, clientContextPtr);

 if (retVal == errNone)

 globalMemPtr->libRefCount++;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 UnlockGlobalMem(globalMemPtr);

 if (retVal != errNone && (origRefCount == 0))

 FreeGlobalMem(refNum);

 }

 return retVal;

}

We first attempt to lock the library's global memory. If LockGlobalMem returns NULL , global memory has not
been created, and our library is being opened for the very first time.

After creating global memory, we create the client's memory with a call to CreateClientMem .
CreateClientMem stores the client's context in the value pointed to by the clientContextPtr argument. If the
client's memory is created successfully, we increment the reference count.

If the client's memory cannot be created, and this is the first time the library is being loaded, we free global
memory as follows.

if (retVal != errNone && (origRefCount == 0))

 FreeGlobalMem(refNum);

8.3.4.3 DBSLibClose (Close) function

Clients call this function when they are done using the library. Here, you typically free client memory, and
decrement the library's global open count.

Err DBSLibClose(UInt16 refNum, UInt32 clientContext)

{

 DBSLibGlobalMemPtr globalMemPtr;

 Int16 currLibCount;

 Int16 currCtxCount;

 Err retVal = errNone;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 globalMemPtr = LockGlobalMem(refNum);

 if(globalMemPtr == NULL)

 return retVal;

 FreeClientMem(globalMemPtr, clientContext);

 globalMemPtr->libRefCount--;

 ErrFatalDisplayIf(globalMemPtr->libRefCount < 0,

 "DBSLib: Lib ref count underflow.");

 currLibCount = globalMemPtr->libRefCount;

 currCtxCount = globalMemPtr->clntRefCount;

 UnlockGlobalMem(globalMemPtr);

 if (currLibCount <= 0)

 {

 ErrFatalDisplayIf(currCtxCount != 0,

 "DBSLib: Not all client memory was freed.");

 FreeGlobalMem(refNum);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else

 {

 retVal = dbsLibErrStillOpen;

 }

 return retVal;

}

As with DBSLibOpen , we call LockGlobalMem to determine if global memory exists. If global memory does
not exist, the library has already been closed, and we return immediately.

If global memory exists, we free the client's memory by calling FreeClientMem . Recall that FreeClientMem
decrements the client context count, so we don't need to do that here. After decrementing the library's
reference counter and unlocking global memory, we check the reference counter to see if we can free global
memory. If the library is still open, we return dbsLibErrStillOpen . This informs the client that others are still
using our library and that it is not safe to unload it.

8.3.4.4 DBSLibSleep (Sleep) and DBSLibWake (Wake) functions

Since our library doesn't care when the system is sleeping, we provide empty implementations for these
functions.

Err DBSLibSleep(UInt16 refNum)

{

 return errNone;

}

Err DBSLibWake(UInt16 refNum)

{

 return errNone;

}

8.3.5 Custom Library Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here is where we get to the business at hand: creating databases from an XML schema. With the exception
of a few special functions, a client calls these functions after opening the library and before closing it.

8.3.5.1 Data types and constants

As with any C application, there are a number of constants, declarations, and other housekeeping
information that need to be declared. We provide declarations to support versioning, tracking internal state,
and error values, among others.

To track the internal state of our library, we use the following definitions.

#define dbsLibDBCreatePending 0x00

#define dbsLibQuerySchemaPending 0x02

dbsLibDBCreatePending indicates that our library is waiting to receive a client's XML string to parse and
process. Upon successfully processing the XML string, we have created a database. We then move to the
dbsLibQuerySchemaPending state. In this state, a client may query our library for information about the
database, which was created by parsing the XML string. The following defines and type declaration (see
Example 8-3) match the definition for a field in the <Schema></Schema> tags of the XML string (shown in
Example 8-1 , earlier in this chapter).

Example 8-3. Field element data type

#define F_TYPE_BOOL 0

#define F_TYPE_BYTE 1

#define F_TYPE_DATE 2

#define F_TYPE_FLOAT 3

#define F_TYPE_INT 4

#define F_TYPE_LONG 5

#define F_TYPE_STR 6

#define MAX_DATA_LEN 128

typedef struct DBSLibFieldElemType

{

 Int32 nNum;

 Char szName[DB_NAME_LEN];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Int16 nType;

 UInt32 nDataLen;

 MemHandle hData;

 Int32 nLength;

} DBSLibFieldElemType;

typedef DBSLibFieldElemType* DBSLibFieldElemTypePtr;

Table 8-4 contains a description of each item in the DBSLibFieldElemType structure. The field type definitions
F_TYPE_BOOL through F_TYPE_STR determine how to interpret each field's data. These definitions also map to
Visual Basic types used by an AppForge application. MAX_DATA_LEN defines the maximum size of the XML
data for a particular field.

Table 8-4. Schema field items

Item Description

nNum Unique field number; for use by AppForge in identifying this field

szName Name of the field, as it will appear in the <Record></Record> tags of the XML string

nType
Field type; contains a number corresponding to one of the assignments F_TYPE_BOOL through
F_TYPE_STR

nDataLen Length of this field's data

hData Handle to allocated memory for this field's data

nLength Length of this field; used to support AppForge applications; hard-coded to zero (variable length)

For client applications that load our library, we provide the following definitions for Creator ID, type, and
name:

#define dbsLibCreatorID 'DBSL'

#define dbsLibTypeID 'libr'

#define dbsLibName "DBSLib.lib"

Here are the error codes that our library returns.

#define dbsLibErrParam (appErrorClass | 1)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#define dbsLibErrNotOpen (appErrorClass | 2)

#define dbsLibErrStillOpen (appErrorClass | 3)

#define dbsLibErrMemory (appErrorClass | 4)

#define dbsLibErrParse (appErrorClass | 5)

#define dbsLibErrArg (appErrorClass | 6)

#define dbsLibErrDB (appErrorClass | 7)

#define dbsLibErrState (appErrorClass | 8)

All of these errors start from appErrorClass , which is defined as 0x8000 in the header file ErrorBase.h ,
which is part of the Palm OS SDK.

Let's look at the functions that actually perform the work in the DBSLib shared library. DBSLib exposes the
following custom functions to the client.

DBSLibGetAPIVersion

Retrieves the API version of the shared library
DBSLibParseSchema

Parses the XML string, creates the database, and populates it with records
DBSLibGetDBInfo

Retrieves database information from the newly created database, including database name, number of
records, and database schema

8.3.5.2 DBSLibGetAPIVersion

DBSLibGetAPIVersion allows a client to determine the API version of the library, perhaps to ensure
compatibility with the client's implementation.

#define dbsLibVersion sysMakeROMVersion(1,0,0,sysROMStageRelease,0)

Err DBSLibGetAPIVersion(UInt16 refNum, UInt32 *pVer)

{

 ErrFatalDisplayIf(pVer == NULL, "DBSLib: Null pointer argument.");

 *pVer = dbsLibVersion;

 return errNone;

}

We use the sysMakeROMVersion macro found in the SystemMgr.h file of the Palm OS SDK to establish the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

library's version. We declare version 1.0, sysROMStageRelease .

Here, we simply store the version in the pVer argument and return errNone . A standard Palm application that
calls our library can subsequently use the sysGetROMVerMajor , sysGetROMVerMinor , or other similar macros
to extract specific information from the version number. We will see how these macros are used in the
DBSLib driver application.

8.3.5.3 DBSLibParseSchema

This function is the workhorse of the DBSLib library. This function parses the XML string to determine the
database schema, creates the database, and populates the database with corresponding record data. We
assume that the XML string is properly formatted. DBSLibParseSchema focuses on extracting the necessary
elements from the string and manipulating the database-not handling XML schema errors.

DBSLibParseSchema is a large function, so we will present it in manageable pieces. Here are the function
and variable declarations.

Err DBSLibParseSchema(UInt16 refNum, UInt32 clientContext,

 Char* pszXML, Boolean bDeleteDB)

{

 Err retVal = errNone;

 //Start and end pointers for string parsing

 Char *pszStart, *pszEnd;

 Int16 nFieldIndex = 0, nRecIndex = 0;

 Int16 nNumFields = 0, nNumRecs = 0;

 MemHandle hFieldElemArray = NULL;

 DBSLibFieldElemTypePtr pFieldElemArray, pCurrFieldElem;

 DBSLibClientMemPtr pClientMem;

 //Database attributes, as contained in the

 //XML string

 Char szDBName[DB_NAME_LEN];

 UInt32 nDBType = 0, nDBCreator = 0;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //Variables for PalmOS database functions

 DmOpenRef dbOpenRef; //A reference to the database we will open

 Boolean bIsResDB = false; //we are not creating a resource database

 Boolean bIsDirty = true;

 UInt16 nDBMode = dmModeReadWrite; //Open database for read/write access

 UInt16 nCardNum = 0;

 UInt16 nRecNum = 0; //Current record being added

 UInt32 nRecLen = 0;

 UInt32 nRecOffset = 0; //Offset into record to begin writing

 LocalID dbID;

 MemHandle hRecord;

 MemPtr pRecordLock;

 Boolean bCreateDB = false;

In addition to the required refNum parameter, DBSLibParseSchema takes three parameters. clientContext
contains the client's handle to their memory. pszXML contains the XML string we will parse. bDeleteDB
indicates whether we should delete an existing database named in the XML string. If true , delete the
database; if false ; add records to the existing database.

The local variables for DBSLibParseSchema fall into three groups. The first group consists of handles and
pointers for parsing the XML string and iterating through the field element array that is created from the
schema. The second group consists of the database attributes: name, type, and creator. The third group
contains variables for manipulating the database we will create.

Next, we initialize some variables and verify the existence of the database attributes.

if(IsDBSLibOpen(refNum) == false)

 return dbsLibErrNotOpen;

pClientMem = LockClientMem(clientContext);

MemSet(pClientMem, sizeof(DBSLibClientMemType), 0);

pClientMem->nState = dbsLibDBCreatePending;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MemPtrUnlock(pClientMem);

MemSet(szDBName, DB_NAME_LEN, 0);

retVal = ParseDBAttributes(pszXML, szDBName, &nDBType, &nDBCreator);

if(retVal != errNone)

{

 return retVal;

}

We verify that the library is open and initialize the state variable in client memory to dbsLibCreatePending .
Next, we call ParseDBAttributes , which extracts szDBName , nDBType , and nDBCreator from the XML string.

We then initialize the database and create it if necessary.

dbID = DmFindDatabase(nCardNum, szDBName);

if(dbID == 0)

 bCreateDB = true;

else

{

 if(bDeleteDB == true)

 {

 retVal = DmDeleteDatabase(nCardNum, dbID);

 if(retVal != errNone)

 return dbsLibErrDB;

 bCreateDB = true;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

if(bCreateDB == true)

{

 retVal = DmCreateDatabase(nCardNum, (const Char*)szDBName, nDBCreator,

 nDBType, bIsResDB);

 if(retVal != errNone)

 return retVal;

}

We call DmFindDatabase to see if the database already exists. If it exists, and the client asked that we delete
it, we call DmDeleteDatabase . Then we create the database, if needed, by calling DmCreateDatabase .

Next, we parse the XML schema to obtain the field definitions for each record.

pszStart = StrStr(pszXML, "<Schema>");

pszEnd = StrStr(pszXML, "</Schema>");

if(pszStart == NULL || pszEnd == NULL)

 return dbsLibErrParse;

pszStart += StrLen("<Schema>");

retVal = ParseFields(pszStart, &nNumFields, &hFieldElemArray);

if(retVal != errNone)

 return retVal;

After verifying the existence of the <Schema></Schema> tags, we call ParseFields , which parses through the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

field definitions and creates an array of DBSLibFieldElemType structures (see Example 8-3 , shown earlier in
this chapter). On return, nNumFields contains the number of elements in the array, and hFieldElemArray
contains the handle to the created array. Each element in the array corresponds to a particular
<Field></Field> tag pair. The entire array defines the format for each database record.

Once we know how many fields are in a record, we count the number of records in the database.

pszStart = StrStr(pszXML, "<Data>");

pszEnd = StrStr(pszXML, "</Data>");

if(pszStart == NULL || pszEnd == NULL)

{

 MemHandleFree(hFieldElemArray);

 return dbsLibErrParse;

}

pszStart += StrLen("<Data>");

nNumRecs = CountItems(pszStart, "<Record>", "</Record>");

if(nNumRecs == 0)

 return dbsLibErrParse;

We start by verifying the existence of the <Data></Data> tag pair. Then we call CountItems , an internal
library function that returns the number of times a particular pair of XML tags appears within a string. We
open the database by calling DmOpenDatabaseByTypeCreator .

dbOpenRef = DmOpenDatabaseByTypeCreator(nDBType, nDBCreator, nDBMode);

if(dbOpenRef == 0)

{

 FreeFieldElemArray(hFieldElemArray, nNumFields);

 return dbsLibErrDB;

}

If the database cannot be opened, we free the field element array and return dbsLibErrDB .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After the database is opened, we add each record to the database (see Example 8-4). For each record, we
search for its data in the XML string, and then add the record to the database. Example 8-4 lists the
pseudocode steps for doing this.

Example 8-4. Pseudocode for DBSLibParseSchema record creation

 //For each record in the database, get its data from the XML string,

 //and add it to the database

 for(nRecIndex = 0; nRecIndex < nNumRecs; nRecIndex++)

 {

 //Find the <Record></Record> tags for this record's data

 //Retreive field data for given record

 //Create a new database record for our data

 //Lock the record for editing

 //Lock the field element array, and add the elements

 //to the currently locked record

 // Unlock the record handle

 // Release the record

 //Free this record's field element array data

 }

To find the <Record></Record> tags for a given record, we use the StrStr function to find each tag. We do not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

check for a NULL result here, since the previous call to CountItems takes this into account when counting the
number of XML tag pairs in a string.

pszStart = StrStr(pszStart, "<Record>");

pszStart += StrLen("<Record>");

pszEnd = StrStr(pszStart, "</Record>");

We retrieve the record's data by calling ParseRecData .

retVal = ParseRecData(pszStart, hFieldElemArray, nNumFields, &nRecLen);

if(retVal != errNone)

{

 FreeFieldElemArray(hFieldElemArray, nNumFields);

 DmCloseDatabase(dbOpenRef);

 return retVal;

}

ParseRecData extracts the data between the <Record></Record > and stores it in the field element array. If
ParseRecData fails, we free the field element array, close the database, and return.

Now we have all of the data to add a record to the database. We create the new record and lock it for editing
with calls to DmNewRecord and MemHandleLock , respectively.

hRecord = DmNewRecord (dbOpenRef, &nRecNum, nRecLen);

pRecordLock = MemHandleLock(hRecord);

Adding the field data is simply a matter of appending each array element's data to the record.

pFieldElemArray = (DBSLibFieldElemTypePtr)MemHandleLock(hFieldElemArray);

pCurrFieldElem = pFieldElemArray;

nRecOffset = 0;

for(nFieldIndex = 0; nFieldIndex < nNumFields; nFieldIndex++)

{

 void *pData;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pData = (void *)MemHandleLock(pCurrFieldElem->hData);

 retVal = DmWrite(pRecordLock, nRecOffset, pData,

 pCurrFieldElem->nDataLen);

 MemPtrUnlock(pData);

 nRecOffset += pCurrFieldElem->nDataLen;

 pCurrFieldElem++;

}

MemPtrUnlock(pFieldElemArray);

For each element in the array, we write its data to the record with a call to DmWrite. Then we update
nRecOffset and pCurrFieldElem in preparation for writing the next field's data.

We finish up the record creation loop by unlocking the record's handle, releasing the record, and freeing the
record's data from the field element array.

MemPtrUnlock(pRecordLock);

DmReleaseRecord(dbOpenRef, nRecNum, bIsDirty);

FreeFieldElemArrayData(hFieldElemArray, nNumFields);

}

DmReleaseRecord clears the busy bit for the record, and sets the dirty bit. FreeFieldElemArrayData clears
the data for each field element in the array.

After all the records have been added, we close the database.

retVal = DmCloseDatabase(dbOpenRef);

Before leaving the DBSLibParseSchema function, we update the client's memory with the database's
information: name, number of fields, number of records, and schema.

pClientMem = LockClientMem(clientContext);

StrCopy(pClientMem->szName, szDBName);

CreateSchema(hFieldElemArray, nNumFields, pClientMem->szSchema);

pClientMem->nNumFields = nNumFields;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pClientMem->nNumRecords = nNumRecs;

pClientMem->nState = dbsLibQuerySchemaPending;

MemPtrUnlock(pClientMem);

CreateSchema prepares the schema in a format suitable for parsing by the client. We call CreateSchema
here so that the schema is available when the client calls DBSLibGetDBInfo . We also assign the nState
member of client memory to dbsLibQuerySchemaPending, which signals successful database creation.

Finally, we free the field element array and return.

 FreeFieldElemArray(hFieldElemArray, nNumFields);

 return retVal;

}

8.3.5.4 DBSLibGetDBInfo

This function allows a client to retrieve metadata for the database that was created in a previous call to
DBSLibParseSchema .

Err DBSLibGetDBInfo(UInt16 refNum, UInt32 clientContext, Char* pszName,

 Int16 *pnNumRecs, Int16 *pnNumFields, Char* pszSchema)

{

 DBSLibClientMemPtr pClientMem;

 if(IsDBSLibOpen(refNum) == false)

 return dbsLibErrNotOpen;

 pClientMem = LockClientMem(clientContext);

 if(pClientMem->nState != dbsLibQuerySchemaPending)

 return dbsLibErrState;

 StrCopy(pszName, pClientMem->szName);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 *pnNumRecs = pClientMem->nNumRecords;

 *pnNumFields = pClientMem->nNumFields;

 StrCopy(pszSchema, pClientMem->szSchema);

 MemPtrUnlock(pClientMem);

 return errNone;

}

After verifying that the library is open, we retrieve the requested information from client memory and assign
the corresponding arguments.

8.3.6 Internal Library Functions

The custom library functions make use of the following internal helper functions:

ParseDBAttributes

Verifies existence of the database tags in the XML string and extracts the database attributes
ParseFields

Parses the schema section of the XML string, extracts the field definitions, and creates the field
element array

ParseRecData

Extracts the field data from the XML string for a given record based on the elements in the field array
CreateSchema

Uses the field element array to format the database schema in a format suitable for parsing
FreeFieldElemArray

Frees the field element array that defines the database schema
FreeFieldElemArrayData

Frees the data associated with an individual field element
CountItems

Counts the number of occurrences of a given XML tag pair within a string
ExtractData

Extracts data between two string delimiters within a larger string

8.3.6.1 ParseDBAttributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A database's attributes appear in the <Database> start tag and consist of Name , Type , and Creator .

<Database Name="Employee" Type="DATA" Creator="AFVM">

...

</Database>

ParseDBAttributes gets these attributes, as shown below.

Err ParseDBAttributes(Char *pszXML, Char *pszDBName, UInt32 *pnDBType,

 UInt32 *pnDBCreator)

{

 Err retVal = errNone;

 Char *pszStart, *pszEnd;

 UInt16 nResult;

 Char szTemp[16];

 if(pszXML == NULL)

 return dbsLibErrArg;

 pszStart = StrStr(pszXML, "<Database");

 pszEnd = StrStr(pszXML, "</Database>");

 if(pszStart == NULL || pszEnd == NULL)

 return dbsLibErrParse;

 nResult = ExtractData(pszStart, "Name=", " ", DB_NAME_LEN, pszDBName);

 if(nResult != errNone)

 return nResult;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MemSet(szTemp, sizeof(szTemp), 0);

 nResult = ExtractData(pszStart, "Type=", " ", sizeof(*pnDBType), szTemp);

 if(nResult != errNone)

 return nResult;

 pnDBType = ((UInt32*)szTemp);

 MemSet(szTemp, sizeof(szTemp), 0);

 nResult = ExtractData(pszStart, "Creator=", ">",

 sizeof(*pnDBCreator), szTemp);

 if(nResult != errNone)

 return nResult;

 pnDBCreator = ((UInt32*)szTemp);

 return retVal;

}

We verify the XML string is not NULL , and then look for the database tags. If either tag is missing, we return
an error. Then we use ExtractData to get each attribute.

8.3.6.2 ParseFields

As shown below, the <Num> , <Name> , <Type> , and <Length> tags define each field.

<Schema>

 <Field>

 <Num>0</Num>

 <Name>FirstName</Name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Type>6</Type>

 <Length>0</Length>

 </Field>

</Schema>

Recall from Table 8-4 that AppForge uses Num to uniquely identify this field. Name is the field's name, as it
appears in the <Record></Record> tags of the XML string. Type is a number corresponding to one of the
assignments F_TYPE_BOOL through F_TYPE_STR . Length corresponds to an AppForge field type declaration.
We hardcode this tag to 0 , which indicates a variable length field in AppForge.

The declaration and initialization for ParseFields is shown below.

Err ParseFields(Char* pszSchemaStart, Int16* npNumFields,

 MemHandle *phFieldElemArray)

{

 Err retVal = errNone;

 Boolean bContinue = true;

 Char *pszStart, *pszEnd;

 Int16 nIndex;

 MemHandle hFieldElemArray;

 DBSLibFieldElemTypePtr pFieldElemArray, pCurrFieldElem;

 Int16 nFieldElemTypeSize;

 UInt32 nFieldArraySize;

 Char szTemp[32];

 *npNumFields = 0;

 *phFieldElemArray = NULL;

 *(npNumFields) = CountItems(pszSchemaStart, "<Field>", "</Field>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if(*(npNumFields) < 1)

 return dbsLibErrParse;

We assume pszSchemaStart points to a string containing <Field></Field> tag pairs. We initialize the
function arguments and call CountItems to determine how many fields are in the schema. There must be at
least one field or we return an error.

We create and initialize a field array element of the proper size.

nFieldElemTypeSize = sizeof(DBSLibFieldElemType);

nFieldArraySize = (*npNumFields)*nFieldElemTypeSize;

hFieldElemArray = MemHandleNew(nFieldArraySize);

if(hFieldElemArray == 0)

 return dbsLibErrMemory;

pFieldElemArray = (DBSLibFieldElemTypePtr)MemHandleLock(hFieldElemArray);

MemSet(pFieldElemArray, (*npNumFields)*sizeof(DBSLibFieldElemType), 0);

Now we loop over each <Field></Field> tag pair.

pszStart = pszSchemaStart;

pCurrFieldElem = pFieldElemArray;

for(nIndex = 0; nIndex < *(npNumFields); nIndex++)

{

 pszStart = StrStr(pszStart, "<Field>"); //Find beginning field tag

 if(pszStart == NULL)

 {

 MemPtrFree(pFieldElemArray);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return dbsLibErrParse;

 }

 pszStart += StrLen("<Field>");

 pszEnd = StrStr(pszStart, "</Field>"); //Find end field tag

 if(pszEnd == NULL)

 {

 MemPtrFree(pFieldElemArray);

 return dbsLibErrParse;

 }

//Extract the data between the <Num></Num> tag pair

 MemSet(szTemp, 32, 0);

 nResult = ExtractData(pszStart, "<Num>", "</Num>", 31, szTemp);

 if(nResult != errNone)

 {

 MemPtrFree(pFieldElemArray);

 return nResult;

 }

 pCurrFieldElem->nNum = StrAToI(szTemp);

//Extract the data between the <Name></Name> tag pair

 MemSet(pCurrFieldElem->szName, DB_NAME_LEN, 0);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 nResult = ExtractData(pszStart, "<Name>", "</Name>",

 DB_NAME_LEN-1, pCurrFieldElem->szName);

 if(nResult != errNone)

 {

 MemPtrFree(pFieldElemArray);

 return nResult;

 }

//Extract the data between the <Type></Type> tag pair

 MemSet(szTemp, 32, 0);

 nResult = ExtractData(pszStart, "<Type>", "</Type>", 31, szTemp);

 if(nResult != errNone)

 {

 MemPtrFree(pFieldElemArray);

 return nResult;

 }

 pCurrFieldElem->nType = StrAToI(szTemp);

//Extract the data between the <Length></Length> tag pair

 MemSet(szTemp, 32, 0);

 nResult = ExtractData(pszStart, "<Length>", "</Length>", 31, szTemp);

 if(nResult != errNone)

 {

 MemPtrFree(pFieldElemArray);

 return nResult;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 pCurrFieldElem->nLength = StrAToI(szTemp);

 pCurrFieldElem++;

}

For each of these fields, we extract the data between the <Num></Num> , <Name></Name> , <Type></Type> ,
and <Length></Length> tag pairs, and store it in the corresponding field element. For each tag pair, we call
ExtractData . If this function fails, we free the field element array and return. At the end of the loop, we move
pCurrFieldElem to the next element in the array.

Before returning from ParseFields , we assign the handle pointer argument to the array and unlock it.

 (*phFieldElemArray) = hFieldElemArray;

 MemPtrUnlock(pFieldElemArray);

 return retVal;

}

8.3.6.3 ParseRecData

Given a field element array defining the set of fields for a record, ParseRecData loops through the array
looking for each field in an XML string, extracts the field's data, and stores it in the corresponding array
element. For the example record below, the field element array would contain elements defining the
<FirstName> , <LastName> , and <Phone> tags for the record.

<Data>

 <Record>

 <FirstName>Bob H.</FirstName>

 <LastName>Smith</LastName>

 <Phone>(703) 555-1212</Phone>

 </Record>

</Data>

The data and length of each field are stored in the hData and nDataLen members in the corresponding array
element.

We accomplish this parsing with a for loop, as shown below:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err ParseRecData(Char *pszStartDelim, MemHandle hFieldElemArray,

 Int16 nNumFields, UInt32 *pnRecLen)

{

 DBSLibFieldElemTypePtr pFieldElemArray, pCurrFieldElem;

 Int16 nFieldIndex;

 Char *pszTemp;

 Char szBeginTag[64];

 Char szEndTag[64];

 Char szData[MAX_DATA_LEN];

 UInt16 nResult;

 pFieldElemArray = pCurrFieldElem = NULL;

 *pnRecLen = 0;

 pFieldElemArray = (DBSLibFieldElemTypePtr)MemHandleLock(hFieldElemArray);

 pCurrFieldElem = pFieldElemArray;

 for(nFieldIndex = 0; nFieldIndex < nNumFields; nFieldIndex++)

 {

 StrCopy(szBeginTag, "<");

 StrCat(szBeginTag, pCurrFieldElem->szName);

 StrCat(szBeginTag, ">");

 pszTemp = szBeginTag;

 pszTemp++;

 StrCopy(szEndTag, "</");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 StrCat(szEndTag, pszTemp);

 //Extract the data between the two tags

 MemSet(szData, MAX_DATA_LEN, 0);

 nResult = ExtractData(pszStartDelim, szBeginTag, szEndTag,

 MAX_DATA_LEN-1, szData);

 if(nResult != errNone)

 return nResult;

At the beginning of the loop, we format the begin and end tags for the particular element of interest. We then
extract the data between the tags with a call to ExtractData .

Once we have the data, we determine its size, and store the result in the nDataLen member of the array
element.

switch(pCurrFieldElem->nType)

{

 case F_TYPE_STR: //Char

 pCurrFieldElem->nDataLen = StrLen(szData) + 1;

 break;

 case F_TYPE_INT: //Int16

 pCurrFieldElem->nDataLen = sizeof(Int16);

 break;

 case F_TYPE_LONG: //Int32

 pCurrFieldElem->nDataLen = sizeof(Int32);

 break;

 default:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return dbsLibErrParse;

 break;

 }

 *pnRecLen += pCurrFieldElem->nDataLen;

For our library, we only support F_TYPE_STR , F_TYPE_INT , and F_TYPE_LONG values. We keep a running total
of the record's length in the pnRecLen argument.

Next, we create the memory for the tag's data and enter another switch statement to assign it.

pCurrFieldElem->hData = MemHandleNew(pCurrFieldElem->nDataLen);

if(pCurrFieldElem->hData == NULL)

 return dbsLibErrMemory;

switch(pCurrFieldElem->nType)

{

 case F_TYPE_STR: //Char

 {

 Char* pData = (Char *)MemHandleLock(pCurrFieldElem->hData);

 if(pData == NULL)

 return dbsLibErrMemory;

 MemSet(pData, pCurrFieldElem->nDataLen, 0);

 StrCopy(pData, szData);

 MemPtrUnlock(pData);

 }

 break;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 case F_TYPE_INT: //Int16

 {

 Int16* pData = (Int16 *)MemHandleLock(pCurrFieldElem->hData);

 if(pData == NULL)

 return dbsLibErrMemory;

 MemSet(pData, pCurrFieldElem->nDataLen, 0);

 *pData = StrAToI(szData);

 MemPtrUnlock(pData);

 }

 break;

 case F_TYPE_LONG: //Int32

 {

 Int32* pData = (Int32 *)MemHandleLock(pCurrFieldElem->hData);

 if(pData == NULL)

 return dbsLibErrMemory;

 MemSet(pData, pCurrFieldElem->nDataLen, 0);

 *pData = StrAToI(szData);

 MemPtrUnlock(pData);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 break;

 default:

 return dbsLibErrParse;

 break;

}

We use a second switch statement to increase code clarity, instead of combining this logic with the previous
code. At the end of the loop, we move to the next element in the array. After exiting the loop, we unlock the
field element array and return.

 pCurrFieldElem++;

 }

 MemPtrUnlock(pFieldElemArray);

 return errNone;

}

8.3.6.4 CreateSchema

To create our database's schema from the XML string, CreateSchema concatenates the Num , Type , and Len
elements of each field into a string with the following format:

"Num1 Type1 Len1 Num2 Type2 Len2 ..."

Applications can then parse this string to determine how each record in the database is formatted. We will
see how this schema can by used by an AppForge application later in this chapter.

CreateSchema uses a for loop to iterate through each item in the field element array.

Err CreateSchema(MemHandle hFieldElemArray, Int16 nNumElements, Char *pszSchema)

{

 DBSLibFieldElemTypePtr pFieldElemArray, pCurrFieldElem;

 Int16 nFieldIndex;

 Char szTemp[16];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Int16 nSchemaLen;

 pFieldElemArray = (DBSLibFieldElemTypePtr)MemHandleLock(hFieldElemArray);

 pCurrFieldElem = pFieldElemArray;

 nSchemaLen = 0;

 for(nFieldIndex = 0; nFieldIndex < nNumElements; nFieldIndex++)

 {

 StrPrintF(szTemp, "%ld %d %ld ",

 pCurrFieldElem->nNum,

 pCurrFieldElem->nType,

 pCurrFieldElem->nLength);

 nSchemaLen += StrLen(szTemp);

 if(nSchemaLen > DB_SCHEMA_LEN)

 {

 MemPtrUnlock(pFieldElemArray);

 return dbsLibErrParse;

 }

 StrCat(pszSchema, szTemp);

 pCurrFieldElem++;

 }

 return errNone;

}

We form the schema string by appending each element's Num , Type , and Len members to the pszSchema
argument.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3.6.5 FreeFieldElemArrayData and FreeFieldElemArray

These helper functions assist with freeing the memory associated with the field element array.
FreeFieldElemArrayData frees the data associated with each element in the field element array.

void FreeFieldElemArrayData(MemHandle hFieldElemArray, Int16 nNumElements)

{

 DBSLibFieldElemTypePtr pFieldElemArray, pCurrFieldElem;

 Int16 nIndex;

 pFieldElemArray = (DBSLibFieldElemTypePtr)MemHandleLock(hFieldElemArray);

 pCurrFieldElem = pFieldElemArray;

 for (nIndex = 0; nIndex < nNumElements; nIndex++)

 {

 if(pCurrFieldElem->hData != NULL)

 MemHandleFree(pCurrFieldElem->hData);

 pCurrFieldElem->hData = NULL;

 pCurrFieldElem++;

 }

 MemPtrUnlock(pFieldElemArray);

}

We loop through the field element array, calling MemHandleFree to free each element's hData member.

FreeFieldElemArray calls FreeFieldElemArrayData before freeing the array itself.

void FreeFieldElemArray(MemHandle hFieldElemArray, Int16 nNumElements)

{

 FreeFieldElemArrayData(hFieldElemArray, nNumElements);

 MemHandleFree(hFieldElemArray);

}

8.3.6.6 CountItems

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This function parses a string, counting the number of XML tag pairs in the string.

Int16 CountItems(Char *pszStartDelim, Char* pszBeginTag, Char *pszEndTag)

{

 Char *pszStart = pszStartDelim, *pszEnd;

 Int16 nCount = 0;

 Boolean bContinue = true;

 while(bContinue == true)

 {

 pszStart = StrStr(pszStart, pszBeginTag); //Find the begin tag

 if(pszStart != NULL) //Find the end tag

 pszEnd = StrStr(pszStart, pszEndTag);

 if(pszStart == NULL || pszEnd == NULL) //Assume no more tag pairs

 bContinue = false;

 else

 {

 pszStart += StrLen(pszBeginTag); //Skip past the begin tag

 nCount++; //Increment the count

 }

 }

 return nCount;

}

We continue searching the string for tag pairs in a while loop until there are no more.

8.3.6.7 ExtractData

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As its name implies, ExtractData extracts characters in a string between a start and end delimiter.

Err ExtractData(Char *pszString, Char *pszStartDelim, Char* pszEndDelim,

 Int16 nMaxLen, Char *pszResult)

{

 Char *pszStart, *pszEnd;

 Int16 nIndex;

 pszStart = StrStr(pszString, pszStartDelim); //find beginning delimiter

 if(pszStart == NULL)

 return dbsLibErrParse;

 pszStart += StrLen(pszStartDelim); //increment past start delim

 pszEnd = StrStr(pszStart, pszEndDelim);

 if(pszEnd == NULL)

 return dbsLibErrParse;

 nIndex = 0;

 while(StrNCompare(pszStart, pszEndDelim, StrLen(pszEndDelim)) != 0)

 {

 pszResult[nIndex] = *pszStart;

 nIndex++;

 pszStart++;

 if(nIndex > nMaxLen)

 return dbsLibErrParse;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return errNone;

}

We verify the existence of the start and end delimiters. Next, we step through the string in a while loop,
extracting characters until we reach the end delimiter or exceed the maximum length.

We have now discussed global and client memory management techniques and the functions that the
DBSLib library implements. We have all of the pieces in place for our library except for one crucial
element-the dispatch table.

8.3.7 Dispatch Table

A dispatch table is a lookup table that the Palm OS uses to find a library's public functions. Without it, a
shared library will not function. Here is a brief overview of the dispatch table for our library.

We use the dispatch table from the SampleLib project that comes with the Palm OS
SDK as a template. The SampleLib code contains additional detailed comments.

8.3.7.1 Traps and custom function declarations

The Palm OS uses system traps to determine which custom functions in our library to call. Each trap is an
index into our library's dispatch table. We declare traps for each custom function using the following defines.

#define dbsLibTrapAPIVersion sysLibTrapCustom

#define dbsLibTrapParseSchema dbsLibTrapAPIVersion + 1

#define dbsLibTrapGetSchema dbsLibTrapAPIVersion + 2

#define dbsLibTrapLast dbsLibTrapAPIVersion + 3

The OS has already defined traps for the required functions: Open , Close , and Wake . We initialize our first
custom trap-dbsLibTrapAPIVersion -to sysLibTrapCustom , the first trap immediately following the
required traps.

Next, we modify the library's custom function declarations to reference these traps. We add the OS SDK-
defined SYS_TRAP macro to each declaration.

extern Err DBSLibOpen(UInt16 refNum, UInt32 * clientContextPtr)

 SYS_TRAP(sysLibTrapOpen);

extern Err DBSLibClose(UInt16 refNum, UInt32 clientContext)

 SYS_TRAP(sysLibTrapClose);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

extern Err DBSLibSleep(UInt16 refNum)

 SYS_TRAP(sysLibTrapSleep);

extern Err DBSLibWake(UInt16 refNum)

 SYS_TRAP(sysLibTrapWake);

extern Err DBSLibGetAPIVersion(UInt16 refNum, UInt32 *pVer)

 SYS_TRAP(dbsLibTrapAPIVersion);

extern Err DBSLibParseSchema(UInt16 refNum, UInt32 clientContext,

 Char* pszXMLSchema, Boolean bDeleteDB)

 SYS_TRAP(dbsLibTrapParseSchema);

extern Err DBSLibGetDBInfo(UInt16 refNum, UInt32 clientContext,

 Char* pszName, Int16 *pnNumRecs,

 Int16 *pnNumFields, Char* pszSchema)

 SYS_TRAP(dbsLibTrapGetSchema);

The SYS_TRAP macro takes each function's trap number as its argument and produces assembly language
that results in the proper function getting called.

8.3.7.2 Dispatch table implementation

The implementation file for our dispatch table starts with the following declarations. Precompiled headers are
turned off, and __PALMOS_TRAPS__ is set to zero. Then we include PalmOS.h and our library's header files.

#ifndef PILOT_PRECOMPILED_HEADERS_OFF

#define PILOT_PRECOMPILED_HEADERS_OFF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#endif

#if __PALMOS_TRAPS_ _

 #define EMULATION_LEVEL EMULATION_NONE // building Pilot executable

#endif

#undef __PALMOS_TRAPS__

#define __PALMOS_TRAPS__ 0

#define USE_TRAPS 0

#include <PalmOS.h>

#include "DBSLib.h" //our library's custom declarations

#include "DBSLibMem.h" //our library's memory management functions

Next are the declarations for our library's installation entry point and dispatch table. We omit the
implementation of DBSLibInstall for brevity; we discuss this function in the next section.

#define DBSLibInstall __Startup__

Err DBSLibInstall(UInt16 refNum, SysLibTblEntryPtr entryP); //entry point

static MemPtr asm DBSLibDispatchTable(void); //dispatch table

Err DBSLibInstall(UInt16 refNum, SysLibTblEntryPtr entryP)

{

 ...detail omitted for brevity...

}

The actual dispatch table is implemented as a function-DBSLibDispatchTable- with inline assembly
language. DBSLibDispatchTable uses the following definitions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#define prvJmpSize 4

#define libDispatchEntry(index) (kOffset+((index)*prvJmpSize))

#define numFunctions 8 //number of functions (0-based index)

#define kOffset (2*numFunctions)

numFunctions is the most important parameter from a developer's perspective. This parameter is set to the
number of custom functions in the library plus one for the library's name.

Here is the declaration and initialization for DBSLibDispatchTable .

static MemPtr asm DBSLibDispatchTable(void)

{

 LEA @Table, A0 // table ptr

 RTS

@Table:

 DC.W @Name //Offset to library name

Next come the library's trap dispatch entries.

// Standard traps

DC.W libDispatchEntry(0) // Open

DC.W libDispatchEntry(1) // Close

DC.W libDispatchEntry(2) // Sleep

DC.W libDispatchEntry(3) // Wake

// Start of the Custom traps

DC.W libDispatchEntry(4) //GetAPIVersion

DC.W libDispatchEntry(5) //ParseSchema

DC.W libDispatchEntry(6) //GetDBInfo

Each entry makes use of the previously defined libDispatchEntry macro, which takes an index as its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

argument. This index must be numbered sequentially, starting with zero.

You will need to modify this list of traps to reflect the functions in your shared library. Remember, the first four
traps are mandatory!

Next come the jump statements to each of the library's functions.

// Standard library function handlers

@GotoOpen:

 JMP DBSLibOpen

@GotoClose:

 JMP DBSLibClose

@GotoSleep:

 JMP DBSLibSleep

@GotoWake:

 JMP DBSLibWake

// Custom library function handlers

@GotoGetAPIVersion:

 JMP DBSLibGetAPIVersion

@GotoParseSchema:

 JMP DBSLibParseSchema

@GotoGetDBInfo:

 JMP DBSLibGetDBInfo

Note that the @GoTo labels do not have to match the function's name. To add jump statements for your library,
modify and/or add entries to this list. Be careful to make sure that the order of jumps and trap dispatch
entries are identical.

The last entry before leaving the function is for the library's name. You must end your dispatch table with this
entry.

@Name:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DC.B dbsLibName

}

We set the name to dbsLibName , which was previously defined as follows.

#define dbsLibName "DBSLib.lib"

Applications use dbsLibName in a call to SysLibFind to see if the DBSLib library is loaded.

8.3.7.3 Dispatch table assignment

The first time a shared library is loaded, the Palm OS calls the mandatory __Startup__ function. Here is
DBSLib's startup function, which we have seen before.

#define DBSLibInstall __Startup__

Err DBSLibInstall(UInt16 refNum, SysLibTblEntryPtr entryP)

{

 entryP->dispatchTblP = (MemPtr*)DBSLibDispatchTable();

 entryP->globalsP = NULL;

 return errNone;

}

We initialize the dispatch table pointer to our custom trap table with a call to DBSLibDispatchTable . As a
result, the OS can now call our library functions through this pointer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4 DBSLib Driver Application

In this section, we show how to use the shared library from a conventional Palm application. We assume you are familiar
with developing C/C++ Palm applications using CodeWarrior, so we focus on the code used to access the shared library.

Our driver application is called DBSLibFuser , because we expect to eventually turn it into an AppForge fuser. The main
screen for our driver is shown in Figure 8-1 .

Figure 8-1. DBSLib driver application

The main screen consists of three buttons that make calls into the DBSLib shared library. GetAPI retrieves the API version
of our library by calling DBSLibGetAPIVersion . CreateDB calls DBSLibParseSchema with a hardcoded XML string to
create a fictitious Employee database. GetDBInfo calls DBSLibGetDBInfo to retrieve metadata for the newly created
Employee database.

An application using a shared library performs five basic operations, as shown in Table 8-5 .

Table 8-5. Library operations

Operation Description

Load Finds and loads the library.

Open Opens the library for use. This step is required before calling the library's functions.

Use Makes calls into the library.

Close Closes the library when done.

Unload Unloads the library if you are the only one using it.

8.4.1 Load and Open

We use the following structure to track information about the shared library we are loading.

typedef struct ShLibInfoType

{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 UInt16 nLibRefNum;

 Boolean bLibWasPreloaded;

 UInt32 nClientContext;

} ShLibInfoType;

typedef ShLibInfoType *ShLibInfoTypePtr;

static MemHandle g_hShLibInfo;

We do this to provide a convenient way to access and release library functions and resources. We also declare
g_hSlLibInfo as a global MemHandle so we can access the ShLibInfoType structure throughout our program. Table 8-6
describes each item of this structure.

Table 8-6. ShLibInfoType items

Item Description

nLibRefNum Reference number for the shared library we have loaded

bLibWasPreloaded true if library was loaded by another application; false if not

nClientContext Client context for our memory in the shared library

Here is the function for loading the shared library.

Err LoadShLib(Char *pszLibName, UInt32 nDBType, UInt32 nDBCreator, MemHandle *phShLibInfo)

{

 Err retVal;

 MemHandle hShLibInfo;

 ShLibInfoTypePtr pShLibInfo;

 hShLibInfo = MemHandleNew(sizeof(ShLibInfoType));

 if(hShLibInfo == NULL)

 return dbsLibFuserErrMemory;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pShLibInfo = (ShLibInfoTypePtr)MemHandleLock(hShLibInfo);

 retVal = SysLibFind(pszLibName, &(pShLibInfo->nLibRefNum));

 if(retVal == errNone)

 pShLibInfo->bLibWasPreloaded = true;

 else

 {

 pShLibInfo->bLibWasPreloaded = false;

 retVal = SysLibLoad(nDBType, nDBCreator, &(pShLibInfo->nLibRefNum));

 }

We create memory for a ShLibInfoType structure and lock it for modification. Then we call SysLibFind to see if another
application has loaded the library. If the library has not been loaded, we call SysLibLoad , which loads the library and
returns a reference to it. In either case, we set the bLibWasPreloaded member of the ShLibInfoType structure accordingly.

Next, we store the handle to the ShLibInfoType structure in the pShLibInfo argument, unlock the structure, and return.

 *phShLibInfo = hShLibInfo;

 MemPtrUnlock(pShLibInfo);

 return retVal;

}

We call LoadShLib to load and open the DBSLib shared library in our application's AppStart function:

retVal = LoadShLib(dbsLibName, dbsLibTypeID, dbsLibCreatorID,

 &g_hShLibInfo);

if(retVal != errNone)

 return retVal;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pShLibInfo = (ShLibInfoTypePtr)MemHandleLock(g_hShLibInfo);

retVal = DBSLibOpen(pShLibInfo->nLibRefNum, &(pShLibInfo->nClientContext));

MemPtrUnlock(pShLibInfo);

8.4.2 Use

Let's see how to use the functions provided by DBSLib. Like most conventional Palm applications, events from the main
form are handled in the application's MainFormHandleEvent function.

Here is the event handler for clicking the GetAPI button.

case MainGetAPIButton:

{

 Err retVal;

 Char szTemp[256];

 UInt32 nVersion;

 ShLibInfoTypePtr pShLibInfo;

 pShLibInfo = (ShLibInfoTypePtr)MemHandleLock(g_hShLibInfo);

 retVal = DBSLibGetAPIVersion(pShLibInfo->nLibRefNum, &nVersion);

 MemPtrUnlock(pShLibInfo);

 if(retVal == errNone)

 {

 StrPrintF(szTemp, "Lib version = %d.%d",

 sysGetROMVerMajor(nVersion),

 sysGetROMVerMinor(nVersion));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 else

 StrCopy(szTemp, "Call to GetDBAPIVersion failed!");

 FrmCustomAlert(InfoAlert, szTemp, "", "");

}

break;

After calling DBSLibGetAPIVersion , we use the sysGetROMVerMajor and sysGetROMVerMinor macros to format the result.
We display the library version using a custom alert dialog, as shown in Figure 8-2 .

Figure 8-2. Library version alert dialog

Here is the event handler for clicking the CreateDB button.

case MainCreateDBButton:

{

 Err retVal;

 Char* pszXML = XML_STRING;

 ShLibInfoTypePtr pShLibInfo;

 pShLibInfo = (ShLibInfoTypePtr)MemHandleLock(g_hShLibInfo);

 retVal = DBSLibParseSchema(pShLibInfo->nLibRefNum,

 pShLibInfo->nClientContext, pszXML, true);

 MemPtrUnlock(pShLibInfo);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if(retVal == errNone)

 FrmCustomAlert(InfoAlert, "DBSLibParseSchema succeeded.", "", "");

 else

 FrmCustomAlert(InfoAlert, "DBSLibParseSchema failed.", "", "");

 handled = true;

}

break;

We call DBSLibParseSchema , and report success or failure accordingly, as shown in Figure 8-3 .

Figure 8-3. Successful parse dialog

XML_STRING is a sample string representing a fictitious Employee database.

#define XML_STRING "<Database Name=Employee Type=DATA Creator=AFLD>" \

 "<Schema>" \

 "<Field>" \

 "<Num>0</Num>" \

 "<Name>FirstName</Name>" \

 "<Type>6</Type>" \

 "<Length>0</Length>" \

 "</Field>" \

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ... detail omitted for brevity ...

 "<Record>" \

 "<FirstName>Jane</FirstName>" \

 "<LastName>Williams</LastName>" \

 "<Phone>(703) 222-5151</Phone>" \

 "<Email>janew@company.com</Email>" \

 "<ID>23</ID>" \

 "</Record>" \

 "</Data>" \

 "</Database>"

Here is the event handler for clicking the GetDBInfo button.

case MainGetDBInfoButton:

{

 Char szDBName[DB_NAME_LEN];

 Char szSchema[DB_SCHEMA_LEN];

 Int16 nNumRecords;

 Int16 nNumFields;

 Err retVal;

 ShLibInfoTypePtr pShLibInfo;

 pShLibInfo = (ShLibInfoTypePtr)MemHandleLock(g_hShLibInfo);

 retVal = DBSLibGetDBInfo(pShLibInfo->nLibRefNum, pShLibInfo->nClientContext,

 szDBName, &nNumRecords, &nNumFields, szSchema);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MemPtrUnlock(pShLibInfo);

 {

 char szResult[128];

 char szTemp[128];

 if(retVal == errNone)

 {

 StrPrintF(szTemp, "Num recs = %d\n", nNumRecords);

 StrCopy(szResult, szTemp);

 StrPrintF(szTemp, "Num fields = %d\n", nNumFields);

 StrCat(szResult, szTemp);

 StrPrintF(szTemp, "Schema = %s\n", szSchema);

 StrCat(szResult, szTemp);

 }

 else

 StrCopy(szResult, "DBSLibGetDBInfo failed.");

 FrmCustomAlert(InfoAlert, szResult, "", "");

 }

}

break;

After calling DBSLibGetDBInfo , we format and display the results using a custom alert dialog, as shown in Figure 8-4 .

Figure 8-4. Database info dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4.3 Close and Unload

We close the DBSLib shared library and unload it in our application's AppStop function as follows:

pShLibInfo = (ShLibInfoTypePtr)MemHandleLock(g_hShLibInfo);

DBSLibClose(pShLibInfo->nLibRefNum, pShLibInfo->nClientContext);

MemPtrUnlock(pShLibInfo);

UnloadShLib(g_hShLibInfo);

After closing the library with a call to DBSLibClose , we call UnloadShLib , an internal function, to unload it. UnloadShLib
handles the chore of releasing the library.

Err UnloadShLib(MemHandle hShLibInfo)

{

 Err retVal = errNone;

 ShLibInfoTypePtr pShLibInfo;

 pShLibInfo = (ShLibInfoTypePtr)MemHandleLock(hShLibInfo);

 if(pShLibInfo->bLibWasPreloaded == false &&

 pShLibInfo->nLibRefNum != sysInvalidRefNum)

 {

 retVal = SysLibRemove(pShLibInfo->nLibRefNum);

 ErrFatalDisplayIf(retVal != errNone,

 "DBSLibDriver: Error uninstalling DBSLib.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pShLibInfo->nLibRefNum = sysInvalidRefNum;

 }

 MemPtrFree(pShLibInfo);

 return retVal;

}

We verify that the library was not already loaded by another application and that the reference number is valid. If we are
the last client using the library, we call SysLibRemove to unload the library.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5 DBSLib Fuser

In this section, we modify the DBSLib driver application and create an AppForge fuser. This allows an
AppForge VB application to access the shared library.

To convert the driver application to a fuser, you need to change its database type to FUSR . You must also
set the structure alignment to 68K 4-byte in the 68K Processor panel of the project's settings. Make sure to
recompile the project after making these changes.

8.5.1 Data Types

For use as a fuser, we define the following launch codes.

#define dbsFuserAppLaunchGetAPI 32767

#define dbsFuserAppLaunchCreateDB 32768

The dbsFuserAppLaunchGetAPI launch code corresponds to DBSLibGetAPI . To marshal data for this
launch code, we use the following structure.

typedef struct DBSLibAPIStruct

{

 Int16 nMajor; /* OUT */

 Int16 nMinor; /* OUT */

 UInt32 nResult; /* OUT */

} DBSLibAPIStruct;

We receive the IN items from the AppForge application and we pass the OUT items back to it. Here we only
have OUT items. nMajor and nMinor are the major and minor numbers, respectively, of our library's version.
nResult is the result of processing this launch code. 0 means success, 1 means failure.

We then combine CreateDatabase and GetDBInfo into one launch code-dbsFuserAppLaunchCreateDB .
Since a fuser's global data is not generally available while processing a launch code, we must open and
close the library each time.[2] This makes it difficult to maintain state between launch codes. Thus, we
combine these two functions into one launch code.

[2] Using a database or feature memory-memory that persists between application invocations-are two ways around this hurdle. We do not

discuss either approach in this chapter.

We use the following structure to marshal data from the dbsFuserAppLaunchCreateDB launch code:

typedef struct CreateDBStruct

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{

 UInt32 XMLString; /* IN */

 Boolean bDeleteDB; /* IN */

 UInt32 dbName; /* OUT */

 Int16 nNumRecords; /* OUT */

 Int16 nNumFields; /* OUT */

 UInt32 Schema; /* OUT */

 UInt32 nResult; /* OUT */

} CreateDBStruct;

Table 8-7 describes each item.

Table 8-7. CreateDBStruct items

Item Direction Description

XMLString IN XML string containing database schema and records.

bDeleteDB IN
If true , delete any existing database processing. If false , do not delete the
database before processing.

dbName OUT Name of database.

nNumRecords OUT Number of records added to the database from the XML string.

nNumFields OUT Number of fields per database record.

Schema OUT String containing schema in a format suitable for parsing.

nResult OUT Result of processing launch code. 0 means success, 1 means failure.

8.5.2 Implementation

Our fuser responds to launch codes in StarterPalmMain . Here is the event handler for the
dbsFuserAppLaunchGetAPI launch code.

case dbsFuserAppLaunchGetAPI:

{

 MemHandle hShLibInfo;

 UInt32 nVersion;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ShLibInfoTypePtr pShLibInfo;

 errVal = LoadShLib(dbsLibName, dbsLibTypeID, dbsLibCreatorID, &hShLibInfo);

 if(errVal == errNone)

 {

 pShLibInfo = (ShLibInfoTypePtr)MemHandleLock(hShLibInfo);

 errVal = DBSLibGetAPIVersion(pShLibInfo->nLibRefNum, &nVersion);

 MemPtrUnlock(pShLibInfo);

 if(errVal == errNone)

 {

 ((DBSLibAPIStruct *)cmdPBP)->nMajor = sysGetROMVerMajor(nVersion);

 ((DBSLibAPIStruct *)cmdPBP)->nMinor = sysGetROMVerMinor(nVersion);

 ((DBSLibAPIStruct *)cmdPBP)->nResult = 0;

 }

 else

 ((DBSLibAPIStruct *)cmdPBP)->nResult = 1; //GetAPIVersion failed

 UnloadShLib(hShLibInfo);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else

 ((DBSLibAPIStruct *)cmdPBP)->nResult = 1; //LoadShLib failed

 errVal = errNone; //Reset the error - afPalmOS.CallApp succeeded

}

break;

Once we load the shared library, we call to DBSLibGetAPIVersion , and store the results in the
corresponding parameters of the cmdPBP argument.

It may seem unusual to assign a result of 0 or 1 to nResult , and to reset errVal to errNone . This is
because errVal is returned to AppForge as a result of the afPalmOS.CallApp method, and nResult is the
return value specific to the request being made-dbsFuserAppLaunch, in this case. We reset errVal to
errNone to indicate the afPalmOS.CallApp method succeeded.

Upon successful return, the AppForge application examines the nResult value to determine if the specific
dbsFuserAppLaunch call succeeded.

Here is the event handler for the dbsFuserAppLaunchCreateDB launch code.

case dbsFuserAppLaunchCreateDB:

{

 MemHandle hXMLString;

 Boolean bDeleteDB;

 MemHandle hdbName;

 Int16 nNumRecords;

 Int16 nNumFields;

 MemHandle hSchema;

 MemHandle hShLibInfo;

 ShLibInfoTypePtr pShLibInfo;

 Char *pXMLString;

 Char *pdbName;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Char *pSchema;

 Char szDBName[DB_NAME_LEN];

 Char szSchema[DB_SCHEMA_LEN];

 errVal = LoadShLib(dbsLibName, dbsLibTypeID, dbsLibCreatorID, &hShLibInfo);

 if(errVal == errNone)

 {

 pShLibInfo = (ShLibInfoTypePtr)MemHandleLock(hShLibInfo);

 //Open the library

 errVal = DBSLibOpen(pShLibInfo->nLibRefNum, &(pShLibInfo->nClientContext));

 if(errVal == errNone)

 {

 hXMLString = NULL;

 hXMLString = AFStringToMemHandle(((CreateDBStruct *)cmdPBP)->XMLString);

 if(hXMLString != NULL)

 pXMLString = (Char *)MemHandleLock(hXMLString);

 bDeleteDB = ((CreateDBStruct *)cmdPBP)->bDeleteDB;

 if(bDeleteDB)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bDeleteDB = true;

 else

 bDeleteDB = false;

After declaring several variables, we load and open DBSLib. We check and reassign the value of
bDeleteDB to ensure that it is uniquely true (decimal 1 or 0x01) or false (decimal 0 or 0 x 00). In Visual
Basic, a Boolean True is stored as -1, and False is stored as 0. Since a Boolean in the Palm OS is a typedef
for an unsigned char, -1 gets marshaled as decimal 255, or 0xFF, and 0 gets marshaled as decimal 0, or
0x00. Our test ensures that bDeleteDB is properly initialized to true or false .

Next, we call DBSLibParseSchema . If this call succeeds, we call DBSLibGetDBInfo .

errVal = DBSLibParseSchema(pShLibInfo->nLibRefNum,

 pShLibInfo->nClientContext,

 pXMLString, bDeleteDB);

 MemPtrUnlock(pXMLString);

if(errVal == errNone)

 errVal = DBSLibGetDBInfo(pShLibInfo->nLibRefNum,

 pShLibInfo->nClientContext,

 szDBName, &nNumRecords,

 &nNumFields, szSchema);

We are ready to assign the corresponding OUT parameters for the AppForge application. First, we assign
the database name and schema string parameters.

if(errVal == errNone)

 {

 // --- Assign the database name ---

 //Remove old string

 hdbName = AFStringToMemHandle(((CreateDBStruct *)cmdPBP)->dbName);

 if(hdbName != NULL)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MemHandleFree(hdbName);

 hdbName = MemHandleNew(DB_NAME_LEN);

 pdbName = MemHandleLock(hdbName);

 StrCopy(pdbName, szDBName);

 //Assign new string

 errVal = MemHandleToAFString(hdbName,

 &(((CreateDBStruct *)cmdPBP)->dbName));

 MemPtrUnlock(pdbName);

 // --- Assign the database schema ---

 //Remove old string

 hSchema = AFStringToMemHandle(((CreateDBStruct *)cmdPBP)->Schema);

 if(hSchema != NULL)

 MemHandleFree(hSchema);

 hSchema = MemHandleNew(DB_SCHEMA_LEN);

 pSchema = MemHandleLock(hSchema);

 StrCopy(pSchema, szSchema);

 //Assign new string

 errVal = MemHandleToAFString(hSchema,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 &(((CreateDBStruct *)cmdPBP)->Schema));

 MemPtrUnlock(pSchema);

We call AFStringToMemHandle to obtain the strings passed in from VB, and to free them if they are
allocated. This ensures the VB strings have the proper length when the fuser returns control to the
AppForge application. Next, we allocate memory for each string, and store the result in the corresponding
VB string with a call to MemHandleToAFString .

Next, we assign the number of records and fields. Finally, we update the result to indicate success or
failure, and close the library.

 // --- Assign the number of records ---

 ((CreateDBStruct *)cmdPBP)->nNumRecords = nNumRecords;

 // --- Assign the number of fields ---

 ((CreateDBStruct *)cmdPBP)->nNumFields = nNumFields;

 //DBSLibParseSchema & DBSLibDBGetInfo succeeded

 ((CreateDBStruct *)cmdPBP)->nResult = 0;

 }

 else

 {

 ((CreateDBStruct *)cmdPBP)->nResult = 1; //DBSLibParseSchema or

 //DBSLibDBGetInfo failed

 }

 // Close the library

 DBSLibClose(pShLibInfo->nLibRefNum, pShLibInfo->nClientContext);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We close with a series of else clauses that indicate failure of the library load or open calls.

 }

 else

 ((CreateDBStruct *)cmdPBP)->nResult = 1; //DBSLibOpen failed

 MemPtrUnlock(pShLibInfo);

 UnloadShLib(hShLibInfo);

 }

 else

 ((CreateDBStruct *)cmdPBP)->nResult = 1; //LoadShLib failed

 //Reset the error - afPalmOS.CallApp succeeded

 errVal = errNone;

}

break;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.6 AppForge Driver Application

In this section, we show you how to integrate the DBSLibFuser into a simple AppForge application to
create a database and to populate a grid view control with the results. This application is similar to our
driver application.

The main screen for the AppForge AFLibDriver application is shown in Figure 8-5, and appears similar to
the DBSLib driver application.

Figure 8-5. AFLibDriver application

The main screen consists of three buttons. GetAPI retrieves the API version of the library by passing the
dbsFuserAppLaunchGetAPI launch code to our fuser. CreateDB creates the database and retrieves its
metadata (name, number of records, schema, etc.) by passing the dbsFuserAppLaunchCreateDB launch
code. ViewData does not use the fuser at all. When this button is clicked, we format an AppForge schema
for the database, retrieve the records from the database, and display them in a grid view control, as shown
in Figure 8-6.

Figure 8-6. AFLibDriver grid view

8.6.1 Fuser Data Types

In order to call into the fuser, we use the following commands, or launch codes.

Public Const cmdGetAPI As Long = 32767

Public Const cmdCreateDB As Long = 32768

We use the following type for marshaling data with the cmdCreateDB command. Each item corresponds to
those listed in Table 8-7. We pass the OUT items down to the fuser, and receive the IN items from it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Type CreateDBStruct

 XMLString As String ' OUT

 bDeleteDB As Boolean ' OUT

 dbName As String ' IN

 nNumRecords As Integer ' IN

 nNumFields As Integer ' IN

 Schema As String ' IN

 nResult As Long ' IN

End Type

For the cmdGetAPI command, we use the following type.

Public Type LibAPIStruct

 nMajor As Integer ' OUT

 nMinor As Integer ' OUT

 nResult As Long ' OUT

End Type

All of these OUT parameters will contain values supplied by the fuser. nMajor and nMajor are the major and
minor numbers, respectively, of the shared library's version. nResult serves the same purpose as it does
for the CreateDBStruct type.

We declare the following two instances of these types, which are passed to the fuser via the
afPalmOS.CallApp method.

Public g_DBAPIStruct As LibAPIStruct

Public g_DBStruct As CreateDBStruct

8.6.2 Database Types

The following global constants correspond to a field's <Num></Num> tag pair in the XML string.

Global Const LNG_EMP_FIRSTNAME As Long = 0

Global Const LNG_EMP_LASTNAME As Long = 1

Global Const LNG_EMP_PHONE As Long = 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Global Const LNG_EMP_EMAIL As Long = 3

Global Const LNG_EMP_ID As Long = 4

AppForge uses these numbers to distinguish one field from another when defining a database schema.
We discussed AppForge database schemas in Chapter 3. One plus to this approach is that if we want to
add an additional field to our schema, we can increment this number and add the new field without
impacting existing applications. As long as the original field numbers do not change, older applications will
still work properly.

The next set of global constants correspond to a field's <Type></Type> tag pair in the XML string.

Global Const DBS_TYPE_BOOL As Long = 0

Global Const DBS_TYPE_BYTE As Long = 1

Global Const DBS_TYPE_DATE As Long = 2

Global Const DBS_TYPE_FLOAT As Long = 3

Global Const DBS_TYPE_INT As Long = 4

Global Const DBS_TYPE_LONG As Long = 5

Global Const DBS_TYPE_STR As Long = 6

The last declarations are for two variables.

Public g_lDB As Long

Public g_bDBCreated As Boolean

g_lDB is a handle to a database, and is used when we populate the grid view with the database's records.
g_bDBCreated is used to track the database creation status. If this variable is True, the database was
created successfully. If it is False, database creation failed.

8.6.3 Implementation

Now, let's take a look at the code behind each button of our application.

8.6.3.1 GetAPI

Here is the event handler for clicking the GetAPI button.

Private Sub btnGetAPI_Click()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If afPalmOS.CallApp("DBSLibFuser", cmdGetAPI,

 VarPtr(g_DBAPIStruct)) = False Then

 MsgBox "Call to DBSLibFuser failed.", vbOKOnly

 Else

 If g_DBStruct.nResult = 1 Then

 MsgBox "Could not get API version."

 Else

 MsgBox "API version = " + CStr(g_DBAPIStruct.nMajor) + "." + _

 CStr(g_DBAPIStruct.nMinor)

 End If

 End If

End Sub

We call afPalmOS.CallApp with g_DBAPIStruct as the argument to VarPtr. If this call succeeds, the fuser
has populated the nMajor and nMinor OUT parameters. We extract them and display the results.

8.6.3.2 CreateDB

Here is the event handler for clicking the CreateDB button.

Private Sub btnCreateDB_Click()

 Dim bResult As Boolean

 g_bDBCreated = False

 g_DBStruct.bDeleteDB = True

 g_DBStruct.XMLString = ... detail omitted for brevity ...

 bResult = afPalmOS.CallApp("DBSLibFuser", cmdCreateDB, VarPtr(g_DBStruct))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If bResult = False Then

 MsgBox "Call to DBSLibFuser failed."

 Else

 If g_DBStruct.nResult = 0 Then

 MsgBox "Create DB succeeded."

 g_bDBCreated = True

 Else

 MsgBox "Create DB failed."

 End If

 End If

End Sub

We initialize the global variable g_bDBCreated as False. Next, we initialize the bDeleteDB and XMLString
OUT parameters of g_DBStruct. We indicate that we want the database to be deleted before records are
added. The XMLString contains information for a fictitious employee database. We have omitted the
details for brevity's sake.

If the call to afPalmOS.CallApp succeeds, we then examine the nResult member of g_DBStruct to
determine if the cmdCreateDB command succeeded. If the database has been created, we update
g_DBCreated accordingly. The fuser has also populated the dbName, nNumRecords, nNumFields, and Schema
OUT parameters.

8.6.3.3 ViewData

Here is the event handler for clicking the ViewData button.

Private Sub btnViewData_Click()

 If g_bDBCreated = False Then

 MsgBox "Must create the database first."

 Exit Sub

 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'load the data into the data view's grid that

 Call frmViewData.LoadData

 'hide this form and show the category form

 frmMain.Hide

 frmViewData.Show

End Sub

After verifying that the database has been created, we call LoadData to populate and display the grid view
with employee data.

Public Sub LoadData()

 Dim nFieldNum As Long

 Dim nFieldType As Long

 Dim nFieldLen As Long

 Dim nFieldDefIndex As Integer

 Dim sFieldDef As String

 Dim lFieldDefOffset As Long

 Dim lFieldDefLen As Long

 Dim afFieldType As tFieldTypes

 lFieldDefLen = 6

 Dim strLastName As String

 Dim strFirstName As String

 Dim strPhone As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim strEmail As String

 Dim nID As Long

 Dim nRows As Integer

The variable declarations for LoadData fall into three categories. The first category is variables to identify
the components of a field-number, type, and length. The next category is variables for parsing the
schema string. The third category is for the items that are displayed in the grid view control.

Let's revisit the formatted schema string that the fuser returns. For a schema containing three fields, the
fuser returns the following string.

"Num1 Type1 Len1 Num2 Type2 Len2 Num3 Type3 Len3"

An example with actual data might look like the following:

"0 6 0 1 6 0 2 5 0"

In this example, each field's definition takes up six character positions, including the trailing space. The
lFieldDefLen variable is set to 6 for this reason.

After declaring the variables, we check to see if the database has been created.

g_lDB = PDBOpen(Byfilename, g_DBStruct.dbName, 0, 0, 0, 0, 0)

If g_lDB = 0 Then

 MsgBox "Could not open database " + g_DBStruct.dbName

 Exit Sub

End If

Defining the database schema involves telling AppForge how many and what type of fields make up each
record in our database. We do this by looping on the number of fields.

For nFieldDefIndex = 1 To g_DBStruct.nNumFields

 lFieldDefOffset = (nFieldDefIndex - 1) * lFieldDefLen + 1

 'Field definition in the form: num, type, len

 sFieldDef = Mid(g_DBStruct.Schema, lFieldDefOffset, lFieldDefLen)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'Pick off the field number

 nFieldNum = CLng(Mid(sFieldDef, 1, 1))

 'Pick off the field type

 nFieldType = CLng(Mid(sFieldDef, 3, 1))

 'Pick off the field length

 nFieldLen = CLng(Mid(sFieldDef, 5, 1))

We calculate the offset to the beginning of the field's definition in the schema string and assign it to
lFieldDefOffset. We call Mid once to extract the field's definition, and then three more times to extract
the field's number, type, and length.

We must map the field's type to the corresponding AppForge type. We do this using the following Select
Case statement.

Select Case (nFieldType)

 Case DBS_TYPE_BOOL

 afFieldType = eBooleanField

 Case DBS_TYPE_BYTE

 afFieldType = eByteField

 Case DBS_TYPE_DATE

 afFieldType = eDateField

 Case DBS_TYPE_FLOAT

 afFieldType = eFloatField

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Case DBS_TYPE_INT

 afFieldType = eIntegerField

 Case DBS_TYPE_LONG

 afFieldType = eLongField

 Case DBS_TYPE_STR

 afFieldType = eStringField

 Case Else

 MsgBox "Invalid field type!"

End Select

Now we have all the information we need to set the field's type.

 PDBSetFieldType g_lDB, nFieldNum, afFieldType, nFieldLen

Next

We simply call PDBSetFieldType with the corresponding parameters and iterate to the next field. Next, we
perform some housekeeping in preparation for adding data to the grid view.

PDBSetSortFields g_lDB, LNG_EMP_LASTNAME

nRows = grdView.Rows

grdView.Visible = False

While Not (grdView.Rows = 0)

 grdView.RemoveItem (0)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 grdView.Refresh

 nRows = grdView.Rows

Wend

grdView.ColWidth(0) = 200

grdView.Col = 0

We sort the database by last name with a call to PDBSetSortFields. Next, we determine the number of
rows in the grid and remove them. We also hide the grid to speed up drawing. We then set the grid's
column width, and target the left column for setting cell tag properties. We are ready to populate the grid
view with records from the database.

PDBMoveFirst g_lDB

While Not (PDBEOF(g_lDB) = True)

We move to the first record in the database with a call to PDBMoveFirst, and loop through each record.

We retrieve the employee's last and first name with calls to PDBGetField.

PDBGetField g_lDB, LNG_EMP_LASTNAME, strLastName

PDBGetField g_lDB, LNG_EMP_FIRSTNAME, strFirstName

grdView.AddItem strLastName + ", " + strFirstName, -1

grdView.Row = (grdView.Rows - 1)

grdView.RowHeight(grdView.Row) = 15

After adding this information to the grid view, we select the row just added, and set its height to 15.

We follow similar steps to add rows for the employee's phone, email, and ID.

PDBGetField g_lDB, LNG_EMP_PHONE, strPhone

http://lib.ommolketab.ir
http://lib.ommolketab.ir

grdView.AddItem " " + strPhone, -1

 grdView.Row = (grdView.Rows - 1)

 grdView.RowHeight(grdView.Row) = 15

 PDBGetField g_lDB, LNG_EMP_EMAIL, strEmail

 grdView.AddItem " " + strEmail, -1

 grdView.Row = (grdView.Rows - 1)

 grdView.RowHeight(grdView.Row) = 15

 PDBGetField g_lDB, LNG_EMP_ID, nID

 grdView.AddItem " " + "ID: " + CStr(nID), -1

 grdView.Row = (grdView.Rows - 1)

 grdView.RowHeight(grdView.Row) = 15

At the end of the loop, we set the cell's font to 1 and move to the next record with a call to PDBMoveNext.

 grdView.FontStyle = 1

 PDBMoveNext g_lDB

Wend

We have now added all of the records to the grid view. We set it as visible and close the database before
leaving the function.

 grdView.Visible = True

 PDBClose (g_lDB)

End Sub

This function results in displaying the employee information as shown earlier in Figure 8-6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Piedmont

In this chapter, we look at the AppForge Piedmont Framework (henceforth referred to as Piedmont), a
component SDK for Windows and handheld devices. Piedmont uses a component-based architecture to
bring portable component-oriented programming to the PDA. [1] As powerful as COM is for Windows
platforms, it is useless on the PDA, since so much of COM relies on support from the Windows operating
system. AppForge bridges this gap on the Palm through BoosterPlus, which provides the registration and
runtime support services associated with COM.

[1] Although Piedmont is targeted for different PDAs, including the Pocket PC, we focus on its use for the Palm. We refer to component-

oriented instead of object-oriented programming, in keeping with COM's programming model and nomenclature.

Piedmont is portable in a number of ways, which is useful in development, integration, and deployment.
Piedmont object development is started with Microsoft's Visual C++ environment. From there, the
developer can continue to develop in Visual C++, debugging and testing his/her component from within
Windows. At some point, the component is integrated into a Visual Basic AppForge project, or deployed
on the handheld for Piedmont clients to use. Deploying the component involves compiling it with
MetroWerks CodeWarrior, installing it on the Palm, and registering it with the Booster.

This chapter provides an overview of the Piedmont internals by creating a sample server component. We
then show how to integrate the component with an AppForge Visual Basic project.

Piedmont's extensive framework makes it difficult to cover all aspects of Piedmont in one chapter. In this
chapter, we focus on the internals, since developers will want a taste of what it is like to develop with
Piedmont. From a larger perspective, though, Piedmont is exciting and compelling for many reasons. See
the Ingots sidebar later in this chapter for just one of the reasons why you should consider Piedmont for
developing handheld-based components.

We assume you are familiar with ATL-based COM development, interface definition
language (IDL), and Palm application development using Metrowerks CodeWarrior
for Windows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1 Obtaining Piedmont

The Piedmont SDK must be obtained as part of AppForge's Technology Licensing program. Piedmont
also requires the use of the BoosterPlus runtime. BoosterPlus is backward-compatible with Booster and
includes enhanced capabilities for running applications containing Piedmont-based components. For
details regarding AppForge's Technology Licensing program, visit their web site at
http://www.appforge.net.

Ingots

An ingot is a special type of Piedmont component that defines dual behaviors. An ingot's
design-time behavior defines how it interacts within Visual Basic when added as a component
to an AppForge project. Within Visual Basic, you access an ingot's properties just as you would
with any standard VB control. An ingot's runtime behavior determines how it appears (if
intended for display) and how it operates within Visual Basic or when deployed on the Palm.
An ingot supports this dual nature by defining an outer ActiveX-compliant component that
satisfies Visual Basic's design-time expectations of it and an inner component that satisfies
Piedmont's runtime expectations of the ingot.

Thus, Visual Basic sees the ingot as an ActiveX control, while the ingot's inner component
operates entirely within the Piedmont environment. This powerful duality means that a mobile
developer can design and implement an ingot within Visual Basic and deploy it on any
Piedmont-enabled platform, without requiring extensive modifications.

http://www.appforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2 Architecture Overview

Piedmont is AppForge's SDK for extending its flagship product by creating component-based objects. As
with COM on Windows, one or more Piedmont components can be housed within a module. On Windows,
a module typically consists of an in-process dynamic link library (DLL) or an out-of-process executable
(EXE). A Piedmont module consists of an in-process DLL on Windows, and a shared library on the Palm.

From a developer's perspective, Piedmont's architecture resembles the approach taken with ATL COM
development. Much of the low-level work associated with COM (IUnknown implementation, reference
counting, class factories, object creation, and module registration) is delegated to Piedmont-generated
subclasses, which inherit from your class. In this way, Piedmont uses your class as a base class, and
never instantiates it directly.[2] This keeps the focus on implementing interfaces in your class, while
delegating the housekeeping portions of COM to the derived classes. The same is true for the module
code. A virtual module class allows you to override some virtual methods if desired. Otherwise, all object
creation, module registration, and other housekeeping is performed by the derived class implementation.

[2] We will see later how Piedmont deviates from this approach, using the PUSH_IUNKNOWN_IMPL_UP directive, but this is the default

implementation.

We will see the details of this architecture unfold as we proceed with an example of our own.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3 Module and Interface Definition

In this section, we define a Piedmont module and interfaces for our example TagParse component. TagParse
parses data from within tag pairs of the following form:

<TAG>Optional Tag Data</TAG>

Similar to XML, an end tag differs from its start tag in that it contains an additional forward slash. Example 9-
1 shows a contrived set of tags for a database definition.

Example 9-1. Sample database tags with data

<Database>

 <Schema>

 <Field>

 Data for field 1

 </Field>

 </Schema>

 <Data>

 <Record>

 Data for record 1

 </Record>

 <Record>

 Data for record 2

 </Record>

 </Data>

</Database>

Start by creating a directory called TagParse , with the subfolders shown in Figure 9-1 .

Figure 9-1. TagParse component directories

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Module and interface definitions are described using Piedmont's interface definition language (PIDL). PIDL
uses XML syntax to describe the elements and attributes that make up a module, interfaces, and the classes
that implement interfaces. Each Piedmont component contains a module definition (MDX) file and one or
more interface definition (IDX) files.

The Piedmont SDK comes with ClassForge , a GUI-based utility for setting up these files. We will use
ClassForge to define the module, interfaces, and implementation class for the TagParse component. Note,
however, that you may create module and interface definition files from scratch, using any text or XML editor.

9.3.1 Module Declaration

When ClassForge starts, you are presented with the properties for an empty module (see Figure 9-2).

Figure 9-2. ClassForge module definition dialog

As with traditional COM development, all modules, interfaces, and classes are assigned globally unique IDs,
or GUIDs. ClassForge automatically generates new GUIDs for each of these elements as they are added.
The module ID is shown in the ID field. Type MTagParse in the Name field. After typing in the name, save the
file as TagParse.mdx in the ParseServer directory you created previously. Do this by clicking on File
Save Module As .

9.3.2 Interface Declaration

We define the ITagParse interface for our module. This interface contains the methods for parsing tag pairs
and extracting data between tag pairs. Add this interface by clicking Interfaces Add Interface to bring
up the Interface Design dialog in Figure 9-3 .

Figure 9-3. Interface Design dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type ITagParse into the Name field. Notice that an interface ID (IID) is automatically generated and added to
the iid field.

9.3.2.1 Conformant interfaces

The oleiid field and Conformant checkbox are for conformant interfaces. The AppForge Booster runtime
consists of a virtual machine (VM) that interprets a compiled byte-code version of a Visual Basic application.
For a Piedmont component to interoperate with the VM, its interface method parameters and return types are
limited to a subset of data types that are compatible with OLE automation under Windows. An interface
containing such methods is said to be conformant.

In Piedmont, all conformant methods must return an HRESULT. Conformant parameter types correspond to
a subset of Visual Basic data types. (A conformant method may also take conformant interfaces such as
ICanvas, for example, as parameters. We do not discuss conformant interface parameters in this chapter.)
Table 9-1 lists the conformant parameter types and their Visual Basic description.

Table 9-1. Conformant parameter types

Conformant parameter type Visual Basic description

Integer Integer value

String Character string value

Boolean Boolean value; True or False

Byte Byte value

Long Long integer value

Date Date or time value

Single Single-precision floating-point value

Double Double-precision floating-point value

Currency Currency value

In some cases, the underlying representations of these types differ between Piedmont and Visual Basic. For
example, a Visual Basic string is stored as a BSTR , a pointer to a Unicode character array, prefixed with a
header that contains the length of the string.[3] In contrast, Piedmont uses the IString interface to work with
string data between Piedmont interfaces.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[3] BSTR is commonly used to refer to the header and Unicode character array as one. Strictly speaking, however, a BSTR is the pointer to the

Unicode array.

When an interface is declared as conformant, the PIDL generates the necessary code to convert data
between Piedmont primitives and Visual Basic. We will see how this is done later in this chapter. For now,
check the Conformant checkbox, since we will be integrating our component into an AppForge application.

Your component's interfaces must be conformant if you want the AppForge VM to
access them from within Visual Basic.

The ITagParse interface has the following methods.

ExtractDataByTag

Extracts data between a tag pair
ExtractDataByIndex

Extracts data from a string given a start index and length
CountTagPairs

Counts the number of occurrences of a particular tag pair within a string

The parameters for ExtractDataByTag are shown in Table 9-2 .

Table 9-2. Parameters to ExtractDataByTag

Parameter Type/attribute Purpose

searchStr String [IN] String to search

startTag String [IN] First of tag pair

endTag String [IN] Second of tag pair

maxChar Integer [IN] Maximum number of characters to extract between tags

resultStr String [OUT, RETVAL] Extracted data

At first glance, declaring resultStr 's attribute as [OUT, RETVAL] seems to conflict with Piedmont's
convention that all interface methods return an HRESULT . As we will see, the implementation for
ExtractDataByTag does indeed return an HRESULT . A type library, however, wraps this function so that Visual
Basic clients see resultStr as the return value. We will revisit type libraries when we integrate the
ITagParse component into a Visual Basic project.

To add this method to the ITagParse interface, click the Add button, which brings up the Method/Property
Definition dialog, as shown in Figure 9-4 .

Figure 9-4. Method/Property Definition dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type ExtractDataByTag in the name field. The purpose of the pCOM Property group box is to establish
component properties. The TagParse component does not expose any of its members as properties, so you
can ignore this area. Add each parameter from Table 9-2 to the dialog by checking the rightmost boxes and
adding the corresponding information. Notice that the list box for selecting the parameter type (Integer ,
String , Boolean , etc) only contains options for the conformant data types. Click OK to add the method to the
ITagParse interface.

Continue in this manner, adding the ExtractDataByIndex and CountTagPairs methods, as defined in Table 9-
3 and Table 9-4 .

Table 9-3. Parameters to ExtractDataByIndex

Parameter Type/direction Purpose

searchStr String [IN] String to search

fromIndex Long [IN] Character index at which to begin searching

fromCount Long [IN] Number of characters to extract

resultStr String [OUT,RETVAL] Extracted data

Table 9-4. Parameters to CountTagPairs

Parameter Type/direction Purpose

searchStr String [IN] String to search

startTag String [IN] First of tag pair

endTag String [IN] Second of tag pair

numItems Long [OUT,RETVAL] Number of tag pairs found

When you have added these methods, click OK in the Interface Design dialog. The Module Definition
dialog now appears with the new unsaved interface listed under Interfaces and Enumerations as
UNSAVED IDX . Select this interface and click Interfaces Save Interface Collection As . Save the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interface definition in the ParseServer directory as TagParse.idx .

9.3.3 Event Interface Declaration

The TagParse component also supports an event interface. An event interface is a contract between a client
and a server component, in which the server sources, or sends, events and the client sinks, or receives,
them. The client must register a callback interface with the server component to receive events, and it must
revoke the callback interface to notify the server component to stop sending it events. Piedmont's event
source/sink model is shown in Figure 9-5 .

Figure 9-5. Event source/sink paradigm

The TagParse component exposes the IEventSource interface, which consists of the Advise and Unadvise
methods. The component also defines the ITagParseEvent interface and associated event methods. The
TagParse client implements this interface. When the client wants to receive (or sink) events, it queries for the
IEventSource interface on the component and calls Advise, passing in its callback interface. In the Advise
method, the component records the client's ITagParseEvent callback interface. When the component sinks
an event, it calls the corresponding method on the ITagParseEvent interface. When the client no longer
wishes to receive events, it calls We declare the ITagParseEvent interface, which includes two event sinks
(methods) for propagating errors.

InvalidTagPair

This event is sourced when an invalid tag pair is passed into one of the ITagParse methods. An invalid
tag pair consists of a malformed pair, such as the following: <Record></Recordd> .

TagNotFound

This event is sourced if the second tag of a given pair is not found.

The parameters for these methods are shown in Table 9-5 and Table 9-6 .

Table 9-5. Parameters to InvalidTagPair

Parameter Attribute/direction Purpose

startTag String [IN] First of tag pair

endTag String [IN] Second of tag pair

Table 9-6. Parameters to TagNotFound

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Parameter Attribute/direction Purpose

tag String [IN] Missing tag

You create the ITagParseEvent interface and methods just like we did for the ITagParse . Don't forget to
make the interface conformant! Save the ITagParseEvent declaration in the ParseServer directory to a file
called TagParseEvent.idx .

9.3.4 Class Declaration

So far, we have declared the MTagParse module and the ITagParse interface that it supports. To declare the
class that implements the ITagParse interface, simply click Classes Add Class . The Class
Information dialog appears (see Figure 9-6).

Figure 9-6. Module definition dialog with interface and class declarations

Type CTagParse in the Class name field. The CTagParse class implements the methods of the ITagParse
interface and sources events of the ITagParseEvent interface. Select each of these interfaces from the left,
and add them to the corresponding list box on the right. Add ITagParseEvent to the Sources list box, and add
ITagParse to the Implements list box. Then click OK .

Save the module by clicking File Save Module . You may exit ClassForge.

9.3.5 File Details

In this section, we examine the MDX and IDX files that ClassForge created for the TagParse component. We
discuss these files to show how the XML elements tie to what we just declared using the ClassForge utility.
We also manually add some PIDL code to complete the MDX file.

As you become proficient with writing your own Piedmont components, you may wish to explore more of the
capabilities that PIDL provides. In some cases, you may need to create your MDX or IDX files from scratch,
especially if you use a feature of PIDL that ClassForge does not support.

9.3.5.1 Module definition file

Here is the TagParse.mdx file produced by ClassForge.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<module name="MTagParse"

 modid="9A4F5F84-8C63-4D82-B70D-B366A7EE842E"

 version="1"

 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://frog.appforge.com/std/1/pidl_schemas.xsd">

 <import src="TagParseEvent.idx"/>

 <import src="TagParse.idx"/>

 <class name="CTagParse"

 version="1"

 clsid="D2780CDC-A37C-4AB2-9140-E93A71F418E7">

 <implements name="ITagParse"/>

 <implements name="IEventSource"/>

 <sources name="ITagParseEvent"/>

 </class>

</module>

Manually add the bolded implements element to the file. (The IEventSource interface may be added to the
CTagParse class in ClassForge by dragging the interface onto the CTagParse class. We perform this step
manually, since it is more straightforward.) The IEventSource interface must be implemented, since the
TagParse component sources events.

The name , modid , and version attributes of the module element are taken from the ClassForge Module
Definition dialog. ClassForge automatically generates two additional module attributes: an XML
namespace and an associated schema instance. These attributes are typically referenced by XML schema
validation utilities. PIDL ignores these attributes when compiling the file.

The import elements reference the files for the interfaces that this module supports. The class element
indicates that this module contains a class called CTagParse . This element contains the implements and
sources subelements, which indicate that this class implements the ITagParse interface and sources
ITagParseEvent events.

9.3.5.2 Interface definition file

Here is the TagParse.idx file produced by ClassForge .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<interfaces xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://frog.appforge.com/std/1/pidl_schemas.xsd">

 <import src="pcom.idx"/>

 <interface name="ITagParse"

 iid="B7D4B93C-1897-41E7-B85C-23E158205DDF"

 oleiid="7E434650-0C6E-44C9-8994-3C6972F213CF">

 <method name="ExtractDataByTag">

 <param name="searchStr" type="String" attr="in"/>

 <param name="startTag" type="String" attr="in"/>

 <param name="endTag" type="String" attr="in"/>

 <param name="maxChar" type="Integer" attr="in"/>

 <param name="resultStr" type="String" attr="out,retval"/>

 </method>

 <method name="ExtractDataByIndex">

 <param name="searchStr" type="String" attr="in"/>

 <param name="fromIndex" type="Long" attr="in"/>

 <param name="fromCount" type="Long" attr="in"/>

 <param name="resultStr" type="String" attr="out,retval"/>

 </method>

 <method name="CountTagPairs">

 <param name="searchStr" type="String" attr="in"/>

 <param name="startTag" type="String" attr="in"/>

 <param name="endTag" type="String" attr="in"/>

 <param name="numItems" type="Long" attr="out,retval"/>

 </method>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </interface>

</interfaces>

Interface definition files begin with the interfaces element and associated attributes. The import element at
the beginning of the file references the pCOM.idx file. This file is part of the Piedmont SDK and contains a
number of base interfaces, including those that the MTagParse module and TagParse component must
implement: IModule , IUnknown , and IEventSource .

Next comes the interface element for the ITagParse interface. The name attribute is the name of this
interface and iid is the GUID associated with this interface. The oleiid attribute specifies an additional GUID
for use with conformant interfaces. We will see how this attribute is used later.

The method element, and corresponding param subelements, define the methods of the ITagParse interface.
Each method is identified by its name attribute, and each parameter is identified by its name , type , and attr
attributes.

9.3.5.3 Event interface definition file

Here is the TagParseEvent.idx file produced by ClassForge.

<interfaces xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://frog.appforge.com/std/1/pidl_schemas.xsd">

 <import src="pcom.idx"/>

 <interface name="ITagParseEvent"

 iid="BA615D49-D31B-4F7F-AE46-F773363378B2"

 oleiid="8C003256-48A4-4692-B27E-75989733B05E">

 <method name="InvalidTagPair">

 <param name="startTag" type="String" attr="in"/>

 <param name="endTag" type="String" attr="in"/>

 </method>

 <method name="TagNotFound">

 <param name="tag" type="String" attr="in"/>

 </method>

 </interface>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</interfaces>

This file structure is similar to that of TagParse.idx , and contains the two event methods associated with the
ITagParseEvent interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4 Component Code Generation

We can now use the PIDL compiler to generate C++ skeleton module and component code from the MDX and IDX files we
created previously. From the skeleton code, we can compile either a Windows DLL, using Visual C++, or a PRC file, using
Metrowerks' CodeWarrior.

With a DLL, you can write a simple Visual C++ driver program to test on Windows before deploying it to the Palm as a PRC
file. More importantly, you can incorporate your component into an AppForge Visual Basic application and test it on Windows
before deploying the component and the application to the Palm. Piedmont's dual DLL/PRC nature is what makes it such a
powerful SDK.

In this section, we use the PIDL compiler to generate the skeleton code for the TagParse component and compile it as a
Windows DLL. Before getting started, configure Visual C++ so it can find the various files associated with the Piedmont SDK.
From the Visual C++ main menu, select Tools Options to bring up the Options dialog. Click on the Directories tab.
Assuming the Piedmont SDK is installed in C:\Program Files\AppForge\SDK , add the directories shown in Table 9-7 .

Table 9-7. Visual C++ Piedmont SDK directories

File type Directories

Include files C:\Program Files\AppForge\SDK\include

 C:\Program Files\AppForge\SDK\include\Win32

Library files C:\Program Files\ AppForge \SDK\lib\Win32\MSVC60

Executable files C:\ Program Files \ AppForge \SDK\bin

Next, create a Win32 DLL project called ParseServer in the ParseServer directory where the IDX and MDX files are located
(see Figure 9-1 , shown earlier in this chapter). When prompted for the type of DLL to create, select An empty DLL project .
From the Visual C++ main menu, select Project Settings . From the Project Settings dialog, select the MIDL tab.
Make sure the MkTypLib compatible checkbox is not checked. MkTypeLib is a compiler for creating type libraries from
scripts written in object description language (ODL). Using MkTypeLib conflicts with the IDL output that PIDL produces. Click
OK to accept the changes.

Add the MDX and IDX files from the ParseServer directory to the project. Right-click on the TagParse.mdx file and select
Settings to set up a custom build step. Select the Custom Build tab and fill in the fields according to Table 9-8 .

Table 9-8. TagParse module custom build settings

Field Input

Description Generating module code...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Field Input

Commands

pidl /I "C:\Program Files\AppForge\SDK\include" $(InputPath)

Outputs

MTagParse_GUID.h

_CTagParse.inc

_MTagParse.inc

TagParseServer_tlb.idl

Again, this assumes that the Piedmont SDK is installed in the default location. Add a post-build step to register the TagParse
component with Windows. From the Project Settings dialog, select the TagParse project and then the Post-build step tab.
Type in regsvr32 $(TargetPath) as the post-build command.

Click OK to accept these new project settings. Compile TagParse.mdx by right-clicking on it and selecting Compile
TagParse.mdx . Table 9-9 lists the C++ files that PIDL produces for the TagParse component.

Table 9-9. PIDL-generated files

Source file Output file Description

TagParse.idx

TagParseEvent.idx
TagParse.h

Defines the TagParse component interfaces and
assigns interface GUIDs

TagParseEvent.mdx _CTagParse.inc
Base class that derives from CTagParse ; contains
IUnknown implementation and class creation function

CTagParse.h

CTagParse.cpp

Class files; implement the ITagParse and
IEventSource interfaces

 _MTagParse.inc
Base class that derives from MTagParse ; contains
IUnknown and partial IModule implementation, as
well as module creation function

 MTagParse_module.hMTagParse_module.cpp
Contains CCustomIUnknown and partial IModule
implementation

 MTagParse_GUID.h Contains module ID and class IDs

 TagParse_tlb.idl
IDL file that is subsequently compiled with
Microsoft's MIDL compiler

 TagParse.def Contains DLL export statements

Let's look at each file in more detail. Our coverage touches only on the salient features of each file and is not exhaustive.

Commands

pidl /I "C:\Program Files\AppForge\SDK\include" $(InputPath)

Outputs

MTagParse_GUID.h

_CTagParse.inc

_MTagParse.inc

TagParseServer_tlb.idl

Again, this assumes that the Piedmont SDK is installed in the default location. Add a post-build step to register the TagParse
component with Windows. From the Project Settings dialog, select the TagParse project and then the Post-build step tab.
Type in regsvr32 $(TargetPath) as the post-build command.

Click OK to accept these new project settings. Compile TagParse.mdx by right-clicking on it and selecting Compile
TagParse.mdx . Table 9-9 lists the C++ files that PIDL produces for the TagParse component.

Table 9-9. PIDL-generated files

Source file Output file Description

TagParse.idx

TagParseEvent.idx
TagParse.h

Defines the TagParse component interfaces and
assigns interface GUIDs

TagParseEvent.mdx _CTagParse.inc
Base class that derives from CTagParse ; contains
IUnknown implementation and class creation function

CTagParse.h

CTagParse.cpp

Class files; implement the ITagParse and
IEventSource interfaces

 _MTagParse.inc
Base class that derives from MTagParse ; contains
IUnknown and partial IModule implementation, as
well as module creation function

 MTagParse_module.hMTagParse_module.cpp
Contains CCustomIUnknown and partial IModule
implementation

 MTagParse_GUID.h Contains module ID and class IDs

 TagParse_tlb.idl
IDL file that is subsequently compiled with
Microsoft's MIDL compiler

 TagParse.def Contains DLL export statements

Let's look at each file in more detail. Our coverage touches only on the salient features of each file and is not exhaustive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4.1 TagParse.h

This file begins by including pCOM.h .

#include <pCOM.h>

pCOM.h declares several standard interfaces used throughout Piedmont, including IUnknown , IModule , and IEventSource ,
among others. Next are some forward declarations for the interfaces in TagParse.h .

typedef struct ITagParse ITagParse;

typedef struct ITagParseEvent ITagParseEvent;

typedef struct IShim_ITagParse IShim_ITagParse;

typedef struct IShim_ITagParseEvent IShim_ITagParseEvent;

We know about ITagParseEvent and ITagParse , but we haven't seen the IShim_* interfaces before. These interfaces are
stand-in interfaces, used for conformant interfaces. When an interface is declared as conformant via the oleiid attribute, PIDL
generates a stand-in interface that converts between native Piedmont data types and VB types. Stand-in interfaces are only
required for Windows COM compliance. They are conditionally compiled out for the Palm.

For example, comparing the declarations for ExtractDataByTag and _IShim_ITagParse_ExtractDataByTag (listed in Example
9-2 and Example 9-3) shows how the IString and S32 parameters are converted to a BSTR and short , respectively. We will
discuss the implementation of ExtractDataByTag later in this chapter.

Example 9-2. ExtractDataByTag method declaration

STDMETHOD(ExtractDataByTag)(

 /* in */ IString* searchStr,

 /* in */ IString* startTag,

 /* in */ IString* endTag,

 /* in */ S32 maxChar,

 /* out,retval */ IString*& resultStr

)=0;

Example 9-3. IShim_ITagParse_ExtractDataByTag method declaration

STDMETHOD(_IShim_ITagParse_ExtractDataByTag)(

 /* in */ BSTR searchStr,

 /* in */ BSTR startTag,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* in */ BSTR endTag,

 /* in */ short maxChar,

 /* out,retval */ BSTR& resultStr

)=0;

Further down in the file are the declarations for each interface.

interface ITagParse: public IUnknown

{

 . . .

}

interface ITagParseEvent: public IUnknown

{

 . . .

}

interface IShim_ITagParse: public IDispatch

{

 . . .

}

interface IShim_ITagParseEvent: public IDispatch

{

 . . .

}

The public interfaces that the TagParse component exposes-ITagParse and ITagParseEvent -inherit from IUnknown as you
would expect.

9.4.2 CTagParse.h and CTagParse.cpp

These files contain the IEventSource and ITagParse interface method declarations and stubs for the CTagParse class. Here
is the partial listing for CTagParse.h .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#include "MTagParse_module.h"

class MTagParse;

class CTagParse:

 public ITagParse,

 public IEventSource

{

public:

 CTagParse(MTagParse* module);

 ~CTagParse();

#ifdef PUSH_IUNKNOWN_IMPL_UP

 // IUnknown

 STDMETHOD(QueryInterface)(/* in */ REFIID iid,/* out */ void** object);

 STDMETHOD_(U32,AddRef)();

 STDMETHOD_(U32,Release)();

#endif // #ifdef PUSH_IUNKNOWN_IMPL_UP

 // Interface IEventSource

 /* Establishes a source/sink interface */

 STDMETHOD(Advise)(REFIID iid, void* sinkIntf);

 /* Breaks an existing source/sink relationship */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 STDMETHOD(Unadvise)(void* sinkIntf);

 // Interface ITagParse

 STDMETHOD(ExtractDataByTag)(IString* searchStr, IString* startTag, IString*

endTag, S32 maxChar, IString*& resultStr);

 STDMETHOD(ExtractDataByIndex)(IString* searchStr, S32 fromIndex, S32 fromCount,

IString*& resultStr);

 STDMETHOD(CountTagPairs)(IString* searchStr, IString* startTag, IString* endTag,

S32& numItems);

protected:

 MTagParse* m_module; // required, do not remove

#ifdef PUSH_IUNKNOWN_IMPL_UP

 U32 m_CTagParse_refCount;

#endif // #ifdef PUSH_IUNKNOWN_IMPL_UP

};

The PUSH_IUNKNOWN_IMPL_UP directive encapsulates the three IUnknown interface method declarations. By default, this
directive is not defined, and CTagParse does not declare or implement IUnknown . CTagParse 's corresponding IUnknown
implementation is not contained in CTagParse.cpp , as you might expect. We will see where it is located in the next section of
this chapter.

All stub implementations in CTagParse.cpp are identical. Example 9-4 shows the stub for the IEventSource Advise method.

Example 9-4. IEventSource Advise stub implementation

STDMETHODIMP CTagParse::Advise(REFIID iid, void* sinkIntf)

{

 USE_CONTEXT;

 // TODO: Place your implementation here

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return E_NOTIMPL;

}

On Windows, the USE_CONTEXT context macro has no use and expands to nothing. On the Palm, this macro is used to
account for the Palm's lack of a conventional model for global variables. Global variables are accessed via a pointer, or
context, which is maintained in the A5 register. Since the value of this register is not maintained across calls that span
modules, it must be restored each time a module or component accesses global variables. [4] We will see how this is done
when we discuss the MTagParse module.

[4] Since modules are implemented as shared libraries on the Palm, the same issues regarding global memory that were outlined in Chapter 8 apply.

The last line of the CTagParse.cpp file includes the class implementation derived from _CTagParse.inc .

#include "_CTagParse.inc"

9.4.3 _CTagParse.inc

This file contains the declaration and implementation for the _CTagParse class. After some introductory comments, the
definition for CTagParse 's implementation of the IUnknown interface appears, encapsulated by the PUSH_IUNKNOWN_IMPL_UP
directive. (We have left the details out for the sake of brevity.)

#ifdef PUSH_IUNKNOWN_IMPL_UP

 . . .

STDMETHODIMP CTagParse::QueryInterface(REFIID riid, void** object)

{

 . . .

}

STDMETHODIMP_ (U32) CTagParse::AddRef()

{

 . . .

}

STDMETHODIMP_ (U32) CTagParse::Release()

{

 . . .

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#endif // #ifdef PUSH_IUNKNOWN_IMPL_UP

As we mentioned previously, this implementation is compiled away by default. Examining the implementation of _CTagParse
will shed more light on the role that the PUSH_IUNKNOWN_IMPL_UP directive plays.

Here is the start of the declaration for _CTagParse .

#ifndef PUSH_IUNKNOWN_IMPL_UP

class _CTagParse:

 public CTagParse

#ifdef AFWIN32

 ,public IShim_ITagParse

 ,public ISupportErrorInfo

 ,public IConnectionPointContainer

#endif // #ifdef AFWIN32

{

Consider the default case, where PUSH_IUNKNOWN_IMPL_UP is not defined. _CTagParse implements IUnknown , since it inherits
from CTagParse . On Windows, _CTagParse also inherits and implements the three interfaces encapsulated by the AFWIN32
directive-these interfaces are required for COM compliance. However, on the Palm, these interfaces are compiled away,
and Piedmont provides equivalent functionality.

Now, consider the case where PUSH_IUNKNOWN_IMPL_UP is defined. We know already that CTagParse implements IUnknown ,
so this interface is accounted for. However, the entire _CTagParse class goes away altogether. Thus, the case where
PUSH_IUNKNOWN_IMPL_UP is defined only applies to the Palm, where the _CTagParse class and its Windows-only interfaces are
not used at all.

You may wish to define this directive when you compile a Piedmont component using CodeWarrior, since it will reduce the
component's footprint and overhead. The use of this directive shows the lengths to which AppForge has gone in order to
make the Piedmont code as small and efficient as possible when compiled for the Palm.

On Windows, IShim_ITagParse is a stand-in interface, which we discussed previously. ISupportErrorInfo allows the
TagParse component to return rich error information to clients, and Example 9-5 shows how this function works.
IConnectionPointContainer is required for events.

_CTagParse.inc also includes a function that the module calls to create _CTagParse objects. Example 9-5 shows how this
function works.

Example 9-5. Create_CTagParse Function

HRESULT Create_CTagParse(MTagParse* module, IUnknown* outer, REFIID iid,

 void** object, CTagParse** actual)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{

 if (outer)

 {

 return CLASS_E_NOAGGREGATION;

 }

 #ifndef PUSH_IUNKNOWN_IMPL_UP

 if (_CTagParse* s = new _CTagParse(module))

 #else

 if (CTagParse* s = new CTagParse(module))

 #endif // #ifdef PUSH_IUNKNOWN_IMPL_UP

 {

 HRESULT hr;

 #ifdef USE_CUSTOM_POSTCONSTRUCT

 hr = static_cast<CCustomIUnknown*>(s)->CustomPostConstruct();

 if (SUCCEEDED(hr))

 #endif

 hr = s->QueryInterface(iid,object);

 #ifdef USE_CUSTOM_POSTCONSTRUCT

 else

 pCoDebugTraceAnsi("CustomPostConstruct failed for CTagParse.");

 #endif

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (FAILED(hr))

 {

 delete s;

 return hr;

 }

 if (actual)

 {

 *actual = s;

 }

 #ifdef PUSH_IUNKNOWN_IMPL_UP

 static_cast<IModule *>(module)->AddRef();

 #endif // #ifdef PUSH_IUNKNOWN_IMPL_UP

 return S_OK;

 }

 else

 {

 return E_OUTOFMEMORY;

 }

}

When the PUSH_IUNKNOWN_IMPL_UP directive is defined, CTagParse objects are created directly, instead of indirectly through
the derived _CTagParse object. Thus, on Windows, _CTagParse objects are always created, whereas on the Palm, either
object may be created, depending on how this directive is set.

The Create_CTagParse function also serves another useful purpose. If the USE_CUSTOM_POSTCONSTRUCT flag is defined, this
function calls the virtual CustomPostConstruct method of the CCustomIUnknown class. We will see where CCustomIUnknown is
implemented later in this chapter. This call allows us to perform custom initialization or to call virtual functions on the
_CTagParse object, and return gracefully if initialization fails. Returning any unsuccessful HRESULT from this function results in
the _CTagParse object not being created.

9.4.4 _MTagParse.inc

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This file contains the implementation for the _MTagParse class, which inherits from the MTagParse base class. _MtagParse
implements IUnknown , shielding MTagParse from the details of this interface.

A module must also implement the IModule interface and its associated methods: CreateInstance , Register ,
EnumDependencies , and GetClassObject . CreateInstance is where the module calls Create_CTagParse to create
CTagParse objects. Example 9-6 shows how this function works.

Example 9-6. IModule CreateInstance method

STDMETHODIMP CreateInstance(REFCLSID clsid, IUnknown* outer, REFIID iid,

 void** object)

 {

 USE_CONTEXT_SPEC(m_context);

 if (clsid == MODID_MTagParse)

 {

 return QueryInterface(iid,object);

 }

 else if (clsid == CLSID_CTagParse)

 {

 return Create_CTagParse(this, outer, iid, object, 0);

 }

 return CLASS_E_CLASSNOTAVAILABLE;

 }

We will discuss the USE_CONTEXT_SPEC context macro in the next section. _MTagParse makes use of the IHost interface in the
Register method to register itself and its components. Example 9-7 shows how the Register method works.

Example 9-7. IModule Register method

STDMETHODIMP_(U32) Register()

 {

 USE_CONTEXT_SPEC(m_context);

 const CHAR16 sMOD[] = {'M','T','a','g','P','a','r','s','e','\0'};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 m_host->RegisterModule(this, MODID_MTagParse, 1, sMOD);

 static const CHAR16 sCLS_CTagParse[] = {'C','T','a','g','P','a','r','s','e','\0'};

 m_host->RegisterClass(this, CLSID_CTagParse, 1, sCLS_CTagParse);

 return 1;

 }

_MTagParse leaves the implementation of the two remaining IModule interface methods, EnumDependencies and
GetClassObject, to the parent MTagParse class. _MTagParse.inc also includes the implementation for CreateModule , a C-
style function for creating the module so it can serve up its components.

9.4.5 MTagParse_module.h and MTagParse_module.cpp

These files contain the implementation for the MTagParse base class. The PIDL compiler generates stub implementations for
the two remaining IModule interface methods, GetClassObject and EnumDependencies . Example 9-8 shows the
GetClassObject method.

Example 9-8. IModule GetClassObject method

STDMETHODIMP MTagParse::GetClassObject(REFCLSID clsid, REFIID riid, void** object)

{

 // If you wish to implement class factories, do so here.

 // If you return E_NOTIMPL, the system will emulate class factories for you.

 return E_NOTIMPL;

}

STDMETHODIMP_(U32) MTagParse::EnumDependencies()

{

 // TODO: Identify any external classes that this module depends on.

 // The easiest way to find out your dependencies is to search your

 // source code for CreateInstance calls, then add one call to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // IHost::RegisterDependency() for each of tehm.

 // The second parameter to IHost::RegistryDependency() is the name users

 // will see if dependency checking fails, so you can set it to whatever

 // is most descriptive.

 // m_host->RegisterDependency(this, L"CSomeClass", CLSID_CSomeClass, SomeClassVersion);

 return 0;

}

You use GetClassObject to implement a custom class factory for a particular class. Custom class factories are useful if, for
example, you want to provide multiple ways of creating a particular class that differ in their initialization parameters.

You use EnumDependencies to register component dependencies. This method is useful for managing the packaging,
installation, and removal of interdependent Piedmont modules and components. We don't use these functions in our
example.

MTagParse_module.h includes the declaration for CCustomIUnknown , a class with virtual methods that allows you to provide
custom IUnknown behavior for any class within the module. Your class inherits from this class and overrides its methods to
provide custom behavior.

In addition to the standard IUnknown methods, CCustomIUnknown contains two methods for providing custom initialization and
shutdown of a class object-CustomPostConstruct and CustomPreDestruct . Your class can use the CustomPostConstruct
method to perform custom initialization or to call its virtual functions just after it is created.

// Override this if you need to call virtual functions on the object as it is created.

// #define USE_CUSTOM_POSTCONSTRUCT before including the .inc file

// Returning any non-successful HRESULT will cancel object creation.

virtual HRESULT CustomPostConstruct()

{ return S_OK;

If any of these operations fail, you can return control to the calling application. You may recall from our coverage of the
_CTagParse class that CustomPostConstruct is called just after the class instance has been created.

// You can provide object shutdown code here.

// #define USE_CUSTOM_PREDESTRUCT before including the .inc file

virtual void CustomPreDestruct()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{ return; }

Your class can use this method to perform custom cleanup and to call any virtual functions before being destroyed. This
function is called from the IUnknown Release method in _CTagParse.inc just before the object is deleted.

The MTagParse module constructor contains the third context macro-GET_CONTEXT -that we have seen thus far.

MTagParse::MTagParse(IHost* host): m_host(host)

{

 m_context = GET_CONTEXT;

 // Put your startup code here

}

Piedmont uses three context macros and a class to maintain the global pointer, or context, across module boundaries.

#define USE_CONTEXT CContext __context__(m_module->m_context)

#define USE_CONTEXT_SPEC(x) CContext __context__((x))

#define GET_CONTEXT GetA5()

#define DO_NOT_USE_CONTEXT

class CContext

{

public:

 inline CContext(U32 newContext)

 { oldContext = GetA5(); SetA5(newContext); }

 inline ~CContext()

 { SetA5(oldContext); }

private:

 U32 oldContext;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

};

GetA5 and SetA5 are functions that contain equivalent assembly instructions for manipulating the A5 register.

static long GetA5(void) = 0x200D; /* move.l a5,d0 */

inline void SetA5(unsigned long newA5)

{

 _ _asm {

 move.l newA5, a5

 }

}

The module stores the context from the A5 register in its constructor, using the GET_CONTEXT macro. Recall from Example 9-3
, shown earlier in this chapter, that each component interface method starts with the USE_CONTEXT macro. This macro
declares a local instance of a CContext object, which reinstates the module's context upon entering the interface method, and
restores it upon leaving the method. In this way, the context is automatically restored across module boundaries. The
MTagParse_module.cpp file ends by including the _MTagParse -derived class implementation.

#include "_MTagParse.inc"

9.4.6 MTagParse_GUID.h

This file defines the module ID and class IDs. These IDs are defined using the DEFINE_GUID macro.

// MODID_MTagParse {9A4F5F84_8C63_4D82_B70D_B366A7EE842E}

DEFINE_GUID(MODID_MTagParse,0x9A4F5F84, 0x8C63, 0x4D82, 0xB7, 0x0D, 0xB3, 0x66, 0xA7,

 0xEE, 0x84, 0x2E);

// CLSID_CTagParse {D2780CDC-A37C-4AB2-9140-E93A71F418E7}

DEFINE_GUID(CLSID_CTagParse,0xD2780CDC, 0xA37C, 0x4AB2, 0x91, 0x40, 0xE9, 0x3A, 0x71,

 0xF4, 0x18, 0xE7);

9.4.7 TagParse_tlb.idl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This file contains the IDL definition of the ITagParse and ITagParseEvent interfaces and the MTagParse module.
TagParse_tlb.idl is compiled with Microsoft's MIDL compiler to produce a number of files, including a type library. You use the
type library when integrating the TagParse component into a Visual Basic application.

9.4.8 TagParse.def

This file contains the export statements for the ParseServer DLL.

EXPORTS

 DllRegisterServer @1 PRIVATE

 DllUnregisterServer @2 PRIVATE

 _CreateModule @3 PRIVATE

 _GetModuleInfo @4 PRIVATE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.5 Windows Component Implementation

We now have stub code for the TagParse component. In this section, we show how to fill in the method stubs and
compile this code into a Windows DLL. Add the output files listed earlier in Table 9-9 to the ParseServer project.

It is a good idea to verify that the stub component successfully compiles before proceeding.

9.5.1 Smart Pointer

We use the IPtr smart pointer interface template in the implementation of the CTagParse class and ITagParse
interface.[5] A smart pointer automatically releases the interface to which it points when it goes out of scope. This
alleviates some of the messy code that can accompany COM programming when an error occurs in the middle of a
method, and existing interfaces need to be released before returning.

[5] The IPtr template is taken from Chapter 9 of "Inside Com" by Dale Rogerson. Piedmont's AUTORELEASE macro provides similar functionality. We do not

discuss this macro in this chapter.

For example, in the code below, if bSuccess is set to false , we need to make sure and call Release on pMyString
before returning. Otherwise, we will have a memory leak.

HRESULT MyMethod()

{

 IString* pMyString;

 pCoCreateString(L"MyString", &pMyString);

 bool bSuccess = true;

 //...Processing ...

 if(bSuccess == false)

 {

 pMyString->Release();

 return E_FAIL;

 }

 return S_OK;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

Contrast this approach with using a smart pointer.

HRESULT MyMethod()

{

 IPtr<IString, &IID_IString> spMyString;

 pCoCreateString(L"MyString", &spMyString);

 bool bSuccess = true;

 //...Processing ...

 if(bSuccess == false)

 return E_FAIL;

 return S_OK;

}

Here, we can simply return E_FAIL . The smart pointer automatically calls Release on its interface when it goes out of
scope. The smart pointer implementation is in a file called sptr.h in the common directory (see Figure 9-1 , earlier in
this chapter), along with this chapter's sample code.

9.5.2 Debugging

The Piedmont SDK provides two functions for sending debug output to the Palm Reporter.

void pCoTrace(IString* msg)

Sends the content of an IString to the Palm Reporter
void pCoTraceAnsi(const CHAR08* msg)

Sends an ANSI style string to the Palm Reporter

However, these functions don't exist on Windows. We provide four conditionally compiled debug functions that send
output to the console (and to an optional file) under Windows, and to the Palm Reporter on the POSE.

void Debug(IString *msg)

On Windows, sends the content of an IString to the console and a file. On the Palm, same as pCoTrace .
void Debugln(IString *msg)

On Windows, same as Debug , but appends a line feed to the output. On the Palm, same as pCoTrace .
void Debug(char *format, ...)

On Windows, sends formatted, variable argument output to the console and an optional file. On the Palm,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

formats variable output into a string and calls pCoTrace .
void Debugln(char *format, ...)

On Windows, same as variable argument Debug , but appends a line feed to the output. On the Palm, same
as variable argument Debug .

In release mode, these functions are declared as inline , and are optimized away by the compiler.

On Windows, you must define DEBUG_FILE to send output to a file in addition to the console.

//Comment out this #define if you don't want to write to a file

#define DEBUG_FILE "C:\\Develop\\TagParse\\debug.txt"

We use the _DEBUG directive to enable debug and release modes. In Visual C++, this tracks the conventional debug
and release modes. In CodeWarrior, you must manually enable and disable the _DEBUG directive before compiling the
component.

You can find the implementation of the Debug(ln) functions in debug.h and debug.cpp in the common directory (see
Figure 9-1 , shown earlier in this chapter), along with this chapter's sample code.

9.5.3 CTagParse Methods

The methods for the CTagParse class consist of the IEventSource and ITagParse interface methods, and one internal
method for verifying tags.

9.5.3.1 IEventSource

CTagParse implements the IEventSource interface, which contains the Advise and Unadvise methods. For our
component, we only keep track of a single event sink. Add the member declaration for m_ITagParseEventSink to the
class declaration for CTagParse .

protected:

 MTagParse* m_module; // required, do not remove

 ITagParseEvent *m_ITagParseEventSink;

m_ITagParseEventSink is initialized to NULL in the CTagParse constructor.

CTagParse::CTagParse(MTagParse* module): m_module(module)

#ifdef PUSH_IUNKNOWN_IMPL_UP

 ,m_CTagParse_refCount(0)

#endif // #ifdef PUSH_IUNKNOWN_IMPL_UP

{

 m_ITagParseEventSink = NULL;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The modifications to Advise and Unadvise are straightforward.

STDMETHODIMP CTagParse::Advise(REFIID iid, void* sinkIntf)

{

 USE_CONTEXT;

 m_ITagParseEventSink = (ITagParseEvent*)sinkIntf;

 return S_OK;

}

STDMETHODIMP CTagParse::Unadvise(void* sinkIntf)

{

 USE_CONTEXT;

 m_ITagParseEventSink = NULL;

 return S_OK;

}

We assign the m_ITagParseEventSink to the callback interface passed into the Advise method, and set it back to
NULL in the Unadvise method.

The CTagParse class contains four methods.

VerifyTags

Internal, protected method for verifying given tag pair
ExtractDataByIndex

ITagParse interface method; extracts data from a string, given a start index and length
ExtractDataByTag

ITagParse interface method; extracts data between a tag pair
CountTagPairs

ITagParse interface method; counts the number of occurrences of a particular tag pair within a string

9.5.3.2 VerifyTags

We add the declaration for this protected method to CTagParse.h .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

STDMETHOD_(BOOL08,VerifyTags)(IString *startTag, IString *endTag);

At the top of CTagParse.cpp , we add an include statement for the smart pointer and define the minimum lengths for
one-character start and end tags.

#include "sptr.h"

#define MIN_START_TAG_LEN 3 //ex: <A>

#define MIN_END_TAG_LEN 4 //ex:

VerifyTags uses a simple algorithm to verify that a tag pair is formatted properly.

STDMETHODIMP_(BOOL08) CTagParse::VerifyTags(IString *startTag, IString *endTag)

{

 IPtr<IString, &IID_IString> spTempEndTag;

 U32 foundIndex = 0;

 HRESULT hr;

 pCoCreateString(L"", &spTempEndTag);

 if(startTag->GetLength() < MIN_START_TAG_LEN ||

 endTag->GetLength() < MIN_END_TAG_LEN)

 return FALSE;

 hr = startTag->FindFirstOf(L"<", 0, -1, &foundIndex);

 if(hr == S_FALSE)

 return FALSE;

 hr = startTag->FindFirstOf(L"<", 1, -1, &foundIndex);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if(hr == S_OK)

 return FALSE;

 hr = startTag->FindFirstOf(L">", 0, -1, &foundIndex);

 if(hr == S_FALSE) //If the '>' character doesn't exist, return FALSE

 return FALSE;

 else

 {

 //if a '>' character occurs before the end, return FALSE

 if(foundIndex < (startTag->GetLength()-1))

 return FALSE;

 }

 spTempEndTag->Append(endTag, 0, 1);

 spTempEndTag->Append(endTag, 2, endTag->GetLength()-2);

 if(startTag->Compare(spTempEndTag, -1) != 0)

 return FALSE;

 return TRUE;

}

After declaring some local variables, we check to make sure each tag meets the minimum length requirement. Next
we verify the format of the start tag. First we make sure the tag begins with the < character. We then verify there are
no other < characters in the tag, and that it ends with the > character. To verify the end tag, we make a temporary
copy, skipping the forward slash (/) character. Then we compare the end tag to the start tag to see if it matches. If
we have successfully reached the end of the method, we return TRUE .

9.5.3.3 ExtractDataByIndex

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method extracts data from a string based on a starting index and character count. Although similar to IString 's
Extract and ExtractAnsi functions, ExtractDataByIndex extracts data into an IString instead of a character buffer.
This method might be used, for example, to extract some string data and convert it to another type, such as an
integer based on the context in which the data is extracted.

STDMETHODIMP CTagParse::ExtractDataByIndex(IString* searchStr, S32 fromIndex, S32

fromCount, IString*& resultStr)

{

 USE_CONTEXT;

 HRESULT hr;

 S32 lExtractCount;

 CHAR16 *pData;

 IPtr<IHost, &IID_IHost> spHost;

 resultStr = NULL;

 pCoGetHost(&spHost);

 if(fromIndex < 0 || (fromIndex > (S32)(searchStr->GetLength() - 1)))

 return E_FAIL;

 S32 countAvail = (searchStr->GetLength() - fromIndex);

 fromCount = (fromCount <= countAvail) ? fromCount : countAvail;

 U32 ulBytesReq = fromCount*(sizeof(CHAR16)) + sizeof(CHAR16);

 if(FAILED(hr = spHost->MemAlloc((void **)&pData, ulBytesReq)))

 return hr;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 spHost->MemSet(pData, 0, ulBytesReq);

 if(FAILED(hr = searchStr->Extract(pData, fromIndex,

 fromCount, &lExtractCount)))

 {

 spHost->MemFree((void **)&pData);

 return hr;

 }

 if(FAILED(hr = pCoCreateString(pData, &resultStr)))

 {

 spHost->MemFree((void **)&pData);

 return hr;

 }

 spHost->MemFree((void **)&pData);

 return S_OK;

}

We begin by declaring variables and verifying the range of the starting index. We recalculate the fromCount
parameter to ensure it does not exceed the search string's length. Next, we allocate enough memory for the result,
and initialize it. We fill the data buffer with a call to the search string's Extract method. Finally, we copy the results
into the return parameter. pCoCreateString performs both the allocation and copying in one call. We free the pData
buffer before returning.

9.5.3.4 ExtractDataByTag

This method extracts data between two tags within a string. For example, if a string contains:

<Data>My data</Data>,

then ExtractDataByTag can be called to extract "My data" between the two tags. As with ExtractDataByIndex , the
result can be converted to another type if desired.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

STDMETHODIMP CTagParse::ExtractDataByTag(IString* searchStr, IString* startTag,

IString* endTag, S32 maxChar, IString*& resultStr)

{

 USE_CONTEXT;

 U32 ulStartIndex = 0;

 U32 ulEndIndex = 0;

 HRESULT hr;

 if(VerifyTags(startTag, endTag) == FALSE)

 {

 if(m_ITagParseEventSink != NULL)

 m_ITagParseEventSink->InvalidTagPair(startTag, endTag);

 return E_INVALIDARG;

 }

 hr = searchStr->FindSubstr(startTag, ulStartIndex, -1, &ulStartIndex);

 if(hr == S_OK)

 {

 ulStartIndex += startTag->GetLength();

 hr = searchStr->FindSubstr(endTag, ulStartIndex, -1, &ulEndIndex);

 if(hr == S_OK)

 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if(ulEndIndex-ulStartIndex <= (U32)maxChar)

 return ExtractDataByIndex(searchStr, ulStartIndex,

 ulEndIndex - ulStartIndex, resultStr);

 else

 return E_FAIL;

 }

 else

 return E_FAIL;

 }

 else

 return E_FAIL;

 return S_OK;

}

First, we call to VerifyTags to verify the start and end tags. If this call fails, we source the InvalidTagPair event if a
client has registered to receive events. We then return E_INVALIDARG . It is important to return an error code, since a
client may not have registered to receive events on the ITagParseEvent interface. Next, we call the search string's
FindSubstr method to find the start tag. If this succeeds, we skip past the start tag and call FindSubstr again to find
the end tag. If we find both tags, we call ExtractDataByIndex to retrieve the data for the caller. If we don't find the
tags, we return E_FAIL .

9.5.3.5 CountTagPairs

This method counts the number of matching pairs within a string. This function can be used to determine how many
elements of a certain kind are in the string.

STDMETHODIMP CTagParse::CountTagPairs(IString* searchStr, IString* startTag, IString*

endTag, S32& numItems)

{

 USE_CONTEXT;

 HRESULT hr;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 numItems = 0;

 BOOL08 bContinue = TRUE;

 U32 ulFoundIndex = 0;

 U32 ulStartIndex = 0;

 if(VerifyTags(startTag, endTag) == FALSE)

 {

 if(m_ITagParseEventSink != NULL)

 m_ITagParseEventSink->InvalidTagPair(startTag, endTag);

 return S_OK;

 }

 while(bContinue == TRUE)

 {

 hr = searchStr->FindSubstr(startTag, ulFoundIndex, -1, &ulFoundIndex);

 if(hr == S_OK)

 {

 ulFoundIndex += startTag->GetLength(); //increment past start tag

 hr = searchStr->FindSubstr(endTag, ulFoundIndex, -1, &ulFoundIndex);

 if(hr == S_OK)

 {

 numItems++; //found both start and end tags

 ulFoundIndex += endTag->GetLength(); //increment past end tag

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else //did not find corresponding end tag

 {

 bContinue = FALSE;

 if(m_ITagParseEventSink != NULL)

 m_ITagParseEventSink->TagNotFound(endTag);

 }

 }

 else //There are no (more) tag pairs

 bContinue = FALSE;

 }

 return S_OK;

}

We first call VerifyTags to verify the start and end tags. Next, we enter a while loop to look for matching tag pairs.
We call FindSubStr twice to find the start and end tags. If we find both tags, we increment numItems .

If we don't find the corresponding end tag, we source a TagNotFound event if a client is registered to receive events.
Note, however, that we don't return an error code as we do for VerifyTags . We want to notify a client of this case, but
since we don't add mismatched tags to numItems , we simply set bContinue to FALSE and break out of the while loop.

We continue looking for tag pairs in this manner until we do not find another start tag. We then set bContinue to
FALSE to break out of the while loop, and return S_OK .

This completes the TagParse component for windows. You should compile the ParseServer project before
proceeding. In the next two sections, we show how to compile the component for the Palm, and how to integrate it
into an AppForge Visual Basic application.

The sample code for this chapter includes a client driver application to test the TagParse
component on Windows and the Palm. The test driver code is based on and, in some cases,
copied from, examples provided with the Piedmont SDK. The code for this driver is in the
ParseClient directory (see Figure 9-1 , shown earlier in this chapter). We do not discuss the
driver application in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.6 Palm Component Implementation

A Piedmont component is compiled as a shared library with the type set to zpco. Create an empty
CodeWarrior project, called ParseServer in the ParseServer directory you created earlier (see Figure 9-1,
earlier in this chapter). Change the project settings to correspond with those listed. We assume the default
Piedmont SDK and Metrowerks compiler installations. These settings may vary based on your installation.

Target Settings panel
Target name

ParseServer

Linker

MacOS 68 Linker

Post Linker

PalmRez Post Linker

Output directory

{Project}PalmDebug

Access Paths Panel
User paths

{Project}

C:\Program Files\AppForge\SDK\lib\PalmOS\DragonBall\CWPALM70

{Project}..\common

System paths

{Compiler}Palm OS 3.5 Support

C:\Program Files\AppForge\SDK\include

C:\Program Files\AppForge\SDK\include\PalmOS

68K Target panel
Project type

PalmOS Application

Filename

ParseServer.tmp

C/C++ Language panel

Checked items (check additional options depending on your development needs)

Activate C++ Compiler

68K Processor panel
Floating Point

PalmOS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Checked items

4-Byte Ints

PC Relative Strings

PalmRez Post Linker panel
Mac Resource files

ParseServer.tmp

Output file

ParseServer.prc

Type

zpco

Creator

TAGS

Transliteration

Palm OS 3.1 and later

Add the same files to this project as you did for the Windows ParseServer project except for the IDX, MDX,
DEF, INC, and IDL files. You will also need to add the appropriate Piedmont libraries. These libraries can
be found in the lib\PalmOS\DragonBall\CWPALM70 subdirectory of the Piedmont SDK directory. Add
pCOMd.lib and pCOMServerD.lib for debug builds, or pCOM.lib and pCOMServer.lib for release builds. Of
course, you also need to add the standard runtime library, for example, MSL Runtime Palm OS (4i).Lib.

When you compile the project, you will receive a warning that __Startup__ in PalmOS_Startup.c is
previously defined. You can ignore this warning, since Piedmont provides its own startup code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.7 AppForge VM Integration

In this section, we integrate the TagParse component into an AppForge project in Visual Basic. We write a
simple driver application in Visual Basic and then install it on the Palm.

Create a new AppForge project for the Palm called AFVBClient in the AFVBClient directory (see Figure 9-
1, earlier in the chapter). Name the form frmTagParse and add three AFButton controls with the properties
from Table 9-10. Figure 9-7 shows how the form should look.

Figure 9-7. AFVBClient form

Table 9-10. AFButton control properties

Name Caption

btnCountSchema Count schema

btnCountRecs Count records

btnExtractData Extract data

Add a reference for the TagParse to the AFVBClient project. Select Project References from the
main menu and browse to the TagParse_tlb.tlb type library in the ParseServer\Debug directory. The
MTagParseLib module reference should now appear as shown in Figure 9-8. Click OK to close this window.

Figure 9-8. AFVBClient project references

Start the form by adding the following initialization code to frmTagParse.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Explicit

Dim WithEvents tagParse As CTagParse

In declaring the tagParse variable, we use the WithEvents keyword to indicate that we want to sink events
from it.

Next, declare the two event sink methods.

'sink invalid tag pair event

Private Sub tagParse_InvalidTagPair(ByVal startTag As String,

 ByVal endTag As String)

 MsgBox "Invalid tag pair:" + startTag + ", " + endTag

End Sub

'sink tag not found event

Private Sub tagParse_TagNotFound(ByVal tag As String)

 MsgBox "Tag not found: " + tag

End Sub

With Automation in Visual Basic, the event method consists of the variable name, followed by an
underscore and the event name. We simply display each method's arguments in a message box.

Let's look at the code for the buttons listed previously in Table 9-10. Here is the code for the
btnCountSchema click event.

Private Sub btnCountSchema_Click()

 Dim numItems As Long

 Dim tagParseStr As String

 tagParseStr = "<Database><Data>" & _

 "<Record>Record data 1</Record>" & _

 "<Record>Record data 2</Record>" & _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "<Record>Record data 3<Record>" & _

 "</Data></Database>"

 Set tagParse = New CTagParse

 numItems = tagParse.CountTagPairs(tagParseStr, "<Schema>", "</Schema>>")

 MsgBox "Num schemas: " + CStr(numItems)

End Sub

After creating a new CTagParse object, we call CountTagPairs with the malformed tag pair
<Schema></Schema>>. When this method runs, we will receive the InvalidTagPair event (see Figure 9-9).
This is followed by a message box with the number of schemas (see Figure 9-10). There will be zero
schemas, since the tag pair could not be found.

Figure 9-9. InvalidTagPair event

Figure 9-10. Number of schemas

Here is the code for the btnCountRecs click event.

Private Sub btnCountRecs_Click()

 Dim numItems As Long

 Dim tagParseStr As String

 tagParseStr = "<Database><Data>" & _

 "<Record>Record data 1</Record>" & _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "<Record>Record data 2</Record>" & _

 "<Record>Record data 3<Record>" & _

 "</Data></Database>"

 Set tagParse = New CTagParse

 numItems = tagParse.CountTagPairs(tagParseStr, "<Record>", "</Record>")

 MsgBox "Num records: " + CStr(numItems)

End Sub

This time, we pass in a valid tag pair to count the number of records, but we pass in a malformed record
set (the third record has an invalid end tag). When this method runs, we will receive the TagNotFound
event, as shown in Figure 9-11. This is followed by a message box with the number of records, as shown
in Figure 9-12. The number of records is 2, since the last malformed tag pair is not counted.

Figure 9-11. TagNotFound event

Figure 9-12. Number of records

Here is the code for the btnExtractData click event.

Private Sub btnExtractData_Click()

 Set tagParse = New CTagParse

 Dim resultStr As String

 Dim tagParseStr As String

 tagParseStr = "<Database><Data>" & _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "<Record>Record data 1</Record>" & _

 "<Record>Record data 2</Record>" & _

 "<Record>Record data 3</Record>" & _

 "</Data></Database>"

 resultStr = tagParse.ExtractDataByTag(tagParseStr, "<Data>", "</Data>", 512)

 MsgBox "Record data: " + resultStr

 End Sub

This event shows how to successfully parse and extract data. We call ExtractDataByTag to extract the
record data between the <Data></Data> tag pair and to display the result in a message box.

In Figure 9-13, we show the results as they appear on the Palm, instead of from within VB. Of course, this
is what you would expect with Piedmont. The TagParse component behaves identically within VB as it
does on the Palm. As we mentioned previously, this is what makes Piedmont such a powerful architecture
for developing and testing components on the desktop and deploying them to the Palm.

Figure 9-13. Record data

Our goal in this chapter was to give you a broad overview of AppForge's Piedmont SDK for extending their
flagship product. Although we covered quite a bit of ground in our example, we hope you can see how
powerful Piedmont is. It brings true component-based development and support to the desktop and the
handheld in a seamless fashion.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. Debugging

In this chapter, we look at some techniques for debugging an AppForge application on the POSE and the
Palm handheld. These techniques are important, since you cannot step through an AppForge application
or set breakpoints after it is installed on POSE or the handheld. We show how to use AppForge's Debug
module in conjunction with the Palm Reporter and the Palm's buttons in POSE to obtain trace output at
various points in an AppForge program. We also show how to send debug output to a Palm database,
which can be used on both POSE and the handheld.

These techniques are only a starting point, however. You will undoubtedly expand these or develop
techniques of your own to suit your needs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1 Conditional Compilation

Conditional compilation is a part of Visual Basic, and allows you to compile out certain parts of your code
for release versus debug versions, for example. Consider the Form_Load subroutine shown in Example
10-1.

Example 10-1. Conditional compilation example

#Const AFDEBUG = 1

Private Sub Form_Load()

 'Form initialization ...

 txtFlow.Text = 150

#If AFDEBUG Then

 MsgBox "txtFlow.Text = " + txtFlow.Text

#End If

End Sub

After the form is initialized, the contents of the txtFlow component are displayed in a message box. The
#If...#End If block is a conditional compilation block. If the AFDEBUG argument is 1, Visual Basic includes
this code block, and displays the results. If AFDEBUG is 0, this block is excluded from the program, and the
results are not displayed.

You may assign conditional compilation arguments for an individual module, or for the entire project. You
assign arguments for individual modules with the #Const statement at the beginning of the module. You
assign arguments for a project in the Make tab of the project's properties, as shown in Figure 10-1.

Figure 10-1. Visual Basic project make properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the next two sections, we show how to use conditional compilation in conjunction with the Palm
Reporter and the keys on the Palm to obtain trace output.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2 Palm Reporter

The Palm Reporter is a standalone trace utility that can be used to display real-time trace output from the
Palm OS Emulator (POSE). [1] The Reporter is especially important since you cannot execute Visual Basic
code step by step, or set breakpoints, after compiling the code and installing it on the Palm. To use the
Reporter, you simply run it and POSE at the same time. With the Reporter installed, you may configure
POSE to send trace output to a file or to the Reporter application.

[1] The Palm Reporter can be downloaded freely from the same site where POSE is obtained. We do not cover the installation and use of

the Reporter in this chapter.

AppForge's Debug module includes a Print method, which sends its output to the Immediate window in
Visual Basic and to the Reporter on POSE. Example 10-2 contains the code from Example 10-1, modified
to use this method.

Example 10-2. Conditional compilation example

#Const AFDEBUG = 1

Private Sub Form_Load()

 'Form initialization ...

 txtFlow.Text = 150

#If AFDEBUG Then

 Debug.Print "txtFlow.Text = " + txtFlow.Text

#End If

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3 Palm Buttons

The Palm's buttons can also be captured and used to trigger debugging statements or functions. You
might use this technique to asynchronously trace a program's state information at various points in its
execution. The most common Palm buttons are shown in Figure 10-2.

Figure 10-2. Common Palm buttons

The AppForge system library contains two functions that allow your program to register and release the
keycode associated with a button.

RegisterKeyCode

Registers a keycode for a corresponding button
ReleaseKeyCode

Releases the keycode for a corresponding button

In addition to registering a keycode, you must set the active form's KeyPreview property to True.
Registered keys are then received as a Form_KeyDown event within your program. Example 10-3 shows
how this works in code.

Example 10-3. Key registration and release

Public Const vchrHard1 = &H204 ' Leftmost hard key

Public Const vchrHard2 = &H205 ' Center-left hard key

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Const vchrHard3 = &H206 ' Center-right hard key

Public Const vchrHard4 = &H207 ' Rightmost hard key

Private Sub Form_Load()

#If AFDEBUG Then

 RegisterKeyCode vchrHard1

 RegisterKeyCode vchrHard2

 RegisterKeyCode vchrHard3

 RegisterKeyCode vchrHard4

#End If

End Sub

Private Sub Form_Unload(Cancel As Integer)

#If AFDEBUG Then

 ReleaseKeyCode vchrHard1

 ReleaseKeyCode vchrHard2

 ReleaseKeyCode vchrHard3

 ReleaseKeyCode vchrHard4

#End If

End Sub

We start by declaring constants corresponding to the four round buttons along the bottom of the Palm

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handheld. We copied these declarations from the AppForge documentation, which provides declarations
for all of the Palm's buttons. We register these keycodes with a call to RegisterKeyCode in the Form_Load
event and release them with a call to ReleaseKeyCode in the Form_Unload event. Keep in mind that these
keycodes are tied up while the form is active. If you do not want to tie up the buttons this way, you might
consider using menu options to trigger calls to the keycode registration and release functions.

In the form's Form_KeyDown event, shown in Example 10-4, we store the name of the key in the key
variable and call Debug_Key to print the value.

Example 10-4. Form_KeyDown event

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)

#If AFDEBUG Then

 Dim key As String

 Select Case KeyCode

 Case vchrHard1

 key = "vchrHard1"

 Case vchrHard2

 key = "vchrHard2"

 Case vchrHard3

 key = "vchrHard3"

 Case vchrHard4

 key = "vchrHard4"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Select

 Debug_Key (key)

#End If

End Sub

#If AFDEBUG Then

Private Sub Debug_Key(key As String)

 Debug.Print ("You pressed the " + key + " key.")

End Sub

You can extend this technique to perhaps call different functions depending on which key is pressed.
Again, this technique is especially useful for asynchronously examining the state of your program at
various points of execution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.4 Debug Database

The previous debugging techniques involve POSE and the Palm Reporter. In this section, we show how to
send debug information to a database on POSE or the Palm handheld. This technique is especially useful
for debugging applications where the Reporter may not or cannot be used.

We encapsulate debug functionality in a module called modDebugDB, which can be accessed by other
components in our application. This module contains four functions for logging messages to a database.

DebugDatabase

This public subroutine logs a message to the debug database.
OpenDebugDatabase

This private subroutine creates the debug database, if necessary, and opens it.
WriteDebugRecord

This private function writes a record to the debug database.
DeleteDebugDatabase

This public subroutine deletes the debug database.
PalmIDtoLong(PalmID As String) As Long

This private helper function converts a Palm ID String to a Long. It is copied from the PDBTutorial
project that comes with AppForge. We do not discuss this function in this chapter.

We begin the module by declaring variables for a database handle and record type.

Option Explicit

' Use this global to store the database handle

Private dbDebug As Long

Public Type tDebugRecord

 Message As String

End Type

Here, we simply store a message String in each record. This is the listing for DebugDatabase.

Public Sub DebugDatabase(msg As String)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim debugRecord As tDebugRecord

 OpenDebugDatabase

 If dbDebug <> 0 Then

 'We successfully opened the database

 debugRecord.Message = msg

 WriteDebugRecord debugRecord

 PDBClose dbDebug

 Else

 MsgBox "Could not open the debug database."

 End If

End Sub

After declaring a record in which to store the message, we call OpenDebugDatabase to open the
database. We store the message in the database record and pass its record to the WriteDebugRecord
subroutine.

Here is the listing for OpenDebugDatabase.

Private Sub OpenDebugDatabase()

 ' Try and open the database

 #If APPFORGE Then

 dbDebug = PDBOpen(ByTypeCreator, "afdebug", 0, 0, PalmIDtoLong("DATA"), _

 PalmIDtoLong("DBUG"), afModeReadWrite)

 #Else

 dbDebug = PDBOpen(ByTypeCreator, App.Path & "\afdebug", 0, 0, _

 PalmIDtoLong("DATA"), PalmIDtoLong("DBUG"), _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 afModeReadWrite)

 #End If

 If dbDebug = 0 Then

 'Assume the database does not exist and attempt to create it

 #If APPFORGE Then

 'Create new database (if on the device)

 dbDebug = PDBCreateDatabase("afdebug", PalmIDtoLong("DATA"), _

 PalmIDtoLong("DBUG"))

 #Else

 'Create new database (if on the PC)

 dbDebug = PDBCreateDatabase(App.Path & "\afdebug", _

 PalmIDtoLong("DATA"), _

 PalmIDtoLong("DBUG"))

 #End If

 If dbDebug <> 0 Then

 'Create the debug table

 PDBCreateTable dbDebug, "DebugTable", "Message String"

 Else

 MsgBox "Could not create database."

 End If

 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

If the call to PDBOpen fails, we assume the database does not exist. We then call PDBCreateDatabase to
create the database. After creating the database, we call PDBCreateTable to create the database schema.

Here is the listing for WriteDebugRecord.

Private Function WriteDebugRecord(dbRecord As tDebugRecord) As Boolean

 'Create a new record in dbDebug using the schema.

 PDBCreateRecordBySchema dbDebug

 'Write the data to the new record.

 WriteDebugRecord = PDBWriteRecord(dbDebug, VarPtr(dbRecord))

 'Update the new record.

 PDBUpdateRecord dbDebug

End Function

After creating a new record with a call to PDBCreateRecordBySchema, we call PDBWriteRecord to write
the record to the database. Finally, we call PDBUpdateRecord to commit the results to the database.

Here is the listing for DeleteDebugDatabase.

Public Function DeleteDebugDatabase() As Boolean

 Dim bResult As Boolean

 #If APPFORGE Then

 'Delete the database (if on the device)

 bResult = PDBDeleteDatabase("afdebug", 0, 0)

 #Else

 'Delete the database (if on the PC)

 bResult = PDBDeleteDatabase(App.Path & "\afdebug", 0, 0)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 #End If

 DeleteDebugDatabase = bResult

End Function

Here, we simply call PDBDeleteDatabase and return the result. This function can be called, for example,
by an application upon initialization, or it can be tied to a button press on the Palm to selectively delete the
database as desired. AppForge comes with a PDB Database Viewer, which is a handy utility for viewing
the debug database. Of course, you will need to export the database from POSE or the Palm handheld
onto the PC for viewing.

You can add conditionally compiled calls to this module at any point in your application:

Private Sub Form_Load()

#If AFDEBUG Then

 DebugDatabase ("Form_Load: IN")

#End If

#If AFDEBUG Then

 DebugDatabase ("Processing...")

#End If

'... Load processing

#If AFDEBUG Then

 DebugDatabase ("Form_Load: OUT")

#End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

Using conditional compilation in conjunction with the Palm Reporter, Palm buttons, and the Debug
Database module are just some of the approaches you can take when debugging Visual Basic
applications using AppForge.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part IV: Appendixes

Appendix A

Appendix B

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. Ingot and Enumeration Summary

This appendix provides a convenient reference to the current set of AppForge ingots' supported properties,
methods, and events. It also includes the major enumerations and constants used by the AppForge ingots
and libraries.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1 Basic Ingot Components

A.1.1 Command Button Ingot

Properties

Alignment, Appearance, BackColor, Caption, Enabled, FontName, FontSize, FontStyle, ForeColor,
Height, Index, Left, Tag, Top, Visible, Width

Methods

Move, Refresh, SetFocus, ZOrder
Events

Click

A.1.2 CheckBox Ingot

Properties

Alignment, AllowGrayState, Appearance, BackColor, Caption, Enabled, FontName, FontSize,
FontStyle, ForeColor, Height, Index, Left, Tag, Top, Value, Visible, Width

Methods

Move, Refresh, SetFocus, ZOrder
Events

Click

A.1.3 ComboBox Ingot

Properties

Alignment, Appearance, BackColor, Enabled, FontName, FontSize, FontStyle, ForeColor, Height,
Index, ItemData, Left, List, ListCount, ListIndex, Locked, NewIndex, SelLength, SelStart, SelText,
Sorted, Style, Tag, Text, Top, TopIndex, Visible, Width

Methods

AddItem, Clear, Move, Refresh, RemoveItem, SetFocus, ZOrder
Events

Change, Click, SelectItem

A.1.4 Label Ingot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Properties

Alignment, BackColor, BorderStyle, Caption, Enabled, FontName, FontSize, FontStyle, ForeColor,
Height, Index, Left, Tag, Top, Visible, Width

Methods

Move, Refresh, SetFocus, ZOrder
Events

Change, Click

A.1.5 ListBox Ingot

Properties

Alignment, Appearance, BackColor, Border, Enabled, FontName, FontSize, FontStyle, ForeColor,
Height, Index, ItemData, Left, List, ListCount, ListIndex, MultiSelect, NewIndex, SelCount, Selected,
Sorted, Style, Tag, Text, Top, TopIndex, Visible, Width

Methods

AddItem, Clear, Move, Refresh, RemoveItem, SetFocus, ZOrder
Events

Change, Click, SelectItem

A.1.6 Radio Button Ingot

Properties

Alignment, Appearance, BackColor, Caption, Enabled, FontName, FontSize, FontStyle, ForeColor,
GroupID, Height, Index, Left, Tag, Top, Value, Visible, Width

Methods

Move, Refresh, SetFocus, ZOrder
Event

Click

A.1.7 Shape Ingot

Properties

BackColor, BorderColor, BorderStyle, BorderWidth, Enabled, FillColor, FillStyle, Height, Index, Left,
Shape, Tag, Top, Visible, Width

Methods

Move, Refresh, SetFocus, ZOrder

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1.8 TextBox Ingot

Properties

Alignment, Appearance, BackColor, BorderStyle, DisplayableLines, Enabled, FontName, FontSize,
FontStyle, ForeColor, Height, Index, Left, Locked, MaxLength, MultiLine, PasswordChar, ScrollBars,
SelLength, SelStart, SelText, Tag, Text, Top, TopLine, TotalLines, UnderlineStyle, Visible, Width

Methods

Move, Refresh, SetFocus, ZOrder
Events

Change, Click

A.1.9 Timer Ingot

Properties

Enabled, Height, Index, Interval, Left, Tag, Top, Visible, Width
Methods

Move, SetFocus, ZOrder
Event

Timer

A.1.10 AppForge Form

The form is listed here because it's part of BasicIngots.prc, which all applications must have deployed to
the device.

Properties

BackColor, Caption, Enabled, ForeColor, Height, KeyPreview, Left, ScaleHeight, ScaleLeft,
ScaleTop, ScaleWidth, StartUpPosition, Tag, Top, Visible, Width

Methods

Hide, Move, Refresh, Show, ZOrder
Events

Activate, Click, Deactivate, Initialize, KeyDown, KeyPress, KeyUp, Load, QueryUnload, Resize,
Terminate, Unload

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.2 Enhanced Ingots

A.2.1 Graphic Ingot

Properties

BackColor, Enabled, Height, Index, Left, Picture, Tag, Top, Visible, Width
Methods

Cls, DrawCircle, DrawLine, DrawRectangle, DrawText, Invert, InvertArea, Move, PaintPicture,
Refresh, SetFocus, SetPixel, ZOrder

Events

Click, MouseDown, MouseMove

A.2.2 Graphic Button Ingot

Properties

Alignment, BackColor, DisabledPicture, DownPicture, Enabled, FocusPicture, Height, Index, Left,
NoFocusPicture, Tag, Top, Visible, Width

Methods

Move, Refresh, SetFocus, ZOrder
Events

Click

A.2.3 Grid Ingot

Properties

Appearance, BackColor, BorderStyle, Col, ColAlignment, ColIsVisible, Cols, ColWidth, Enabled,
FontName, FontSize, FontStyle, ForeColor, GridLines, Height, Index, ItemData, Left, LeftCol,
NewRow, Row, RowHeight, RowIsVisible, Rows, SelectionType, Tag, Text, TextMatrix, Top,
TopRow, Visible, Width

Methods

AddItem, Move, Refresh, RemoveItem, SetFocus, ZOrder
Events

Click, SelectCell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.2.4 Horizontal Scroll Ingot

Properties

Appearance, BackColor, Enabled, Height, Index, LargeChange, Left, Min, Max, SmallChange, Tag,
ThumbColor, Top, Value, Visible, Width

Methods

Move, Refresh, SetFocus, ZOrder
Event

Change

A.2.5 Slider Ingot

Properties

Appearance, Enabled, Height, Index, LargeChange, Left, Max, Min, ShowTicks, SmallChange, Tag,
ThumbBackColor, ThumbForeColor, TickFrequency, Top, TrackBackColor, TrackForeColor, Value,
Visible, Width

Methods

Move, Refresh, SetFocus, ZOrder
Event

SliderMoved

A.2.6 Vertical Scroll Ingot

Properties

Appearance, BackColor, Enabled, Height, Index, LargeChange, Left, Min, Max, SmallChange, Tag,
ThumbColor, Top, Value, Visible, Width

Methods

Move, Refresh, SetFocus, ZOrder
Event

Change

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.3 Multimedia Ingots

A.3.1 Movie Ingot

Properties

CurrentFrame, Enabled, FileName, FramesPerSec, Height, Index, Left, LoopMovie, Tag, Top,
TotalFrames, Visible, Width

Methods

Move, Play, Refresh, SetFocus, Stop, ZOrder
Event

End

A.3.2 FilmStrip Ingot

Properties

AnimationStyle, Enabled, Frame, FrameCount, FrameFile, FrameIndex, Frames, Height, Index,
Interval, Left, Tag, Top, Visible, Width

Methods

AddFrame, ClearFrames, Play, Refresh, RemoveFrame, SetFocus, Stop, ZOrder
Events

Click, LastFrame

A.3.3 Tone Ingot

Properties

Duration, Enabled, Height, Index, Left, Pitch, Tag, Top, Visible, Width
Methods

Move, Refresh, SetFocus, ZOrder
Events

None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.4 Data Communication Ingots

A.4.1 Signature Capture Ingot

Properties

BackColor, BackPicture, BorderStyle, Enabled, Height, Index, Left, PenColor, PenWidth,
SignatureData, Tag, Top, Visible, Width

Methods

Clear, Move, Refresh, SetFocus, ZOrder
Events

None

A.4.2 ClientSocket Ingot

Properties

Height, Index, Left, Protocol, RemoteHostIP, RemotePort, Tag, Top, Visible, Width
Methods

Close, Connect, GetByte, GetInteger, GetLong, GetString, Move, ResolveHostName, SendByte,
SendInteger, SendLong, SendString, SetFocus, ZOrder

Events

DataWaiting, Error

A.4.3 INetHTTP Ingot

Properties

Configuration, ConnectionAvailable, ContentType, Conversion, DeviceID, Document, Height, Index,
Left, RequestTimeout, ResponseCode, ResponseInfo, StillExecuting, SystemError, Tag, Top, URL,
Visible, Width

Methods

Clear, Execute, GetChunk, GetHeader, Move, SetFocus, URLEncodeString, ZOrder
Events

Error, ReceivedData, StateChanged

A.4.4 Serial Ingot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Properties

Break, CommEvent, CommPort, CTSHolding, DSRHolding, Handshaking, Height, InBufferCount,
InBufferSize, Index, Input, InputLen, Left, Output, PortOpen, RThreshold, Settings, Tag, Top,
Visible, Width

Methods

Move, ReadInputB, SetFocus, WriteOutputB, ZOrder
Event

OnComm

A.4.5 Scanner Ingot

Properties

AimDuration, Angle, AssertParamsOnOpen, BeepAfterGoodDecode, BidirectionalRedundancy,
CodebarParams, Code128Params, Code39Params, Code93Params, D2of5Params, ErrorCode,
Height, I2of5Params, Index, LEDOnDuration, LEDState, Left, LinearCodeTypeSecurityLevel,
MSIPlesseyParams, PointerMode, ScanEnabled, ScannedBarCodeType, ScannerOpen,
ScanTimeOut, Tag, Top, TransmitCodeIDCharacter, TriggerMode, UPCEANParams, Visible, Width

Methods

DoScan, GetDecoderVersion, GetPortDriverVersion, GetScanManagerVersion, SetDefaultParams,
StopScan

Events

ScanError, ScanReceived, ScanTimedOut

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.5 AFTone Ingot Pitch values

The following table provides values for the Pitch property. This property will reproduce the desired note, as
indicated:

Note 1st octave 2nd octave 3rd octave 4th octave 5th octave

C 262 523 1047 2093 4186

CS 277 554 1108 2218

D 295 587 1175 2349

DS 311 622 1245 2489

E 330 659 1319 2637

F 349 699 1397 2794

FS 370 740 1480 2960

G 392 784 1568 3136

GS 415 831 1661 3322

A 440 880 1760 3520

AS 466 932 1864 3729

B 494 988 1976 3951

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.6 Database Error Codes

The following table lists errors that are returned from calls to the method PDBGetLastError. Note that some
of these "errors" are, in reality, simply status codes and not true errors that are reported after unsuccessful
database operations.

Constant Value Description

ErrNone 0 No errors have occurred.

ErrMemError -1 A memory error occurred.

ErrIndexOutOfRange -2 The designated index is out of range.

ErrInvalidParam -3 The parameter specified is not valid.

ErrReadOnly -4
An attempt has been made to modify a database that is in
read-only mode.

ErrDatabaseOpen -5
The previous action could not be performed, and the
database is open.

ErrCantOpen -6 The database could not be opened.

ErrCantFind -7 Can't find the desired resource.

ErrRecordInWrongCard -8
An attempt to attach a record has been made when the
database and record reside on different memory cards.

ErrCorruptDatabase -9 The database is corrupted.

ErrRecordDeleted -10 The specified record has been deleted.

ErrRecordArchived -11
The record being acted on is an archived record, and the
action requires a non-archived record.

ErrNotRecordDB -12
A record function has been attempted on a resource
database.

ErrROMBased -13 There was an attempt to modify a ROM-based database.

ErrRecordBusy -14 The record being acted on is busy.

ErrNoOpenDatabase -15 No databases are currently open.

ErrInvalidCategory -16 The specified category is not valid.

ErrNotValidRecord -17 The record handle used is not valid.

ErrWriteOutOfBounds -18 A write method has surpassed the bounds of the record.

ErrSeekFailed -19 The last attempted seek has failed.

ErrAlreadyOpenForWrites -20 The database is already open in write mode.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value Description

ErrOpenedByAnotherTask -21 The specified database is already opened by another task.

ErrUniqueIDNotFound -22 A record with the designated unique ID was not found.

ErrAlreadyExists -23 A database with the same name already exists in RAM.

ErrInvalidDatabaseName -24 The name designated for the database is not valid.

ErrDatabaseProtected -25 The database is protected.

ErrInvalidVarType -26 The type specified for a variable is not valid.

ErrFieldMisMatch -27 The specified field type does not match the return field type.

ErrNoFieldsDefined -28 No fields have been defined for the specified database.

ErrInvalidFieldNum -29 The field number specified is not valid.

ErrInvalidFieldType -30 The field type specified is not valid.

ErrRecordNotInEditableState -31 The record cannot be edited.

ErrNoRecordSelected -32 No record is selected.

ErrEmptyDatabase -33 The database is empty.

ErrDatabaseNotOpenedForReading -34 The database cannot be read.

ErrDatabaseNotOpenedForWriting -35 The database cannot be written to.

ErrNoSchemaDefined -36 A schema has not been defined.

ErrInvalidFieldName -37 The field name is invalid.

ErrNoSortDefined -38 A sorting method has not been specified.

ErrUnableToCreateSortInfo -39 Unable to create the sort information.

ErrUnableToCreateSortIndex -40 Unable to create a sort index.

ErrReadOutOfBounds -41 The database read out of bounds.

ErrCouldNotDeleteRecord -42 Unable to delete the record.

ErrCouldNotConvertString -43 Unable to convert the string to another type.

ErrCannotOverwriteAppInfo -44 The information cannot be overwritten.

ErrInvalidCategoryBlock -45 The category block is invalid.

ErrNoCategoryInfo -46 There is no category information.

ErrCategoryNameTooLong -47 The name of the category is too long.

ErrCouldNotAttachAppInfo -48 Unable to attach the AppInfo.

ErrInvalidDeleteMode -49 The delete mode is invalid.

ErrReservedCategory -50 This category is reserved.

ErrUnsupportedOperation -51 This operation is unsupported.

ErrOpenedByAnotherTask -21 The specified database is already opened by another task.

ErrUniqueIDNotFound -22 A record with the designated unique ID was not found.

ErrAlreadyExists -23 A database with the same name already exists in RAM.

ErrInvalidDatabaseName -24 The name designated for the database is not valid.

ErrDatabaseProtected -25 The database is protected.

ErrInvalidVarType -26 The type specified for a variable is not valid.

ErrFieldMisMatch -27 The specified field type does not match the return field type.

ErrNoFieldsDefined -28 No fields have been defined for the specified database.

ErrInvalidFieldNum -29 The field number specified is not valid.

ErrInvalidFieldType -30 The field type specified is not valid.

ErrRecordNotInEditableState -31 The record cannot be edited.

ErrNoRecordSelected -32 No record is selected.

ErrEmptyDatabase -33 The database is empty.

ErrDatabaseNotOpenedForReading -34 The database cannot be read.

ErrDatabaseNotOpenedForWriting -35 The database cannot be written to.

ErrNoSchemaDefined -36 A schema has not been defined.

ErrInvalidFieldName -37 The field name is invalid.

ErrNoSortDefined -38 A sorting method has not been specified.

ErrUnableToCreateSortInfo -39 Unable to create the sort information.

ErrUnableToCreateSortIndex -40 Unable to create a sort index.

ErrReadOutOfBounds -41 The database read out of bounds.

ErrCouldNotDeleteRecord -42 Unable to delete the record.

ErrCouldNotConvertString -43 Unable to convert the string to another type.

ErrCannotOverwriteAppInfo -44 The information cannot be overwritten.

ErrInvalidCategoryBlock -45 The category block is invalid.

ErrNoCategoryInfo -46 There is no category information.

ErrCategoryNameTooLong -47 The name of the category is too long.

ErrCouldNotAttachAppInfo -48 Unable to attach the AppInfo.

ErrInvalidDeleteMode -49 The delete mode is invalid.

ErrReservedCategory -50 This category is reserved.

ErrUnsupportedOperation -51 This operation is unsupported.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value Description

ErrUnknown -1000 An unknown error has occurred.

A.6.1 Palm OS system preference settings

The following list provides the AppForge constant and actual values for getting and changing the Palm OS
preference settings, using the GetSystemPreference and SetSystemPreference methods from the
AppForge Extended Function library.

Constant Value Description

afExtLibSysPrefAlarmSoundLevelV20 10
Specifies whether sound alarms are enabled or
disabled.

afExtLibSysPrefAlarmSoundVolume 32 The sound level for alarms.

afExtLibSysPrefAllowEasterEggs 16 If true, mysterious things happen.

afExtLibSysPrefAnimationLevel 29

afExtLibSysPrefAntennaCharAppCreator 39

The Creator ID of the application to launch
when the antenna is raised (used only for
devices with built-in antennas). Available with
preferences version 6 or greater.

afExtLibSysPrefAutoOffDuration 7

Minutes of user idle time before the device
powers off. The default value for this preference
is specified in defaultAutoOffDuration. In
preferences version 8, this preference was
replaced by autoOffDurationSecs.

afExtLibSysPrefBeamReceive 33
If true, the device can receive beams from
other devices. If false, the device cannot
receive beams, but can still send them.

afExtLibSysPrefCalcCharAppCreator 24
The Creator ID of the application to be
launched by the Calculator silkscreen button.

afExtLibSysPrefCalibrateDigitizerAtReset 34
If true, the user must recalibrate the digitizer
after a soft reset. The default is false.

afExtLibSysPrefCountry 1 The country for which the device was built.

afExtLibSysPrefDateFormat 2 The short format used to display dates.

afExtLibSysPrefDefSerialPlugIn 36
The Creator ID of the default serial plug-in
database.

afExtLibSysPrefDeviceLocked 12
If true, the device is locked. When the device
is locked, it remains so until the user enters the
password.

afExtLibSysPrefGameSoundLevelV20 9
Specifies whether game sound effects are
enabled or disabled.

ErrUnknown -1000 An unknown error has occurred.

A.6.1 Palm OS system preference settings

The following list provides the AppForge constant and actual values for getting and changing the Palm OS
preference settings, using the GetSystemPreference and SetSystemPreference methods from the
AppForge Extended Function library.

Constant Value Description

afExtLibSysPrefAlarmSoundLevelV20 10
Specifies whether sound alarms are enabled or
disabled.

afExtLibSysPrefAlarmSoundVolume 32 The sound level for alarms.

afExtLibSysPrefAllowEasterEggs 16 If true, mysterious things happen.

afExtLibSysPrefAnimationLevel 29

afExtLibSysPrefAntennaCharAppCreator 39

The Creator ID of the application to launch
when the antenna is raised (used only for
devices with built-in antennas). Available with
preferences version 6 or greater.

afExtLibSysPrefAutoOffDuration 7

Minutes of user idle time before the device
powers off. The default value for this preference
is specified in defaultAutoOffDuration. In
preferences version 8, this preference was
replaced by autoOffDurationSecs.

afExtLibSysPrefBeamReceive 33
If true, the device can receive beams from
other devices. If false, the device cannot
receive beams, but can still send them.

afExtLibSysPrefCalcCharAppCreator 24
The Creator ID of the application to be
launched by the Calculator silkscreen button.

afExtLibSysPrefCalibrateDigitizerAtReset 34
If true, the user must recalibrate the digitizer
after a soft reset. The default is false.

afExtLibSysPrefCountry 1 The country for which the device was built.

afExtLibSysPrefDateFormat 2 The short format used to display dates.

afExtLibSysPrefDefSerialPlugIn 36
The Creator ID of the default serial plug-in
database.

afExtLibSysPrefDeviceLocked 12
If true, the device is locked. When the device
is locked, it remains so until the user enters the
password.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value Description

afExtLibSysPrefGameSoundLevelV20 9
Specifies whether game sound effects are
enabled or disabled.

afExtLibSysPrefGameSoundVolume 31 The sound level for game sounds.

afExtLibSysPrefHard1CharAppCreator 20
The Creator ID of the application to be
launched by the leftmost hard key (the Date
Book button by default).

afExtLibSysPrefHard2CharAppCreator 21
The Creator ID of the application to be
launched by the second hard key from the left
(the Address button by default).

afExtLibSysPrefHard3CharAppCreator 22
The Creator ID of the application to be
launched by the second hard key from the right
(the To Do List button by default).

afExtLibSysPrefHard4CharAppCreator 23
The Creator ID of the application to be
launched by the rightmost hard key (the Memo
Pad button by default).

afExtLibSysPrefHardCradle2CharAppCreator 28
The Creator ID of the application to be
launched by the HotSync button on the modem.

afExtLibSysPrefHardCradleCharAppCreator 25
The Creator ID of the application to be
launched by the hard key on the HotSync
cradle.

afExtLibSysPrefHidePrivateRecordsV33 11
If true, applications should not display
database records that have the secret attribute
bit set.

afExtLibSysPrefLauncherAppCreator 26
The Creator ID of the application to be
launched by the Applications silkscreen
button.

afExtLibSysPrefLocalSyncRequiresPassword 13
If true, the user must enter a password before
a HotSync(r) operation can be performed.

afExtLibSysPrefLongDateFormat 3 The long format used to display dates.

afExtLibSysPrefMeasurementSystem 40
The system of measurement to use. Available
with preferences version 7 or greater.

afExtLibSysPrefMinutesWestOfGMT 17
The time zone given as minutes EAST of
Greenwich Mean Time (GMT). For preferences
version 9, use timeZone instead.

afExtLibSysPrefNumberFormat 6
The format used for numbers, with regard to the
thousands separator and the decimal point.

afExtLibSysPrefRemoteSyncRequiresPassword 14
If true, the user must enter a password on the
desktop computer before a HotSync(r)
operation can be performed.

afExtLibSysPrefGameSoundLevelV20 9
Specifies whether game sound effects are
enabled or disabled.

afExtLibSysPrefGameSoundVolume 31 The sound level for game sounds.

afExtLibSysPrefHard1CharAppCreator 20
The Creator ID of the application to be
launched by the leftmost hard key (the Date
Book button by default).

afExtLibSysPrefHard2CharAppCreator 21
The Creator ID of the application to be
launched by the second hard key from the left
(the Address button by default).

afExtLibSysPrefHard3CharAppCreator 22
The Creator ID of the application to be
launched by the second hard key from the right
(the To Do List button by default).

afExtLibSysPrefHard4CharAppCreator 23
The Creator ID of the application to be
launched by the rightmost hard key (the Memo
Pad button by default).

afExtLibSysPrefHardCradle2CharAppCreator 28
The Creator ID of the application to be
launched by the HotSync button on the modem.

afExtLibSysPrefHardCradleCharAppCreator 25
The Creator ID of the application to be
launched by the hard key on the HotSync
cradle.

afExtLibSysPrefHidePrivateRecordsV33 11
If true, applications should not display
database records that have the secret attribute
bit set.

afExtLibSysPrefLauncherAppCreator 26
The Creator ID of the application to be
launched by the Applications silkscreen
button.

afExtLibSysPrefLocalSyncRequiresPassword 13
If true, the user must enter a password before
a HotSync(r) operation can be performed.

afExtLibSysPrefLongDateFormat 3 The long format used to display dates.

afExtLibSysPrefMeasurementSystem 40
The system of measurement to use. Available
with preferences version 7 or greater.

afExtLibSysPrefMinutesWestOfGMT 17
The time zone given as minutes EAST of
Greenwich Mean Time (GMT). For preferences
version 9, use timeZone instead.

afExtLibSysPrefNumberFormat 6
The format used for numbers, with regard to the
thousands separator and the decimal point.

afExtLibSysPrefRemoteSyncRequiresPassword 14
If true, the user must enter a password on the
desktop computer before a HotSync(r)
operation can be performed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value Description

afExtLibSysPrefRonamaticChar 19

The virtual character generated when the user
enters the ronamatic stroke. The ronamatic
stroke is dragging the pen from the Graffiti(r)
area to the top of the screen.

afExtLibSysPrefStayLitWhenPluggedIn 38
If this constant is true and if
afExtLibSysPrefStayOnWhenPluggedIn is true,
the device stays lit when it is in its cradle.

afExtLibSysPrefStayOnWhenPluggedIn 37
If true, the device stays powered on when it is
in the cradle.

afExtLibSysPrefSysBatteryKind 15 The type of batteries installed.

afExtLibSysPrefSysPrefFlags 27

afExtLibSysPrefSysSoundLevelV20 8
Specifies whether system sounds are enabled
or disabled.

afExtLibSysPrefSysSoundVolume 30
The sound level for system sounds, such as
taps and beeps.

afExtLibSysPrefSystemKeyboardID 35 The Resource ID of the keyboard panel.

afExtLibSysPrefTimeFormat 5 The format used to display time values.

afExtLibSysPrefVersion 0 The preferences version number.

afExtLibSysPrefWeekStartDay 4
The first day of the week (Sunday or Monday).
Days of the week are numbered from 0 to 6,
starting with Sunday = 0.

Available with Version 8 or greater

afExtLibSysPrefShowPrivateRecords 41

If true, applications should show a gray
rectangle in place of database records that
have the secret attribute bit set. If
hideSecretRecords is false, this value is
ignored.

Available with Version 9 or greater

afExtLibSysPrefLanguage 48 The language that the device should use.

afExtLibSysPrefLocale 49
Locale for the country selected via theSetup
app /Formats panel.

afExtLibSysPrefTimeZone 43
The time zone given as minutes east of
Greenwich Mean Time (GMT).

afExtLibSysPrefTimeZoneCountry 50
The country selected to specify what the time
zone is.

afExtLibSysPrefDaylightSavingAdjustment 44
The number of minutes to add to the current
time for daylight savings time.

afExtLibSysPrefRonamaticChar 19

The virtual character generated when the user
enters the ronamatic stroke. The ronamatic
stroke is dragging the pen from the Graffiti(r)
area to the top of the screen.

afExtLibSysPrefStayLitWhenPluggedIn 38
If this constant is true and if
afExtLibSysPrefStayOnWhenPluggedIn is true,
the device stays lit when it is in its cradle.

afExtLibSysPrefStayOnWhenPluggedIn 37
If true, the device stays powered on when it is
in the cradle.

afExtLibSysPrefSysBatteryKind 15 The type of batteries installed.

afExtLibSysPrefSysPrefFlags 27

afExtLibSysPrefSysSoundLevelV20 8
Specifies whether system sounds are enabled
or disabled.

afExtLibSysPrefSysSoundVolume 30
The sound level for system sounds, such as
taps and beeps.

afExtLibSysPrefSystemKeyboardID 35 The Resource ID of the keyboard panel.

afExtLibSysPrefTimeFormat 5 The format used to display time values.

afExtLibSysPrefVersion 0 The preferences version number.

afExtLibSysPrefWeekStartDay 4
The first day of the week (Sunday or Monday).
Days of the week are numbered from 0 to 6,
starting with Sunday = 0.

Available with Version 8 or greater

afExtLibSysPrefShowPrivateRecords 41

If true, applications should show a gray
rectangle in place of database records that
have the secret attribute bit set. If
hideSecretRecords is false, this value is
ignored.

Available with Version 9 or greater

afExtLibSysPrefLanguage 48 The language that the device should use.

afExtLibSysPrefLocale 49
Locale for the country selected via theSetup
app /Formats panel.

afExtLibSysPrefTimeZone 43
The time zone given as minutes east of
Greenwich Mean Time (GMT).

afExtLibSysPrefTimeZoneCountry 50
The country selected to specify what the time
zone is.

afExtLibSysPrefDaylightSavingAdjustment 44
The number of minutes to add to the current
time for daylight savings time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value Description

afExtLibSysPrefDaylightSavings 18
The type of daylight savings correction. For
preferences version 9, instead use
daylightSavingAdjustment.

afExtLibSysPrefDefaultAppCreator 52
Creator ID of the application that is launched
after a reset.

afExtLibSysPrefAttentionFlags 51
The user's preferences for receiving attention
signals.

afExtLibSysPrefAutoLockTime 46

The date at which the system locks itself. If
afExtLibSysPrefAutoLockType is after
PresetDelay, this is the number of seconds
until the system should lock itself.

afExtLibSysPrefAutoLockTimeFlag 47
If true, afExtLibSysPrefAutoLockTime is given
in minutes. If false, the time is given in hours.

afExtLibSysPrefAutoLockType 45
Specifies when the auto-locking feature should
take effect.

afExtLibSysPrefDaylightSavings 18
The type of daylight savings correction. For
preferences version 9, instead use
daylightSavingAdjustment.

afExtLibSysPrefDefaultAppCreator 52
Creator ID of the application that is launched
after a reset.

afExtLibSysPrefAttentionFlags 51
The user's preferences for receiving attention
signals.

afExtLibSysPrefAutoLockTime 46

The date at which the system locks itself. If
afExtLibSysPrefAutoLockType is after
PresetDelay, this is the number of seconds
until the system should lock itself.

afExtLibSysPrefAutoLockTimeFlag 47
If true, afExtLibSysPrefAutoLockTime is given
in minutes. If false, the time is given in hours.

afExtLibSysPrefAutoLockType 45
Specifies when the auto-locking feature should
take effect.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix B. DBSLib Sample Project Setup

In this appendix, we show you how to create and configure the DBSLib shared library project using
Metrowerks CodeWarrior 7 for Windows (IDE version 4.1.0.2 Build 0646). Creating a shared library in
CodeWarrior is analogous to generating a library on the Windows platform, with an additional post linker
step. After your source code is compiled into objects, CodeWarrior creates a temporary file (TMP file) that
is then run through the PalmRez Post Linker. The post linker creates a resource database (PRC file) that
is ready to run on the Palm PDA. These steps are transparent to you as a developer, allowing you to focus
your efforts on the task at hand.

The PalmOS SDK comes with a sample shared library project called SampleLib. The settings shown in
this appendix are largely based on this project. Although you can copy this project and modify its settings
to meet your needs, we thought it would be helpful to know how to create a shared library from scratch.
(CodeWarrior 8 has a shared library wizard, which simplifies these steps.)

To start the project for the shared library, select File New from the main menu. From the Project tab
in this dialog, select Empty Project as shown in Figure B-1, and enter DBSLib for the name of your
project.

Figure B-1. CodeWarrior New dialog

Upon creating an empty project, you will be presented with the project dialog, as shown in Figure B-2. To
better organize our files by type, create the Incs (include files), Obj (object files), and Src (source files)
subdirectories under the parent DBSLib directory, as shown in Figure B-3.

CodeWarrior creates the DBSLib_Data directory. You can ignore it for the most
part.

Figure B-2. Initial DBSLib project dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure B-3. DBSLib subdirectories

Bring up the project settings and modify the following settings panels. Only the panels relevant to the
DBSLib project are discussed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.1 Target Settings

The Target Settings panel is shown in Figure B-4. The Target Name field specifies the name of our
project's build target. Enter DBSLib in this field.

Figure B-4. Target Settings panel

The name you enter in the Target Name field is not the name of the final resource
database file, which resides on the Palm PDA. It is an internal name you assign as
your project's build target. The name of the resource database file is set in the
Output File field of the PalmRez Post Linker panel.

The Linker drop-down specifies the type of linker to use. Select MacOS 68K Linker, since it is the standard
for the Palm OS. The Output Directory field specifies the directory where the final, linked output
f i l e -DBSLib.prc, in our case-will be placed. Click the Choose button; select the Obj subdirectory you
created previously.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.2 Access Paths

Access paths are directories that the CodeWarrior IDE searches to locate files when compiling and linking
your project. The Access Paths panel is shown in Figure B-5, with the System Paths radio button selected.
Initially, {Compiler} is the only path listed under System Paths. Modify this path by clicking the Change
button and selecting the Palm OS 3.5 Support directory from the access path selection dialog (see Figure
B-6). Make sure to leave Path Type set to Compiler Relative. Now, add the DBSLib project path by
clicking the Add button. Select Project Relative for Path Type. Browse to and select the DBSLib parent
directory for the project and click OK.CodeWarrior will now be able to locate your project files and the Palm
OS SDK files.

Figure B-5. Access Paths panel

Figure B-6. Access Path selection dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.3 68K Target

The 68K Target options panel (see Figure B-7) is where you set the type of project you want to create.
The options on this panel vary, depending on the type of project selected. In the Project Type drop-down
list, select PalmOS Code Resource.

Figure B-7. K Target panel

The File Name field specifies the name of the intermediate file, which the CodeWarrior project will
generate. This file is then converted by the PalmRez Post Linker into a resource database ready to run on
the Palm PDA. Enter DBSLib.tmp into this field.

The ResType field specifies the type of resource database we are creating. To the Palm OS, a shared
library is simply a resource database with its type set to libr. Enter libr in this field as shown.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.4 C/C++, Processor, and Global Optimizations Settings

Figure B-8 through Figure B-11 show various options panels you will need to modify. Select these panels
and modify their settings to correspond with those shown.

Figure B-8. C/C++ Language panel

Figure B-9. C/C++ Warnings panel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure B-10. 68K Processor panel

Figure B-11. Global Optimizations panel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you develop more applications for the Palm PDA, you will want to explore the different settings and
modify them to meet the unique needs of your project. CodeWarrior comes with a number of useful online
references that cover these panel options in detail. The C Compilers Reference covers the C/C++
Language and Warnings panels, Targeting the Palm OS Platform covers the 68K Processor panel, and the
IDE Users Guide covers Global Optimizations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.5 PalmRez Post Linker

The PalmRez Post Linker converts the file generated by the project into a Palm resource database, ready
to run on the Palm PDA. This option panel is shown in Figure B-12.

Figure B-12. PalmRez Post Linker panel

The Mac Resource Files field specifies the name of the file generated by the 68K linker that is converted
into the Palm resource database, which represents our shared library. This field corresponds to the File
Name field of the 68K Target panel (see Figure B-7, earlier in this appendix). Enter DBSLib.tmp in this field.

The Output File field specifies the name of the Palm resource database that will be generated and will
ultimately reside on the Palm PDA. Enter DBSLib.prc in this field.

The Type field specifies the type of Palm application that is being created, and corresponds to the ResType
field on the 68K Target Panel. Since this project is for a library resource database, enter libr in this field.

The Creator field specifies a four-character Creator ID to uniquely identify our library. See "The Palm
Creator ID" sidebar in Chapter 1 for more details regarding Palm Creator IDs. Enter DBSL in this field.

You now know how to configure the settings for the DBSLib project. Notice that the DBSLib project dialog
now appears as shown in Figure B-13, with a Segments tab instead of a Link Order tab (compare with
Figure B-2, shown earlier in this chapter).

Figure B-13. Updated DBSLib project dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.6 Configuring and Adding Files

Now, we need to create and organize our files within the DBSLib project. Under the Files tab in the
DBSLib project dialog, create a group called Source. Select Project Create Group from the main
menu and enter Source as the group name. Under the Segments tab in the DBSLib project dialog, double-
click on First Segment and change the segment's name to AppSource. Do not change any of the other
settings.

To create the DBSLib.c source file for the project, start with the Files tab selected in the DBSLib project
dialog. Select File New from the main menu, which brings up the New dialog (see Figure B-14). Select
the File tab and click the Set button. Browse to the Src subdirectory for the project, type in DBSLib.c for
the filename, and click Save. Check Add to Project, and check DBSLib under the Targets list. Your dialog
should look like that shown in Figure B-14.

Figure B-14. CodeWarrior New file dialog

Click OK to create and add DBSLib.c to your project. Perform these steps again to create the following
additional files: DBSLib.h, DBSLibMem.h, DBSLibMem.c, DBSLibDispatch.h, and Debug.h.

Your have now configured the DBSLib project, and you are ready to begin coding.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing personality
and life into potentially dry subjects.

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing personality
and life into potentially dry subjects.

The animals on the cover of Programming Visual Basic for Palm OS are flying fish. The 40 species of
flying fish (the common name of the family Exocoetidae) can be found in warm ocean waters all over the
world. They range in length from 7 to 12 inches. They have pectoral fins similar to bird wings and unevenly
forked tails.

Flying fish are so called because of their method for escaping predators. They glide on their tails, which
act as propellers, for up to 14 miles, reaching speeds up to 30 miles per hour. Their velocity builds to a
point where they can launch themselves into the air and flap their "wings" to hold them up. Gusts of wind
aid the flying fish in their flight, sometimes causing them to land on the decks of passing ships.

Claire Cloutier was the production editor and proofreader for Programming Visual Basic for Palm OS. Ann
Schirmer provided proofreading assistance. Tatiana Apandi Diaz, Sarah Sherman, and Jeffrey Holcomb
performed quality control checks. The index was written by Johnna VanHoose Dinse and revised by
Brenda Miller and Judy Hoer. Claire Cloutier, Sarah Sherman, Jeffrey Holcomb, David Chu, Julie
Flanagan, Sue Willing, and Phil Dangler were the compositors.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover
layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. Mihaela Maier
converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike Sierra. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert Romano
and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons
were drawn by Christopher Bing. This colophon was written by Linley Dolby.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch,
and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained
by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

>, end tags

<, start tags

Startup function

68K Target options, DBSLib

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

abstraction layer

access paths

Access, Database Converter and

Activate event

Active Data Objects (ADO)

ActiveX

 conduits

 objects, CDK installation and

AddLogEntry method

Address application, conduits

ADO (Active Data Objects)

Advise method

 stub implementation

AFButton

AFCheckbox

AFClientSocket

AFComboBox

AFCore library color palettes

AFDate pointer, date mapping

AFFilmStrip

AFGraphic

AFGraphicButton

AFGrid

AFHScrollBar

AFInetHTTP

AFLabel

AFLibDriver

AFListBox

AFMovie

afPalmOS extensibility library

AFRadioButton

AFScanner

AFSerial

AFShape

AFSignatureCapture

AFSlider

AFString pointer, string mapping

AFTextBox, BasicIngots.prc

AFTimer

AFTone ingot

 Pitch property values

AFVBClient project

AFVScrollBar

alignment

 buttons

 text, ingots

allocating memory 2nd

AllowGreyState property, CheckBox ingot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

animation, Filmstrip ingot

Appearance property

 command buttons

appearance, Slider ingots

append synchronization

AppForge

 Booster runtime 2nd

 color

 Database Converter 2nd

 example projects

 Font Converter and Viewer

 forms

 Graphics Converter and Viewer

 ingots

 basic ingots

 communications

 enhanced

 multimedia

 installation

 libraries

 main features

 Movie Converter and Viewer

 platforms

 projects

 compiling

 configuration

 title bar, automatic

 Universal Conduit

 utilities

 Visual Basic Add-in

 Visual Basic and

 VM integration

AppForge Form

AppForge Movie converter utility

AppForge tab, Toolbox

AppInfo block, databases

application icon title

application startup, default behavior

application workspace

applications

 design layout

 display

 downloading, binary download

 large, WCA

 native, development and

 synchronization and

 version

 Web Clipping, partitioning

AppStop function

Archival deletes, PDBs

archiving records

 mirror synchronization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

arguments, conditional compilation

array bounds

arrays

 control arrays, up/down buttons

 passing

 Visual Basic support

ASP (Active Server Pages)

attributes

 databases

 ingots

 ParseDBAttributes

 PDBSetDatabaseAttributes

 records, databases

 Slider ingot

Attributes field, databases

authentication

 methods

 user tracking

Automatic Dependencies, AppForge Settings

automatic title bar

AVI movies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

backup conduit 2nd

barcodes

basic ingots

battery status

BeginProcess function 2nd

behaviors, Piedmont ingots

binary download

BOF (beginning of file) marker

boolean flag

Boolean values, fuser

Booster runtime 2nd

BoosterPlus runtime

boundaries, form scrolling

bounds, array bounds

breakpoints, debugging

browser, tools and

buttons

 alignment

 command

 Command Button ingot

 command buttons

 constants, message boxes and

 debugging and

 design tips

 graphical style command buttons

 hard, overloading

 hardware, programming and

 keycodes

 push

 radio buttons

 repeating

 toggle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C/C++

 encryption fuser

caching, proxy server and

CallApp function 2nd

CallApp interface parameters

Caps-lock mode, Graffiti shift

Caption property, title bar label

capturing

 device actions

 user actions

CardNo parameter, PDBOpen method

categories

 conduits

 names

 North Wind

Category manager

CDK (Conduit Development Kit)

 ActiveX objects

 installation

 full installation

 sample projects

 SimpleDB tutorial

CDK Companion

cells, Grid ingot

certificates, security

CfgConduit function

CGI (Common Gateway Interface)

Change event

CheckBox ingot 2nd

checkboxes

ciphertext, DES and

Circle type

Class Information dialog

classes

 PDDatabaseQuery

 PDRecordAdapter

 PDSystemAdapter

 Piedmont, declaring

 user-defined

ClassForge utility (Piedmont)

 GUIDs

 module declaration

client memory

 management functions

client-side applications, WCA Builder tool

client-side scripting, WCA viewer

ClientSocket ingot 2nd

ClipBoardGetString method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ClipBoardSetString method

clipping

 HTML and

 image size

 links

close operation

CML (Compressed Markup Language)

code

 component code, generating

 forms display

 intermediate, linking to PRC file

 scrolling

CodeWarrior configuration

ColAlignment property, tables

color

 AppForge

 ingots

 monochrome devices

 Textbox ingot

color depth, images

color palette 2nd

ColWidth property

COM (Component Object Model), IPC and

COM classes, Sync Suite

COM conduits, IPDClientNotify interface

Com folder, CDK

COM Sync Suite

ComboBox ingot 2nd

comboboxes

Command Button ingot 2nd

command buttons 2nd

 cmdShow

 compared to Windows

 design tips

 graphical style

 properties

Common folder, CDK

communications ingots

communications, socket-based

compilers

 APPFORGE constant

compiling

 AppForge projects

component code generation

components

 integration into AppForge projects in VB

 Piedmont

 Palm implementation

 Windows implementation

 refreshing

concatenation, CreateSchema function

CondCfg.exe tool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 VB development environment, registering as conduit

conditional compilation

Conduit Development Kit

Conduit Information dialog

conduits 2nd [See also UC]

 ActiveX

 applications and

 backup

 categories

 COM, IPDClientNotify interface

 databases and

 debugging

 design

 DoNothing

 entertainment programs

 fast

 FastSync

 HHtoPC

 install

 installation and

 mirror synchronization, record states

 mirror-image

 PCtoHH

 ProfileInstall

 running

 settings

 slow

 slow syncs

 SyncForm

 synchronization, mirror

 transactional 2nd

 utilities

 when not to use

configuration

 AppForge projects

 CodeWarrior

 SimpleDB

 UC

 VB conduit project

ConfigureConduit function

conflicts, UC replication

Conformant interfaces, Piedmont

conformant methods

constants

 buttons, message boxes

 compiler constant, APPFORGE

 custom functions, shared libraries

 declaring

context-sensitive help

controls

 arrays, up/down buttons

 Command Button ingot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Graphic ingot

 Label

 Label ingot

 layout

 ListBox

 Shape control

 Shape ingot

 slider controls

 title bar creation

converting

 date/time

 dates, functions

 strings to numerics

cookies

copying, graffiti and

counting database records

CreatePDBFile function

CREATOR constant

Creator ID

 databases

 SimpleDB configuration

Creator parameter, PDBOpen method

cutting, graffiti

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

data communication ingots

data formats

data transfer methods

data types

 custom functions, shared libraries

 DBSLib fuser

 fuser

 mapping, VB and C/C++

 UC

Database Converter 2nd 3rd

 PDB files

database management methods, PDB library

database schema, XML format

database types, AFLib Driver

databases

 AppInfo block

 attributes

 Attributes field

 categories and

 closing

 creating, PDB library

 Creator ID

 debug information

 deleting

 desktop and

 devices and

 downloading, binary download

 error codes

 errors

 flat-file

 foreign keys

 header

 indexes

 Internet phone database

 ISAM

 modes

 navigating

 opening

 record flags

 record management

 records

 attributes

 counting

 creating

 deleting

 eDelete attribute

 editing

 NewFile function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 reading

 saving

 searches

 UIDs

 schemas

 PDB library

 temporary

 SortInfo block

 sorting

 SQL

 rows, inserting

 sales database example

 synchronization and

 total number of, RemoteNameCount property

 Type field

 types

Date function

date/time

 converting

 date conversion

 mapping dates, AFDate pointer

DateSerial function

dbID parameter, PDBOpen method

DBSLib fuser

DBSLib shared library 2nd

 68K Target options

 access paths

 adding files

 configuring files

 DBSLibClose function 2nd

 DBSLibDispatchTable function

 DBSLibFuser

 DBSLibGetAPIVersion function 2nd

 DBSLibGetDBInfo function

 DBSLibParseSchema function

 DBSLibSleep function

 DBSLibWake function

 PalmRez Post Linker

 Target settings

Deactivate event

Debug module

 Print method

DebugDatabase function 2nd

debugging 2nd

 breakpoints

 buttons and

 conditional compilation and

 conduits

 databases and

 Piedmont

decryption

 DES and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 functions, VB module

DecryptRec routine

DEFINE_GUID macro

DeleteDebugDatabase function 2nd

DeletedRec

deleting

 databases

 records, databases 2nd

 eDelete attribute

 last record

DES (Data Encryption Standard)

 algorithm initialization

 decryption and

 DoDES function

 driver application

 features, memory

 key generation

DES_Decrypt function

DES_Encrypt function

DESFuser

design

 application layout

 conduits

 guidelines

 time issues

 UC

 user interface

design-time behavior, Piedmont ingots

device data, minimizing

devices

 actions, capturing

 databases

 hardware, interaction

 status, methods

diagonal lines

dialog windows 2nd

 Conduit Information

 design tips

 Emulator Properties

 Hide method

 information icon

 nesting

 proxy server preferences

 scrolling

Dim statement

dirty records

DirtyFile

DirtyRec

dispatch table

 assigning

 custom function declarations

 implementation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 system traps

display

 application

 forms, coding for

DisplayableLines method, Textbox ingot

DLL (dynamic link library)

DmGetRecord API call

DoDES function

DoEvents function

DoNothing conduit

downloading

 CDK

 Emulator software

 PalmBinary

 Piedmont

drag and drop, ingots

Dragonball chip

drawing, Graphic ingot and

driver application

 converting to fuser

 DES and

dual behaviors, Piedmont ingots

Duration property, Timer ingot

dynamic arrays, Visual Basic

dynamic heap memory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

early-bound objects

ECC (Elliptic Curve Cryptography)

ECM (electronic codebook mode)

eDelete attribute

editing records, databases

editing text, methods

empty projects, starting

Emulator Properties dialog

emulators

 downloading

 Palm Operating System Emulator

 POSE

EncDES function

encryption 2nd

 DES

 DES_Decrypt function

 DES_Encrypt function

 DoDES function

 ECC

 ECM

 features, memory

 functions, VB module

 fuser, C/C++

 keys, DES and

EncryptRec routine

enhanced ingots

EnqueueKey method

entertainment programs, conduits

EnumDependencies method

EOF (end of file) marker

Err.Raise

Error event, INetHTTP ingot

error handling, Visual Basic

error message box

errors, databases

 error codes

event handlers

event interfaces

 definition file

 TagParse component

events

 Activate

 AppForge form

 Change

 CheckBox ingot

 ClientSocket ingot

 ComboBox ingot

 Command Button ingot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Deactivate

 FilmStrip ingot

 forms

 Graphic Button ingot

 Graphic ingot

 Grid ingot

 Horizontal Scroll ingot

 INetHTTP ingot

 Initialize

 Label ingot

 life cycle

 ListBox ingot

 Load 2nd

 Movie ingot

 pending, executing

 QueryUnload

 Radio Button ingot

 Scanner ingot

 Serial ingot

 Signature Capture ingot

 Slider ingot

 SliderMoved

 Terminate

 Textbox ingot

 Timer ingot

 Tone ingot

 triggering

 Unload 2nd

 Vertical Scroll ingot

EXEs (executables)

Extended Functions library

 AppForge

Extended mode, Graffiti shift

Extensibility library

 AppForge

 launch codes

ExtractData function

ExtractDataByIndex method 2nd

ExtractDataByTag method 2nd

 declaring

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

fast conduit

FastSync

 HHtoPC and

 mirror synchronization and

FEATURE constant

features

 fuser and

 global information and

 information sharing

 launch codes

 memory, DES and

 parameters

 passing

fields, records (databases)

 zero-based

Filename parameter, PDBOpen method

files

 configuration, DBSLib

 installation, Palm Emulator

 RGX

FilmStrip ingot 2nd

filters, push buttons

FindSession function

finger navigation

flags

 PDBGetDatabaseAttributes method

 PDBSetDatabaseAttributes method

 per-record flags

flat-file databases

Font Converter and Viewer, AppForge

FontHeight method

fonts

 ingots

 Textbox ingot

foreign keys, databases and

Form object, BasicIngots.prc

forms

 AppForge 2nd

 buttons, number of

 characteristics of

 device model

 displaying, coding correctly

 dynamic heap

 events

 functionality needs

 ingots, layering

 limitations

 menus

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 methods

 Orders, Sales application

 properties

 refreshing

 scrolling

 boundaries

 large forms 2nd

 paging large forms

 size

 Pocket PC

 unloading from memory

frames

 Filmstrip ingot

 WCA viewer and

Frames property

freeing memory 2nd

functions

 AppStop

 BeginProcess

 CallApp 2nd

 CfgConduit

 client memory management

 ConfigureConduit

 CountItems

 CreateClientMem

 CreateGlobalMem

 CreatePDBFile

 CreateSchema

 custom, declarations

 Date

 date conversion

 DateSerial

 DBSLibClose 2nd

 DBSLibDispatchTable

 DBSLibGetAPIVersion

 API versions

 DBSLibGetDBInfo

 DBSLibParseSchema

 DBSLibSleep

 DBSLibWake

 debug, conditionally compiled

 DebugDatabase 2nd

 decryption, VB module

 DeleteDebugDatabase 2nd

 DES_Decrypt

 DES_Encrypt

 DoDES

 DoEvents

 EncDES

 encryption, VB module

 Extended Functions library

 AppForge

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ExtractData

 FindSession

 FreeClientMem

 FreeFieldElemArray

 FreeGlobalMem

 GetConduitInfo

 GetFileContents

 global memory management

 Id2Long

 InstallAide

 intrinsic functions

 IsDBSLibOpen

 LaunchApp

 LBound

 LockClientMem

 LockGlobalMem

 MainForm HandleEvent

 MakeKey

 MakeSQL

 math-related, Numeric library

 MemHandleFree

 MemHandleLock

 MemHandleNew

 memory management

 MemPtrFree

 NewFile

 NewOrderId

 OpenDebugDatabase 2nd

 ParseDBAttributes

 ParseField

 ParseRecData

 PDBClose

 PDBCreateRecord

 PDBCreateTable

 PDBDeleteRecordEx

 PDBSetSort

 PDBUpdateRecord

 PDBWriteFieldByOffset

 PilotMain

 ReadCategoriesRecord

 RegisterKeyCode

 ReleaseKeyCode

 shared libraries

 custom

 internal functions

 required

 Sleep

 StarterPalmMain

 startup

 Startup

 Str2Long

 string conversion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 StrReverse

 SysLibTblEntry

 Time

 TimerMS

 UBound

 UnloadShLib

 UnlockClientMem

 UnlockGlobalMem

 VarPtr

 Wake

 WriteDebugRecord 2nd

fuser

 Boolean values

 calls to

 data types

 DBSLib fuser

 DESFuser

 encryption, C/C++

 features, retrieving

 FtrFuser.mcp project file

 implementation

 interface

 parameters and

 shared libraries and

 values, passing to

Fuser SDK

FUSR type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

generating random numbers

GetConduitInfo function

 return data types

getDBName command

GetDeviceUserName method

GetFirstDatabaseName method

GetGraffitiShiftState method

GetSystemPreference method

GetSystemPreference method values

global information, feature memory

global memory

 functions

 shared libraries

global optimization settings

global reference counter

Graffiti

 copy operations

 cut operations

 paste operations

Graffiti shift

 Caps-lock mode

 Extended mode

 methods

 Punctuation mode

 uppercase mode

Graphic Button ingot 2nd

Graphic ingot 2nd 3rd 4th

graphical style command buttons

graphics

 Picture property

 PRC files

 RGX files

Graphics Converter and Viewer, AppForge

graying out unavailable menu items

Grid ingot 2nd

GUIDs (globally unique identifiers)

 ClassForge and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

handling events

Handspring Visor

hard buttons, overloading

hardware

 buttons, programming and

 interaction, alarm clock example

 Motorola Dragonball chip

hashing, links

header, databases

heap memory

 dynamic heap memory

 Palm III series

help, context-sensitivity

HHtoPC conduit

 FastSync and

HHtoPC routine

Hide method

 dialog form

HistoryListText metatag

horizontal scroll bar

Horizontal Scroll ingot

horizontal scrolling, WCA viewer

HotSync manager

 conduit types

 conduits

 deleting records and

 development and

 registry settings

 simulating

 UC and

 username, GetDeviceUserName method

 verbose mode

HRESULT

HTML (Hypertext Markup Language), truncated pages

hyperlinks [See links]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

icons

 application icon title

 Icon view

 information icon, dialog window

 List view

IDE (integrated development environment)

IDENTITY attribute, SQL tables

IDL (interface definition language)

IDX (interface definition) files 2nd

 component code generation

IEventSource interface 2nd

IID (interface ID), Piedmont

IIS (Internet Information Server)

image files, ingots

image maps, WCA viewer and

images

 color depth

 display time

 monochrome

 size

Implements keyword

Incs (include files)

indexes, databases

 records

INetHTTP ingot 2nd 3rd

INetLib 2nd

 HTML and

information bar

information icon, dialog windows

information sharing, features and

infrared ports

ingots 2nd 3rd

 AFTone, Pitch property values

 attributes

 basic ingots

 CheckBox 2nd

 ClientSocket 2nd

 color

 ComboBox 2nd

 Command Button 2nd

 communications

 data communication

 drag-and-drop support

 dynamic heap

 enhanced ingots 2nd

 FilmStrip 2nd

 fonts

 Graphic 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Graphic Button 2nd

 Grid 2nd

 Horizontal Scroll

 image files

 INetHTTP 2nd 3rd

 Label 2nd

 layering

 ListBox

 Movie 2nd

 multimedia 2nd

 Piedmont

 Radio Button

 repainting

 Scanner 2nd

 Scrollbar 2nd

 Serial 2nd

 Shape 2nd

 Signature Capture

 Signature Collector

 Slider 2nd 3rd

 specialized

 text alignment

 Textbox 2nd 3rd

 Timer 2nd

 title bar settings

 Tone 2nd

 transparency

 VB Toolbox, installation and

 Vertical Scroll

 Visual Basic support

 ZOrder method

Initialize event

input

 hardware buttons

 touch sensitivity and

InputBox

install conduit

InstallAide functions

installation

 AppForge

 CDK

 full installation

 conduits and

 to Emulator session

 Palm Emulator files

installation application, Palm Desktop development and

Interface Design dialog, Piedmont

interfaces [See also UI elements]

 CallApp, FtrApp application

 Conformant (Piedmont)

 design

 dialog windows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 event, TagParse component

 fuser

 IEventSource

 IEventSource event interface

 IPDClientNotify

 COM conduits

 IPtr smart pointer

 IString

 ITagParse

 ITagParseEvent

 Piedmont

 declaring

 defining

 tip screens

interfaces element, IDX files

intermediate code, linking to PRC file

internal functions, shared libraries

Internet data security

Internet phone database

intrinsic controls, ingots and

intrinsic functions

InvalidTagPair event

inventory tracking application

IPC (inter-process communication)

 launch code

IPDClientNotify interface

 COM conduits

IPtr smart pointer interface

ISAM (Indexed Sequential Access Method)

ISP (Internet service provider)

ISPBackup.dat file

ISPQuery program

IString interface, Piedmont

ITagParse interface

 methods 2nd

ITagParseEvent interface event sinks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

keyboard

keycodes

 buttons, registering

 device buttons

 registering

 releasing

KeyPreview property

keywords

 Implements

 Palm.Net

 Static

Kill method

Knowledge Base, Booster information

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Label control

Label ingot 2nd

 VB label comparison

labels

 lblMessage

 title bar, Caption property

language support

large forms, scrolling 2nd

 paging

launch codes

 Extensibility library

 features

LaunchApp function

layering ingots

lblMessage label

LBound function

Left property, scrolling

LeftCol property

libraries

 AppForge

 DBSLib

 Extended Functions

 INetLib

 Numeric

 Palm OS Extensibility library

 PDB library 2nd 3rd

 SampleLib

 support

 System library

life cycle of event

LIKE operator (SQL)

line drawing

links

 client-side scripting and

 hashing

 PQA

List view icons

ListBox ingot

listboxes

Load event 2nd

 SyncForm

Load operation

locking memory

lookup tables, dispatch table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

mapping

 data types (VB and C/C++)

 dates, AFDate pointer

 strings, AFString pointer

marshaling data

 cmdCreateDB command

mask characters

math-related functions, Numeric library

MDX (module definition) files 2nd

 component code generation

MemHandleFree function

MemHandleLock function

MemHandleNew function

memory

 allocating 2nd

 archiving records and

 client memory

 dynamic heap memory

 features, DES and

 freeing 2nd

 global memory

 heap memory, Palm III

 locking

 movable, chunk-based routines

 ownership

 shared libraries

 stack memory

 unloading from forms

MemPtrFree function

menus

 forms

 graying out items

 virtual menu example

message boxes

 buttons, constants

 error messages

metatags 2nd

method element

methods

 AddLogEntry

 Advise 2nd

 AppForge Form

 authentication

 ChangeJob

 CheckBox ingot

 ClientSocket ingot

 ClipBoardGetString

 ClipBoardSetSting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ComboBox ingot

 Command Button ingot

 conformant methods

 CountTagPairs 2nd

 CreateObject (VB)

 CTagParse class

 data transfer

 database management

 device status

 DisplayableLines

 EnqueueKey

 EnumDependencies

 ExtractDataByIndex 2nd

 ExtractDataByTag 2nd

 FilmStrip ingot

 FontHeight

 forms

 GetClassObject

 GetCustomerList

 GetDeviceUserName

 GetFirstDatabaseName

 GetGraffitiShiftState

 GetJobList

 GetSystemPreference

 Graffiti shift

 Graphic Button ingot

 Graphic ingot

 Grid ingot

 Hide 2nd

 Horizontal Scroll ingot

 INetHTTP ingot

 InitProducts

 ITagParse interface 2nd

 Kill

 Label ingot

 ListBox ingot

 Movie ingot

 MsgBox (VB)

 navigation

 PDBBulkRead

 PDBCancelRecordEdit

 PDBClose

 PDBCreateDatabase

 PDBCreateRecord

 PDBCreateRecordBySchema

 PDBCreateTable

 PDBCurrentIndex

 PDBDeleteDatabase

 PDBDeleteRecord

 PDBDeleteRecordEx

 PDBEditRecord

 PDBFindRecordByField

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PDBFindRecordByID

 PDBGetDatabaseAttributes

 PDBGetField

 PDBGetLastError

 PDBGotoIndex

 PDBNumRecords

 PDBOpen

 PDBReadRecord

 PDBRecordAttributes

 PDBRecordAttributesEx

 PDBRecordSize

 PDBRecordUniqueID

 PDBRemoveAllRecords

 PDBResizeRecord

 PDBSetDatabaseAttributes

 PDBSetSort

 PDBSetSortFields

 PDBUpdateRecord 2nd

 PDBWriteFieldByOffset

 PDBWriteRecord

 PDDatabaseQuery class

 PDRecordAdapter

 PDSystemAdapter class

 preference setting

 Print (Debug module)

 Radio Button ingot

 RandomLong

 RegisterKeyCode

 ReleaseKeyCode

 Scanner ingot

 ScrollForm

 security

 SeedRandomLong

 SendDatabase

 Serial ingot

 SetSystemPreference

 Shape ingot

 Show

 Signature Capture ingot

 Slider ingot

 StringWidth

 Synchronize

 text manipulation

 Textbox ingot

 Timer ingot

 TimerMS

 Tone ingot

 Unadvise

 VerifyTag

 Vertical Scroll ingot

 Worker.Synchronize

 ZOrder, ingot positioning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Metrowerks CodeWarrior 7

Microsoft Access Database Converter

Microsoft COM (Component Object Model)

Microsoft IIS (Internet Information Server)

MIK (Mobile Internet Kit)

mirror synchronization

 archive records and

 conduits, record states

 FastSync and

 HHtoPC syncs

 PCtoHH syncs

mirror-image conduit

Mode parameter, PDBOpen method

models, older, forms and

modules, Piedmont

 declaring

 defining

monochrome devices, color on

monochrome images

Motorola Dragonball chip

mouse

movable memory, check-based routines

Movie Converter and Viewer, AppForge

Movie ingot 2nd

movies

MsgBox method (VB)

multimedia ingots

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

native applications, development and

navigation

 design tips

 finger navigation

 methods

 PDB library and

 records, databases

 response time and

 taps required

nesting dialog windows

New keyword

NewRow property

Normal deletes, PDBs

North Wind sample 2nd

 categories

 Grid ingot

 suppliers

 type-ahead searches

NULL fields, UC and

Numeric library

 AppForge

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Obj files (object files)

objects

 early-bound

 PDUtility

 SyncLogic

 Visual Basic support

ODBC (Object Database Connector), UC and

ODBC function specification, hand coding and

Open operation

OpenDebugDatabase function 2nd

operating system access

operation buttons

 interface design and

options, pop-up lists

OR operator flags, PDBGetDatabaseAttributes method

Oval type

overloading hard buttons

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

packed record data

 reading

paging large forms

Palm color palette [See color palette]

Palm data files [See PDB files]

Palm Desktop

 HotSync manager, development and

 installation application, development and

Palm III series, heap memory and

Palm Memory Manager

Palm OS Extensibility library

Palm OS preferences, values

Palm Reporter (trace utility)

Palm Resource files [See PRC files]

Palm software

Palm Web Clipping Developer's Guide

Palm.Net

 keywords

 security

PalmBinary

PalmComputingPlatform metatag

PalmLauncherRevision

PalmLongToDate code listing

PalmLongToTime code listing

PalmOS SDK SampleLib

PalmRez post linker 2nd

parameters

 CallApp interface

 CfgConduit function

 ConfigureConduit function

 conformant methods

 CountTagPairs method

 ExtractDataByIndex method

 ExtractDataByTag method

 features

 fuser and

 GetConduitInfo function

 passing between applications, features

 PDBOpen method

 PilotMain function

passing arrays

PasswordChar property

pasting, graffiti

PCtoHH conduit

PDB (Palm Record Database)

PDB files

 Database Converter

 generating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 records, deleting

 UC configuration and

PDB library 2nd

 AppForge

 category names

 database management methods

 databases

 closing

 creating

 deleting

 schemas

 navigation and

PDBBulkRead method

PDBCancelRecordEdit methods

PDBClose function

PDBClose method

PDBCreateDatabase method

PDBCreateRecord function

PDBCreateRecord method

PDBCreateRecordBySchema method

PDBCreateTable function

PDBCreateTable method

PDBCurrentIndex method

PDBDeleteDatabase method

PDBDeleteRecord method

PDBDeleteRecordEx function

PDBDeleteRecordEx method

PDBEditRecord method

PDBFindRecordByField method

PDBFindRecordByID method

PDBGetDatabaseAttributes method

PDBGetField method

PDBGetLastError method

PDBGotoIndex method

PDBNumRecords method

PDBOpen method

PDBReadRecord method

PDBRecordAttributes method

PDBRecordAttributesEx method

PDBRecordSize method

PDBRecordUniqueID method

PDBRemoveAllRecords method

PDBResizeRecord method

PDBSetDatabaseAttributes method

PDBSetSort function

PDBSetSort method

PDBSetSortFields method

PDBUpdateRecord function

PDBUpdateRecord method 2nd

PDBWriteFieldByOffset function

PDBWriteFieldByOffset method

PDBWriteRecord method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PDDatabaseQuery class

PDRecordAdapter class

PDSystemAdapter class

PDUtility object

pending events, executing

per-record flags

Physical deletes, PDBs

Picture property, graphics

PIDL (Piedmont interface definition language)

PIDL compiler, TagParse component skeleton code

PIDL-generated files

Piedmont

 architecture overview

 classes

 CTagParse

 declaring

 components

 Palm implementation

 Windows implementation

 Conformant interfaces

 debugging and

 directories

 downloading

 ingots

 Interface Design dialog

 interfaces

 declaring

 defining

 modules

 declaring

 defining

 shared libraries

 Visual C++ and

PilotMain function

 code listing

 parameters

 routine listing

PilotMain routine

Pitch property, Timer ingot

 values

plaintext, DES and

platforms, AppForge

Pocket PC

 Appearance property

 form size

pop-up list design tips

ports

 infrared

 serial

POSE (Palm OS Emulator)

 debugging

 downloading

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 file installation

 installation to session

 Reporter and

 skins

PQA (Palm Query Application) 2nd [See also WCA]

 links

PRC (Palm Resource) files 2nd

 Booster runtime

 generating

 graphics and

 intermediate code, linking

 PalmRez post linker

 uploading to Palm device

preferences

 methods

 proxy server

 strings and

 system settings, values

 version number

primary keys, UC

Print method, Debug module

processor optimization

products database, sales application

Products table, Sales application

ProfileInstall conduit

projects

 AppForge

 compiling

 configuring

 samples

 empty

properties

 Appearance

 AppForge Form

 Caption, title bar and

 CheckBox ingot 2nd

 ClientSocket ingot

 ColWidth

 ComboBox ingot

 Command Button ingot

 command buttons

 FilmStrip ingot

 forms

 Frames

 Graphic Button ingot

 Graphic ingot

 Grid ingot

 Horizontal Scroll ingot

 INetHTTP ingot

 KeyPreview

 Label ingot

 LeftCol

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ListBox ingot

 Movie ingot

 NewRow

 PasswordChar

 PDDatabaseQuery method

 PDRecordAdapter class

 PDSystemAdapter class

 Radio Button ingot

 RemoteNameCount

 RowHeight

 ScaleHeight

 ScaleWidth

 Scanner ingot

 Serial ingot

 Shape ingot

 Signature Capture ingot

 SignatureData

 Slider ingot

 Textbox ingot

 Timer ingot

 Tone ingot

 TopLine

 TopRow

 TotalLines

 Vertical Scroll ingot

proxy server

 caching and

 preferences dialog

publishing in SQL

Punctuation mode, Graffiti shift

push buttons

 data presentation

 filters and

 sorting and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

QueryUnload event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Radio Button ingot

radio buttons

random number generator

RandomLong method

ReadCategoriesRecord function

reading records, databases

ReceivedData event, INetHTTP ingot

record management, databases

records, databases

 archiving

 attributes

 committing data to file

 counting

 creating

 deleting 2nd

 last record

 editing

 fields

 Grid ingot

 navigating

 packed record data

 reading

 PDB record fields

 reading

 saving

 searches

 sorting

 string data, mapping and

 UIDs

 writing data to

Rectangle type

reference counter

refreshing components

refreshing forms

RegisterKeyCode method 2nd

Registry settings, HotSync manager

ReleaseKeyCode function

ReleaseKeyCode method

RemoteNameCount property

repainting ingots

repeating buttons

replication conflicts, UC

Report (trace utility)

response time

Resume statement, error handling

RGX files

rmv files, Movie ingot

Rounded Rectangle type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rounded Square type

RowHeight property

runtime behavior, Piedmont ingots

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Sales application

 Orders form

 products database

 Products table, synchronization

ScaleHeight property

ScaleWidth property

Scanner ingot 2nd

schemas

 databases

 PDB library

 temporary

 field items

screen size

scroll bars

scrollbar ingots

ScrollForm method

scrolling

 code

 dialog windows

 forms

 boundaries

 KeyDown events

 large forms 2nd

 Left property

 paging large forms

 Top property

 WCA viewer

searches

 databases

 type-ahead searches

security

 certificates

 ECC

 encryption

 Internet

 methods

 Palm.Net

 WCA

 wireless architecture

SeedRandomLong method

SendDatabase method

Serial ingot 2nd

serial number, returning

serial ports

server-side applications, IIS

SetSystemPreference method

 values

Shape control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shape ingot 2nd

shared libraries

 API versions

 client memory

 DBSLib

 DBSLibFuser and

 functions

 custom

 internal

 required

 fuser and

 global memory

 internal state, tracking

 memory

 ownership

 operations

 Piedmont modules

ShLibInfoType items

Show method

Signature Capture ingot

Signature Collector ingot

signatures

skins

Sleep function

slider controls

Slider ingot 2nd 3rd

 appearance

SliderMoved event

slow conduit

slow syncs

socket-based communications

SortInfo block

 databases

 ISAM

sorting

 databases

 push buttons and

sound

specialized ingots

Springboard scanner, Visor

SQL (Structured Query Language)

 databases, sales database example

 LIKE operator

 publishing

 Sales application

 statement access, UC

Square type

 Rounded Square type

Src (source files)

stack memory

StarterPalmMain function

Startup function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

startup, default behavior

StateChanged event, INetHTTP ingot

Static keyword

status, methods

strings

 converting to numerics

 mapping, AFString pointer

 preferences and

 size, pixels

StringWidth method

Style parameter, PDBOpen method

stylus

SyncForm mirror-image conduit

synchronization

 append

 applications and

 backup conduit

 conduits

 databases and

 DoNothing conduit

 fast conduit

 HHtoPC conduit

 install conduit

 logic

 mirror synchronization

 archive records

 conduits, record states

 PCtoHH conduit

 Products table, Sales application

 ProfileInstall conduit

 slow conduit

 types

 UC

 types

 VB IDE and

Synchronize method

SyncLogic object

SysLibTblEntry function

System library

 AppForge

system traps, dispatch table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tables

 ColAlignment property

 ColWidth property

 dispatch table

 NewRow property

 RowHeight property

 TopRow property

tablesLeftCol property

tapping, navigation tips

Target settings, DBSLib

Technology Licensing program, Piedmont and

telephone numbers

 Internet phone database

 ISPQuery program

Terminate event

text

 alignment, ingots

 editing

 sizing

text boxes

text entry

Textbox ingot 2nd 3rd

 TopLine property

 TotalLines property

threads of execution

Time function

time issues [See also date/time]

 design

Timer ingot 2nd

TimerMS method 2nd

timers

tip screens 2nd

title bar

 adding to form

 automatic

 Caption property

 custom

 dimensions

 ingots

title/information bar

toggle buttons

Tone ingot 2nd

Toolbox, AppForge tab

tools, browser and

Top property, scrolling

TopLine property

TopRow property

TotalLines property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

touch sensitivity, input and

transactional conduits 2nd

transferring data, methods

transparency, ingots

triggering events

truncation

Type field, databases

Type parameter, PDBOpen method

type-ahead search

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UBound function

UC 2nd

 AppForge

 configuration

 data types

 data values, mapping

 design issues

 device data, minimizing

 HotSync manager and

 NULL fields

 primary keys

 replication conflicts

 SQL statement access

 synchronization

 append

 types

UCQueryDriver.exe command-line tool

UCTypes.ini file

UDTs (User-Defined Types)

UI elements

 application workspace

 dialog windows

 operation buttons

 tip screens

 title/information bar

UID (unique identifier), database records

Unadvise method

Universal Conduit [See UC]

Unload event 2nd

unload operation

uploading PRC files to Palm device

uppercase mode, Graffiti shift

Use operation

User Dependencies tab, AppForge Settings

user interaction, Visual Basic

user interface design

user-defined classes

users

 actions, capturing

 login, Create method

 physical location

 tracking authenticated

utilities

 AppForge

 conduits

 Movie converter utility

 Palm Reporter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

variables, addresses

VarPtr function

VB conduit project, configuration

VB IDE, HotSync manager verbose mode

VB modules

 PDBs

 UC configuration and

VB Toolbox, ingots, installation and

version number, preferences

vertical scroll bar

Vertical Scroll ingot

ViewData button, event handler

views, icons

virtual menu example

Visor Springboard scanner

Visual Basic

 AppForge Visual Basic Add-in 2nd

 arrays

 Dim statement

 error handling

 ingot support

 limitations

 New keyword

 objects

 strings

 unsupported types

 user interaction, intrinsic

Visual C++

 Piedmont and

 Piedmont directories

Visual Studio Service Pack

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Wake function

WCA

 application partitioning

 application, sample

 compiling into PQA

 dynamic component

 large applications

 preinstalled component

 security

WCA Builder for Windows

WCA Builder tool

WCA viewer

 cookies

 limitations

WCABuild program

WCABuild.exe

Web Clipping Application [See WCA]

Web Clipping, defined

Windows

 desktop comparison

windows

 dialog

Windows

 Piedmont component implementation

windows

 tip windows 2nd

Windows CDK Companion

wireless architecture

 Palm.Net

 security

wireless connections, proxy server

workspace, application workspace

WriteDebugRecord function 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XML (extensible markup language)

 database schema

 parsing

 PIDL and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zero-based field numbers

ZOrder method, ingot position

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Cover
	Table of Contents
	Copyright
	PREFACE
	Who Should Read This Book
	Organization of This Book
	Required Software
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Part I: Programming with AppForge
	Chapter 1. Introducing AppForge
	Section 1.1. Palm Software
	Section 1.2. Main Features of AppForge
	Section 1.3. Installing AppForge
	Section 1.4. Using AppForge
	Section 1.5. Resources

	Chapter 2. Application Development
	Section 2.1. User Interface Design
	Section 2.2. Basic Application Layout Example
	Section 2.3. Language and Libraries Support

	Chapter 3. Palm Database Programming
	Section 3.1. The Palm Database
	Section 3.2. AppForge PDB Library
	Section 3.3. The AppForge Database Converter
	Section 3.4. Resources

	Part II: Data Connectivity
	Chapter 4. Conduit Development
	Section 4.1. Applications and Conduits
	Section 4.2. Conduit Design
	Section 4.3. Installing the CDK
	Section 4.4. Nuts and Bolts
	Section 4.5. Synchronization Logic
	Section 4.6. Data Formats
	Section 4.7. Resources

	Chapter 5. SQL Databases
	Section 5.1. SQL Publishing
	Section 5.2. Universal Conduit
	Section 5.3. Resources

	Chapter 6. Web Clipping Applications
	Section 6.1. Palm.Net Wireless Architecture
	Section 6.2. Simple WCA Tour
	Section 6.3. Building a Large Application
	Section 6.4. Palm OS 4.0
	Section 6.5. Resources

	Part III: Advanced Topics
	Chapter 7. Operating System Access
	Section 7.1. Fuser Mechanics
	Section 7.2. A Data Encryption Program
	Section 7.3. Resources

	Chapter 8. Shared Libraries
	Section 8.1. Memory Concepts
	Section 8.2. Memory Management Functions
	Section 8.3. DBSLib Shared Library
	Section 8.4. DBSLib Driver Application
	Section 8.5. DBSLib Fuser
	Section 8.6. AppForge Driver Application

	Chapter 9. Piedmont
	Section 9.1. Obtaining Piedmont
	Section 9.2. Architecture Overview
	Section 9.3. Module and Interface Definition
	Section 9.4. Component Code Generation
	Section 9.5. Windows Component Implementation
	Section 9.6. Palm Component Implementation
	Section 9.7. AppForge VM Integration

	Chapter 10. Debugging
	Section 10.1. Conditional Compilation
	Section 10.2. Palm Reporter
	Section 10.3. Palm Buttons
	Section 10.4. Debug Database

	Part IV: Appendixes
	Appendix A. Ingot and Enumeration Summary
	Section A.1. Basic Ingot Components
	Section A.2. Enhanced Ingots
	Section A.3. Multimedia Ingots
	Section A.4. Data Communication Ingots
	Section A.5. AFTone Ingot Pitch values
	Section A.6. Database Error Codes

	Appendix B. DBSLib Sample Project Setup
	Section B.1. Target Settings
	Section B.2. Access Paths
	Section B.3. 68K Target
	Section B.4. C/C++, Processor, and Global Optimizations Settings
	Section B.5. PalmRez Post Linker
	Section B.6. Configuring and Adding Files

	Colophon
	Index
	SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Z

