

• Index

• Reviews

•
Reader

Reviews

• Errata

XML in a Nutshell, 2nd Edition

By Elliotte Rusty Harold, W. Scott Means

Publisher : O'Reilly

Pub Date : June 2002

ISBN : 0-596-00292-0

Pages : 634

This powerful new edition provides developers with a
comprehensive guide to the rapidly evolving XML space. Serious
users of XML will find topics on just about everything they need,
from fundamental syntax rules, to details of DTD and XML
Schema creation, to XSLT transformations, to APIs used for
processing XML documents. Simply put, this is the only
reference of its kind among XML books.

EEn
777

Copyright

Preface

What This Book Covers

What's New in the Second Edition

Organization of the Book

Conventions Used in This Book

Request for Comments

Acknowledgments

Part I: XML Concepts

Chapter 1. Introducing XML

1.1 The Benefits of XML

1.2 Portable Data

1.3 How XML Works

1.4 The Evolution of XML

Chapter 2. XML Fundamentals

2.1 XML Documents and XML Files

2.2 Elements, Tags, and Character Data

2.3 Attributes

2.4 XML Names

2.5 Entity References

2.6 CDATA Sections

2.7 Comments

2.8 Processing Instructions

2.9 The XML Declaration

2.10 Checking Documents for Well-Formedness

http://lib.ommolketab.ir

Chapter 3. Document Type Definitions (DTDs)

3.1 Validation

3.2 Element Declarations

3.3 Attribute Declarations

3.4 General Entity Declarations

3.5 External Parsed General Entities

3.6 External Unparsed Entities and Notations

3.7 Parameter Entities

3.8 Conditional Inclusion

3.9 Two DTD Examples

3.10 Locating Standard DTDs

Chapter 4. Namespaces

4.1 The Need for Namespaces

4.2 Namespace Syntax

4.3 How Parsers Handle Namespaces

4.4 Namespaces and DTDs

Chapter 5. Internationalization

5.1 Character-Set Metadata

5.2 The Encoding Declaration

5.3 Text Declarations

5.4 XML-Defined Character Sets

5.5 Unicode

5.6 ISO Character Sets

5.7 Platform-Dependent Character Sets

5.8 Converting Between Character Sets

5.9 The Default Character Set for XML Documents

5.10 Character References

5.11 xml:lang

Part II: Narrative-Centric Documents

Chapter 6. XML as a Document Format

6.1 SGML's Legacy

6.2 Narrative Document Structures

6.3 TEI

6.4 DocBook

6.5 Document Permanence

6.6 Transformation and Presentation

Chapter 7. XML on the Web

7.1 XHTML

7.2 Direct Display of XML in Browsers

7.3 Authoring Compound Documents with Modular XHTML

7.4 Prospects for Improved Web-Search Methods

Chapter 8. XSL Transformations (XSLT)

8.1 An Example Input Document

http://lib.ommolketab.ir

8.2 xsl:stylesheet and xsl:transform

8.3 Stylesheet Processors

8.4 Templates and Template Rules

8.5 Calculating the Value of an Element with xsl:value-of

8.6 Applying Templates with xsl:apply-templates

8.7 The Built-in Template Rules

8.8 Modes

8.9 Attribute Value Templates

8.10 XSLT and Namespaces

8.11 Other XSLT Elements

Chapter 9. XPath

9.1 The Tree Structure of an XML Document

9.2 Location Paths

9.3 Compound Location Paths

9.4 Predicates

9.5 Unabbreviated Location Paths

9.6 General XPath Expressions

9.7 XPath Functions

Chapter 10. XLinks

10.1 Simple Links

10.2 Link Behavior

10.3 Link Semantics

10.4 Extended Links

10.5 Linkbases

10.6 DTDs for XLinks

Chapter 11. XPointers

11.1 XPointers on URLs

11.2 XPointers in Links

11.3 Bare Names

11.4 Child Sequences

11.5 Namespaces

11.6 Points

11.7 Ranges

Chapter 12. Cascading Style Sheets (CSS)

12.1 The Three Levels of CSS

12.2 CSS Syntax

12.3 Associating Stylesheets with XML Documents

12.4 Selectors

12.5 The Display Property

12.6 Pixels, Points, Picas, and Other Units of Length

12.7 Font Properties

12.8 Text Properties

12.9 Colors

Chapter 13. XSL Formatting Objects (XSL-FO)

13.1 XSL Formatting Objects

13.2 The Structure of an XSL-FO Document

http://lib.ommolketab.ir

13.3 Laying Out the Master Pages

13.4 XSL-FO Properties

13.5 Choosing Between CSS and XSL-FO

Chapter 14. Resource Directory Description Language (RDDL)

14.1 What's at the End of a Namespace URL?

14.2 RDDL Syntax

14.3 Natures

14.4 Purposes

Part III: Data-Centric XML

Chapter 15. XML as a Data Format

15.1 Why Use XML for Data?

15.2 Developing Data-Oriented XML Formats

15.3 Sharing Your XML format

Chapter 16. XML Schemas

16.1 Overview

16.2 Schema Basics

16.3 Working with Namespaces

16.4 Complex Types

16.5 Empty Elements

16.6 Simple Content

16.7 Mixed Content

16.8 Allowing Any Content

16.9 Controlling Type Derivation

Chapter 17. Programming Models

17.1 Common XML Processing Models

17.2 Common XML Processing Issues

Chapter 18. Document Object Model (DOM)

18.1 DOM Foundations

18.2 Structure of the DOM Core

18.3 Node and Other Generic Interfaces

18.4 Specific Node-Type Interfaces

18.5 The DOMImplementation Interface

18.6 Parsing a Document with DOM

18.7 A Simple DOM Application

Chapter 19. Simple API for XML (SAX)

19.1 The ContentHandler Interface

19.2 SAX Features and Properties

19.3 Filters

Part IV: Reference

Chapter 20. XML 1.0 Reference

http://lib.ommolketab.ir

20.1 How to Use This Reference

20.2 Annotated Sample Documents

20.3 XML Syntax

20.4 Constraints

20.5 XML Document Grammar

Chapter 21. Schemas Reference

21.1 The Schema Namespaces

21.2 Schema Elements

21.3 Primitive Types

21.4 Instance Document Attributes

Chapter 22. XPath Reference

22.1 The XPath Data Model

22.2 Data Types

22.3 Location Paths

22.4 Predicates

22.5 XPath Functions

Chapter 23. XSLT Reference

23.1 The XSLT Namespace

23.2 XSLT Elements

23.3 XSLT Functions

23.4 TrAX

Chapter 24. DOM Reference

24.1 Object Hierarchy

24.2 Object Reference

Chapter 25. SAX Reference

25.1 The org.xml.sax Package

25.2 The org.xml.sax.helpers Package

25.3 SAX Features and Properties

25.4 The org.xml.sax.ext Package

Chapter 26. Character Sets

26.1 Character Tables

26.2 HTML4 Entity Sets

26.3 Other Unicode Blocks

Colophon

Index

Copyright

Copyright © 2002, 2001 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

http://lib.ommolketab.ir

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles (). For more
information contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.
The association between the image of a peafowl and the topic of XML is a trademark of
O'Reilly & Associates, Inc. Java™ and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and
other countries. O'Reilly & Associates, Inc. is independent of Sun Microsystems.

While every precaution has been taken in the preparation of this book, the publisher and
the author assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

Preface

XML is one of the most important developments in document syntax in the history of
computing. In the last few years it has been adopted in fields as diverse as law,
aeronautics, finance, insurance, robotics, multimedia, hospitality, travel, art,
construction, telecommunications, software, agriculture, physics, journalism, theology,
retail, and comics. XML has become the syntax of choice for newly designed document
formats across almost all computer applications. It's used on Linux, Windows,
Macintosh, and many other computer platforms. Mainframes on Wall Street trade stocks
with one another by exchanging XML documents. Children playing games on their home
PCs save their documents in XML. Sports fans receive real-time game scores on their
cell phones in XML. XML is simply the most robust, reliable, and flexible document
syntax ever invented.

XML in a Nutshell is a comprehensive guide to the rapidly growing world of XML. It
covers all aspects of XML, from the most basic syntax rules, to the details of DTD and
schema creation, to the APIs you can use to read and write XML documents in a variety
of programming languages.

http://lib.ommolketab.ir

What This Book Covers

There are hundreds of formally established XML applications from the W3C and other
standards bodies, such as OASIS and the Object Management Group. There are even
more informal, unstandardized applications from individuals and corporations, such as
Microsoft's Channel Definition Format and John Guajardo's Mind Reading Markup
Language. This book cannot cover them all, any more than a book on Java could
discuss every program that has ever been or might ever be written in Java. This book
focuses primarily on XML itself. It covers the fundamental rules that all XML documents
and authors must adhere to, whether a web designer uses SMIL to add animations to
web pages or a C++ programmer uses SOAP to exchange serialized objects with a
remote database.

This book also covers generic supporting technologies that have been layered on top of
XML and are used across a wide range of XML applications. These technologies
include:

XLink

An attribute-based syntax for hyperlinks between XML and non-XML documents
that provide the simple, one-directional links familiar from HTML, multidirectional
links between many documents, and links between documents to which you don't
have write access.

XSLT

An XML application that describes transformations from one document to another,
in either the same or different XML vocabularies.

XPointer

A syntax for URI fragment identifiers that selects particular parts of the XML
document referred to by the URI-often used in conjunction with an XLink.

XPath

A non-XML syntax used by both XPointer and XSLT for identifying particular pieces
of XML documents. For example, an XPath can locate the third address element
in the document, or all elements with an email attribute whose value is
elharo@metalab.unc.edu.

Namespaces

A means of distinguishing between elements and attributes from different XML
vocabularies that have the same name; for instance, the title of a book and the title
of a web page in a web page about books.

Schemas

http://lib.ommolketab.ir

An XML vocabulary for describing the permissible contents of XML documents
from other XML vocabularies.

SAX

The Simple API for XML, an event-based application programming interface
implemented by many XML parsers.

DOM

The Document Object Model, a language-neutral tree-oriented API that treats an
XML document as a set of nested objects with various properties.

XHTML

An XMLized version of HTML that can be extended with other XML applications
such as MathML and SVG.

RDDL

The Resource Directory Description Language, an XML application based on
XHTML for documents placed at the end of namespace URLs.

All these technologies, whether defined in XML (XLinks, XSLT, Namespaces, Schemas,
XHTML, and RDDL) or in another syntax (XPointers, XPath, SAX, and DOM), are used
in many different XML applications.

This book does not specifically cover XML applications that are relevant to only some
users of XML, such as:

SVG

Scalable Vector Graphics, a W3C-endorsed standard XML encoding of line art.
MathML

The Mathematical Markup Language, a W3C-endorsed standard XML application
used for embedding equations in web pages and other documents.

RDF

The Resource Description Framework, a W3C-standard XML application used for
describing resources, with a particular focus on the sort of metadata one might find
in a library card catalog.

Occasionally we use one or more of these applications in an example, but we do not
cover all aspects of the relevant vocabulary in depth. While interesting and important,
these applications (and hundreds more like them) are intended primarily for use with
special software that knows their format intimately. For instance, most graphic designers
do not work directly with SVG. Instead, they use their customary tools, such as Adobe

http://lib.ommolketab.ir

Illustrator, to create SVG documents. They may not even know they're using XML.

This book focuses on standards that are relevant to almost all developers working with
XML. We investigate XML technologies that span a wide range of XML applications, not
those that are relevant only within a few restricted domains.

What's New in the Second Edition

XML has hardly stood still in the 18 months since the first edition of XML in a Nutshell
was published. To answer the most frequent request from readers of the first edition,
there are now two new chapters covering schemas. Furthermore, other chapters
throughout the book have been rewritten to reflect the impact of schemas on their
subject matter. We added several other new topics as well, including the RDDL, the
Transformations API for XML (TrAX), the Java API for XML Processing (JAXP), and
SAX filters.

In addition, the treatment of many topics has been upgraded to the latest versions of
various specifications, including:

XSL Formatting Objects 1.0

XLink 1.0

XPointer 2nd Candidate Recommendation

XHTML 1.1

Unicode 3.1.1

Finally, many small errors and omissions were corrected throughout the book.

Organization of the Book

Part I, introduces you to the fundamental standards that form the essential core of XML
to which all XML applications and software must adhere. It teaches you about well-
formed XML, DTDs, namespaces, and Unicode as quickly as possible.

Part II, explores technologies that are used mostly for narrative XML documents, such
as web pages, books, articles, diaries, and plays. You'll learn about XSLT, CSS, XSL-
FO, XLinks, XPointers, XPath, and RDDL.

One of the most unexpected developments in XML was its enthusiastic adoption for
data-heavy structured documents such as spreadsheets, financial statistics,

http://lib.ommolketab.ir

mathematical tables, and software file formats. Part III, explores the use of XML for such
record-like documents. This part focuses on the tools and APIs needed to write software
that processes XML, including SAX, DOM, and schemas.

Finally, Part IV, is a series of quick-reference chapters that form the core of any Nutshell
Handbook. These chapters give you detailed syntax rules for the core XML
technologies, including XML, DTDs, schemas, XPath, XSLT, SAX, and DOM. Turn to
this section when you need to find out the precise syntax quickly for something you know
you can do but don't remember exactly how to do.

Conventions Used in This Book

Constant width is used for:

Code examples and fragments.

Anything that might appear in an XML document, including element names, tags,
attribute values, entity references, and processing instructions.

Anything that might appear in a program, including keywords, operators, method
names, class names, and literals.

Constant-width bold is used for:

User input.

Signifying emphasis in code examples and fragments.

Constant-width italic is used for:

Replaceable elements in code statements.

Italic is used for:

New terms where they are defined.

Signifying emphasis in body text.

Pathnames, filenames, and program names. (However, if the program name is also
the name of a Java class, it is written in constant-width font, like other class names.)

Host and domain names (cafeconleche.org).

http://lib.ommolketab.ir

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

Significant code fragments, complete programs, and documents are generally placed
into a separate paragraph like this:

<?xml version="1.0"?>
<?xml-stylesheet href="person.css" type="text/css"?>
<person>
 Alan Turing
</person>

XML is case sensitive. The PERSON element is not the same thing as the person or
Person element. Case-sensitive languages do not always allow authors to adhere to
standard English grammar. It is usually possible to rewrite the sentence so the two do
not conflict, and when possible we have endeavored to do so. However, on rare
occasions when there is simply no way around the problem, we let standard English
come up the loser.

Finally, although most of the examples used here are toy examples unlikely to be
reused, a few have real value. Please feel free to reuse them or any parts of them in
your own code. No special permission is required. As far as we are concerned, they are
in the public domain (though the same is definitely not true of the explanatory text).

Request for Comments

We enjoy hearing from readers with general comments about how this book could be
better, specific corrections, or topics you would like to see covered. You can reach the
authors by sending email to elharo@metalab.unc.edu and
smeans@enterprisewebmachines.com. Please realize, however, that we each receive
several hundred pieces of email a day and cannot respond to everyone personally. For
the best chance of getting a personal response, please identify yourself as a reader of
this book. And please send the message from the account you want us to reply to and
make sure that your reply-to address is properly set. There's nothing so frustrating as
spending an hour or more carefully researching the answer to an interesting question
and composing a detailed response, only to have it bounce because the correspondent
sent the message from a public terminal and neglected to set the browser preferences to
include his actual email address.

http://lib.ommolketab.ir

The information in this book has been tested and verified, but you may find that features
have changed (or you may even find mistakes). We believe the old saying, "If you like
this book, tell your friends. If you don't like it, tell us." We're especially interested in
hearing about mistakes. As hard as the authors and editors worked on this book,
inevitably there are a few mistakes and typographical errors that slipped by us. If you
find a mistake or a typo, please let us know so we can correct it in a future printing.
Please send any errors you find directly to the authors at the previously listed email
addresses.

You can also address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web site for the book, where we list errata, examples, and any additional
information. You can access this site at:

http://www.cafeconleche.org/books/xian2/

Before reporting errors, please check this web site to see if we have already posted a fix.
To ask technical questions or comment on the book, you can send email to the authors
directly or send your questions to the publisher at:

bookquestions@oreilly.com

For more information about other O'Reilly books, conferences, software, Resource
Centers, and the O'Reilly Network, see the web sites at:

http://www.oreilly.com
http://xml.oreilly.com
http://www.xml.com

Acknowledgments

Many people were involved in the production of this book. The original editor, John
Posner, got this book rolling and provided many helpful comments that substantially
improved the book. When John moved on, Laurie Petrycki shepherded this book to its
completion. The eagle-eyed Jeni Tennison read the entire manuscript from start to finish
and caught many errors large and small. Without her attention, this book would not be

http://www.cafeconleche.org/books/xian2/
http://www.oreilly.com
http://xml.oreilly.com
http://www.xml.com
http://lib.ommolketab.ir

nearly as accurate. Stephen Spainhour deserves special thanks for his work on the
reference section. His efforts in organizing and reviewing material helped create a better
book. We'd like to thank Matt Sergeant and Didier P. H. Martin for their thorough
technical review of the manuscript and thoughtful suggestions. James Kass's Code2000
font was invaluable in producing Chapter 26.

We'd also like to thank everyone who has worked so hard to make XML such a success
over the last few years and thereby given us something to write about. There are so
many of these people that we can only list a few. In alphabetical order we'd like to thank
Tim Berners-Lee, Jonathan Borden, Jon Bosak, Tim Bray, David Brownell, Mike
Champion, James Clark, Charles Goldfarb, Jason Hunter, Arnaud Le Hors, Michael Kay,
Keiron Liddle, Murato Makoto, Eve Maler, Brett McLaughlin, David Megginson, David
Orchard, Walter E. Perry, Simon St.Laurent, C. M. Sperberg-McQueen, Jonathan Robie,
Arved Sandstrom, James Tauber, Henry S. Thompson, B. Tommie Usdin, Daniel
Veillard, Norm Walsh, Lauren Wood, and Mark Wutka. Our apologies to everyone we
unintentionally omitted.

Elliotte would like to thank his agent, David Rogelberg, who convinced him that it was
possible to make a living writing books like this rather than working in an office. The
entire Sunsite crew (now ibiblio.org) has also helped him to communicate better with his
readers in a variety of ways over the last several years. All these people deserve much
thanks and credit. Finally, as always, he offers his largest thanks to his wife, Beth,
without whose love and support this book would never have happened.

Scott would most like to thank his lovely wife, Celia, who has already spent way too
much time as a "computer widow." He would also like to thank his daughter Selene for
understanding why Daddy can't play with her when he's "working" and Skyler for just
being himself. Also, he'd like to thank the team at Enterprise Web Machines for helping
him make time to write. Finally, he would like to thank John Posner for getting him into
this and Laurie Petrycki for working with him when things got tough.

- Elliotte Rusty Harold, elharo@metalab.unc.edu

- W. Scott Means, smeans@enterprisewebmachines.com

http://lib.ommolketab.ir

CONTENTS

Chapter 1. Introducing XML

 1.1 The Benefits of XML

 1.2 Portable Data
 1.3 How XML Works

 1.4 The Evolution of XML

XML, the Extensible Markup Language, is a W3C-endorsed standard for document
markup. It defines a generic syntax used to mark up data with simple, human-readable
tags. It provides a standard format for computer documents. This format is flexible
enough to be customized for domains as diverse as web sites, electronic data
interchange, vector graphics, genealogy, real-estate listings, object serialization, remote
procedure calls, voice-mail systems, and more.

You can write your own programs that interact with, massage, and manipulate the data
in XML documents. If you do, you'll have access to a wide range of free libraries in a
variety of languages that can read and write XML so that you can focus on the unique
needs of your program. Or you can use off-the-shelf software, such as web browsers
and text editors, to work with XML documents. Some tools are able to work with any
XML document. Others are customized to support a particular XML application in a
particular domain, such as vector graphics, and may not be of much use outside that
domain. But in all cases, the same underlying syntax is used, even if it's deliberately
hidden by the more user-friendly tools or restricted to a single application.

1.1 The Benefits of XML

XML is a metamarkup language for text documents. Data is included in XML documents
as strings of text. The data is surrounded by text markup that describes the data. XML's
basic unit of data and markup is called an element. The XML specification defines the
exact syntax this markup must follow: how elements are delimited by tags, what a tag
looks like, what names are acceptable for elements, where attributes are placed, and so
forth. Superficially, the markup in an XML document looks a lot like the markup in an
HTML document, but there are some crucial differences.

Most importantly, XML is a metamarkup language. That means it doesn't have a fixed
set of tags and elements that are supposed to work for everybody in all areas of interest
for all time. Any attempt to create a finite set of such tags is doomed to failure. Instead,
XML allows developers and writers to define the elements they need as they need them.

http://lib.ommolketab.ir

Chemists can use elements that describe molecules, atoms, bonds, reactions, and other
items encountered in chemistry. Real-estate agents can use elements that describe
apartments, rents, commissions, locations, and other items needed for real estate.
Musicians can use elements that describe quarter notes, half notes, G-clefs, lyrics, and
other objects common in music. The X in XML stands for Extensible. Extensible means
that the language can be extended and adapted to meet many different needs.

Although XML is quite flexible in the elements it allows to be defined, it is quite strict in
many other respects. It provides a grammar for XML documents that says where tags
may be placed, what they must look like, which element names are legal, how attributes
are attached to elements, and so forth. This grammar is specific enough to allow the
development of XML parsers that can read any XML document. Documents that satisfy
this grammar are said to be well-formed. Documents that are not well-formed are not
allowed, any more than a C program that contains a syntax error is allowed. XML
processors will reject documents that contain well-formedness errors.

For reasons of interoperability, individuals or organizations may agree to use only
certain tags. These tag sets are called XML applications. An XML application is not a
software application that uses XML, such as Mozilla or Microsoft Word. Rather, it's an
application of XML in a particular domain like vector graphics or cooking.

The markup in an XML document describes the structure of the document. It lets you
see which elements are associated with which other elements. In a well-designed XML
document, the markup also describes the document's semantics. For instance, the
markup can indicate that an element is a date or a person or a bar code. In well-
designed XML applications, the markup says nothing about how the document should
be displayed. That is, it does not say that an element is bold or italicized or a list item.
XML is a structural and semantic markup language, not a presentation language.[1]

The markup permitted in a particular XML application can be documented in a schema.
Particular document instances can be compared to the schema. Documents that match
the schema are said to be valid. Documents that do not match are invalid. Validity
depends on the schema. That is, whether a document is valid or invalid depends on
which schema you compare it to. Not all documents need to be valid. For many
purposes it is enough that the document merely be well-formed.

There are many different XML schema languages, with different levels of expressivity.
The most broadly supported schema language and the only one defined by the XML 1.0
specification itself is the document type definition (DTD). A DTD lists all the legal
markup and specifies where and how it may be included in a document. DTDs are
optional in XML. On the other hand, DTDs may not always be enough. The DTD syntax
is quite limited and does not allow you to make many useful statements such as "This
element contains a number" or "This string of text is a date between 1974 and 2032."

http://lib.ommolketab.ir

The W3C XML Schema Language (which sometimes goes by the misleadingly generic
label schemas) does allow you to express constraints of this nature. Besides these two,
there are many other schema languages from which to choose, including RELAX NG,
Schematron, Hook, and Examplotron, and this is hardly an exhaustive list.

All current schema languages are purely declarative. However, there are always some
constraints that cannot be expressed in anything less than a Turing complete
programming language. For example, given an XML document that represents an order,
a Turing complete language is required to multiply the price of each order_item by
its quantity, sum them all up, and verify that the sum equals the value of the
subtotal element. Today's schema languages are also incapable of verifying extra-
document constraints such as "Every SKU element matches the SKU field of a record in
the products table of the inventory database." If you're writing programs to read XML
documents, you can add code to verify statements like these, just as you would if you
were writing code to read a tab-delimited text file. The difference is that XML parsers
present you with the data in a much more convenient format and do more of the work for
you before you have to resort to your own custom code.

1.1.1 What XML Is Not

XML is a markup language, and it is only a markup language. It's important to remember
that. The XML hype has gotten so extreme that some people expect XML to do
everything up to and including washing the family dog.

First of all, XML is not a programming language. There's no such thing as an XML
compiler that reads XML files and produces executable code. You might perhaps define
a scripting language that used a native XML format and was interpreted by a binary
program, but even this application would be unusual.[2] XML can be used as a format for
instructions to programs that do make things happen, just like a traditional program may
read a text config file and take different action depending on what it sees there. Indeed,
there's no reason a config file can't be XML instead of unstructured text. Some more
recent programs are beginning to use XML config files; but in all cases it's the program
taking action, not the XML document itself. An XML document by itself simply is. It does
not do anything.

Secondly, XML is not a network transport protocol. XML won't send data across the
network, any more than HTML will. Data sent across the network using HTTP, FTP,
NFS, or some other protocol might happen to be encoded in an XML format, but again
there has to be some software outside the XML document that actually does the
sending.

Finally, to mention the example where the hype most often obscures the reality, XML is

http://lib.ommolketab.ir

not a database. You're not going to replace an Oracle or MySQL server with XML. A
database can contain XML data, either as a VARCHAR or a BLOB or as some custom
XML data type, but the database itself is not an XML document. You can store XML data
into a database on a server or retrieve data from a database in an XML format, but to do
this, you need to be running software written in a real programming language such as C
or Java. To store XML in a database, software on the client side will send the XML data
to the server using an established network protocol such as TCP/IP. Software on the
server side will receive the XML data, parse it, and store it in the database. To retrieve
an XML document from a database, you'll generally pass through some middleware
product like Enhydra that makes SQL queries against the database and formats the
result set as XML before returning it to the client. Indeed, some databases may integrate
this software code into their core server or provide plug-ins to do it such as the Oracle
XSQL servlet. XML serves very well as a ubiquitous, platform-independent transport
format in these scenarios. However, it is not the database, and it shouldn't be used as
one.

1.2 Portable Data

XML offers the tantalizing possibility of truly cross-platform, long-term data formats. It's
long been the case that a document written on one platform is not necessarily readable
on a different platform, or by a different program on the same platform, or even by a
future or past version of the same program on the same platform. When the document
can be read, there's no guarantee that all the information will come across. Much of the
data from the original moon landings in the late 1960s and early 1970s is now effectively
lost. Even if you can find a tape drive that can read the now obsolete tapes, nobody
knows in what format the data is stored on the tapes!

XML is an incredibly simple, well-documented, straightforward data format. XML
documents are text and can be read with any tool that can read a text file. Not just the
data, but also the markup is text, and it's present right there in the XML file as tags. You
don't have to wonder whether every eighth byte is random padding, guess whether a
four-byte quantity is a two's complement integer or an IEEE 754 floating point number,
or try to decipher which integer codes map to which formatting properties. You can read
the tag names directly to find out exactly what's in the document. Similarly, since
element boundaries are defined by tags, you aren't likely to be tripped up by unexpected
line-ending conventions or the number of spaces that are mapped to a tab. All the
important details about the structure of the document are explicit. You don't have to
reverse-engineer the format or rely on incomplete and often unavailable documentation.

A few software vendors may want to lock in their users with undocumented, proprietary,
binary file formats. However, in the long term we're all better off if we can use the cleanly
documented, well-understood, easy to parse, text-based formats that XML provides.

http://lib.ommolketab.ir

XML lets documents and data be moved from one system to another with a reasonable
hope that the receiving system will be able to make sense out of it. Furthermore,
validation lets the receiving side check that what it gets is what it expects. Java
promised portable code; XML delivers portable data. In many ways, XML is the most
portable and flexible document format designed since the ASCII text file.

1.3 How XML Works

Example 1-1 shows a simple XML document. This particular XML document might be
seen in an inventory-control system or a stock database. It marks up the data with tags
and attributes describing the color, size, bar-code number, manufacturer, name of the
product, and so on.

Example 1-1. An XML document

<?xml version="1.0"?>
<product barcode="2394287410">
 <manufacturer>Verbatim</manufacturer>
 <name>DataLife MF 2HD</name>
 <quantity>10</quantity>
 <size>3.5"</size>
 <color>black</color>
 <description>floppy disks</description>
</product>

This document is text and might well be stored in a text file. You can edit this file with
any standard text editor such as BBEdit, jEdit, UltraEdit, Emacs, or vi. You do not need a
special XML editor. Indeed, we find most general-purpose XML editors to be far more
trouble than they're worth and much harder to use than simply editing documents in a
text editor.

Programs that actually try to understand the contents of the XML document-that is, do
more than merely treat it as any other text file-will use an XML parser to read the
document. The parser is responsible for dividing the document into individual elements,
attributes, and other pieces. It passes the contents of the XML document to an
application piece by piece. If at any point the parser detects a violation of the well-
formedness rules of XML, then it reports the error to the application and stops parsing.
In some cases the parser may read further in the document, past the original error, so
that it can detect and report other errors that occur later in the document. However, once
it has detected the first well-formedness error, it will no longer pass along the contents of
the elements and attributes it encounters.

http://lib.ommolketab.ir

Individual XML applications normally dictate more precise rules about exactly which
elements and attributes are allowed where. For instance, you wouldn't expect to find a
G_Clef element when reading a biology document. Some of these rules can be
precisely specified with a schema written in any of several languages including the W3C
XML Schema Language, RELAX NG, and DTDs. A document may contain a URI
indicating where the schema can be found. Some XML parsers will notice this and
compare the document to its schema as they read it to see if the document satisfies the
constraints specified there. Such a parser is called a validating parser . A violation of
those constraints is called a validity error , and the whole process of checking a
document against a schema is called validation. If a validating parser finds a validity
error, it will report it to the application on whose behalf it's parsing the document. This
application can then decide whether it wishes to continue parsing the document.
However, validity errors are not necessarily fatal (unlike well-formedness errors), and an
application may choose to ignore them. Not all parsers are validating parsers. Some
merely check for well-formedness.

The application that receives data from the parser may be:

A web browser such as Netscape Navigator or Internet Explorer that displays the
document to a reader

A word processor such as StarOffice Writer that loads the XML document for editing

A database such as Microsoft SQL Server that stores the XML data in a new record

A drawing program such as Adobe Illustrator that interprets the XML as two-
dimensional coordinates for the contents of a picture

A spreadsheet such as Gnumeric that parses the XML to find numbers and
functions used in a calculation

A personal finance program such as Microsoft Money that sees the XML as a bank
statement

A syndication program that reads the XML document and extracts the headlines for
today's news

A program that you yourself wrote in Java, C, Python or some other language that
does exactly what you want it to do

Almost anything else

XML is an extremely flexible format for data. It is used for all of this and a lot more.
These are real examples. In theory, any data that can be stored in a computer can be

http://lib.ommolketab.ir

stored in XML format. In practice, XML is suitable for storing and exchanging any data
that can plausibly be encoded as text. It's only really unsuitable for multimedia data such
as photographs, recorded sound, video, and other very large bit sequences.

1.4 The Evolution of XML

XML is a descendant of SGML, the Standard Generalized Markup Language. The
language that would eventually become SGML was invented by Charles F. Goldfarb, Ed
Mosher, and Ray Lorie at IBM in the 1970s and developed by several hundred people
around the world until its eventual adoption as ISO standard 8879 in 1986. SGML was
intended to solve many of the same problems XML solves in much the same way XML
solves them. It is a semantic and structural markup language for text documents. SGML
is extremely powerful and achieved some success in the U.S. military and government,
in the aerospace sector, and in other domains that needed ways of efficiently managing
technical documents that were tens of thousands of pages long.

SGML's biggest success was HTML, which is an SGML application. However, HTML is
just one SGML application. It does not have or offer anywhere near the full power of
SGML itself. Since it restricts authors to a finite set of tags designed to describe web
pages-and describes them in a fairly presentationally oriented way at that-it's really
little more than a traditional markup language that has been adopted by web browsers. It
doesn't lend itself to use beyond the single application of web-page design. You would
not use HTML to exchange data between incompatible databases or to send updated
product catalogs to retailer sites, for example. HTML does web pages, and it does them
very well, but it only does web pages.

SGML was the obvious choice for other applications that took advantage of the Internet
but were not simple web pages for humans to read. The problem was that SGML is
complicated-very, very complicated. The official SGML specification is over 150 very
technical pages. It covers many special cases and unlikely scenarios. It is so complex
that almost no software has ever implemented it fully. Programs that implemented or
relied on different subsets of SGML were often incompatible with each other. The
special feature one program considered essential would be considered extraneous fluff
and omitted by the next program.

In 1996, Jon Bosak, Tim Bray, C. M. Sperberg-McQueen, James Clark, and several
others began work on a "lite" version of SGML that retained most of SGML's power while
trimming a lot of the features that had proven redundant, too complicated to implement,
confusing to end users, or simply not useful over the previous 20 years of experience
with SGML. The result, in February of 1998, was XML 1.0, and it was an immediate
success. Many developers who knew they needed a structural markup language but
hadn't been able to bring themselves to accept SGML's complexity adopted XML whole-

http://lib.ommolketab.ir

heartedly. It was used in domains ranging from legal court filings to hog farming.

However, XML 1.0 was just the beginning. The next standard out of the gate was
Namespaces in XML, an effort to allow markup from different XML applications to be
used in the same document without conflicting. Thus a web page about books could
have a title element that referred to the title of the page and title elements that
referred to the title of a book, and the two would not conflict.

Next up was the Extensible Stylesheet Language (XSL), an XML application for
transforming XML documents into a form that could be viewed in web browsers. This
soon split into XSL Transformations (XSLT) and XSL Formatting Objects (XSL-FO).
XSLT has become a general-purpose language for transforming one XML document into
another, whether for web-page display or some other purpose. XSL-FO is an XML
application for describing the layout of both printed pages and web pages that rivals
PostScript for its power and expressiveness.

However, XSL is not the only option for styling XML documents. The Cascading Style
Sheets (CSS) language was already in use for HTML documents when XML was
invented, and it proved to be a reasonable fit to XML as well. With the advent of CSS
Level 2, the W3C made styling XML documents an explicit goal for CSS and gave it
equal importance to HTML. The pre-existing Document Style Sheet and Semantics
Language (DSSSL) was also adopted from its roots in the SGML world to style XML
documents for print and the Web.

The Extensible Linking Language, XLink, began by defining more powerful linking
constructs that could connect XML documents in a hypertext network that made HTML's
A tag look like it is an abbreviation for "anemic." It also split into two separate standards:
XLink for describing the connections between documents and XPointer for addressing
the individual parts of an XML document. At this point, it was noticed that both XPointer
and XSLT were developing fairly sophisticated yet incompatible syntaxes to do exactly
the same thing: identify particular elements of an XML document. Consequently, the
addressing parts of both specifications were split off and combined into a third
specification, XPath.

Another piece of the puzzle was a uniform interface for accessing the contents of the
XML document from inside a Java, JavaScript, or C++ program. The simplest API was
merely to treat the document as an object that contained other objects. Indeed, work
was already underway inside and outside the W3C to define such a Document Object
Model (DOM) for HTML. Expanding this effort to cover XML was not hard.

Outside the W3C, David Megginson, Peter Murray-Rust, and other members of the xml-
dev mailing list recognized that third party XML parsers, while all compatible in the
documents they could parse, were incompatible in their APIs. This led to the

http://lib.ommolketab.ir

development of the Simple API for XML, SAX. In 2000, SAX2 was released to add
greater configurability in parsing, namespace support, and a cleaner API.

One of the surprises during the evolution of XML was that developers used it more for
data-oriented structures such as serialized objects and database records than for the
narrative structures for which SGML had traditionally been used. DTDs worked very well
for narrative structures, but had some limits when faced with the data-oriented structures
developers were actually creating. In particular, the lack of data typing and the fact that
DTDs were not themselves XML documents were perceived as major problems. A
number of companies and individuals began working on schema languages that
addressed these deficiencies. Many of these proposals were submitted to the W3C,
which formed a working group to try to merge the best parts of all of these and come up
with something greater than the sum of its parts. In 2001, this group released Version
1.0 of the W3C XML Schema Language. Unfortunately, they produced something overly
complex and burdensome. Consequently, several developers went back to the drawing
board to invent cleaner, simpler, more elegant schema languages, including RELAX NG
and Schematron.

Eventually, it became apparent that XML 1.0, XPath, the W3C XML Schema Language,
SAX, and DOM all had similar but subtly different conceptual models of the structure of
an XML document. For instance, XPath and SAX don't consider CDATA sections to be
anything more than syntax sugar, but DOM does treat them differently than plain-text
nodes. Thus the W3C XML Core Working Group began work on an XML Information Set
that all these standards could rely on and refer to.

Development of extensions to the core XML specification continues. Future directions
include:

XML Query Language

A fourth-generation language for extracting information that meets specified criteria
from one or more XML documents

Canonical XML

A standard algorithm for determining whether two XML documents are the same
after insignificant details, such as whether single or double quotes delimit attribute
values, are accounted for

XInclude

A means of building a single XML document out of multiple well-formed, potentially
valid XML documents and pieces thereof

XML Signatures

A standard for digitally signing XML documents, embedding those signatures in

http://lib.ommolketab.ir

XML documents, and authenticating the resulting documents
XML Encryption

A standard XML syntax for encrypted digital content, including portions of XML
documents

SAX 2.1

A set of small extensions to SAX2 that provides extra information about an XML
document recommended by the Infoset, including the XML declaration

DOM Level 3

Many additional classes, interfaces, and methods that build on top of DOM2 to
provide schema support, standard means of loading and saving XML documents,
and many more additional capabilities

XFragment

An effort to make sense out of pieces of XML documents that may not be well-
formed documents when considered in isolation

Doubtless, many new extensions of XML remain to be invented. XML has proven itself a
solid foundation for many diverse technologies.

[1] A few XML applications, such as XSL Formatting Objects, are designed to describe the presentation of text. However,

these are exceptions that prove the rule. Although XSL-FO does describe presentation, you'd never write an XSL-FO

document directly. Instead, you'd write a more semantically structured XML document, then use an XSL Transformations

stylesheet to change the structure-oriented XML into presentation-oriented XML.

[2] At least one XML application, XSL Transformations, has been proven to be Turing complete by construction. See

http://www.unidex.com/turing/utm.htm for one universal Turing machine written in XSLT.

CONTENTS

http://www.unidex.com/turing/utm.htm
http://lib.ommolketab.ir

CONTENTS

Chapter 2. XML Fundamentals

 2.1 XML Documents and XML Files

 2.2 Elements, Tags, and Character Data
 2.3 Attributes

 2.4 XML Names
 2.5 Entity References

 2.6 CDATA Sections

 2.7 Comments
 2.8 Processing Instructions

 2.9 The XML Declaration
 2.10 Checking Documents for Well-Formedness

This chapter shows you how to write simple XML documents. You'll see that an XML
document is built from text content marked up with text tags such as <SKU> ,
<Record_ID> , and <author> that look superficially like HTML tags. However, in
HTML you're limited to about a hundred predefined tags that describe web-page
formatting. In XML you can create as many tags as you need. Furthermore, these tags
will mostly describe the type of content they contain rather than formatting or layout
information. In XML you don't say that something is italicized or indented or bold; you
say that it's a book or a biography or a calendar.

Although XML is looser than HTML in regards to which tags it allows, it is much stricter
about where those tags are placed and how they're written. In particular, all XML
documents must be well-formed. Well-formedness rules specify constraints such as
"Every start-tag must have a matching end-tag" and "Attribute values must be quoted."
These rules are unbreakable, which makes parsing XML documents easy and writing
them a little harder, but they still allow an almost unlimited flexibility of expression.

2.1 XML Documents and XML Files

An XML document contains text, never binary data. It can be opened with any program
that knows how to read a text file. Example 2-1 is close to the simplest XML document
imaginable. Nonetheless, t is a well-formed XML document. XML parsers can read it and
understand it (at least as far as a computer program can be said to understand
anything).

Example 2-1. A very simple yet complete XML document

http://lib.ommolketab.ir

<person>
 Alan Turing
</person>

In the most common scenario, this document would be the entire contents of a file
named person.xml , or perhaps 2-1.xml . However, XML is not picky about the filename.
As far as the parser is concerned, this file could be called person.txt , person , or Hey
you, there's some XML in this here file! Your operating system may or may not like these
names, but an XML parser won't care. The document might not even be in a file at all. It
could be a record or a field in a database. It could be generated on the fly by a CGI
program in response to a browser query. It could even be stored in more than one file,
though that's unlikely for such a simple document. If it is served by a web server, it will
probably be assigned the MIME media type application/xml or text/xml .
However, specific XML applications may use more specific MIME media types such as
application/mathml+xml , application/XSLT+xml , image/svg+xml ,
text/vnd.wap.wml , or even text/html (in very special cases).

For generic XML documents, application/xml should be
preferred to text/xml , although most web servers use text/xml
by default. text/xml uses the ASCII character set as a default,
which is incorrect for most XML documents.

2.2 Elements, Tags, and Character Data

The document in Example 2-1 is composed of a single element named person. The
element is delimited by the start-tag <person> and the end-tag </person> .
Everything between the start-tag and the end-tag of the element (exclusive) is called the
element's content . The content of this element is the text string:

Alan Turing

The whitespace is part of the content, though many applications will choose to ignore it.
<person> and </person> are markup . The string "Alan Turing" and its surrounding

whitespace are character data . The tag is the most common form of markup in an XML
document, but there are other kinds we'll discuss later.

2.2.1 Tag Syntax

XML tags look superficially like HTML tags. Start-tags begin with < and end-tags begin
with </ . Both of these are followed by the name of the element and are closed by > .
However, unlike HTML tags, you are allowed to make up new XML tags as you go

http://lib.ommolketab.ir

along. To describe a person, use <person> and </person> tags. To describe a
calendar, use <calendar> and </calendar> tags. The names of the tags generally
reflect the type of content inside the element, not how that content will be formatted.

2.2.1.1 Empty elements

There's also a special syntax for empty elements , i.e., elements that have no content.
Such an element can be represented by a single empty-element tag that begins with <
but ends with /> . For instance, in XHTML, an XMLized reformulation of standard
HTML, the line-break and horizontal-rule elements are written as
 and <hr />
instead of
 and <hr> . These are exactly equivalent to
</br> and
<hr></hr> , however. Which form you use for empty elements is completely up to
you. However, what you cannot do in XML and XHTML (unlike HTML) is use only the
start-tag-for instance
 or <hr> -without using the matching the end-tag. That
would be a well-formedness error.

2.2.1.2 Case sensitivity

XML, unlike HTML, is case sensitive. <Person> is not the same as <PERSON> is not
the same as <person> . If you open an element with a <person> tag, you can't close
it with a </PERSON> tag. You're free to use upper- or lowercase or both as you choose.
You just have to be consistent within any one element.

2.2.2 XML Trees

Let's look at a slightly more complicated XML document. Example 2-2 is a person
element that contains more information suitably marked up to show its meaning.

Example 2-2. A more complex XML document describing a person

<person>
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <profession>computer scientist</profession>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
</person>

2.2.2.1 Parents and children

http://lib.ommolketab.ir

This XML document is still composed of one person element. However, now this

element doesn't merely contain undifferentiated character data. It contains four child
elements : a name element and three profession elements. The name element
contains two child elements of its own, first_name and last_name .

The person element is called the parent of the name element and the three
profession elements. The name element is the parent of the first_name and
last_name elements. The name element and the three profession elements are
sometimes called each other's siblings . The first_name and last_name elements
are also siblings.

As in human society, any one parent may have multiple children. However, unlike
human society, XML gives each child exactly one parent, not two or more. Each element
(with one exception I'll note shortly) has exactly one parent element. That is, it is
completely enclosed by another element. If an element's start-tag is inside some
element, then its end-tag must also be inside that element. Overlapping tags, as in
this common example from HTML , are
prohibited in XML. Since the em element begins inside the strong element, it must
also finish inside the strong element.

2.2.2.2 The root element

Every XML document has one element that does not have a parent. This is the first
element in the document and the element that contains all other elements. In Example
2-1 and Example 2-2 , the person element filled this role. It is called the root element of

the document . It is also sometimes called the document element . Every well-formed
XML document has exactly one root element. Since elements may not overlap, and
since all elements except the root have exactly one parent, XML documents form a data
structure programmers call a tree . Figure 2-1 diagrams this relationship for Example 2-2
. Each gray box represents an element. Each black box represents character data. Each
arrow represents a containment relationship.

Figure 2-1. A tree diagram for Example 2-2

http://lib.ommolketab.ir

2.2.3 Mixed Content

In Example 2-2 , the contents of the first_name , last_name , and profession
elements were character data, that is, text that does not contain any tags. The contents
of the person and name elements were child elements and some whitespace that
most applications will ignore. This dichotomy between elements that contain only
character data and elements that contain only child elements (and possibly a little
whitespace) is common in documents that are data oriented. However, XML can also be
used for more free-form, narrative documents such as business reports, magazine
articles, student essays, short stories, web pages, and so forth, as shown by Example 2-
3 .

Example 2-3. A narrative-organized XML document

<biography>
 <name><first_name>Alan</first_name> <last_name>Turing</last_name>
 </name> was one of the first people to truly deserve the name
 <emphasize>computer scientist</emphasize>. Although his contributions
 to the field are too numerous to list, his best-known are the
 eponymous <emphasize>Turing Test</emphasize> and
 <emphasize>Turing Machine</emphasize>.

 <definition>The <term>Turing Test</term> is to this day the standard
 test for determining whether a computer is truly intelligent. This
 test has yet to be passed. </definition>

 <definition>The <term>Turing Machine</term> is an abstract finite
 state automaton with infinite memory that can be proven equivalent
 to any any other finite state automaton with arbitrarily large memory.

http://lib.ommolketab.ir

 Thus what is true for a Turing machine is true for all equivalent
 machines no matter how implemented.
 </definition>

 <name><last_name>Turing</last_name></name> was also an accomplished
 <profession>mathematician</profession> and
 <profession>cryptographer</profession>. His assistance
 was crucial in helping the Allies decode the German Enigma
 machine. He committed suicide on <date><month>June</month>
 <day>7</day>, <year>1954</year></date> after being
 convicted of homosexuality and forced to take female
 hormone injections.
</biography>

The root element of this document is biography . The biography contains name ,
definition , profession , and emphasize child elements. It also contains a lot
of raw character data. Some of these elements such as last_name and profession
only contain character data. Others such as name contain only child elements. Still
others such as definition contain both character data and child elements. These

elements are said to contain mixed content . Mixed content is common in XML
documents containing articles, essays, stories, books, novels, reports, web pages, and
anything else that's organized as a written narrative. Mixed content is less common and
harder to work with in computer-generated and processed XML documents used for
purposes such as database exchange, object serialization, persistent file formats, and
so on. One of the strengths of XML is the ease with which it can be adapted to the very
different requirements of human-authored and computer-generated documents.

2.3 Attributes

XML elements can have attributes. An attribute is a name-value pair attached to the
element's start-tag. Names are separated from values by an equals sign and optional
whitespace. Values are enclosed in single or double quotation marks. For example, this
person element has a born attribute with the value 1912-06-23 and a died
attribute with the value 1954-06-07 :

<person born="1912-06-23" died="1954-06-07">
 Alan Turing
</person>

This next element is exactly the same as far an XML parser is concerned. It simply uses
single quotes instead of double quotes, puts some extra whitespace around the equals
signs, and reorders the attributes.

http://lib.ommolketab.ir

<person died = '1954-06-07' born = '1912-06-23' >
 Alan Turing
</person>

The whitespace around the equals signs is purely a matter of personal aesthetics. The
single quotes may be useful in cases where the attribute value itself contains a double
quote. Attribute order is not significant.

Example 2-4 shows how attributes might be used to encode much of the same
information given in the data-oriented document of Example 2-2 .

Example 2-4. An XML document that describes a person using attributes

<person>
 <name first="Alan" last="Turing"/>
 <profession value="computer scientist"/>
 <profession value="mathematician"/>
 <profession value="cryptographer"/>
</person>

This raises the question of when and whether one should use child elements or
attributes to hold information. This is a subject of heated debate. Some informaticians
maintain that attributes are for metadata about the element while elements are for the
information itself. Others point out that it's not always so obvious what's data and what's
metadata. Indeed, the answer may depend on where the information is put to use.

What's undisputed is that each element may have no more than one attribute with a
given name. That's unlikely to be a problem for a birth date or a death date; it would be
an issue for a profession, name, address, or anything else of which an element might
plausibly have more than one. Furthermore, attributes are quite limited in structure. The
value of the attribute is simply a text string. The division of a date into a year, month, and
day with hyphens in the previous example is at the limits of the substructure that can
reasonably be encoded in an attribute. Consequently, an element-based structure is a
lot more flexible and extensible. Nonetheless, attributes are certainly more convenient in
some applications. Ultimately, if you're designing your own XML vocabulary, it's up to
you to decide when to use which.

Attributes are also useful in narrative documents, as Example 2-5 demonstrates. Here
it's perhaps a little more obvious what belongs to elements and what to attributes. The
raw text of the narrative is presented as character data inside elements. Additional
information annotating that data is presented as attributes. This includes source
references, image URLs, hyperlinks, and birth and death dates. Even here, however,
there's more than one way to do it. For instance, the footnote numbers could be

http://lib.ommolketab.ir

attributes of the footnote element rather than character data.

Example 2-5. A narrative XML document that uses attributes

<biography xmlns:xlink="http://www.w3.org/1999/xlink/namespace/">

 <image source="http://www.turing.org.uk/turing/pi1/bus.jpg"
 width="152" height="345"/>
 <person born='1912-06-23'
 died='1954-06-07'><first_name>Alan</first_name>
 <last_name>Turing</last_name> </person> was one of the first people
 to truly deserve the name <emphasize>computer scientist</emphasize>.
 Although his contributions to the field were too numerous to list,
 his best-known are the eponymous <emphasize xlink:type="simple"
 xlink:href="http://cogsci.ucsd.edu/~asaygin/tt/ttest.html">Turing
 Test</emphasize> and <emphasize xlink:type="simple"
 xlink:href="http://mathworld.wolfram.com/TuringMachine.html">Turing
 Machine</emphasize>.

 <last_name>Turing</last_name> was also an accomplished
 <profession>mathematician</profession> and
 <profession>cryptographer</profession>. His assistance
 was crucial in helping the Allies decode the German Enigma
 machine.<footnote source="The Ultra Secret, F.W. Winterbotham,
 1974">1</footnote>

 He committed suicide on <date><month>June</month> <day>7</day>,
 <year>1954</year></date> after being convicted of homosexuality
 and forced to take female hormone injections.<footnote
 source="Alan Turing: the Enigma, Andrew Hodges, 1983">2</footnote>
</biography>

2.4 XML Names

The XML specification can be quite legalistic and picky at times. Nonetheless, it tries to
be efficient where possible. One way it does that is by reusing the same rules for
different items where possible. For example, the rules for XML element names are also
the rules for XML attribute names, as well as for the names of several less common
constructs. Generally, these are referred to simply as XML names .

Element and other XML names may contain essentially any alphanumeric character.

http://lib.ommolketab.ir

This includes the standard English letters A through Z and a through z as well as the
digits 0 through 9 . XML names may also include non-English letters, numbers, and
ideograms such as ö , ç , , and . They may also include these three punctuation
characters:

_

the underscore
-

the hyphen
.

the period

XML names may not contain other punctuation characters such as quotation marks,
apostrophes, dollar signs, carets, percent symbols, and semicolons. The colon is
allowed, but its use is reserved for namespaces as discussed in Chapter 4 . XML names
may not contain whitespace of any kind, whether a space, a carriage return, a line feed,
a nonbreaking space, and so forth. Finally, all names beginning with the string XML (in
any combination of case) are reserved for standardization in W3C XML-related
specifications.

XML names may only start with letters, ideograms, and the underscore character. They
may not start with a number, hyphen, or period. There is no limit to the length of an
element or other XML name. Thus these are all well-formed elements:

<Drivers_License_Number>98 NY 32</Drivers_License_Number>

<month-day-year>7/23/2001</month-day-year>

<first_name>Alan</first_name>

<_4-lane>I-610</_4-lane>

<téléphone>011 33 91 55 27 55 27</téléphone>

These are not acceptable elements:

<Driver's_License_Number>98 NY
32</Driver's_License_Number>

http://lib.ommolketab.ir

<month/day/year>7/23/2001</month/day/year>

<first name>Alan</first name>

<4-lane>I-610</4-lane>

2.5 Entity References

The character data inside an element may not contain a raw unescaped opening angle
bracket (<). This character is always interpreted as beginning a tag. If you need to use
this character in your text, you can escape it using the < entity reference . When a
parser reads the document, it will replace the < entity reference with the actual <
character. However, it will not confuse < with the start of a tag. For example:

<SCRIPT LANGUAGE="JavaScript">
 if (location.host.toLowerCase().indexOf("cafeconleche") < 0) {
 location.href="http://www.cafeconleche.org/";
 }
</SCRIPT>

The character data inside an element may not contain a raw unescaped ampersand (&)
either. This is always interpreted as beginning an entity or character reference. However,
the ampersand may be escaped using the & entity reference like this:

<publisher>O'Reilly & Associates</publisher>

Entity references such as & and < are considered to be markup. When an
application parses an XML document, it replaces this particular markup with the actual
characters to which the entity reference refers.

XML predefines exactly five entity references. These are:

<

The less-than sign; a.k.a. the opening angle bracket (<)
&

The ampersand (&)
>

The greater-than sign; a.k.a. the closing angle bracket (>)
"

The straight, double quotation marks (")
'

http://lib.ommolketab.ir

The apostrophe; a.k.a. the straight single quote (')

Only < and & must be used instead of the literal characters in element
content. The others are optional. " and ' are useful inside attribute
values where a raw " or ' might be misconstrued as ending the attribute value. For
example, this image tag uses the ' entity reference to fill in the apostrophe in

O'Reilly :

<image source='oreilly_koala3.gif' width='122' height='66'
 alt='Powered by O'Reilly Books'
/>

Although there's no possibility of an unescaped greater-than sign (>) being
misinterpreted as closing a tag it wasn't meant to close, > is allowed mostly for
symmetry with < .

In addition to the five predefined entity references, you can define others in the
document type definition. We'll discuss how to do this in Chapter 3 .

2.6 CDATA Sections

When an XML document includes samples of XML or HTML source code, the < and &
characters in those samples must be encoded as < and & . The more sections
of literal code a document includes and the longer they are, the more tedious this
encoding becomes. Instead you can enclose each sample of literal code in a CDATA
section . A CDATA section is set off by a <![CDATA[and]]> . Everything between
the <![CDATA[and the]]> is treated as raw character data. Less-than signs don't
begin. Ampersands don't start entity references. Everything is simply character data, not
markup.

For example, in a Scalable Vector Graphics (SVG) tutorial written in XHTML, you might
see something like this:

<p>You can use a default <code>xmlns</code> attribute to avoid
having to add the svg prefix to all your elements:</p>
 <![CDATA[
 <svg xmlns="http://www.w3.org/2000/svg"
 width="12cm" height="10cm">
 <ellipse rx="110" ry="130" />
 <rect x="4cm" y="1cm" width="3cm" height="6cm" />
 </svg>
]]>

http://lib.ommolketab.ir

The SVG source code has been included directly in the XHTML file without carefully
replacing each < with < . The result will be a sample SVG document, not an
embedded SVG picture, as might happen if this example were not placed inside a
CDATA section.

The only thing that can not appear in a CDATA section is the CDATA section end
delimiter]]> .

CDATA sections exist for the convenience of human authors, not for programs. Parsers
are not required to tell you whether a particular block of text came from a CDATA
section, from normal character data, or from character data that contained entity
references such as < and & . By the time you get access to the data, these
differences will have been washed away.

2.7 Comments

XML documents can be commented so that coauthors can leave notes for each other
and themselves, documenting why they've done what they've done or items that remain
to be done. XML comments are syntactically similar to HTML comments. Just as in
HTML, they begin with <!-- and end with the first occurrence of --> . For example:

<!-- I need to verify and update these links when I get a chance. -->

The double hyphen -- should not appear anywhere inside the comment until the closing
--> . In particular, a three hyphen close like ---> is specifically forbidden.

Comments may appear anywhere in the character data of a document. They may also
appear before or after the root element. (Comments are not elements, so this does not
violate the tree structure or the one-root element rules for XML.) However, comments
may not appear inside a tag or inside another comment.

Applications that read and process XML documents may or may not pass along
information included in comments. They are certainly free to drop them out if they
choose. Do not write documents or applications that depend on the contents of
comments being available. Comments are strictly for making the raw source code of an
XML document more legible to human readers. They are not intended for computer
programs. For this purpose you should use a processing instruction instead.

2.8 Processing Instructions

In HTML, comments are sometimes abused to support nonstandard extensions. For
instance, the contents of the script element are sometimes enclosed in a comment to

http://lib.ommolketab.ir

protect it from display by a nonscript-aware browser. The Apache web server parses
comments in .shtml files to recognize server side includes. Unfortunately, these
documents may not survive being passed through various HTML editors and processors
with their comments and associated semantics intact. Worse yet, it's possible for an
innocent comment to be misconstrued as input to the application.

XML provides the processing instruction as an alternative means of passing information
to particular applications that may read the document. A processing instruction begins
with <? and ends with ?> . Immediately following the <? is an XML name called the

target , possibly the name of the application for which this processing instruction is
intended or possibly just an identifier for this particular processing instruction. The rest of
the processing instruction contains text in a format appropriate for the applications for
which the instruction is intended.

For example, in HTML a robots META tag is used to tell search-engine and other robots
whether and how they should index a page. The following processing instruction has
been proposed as an equivalent for XML documents:

<?robots index="yes" follow="no"?>

The target of this processing instruction is robots . The syntax of this particular
processing instruction is two pseudoattributes, one named index and one named
follow , whose values are either yes or no . The semantics of this particular
processing instruction are that if the index attribute has the value yes , then search-
engine robots should index this page. If index has the value no , then it won't be.
Similarly, if follow has the value yes , then links from this document will be followed.

Other processing instructions may have totally different syntaxes and semantics. For
instance, processing instructions can contain an effectively unlimited amount of text.
PHP includes large programs in processing instructions. For example:

<?php
 mysql_connect("database.unc.edu", "clerk", "password");
 $result = mysql("HR", "SELECT LastName, FirstName FROM Employees
 ORDER BY LastName, FirstName");
 $i = 0;
 while ($i < mysql_numrows ($result)) {
 $fields = mysql_fetch_row($result);
 echo "<person>$fields[1] $fields[0] </person>\r\n";
 $i++;
 }
 mysql_close();
?>

http://lib.ommolketab.ir

Processing instructions are markup, but they're not elements. Consequently, like
comments, processing instructions may appear anywhere in an XML document outside
of a tag, including before or after the root element. The most common processing
instruction, xml-stylesheet , is used to attach stylesheets to documents. It always
appears before the root element, as Example 2-6 demonstrates. In this example, the
xml-stylesheet processing instruction tells browsers to apply the CSS stylesheet

person.css to this document before showing it to the reader.

Example 2-6. A very simple yet complete XML document

<?xml-stylesheet href="person.css" type="text/css"?>
<person>
 Alan Turing
</person>

The processing instruction names xml , XML , XmL , etc., in any combination of case,
are forbidden to avoid confusion with the XML declaration. Otherwise, you're free to pick
any legal XML name for your processing instructions.

2.9 The XML Declaration

XML documents should (but do not have to) begin with an XML declaration . The XML
declaration looks like a processing instruction with the name xml and version ,
standalone , and encoding attributes. Technically, it's not a processing instruction
though, just the XML declaration; nothing more, nothing less. Example 2-7
demonstrates.

Example 2-7. A very simple XML document with an XML declaration

<?xml version="1.0" encoding="ASCII" standalone="yes"?>
<person>
 Alan Turing
</person>

XML documents do not have to have an XML declaration. However, if an XML document
does have an XML declaration, then that declaration must be the first thing in the
document. It must not be preceded by any comments, whitespace, processing
instructions, and so forth. The reason is that an XML parser uses the first five characters
(<?xml) to make some reasonable guesses about the encoding, such as whether the
document uses a single byte or multibyte character set. The only thing that may precede
the XML declaration is an invisible Unicode byte-order mark. We'll discuss this further in

http://lib.ommolketab.ir

Chapter 5 .

2.9.1 encoding

So far we've been a little cavalier about encodings. We've said that XML documents are
composed of pure text, but we haven't said what encoding that text uses. Is it ASCII?
Latin-1? Unicode? Something else?

The short answer to this question is "Yes." The long answer is that by default XML
documents are assumed to be encoded in the UTF-8 variable-length encoding of the
Unicode character set. This is a strict superset of ASCII, so pure ASCII text files are also
UTF-8 documents. However, most XML processors, especially those written in Java,
can handle a much broader range of character sets. All you have to do is tell the parser
which character encoding the document uses. Preferably this is done through
metainformation, stored in the filesystem or provided by the server. However, not all
systems provide character-set metadata so XML also allows documents to specify their
own character set with an encoding declaration inside the XML declaration. Example 2-8
shows how you'd indicate that a document was written in the ISO-8859-1 (Latin-1)
character set that includes letters like ö and ç needed for many non-English Western
European languages.

Example 2-8. An XML document encoded in Latin-1

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<person>
 Erwin Schrödinger
</person>

The encoding attribute is optional in an XML declaration. If it is omitted and no
metadata is available, then the Unicode character set is assumed. The parser may use
the first several bytes of the file to try to guess which encoding of Unicode is in use. If
metadata is available and it conflicts with the encoding declaration, then the encoding
specified by the metadata wins. For example, if an HTTP header says a document is
encoded in ASCII but the encoding declaration says it's encoded in UTF-8, then the
parser will pick ASCII.

The different encodings and the proper handling of non-English XML documents will be
discussed in greater detail in Chapter 5 .

2.9.2 standalone

If the standalone attribute has the value no , then an application may be required to

http://lib.ommolketab.ir

read an external DTD (that is a DTD in a file other than the one it's reading now) to
determine the proper values for parts of the document. For instance, a DTD may provide
default values for attributes that a parser is required to report even though they aren't
actually present in the document.

Documents that do not have DTDs, like all the documents in this chapter, can have the
value yes for the standalone attribute. Documents that do have DTDs can also have
the value yes for the standalone attribute if the DTD doesn't in any way change the
content of the document or if the DTD is purely internal. Details for documents with
DTDs are covered in Chapter 3 .

The standalone attribute is optional in an XML declaration. If it is omitted, then the
value no is assumed.

2.10 Checking Documents for Well-Formedness

Every XML document, without exception, must be well-formed. This means it must
adhere to a number of rules, including the following:

Every start-tag must have a matching end-tag.1.
Elements may nest, but may not overlap.2.
There must be exactly one root element.3.
Attribute values must be quoted.4.
An element may not have two attributes with the same name.5.
Comments and processing instructions may not appear inside tags.6.
No unescaped < or & signs may occur in the character data of an element or
attribute.

7.

This is not an exhaustive list. There are many, many ways a document can be
malformed. You'll find a complete list in Chapter 20 . Some of these involve constructs
that we have not yet discussed such as DTDs. Others are extremely unlikely to occur if
you follow the examples in this chapter (for example, including whitespace between the
opening < and the element name in a tag).

Whether the error is small or large, likely or unlikely, an XML parser reading a document
is required to report it. It may or may not report multiple well-formedness errors it detects
in the document. However, the parser is not allowed to try to fix the document and make
a best-faith effort of providing what it thinks the author really meant. It can't fill in missing
quotes around attribute values, insert an omitted end-tag, or ignore the comment that's
inside a start-tag. The parser is required to return an error. The objective here is to avoid
the bug-for-bug compatibility wars that plagued early web browsers and continue to this
day. Consequently, before you publish an XML document, whether that document is a

http://lib.ommolketab.ir

web page, input to a database, or something else, you'll want to check it for well-
formedness.

The simplest way to do this is by loading the document into a web browser that
understands XML documents such as Mozilla. If the document is well-formed, the
browser will display it. If it isn't, then it will show an error message.

Instead of loading the document into a web browser, you can use an XML parser
directly. Most XML parsers are not intended for end users. They are class libraries
designed to be embedded into an easier-to-use program such as Mozilla. They provide
a minimal command-line interface, if that; that interface is often not particularly well
documented. Nonetheless, it can sometimes be quicker to run a batch of files through a
command-line interface than loading each of them into a web browser. Furthermore,
once you learn about DTDs and schemas, you can use the same tools to validate
documents, which most web browsers won't do.

There are many XML parsers available in a variety of languages. Here, we'll
demonstrate checking for well-formedness with the Apache XML Project's Xerces-J 1.4,
which you can download from http://xml.apache.org/xerces-j . This open source package
is written in pure Java so it should run across all major platforms. The procedure should
be similar for other parsers, though details will vary.

To use this parser, you'll first need a Java 1.1 or later compatible virtual machine. Virtual
machines for Windows, Solaris, and Linux are available from http://java.sun.com/ . To
install Xerces-J 1.4.4, just add xerces.jar and xercesSamples.jar files to your Java class
path. In Java 2 you can simply put those .jar files into your jre/lib/ext directory.

The class that actually checks files for well-formedness is called sax.SAXCount . It's
run from a Unix shell or DOS prompt like any other standalone Java program. The
command-line arguments are the URLs to or filenames of the documents you want to
check. Here's the result of running SAXCount against an early version of Example 2-5 .
The very first line of output tells you where the first problem in the file is. The rest of the
output is a more or less irrelevant stack trace.

D:\xian\examples\02>java sax.SAXCount 2-5.xml
[Fatal Error] 2-5.xml:3:30: The value of attribute "height" must not contain the '<' character.
Stopping after fatal error: The value of attribute "height" must not contain the '<' character.
at org.apache.xerces.framework.XMLParser.reportError(XMLParser.java:
1282)
at org.apache.xerces.framework.XMLDocumentScanner.reportFatalXMLError(
XMLDocumentScanner.java:644)
at org.apache.xerces.framework.XMLDocumentScanner.scanAttValue(
XMLDocumentScanner.java:519)

http://lib.ommolketab.ir

at org.apache.xerces.framework.XMLParser.scanAttValue(
XMLParser.java:1932)
at org.apache.xerces.framework.XMLDocumentScanner.scanElement(
XMLDocumentScanner.java:1800)
at org.apache.xerces.framework.XMLDocumentScanner$ContentDispatcher.
dispatch(XMLDocumentScanner.java:1223)
at org.apache.xerces.framework.XMLDocumentScanner.parseSome(
XMLDocumentScanner.java:381)
at org.apache.xerces.framework.XMLParser.parse(XMLParser.java:1138)
at org.apache.xerces.framework.XMLParser.parse(XMLParser.java:1177)
at sax.SAXCount.print(SAXCount.java:135)
at sax.SAXCount.main(SAXCount.java:331)

As you can see, it found an error. In this case the error message wasn't particularly
helpful. The actual problem wasn't that an attribute value contained a < character. It was
that the closing quote was missing from the height attribute value. Still, that was

enough for us to locate and fix the problem. Despite the long list of output, SAXCount
only reports the first error in the document, so you may have to run it multiple times until
all the mistakes are found and fixed. Once we fixed Example 2-5 to make it well-formed,
SAXCount simply reported how long it took to parse the document and what it saw when
it did:

D:\xian\examples\02>java sax.SAXCount 2-5.xml
2-5.xml: 140 ms (17 elems, 12 attrs, 0 spaces, 564 chars)

Now that the document has been corrected to be well-formed, it can be passed to a web
browser, a database, or whatever other program is waiting to receive it. Almost any
nontrivial document crafted by hand will contain well-formedness mistakes. That makes
it important to check your work before publishing it.

This example works with Xerces-J 1.0 through 1.4.4. The recently
released Xerces-J 2.0 provides a similar program named
sax.Counter .

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 3. Document Type Definitions (DTDs)

 3.1 Validation

 3.2 Element Declarations
 3.3 Attribute Declarations

 3.4 General Entity Declarations
 3.5 External Parsed General Entities

 3.6 External Unparsed Entities and Notations

 3.7 Parameter Entities
 3.8 Conditional Inclusion

 3.9 Two DTD Examples
 3.10 Locating Standard DTDs

While XML is extremely flexible, not all the programs that read particular XML
documents are so flexible. Many programs can work with only some XML applications
but not others. For example, Adobe Illustrator 10 can read and write Scalable Vector
Graphics (SVG) files, but you wouldn't expect it to understand a Platform for Privacy
Preferences (P3P) document. And within a particular XML application, it's often
important to ensure that a given document indeed adheres to the rules of that XML
application. For instance, in XHTML, li elements should only be children of ul or ol
elements. Browsers may not know what to do with them, or may act inconsistently, if li
elements appear in the middle of a blockquote or p element.

The solution to this dilemma is a document type definition (DTD). DTDs are written in a
formal syntax that explains precisely which elements and entities may appear where in
the document and what the elements' contents and attributes are. A DTD can make
statements such as "A ul element only contains li elements" or "Every employee
element must have a social_security_number attribute." Different XML
applications can use different DTDs to specify what they do and do not allow.

A validating parser compares a document to its DTD and lists any places where the
document differs from the constraints specified in the DTD.[1] The program can then
decide what it wants to do about any violations. Some programs may reject the
document. Others may try to fix the document or reject just the invalid element.
Validation is an optional step in processing XML. A validity error is not necessarily a fatal
error like a well-formedness error, though some applications may choose to treat it as
one.

http://lib.ommolketab.ir

3.1 Validation

A valid document includes a document type declaration that identifies the DTD the
document satisfies. The DTD lists all the elements, attributes, and entities the document
uses and the contexts in which it uses them. The DTD may list items the document does
not use as well. Validity operates on the principle that everything not permitted is
forbidden. Everything in the document must match a declaration in the DTD. If a
document has a document type declaration and the document satisfies the DTD that the
document type declaration indicates, then the document is said to be valid . If it does
not, it is said to be invalid .

There are many things the DTD does not say. In particular, it does not say the following:

What the root element of the document is

How many of instances of each kind of element appear in the document

What the character data inside the elements looks like

The semantic meaning of an element; for instance, whether it contains a date or a
person's name

DTDs allow you to place some constraints on the form an XML document takes, but
there can be quite a bit of flexibility within those limits. A DTD never says anything about
the length, structure, meaning, allowed values, or other aspects of the text content of an
element.

Validity is optional. A parser reading an XML document may or may not check for
validity. If it does check for validity, the program receiving data from the parser may or
may not care about validity errors. In some cases, such as feeding records into a
database, a validity error may be quite serious, indicating that a required field is missing,
for example. In other cases, rendering a web page perhaps, a validity error may not be
so important, and you can work around it. Well-formedness is required of all XML
documents; validity is not. Your documents and your programs can use it or not as you
find needful.

3.1.1 A Simple DTD Example

Recall Example 2-2 from the last chapter; this described a person. The person had a
name and three professions. The name had a first name and a last name. The particular
person described in that example was Alan Turing. However, that's not relevant for
DTDs. A DTD only describes the general type, not the specific instance. A DTD for

http://lib.ommolketab.ir

person documents would say that a person element contains one name child element
and zero or more profession child elements. It would further say that each name
element contains a first_name child element and a last_name child element.
Finally it would state that the first_name , last_name , and profession
elements all contain text. Example 3-1 is a DTD that describes such a person element.

Example 3-1. A DTD for the person

<!ELEMENT person (name, profession*)>
<!ELEMENT name (first_name, last_name)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT profession (#PCDATA)>

This DTD would probably be stored in a separate file from the documents it describes.
This allows it to be easily referenced from multiple XML documents. However, it can be
included inside the XML document if that's convenient, using the document type
declaration we discuss later in this section. If it is stored in a separate file, then that file
would most likely be named person.dtd , or something similar. The .dtd extension is
fairly standard though not specifically required by the XML specification. If this file were
served by a web server, it would be given the MIME media type application/xml-
dtd .

Each line of Example 3-1 is an element declaration . The first line declares the person
element; the second line declares the name element; the third line declares the
first_name element; and so on. However, the line breaks aren't relevant except for
legibility. Although it's customary to put only one declaration on each line, it's not
required. Long declarations can even span multiple lines.

The first element declaration in Example 3-1 states that each person element must
contain exactly one name child element followed by zero or more profession
elements. The asterisk after profession stands for "zero or more." Thus, every person
must have a name and may or may not have a profession or multiple professions.
However, the name must come before all professions. For example, this person
element is valid:

<person>
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
</person>

http://lib.ommolketab.ir

However, this person element is not valid because it omits the name:

<person>
 <profession>computer scientist</profession>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
</person>

This person element is not valid because a profession element comes before the
name :

<person>
 <profession>computer scientist</profession>
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
</person>

The person element may not contain any element except those listed in its declaration.
The only extra character data it can contain is whitespace. For example, this is an invalid
person element because it adds a publication element:

<person>
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
 <publication>On Computable Numbers...</publication>
</person>

This is an invalid person element because it adds some text outside the allowed
children:

<person>
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>

http://lib.ommolketab.ir

 was a <profession>computer scientist</profession>,
 a <profession>mathematician</profession>, and a
 <profession>cryptographer</profession>
</person>

In all these examples of invalid elements, you could change the DTD to make these
elements valid. All the examples are well-formed, after all. However, with the DTD in
Example 3-1 , they are not valid.

The name declaration says that each name element must contain exactly one
first_name element followed by exactly one last_name element. All other
variations are forbidden.

The remaining three declarations-first_name , last_name , and profession
-all say that their elements must contain #PCDATA . This is a DTD keyword standing

for parsed character data -that is, raw text possibly containing entity references such
as & and < , but not containing any tags or child elements.

Example 3-1 placed the most complicated and highest-level declaration at the top.
However, that's not required. For instance, Example 3-2 is an equivalent DTD that
simply reorders the declarations. DTDs allow forward, backward, and circular references
to other declarations.

Example 3-2. An alternate DTD for the person element

<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT profession (#PCDATA)>
<!ELEMENT name (first_name, last_name)>
<!ELEMENT person (name, profession*)>

3.1.2 The Document Type Declaration

A valid document includes a reference to the DTD to which it should be compared. This
is given in the document's single document type declaration. A document type
declaration looks like this:

<!DOCTYPE person SYSTEM "http://www.cafeconleche.org/dtds/person.dtd">

This says that the root element of the document is person and that the DTD for this
document can be found at the URI http://www.cafeconleche.org/dtds/person.dtd .

http://lib.ommolketab.ir

URI stands for Uniform Resource Identifier. URIs are a superset of
URLs . They include not only URLs but also Uniform Resource
Names (URNs). A URN allows you to identify a resource such as the
DTD for SVGs irrespective of its location. Indeed, the resource might
exist at multiple locations, all equally authoritative. In practice, the
only URIs in wide use today are URLs.

The document type declaration is included in the prolog of the XML document after the
XML declaration but before the root element. (The prolog is everything in the XML
document before the root element start-tag.) Example 3-3 demonstrates.

Example 3-3. A valid person document

<?xml version="1.0" standalone="no"?>
<!DOCTYPE person SYSTEM "http://www.cafeconleche.org/dtds/person.dtd">
<person>
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <profession>computer scientist</profession>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
</person>

If the document resides at the same base site as the DTD, you can use a relative URL
instead of the absolute form. For example:

<!DOCTYPE person SYSTEM "/dtds/person.dtd">

You can even use just the filename if the DTD is in the same directory as the document:

<!DOCTYPE person SYSTEM "person.dtd">

3.1.2.1 Public IDs

Standard DTDs may actually be stored at multiple URLs. For example, if you're drawing
an SVG picture on your laptop at the beach, you probably want to validate your drawing
without opening a network connection to the W3C's web site where the official SVG DTD
resides. Such DTDs may be associated with public IDs. The name of the public ID
uniquely identifies the XML application in use. At the same time, a backup URI is also
included in case the validator does not recognize the public ID. To indicate that you're

http://lib.ommolketab.ir

specifying a public ID, use the keyword PUBLIC in place of SYSTEM . For example, this
document type declaration refers to the Rich Site Summary (RSS) DTD standardized by
Netscape:

<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"
 "http://my.netscape.com/publish/formats/rss-0.91.dtd">

A local catalog server can be used to convert the public IDs into the most appropriate
URLs for the local environment. The catalogs themselves can be written in XML,
specifically, the OASIS XML catalog format (http://www.oasis-
open.org/committees/entity/spec.html). In practice, however, PUBLIC IDs aren't used
very much. Almost all validators rely on the URI to actually validate the document.

3.1.3 Internal DTD Subsets

When you're first developing a DTD, it's often useful to keep the DTD and the canonical
example document in the same file so you can modify and check them simultaneously.
Therefore, the document type declaration may actually contain the DTD between square
brackets rather than referencing it at an external URI. Example 3-4 demonstrates.

Example 3-4. A valid person document with an internal DTD

<?xml version="1.0"?>
<!DOCTYPE person [
 <!ELEMENT first_name (#PCDATA)>
 <!ELEMENT last_name (#PCDATA)>
 <!ELEMENT profession (#PCDATA)>
 <!ELEMENT name (first_name, last_name)>
 <!ELEMENT person (name, profession*)>
]>
<person>
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <profession>computer scientist</profession>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
</person>

Some document type declarations contain some declarations directly but link in others
using a SYSTEM or PUBLIC identifier. For example, this document type declaration

http://lib.ommolketab.ir

declares the profession and person elements itself but relies on the file name.dtd
to contain the declaration of the name element:

<!DOCTYPE person SYSTEM "name.dtd" [
 <!ELEMENT profession (#PCDATA)>
 <!ELEMENT person (name, profession*)>
]>

The part of the DTD between the brackets is called the internal DTD subset . All the
parts that come from outside this document are called the external DTD subset .
Together they make up the complete DTD. As a general rule, the two different subsets
must be compatible. Neither can override the element declarations the other makes. For
example, if name.dtd also declared the person element, then there would be a
problem. However, entity declarations can be overridden with some important
consequences for DTD structure and design, which we'll see shortly when we discuss
entities.

When you use an external DTD subset, you should give the standalone attribute of
the XML declaration the value no . For example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

Actually, the XML specification includes four very detailed rules about
exactly when the presence of an external DTD subset does and does
not require the standalone attribute to have the value no .
However, the net effect of these rules is that almost all XML
documents that use external DTD subsets require standalone to
have the value no . Since setting standalone to no is always
permitted even when it's not required, it's simply not worth worrying
about the uncommon cases.

A validating processor is required to read the external DTD subset. A nonvalidating
processor may do so, but is not required to, even if standalone has the value no .
This means that if the external subset makes declarations that have consequences for
the content of a document (for instance, providing default values for attributes) then the
content of the document depends on which parser you're using and how it's configured.
This has led to no end of confusion. Although some of the earliest XML parsers did not
resolve external entities, most of the parsers still being used can do so and generally will
do so. You should read the external DTD subset unless efficiency is a major concern or
you're very familiar with the structure of the documents you're parsing.

3.1.4 Validating a Document

http://lib.ommolketab.ir

As a general rule, web browsers do not validate documents but only check them for well-
formedness. If you're writing your own programs to process XML, you can use the
parser's API to validate documents. If you're writing documents by hand and you want to
validate them, you can either use one of the online validators or run a local program to
validate the document.

The online validators are probably the easiest way to validate your documents. There
are two of note:

The Brown University Scholarly Technology Group's XML Validation Form at
http://www.stg.brown.edu/service/xmlvalid/

Richard Tobin's XML well-formedness checker and validator at
http://www.cogsci.ed.ac.uk/%7Erichard/xml-check.html

First, you have to place the document and associated DTDs on a publicly accessible
web server. Next, load one of the previous URLs in a browser, and type the URL of the
document you're checking into the online form. The validating server will retrieve your
document and tell you what, if any, errors it found. Figure 3-1 shows the results of using
the Brown validator on a simple invalid but well-formed document.

Figure 3-1. Validity errors detected by the Brown University online validator

http://www.stg.brown.edu/service/xmlvalid/
http://www.cogsci.ed.ac.uk/%7Erichard/xml-check.html
http://lib.ommolketab.ir

Most XML parser class libraries include a simple program to validate documents you
can use if you're comfortable installing and using command-line programs. In Xerces
1.x, that program is sax.SAXCount . (Xerces 2.x uses sax.Counter instead.) Use the -v
flag to turn on validation. (By default, SAXCount only checks for well-formedness.) Then
pass the URLs or filenames of the documents you wish to validate to the SAXCount
program on the command line like this:

C:\>java sax.SAXCount -v invalid_fibonacci.xml
[Error] invalid_fibonacci.xml:8:10: Element type "title" must be declared.
[Error] invalid_fibonacci.xml:110:22: The content of element type
"Fibonacci_Numbers" must match "(fibonacci)*".
fibonacci.xml: 541 ms (103 elems, 101 attrs, 307 spaces, 1089 chars)

You can see from this output that the document invalid_fibonacci.xml has two validity
errors that need to be fixed: the first in line 8 and the second in line 110.

There are also some simple GUI programs for validating XML documents, including the
Topologi Schematron Validator for Windows (http://www.topologi.com) shown in Figure
3-2 . Despite the name, this product can actually validate documents against schemas

http://lib.ommolketab.ir

written in multiple languages, including DTDs and the W3C XML Schema Language, as
well as Schematron.

Figure 3-2. Validity errors detected by the Topologi Schematron Validator

3.2 Element Declarations

Every element used in a valid document must be declared in the document's DTD with
an element declaration. Element declarations have this basic form:

<!ELEMENT element_name content_specification>

The name of the element can be any legal XML name. The content specification
specifies what children the element may or must have in what order. Content
specifications can be quite complex. They can say, for example, that an element must
have three child elements of a given type, or two children of one type followed by
another element of a second type, or any elements chosen from seven different types

http://lib.ommolketab.ir

interspersed with text.

3.2.1 #PCDATA

About the simplest content specification is one that says an element may only contain
parsed character data, but may not contain any child elements of any type. In this case
the content specification consists of the keyword #PCDATA inside parentheses. For
example, this declaration says that a phone_number element may contain text, but
may not contain elements:

<!ELEMENT phone_number (#PCDATA)>

3.2.2 Child Elements

Another simple content specification is one that says the element must have exactly one
child of a given type. In this case, the content specification simply consists of the name
of the child element inside parentheses. For example, this declaration says that a fax
element must contain exactly one phone_number element:

<!ELEMENT fax (phone_number)>

A fax element may not contain anything else except the phone_number element,
and it may not contain more or less than one of those.

3.2.3 Sequences

In practice, however, a content specification that lists exactly one child element is rare.
Most elements contain either parsed character data or (at least potentially) multiple child
elements. The simplest way to indicate multiple child elements is to separate them with
commas. This is called a sequence . It indicates that the named elements must appear
in the specified order. For example, this element declaration says that a name element
must contain exactly one first_name child element followed by exactly one
last_name child element:

<!ELEMENT name (first_name, last_name)>

Given this declaration, this name element is valid:

<name>
 <first_name>Madonna</first_name>
 <last_name>Ciconne</last_name>
</name>

http://lib.ommolketab.ir

However, this one is not valid because it flips the order of two elements:

<name>
 <last_name>Ciconne</last_name>
 <first_name>Madonna</first_name>
</name>

This element is invalid because it omits the last_name element:

<name>
 <first_name>Madonna</first_name>
</name>

This one is invalid because it adds a middle_name element:

<name>
 <first_name>Madonna</first_name>
 <middle_name>Louise</middle_name>
 <last_name>Ciconne</last_name>
</name>

3.2.4 The Number of Children

As the previous examples indicate, not all instances of a given element necessarily have
exactly the same children. You can affix one of three suffixes to an element name in a
content specification to indicate how many of that element are expected at that position.
These suffixes are:

?

Zero or one of the element is allowed.
*

Zero or more of the element is allowed.
+

One or more of the element is required.

For example, this declaration says that a name element must contain a first_name ,
may or may not contain a middle_name , and may or may not contain a last_name :

<!ELEMENT name (first_name, middle_name?, last_name?)>

Given this declaration, all these name elements are valid:

http://lib.ommolketab.ir

<name>
 <first_name>Madonna</first_name>
 <last_name>Ciconne</last_name>
</name>
<name>
 <first_name>Madonna</first_name>
 <middle_name>Louise</middle_name>
 <last_name>Ciconne</last_name>
</name>
<name>
 <first_name>Madonna</first_name>
</name>

However, these are not valid:

<name>
 <first_name>George</first_name>
 <!-- only one middle name is allowed -->
 <middle_name>Herbert</middle_name>
 <middle_name>Walker</middle_name>
 <last_name>Bush</last_name>
</name>
<name>
 <!-- first name must precede last name -->
 <last_name>Ciconne</last_name>
 <first_name>Madonna</first_name>
</name>

You can allow for multiple middle names by placing an asterisk after the middle_name
:

<!ELEMENT name (first_name, middle_name*, last_name?)>

If you wanted to require a middle_name to be included, but still allow for multiple
middle names, you'd use a plus sign instead, like this:

<!ELEMENT name (first_name, middle_name+, last_name?)>

3.2.5 Choices

Sometimes one instance of an element may contain one kind of child, and another
instance may contain a different child. This can be indicated with a choice . A choice is a
list of element names separated by vertical bars. For example, this declaration says that

http://lib.ommolketab.ir

a methodResponse element contains either a params child or a fault child:

<!ELEMENT methodResponse (params | fault)>

However, it cannot contain both at once. Each methodResponse element must
contain one or the other.

Choices can be extended to an indefinite number of possible elements. For example,
this declaration says that each digit element can contain exactly one of the child
elements named zero , one , two , three , four , five , six , seven , eight ,
or nine :

<!ELEMENT digit
 (zero | one | two | three | four | five | six | seven | eight | nine)
>

3.2.6 Parentheses

Individually, choices, sequences, and suffixes are fairly limited. However, they can be
combined in arbitrarily complex fashions to describe most reasonable content models.
Either a choice or a sequence can be enclosed in parentheses. When so enclosed, the
choice or sequence can be suffixed with a ? , * , or + . Furthermore, the parenthesized
item can be nested inside other choices or sequences.

For example, let's suppose you want to say that a circle element contains a center
element and either a radius or a diameter element, but not both. This declaration
does that:

<!ELEMENT circle (center, (radius | diameter))>

To continue with a geometry example, suppose a center element can either be
defined in terms of Cartesian or polar coordinates. Then each center contains either an
x and a y or an r and a . We would declare this using two small sequences, each of

which is parenthesized and combined in a choice:

<!ELEMENT center ((x, y) | (r,))>

Suppose you don't really care whether the x element comes before the y element or

vice versa, nor do you care whether r comes before . Then you can expand the choice

to cover all four possibilities:

<!ELEMENT center ((x, y) | (y, x) | (r,) | (, r))>

As the number of elements in the sequence grows, the number of permutations grows

http://lib.ommolketab.ir

more than exponentially. Thus, this technique really isn't practical past two or three child
elements. DTDs are not very good at saying you want n instances of A and m instances
of B, but you don't really care which order they come in.

Suffixes can be applied to parenthesized elements too. For instance, let's suppose that
a polygon is defined by individual coordinates for each vertex, given in order. For
example, this is a right triangle:

What we want to say is that a polygon is composed of three or more pairs of x-y or r-

coordinates. An x is always followed by a y , and an r is always followed by a . This

declaration does that:

The plus sign is applied to ((x, y) | (r,)) .

To return to the name example, suppose you want to say that a name can contain just a
first name, just a last name, or a first name and a last name with an indefinite number of
middle names. This declaration achieves that:

<!ELEMENT name (last_name
 | (first_name, ((middle_name+, last_name) | (last_name?))
) >

3.2.7 Mixed Content

In narrative documents it's common for a single element to contain both child elements
and un-marked up, nonwhitespace character data. For example, recall this
definition element from Chapter 2 :

<definition>The <term>Turing Machine</term> is an abstract finite
state automaton with infinite memory that can be proven equivalent
to any any other finite state automaton with arbitrarily large memory.
Thus what is true for a Turing machine is true for all equivalent
machines no matter how implemented.
</definition>

The definition element contains some nonwhitespace text and a term child. This

http://lib.ommolketab.ir

is called mixed content . An element that contains mixed content is declared like this:

<!ELEMENT definition (#PCDATA | term)*>

This says that a definition element may contain parsed character data and term
children. It does not specify in which order they appear, nor how many instances of each
appear. This declaration allows a definition to have one term child, no term
children, or twenty-three term children.

You can add any number of other child elements to the list of mixed content, though
#PCDATA must always be the first child in the list. For example, this declaration says
that a paragraph element may contain any number of name , profession ,
footnote , emphasize , and date elements in any order, interspersed with parsed
character data:

<!ELEMENT paragraph
 (#PCDATA | name | profession | footnote | emphasize | date)*
>

This is the only way to indicate that an element contains mixed content. You cannot say,
for example, that there must be exactly one term child of the definition element,
as well as parsed character data. You cannot say that the parsed character data must all
come after the term child. You cannot use parentheses around a mixed-content
declaration to make it part of a larger grouping. You can only say that the element
contains any number of any elements from a particular list in any order, as well as
undifferentiated parsed character data.

3.2.8 Empty Elements

Some elements do not have any content at all. These are called empty elements and
are sometimes written with a closing /> . For example:

<image source="bus.jpg" width="152" height="345"
 alt="Alan Turing standing in front of a bus"
/>

These elements are declared by using the keyword EMPTY for the content specification.
For example:

<!ELEMENT image EMPTY>

This merely says that the image element must be empty, not that it must be written with
an empty-element tag. Given this declaration, this is also a valid image element:

http://lib.ommolketab.ir

<image source="bus.jpg" width="152" height="345"
 alt="Alan Turing standing in front of a bus"></image>

If an element is empty, then it can contain nothing, not even whitespace. For instance,
this is an invalid image element:

<image source="bus.jpg" width="152" height="345"
 alt="Alan Turing standing in front of a bus">
</image>

3.2.9 ANY

Very loose DTDs occasionally want to say that an element exists without making any
assertions about what it may or may not contain. In this case you can specify the
keyword ANY as the content specification. For example, this declaration says that a
page element can contain any content including mixed content, child elements, and
even other page elements:

<!ELEMENT page ANY>

The children that actually appear in the page elements' content in the document must
still be declared in element declarations of their own. ANY does not allow you to use
undeclared elements.

ANY is sometimes useful when you're just beginning to design the DTD and document
structure and you don't yet have a clear picture of how everything fits together. However,
it's extremely bad form to use ANY in finished DTDs. About the only time you'll see it
used is when external DTD subsets and entities may change in uncontrollable ways.
However, this is actually quite rare. You'd really only need this if you were writing a DTD
for an application like XSLT or RDF that wraps content from arbitrary, unknown XML
applications.

3.3 Attribute Declarations

As well as declaring its elements, a valid document must declare all the elements'
attributes. This is done with ATTLIST declarations. A single ATTLIST can declare
multiple attributes for a single element type. However, if the same attribute is repeated
on multiple elements, then it must be declared separately for each element where it
appears. (Later in this chapter you'll see how to use parameter entity references to make
this repetition less burdensome.)

For example, this ATTLIST declaration declares the source attribute of the image
element:

http://lib.ommolketab.ir

<!ATTLIST image source CDATA #REQUIRED>

It says that the image element has an attribute named source . The value of the
source attribute is character data, and instances of the image element in the
document are required to provide a value for the source attribute.

A single ATTLIST declaration can declare multiple attributes for the same element. For
example, this ATTLIST declaration not only declares the source attribute of the
image element, but also the width , height , and alt attributes:

<!ATTLIST image source CDATA #REQUIRED
 width CDATA #REQUIRED
 height CDATA #REQUIRED
 alt CDATA #IMPLIED
>

This declaration says the source , width , and height attributes are required.
However, the alt attribute is optional and may be omitted from particular image
elements. All four attributes are declared to contain character data, the most generic
attribute type.

This declaration has the same effect and meaning as four separate ATTLIST
declarations, one for each attribute. Whether to use one ATTLIST declaration per
attribute is a matter of personal preference, but most experienced DTD designers prefer
the multiple-attribute form. Given judicious application of whitespace, it's no less legible
than the alternative.

3.3.1 Attribute Types

In merely well-formed XML, attribute values can be any string of text. The only
restrictions are that any occurrences of < or & must be escaped as < and &
and whichever kind of quotation mark, single or double, is used to delimit the value must
also be escaped. However, a DTD allows you to make somewhat stronger statements
about the content of an attribute value. Indeed, these are stronger statements than can
be made about the contents of an element. For instance, you can say that an attribute
value must be unique within the document, that it must be a legal XML name token, or
that it must be chosen from a fixed list of values.

There are ten attribute types in XML. They are:

CDATA

http://lib.ommolketab.ir

NMTOKEN

NMTOKENS

Enumeration

ENTITY

ENTITIES

ID

IDREF

IDREFS

NOTATION

These are the only attribute types allowed. A DTD cannot say that an attribute value
must be an integer or a date between 1966 and 2002, for example.

3.3.1.1 CDATA

A CDATA attribute value can contain any string of text acceptable in a well-formed XML
attribute value. This is the most general attribute type. For example, you would use this
type for an alt attribute of an image element because there's no particular form the
text in such an attribute has to follow.

<!ATTLIST image alt CDATA #IMPLIED>

You would also use this for other kinds of data such as prices, URIs, email and snail
mail addresses, citations, and other types that-while they have more structure than a
simple string of text-don't match any of the other attribute types. For example:

<!ATTLIST sku
 list_price CDATA #IMPLIED
 suggested_retail_price CDATA #IMPLIED
 actual_price CDATA #IMPLIED
>
<!-- All three attributes should be in the form $XX.YY -->

3.3.1.2 NMTOKEN

An XML name token is very close to an XML name. It must consist of the same
characters as an XML name, that is, alphanumeric and/or ideographic characters and

http://lib.ommolketab.ir

the punctuation marks _ , - , . , and : . Furthermore, like an XML name, an XML name
token may not contain whitespace. However, a name token differs from an XML name in
that any of the allowed characters can be the first character in a name token, while only
letters, ideographs, and the underscore can be the first character of an XML name. Thus
12 and .cshrc are valid XML name tokens although they are not valid XML names. Every
XML name is an XML name token, but not all XML name tokens are XML names.

The value of an attribute declared to have type NMTOKEN is an XML name token. For
example, if you knew that the year attribute of a journal element should contain an
integer such as 1990 or 2015, you might declare it to have NMTOKEN type, since all
years are name tokens:

<!ATTLIST journal year NMTOKEN #REQUIRED>

This still doesn't prevent the document author from assigning the year attribute values
like "99" or "March", but it at least eliminates some possible wrong values, especially
those that contain whitespace such as "1990 C.E." or "Sally had a little lamb."

3.3.1.3 NMTOKENS

A NMTOKENS type attribute contains one or more XML name tokens separated by
whitespace. For example, you might use this to describe the dates attribute of a
performances element, if the dates were given in the form 08-26-2000, like this:

<performances dates="08-21-2001 08-23-2001 08-27-2001">
 Kat and the Kings
</performances>

The appropriate declaration is:

<!ATTLIST performances dates NMTOKENS #REQUIRED>

On the other hand, you could not use this for a list of dates in the form 08/27/2001
because the forward slash is not a legal name character.

3.3.1.4 Enumeration

An enumeration is the only attribute type that is not an XML keyword. Rather, it is a list
of all possible values for the attribute, separated by vertical bars. Each possible value
must be an XML name token. For example, the following declarations say that the value
of the month attribute of a date element must be one of the twelve English month
names, that the value of the day attribute must be a number between 1 and 31, and that
the value of the year attribute must be an integer between 1970 and 2009:

http://lib.ommolketab.ir

<!ATTLIST date month (January | February | March | April | May | June
 | July | August | September | October | November | December) #REQUIRED
>
<!ATTLIST date day (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12
 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25
 | 26 | 27 | 28 | 29 | 30 | 31) #REQUIRED
>
<!ATTLIST date year (1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976
 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986
 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996
 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006
 | 2007 | 2008 | 2009) #REQUIRED
>
<!ELEMENT date EMPTY>

Given this DTD, this date element is valid:

<date month="January" day="22" year="2001"/>

However, these date elements are invalid:

<date month="01" day="22" year="2001"/>
<date month="Jan" day="22" year="2001"/>
<date month="January" day="02" year="2001"/>
<date month="January" day="2" year="1969"/>
<date month="Janvier" day="22" year="2001"/>

This trick works here because all the desired values happen to be legal XML name
tokens. However, we could not use the same trick if the possible values included
whitespace or any punctuation besides the underscore, hyphen, colon, and period.

3.3.1.5 ID

An ID type attribute must contain an XML name (not a name token but a name) that is
unique within the XML document. More precisely, no other ID type attribute in the
document can have the same value. (Attributes of non-ID type are not considered.)
Each element may have no more than one ID type attribute.

As the keyword suggests, ID type attributes assign unique identifiers to elements. ID
type attributes do not have to have the name "ID" or "id", though they very commonly do.
For example, this ATTLIST declaration says that every employee element must have
a social_security_number ID attribute:

<!ATTLIST employee social_security_number ID #REQUIRED>

http://lib.ommolketab.ir

ID numbers are tricky because a number is not an XML name and therefore not a legal
XML ID . The normal solution is to prefix the values with an underscore or a common
letter. For example:

<employee social_security_label="_078-05-1120"/>

3.3.1.6 IDREF

An IDREF type attribute refers to the ID type attribute of some element in the
document. Thus, it must be an XML name. IDREF attributes are commonly used to
establish relationships between elements when simple containment won't suffice.

For example, imagine an XML document that contains a list of project elements and
employee elements. Every project has a project_id ID type attribute, and every
employee has a social_security_number ID type attribute. Furthermore, each
project has team_member child elements that identify who's working on the project,
and each employee element has assignment children that indicate to which projects
that employee is assigned. Since each project is assigned to multiple employees and
some employees are assigned to more than one project, it's not possible to make the
employees children of the projects or the projects children of the employees. The
solution is to use IDREF type attributes like this:

<project project_id="p1">
 <goal>Develop Strategic Plan</goal>
 <team_member person="ss078-05-1120"/>
 <team_member person="ss987-65-4320"/>
</project>
<project project_id="p2">
 <goal>Deploy Linux</goal>
 <team_member person="ss078-05-1120"/>
 <team_member person="ss9876-12-3456"/>
</project>
<employee social_security_label="ss078-05-1120">
 <name>Fred Smith</name>
 <assignment project_id="p1"/>
 <assignment project_id="p2"/>
</employee>
<employee social_security_label="ss987-65-4320">
 <name>Jill Jones</name>
 <assignment project_id="p1"/>
</employee>
<employee social_security_label="ss9876-12-3456">

http://lib.ommolketab.ir

 <name>Sydney Lee</name>
 <assignment project_id="p2"/>
</employee>

In this example, the project_id attribute of the project element and the
social_security_number attribute of the employee element would be declared
to have type ID . The person attribute of the team_member element and the
project_id attribute of the assignment element would have type IDREF . The
relevant ATTLIST declarations look like this:

<!ATTLIST employee social_security_number ID #REQUIRED>
<!ATTLIST project project_id ID #REQUIRED>
<!ATTLIST team_member person IDREF #REQUIRED>
<!ATTLIST assignment project_id IDREF #REQUIRED>

These declarations constrain the person attribute of the team_member element and
the project_id attribute of the assignment element to match the ID of something
in the document. However, they do not constrain the person attribute of the
team_member element to match only employee IDs or constrain the project_id
attribute of the assignment element to match only project IDs. It would be valid
(though not necessarily correct) for a team_member to hold the ID of another project or
even the same project.

3.3.1.7 IDREFS

An IDREFS type attribute contains a whitespace-separated list of XML names, each of
which must be the ID of an element in the document. This is used when one element
needs to refer to multiple other elements. For instance, the previous project example
could be rewritten so that the assignment children of the employee element were
replaced by a single assignments attribute. Similarly, the team_member children of
the project element could be replaced by a team attribute like this:

<project project_id="p1" team="ss078-05-1120 ss987-65-4320">
 <goal>Develop Strategic Plan</goal>
</project>
<project project_id="p2" team="ss078-05-1120 ss9876-12-3456">
 <goal>Deploy Linux</goal>
</project>
<employee social_security_label="ss078-05-1120" assignments="p1 p2">
 <name>Fred Smith</name>
</employee>
<employee social_security_label="ss987-65-4320" assignments="p1">
 <name>Jill Jones</name>

http://lib.ommolketab.ir

</employee>
<employee social_security_label="ss9876-12-3456" assignments="p2">
 <name>Sydney Lee</name>
</employee>

The appropriate declarations are:

<!ATTLIST employee social_security_number ID #REQUIRED
 assignments IDREFS #REQUIRED>
<!ATTLIST project project_id ID #REQUIRED
 team IDREFS #REQUIRED>

3.3.1.8 ENTITY

An ENTITY type attribute contains the name of an unparsed entity declared elsewhere
in the DTD. For instance, a movie element might have an entity attribute identifying the
MPEG or QuickTime file to play when the movie was activated:

<!ATTLIST movie source ENTITY #REQUIRED>

If the DTD declared an unparsed entity named X-Men-trailer , then this movie
element might be used to embed that video file in the XML document:

<movie source="X-Men-trailer"/>

We'll discuss unparsed entities in more detail later in this chapter.

3.3.1.9 ENTITIES

An ENTITIES type attribute contains the names of one or more unparsed entities
declared elsewhere in the DTD, separated by whitespace. For instance, a
slide_show element might have an ENTITIES attribute identifying the JPEG files to
show and in which order they were to be shown:

<!ATTLIST slide_show slides ENTITIES #REQUIRED>

If the DTD declared unparsed entities named slide1 , slide2 , slide3 , and so on
through slide10 , then this slide_show element might be used to embed the show
in the XML document:

<slide_show slides="slide1 slide2 slide3 slide4 slide5 slide6
 slide7 slide8 slide9 slide10"/>

3.3.1.10 NOTATION

http://lib.ommolketab.ir

A NOTATION type attribute contains the name of a notation declared in the document's
DTD. This is perhaps the rarest attribute type and isn't much used in practice. In theory,
it could be used to associate types with particular elements, as well as limiting the types
associated with the element. For example, these declarations define four notations for
different image types and then specify that each image element must have a type
attribute that selects exactly one of them:

<!NOTATION gif SYSTEM "image/gif">
<!NOTATION tiff SYSTEM "image/tiff">
<!NOTATION jpeg SYSTEM "image/jpeg">
<!NOTATION png SYSTEM "image/png">
<!ATTLIST image type NOTATION (gif | tiff | jpeg | png) #REQUIRED>

The type attribute of each image element can have one of the four values gif ,
tiff , jpeg , or png but not any other value. This has a slight advantage over the
enumerated type in that the actual MIME media type of the notation is available,
whereas an enumerated type could not specify image/png or image/gif as an
allowed value because the forward slash is not a legal character in XML names.

3.3.2 Attribute Defaults

As well as providing a data type, each ATTLIST declaration includes a default
declaration for that attribute. There are four possibilities for this default:

#IMPLIED

The attribute is optional. Each instance of the element may or may not provide a
value for the attribute. No default value is provided.

#REQUIRED

The attribute is required. Each instance of the element must provide a value for the
attribute. No default value is provided.

#FIXED

The attribute value is constant and immutable. This attribute has the specified
value regardless of whether the attribute is explicitly noted on an individual
instance of the element. If it is included, though, it must have the specified value.

Literal

The actual default value is given as a quoted string.

For example, this ATTLIST declaration says that person elements can have but do
not have to have born and died attributes:

http://lib.ommolketab.ir

<!ATTLIST person born CDATA #IMPLIED
 died CDATA #IMPLIED
>

This ATTLIST declaration says that every circle element must have center_x ,
center_y , and radius attributes:

<!ATTLIST circle center_x NMTOKEN #REQUIRED
 center_y NMTOKEN #REQUIRED
 radius NMTOKEN #REQUIRED
>

This ATTLIST declaration says that every biography element has an
xmlns:xlink attribute and that the value of that attribute is
http://www.w3.org/1999/xlink , even if the start-tag of the element does not
explicitly include an xmlns:xlink attribute.

<!ATTLIST biography
 xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink">

This ATTLIST declaration says that every web_page element has a protocol
attribute. If a particular web_page element doesn't have an explicit protocol
attribute, then the parser will supply one with the value http :

<!ATTLIST web_page protocol NMTOKEN "http">

3.4 General Entity Declarations

As you learned in Chapter 2 , XML predefines five entities for your convenience:

<

The less-than sign; a.k.a. the opening angle bracket (<)
&

The ampersand (&)
>

The greater-than sign; a.k.a. the closing angle bracket (>)
"

The straight, double quotation marks (")
'

The apostrophe; a.k.a. the straight single quote (')

http://www.w3.org/1999/xlink
http://lib.ommolketab.ir

The DTD can define many more. This is useful not just in valid documents, but even in
documents you don't plan to validate.

Entity references are defined with an ENTITY declaration in the DTD. This gives the
name of the entity, which must be an XML name, and the replacement text of the entity.
For example, this entity declaration defines &super; as an abbreviation for
supercalifragilisticexpialidocious:

<!ENTITY super "supercalifragilisticexpialidocious">

Once that's done, you can use &super; anywhere you'd normally have to type the
entire word (and probably misspell it).

Entities can contain markup as well as text. For example, this declaration defines
&footer; as an abbreviation for a standard web-page footer that will be repeated on
many pages:

<!ENTITY footer '<hr size="1" noshade="true"/>

O'Reilly Home |
O'Reilly Bookstores |
How to Order |
O'Reilly Contacts

International |
About O'Reilly |
Affiliated Companies

<p>

Copyright 2000, O'Reilly & Associates, Inc.

webmaster@oreilly.com

</p>
'>

The entity replacement text must be well-formed. For instance, you cannot put a start-
tag in one entity and the corresponding end-tag in another entity.

The other thing you have to be careful about is that you need to use different quote
marks inside the replacement text from the ones that delimit it. Here we've chosen single
quotes to surround the replacement text and double quotes internally. However, we did
have to change the single quote in "O'Reilly" to the predefined general entity reference
' . Replacement text may itself contain entity references that are resolved before

http://lib.ommolketab.ir

the text is replaced. However, self-referential and circular references are forbidden.

General entities insert replacement text into the body of an XML document. They can
also be used inside the DTD in places where they will eventually be included in the body
of an XML document, for instance in an attribute default value or in the replacement text
of another entity. However, they cannot be used to provide the text of the DTD itself. For
instance, this is illegal:

Shortly, we'll see how to use a different kind of entity-the parameter entity-to achieve
the desired result.

3.5 External Parsed General Entities

The footer example is about at the limits of what you can comfortably fit in a DTD. In
practice, web sites prefer to store repeated content like this in external files and load it
into their pages using PHP, server-side includes, or some similar mechanism. XML
supports this technique through external general entity references, though in this case
the client, rather than the server, is responsible for integrating the different pieces of the
document into a coherent whole.

An external parsed general entity reference is declared in the DTD using an ENTITY
declaration. However, instead of the actual replacement text, the SYSTEM keyword and
a URI to the replacement text is given. For example:

<!ENTITY footer SYSTEM "http://www.oreilly.com/boilerplate/footer.xml">

Of course, a relative URL will often be used instead. For example:

<!ENTITY footer SYSTEM "/boilerplate/footer.xml">

In either case when the general entity reference &footer; is seen in the character
data of an element, the parser may replace it with the document found at
http://www.oreilly.com/boilerplate/footer.xml . References to external parsed entities are
not allowed in attribute values. Most of the time, this shouldn't be too big a hassle
because attribute values tend to be small enough to be easily included in internal
entities.

Notice we wrote that the parser may replace the entity reference with the document at
the URL, not that it must. This is an area where parsers have some leeway in just how
much of the XML specification they wish to implement. A validating parser must retrieve
such an external entity. However, a nonvalidating parser may or may not choose to

http://www.oreilly.com/boilerplate/footer.xml
http://lib.ommolketab.ir

retrieve the entity.

Furthermore, not all text files can serve as external entities. In order to be loaded in by a
general entity reference, the document must be potentially well-formed when inserted
into an existing document. This does not mean the external entity itself must be well-
formed. In particular, the external entity might not have a single root element. However,
if such a root element were wrapped around the external entity, then the resulting
document should be well-formed. This means, for example, that all elements that start
inside the entity must finish inside the same entity. They cannot finish inside some other
entity. Furthermore, the external entity does not have a prolog and, therefore, cannot
have an XML declaration or a document type declaration.

3.5.1 Text Declarations

Instead of an XML declaration, an external entity may have a text declaration; this looks
a lot like an XML declaration. The main difference is that in a text declaration the
encoding declaration is required, while the version info is optional. Furthermore, there is
no standalone declaration. The main purpose of the text declaration is to warn the
parser if the external entity uses a different text encoding than the including document.
For example, this is a common text declaration:

<?xml version="1.0" encoding="MacRoman"?>

However, you could also use this text declaration with no version attribute:

<?xml encoding="MacRoman"?>

Example 3-5 is a well-formed external entity that could be included from another
document using an external general entity reference.

Example 3-5. An external parsed entity

<?xml encoding="ISO-8859-1"?>
<hr size="1" noshade="true"/>

 O'Reilly Home |
 O'Reilly Bookstores |
 How to Order |
 O'Reilly Contacts

 International |
 About O'Reilly |
 Affiliated Companies

http://lib.ommolketab.ir

<p>

 Copyright 2000, O'Reilly & Associates, Inc.

 webmaster@oreilly.com

</p>

3.6 External Unparsed Entities and Notations

Not all data is XML. There are a lot of ASCII text files in the world that don't give two
cents about escaping < as < or adhering to the other constraints by which an XML
document is limited. There are probably even more JPEG photographs, GIF line art,
QuickTime movies, MIDI sound files, and so on. None of these are well-formed XML, yet
all of them are necessary components of many documents.

The mechanism that XML suggests for embedding these things in your documents is the
external unparsed entity . The DTD specifies a name and a URI for the entity containing
the non-XML data. For example, this ENTITY declaration associates the name
turing_getting_off_bus with the JPEG image at
http://www.turing.org.uk/turing/pi1/bus.jpg :

<!ENTITY turing_getting_off_bus
 SYSTEM "http://www.turing.org.uk/turing/pi1/bus.jpg"
 NDATA jpeg>

3.6.1 Notations

Since the data is not in XML format, the NDATA declaration specifies the type of the
data. Here the name jpeg is used. XML does not recognize this as meaning an image
in a format defined by the Joint Photographs Experts Group. Rather this is the name of a
notation declared elsewhere in the DTD using a NOTATION declaration like this:

<!NOTATION jpeg SYSTEM "image/jpeg">

Here we've used the MIME media type image/jpeg as the external identifier for the
notation. However, there is absolutely no standard or even a suggestion for exactly what
this identifier should be. Individual applications must define their own requirements for
the contents and meaning of notations.

3.6.2 Embedding Unparsed Entities in Documents

The DTD only declares the existence, location, and type of the unparsed entity. To

http://www.turing.org.uk/turing/pi1/bus.jpg
http://lib.ommolketab.ir

actually include the entity in the document at one or more locations, you insert an
element with an ENTITY type attribute whose value is the name of an unparsed entity
declared in the DTD. You do not use an entity reference like
&turing_getting_off_bus; . Entity references can only refer to parsed entities.

Suppose the image element and its source attribute are declared like this:

<!ELEMENT image EMPTY>
<!ATTLIST image source ENTITY #REQUIRED>

Then, this image element would refer to the photograph at
http://www.turing.org.uk/turing/pi1/bus.jpg :

<image source="turing_getting_off_bus"/>

We should warn you that XML doesn't guarantee any particular behavior from an
application that encounters this type of unparsed entity. It very well may not display the
image to the user. Indeed, the parser may be running in an environment where there's
no user to display the image to. It may not even understand that this is an image. The
parser may not load or make any sort of connection with the server where the actual
image resides. At most, it will tell the application on whose behalf it's parsing that there
is an unparsed entity at a particular URI with a particular notation and let the application
decide what, if anything, it wants to do with that information.

Unparsed general entities are not the only plausible way to embed
non-XML content in XML documents. In particular, a simple URL,
possibly associated with an XLink, does a fine job for many purposes,
just as it does in HTML (which gets along just fine without any
unparsed entities). Including all the necessary information in a single
empty element like <image source =
"http://www.turing.org.uk/turing/pi1/bus.jpg" />
is arguably preferable to splitting the same information between the
element where it's used and the DTD of the document in which it's
used. The only thing an unparsed entity really adds is the notation,
but that's too nonstandard to be of much use.

In fact, many experienced XML developers, including the authors of
this book, feel strongly that unparsed entities are a complicated,
confusing mistake that should never have been included in XML in
the first place. Nonetheless, they are a part of the specification, so we
describe them here.

3.6.3 Notations for Processing Instruction Targets

http://www.turing.org.uk/turing/pi1/bus.jpg
http://lib.ommolketab.ir

Notations can also be used to identify the exact target of a processing instruction. A
processing instruction target must be an XML name, which means it can't be a full path
like /usr/local/bin/tex . A notation can identify a short XML name like tex with a more
complete specification of the external program for which the processing instruction is
intended. For example, this notation associates the target tex with the more complete

path /usr/local/bin/tex :

<!NOTATION tex SYSTEM "/usr/local/bin/tex">

In practice, this technique isn't much used or needed. Most applications that read XML
files and pay attention to particular processing instructions simply recognize a particular
target string like php or robots .

3.7 Parameter Entities

It is not uncommon for multiple elements to share all or part of the same attribute lists
and content specifications. For instance, any element that's a simple XLink will have
xlink:type and xlink:href attributes, and perhaps xlink:show and
xlink:actuate attributes. In XHTML, a th element and a td element contain more
or less the same content. Repeating the same content specifications or attribute lists in
multiple element declarations is tedious and error-prone. It's entirely possible to add a
newly defined child element to the declaration of some of the elements but forget to
include it in others.

For example, consider an XML application for residential real-estate listings that
provides separate elements for apartments, sublets, coops for sale, condos for sale, and
houses for sale. The element declarations might look like this:

<!ELEMENT apartment (address, footage, rooms, baths, rent)>
<!ELEMENT sublet (address, footage, rooms, baths, rent)>
<!ELEMENT coop (address, footage, rooms, baths, price)>
<!ELEMENT condo (address, footage, rooms, baths, price)>
<!ELEMENT house (address, footage, rooms, baths, price)>

There's a lot of overlap between the declarations, i.e., a lot of repeated text. And if you
later decide you need to add an additional element, available_date for instance,
then you need to add it to all five declarations. It would be preferable to define a
constant that can hold the common parts of the content specification for all five kinds of
listings and refer to that constant from inside the content specification of each element.
Then to add or delete something from all the listings, you'd only need to change the
definition of the constant.

http://lib.ommolketab.ir

An entity reference is the obvious candidate here. However, general entity references
are not allowed to provide replacement text for a content specification or attribute list,
only for parts of the DTD that will be included in the XML document itself. Instead, XML
provides a new construct exclusively for use inside DTDs, the parameter entity , which is
referred to by a parameter entity reference . Parameter entities behave like and are
declared almost exactly like a general entity. However, they use a % instead of an & ,
and they can only be used in a DTD while general entities can only be used in the
document content.

3.7.1 Parameter Entity Syntax

A parameter entity reference is declared much like a general entity reference. However,
an extra percent sign is placed between the <!ENTITY and the name of the entity. For
example:

<!ENTITY % residential_content "address, footage, rooms, baths">
<!ENTITY % rental_content "rent">
<!ENTITY % purchase_content "price">

Parameter entities are dereferenced in the same way as a general entity reference, only
with a percent sign instead of an ampersand:

<!ELEMENT apartment (%residential_content;, %rental_content;)>
<!ELEMENT sublet (%residential_content;, %rental_content;)>
<!ELEMENT coop (%residential_content;, %purchase_content;)>
<!ELEMENT condo (%residential_content;, %purchase_content;)>
<!ELEMENT house (%residential_content;, %purchase_content;)>

When the parser reads these declarations, it substitutes the entity's replacement text for
the entity reference. Now all you have to do to add an available_date element to
the content specification of all five listing types is add it to the
residential_content entity like this:

<!ENTITY % residential_content "address, footage, rooms,
 baths, available_date">

The same technique works equally well for attribute types and element names. You'll
see several examples of this in the next chapter on namespaces and in Chapter 9 .

This trick is limited to external DTDs. Internal DTD subsets do not allow parameter entity
references to be only part of a markup declaration. However, parameter entity
references can be used in internal DTD subsets to insert one or more entire markup
declarations, typically through external parameter entities.

http://lib.ommolketab.ir

3.7.2 Redefining Parameter Entities

What makes parameter entity references particularly powerful is that they can be
redefined. If a document uses both internal and external DTD subsets, then the internal
DTD subset can specify new replacement text for the entities. If ELEMENT and
ATTLIST declarations in the external DTD subset are written indirectly with parameter
entity references instead of directly with literal element names, the internal DTD subset
can change the DTD for the document. For instance, a single document could add a
bedrooms child element to the listings by redefining the residential_content
entity like this:

<!ENTITY % residential_content "address, footage, rooms,
 bedrooms, baths, available_date">

In the event of conflicting entity declarations, the first one encountered takes
precedence. The parser reads the internal DTD subset first. Thus the internal definition
of the residential_content entity is used. When the parser reads the external
DTD subset, every declaration that uses the residential_content entity will
contain a bedrooms child element it wouldn't otherwise have.

Modular XHTML, which we'll discuss in Chapter 7 , makes heavy use of this technique to
allow particular documents to select only the subset of HTML that they actually need.

3.7.3 External DTD Subsets

Real-world DTDs can be quite complex. The SVG DTD is over 1,000 lines long. The
XHTML 1.0 strict DTD (the smallest of the three XHTML DTDs) is more than 1,500 lines
long. And these are only medium-sized DTDs. The DocBook XML DTD is over 11,000
lines long. It can be hard to work with, comprehend, and modify such a large DTD when
it's stored in a single monolithic file.

Fortunately, DTDs can be broken up into independent pieces. For instance, the
DocBook DTD is distributed in 28 separate pieces covering different parts of the spec:
one for tables, one for notations, one for entity declarations, and so on. These different
pieces are then combined at validation time using external parameter entity references .

An external parameter entity is declared using a normal ENTITY declaration with a %
sign just like a normal parameter entity. However, rather than including the replacement
text directly, the declaration contains the SYSTEM keyword followed by a URI to the DTD
piece it wants to include. For example, the following ENTITY declaration defines an
external entity called names whose content is taken from the file at the relative URI
names.dtd . Then the parameter entity reference %names; inserts the contents of that

http://lib.ommolketab.ir

file into the current DTD.

<!ENTITY % names SYSTEM "names.dtd">
%names;

You can use either relative or absolute URIs as convenient. In most situations, relative
URIs are more practical.

3.8 Conditional Inclusion

XML offers the IGNORE directive for the purpose of "commenting out" a section of
declarations. For example, a parser will ignore the following declaration of a
production_note element, as if it weren't in the DTD at all:

<![IGNORE[
 <!ELEMENT production_note (#PCDATA)>
]]>

This may not seem particularly useful. After all, you could always simply use an XML
comment to comment out the declarations you want to remove temporarily from the
DTD. If you feel that way, the INCLUDE directive is going to seem even more pointless.
Its purpose is to indicate that the given declarations are actually used in the DTD. For
example:

<![INCLUDE[
 <!ELEMENT production_note (#PCDATA)>
]]>

This has exactly the same effect and meaning as if the INCLUDE directive were not
present. However, now consider what happens if we don't use INCLUDE and IGNORE
directly. Instead, suppose we define a parameter entity like this:

<!ENTITY % notes_allowed "INCLUDE">

Then we use a parameter entity reference instead of the keyword:

<![%notes_allowed;[
 <!ELEMENT production_note (#PCDATA)>
]]>

The notes_allowed parameter entity can be redefined from outside this DTD. In
particular, it can be redefined in the internal DTD subset of a document. This provides a
switch individual documents can use to turn the production_note declaration on or
off. This technique allows document authors to select only the functionality they need

http://lib.ommolketab.ir

from the DTD.

3.9 Two DTD Examples

Some of the best techniques for DTD design only become apparent when you look at
larger documents. In this section, we'll develop DTDs that cover the two different
document formats for describing people that were presented in Example 2-4 and
Example 2-5 of the last chapter.

3.9.1 Data-Oriented DTDs

Data- oriented DTDs are very straightforward. They make heavy use of sequences,
occasional use of choices, and almost no use of mixed content. Example 3-6 shows
such a DTD. Since this is a small example, and since it's easier to understand when
both the document and the DTD are on the same page, we've made this an internal
DTD included in the document. However, it would be easy to take it out and put it in a
separate file.

Example 3-6. A flexible yet data-oriented DTD describing people

<?xml version="1.0"?>
<!DOCTYPE person [
 <!ELEMENT person (name+, profession*)>
 <!ELEMENT name EMPTY>
 <!ATTLIST name first CDATA #REQUIRED
 last CDATA #REQUIRED>
 <!-- The first and last attributes are required to be present
 but they may be empty. For example,
 <name first="Cher" last=""> -->
 <!ELEMENT profession EMPTY>
 <!ATTLIST profession value CDATA #REQUIRED>
]>
<person>
 <name first="Alan" last="Turing"/>
 <profession value="computer scientist"/>
 <profession value="mathematician"/>
 <profession value="cryptographer"/>
</person>

The DTD here is contained completely inside the internal DTD subset. First a person
ELEMENT declaration states that each person must have one or more name children,

http://lib.ommolketab.ir

and zero or more profession children, in that order. This allows for the possibility that
a person changes his name or uses aliases. It assumes that each person has at least
one name but may not have a profession.

This declaration also requires that all name elements precede all profession
elements. Here the DTD is less flexible than it ideally would be. There's no particular
reason that the names have to come first. However, if we were to allow more random
ordering, it would be hard to say that there must be at least one name . One of the
weaknesses of DTDs is that it occasionally forces extra sequence order on you when all
you really need is a constraint on the number of some element. Schemas are more
flexible in this regard.

Both name and profession elements are empty so their declarations are very
simple. The attribute declarations are a little more complex. In all three cases the form of
the attribute is open, so all three attributes are declared to have type CDATA . All three
are also required. However, note the use of comments to suggest a solution for edge
cases such as celebrities with no last names. Comments are an essential tool for
making sense of otherwise obfuscated DTDs.

3.9.2 Narrative-Oriented DTDs

Narrative-oriented DTDs tend be a lot looser and make much heavier use of mixed
content than do DTDs that describe more database-like documents. Consequently, they
tend to be written from the bottom up, starting with the smallest elements and building
up to the largest. They also tend to use parameter entities to group together similar
content specifications and attribute lists.

Example 3-7 is a standalone DTD for biographies like the one shown in Example 2-5 of
the last chapter. Notice that not everything it declares is actually present in Example 2-5
. That's often the case with narrative documents. For instance, not all web pages contain
unordered lists, but the XHTML DTD still needs to declare the ul element for those
XHTML documents that do include them. Also, notice that a few attributes present in
Example 2-5 have been made into fixed defaults here. Thus, they could be omitted from
the document itself, once it is attached to this DTD.

Example 3-7. A narrative-oriented DTD for biographies

<!ATTLIST biography xmlns:xlink CDATA #FIXED
 "http://www.w3.org/1999/xlink">

<!ELEMENT person (first_name, last_name)>
<!-- Birth and death dates are given in the form yyyy/mm/dd -->

http://lib.ommolketab.ir

<!ATTLIST person born CDATA #IMPLIED
 died CDATA #IMPLIED>

<!ELEMENT date (month, day, year)>
<!ELEMENT month (#PCDATA)>
<!ELEMENT day (#PCDATA)>
<!ELEMENT year (#PCDATA)>

<!-- xlink:href must contain a URI.-->
<!ATTLIST emphasize xlink:type (simple) #IMPLIED
 xlink:href CDATA #IMPLIED>

<!ELEMENT profession (#PCDATA)>
<!ELEMENT footnote (#PCDATA)>

<!-- The source is given according to the Chicago Manual of Style
 citation conventions -->
<!ATTLIST footnote source CDATA #REQUIRED>

<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>

<!ELEMENT image EMPTY>
<!ATTLIST image source CDATA #REQUIRED
 width NMTOKEN #REQUIRED
 height NMTOKEN #REQUIRED
 ALT CDATA #IMPLIED
>
<!ENTITY % top_level "(#PCDATA | image | paragraph | definition
 | person | profession | emphasize | last_name
 | first_name | footnote | date)*">

<!ELEMENT paragraph %top_level; >
<!ELEMENT definition %top_level; >
<!ELEMENT emphasize %top_level; >
<!ELEMENT biography %top_level; >

The root biography element has a classic mixed-content declaration. Since there are
several elements that can contain other elements in a fairly unpredictable fashion, we
group all the possible top-level elements (elements that appear as immediate children of
the root element) in a single top_level entity reference. Then we can make all of
them potential children of each other in a straightforward way. This also makes it much

http://lib.ommolketab.ir

easier to add new elements in the future. That's important since this one small example
is almost certainly not broad enough to cover all possible biographies.

3.10 Locating Standard DTDs

DTDs and validity are most important when you're exchanging data with others ; they let
you verify that you're sending what the receiver expects and vice versa. Of course, this
works best if both ends of a conversation agree on which DTD and vocabulary they will
use. There are many standard DTDs for different professions and disciplines and more
are created every day. It is often better to use an established DTD and vocabulary than
to design your own.

However, there is no agreed-upon, central repository that documents and links to such
efforts. We know of at least three attempts to create such a central repository. These
are:

James Tauber's schema.net at http://www.schema.net/

OASIS's xml.org at http://www.xml.org/xml/registry.jsp

Microsoft's Biztalk initiative at http://www.biztalk.org (registration required)

However, none of these has succeeded in establishing itself as the standard place to list
DTDs and none of them cover more than a minority of the existing public DTDs. Indeed,
probably the largest list of DTDs online does not even attempt to be a general
repository, instead being simply the result of collecting XML and SGML news for several
years. This is Robin Cover's list of XML applications at http://www.oasis-
open.org/cover/siteIndex.html#toc-applications .

The W3C is one of the most prolific producers of standard XML DTDs. It has moved
almost all of its future development to XML including SVG, the Platform for Internet
Content Selection (PICS), the Resource Description Framework (RDF), the
Mathematical Markup Language (MathML), and even HTML itself. DTDs for these XML
applications are generally published as appendixes to the specifications for the
applications. The specifications are all found at http://www.w3.org/TR/ .

However, XML isn't just for the Web, and far more activity is going on outside the W3C
than inside it. Generally, within any one field, you should look to that field's standards
bodies for DTDs relating to that area of interest. For example, the American Institute of
Certified Public Accountants has published a DTD for XFRML, the Extensible Financial
Reporting Markup Language. The Object Management Group (OMG) has published a
DTD for describing Unified Modeling Language (UML) diagrams in XML. The Society of

http://lib.ommolketab.ir

Automotive Engineers has published an XML application for emissions information as
required by the 1990 U.S. Clean Air Act. Chances are that in any industry that makes
heavy use of information technology, some group or groups, either formal or informal,
are already working on DTDs that cover parts of that industry.

[1] The document type declaration and the document type definition are two different things. The abbreviation DTD is

properly used only to refer to the document type definition .

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 4. Namespaces

 4.1 The Need for Namespaces

 4.2 Namespace Syntax
 4.3 How Parsers Handle Namespaces

 4.4 Namespaces and DTDs

Namespaces have two purposes in XML:

To distinguish between elements and attributes from different vocabularies with
different meanings and that happen to share the same name.

1.

To group all the related elements and attributes from a single XML application
together so that software can easily recognize them.

2.

The first purpose is easier to explain and to grasp, but the second purpose is more
important in practice.

Namespaces are implemented by attaching a prefix to each element and attribute. Each
prefix is mapped to a URI by an xmlns:prefix attribute. Default URIs can also be
provided for elements that don't have a prefix by xmlns attributes. Elements and
attributes that are attached to the same URI are in the same namespace. Elements from
many XML applications are identified by standard URIs.

4.1 The Need for Namespaces

Some documents combine markup from multiple XML applications. For example, an
XHTML document may contain both SVG pictures and MathML equations. An XSLT
stylesheet will contain both XSLT instructions and elements from the result-tree
vocabulary. And XLinks are always symbiotic with the elements of the document in
which they appear since XLink itself doesn't define any elements, only attributes.

In some cases, these applications may use the same name to refer to different things.
For example, in SVG a set element sets the value of an attribute for a specified
duration of time, while in MathML a set element represents a mathematical set such as
the set of all positive even numbers. It's essential to know when you're working with a
MathML set and when you're working with an SVG set . Otherwise, validation,
rendering, indexing, and many other tasks will get confused and fail.

Consider Example 4-1 . This is a simple list of paintings including the title of each

http://lib.ommolketab.ir

painting, the date each was painted, the artist who painted it, and a description of the
painting.

Example 4-1. A list of paintings

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<catalog>

 <painting>
 <title>Memory of the Garden at Etten</title>
 <artist>Vincent Van Gogh</artist>
 <date>November, 1888</date>
 <description>
 Two women look to the left. A third works in her garden.
 </description>
 </painting>

 <painting>
 <title>The Swing</title>
 <artist>Pierre-Auguste Renoir</artist>
 <date>1876</date>
 <description>
 A young girl on a swing. Two men and a toddler watch.
 </description>
 </painting>

 <!-- Many more paintings... -->

</catalog>

Now suppose that Example 4-1 is to be served as a web page and you want to make it
accessible to search engines. One possibility is to use the Resource Description
Framework (RDF) to embed metadata in the page. This describes the page for any
search engines or other robots that might come along. Using the Dublin Core metadata
vocabulary (http://purl.oclc.org/dc/), a standard vocabulary for library-catalog-style
information that can be encoded in XML or other syntaxes, an RDF description of this
page might look something like this:

<RDF>
 <Description
 about="http://www.cafeconleche.org/examples/impressionists.xml">
 <title> Impressionist Paintings </title>

http://lib.ommolketab.ir

 <creator> Elliotte Rusty Harold </creator>
 <description>
 A list of famous impressionist paiintings organized
 by painter and date
 </description>
 <date>2000-08-22</date>
 </Description>
</RDF>

Here we've used the Description and RDF elements from RDF and the title ,
creator , description , and date elements from the Dublin Core. We have no
choice about these names; they are established by their respective specifications. If we
want standard software, which understands RDF and the Dublin Core, to understand our
documents, then we have to use these names. Example 4-2 combines this description
with the actual list of paintings.

Example 4-2. A list of paintings including catalog information about the list

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<catalog>

 <RDF>
 <Description
 about="http://www.cafeconleche.org/examples/impressionists.xml">
 <title> Impressionist Paintings </title>
 <creator> Elliotte Rusty Harold </creator>
 <description>
 A list of famous impressionist paintings organized
 by painter and date
 </description>
 <date>2000-08-22</date>
 </Description>
 </RDF>

 <painting>
 <title>Memory of the Garden at Etten</title>
 <artist>Vincent Van Gogh</artist>
 <date>November, 1888</date>
 <description>
 Two women look to the left. A third works in her garden.
 </description>
 </painting>

http://lib.ommolketab.ir

 <painting>
 <title>The Swing</title>
 <artist>Pierre-Auguste Renoir</artist>
 <date>1876</date>
 <description>
 A young girl on a swing. Two men and a toddler watch.
 </description>
 </painting>

 <!-- Many more paintings... -->

</catalog>

Now we have a problem. Several elements have been overloaded with different
meanings in different parts of the document. The title element is used for both the
title of the page and the title of a painting. The date element is used for both the date
the page was written and the date the painting was painted. One description
element describes pages, while another describes paintings.

This presents all sorts of problems. Validation is difficult because catalog and Dublin
Core elements with the same name have different content specifications. Web browsers
may want to hide the page description while showing the painting description, but not all
stylesheet languages can tell the difference between the two. Processing software may
understand the date format used in the Dublin Core date element, but not the more
free-form format used in the painting date element.

We could change the names of the elements from our vocabulary, painting_title
instead of title , date_painted instead of date , and so on. However, this is
inconvenient if you already have a lot of documents marked up in the old version of the
vocabulary. And it may not be possible to do this in all cases, especially if the name
collisions occur not because of conflicts between your vocabulary and a standard
vocabulary, but because of conflicts between two or more standard vocabularies. For
instance, RDF just barely avoids a collision with the Dublin Core over the
Description and description elements.

In other cases, there may not be any name conflicts, but it may still be important for
software to determine quickly and decisively to which XML application a given element
or attribute belongs. For instance, an XSLT processor needs to distinguish between
XSLT instructions and literal result-tree elements.

4.2 Namespace Syntax

http://lib.ommolketab.ir

Namespaces disambiguate elements with the same name from each other by assigning
elements and attributes to URIs. Generally, all the elements from one XML application
are assigned to one URI, and all the elements from a different XML application are
assigned to a different URI. These URIs are sometimes called namespace names . The
URIs partition the elements and attributes into disjoint sets. Elements with the same
name but different URIs are different elements. Elements with the same name and the
same URIs are the same. Most of the time there's a one-to-one mapping between
namespaces and XML applications, though a few applications use multiple namespaces
to subdivide different parts of the application. For instance, XSL uses different
namespaces for XSL Transformations (XSLT) and XSL Formatting Objects (XSL-FO).

4.2.1 Qualified Names, Prefixes, and Local Parts

Since URIs frequently contain characters such as /, %, and ~ that are not legal in XML
names, short prefixes such as rdf and xsl stand in for them in element and attribute
names. Each prefix is associated with a URI. Names whose prefixes are associated with
the same URI are in the same namespace. Names whose prefixes are associated with
different URIs are in different namespaces. Prefixed elements and attributes in
namespaces have names that contain exactly one colon. They look like this:

rdf:description
xlink:type
xsl:template

Everything before the colon is called the prefix . Everything after the colon is called the
local part . The complete name including the colon is called the qualified name , QName
, or raw name . The prefix identifies the namespace to which the element or attribute
belongs. The local part identifies the particular element or attribute within the
namespace.

In a document that contains both SVG and MathML set elements, one could be an
svg:set element, and the other could be a mathml:set element. Then there'd be no
confusion between them. In an XSLT stylesheet that transforms documents into XSL
formatting objects, the XSLT processor would recognize elements with the prefix xsl as
XSLT instructions and elements with the prefix fo as literal result elements.

Prefixes may be composed from any legal XML name character except the colon.
Prefixes beginning with the three letters xml (in any combination of case) are reserved
for use by XML and its related specifications. Otherwise, you're free to name your
prefixes in any way that's convenient. One further restriction namespaces add to XML
1.0 is that the local part may not contain any colons. In short, the only legal uses of a
colon in XML are to separate a namespace prefix from the local part in a qualified name

http://lib.ommolketab.ir

or for the attributes XML itself defines, such as xml:space and xml:lang .

4.2.2 Binding Prefixes to URIs

Each prefix in a qualified name must be associated with a URI. For example, all XSLT
elements are associated with the http://www.w3.org/1999/XSL/Transform URI. The
customary prefix xsl is used in place of the longer URI

http://www.w3.org/1999/XSL/Transform .

You can't use the URI in the name directly. For one thing, the slashes
in most URIs aren't legal characters in XML names. However, it's
occasionally useful to refer to the full name without assuming a
particular prefix. One convention used on many XML mailing lists and
in XML documentation is to enclose the URI in curly braces and
prefix it to the name. For example, the qualified name
xsl:template might be written as the full name
{http://www.w3.org/1999/XSL/Transform}template .
Another convention is to append the local name to the namespace
name after a sharp sign so that it becomes a URI fragment identifier.
For example,
http://www.w3.org/1999/XSL/Transform#template .
However, both forms are only conveniences for communication
among human beings when the URI is important but the prefix isn't.
Neither an XML parser nor an XSLT processor will accept or
understand the long forms.

Prefixes are bound to namespace URIs by attaching an xmlns:prefix attribute to
the prefixed element or one of its ancestors. (The prefix should be replaced by the
actual prefix used.) For example, the xmlns:rdf attribute of this rdf:RDF element
binds the prefix rdf to the namespace URI http://www.w3.org/TR/REC-rdf-syntax# :

<rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#">
 <rdf:Description
 about="http://www.cafeconleche.org/examples/impressionists.xml">
 <title> Impressionist Paintings </title>
 <creator> Elliotte Rusty Harold </creator>
 <description>
 A list of famous impressionist paintings organized
 by painter and date
 </description>
 <date>2000-08-22</date>

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform#template
http://www.w3.org/TR/REC-rdf-syntax#
http://lib.ommolketab.ir

 </rdf:Description>
</rdf:RDF>

Bindings have scope within the element where they're declared and within its contents.
The xmlns:rdf attribute declares the rdf prefix for the rdf:RDF element, as well as
its child elements. An RDF processor will recognize rdf:RDF and
rdf:Description as RDF elements because both have prefixes bound to the
particular URI specified by the RDF specification. It will not consider the title ,
creator , description , and date elements to be RDF elements because they do

not have prefixes bound to the http://www.w3.org/TR/REC-rdf-syntax# URI.

The prefix can be declared in the topmost element that uses the prefix or in any ancestor
thereof. This may be the root element of the document, or it may be an element at a
lower level. For instance, the Dublin Core elements could be attached to the
http://purl.org/dc/ namespace by adding an xmlns:dc attribute to the
rdf:Description element, as shown in Example 4-3 , since all Dublin Core
elements in this document appear inside a single rdf:Description element. In
other documents that spread the elements out more, it might be more convenient to put
the namespace declaration on the root element. If necessary, a single element can
include multiple namespace declarations for different namespaces.

Example 4-3. A document containing both SVG and XLinks

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<catalog>

 <rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#">
 <rdf:Description xmlns:dc="http://purl.org/dc/"
 about="http://www.cafeconleche.org/examples/impressionists.xml">
 <dc:title> Impressionist Paintings </dc:title>
 <dc:creator> Elliotte Rusty Harold </dc:creator>
 <dc:description>
 A list of famous impressionist paintings organized
 by painter and date
 </dc:description>
 <dc:date>2000-08-22</dc:date>
 </rdf:Description>
 </rdf:RDF>

 <painting>
 <title>Memory of the Garden at Etten</title>
 <artist>Vincent Van Gogh</artist>

http://www.w3.org/TR/REC-rdf-syntax#
http://purl.org/dc/
http://lib.ommolketab.ir

 <date>November, 1888</date>
 <description>
 Two women look to the left. A third works in her garden.
 </description>
 </painting>

 <painting>
 <title>The Swing</title>
 <artist>Pierre-Auguste Renoir</artist>
 <date>1876</date>
 <description>
 A young girl on a swing. Two men and a toddler watch.
 </description>
 </painting>

 <!-- Many more paintings... -->

</catalog>

A DTD for this document can include different content specifications for the
dc:description and description elements. A stylesheet can attach different
styles to dc:title and title . Software that sorts the catalog by date can pay
attention to the date elements and ignore the dc:date elements.

In this example, the elements without prefixes, such as catalog , painting ,
description , artist , and title , are not in any namespace. Furthermore,
unprefixed attributes (such as the about attribute of rdf:Description in the
previous example) are never in any namespace. Being an attribute of an element in the
http://www.w3.org/TR/REC-rdf-syntax# namespace is not sufficient to put the attribute in
the http://www.w3.org/TR/REC-rdf-syntax# namespace. The only way an attribute
belongs to a namespace is if it has a declared prefix, like xlink:type and
xlink:href .

It is possible to redefine a prefix within a document so that in one element the prefix
refers to one namespace URI, while in another element it refers to a different
namespace URI. In this case, the closest ancestor element that declares the prefix takes
precedence. However, in most cases redefining prefixes is a very bad idea that only
leads to confusion and is not something you should actually do.

4.2.3 Namespace URIs

Many XML applications have customary prefixes. For example, SVG elements often use

http://www.w3.org/TR/REC-rdf-syntax#
http://www.w3.org/TR/REC-rdf-syntax#
http://lib.ommolketab.ir

the prefix svg , and RDF elements often have the prefix rdf . However, these prefixes
are simply conventions and can be changed based on necessity, convenience, or whim.
Before a prefix can be used, it must be bound to a URI like http://www.w3.org/2000/svg
or http://www.w3.org/1999/02/22-rdf-syntax-ns# . It is these URIs that are standardized,
not the prefixes. The prefix can change as long as the URI stays the same. An RDF
processor looks for the RDF URI, not any particular prefix. As long as nobody outside
the w3.org domain uses namespace URIs in the w3.org domain, and as long as the
W3C can keep a careful eye on what its people are using for namespaces, all conflicts
can be avoided.

Namespace URIs do not necessarily point to any actual document or page. In fact, they
don't have to use the http scheme. They might even use some other protocol like mailto
in which URIs don't even point to documents. However, if you're defining your own
namespace using an http URI, it would not be a bad idea to place some documentation
for the specification at the namespace URI. The W3C got tired of receiving broken-link
reports for the namespace URIs in their specifications, so they added some simple
pages at their namespace URIs. For more formal purposes that offer some hope of
automated resolution and other features, you can place a Resource Directory
Description Language (RDDL) document at the namespace URI. This possibility will be
discussed further in Chapter 14 . You are by no means required to do this, though. Many
namespace URIs lead to 404-Not Found errors when you actually plug them into a web
browser. Namespace URIs are purely formal identifiers. They are not the addresses of a
page, and they are not meant to be followed as links.

Parsers compare namespace URIs on a character-by-character basis. If the URIs differ
in even a single normally insignificant place, then they define separate namespaces. For
instance, http://www.w3.org/1999/02/22-rdf-syntax-ns# ,
http://WWW.W3.ORG/1999/02/22-rdf-syntax-ns# , http://www.w3.org/1999/02/22-rdf-
syntax-ns/ , and http://www.w3.org/1999/02/22-rdf-syntax-ns/index.rdf all point to the
same page. However, only the first is the correct namespace name for the RDF. These
four URLs identify four separate namespaces.

4.2.4 Setting a Default Namespace with the xmlns Attribute

You often know that all the content of a particular element will come from a particular
XML application. For instance, inside an SVG svg element, you're only likely to find
other SVG elements. You can indicate that an unprefixed element and all its unprefixed
descendant elements belong to a particular namespace by attaching an xmlns attribute
with no prefix to the top element. For example:

<svg xmlns="http://www.w3.org/2000/svg"
 width="12cm" height="10cm">

http://www.w3.org/2000/svg
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://WWW.W3.ORG/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-
http://www.w3.org/1999/02/22-rdf-syntax-ns/index.rdf
http://lib.ommolketab.ir

 <ellipse rx="110" ry="130" />
 <rect x="4cm" y="1cm" width="3cm" height="6cm" />
</svg>

Here, although no elements have any prefixes, the svg , ellipse , and rect
elements are in the http://www.w3.org/2000/svg namespace.

The attributes are a different story. Default namespaces only apply to elements, not to
attributes. Thus in the previous example the width , height , rx , ry , x , and y
attributes are not in any namespace.

You can change the default namespace within a particular element by adding an xmlns
attribute to the element. Example 4-4 is an XML document that initially sets the default
namespace to http://www.w3.org/1999/xhtml for all the XHTML elements. This
namespace declaration applies within most of the document. However, the svg element
has an xmlns attribute that resets the default namespace to

http://www.w3.org/2000/svg for itself and its content. The XLink information is included in
attributes, however, so these must be placed in the XLink namespace using explicit
prefixes.

Example 4-4. An XML document that uses default namespaces

<?xml version="1.0"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <head><title>Three Namespaces</title></head>
 <body>
 <h1 align="center">An Ellipse and a Rectangle</h1>
 <svg xmlns="http://www.w3.org/2000/svg"
 width="12cm" height="10cm">
 <ellipse rx="110" ry="130" />
 <rect x="4cm" y="1cm" width="3cm" height="6cm" />
 </svg>
 <p xlink:type="simple" xlink:href="ellipses.html">
 More about ellipses
 </p>
 <p xlink:type="simple" xlink:href="rectangles.html">
 More about rectangles
 </p>
 <hr/>
 <p>Last Modified May 13, 2000</p>
 </body>

http://www.w3.org/2000/svg
http://www.w3.org/1999/xhtml
http://www.w3.org/2000/svg
http://lib.ommolketab.ir

</html>

The default namespace does not apply to any elements or attributes with prefixes.
These still belong to whatever namespace to which their prefix is bound. However, an
unprefixed child element of a prefixed element still belongs to the default namespace.

4.2.5 Attribute Declarations for xmlns

When namespaces are only being used to identify the elements and attributes from a
particular XML application, and not to distinguish different elements with the same
name, a DTD can attach a fixed xmlns attribute to the primary container elements for
an application so that everything is placed in the right namespace without explicit
xmlns attributes in the document. For example, this ATTLIST declaration fixes the
default namespace of all svg elements as http://www.w3.org/2000/ :

<!ATTLIST svg xmlns CDATA #FIXED "http://www.w3.org/2000/">

This allows you to omit xmlns attributes from all your svg elements.

A document does not need to be valid to take advantage of this. All that's required is that
the parser read the DTD. All parsers will read the internal DTD subset and process any
such ATTLIST declarations they find there. A few nonvalidating parsers may skip
external DTD subsets, and thus get confused. Ideally, you should use a parser that can
validate so that it will at least be able to read the external DTD subset, though you might
use it with validation turned off.

4.3 How Parsers Handle Namespaces

Namespaces are not part of XML 1.0. They were invented about a year after the original
XML specification was released. However, care was taken to ensure backwards
compatibility. Thus, an XML 1.0 parser that does not know about namespaces should
not have any trouble reading a document that uses namespaces. Colons are legal
characters in XML 1.0 element and attribute names. The parser will simply report that
some of the names contain colons. Possible problems arise in the rare cases where
different qualified names resolve to the same full name or where the same qualified
name indicates a different full name in different parts of a document.

A namespace-aware parser does add a couple of checks to the normal well-formedness
checks that a parser performs. Specifically, it checks to see that all prefixes are mapped
to URIs. It will reject documents that use unmapped prefixes (except for xml and
xmlns when used as specified in the XML 1.0 or Namespaces in XML specifications.) It
will further reject any element or attribute names that contain more than one colon.

http://www.w3.org/2000/
http://lib.ommolketab.ir

Otherwise, it behaves almost exactly like a non-namespace-aware parser. Other
software that sits on top of the raw XML parser, an XSLT engine for example, may treat
elements differently depending on to which namespace they belong. However, the XML
parser itself mostly doesn't care as long as all well-formedness and namespace
constraints are met.

A possible exception occurs in the unlikely event that elements with different prefixes
belong to the same namespace. In this case, a namespace-aware parser will report the
elements as being the same, while a non-namespace-aware parser will report them as
different. About equally unlikely is the case where two elements or attributes with the
same qualified name are in different namespaces because the common prefix is bound
to different URIs in different places in the document. Slightly more likely is the case
where two unprefixed names are placed in different default namespaces. In both these
cases, a namespace-aware processor will report them as different, whereas a non-
namespace-aware processor will treat them the same. Many parsers let you turn
namespace processing on or off as you see fit.

4.4 Namespaces and DTDs

Namespaces are completely independent of DTDs and can be used in both valid and
invalid documents. A document can have a DTD but not use namespaces or use
namespaces but not have a DTD. It can use both namespaces and DTDs or neither
namespaces nor DTDs. Namespaces do not in any way change DTD syntax nor do they
change the definition of validity. For instance, the DTD of a valid document that uses an
element named dc:title must include an ELEMENT declaration properly specifying
the content of the dc:title element. For example:

<!ELEMENT dc:title (#PCDATA)>

The name of the element in the document must exactly match the name of the element
in the DTD including the prefix. The DTD cannot omit the prefix and simply declare a
title element. The same is true of prefixed attributes. For instance, if an element used
in the document has xlink:type and xlink:href attributes, then the DTD must
declare the xlink:type and xlink:href attributes, not simply type and href .

Conversely, if an element uses an xmlns attribute to set the default namespace and
does not attach prefixes to elements, then the names of the elements must be declared
without prefixes in the DTD. The validator neither knows nor cares about the existence
of namespaces. All it sees is that some element and attribute names happen to contain
colons; as far as it's concerned, such names are perfectly valid as long as they're
declared.

http://lib.ommolketab.ir

4.4.1 Parameter Entity References for Namespace Prefixes

Requiring DTDs to declare the prefixed names instead of the raw names or some
combination of local part and namespace URI makes it difficult to change the prefix in
valid documents. The problem is that changing the prefix requires changing all
declarations that use that prefix in the DTD as well. However, with a little forethought,
parameter entity references can alleviate the pain quite a bit.

The trick is to define as parameter entities both the namespace prefix and the colon that
separates the prefix from the local name, like this:

<!ENTITY % dc-prefix "dc">
<!ENTITY % dc-colon ":">

The second step is to define the qualified names as more parameter entity references,
like these:

<!ENTITY % dc-title "%dc-prefix;%dc-colon;title">
<!ENTITY % dc-creator "%dc-prefix;%dc-colon;creator">
<!ENTITY % dc-description "%dc-prefix;%dc-colon;description">
<!ENTITY % dc-date "%dc-prefix;%dc-colon;date">

Do not omit this step and try to use the dc-prefix and dc-colon
parameter entities directly in ELEMENT and ATTLIST declarations.
This will fail because XML parsers add extra space around the
entity's replacement text when they're used outside another entity's
replacement text.

Then you use the entity references for the qualified name in all declarations, like this:

<!ELEMENT %dc-title; (#PCDATA)>
<!ELEMENT %dc-creator; (#PCDATA)>
<!ELEMENT %dc-description; (#PCDATA)>
<!ELEMENT %dc-date; (#PCDATA)>
<!ELEMENT rdf:Description
 ((%dc-title; | %dc-creator; | %dc-description; | %dc-date;)*)
>

Now a document that needs to change the prefix simply changes the parameter entity
definitions. In some cases, this will be done by editing the DTD directly. In others, it may
be done by overriding the definitions in the document's own internal DTD subset. For
example, to change the prefix from dc to dublin , you'd add this entity definition
somewhere in the DTD before the normal definition:

http://lib.ommolketab.ir

<!ENTITY % dc-prefix "dublin">

If you wanted to use the default namespace instead of explicit prefixes, you'd redefine
both the dc-prefix and dc-colon entities as the empty string, like this:

<!ENTITY % dc-prefix "">
<!ENTITY % dc-colon "">

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 5. Internationalization

 5.1 Character-Set Metadata

 5.2 The Encoding Declaration
 5.3 Text Declarations

 5.4 XML-Defined Character Sets
 5.5 Unicode

 5.6 ISO Character Sets

 5.7 Platform-Dependent Character Sets
 5.8 Converting Between Character Sets

 5.9 The Default Character Set for XML Documents
 5.10 Character References

 5.11 xml:lang

We've told you that XML documents contain text, but we haven't yet told you what kind
of text they contain. In this chapter we rectify that omission. XML documents contain
Unicode text. Unicode is a character set large enough to include all the world's living
languages and a few dead ones. It can be written in a variety of encodings, including
UCS-2 and the ASCII superset UTF-8. However, since Unicode text editors are relatively
uncommon, XML documents may also be written in other character sets and encodings,
which are converted to Unicode when the document is parsed. The encoding declaration
specifies which character set a document uses. You can use character references, such
as θ , to insert Unicode characters like that aren't available in the legacy

character set in which a document is written.

Computers don't really understand text. They don't recognize the Latin letter Z, the
Greek letter , or the Han ideograph . All a computer understands are numbers such
as 90, 947, or 40,821. A character set maps particular characters, like Z , to particular
numbers, like 90. These numbers are called code points . A character encoding
determines how those code points are represented in bytes. For instance, the code point
90 can be encoded as a signed byte, a little-endian unsigned short, a 4-byte, two's
complement, big-endian integer, or in some still more complicated fashion.

A human script like Cyrillic may be written in multiple character sets, such as KOI8-R,
Unicode, or ISO-8859-5. A character set like Unicode may then be encoded in multiple
encodings, such as UTF-8, UCS-2, or UTF-16. In general, however, simpler character
sets like ASCII and KOI8-R have only one encoding.

http://lib.ommolketab.ir

5.1 Character-Set Metadata

Some environments keep track of which encodings in which particular documents are
written. For instance, web servers that transmit XML documents precede them with an
HTTP header that looks something like this:

HTTP/1.1 200 OK
Date: Sun, 28 Oct 2001 11:05:42 GMT
Server: Apache/1.3.19 (Unix) mod_jk mod_perl/1.25 mod_fastcgi/2.2.10 Connection: close
Transfer-Encoding: chunked
Content-Type: text/xml; charset=iso-8859-1

The Content-Type field of the HTTP header provides the MIME media type of the
document. This may, as shown here, specify in which character set the document is
written. An XML parser reading this document from a web server should use this
information to determine the document's character encoding.

Many web servers omit the charset parameter from the MIME media type. In this case, if
the MIME media type is text/xml , then the document is assumed to be in the us-ascii
encoding. If the MIME media type is application/xml , then the parser attempts to
guess the character set by reading the first few bytes of the document.

Since ASCII is almost never an appropriate character set for an XML
document, application/xml is much preferred over text/xml.
Unfortunately, most web servers including Apache 2.0.36 and earlier
are configured to use text/xml by default. It's worth editing your

mime.types file to fix this. Alternately, at least with Apache, if you
don't have root access to your web server, you can use the AddType
and AddCharset directives in your .htaccess files to override the
server-wide defaults.

We've focused on MIME types in HTTP headers because that's the most common place
where character-set metadata is applied to XML documents. However, MIME types are
also used in some filesystems (e.g., the BeOS), in email, and in other environments.
Other systems may provide other forms of character-set metadata. If such metadata is
available for a document, whatever form it takes, the parser should use it, though in
practice this is an area where not all parsers and programs are as conformant as they
should be.

5.2 The Encoding Declaration

http://lib.ommolketab.ir

Every XML document should have an encoding declaration as part of its XML
declaration. The encoding declaration tells the parser in which character set the
document is written. It's used only when other metadata from outside the file is not
available. For example, this XML declaration says that the document uses the character
encoding US-ASCII:

<?xml version="1.0" encoding="US-ASCII" standalone="yes"?>

This one states that the document uses the Latin-1 character set, though it uses the
more official name ISO-8859-1:

<?xml version="1.0" encoding="ISO-8859-1"?>

Even if metadata is not available, the encoding declaration can be omitted if the
document is written in either the UTF-8 or UTF-16 encodings of Unicode. UTF-8 is a
strict superset of ASCII, so ASCII files can be legal XML documents without an encoding
declaration. Note, however, that this only applies to genuine, pure 7-bit ASCII files. It
does not include the extended ASCII character sets that some editors produce with
characters like ©, ç, or ".

Even if character-set metadata is available, many parsers ignore it. Thus, we highly
recommend including an encoding declaration in all your XML documents that are not
written in UTF-8 or UTF-16. It certainly never hurts to do so.

5.3 Text Declarations

XML documents may be composed of multiple parsed entities, as you learned in
Chapter 3 . These external parsed entities may be DTD fragments or chunks of XML that
will be inserted into the master document using external general entity references. In
either case, the external parsed entity does not necessarily use the same character set
as the master document. Indeed, one external parsed entity may be referenced in
several different files, each of which is written in a different character set. Therefore, it is
important to specify the character set for an external parsed entity independently of the
character set that the including document uses.

To accomplish this task, each external parsed entity should have a text declaration . If
present, the text declaration must be the very first thing in the external parsed entity. For
example, this text declaration says that the associated entity is encoded in the KOI8-R
character set:

<?xml version="1.0" encoding="KOI8-R"?>

The text declaration looks like an XML declaration. It has version info and an encoding

http://lib.ommolketab.ir

declaration. However, a text declaration may not have a standalone declaration.
Furthermore, the version info may be omitted. A legal text declaration that specifies the
encoding as KOI8-R might look like this:

<?xml encoding="KOI8-R"?>

However, it is not a legal XML declaration.

Example 5-1 shows an external parsed entity containing several verses from Pushkin's
The Bronze Horseman in a Cyrillic script. The text declaration identifies the encoding as
KOI8-R. Example 5-1 is not itself a well-formed XML document because it has no root
element. It exists only for inclusion in other documents.

Example 5-1. An external parsed entity with a text declaration identifying the
character set as KOI8-R

External DTD subsets reside in external parsed entities and, thus, may have text
declarations. Indeed, they should have text declarations if they're written in a character
set other than one of the Unicode's variants. Example 5-2 shows a DTD fragment written
in KOI8-R that might be used to validate Example 5-1 after it is included as part of a
larger document.

Example 5-2. A DTD with a text declaration identifying the character set as KOI8-R

5.4 XML-Defined Character Sets

An XML parser is required to handle the UTF-16 and UTF-8 encodings or Unicode
(about which more follows). However, XML parsers are allowed to understand and
process many other character sets. In particular, the specification recommends that
processors recognize and be able to read these encodings:

http://lib.ommolketab.ir

UTF-8 UTF-16

ISO-10646-UCS-2 ISO-10646-UCS-4

ISO-8859-1 ISO-8859-2

ISO-8859-3 ISO-8859-4

ISO-8859-5 ISO-8859-6

ISO-8859-7 ISO-8859-8

ISO-8859-9 ISO-2022-JP

Shift_JIS EUC-JP

Many XML processors understand other legacy encodings. For instance, processors
written in Java often understand all character sets available in a typical Java virtual
machine. For a list, see
http://java.sun.com/products/jdk/1.3/docs/guide/intl/encoding.doc.html . Furthermore,
some processors may recognize aliases for these encodings; both Latin-1 and 8859_1
are sometimes used as synonyms for ISO-8859-1. However, using these names limits
your document's portability. We recommend that you use standard names for standard
encodings. For encodings whose standard name isn't given by the XML 1.0
specification, use one of the names registered with the Internet Assigned Numbers
Authority (IANA) and listed at ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets .
However, knowing the name of a character set and saving a file in that set does not
mean that your XML parser can read such a file. XML parsers are only required to
support UTF-8 and UTF-16. They are not required to support the hundreds of different
legacy encodings used around the world.

5.5 Unicode

Unicode is an international standard character set that can be used to write documents
in almost any language you're likely to speak, learn, or encounter in your lifetime, barring
alien abduction. Version 3.2, the current version as of May, 2002, contains 95,156
characters from most of Earth's living languages as well as several dead ones. Unicode
easily covers the Latin alphabet, in which most of this book is written. Unicode also
covers Greek-derived scripts, including ancient and modern Greek and the Cyrillic
scripts used in Serbia and much of the former Soviet Union. Unicode covers several
ideographic scripts, including the Han character set used for Chinese and Japanese, the
Korean Hangul syllabary, and phonetic representations of these languages, including
Katakana and Hiragana. It covers the right-to-left Arabic and Hebrew scripts. It covers
various scripts native to the Indian subcontinent, including Devanagari, Thai, Bengali,
Tibetan, and many more. And that's still less than half of the scripts in Unicode 3.1.1.
Probably less than one person in a thousand today speaks a language that cannot be

http://java.sun.com/products/jdk/1.3/docs/guide/intl/encoding.doc.html
http://lib.ommolketab.ir

reasonably represented in Unicode. In the future, Unicode will add still more characters,
making this fraction even smaller. Unicode can potentially hold more than a million
characters, but no one is willing to say in public where they think most of the remaining
million characters will come from.[1]

The Unicode character set assigns characters to code points, that is, numbers. These
numbers can then be encoded in a variety of schemes, including:

UCS-2

UCS-4

UTF-8

UTF-16

5.5.1 UCS-2 and UTF-16

UCS-2, also known as ISO-10646-UCS-2, is perhaps the most natural encoding of
Unicode. It represents each character as a 2-byte, unsigned integer between 0 and
65,535. Thus the capital letter A , code point 65 in Unicode, is represented by the 2
bytes 00 and 41 (in hexadecimal). The capital letter B , code point 66, is represented by
the 2 bytes 00 and 42. The 2 bytes 03 and A3 represent the capital Greek letter , code
point 931.

UCS-2 comes in two variations, big endian and little endian. In big-endian UCS-2, the
most significant byte of the character comes first. In little-endian UCS-2, the order is
reversed. Thus, in big-endian UCS-2, the letter A is #x0041.[2] In little-endian UCS-2, the
bytes are swapped, and A is #x4100. In big-endian UCS-2, the letter B is #x0042; in
little-endian UCS-2, it's #x4200. In big-endian UCS-2, the letter is #x03A3; in little-
endian UCS-2, it's #xA303. In this book we use big-endian notation, but parsers cannot
assume this. They must be able to determine the endianness from the document itself.

To distinguish between big-endian and little-endian UCS-2, a document encoded in
UCS-2 customarily begins with Unicode character #xFEFF, the zero-width nonbreaking
space, more commonly called the byte-order mark . This character has the advantage of
being invisible. Furthermore, if its bytes are swapped, the resulting #xFFFE character
doesn't actually exist. Thus, a program can look at the first two bytes of a UCS-2
document and tell immediately whether the document is big endian, depending on
whether those bytes are #xFEFF or #xFFFE.

UCS-2 has three major disadvantages, however:

http://lib.ommolketab.ir

Files containing mostly Latin text are about twice as large in UCS-2 as they are in a
single-byte character set, such as ASCII or Latin-1.

UCS-2 is not backward or forward compatible with ASCII. Tools that are
accustomed to single-byte character sets often can't process a UCS-2 file in a
reasonable way, even if the file only contains characters from the ASCII character
set. For instance, a program written in C that expects the zero byte to terminate
strings will choke on a UCS-2 file containing mostly English text because almost
every other byte is zero.

UCS-2 is limited to 65,536 characters.

The last problem isn't so important in practice, since the first 65,536 code points of
Unicode nonetheless manage to cover most people's needs except for dead languages
like Ugaritic and fictional scripts like Tengwar. Mathematical symbols are also
encountering these issues. Unicode does, however, provide a means of representing
code points beyond 65,535 by recognizing certain two-byte sequences as half of a
surrogate pair. A Unicode document that uses UCS-2 plus surrogate pairs is said to be
in the UTF-16 encoding.

The other two problems, however, are more likely to affect most developers. UTF-8 is an
alternative encoding for Unicode that addresses both.

5.5.2 UTF-8

UTF-8 is a variable-length encoding of Unicode. Characters 0 through 127, that is, the
ASCII character set, are encoded in 1 byte each, exactly as they would be in ASCII. In
ASCII, the byte with value 65 represents the letter A . In UTF-8, the byte with the value
65 also represents the letter A . There is a one-to-one identity mapping from ASCII
characters to UTF-8 bytes. Thus, pure ASCII files are also acceptable UTF-8 files.

UTF-8 represents the characters from 128 to 2047, a range that covers the most
common non-ideographic scripts, in two bytes each. Characters from 2048 to 65,535,
mostly from Chinese, Japanese, and Korean, are represented in three bytes each.
Characters with code points above 65,535 are represented in four bytes each. For a file
that's mostly Latin text, this effectively halves the file size from what it would be in UCS-
2. However, for a file that's primarily Japanese, Chinese, or Korean, the file size can
grow by 50%. For most other living languages, the file size is close to the same.

UTF-8 is probably the most broadly supported encoding of Unicode. For instance, it's
how Java .class files store strings; it's the native encoding of the BeOS, and it's the
default encoding an XML processor assumes unless told otherwise by a byte-order mark
or an encoding declaration. Chances are pretty good that if a program tells you it's

http://lib.ommolketab.ir

saving Unicode, it's really saving UTF-8.

5.6 ISO Character Sets

Unicode has only recently become popular. Previously, the space and processing costs
associated with Unicode files prompted vendors to prefer smaller, single-byte character
sets that could only handle English and a few other languages of interest, but not the full
panoply of human language. The International Standards Organization (ISO) has
standardized 14 of these character sets as ISO standard 8859. For all of these single-
byte character sets, characters 0 through 127 are identical to the ASCII character set;
characters 128 through 159 are the C1 controls; and characters 160 through 255 are the
additional characters needed for scripts such as Greek, Cyrillic, and Turkish.

ISO-8859-1 (Latin-1)

ASCII plus the accented letters and other characters needed for most Latin-
alphabet Western European languages, including Danish, Dutch, Finnish, French,
German, Icelandic, Italian, Norwegian, Portuguese, Spanish, and Swedish.

ISO-8859-2 (Latin-2)

ASCII plus the accented letters and other characters needed to write most Latin-
alphabet Central and Eastern European languages, including Czech, English,
German, Hungarian, Polish, Romanian, Croatian, Slovak, Slovenian, and Sorbian.

ISO-8859-3 (Latin-3)

ASCII plus the accented letters and other characters needed to write Esperanto,
Maltese, and Turkish.

ISO-8859-4 (Latin-4)

ASCII plus the accented letters and other characters needed to write most Baltic
languages including Estonian, Latvian, Lithuanian, Greenlandic, and Lappish. Now
deprecated. New applications should use 8859-10 (Latin-6) or 8859-13 (Latin-7)
instead.

ISO-8859-5

ASCII plus the Cyrillic alphabet used for Russian and many other languages of the
former Soviet Union and other Slavic countries, including Bulgarian, Byelorussian,
Macedonian, Serbian, and Ukrainian.

ISO-8859-6

ASCII plus basic Arabic. However, the character set doesn't have the extra letters
needed for non-Arabic languages written in the Arabic script, such as Farsi and
Urdu.

http://lib.ommolketab.ir

ISO-8859-7

ASCII plus modern Greek. This set does not have the extra letters and accents
necessary for ancient and Byzantine Greek.

ISO-8859-8

ASCII plus the Hebrew script used for Hebrew and Yiddish.
ISO-8859-9 (Latin-5)

Essentially the same as Latin-1, except six letters used in Icelandic have been
replaced with six letters used in Turkish.

ISO-8859-10 (Latin-6)

ASCII plus accented letters and other characters needed to write most Baltic
languages, including Estonian, Icelandic, Latvian, Lithuanian, Greenlandic, and
Lappish.

ISO-8859-11

ASCII plus Thai.
ISO-8859-13 (Latin-7)

Yet another attempt to cover the Baltic region properly. Very similar to Latin-6,
except for some question marks.

ISO-8859-14 (Latin-8)

ASCII plus the Celtic languages, including Gaelic and Welsh.
ISO-8859-15 (Latin-9, Latin-0)

A revised version of Latin-1 that replaces some unnecessary symbols, such as 1 /4
, with extra French and Finnish letters. Instead of the international currency sign,
these sets include the Euro sign .

ISO-8859-16, (Latin-10)

A revised version of Latin-2 that works better for Romanian. Other languages
supported by this character set include Albanian, Croatian, English, Finnish,
French, German, Hungarian, Italian, Polish, and Slovenian.

Various national standards bodies have produced other character sets to cover scripts
and languages of interest within their geographic and political boundaries. For example,
the Korea Industrial Standards Association developed the KS C 5601-1992 standard for
encoding Korean. These national standard character sets can be used in XML
documents as well, provided that you include the proper encoding declaration in the
document and your parser knows how to translate these character sets into Unicode.

http://lib.ommolketab.ir

5.7 Platform-Dependent Character Sets

In addition to the standard character sets discussed previously, many vendors have at
one time or another produced proprietary character sets to meet the needs of their
specific platform. Often, they contain special characters the vendor saw a need for, such

as Apple's trademarked open apple or the box-drawing characters such as and
used for cell boundaries in early DOS spreadsheets. Microsoft, IBM, and Apple are the
three most prolific inventors of character sets. The single most common such set is
probably Microsoft's Cp1252, a variant of Latin-1 that replaces the C1 controls with more
graphic characters. Hundreds of such platform-dependent character sets are in use
today. Documentation for these ranges from excellent to nonexistent.

Platform-specific character sets like these should be used only within a single system.
They should never be placed on the wire or used to transfer data between systems.
Doing so can lead to nasty surprises in unexpected places. For example, displaying a

file that contains some of the extra Cp1252 characters , , ^, , ", , ..., , , , ·, `,

', ", ", -, -, , , ™, , and ~ on a VT-220 terminal can effectively disable the screen.

Nonetheless, these character sets are in common use and often seen on the Web even
when they don't belong there. There's no absolute rule that says you can't use them for
an XML document, provided that you include the proper encoding declaration and your
parser understands it. The one advantage to using these sets is that existing text editors
are likely to be much more comfortable with them than with Unicode and its friends.
Nonetheless, we strongly recommend that you don't use them and stick to the
documented standards that are much more broadly supported across platforms.

5.7.1 Cp1252

The most common platform-dependent character set, and the one you're most likely to
encounter on the Internet, is Cp1252, also (and incorrectly) known as Windows ANSI .
This is the default character set used by most American and Western European
Windows PCs, which explains its ubiquity. Cp1252 is a single-byte character set almost
identical to the standard ISO-8859-1 character set-indeed, many Cp1252 documents
are often incorrectly labeled as being Latin-1 documents. However, this set replaces the
C1 controls between code points 128 and 159 with additional graphics characters, such

as , , and . These characters won't cause problems on other Windows systems.

However, other platforms will have difficulty viewing them properly and may even crash
in extreme cases. Cp1252 (and its siblings used in non-Western Windows systems)
should be avoided.

5.7.2 MacRoman

http://lib.ommolketab.ir

The Mac OS uses a different nonstandard, single-byte character set that's a superset of
ASCII. The version used in the Americas and most of Western Europe is called
MacRoman. Variants for other countries include MacGreek, MacHebrew, MacIceland,
and so forth. Most Java-based XML processors can make sense out of these encodings
if they're properly labeled, but most other non-Macintosh tools cannot.

For instance, if the French sentence "Au cours des dernières années, XML a été adapte
dans des domaines aussi diverse que l'aéronautique, le multimédia, la gestion de
hôpitaux, les télécommunications, la théologie, la vente au détail et la littérature
médiévale" is written on a Macintosh and then read on a PC, what the PC user will see

is "Au cours des derni?res ann es, XML a t adapte dans des domaines aussi

diverse que l'a ronautique, le multim dia, la gestion de h™pitaux, les t l

communications, la th ologie, la vente au d tail et la litt rature m di vale," not the
same thing at all. Generally, the result is at least marginally intelligible if most of the text
is ASCII, but it certainly doesn't lend itself to high fidelity or quality. Mac-specific
character sets should also be avoided.

5.8 Converting Between Character Sets

The ultimate solution to this character set morass is to use Unicode in either UTF-16 or
UTF-8 format for all your XML documents. An increasing number of tools support one of
these two formats natively; even the unassuming Notepad offers an option to save files
in Unicode in Windows NT 4.0 and 2000. Microsoft Word 97 and later saves the text of
its documents in Unicode, though unlike XML documents, Word files are hardly pure
text. Much of the binary data in a Word file is not Unicode or any other kind of text.
However, Word 2000 can actually save plain text files into Unicode and is the authors'
Unicode editor of choice these days when we need to type a document in several
different, complex scripts. To save Word 2000 as plain Unicode text, select the format
Encoded Text from the Save As Type: Choice menu in Word's Save As dialog box. Then
select one of the four Unicode formats in the resulting File Conversion dialog box.

Nonetheless, most of our current tools are still adapted primarily for vendor-specific
character sets that can't handle more than a few languages at one time. Thus, learning
how to convert your documents from proprietary to more standard character sets is
crucial.

Some of the better XML and HTML editors let you choose the character set you wish to
save in and perform automatic conversions from the native character set you use for
editing. On Unix, the native character set is likely one of the standard ISO character
sets, and you can save into that format directly. On the Mac, you can avoid problems if
you stick to pure ASCII documents. On Windows, you can go a little further and use

http://lib.ommolketab.ir

Latin-1, if you're careful to stay away from the extra characters that aren't part of the
official ISO-8859-1 specification. Otherwise, you'll have to convert your document from
its native, platform-dependent encoding to one of the standard platform-independent
character sets.

François Pinard has written an open source character-set conversion tool called recode
for Linux and Unix, which you can download from
http://www.iro.umontreal.ca/contrib/recode/ , as well as the usual GNU mirror sites.
Wojciech Galazka has ported recode to DOS. See
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/rcode34b.zip . You can also use the
Java Development Kit's native2ascii tool at
http://java.sun.com/products/jdk/1.3/docs/tooldocs/win32/native2ascii.html . First convert
the file from its native encoding to Java's special ASCII-encoded Unicode format, then
use the same tool in reverse to convert from the Java format to the encoding you
actually want. For example, to convert the file myfile.xml from the Windows Cp1252
encoding to UTF-8, execute these two commands in sequence:

% native2ascii -encoding Cp1252 myfile.xml myfile.jtx
% native2ascii -reverse -encoding UTF-8 myfile.jtx myfile.xml

5.9 The Default Character Set for XML Documents

Before an XML parser can read a document, it must know which character set and
encoding the document uses. In some cases, external metainformation tells the parser
what encoding the document uses. For instance, an HTTP header may include a
Content-type header like this:

Content-type: text/html; charset=ISO-8859-1

However, XML parsers generally can't count on the availability of such information. Even
if they can, they can't necessarily assume that it's accurate. Therefore, an XML parser
will attempt to guess the character set based on the first several bytes of the document.
The main checks the parser makes include the following:

If the first two bytes of the document bytes are #xFEFF, then the parser recognizes
the bytes as the Unicode byte-order mark . It then guesses that the document is
written in the big-endian, UCS-2 encoding of Unicode. With that knowledge, it can
read the rest of the document.

If the first two bytes of the document are #xFFFE, then the parser recognizes the
little-endian form of the Unicode byte-order mark. It now knows that the document is
written in the little-endian, UCS-2 encoding of Unicode, and with that knowledge it

http://www.iro.umontreal.ca/contrib/recode/
http://java.sun.com/products/jdk/1.3/docs/tooldocs/win32/native2ascii.html
http://lib.ommolketab.ir

can read the rest of the document.

If the first four bytes of the document are #x3C3F786D, that is, the ASCII characters
<?xm , then it guesses that the file is written in a superset of ASCII. In particular, it
assumes that the file is written in the UTF-8 encoding of Unicode. Even if it's wrong,
this information is sufficient to continue reading the document until it gets to the
encoding declaration and finds out what the character set really is.

Parsers that understand EBCDIC or UCS-4 may also apply similar heuristics to detect
those encodings. However, UCS-4 isn't really used yet and is mostly of theoretical
interest, and EBCDIC is a legacy family of character sets that shouldn't be used in new
documents. Neither of these sets are important in practice.

5.10 Character References

Unicode contains more than 95,000 different characters covering almost all of the
world's written languages. Predefining entity references for each of these characters,
most of which will never be used in any one document, would impose an excessive
burden on XML parsers. Rather than pick and choose which characters are worthy of
being encoded as entities, XML goes to the other extreme. It predefines entity
references only for characters that have special meaning as markup in an XML
document: <, >, &, ", and '. All these are ASCII characters that are easy to type in any
text editor.

For other characters that may not be accessible from an ASCII text editor, XML lets you
use character references . A character reference gives the number of the particular
Unicode character it stands for, in either decimal or hexadecimal. Decimal character
references look like њ ; hexadecimal character references have an extra x after
the &# ;, that is, they look like њ . Both of these references refer to the same
character, , the Cyrillic small letter "nje" used in Serbian and Macedonian. For

example, suppose you want to include the Greek maxim " Ó Ó
" ("The wise man knows himself") in your XML document. However, you only

have an ASCII text editor at your disposal. You can replace each Greek letter with the
correct character reference, like this:

<maxim>
 σοφός
 έαυτόν
 γιγνώσκει
</maxim>

To the XML processor, a document using character entity references referring to

http://lib.ommolketab.ir

Unicode characters that don't exist in the current encoding is equivalent to a Unicode
document in which all character references are replaced by the actual characters to
which they refer. In other words, this XML document is the same as the previous one:

<maxim> Ó Ó </maxim>

Character references may be used in element content, attribute values, and comments.
They may not be used in element and attribute names, processing instruction targets, or
XML keywords, such as DOCTYPE or ELEMENT . They may be used in the DTD in
attribute default values and entity replacement text. Tag and attribute names may be
written in languages such as Greek, Russian, Arabic, or Chinese, but you must use a
character set that allows you to include the appropriate characters natively. You can't
insert these characters with character references. For instance, this is well-formed:

< > σοφός < >

This is not well-formed:

<λογος>
 σοφός
</λογος>

There are more than 90,000 Unicode characters that you can include in your XML
documents with character entity references. Chapter 26 provides character codes in
both decimal and hexadecimal for some of the most useful and widely used alphabetic
scripts. The interested reader will find the complete set in The Unicode Standard
Version 3.0 by the Unicode Consortium (Addison Wesley, 2000). You can also view the
code charts online at http://www.unicode.org/charts/ .

If you use a particular group of character references frequently, you may find it easier to
define them as entities, then refer to the entities instead. Example 5-3 shows a DTD
defining the entities you might use to spell out the Greek words in the previous several
examples.

Example 5-3. A DTD defining general entity references for several Greek letters

<!ENTITY sigma "σ">
<!ENTITY omicron_with_tonos "ό">
<!ENTITY phi "φ">
<!ENTITY omicron "ο">
<!ENTITY final_sigma "ς">
<!ENTITY epsilon_with_tonos "έ">
<!ENTITY alpha "α">

http://lib.ommolketab.ir

<!ENTITY lambda "σ">
<!ENTITY upsilon "υ">
<!ENTITY tau "τ">
<!ENTITY nu "ν">
<!ENTITY gamma "γ">
<!ENTITY iota "ι">
<!ENTITY omega_with_tonos "ώ">
<!ENTITY kappa "κ">
<!ENTITY epsilon "ε">

These entities can even be used in invalid documents, provided either that the
declarations are made in the document's internal DTD subset, which all XML parsers are
required to process, or that your parser reads the external DTD subset. By convention,
DTD fragments that do nothing but define entities have the three-letter suffix, .ent .
Generally, these fragments are imported into the document's DTD, using external
parameter entity references. Example 5-4 shows how the maxim might be written using
these entities, assuming they can be found at the relative URL greek.ent .

Example 5-4. The maxim using entity references instead of character references

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE maxim [

 <!ENTITY % greek_alphabet SYSTEM "greek.ent">
 %greek_alphabet;

]>
<maxim>
 σ&omicron_with_tonos;φο&final_sigma;
 &epsilon_with_tonos;αυτ&omicron_with_tonos;ν
 γιγν&omega_with_tonos;σκει
</maxim>

A few standard entity subsets are widely available for your own use. The XHTML 1.0
DTD includes three useful entity sets you can adopt in your own work:

Latin-1 characters, http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent

The non-ASCII characters from 160 up in ISO-8859-1
Special characters, http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent

Letters from ISO-8859-2 (Latin-2) that aren't also in Latin-1, such as and various
punctuation marks, such as the dagger, the Euro sign, and the em dash

http://lib.ommolketab.ir

Symbols, http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent

The Greek alphabet (though accented characters are missing) and various
punctuation marks, mathematical operators, and other symbols commonly used in
mathematics

Chapter 26 provides complete charts showing of all characters in these entity sets. You
can either use these directly from their relatively stable URLs at the W3C or copy them
onto your own systems. For example, to use entities from the symbol set in a document,
add the following to the document's DTD:

<!ENTITY % HTMLsymbol PUBLIC
 "-//W3C//ENTITIES Symbols for XHTML//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent">
%HTMLsymbol;

Since these are fairly standard DTDs, they have both Public IDs and URLs. Other
groups and individuals have written entity sets you can use similarly, though no
canonical collection of entity sets that covers all of Unicode exists. SGML included
almost 20 separate entity sets covering Greek, Cyrillic, extended Latin, mathematical
symbols, diacritical marks, box-drawing characters, and publishing marks. These aren't
a standard part of XML, but several applications including DocBook
(http://www.docbook.org/) and MathML
(http://www.w3.org/TR/MathML2/chapter6.html#chars_entity-tables) have ported them
to XML. MathML also has several useful entity sets containing more mathematical
symbols.

5.11 xml:lang

Since XML documents are written in Unicode, XML is an excellent choice for multilingual
documents, such as an Arabic commentary on a Greek text (something that couldn't be
done with almost any other character set). In such multilingual documents, it's useful to
identify in which language a particular section of text is written. For instance, a
spellchecker that only knows English shouldn't try to check a French quote.

Each XML element may have an xml:lang attribute that specifies the language in
which the content of that element is written. For example, the previous maxim might look
like this:

<maxim xml:lang="el">
 σόC6;BF;C2; έB1;C5;C4;όν
 γιγνώσκει
</maxim>

http://lib.ommolketab.ir

This identifies it as Greek. The specific code used, el , comes from the Greek word for

Greek, .

5.11.1 Language Codes

The value of the xml:lang language attribute should be one of the two-letter language

codes defined in ISO-639, Codes for the Representation of Names of Languages , found
at http://lcweb.loc.gov/standards/iso639-2/langhome.html , if such a code exists for the
language in question.

For languages that aren't listed in ISO-639, you can use a language identifier registered
with IANA; currently, about 20 of these identifiers exist, including i-navajo , i-
klingon , and i-lux . The complete list can be found at ftp://ftp.isi.edu/in-
notes/iana/assignments/languages/tags . All identifiers begin with i- . For example:

<maxim xml:lang="i-klingon">Heghlu'meH QaQ jajvam</maxim>

If the language you need still isn't present in these two lists, you can create your own
language tag, as long as it begins with the prefix x- or X- to identify it as a user-defined
language code. For example, the title of this journal is written in J. R. R. Tolkien's
fictional Quenya language:

<journal xml:lang="x-quenya">Tyalië Tyelelliéva</journal>

5.11.2 Subcodes

For some purposes, knowing the language is not enough. You also need to know the
region where the language is spoken. For instance, French has slightly different
vocabulary, spelling, and pronunciation in France, Quebec, Belgium, and Switzerland.
Although written identically with an ideographic character set, Mandarin and Cantonese
are actually quite different, mutually unintelligible dialects of Chinese. The United States
and the United Kingdom are jocularly referred to as "two countries separated by a
common language."

To handle these distinctions, the language code may be followed by any number of
subcodes that further specify the language. Hyphens separate the language code from
the subcode and subcodes from each other. If the language code is an ISO-639 code,
the first subcode should be one of the two-letter country codes defined by ISO-3166,
Codes for the Representation of Names of Countries , found at
http://www.ics.uci.edu/pub/ietf/http/related/iso3166.txt . This xml:lang attribute
indicates Canadian French:

http://www.ics.uci.edu/pub/ietf/http/related/iso3166.txt
http://lib.ommolketab.ir

<p xml:lang="fr-CA">Marie vient pour le fin de semaine.</p>

The language code is usually written in lowercase, and the country code is written in
uppercase. However, this is just a convention, not a requirement.

5.11.3 ATTLIST Declarations of xml:lang

Although the XML 1.0 specification defines the xml:lang attribute, you still have to
declare it in the DTDs of your valid documents. For example, this information declares
the maxim element used several times in this chapter:

<!ELEMENT maxim (#PCDATA)>
<!ATTLIST maxim xml:lang NMTOKEN #IMPLIED>

Here I've used the NMTOKEN type, since all legal language codes are well-formed XML
name tokens.

You may declare the xml:lang attribute in any convenient way. For instance, if you
want to require its presence on the maxim element, you could make it #REQUIRED :

<!ATTLIST maxim xml:lang NMTOKEN #REQUIRED>

Or, if you wanted to allow only French and English text in your documents, you might
specify it as an enumerated type with a default of English like this:

<!ATTLIST maxim xml:lang (en | fr) 'en'>

Unless you use an enumerated type, the parser will not check that the value you give it
follows the rules outlined here. It's your responsibility to make sure you use appropriate
language codes and subcodes.

[1] Privately, some developers are willing to admit that they're preparing for a day when we're part of a Galactic Federation

of thousands of intelligent species.

[2] For reasons that will become apparent shortly, this book has adopted the convention that #x precedes hexadecimal

numbers. Every two hexadecimal digits map to one byte.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 6. XML as a Document Format

 6.1 SGML's Legacy

 6.2 Narrative Document Structures
 6.3 TEI

 6.4 DocBook
 6.5 Document Permanence

 6.6 Transformation and Presentation

XML is first and foremost a document format. It was always intended for web pages,
books, scholarly articles, poems, short stories, reference manuals, tutorials, textbooks,
legal pleadings, contracts, instruction sheets, and other documents that human beings
would read. Its use as a syntax for computer data in applications such as order
processing, object serialization, database exchange and backup, and electronic data
interchange is mostly a happy accident.

Most computer programmers are better trained in working with the rigid structures one
encounters in data-oriented applications than in the more free-form environment of an
article or story. Most writers are more accustomed to the more free-form format of a
book, story, or article. XML is perhaps unique in addressing the needs of both
communities equally well. This chapter describes by both elucidation and example the
structures encountered in documents that are meant to be read by people instead of
computers. Subsequent chapters will look at web pages in particular, then address
technologies such as XSLT, XLinks, and stylesheets that are primarily intended for use
with documents that will be read by human beings. Once we've done that, we'll look at
XML as a format for more or less transitory data meant to be read by computers, rather
than semipermanent documents intended for human consumption.

6.1 SGML's Legacy

XML is a simplified form of the Standardized General Markup Language (SGML). The
language that would eventually become SGML was invented by Charles F. Goldfarb, Ed
Mosher, and Ray Lorie at IBM in the 1970s and developed by several hundred people
around the world until its eventual adoption as ISO standard 8879 in 1986. SGML was
intended to solve many of the same problems XML solves in much the same way as
XML solves them. It was and is a semantic and structural markup language for text
documents. SGML is extremely powerful and achieved some success in the U.S. military
and government, in the aerospace sector, and in other domains that needed ways of

http://lib.ommolketab.ir

efficiently managing technical documents that were tens of thousands of pages long.

SGML's biggest success was HTML, which was and is an SGML application. However,
HTML is just one SGML application. It does not have anything close to the full power of
SGML itself. SGML has also been used to define many other document formats,
including DocBook and TEI, both of which we'll discuss shortly.

However, SGML is complicated-very, very complicated. The official SGML specification
is over 150 very technical pages. It covers many special cases and unlikely scenarios. It
is so complex that almost no software has ever implemented it fully. Programs that
implement or rely on different subsets of SGML are often incompatible. The special
feature that one program considers essential is all too often considered extraneous fluff
and omitted by the next program. Nonetheless, experience with SGML taught
developers a lot about the proper design, implementation, and use of markup languages
for a wide variety of documents. Much of that general knowledge applies equally well to
XML.

One thing all this should make clear is that XML documents aren't just used on the Web.
XML can easily handle the needs of publishing in a variety of media, including books,
magazines, journals, newspapers, and pamphlets. XML is particularly useful when you
need to publish the same information in several of these formats. By applying different
stylesheets to the same source document, you can produce web pages, speaker's
notes, camera-ready copy for printing, and more.

6.2 Narrative Document Structures

All XML documents are trees. However, trees are very general-purpose data structures.
If you've been formally trained in computer science (and very possibly even if you
haven't been), you've encountered binary trees, red-black trees, balanced trees, B-trees,
ordered trees, and more. However, when working with XML, it's highly unlikely that any
given document matches any of these structures. Instead, XML documents are the most
general sort of tree, with no particular restrictions on how nodes are ordered or how or
which nodes are connected to which other nodes. Narrative XML documents are even
less likely than data-oriented XML documents to have an identifiable structure beyond
their mere treeness.

So what does a narrative-oriented XML document look like? Of course, there's a root
element. All XML documents have one. Generally speaking, this root element
represents the document itself. That is, if the document is a book, the root element is
book . If the document is an article, the root element is article , and so on.

Beyond that, large documents are generally broken up into sections of some kind,

http://lib.ommolketab.ir

perhaps chapters for a book, parts for an article, or claims for a legal brief. Most of the
document consists of these primary sections. In some cases, there'll be several different
kinds of sections; for instance, one for the table of contents, one for the index, and one
for the chapters of a book.

Generally, the root element also contains one or more elements providing
metainformation about the document, for example, the title of the work, the author of the
document, the dates the document was written and last modified, and so forth. One
common pattern is to place the metainformation in one child of the root element and the
main content of the work in another. This is how HTML documents are written. The root
element is html . The metainformation goes in a head element, and the main content
goes in the body element. TEI and DocBook also follow this pattern.

Sections of the document can be further divided into subsections. The subsections
themselves may be further divided. How many levels of subsection appear generally
depends on how large the document is. An encyclopedia will have many levels of
sectioning-a pamphlet or flier almost none. Each section and subsection normally has
a title. It may also have elements or attributes that indicate metainformation about the
section, such as the author or date it was last modified.

Up to this point, mixed content is mostly avoided. Elements contain child elements and
whitespace, and that's likely all they contain. However, at some level it becomes
necessary to insert the actual text of the document-the words that people will read. In
most Western languages these will probably be divided into paragraphs and other block-
level elements like headlines, figures, sidebars, and footnotes. Generic document DTDs
like DocBook won't be able to say more about these items than this.

The paragraphs and other block-level items will mostly contain words in a row, that is,
text. Some of this text may be marked up with inline elements. For instance, you may
wish to indicate that a particular string of text inside the block-level element is a date, a
person, or simply important. However, most of the text will not be so annotated.

One area in which different XML applications diverge is the question of whether block-
level items may contain other block-level items. For instance, can a paragraph contain a
list? Or can a list item contain a paragraph? It's probably easier to work with more
structured documents in which blocks can't contain other blocks (particularly other
instances of the same kind). However, it's very often the case that a block has a very
good reason to contain other blocks. For instance, a long list item or quotation may
contain several paragraphs.

For the most part, this entire structure from the root down to the most deeply nested
inline item tends to be quite linear; that is, you expect that a person will read the words
in pretty much the same order they appear in the document. If all the markup were

http://lib.ommolketab.ir

suddenly removed and you were left with nothing but the raw text, the result should be
more or less legible. The markup can be used to index or format the document, but it's
not a fundamental part of the content.

Another important point about these sorts of XML documents: not only are they
composed of words in a row; they're composed of words . What they contain is text
intended for human beings to read. They're not numbers or dates or money, except
insofar as these things occur as part of the normal flow of the narrative. The #PCDATA
content of the lowest-level elements of the tree mostly have one type: string . If anything
has a real type beyond string it's likely metainformation about the document (figure
number, date last modified, and so on) rather than the content of the document itself.

This explains, in detail, why DTDs don't provide strong (or really any) data typing. The
documents for which SGML was designed didn't need it. XML documents are doing jobs
for which SGML wasn't designed, such as tracking inventories or census data, do need
data typing; that's why various people and organizations have invented a plethora of
schema languages. However, schemas really don't improve on DTDs for narrative
documents.

Not all XML documents are like those we've described here. Not even all narrative-
oriented XML documents are like this. However, a surprising number of narrative-
oriented XML applications do follow this basic pattern, perhaps with a nip here or a tuck
there. The reason is that this is the basic structure narratives follow, and that has proven
its usefulness in the thousands of years since writing was invented. If you were to define
your own DTDs for general narrative-oriented documents, you'd probably come up with
something a lot like this. If you define your own DTDs for more specialized narrative-
oriented documents, then the names of your elements may change to reflect your
domain-for instance, if you were writing the next edition of the Boy Scout handbook,
one of your subsections might be called MeritBadge -however, the basic hierarchy
of document, metainformation, sections and subsections, block-level elements, and
marked-up text would likely remain.

6.3 TEI

The Text Encoding Initiative (TEI, http://www.tei-c.org/) is an SGML application
designed for the markup of classic literature, such as Virgil's Aeneid or the collected
works of Thomas Jefferson. It's a prime example of a narrative-oriented DTD. Since TEI
is designed for scholarly analysis of text rather than more casual reading or publishing, it
includes elements not only for common document structures (chapter, scene, stanza,
etc.) but also for typographical elements, grammatical structure, the position of
illustrations on the page, and so forth. These aren't important to most readers, but they
are important to TEI's intended audience of humanities scholars. For many academic

http://lib.ommolketab.ir

purposes, one manuscript of the Aeneid is not necessarily the same as the next.
Transcription errors and emendations made by various monks in the Middle Ages can
be crucial.

TEI is an SGML application. It uses several features of SGML not found in XML,
including the & connector and tag minimization. However, XML is clearly the wave of the
future. Therefore, like most evolving SGML applications, TEI is moving toward XML. A
light version of the TEI DTD is available for authors who prefer to work in pure XML. It's
not exactly the same as the SGML version, but it's very close for many practical uses.

Example 6-1 shows a fairly simple TEI Lite document that uses the XML version of the
TEI DTD. The content comes from the book you're reading now. Although a complete
TEI-encoded copy of this manuscript would be much longer, this simple example
demonstrates the basic features of most TEI documents that represent books. (As well
as prose, TEI can also be used for plays, poems, missals, and essentially any written
form of literature.)

Example 6-1. A TEI document

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE TEI.2 SYSTEM "xteilite.dtd">
<TEI.2>

 <teiHeader>
 <fileDesc>
 <titleStmt>
 <title>XML in a Nutshell</title>
 <author>Harold, Elliotte Rusty</author>
 <author>Means, W. Scott</author>
 </titleStmt>
 <publicationStmt><p></p></publicationStmt>
 <sourceDesc><p>Early manuscript draft</p></sourceDesc>
 </fileDesc>
 </teiHeader>

 <text id="HarXMLi">

 <front>
 <div type='toc'>
 <head>Table Of Contents</head>
 <list>
 <item>Introducing XML</item>

http://lib.ommolketab.ir

 <item>XML as a Document Format</item>
 <item>XML on the Web</item>
 </list>
 </div>

 </front>

 <body>

 <div1 type="chapter">
 <head>Introducing XML</head>
 <p></p>
 </div1>

 <div1 type="chapter">
 <head>XML as a Document Format</head>
 <p>
 XML is first and foremost a document format. It was always
 intended for web pages, books, scholarly articles, poems,
 short stories, reference manuals, tutorials, texts, legal
 pleadings, contracts, instruction sheets, and other documents
 that human beings would read. Its use as a syntax for computer
 data in applications like syndication, order processing,
 object serialization, database exchange and backup, electronic
 data interchange, and so forth is mostly a happy accident.
 </p>

 <div2 type="section">
 <head>SGML's Legacy</head>
 <p></p>
 </div2>

 <div2 type="section">
 <head>TEI</head>
 <p></p>
 </div2>

 <div2 type="section">
 <head>DocBook</head>
 <p>
 DocBook (<hi>http://www.docbook.org/</hi>) is an

http://lib.ommolketab.ir

 SGML application designed for new documents, not old ones.
 It's especially common in computer documentation. Several
 O'Reilly books have been written in DocBook including
 <bibl><author>Norm Walsh</author>'s <title>DocBook: The
 Definitive Guide</title></bibl>. Much of the <abbr
 expan='Linux Documentation Project'>LDP</abbr>
 (<hi>http://www.linuxdoc.org/</hi>) corpus is written in
 DocBook.
 </p>
 </div2>

 </div1>

 <div1 type="chapter">
 <head>XML on the Web</head>
 <p></p>
 </div1>

 </body>

 <back>
 <div1 type="index">
 <list>
 <head>INDEX</head>
 <item>SGML, 8, 9, 91, 92, 94</item>
 <item>DocBook, 97-101</item>
 <item>TEI, 94-97, 101</item>
 <item>Text Encoding Initiative, See TEI</item>
 </list>
 </div1>
 </back>

 </text>
</TEI.2>

The root element of this and all TEI documents is TEI.2 . This root element is always
divided into two parts, a header represented by a teiHeader element and the main
content of the document represented by a text element. The header contains
information about the source document (for instance, exactly which medieval manuscript
the text was copied from), the encoding of the document, some keywords describing the
document, and so forth.

http://lib.ommolketab.ir

The text element is itself divided into three parts:

Front matter in the front element

The preface, table of contents, dedication page, pictures of the cover, and so forth.
Each of these is represented by a div element with a type attribute whose value
identifies the division as a table of contents, preface, title page, and so forth. Each
of these divisions contains other elements laying out the content of that division.

The body of the work in the body element

The individual chapters, acts, and so forth that make up the document. Each of
these is represented by a div1 element with a type attribute that identifies this
particular division as a volume, book, part, chapter, poem, act, and so forth. Each
div1 element has a header child giving the title of the volume, book, part,
chapter, etc.

Back matter in the back element

The index, glossary, etc.

The divisions may be further subdivided; div1 s can contain div2 s, div2 s can
contain div3 s, div3 s can contain div4 s, and so on up to div7 . However, for any
given work, there is a smallest division. This division contains paragraphs represented
by p elements for prose or stanzas represented by lg elements for poetry. Stanzas are
further broken up into individual lines represented by l elements.

Both lines and paragraphs contain mixed content; that is, they contain plain text.
However, parts of this text may be marked up further by elements indicating that
particular words or characters are peoples' names (name), corrections (corr), illegible
(unclear), misspellings (sic), and so on.

This structure fairly closely reflects the structure of the actual documents that are being
encoded in TEI. This is true of most narrative-oriented XML applications that need to
handle fairly generic documents. TEI is a very representative example of typical XML
document structure.

6.4 DocBook

DocBook (http://www.docbook.org/) is an SGML application designed for new
documents, not old ones. It's especially common in computer documentation. Several
O'Reilly books have been written in DocBook, including Norm Walsh and Leonard
Muellner's DocBook: The Definitive Guide . Much of the Linux Documentation Project
(LDP, http://www.linuxdoc.org/) corpus is written in DocBook.

http://lib.ommolketab.ir

The current version of DocBook, 4.1.2, is available as both an SGML and an XML
application. The XML version is not quite the same as the SGML version, but it's very
close for most practical uses. The DocBook maintainers have announced plans to move
to a single DTD that is completely compatible with both SGML and XML in version 5.0.
Example 6-2 shows a simple DocBook XML document based on the book you're reading
now. Needless to say, the full version of this document would be much longer.

Example 6-2. A DocBook document

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBk XML V4.1.2//EN"
 "docbook/docbookx.dtd">
<book>
 <title>XML in a Nutshell</title>
 <bookinfo>
 <author>
 <firstname>Elliotte Rusty</firstname>
 <surname>Harold</surname>
 </author>
 <author>
 <firstname>W. Scott</firstname>
 <surname>Means</surname>
 </author>
 </bookinfo>

 <toc>
 <tocchap><tocentry>Introducing XML</tocentry></tocchap>
 <tocchap><tocentry>XML as a Document Format</tocentry></tocchap>
 <tocchap><tocentry>XML as a "better" HTML</tocentry></tocchap>
 </toc>

 <chapter>
 <title>Introducing XML</title>
 <para></para>
 </chapter>

 <chapter>
 <title>XML as a Document Format</title>

 <para>
 XML is first and foremost a document format. It was always intended

http://lib.ommolketab.ir

 for web pages, books, scholarly articles, poems, short stories,
 reference manuals, tutorials, texts, legal pleadings, contracts,
 instruction sheets, and other documents that human beings would
 read. Its use as a syntax for computer data in applications like
 syndication, order processing, object serialization, database
 exchange and backup, electronic data interchange, and so forth is
 mostly a happy accident.
 </para>

 <sect1>
 <title>SGML's Legacy</title>
 <para></para>
 </sect1>
 <sect1>
 <title>TEI</title>
 <para></para>
 </sect1>

 <sect1>
 <title>DocBook</title>
 <para>
 <ulink url="http://www.docbook.org/">DocBook</ulink>
 is an SGML application designed for new documents, not old ones.
 It's especially common in computer documentation. Several
 O'Reilly books have been written in DocBook including
 <citation>Norm Walsh and Leonard Muellner's
 <citetitle>DocBook: The Definitive
 Guide</citetitle></citation>. Much of the <ulink
 url="http://www.linuxdoc.org/">Linux Documentation Project
 (LDP)</ulink> corpus is written in DocBook. </para>
 </sect1>

 </chapter>

 <chapter>
 <title>XML on the Web</title>
 <para></para>
 </chapter>

 <index>
 <indexentry>

http://lib.ommolketab.ir

 <primaryie>SGML, 8, 9, 91, 92, 94</primaryie>
 </indexentry>
 <indexentry>
 <primaryie>DocBook, 97-101</primaryie>
 </indexentry>
 <indexentry>
 <primaryie>TEI, 94-97, 101</primaryie>
 </indexentry>
 <indexentry>
 <primaryie>Text Encoding Initiative</primaryie>
 <seeie>TEI</seeie>
 </indexentry>
 </index>

</book>

DocBook offers many advantages to technical authors. First and foremost, it's open,
nonproprietary, and can be created with any text editor. It would feel a little silly to write
open source documentation for open source software with closed and proprietary tools
like Microsoft Word (which is not to say this hasn't been done). If your documents are
written in DocBook, they aren't tied to any one platform, vendor, or application software.
They're portable across essentially any plausible environment you can imagine.

Not only is DocBook theoretically editable with basic text editors; it's simple enough that
such editing is practical as well. Of course, if you'd like a little help, there are a number
of free tools available, including an Emacs major mode
(http://www.nwalsh.com/emacs/docbookide/index.html). Furthermore, like many good
XML applications, DocBook is modular. You can use the pieces you need and ignore the
rest. If you need tables, there's a very complete tables module. If you don't need tables,
you don't need to know about or use this module. Other modules cover various entity
sets and equations.

DocBook is an authoring format, not a format for finished presentation. Before a
DocBook document is read by a person, it should be converted to any of several
formats, including the following:

HTML

XSL Formatting Objects

Rich Text Format (RTF)

TEX

http://lib.ommolketab.ir

For example, if you want high-quality printed documentation for a program, you can
convert a DocBook document to TEX, then use the standard TEX tools to convert the
resulting TEX file to a DVI and/or PostScript file and print that. If you just want to read it
on your computer, then you'd probably convert it to HTML and load it into your web
browser. For other purposes, you'd pick something else. With DocBook all these formats
come essentially for free. It's very easy to produce multiple output documents in different
formats from a single DocBook source document. Indeed, this benefit isn't just limited to
DocBook. Most well-thought-out XML input formats are just as easy to publish in other
formats.

6.5 Document Permanence

XML documents that are intended for computers to read are often transitory. For
instance, if you create a SOAP document that represents a request to Windows server
running .NET, then that document exists for just as long as it takes the client to send it to
the server and for the server to parse it into its internal data structures. After that's done,
the document will be discarded. It probably won't be around for two minutes, much less
two years. It's an ephemeral communication between two systems, with no more
permanence than any of billions of other messages that computers exchange on a daily
basis, most of which are never even written to disk, much less archived for posterity.

Some applications do store more permanent computer-oriented data in XML. For
instance, XML is the native file format of the Gnumeric spreadsheet. On the other hand,
this format is really only understood by Gnumeric and perhaps the other Gnome
applications. It's designed to meet the specific needs of that one program. Exchanging
data with other applications, including ones that haven't even been invented yet, is a
secondary concern.

XML documents meant for humans tend to be more permanent and less software
bound, however. If you encode the Declaration of Independence in XML, you want
people to be able to read it in two, two hundred, or two thousand years. You also want
them to be able to read it with any convenient tool, including ones not invented yet.
These requirements have some important implications for both the XML applications you
design to hold the data and the tools you use to read and write them.

The first rule is that the format should be very well documented. There should be a DTD,
and that DTD should be very well commented. Furthermore, there should be a
significant amount of prose documentation as well. Prose documentation can't substitute
for the formal documentation of a DTD, but it's an invaluable asset in understanding the
DTD.

Standard formats like DocBook and TEI should be preferred to custom, one-off XML

http://lib.ommolketab.ir

applications. You should avoid proprietary DTDs that are owned by any one person or
company and whose future may depend on the fortunes of that company or individual.
Even DTDs that come from nonprofit consortia like OASIS or TEI should be licensed
sufficiently liberally so that intellectual property restrictions won't let anyone throw up
road blocks in your path. At least one DTD purveyor has gone so far as to file for patents
on its DTDs. These DTDs should be avoided like the plague. Stick to DTDs that may be
freely copied and shared and that can be retrieved from many different locations.

Once you've settled on a standard DTD, try to avoid modifying it if you possibly can. If
you absolutely must modify it, then document your changes in excruciating, redundant
detail. Include comments in both your DTDs and documents, explaining what you've
done. Use the parameter entities built into the DTDs to add new element types or
subtract old ones, rather than modifying the DTD files themselves.

Conversely, the format shouldn't be too hard to reverse engineer if the documentation is
lost. Make sure full names are used throughout for element and attribute names.
DocBook's para element is superior to TEI's p element. Paragraph would be better
still.

All of the inherent structure of the document should be indicated by markup and markup
alone. It should not be left for the user to infer, nor should it be encoded using
whitespace or other separators. For instance, here's an example of what not to do from
SVG:

<polygon style="fill: blue; stroke: green; stroke-width: 12"
 points="350,75 379,161 469,161 397,215 423,301 350,250
 277,301 303,215 231,161 321,161" />

The style attribute contains three separate and barely related items. Understanding
this element requires parsing the non-XML CSS format. The points attribute is even
worse. It's a long list of numbers, but there's no information about what each number is.
You can't, for instance, see which are the x and which are the y coordinates. An
approach like this is preferable:

<polygon fill="blue" stroke="green" stroke-width="12">
 <point x="350" y="75"/>
 <point x="379" y="161"/>
 <point x="469" y="161"/>
 <point x="397" y="215"/>
 <point x="423" y="301"/>
 <point x="350" y="250"/>
 <point x="277" y="301"/>
 <point x="303" y="215"/>

http://lib.ommolketab.ir

 <point x="231" y="161"/>
 <point x="321" y="161"/>
</polygon>

The attribute-based style syntax is actually allowed in SVG. However, the debate over
which form to use for coordinates was quite heated in the W3C SVG working group. In
the end the working group decided (wrongly, in our opinion) that the more verbose form
would never be adopted because of its size, even though most members felt it was more
in keeping with the spirit of XML. We think the working group overemphasized the
importance of document size in an era of exponentially growing hard disks and network
bandwidth, not to mention ignoring the ease with which the second format could be
compressed for transport or storage.

Stylesheets are important. We're all familiar with the injunction to separate presentation
from content. You've heard enough warnings about not including mere style information
like italics and font choices in your XML documents. However, be careful not to go the
other way and include content in your stylesheets either. Author names, titles, copyrights
and other such information that changes from document to document belongs in the
document, not the stylesheet, even if it's metainformation about the document rather
than the actual content of the document.

Always keep in mind that you're not just writing for the next couple months or years, but
possibly for the next couple thousand of years. Have pity on the poor historians who are
going to have to decipher your markup with limited tools to help them.

6.6 Transformation and Presentation

The markup in a typical XML document describes the document's structure, but it tends
not to describe the document's presentation. That is, it says how the document is
organized but not how it looks. Although XML documents are text, and a person could
read them in native form if they really wanted to, much more commonly an XML
document is rendered into some other format before being presented to a human
audience. One of the key ideas of markup languages in general and XML in particular is
that the input format need not be the same as the output format. To put it another way,
what you see is not what you get, nor is it what you want to get. The input markup
language is designed for the convenience of the writer. The output language is designed
for the convenience of the reader.

Of course this requires a means of transforming the input format into the output format.
Most XML documents undergo some kind of transformation before being presented to
the reader. The transformation may be to a different XML vocabulary like XHTML or
XSL-FO, or it may be to a non-XML format like PostScript or RTF.

http://lib.ommolketab.ir

XML's semiofficial transformation language is Extensible Stylesheet Language
Transformations (XSLT). An XSLT document contains a list of template rules. Each
template rule has a pattern noting which elements and other nodes it matches. An XSLT
processor reads the input document. When it sees something in the input document that
matches a template rule in the stylesheet, it outputs the template rule's template. Part of
the template is normally an instruction that tells the processor to include content from the
input in the output. This allows, for example, the text of the output document to be the
same while all the markup is changed. For instance, you could write a stylesheet that
would transform DocBook documents into TEI documents. XSLT will be discussed in
much more detail in Chapter 8 .

However, XSLT is not the only transformation language you can use with your XML
documents. Other stylesheet languages such as the Document Style Sheet and
Semantics Language (DSSSL, http://www.jclark.com/dsssl/) are also available. So are a
variety of proprietary tools like OmniMark (http://www.omnimark.com/). Most of these
have particular strengths and weaknesses for particular kinds of documents. Custom
programs written in a variety of programming languages, such as Java, C++, Perl, and
Python, can use a plethora of APIs, such as SAX, DOM, and JDOM, to transform
documents. This is sometimes useful when you need something more than a mere
transformation-for instance, interpreting certain elements as database queries and
actually inserting the results of those queries into the output document, or asking the
user to answer questions in the middle of the transformation. However, the biggest
single factor when choosing which tool to use is simply which language and syntax
you're most comfortable with. De linguis non disputandum est .

There are many different choices for the output format from a transformation. A
PostScript file can be printed on paper, overhead transparencies, slides, or even T-
shirts. A PDF document can be viewed in all these ways and shown on the screen as
well. However, for screen display, PDF is vastly inferior to simple HTML, which has the
advantages of being very broadly accessible across platforms and being very easy to
generate via XSLT from source XML documents. Generating a PDF or a PostScript file
normally requires an additional conversion step in which special software converts some
custom XML output format like XSL-FO to what you actually want.

An alternative to a transformation-based presentation is to provide a descriptive
stylesheet that simply states how each element in the original document should be
formatted. This is the realm of Cascading Style Sheets (CSS). This works particularly
well for narrative documents where all that's needed is a list of the fonts, styles, sizes,
and so on to apply to the content of each element. The key is that when all markup is
stripped from the document, what remains is more or less a plain-text version of what
you want to see. No reordering or rearrangement is necessary. This approach works
less well for data-oriented documents where the raw content may be nothing more than

http://lib.ommolketab.ir

an undifferentiated mass of numbers, dates, or other information that's hard to
understand without the context and annotations provided by the markup. However, in
this case a combination of the two approaches works well. First a transformation can
produce a new document containing rearranged and annotated information. Then a CSS
stylesheet can apply style rules to the elements in this transformed document.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 7. XML on the Web

 7.1 XHTML

 7.2 Direct Display of XML in Browsers
 7.3 Authoring Compound Documents with Modular XHTML

 7.4 Prospects for Improved Web-Search Methods

XML began as an effort to bring the full power and structure of SGML to the Web in a
form that was simple enough for nonexperts to use. Like most great inventions, XML
turned out to have uses far beyond what its creators originally envisioned. Indeed,
there's a lot more XML off the Web than on it. Nonetheless, XML is still a very attractive
language in which to write and serve web pages. Since XML documents must be well-
formed and parsers must reject malformed documents, XML pages are less likely to
have annoying cross-browser incompatibilities. Since XML documents are highly
structured, they're much easier for robots to parse. Since XML tag and attribute names
reflect the nature of the content they hold, search-engine spiders can more easily
determine the true meaning of a page.

XML on the Web comes in three flavors. The first is XHTML, an XMLized variant of
HTML 4.0 that tightens up HTML to match XML's syntax. For instance, XHTML requires
that all start-tags correspond to a matching end-tag and that all attribute values be
quoted. XHTML also adds a few bits of syntax to HTML, such as the XML declaration
and empty-element tags that end with /> . Most of XHTML can be displayed quite well
in legacy browsers, with a few notable exceptions.

The second flavor of XML on the Web is direct display of XML documents that use
arbitrary vocabularies in web browsers. Generally, the formatting of the document is
supplied either by a CSS stylesheet or by an XSLT stylesheet that transforms the
document into HTML (perhaps XHTML). This flavor requires an XML-aware browser and
is only beginning to be supported by the installed base of web clients.

A third option is to mix raw XML vocabularies such as MathML and SVG with XHTML
using Modular XHTML. Modular XHTML lets you embed RDF cataloging information,
MathML equations, SVG pictures, and more inside your XHTML documents.
Namespaces sort out which elements belong to which applications.

7.1 XHTML

XHTML is an official W3C recommendation. It defines an XML-compatible version of

http://lib.ommolketab.ir

HTML, or rather it redefines HTML as an XML application instead of as an SGML
application. Just looking at an XHTML document, you might not even realize that there's
anything different about it. It still uses the same <p> , , <table> , <h1> , and
other tags with which you're familiar. Elements and attributes have the same, familiar
names they have in HTML. The syntax is still basically the same.

The difference is not so much what's allowed but what's not allowed. <p> is a legal
XHTML tag, but <P> is not. <table border="0" width="515"> is legal XHTML;
<table border=0 width=515> is not. A paragraph prefixed with a <p> and
suffixed with a </p> is legal XHTML, but a paragraph that omits the closing </p> tag is
not. Most existing HTML documents require substantial editing before they become well-
formed and valid XHTML documents. However, once they are valid XHTML documents,
they are automatically valid XML documents that can be manipulated with the same
editors, parsers, and other tools you use to work with any XML document.

7.1.1 Moving from HTML to XHTML

Most of the changes required to turn an existing HTML document into an XHTML
document involve making the document well-formed. For instance, given a legacy HTML
document, you'll probably have to make at least some of these changes to turn it into
XHTML:

Add missing end-tags like </p> and .

Rewrite elements so that they nest rather than overlap. For example, change
<p>an emphasized paragraph</p> to <p>an
emphasized paragraph</p> .

Put double or single quotes around your attribute values. For example, change <p
align=center> to <p align="center"> .

Add values (which are the same as the name) to all minimized Boolean attributes.
For example, change <input type="checkbox" checked> to <input
type="checkbox" checked="checked"> .

Replace any occurrences of & or < in character data or attribute values with &
and < . For instance, change A& P to A& P and <a
href="http://www.google.com/search?client=googlet&
q=Java%20XML"> to <a href="http://www.google.com/search?
client=googlet& q=Java%20XML"> .

Make sure the document has a single root html element.

http://lib.ommolketab.ir

Change empty elements like <hr> to <hr/> or <hr></hr> .

Add hyphens to comments so that <! this is a comment> becomes <!--
this is a comment --> .

Encode the document in UTF-8 or UTF-16, or add an XML declaration that specifies
in which character set it is encoded.

However, XHTML doesn't merely require well-formedness; it requires validity. In order to
create a valid XHTML document, you'll need to make these changes as well:

Add a DOCTYPE declaration to the document pointing to one of the three XHTML
DTDs.

Make all element and attribute names lowercase.

Make any other changes you have to make to your markup so that the document
validates against the DTD: for example, eliminating nonstandard elements like
marquee , adding required attributes like the alt attribute of img , or moving child
elements out from inside elements where they're not allowed such as a
blockquote inside a p .

In addition, the XHTML specification imposes several requirements that, strictly
speaking, are not required for either well-formedness or validity. However, they do make
parsing XHTML documents a little easier. These are:

The root element of the document must be html .

There must be a DOCTYPE declaration that uses a PUBLIC ID to identify one of the
three XHTML DTDs.

The root element of the document must have an xmlns attribute identifying the
default namespace as http://www.w3.org/1999/xhtml .

Finally, if you wish, you may-but do not have to-add an XML declaration or an xml-
stylesheet processing instruction to the prolog of your document.

Example 7-1 shows an HTML document from the O'Reilly web site that exhibits many of
the validity problems you'll find on the Web today. In fact, this is a much neater page
than most. Nonetheless, not all attribute values are quoted. The noshade attribute of
the HR element doesn't even have a value. There's no document type declaration. Tags
are a mix of upper- and lowercase, mostly uppercase. The DD elements are missing
end-tags, and there's some character data inside the second definition that's not part of
a DT or a DD .

http://www.w3.org/1999/xhtml
http://lib.ommolketab.ir

Example 7-1. A typical HTML document

<HTML><HEAD>
 <TITLE>O'Reilly Shipping Information</TITLE>
</HEAD>
<BODY BGCOLOR="#ffffff" VLINK="#0000CC" LINK="#990000" TEXT="#000000">
<table border=0 width=515>
<tr>
<td>

<H2>U.S. Shipping Information </H2>
<HR size="1" align=left noshade>
<DL>
<DT> UPS Ground Service (Continental US only -- 5-7 business
days):</DT>
<DD>
<PRE>
$ 5.95 - $ 49.99 $ 4.50
$ 50.00 - $ 99.99 $ 6.50
$100.00 - $149.99 $ 8.50
$150.00 - $199.99 $10.50
$200.00 - $249.99 $12.50
$250.00 - $299.99 $14.50

</PRE>
<DT> Federal Express:</DT>
(Shipping within 24 hours of receipt of order by O'Reilly)
<DD>
<PRE>
1 or 2 books:
Economy 2-day $ 8.75
Overnight Standard (Afternoon Delivery) ... $12.75
Overnight Priority (Morning Delivery) $16.50
</PRE>
</DL>
Alaska and Hawaii: add $10 to Federal Express rates.
<P>
International Shipping Information
<P>
<CENTER>
<HR SIZE="1" NOSHADE>

http://lib.ommolketab.ir

O'Reilly Home |

O'Reilly Bookstores |

How to Order |

O'Reilly Contacts

International |

About O'Reilly |

Affiliated Companies<p>
© 2000, O'Reilly & Associates, Inc.

</CENTER>
</td>
</tr>
</table>

</BODY>
</HTML>

Example 7-2 shows this document after it's been converted to XHTML. All the previously
noted problems and a few more besides have been fixed. A number of deprecated
presentational attributes, such as the size and noshade attributes of hr , had to be
replaced with CSS styles. We've also added the necessary document type and
namespace declarations. This document can now be read by both HTML and XML
browsers and parsers.

Example 7-2. A valid XHTML document

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta name="generator" content="HTML Tidy, see www.w3.org" />
<style type="text/css">
 body {backgroundColor: #FFFFFF; color: #000000}
 a:visited {color: #0000CC}

http://lib.ommolketab.ir

 a:link {color: #990000}
</style>
<title>O'Reilly Shipping Information</title>
</head>
<body>
<table border="0" width="515">
<tr>
<td><img src="/www/graphics_new/generic_ora_header_wide.gif"
style="border-width: 0" alt="O'Reilly"/>
<h2>U.S. Shipping Information</h2>

<hr style="height: 1; text-align: left"/>
<dl>
<dt>UPS Ground Service (Continental US only -- 5-7 business
days):</dt>

<dd>
<pre>
$ 5.95 - $ 49.99 $ 4.50
$ 50.00 - $ 99.99 $ 6.50
$100.00 - $149.99 $ 8.50
$150.00 - $199.99 $10.50
$200.00 - $249.99 $12.50
$250.00 - $299.99 $14.50
</pre>
</dd>

<dt>Federal Express:</dt>

<dd>(Shipping within 24 hours of receipt of order by O'Reilly)</dd>

<dd>
<pre>
1 or 2 books:
Economy 2-day $ 8.75
Overnight Standard (Afternoon Delivery) ... $12.75
Overnight Priority (Morning Delivery) $16.50

</pre>
</dd>
</dl>

http://lib.ommolketab.ir

Alaska and Hawaii: add $10 to Federal Express rates.

<p>International Shipping
Information</p>

<div style="font-size: xx-small; font-face: Verdana, Arial, Helvetica;
 text-align: center">
<hr style="height: 1"/>
O'Reilly Home | O'Reilly
Bookstores | How to Order
|
O'Reilly Contacts

International | About
O'Reilly | Affiliated
Companies</div>

<p style="font-size: xx-small;
 font-family: Verdana, Arial, Helvetica">© 2000,
O'Reilly & Associates, Inc.</p>
</td>
</tr>
</table>
</body>
</html>

http://lib.ommolketab.ir

Making all these changes can be quite tedious for large documents
or collections of many documents. Fortunately, there's an open
source tool that can do most of the work for you. Dave Ragget's Tidy,
http://tidy.sourceforge.net , is a C program that has been ported to
most major operating systems and can convert some pretty nasty
HTML into valid XHTML. For example, to convert the file bad.html to
good.xml , you would type:

% tidy --output-xhtml yes bad.html good.xml

Tidy fixes as much as it can and warns you about what it can't fix so
you can fix it manually-for instance, telling you that a required alt
attribute is missing from an img element.

7.1.2 Three DTDs for XHTML

XHTML comes in three flavors, depending on which DTD you choose:

Strict

This is the W3C's recommended form of XHTML. This includes all the basic
elements and attributes such as p and class . However, it does not include
deprecated elements and attributes such as applet and center . It also forbids
the use of presentational attributes such as the body element's bgcolor , vlink ,
link , and text . These capabilities are provided by CSS instead. Strict XHTML is
identified with this DOCTYPE declaration:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "DTD/xhtml1-strict.dtd" >

Example 7-2 used this DTD.

Transitional

This is a looser form of XHTML for when you can't easily do without deprecated
elements and attributes such as applet and bgcolor . It is identified with this
DOCTYPE declaration:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd" >
Frameset

This is the same as the transitional DTD except that it also allows frame-related
elements such as frameset and iframe . It is identified with this DOCTYPE
declaration:

http://tidy.sourceforge.net
http://lib.ommolketab.ir

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "DTD/xhtml1-frameset.dtd" >

All three DTDs use the same http://www.w3.org/1999/xhtml namespace. You should
choose the strict DTD unless you've got a specific reason to use another one.

7.1.3 Browser Support for XHTML

Many current web browsers, especially Internet Explorer 5.0 and earlier and Netscape
4.79 and earlier, deal inconsistently with XHTML. Certainly they don't require it,
accepting as they do such a wide variety of malformed, invalid, and out-and-out
mistaken HTML. However, beyond that they do have some problems when they
encounter certain common XHTML constructs.

7.1.3.1 The XML declaration and processing instructions

Some browsers display processing instructions and the XML declaration inline. These
should be omitted if possible.

Few, if any, browsers recognize or respect the encoding declaration in the XML
declaration. Furthermore, many browsers won't automatically recognize UTF-8 or UCS-2
Unicode text. If you use a non-ASCII character set, you should also include a meta
element in the header identifying the character set. For example:

<meta http-equiv="Content-type"
 content='text/html; charset=UTF-8'></meta>

7.1.3.2 Empty elements

Browsers deal inconsistently with both forms of empty element syntax. That is, some
browsers understand <hr/> but not <hr></hr> (typically rendering it as two
horizontal lines rather than one), while others recognize <hr></hr> but not <hr/>
(typically omitting the horizontal line completely). The most consistent rendering seems
to be achieved by using an empty-element tag with an optional attribute such as class
or id , for example, <hr class="empty" /> . There's no real reason for the
class attribute here, except that its presence keeps browsers from choking on the /> .
Any other attribute the DTD allows would serve equally well.

On the other hand, if a particular instance of an element happens to be empty, but not all
instances of the element have to be empty-for instance, a p that doesn't contain any
text-you should use two tags like <p></p> rather than one empty-element tag <p/> .

7.1.3.3 Entity references

http://lib.ommolketab.ir

Embedded scripts often contain reserved characters like & or < so the document that
contains them is not well-formed. However, most JavaScript and VBScript interpreters
won't recognize & or < in place of the operators they represent. If the script
can't be rewritten without these operators (for instance, by changing a less-than
comparison to a greater-than-or-equal-to comparison with the arguments flipped), then
you should move to external scripts instead of embedded ones.

Furthermore, most non-XML-aware browsers don't recognize the ' predefined
entity reference. You should avoid this if possible and just use the literal ' character
instead. The only place this might be a problem is inside attribute values that are
enclosed in single quotes because they contain double quotes. However, most browsers
do recognize the " entity reference for the " character so you can enclose the
attribute value in double quotes and escape the double quotes that are part of the
attribute value as " .

7.1.3.4 Other unsupported features

There are a few other subtle differences between how browsers handle XHTML and how
XHTML expects to be handled. For instance, XHTML allows character references and
CDATA sections although almost no current browsers understand these constructs.
However, you're unlikely to encounter these when converting from HTML to XHTML, and
you can generally do without them if you're writing XHTML from scratch.

Mozilla, Opera 5.0 and later, Internet Explorer 5.5 and later, and Netscape 6.0 and later
can parse and display valid XHTML without any difficulties and without requiring page
authors to jump through these hoops. However, since many users have not upgraded
their browsers to the level XHTML requires, user-friendly web designers will be jumping
through these hoops for some years to come.

7.2 Direct Display of XML in Browsers

Ultimately, one hopes that browsers will be able to display not just XHTML documents
but any XML document as well. Since it's too much to ask that browsers provide
semantics for all XML applications both current and yet-to-be-invented, stylesheets will
be attached to each document to provide instructions about how each element will be
rendered.

The current major stylesheet languages are:

Cascading Style Sheets Level 1 (CSS1)

http://lib.ommolketab.ir

Cascading Style Sheets Level 2 (CSS2)

XSL Transformations 1.0

Eventually, there will be still more versions of these, including at least CSS3 and XSLT
2.0. However, let's begin by looking at how and how well existing style languages are
supported by existing browsers.

7.2.1 The xml-stylesheet Processing Instruction

The stylesheet associated with a document is indicated by an xml-stylesheet
processing instruction in the document's prolog, which comes after the XML declaration
but before the root element start-tag. This processing instruction uses pseudoattributes
to describe the stylesheet (that is, they look like attributes but are not attributes because
xml-stylesheet is a processing instruction and not an element).

7.2.1.1 The required href and type pseudoattributes

There are two required pseudoattributes for xml-stylesheet processing
instructions. The value of the href pseudoattribute gives the URL, possibly relative,
where the stylesheet can be found. The type pseudoattribute value specifies the MIME
media type of the stylesheet, text/css for cascading stylesheets, application/xml for
XSLT stylesheets. In Example 7-3 , the xml-stylesheet processing instruction tells

browsers to apply the CSS stylesheet person.css to this document before showing it to
the reader.

Example 7-3. A very simple yet complete XML document

<?xml version="1.0"?>
<?xml-stylesheet href="person.css" type="text/css"?>
<person>
 Alan Turing
</person>

Microsoft Internet Explorer uses type="text/xsl" for XSLT
stylesheets. However, the text/xsl MIME media type has not
been and will not be registered with the IANA. It is a figment of
Microsoft's imagination. In the future, application/xslt+xml
will probably be registered to identify XSLT stylesheets specifically.

In addition to these two required pseudoattributes, there are four optional
pseudoattributes:

http://lib.ommolketab.ir

media

charset

alternate

title

7.2.1.2 The media pseudoattribute

The media pseudoattribute contains a short string identifying for which medium this
stylesheet should be used, for example, paper, onscreen display, television, and so
forth. It can specify either a single medium or a comma-separated list of mediums. The
recognized values include:

screen

Computer monitors
tty

Teletypes, terminals, xterms, and other monospaced, text-only devices
tv

Televisions, WebTVs, video game consoles, and the like
projection

Slides, transparencies, and direct-from-laptop presentations that will be shown to
an audience on a large screen

handheld

PDAs, cell phones, GameBoys, and the like
print

Paper
braille

Tactile feedback devices for the sight-impaired
aural

Screen readers and speech synthesizers
all

All of the previously mentioned plus any that haven't been invented yet

For example, this xml-stylesheet processing instruction says that the CSS

http://lib.ommolketab.ir

stylesheet at the URL http://www.cafeconleche.org/style/titus.css should be used for
television, projection, and print:

<?xml-stylesheet href="http://www.cafeconleche.org/style/titus.css"
 type="text/css" media="tv, projection, print"?>

7.2.1.3 The charset pseudoattribute

The charset pseudoattribute specifies in which character set the stylesheet is written,
using the same values as the encoding declaration uses. For example, to say that the
CSS stylesheet koran.css is written in the ISO-8859-6 character set, you'd use this
processing instruction:

<?xml-stylesheet href="koran.css" type="text/css" charset="ISO-8859-6"?>

7.2.1.4 The alternate and title pseudoattributes

The alternate pseudoattribute specifies whether this is the primary stylesheet for its
media type or an alternate one for special cases. The default value is no , which
indicates that it is the primary stylesheet. If alternate has the value yes , then the
browser may (but does not have to) present the user a choice from among the alternate
stylesheets. If it does offer a choice, then it uses the value of the title pseudoattribute
to tell the user how the stylesheets differ. For example, these three xml-stylesheet
processing instructions offer the user a choice between large, small, and medium text:

<?xml-stylesheet href="big.css" type="text/css"
 alternate="yes" title="Large fonts"?>
<?xml-stylesheet href="small.css" type="text/css"
 alternate="yes" title="Small fonts"?>
<?xml-stylesheet href="medium.css" type="text/css" title="Normal fonts"?>

Browsers that aren't able to ask the user to choose a stylesheet will simply pick the first
nonalternate sheet that most closely matches its media-type (screen for a typical web
browser).

7.2.2 Internet Explorer

Microsoft Internet Explorer 4.0 (IE4) includes an XML parser that can be accessed from
VBScript or JavaScript. This is used internally to support channels and the Active
Desktop. Your own JavaScript and VBScript programs can use this parser to read XML
data and insert it into the web page. However, anything more straightforward, like simply
displaying a page of XML from a specified URL, is beyond IE4's capabilities.
Furthermore, IE4 doesn't understand any stylesheet language when applied to XML.

http://www.cafeconleche.org/style/titus.css
http://lib.ommolketab.ir

Internet Explorer 5 (IE5) and 5.5 (IE 5.5) do understand XML, though their parser is
more than a little buggy; it rejects a number of documents it shouldn't reject, most
embarrassingly the XML 1.0 specification itself. Internet Explorer 6 (IE6) has improved
XML support somewhat, but is still not completely conformant.

IE5 and later can directly display XML files, with or without an associated stylesheet. If
no stylesheet is provided, then IE5 uses a default, built-in XSLT stylesheet that displays
the tree structure of the XML document along with a little DHTML to allow the user to
collapse and expand nodes in the tree. Figure 7-1 shows IE5 displaying Example 6-1
from the last chapter.

Figure 7-1. A document that uses IE5's built-in stylesheet

IE5 also supports parts of CSS Level 1 and a little of CSS Level 2. However, the support
is spotty and inconsistent. Even some aspects of CSS that work for HTML documents
fail when applied to XML documents. IE 5.5 and IE6 slightly improve coverage of CSS,
but don't support all CSS properties and selectors. In fact, many CSS features that work
in IE6 for HTML still don't work when applied to XML documents.

IE5 and IE 5.5 support their own custom version of XSLT, based on a very early working
draft of the XSLT specification. They do not support XSLT 1.0. You can tell the

http://lib.ommolketab.ir

difference by looking at the namespace of the stylesheet. A stylesheet written for IE5
uses the http://www.w3.org/TR/WD-xsl namespace, whereas a stylesheet designed for
standard-compliant XSLT processors uses the http://www.w3.org/1999/XSL/Transform
namespace. Despite superficial similarities, these two languages are not compatible. A
stylesheet written for IE5 will not work with any other XSLT processor, and a stylesheet
written using standard XSLT 1.0 will not work in IE5. IE6 supports both real XSLT and
Microsoft's nonstandard dialect.

7.2.3 Netscape and Mozilla

Netscape 4.x and earlier do not provide any significant support for displaying XML in the
browser. Netscape 4.0.6 and later do use XML internally for some features such as
"What's Related." However, the parser used isn't accessible to the page author, even
through JavaScript.

Mozilla and Netscape 6.0 do fully support display of XML in the browser. CSS Level 2 is
completely supported. Mozilla can read an XML web page, download the associated
CSS stylesheet, apply it to the document, and display the result to the end user, all
completely automatically and more or less exactly as XML on the Web was always
meant to work.

Netscape 6.2 also supports XSLT 1.0, but at the time of this writing the support is fairly
buggy, and really hard to get working. You have to serve the files from a web server (not
the local disk) and the web server must supply the exactly right MIME media types for
the XML document and its stylesheet. Even then the transform fails about half the time.
Mozilla 1.0 does have the best XSLT support of any current browser, so it seems likely
that future versions of Netscape 6 (which is based on earlier betas of Mozilla) will do a
better job. Mozilla also partially supports MathML; and there's a third party effort
underway to support SVG graphics. However, this probably won't be ready for Mozilla
1.0.

7.2.4 Alternative Approaches

Authoring your web pages in XML does not necessarily require serving them in XML.
Fourth-generation and earlier browsers that don't support XML in any significant way will
be with us for years to come. Servicing users with these browsers requires standard,
ordinary HTML that works in any browser back to Mosaic 1.0.

One popular option is to write the pages in XML, but serve them in HTML. When the
server receives a request for an XML document, it automatically converts the document
to HTML and sends the converted document instead. More sophisticated servers can
cache the converted documents. They can also recognize browsers that support XML

http://lib.ommolketab.ir

and send them the raw XML instead.

The preferred way to perform the conversion is with an XSLT stylesheet and a Java
servlet. Indeed, most XSLT engines such as Xalan-J and SAXON include servlets that
do exactly this. However, other schemes are possible, for instance, using PHP or CGI
instead of a servlet. The key is to make sure that browsers only receive what they know
how to read and display. We'll talk more about XSLT in the next chapter.

7.3 Authoring Compound Documents with Modular
XHTML

XHTML 1.1 divides the three XHTML DTDs into individual modules. Parameter entities
connect the modules by including or leaving out particular modules. Modules include:

Structure Module, %xhtml-struct.module;

The absolute bare minimum of elements needed for an HTML document: html ,
head , title , and body

Text Module, %xhtml-text.module;

The basic elements that contain text and other inline elements: abbr , acronym ,
address , blockquote , br , cite , code , dfn , div , em , h1 , h2 , h3 ,
h4 , h5 , h6 , kbd , p , pre , q , samp , span , strong , and var

Hypertext Module, %xhtml-hypertext.module;

Elements used for linking, that is, the a element
List Module, %xhtml-list.module;

Elements used for the three kinds of lists: dl , dt , dd , ul , ol , and li
Applet Module, %xhtml-applet.module;

Elements needed for Java applets: applet and param
Presentation Module, %xhtml-pres.module;

Presentation oriented markup, that is, the b , big , hr , i , small , sub , sup ,
and tt elements

Edit Module, %xhtml-edit.module;

Elements for revision tracking: del and ins
Bi-directional Text Module, %xhtml-bdo.module;

An indication of directionality when text in left-to-right languages, like English and
French, is mixed with text in right-to-left languages, like Hebrew and Arabic

http://lib.ommolketab.ir

Basic Forms Module, %xhtml-basic-form.module;

Forms as defined in HTML 3.2 using the form , input , select , option , and
textarea elements

Forms Module, %xhtml-form.module;

Forms as defined in HTML 4.0 using the form , input , select , option ,
textarea , button , fieldset , label , legend , and optgroup elements

Basic Tables Module, %xhtml-basic-table.module;

Minimal table support including only the table , caption , th , tr , and td
elements

Tables Module, %xhtml-table.module;

More complete table support including not only the table , caption , th , tr ,
and td elements, but also the col , colgroup , tbody , thead , and tfoot
elements

Image Module, %xhtml-image.module;

The img element
Client-side Image Map Module, %xhtml-csismap.module;

The map and area elements, as well as extra attributes for several other elements
needed to support client-side image maps

Server-side Image Map Module, %xhtml-ssismap.module;

Doesn't provide any new elements, but adds the ismap attribute to the img
element

Object Module, %xhtml-object.module;

The object element used to embed executable content like Java applets and
ActiveX controls in web pages

Param Module, %xhtml-param.module;

Used to pass parameters from web pages to their embedded executable content
like Java applets and ActiveX controls

Frames Module, %xhtml-frames.module;

The elements needed to implement frames including frame , frameset , and
noframes

Iframe Module %xhtml-iframe.mod;

The iframe element used for inline frames
Intrinsic Events, %xhtml-events.module;

http://lib.ommolketab.ir

Attributes to support scripting like onsubmit and onfocus that are attached to
elements declared in other modules

Metainformation Module, %xhtml-meta.module;

The meta element used in headers
Scripting Module, %xhtml-script.module;

Elements that support JavaScript and VBScript: script and noscript
Stylesheet Module, %xhtml-style.module;

The style element used to define Cascading Style Sheets
Link Module, %xhtml-link.module;

The link element that specifies relationships to various external documents such
as translations, glossaries, and previous and next pages

Base Module, %xhtml-base.module;

The base element that specifies a URL against which relative URLs are resolved
Target Module, %xhtml-target.module;

The target attribute used to specify the destination frame or window of a link
Style Attribute Module, %xhtml-inlstyle.module;

The style attribute used to attach CSS styles to individual elements in the
document

Name Identification Module, %xhtml-nameident.module;

The name attribute that is a deprecated earlier version of the id attribute
Legacy Module, %xhtml-legacy.module;

Deprecated elements and attributes including the basefont , center , font , s
, strike , and u elements

Ruby Module, %xhtml11-ruby.module;

The ruby , rbc , rtc , rb , rt , and rp elements used in East Asian text to
place small amounts of text next to the body text, generally indicating pronunciation

7.3.1 Mixing XHTML into Your Applications

The advantage to dividing HTML into all these different modules is that you can pick and
choose the pieces you want. If your documents use tables, you include the table
module. If your documents don't use tables, then you can leave it out. You get only the
functionality you actually need.

For example, let's suppose you're designing a DTD for a catalog. Each item in the

http://lib.ommolketab.ir

catalog is a catalog_entry element. Each catalog_entry contains a name , a
price , an item_number , a color , a size , and various other common elements
you're likely to find in catalogs. Furthermore, each catalog_entry contains a
description of the item. The description contains formatted narrative text. In
other words, it looks something like this:

 <catalog_entry>
 <name>Aluminum Duck Drainer</name>
 <price>34.99</price>
 <item_number>54X8</item_number>
 <color>silver</color>
 <size>XL</size>
 <description>
 <p>
 This sturdy silver colored
 sink stopper dignifies the finest
 kitchens. It makes a great gift for
 </p>

 Christmas
 Birthdays
 Mother's Day

 <p>and all other occasions!</p>
 </description>
 </catalog_entry>

It's easy enough to write this markup. The tricky part is validating it. Rather than
reinventing a complete DTD to describe all the formatting that's needed in
straightforward narrative descriptions, you can reuse XHTML. The XHTML 1.1 DTD
makes heavy use of parameter entity references to define content specifications and
attribute lists for the different elements. Three entity references are of particular note:

%Inline.mix;

A choice containing all the elements that don't generally require a line break such as em , a , and q .
That is, it resolves to:

br | span | em | strong | dfn | code | samp | kbd | var | cite | abbr |
acronym | q | tt | i | b | big | small | sub | sup | bdo | a | img | map
| applet | ruby | input | select | textarea | label | button | ins | del
| script | noscript
%Block.mix;

http://lib.ommolketab.ir

A choice containing all the elements that generally require a line break like p , blockquote , and
ul . That is, it resolves to:

h1 | h2 | h3| h4 | h5 | h6| ul| ol| dl| p | div | pre| blockquote
| address | hr | table | form | fieldset | ins | del | script | noscript
%Flow.mix;

A choice containing both of the previous; that is, it resolves to:
h1 | h2 | h3 | h4 | h5 | h6 | ul | ol | dl | p | div | pre | blockquote
| address | hr | table | form | fieldset | br | span | em | strong | dfn
| code | samp | kbd | var | cite | abbr | acronym | q | tt | i | b | big
| small | sub | sup | bdo | a | img | map | applet | ruby | input |
select | textarea | label | button | ins | del | script | noscript

You can declare that the description element contains essentially any legal XHTML
fragment, like this:

<!ENTITY % xhtml PUBLIC "-//W3C//DTD XHTML 1.1//EN" "xhtml11.dtd">
%xhtml;
<!ELEMENT description (#PCDATA | %Flow.mix;)*>

If you wanted to require description to contain only block elements at the top level,
you'd instead declare it like this:

<!ENTITY % xhtml PUBLIC "-//W3C//DTD XHTML 1.1//EN" "xhtml11.dtd">
%xhtml;
<!ELEMENT description ((%Block.mix;)*)>

The first two lines import the XHTML driver DTD from a relative URL. You can get this
DTD and the other local files it depends on from the zip archive at
http://www.w3.org/TR/xhtml11/xhtml11.zip . The second line uses an entity reference
defined in that DTD to set the content specification for the description element.

The XHTML 1.1 driver DTD imports modules from two other W3C
specifications, Modularization of XHTML
(http://www.w3.org/TR/xhtml-modularization) and Ruby Annotation
(http://www.w3.org/TR/ruby), using absolute URLs that point to the
W3C's web site. If you're not reliably connected to the Internet at high
speed, you might want to use the flat version of this DTD, xhtml11-
flat.dtd , instead. This bundles all the different modules in a single
file.

Unfortunately, this goes a little too far. It includes not only the pieces of HTML you want,
such as p , em , and ul , but also a lot of elements you don't want in a printed catalog,

http://www.w3.org/TR/xhtml11/xhtml11.zip
http://lib.ommolketab.ir

such as a , applet , map , and a lot more. However, you can omit these. The main
XHTML DTD imports each module inside an INCLUDE /IGNORE block, such as this one
for the hypertext module:

<!-- Hypertext Module (required) -->
<!ENTITY % xhtml-hypertext.module "INCLUDE" >
<![%xhtml-hypertext.module;[
<!ENTITY % xhtml-hypertext.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Hypertext 1.0//EN"
 "http://www.w3.org/TR/xhtml-modularization/DTD/xhtml-hypertext-1.mod" >
%xhtml-hypertext.mod;]]>

If the %xhtml-hypertext.module; parameter entity reference has previously been
defined as IGNORE instead of INCLUDE , that declaration takes precedence; all the
elements and attributes defined in the hypertext module (specifically, the a element) are
left out of the resulting DTD.

Let's say you just want the Structure, Basic Text, and List modules. Then you use a
driver DTD that redefines the parameter entity references for the other modules as
IGNORE . Example 7-4 demonstrates.

Example 7-4. A catalog DTD that uses basic XHTML but omits a lot of elements

<!ELEMENT catalog (catalog_entry*)>
<!ELEMENT catalog_entry (name, price, item_number, color, size, description)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT size (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT item_number (#PCDATA)>
<!ELEMENT color (#PCDATA)>

<!-- throw away the modules we don't need -->
<!ENTITY % xhtml-hypertext.module "IGNORE" >
<!ENTITY % xhtml-ruby.module "IGNORE" >
<!ENTITY % xhtml-edit.module "IGNORE" >
<!ENTITY % xhtml-pres.module "IGNORE" >
<!ENTITY % xhtml-applet.module "IGNORE" >
<!ENTITY % xhtml-param.module "IGNORE" >
<!ENTITY % xhtml-bidi.module "IGNORE" >
<!ENTITY % xhtml-form.module "IGNORE" >
<!ENTITY % xhtml-table.module "IGNORE" >
<!ENTITY % xhtml-image.module "IGNORE" >

http://lib.ommolketab.ir

<!ENTITY % xhtml-csismap.module "IGNORE" >
<!ENTITY % xhtml-ssismap.module "IGNORE" >
<!ENTITY % xhtml-meta.module "IGNORE" >
<!ENTITY % xhtml-script.module "IGNORE" >
<!ENTITY % xhtml-style.module "IGNORE" >
<!ENTITY % xhtml-link.module "IGNORE" >
<!ENTITY % xhtml-base.module "IGNORE" >

<!-- import the XHTML DTD, at least those parts we aren't ignoring.
 You will probably need to change the system ID to point to
 whatever directory you've stored the DTD in.
-->
<!ENTITY % xhtml11.mod PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "xhtml11/DTD/xhtml11.dtd">
%xhtml11.mod;

<!ELEMENT description (%Block.mix;)+>

7.3.2 Mixing Your Applications into XHTML

An even more important feature of Modular XHTML is the option to add new elements
that HTML doesn't support. For instance, to include SVG pictures in your documents,
you just have to import the SVG DTD and redefine the Misc.extra parameter entity
to allow the SVG root element svg . (This only lets you validate XHTML document that
contain SVG markup. It doesn't magically give the browser the ability to render these
pictures.) You accomplish this by redefining any of three parameter entity references:

%Inline.extra;

Place the root elements of your application here if you want them to be added to
the content specifications of inline elements such as span , em , code , and
textarea .

%Block.extra;

Place the root elements of your application here if you want them to be added to
the content specifications of block elements such as div , h1 , p , and pre .

%Misc.extra;

Place the root elements of your application here if you want them to be added to
the content specifications of both block and inline elements.

The definition of each of these parameter entities should be a list of the elements you
want to add to the content specification separated by vertical bars and beginning with a

http://lib.ommolketab.ir

vertical bar. For instance, to include MathML equations as both inline and block
elements, you'd import the MathML DTD and redefine the Misc.extra parameter
entity to include the MathML root element math like this:

<!ENTITY % Misc.extra "| math">

If you wanted to allow block-level MathML equations and SVG pictures, you'd import
their respective DTDs and redefine the Block.extra parameter entity like this:

<!ENTITY % Block.extra "| math | svg">

Order is important here. The MathML DTD and the Block.extra declaration both
have to be parsed before the XHTML DTD is parsed. Example 7-5 demonstrates with a
DTD that mixes MathML 1.0 and XHTML, throwing in a namespace declaration for good
measure.

Example 7-5. A DTD that mixes MathML into XHTML and MathML

<!ENTITY % mathml SYSTEM "mathml/mathml.dtd">
%mathml;

<!ATTLIST math xmlns CDATA #FIXED "http://www.w3.org/1998/Math/MathML">

<!ENTITY % Misc.extra "| math">

<!ENTITY % xhtml PUBLIC "-//W3C//DTD XHTML 1.1//EN" "xhtml11/DTD/xhtml11.dtd">
%xhtml;

You can also mix new elements like math into individual elements like p without
changing all the other block elements. The content specification for each XHTML
element is defined by a parameter entity named Element .content , for example,
%p.content; , %em.content; , %td.content; and so forth. The standard
definition of p.content looks like this:

<!ENTITY % p.content
 "(#PCDATA | %Inline.mix;)*" >

To allow the math element to be a child of p elements, but not of every other block
element, you would redefine p.content like this:

<!ENTITY % p.content "(#PCDATA | %Inline.mix; | math)*" >

The XHTML 1.1 DTD is quite sophisticated. There are a lot more tricks you can play by
mixing and matching different parts of the DTD, mostly by defining and redefining

http://lib.ommolketab.ir

different parameter entity references. The easiest way to learn about these is by reading
the raw DTDs. In many cases, the comments in the DTD are more descriptive and
accurate than the prose specification.

7.3.3 Mixing Your Own XHTML

The XHTML 1.1 DTD does not include all of the modules that are available. For
instance, frames and the legacy presentational elements are deliberately omitted and
cannot easily be turned on. This is the W3C's not-so-subtle way of telling you that you
shouldn't be using these elements in the first place. If you do want to use them, you'll
need to create your own complete DTD using the individual modules you require.

To do this, first you must define the namespace URI and prefixed names for your
elements and attributes. The W3C provides a template you can adapt for this purpose at
http://www.w3.org/TR/xhtml-modularization/DTD/templates/template-qname-1.mod .
Example 7-6 demonstrates with a DTD fragment that defines the names for the today
and quoteoftheday elements that one of the authors uses on his web sites. The
module is based on the W3C-provided template.

Example 7-6. A DTD module to define the today and quoteoftheday elements'
names and namespaces

<!-- ... -->
<!-- CafeML Qualified Names Module -->
<!-- file: cafe-qname-1.mod

 This is an extension of XHTML, a reformulation of HTML as
 a modular XML application.

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//Elliotte Rusty Harold//ELEMENTS CafeML Qualified Names 1.0//EN"
 "cafe-qname-1.mod"

 Revisions:
 (none)
 ... -->

<!-- NOTES: Using the CafeML Qualified Names Extension

 This is a module for a markup language 'CafeML',
 which currently declares two extension elements, quoteoftheday

http://www.w3.org/TR/xhtml-modularization/DTD/templates/template-qname-1.mod
http://lib.ommolketab.ir

 and today. The parameter entity naming convention uses uppercase
 for the entity name and lowercase for namespace prefixes, hence
 this example uses 'CAFEML' and 'cafeml' respectively.

 Please note the three case variants:

 'CafeML' the human-readable markup language name
 'CAFEML' used as a parameter entity name prefix
 'cafeml' used as the default namespace prefix

 The %NS.prefixed; conditional section keyword must be declared
 as "INCLUDE" in order to allow prefixing be used.
-->

<!-- :: -->

<!-- CafeML Qualified Names

 This module is contained in two parts, labeled Section 'A' and 'B':

 Section A declares parameter entities to support namespace-
 qualified names, namespace declarations, and name prefixing
 for CafeML.

 Section B declares parameter entities used to provide
 namespace-qualified names for all CafeML element types.

 The recommended step-by-step program for creating conforming
 modules is enumerated below, and spans both the CafeML Qualified
 Names Template and CafeML Extension Template modules.
-->
<!-- Section A: CafeML XML Namespace Framework :::::::::::::::::::: -->

<!-- 1. Declare a %CAFEML.prefixed; conditional section keyword, used
 to activate namespace prefixing. The default value should
 inherit '%NS.prefixed;' from the DTD driver, so that unless
 overridden, the default behavior follows the overall DTD
 prefixing scheme.
-->
<!ENTITY % NS.prefixed "IGNORE" >
<!ENTITY % CAFEML.prefixed "%NS.prefixed;" >

http://lib.ommolketab.ir

<!-- 2. Declare a parameter entity (e.g., %CAFEML.xmlns;) containing
 the URI reference used to identify the Module namespace:
-->
<!ENTITY % CAFEML.xmlns "http://www.cafeconleche.org/xmlns/cafeml" >

<!-- 3. Declare parameter entities (eg., %CAFEML.prefix;) containing
 the default namespace prefix string(s) to use when prefixing
 is enabled. This may be overridden in the DTD driver or the
 internal subset of a document instance. If no default prefix
 is desired, this may be declared as an empty string.

 NOTE: As specified in [XMLNAMES], the namespace prefix serves
 as a proxy for the URI reference, and is not in itself significant.
-->
<!ENTITY % CAFEML.prefix "cafeml" >

<!-- 4. Declare parameter entities (eg., %CAFEML.pfx;) containing the
 colonized prefix(es) (eg., '%CAFEML.prefix;:') used when
 prefixing is active, an empty string when it is not.
-->
<![%CAFEML.prefixed;[
<!ENTITY % CAFEML.pfx "%CAFEML.prefix;:" >
]]>
<!ENTITY % CAFEML.pfx "" >

<!-- 5. The parameter entity %CAFEML.xmlns.extra.attrib; may be
 redeclared to contain any non-CafeML namespace declaration
 attributes for namespaces embedded in CafeML. When prefixing
 is active it contains the prefixed xmlns attribute and any
 namespace declarations embedded in CafeML, otherwise an empty
 string.
-->
<![%CAFEML.prefixed;[
<!ENTITY % CAFEML.xmlns.extra.attrib
 "xmlns:%CAFEML.prefix; %URI.datatype; #FIXED '%CAFEML.xmlns;'" >
]]>
<!ENTITY % CAFEML.xmlns.extra.attrib "" >

<!ENTITY % XHTML.xmlns.extra.attrib
 "%CAFEML.xmlns.extra.attrib;"
>

http://lib.ommolketab.ir

<!-- Section B: CafeML Qualified Names ::::::::::::::::::::::::::::: -->

<!-- This section declares parameter entities used to provide
 namespace-qualified names for all CafeML element types.
-->
<!-- module: cafe-1.mod -->
<!ENTITY % CAFEML.quoteoftheday.qname "%CAFEML.pfx;quoteoftheday" >
<!ENTITY % CAFEML.today.qname "%CAFEML.pfx;today" >

<!-- end of cafe-qname-1.mod -->

Next you have to define the elements and attributes with these names in a module of
your own creation. The W3C provides a template, which you can adapt for this purpose,
at http://www.w3.org/TR/xhtml-modularization/DTD/templates/template-1.mod . This
template uses the same techniques and follows the same patterns as XHTML's built-in
modules, for example, parameter entity references that resolve to INCLUDE or IGNORE
.

Example 7-7 demonstrates with a DTD fragment that defines the today and
quoteoftheday elements. The today element can contain any block-level content
through the Block.mix parameter entity and has a required date attribute. The
quoteoftheday element always contains exactly one blockquote element
followed by exactly one p element with no attributes.

Example 7-7. A DTD module to define the today and quoteoftheday elements

<!-- .. -->
<!-- CAFEML Extension Template Module -->
<!-- file: CafeML-1.mod

 This is an extension of XHTML, a reformulation of HTML as
 a modular XML application.

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:

 PUBLIC "Elliotte Rusty Harold//ELEMENTS CafeML Qualified Names 1.0//EN"
 SYSTEM "CafeML-1.mod"

 Revisions:
 (none)
 ... -->

http://lib.ommolketab.ir

<!-- Extension Template

 This sample template module declares two extension elements,
 today and quoteoftheday. The parameter entity naming
 convention uses uppercase for the entity name and lowercase
 for namespace prefixes. Hence this example uses 'CAFEML' and
 'cafe' respectively.

 This module declares parameter entities used to provide
 namespace-qualified names for all CAFEML element types,
 as well as an extensible framework for attribute-based
 namespace declarations on all element types.

 The %NS.prefixed; conditional section keyword must be
 declared as "INCLUDE" in order to allow prefixing to be used.
 By default, foreign (i.e., non-XHTML) namespace modules should
 inherit %NS.prefixed; from XHTML, but this can be overridden
 when prefixing of only the non-XHTML markup is desired.

 XHTML's default value for the 'namespace prefix' is an empty
 string. The Prefix value can be redeclared either in a DTD
 driver or in a document's internal subset as appropriate.

 NOTE: As specified in [XMLNAMES], the namespace prefix serves as
 a proxy for the URI reference, and is not in itself significant.
-->

<!-- .. -->

<!-- 1. Declare the xmlns attributes used by CAFEML dependent on whether
 CAFEML's prefixing is active. This should be used on all CAFEML
 element types as part of CAFEML's common attributes.

 If the entire DTD is namespace-prefixed, CAFEML should inherit
 %NS.decl.attrib;. Otherwise it should declare %NS.decl.attrib;
 plus a default xmlns attribute on its own element types.
-->
<![%CAFEML.prefixed;[
<!ENTITY % CAFEML.xmlns.attrib
 "%NS.decl.attrib;"
>

http://lib.ommolketab.ir

]]>
<!ENTITY % CAFEML.xmlns.attrib
 "xmlns %URI.datatype; #FIXED '%CAFEML.xmlns;'"
>

<!-- now include the module's various markup declarations -->

<!ENTITY % CAFEML.Common.attrib
 "%CAFEML.xmlns.attrib;
 id ID #IMPLIED"
>

<!-- 2. In the attribute list for each element, declare the XML Namespace
 declarations that are legal in the document instance by including
 the %NamespaceDecl.attrib; parameter entity in the ATTLIST of
 each element type.
-->

<!ENTITY % CAFEML.today.qname "today" >
<!ELEMENT %CAFEML.today.qname; (%Flow.mix;)* >
<!ATTLIST %CAFEML.today.qname;
 %CAFEML.Common.attrib;
 date CDATA #REQUIRED
>

<!ENTITY % CAFEML.quoteoftheday.qname "quoteoftheday" >
<!ELEMENT %CAFEML.quoteoftheday.qname; (%blockquote.qname;,
 %p.qname;) >
<!ATTLIST %CAFEML.quoteoftheday.qname;
 %CAFEML.Common.attrib;
>

<!-- 3. If the module adds attributes to elements defined in modules that
 do not share the namespace of this module, declare those
 attributes so that they use the %CAFEML.pfx; prefix. For example:

<!ENTITY % CAFEML.img.myattr.qname "%CAFEML.pfx;myattr" >
<!ATTLIST %img.qname;
 %CAFEML.img.myattr.qname; CDATA #IMPLIED
>

http://lib.ommolketab.ir

 This would add a myattr attribute to the img element of the Image Module,
 but the attribute's name will be the qualified name, including prefix,
 when prefixes are selected for a document instance.

 We do not need to do this for this module.

-->

<!-- end of CafeML-1.mod -->

Next you need to write a document model module that defines the parameter entities
used for content specifications in the various modules-not only the CafeML modules,
but the XHTML modules as well. (This is how your elements become part of the various
XHTML elements.) The W3C does not provide a template for this purpose. However, it's
normally easy to adapt the document model module from either XHTML 1.1 or XHTML
Basic to include your new elements. Example 7-8 is a document model module based
on the XHTML 1.1 document model module.

Example 7-8. A document model module for CafeML

<!-- .. -->
<!-- CafeML Model Module -->
<!-- file: CafeML-model-1.mod

 PUBLIC "-//Elliotte Rusty Harold//ELEMENTS XHTML CafeML Model 1.0//EN"
 SYSTEM "CafeML-model-1.mod"

 xmlns:cafeml="http://www.cafeconleche.org/xmlns/cafeml"
 .. -->

<!-- Define the content model for Misc.extra -->
<!ENTITY % Misc.extra
 "| %CAFEML.today.qname; | %CAFEML.quoteoftheday.qname; ">

<!-- Inline Elements -->

<!ENTITY % HeadOpts.mix
 "(%meta.qname;)*" >

<!ENTITY % I18n.class "" >

<!ENTITY % InlStruct.class "%br.qname; | %span.qname;" >

http://lib.ommolketab.ir

<!ENTITY % InlPhras.class
 "| %em.qname; | %strong.qname; | %dfn.qname; | %code.qname;
 | %samp.qname; | %kbd.qname; | %var.qname; | %cite.qname;
 | %abbr.qname; | %acronym.qname; | %q.qname;" >

<!ENTITY % InlPres.class "" >

<!ENTITY % Anchor.class "| %a.qname;" >

<!ENTITY % InlSpecial.class "| %img.qname; " >

<!ENTITY % Inline.extra "" >

<!-- %Inline.class; includes all inline elements,
 used as a component in mixes
-->
<!ENTITY % Inline.class
 "%InlStruct.class;
 %InlPhras.class;
 %InlPres.class;
 %Anchor.class;
 %InlSpecial.class;"
>

<!-- %InlNoAnchor.class; includes all non-anchor inlines,
 used as a component in mixes
-->

<!ENTITY % InlNoAnchor.class
 "%InlStruct.class;
 %InlPhras.class;
 %InlPres.class;
 %InlSpecial.class;"
>

<!-- %InlNoAnchor.mix; includes all non-anchor inlines
-->
<!ENTITY % InlNoAnchor.mix
 "%InlNoAnchor.class;
 %Misc.class;"
>

http://lib.ommolketab.ir

<!-- %Inline.mix; includes all inline elements, including %Misc.class;
-->
<!ENTITY % Inline.mix
 "%Inline.class;
 %Misc.class;"
>

<!-- Block Elements -->
<!ENTITY % Heading.class
 "%h1.qname; | %h2.qname; | %h3.qname;
 | %h4.qname; | %h5.qname; | %h6.qname;" >

<!ENTITY % List.class "%ul.qname; | %ol.qname; | %dl.qname;" >

<!ENTITY % BlkStruct.class "%p.qname; | %div.qname;" >

<!ENTITY % BlkPhras.class
 "| %pre.qname; | %blockquote.qname; | %address.qname;" >

<!ENTITY % BlkPres.class "| %hr.qname;" >

<!ENTITY % Block.extra "" >

<!ENTITY % Table.class "| %table.qname;" >

<!ENTITY % BlkSpecial.class
 "%Table.class;"
>

<!-- %Block.class; includes all block elements,
 used as an component in mixes
-->
<!ENTITY % Block.class
 "%BlkStruct.class;
 %BlkPhras.class;
 %BlkPres.class;
 %BlkSpecial.class;
 %Block.extra;"
>

http://lib.ommolketab.ir

<!-- %Block.mix; includes all block elements plus %Misc.class;
-->
<!ENTITY % Block.mix
 "%Heading.class;
 | %List.class;
 | %Block.class;
 %Misc.class;"
>

<!-- All Content Elements -->

<!-- %Flow.mix; includes all text content, block and inline
-->
<!ENTITY % Flow.mix
 "%Heading.class;
 | %List.class;
 | %Block.class;
 | %Inline.class;
 %Misc.class;"
>

<!-- special content model for pre element -->
<!ENTITY % pre.content
 "(#PCDATA
 | %Inline.class;)*"
>

<!-- end of CafeML-model-1.mod -->

Finally, replace the standard XHTML DTD, which only imports the normal XHTML
modules, with a new one that imports the standard modules you want, as well as any
new modules you've defined. Again, the W3C offers a template for this purpose, which
you can download from http://www.w3.org/TR/xhtml-
modularization/DTD/templates/template.dtd . This template is a minimal DTD that makes
the necessary imports and declares the necessary parameter entity references upon
which all the other modules depend. Example 7-9 is a DTD based on this template. It
merges in the element module defined in Example 7-7 , as well as the standard XHTML
tables, images, meta, and block presentation modules.

Example 7-9. An XHTML DTD that mixes in the Cafe DTD

<!-- ... -->

http://lib.ommolketab.ir

<!-- XHTML + CafeML DTD ... -->
<!-- file: CafeML.dtd -->

<!-- CafeML DTD -->
<!-- Please use this formal public identifier to identify it:
 "-//Elliotte Rusty Harold//DTD XHTML CafeDTD//EN"
-->
<!ENTITY % XHTML.version "-//W3C//DTD XHTML CafeDTD//EN" >

<!-- Bring in any qualified name modules outside of XHTML -->
<!ENTITY % CAFEML-qname.mod SYSTEM "cafe-qname-1.mod">
%CAFEML-qname.mod;

<!-- Define any extra prefixed namespaces that this DTD relies upon -->
<!ENTITY NS.prefixed.extras.attrib "" >

<!-- Define the Content Model file for the framework to use -->
<!ENTITY % xhtml-model.mod SYSTEM "CafeML-model-1.mod" >

<!-- reserved for future use with document profiles -->
<!ENTITY % XHTML.profile "" >

<!-- Bi-directional text support
 This feature-test entity is used to declare elements
 and attributes used for internationalization support.
 Set it to INCLUDE or IGNORE as appropriate for your markup language.
-->
<!ENTITY % XHTML.bidi "IGNORE" >

<!-- ::: -->
<!-- Pre-Framework Redeclaration placeholder -->
<!-- This serves as a location to insert markup declarations
 into the DTD prior to the framework declarations.
-->
<!ENTITY % xhtml-prefw-redecl.module "IGNORE" >
<![%xhtml-prefw-redecl.module;[
%xhtml-prefw-redecl.mod;
<!-- end of xhtml-prefw-redecl.module -->]]>

<!-- The events module should be included here if you need it. In this
 skeleton it is IGNOREd.

http://lib.ommolketab.ir

-->
<!ENTITY % xhtml-events.module "IGNORE" >

<!-- Modular Framework Module -->
<!ENTITY % xhtml-framework.module "INCLUDE" >
<![%xhtml-framework.module;[
<!ENTITY % xhtml-framework.mod
 PUBLIC "-//W3C//ENTITIES XHTML 1.1 Modular Framework 1.0//EN"
 "xhtml-framework-1.mod" >
%xhtml-framework.mod;]]>

<!-- Post-Framework Redeclaration placeholder -->
<!-- This serves as a location to insert markup declarations
 into the DTD following the framework declarations.
-->
<!ENTITY % xhtml-postfw-redecl.module "IGNORE" >
<![%xhtml-postfw-redecl.module;[
%xhtml-postfw-redecl.mod;
<!-- end of xhtml-postfw-redecl.module -->]]>

<!-- Text Module (required) -->
<!ENTITY % xhtml-text.module "INCLUDE" >
<![%xhtml-text.module;[
<!ENTITY % xhtml-text.mod
 PUBLIC "-//W3C//ELEMENTS XHTML 1.1 Text 1.0//EN"
 "xhtml-text-1.mod" >
%xhtml-text.mod;]]>

<!-- Hypertext Module (required) -->
<!ENTITY % xhtml-hypertext.module "INCLUDE" >
<![%xhtml-hypertext.module;[
<!ENTITY % xhtml-hypertext.mod
 PUBLIC "-//W3C//ELEMENTS XHTML 1.1 Hypertext 1.0//EN"
 "xhtml-hypertext-1.mod" >
%xhtml-hypertext.mod;]]>

<!-- Lists Module (required) -->
<!ENTITY % xhtml-list.module "INCLUDE" >
<![%xhtml-list.module;[
<!ENTITY % xhtml-list.mod
 PUBLIC "-//W3C//ELEMENTS XHTML 1.1 Lists 1.0//EN"

http://lib.ommolketab.ir

 "xhtml-list-1.mod" >
%xhtml-list.mod;]]>

<!-- Your modules can be included here. Use the basic form defined above,
 and be sure to include the public FPI definition in your catalog file
 for each module that you define. You may also include W3C-defined
 modules at this point.
-->
<!-- CafeML Module (custom module) -->
<!ENTITY % cafeml.module "INCLUDE" >
<![%cafeml.module;[
<!ENTITY % cafeml.mod
 PUBLIC "-//Cafe con Leche//XHTML Extensions today 1.0//EN"
 "CafeML-1.mod" >
%cafeml.mod;]]>

<!-- Tables Module (optional) -->
<!ENTITY % xhtml-table.module "INCLUDE" >
<![%xhtml-table.module;[
<!ENTITY % xhtml-table.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Tables 1.0//EN"
 "xhtml-table-1.mod" >
%xhtml-table.mod;]]>

<!-- Meta Module (optional) -->
<!ENTITY % xhtml-meta.module "INCLUDE" >
<![%xhtml-meta.module;[
<!ENTITY % xhtml-meta.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Meta 1.0//EN"
 "xhtml-meta-1.mod" >
%xhtml-meta.mod;]]>

<!-- Image Module (optional) -->
<!ENTITY % xhtml-image.module "INCLUDE" >
<![%xhtml-image.module;[
<!ENTITY % xhtml-image.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Images 1.0//EN"
 "xhtml-image-1.mod" >
%xhtml-image.mod;]]>

<!-- Block Presentation Module (optional) -->

http://lib.ommolketab.ir

<!ENTITY % xhtml-blkpres.module "INCLUDE" >
<![%xhtml-blkpres.module;[
<!ENTITY % xhtml-blkpres.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Block Presentation 1.0//EN"
 "xhtml-blkpres-1.mod" >
%xhtml-blkpres.mod;]]>

<!-- Document Structure Module (required) -->
<!ENTITY % xhtml-struct.module "INCLUDE" >
<![%xhtml-struct.module;[
<!ENTITY % xhtml-struct.mod
 PUBLIC "-//W3C//ELEMENTS XHTML 1.1 Document Structure 1.0//EN"
 "xhtml-struct-1.mod" >
%xhtml-struct.mod;]]>

<!-- end of CAFEML DTD .. -->
<!-- ... -->

7.4 Prospects for Improved Web-Search Methods

Part of the hype of XML has been that web search engines will finally understand what a
document means by looking at its markup. For instance, you can search for the movie
Sneakers and just get back hits about the movie without having to sort through "Internet
Wide Area `Tiger Teamers' mailing list," "Children's Side Zip Sneakers Recalled by
Reebok," "Infant's `Little Air Jordan' Sneakers Recalled by NIKE," "Sneakers.com -
Athletic shoes from Nike, Reebok, Adidas, Fila, New," and the 32,395 other results that
Google pulled up on this search that had nothing to do with the movie.[1]

In practice, this is still vapor, mostly because few web pages are available on the
frontend in XML, even though more and more backends are XML. The search-engine
robots only see the frontend HTML. As this slowly changes, and as the search engines
get smarter, we should see more and more useful results. Meanwhile, it's possible to
add some XML hints to your HTML pages that knowledgeable search engines can take
advantage of using the Resource Description Framework (RDF), the Dublin Core, and
the robots processing instruction.

7.4.1 RDF

The Resource Description Framework (RDF, http://www.w3.org/RDF/) can be
understood as an XML encoding for a particularly simple data model. An RDF document

http://lib.ommolketab.ir

describes resources. Each resource has zero or more properties. Each property has a
name and a value. The value may itself be another resource.

The root element of an RDF document is an RDF element. Each resource the RDF
element describes is represented as a Description element whose about attribute
contains a URI or other identifier pointing to the resource described. Each child element
of the Description element represents a property of the resource. The contents of
that child element are the value of that property. All RDF elements like RDF and
Description are placed in the http://www.w3.org/1999/02/22-rdf-syntax-ns#
namespace. Property values generally come from other namespaces.

For example, suppose we want to say that the book XML in a Nutshell has the authors
W. Scott Means and Elliotte Rusty Harold. In other words, we want to say that the
resource identified by the URI urn:isbn:0596002920 has one author property with the
value "W. Scott Means" and another author property with the value "Elliotte Rusty
Harold." Example 7-10 does this.

Example 7-10. A simple RDF document saying that W. Scott Means and Elliotte
Rusty Harold are the authors of XML in a Nutshell

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <rdf:Description about="urn:isbn:0596002920">
 <author>Elliotte Rusty Harold</author>
 <author>W. Scott Means</author>
 </rdf:Description>

</rdf:RDF>

In this simple example the values of the author properties are merely text. However, they
could be XML as well. Indeed, they could be other RDF elements.

There's more to RDF, including containers, schemas, and nested properties. However,
this will be sufficient description for web metadata.

7.4.2 Dublin Core

The Dublin Core, http://purl.org/dc/ , is a standard set of ten information items with
specified semantics that reflect the sort of data you'd be likely to find in a card catalog or
annotated bibliography. These are:

Title

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://lib.ommolketab.ir

Fairly self-explanatory; this is the name by which the resource is known. For
instance, the title of this book is "XML in a Nutshell."

Creator

The person or organization who created the resource, e.g., a painter, author,
illustrator, composer, and so on. For instance, the creators of this book are W.
Scott Means and Elliotte Rusty Harold.

Subject

A list of keywords, very likely from some other vocabulary such as the Dewey
Decimal System or Yahoo categories, identifying the topics of the resource. For
instance, using the Library of Congress Subject Headings vocabulary, the subject
of this book is "XML (Document markup language)."

Description

Typically, a brief amount of text describing the content of the resource in prose, but
it may also include a picture, a table of contents, or any other description of the
resource. For instance, a description of this book might be "A brief tutorial on and
quick reference to XML and related technologies and specifications."

Publisher

The name of the person, company, or organization who makes the resource
available. For instance, the publisher of this book is "O'Reilly & Associates."

Contributor

A person or organization who made some contribution to the resource but is not
the primary creator of the resource. For example, the editors of this book, Laurie
Petrycki, Simon St.Laurent, and Jeni Tennison, might be identified as contributors,
as would Susan Hart, the artist who drew the picture on the cover.

Date

The date when the book was created or published, normally given in the form
YYYY -MM -DD . For instance, this book's date might be 2002-05-23.

Type

The abstract kind of resource such as image, text, sound, or software. For
instance, a description of this book would have the type text.

Format

For hard objects like books, the physical dimensions of the resource. For instance,
the paper version of XML in a Nutshell has the dimensions 6" x 9". For digital
objects like web pages, this is possibly the MIME media type. For instance, an
online version of this book would have the Format text/html .

http://lib.ommolketab.ir

Identifier

A formal identifier for the resource, such as an ISBN number, a URI, or a Social
Security number. This book's identifier is "0596002920."

Source

The resource from which the present resource was derived. For instance, the
French translation of this book might reference the original English edition as its
source.

Language

The language in which this resource is written, typically an ISO-639 language code,
optionally suffixed with a hyphen and an ISO-3166 country code. For instance, the
language for this book is en-US. The language for the French translation of this
book might be fr-FR.

Relation

A reference to a resource that is in some way related to the current one, generally
using a formal identifier, such as a URI or an ISBN number. For instance, this
might refer to the web page for this book.

Coverage

The location, time, or jurisdiction the resource covers. For instance, the coverage
of this book might be the U.S., Canada, Australia, the U.K., and Ireland. The
coverage of the French translation of this book might be France, Canada, Haiti,
Belgium, and Switzerland. Generally these will be listed in some formal syntax
such as country codes.

Rights

Information about copyright, patent, trademark and other restrictions on the content
of the resource. For instance, a rights statement about this book may say
"Copyright 2002 O'Reilly & Associates."

Dublin Core can be encoded in a variety of forms including HTML META tags and RDF.
Here we concentrate on its encoding in RDF. Typically, each resource is described with
an rdf:Description element. This element contains child elements for as many of
the Dublin Core information items as are known about the resource. The name of each
of these elements matches the name of one of the 14 Dublin Core properties. These are
placed in the http://purl.org/dc/elements/1.1/ namespace. Example 7-11 shows an RDF-
encoded Dublin Core description of this book.

Example 7-11. An RDF-encoded Dublin Core description for XML in a Nutshell

http://lib.ommolketab.ir

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description about="urn:isbn:0596002920">
 <dc:Title>XML in a Nutshell</dc:Title>
 <dc:Creator>W. Scott Means</dc:Creator>
 <dc:Creator>Elliotte Rusty Harold</dc:Creator>
 <dc:Subject>XML (Document markup language)</dc:Subject>.
 <dc:Description>
 A brief tutorial on and quick reference to XML and
 related technologies and specifications
 </dc:Description>
 <dc:Publisher>O'Reilly & Associates</dc:Publisher>
 <dc:Contributor>Laurie Petrycki</dc:Contributor>
 <dc:Contributor>Simon St. Laurent</dc:Contributor>
 <dc:Contributor>Jeni Tennison</dc:Contributor>
 <dc:Contributor>Susan Hart</dc:Contributor>
 <dc:Date>2002-04-23</dc:Date>
 <dc:Type>text</dc:Type>
 <dc:Format>6" x 9"</dc:Format>
 <dc:Identifier>0596002920</dc:Identifier>
 <dc:Language>en-US</dc:Language>
 <dc:Relation>http://www.oreilly.com/catalog/xmlnut/</dc:Relation>
 <dc:Coverage>US UK ZA CA AU NZ</dc:Coverage>
 <dc:Rights>Copyright 2002 O'Reilly & Associates</dc:Rights>
 </rdf:Description>

</rdf:RDF>

There is as yet no standard for how an RDF document should be associated with the
XML document it describes. One possibility is for the rdf:RDF element to be
embedded in the document it describes, for instance, as a child of the BookInfo
element of the DocBook source for this book. Another possibility is that servers provide
this meta information through an extra-document channel. For instance, a standard
protocol could be defined that would allow search engines to request this information for
any page on the site. A convention could be adopted so that for any URL xyz on a given
web site, the URL xyz/meta.rdf would contain the RDF-encoded Dublin Core metadata
for that URL.

7.4.3 Robots

http://lib.ommolketab.ir

In HTML the robots META tag tells search engines and other robots whether they're
allowed to index a page. Walter Underwood has proposed the following processing
instruction as an equivalent for XML documents:

<?robots index="yes" follow="no"?>

Robots will look for this in the prolog of any XML document they encounter. The syntax
of this particular processing instruction is two pseudoattributes, one named index and
one named follow , whose values are either yes or no . If the index attribute has
the value yes , then this page will be indexed by a search-engine robot. If index has
the value no , then it won't be. Similarly, if follow has the value yes , then links from
this document will be followed. If follow has the value no , then they won't be.

[1] In fairness to Google, four of the first ten hits it returned were about the movie.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 8. XSL Transformations (XSLT)

 8.1 An Example Input Document

 8.2 xsl:stylesheet and xsl:transform
 8.3 Stylesheet Processors

 8.4 Templates and Template Rules
 8.5 Calculating the Value of an Element with xsl:value-of

 8.6 Applying Templates with xsl:apply-templates

 8.7 The Built-in Template Rules
 8.8 Modes

 8.9 Attribute Value Templates
 8.10 XSLT and Namespaces

 8.11 Other XSLT Elements

The Extensible Stylesheet Language (XSL) is divided into two parts: XSL
Transformations (XSLT) and XSL Formatting Objects (XSL-FO). This chapter describes
XSLT. Chapter 13 covers XSL-FO.

XSLT is an XML application for specifying rules by which one XML document is
transformed into another XML document. An XSLT document-that is, an XSLT
stylesheet-contains template rules. Each template rule has a pattern and a template.
An XSLT processor compares the elements and other nodes in an input XML document
to the template-rule patterns in a stylesheet. When one matches, it writes the template
from that rule into the output tree. When it's done, it may further serialize the output tree
into an XML document or some other format like plain text or HTML.

This chapter describes the template rules and a few other elements that appear in an
XSLT stylesheet. XSLT uses the XPath syntax to identify matching nodes. We'll
introduce a few pieces of XPath here, but most of it will be covered in Chapter 9 .

8.1 An Example Input Document

To demonstrate XSL transformations, we first need a document to transform. Example
8-1 shows the document used in this chapter. The root element is people , which
contains two person elements. The person elements have roughly the same
structure (a name followed by professions and hobbies) with some differences. For
instance, Alan Turing has three professions, but Richard Feynman only has one.
Feynman has a middle_initial and a hobby , but Turing doesn't. Still these are

http://lib.ommolketab.ir

clearly variations on the same basic structure. A DTD that permitted both of these would
be easy to write.

Example 8-1. An XML document describing two people

<?xml version="1.0"?>
<people>
 <person born="1912" died="1954">
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <profession>computer scientist</profession>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
 </person>
 <person born="1918" died="1988">
 <name>
 <first_name>Richard</first_name>
 <middle_initial>P</middle_initial>
 <last_name>Feynman</last_name>
 </name>
 <profession>physicist</profession>
 <hobby>Playing the bongoes</hobby>
 </person>
</people>

Example 8-1 is an XML document. For purposes of this example, it will be stored in a file
called people.xml . It doesn't have a DTD; however, this is tangential. XSLT works
equally well with valid and invalid (but well-formed) documents. This document doesn't
use namespaces either, though it could. XSLT works just fine with namespaces. Unlike
DTDs, XSLT does pay attention to the namespace URIs instead of the prefixes. Thus,
it's possible to use one prefix for an element in the input document and different prefixes
for the same namespace in the stylesheet and output documents.

8.2 xsl:stylesheet and xsl:transform

An XSLT stylesheet is an XML document. It can and generally should have an XML
declaration. It can have a document type declaration, though most stylesheets do not.
The root element of this document is either stylesheet or transform . These are
synonyms for each other. You can use either stylesheet or transform as you

http://lib.ommolketab.ir

prefer. There is absolutely no difference between them, aside from the name. They both
have the same possible children and attributes. They both mean the same thing to an
XSLT processor.

The stylesheet and transform elements, like all other XSLT elements, are in the
http://www.w3.org/1999/XSL/Transform namespace. This namespace is customarily
mapped to the xsl prefix so that you write xsl:transform or xsl:stylesheet
rather than simply transform or stylesheet .

As well as the xmlns:xsl attribute declaring this prefix mapping, the root element
must have a version attribute with the value 1.0 . Thus, a minimal XSLT stylesheet,
with only the root element and nothing else, is as shown in Example 8-2 .

This namespace URI must be exactly correct. If even so much as a
single character is wrong, the stylesheet processor will output the
stylesheet itself instead of either the input document or the
transformed input document. There's a reason for this (see Section
2.3 of the XSLT 1.0 specification, Literal Result Element as
Stylesheet , if you really want to know), but the bottom line is that this
weird behavior looks very much like a bug in the XSLT processor if
you're not expecting it. If you ever do see your stylesheet processor
spitting your stylesheet back out at you, the problem is almost
certainly an incorrect namespace URI.

Internet Explorer 5.0 and 5.5 partially support a very old and out-of-
date working draft of XSLT, as well as various Microsoft extensions to
this old working draft. They do not support XSLT 1.0, and indeed no
XSLT stylesheets in this book work in IE5. Stylesheets that are meant
for Microsoft XSLT can be identified by their use of the
http://www.w3.org/TR/WD-xsl namespace. IE6 supports both
http://www.w3.org/1999/XSL/Transform and
http://www.w3.org/TR/WD-xsl . Good XSLT developers don't use
http://www.w3.org/TR/WD-xsl and don't associate with developers
who do.

Example 8-2. A minimal XSLT stylesheet

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

</xsl:stylesheet>

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/TR/WD-xsl
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/TR/WD-xsl
http://www.w3.org/TR/WD-xsl
http://lib.ommolketab.ir

Perhaps a little surprisingly, this is a complete XSLT stylesheet; an XSLT processor can
apply it to an XML document to produce an output document. Example 8-3 shows the
effect of applying this stylesheet to Example 8-1 .

Example 8-3. people.xml transformed by the minimal XSLT stylesheet

<?xml version="1.0" encoding="utf-8"?>

 Alan
 Turing

 computer scientist
 mathematician
 cryptographer

 Richard
 P
 Feynman

 physicist
 Playing the bongoes

You can see that the output consists of a text declaration plus the text of the input
document. In this case, the output is a well-formed external parsed entity, but it is not
itself a complete XML document.

Markup from the input document has been stripped. The net effect of applying an empty
stylesheet, like Example 8-2 , to any input XML document is to reproduce the content
but not the markup of the input document. To change that, we'll need to add template
rules to the stylesheet telling the XSLT processor how to handle the specific elements in
the input document. In the absence of explicit template rules, an XSLT processor falls
back on built-in rules that have the effect shown here.

8.3 Stylesheet Processors

An XSLT processor is a piece of software that reads an XSLT stylesheet, reads an input
XML document, and builds an output document by applying the instructions in the
stylesheet to the information in the input document. An XSLT processor can be built into
a web browser, just as MSXML is in Internet Explorer 6. It can be built into a web or
application server, as in the Apache XML Project's Cocoon
(http://xml.apache.org/cocoon). Or it can be a standalone program run from the

http://lib.ommolketab.ir

command like Michael Kay's SAXON (http://saxon.sourceforge.net) or the Apache XML
Project's Xalan (http://xml.apache.org/xalan-j/).

8.3.1 Command-Line Processors

The exact details of how to install, configure, and run the XSLT processor naturally vary
from processor to processor. Generally, you have to install the processor in your path, or
add its jar file to your class path if it's written in Java. Then you pass in the names of the
input file, stylesheet file, and output file on the command line. For example, using Xalan,
Example 8-3 is created in this fashion:

% java org.apache.xalan.xslt.Process -IN people.xml -XSL minimal.xsl
 -OUT 8-3.txt
========= Parsing file:D:/books/xian/examples/08/minimal.xsl ==========
Parse of file:D:/books/xian/examples/08/minimal.xsl took 771 milliseconds
========= Parsing people.xml ==========
Parse of people.xml took 90 milliseconds
=============================
Transforming...
transform took 20 milliseconds
XSLProcessor: done

For exact details, you'll need to consult the documentation that comes with your XSLT
processor.

8.3.2 The xml-stylesheet Processing Instruction

XML documents that will be served directly to web browsers can have an xml-
stylesheet processing instruction in their prolog telling the browser where to find the
associated stylesheet for the document, as discussed in the last chapter. If this
stylesheet is an XSLT stylesheet, then the type pseudoattribute should have the value
application/xml . For example, this xml-stylesheet processing instruction
says that browsers should apply the stylesheet found at the absolute URL
http://www.oreilly.com/styles/people.xsl . Relative URLs can also be used.

<?xml version="1.0"?>
<?xml-stylesheet type="application/xml"
 href="http://www.oreilly.com/styles/people.xsl"?>
<people>
 ...

http://www.oreilly.com/styles/people.xsl
http://lib.ommolketab.ir

Microsoft Internet Explorer uses type="text/xsl" for XSLT
stylesheets. However, the text/xsl MIME media type has not
been and will not be registered with the IANA. It is a figment of
Microsoft's imagination. In the future, application/xslt+xml
will probably be registered to identify XSLT stylesheets specifically.

8.4 Templates and Template Rules

To control what output is created from what input, you add template rules to the XSLT
stylesheet. Each template rule is represented by an xsl:template element. This
element has a match attribute that contains an XPath pattern identifying the input it
matches; it also contains a template that is instantiated and output when the pattern is
matched. The terminology is a little tricky here: the xsl:template element is a
template rule that contains a template. An xsl:template element is not itself the
template.

The simplest match pattern is an element name. Thus, this template rule says that every
time a person element is seen, the stylesheet processor should emit the text "A
Person":

<xsl:template match="person">A Person</xsl:template>

Example 8-4 is a complete stylesheet that uses this template rule.

Example 8-4. A very simple XSLT stylesheet

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="person">A Person</xsl:template>

</xsl:stylesheet>

Applying this stylesheet to the document in Example 8-1 produces this output:

<?xml version="1.0" encoding="utf-8"?>

 A Person

 A Person

http://lib.ommolketab.ir

There were two person elements in the input document. Each time the processor saw
one, it emitted the text "A Person." The whitespace outside the person elements was
preserved, but everything inside the person elements was replaced by the contents of

the template rule, which is called the template .

The text "A Person" is called literal data characters , which is a fancy way of saying plain
text that is copied from the stylesheet into the output document. A template may also
contain literal result elements , i.e., markup that is copied from the stylesheet to the
output document. For instance, Example 8-5 wraps the text "A Person" in between <p>
and </p> tags:

Example 8-5. A simple XSLT stylesheet with literal result elements

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="person">
 <p>A Person</p>
 </xsl:template>

</xsl:stylesheet>

The output from this stylesheet is:

<?xml version="1.0" encoding="utf-8"?>

 <p>A Person</p>

 <p>A Person</p>

The <p> and </p> tags were copied from the input to the output. The only major
restriction on the markup you may output is that it must be well-formed XML because the
stylesheet must be well-formed XML. For instance, you cannot write a template rule like
this:

<xsl:template match="person">
 A Person<p>
</xsl:template>

Here the <p> start-tag has no matching end-tag, and, therefore, the stylesheet is
malformed. Any other markup you include in your XSLT stylesheet must be similarly
well-formed. Empty-element tags must end with /> ; attribute values must be quoted;

http://lib.ommolketab.ir

less-than signs must be escaped as < ; all entity references must be declared in a
DTD except for the five predefined ones, and so forth. XSLT has no exceptions to the
rules of well-formedness.

8.5 Calculating the Value of an Element with xsl:value-of

Most of the time, the text that is output is more closely related to the text that is input
than it was in the last couple of examples. Other XSLT elements can select particular
content from the input document and insert it into the output document.

One of the most generally useful elements of this kind is xsl:value-of . This
element calculates the string value of an XPath expression and inserts it into the output.
The value of an element is the text content of the element after all the tags have been
removed and entity and character references have been resolved. The element whose
value is taken is identified by a select attribute containing an XPath expression.

For example, suppose you just want to extract the names of all the people in the input
document. Then you might use a stylesheet like Example 8-6 . Here the person template
outputs only the value of the name child element of the matched person in between
<p> and </p> tags.

Example 8-6. A simple XSLT stylesheet that uses xsl:value-of

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="person">
 <p>
 <xsl:value-of select="name"/>
 </p>
 </xsl:template>

</xsl:stylesheet>

When an XSLT processor applies this stylesheet to Example 8-1 , it outputs this text:

<?xml version="1.0" encoding="utf-8"?>

 <p>
 Alan
 Turing

http://lib.ommolketab.ir

 </p>

 <p>
 Richard
 P
 Feynman
 </p>

8.6 Applying Templates with xsl:apply-templates

By default, an XSLT processor reads the input XML document from top to bottom,
starting at the root of the document and working its way down using preorder traversal.
Template rules are activated in the order in which they match elements encountered
during this traversal. This means a template rule for a parent will be activated before
template rules matching the parent's children.

However, one of the things a template can do is change the order of traversal. That is, it
can specify which element(s) should be processed next. It can specify that an
element(s) should be processed in the middle of processing another element. It can
even prevent particular elements from being processed. In fact, Examples 8-4 through
8-6 all implicitly prevent the child elements of each person element from being
processed. Instead, they provided their own instructions about what the XSLT processor
was and was not to do with those children.

The xsl:apply-templates element lets you make explicit your choice of
processing order. Its select attribute contains an XPath expression telling the XSLT
processor which nodes to process at that point in the output tree.

For example, suppose you wanted to list the names of the people in the input document;
however, you want to put the last names first, regardless of the order in which they occur
in the input document, and you don't want to output the professions or hobbies. First you
need a name template that looks like this:

<xsl:template match="name">
 <xsl:value-of select="last_name"/>,
 <xsl:value-of select="first_name"/>
</xsl:template>

However, this alone isn't enough; if this were all there was in the stylesheet, not only
would the output include the names, it would also include the professions and hobbies.
You also need a person template rule that says to apply templates to name children
only, but not to any other child elements like profession or hobby . This template

http://lib.ommolketab.ir

rule does that:

<xsl:template match="person">
 <xsl:apply-templates select="name"/>
</xsl:template>

Example 8-7 shows the complete stylesheet.

Example 8-7. A simple XSLT stylesheet that uses xsl:apply-templates

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="name">
 <xsl:value-of select="last_name"/>,
 <xsl:value-of select="first_name"/>
 </xsl:template>

 <xsl:template match="person">
 <xsl:apply-templates select="name"/>
 </xsl:template>

</xsl:stylesheet>

When an XSLT processor applies this stylesheet to Example 8-1 , this is output:

<?xml version="1.0" encoding="utf-8"?>

 Turing,
 Alan

 Feynman,
 Richard

The order of the template rules in the stylesheet doesn't matter. It's only the order of the
elements in the input document that matters.

Applying templates is also important when the child elements have templates of their
own, even if you don't need to reorder the elements. For example, let's suppose you
want a template rule for the root people element that wraps the entire document in an
HTML header and body. Its template will need to use xsl:apply-templates to
indicate where it wants the children of the root element to be placed. That template rule

http://lib.ommolketab.ir

might look like this:

<xsl:template match="people">
 <html>
 <head><title>Famous Scientists</title></head>
 <body>
 <xsl:apply-templates select="person"/>
 </body>
 </html>
</xsl:template>

This template tells the XSLT processor to replace every people element in the input
document (of which there is only one in Example 8-1) with an html element. This
html element contains some literal character data and several literal result elements of
which one is a body element. The body element contains an xsl:apply-
templates element telling the XSLT processor to process all the person children of
the current people element and insert the output of any matched templates into the
body element of the output document.

If you'd rather apply templates to all types of children of the people element, rather
than just person children, you can omit the select attribute as demonstrated in
Example 8-8 . You can also use the more complicated XPath expressions discussed in
the next chapter to be more precise about which elements you want to apply templates
to.

Example 8-8. An XSLT stylesheet that generates a complete HTML document

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="people">
 <html>
 <head><title>Famous Scientists</title></head>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="name">
 <p><xsl:value-of select="last_name"/>,

http://lib.ommolketab.ir

 <xsl:value-of select="first_name"/></p>
 </xsl:template>

 <xsl:template match="person">
 <xsl:apply-templates select="name"/>
 </xsl:template>

</xsl:stylesheet>

When an XSLT processor applies this stylesheet to Example 8-1 , it outputs the well-
formed HTML document shown in Example 8-9 . Look closely at this example, and you
may spot an important change that was not explicitly caused by the instructions in the
stylesheet.

Example 8-9. The HTML document produced by applying Example 8-8 to Example
8-1

<html>
<head>
<title>Famous Scientists</title>
</head>
<body>
 <p>Turing,
 Alan</p>
 <p>Feynman,
 Richard</p>
</body>
</html>

The difference between Example 8-9 and all the previous output examples is that the
text declaration has disappeared! Although there is an XSLT element you can use to
specify whether you want a text declaration preceding your output (xsl:output), we
haven't used that here. Instead, the XSLT processor noted that the root output element
was html , and it adjusted itself accordingly. Since HTML output is such a common
case, XSLT has special rules just to handle it. As well as omitting the text declaration,
the processor will use HTML empty-element syntax like
 instead of XML empty-
element syntax like
 in the output document. (The input document and stylesheet
must still be well-formed XML.) There are about half a dozen other changes the XSLT
processor will make when it knows it's outputting HTML, all designed to make the output
more acceptable to existing web browsers than is well-formed XML.

8.7 The Built-in Template Rules

http://lib.ommolketab.ir

There are seven kinds of nodes in an XML document: the root node, element nodes,
attribute nodes, text nodes, comment nodes, processing instruction nodes, and
namespace nodes. XSLT provides a default built-in template rule for each of these
seven kinds of nodes that says what to do with that node if the stylesheet author has not
provided more specific instructions. These rules use special wildcard XPath expressions
to match all nodes of a given type. Together these template rules have major effects on
which nodes are activated when.

8.7.1 The Default Template Rule for Text and Attribute Nodes

The most basic built-in template rule copies the value of text and attribute nodes into the
output document. It looks like this:

<xsl:template match="text()|@*">
 <xsl:value-of select="."/>
</xsl:template>

The text() node test is an XPath pattern matching all text nodes, just as
first_name is an XPath pattern matching all first_name element nodes. @* is an
XPath pattern matching all attribute nodes. The vertical bar combines these two patterns
so that the template rule matches both text and attribute nodes. The rule's template says
that whenever a text or attribute node is matched, the processor should output the value
of that node. For a text node, this value is simply the text in the node. For an attribute,
this value is the attribute value but not the name.

Example 8-10 is an XSLT stylesheet that pulls the birth and death dates out of the born
and died attributes in Example 8-1 . The default template rule for attributes takes the
value of the attributes, but an explicit rule selects those values. The @ sign in @born
and @died indicates that these are attributes of the matched element rather than child
elements.

Example 8-10. An XSLT stylesheet that reads attribute

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="people">
 <html>
 <head><title>Famous Scientists</title></head>
 <body>

http://lib.ommolketab.ir

 <dl>
 <xsl:apply-templates/>
 </dl>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="person">
 <dt><xsl:apply-templates select="name"/></dt>
 <dd>
 Born: <xsl:apply-templates select="@born"/>
 Died: <xsl:apply-templates select="@died"/>
 </dd>
 </xsl:template>

</xsl:stylesheet>

When an XSLT processor applies this stylesheet to Example 8-1 , it outputs the HTML
document shown in Example 8-11 .

Example 8-11. The HTML document produced by applying Example 8-10 to
Example 8-1

<html>
 <head>
 <title>Famous Scientists</title>
 </head>
 <body>
 <dl>

 <dt>
 Alan
 Turing
 </dt>

 <dd>

 Born: 1912
 Died: 1954

 </dd>

http://lib.ommolketab.ir

 <dt>
 Richard
 P
 Feynman
 </dt>
 <dd>

 Born: 1918
 Died: 1988

 </dd>

 </dl>
 </body>
</html>

It's important to note that although this template rule says what should happen when an
attribute node is reached, by default the XSLT processor never reaches attribute nodes
and, therefore, never outputs the value of an attribute. Attribute values are output
according to this template only if a specific rule applies templates to them, and none of
the default rules do this because attributes are not considered to be children of their
parents. In other words, if element E has an attribute A , then E is the parent of A , but A
is not the child of E . (The biological metaphor breaks down here.) Applying templates to
the children of an element with <xsl:apply-templates/> does not apply
templates to attributes of the element. To do that, the xsl:apply-templates
element must contain an XPath expression specifically selecting attributes.

8.7.2 The Default Template Rule for Element and Root Nodes

The most important template rule is the one that guarantees that children are processed.
This is that rule:

<xsl:template match="*|/">
 <xsl:apply-templates/>
</xsl:template>

The asterisk * is an XPath wild-card pattern that matches all element nodes, regardless
of what name they have or what namespace they're in. The forward slash / is an XPath
pattern that matches the root node. This is the first node the processor selects for
processing, and therefore this is the first template rule the processor executes (unless a
nondefault template rule also matches the root node). Again, the vertical bar combines
these two expressions so that it matches both the root node and element nodes. In

http://lib.ommolketab.ir

isolation, this rule means that the XSLT processor eventually finds and applies
templates to all nodes except attribute and namespace nodes because every
nonattribute, non-namespace node is either the root node, a child of the root node, or a
child of an element. Only attribute and namespace nodes are not children of their
parents. (You can think of them as disinherited nodes.)

Of course, templates may override the default behavior. For example, when you include
a template rule matching person elements in your stylesheet, then children of the
matched person elements are not necessarily processed, unless your own template
says to process them.

8.7.3 The Default Template Rule for Comment and Processing

Instruction Nodes

This is the default template rule for comments and processing instructions:

<xsl:template match="processing-instruction()|comment()"/>

It matches all comments and processing instructions. However, it does not output
anything into the result tree. That is, unless you provide specific rules matching
comments or processing instructions, no part of these items will be copied from the input
document to the output document.

8.7.4 The Default Template Rule for Namespace Nodes

A similar template rule matches namespace nodes and instructs the processor not to
copy any part of the namespace node to the output. This is truly a built-in rule that must
be implemented in the XSLT processor's source code; it can't even be written down in
an XSLT stylesheet because there's no such thing as an XPath pattern matching a
namespace node. That is, there's no namespace() node test in XPath. The XSLT
processor handles the insertion of any necessary namespace declarations in the output
document automatically, without any special assistance from namespace templates.

8.8 Modes

Sometimes the same input content needs to appear multiple times in the output
document, formatted according to a different template each time. For instance, the titles
of the chapters in a book would be formatted one way in the chapters themselves and a
different way in the table of contents. Both xsl:apply-templates and
xsl:template elements can have optional mode attributes that connect different
template rules to different uses. A mode attribute on xsl:template element identifies

http://lib.ommolketab.ir

in which mode that template rule should be activated. An xsl:apply-templates
element with a mode attribute only activates template rules with matching mode
attributes. Example 8-12 demonstrates with a stylesheet that begins the output
document with a list of people's names. This is accomplished in the toc mode. Then a
separate template rule, as well as a separate xsl:apply-templates element in the
default mode (really no mode at all), output the complete contents of all person
elements.

Example 8-12. A stylesheet that uses modes

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="people">
 <html>
 <head><title>Famous Scientists</title></head>
 <body>
 <xsl:apply-templates select="person" mode="toc"/>
 <xsl:apply-templates select="person"/>
 </body>
 </html>
 </xsl:template>

 <!-- Table of Contents Mode Templates -->
 <xsl:template match="person" mode="toc">
 <xsl:apply-templates select="name" mode="toc"/>
 </xsl:template>

 <xsl:template match="name" mode="toc">
 <xsl:value-of select="last_name"/>,
 <xsl:value-of select="first_name"/>
 </xsl:template>

 <!-- Normal Mode Templates -->
 <xsl:template match="person">
 <p><xsl:apply-templates/></p>
 </xsl:template>

</xsl:stylesheet>

Example 8-13 shows the output when this stylesheet is applied to people.xml . The

http://lib.ommolketab.ir

people template in Example 8-12 applies templates to its person children twice. The
first time it does so in the toc mode. This selects the first person template rule in the
stylesheet that outputs each person in the form Turing, Alan . The
second time, it doesn't specify any mode. This selects the second person template rule
in the stylesheet, which outputs all the character data of the person wrapped in a p
element.

Example 8-13. Output from a stylesheet that uses modes to process each person
twice with different templates

<html>
<head>
<title>Famous Scientists</title>
</head>
<body>

Turing,
 Alan
Feynman,
 Richard

<p>

 Alan
 Turing

 computer scientist
 mathematician
 cryptographer
 </p>
<p>

 Richard
 P
 Feynman

 physicist
 Playing the bongoes
 </p>
</body>
</html>

http://lib.ommolketab.ir

For every mode you use in the stylesheet, the XSLT processor adds one default
template rule to its set of built-in rules. This applies to all element and root nodes in the
specified mode and applies templates to their children in the same mode (since the
usual built-in template rule for element and root nodes doesn't have a mode). For
instance, the extra default rule for Example 8-10 looks like this:

<xsl:template match="*|/" mode="toc">
 <xsl:apply-templates mode="toc"/>
</xsl:template>

8.9 Attribute Value Templates

It's easy to include known attribute values in the output document as the literal content of
a literal result element. For example, this template rule wraps each input person
element in an HTML span element that has a class attribute with the value person :

<xsl:template match="person">
 <xsl:apply-templates/>
</xsl:template>

However, it's trickier if the value of the attribute is not known when the stylesheet is
written, but instead must be read from the input document. The solution is to use an
attribute value template . An attribute value template is an XPath expression enclosed in
curly braces that's placed in the attribute value in the stylesheet. When the processor
outputs that attribute, it replaces the attribute value template with its value. For example,
suppose you wanted to write a name template that changed the input name elements to
empty elements with first_name , middle_initial , and last_name attributes
like this:

<name first="Richard" initial="P" last="Feynman"/>

This template accomplishes that task:

<xsl:template match="name">
 <name first="{first_name}"
 initial="{middle_initial}"
 last="{last_name}" />
</xsl:template>

The value of the first attribute in the stylesheet is replaced by the value of the
first_name element from the input document. The value of the initial attribute is
replaced by the value of the middle_initial element from the input document; the
value of the last attribute is replaced by the value of the last_name element from

http://lib.ommolketab.ir

the input document.

8.10 XSLT and Namespaces

XPath patterns, as well as expressions that match and select elements, identify these
elements based on their local part and namespace URI. They do not consider the
namespace prefix. Most commonly, the same namespace prefix is mapped to the same
URI in both the input XML document and the stylesheet. However, this is not required.
For instance, consider Example 8-14 . This is exactly the same as Example 8-1 , except
that now all the elements have been placed in the namespace
http://www.cafeconleche.org/namespaces/people .

Example 8-14. An XML document describing two people that uses a default
namespace

<?xml version="1.0"?>
<people xmlns="http://www.cafeconleche.org/namespaces/people">

 <person born="1912" died="1954">
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <profession>computer scientist</profession>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
 </person>

 <person born="1918" died="1988">
 <name>
 <first_name>Richard</first_name>
 <middle_initial>M</middle_initial>
 <last_name>Feynman</last_name>
 </name>
 <profession>physicist</profession>
 <hobby>Playing the bongoes</hobby>
 </person>

</people>

Except for the built-in template rules, none of the rules in this chapter so far will work on

http://www.cafeconleche.org/namespaces/people
http://lib.ommolketab.ir

this document! For instance, consider this template rule from Example 8-8 :

<xsl:template match="name">
 <p><xsl:value-of select="last_name"/>,
 <xsl:value-of select="first_name"/></p>
</xsl:template>

It's trying to match a name element in no namespace, but the name elements in
Example 8-13 aren't in no namespace. They're in the
http://www.cafeconleche.org/namespaces/people namespace. This template rule no
longer applies. To make it fit, we map the prefix pe to the namespace URI
http://www.cafeconleche.org/namespaces/people . Then instead of matching name , we
match pe:name . That the input document doesn't use the prefix pe is irrelevant as
long as the namespace URIs match up. Example 8-15 demonstrates by rewriting
Example 8-8 to work with Example 8-14 instead.

Example 8-15. An XSLT stylesheet for input documents using the
http://www.cafeconleche.org/namespaces/people

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:pe="http://www.cafeconleche.org/namespaces/people">

 <xsl:template match="pe:people">
 <html>
 <head><title>Famous Scientists</title></head>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="pe:name">
 <p><xsl:value-of select="pe:last_name"/>,
 <xsl:value-of select="pe:first_name"/></p>
 </xsl:template>

 <xsl:template match="pe:person">
 <xsl:apply-templates select="pe:name"/>
 </xsl:template>

http://www.cafeconleche.org/namespaces/people
http://www.cafeconleche.org/namespaces/people
http://www.cafeconleche.org/namespaces/people
http://lib.ommolketab.ir

</xsl:stylesheet>

The output is essentially the same output you get by applying Example 8-8 to Example
8-1 except that it will have an extra xmlns:pe attribute on the root element.

8.11 Other XSLT Elements

This is hardly everything there is to say about XSLT. Indeed, XSLT does a lot more than
the little we've covered in this introductory chapter. Other features yet to be discussed
include:

Named templates

Numbering and sorting output elements

Conditional processing

Iteration

Extension elements and functions

Importing other stylesheets

These and more will all be discussed in Chapter 23 . Since XSLT is itself Turing
complete and since it can invoke extension functions written in other languages like
Java, chances are very good you can use XSLT to make whatever transformations you
need to make.

Furthermore, besides these additional elements, you can do a lot more simply by
expanding the XPath expressions and patterns used in the select and match
attributes of the elements with which you're already familiar. These techniques will be
explored in Chapter 9 .

However, the techniques outlined in this chapter lay the foundation for all subsequent,
more advanced work with XSLT. The key to transforming XML documents with XSLT is
to match templates to elements in the input document. Those templates contain both
literal result data and XSLT elements that instruct the processor where to go to get more
data. Everything you do with XSLT is based on this one simple idea.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 9. XPath

 9.1 The Tree Structure of an XML Document

 9.2 Location Paths
 9.3 Compound Location Paths

 9.4 Predicates
 9.5 Unabbreviated Location Paths

 9.6 General XPath Expressions

 9.7 XPath Functions

XPath is a non-XML language for identifying particular parts of XML documents. XPath
lets you write expressions that refer to the first person element in a document, the
seventh child element of the third person element, the ID attribute of the first person
element whose contents are the string "Fred Jones", all xml-stylesheet processing
instructions in the document's prolog, and so forth. XPath indicates nodes by position,
relative position, type, content, and several other criteria. XSLT uses XPath expressions
to match and select particular elements in the input document for copying into the output
document or further processing. XPointer uses XPath expressions to identify the
particular point in or part of an XML document to which an XLink links. The W3C XML
Schema Language uses XPath expressions to define uniqueness and co-occurrence
constraints. XForms relies on XPath to bind form controls to instance data, express
constraints on user-entered values, and calculate values that depend on other values.

XPath expressions can also represent numbers, strings, or Booleans. This lets XSLT
stylesheets carry out simple arithmetic for purposes such as numbering and cross-
referencing figures, tables, and equations. String manipulation in XPath lets XSLT
perform tasks such as making the title of a chapter uppercase in a headline or extracting
the last two digits from a year.

9.1 The Tree Structure of an XML Document

An XML document is a tree made up of nodes. Some nodes contain one or more other
nodes. There is exactly one root node, which ultimately contains all other nodes. XPath
is a language for picking nodes and sets of nodes out of this tree. From the perspective
of XPath, there are seven kinds of nodes:

The root node

http://lib.ommolketab.ir

Element nodes

Text nodes

Attribute nodes

Comment nodes

Processing-instruction nodes

Namespace nodes

One thing to note are the constructs not included in this list: CDATA sections, entity
references, and document type declarations. XPath operates on an XML document after
all these items have been merged into the document. For instance, XPath cannot
identify the first CDATA section in a document or tell whether a particular attribute value
was directly included in the source element start-tag or merely defaulted from the
declaration of the element in a DTD.

Consider the document in Example 9-1 . This exhibits all seven kinds of nodes. Figure
9-1 is a diagram of the tree structure of this document.

Figure 9-1. The tree structure of Example 9-1

Example 9-1. The example XML document used in this chapter

<?xml version="1.0"?>
<?xml-stylesheet type="application/xml" href="people.xsl"?>
<!DOCTYPE people [
 <!ATTLIST homepage xlink:type CDATA #FIXED "simple"
 xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink">
 <!ATTLIST person id ID #IMPLIED>
]>
<people>

http://lib.ommolketab.ir

 <person born="1912" died="1954" id="p342">
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <!-- Did the word computer scientist exist in Turing's day? -->
 <profession>computer scientist</profession>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
 <homepage xlink:href="http://www.turing.org.uk/"/>
 </person>

 <person born="1918" died="1988" id="p4567">
 <name>
 <first_name>Richard</first_name>
 <middle_initial>P</middle_initial>
 <last_name>Feynman</last_name>
 </name>
 <profession>physicist</profession>
 <hobby>Playing the bongoes</hobby>
 </person>

</people>

The XPath data model has several nonobvious features. First of all, the root node of the
tree is not the same as the root element. The root node of the tree contains the entire
document including the root element, as well as any comments and processing
instructions that occur before the root element start-tag or after the root element end-tag.
In Example 9-1 , this means the root node contains the xml-stylesheet processing
instruction, as well as the root element people .

However, the XPath data model does not include everything in the document. In
particular, the XML declaration, the DOCTYPE declaration, and the various parts of the
DTD are not addressable via XPath, though if the DTD provides default values for any
attributes, then those attributes are noted by XPath. The homepage element has an
xlink:type attribute that was supplied by the DTD. Similarly, any references to
parsed entities are resolved. Entity references, character references, and CDATA
sections are not individually identifiable, though any data they contain is addressable.
For example, XSLT cannot make all the text in CDATA sections bold because XPath
doesn't know which text is and isn't part of a CDATA section.

Finally, xmlns and xmlns:prefix attributes are not considered attribute nodes,

http://lib.ommolketab.ir

even though that's how a non-namespace-aware parser will see them. However,
namespace nodes are attached to every element and attribute node for which a
declaration has scope. They are not only attached to the single element where the
namespace is declared.

9.2 Location Paths

The most useful XPath expression is a location path . A location path identifies a set of
nodes in a document. This set may be empty, may contain a single node, or may contain
several nodes. These can be element nodes, attribute nodes, namespace nodes, text
nodes, comment nodes, processing instruction nodes, root nodes, or any combination of
these. A location path is built out of successive location steps . Each location step is
evaluated relative to a particular node in the document called the context node .

9.2.1 The Root Location Path

The simplest location path is the one that selects the root node of the document. This is
simply the forward slash (/) . (You'll notice that a lot of XPath syntax is deliberately
similar to the syntax used by the Unix shell. Here / is the root node of a Unix filesystem,
and / is the root node of an XML document.) For example, this XSLT template rule uses
the XPath pattern / to match the entire input document tree and wrap it in an html
element:

<xsl:template match="/">
 <html><xsl:apply-templates/></html>
</xsl:template>

/ is an absolute location path because no matter what the context node is-that is, no
matter where you were in the input document when this template rule was applied-it
always means the same thing: the root node of the document. It is relative to which
document you're processing, but not to anything within that document.

9.2.2 Child Element Location Steps

The second simplest location path is a single element name. This path selects all child
elements of the context node with the specified name. For example, the XPath
profession refers to all profession child elements of the context node. Exactly
which elements these are depends on what the context node is, so this is a relative
XPath. For example, if the context node is the Alan Turing person element in Example
9-1 , then the location path profession refers to these three profession child
elements of that element:

http://lib.ommolketab.ir

<profession>computer scientist</profession>
<profession>mathematician</profession>
<profession>cryptographer</profession>

However, if the context node is the Richard Feynman person element in Example 9-1 ,
then the XPath profession refers to its single profession child element:

<profession>physicist</profession>

If the context node is the name child element of Richard Feynman or Alan Turing's
person element, then this XPath doesn't refer to anything at all because neither of
those has any profession child elements.

In XSLT, the context node for an XPath expression used in the select attribute of
xsl:apply-templates and similar elements is the node that is currently matched.
For example, consider the simple stylesheet in Example 9-2 . In particular, look at the
template rule for the person element. The XSLT processor will activate this rule twice,
once for each person node in the document. The first time the context node is set to
Alan Turing's person element. The second time the context node is set to Richard
Feynman's person element. When the same template is instantiated with a different
context node, the XPath expression in <xsl:value-of select="name"/> refers
to a different element, and the output produced is therefore different.

Example 9-2. A very simple stylesheet for Example 9-1

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="people">
 <xsl:apply-templates select="person"/>
 </xsl:template>

 <xsl:template match="person">
 <xsl:value-of select="name"/>
 </xsl:template>

</xsl:stylesheet>

When XPath is used in other systems, such as XPointer or XForms, other means are
provided for determining what the context node is.

9.2.3 Attribute Location Steps

http://lib.ommolketab.ir

Attributes are also part of XPath. To select a particular attribute of an element, use an @
sign followed by the name of the attribute you want. For example, the XPath expression
@born selects the born attribute of the context node. Example 9-3 is a simple XSLT
stylesheet that generates an HTML table of names and birth and death dates from
documents like Example 9-1 .

Example 9-3. An XSLT stylesheet that uses root, child element, and attribute
location steps

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <html>
 <xsl:apply-templates select="people"/>
 </html>
 </xsl:template>

 <xsl:template match="people">
 <table>
 <xsl:apply-templates select="person"/>
 </table>
 </xsl:template>

 <xsl:template match="person">
 <tr>
 <td><xsl:value-of select="name"/></td>
 <td><xsl:value-of select="@born"/></td>
 <td><xsl:value-of select="@died"/></td>
 </tr>
 </xsl:template>

</xsl:stylesheet>

The stylesheet in Example 9-3 has three template rules. The first template rule has a
match pattern that matches the root node, / . The XSLT processor activates this
template rule and sets the context node to the root node. Then it outputs the start-tag
<html> . This is followed by an xsl:apply-templates element that selects nodes
matching the XPath expression people . If the input document is Example 9-1 , then
there is exactly one such node, the root element. This is selected and its template rule,

http://lib.ommolketab.ir

the one with the match pattern of people , is applied. The XSLT processor sets the
context node to the root people element and then begins processing the people
template. It outputs a <table> start-tag and then encounters an xsl:apply-
templates element that selects nodes matching the XPath expression person . Two
child elements of this context node match the XPath expression person so they're
each processed in turn using the person template rule. When it begins processing
each person element, the XSLT processor sets the context node to that element. It
outputs that element's name child element value and born and died attribute values
wrapped in a table row and three table cells. The net result is:

<html>
 <table>
 <tr>
 <td>
 Alan
 Turing

 </td>
 <td>1912</td>
 <td>1954</td>
 </tr>
 <tr>
 <td>
 Richard
 P
 Feynman

 </td>
 <td>1918</td>
 <td>1988</td>
 </tr>
 </table>
</html>

9.2.4 The comment(), text(), and processing-instruction() Location

Steps

Although element, attribute, and root nodes account for 90% or more of what you need
to do with XML documents, this still leaves four kinds of nodes that need to be
addressed: namespace nodes, text nodes, processing-instruction nodes, and comment
nodes. Namespace nodes are rarely handled explicitly. The other three node types have

http://lib.ommolketab.ir

special node tests to match them. These are as follows:

comment()

text()

processing-instruction()

Since comments and text nodes don't have names, the comment() and text()
node tests match any comment or text node in the context node. Each comment is a
separate comment node. Each text node contains the maximum possible contiguous run
of text not interrupted by any tag. Entity references and CDATA sections are resolved
into text and markup and do not interrupt text nodes.

By default, XSLT stylesheets do process text nodes but do not process comment nodes.
You can add a comment template rule to an XSLT stylesheet so it will process
comments too. For example, this template rule replaces each comment with the text
"Comment Deleted" in italic:

<xsl:template match="comment()">
 <i>Comment Deleted</i>
</xsl:template>

With no arguments, the processing-instruction() node test selects all
processing-instruction children of the context node. If it has an argument, then it only
selects the processing-instruction children with the specified target. For example, the
XPath expression processing-instruction('xml-stylesheet') selects all
processing-instruction children of the context node whose target is xml-stylesheet .

9.2.5 Wildcards

Wildcards match different element and node types at the same time. There are three of
these: * , node() , and @* .

The asterisk (*) matches any element node regardless of name. For example, this
XSLT template rule says that all elements should have their child elements processed
but should not result in any output in and of themselves:

<xsl:template match="*"><xsl:apply-templates select="*"/></xsl:template>

The * does not match attributes, text nodes, comments, or processing-instruction
nodes. Thus, in the previous example output will only come from child elements that
have their own template rules that override this one.

http://lib.ommolketab.ir

You can put a namespace prefix in front of the asterisk. In this case, only elements in
the same namespace are matched. For example, svg:* matches all elements with the
same namespace URI as the svg prefix is mapped to. As usual, it's the URI that
matters, not the prefix. The prefix can be different in the stylesheet and the source
document as long as the namespace URI is the same.

The node() wildcard matches not only all element types but also text nodes,
processing-instruction nodes, namespace nodes, attribute nodes, and comment nodes.

The @* wildcard matches all attribute nodes. For example, this XSLT template rule
copies the values of all attributes of a person element in the document into the content
of an attributes element in the output:

<xsl:template match="person">
 <attributes><xsl:apply-templates select="@*"/></attributes>
</xsl:template>

As with elements, you can attach a namespace prefix to the wildcard only to match
attributes in a specific namespace. For instance, @xlink:* matches all XLink
attributes provided that the prefix xlink is mapped to the
http://www.w3.org/1999/xlink URI. Again, it's the URI that matters, not the
actual prefix.

9.2.6 Multiple Matches with |

You often want to match more than one type of element or attribute but not all types. For
example, you may want an XSLT template that applies to the profession and hobby
elements but not to the name , person , or people elements. You can combine
location paths and steps with the vertical bar (|) to indicate that you want to match any
of the named elements. For instance, profession|hobby matches profession
and hobby elements. first_name | middle_initial | last_name matches
first_name , middle_initial , and last_name elements.
@id|@xlink:type matches id and xlink:type attributes. *|@* matches
elements and attributes but does not match text nodes, comment nodes, or processing
instruction nodes. For example, this XSLT template rule applies to all the nonempty leaf
elements (elements that don't contain any other elements) of Example 9-1 :

<xsl:template match="first_name|last_name|profession|hobby">
 <xsl:value-of select="text()"/>
</xsl:template>

9.3 Compound Location Paths

http://www.w3.org/1999/xlink
http://lib.ommolketab.ir

The XPath expressions you've seen so far-element names, @ plus an attribute name, /
, comment() , text() , and processing-instruction() -are all single
location steps. You can combine these with the forward slash to move around the
hierarchy from the matched node to other nodes. Furthermore, you can use a period to
refer to the context node, a double period to refer to the parent node, and a double
forward slash to refer to descendants of the context node. With the exception of // ,
these are all similar to Unix shell syntax for navigating a hierarchical filesystem.

9.3.1 Building Compound Location Paths from Location Steps with /

Location steps can be combined with a forward slash (/) to make a compound location
path. Each step in the path is relative to the one that preceded it. If the path begins with
/ , then the first step in the path is relative to the root node. Otherwise, it's relative to the
context node. For example, consider the XPath expression
/people/person/name/first_name . This begins at the root node, then selects
all people element children of the root node, then all person element children of
those nodes, then all name children of those nodes, and finally all first_name
children of those nodes. Applied to Example 9-1 , it indicates these two elements:

<first_name>Alan</first_name>
<first_name>Richard</first_name>

To indicate only the textual content of those two nodes, we have to go one step further.
The XPath expression /people/person/name/first_name/text() selects
the strings "Alan" and "Richard" from Example 9-1 .

These two XPath expressions both began with / , so they're absolute location paths that
start at the root. Relative location paths can also count down from the context node. For
example, the XPath expression person/@id selects the id attribute of the person
child elements of the context node.

9.3.2 Selecting from Descendants with //

A double forward slash (//) selects from all descendants of the context node, as well
as the context node itself. At the beginning of an XPath expression, it selects from all
descendants of the root node. For example, the XPath expression //name selects all
name elements in the document. The expression //@id selects all the id attributes of
any element in the document. The expression person//@id selects all the id
attributes of any element contained in the person child elements of the context node,
as well as the id attributes of the person elements themselves.

9.3.3 Selecting the Parent Element with ..

http://lib.ommolketab.ir

A double period (..) indicates the parent of the current node. For example, the XPath
expression //@id identifies all id attributes in the document. Therefore, //@id/..
identifies all elements in the document that have id attributes. The XPath expression
//middle_initial/../first_name identifies all first_name elements that
are siblings of middle_initial elements in the document. Applied to Example 9-1 ,
this selects <first_name>Richard</first_name> but not
<first_name>Alan</first_name> .

9.3.4 Selecting the Context Node with .

Finally, the single period (.) indicates the context node. In XSLT this is most commonly
used when you need to take the value of the currently matched node. For example, this
template rule copies the content of each comment in the input document to a span
element in the output document:

<xsl:template match="comment()">
 <xsl:value-of select=".">
</xsl:template>

The . given as the value of the select attribute of xsl:value-of stands for the
matched node. This works equally well for element nodes, attribute nodes, and all the
other kinds of nodes. For example, this template rule matches name elements from the
input document and copies their value into strongly emphasized text in the output
document:

<xsl:template match="name">
 <xsl:value-of select=".">
</xsl:template>

9.4 Predicates

In general, an XPath expression may refer to more than one node. Sometimes this is
what you want, but sometimes you want to further winnow the node-set. You want to
select only some of the nodes the expression returns. Each step in a location path may
(but does not have to) have a predicate that selects from the node list current at that
step in the expression. The predicate contains a Boolean expression, which is tested for
each node in the context node list. If the expression is false, then that node is deleted
from the list. Otherwise, it's retained.

For example, suppose you want to find all profession elements whose value is
"physicist." The XPath expression //profession[. = "physicist"] does this.

http://lib.ommolketab.ir

Here the period stands for the string value of the current node, the same as would be
returned by xsl:value-of . You can use single quotes around the string instead of
double quotes, which is often useful when the XPath expression appears inside a
double-quoted attribute value, for example, <xsl:apply-templates
select="//profession[.= 'physicist']" /> .

If you want to ask for all person elements that have a profession child element with
the value "physicist," you'd use the XPath expression
//person[profession="physicist"] . If you want to find the person element
with id p4567, put an @ in front of the name of the attribute as in
//person[@id="p4567"] .

As well as the equals sign, XPath supports a full complement of relational operators
including < , > , >= , <= , and != . For instance, the expression
//person[@born<=1976] locates all person elements in the document with a
born attribute whose numeric value is less than or equal to 1976. Note that if this
expression is used inside an XML document, you still have to escape the less-than sign
as < , for example, <xsl:apply-templates select="//person[@born
<= 1976]"/> . XPath doesn't get any special exemptions from the normal well-
formedness rules of XML. On the other hand, if the XPath expression appears outside of
an XML document, as it may in some uses of XPointer, then you may not need to
escape the less-than sign.

XPath also provides Boolean and and or operators to combine expressions logically.
For example, the XPath expression //person[@born<=1920 and
@born>=1910] selects all person elements with born attribute values between
1910 and 1920 inclusive. //name[first_name="Richard" or
first_name="Dick"] selects all name elements that have a first_name child
with the value of either Richard or Dick.

In some cases the predicate may not be a Boolean, but it can be converted to one in a
straightforward fashion. Predicates that evaluate to numbers are true if they're equal to
the position of the context node, otherwise false. Predicates that indicate node-sets are
true if the node-set is nonempty and false if it's empty. String values are true if the string
isn't the empty string, false if it is. For example, suppose you want to select only those
name elements in the document that have a middle_initial child element. The
XPath expression //name selects all name elements. The XPath expression
//name[middle_initial] selects all name elements and then checks each one to
see if it has a middle_initial child element. Only those that do are retained. When
applied to Example 9-1 , this expression indicates Richard P. Feynman's name element
but not Alan Turing's.

Any or all of the location steps in a location path can have predicates. For example, the

http://lib.ommolketab.ir

XPath expression /people/person[@born < 1950]/name[first_name =
"Alan"] first selects all people child elements of the root element (of which there's
exactly one in Example 9-1). Then from those it chooses all person elements whose
born attribute has a value numerically less than 1950. Finally, from that group of
elements, it selects all name child elements that have a first_name child element
with the value "Alan."

9.5 Unabbreviated Location Paths

Up until this point, we've been using what are called abbreviated location paths . These
are much easier to type, much less verbose, and much more familiar to most people.
They're also the kind of XPath expression that works best for XSLT match patterns.
However, XPath also offers an unabbreviated syntax for location paths, which is more
verbose but perhaps less cryptic and definitely more flexible.

Every location step in a location path has two required parts, an axis and a node test,
and one optional part, the predicates. The axis tells you which direction to travel from the
context node to look for the next nodes. The node test tells you which nodes to include
along that axis, and the predicates further reduce the nodes according to some
expression.

In an abbreviated location path, the axis and the node test are combined, while in an
unabbreviated location path, they're separated by a double colon (::) . For example,
the abbreviated location path people/person/@id is composed of three location
steps. The first step selects people element nodes along the child axis. The second
step selects person element nodes along the child axis. The third step selects id
attribute nodes along the attribute axis. When rewritten using the unabbreviated syntax,
the same location path is child::people/child::person/attribute::id .

These full, unabbreviated location paths may be absolute if they start from the root node,
just as abbreviated paths can be. For example, the full form
/child::people/child::person is equivalent to the abbreviated form
/people/person .

Unabbreviated location paths may have and be used in predicates as well. For example,
the abbreviated path
/people/person[@born<1950]/name[first_name="Alan"] becomes
/child::people/child::person[attribute::born < 1950]
/child::name[child::first_name = "Alan"] in the full form.

Overall, the unabbreviated form is quite verbose and not much used in practice. It isn't
even allowed in XSLT match patterns. However, it does offer one crucial ability that

http://lib.ommolketab.ir

makes it essential to know: it is the only way to access most of the axes from which
XPath expressions can choose nodes. The abbreviated syntax lets you walk along the
child, parent, self, attribute, and descendant-or-self axes. The unabbreviated syntax
adds eight more:

The ancestor axis

All element nodes that contain the context node, that is, the parent node, the
parent's parent, the parent's parent's parent, and so on up through the root node in
reverse document order.

The following-sibling axis

All nodes that follow the context node and are children of the same parent node in
document order. Attribute and namespace nodes do not have any siblings.

The preceding-sibling axis

All nodes that precede the context node and are children of the same parent node
in reverse document order. Attribute and namespace nodes do not have any
siblings.

The following axis

All nodes that follow the end of the context node in document order except for
attribute and namespace nodes.

The preceding axis

All nodes that precede the start of the context node in reverse document order
except for attribute and namespace nodes.

The namespace axis

All namespaces in scope on the context node, whether declared on the context
node or one of its ancestors.

The descendant axis

All descendants of the context node but not the context node itself.
The ancestor-or-self axis

All ancestors of the context node and the context node itself.

Example 9-4 demonstrates several of these axes using the full unabbreviated syntax.
The goal is to produce a list of person elements that look more or less like this (after
accounting for whitespace):

<dt>Richard P Feynman</dt>
<dd>

http://lib.ommolketab.ir

 physicist
 Playing the bongoes

</dd>

Example 9-4. An XSLT stylesheet that uses unabbreviated XPath syntax

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <dl>
 <xsl:apply-templates select="descendant::person"/>
 </dl>
 </xsl:template>

 <xsl:template match="person">
 <dt><xsl:value-of select="child::name"/></dt>
 <dd>

 <xsl:apply-templates select="child::name/following-sibling::*"/>

 </dd>
 </xsl:template>

 <xsl:template match="*">
 <xsl:value-of select="self::*"/>
 </xsl:template>

 <xsl:template match="homepage"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <xsl:value-of select="attribute::xlink:href"/>
 </xsl:template>

</xsl:stylesheet>

The first template rule matches the root node. It applies templates to all descendants of
the root node that happen to be person elements. That is, it moves from the root node
along the descendant axis with a node test of person . This XPath expression could
have been rewritten in the abbreviated syntax as //person .

http://lib.ommolketab.ir

The second template rule matches person elements. It places the value of the name
child of each person element in a dt element. The location path used here,
child::name , could have been rewritten in the abbreviated syntax as the single word
name . Then it applies templates to all elements that follow the name element at the
same level of the hierarchy. It begins at the context node person element, then moves
along the child axis to find the name element. From there it moves along the
following-sibling axis looking for elements of any type (*) after the name
element that are also children of the same person element. There is no abbreviated
equivalent for the following-sibling axis, so this really is the simplest way to
make this statement.

The third template rule matches any element not matched by another template rule. It
simply wraps that element in an li element. The XPath self::* selects the value of
the currently matched element, that is, the context node. This expression could have
been abbreviated as a single period.

The fourth and final template rule matches homepage elements. In this case we need
to select the value of xlink:href attribute, so we move from the context homepage
node along the attribute axis. The node test is looking for the xlink:href attributes.
(More properly, it's looking for an attribute with the local name href whose prefix is
mapped to the http://www.w3.org/1999/xlink namespace URI.)

9.6 General XPath Expressions

So far we've focused on the very useful subset of XPath expressions called location
paths . Location paths identify a set of nodes in an XML document and are used in XSLT
match patterns and select expressions. However, location paths are not the only
possible type of XPath expression. XPath expressions can also return numbers,
Booleans, and strings. For instance, these are all legal XPath expressions:

3.141529

2+2

'Rosalind Franklin'

true()

32.5 < 76.2

position()=last()

http://lib.ommolketab.ir

XPath expressions that aren't node-sets can't be used in the match attribute of an
xsl:template element. However, they can be used as values for the select
attribute of xsl:value-of elements, as the well as in location path predicates.

9.6.1 Numbers

There are no pure integers in XPath. All numbers are 8-byte, IEEE 754 floating-point
doubles, even if they don't have an explicit decimal point. This format is identical to
Java's double primitive type. As well as representing floating-point numbers ranging
from 4.94065645841246544e-324 to 1.79769313486231570e+308 (positive or
negative) and zero, this type includes special representations of positive and negative
infinity and a special not a number value (NaN) used as the result of operations like
dividing zero by zero.

XPath provides the five basic arithmetic operators that will be familiar to any
programmer:

+

Addition
-

Subtraction
*

Multiplication
div

Division
mod

Taking the remainder

The more common forward slash couldn't be used for division because it's already used
to separate location steps in a location path. Consequently, a new operator had to be
chosen. The word mod was chosen instead of the more common % operator. Aside from
these minor differences in syntax, all five operators behave exactly as they do in Java.
For instance, 2+2 is 4, 6.5 div 1.5 is 4.33333333, 6.5 mod 1.5 is 0.5, and so on. Placing
the element <xsl:value-of select="6*7"/> in an XSLT template inserts the
string 42 into the output tree when the template is instantiated. More often, a stylesheet
performs some simple arithmetic on numbers read from the input document. For
instance, this template rule calculates the century in which a person was born:

<xsl:template match="person">

http://lib.ommolketab.ir

 <century>
 <xsl:value-of select="(@born - (@born mod 100)) div 100"/>th
 </century>
</xsl:template>

9.6.2 Strings

XPath strings are ordered sequences of Unicode characters such as "Fred", "Ethel", "

", or " ". String literals may be enclosed in either single or double quotes as
convenient. The quotes are not themselves part of the string. The only restriction XPath
places on a string literal is that it must not contain the kind of quote that delimits it. That
is, if the string contains single quotes, it has to be enclosed in double quotes and vice
versa. String literals may contain whitespace including tabs, carriage returns, and line
feeds, as well as back slashes and other characters that would be illegal in many
programming languages. However, if the XPath expression is part of an XML document,
some of these possibilities may be ruled out by XML's well-formedness rules, depending
on context.

You can use the = and != comparison operators to check whether two strings are the
same. You can also use the relational < , > , <= , and >= operators to compare strings,
but unless both strings clearly represent numbers (e.g., "-7.5" or '54.2'), the
results are unlikely to make sense. In general, you can't define any real notion of string
order in Unicode without detailed knowledge of the language in which the string is
written.

Other operations on strings are provided by XPath functions and will be discussed
shortly.

9.6.3 Booleans

A Boolean is a value that has exactly two states, true or false. Every Boolean must have
one of these binary values. XPath does not provide any Boolean literals. If you use
<xsl:value-of select="true"/> in an XSLT stylesheet, then the XSLT
processor looks for a child element of the context node named true . However, the
XPath functions true() and false() can substitute for the missing literals quite
easily.

Most of the time, however, Booleans are created by comparisons between other objects,
most commonly numbers. XPath provides all the usual relational operators including = ,
!= , < , > , >= , and <= . In addition, the and and or operators can combine Boolean
expressions according to the usual rules of logic.

http://lib.ommolketab.ir

Booleans are most commonly used in predicates of location paths. For example, in the
location step person[profession="physicist"] ,
profession="physicist" is a Boolean. It is either true or false; there is no other
possibility. Booleans are also commonly used in the test attribute of xsl:if and
xsl:when elements. For example, this XSLT template rule includes the profession
element in the output only if its contents are "physicist" or "computer scientist":

 <xsl:template match="profession">
 <xsl:if test=".='computer scientist' or .='physicist'">
 <xsl:value-of select="."/>
 </xsl:if>
</xsl:template>

This XSLT template rule italicizes the profession element if and only if its content is
the string "computer scientist":

<xsl:template match="profession">
 <xsl:choose>
 <xsl:when test=".='computer scientist'">
 <i><xsl:value-of select="."/></i>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="."/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

Finally, there's a not() function that reverses the sense of its Boolean argument. For
example, if .='computer scientist' is true, then not(.='computer
scientist') is false and vice versa.

9.7 XPath Functions

XPath provides a number of functions that you may find useful in predicates or raw
expressions. All of these are discussed in Chapter 22 . For example, the position(
) function returns the position of the current node in the context node list as a number.
This XSLT template rule uses the position() function to calculate the number of
the person being processed, relative to other nodes in the context node list:

<xsl:template match="person">
 Person <xsl:value-of select="position()"/>,
 <xsl:value-of select="name"/>

http://lib.ommolketab.ir

</xsl:template>

Each XPath function returns one of these four types:

Boolean

Number

Node-set

String

There are no void functions in XPath. Therefore, XPath is not nearly as strongly typed as
languages like Java or even C. You can often use any of these types as a function
argument regardless of which type the function expects, and the processor will convert it
as best it can. For example, if you insert a Boolean where a string is expected, then the
processor will substitute one of the two strings "true" and "false" for the Boolean. The
one exception is functions that expect to receive node-sets as arguments. XPath cannot
convert strings, Booleans, or numbers to node-sets.

Functions are identified by the parentheses at the end of the function names.
Sometimes these functions take arguments between the parentheses. For instance, the
round() function takes a single number as an argument. It returns the number
rounded to the nearest integer. For example, <xsl:value-of
select="round(3.14)"/> inserts 3 into the output tree.

Other functions take more than one argument. For instance, the starts-with()
function takes two arguments, both strings. It returns true if the first string starts with the
second string. For example, this XSLT apply-templates element selects all name
elements whose last name begins with T:

<xsl:apply-templates select="name[starts-with(last_name, 'T')]"/>

In this example the first argument to the starts-with() function is actually a node-
set, not a string. The XPath processor converts that node-set to its string value (the text
content of the first element in that node-set) before checking to see whether it starts with
T.

Some XSLT functions have variable-length argument lists. For instance, the concat(
) function takes as arguments any number of strings and returns one string formed by
concatenating all those strings together in order. For example, concat("a", "b",
"c", "d") returns "abcd" .

In addition to the functions defined in XPath and discussed in this chapter, most uses of

http://lib.ommolketab.ir

XPath, such as XSLT and XPointer, define many more functions that are useful in their
particular context. You use these extra functions just like the built-in functions when
you're using those applications. XSLT even lets you write extension functions in Java
and other languages that can do almost anything, for example, making SQL queries
against a remote database server and returning the result of the query as a node-set.

9.7.1 Node-Set Functions

The node-set functions either operate on or return information about node-sets, that is,
collections of XPath nodes. You've already encountered the position() function.
Two related functions are last() and count() . The last() function returns
the number of nodes in the context node list, which also happens to be the same as the
position of the last node in the list. The count() function is similar except that it
returns the number of nodes in its node-set argument rather than in the context node list.
For example, count(//name) returns the number of name elements in the
document. Example 9-5 uses the position() and count() functions to list the
people in the document in the form "Person 1 of 10, Person 2 of 10, Person 3 of 10 . . . "
In the second template the position() function determines which person element
is currently being processed, and the count() function determines how many total
person elements there are in the document.

Example 9-5. An XSLT stylesheet that uses the position() and count() functions

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="people">
 <xsl:apply-templates select="person"/>
 </xsl:template>

 <xsl:template match="person">
 Person <xsl:value-of select="position()"/>
 of <xsl:value-of select="count(//person)"/>:
 <xsl:value-of select="name"/>
 </xsl:template>

</xsl:stylesheet>

The id() function takes as an argument a string containing one or more IDs
separated by whitespace and returns a node-set containing all the nodes in the
document that have those IDs. These are attributes declared to have type ID in the DTD

http://lib.ommolketab.ir

not necessarily attributes named ID or id . (A DTD must be both present and
processed by the parser for the id() function to work.) Thus, in Example 9-1 ,
id('p342') indicates Alan Turing's person element; id('p342 p4567')
indicates both Alan Turing and Richard Feynman's person elements.

The id() function is most commonly used in the abbreviated XPath syntax. It allows
you to form absolute location paths that don't start from the root. For example,
id('p342')/name refers to Alan Turing's name element, regardless of where Alan
Turing's person element is in the document, as long as it hasn't changed ID. This
function is especially useful for XPointers where it takes the place of HTML's named
anchors.

Finally, there are three node-set functions related to namespaces. The local-name(
) function takes as an argument a node-set and returns the local part of the first node in
that set. The namespace-uri() function takes a node-set as an argument and
returns the namespace URI of the first node in the set. Finally, the name() function
takes a node-set as an argument and returns the prefixed name of the first node in that
set. In all three functions the argument may be omitted, in which case the context node's
namespace is evaluated. For instance, when applied to Example 9-1 the XPath
expression, local-name(//homepage/@xlink:href) is href ; namespace-
uri(//homepage/@xlink:href) is http://www.w3.org/1999/xlink ; and
name(//homepage/@xlink:href) is xlink:href .

9.7.2 String Functions

XPath includes functions for basic string operations such as finding the length of a string
or changing letters from upper- to lowercase. It doesn't have the full power of the string
libraries in Python or Perl-for instance, there's no regular expression support-but it's
sufficient for many simple manipulations you need for XSLT or XPointer.

The string() function converts an argument of any type to a string in a reasonable
fashion. Booleans are converted to the string "true" or the string "false." Node-sets are
converted to the string value of the first node in the set. This is the same value
calculated by the xsl:value-of element. That is, the string value of the element is
the complete text of the element after all entity references are resolved and tags,
comments, and processing instructions have been stripped out. Numbers are converted
to strings in the format used by most programming languages, such as "1987,"
"299792500," or "2.71828."

http://www.w3.org/1999/xlink
http://lib.ommolketab.ir

In XSLT the xsl:decimal-format element and format-
number() function provide more precise control over formatting so
you can insert separators between groups, change the decimal
separator, use non-European digits, and make similar adjustments.

The normal use of most of the rest of the string functions is to manipulate or address the
text content of XML elements or attributes. For instance, if date attributes were given in
the format MM/DD/YYYY , then the string functions would allow you to target the month,
day, and year separately.

The starts-with() function takes two string arguments. It returns true if the first
argument starts with the second argument. For example, starts-
with('Richard', 'Ric') is true but starts-with('Richard', 'Rick') is
false. There is no corresponding ends-with() function.

The contains() function also takes two string arguments. However, it returns true if
the first argument contains the second argument-that is, if the second argument is a
substring of the first argument-regardless of position. For example,
contains('Richard', 'ar') is true but contains('Richard', 'art') is
false.

The substring-before() function takes two string arguments and returns the
substring of the first argument that precedes the initial appearance of the second
argument. If the second string doesn't appear in the first string, then substring-
before() returns the empty string. For example, substring-
before('MM/DD/YYYY', '/') is MM . The substring-after() function also
takes two string arguments but returns the substring of the first argument that follows the
initial appearance of the second argument. If the second string doesn't appear in the first
string, then substring-after() returns the empty string. For example,
substring-after ('MM/DD/YYYY', '/') is 'DD/YYYY' . substring-
before(substring-after('MM/DD/YYYY', '/')', '/') is DD .
substring-after(substring-after('MM/DD/YYYY', '/')', '/') is
YYYY .

If you know the position of the substring you want, then you can use the substring(
) method instead. This takes three arguments: the string from which the substring will
be copied, the position in the string from which to start extracting, and the number of
characters to copy to the substring. The third argument may be omitted, in which case
the substring contains all characters from the specified start position to the end of the
string. For example, substring('MM/DD/YYYY', 1, 2) is MM ;
substring('MM/DD/YYYY', 4, 2) is DD ; and substring('MM/DD/YYYY',

http://lib.ommolketab.ir

7) is YYYY .

The string-length() function returns a number giving the length of its argument's
string value or the context node if no argument is included. In Example 9-1 , string-
length(//name[position()=1]) is 29. If that seems long to you, remember
that all whitespace characters are included in the count. If it seems short to you,
remember that markup characters are not included in the count.

Theoretically, you could use these functions to trim and normalize whitespace in element
content. However, since this would be relatively complex and is such a common need,
XPath provides the normalize-space() function to do this. For instance, in
Example 9-1 the value of string(//name[position()=1]) is:

Alan
Turing

This contains a lot of extra whitespace that was inserted purely to make the XML
document neater. However, normalize-space(string(//name[position(
)=1])) is the much more reasonable:

Alan Turing

Although a more powerful string-manipulation library would be useful, XSLT is really
designed for transforming the element structure of an XML document. It's not meant to
have the more general power of a language like Perl, which can handle arbitrarily
complicated and varying string formats.

9.7.3 Boolean Functions

The Boolean functions are few in number and quite straightforward. They all return a
Boolean that has the value true or false. The true() function always returns true. The
false() function always returns false. These substitute for Boolean literals in XPath.

The not() function reverses the sense of its Boolean argument. For example,
not(@id>400) is almost always equivalent to (@id<=400) . (NaN is a special
case.)

The boolean() function converts its single argument to a Boolean and returns the
result. If the argument is omitted, then it converts the context node. Numbers are
converted to false if they're zero or NaN. All other numbers are true. Node-sets are false
if they're empty, true if they have at least one element. Strings are false if they have zero
length, otherwise they're true. Note that according to this rule, the string "false" is in
fact true.

http://lib.ommolketab.ir

9.7.4 Number Functions

XPath includes a few simple numeric functions for summing groups of numbers and
finding the nearest integer to a number. It doesn't have the full power of the math
libraries in Java or Fortran-for instance, there's no square root or exponentiation
function-but it's got enough to do most of the basic math you need for XSLT or the
even simpler requirements of XPointer.

The number() function can take any type as an argument and convert it to a number.
If the argument is omitted, then it converts the context node. Booleans are converted to
1 if true and if false. Strings are converted in a plausible fashion. For instance the string
"7.5" will be converted to the number 7.5. The string "Fred" will be converted to NaN.
Node-sets are converted to numbers by first converting them to their string values and
then converting the resulting string to a number. The detailed rules are a little more
complex, but as long as the object you're converting can reasonably be interpreted as a
single number, chances are the number() function will do what you expect. If the
object you're converting can't be reasonably interpreted as a single number, then the
number() function will return NaN.

The round() , floor() , and ceiling() functions all take a single number as
an argument. The floor() function returns the greatest integer less than or equal to
its argument. The ceiling() function returns the smallest integer greater than or
equal to its argument. The round() function returns its argument rounded to the
nearest integer. When rounding numbers like 1.5 and -3.5 that are equally close to two
integers, round() returns the greater of the two possibilities. (This means that -1.5
rounds to -1, but 1.5 rounds to 2.)

The sum() function takes a node-set as an argument. It converts each node in the set
to its string value, then converts each of those strings to a number. It then adds up the
numbers and returns the result.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 10. XLinks

 10.1 Simple Links

 10.2 Link Behavior
 10.3 Link Semantics

 10.4 Extended Links
 10.5 Linkbases

 10.6 DTDs for XLinks

XLinks are an attribute-based syntax for attaching links to XML documents. XLinks can
be simple Point A-to-Point B links, like the links you're accustomed to from HTML's A
element. XLinks can also be bidirectional, linking two documents in both directions so
you can go from A to B or B to A. XLinks can even be multidirectional, presenting many
different paths between any number of XML documents. The documents don't have to
be XML documents-XLinks can be placed in an XML document that lists connections
between other documents that may or may not be XML documents themselves. Web
graffiti artists take note: these third-party links let you attach links to pages you don't
even control, like the home page of the New York Times or the C.I.A. At its core XLink is
nothing more and nothing less than an XML syntax for describing directed graphs, in
which the vertices are documents at particular URIs and the edges are the links between
the documents. What you put in that graph is up to you.

Current web browsers at most support simple XLinks that do little more than duplicate
the functionality of HTML's A element. Many browsers don't support XLinks at all.
However, custom applications may do a lot more. Since XLinks are so powerful, it
shouldn't come as a surprise that they can do more than blue underlined links on web
pages. XLinks can describe tables of contents or indexes. They can connect textual
emendations to the text they describe. They can indicate possible paths through online
courses or virtual worlds. Different applications will interpret different sets of XLinks
differently. Just as no one browser really understands the semantics of all the various
XML applications, so too no one program can process all collections of XLinks.

10.1 Simple Links

A simple link defines a one-way connection between two resources. The source or
starting resource of the connection is the link element itself. The target or ending
resource of the connection is identified by a Uniform Resource Identifier (URI). The link
goes from the starting resource to the ending resource. The starting resource is always

http://lib.ommolketab.ir

an XML element. The ending resource may be an XML document, a particular element
in an XML document, a group of elements in an XML document, a span of text in an
XML document, or something that isn't a part of an XML document, such as an MPEG
movie or a PDF file. The URI may be something other than a URL, for instance a book
ISBN number like urn:isbn:1565922247 .

A simple XLink is encoded in an XML document as an element of arbitrary type that has
an xlink:type attribute with the value simple and an xlink:href attribute
whose value is the URI of the link target. The xlink prefix must be mapped to the
http://www.w3.org/1999/xlink namespace URI. As usual, the prefix can change as long
as the URI stays the same. For example, suppose this novel element appears in a list
of children's literature and we want to link it to the actual text of the novel available from
the URL ftp://archive.org/pub/etext/etext93/wizoz10.txt .

<novel>
 <title>The Wonderful Wizard of Oz</title>
 <author>L. Frank Baum</author>
 <year>1900</year>
</novel>

We give the novel element an xlink:type attribute with the value simple , an
xlink:href attribute that contains the URL to which we're linking, and an
xmlns:xlink attribute that associates the prefix xlink with the namespace URI
http://www.w3.org/1999/xlink . The result is this:

<novel xmlns:xlink= "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:href = "ftp://archive.org/pub/etext/etext93/wizoz10.txt">
 <title>The Wonderful Wizard of Oz</title>
 <author>L. Frank Baum</author>
 <year>1900</year>
</novel>

This establishes a simple link from this novel element to the plain text file found at
ftp://archive.org/pub/etext/etext93/wizoz10.txt . Browsers are free to interpret this link as
they like. However, the most natural interpretation, and the one implemented by the few
browsers that do support simple XLinks, is to make this a blue underlined phrase the
user can click on to replace the current page with the file being linked to. Other schemes
are possible however.

XLinks are fully namespace aware. The xlink prefix is customary, though it can be
changed. However, it must be mapped to the URI http://www.w3.org/1999/xlink . This
can be done on the XLink element itself, as in this novel example, or it can be done on

http://www.w3.org/1999/xlink
http://www.w3.org/1999/xlink
http://lib.ommolketab.ir

any ancestor of that element up to and including the root element of the document.
Future examples in this and the next chapter use the xlink prefix exclusively and
assume that this prefix has been properly declared on some ancestor element.

Every XLink element must have an xlink:type attribute telling you what kind of link
(or part of a link) it is. This attribute has six possible values:

Simple

Extended

Locator

Arc

Title

Resource

Simple XLinks are the only ones that are really similar to HTML links. The remaining five
kinds of XLink elements will be discussed in later sections.

The xlink:href attribute identifies the resource being linked to. It always contains a
URI. Both relative and absolute URLs can be used, as they are in HTML links. However,
the URI need not be a URL. For example, this link identifies but does not locate the print
edition of The Wonderful Wizard of Oz with the ISBN number 0688069444:

<novel xmlns:xlink= "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:href = "urn:isbn:0688069444">
 <title>The Wonderful Wizard of Oz</title>
 <author>L. Frank Baum</author>
 <year>1900</year>
</novel>

10.2 Link Behavior

So far, we've been careful to talk in the abstract. We've said that an XLink describes a
connection between two resources, but we haven't said much about how that connection
is presented to the end user or what it makes software reading the document do. That's
because there isn't one answer to these questions. For instance, when the browser
encounters a novel element that uses an http URL, clicking the link should probably
load the text of the novel from the URL into the current window, thereby replacing the

http://lib.ommolketab.ir

document that contained the link. Then again, maybe it should open a new window and
show the user the new document in that window. The proper behavior for a browser
encountering the novel element that uses an isbn URN is even less clear. Perhaps it
should reserve the book with the specified ISBN at the local library for the user to walk in
and pick up. Or perhaps it should order the book from an online bookstore. In other
cases something else entirely may be called for. For instance, the content of some links
are embedded directly in the linking document, as in this image element:

<image width="152" height="345" xlink:type="simple"
 xlink:href="http://www.turing.org.uk/turing/pi1/bus.jpg" />

Here, the author most likely intends the browser to download and display the image as
soon as it finds the link. And rather than opening a new window for the image or
replacing the current document with the image, the image should be embedded into the
current document.

Just as XML is more flexible than HTML in the documents it describes, so too is XLink
more flexible in the links it describes. An XLink indicates that there's a connection
between two documents, but it's up to the application reading the XLink to decide what
that connection means. It's not necessarily a blue, underlined phrase on which the user
clicks in a browser to jump from the first source document to the target. It may indeed be
that, just as an XML document may be a web page, but it may be something else too.

Page authors can offer suggestions to browsers about how links should be handled by
using the xlink:show and xlink:actuate attributes. The xlink:show attribute
tells a browser or other application what to do when the link is activated, for example,
whether to show the linked content in the same window or to open a new window to
display it. The xlink:actuate attribute tells the browser when to show the content,
for example, whether it should follow the link as soon as it sees it or whether it should
wait for an explicit user request.

10.2.1 xlink:show

The optional xlink:show attribute has five possible values that suggest in what
context the application loading an XLinked resource should display that resource:

new

Open a new window and show the content of the link's URI (the ending resource) in
that window.

replace

Show the ending resource in the current window, replacing the current document.

http://lib.ommolketab.ir

embed

Embed the ending resource in the current document at the location of the link
element.

other

Exhibit some behavior other than opening a new window, replacing the document
in the existing window or embedding the resource in the existing document. Exactly
what that behavior is may be specified by other, nonstandard markup that a
particular application understands.

none

Specify no behavior.

All five of these are only suggestions that browsers or other applications following
XLinks are free to ignore. For example, a web spider would not open a window for any
link and might ignore embedded links and treat the other four types identically. Mozilla
might open a new tab in an existing window for xlink:show="new" rather than
creating a completely new window. This is all allowed as long as it makes sense in the
context of the application.

10.2.2 xlink:actuate

The optional xlink:actuate attribute has four possible values, which suggest when
an application that encounters an XLink should follow it:

onLoad

The link should be followed as soon as the application sees it.
onRequest

The link should be followed when the user asks to follow it.
other

When to follow the link is determined by other markup in the document not
specified by XLink.

none

No details are available about when or whether to follow this link. Indeed, following
the link may not have any plausible meaning as in the previous example where the
link pointed to a book's ISBN number rather than a URL where the book could be
found.

All four of these are only suggestions that browsers or other applications following

http://lib.ommolketab.ir

XLinks are free to ignore. For example, a web spider would use its own algorithms to
decide when to follow and not follow a link. Differing behavior when faced with the same
attributes is allowed as long as it makes sense for the application reading the document.

For example, a traditional link such as is provided by HTML's A element and indicated
by the first novel example would be encoded like this:

<novel xlink:type="simple"
 xlink:href="ftp://archive.org/pub/etext/etext93/wizoz10.txt"
 xlink:actuate="onRequest" xlink:show="replace">
 <title>The Wonderful Wizard of Oz</title>
 <author>L. Frank Baum</author>
 <year>1900</year>
</novel>

This says to wait for an explicit user request to follow the link (e.g., clicking on the
content of the link) and then to replace the existing document with the document found
at ftp://archive.org/pub/etext/etext93/wizoz10.txt . On the other hand, if you were using
XLinks to embed images in documents, you'd want them traversed immediately and
then embedded in the originating document. The following syntax would be appropriate:

<image xlink:type="simple"
 xlink:actuate="onLoad" xlink:show="embed"
 xlink:href="http://www.turing.org.uk/turing/pi1/bus.jpg"
 width="152" height="345" />

Both xlink:show and xlink:actuate are optional. An application should be
prepared to do something reasonable if they're missing.

10.3 Link Semantics

A link describes a connection between two resources. These resources may or may not
be XML documents, but even if they are XML documents, the relationships they have
with each other can be quite varied. For example, links can indicate parent-child
relationships, previous-next relationships, employer-employee relationships, customer-
supplier relationships, and many more. XLink elements can have xlink:title and
xlink:role attributes to specify the meaning of the connection between the
resources. The xlink:title attribute contains a small amount of plain text
describing the remote resource such as might be shown in a tooltip when the user
moves the cursor over the link. The xlink:role attribute contains a URI. This points
to something that somehow describes or annotates the remote resource. For instance, it
might indicate the MIME media type of the remote resource by pointing to a registration

http://lib.ommolketab.ir

page for the type at the Internet Assigned Numbers Authority (IANA), such as
http://www.isi.edu/in-notes/iana/assignments/media-types/application/xml .

For example, the xlink:title attribute of this novel element specifies that the text
comes from Project Gutenberg, while the xlink:role attribute points to the Project
Gutenberg home page.

<novel xlink:type="simple"
 xlink:href="ftp://archive.org/pub/etext/etext93/wizoz10.txt"
 xlink:title= "The complete text of the novel from Project Gutenberg"
 xlink:role="http://promo.net/pg/" >
 <title>The Wonderful Wizard of Oz</title>
 <author>L. Frank Baum</author>
 <year>1900</year>
</novel>

As with almost everything else related to XLink, exactly what browsers or other
applications will do with this information or how they'll present it to readers remains to be
determined.

10.4 Extended Links

Whereas a simple link describes a single unidirectional connection between one XML
element and one remote resource, an extended link describes a collection of resources
and a collection of paths between those resources. Each path connects exactly two
resources. Any individual resource may be connected to one of the other resources, two
of the other resources, zero of the other resources, all of the other resources, or any
subset of the other resources in the collection. It may even be connected back to itself.
In computer science terms, an extended link is a directed, labeled graph in which the
paths are arcs, the documents are vertices, and the URIs are labels.

Simple links are very easy to understand by analogy with HTML links. However, there's
no obvious analogy for extended links. What they look like, how applications treat them,
what user interfaces present them to people, is all up in the air. No simple visual
metaphors like "click on the blue underlined text to jump to a new page" have been
invented for extended links, and no browsers support them. How they'll be used and
what user interfaces will be designed for them remains to be seen.

In XML, an extended link is represented by an extended link element, that is, an element
of arbitrary type that has an xlink:type attribute with the value extended . For

example, this is an extended link element that refers to the novel The Wonderful Wizard
of Oz :

http://www.isi.edu/in-notes/iana/assignments/media-types/application/xml
http://lib.ommolketab.ir

<novel xlink:type="extended">
 <title>The Wonderful Wizard of Oz</title>
 <author>L. Frank Baum</author>
 <year>1900</year>
</novel>

Although this extended link is quite Spartan, most extended links contain local
resources, remote resources, and arcs between those resources. A remote resource is
represented by a locator element, that is, an element of any type that has an
xlink:type attribute with the value locator . A local resource is represented by a
resource element, that is, an element of any type that has an xlink:type attribute
with the value resource . And an arc between two resources, whether local or remote,
is represented by an arc element, that is, an element of any type that has an
xlink:type attribute with the value arc .

10.4.1 Locators

Each locator element has an xlink:type attribute with the value locator and an
xlink:href attribute containing a URI for the resource it locates. For example, this
novel element for The Wonderful Wizard of Oz contains three locator elements that
identify particular editions of the book:

<novel xlink:type = "extended">
 <title>The Wonderful Wizard of Oz</title>
 <author>L. Frank Baum</author>
 <year>1900</year>
 <edition xlink:type="locator" xlink:href="urn:isbn:0688069444" />
 <edition xlink:type="locator" xlink:href="urn:isbn:0192839306" />
 <edition xlink:type="locator" xlink:href="urn:isbn:0700609857" />
</novel>

Most of the time each locator element also has an xlink:label attribute that serves
as a name for the element. The value of this attribute can be any XML name that does
not contain a colon (i.e., that does not have a namespace prefix). For instance, in the
previous example, we could add labels based on the ISBN number like this:

<novel xlink:type = "extended">
 <title>The Wonderful Wizard of Oz</title>
 <author>L. Frank Baum</author>
 <year>1900</year>
 <edition xlink:type="locator" xlink:href="urn:isbn:0688069444"
 xlink:label="ISBN0688069444"/>

http://lib.ommolketab.ir

 <edition xlink:type="locator" xlink:href="urn:isbn:0192839306"
 xlink:label="ISBN0192839306"/>
 <edition xlink:type="locator" xlink:href="urn:isbn:0700609857"
 xlink:label="ISBN0700609857"/>
</novel>

The number alone cannot be used because XML names cannot start with digits. In this
and most cases, the labels are unique within the extended link, but they don't absolutely
have to be.

Locators may also have the optional semantic attributes xlink:title and
xlink:role to provide more information about the remote resource. These attributes
have the same meanings they have for simple XLinks. The xlink:title attribute
contains a small amount of text describing the remote resource, and the xlink:role
attribute contains an absolute URI that somehow describes or annotates the remote
resource. For instance, the edition elements could provide the publisher's name and
URL using these attributes like this:

<novel xlink:type = "extended">
 <title>The Wonderful Wizard of Oz</title>
 <author>L. Frank Baum</author>
 <year>1900</year>
 <edition xlink:type="locator" xlink:href="urn:isbn:0688069444"
 xlink:title="William Morrow"
 xlink:role="http://www.williammorrow.com/"
 xlink:label="ISBN0688069444"/>
 <edition xlink:type="locator" xlink:href="urn:isbn:0192839306"
 xlink:title="Oxford University Press"
 xlink:role="http://www.oup-usa.org/"
 xlink:label="ISBN0192839306"/>
 <edition xlink:type="locator" xlink:href="urn:isbn:0700609857"
 xlink:title="University Press of Kansas"
 xlink:role="http://www.kansaspress.ku.edu/"
 xlink:label="ISBN0700609857"/>
</novel>

10.4.2 Arcs

Paths between resources are called arcs , and they are represented by arc elements,
that is, elements of arbitrary type that have an xlink:type attribute with the value
arc . Each arc element should have an xlink:from attribute and an xlink:to
attribute. The xlink:from attribute identifies the source of the link . The xlink:to

http://lib.ommolketab.ir

attribute identifies the target of the link. These attributes do not contain URIs as you
might expect. Rather they contain a name matching the value of the xlink:label
attribute of one of the locator elements in the extended link.

Example 10-1 shows an extended link that contains the first three novels in the Wizard
of Oz series: The Wonderful Wizard of Oz , The Marvelous Land of Oz , and Ozma of Oz
. Arcs connect the first book in the series to the second and the second to the third, and
then back again. In this example, the root series element is the extended link
element; each novel element is a locator element; and the next and previous
elements are arc elements.

Example 10-1. An extended link with three locators and four arcs

<series xlink:type="extended" xmlns:xlink="http://www.w3.org/1999/xlink">

 <author>L. Frank Baum</author>
 <!-- locator elements -->
 <novel xlink:type="locator" xlink:label="oz1"
 xlink:href="ftp://archive.org/pub/etext/etext93/wizoz10.txt">
 <title>The Wonderful Wizard of Oz</title>
 <year>1900</year>
 </novel>
 <novel xlink:type="locator" xlink:label="oz2"
 xlink:href="ftp://archive.org/pub/etext/etext93/ozland10.txt">
 <title>The Marvelous Land of Oz</title>
 <year>1904</year>
 </novel>
 <novel xlink:type="locator" xlink:label="oz3"
 xlink:href="ftp://archive.org/pub/etext/etext93/wizoz10.txt">
 <title>Ozma of Oz</title>
 <year>1907</year>
 </novel>

 <!-- arcs -->
 <next xlink:type="arc" xlink:from="oz1" xlink:to="oz2" />
 <next xlink:type="arc" xlink:from="oz2" xlink:to="oz3" />
 <previous xlink:type="arc" xlink:from="oz2" xlink:to="oz1" />
 <previous xlink:type="arc" xlink:from="oz3" xlink:to="oz2" />
</series>

Figure 10-1 diagrams this extended link. Resources are represented by books. Arcs are
represented by arrows. However, although we can understand this link in this sort of

http://lib.ommolketab.ir

abstract sense, this doesn't really tell us anything about how a browser might present it
to a user and how users might choose which links to follow. For instance, this extended
link might be interpreted as nothing more than a list of the order in which to print these
documents. All details of interpretation are left up to the application.

Figure 10-1. An extended link with three resources and four arcs between them

10.4.2.1 Multiple arcs from one arc element

On occasion a single arc element defines multiple arcs. If multiple elements share the
same label, then an arc element that uses that label in either its xlink:to or
xlink:from attribute defines arcs between all resources that share that label.
Example 10-2 shows an extended link containing locator elements for three different
online bookstores and one edition of The Wonderful Wizard of Oz . Each bookstore
element has the label buy , and a single purchase arc element connects all of these.
Figure 10-2 shows the graph structure of this extended link.

Example 10-2. An extended link with one arc element but three arcs

<book xlink:type="extended" xmlns:xlink="http://www.w3.org/1999/xlink">

 <author>L. Frank Baum</author>
 <title>The Wonderful Wizard of Oz</title>

 <!-- locator elements -->
 <edition xlink:type="locator" xlink:href="urn:isbn:0192839306"
 xlink:title="Oxford University Press"
 xlink:role="http://www.oup-usa.org/"
 xlink:label="ISBN0192839306"/>

http://lib.ommolketab.ir

 <store xlink:type="locator"
 xlink:href="http://www.amazon.com/exec/obidos/ASIN/0192839306"
 xlink:label="buy">Amazon</store>

 <store xlink:type="locator" xlink:href=
 "http://www1.fatbrain.com/asp/bookinfo/bookinfo.asp?theisbn=0192839306"
 xlink:label="buy">Fatbrain</store>

 <store xlink:type="locator" xlink:href=
"http://shop.bn.com/booksearch/isbninquiry.asp?isbn=0192839306"
 xlink:label="buy">Barnes & Noble</store>

 <!-- arcs -->
 <purchase xlink:type="arc" xlink:from="ISBN0192839306" xlink:to="buy" />

</book>

Figure 10-2. One arc element can generate several arcs

If an arc element does not have an xlink:to attribute, then it uses all the resources in
the extended link as sources. If an arc element does not have an xlink:from
attribute, then it uses all the resources in the extended link as targets.

However, it is an error for more than one arc element to define an arc between the same
two resources, whether implicitly or explicitly. For example, if an extended link contains
N resources and an arc element such as <edition xlink:type="arc"/> with
neither an xlink:to or xlink:from attribute, then it cannot contain any other arc
elements because this one arc element defines all N2 possible arcs between the
resources in the extended link.

http://lib.ommolketab.ir

10.4.2.2 Arc titles

Each arc element may optionally have an xlink:title attribute, just like all other
XLink elements. This contains a small amount of text describing the arc intended for
humans to read. For instance, in Example 10-1 , we might give these titles to the arcs:

<next xlink:type="arc" xlink:from="oz1" xlink:to="oz2"
 xlink:title="Next" />
<next xlink:type="arc" xlink:from="oz2" xlink:to="oz3"
 xlink:title="Next" />
<previous xlink:type="arc" xlink:from="oz2" xlink:to="oz1"
 xlink:title="Previous" />
<previous xlink:type="arc" xlink:from="oz3" xlink:to="oz2"
 xlink:title="Previous" />

When processing an extended link, a browser might show the title to the user as the
contents of a link so they could choose which arc they wanted to follow from their current
position, or they might appear in a pop-up menu when the user was on one of the
referenced pages. XLink does not require or suggest any specific user interface for arcs
or arc titles.

10.4.2.3 Arc roles

Arc elements cannot have xlink:role attributes. However, an arc element can have
an xlink:arcrole attribute that contains an absolute URI pointing to a description of
the arc. More specifically, this URI should point to a resource that indicates which
relationship the arc describes (e.g., parent-child, employer-employee). However, there's
really no way to validate this at all beyond checking to see that xlink:arcrole does
contain a legal URI (and even that is not strictly required). For instance, in Example 10-2
we might add an xlink:arcrole attribute to the purchase arc that pointed to the

URL http://www.example.com/purchase_details.txt .

<purchase xlink:type="arc" xlink:from="ISBN0192839306" xlink:to="buy"
 xlink:arcrole="http://www.example.com/purchase_details.txt" />

The file purchase_details.html might then contain the text "will be bought from." This
would indicate that the source of the link is bought from the target of the link; that is,
"The Wonderful Wizard of Oz will be bought from Amazon," or "The Wonderful Wizard of
Oz will be bought from Fatbrain," or "The Wonderful Wizard of Oz will be bought from
Barnes & Noble." However, although this usage is suggested, XLink processors will not
enforce it, and indeed there's really no way they could be asked to do this since that
would require that they actually understand what they read. The xlink:arcrole

http://www.example.com/purchase_details.txt
http://lib.ommolketab.ir

attribute is optional. You don't have to include it on your arcs, and XLink processors
don't have to do anything with it even if you do.

10.4.3 Local Resources

Locators represent remote resources, that is, resources that are not part of the
document that contains the extended link. Extended links can also contain local
resources in which the data is contained inside the extended link element. Each such
resource is represented by a resource element . This is an element of arbitrary type that
has an xlink:type attribute with the value resource . For instance, in Example 10-
1 the series extended link element contains an author child element. This can
easily be made a local resource simply by giving it an xlink:type="resource"
attribute:

<author xlink:type="resource">L. Frank Baum</author>

A resource element can and generally does have the same attributes as a locator
element, that is, xlink:label , xlink:role , and xlink:title . These all have
the same semantics as they do for locator elements. For instance, the label is a name
arcs use to connect resources. An arc can connect a resource to a resource, a resource
to a locator, a locator to a resource, or a locator to a locator. Arcs really don't care
whether resources are local or remote. To link to or from this resource, it needs an
xlink:label attribute like this:

<author xlink:type="resource" xlink:label="baum">L. Frank Baum</author>

To establish links from this local resource to all the books, we'd simply add these three
arc elements:

<book xlink:type="arc" xlink:from="baum" xlink:to="oz1" />
<book xlink:type="arc" xlink:from="baum" xlink:to="oz2" />
<book xlink:type="arc" xlink:from="baum" xlink:to="oz3" />

To move in the other direction, you'd simply reverse the values of the xlink:from and
xlink:to attributes.

10.4.4 Title Elements

As you've seen, extended link elements, locator elements, arc elements, and resource
elements can all have xlink:title attributes that provide a short blurb of text
identifying the link. However, this isn't always enough. For instance, in a document that
was a rather large extended link, you might want to mark up the titles using XHTML or
some other vocabulary. To this end, a title can instead (or in addition) be provided as a

http://lib.ommolketab.ir

title type child element, that is, an element whose xlink:type attribute has the value
title .

For example, suppose you wanted to provide a more complete description of each
edition of The Wonderful Wizard of Oz than simply who published it. Then you would
give the edition element a title type element containing any convenient markup like
this:

<edition xlink:type="locator" xlink:href="urn:isbn:0700609857"
 xlink:title="University Press of Kansas"
 xlink:role="http://www.kansaspress.ku.edu/"
 xlink:label="ISBN0700609857">
 <publisher_info xlink:type="title">

 The Kansas Centennial Edition
 Illustrated by Michael McCurdy
 Foreword by Ray Bradbury
 1999
 216 pages
 SRP: $24.95

 </publisher_info>
</edition>

What markup you use inside the title element is up to you as long as it's well-formed
XML. XLink doesn't constrain it in any way. How the application interprets that markup is
its own business. Here we've used basic HTML that a browser might perhaps be able to
render. Once again, however, this is far enough past the bleeding edge that exact
browser behavior, even when browsers do support extended XLinks, is hard to predict.

10.5 Linkbases

One of the most revolutionary features of XLinks is the ability to define links between
documents you don't control. For instance, Example 10-1 is an extended link that
describes and links three documents neither of the authors of this book has anything to
do with. Links between purely remote resources are called third-party links . A third-party
link is created when an arc's xlink:from and xlink:to attributes both contain
labels for locator elements. Links from a remote resource to a local resource are called
inbound links . An inbound link is created when an arc's xlink:from attribute contains
the label of a locator element and its xlink:to attribute contains the label of a

resource element. Links from a local resource to a remote resource are called outbound

http://lib.ommolketab.ir

links . An outbound link is established when an arc's xlink:from attribute contains
the label of a resource element and its xlink:to attribute contains the label of a
locator element. Simple links are also outbound links.

An XML document that contains any inbound or third-party links is called a linkbase . A
linkbase establishes links from documents other than the linkbase itself, perhaps
documents that the author of the linkbase does not own and cannot control. Exactly how
a browser or other application will load a linkbase and discover the links there is still an
open question. It will probably involve visiting a web site that provides the linkbase.
When the browser sees the extended link that attempts to establish links from a third
web site, it should ask the user whether he wishes to accept the suggested links. It
might even use the xlink:role and xlink:title attributes to help the user make
this decision, though if past experience with cookies, Java applets, and ActiveX controls
is any guide, the initial user interfaces are likely to be quite poor and the choices offered
quite limited.

Once a browser has loaded a linkbase and arrived at a page that's referenced as the
starting resource of one or more of the links in the linkbase, it should make this fact
known to the user somehow and give them a means to traverse the link. Once again the
user interface for this activity remains to be designed. Perhaps it will be a pop-up
window showing the third-party links associated with a page. Or perhaps it will simply
embed the links in the page, but use a different color underlining. The user could still
activate them in exactly the same way they activate a normal HTML link.

If this is the scheme that's adopted, then it would be useful if the starting resource of the
link didn't have to be an entire document, but could rather be just one part of it, such as
a specific paragraph, personal name, or book title. Indeed, you can attach an XPointer to
the URI identifying the starting resource of the link that chooses a particular part of or
point in the starting document. This will be the subject of Chapter 11 .

10.6 DTDs for XLinks

For a document that contains XLinks to be valid, all the XLink attributes that the
document uses have to be declared in a DTD just like any other attributes. In most
cases some of the attributes can be declared #FIXED , and then they do not need to be
explicitly included in the document itself. For example, this DTD fragment describes the
novel element seen earlier:

<!ELEMENT novel (title, author, year)>
<!ATTLIST novel xmlns:xlink CDATA #FIXED 'http://www.w3.org/1999/xlink'
 xlink:type (simple) #FIXED 'simple'
 xlink:href CDATA #REQUIRED>

http://lib.ommolketab.ir

<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT year (#PCDATA)>

Given this DTD to fill in the fixed attributes xmlns:xlink and xlink:type , a
novel element only needs an xlink:href attribute to be a complete simple XLink:

<novel xlink:href = "urn:isbn:0688069444">
 <title>The Wonderful Wizard of Oz</title>
 <author>L. Frank Baum</author>
 <year>1900</year>
</novel>

Documents that contain many XLink elements often use parameter entity references to
define the common attributes. For example, suppose novel , anthology , and
nonfiction are all simple XLink elements. Their XLink attributes could be declared in
a DTD like this:

<!ENTITY % simplelink
 "xlink:type (simple) #FIXED 'simple'
 xlink:href CDATA #REQUIRED
 xmlns:xlink CDATA #FIXED 'http://www.w3.org/1999/xlink'
 xlink:role CDATA #IMPLIED
 xlink:title CDATA #IMPLIED
 xlink:actuate (onRequest | onLoad | other | none) 'onRequest'
 xlink:show (new | replace | embed | other | none) 'new'"
>
<!ATTLIST anthology %simplelink;>
<!ATTLIST novel %simplelink;>
<!ATTLIST nonfiction %simplelink;>

Similar techniques can be applied to declarations of attributes for extended XLinks.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 11. XPointers

 11.1 XPointers on URLs

 11.2 XPointers in Links
 11.3 Bare Names

 11.4 Child Sequences
 11.5 Namespaces

 11.6 Points

 11.7 Ranges

XPointers are a non-XML syntax for identifying locations inside XML documents. An
XPointer is attached to the end of the URI as its fragment identifier to indicate a
particular part of an XML document rather than the entire document. XPointer syntax
builds on the XPath syntax used by XSLT and covered in Chapter 9 . To the four
fundamental XPath data types-Boolean, node-set, number, and string-XPointer adds
points and ranges, as well as the functions needed to work with these types. It also adds
some shorthand syntax for particularly useful and common forms of XPath expressions.

This chapter is based on the September 11, 2001 W3C Candidate
Recommendation of XPointer. However, there are known issues with
this draft, and some of the details described here are likely to
change. The most current version of the XPointer recommendation
can be found at http://www.w3.org/TR/xptr .

11.1 XPointers on URLs

A URL that identifies a document typically looks something like
http://java.sun.com:80/products/jndi/index.html . The scheme, http in this example, tells
you what protocol the application should use to retrieve the document. The authority,
java.sun.com:80 in this example, tells you from which host the application should
retrieve the document. The authority may also contain the port to connect to that host
and the username and password to use. The path, /products/jndi/index.html in this
example, tells you which file in which directory to ask the server for. This may not always
be a real file in a real filesystem, but it should be a complete document the server knows
how to generate and return. All of this you're already familiar with, and XPointer doesn't
change any of it.

http://java.sun.com:80/products/jndi/index.html
http://lib.ommolketab.ir

You probably also know that some URLs contain fragment identifiers that point to a
particular named anchor inside the document the URL locates. This is separated from
the path by the sharp sign # . For example, if we were to add the fragment download to
the previous URL, then it would become
http://java.sun.com:80/products/jndi/index.html#download . When a web browser follows
a link to this URL, it looks for a named anchor in the document at
http://java.sun.com:80/products/jndi/index.html with the name download such as this
one:

It would then scroll the browser window to the position in the document where the
anchor with that name is found. This is a simple and straightforward system, and it works
well for HTML's simple needs. However, it has one major drawback: to link to a
particular point of a particular document, you must be able to modify the document to
which you're linking in order to insert a named anchor at the point to which you want to
link. XPointer endeavors to eliminate this restriction by allowing you to specify where you
want to link to using full XPath expressions as fragment identifiers. Furthermore,
XPointer expands on XPath by providing operations to select particular points in or
ranges of an XML document that do not necessarily coincide with any one node or set of
nodes. For instance, an XPointer can describe the range of text currently selected by the
mouse.

The most basic form of XPointer is simply an XPath expression - often, though not
necessarily, a location path-enclosed in the parentheses of xpointer() . For
example, these are all acceptable XPointers:

xpointer(/)
xpointer(//first_name)
xpointer(id('sec-intro'))
xpointer(/people/person/name/first_name/text())
xpointer(//middle_initial[position()=1]/../first_name)
xpointer(//profession[.="physicist"])
xpointer(/child::people/child::person[@index<4000])
xpointer(/child::people/child::person/attribute::id)

Not all of these XPointers necessarily refer to a single element. Depending on which
document the XPointer is evaluated relative to, an XPointer may identify zero, one, or
more than one node. Most commonly the nodes identified are elements, but they can
also be attribute nodes or text nodes, as well as points or ranges.

If you're uncertain whether a given XPointer will locate something, you can back it up
with an alternative XPointer. For example, this XPointer looks first for first_name

http://java.sun.com:80/products/jndi/index.html#download
http://java.sun.com:80/products/jndi/index.html
http://lib.ommolketab.ir

elements. However, if it doesn't find any, it looks for last_name elements instead:

xpointer(//first_name)xpointer(//last_name)

The last_name elements will be found only if there are no first_name elements.
You can string as many of these XPointer parts together as you like. For example, this
XPointer looks first for first_name elements. If it doesn't find any, it then seeks out
last_name elements. If it doesn't find any of those, it looks for middle_initial
elements. If it doesn't find any of those, it returns an empty node set:

xpointer(//first_name)xpointer(//last_name)xpointer(//middle_initial)

No special separator character or whitespace is required between the individual
xpointer() parts, though whitespace is allowed. This XPointer means the same
thing:

xpointer(//first_name) xpointer(//last_name) xpointer(//middle_initial)

11.2 XPointers in Links

Obviously, what an XPointer points to depends on to which document it's applied. This
document is specified by the URL to which the XPointer is attached. For example, if you
wanted a URL that pointed to the first name element in the document at

http://www.cafeconleche.org/people.xml , you would type:

http://www.cafeconleche.org/people.xml#xpointer(//name[position()=1])

If the XPointer uses any characters that are not allowed in URIs-for instance, the less
than sign < , the double quotation mark " , or non-ASCII letters like é -then these must
be hexadecimally escaped as specified by the URI specification before the XPointer is
attached to the URI. That is, each such character is replaced by a percent sign followed
by the hexadecimal value of each byte in the character in the UTF-8 encoding of
Unicode. Thus, < would be written as %3C , " would be written as %22 , and é would be
written as %C3%A9 .

In HTML, the URLs used in a elements can contain an XPointer fragment identifier. For
example:

 The name of a person

If a browser followed this link, it would likely load the entire document at
http://www.cafeconleche.org/people.xml and then scroll the window to the beginning of

http://www.cafeconleche.org/people.xml
http://www.cafeconleche.org/people.xml#xpointer(//name[position()=1])
http://www.cafeconleche.org/people.xml
http://lib.ommolketab.ir

the first name element in the document. However, no browsers yet support XPointer, so
the exact behavior is open for debate. In some situations it might make sense for the
browser to show only the specific element node(s) the XPointer referred to rather than
the entire document.

Since XPath can only locate nodes in a well-formed XML document, XPointers can only
point into XML documents. You can't use them to link into nonwell-formed HTML, plain-
text files, or other non-XML documents. However, linking from HTML documents is
perfectly fine, as is printing XPointers in books, painting them on the sides of buildings,
or communicating them by any means by which text can be communicated.

XPointers are more frequently used in XLinks. For example, this simple link points to the
first book child of the bookcoll child of the testament root element in the

document at the relative URL ot.xml :

<In_the_beginning xlink:type="simple"
 xlink:href="ot.xml#xpointer(/testament/bookcoll/book[position()=1])">
 Genesis
</In_the_beginning>

In extended links, an XPointer can help identify both the starting and ending resources
of an arc. For example, this extended XLink establishes an arc between the last v
element in the document at the relative URL ot.xml and the first v element of the
document at the relative URL nt.xml . Then it establishes a link from the first v element
of nt.xml to the last v element of ot.xml :

<Bible xlink:type="extended" xmlns:xlink="http://www.w3.org/1999/xlink">

 <testament xlink:type="locator" xlink:label="ot"
 xlink:href="ot.xml#xpointer(//v[position()=last()])"/>
 <testament xlink:type="locator" xlink:label="nt"
 xlink:href="nt.xml#xpointer(//v[position()=1])" />

 <next xlink:from="ot" xlink:to="nt"/>
 <previous xlink:from="nt" xlink:to="ot"/>

</Bible>

Links can even be purely internal; that is, they can link from one place in the document
to another place in the same document. The slide element shown in this example
contains simple XLinks that point to the first and last slide elements in the document:

<slide xmlns:xlink="http://www.w3.org/1999/xlink">

http://lib.ommolketab.ir

 <point>Acme Wonder Goo is a delicious dessert topping!</point>
 <point>Acme Wonder Goo is a powerful floor cleaner!</point>
 <point>It's two products in one!</point>

 <first xlink:type="simple"
 xlink:href="#xpointer(//slide[position()=1])">
 Start
 </first>
 <last xlink:type="simple"
 xlink:href="#xpointer(//slide[position()=last()]))">
 End
 </last>
</slide>

When the XPath expressions used in an XPointer are themselves relative, the context
node is the root node of the entity that contains the XPointer.

11.3 Bare Names

XPointers provide a number of convenient extensions to XPath. One of the simplest is
the bare name . A bare name XPointer is similar to an HTML named anchor; that is, a
bare name XPointer identifies the element at which it's pointing by its name. However,
this name is supplied by an ID type attribute of the element being pointed at rather than
by a special a element with a name attribute. To link to an element with a bare name,

append the usual fragment separator # to the URL followed by the ID of the element to
which you're linking. For example, the URL http://www.w3.org/TR/1999/REC-xpath-
19991116.xml#NT-AbsoluteLocationPath links to the element in the XPath 1.0
specification that has an ID type attribute with the value NT-AbsoluteLocationPath .

The ID attribute is an attribute declared to have ID type in the document's DTD. It does
not have to be named ID or id . Bare names cannot be used to link to elements in
documents that don't have DTDs because such a document cannot have any ID type
attributes.

The inability to use IDs in documents without DTDs or schemas is a
major shortcoming of XML. Work is ongoing to attempt to remedy
this, perhaps by defining a generic ID attribute such as xml:id or by
defining a namespace that identifies ID type attributes.

For example, suppose you wanted to link to the Motivation and Summary section of the
Namespaces in XML recommendation at http://www.w3.org/TR/1999/REC-xml-names-

http://www.w3.org/TR/1999/REC-xpath-
http://lib.ommolketab.ir

19990114/xml-names.xml . A quick peek at the source code of this document reveals
that it has an id attribute with the value sec-intro and that indeed this attribute is
declared to have ID type in the associated DTD. Its start-tag looks like this:

<div1 id='sec-intro'>

Therefore, http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-names.xml#sec-
intro is a URL that points to this section. The name does not need to be (and indeed
should not be) enclosed in xpointer() to make this work. Just the ID value is
sufficient. This is basically just a convenient shorthand for an XPointer using an XPath
expression using the id() function. The same URL could just as easily have been

written as http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-
names.xml#xpointer(id(sec-intro)) .

11.4 Child Sequences

Another very common form of XPointer is one that descends exclusively along the child
axis, selecting elements by their position relative to their siblings. For example,
xpointer(/child::*[position() = 1]/child::*[position() =
2]/child::*[position() = 3]) selects the third child element of the second
child element of the root element of the document. Since this is so common, XPointer
allows you to abbreviate this syntax by providing only the numbers of the child elements
separated by forward slashes. This is called a child sequence . For example, the
previous XPointer could be rewritten as a child sequence in the much more compact
form /1/2/3 . A child sequence should not be enclosed in xpointer() as a normal
XPath expression would.

For example, the Motivation and Summary section of the Namespaces in XML
recommendation at http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-
names.xml is given as a div element. It so happens that this div element is the first
child element of the second child element of the root element. Therefore, the URL
http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-names.xml#/1/2/1 points to
this section.

11.5 Namespaces

Since XPointers may appear in places that are not XML documents (HTML documents,
database fields, magazine pages, etc.), they require their own mechanism for binding
namespace prefixes to namespace URIs. This is done by placing one or more xmlns
parts before the xpointer part. The syntax is xmlns(prefix =URI) . For
example, this XPointer maps the svg prefix to the http://www.w3.org/2000/svg

http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-names.xml#sec-
http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-
http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-names.xml#/1/2/1
http://www.w3.org/2000/svg
http://lib.ommolketab.ir

namespace and then searches out all rect elements in that namespace:

xmlns(svg=http://www.w3.org/2000/svg) xpointer(//svg:rect)

As with most other uses of namespaces, only the URI matters in an XPointer, not the
prefix. The previous XPointer finds all rect elements in the
http://www.w3.org/2000/svg namespace regardless of what prefix they use or
whether they're in the default namespace.

There is no way to define a default, unprefixed namespace for an XPointer. However,
prefixed names in an XPointer can refer to unprefixed but namespace-qualified
elements in the targeted document. For example, this XPointer finds the third div
element in an XHTML document:

xmlns(html=http://www.w3.org/1999/xhtml) xpointer(//html:div[3])

It uses the prefix html to identify the XHTML namespace, even though XHTML
documents never use prefixes themselves.

More than one namespace prefix can be used simply by adding extra xmlns parts. For
example, this XPointer seeks out svg elements in XHTML documents by declaring one
prefix each for the SVG and XHTML namespaces:

xmlns(svg=http://www.w3.org/2000/svg)
xmlns(h=http://www.w3.org/1999/xhtml) xpointer(/h:html//svg:svg)

If an XPointer is included in an XML document, the namespace bindings established by
that document do not apply to the XPointer. Only the bindings established by the xmlns
parts apply to the XPointer. If the xpointer parts contain XPath expressions that refer
to elements or attributes in a namespace, then they must be preceded by xmlns parts
declaring the namespaces.

11.6 Points

XPaths, bare names, and child sequences can only point to entire nodes or sets of
nodes. However, sometimes you want to point to something that isn't a node, such as
the third word of the second paragraph or the year in a date attribute that looks like
date="01/03/1950" . XPointer adds points and ranges to the XPath syntax to make

this possible. A point is the position preceding or following any tag, comment,
processing instruction, or character in the #PCDATA. Points can also be positions inside
comments, processing instructions, or attribute values. Points cannot be located inside
an entity reference, though they can be located inside the entity's replacement text. A
range is the span of parsed character data between two points. Nodes, points, and

http://www.w3.org/2000/svg
http://lib.ommolketab.ir

ranges are collectively called locations ; a set that may contain nodes, points, and
ranges is called a location set . In other words, a location is a generalization of the
XPath node that includes points and ranges, as well as elements, attributes,
namespaces, text nodes, comments, processing instructions, and the root node.

A point is identified by its container node and a non-negative index into that node. If the
node contains child nodes-that is, if it's a document or element node-then there are
points before and after each of its children (except at the ends, where the point after one
child node will also be the point before the next child node). If the node does not contain
child nodes-that is, if it's a comment, processing instruction, attribute, namespace, or
text node-then there's a point before and after each character in the string value of the
node, and again the point after one character will be the same as the point before the
next character.

Consider the document in Example 11-1 . It contains a novel element that has seven
child nodes, three of which are element nodes and four of which are text nodes
containing only whitespace.

Example 11-1. A novel document

<?xml version="1.0"?>
<?xml-stylesheet type="text/css" value="novel.css"?>
<!-- You may recognize this from the last chapter -->
<novel copyright="public domain">
 <title>The Wonderful Wizard of Oz</title>
 <author>L. Frank Baum</author>
 <year>1900</year>
</novel>

There are eight points directly inside the novel element numbered from 0 to 7, one
immediately after and one immediately before each tag. Figure 11-1 identifies these
points.

Figure 11-1. The points inside the novel element

Inside the text node child of the year element, there are five points:

Point 0 between <year> and 1

http://lib.ommolketab.ir

Point 1 between 1 and 9

Point 2 between 9 and 0

Point 3 between 0 and 0

Point 4 between 0 and </year>

Notice that the points occur between the characters of the text rather than on the
characters themselves. Points are zero-dimensional. They identify a location, but they
have no extension, not even a single character. To indicate one or more characters, you
need to specify a range between two points.

XPointer adds two functions to XPath that make it very easy to select the first and last
points inside a node, start-point() and end-point() . For example, this
XPointer identifies the first point inside the title element, that is, the point between
the title node and its text node child:

xpointer(start-point(//title))

This XPointer indicates the point immediately before the </author> tag:

xpointer(end-point(//author))

If there were multiple title and author elements in the document, then these
functions would select multiple points.

This XPointer points to the point immediately before the letter T in "The Wonderful
Wizard of Oz":

xpointer(start-point(//title/text()))

This point falls immediately after the point indicated by xpointer(start-
point(//title)) . These are two different points, even though they fall between the
same two characters (> and T) in the text.

To select points other than the start-point or end-point of a node, you first need to form a
range that begins or ends with the point of interest using string-range() and then
use the start-point or end-point function on that range. We take this up in the
next section.

11.7 Ranges

A range is the span of parsed character data between two points. It may or may not

http://lib.ommolketab.ir

represent a well-formed chunk of XML. For example, a range can include an element's
start-tag but not its end-tag. This makes ranges suitable for uses such as representing
the text a user selected with the mouse. Ranges are created with four functions XPointer
adds to XPath:

range()

range-to()

range-inside()

string-range()

11.7.1 The range() function

The range() function takes as an argument an XPath expression that returns a
location set. For each location in this set, the range() function returns a range
exactly covering that location; that is, the start-point of the range is the point immediately
before the location, and the end-point of the range is the point immediately after the
location. If the location is an element node, then the range begins right before the
element's start-tag and finishes right after the element's end-tag. For example, consider
this XPointer:

xpointer(range(//title))

When applied to Example 11-1 , it selects a range exactly covering the single title
element. If there were more than one title element in the document then it would
return one range for each such title element. If there were no title elements in the
document, then it wouldn't return any ranges.

Now consider this XPointer:

xpointer(range(/novel/*))

If applied to Example 11-1 , it returns three ranges, one covering each of the three child
elements of the novel root element.

11.7.2 The range-inside() function

The range-inside() function takes as an argument an XPath expression that
returns a location set. For each location in this set, it returns a range exactly covering
the contents of that location. For anything except an element node this will be the same
as the range returned by range() . For an element node, this range includes

http://lib.ommolketab.ir

everything inside the element, but not the element's start-tag or end-tag. For example,
when applied to Example 11-1 , xpointer(range-inside(//title)) returns a
range covering The Wonderful Wizard of Oz but not <title>The
Wonderful Wizard of Oz</title> . For a comment, processing instruction,
attribute, text, or namespace node, this range covers the string value of that node. For a
range, this range is the range itself. For a point, this range begins and ends with that
point.

11.7.3 The range-to() function

The range-to() function is evaluated with respect to a context node. It takes a
location set as an argument that should return exactly one location. The start-points of
the context nodes are the start-points of the ranges it returns. The end-point of the
argument is the end-point of the ranges. If the context node set contains multiple nodes,
then the range-to() function returns multiple ranges.

This function is underspecified in the XPointer candidate
recommendation. In particular, what should happen if the argument
contains more or less than one location is not clear.

For instance, suppose you want to produce a single range that covers everything
between <title> and </year> in Example 11-1 . This XPointer does that by starting
with the start-point of the title element and continuing to the end-point of the year
element:

xpointer(//title/range-to(year))

Ranges do not necessarily have to cover well-formed fragments of XML. For instance,
the start-tag of an element can be included but the end-tag left out. This XPointer selects
<title>The Wonderful Wizard of Oz :

xpointer(//title/range-to(text()))

It starts at the start-point of the title element, but it finishes at the end-point of the
title element's text node child, thereby omitting the end-tag.

11.7.4 The string-range() function

The string-range() function is unusual. Rather than operating on a location set
including various tags, comments, processing instructions, and so forth, it operates on
the text of a document after all markup has been stripped from it. Tags are more or less
ignored.

http://lib.ommolketab.ir

The string-range() function takes as arguments an XPath expression identifying
locations and a substring to try to match against the XPath string value of each of those
locations. It returns one range for each match, exactly covering the matched string.
Matches are case sensitive. For example, this XPointer produces ranges for all
occurrences of the word "Wizard" in title elements in the document:

xpointer(string-range(//title, "Wizard"))

If there are multiple matches, then multiple ranges are returned. For example, this
XPointer returns two ranges when applied to Example 11-1 , one covering the W in
"Wonderful" and one covering the W in "Wizard":

xpointer(string-range(//title, "W"))

This function is also underspecified in the XPointer candidate
recommendation. In particular, it is not clear what happens when
there are overlapping matches.

You can also specify an offset and a length to the function so that strings start a certain
number of characters from the beginning of the match and continue for a specified
number of characters. The point before the first character in the string to search is 1. For
example, this XPointer selects the first four characters after the word "Wizard" in title
elements:

xpointer(string-range(//title, "Wizard", 7, 4))

Nonpositive indices work backwards in the document before the beginning of the match.
For example, this XPointer selects the first four characters before the word "Wizard" in
title elements:

xpointer(string-range(//title, "Wizard", -3, 4))

If the offset or length causes the range to fall outside the document, then no range is
returned.

Since string ranges can begin and end at pretty much any character in the text content
of a document, they're the way to indicate points that don't fall on node boundaries.
Simply create a string range that either begins or ends at the position you want to point
to, and then use start-point() or end-point() on that range. For example,
this XPointer returns the point immediately before the word "Wizard" in the title
element in Listing 11-1:

xpointerstart-point(start-pointxpointer(string-range(//title, "Wizard")))

http://lib.ommolketab.ir

11.7.5 Relative XPointers

Normally, an XPointer is a fragment identifier attached to a URL. The root node of the
document the URL points to is the context location for the XPointer. However, XPointers
can also be used by themselves without explicit URLs in XML documents. By default,
the context node for such an XPointer is the root node of the document where the
XPointer appears. However, either the here() or the origin() function can
change the context node for the XPointer's XPath expression.

11.7.6 here()

The here() function is only used inside XML documents. It refers to the node that
contains the XPointer or, if the node that contains the XPointer is a text node, the
element node that contains that text node. here() is useful in relative links. For
example, these navigation elements link to the page elements preceding and
following the pages in which they're contained.

<page>
 content of the page...
 <navigation xlink:type="simple"
 xlink:href="#xpointer(here()/../../preceding-sibling::page[1])">
 Previous
 </navigation>
 <navigation xlink:type="simple"
 xlink:href="#xpointer(here()/../../following-sibling::page[1])">
 Next
 </navigation>
</page>

In these elements, the here() function refers to the xlink:href attribute nodes
that contain the XPointer. The first .. selects the navigation parent element. The
second .. selects its parent page element, and the final location step selects the
previous or next page element.

11.7.7 origin()

The origin() function is useful when the document has been loaded from an out-of-
line link. It refers to the node from which the user is initiating traversal, even if that is not
the node that defines the link. For example, consider an extended link like this one. It
has many novel elements, each of which is a locator that shares the same label:

<series xlink:type="extended" xmlns:xlink="http://www.w3.org/1999/xlink">

http://lib.ommolketab.ir

 <!-- locator elements -->
 <novel xlink:type="locator" xlink:label="oz"
 xlink:href="ftp://archive.org/pub/etext/etext93/wizoz10.txt">
 <title>The Wonderful Wizard of Oz</title>
 <year>1900</year>
 </novel>
 <novel xlink:type="locator" xlink:label="oz"
 xlink:href="ftp://archive.org/pub/etext/etext93/ozland10.txt">
 <title>The Marvelous Land of Oz</title>
 <year>1904</year>
 </novel>
 <novel xlink:type="locator" xlink:label="oz"
 xlink:href="ftp://archive.org/pub/etext/etext93/wizoz10.txt">
 <title>Ozma of Oz</title>
 <year>1907</year>
 </novel>
 <!-- many more novel elements... -->

 <sequel xlink:type="locator" xlink:label="next"
 xlink:href="#xpointer(origin()/following-sibling::novel[1])" />
 <next xlink:type="arc" xlink:from="oz" xlink:to="next" />

</series>

The sequel element uses an XPointer and the origin() function to define a
locator that points to the following novel in the series. If the user is reading The
Wonderful Wizard of Oz , then the sequel element locates The Marvelous Land of Oz .
If the user is reading The Marvelous Land of Oz , then that same sequel element
locates Ozma of Oz , and so on. The next element defines links from each novel
(since they all share the label oz) to its sequel. The ending resource changes from one
novel to the next.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 12. Cascading Style Sheets (CSS)

 12.1 The Three Levels of CSS

 12.2 CSS Syntax
 12.3 Associating Stylesheets with XML Documents

 12.4 Selectors
 12.5 The Display Property

 12.6 Pixels, Points, Picas, and Other Units of Length

 12.7 Font Properties
 12.8 Text Properties

 12.9 Colors

The names of most elements describe the semantic meaning of the content they
contain. However, ultimately this content needs to be formatted and displayed to users.
For this to occur, there must be a step where formatting information is applied to the
XML document and the semantic markup is transformed into presentational markup.
There are a variety of choices for the syntax of this presentation layer. However, two are
particularly noteworthy:

Cascading Style Sheets (CSS)

XSL Formatting Objects (XSL-FO)

CSS is a non-XML syntax for describing the appearance of particular elements in a
document. CSS is a very straight-forward language. No transformation is performed.
The parsed character data of the document is presented more or less exactly as it
appears in the XML document, though of course you can always transform the
document with XSLT and then apply a CSS stylesheet to it if you need to rearrange the
content of a document before showing it to the user. A CSS stylesheet does not change
the markup of an XML document at all; it merely applies styles to the content that
already exists.

By way of contrast, XSL-FO is a complete XML application for describing the layout of
text on a page. It has elements that represent pages, blocks of text on the pages,
graphics, horizontal rules, and more. You do not normally work with this application
directly. Instead, you write an XSLT stylesheet that transforms your document's native
markup into XSL-FO. The application rendering the document reads the XSL-FO and
displays it to the user.

http://lib.ommolketab.ir

In this and the next chapter, we'll demonstrate the features of the two major stylesheet
languages by applying them to the simple well-formed XML document shown in
Example 12-1 . This document does not have a document type declaration and is not
valid, though a DTD or schema could be added easily enough. In general, DTDs and
schemas don't have any impact on stylesheets, except insofar as they change the
document content through entity declarations, default attribute values, and the like.

Example 12-1. Marjorie Anderson's recipe for Southern Corn Bread

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml-stylesheet type="text/css" href="recipe.css"?>
<recipe source="Marjorie Anderson">
 <dish>Southern Corn Bread</dish>
 <ingredients>
 <ingredient>
 <quantity>1 cup</quantity>
 <component>flour</component>
 </ingredient>
 <ingredient>
 <quantity>4 tablespoons</quantity>
 <component>Royal Baking Powder</component>
 </ingredient>
 <ingredient>
 <quantity>1/2 teaspoon</quantity>
 <component>salt</component>
 </ingredient>
 <ingredient>
 <quantity>1 cup</quantity>
 <component>corn meal</component>
 </ingredient>
 <ingredient>
 <quantity>11/2 cups</quantity>
 <component>whole milk</component>
 </ingredient>
 <ingredient>
 <quantity>4 tablespoons</quantity>
 <component>melted butter</component>
 </ingredient>
 </ingredients>

 <directions>

http://lib.ommolketab.ir

 <step>Sift flour, baking powder, sugar & salt together.</step>
 <step>Add 1 cup corn meal.</step>
 <step>
 Beat egg in cup and add beaten egg and 1 1/2 cups whole
 milk to make a batter. Stir well.
 </step>
 <step>
 Add melted shortening and beat until light and thoroughly mixed.
 </step>
 <step>
 Pour into greased shallow pan or greased muffin rings.
 </step>
 <step>
 Bake in hot oven at <temperature>425º F</temperature> for
 <duration>25 minutes</duration>.
 </step>
 <step optional="yes">
 Cut into squares if cooked in shallow pan.
 </step>
 </directions>

 <story>
 After my mother-in-law <person>Marjorie Anderson</person> died,
 Beth and I found this recipe written on the "extra recipes"
 page in a local cookbook in her cupboard.
 This was published by The Episcopal Churchwomen,
 Church of Ascension, <city>Mt. Sterling</city>,
 <state>Kentucky</state>.
 </story>

</recipe>

12.1 The Three Levels of CSS

At the time of this writing, there are three versions of CSS. CSS Level 1 was an early
W3C Recommendation from 1996 for HTML only, though the extension to XML was
obvious. The CSS Level 1 specification was incomplete and led to inconsistent browser
implementations.

CSS Level 2 is the current recommendation and the version of CSS on which this
chapter focuses. CSS Level 2 places XML on an equal footing with HTML. Indeed, CSS

http://lib.ommolketab.ir

Level 2 often works better with XML than with HTML because CSS styles don't have to
interact with any predefined rendering semantics. For the most part, CSS Level 2 is a
superset of CSS Level 1. That is, all CSS Level 1 stylesheets are also CSS Level 2
stylesheets that mean pretty much the same thing.

The W3C is now working on CSS Level 3. When complete, it will modularize the CSS
specification so software can implement particular subsets of CSS functionality without
having to implement everything. For instance, an audio browser could implement audio
stylesheets but ignore the visual formatting model. Furthermore, CSS Level 3 adds a
number of features to CSS, including multi-column layouts, better support for non-
Western languages, such as Arabic and Chinese, XML namespace support, more
powerful selectors, paged media, and more. However, CSS Level 3 is not yet
implemented by any browsers.

12.2 CSS Syntax

CSS syntax isn't XML syntax, but the syntax is so trivial this hardly matters. A CSS
stylesheet is simply a list of the elements you want to apply the styles to, normally one to
a line. If the element is in a namespace, then the qualified name like recipe:dish
must be used. The prefix must be the same in the stylesheet as in the XML document.
Each element name is followed by the list of styles you want to apply to that element.
Comments can be inserted using the /*...*/ format of comments familiar to C
programmers. Whitespace isn't particularly significant, so it can be used to format the
stylesheet. Example 12-2 is a simple CSS stylesheet for the recipe document in
Example 12-1 . Figure 12-1 shows the recipe document as rendered and displayed by
the Opera 4.01 browser with this stylesheet.

Example 12-2. A CSS stylesheet for recipes

/* Defaults for the entire document */
recipe {font-family: "New York", "Times New Roman", serif;
 font-size: 12pt }

/* Make the dish look like a headline */
dish {
 display: block;
 font-family: Helvetica, Arial, sans-serif;
 font-size: 20pt;
 font-weight: bold;
 text-align: center
}

http://lib.ommolketab.ir

/* A bulleted list */
ingredient {display: list-item; list-style-position: inside }

/* Format these two items as paragraphs */
directions, story {
 display: block;
 margin-top: 12pt;
 margin-left: 4pt
}

Figure 12-1. A semantically tagged XML document after application of a CSS
stylesheet

This stylesheet has four style rules. Each rule names the element(s) it formats and
follows that with a pair of curly braces containing the style properties to apply to those
elements. Each property has a name such as font-family and a value such as
"New York", "Times New Roman", serif . Properties are separated from
each other by semicolons. Neither the names nor the values are case sensitive. That is,
font-family is the same as FONT-FAMILY or Font-Family . CSS Level 2
defines over 100 different style properties. However, you don't need to know all of these.
Reasonable default values are provided for all the properties you don't set.

For example, the first rule applies to the recipe element and says that it should be

http://lib.ommolketab.ir

formatted using the New York font at a 12 point size. If New York isn't available, then
Times New Roman will be chosen instead; if that isn't available, then any convenient
serif font will suffice. These styles also apply to all descendants of the recipe element;
that is, the styles cascade down the tree. Since recipe is the root element, this sets
the default font for the entire document.

The second rule makes the dish element look like a heading, as you can see in Figure
12-1 . It's set to a much larger sans serif font and made bold and centered besides.
Furthermore, its display style is set to block . This means there'll be a line break
between the dish and its next and previous sibling elements. The third rule formats the
ingredients as a bulleted list, while the fourth rule formats both the directions and
story elements as more-or-less straight-forward paragraphs with a little extra
whitespace around their top and left-hand sides.

Not all the elements in the document have style rules and not all need them. For
example, the step element is not specifically styled. Rather, it simply inherits a variety
of styles from its ancestor elements directions and recipe , as well as using some
defaults. A different stylesheet could add a rule for the step element that overrides the
styles it inherits. For example, this rule would set its font to 10 point Palatino:

step {font-family: Palatino, serif; font-size: 10pt }

12.3 Associating Stylesheets with XML Documents

CSS stylesheets are primarily intended for use in web pages. Web browsers find the
stylesheet for a document by looking for xml-stylesheet processing instructions in
the prolog of the XML document. This processing instruction should have a type
pseudoattribute with the value text/css and an href pseudoattribute whose value is
an absolute or relative URL locating the stylesheet document. For example, this is the
processing instruction that attaches the stylesheet in Listing 12-2 (recipe.css) to the file
in Example 12-1 (cornbread.xml) if both are found in the same directory.

<?xml-stylesheet type="text/css" href="recipe.css"?>

Including the required type and href pseudoattributes, the xml-stylesheet
processing instruction can have up to six pseudoattributes:

type

This is the MIME media type of the stylesheet; text/css for CSS and
application/xml (not text/xsl !) for XSLT.

href

http://lib.ommolketab.ir

This is the absolute or relative URL where the stylesheet can be found.
charset

This names the character set in which the stylesheet is written, such as UTF-8 or
ISO-8859-7. There's no particular reason this has to be the same as the character
set in which the document is written. The names used are the same ones used for
the encoding pseudoattribute of the XML declaration.

title

This pseudoattribute names the stylesheet. If more than one stylesheet is available
for a document, the browser may (but is not required to) present readers with a list
of the titles of the available stylesheets and ask them to choose one.

media

Printed pages, television screens, and computer displays are all fundamentally
different media that require different styles. For example, comfortable reading on
screen requires much larger fonts than on a printed page. This pseudoattribute
specifies the media types this stylesheet should apply to. There are nine
predefined values:

screen

tty

tv

projection

handheld

print

braille

aural

all

By including several xml-stylesheet processing instructions, each pointing to
a different stylesheet and each using a different media type, you can make a single
document attractive in many different environments.

alternate

This pseudoattribute must be assigned one of the two values yes or no . yes
means this is an alternate stylesheet, not normally used. no means this is the

http://lib.ommolketab.ir

stylesheet that will be chosen unless the user indicates that they want a different
one. The default is no .

For example, this group of xml-stylesheet processing instructions could be placed
in the prolog of the recipe document to make it more accessible on a broader range of
devices:

<?xml-stylesheet type="text/css" href="recipe.css" media="screen"
 alternate="no" title="For Web Browsers" charset="US-ASCII"?>
<?xml-stylesheet type="text/css" href="printable_recipe.css" media="print"
 alternate="no" title="For Printing" charset="ISO-8859-1"?>
<?xml-stylesheet type="text/css" href="big_recipe.css" media="projection"
 alternate="no" title="For presentations" charset="UTF-8"?>
<?xml-stylesheet type="text/css" href="tty_recipe.css" media="tty"
 alternate="no" title="For Lynx" charset="US-ASCII"?>
<?xml-stylesheet type="text/css" href="small_recipe.css" media="handheld"
 alternate="no" title="For Palm Pilots" charset="US-ASCII"?>

12.4 Selectors

CSS provides limited abilities to select the elements to which a given rule applies. Many
stylesheets only use element names and lists of element names separated by commas,
as shown in Example 12-2 . However, CSS provides some other basic selectors you can
use, though they're by no means as powerful as the XPath syntax of XSLT.

12.4.1 The Universal Selector

The asterisk matches any element at all; that is, it applies the rule to everything in the
document that does not have a more specific, conflicting rule. For example, this rule
says that all elements in the document should use a large font:

* {font-size: large}

12.4.2 Matching Descendants, Children, and Siblings

An element name A followed by another element name B matches all B elements that
are descendants of A elements. For example, this rule matches quantity elements
that are descendants of ingredients elements, but not other ones that appear
elsewhere in the document:

ingredients quantity {font-size: medium}

http://lib.ommolketab.ir

If the two element names are separated by a greater than sign (>), then the second
element must be an immediate child of the first for the rule to apply. For example, this
rule gives quantity children of ingredient elements the same font-size as the
ingredient element:

ingredient > quantity {font-size: inherit}

If the two element names are separated by a plus sign (+), then the second element
must be the next sibling element immediately after the first element. For example, this
style rule sets the border-top-style property for only the first story element
following a directions element:

directions + story {border-top-style: solid}

12.4.3 Attribute Selectors

Square brackets allow you to select elements with particular attributes or attribute
values. For example, this rule hides all step elements that have an optional
attribute:

step[optional] {display: none}

This rule hides all elements that have an optional attribute regardless of their name:

*[optional] {display: none}

An equals sign selects an element by a given attribute's value. For example, this rule
hides all step elements that have an optional attribute with the value yes :

step[optional="yes"] {display: none}

The ~= operator selects elements that contain a given word as part of the value of a
specified attribute. The word must be complete and separated from other words in the
attribute value by whitespace, as in a NMTOKENS or ENTITIES attribute. That is, this is
not a substring match. For example, this rule makes bold all recipe elements whose
source attribute contains the word "Anderson":

recipe[source~="Anderson"] {font-weight: bold}

Finally, the |= operator matches against the first word in a hyphen-separated attribute
value, such as Anderson-Harold or fr-CA.

CSS also provides a special syntax for selecting elements with a given ID value, even
when you don't know exactly what the name of the ID type attribute is. Simply separate
the ID from the element name with a sharp sign (#). For example, this rule applies to

http://lib.ommolketab.ir

the single step element whose ID type attribute has the value P833:

step#P833 { font-weight: 800 }

12.4.4 Pseudoclass Selectors

Pseudoclass selectors match elements according to a condition not involving their
name. There are seven of these. They are all separated from the element name by a
colon. For example, the first-child pseudoclass matches the first child element of
the named element. When applied to Example 12-1 , this rule italicizes the first, and only
the first, step element:

step:first-child {font-style: italic}

The link pseudoclass matches the named element if and only if that element is the
source of an as yet unvisited link. For example, this rule makes all links in the document
blue and underlined:

*:link {color: blue; text-decoration: underline}

The visited pseudoclass applies to all visited links of the specified type. For example,
this rule marks all visited links as purple and underlined:

*:visited {color: purple; text-decoration: underline}

The active pseudoclass applies to all elements that the user is currently activating (for
example, by clicking the mouse on). Exactly what it means to activate an element
depends on the context, and indeed not all applications can activate elements. For
example, this rule marks all active elements as red:

*:active {color: red}

The linking pseudoclasses are not yet well-supported for XML documents because most
browsers don't recognize XLinks. So far, Mozilla and Netscape 6, the only browsers that
recognize XLinks, are the only browsers that will apply these pseudoclasses to XML.

The hover pseudoclass applies to elements on which the cursor is currently positioned
but which the user has not yet activated. For example, this rule marks all these elements
as green and underlined:

*:hover {color: green; text-decoration: underline}

The focus pseudoclass applies to the element that currently has the focus. For
example, this rule draws a one-pixel red border around the element with the focus,
assuming there is such an element:

http://lib.ommolketab.ir

*:focus {border: 1px solid red }

Finally, the lang pseudoclass matches all elements in the specified language as
determined by the xml:lang attribute. For example, this rule uses the David New
Hebrew font for all elements written in Hebrew (more properly, all elements whose
xml:lang attribute has the value he or any subtype thereof).

*:lang(he) {font-family: "David New Hebrew"}

12.4.5 Pseudoelement Selectors

Pseudoelement selectors match things that aren't actually elements. Like pseudoclass
selectors they're attached to an element selector by a colon. There are four of these:

first-letter

first-line

before

after

The first-letter pseudoelement selects the first letter of an element. For example,
this rule makes the first letter of the story element a drop cap:

story:first-letter {
 font-size: 200%;
 font-weight: bold;
 float: left;
 padding-right: 3pt
}

The first-line pseudoelement applies formatting to all characters in the first line of
a block-level element. If the browser window is resized so that characters move into or
out of the first line, then the formatting changes to match. For example, this rule formats
the first line of the story element in small capitals instead of lowercase letters:

story:first-line {font-variant: small-caps}

The before and after pseudoelements select the points immediately before and
after the specified element. You can't really apply font or text styles to a zero-width point,
but you can insert text at that point using the content property. For example, this rule
inserts the string "Ingredients!" before the ingredients element:

http://lib.ommolketab.ir

ingredients:before {content: "Ingredients! "}

This rule places the number of the step in front of each step element in the form 1., 2.,
3., and so on:

step:before {
 content: counter(step) ". ";
 counter-increment: step;
}

12.5 The Display Property

Display is one of the most important CSS properties. This property determines how
the element will be positioned on the page. There are 18 legal values for this property.
However, the two primary values are inline and block . The display property can
also be used to create lists and tables, as well as to hide elements completely.

12.5.1 Inline Elements

Setting the display to inline , the default value, places the element in the next
available position from left to right, much as each word in this paragraph is positioned.
(The exact direction can change for right-to-left languages like Hebrew or top-to-bottom
languages like traditional Chinese.) The text may be wrapped from one line to the next if
necessary, but there won't be any hard line breaks between each inline element. In
Example 12-1 and 12-2, the quantity , step , person , city , and state
elements were all formatted as inline. This didn't need to be specified explicitly because
it's the default.

12.5.2 Block Elements

In contrast to inline elements, an element set to display: block is separated from
its siblings, generally by a line break. For example, in HTML, paragraphs and headings
are block elements. In Example 12-1 and 12-2, the dish , directions , and story
elements were all formatted with display: block .

12.5.3 List Elements

An element whose display property is set to list-item is also formatted as a
block-level element. However, a bullet is inserted at the beginning of the block. The
list-style-type , list-style-image , and list-style-position
properties control which character or image is used for a bullet and exactly how the list is

http://lib.ommolketab.ir

indented. For example, this rule would format the steps as a numbered list rather than
rendering them as a single paragraph:

step {
 display: list-item;
 list-style-type: decimal;
 list-style-position: inside
}

12.5.4 Hidden Elements

An element whose display property is set to none is not included in the rendered
document the reader sees. It is invisible and does not occupy any space or affect the
placement of other elements. For example, this style rule hides the story element
completely:

story {display: none}

12.5.5 Table Elements

There are ten display values that identify elements as parts of a table. These are:

table

inline-table

table-row-group

table-header-group

table-footer-group

table-row

table-column-group

table-column

table-cell

table-caption

These display values have the obvious meanings by analogy with HTML 4.0 table tags.
Their use should be consistent with each other and with other elements in the document.

http://lib.ommolketab.ir

For instance, an element formatted as a table-row element should have a parent
element formatted as a table and child elements formatted as table-cells. For example,
these three rules format the ingredients as a simple table:

ingredients { display: table }
ingredient { display: table-row }
quantity, component { display: table-cell }

12.6 Pixels, Points, Picas, and Other Units of Length

Many CSS properties represent lengths. Some of the most important (though far from
all) of these include:

border-width

font-size

line-height

margin-left , margin-top , margin-right , and margin-bottom

left

top

height

width

CSS provides many different units to specify length. They fall into two groups:

Absolute units of length such as inches, centimeters, millimeters, points, and picas.

Relative units such as ems, exes, pixels, and percentages.

Absolute units of length are appropriate for printed media (that is, paper), but should be
avoided in other media. Relative units should be used for all other media, except for
pixels, which probably shouldn't be used at all. For example, this style rule sets the
dish element to be exactly one-half centimeter high:

dish { height: 0.5cm }

However, documents intended for display on screen media like television sets and
computer monitors should not be set to fixed sizes. For one thing, the size of an inch or

http://lib.ommolketab.ir

other absolute unit can vary depending on the resolution of the monitor. For another, not
all users like the same defaults, and what looks good on one monitor may be illegible on
another. Instead, you should use units that are relative to something, such as an em,
which is relative to the width of the uppercase letter M , in the current font, or ex, which
is relative to the height of the lowercase letter x in the current font. For example, this rule
sets the line-height property of the story element to one and half times the height

of the letter x :

story { line-height: 1.5ex}

Pixel is also a relative unit, though what it's relative to is the size of a pixel on the current
display. This is generally somewhere in the vicinity of a point, but it can vary from system
to system. In general, we don't recommend using pixels unless you need to line
something up with a bitmapped graphic displayed at exactly a 1:1 ratio. Web pages
formatted with pixel lengths invariably look too small or too large on a large fraction of
users' monitors.

One very useful technique is to specify lengths as percentages of some other length.
Exactly what this is a percentage of varies from property to property. For instance, if the
line-height is given as a percentage, then it's calculated with respect to the font-
height of the same element. These two rules set the font-height of the dish
element to 0.5 centimeters and the line-height of the dish element to 0.75
centimeters:

dish { font-height: 0.5cm }
dish { line-height: 150% }

12.7 Font Properties

Fonts are one of the most basic things designers want to set with CSS. Is the text italic?
Is it bold? What typeface and size are used? CSS provides properties to set all these
basic characteristics of text. In particular, you can set these properties:

font-family

This is a list of font names, separated by commas, in order of preference. The last
name in the list should always be one of the generic names serif , sans-
serif , monospace , cursive , or fantasy . Multiword names like "Times
New Roman" should be enclosed in quotes.

font-style

The value italic indicates that an italic version of the font should be used if one
is available. The value oblique suggests that the text should be algorithmically

http://lib.ommolketab.ir

slanted, as opposed to using a specially designed italic font. The default is
normal (no italicizing or slanting). An element can also be set to inherit the
font-style of the parent element.

font-size

This is the size of the font. This should be specified as one of the values xx-
small , x-small , small , medium , large , x-large , xx-large .
Alternately, it can be given as a percentage of the font-size of the parent
element. It can also be specified as a length like 0.2cm or 12pt , but this should
only be done for print media.

font-variant

If this property is set to small-caps , then lowercase text is rendered in smaller

capitals like this instead of normal lowercase letters.
font-weight

This property determines how bold or light the text is. It's generally specified as one
of the keywords normal (the default), bold , bolder , or lighter . It can also
be set to any multiple of 100 from 100 (lightest) to 900 (darkest). However, not all
browsers necessarily provide nine different levels of boldness.

font-stretch

This property adjusts the space between letters to make the text more or less
compact. Legal values include normal (the default), wider , narrower ,
ultra-condensed , extra-condensed , condensed , semi-condensed
, semi-expanded , expanded , extra-expanded , and ultra-expanded
.

For example, this style rule uses all of the previous properties to make the dish
element a suitably impressive headline:

dish {
 font-family: Helvetica, Arial, sans-serif;
 font-size: x-large;
 font-style: italic;
 font-variant: small-caps;
 font-weight: 900;
 font-stretch: semi-expanded
}

12.8 Text Properties

Text properties cover those aspects of text formatting other than what can be adjusted

http://lib.ommolketab.ir

merely by changing the font. These include how far the text is indented, how the
paragraph is aligned, and so forth. The most common of these properties include:

text-indent

The text-indent property specifies how far in to indent the first line of the
block. (Indents of all lines are generally applied via margin properties.) Hanging
indents can be specified by making text-indent negative. This property only
applies to block-level elements. For example, this style rule indents the first line of
the story element by half an inch from the left side:

story { text-indent: 0.5in }
text-align

The text-align property can be set to left , right , center , or justify
to align the text with the left edge of the block or the right edge of the block, to
center the text in the block, or to spread the text out across the block. This property
only applies to block-level elements.

text-decoration

The text-decoration property can be set to underline , overline ,
line-through or blink to produce the obvious effects. Note, however, that the
CSS2 specification specifically allows browsers to ignore the request to make
elements blink. This is a good thing.

text-transform

The text-transform property has three main values: capitalize ,
uppercase , and lowercase . Uppercase changes all the text to capital letters
LIKE THIS. Lowercase changes all the text to lowercase letters like these.
Capitalize simply uppercases the first letter of each word Like This, but leaves the
other letters alone. The default value of this property is none , which performs no
transformation. It can also be set to inherit to indicate that the same transform
as used on the parent element should be used.

Changing the case in English is fairly straightforward, but this
isn't true of all languages. In particular, software written by native
English speakers tends to do a very poor job of algorithmically
changing the case in ligature-heavy European languages like
Maltese or context-sensitive languages like Arabic. Outside of
English text, it's best to make the transformations directly in the
source document rather than relying on the stylesheet engine to
make the correct decisions about which letters to capitalize.

white-space

http://lib.ommolketab.ir

The white-space property determines whether text is wrapped. It has only four
legal values: normal , pre , nowrap , and inherit . Normal is of course the
default and simply means to wrap the text wherever convenient, much as is done
in this paragraph. Pre means to preserve all line breaks and whitespace in the
document, as does the pre element in HTML. Nowrap means that runs of
whitespace can be condensed, but that line breaks will not be inserted. Finally,
inherit simply takes on the same behavior as the parent element.

12.9 Colors

CSS has several properties for changing the color of various items:

color

The color of the text itself (black on this page)
background-color

The color of the background behind the text (white on this page)
border-color

The color of a visible box surrounding the text

CSS uses a 24-bit color space to specify colors, much as HTML does. Always keep in
mind, however, that just because you can specify a color doesn't mean any given device
can render it. A black-and-white printer isn't going to print red no matter how you identify
it; it might give you some nice shades of gray though. Like many other properties, color
depends on the medium in which the document is presented.

The simplest way to choose a color is through one of these 16 named constants: aqua ,
black , blue , fuchsia , gray , green , lime , maroon , navy , olive ,
purple , red , silver , teal , white , and yellow . There are also a number of
colors that are defined to be the same as some part of the user interface. For instance,
WindowText is the same color as text in windows on the local system.

Beyond this small list, you can specify the color of an item by specifying the three
components-red, green, and blue-of each color, much as you do for background
colors on HTML pages. Each component is given as a number between 0 and 255 with
255 being the maximum amount of the color. Numbers can be given in decimal or
hexadecimal. For example, these rules use hexadecimal syntax to color the dish
element pure red, the story element pure green, and the directions element pure
blue:

dish { color: #FF0000 }

http://lib.ommolketab.ir

story { color: #00FF00 }
directions { color: #0000FF }

If you prefer, you can specify the color as decimals separated by commas inside an
rgb() function. For example, white is rgb(255,255,255) ; black is rgb(0,0,0)
. Colors in which each component is equal form various shades of gray. These rules use
decimal syntax to color the ingredient element a light shade of gray but its
quantity child element a darker shade of gray:

ingredient { color: rgb(43,43,43) }
quantity { color: rgb(21,21,21) }

You can also specify the color as percentages of each primary color from 0 to 100%. For
example, the previous rules can be rewritten like this:

ingredient { color: rgb(16.9%,16.9%,16.9%) }
quantity { color: rgb(8.2%,8.2%,8.2%) }

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 13. XSL Formatting Objects (XSL-FO)

 13.1 XSL Formatting Objects

 13.2 The Structure of an XSL-FO Document
 13.3 Laying Out the Master Pages

 13.4 XSL-FO Properties
 13.5 Choosing Between CSS and XSL-FO

The last chapter covered CSS; this chapter discusses XSL-FO. In distinct contrast to
CSS, XSL-FO is a complete XML application for describing the precise layout of text on
a page. It has elements that represent pages, blocks of text on the pages, graphics,
horizontal rules, and more. Most of the time, however, you don't write XSL-FO directly.
Instead, you write an XSLT stylesheet that transforms your document's native markup
into XSL-FO. The application rendering the document reads the XSL-FO and displays it
to the user. Since no major browsers currently support direct rendering of XSL-FO
documents, there's normally a third step in which another processor transforms the XSL-
FO into a third format, such as PDF or TEX.

Once again we demonstrate the features of XSL-FO by applying it to the simple well-
formed XML document shown in Example 12-1 in the last chapter and repeated here in
Example 13-1 for convenience.

Example 13-1. Marjorie Anderson's recipe for Southern Corn Bread

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<recipe source="Marjorie Anderson">
 <dish>Southern Corn Bread</dish>
 <ingredients>
 <ingredient>
 <quantity>1 cup</quantity>
 <component>flour</component>
 </ingredient>
 <ingredient>
 <quantity>4 tablespoons</quantity>
 <component>Royal Baking Powder</component>
 </ingredient>
 <ingredient>
 <quantity>1/2 teaspoon</quantity>
 <component>salt</component>

http://lib.ommolketab.ir

 </ingredient>
 <ingredient>
 <quantity>1 cup</quantity>
 <component>corn meal</component>
 </ingredient>
 <ingredient>
 <quantity>11/2 cups</quantity>
 <component>whole milk</component>
 </ingredient>
 <ingredient>
 <quantity>4 tablespoons</quantity>
 <component>melted butter</component>
 </ingredient>
 </ingredients>

 <directions>
 <step>Sift flour, baking powder, sugar & salt together.</step>
 <step>Add 1 cup corn meal.</step>
 <step>
 Beat egg in cup and add beaten egg and 1 1/2 cups whole
 milk to make a batter. Stir well.
 </step>
 <step>
 Add melted shortening and beat until light and thoroughly mixed.
 </step>
 <step>
 Pour into greased shallow pan or greased muffin rings.
 </step>
 <step>
 Bake in hot oven at <temperature>425º F</temperature> for
 <duration>25 minutes</duration>.
 </step>
 <step optional="yes">
 Cut into squares if cooked in shallow pan.
 </step>
 </directions>

 <story>
 After my mother-in-law <person>Marjorie Anderson</person> died,
 Beth and I found this recipe written on the "extra recipes"
 page in a local cookbook in her cupboard.

http://lib.ommolketab.ir

 This was published by the The Episcopal Churchwomen,
 Church of Ascension, <city>Mt. Sterling</city>,
 <state>Kentucky</state>.
 </story>
</recipe>

13.1 XSL Formatting Objects

An XSL-FO document describes the layout of a series of nested boxes or areas that are
placed on one or more pages. These boxes contain text or occasionally other items,
such as an external image or a horizontal rule. There are four kinds of boxes:

Block areas

Inline areas

Line areas

Glyph areas

Block and inline areas are created by particular elements in the formatting objects
document. Line and glyph areas are created by the formatter as necessary. For the most
part, the rendering engine decides exactly where to place the boxes and how big to
make them, based on their contents. However, you can specify properties for these
boxes that adjust both their relative and absolute position, spacing, and size on a page.
Most of the time the individual boxes don't overlap. However, they can be forced to do
so by setting the properties absolute-position , left , top , right , and top
on the boxes.

Considered by itself, each box has a content area in which its content, generally text but
possibly an image or a rule, is placed. This content area is surrounded by a padding
area of blank space. An optional border can surround the padding. The size of the area
is the combined size of the border, padding, and content. The box may also have a
margin that adds blank space outside the box's area, as diagramed in Figure 13-1 .

Figure 13-1. Content, padding, border, and margin of an XSL-FO area

http://lib.ommolketab.ir

Text properties such as font family, font size, alignment, and font weight can be applied
by attaching the appropriate properties to one of the boxes that contains the text. Text
takes on the properties specified on the nearest enclosing box. Properties are set by
attaching attributes to the elements that generate the boxes. For the most part these
properties have the same semantics as the CSS properties of the same name. Only the
syntax for applying the properties to particular ranges of text is different.

The elements in the XSL-FO document do not map in a one-to-one fashion to the boxes
on the page. Instead, the XSL-FO document contains a slightly more abstract
representation of the document. The formatting software uses the XSL-FO elements to
decide which boxes to create and where to place them. In the process it will split the
large blocks, which the XSL-FO document describes with fo:block elements, into
smaller line and glyph areas. It may also split single block areas that the XSL-FO
document describes into multiple block areas if a page break is required in the middle of
a large block, though XSL-FO does let you prevent these breaks if necessary. The
formatter also generates the correct number of pages for the content that's found. In
short, the XSL-FO document contains hints and instructions that the formatter uses to
decide what items to place where on which pages, but you do not need to specify the
exact position of each and every box.

13.2 The Structure of an XSL-FO Document

The root element of all XSL-FO documents is fo:root . This element normally
declares the fo prefix, which must be mapped to the
http://www.w3.org/1999/XSL/Format namespace URI. As always, the prefix
can change as long as the URI stays the same. In this chapter, we assume that the
prefix fo has been associated with http://www.w3.org/1999/XSL/Format .
Thus a typical FO document looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <!-- Formatting object elements -->

http://www.w3.org/1999/XSL/Format
http://www.w3.org/1999/XSL/Format
http://lib.ommolketab.ir

</fo:root>

Of course this normally isn't written directly as here. Instead, it's formed by an XSLT
template like this one:

<xsl:template match="/">
 <fo:root>
 <xsl:apply-templates/>
 </fo:root>
</xsl:template>

The fo:root element must contain two things, a fo:layout-master-set and a
fo:page-sequence . The fo:layout-master-set contains elements
describing the overall layout of the pages themselves, that is, how large the pages are,
whether they're in landscape or portrait mode, how wide the margins are, and so forth.
The fo:page-sequence contains the actual text that will be placed on the pages,
along with the instructions for formatting that text as italic, 20 points high, justified, and
so forth. It has a master-reference attribute identifying the particular master page
that will be used to layout this content. Adding these elements, a formatting objects
document looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <!-- page masters -->
 </fo:layout-master-set>
 <fo:page-sequence master-reference="first">
 <!-- data to place on the page -->
 </fo:page-sequence>
</fo:root>

The formatting engine uses the layout master set to create a page. Then it adds content
to the page from the fo:page-sequence until the page is full. Then it creates the
next page in the sequence and places the next batch of content on that page. This
process continues until all the content has been positioned.

13.3 Laying Out the Master Pages

XSL-FO 1.0 only defines one kind of master page, the fo:simple-page-master .
This represents a standard rectangular page with margins on all four sides. This master
page also has a unique name given by a master-name attribute. For example, this
element describes a master page named first that represents an 8.5 by 11 inch page

http://lib.ommolketab.ir

with one inch margins on all four sides:

<fo:simple-page-master margin-right="1in" margin-left="1in"
 margin-bottom="1in" margin-top="1in"
 page-width="8.5in" page-height="11in"
 master-name="first">
 <!-- Separate parts of the page go here -->
</fo:simple-page-master>

The part of the page inside the margins is divided into five regions: the start region, the
end region, the before region, the after region, and the body region. Where these fall on
a page depends on the writing direction. In left-to-right, top-to-bottom languages like
English, start is on the lefthand side, end is on the righthand side, before is on top, and
after is on bottom as diagramed in Figure 13-2 . However, if the text were Hebrew, then
the start region would be on the righthand side of the page, and the end region would be
on the lefthand side of the page. If the text were traditional Chinese, then the start would
be on top, the end on bottom, the before on the lefthand side, and the after on the
righthand side. Other combinations are possible.

Figure 13-2. The five regions in a left-to-right, top-to-bottom writing system

http://lib.ommolketab.ir

These regions are represented by fo:region-start , fo:region-end ,
fo:region-before , fo:region-after , and fo:region-body child elements
of the fo:simple-page-master element. You can place different content into each
of the five regions. For instance, the after region often contains a page number, and the
before region may contain the title of the book or chapter.

The body region and the corresponding fo:region-body element are required. The
other four are optional. By default, the body region takes up the entire page, and the
other four regions have zero area. To specify this simplest page, you add an empty
fo:region-body child element to the fo:simple-page-master element like
this:

<fo:simple-page-master margin-right="1in" margin-left="1in"
 margin-bottom="1in" margin-top="1in"
 page-width="8.5in" page-height="11in"
 master-name="first">

http://lib.ommolketab.ir

 <fo:region-body/>
</fo:simple-page-master>

However, you can add extent attributes to the four nonbody regions to specify the
height of the before and after regions and the width of the start and end regions. Then
the region body should have margin properties that are at least as large as the extent of
each region to push it out of the way of each nonbody region. Otherwise, content placed
in the body will be drawn on top of content placed in the other four regions. For example,
this fo:simple-page-master element has half-inch margins on each side,
representing the unprintable area on many common printers. The start and end regions
are half an inch wide. The before and after regions are one inch wide. The body has
margins that match the region sizes.

<fo:simple-page-master margin-right="0.5in" margin-left="0.5in"
 margin-bottom="0.5in" margin-top="0.5in"
 page-width="8.5in" page-height="11in"
 master-name="first">
 <fo:region-before extent="0.5in"/>
 <fo:region-after extent="0.5in"/>
 <fo:region-start extent="0.5in"/>
 <fo:region-end extent="0.5in"/>
 <fo:region-body margin-top="1.0in" margin-bottom="1.0in"
 margin-left="0.5in" margin-right="0.5in"/>
</fo:simple-page-master>

Most of the time, the details of the layout-master set are fixed in the stylesheet. For
example, here's the revised XSLT template that includes a full fo:layout-master-
set :

<xsl:template match="/">
 <fo:root>
 <fo:layout-master-set>
 <fo:simple-page-master margin-right="1in" margin-left="1in"
 margin-bottom="1in" margin-top="1in"
 page-width="8.5in" page-height="11in"
 master-name="first">
 <fo:region-body/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="first">
 <!-- data to place on the page -->

http://lib.ommolketab.ir

 </fo:page-sequence>
 </fo:root>
</xsl:template>

13.3.1 Flowing Content into the Pages

Next we add a fo:flow child to the fo:page-sequence where the actual text of the
transformed document appears. This element has a flow-name attribute specifying
into which region of the page its content will flow. Possible values include xsl-
region-body , xsl-region-start , xsl-region-end , xsl-region-
before , and xsl-region-after .

The formatter instantiates a page based on the master page named by the fo:page-
sequence 's master-reference attribute, fills one of its regions with content from
the fo:flow element until the page is full, then instantiates a second page, fills it with
more content from the fo:flow , instantiates a third page, and continues this process
until it's used up all the data in the fo:flow .

The fo:flow element must contain block-level formatting object elements. The most
basic of these is fo:block . Others include fo:block-container , fo:list-
block , fo:table , and fo:table-and-caption . We'll begin with the most
basic, fo:block . A fo:block can contain a combination of raw text and formatting
objects such as fo:external-graphic , fo:inline , fo:page-number ,
fo:footnote , and even other fo:block elements. For the moment, we'll restrict
ourselves to parsed character data. For example, here's a basic fo:flow for the
recipe:

<fo:flow flow-name="xsl-region-body">
 <fo:block>Southern Corn Bread</fo:block>

 <fo:block>1 cup flour</fo:block>
 <fo:block>4 tablespoons Royal Baking Powder</fo:block>
 <fo:block>1/2 teaspoon salt</fo:block>
 <fo:block>1 cup corn meal</fo:block>
 <fo:block>11/2 cups whole milk</fo:block>
 <fo:block>4 tablespoons melted butter</fo:block>

 <fo:block>
 Sift flour, baking powder, sugar & salt together.
 Add 1 cup corn meal.
 Beat egg in cup and add beaten egg and 1 1/2 cups whole

http://lib.ommolketab.ir

 milk to make a batter. Stir well.
 Add melted shortening and beat until light and thoroughly mixed.
 Pour into greased shallow pan or greased muffin rings.
 Bake in hot oven at 425º F for 25 minutes.
 Cut into squares if cooked in shallow pan.
 </fo:block>

 <fo:block>
 After my mother-in-law Marjorie Anderson died,
 Beth and I found this recipe written on the "extra recipes"
 page in a local cookbook in her cupboard.
 This was published by the The Episcopal Churchwomen,
 Church of Ascension, Mt. Sterling, Kentucky.
 </fo:block>

</fo:flow>

Here's an XSLT template that produces the content of this fo:flow element (modulo
insignificant whitespace) from Example 13-1 through judicious use of the default
templates:

<xsl:template match="dish|ingredient|directions|story">
 <fo:block><xsl:apply-templates/></fo:block>
</xsl:template>

13.3.2 Generating the Finished Document

We now have the minimum set of pieces needed to put together a full XSL-FO
document. Example 13-2 is an XSLT stylesheet that transforms documents like Example
13-1 into XSL formatting objects documents.

Example 13-2. An XSLT to XSL-FO transform

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:template match="/">
 <fo:root>
 <fo:layout-master-set>
 <fo:simple-page-master margin-right="1in" margin-left="1in"

http://lib.ommolketab.ir

 margin-bottom="1in" margin-top="1in"
 page-width="8.5in" page-height="11in"
 master-name="first">
 <fo:region-body/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="first">

 <fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates/>
 </fo:flow>

 </fo:page-sequence>

 </fo:root>
 </xsl:template>

 <xsl:template match="dish|ingredient|directions|story">
 <fo:block><xsl:apply-templates/></fo:block>
 </xsl:template>

</xsl:stylesheet>

Example 13-3 shows the complete XSL-FO document produced by running the
cornbread recipe through an XSLT engine such as Xalan or SAXON with this stylesheet.
The whitespace is a little off because of the way XSLT treats whitespace in the transform
document. However, this won't be significant when the document is rendered.

Example 13-3. An XSL-FO document describing a recipe for cornbread

<?xml version="1.0" encoding="utf-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
<fo:layout-master-set>
<fo:simple-page-master margin-right="1in" margin-left="1in"
margin-bottom="1in" margin-top="1in" page-width="8.5in" page-height="11in"
master-name="first"><fo:region-body/></fo:simple-page-master>
</fo:layout-master-set><fo:page-sequence master-reference="first">
<fo:flow flow-name="xsl-region-body">
 <fo:block>Southern Corn Bread</fo:block>

 <fo:block>

http://lib.ommolketab.ir

 1 cup
 flour
 </fo:block>
 <fo:block>
 4 tablespoons
 Royal Baking Powder
 </fo:block>
 <fo:block>
 1/2 teaspoon
 salt
 </fo:block>
 <fo:block>
 1 cup
 corn meal
 </fo:block>
 <fo:block>
 11/2 cups
 whole milk
 </fo:block>
 <fo:block>
 4 tablespoons
 melted butter
 </fo:block>

 <fo:block>
 Sift flour, baking powder, sugar & salt together.
 Add 1 cup corn meal.

 Beat egg in cup and add beaten egg and 1 1/2 cups whole
 milk to make a batter. Stir well.

 Add melted shortening and beat until light and thoroughly mixed.

 Pour into greased shallow pan or greased muffin rings.

 Bake in hot oven at 425º F for
 25 minutes.

 Cut into squares if cooked in shallow pan.
 </fo:block>
 <fo:block>

http://lib.ommolketab.ir

 After my mother-in-law Marjorie Anderson died,
 Beth and I found this recipe written on the "extra recipes"
 page in a local cookbook in her cupboard.
 This was published by the The Episcopal Churchwomen,
 Church of Ascension, Mt. Sterling,
 Kentucky.
 </fo:block>

</fo:flow></fo:page-sequence></fo:root>

The final step in this process is to convert the formatting objects document into some
other format that can be viewed onscreen or on paper. This requires running a
formatting program such as the Apache XML Project's open source FOP
(http://xml.apache.org/fop/). FOP is a Java program that runs on most platforms. At the
time of this writing, it has some significant holes in its coverage but is making rapid
progress. After you install FOP in the class path, this command line transforms the file
cornbread.fo into a PDF document:

% java org.apache.fop.apps.Fop -fo cornbread.fo -pdf cornbread.pdf

FOP can also transform XSL-FO documents into plain text, raw PostScript, a PCL file, or
SVG slides, or display it on the screen using the Java 2D API. This command produces
the window shown in Figure 13-3 .

Figure 13-3. The XSL-FO recipe document in FOP's AWT preview

http://lib.ommolketab.ir

There are several other programs for working with XSL-FO documents:

RenderX's XEP (http://www.renderx.com/FO2PDF.html) is a payware Java XSL-
FO-to-PDF converter program much like FOP.

Sebastian Rahtz's PassiveTEX (http://users.ox.ac.uk/~rahtz/passivetex/) is an
open source collection of TEX macros for converting XSL-FO documents to TEX . A
reasonably modern TEX distribution is required.

The Antenna House XSL Formatter
(http://www.antennahouse.com/xslformatter.html) is a payware Windows program
that can print and display XSL-FO documents using the Windows GDI .

IBM's XSL Formatting Objects Composer (http://www.alphaworks.ibm.com/tech/xfc
) is a free-beer Java program that implements a "substantial portion" of XSL
Formatting Objects 1.0. It can display XSL-FO documents on the screen or convert
them to PDF.

13.4 XSL-FO Properties

The finished document shown in Figure 13-3 is quite Spartan. It simply breaks the
original XML document into a few separate paragraphs. After quite a lot of work, it still
hasn't reached the polish that was achieved much more simply with CSS back in the last
chapter in Example 12-2 and Figure 12-1 . Adding the sparkle of different fonts, bold
headlines, bulleted lists, and other desirable features requires setting the relevant
properties on the individual formatting objects. These are set through optional attributes
of the formatting object elements like fo:block . The good news is that most of the
property names and semantics are exactly the same as they are for CSS. For example,
to make the text in an fo:block element bold, add a font-weight attribute with the
value bold , like this:

<fo:block font-weight="bold">Southern Corn Bread</fo:block>

The similarity with the equivalent CSS rule is obvious:

dish { font-weight: bold }

The property name is the same. The property value is the same. The meaning of the
property is the same. Similarly, you can use all the font-weight keywords and values
like lighter and 100 , 200 , 300 , 400 , etc. that you learned for CSS. Only the
syntactic details of how the value bold is assigned to the property font-weight and
how that property is then attached to the dish element has changed. When XSL-FO
and CSS converge, they do so closely.

http://lib.ommolketab.ir

Many other properties come across from CSS by straight extrapolation. For instance, in
Example 12-2 the dish element was formatted with this rule:

dish {
 display: block;
 font-family: Helvetica, Arial, sans-serif;
 font-size: 20pt;
 font-weight: bold;
 text-align: center
}

In XSL-FO, it will be formatted with this XSLT template:

<xsl:template match="dish">
 <fo:block font-family="Helvetica, Arial, sans-serif" font-size="20pt"
 font-weight="bold" text-align="center">
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

Similarly, the margin properties set the margins on the various elements:

<xsl:template match="directions|story">
 <fo:block margin-top="12pt" margin-left="4pt">
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

In a few cases CSS properties become XSL-FO elements rather than attributes. For
instance, to format the ingredients as a bulleted list, we have to use the fo:list-
block , fo:list-item , fo:list-item-label , and fo:list-item-body
elements. This XSLT template does that:

<xsl:template match="ingredient">
 <fo:list-item>
 <!-- Unicode Bullet Character -->
 <fo:list-item-label>•</fo:list-item-label>
 <fo:list-item-body><xsl:apply-templates/></fo:list-item-body>
 </fo:list-item>
</xsl:template>

We now have the pieces needed to put together a more attractive XSL-FO document.
Example 13-4 is an XSLT stylesheet that transforms documents like Example 12-1 into

http://lib.ommolketab.ir

XSL-FO documents.

Example 13-4. An XSLT-to-XSL-FO transform

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:template match="/">
 <fo:root>
 <fo:layout-master-set>
 <fo:simple-page-master margin-right="1in" margin-left="1in"
 margin-bottom="1in" margin-top="1in"
 page-width="8.5in" page-height="11in"
 master-name="first">
 <fo:region-body/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="first">

 <fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates/>

 </fo:flow>

 </fo:page-sequence>

 </fo:root>
 </xsl:template>

 <xsl:template match="recipe">
 <fo:block font-family="Times, 'Times New Roman', serif"
 font-size="12pt">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>
 <xsl:template match="dish">
 <fo:block font-family="Helvetica, Arial, sans-serif" font-size="20pt"
 font-weight="bold" text-align="center">

http://lib.ommolketab.ir

 <xsl:apply-templates/>
 </fo:block>

 </xsl:template>
 <xsl:template match="directions|story">
 <fo:block margin-top="12pt" margin-left="4pt">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="ingredients">
 <fo:list-block><xsl:apply-templates/></fo:list-block>
 </xsl:template>

 <xsl:template match="ingredient">
 <fo:list-item>
 <!-- Unicode Bullet Character -->
 <fo:list-item-label>
 <fo:block>•</fo:block>
 </fo:list-item-label>
 <fo:list-item-body>
 <fo:block><xsl:apply-templates/></fo:block>
 </fo:list-item-body>
 </fo:list-item>
 </xsl:template>

</xsl:stylesheet>

Example 13-5 shows the XSL-FO document produced by applying the previous
transform to the cornbread recipe in Example 12-1 . The whitespace has been cleaned
up a little by hand, though that won't affect the final rendered result.

Example 13-5. An XSL-FO document describing a recipe for cornbread

<?xml version="1.0" encoding="utf-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master margin-right="1in" margin-left="1in"
 margin-bottom="1in" margin-top="1in" page-width="8.5in"
 page-height="11in" master-name="first">
 <fo:region-body/>
 </fo:simple-page-master>

http://lib.ommolketab.ir

 </fo:layout-master-set>
 <fo:page-sequence master-reference="first">
 <fo:flow flow-name="xsl-region-body">
 <fo:block font-family="Times, 'Times New Roman', serif"
 font-size="12pt">
 <fo:block font-family="Helvetica, Arial, sans-serif"
 font-size="20pt" font-weight="bold"
 text-align="center">Southern Corn Bread</fo:block>
 <fo:list-block>
 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>
 </fo:list-item-label><fo:list-item-body><fo:block>
 1 cup
 flour
 </fo:block></fo:list-item-body></fo:list-item>
 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>
 </fo:list-item-label><fo:list-item-body><fo:block>
 4 tablespoons
 Royal Baking Powder
 </fo:block></fo:list-item-body></fo:list-item>
 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>
 </fo:list-item-label><fo:list-item-body><fo:block>
 1/2 teaspoon
 salt
 </fo:block></fo:list-item-body></fo:list-item>
 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>
 </fo:list-item-label><fo:list-item-body><fo:block>
 1 cup
 corn meal
 </fo:block></fo:list-item-body></fo:list-item>
 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>
 </fo:list-item-label><fo:list-item-body><fo:block>
 11/2 cups
 whole milk
 </fo:block></fo:list-item-body></fo:list-item>
 <fo:list-item><fo:list-item-label><fo:block>·</fo:block>
 </fo:list-item-label><fo:list-item-body><fo:block>
 4 tablespoons
 melted butter
 </fo:block></fo:list-item-body></fo:list-item>
 </fo:list-block>

http://lib.ommolketab.ir

 <fo:block margin-top="12pt" margin-left="4pt">
 Sift flour, baking powder, sugar & salt together.
 Add 1 cup corn meal.

 Beat egg in cup and add beaten egg and 1 1/2 cups whole
 milk to make a batter. Stir well.

 Add melted shortening and beat until light and thoroughly mixed.

 Pour into greased shallow pan or greased muffin rings.

 Bake in hot oven at 425º F for
 25 minutes.

 Cut into squares if cooked in shallow pan.

 </fo:block>

 <fo:block margin-top="12pt" margin-left="4pt">
 After my mother-in-law Marjorie Anderson died,
 Beth and I found this recipe written on the "extra recipes"
 page in a local cookbook in her cupboard.
 This was published by the The Episcopal Churchwomen,
 Church of Ascension, Mt. Sterling,
 Kentucky.
 </fo:block>

</fo:block></fo:flow></fo:page-sequence></fo:root>

This document can be run through a formatter to produce a PDF file for viewing. Figure
13-4 shows the final result of this process.

Figure 13-4. The recipe document after conversion from XSL-FO to PDF

http://lib.ommolketab.ir

XSL-FO does add a number of properties that CSS doesn't provide. To name just a few,
XSL-FO has properties to control hyphenation, insert leaders, specify the number of
columns on a page, and determine where page breaks occur and which paragraphs
must be kept together. CSS has none of these. For the most part, XSL-FO's properties
are a superset of CSS's properties.

13.5 Choosing Between CSS and XSL-FO

CSS is a very straightforward, easy-to-learn, easy-to-use language for formatting web
pages. To the extent that CSS has gotten a reputation as buggy and difficult to use,
that's mostly because of inconsistent, nonstandard browser implementations. Opera 4.0
and later, Netscape 6.0 and later, and Mozilla provide extensive support for most
features of CSS Level 2 with only a few minor bugs. Internet Explorer's support is much
weaker, but borders on usable.

It's hard to imagine any text-based web site you can't produce by using XSLT to
transform a document into HTML and then applying a CSS stylesheet. Alternately, you
can transform the XML document into another XML document and apply the CSS
stylesheet to that. If the element content in the original XML document is in fact exactly
what you want to display in the output document, in the correct order, you can even omit
the XSLT transformation step, as we did in Examples Example 12-1 and Example 12-2
in the last chapter.

Perhaps most importantly, CSS is already well understood by web designers and well
supported by current browsers. XSL-FO is not directly supported by any browsers. To
view an XSL-FO document, you must first convert it into the inconvenient PDF format.
PDF does not adjust as well as HTML to the wide variety of monitors and screen sizes in
use today. Viewing it inside a web browser requires a special plug-in. The limited third
party tools that support XSL-FO are beta quality at best. Personally, we see little reason

http://lib.ommolketab.ir

to use anything other than CSS on the Web.

On the other hand, XSL-FO does go beyond CSS in some respects that are important
for high-quality printing. For example, XSL-FO offers multiple column layouts; CSS
doesn't. XSL-FO can condition formatting on what's actually in the document; CSS can't.
XSL-FO allows you to place footnotes, running headers, and other information in the
margins of a page; CSS doesn't. XSL-FO lets you insert page numbers and
automatically cross-reference particular pages by number; CSS doesn't. And for printing,
the requirement to render into PDF is much less limiting and annoying since the ultimate
delivery mechanism is paper anyway. CSS Level 3 will add some of these features, but
it will still focus on ease-of-use and web-based presentation rather than high-quality
printing. Once the software is more reliable and complete, XSL-FO should be the clear
choice for professionally typeset books, magazines, newspapers, and other printed
matter that's rendered from XML documents. It should be very competitive with other
solutions like Quark XPress, TEX, troff, and FrameMaker. CSS does not even attempt to
compete in this area.

The bottom line is this: CSS is right for web pages; XSL-FO is right for printed matter.
XSLT is a crucial step in getting an input document ready for eventual presentation with
either CSS or XSL-FO.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 14. Resource Directory Description
Language (RDDL)

 14.1 What's at the End of a Namespace URL?

 14.2 RDDL Syntax

 14.3 Natures
 14.4 Purposes

RDDL, the Resource Directory Description Language, is an XML application invented by
Jonathan Borden, Tim Bray, and various other members of the xml-dev mailing list to
describe XML applications identified by namespace URLs. A RDDL document lives at
the namespace URL for the application it describes. RDDL is a hybrid of XHTML Basic
and one custom element, rddl:resource . A rddl:resource element is a simple
XLink that points to a resource related to the application the RDDL document describes.
Humans with browsers can read the XHTML parts to learn about the application.
Software can read the rddl:resource elements.

14.1 What's at the End of a Namespace URL?

The people who wrote the namespaces specification couldn't agree on what should be
put at the end of a namespace URL. Should it be a DTD, a schema, a specification
document, a stylesheet, software for processing the application, or something else? All
of these are possible, but none of them are required for any particular XML application.
Some applications have DTDs; some don't. Some applications have schemas; some
don't. Some applications have stylesheets; some don't. Thus, for the most part,
namespaces have been purely formal identifiers. They do not actually locate or identify
anything.

Namespaces in XML specifically states that "The namespace name, to serve its
intended purpose, should have the characteristics of uniqueness and persistence. It is
not a goal that it be directly usable for retrieval of a schema (if any exists)." That is, it is
not required that there be anything in particular, such as a DTD or a schema, at the end
of the namespace URL. Indeed, it's not even required that the namespace name be
potentially resolvable. It might be an irresolvable URN such as urn:isbn:1565922247 .
On the other hand, this doesn't say that there can't be anything at the end of a
namespace URL, just that there doesn't have to be.

Nonetheless, this hasn't stopped numerous developers from typing namespace URLs

http://lib.ommolketab.ir

into their web browser location bars and filling the error logs at the W3C and elsewhere
with 404 Not Found errors. It hasn't stopped weekly questions on the xml-dev mailing list
about whether it's possible to parse an XML document on a system that's disconnected
from the Net. Eventually, the membership of the xml-dev mailing list reached consensus
that it was time to put something at the end of namespace URLs, even if they didn't have
to.

However, the question still remained, what to put there? All the reasons for not choosing
any one thing to put at the end of a namespace URL still applied. Rick Jelliffe suggested
fixing the problem by introducing an additional layer of indirection, and Tim Bray
proposed doing it with XHTML and XLinks. Instead of putting just one of these at the end
of the namespace URL, an XML document containing a list of all the things related to
the XML application identified by that particular URL could be put at the end of the
namespace URL.

Experience had proven that when presented with a string beginning with http,
developers would type it into a browser location bar.[1] Therefore, the basic syntax of
RDDL had to be something that looked reasonable when loaded into a browser:
preferably, HTML. Furthermore, to make machine processing simple, it also had to be
well-formed, perhaps valid, XML. Naturally, XHTML came to mind, and modular XHTML
provided just enough extensibility to permit the extra syntax RDDL needed.

14.2 RDDL Syntax

A RDDL document is an XHTML Basic document, plus one new element,
rddl:resource . XHTML Basic is a subset of XHTML that includes the Structure,
Text, Hypertext, List, Basic Forms, Basic Tables, Image, Object, Metainformation, Link,
and Base modules. There are no frames or deprecated presentational elements like
font and bold . However, this is enough to write pretty much anything you'd
reasonably want to write about an XML application.

In addition, a RDDL document contains one new element, resource , which is placed
in the http://www.rddl.org/ namespace. This URL is normally mapped to the rddl prefix.
The prefix can change as long as the URL remains the same. However, the RDDL DTD
declares the resource element with the name rddl:resource , so a RDDL
document will only be valid if it uses the prefix rddl .

A rddl:resource element is a simple XLink whose xlink:href attribute points to
the related resource and whose xlink:role and xlink:arcrole attributes identify
the nature and purpose of that related resource. The rddl:resource element can
appear anywhere a p element can appear and contain anything a div element can
contain. Web browsers generally ignore the rddl:resource start- and end-tags, but

http://lib.ommolketab.ir

will display their content. Automated software searching for related resources only pays
attention to the rddl:resource elements and their attributes, while ignoring all the
XHTML.

Recall the person vocabulary used several times in this book. When last seen in
Chapter 8 , it looked as shown in Example 14-1 . All elements in this document are in
the default namespace http://www.cafeconleche.org/namespaces/people .

Example 14-1. An XML document describing two people that uses a default
namespace

<?xml version="1.0"?>
<people xmlns="http://www.cafeconleche.org/namespaces/people">

 <person born="1912" died="1954">
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <profession>computer scientist</profession>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
 </person>

 <person born="1918" died="1988">
 <name>
 <first_name>Richard</first_name>
 <middle_initial>P</middle_initial>
 <last_name>Feynman</last_name>
 </name>
 <profession>physicist</profession>
 <hobby>Playing the bongoes</hobby>
 </person>

</people>

Various chapters have developed stylesheets, DTDs, and (still-to-come) schemas for
this application. Example 14-2 is a very simple RDDL document that brings these all
together. This document should be placed at the namespace for that application,
http://www.cafeconleche.org/namespaces/people . The DOCTYPE declaration loads the
RDDL DTD rather than the XHTML Basic DTD, but the difference is only in the addition
of the single rddl:resource element. This document is both valid and well-formed.

http://www.cafeconleche.org/namespaces/people
http://www.cafeconleche.org/namespaces/people
http://lib.ommolketab.ir

Figure 14-1 shows this document in Mozilla, where it looks like any other HTML
document.

Example 14-2. A RDDL document

<!DOCTYPE html PUBLIC "-//XML-DEV//DTD XHTML RDDL 1.0//EN"
 "http://www.rddl.org/rddl-xhtml.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:rddl="http://www.rddl.org/">
<head>
 <title>An XML Application Describing People</title>

</head>
<body>
<h1>An XML Application Describing People</h1>
<rddl:resource xlink:type="simple"
 xlink:href="urn:isbn:1565922247"
 xlink:role="http://dublincore.org/documents/dcmi-type-vocabulary/#text"
 xlink:arcrole="http://www.rddl.org/purposes#normative-reference">
 <p>
 http://www.cafeconleche.org/namespaces/people is the namespace URL
 for an XML application describing people in a data-oriented
 fashion used as an example in <cite>XML in a Nutshell</cite>, second
 edition by Elliotte Rusty Harold and W. Scott Means (O'Reilly &
 Associates, 2002).
 </p>
</rddl:resource>

<h2>Related Resources</h2>
<p>
 Several examples in this book address this application in one way or
 another. These include:
</p>

 <rddl:resource xlink:type="simple"
 xlink:href="http://www.cafeconleche.org/books/xian2/examples/03/3-5.dtd"
 xlink:role="http://www.isi.edu/in-notes/iana/assignments/media-types/application/xml-dtd"
 xlink:arcrole="http://www.rddl.org/purposes#validation">

http://lib.ommolketab.ir

 Example 3-5: A data oriented DTD describing people
 </rddl:resource>

<rddl:resource xlink:type="simple"
 xlink:href="http://www.cafeconleche.org/books/xian2/examples/08/8-15.xsl"
 xlink:role="http://www.w3.org/1999/XSL/Transform"
 xlink:arcrole="http://www.isi.edu/in-notes/iana/assignments/media-types/text/html">

 Example 8-15: An XSLT stylesheet for people documents
 </rddl:resource>

<p>
 This document itself is

 Example 14-2 from the RDDL chapter.
</p>

</body>
</html>

Figure 14-1. To a web browser, a RDDL document is just another HTML document

This document contains three rddl:resource elements indicating related resources.
Two of them are inside list items, and one of them contains a paragraph at the top of the

http://lib.ommolketab.ir

page. The first one links to the unofficial specification for the people application, this
book itself. The xlink:href attribute uses an isbn URI to identify the book. The
xlink:role contains a URL from the Dublin Core that indicates that the nature of this
resource is text. The xlink:arcrole attribute contains a well-known URL defined in
the RDDL specification to indicate that the purpose of this resource is normative
reference.

The second rddl:resource element points to the DTD first defined in Chapter 3 . Its
nature is indicated by a MIME media type URL, and its purpose is validation. The
xlink:href attribute links to the actual location of the DTD. However, a typical
browser won't recognize this, so the rddl:resource element contains an ordinary
HTML a link that the browser will color blue and the user can click on. It's not uncommon
to duplicate markup in a RDDL document-one set of tags for the machines and another
set of tags for the humans-each of which say pretty much the same thing.

The final rddl:resource element points to the XSLT stylesheet defined in Chapter 8
. Here the xlink:role attribute contains the namespace URI for XSLT, indicating that
this resource is an XSLT stylesheet. The xlink:arcrole attribute contains the MIME
media type URL for HTML, indicating that this stylesheet will transform documents into
HTML.

This is a very simple example. A real-world RDDL document would contain a lot more
HTML to tell people reading it in a browser just what the application was about.
Machines will ignore the HTML and look at the xlink:role and xlink:arcrole
attributes to figure out exactly what they can do with each related resource.

14.3 Natures

The nature of a related resource says what the resource is. For example, the nature of a
web page might be HTML, and the nature of an image might be JPEG. The nature is
indicated by a URL. Normally this nature URL is a namespace URL for XML applications
and a MIME media type URL for everything else. For instance, the XSLT nature is
written as http://www.w3.org/1999/XSL/Transform . The JPEG nature is written as
http://www.isi.edu/in-notes/iana/assignments/media-types/image/jpeg .

The RDDL specification specifies two dozen natures that can be used in xlink:role
attributes. In addition, you are welcome to define your own, but when possible, you
should use the standard natures so that automated software can understand your
documents and locate the related resources it needs to locate. These are the standard
natures and their URLs:

http://www.isi.edu/in-notes/iana/assignments/media-types/image/jpeg
http://lib.ommolketab.ir

CSS stylesheet
http://www.isi.edu/in-notes/iana/assignments/media-
types/text/css

DTD
http://www.isi.edu/in-notes/iana/assignments/media-
types/application/xml-dtd

A mailbox http://www.rddl.org/natures#mailbox

Generic HTML
http://www.isi.edu/in-notes/iana/assignments/media-
types/text/html

HTML 4.0 http://www.w3.org/TR/html4/

HTML 4 Strict http://www.w3.org/TR/html4/strict

HTML 4 Transitional http://www.w3.org/TR/html4/transitional

HTML 4 Frameset http://www.w3.org/TR/html4/frameset

XHTML http://www.w3.org/1999/xhtml

XHTML 1.0 Strict http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict

XHTML 1.0 Transitional http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional

RDF schema http://www.w3.org/2000/01/rdf-schema#

RELAX core grammar http://www.xml.gr.jp/xmlns/relaxCore

RELAX namespace
grammar

http://www.xml.gr.jp/xmlns/relaxNamespace

Schematron schema http://www.ascc.net/xml/schematron

OASIS Open Catalog http://www.rddl.org/natures#SOCAT

W3C XML Schema
Language schema

http://www.w3.org/2000/10/XMLSchema

XML character data http://www.w3.org/TR/REC-xml.html#dt-chardata

XML escaped text http://www.w3.org/TR/REC-xml.html#dt-escape

XML unparsed entity http://www.w3.org/TR/REC-xml.html#dt-unparsed

IETF RFC http://www.ietf.org/rfc/rfc2026.txt

ISO standard http://www.iso.ch/

Python software http://www.rddl.org/natures/software#python

Java software http://www.rddl.org/natures/software#java

Many other natures can be reasonably derived by following these examples. For
instance, a PNG image could be given the nature because http://www.isi.edu/in-
notes/iana/assignments/media-types/image/png because PNG documents have the
MIME media type image/png. Software written in Ruby could be given the nature
http://www.rddl.org/natures/software#ruby . An RDF document can have the nature
http://www.w3.org/1999/02/22-rdf-syntax-ns# taken from its namespace, and so forth.

http://www.isi.edu/in-notes/iana/assignments/media-
http://www.isi.edu/in-notes/iana/assignments/media-
http://www.rddl.org/natures#mailbox
http://www.isi.edu/in-notes/iana/assignments/media-
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/strict
http://www.w3.org/TR/html4/transitional
http://www.w3.org/TR/html4/frameset
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional
http://www.w3.org/2000/01/rdf-schema#
http://www.xml.gr.jp/xmlns/relaxCore
http://www.xml.gr.jp/xmlns/relaxNamespace
http://www.ascc.net/xml/schematron
http://www.rddl.org/natures#SOCAT
http://www.w3.org/2000/10/XMLSchema
http://www.w3.org/TR/REC-xml.html#dt-chardata
http://www.w3.org/TR/REC-xml.html#dt-escape
http://www.w3.org/TR/REC-xml.html#dt-unparsed
http://www.ietf.org/rfc/rfc2026.txt
http://www.iso.ch/
http://www.rddl.org/natures/software#python
http://www.rddl.org/natures/software#java
http://www.rddl.org/natures/software#ruby
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://lib.ommolketab.ir

14.4 Purposes

The purpose of a related resource indicates what the resource will be used for.
Purposes distinguish between resources with the same natures used for different things.
For example, DocBook has multiple XSLT stylesheets for transforming DocBook
documents into HTML, XHTML, chunked HTML, and XSL-FO. These are all related
resources with the same nature but different purposes. Unlike natures, purposes are
optional. You don't have to use them if you don't need to distinguish between resources
with the same natures, but you can if you'd like.

Purpose names are URLs. These URLs are placed in xlink:arcrole attributes of a
rddl:resource element. The RDDL specification defines almost 20 different well-
known purpose URLs, mostly in the form http://www.rddl.org/purposes#purpose . In
addition, you are welcome to define your own; but you should use the standard URLs for
the standard purposes so that automated software can understand your documents and
locate the related resources it needs to locate. These are the well-known purposes:

Validation http://www.rddl.org/purposes#validation

Schema-validation http://www.rddl.org/purposes#schema-validation

DTD module http://www.rddl.org/purposes#module

Schema module http://www.rddl.org/purposes#schema-module

DTD notations module http://www.rddl.org/purposes#notations

Software module http://www.rddl.org/purposes#software-module

Software package http://www.rddl.org/purposes#software-package

Software project http://www.rddl.org/purposes#software-project

JAR http://www.rddl.org/purposes#JAR

XSLT extension http://www.rddl.org/purposes/software#xslt-extension

Reference http://www.rddl.org/purposes#reference

Normative reference http://www.rddl.org/purposes#normative-reference

Non-normative reference http://www.rddl.org/purposes#non-normative-reference

Prior-version http://www.rddl.org/purposes#prior-version

Definition http://www.rddl.org/purposes#definition

Icon http://www.rddl.org/purposes#icon

Alternate http://www.rddl.org/purposes#alternate

RDDL Directory http://www.rddl.org/purposes#directory

Furthermore, the purpose of an XSLT transform is often the URI for the nature of the
resource that is produced by the transform. For instance, the purpose of a stylesheet

http://www.rddl.org/purposes#validation
http://www.rddl.org/purposes#schema-validation
http://www.rddl.org/purposes#module
http://www.rddl.org/purposes#schema-module
http://www.rddl.org/purposes#notations
http://www.rddl.org/purposes#software-module
http://www.rddl.org/purposes#software-package
http://www.rddl.org/purposes#software-project
http://www.rddl.org/purposes#JAR
http://www.rddl.org/purposes/software#xslt-extension
http://www.rddl.org/purposes#reference
http://www.rddl.org/purposes#normative-reference
http://www.rddl.org/purposes#non-normative-reference
http://www.rddl.org/purposes#prior-version
http://www.rddl.org/purposes#definition
http://www.rddl.org/purposes#icon
http://www.rddl.org/purposes#alternate
http://www.rddl.org/purposes#directory
http://lib.ommolketab.ir

that converted documents into strict XHTML would probably be
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict .

[1] In the immortal words of Claude L. Bullard, "All the handwaving about URN/URI/URL doesn't avoid the simple fact that if

one puts http:// anywhere in browser display space, the system colors it blue and puts up a finger. The monkey expects a

resource and when it doesn't get one, it shocks the monkey. Monkeys don't read specs to find out why they should be

shocked. They turn red and put up a finger."

CONTENTS

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict
http://lib.ommolketab.ir

CONTENTS

Chapter 15. XML as a Data Format

 15.1 Why Use XML for Data?

 15.2 Developing Data-Oriented XML Formats
 15.3 Sharing Your XML format

Despite its document roots, the most common applications of XML today involve the
storage and transmission of information for use by different software applications and
systems. New technologies and frameworks (such as Web Services) depend heavily on
XML content to communicate and negotiate between dissimilar applications.

The appropriate techniques used to design, build, and maintain a data-centric XML
application vary greatly, depending on the required functionality and intended audience.
This chapter discusses the different concerns, techniques, and technologies that should
be considered when designing a new data-centric XML application.

15.1 Why Use XML for Data?

Before XML, individual programmers had to determine how data would be formatted
whenever they needed to store or transmit program data. In most cases, the data was
never intended for use outside the original program, so programmers would store it in
the most convenient format they could devise. A few de facto file formats evolved over
the years (RTF, CSV, and the ubiquitous Windows .ini file format), but the data written
by one program could usually be read only by that same program. In fact, it was often
possible for only that specific version of the same program to read the data.

The rapid proliferation of XML and free XML tools throughout the programming
community has given developers an obvious choice when the time comes to select a
data-storage or transmission format for their application. For all but the most trivial
applications, the benefits of using XML to store and retrieve data far outweigh the
additional overhead of including an XML parser in your application. The unique
strengths of using XML as a software data format include:

Simple syntax

Easy to generate and parse.
Support for nesting

Tags easily allow programs to represent structures with nested elements.

http://lib.ommolketab.ir

Easy to debug

Human-readable data format is easy to explore and create with a basic text editor.
Language and platform independent

XML and Unicode guarantee that your datafile will be portable across virtually
every popular computer architecture and language combination in use today.

Building on these basic strengths, XML can make possible new types of applications
that would have been previously impossible (or very costly) to implement.

There are a few technologies that seek to achieve similar cross-
program compatibility but use binary formats. Abstract Syntax
Notation One (ASN.1) is probably the most prominent of these. ISO
and ITU-T are developing standards for working with XML and ASN.1
in various combinations; more information on these developments is
available from http://asn1.elibel.tm.fr/en/xml/.

15.1.1 Mixed Environments

Modern enterprise applications often involve software running on different computer
systems under various operating systems. Choosing a communication protocol involves
finding the lowest common denominator available on each system. With the large
number of XML parsers that can be freely integrated with your application, XML is
becoming a popular format for enterprise data sharing.

Imagine a typical enterprise application that needs to display data from a mainframe to
users connected to a corporate web site. In this case, XML acts as the "glue" to connect
a web server with a legacy application on a mainframe. The simple XML interface
application accepts requests from the web server, calls the legacy application, and
converts the result to XML. Using a technology like XSLT, the web server can then
transform the XML into a number of acceptable web formats. By adopting XML as the
common language of your enterprise, it becomes easier to reuse existing data in new
ways.

Even on smaller systems, XML can be useful for sharing information between
applications written in different languages or running in different environments. If a Perl
program and a Java program need to communicate, generating and processing XML
can be simpler than the alternatives. The XML can also serve as a record to their
communications or provide a gateway to other systems that need to join the
conversation.

http://asn1.elibel.tm.fr/en/xml/
http://lib.ommolketab.ir

15.1.2 Communications

Building flexible communications protocols that link disparate systems has always been
a difficult area in computing. With the proliferation of computer networking and the
Internet, building distributed systems has become even more important.

While XML itself is only a data format, not a protocol, XML's flexibility and cross-platform
usability has inspired some new developments on the protocol front. XML messaging
started even before the XML specification was finished, and various forms of XML
messaging have continued to evolve.

One of the earliest approaches, and still a common one, was transmitting XML over
HTTP POST requests. The sender would assemble an XML document and send it much
like HTML form data, and the recipient would process the XML and send back a
response, also in XML. Some developers create custom vocabularies for these
transactions, while others have moved to standardized vocabularies such as XML-RPC
and SOAP.

XML-RPC is a very simple protocol, which uses XML messages traveling on HTTP to
represent client-server remote procedure calls (RPC). The XML messages identify
methods, parameters, and the results of calling the methods. The XML documents use
simple but effective set of data types (including arrays and structs) to pass information
between computers. For more information on XML-RPC, see http://www.xmlrpc.com/.

SOAP offers much more flexibility than XML-RPC, but is much more complex as well.
SOAP (formerly the Simple Object Access Protocol, but now an acronym without
meaning) uses XML to encapsulate information being sent between programs. SOAP is
no longer bound to an HTTP transport, but HTTP is commonly used. It offers both an
RPC approach and a document-oriented approach and uses XML Schema data types
(with some of its own extensions for things like arrays) to identify type information. SOAP
is often grouped with Web Services Description Language (WSDL) and Universal
Description, Discovery, and Integration (UDDI) in discussions of "Web Services." For
information on SOAP and Web Services, see http://www.w3.org/2002/ws/.

Some developers are promoting the use of HTTP-based alternatives
to SOAP and XML-RPC, under the banner of Representational State
Transfer (REST). For more information on this architectural approach
and the perspective it offers, see
http://internet.conveyor.com/RESTwiki/moin.cgi.

The Blocks Extensible Exchange Protocol (BEEP) takes a very different approach from
SOAP and XML-RPC. Rather than building documents that travel over existing

http://www.xmlrpc.com/
http://www.w3.org/2002/ws/
http://internet.conveyor.com/RESTwiki/moin.cgi
http://lib.ommolketab.ir

protocols, BEEP uses XML to build protocols on TCP sockets. BEEP supports HTTP-
style message-and-reply, as well as more complex synchronous and asychronous
modes of communication. SOAP messages can be transmitted over BEEP, and so can
a wide variety of other XML and binary information. More information on BEEP is
available at http://www.beepcore.org.

15.1.3 Object Serialization

Like the issue of communications, the question of where and how to store the state of
persistent objects has been answered in various ways over the years. With the popular
adoption of object-oriented languages, such as C++ and Java, the language and runtime
environment frequently handle object-serialization mechanics. Unfortunately, most of
these technologies predate XML.

Most existing serialization methods are highly language- and architecture-specific. The
serialized object is most often stored in a binary format that is not human readable.
These files break easily if corrupted, and maintaining compatibility as the object's
structure changes frequently requires custom work on the part of the programmer.

The features that make XML popular as a communications protocol also make it popular
as a format for serializing object contents. Viewing the object's contents, making manual
modifications, and even repairing damaged files is easy. XML's flexible nature allows the
file format to expand ad infinitum while maintaining backward compatibility with older file
versions. XML's labeled hierarchies are a clean fit for nested object structures, and
conversions from objects to XML and back can be reasonably transparent. (Mapping
arbitrary XML to object structures is a much harder problem.)

A number of tools serialize objects written in various environments as XML documents
and can recreate the objects from the XML. Java 1.4, for example, adds an "API for
Long-Term Persistence" to its java.beans package, giving developers an alternative
to its existing (and still supported) opaque binary serialization format. The XML
vocabulary looks a lot like Java and is clearly designed for use within a Java framework,
though other environments may import and export the serialization. For more
information on this API and the XML it produces, see
http://java.sun.com/j2se/1.4/docs/guide/beans/changes14.html#ltp.Microsoft's .NET
framework includes similar capabilities but uses an XML Schema-based approach.

15.1.4 Data Storage/Retrieval

The line between an XML file and a database can be blurred. Though XML documents
are too verbose and searching is too inefficient for high-performance large-scale
database applications, they may be used as a simple, self-contained data store for small

http://www.beepcore.org
http://java.sun.com/j2se/1.4/docs/guide/beans/changes14.html#ltp
http://lib.ommolketab.ir

sets of information.

XML can play a role in the communications between databases and other software,
providing usable chunks of information in a form more easily reused than a typical query
response. On the client side, XML data files can be used to offload some
nontransactional data-search and -retrieval applications from busy web servers down to
the desktop web browser. On the server side, XML can be used as an alternate delivery
mechanism for query results.

XML is also finding use as a supplement to information stored in relational databases,
and more and more relational databases include native support for XML both as a data-
retrieval format and a data type. Native XML databases, which store XML documents
and provide querying and retrieval tools, are also becoming more widely available. For
more information on the wide variety of XML and data-management tools available, see
http://www.rpbourret.com/xml/XMLDatabaseProds.htm.

15.2 Developing Data-Oriented XML Formats

Despite the mature status of most of XML's core technologies, XML application
development is only now being recognized as a distinct discipline. Many architects and
XML developers are attempting to turn existing design methodologies (like UML) and
design patterns to the problem of constructing markup languages, but a widely accepted
design process for creating XML applications still does not exist.

The term "XML application" is often used in XML contexts to describe
an XML vocabulary for a particular domain rather than the software
used to process it. This may seem a little strange to developers used
to creating software applications, but it makes sense if you think
about integrating a software application with an XML application, for
instance.

XML applications can range in scope from a proprietary vocabulary used to store a
single computer program's configuration settings to an industry-wide standard for storing
consumer loan applications. Although the specifics and sometimes the sequence will
vary, the basic steps involved in creating a new XML application are as follows:

Determine the requirements of the application.

Look for existing applications that might meet those requirements.

Choose a validation model.

http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://lib.ommolketab.ir

Decide on a namespace structure.

Plan for expansion.

Consider the impact of the design on application developers.

Determine how old and new versions of the application will coexist.

The following sections explore each of these steps in greater depth.

15.2.1 Basic Application Requirements

The first step in designing a new XML application is like the first step in many design
methodologies. Before the application can be designed, it is important to determine
exactly what needs the application will fulfill. Some basic questions must be answered
before proceeding.

15.2.1.1 Where and how will new documents be created?

Documents that will be created automatically by a software application or database
server will be structured differently than those that need to be created by humans using
an XML editor. While software wouldn't have a problem generating 100 elements with
intricate attributes and cross-references, a human being probably would.

If you already have an application or a legacy format to which you're adding XML, you
may already have data structures you need to map to the XML. Depending on the other
requirements for the application, you may be able to base your XML format on the
existing structures. If you're starting from scratch or need to share the information with
other programs that don't share those structures, you probably need to look at the data
itself and build the application creating the XML around the information.

15.2.1.2 How complex will the document be?

Obviously the complexity of the data that will be modeled by the XML document has
some impact on how the application will be designed. A document containing a few,
simple element types is much easier to describe than one that contains dozens of
different elements with complex data type requirements. The complexity of an
application will affect what type of validation should be used and how documents will be
created and processed.

15.2.1.3 How will documents be consumed?

If the XML documents using this vocabulary will only pass between similar programs, it

http://lib.ommolketab.ir

may make sense to model the XML documents directly on the internal structures of the
programs without much concern for how easy or difficult that makes using the document
for other programs or for humans. If there's a substantial chance that this information
needs to be reused by other applications, read by humans (for debugging purposes or
for direct access to information), or will be stored for unknown future use, it probably
makes sense to ensure that the document is easy to read and process even if that
makes creating the document a slightly more difficult task.

15.2.1.4 How widely will the resulting documents be distributed?

Generally, the audience of a new XML application is known in advance. Some
documents are created and read by the same application without ever leaving a single
system. Other documents will be used to transmit important business information
between the IT systems of different organizations. Some documents are created for
publication on the Web to be viewed by hundreds or even thousands of people around
the world. XML formats that will be shared widely typically need comprehensive
documentation made readily available to potential users. Formal validation models may
also be more important for documents that are shared outside of a small community of
trusted participants.

15.2.1.5 Will others need to incorporate this document structure into their own
applications?

Some XML applications are never intended for use and are only useful when
incorporated into other XML applications. Others are useful standards on their own but
are also suitable for inclusion in other applications. A few different methods that might
be used to incorporate markup from one application into another:

Simple inclusion

Markup from one application is included within a container element of another
application. Embedding XHTML content in another document is a common
example of this.

Mixed element inclusion

Markup from one application is mixed inline with content from another application.
This can complicate validation and makes the including application sensitive to
changes in the included application. The Global Document Annotation (GDA)
Initiative application provides an example of this type of application
(http://www.oasis-open.org/cover/gda.html).

Mixed attribute inclusion

Some XML applications are comprised of attributes that may be attached to

http://www.oasis-open.org/cover/gda.html
http://lib.ommolketab.ir

elements from the host application. XML Linking (XLink) is a prime example of this
type of application, defining only attributes that may be used in other vocabularies.

Answering these questions will provide a basic set of requirements to keep in mind
when deciding whether to build a new application, acquire an existing application, or
some combination of the two.

15.2.2 Investigating Available Options

Before committing to designing and implementing a new XML application, it is a good
idea to take a few minutes to search the Internet for prior art. Since the first version of
the XML recommendation was released in 1998, thousands of new XML applications
have been developed and released around the world. Although the quality and
completeness of these applications vary greatly, it is often more efficient to start with an
existing DTD or schema (however imperfect) rather than starting from scratch. In some
cases supporting software is already available, potentially saving software development
work as well.

15.2.2.1 XML vocabulary development

It is also possible that the work your application needs to do may fit into an existing
generic framework, such as XML-RPC or SOAP. If this is the case, you may or may not
need to create your own XML vocabulary. XML-RPC only uses its own vocabulary, while
different styles of SOAP may reduce the amount of work your vocabulary needs to
perform.

There are several XML application registries available on the Internet, and a good
"metadirectory" of DTD and schema directories can be found on O'Reilly's XML site,
http://www.xml.com. These repositories list applications for various disciplines and topics
with varying licensing requirements. The XML Cover Pages, at
http://xml.coverpages.org, also provide information about a wide variety of XML-related
vocabularies, software, and projects. The search for existing applications may also find
potential collaborators, potentially helpful if the XML format is intended for use across
multiple organizations.

15.2.3 Planning for Growth

Some applications may not need to evolve over time (a vocabulary describing basic
DNA strands, for instance), but some thought should be given as to how users of the
application would be able to extend it to meet their own needs. In DTD-based
applications, this is done by providing parameter entity "hooks" into the document type
definition, which could either be referenced or redefined by an instance document. Take

http://www.xml.com
http://xml.coverpages.org
http://lib.ommolketab.ir

the simple DTD shown in Example 15-1.

Example 15-1. extensible.dtd

<!ENTITY % varContent "(EMPTY)">
<!ELEMENT variable %varContent;>

This fragment is not a very interesting application by itself, but since it provides the
capability for extension, the document author can make it more useful by providing an
alternative entity declaration for the content of the variable element, as shown in
Example 15-2.

Example 15-2. Document extending extensible.dtd

<?xml version="1.0"?>
<!DOCTYPE variable SYSTEM "extensible.dtd"
[
<!ENTITY % varContent "(#PCDATA)">
]>
<variable>Useful content.</variable>

The XML schema language provides more comprehensive and controlled support for
extending markup using the extension, include, redefine, and import
elements. These two mechanisms can be used in conjunction to create very powerful,
customizable application frameworks.

15.2.4 Choosing a Validation Method

The first major implementation decision of designing a new XML application is what type
of validation (if any) will be performed on instance documents. In many cases,
prototyping a set of instance documents is the best way to determine what level of
validation must be performed.

If your application is simply saving some internal program state between invocations
(such as window positions or menu configurations within a GUI application), going to the
trouble of building a schema and validating documents may not be necessary. Since
these configuration documents will always be written and read by the same program, the
structure is fixed by the program logic itself. The only conceivable purpose for validating
a document like this would be to detect file corruption, which would be likely to generate
a well-formedness error in any case.

An example of an application that would require some level of validation is where XML
documents are exchanged between different related systems that are not maintained by

http://lib.ommolketab.ir

the same development organization. In this case, a DTD or schema can serve as a
definitive blueprint to ensure that all systems are sending and receiving information in
the expected formats.

The most rigorous type of validation is required when developing a new XML standard
that will be implemented independently by many different vendors without any explicit
control or restrictions. For example, the XHTML 1.1 standard is enforced by a very
explict and well-documented DTD that is hosted by the W3C. This well-known public
DTD allows tool and application vendors to ensure that their systems will interoperate as
long as instance documents conform to the standard.

After determining the level of validation for a particular application, it must be decided
what validation language will be used. The DTD mechanism of XML 1.0 is still the most
widely supported standard, although it lacks the expressive power that is required by
sophisticated data-oriented applications. The W3C XML schema recommendation
provides very rich type and content model expression, but brings with it a commensurate
level of complexity.

Developers can also provide both DTDs and XML schemas, or even combine them with
other vocabularies for describing XML structures, notably RELAX NG (http://www.oasis-
open.org/committees/relax-ng/) and Schematron
(http://www.ascc.net/xml/resource/schematron/schematron.html).RDDL, described in
Chapter 14, provides a set of tools for supporting and explaining such combinations for
formats that use namespaces.

15.2.5 Namespace Support

Virtually every XML application that will be shared with the public should include at least
a basic level of namespace support. Even if there are no current plans to release a
particular document application to the outside world, it is much simpler to implement
namespaces from the ground up than it is to retrofit an existing application with a
namespace.

Namespaces affect everything from how the document is validated to how it is
transformed (using a stylesheet language such as XSLT). Here are a few namespace
issues to consider before selecting a URI and starting work.

15.2.5.1 Will instance documents need to be validated using a DTD?

If so, some planning of how namespace prefixes will be assigned and incorporated into
the DTD is necessary. DTDs are not namespace aware, so strategic use of parameter
entities can make modification of prefixes much simpler down the road.

http://www.oasis-
http://www.ascc.net/xml/resource/schematron/schematron.html
http://lib.ommolketab.ir

15.2.5.2 Will markup from this application need to be embedded in other
applications?

If so, some thought needs to be given to potential tag-name collisions. The safest
approach is to force every element from your application to be explicitly qualified with a
namespace. This can be done within an XML schema by setting the
elementFormDefault and attributeFormDefault attributes of the schema
element to qualified.

15.2.5.3 Are there legacy documents to support?

If an application will be used to validate existing XML documents, some thought should
be given to the effort involved in migrating them. In most cases, simply adding a default
namespace declaration will be sufficient. If the new application includes markup from
different namespaces, however, some thought must be given to how to update old
documents.

15.2.6 Maintaining Compatibility

Maintaining backward compatibility with existing documents is a primary concern for
XML applications that are widely used by diverse audiences. The difficulties faced by
standards organizations when dealing with the task of updating a popular application
(such as HTML) are formidable. While most applications may not become as
widespread as HTML, some thought should be given in advance as to how new versions
of a schema or DTD will interact with existing documents.

One possible approach to maintaining backward compatibility is to create a new, distinct
namespace that will be used to mark new element declarations or perhaps to change
the namespace of the entire document to reflect a substantially changed version.
Another possible strategy is only to extend existing applications without removing prior
functionality. The most important thing is to ensure that each instance document for an
application has some readily identifiable marker that associates it with a particular
version of a DTD or schema. The good news is that the highly transformable nature of
XML makes it very easy to migrate old documents to new document formats.

Removing functionality is possible, but frequently difficult, once a format is widely used.
Deprecating functionality-marking it as a likely target for removal a version or several
before it is actually removed-is one approach. While deprecated features often linger in
implementations long after they've been targeted for removals, they change the
expectations of developers building new applications and make it possible, if slow, to
remove functionality.

http://lib.ommolketab.ir

15.3 Sharing Your XML format

Creating a data format is often only the first step in making it useful. If an XML
vocabulary is only used for a particular process inside a software application, there may
not be much reason to publish information about how it works, except for future
developers who may work on that application. If, on the other hand, the data format is
intended for widespread use by people or organizations who may not normally interact
with each other beyond the exchange of messages, then it probably makes sense to
provide much more support for the format.

There are a variety of different kinds of information about a data format that are
frequently worth sharing:

Human-readable documentation, perhaps even in a variety of languages

Schemas and DTDs formally defining the structures and content

Stylesheets and transformations for presenting the data or converting it from one
format to another

Code for processing the data, perhaps even in a variety of languages or
environments

The first two approaches-human-readable documentation and schemas-are typically
the foundations. Formal definitions and rough understandings of what goes where often
work for formats that are used by individual programmers or small groups, but sharing
formats widely often requires further explanation. Stylesheets and code are additional
options that may simplify adoption for developers.

The appropriate level of publicity for an XML vocabulary can vary widely, from no
publicity at all to publishing a RDDL document or a support site, to registering the format
in one of the XML application registries, or to creating a working group at some kind of
standards body or consortium.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 16. XML Schemas

 16.1 Overview

 16.2 Schema Basics
 16.3 Working with Namespaces

 16.4 Complex Types
 16.5 Empty Elements

 16.6 Simple Content

 16.7 Mixed Content
 16.8 Allowing Any Content

 16.9 Controlling Type Derivation

Although Document Type Definitions can enforce basic structural rules on documents,
many applications need a more powerful and expressive validation method. The W3C
developed the XML Schema Recommendation, released on May 2, 2001 after a long
incubation period, to address these needs. Schemas can describe complex restrictions
on elements and attributes. Multiple schemas can be combined to validate documents
that use multiple XML vocabularies. This chapter provides a rapid introduction to key
W3C XML Schema concepts and usage.

This chapter progressively introduces the structures and concepts of XML Schemas,
beginning with the fundamental structure that is common to all schemas. The chapter
begins with a very simple schema and proceeds to add more functionality to it until ever
major feature of XML Schemas has been introduced.

16.1 Overview

A schema is a formal description of what comprises a valid document. An XML schema
is an XML document containing a formal description of what comprises a valid XML
document. A W3C XML Schema Language schema is an XML schema written in the
particular syntax recommended by the W3C.

In this chapter when we use the word schema without further
qualification, we are referring specifically to a schema written in the
W3C XML schema language. However, there are numerous other
XML schema languages, including RELAX NG and Schematron,
each with their own strengths and weaknesses.

http://lib.ommolketab.ir

An XML document described by a schema is called an instance document . If a
document satisfies all the constraints specified by the schema, it is considered to be
schema-valid . The schema document is associated with an instance document through
one of the following methods:

An xsi:schemaLocation attribute on an element contains a list of namespaces
used within that element and the URLs of the schemas with which to validate
elements in those namespaces.

An xsi:noNamespaceSchemaLocation attribute contains a URL for the
schema used to validate elements that are not in any namespace.

The validating parser may attempt to locate the schema using the namespace of
the element itself in one of these ways: directly by looking for a schema at that
namespace, indirectly by looking for a RDDL document at that namespace, or
implicitly by knowing in advance which schema is right for that namespace.

A validating parser may be instructed to validate a given document against an
explicitly provided schema, ignoring any hints that might be provided within the
document itself.

16.1.1 Schemas Versus DTDs

DTDs provide the capability to do basic validation of the following items in XML
documents:

Element nesting

Element occurrence constraints

Permitted attributes

Attribute types and default values

However, DTDs do not provide fine control over the format and data types of element
and attribute values. Other than the various special attribute types (ID , IDREF ,
ENTITY , NMTOKEN , and so forth), once an element or attribute has been declared to
contain character data, no limits may be placed on the length, type, or format of that
content. For narrative documents (such as web pages, book chapters, newsletters, etc.),
this level of control is probably good enough.

But as XML makes inroads into more data-intensive applications (such as web services
using SOAP), more precise control over the text content of elements and attributes

http://lib.ommolketab.ir

becomes important. The W3C XML Schema standard includes the following features:

Simple and complex data types

Type derivation and inheritance

Element occurrence constraints

Namespace-aware element and attribute declarations

The most important of these features is the addition of simple data types for parsed
character data and attribute values. Unlike DTDs, schemas can enforce specific rules
about the contents of elements and attributes. In addition to a wide range of built-in
simple types (such as string , integer , decimal , and dateTime), the schema
language provides a framework for declaring new data types, deriving new types from
old types, and reusing types from other schemas.

Besides simple data types, schemas add the ability to place more explicit restrictions on
the number and sequence of child elements that can appear in a given location. This is
even true when elements are mixed with character data, unlike the mixed content model
(#PCDATA) supported by DTDs.

There are a few things that DTDs do that XML Schema can't do.
Defining general entities for use in documents is one of these. XML
Inclusions (XInclude) may be able to replace some uses of general
entities, but DTDs remain extremely convenient for short entities.

16.1.2 Namespace Issues

As XML documents are exchanged between different people and organizations around
the world, proper use of namespaces becomes critical to prevent misunderstandings.
Depending on what type of document is being viewed, a simple element like
<fullName>Zoe</fullName> could have widely different meanings. It could be a
person's name, a pet's name, or the name of a ship that recently docked. By associating
every element with a namespace URI, it is possible to distinguish between two elements
with the same local name.

Because the Namespaces in XML recommendation was released after the XML 1.0
recommendation, DTDs do not provide explicit support for declaring namespace-aware
XML applications. Unlike DTDs (where element and attribute declarations must include
a namespace prefix), schemas validate against the combination of the namespace URI
and local name rather than the prefixed name.

http://lib.ommolketab.ir

Namespaces are also used within instance documents to include directives to the
schema processor. For example, the special attributes that are used to associate an
element with a schema (schemaLocation and noNamespaceSchemaLocation)
must be associated with the official XML Schema instance namespace URI
(http://www.w3.org/2001/XMLSchema-instance) in order for the schema
processor to recognize it as an instruction to itself.

16.2 Schema Basics

This section will construct, step by step, a simple schema document representing a
typical address book entry, introducing different features of the XML Schema language
as needed. Example 16-1 shows a very simple well-formed XML document.

Example 16-1. addressdoc.xml

<?xml version="1.0"?>
<fullName>Scott Means</fullName>

Assuming that the fullName element can only contain a simple string value, the
schema for this document would look like Example 16-2 .

Example 16-2. address-schema.xsd

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="fullName" type="xs:string"/>
</xs:schema>

It is also common to associate the sample instance document explicitly with the schema
document. Since the fullName element is not in any namespace, the
xsi:noNamespaceSchemaLocation attribute is used as shown in Example 16-3 .

Example 16-3. addressdoc.xml with schema reference

<?xml version="1.0"?>
<fullName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="address-schema.xsd">Scott Means</fullName>

Validating the simple document against its schema requires a validating XML parser that
supports schemas such as the open source Xerces parser from the Apache XML Project
(http://xml.apache.org/xerces-j/). This is written in Java and includes a command-line
program called dom.DOMWriter that can be used to validate addressdoc.xml like this:

http://www.w3.org/2001/XMLSchema-instance
http://lib.ommolketab.ir

% java dom.DOMWriter -V -S addressdoc.xml

Since the document is valid, DOMWriter will simply echo the input document to
standard output. An invalid document will cause the parser to generate an error
message. For instance, adding b elements to the contents of the fullName element
violates the schema rules:

<?xml version="1.0"?>
<fullName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="address-schema.xsd"
 >Scott Means</fullName>

If this document were validated with DOMWriter , the following validity errors would be
detected by Xerces:

[Error] addressdoc.xml:4:13: Element type "b" must be declared.
[Error] addressdoc.xml:4:31: Datatype error: In element 'fullName' : Can not
have element children within a simple type content.

16.2.1 Document Organization

Now that there is a basic schema and a valid document from which to work, it is time to
examine the structure of a schema document and its contents. Every schema document
consists of a single root xs:schema element. This element contains declarations for all
elements and attributes that may appear in a valid instance document.

The XML elements that make up an XML schema must belong to the
XML Schema namespace (http://www.w3.org/2001/XMLSchema),
which is frequently associated with the xs: prefix. For the remainder
of this chapter, all schema elements will be written using the xs:
prefix to indicate that they belong to the Schema namespace.

Instance elements declared by top-level elements in the schema (immediate child
elements of the xs:schema element) are considered global elements. For example,
the simple schema in Example 16-2 globally declares one element: fullName .
According to the rules of schema construction, any element that is declared globally may
appear as the root element of an instance document.

In this case, since only one element has been declared, that shouldn't be a problem. But
when building more complex schemas, this side effect must be taken into consideration.
If more than one element is declared globally, a schema-valid document may not
contain the root element you expect.

http://lib.ommolketab.ir

Naming conflicts are another potential problem with multiple global declarations. When
writing schema declarations, it is an error to declare two things of the same type at the
same scope. For instance, trying to declare two global elements called fullName
would generate an error. But declaring an element and an attribute with the same name
would not create a conflict, because the two names are not used in the same way.

16.2.2 Annotations

Now that there is a working schema, it's good practice to include some documentary
material about who authored it, what it was for, any copyright restrictions, etc. Since an
XML schema document is an XML document in its own right, one simple option would
be to use XML comments to include documentary information.

The major drawback to using XML comments is that parsers are not obliged to keep
comments intact when parsing XML documents, and applications have to do a lot of
work to negotiate their internal structures. This increases the likelihood that, at some
point, important documentation will be lost during an otherwise harmless transformation
or editing procedure. Encoding documentation as markup inline with the element and
type declarations they refer to opens up endless possibilities for automatic
documentation generation.

To accommodate this extra information, most schema elements may contain an optional
xs:annotation element as their first child element. The annotation element may
then, in turn, contain any combination of xs:documentation and xs:appinfo
elements, which are provided to contain extra human-readable and machine-readable
information, respectively.

16.2.2.1 The xs:documentation element

As a concrete example, let's add some authorship and copyright information to the
simple schema document, as shown in Example 16-4 .

Example 16-4. address-schema.xsd with annotation

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:annotation>
 <xs:documentation xml:lang="en-us">
 Simple schema example from O'Reilly's
 XML in a Nutshell.
 Copyright 2002 O'Reilly & Associates
 </xs:documentation>

http://lib.ommolketab.ir

 </xs:annotation>

 <xs:element name="fullName" type="xs:string"/>

</xs:schema>

The xs:documentation element permits an xml:lang attribute to identify the
language of the brief message. This attribute can also be applied to the xs:schema
element to set the default language for the entire document. For more information about
using the xml:lang attribute, see Chapter 5 and Chapter 20 .

Also, notice that the documentation element contains additional markup: an a element
(à la HTML). The xs:documentation element is allowed to contain any well-formed
XML, not just schema elements. The Section 16.8 later in this chapter explains how this
can be done in your own documents.

16.2.2.2 The xs:appinfo element

In reality, there is little difference between the xs:documentation element and the
xs:appinfo element. Either one can contain any combination of character data or
markup the schema author wants to include. But the developers of the schema
specification intended the xs:documentation element to contain human-readable
content, while the xs:appinfo element would contain application-specific extension
information related to a particular schema element.

For example, let's say that it is necessary to encode context-sensitive help text with each
of the elements declared in a schema. This text might be used to generate tool-tips in a
GUI or system prompts in a voicemail system. Either way, it would be very convenient to
associate this information directly with the particular element in question using the
xs:appinfo element, like this:

. . .
<xs:element name="fullName" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <help-text>Enter the person's full name.</help-text>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
. . .

Although schemas allow very sophisticated and powerful rules to be expressed, they
cannot possibly encompass every conceivable need that a schema developer might

http://lib.ommolketab.ir

face. That is why it is important to remember that there is a facility that can be used to
include your own application-specific information directly within the actual schema
declarations.

Schematron is especially well-suited to use in annotations and is
capable of checking a wide variety of conditions well beyond the
bounds of XML Schema. For more information about Schematron,
see http://www.ascc.net/xml/resource/schematron/schematron.html .

16.2.3 Element Declarations

XML documents are composed primarily of nested elements, and the xs:element
element is one of the most often-used declarations in a typical schema. The simple
example schema already includes a single global element declaration that tells the
schema processor that instance documents must consist of a single element called
fullName :

<xs:element name="fullName" type="xs:string">

This declaration uses two attributes to describe the element that can appear in the
instance document: name and type . The name attribute is self-explanatory, but the
type attribute requires some additional explanation.

16.2.4 Simple Types

Schemas support two different types of content: simple and complex. Simple content
equates with basic data types that are found in most modern programming languages
(strings, integers, dates, times, etc.). Simple types cannot, by definition, contain nested
element content.

In the previous example, the type="xs:string" attribute/value pair tells the schema
processor that this element can only contain simple content of the built-in type
xs:string . Table 16-1 lists a representative sample of the built-in simple types that
are defined by the schema specification. See Chapter 21 for a complete listing.

Table 16-1. Built-in simple schema types

http://lib.ommolketab.ir

Type Description

anyURI A Uniform Resource Identifier

base64Binary Base64 content-encoded binary data

boolean May contain either true or false, 0 or 1

byte A signed byte quantity >= -128 and <= 127

dateTime An absolute date and time value combination

duration A relative amount of time, expressed in units
of years, months, days, hours, etc

ID, IDREF, IDREFS,
ENTITY, ENTITIES, NOTATION,
NMTOKEN, NMTOKENS

Same values as defined in the attribute
declaration section of the XML 1.0
recommendation

integer Any positive or negative counting number

language
May contain same values as xml:lang
attribute from XML 1.0 recommendation

Name An XML name

normalizedString String with newline, tab, and carriage-return
characters normalized to spaces

string Unicode string

token
Same as normalizedString with multiple
spaces collapsed and leading and trailing
spaces removed

Since attribute values cannot contain elements, attributes must always be declared with
simple types. Also, an element that is declared to have a simple type cannot have any
attributes. This means that if an attribute must be added to the fullName element,
some fairly significant changes to the element declaration are required.

16.2.5 Attribute Declarations

To make the fullName element more informative, it would be nice to add a language
attribute to provide a hint as to how it should be pronounced. Although adding an
attribute to an element sounds like a fairly simple task, it is complicated by the fact that
elements with simple types (like xs:string) cannot have attribute values.

Attributes are declared using the xs:attribute element. Attributes may be declared
globally by top-level xs:attribute elements (which may be referenced from
anywhere within the schema) or locally as part of a complex type definition that is
associated with a particular element.

http://lib.ommolketab.ir

To incorporate a language attribute into the fullName element declaration, a new
complex type based on the built-in xs:string type must be created. To do this, three
new schema elements must be used: xs:complexType , xs:simpleContent ,
and xs:extension :

<xs:element name="fullName">

 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="language" type="xs:language"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

</xs:element>

This declaration no longer has a type attribute. Instead it has an xs:complexType
child element. This element tells the schema processor that the fullName element
may have attributes, but the xs:simpleContent element tells the processor that the
content of the element is a simple type. To specify what type of simple content, it uses
the base attribute of the xs:extension element to derive a new type from the built-in
xs:string type. The xs:attribute element within the xs:extension element
indicates that this derived type may have an attribute called language that contains
values conforming to the built-in simple type xs:language (mentioned in Table 16-1).
Type derivation is an important part of schema creation and will be covered in more
detail later in this chapter.

16.2.5.1 Attribute groups

In DTDs, parameter entities are used to encapsulate repeated groups of attribute
declarations that are shared between different element types. Schemas provide the
same functionality in a more formal fashion using the xs:attributeGroup element.

An attribute group is simply a named group of xs:attribute declarations (or
references to other attribute groups) that can be referenced from within a complex type
definition. The attribute group must be declared as a global element with a unique name
attribute. The group is referenced within a complex type definition by including another
xs:attributeGroup element with a ref attribute that matches the desired top-level
attribute group name.

Within the fullName schema, an attribute group could be used to create a package of
attributes related to a person's nationality. This package of attributes could be used on

http://lib.ommolketab.ir

several elements, including the fullName element, without repeating the same
attribute declarations. Then, if it were later necessary to extend this collection of
attributes, it could be done in a single location:

<xs:element name="fullName">
. . .
 <xs:extension base="xs:string">
 <xs:attributeGroup ref="nationality"/>
 </xs:extension>
. . .
</xs:element>

<xs:attributeGroup name="nationality">
 <xs:attribute name="language" type="xs:language"/>
</xs:attributeGroup>

16.3 Working with Namespaces

So far, namespaces have only been dealt with as they relate to the schema processor
and schema language itself. But the schema specification was written with the intention
that schemas could support and describe XML namespaces. In an ideal world, any XML
parser with access to the Internet would be able to validate any XML document, given
only that document's namespace. In fact, the Resource Directory Description Language
(RDDL) standard is an attempt to build the framework that will enable this functionality
and is described in detail in Chapter 14 .

16.3.1 Target Namespaces

Associating a schema with a particular XML namespace is extremely simple: add a
targetNamespace attribute to the root xs:schema element, like so:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://namespaces.oreilly.com/xmlnut/address">

It is important to remember that many XML 1.0 documents are not
associated with namespaces at all. To validate these documents, it is
necessary to use a schema that doesn't have a targetNamespace
attribute. When developing schemas that are not associated with a
target namespace, you should explicitly qualify schema elements
(like xs:element) to keep them from being confused with global
declarations for your application.

http://lib.ommolketab.ir

However, making that simple change impacts numerous other parts of the example
application. Trying to validate the addressdoc.xml document as it stands (with the
xsi:noNamespaceSchemaLocation attribute) causes the Xerces schema
processor to report this validity error:

General Schema Error: Schema in address-schema.xsd has a different target
namespace from the one specified in the instance document :.

To rectify this, it is necessary to change the instance document to reference the new,
namespace-enabled schema properly. This is done using the xsi:schemaLocation
attribute, like so:

<fullName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address
 address-schema.xsd"
 language="en">Scott Means</fullName>

Notice that the schemaLocation attribute value contains two tokens. The first is the
target namespace URI that matches the target namespace of the schema document.
The second is the physical location of the actual schema document.

Unfortunately, there are still problems. If this document is validated, the validator will
report errors like these two:

Element type "fullName" must be declared.
Attribute "language" must be declared for element type "fullName".

This is because, even though a schema location has been declared, the element still
doesn't actually belong to a namespace. Either a default namespace must be declared
or a namespace prefix that matches the target namespace of the schema must be used.
The following document uses a default namespace:

<fullName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address
 address-schema.xsd"
 xmlns="http://namespaces.oreilly.com/xmlnut/address"
 language="en">Scott Means</fullName>

But before this document can be successfully validated, it is necessary to fix one other
problem that was introduced when a target namespace was added to the schema.
Within the element declaration for the fullName element, there is a reference to the
nationality attribute group. By associating the schema with a target namespace,
every global declaration has been implicitly associated with that namespace. This
means that the ref attribute of the attribute group element in the element declaration

http://lib.ommolketab.ir

must be updated to point to an attribute group that belongs to the new target
namespace.

The clearest way to do this is to declare a new namespace prefix in the schema that
maps to the target namespace and use it to prefix any references to global declarations:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"
 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address">
. . .
 <xs:attributeGroup ref="addr:nationality"/>
. . .

Now, having made these three simple changes, the document will once again validate
cleanly against the schema.

The obvious lesson from this is that namespaces should be
incorporated into your schema design as early as possible. If not,
there will likely be a large amount of cleanup involved as various
assumptions that used to be true are no longer valid.

16.3.2 Controlling Qualification

One of the major headaches with DTDs is that they have no explicit support for
namespace prefixes since they predate the Namespaces in XML recommendation.
Although Namespaces in XML went to great pains to explain that prefixes were only
placeholders and only the namespace URIs really matter, it was painful and awkward to
design a DTD that could support arbitrary prefixes. Schemas correct this by validating
against namespace URIs and local names rather than prefixed names.

The elementFormDefault and attributeFormDefault attributes of the
xs:schema element control whether locally declared elements and attributes must be
namespace-qualified within instance documents. Suppose the
attributeFormDefault attribute is set to qualified in the schema like this:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"
 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"
 attributeFormDefault="qualified">

Now, if addressdoc.xml is validated against the schema, the validator reports the
following error:

http://lib.ommolketab.ir

Attribute "language" must be declared for element type "fullName".

Since the default attribute form has been set to qualified , the schema processor
doesn't recognize the unqualified language attribute as belonging to the same schema
as the fullName element. This is because attributes, unlike elements, don't inherit the
default namespace from the xmlns="..." attribute. They must always be explicitly
prefixed if they need to belong to a particular namespace.

The easiest way to fix the instance document is to declare an explicit namespace prefix
and use it to qualify the element and attribute, as shown in Example 16-5 .

Example 16-5. addressdoc.xml with explicit namespace prefix

<?xml version="1.0"?>
<addr:fullName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address
 address-schema.xsd"
 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"
 addr:language="en">Scott Means</addr:fullName>

The elementFormDefault attribute serves the same function in regards to
namespace qualification of nested elements. If it is set to qualified , nested
elements must belong to the target namespace of the schema (either through a default
namespace declaration or an explicit prefix).

16.4 Complex Types

A schema assigns a type to each element and attribute it declares. In Example 16-5 ,
the fullName element has a complex type . Elements with complex types may contain
nested elements and have attributes. Only elements can have complex types. Attributes
always have simple types.

Since the type is declared using an xs:complexType element embedded directly in

the element declaration, it is also an anonymous type rather than a named type .

New types are defined using xs:complexType or xs:simpleType elements. If a
new type is declared globally with a top-level element, it needs to be given a name so
that it can be referenced from element and attribute declarations within the schema. If a
type is declared inline (inside an element or attribute declaration), it does not need to be
named. But since it has no name, it cannot be referenced by other element or attribute
declarations. When building large and complex schemas, data types will need to be
shared among multiple different elements. To facilitate this reuse, it is necessary to

http://lib.ommolketab.ir

create named types.

To show how named types and complex content interact, let's expand the example
schema. A new address element will contain the fullName element, and the
person's name will be divided into a first- and last-name component. A typical instance
document would look like Example 16-6 .

Example 16-6. addressdoc.xml after adding address, first, and last elements

<?xml version="1.0"?>
<addr:address xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address
 address-schema.xsd"
 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"
 addr:language="en">
 <addr:fullName>
 <addr:first>Scott</addr:first>
 <addr:last>Means</addr:last>
 </addr:fullName>
</addr:address>

To accommodate this new format, fairly substantial structural changes to the schema
are required, as shown in Example 16-7 .

Example 16-7. address-schema.xsd to support address element

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"
 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"
 attributeFormDefault="qualified" elementFormDefault="qualified">
<xs:element name="address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="fullName">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="first" type="addr:nameComponent"/>
 <xs:element name="last" type="addr:nameComponent"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

http://lib.ommolketab.ir

 <xs:attributeGroup ref="addr:nationality"/>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="nameComponent">
 <xs:simpleContent>
 <xs:extension base="xs:string"/>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

The first major difference between this schema and the previous version is that the root
element name has been changed from fullName to address . The same result could
have been accomplished by creating a new top-level element declaration for the new
address element, but that would have opened a loophole allowing a valid instance
document to contain only a fullName element and nothing else.

Within the address element declaration, a new anonymous complex type is declared.
Unlike the old declaration, this complex type is declared to contain complex content
using the xs:sequence element. The sequence element tells the schema processor
that the contained list of elements must appear in the target document in the exact order
they are given. In this case, the sequence contains only one element declaration.

The nested element declaration is for the fullName element, which then repeats the
xs:complexType and xs:sequence declaration process. Within this nested
sequence, two element declarations appear for the first and last elements.

These two element declarations, unlike all prior element declarations, explicitly
reference a new complex type that's declared in the schema, the
addr:nameComponent type. It is fully qualified to differentiate it from possible
conflicts with built-in schema data types.

The nameComponent type is declared by the xs:complexType element
immediately following the address element declaration. It is identified as a named type
by the presence of the name attribute, but in every other way it is constructed the same
way it would have been as an anonymous type.

16.4.1 Occurrence Constraints

One feature of schemas that should be welcome to DTD developers is the ability to
explicitly set the minimum and maximum number of times an element may occur at a
particular point in a document using minOccurs and maxOccurs attributes of the
xs:element element. For example, this declaration adds an optional middle name to

http://lib.ommolketab.ir

the fullName element:

<xs:element name="fullName">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="first" type="addr:nameComponent"/>
 <xs:element name="middle" type="addr:nameComponent"
 minOccurs="0"/>
 <xs:element name="last" type="addr:nameComponent"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Notice that the element declaration for the middle element has a minOccurs value of
0. The default value for both minOccurs and maxOccurs is 1, if they are not provided
explicitly. Therefore, setting minOccurs to 0 means that the middle element may
appear 0 to 1 times. This is equivalent to using the ? operator in a DTD declaration.
Another possible value for the maxOccurs attribute is unbounded , which indicates
that the element in question may appear an unlimited number of times. This value is
used to produce the same effect as the * and + operators in a DTD declaration.

16.4.2 Types of Element Content

So far you have seen elements that contain only character data and elements that
contain only other elements. The next several sections cover each of the possible types
of element content individually, from most restrictive to least restrictive:

Empty

Simple content

Mixed content

Any type

16.5 Empty Elements

In many cases, it is useful to declare an element that cannot contain anything. Most of
these elements convey all of their information via attributes or simply by their position in
relation to other elements (e.g., the br element from XHTML).

Let's add a contact-information element to the address element that will be used to

http://lib.ommolketab.ir

contain a list of ways to contact a person. Example 16-8 shows the sample instance
document after adding the new contacts element and a sample phone entry.

Example 16-8. addressdoc.xml with contact element

<?xml version="1.0"?>
<addr:address xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address
 address-schema.xsd"
 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"
 addr:language="en">
 <addr:fullName>
 <addr:first>William</addr:first>
 <addr:middle>Scott</addr:middle>
 <addr:last>Means</addr:last>
 </addr:fullName>
 <addr:contacts>
 <addr:phone addr:label="888.737.1752"/>
 </addr:contacts>
</addr:address>

Supporting this new content requires further modifications to the schema document.
Although it would be possible to declare the new element inline within the existing
address-element declaration, for clarity it makes sense to create a new global type and
reference it by name:

<xs:element name="address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="fullName">
. . .
 </xs:element>
 <xs:element name="contacts" type="addr:contactsType" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="addr:nationality"/>
 </xs:complexType>
</xs:element>

The declaration for the new contactsType complex type looks like this:

<xs:complexType name="contactsType">
 <xs:sequence>
 <xs:element name="phone" minOccurs="0">

http://lib.ommolketab.ir

 <xs:complexType>
 <xs:attribute name="number" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

The syntax used to declare an empty element is actually very simple. Notice that the
xs:element declaration for the previous phone element contains a complex type
definition that only includes a single attribute declaration. This tells the schema
processor that the phone element may only contain complex content (elements), and
since no additional nested element declarations are provided, it must remain empty.

16.5.1 complexContent

The preceding example actually took a shortcut with the schema language. One of the
early fullName element declarations used the xs:simpleContent element to
indicate that the element could only contain simple content (no nested elements). There
is a corresponding content-declaration element that specifies that a complex type can
only contain complex content (elements). This is the xs:complexContent element.

When the phone element was declared using an xs:complexType element with no
nested element declarations, the schema processor automatically inferred that it should
contain only complex content. The phone element declaration could be rewritten like so,
using the xs:complexContent element:

<xs:element name="phone" minOccurs="0">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:anyType">
 <xs:attribute name="number" type="xs:string"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

The most common reason to use the xs:complexContent element is to derive a
complex type from an existing type. This example derives a new type by restriction from
the built-in xs:anyType type. xs:anyType is the root of all of the built-in schema
types and represents an unrestricted sequence of characters and markup. Since the
xs:complexType indicates that the element can only contain element content, the
effect of this restriction is to prevent the element from containing either character data or

http://lib.ommolketab.ir

markup.

16.6 Simple Content

Earlier, the xs:simpleContent element was used to declare an element that could
only contain simple content:

<xs:element name="fullName">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="language" type="xs:language"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

The base type for the extension in this case was the built-in xs:string data type. But
simple types are not limited to the predefined types. The xs:simpleType element can
define new simple data types, which can be referenced by element and attribute
declarations within the schema.

16.6.1 Defining New Simple Types

To show how new simple types can be defined, let's extend the phone element from the
example application to support a new attribute called location . This attribute will be
used to differentiate between work and home phone numbers. This attribute will have a
new simple type called locationType , which will be referenced from the
contactsType definition:

<xs:complexType name="contactsType">
 <xs:sequence>
 <xs:element name="phone" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="number" type="xs:string"/>
 <xs:attribute name="location" type="addr:locationType"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="locationType">

http://lib.ommolketab.ir

 <xs:restriction base="xs:string"/>
</xs:simpleType>

Of course, a location type that just maps to the built-in xs:string type isn't particularly
useful. Fortunately, schemas can strictly control the possible values of simple types
through a mechanism called facets .

16.6.2 Facets

In schema-speak, a facet is an aspect of a possible value for a simple data type.
Depending on the base type, some facets make more sense than others. For example,
a numeric data type can be restricted by the minimum and maximum possible values it
could contain. But these types of restrictions wouldn't make sense for a boolean value.
The following list covers the different facet types that are supported by a schema
processor:

length (or minLength and maxLength)

pattern

enumeration

whiteSpace

maxInclusive and maxExclusive

minInclusive and minExclusive

totalDigits

fractionDigits

Facets are applied to simple types using the xs:restriction element. Each facet is
expressed as a distinct element within the restriction block, and multiple facets can be
combined to further restrict potential values of the simple type.

16.6.2.1 Handling whitespace

The whiteSpace facet controls how the schema processor will deal with any
whitespace within the target data. Whitespace normalization takes place before any of
the other facets are processed. There are three possible values for the whiteSpace
facet:

preserve

http://lib.ommolketab.ir

Keep all whitespace exactly as it was in the source document (basic XML 1.0
whitespace handling for content within elements).

replace

Replace occurrences of #x9 (tab), #xA (line feed), and #xD (carriage return)
characters with #x20 (space) characters.

collapse

Perform the replace step first, then collapse multiple-space characters into a single
space.

16.6.2.2 Restricting length

The length-restriction facets are fairly easy to understand. The length facet forces a
value to be exactly the length given. The minLength and maxLength facets can be
used to set a definite range for the lengths of values of the type given. For example, take
the nameComponent type from the schema. What if a name component could not
exceed 50 characters (because of a database limitation, for instance)? This rule can be
enforced by using the maxLength facet. Incorporating this facet requires a new simple
type to reference from within the nameComponent complex type definition:

<xs:complexType name="nameComponent">
 <xs:simpleContent>
 <xs:extension base="addr:nameString"/>
 </xs:simpleContent>
 </xs:complexType>

 <xs:simpleType name="nameString">
 <xs:restriction base="xs:string">
 <xs:maxLength value="50"/>
 </xs:restriction>
 </xs:simpleType>

The new nameString simple type is derived from the built-in xs:string type, but
can contain no more than 50 characters (the default is unlimited). The same approach
can be used with the length and minLength facets.

16.6.2.3 Enumerations

One of the more useful types of restriction is the simple enumeration. In many cases, it
is sufficient to restrict possible values for an element or attribute to a member of a
predefined list. For example, values of the new locationType simple type defined

http://lib.ommolketab.ir

earlier could be restricted to a list of valid options like so:

<xs:simpleType name="locationType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="work"/>
 <xs:enumeration value="home"/>
 <xs:enumeration value="mobile"/>
 </xs:restriction>
</xs:simpleType>

Then, if the location attribute in any instance document contained a value not found
in the list of enumeration values, the schema processor would generate a validity error.

16.6.2.4 Numeric Facets

Almost half of the of built-in data types defined by the schema specification represent
numeric data of one type or another. More might be called numeric since the date/time
and duration types are considered to be scalar quantities as well. The following two
sections cover all of the numeric facets available, but for a comprehensive list of which
of these facets are applicable to which data types, see Chapter 21 .

16.6.2.4.1 Minimum and maximum values

Four facets control the minimum and maximum values of items:

minInclusive

minExclusive

maxInclusive

maxExclusive

The primary difference between the inclusive and exclusive flavors of the min and max
facets is whether the value given is considered part of the set of allowable values. For
example, the following two facet declarations are equivalent:

<xs:maxInclusive value="1"/>
<xs:maxExclusive value="0"/>

The difference between inclusive and exclusive becomes more significant when dealing
with decimal or floating point values. For example, if minExclusive were set to 5.0 ,
the equivalent minInclusive value would require an infinite number of nines to the
right of the decimal point (4.99999). These facets can also be applied to date and

http://lib.ommolketab.ir

time values.

16.6.2.4.2 Length and precision

There are two facets that control the length and precision of decimal numeric values:
totalDigits and fractionDigits . The totalDigits facet determines the
total number of digits (only digits are counted, not signs or decimal points) that are
allowed in a complete number. fractionDigits determines the number of those
digits that must appear to the right of the decimal point in the number.

16.6.2.5 Enforcing format

The xs:pattern facet can place very sophisticated restrictions on the format of string
values. The pattern facet compares the value in question against a regular expression,
and if the value doesn't conform to the expression, it generates a validation error. For
example, this xs:simpleType element declares a social security number simple type
using the pattern facet:

<xs:simpleType name="ssn">
 <xs:restriction base="xs:string">
 <xs:pattern value="\d\d\d-\d\d-\d\d\d\d"/>
 </xs:restriction>
 </xs:simpleType>

This new simple type enforces the rule that a social security number consists of three
digits, a dash followed by two digits, another dash, and finally four more digits. The
actual regular-expression language is very similar to that of the Perl programming
language, but it also supports a wide range of Unicode characters. See Chapter 21 for
more information on the full pattern-matching language.

16.6.2.6 Lists

XML 1.0 provided a few very simple list types that could be declared as possible
attribute values: IDREFS , ENTITIES , and NMTOKENS . Schemas have generalized
the concept of lists and provide the ability to declare lists of arbitrary types.

These list types are themselves simple types and may be used in the same places other
simple types are used. For example, if the fullName element were to be expanded to
accommodate multiple middle names, one approach would be to declare the middle
element to contain a list of nameString values:

 <xs:element name="middle" type="addr:nameList" minOccurs="0"/>
. . .

http://lib.ommolketab.ir

<xs:complexType name="nameList">
 <xs:simpleContent>
 <xs:extension base="addr:nameListType"/>
 </xs:simpleContent>
 </xs:complexType>

 <xs:simpleType name="nameListType">
 <xs:list itemType="addr:nameString"/>
 </xs:simpleType>

After this change has been made, the middle element of an instance document can
contain an unlimited list of names, each of which can contain up to 50 characters
separated by whitespace. The use of xs:complextype here will greatly simplify
adding attributes later.

16.6.2.7 Unions

In some cases, it is useful to allow potential values for elements and attributes to have
any of several types. The xs:union element allows a type to be declared that can
draw from multiple type spaces. For example, it might be useful to allow users to enter
their own one-word descriptions into the location attribute of the phone element, as
well as to choose from a list. The location attribute declaration could be modified to
include a union that incorporated the locationType type and the xs:NMTOKEN
types:

<xs:attribute name="location">
 <xs:simpleType>
 <xs:union memberTypes="addr:locationType xs:NMTOKEN"/>
 </xs:simpleType>
</xs:attribute>

Now the location attribute can contain either addr:locationType or
xs:NMTOKEN content.

16.7 Mixed Content

XML 1.0 provided the ability to declare an element that could contain parsed character
data (#PCDATA) and unlimited occurrences of elements drawn from a provided list.
Schemas provide the same functionality plus the ability to control the number and
sequence in which elements appear within character data.

16.7.1 Allowing Mixed Content

http://lib.ommolketab.ir

The mixed attribute of the complexType element controls whether character data
may appear within the body of the element with which it is associated. To illustrate this
concept, Example 16-9 gives us a new schema that will be used to validate form-letter
documents.

Example 16-9. formletter.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="letter">
 <xs:complexType mixed="true"/>
 </xs:element>
</xs:schema>

This schema seems to declare a single element called body that may contain character
data and nothing else. But attempting to validate the following document produces an
error, as shown in Example 16-10 .

Example 16-10. formletterdoc.xml

<letter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="formletter.xsd">Hello!</letter>

The following error is generated:

The content of element type "letter" must match "EMPTY".

This is because there's no complex content for the letter element. Setting mixed to
true is not the same as declaring an element that may contain a string. The character
data may only appear in relation to other complex content, which leads to the subject of
relative element positioning.

16.7.2 Controlling Element Placement

You have already seen the xs:sequence element, which dictates that the elements it
contains must appear in exactly the same order in which they appear within the
sequence element. In addition to xs:sequence , schemas also provide the
xs:choice and xs:all elements to control the order in which elements may appear.
These elements may be nested to create sophisticated element structures.

Expanding the form-letter example, a sequence adds support for various letter
components to the formletter.xsd schema:

<xs:element name="letter">

http://lib.ommolketab.ir

 <xs:complexType mixed="true">
 <xs:sequence>
 <xs:element name="greeting"/>
 <xs:element name="body"/>
 <xs:element name="closing"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Now, thanks to the xs:sequence element, a letter must include a greeting
element, a body element, and a closing element, in that order. But in some cases,
what is desired is that one and only one element appear from a collection of possibilities.
The xs:choice element supports this. For example, if the greeting element
needed to be restricted to contain only one salutation out of a permissible list, it could be
declared to do so using xs:choice :

<xs:element name="greeting">
 <xs:complexType mixed="true">
 <xs:choice>
 <xs:element name="hello"/>
 <xs:element name="hi"/>
 <xs:element name="dear"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

Now one of the permitted salutations must appear in the greeting element for the
letter to be considered valid.

The remaining element-order enforcement construct is the xs:all element. Unlike the
xs:sequence and xs:choice elements, the xs:all element must appear at the
top of the content model and can only contain elements that are optional or appear only
once. The xs:all construct tells the schema processor that each of the contained
elements must appear once in the target document, but can appear in any order. This
could be applied in the form-letter example. If the form letter had certain elements that
had to appear in the body element, but not in any particular order, xs:all could be
used to control their appearance:

<xs:element name="body">
 <xs:complexType mixed="true">
 <xs:all>
 <xs:element name="item"/>
 <xs:element name="price"/>

http://lib.ommolketab.ir

 <xs:element name="arrivalDate"/>
 </xs:all>
 </xs:complexType>
</xs:element>

This would allow the letter author to mix these elements into the narrative without being
restricted as to any particular order. Also, it would prevent the author from inserting
multiple references to the same value by accident. A valid document instance, including
the new body content, might look like Example 16-11 .

Example 16-11. formletterdoc.xml

<letter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="formletter.xsd">
 <greeting><hello/> Bob!</greeting>
 <body>
 Thank you for ordering the <item/> ($<price/>), it should arrive
 by <arrivalDate/>.
 </body>
 <closing/>
</letter>

The element order constructs are not just limited to complex types
with mixed content. If the mixed attribute is not present, the declared
sequence of child elements is still enforced, but no character data is
permitted between them.

16.7.3 Using Groups

Just as the xs:attributeGroup element allows commonly used attributes to be
grouped together and referenced as a unit, the xs:group element allows sequences,
choices, and model groups of individual element declarations to be grouped together
and given a unique name. These groups can then be included in another element-
content model using an xs:group element with the ref attribute set to the same value
as the name attribute of the source group.

16.8 Allowing Any Content

It is often necessary to allow users to include any type of markup content they see fit.
Also, it is useful to tell the schema processor to validate the content of a particular
element against another application's schema. Incorporating XHTML content into
another document is an example of this usage.

http://lib.ommolketab.ir

These applications are supported by the xs:any element. This element accepts
attributes that indicate what level of validation should be performed on the included
content, if any. Also, it accepts a target namespace that can be used to limit the
vocabulary of included content. For instance, going back to the address-book example,
to associate a rich-text notes element with an address entry, you could add the
following element declaration to the address element declaration:

<xs:element name="notes" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="http://www.w3.org/1999/xhtml"
 minOccurs="0" maxOccurs="unbounded"
 processContents="skip"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The attributes of the xs:any element tell the schema processor that zero or more
elements belonging to the XHTML namespace (http://www.w3.org/1999/xhtml) may
occur at this location. Notice that this is done by setting minOcccurs to 0 and
maxOccurs to unbounded . It also states that these elements should be skipped. This
means that no validation will be performed against the actual XHTML namespace by the
parser. Other possible values for the processContents attribute are lax and
strict . When set to lax , the processor will attempt to validate any element it can
find a declaration for and silently ignore any unrecognized elements. The strict
option requires every element to be declared and valid per the schema associated with
the namespace given.

There is also support in schemas to declare that any attribute may appear within a given
element. The xs:anyAttribute element may include the namespace and
processContents attributes, which perform the same function as they do in the
xs:any element. For example, adding the following markup to the address element
would allow any XLink attributes to appear in an instance document:

<xs:element name="address">
 <xs:complexType>
. . .
 <xs:attributeGroup ref="addr:nationality"/>
 <xs:attribute name="ssn" type="addr:ssn"/>
 <xs:anyAttribute namespace="http://www.w3.org/1999/xlink"
 processContents="skip"/>
 </xs:complexType>

http://lib.ommolketab.ir

 </xs:element>

As an application grows and becomes more complex, it is important to take steps to
maintain readability and extensibility. Things like separating a large schema into multiple
documents, importing declarations from external schemas, and deriving new types from
existing types are all typical tasks that will face designers of real-world schemas.

16.8.1 Using Multiple Documents

Just as large computer programs are separated into multiple physical source files, large
schemas can be separated into smaller, self-contained schema documents. Although a
single large schema could be arbitrarily separated into multiple smaller documents,
taking the time to group related declarations into reusable modules can simplify future
schema development.

There are three mechanisms that include declarations from external schemas for use
within a given schema: xs:include , xs:redefine , and xs:import . The next
three sections will discuss the differences between these methods and when and where
they should be used.

16.8.1.1 Including external declarations

The xs:include element is the most straightforward way to bring content from an
external document into a schema. To demonstrate how xs:include might be used,
Example 16-12 shows a new schema document called physical-address.xsd
that contains a declaration for a new complex type called physicalAddressType .

Example 16-12. physical-address.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"
 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"
 attributeFormDefault="qualified" elementFormDefault="qualified">

 <xs:annotation>
 <xs:documentation xml:lang="en-us">
 Simple schema example from O'Reilly's
 XML in a
 Nutshell.
 Copyright 2002 O'Reilly & Associates
 </xs:documentation>
 </xs:annotation>

http://lib.ommolketab.ir

 <xs:complexType name="physicalAddressType">
 <xs:sequence>
 <xs:element name="street" type="xs:string" maxOccurs="3"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="state" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

</xs:schema>

The address-book.xsd schema document can include and reference this
declaration:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"
 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"
 attributeFormDefault="qualified" elementFormDefault="qualified">
. . .

 <xs:include schemaLocation="physical-address.xsd"/>

 <xs:element name="address">
 <xs:complexType>
 <xs:sequence>
. . .
 <xs:element name="physicalAddress"
 type="addr:physicalAddressType"/>
. . .
 </xs:sequence>
. . .
 </xs:complexType>
 </xs:element>

Content that has been included using the xs:include element is treated as though it
were actually a part of the including schema document. But unlike external entities, the
included document must be a valid schema in its own right. That means that it must be a
well-formed XML document and have an xs:schema element as its root element. Also,
the target namespace of the included schema must match that of the including
document.

16.8.1.2 Modifying external declarations

http://lib.ommolketab.ir

The xs:include element allows external declarations to be included and used as-is
by another schema document. But sometimes it is useful to extend and modify types
and declarations from another schema, which is where the xs:redefine element
comes in.

Functionally, the xs:redefine elements works very much like the xs:include
element. The major difference is that within the scope of the xs:redefine element,
types from the included schema may be redefined without generating an error from the
schema processor. For example, the xs:redefine element could extend the
physicalAddressType type to include longitude and latitude attributes without
modifying the original declaration in physical-address.xs:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://namespaces.oreilly.com/xmlnut/address"
 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"
 attributeFormDefault="qualified" elementFormDefault="qualified">
. . .
<xs:redefine schemaLocation="physical-address.xsd">
 <xs:complexType name="physicalAddressType">
 <xs:complexContent>
 <xs:extension base="addr:physicalAddressType">
 <xs:attribute name="latitude" type="xs:decimal"/>
 <xs:attribute name="longitude" type="xs:decimal"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:redefine>
. . .
</xs:schema>

16.8.1.3 Importing schemas for other namespaces

The xs:include and xs:redefine elements are useful when the declarations are
all part of the same application. But as more public schemas become available,
incorporating declarations from external sources into custom applications will be
important. The xs:import element is provided for this purpose.

Using xs:import , it is possible to make the global types and elements that are
declared by a schema belonging to another namespace accessible from within an
arbitrary schema. The W3C has used this functionality to create type libraries . A sample
type library was developed by the schema working group and can be viewed on the
W3C web site at http://www.w3.org/2001/03/XMLSchema/TypeLibrary.xsd .

http://lib.ommolketab.ir

To use some of the types from this library in a schema, include the following
xs:import element as a child of the root schema element:

<xs:import namespace="http://www.w3.org/2001/03/XMLSchema/TypeLibrary"
 schemaLocation="http://www.w3.org/2001/03/XMLSchema/TypeLibrary.xsd"/>

16.8.2 Derived Complex Types

We have been using the xs:extension and xs:restriction elements without
going too deeply into how or why they work. The schema language provides functionality
for extending existing types, which is conceptually similar to that of inheritance in object-
oriented programming. The extension and restriction elements allow new types to be
defined either by expanding or limiting the potential values of existing types.

16.8.2.1 Deriving by extension

When deriving a new type from an existing type, the resulting type is equivalent to
appending the contents of the new declaration to the contents of the base declaration.
For instance, the following example declares a new type called
mailingAddressType that extends the physicalAddressType type to include a
zip code:

<xs:complexType name="mailingAddressType">
 <xs:complexContent>
 <xs:extension base="addr:physicalAddressType">
 <xs:sequence>
 <xs:element name="zipCode" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

This declaration appends a required element, zipCode , to the existing
physicalAddressType type. The biggest benefit of this approach is that as new
declarations are added to the underlying type, the derived type will automatically inherit
them.

16.8.2.2 Deriving by restriction

When a new type is a logical subset of an existing type, the xs:restriction
element allows this relationship to be expressed directly. Like the xs:extension type,
it allows a new type to be created based on an existing type. In the case of simple types,

http://lib.ommolketab.ir

this restriction is a straightforward application of additional constraints on the value of
that simple value.

In the case of complex types, it is not quite so straightforward. Unlike the extension
process, it is necessary to completely reproduce the parent type definition as part of the
restriction definition. By omitting parts of the parent definition, the restriction element
creates a new, constrained type. As an example, this xs:complexType element
derives a new type from the physicalAddressType that only allows a single
street element to contain the street address. The original physicalAddressType
looks like:

<xs:complexType name="physicalAddressType">
 <xs:sequence>
 <xs:element name="street" type="xs:string" maxOccurs="3"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="state" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

The restricted version looks like:

<xs:complexType name="simplePhysicalAddressType">
 <xs:complexContent>
 <xs:restriction base="addr:physicalAddressType">
 <xs:sequence>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="state" type="xs:string"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

Notice that this type very closely resembles the physicalAddressType , except the
maxOccurs="3" attribute has been removed from the street element declaration.

16.8.2.3 Using derived types

One of the chief benefits of creating derived types is that the derived type may appear in
place of the parent type within an instance document. The xsi:type attribute tells the
schema processor that the element on which it appears conforms to a type that is
derived from the normal type expected. For example, take the instance document in
Example 16-13 , which conforms to the address schema.

http://lib.ommolketab.ir

Example 16-13. addressdoc.xml using a derived type

<?xml version="1.0"?>
<addr:address xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://namespaces.oreilly.com/xmlnut/address
 address-schema.xsd"
 xmlns:addr="http://namespaces.oreilly.com/xmlnut/address"
 addr:language="en"
 addr:ssn="123-45-6789">
. . .
 <physicalAddress addr:latitude="34.003855" addr:longitude="-81.034808"
 xsi:type="addr:simplePhysicalAddressType">
 <street>1400 Main St.</street>
 <city>Columbia</city>
 <state>SC</state>
 </physicalAddress>
. . .
</addr:address>

Notice that the physicalAddress element has an xsi:type attribute that informs
the validator that the current element conforms to the
simplePhysicalAddressType , rather than the physicalAddressType that
would normally be expected. This feature is particularly useful when developing
internationalized applications, as distinct address types could be derived for each
country and then flagged in the instance document for proper validation.

16.8.3 Substitution Groups

A feature that is closely related to derived types is the substitution group . A substitution
group is a collection of elements that are all interchangeable with a particular element,
called the head element , within an instance document. To create a substitution group,
all that is required is that an element declaration include a substitutionGroup
attribute that names the head element for that group. Then, anywhere that the head
element's declaration is referenced in the schema, any member of the substitution group
may also appear. Unlike derived types, it isn't necessary to use the xsi:type attribute
in an instance document to identify the type of the substituted element.

http://lib.ommolketab.ir

The primary restriction on substitution groups is that every element in
the group must either be of the same type as or derived from the
head element's type. Declaring a numeric element and trying to add it
to a substitution group based on a string element would generate an
error from the schema processor. The elements must also be
declared globally and in the target namespace of the schema.

16.9 Controlling Type Derivation

Just as some object-oriented programming languages allow the creator of an object to
dictate the limits on how an object can be extended, the schema language allows
schema authors to place restrictions on type extension and restriction.

16.9.1 Abstract Elements and Types

The abstract attribute applies to type and element declarations. When it is set to
true , that element or type cannot appear directly in an instance document. If an
element is declared as abstract, a member of a substitution group based on that
element must appear. If a type is declared as abstract, no element declared with that
type may appear in an instance document.

16.9.2 The Final Attribute

Until now, the schema has placed no restrictions on how other types or elements could
be derived from its elements and types. The final attribute can be added to a complex
type definition and set to either #all , extension , or restriction . On a simple
type definition it can be set to #all or a list containing any combination of the values
list , union , and/or restriction , in any order. When a type is derived from
another type that has the final attribute set, the schema processor verifies that the
desired derivation is legal. For example, a final attribute could prevent the
physicalAddressType type from being extended:

<xs:complexType name="physicalAddressType" final="extension">

Since the main schema in address-schema.xsd attempts to redefine the
physicalAddressType in an xs:redefine block, the schema processor
generates the following errors when it attempts to validate the instance document:

ComplexType 'physicalAddressType': cos-ct-extends.1.1: Derivation by
extension is forbidden by either the base type physicalAddressType_redefined

http://lib.ommolketab.ir

or the schema.
Attribute "addr:latitude" must be declared for element type "physicalAddress".
Attribute "addr:longitude" must be declared for element type
"physicalAddress".

The first error is a result of trying to extend a type that has been marked to prevent
extension. The next two errors occur because the new, extended type was not parsed
and applied to the content in the document. Now that you've seen how this works,
removing this particular "feature" from the physicalAddressType definition gets the
schema working again.

16.9.3 Setting fixed Facets

Similar to the final attribute, the fixed attribute is provided to mark certain facets of
simple types as immutable. Facets that have been marked as fixed="true" cannot
be overridden in derived types.

16.9.4 Uniqueness and Keys

Perhaps one of the most welcome features of schemas is the ability to express more
sophisticated relationships between values in elements and attributes of a document.
The limitations of the primitive index capability provided by the XML 1.0 ID and IDREF
attributes became readily apparent as documents began to include multiple distinct
types of element data with complex data keys. The two facilities for enforcing element
uniqueness in schemas are the xs:unique and xs:key elements.

16.9.4.1 Forcing uniqueness

The xs:unique element enforces element and attribute value uniqueness for a
specified set of elements in a schema document. This uniqueness constraint is
constructed in two phases. First, the set of all of the elements to be evaluated is defined
using a restricted XPath expression. Next, the precise element and attribute values that
must be unique are defined.

To illustrate, let's add logic to the address schema to prevent the same phone number
from appearing multiple times within a given contacts element. To add this restriction,
the element declaration for contacts includes a uniqueness constraint:

<xs:element name="contacts" type="addr:contactsType" minOccurs="0">
 <xs:unique name="phoneNums">
 <xs:selector xpath="phone"/>
 <xs:field xpath="@addr:number"/>

http://lib.ommolketab.ir

 </xs:unique>
</xs:element>

Now, if a given contacts element contains two phone elements with the same value
for their number attributes, the schema processor will generate an error.

This is the basic algorithm that the schema processor follows to enforce these
restrictions:

Use the xpath attribute of the single xs:selector element to build a set of all of
the elements to which the restriction will apply.

1.

Logically combine the values referenced by each xs:field element for each
selected element. Compare the combinations of values that you get for each of the
elements.

2.

Report any conflicts as a validity error.3.

The very perceptive among you, are right: the contactsType type
definition only permits a single phone child element. So this
particular restriction would not be very useful. Modifying the
contactsType definition to permit multiple child elements is not
difficult.

16.9.4.2 Keys and references

The xs:key element is closely related to the xs:unique element. Logically, the
xs:key element functions exactly the same way the xs:unique element does. It
uses the xs:selector element to define a set of elements it applies to, then one or
more xs:field elements are used to define which values make up this particular key.
The major difference is that, in the case of the xs:key element, uniqueness is not the
only desired property of these elements. The goal of the xs:key element is to define a
set of elements that can be referenced using the xs:keyref element. Having created
a fairly full-featured address element, creating a collection of these elements called
addressBook would be an excellent way to show this feature in operation.

First, the new addressBook element is declared, including a key based on the ssn
attribute of each address entry:

<xs:element name="addressBook">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="addr:address"/>
 </xs:sequence>
 </xs:complexType>

http://lib.ommolketab.ir

 <xs:key name="ssnKey">
 <xs:selector xpath="addr:address"/>
 <xs:field xpath="@addr:ssn"/>
 </xs:key>
 </xs:element>

Now that the key is defined, you can add a new element to the address element
declaration that connects a particular address record with another record. For example,
to list references to the children of a particular person in the address book, add the
following declaration for a kids element:

<xs:element name="address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="fullName">
. . .
 </xs:element>
 <xs:element name="kids" minOccurs="0">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="kid">
 <xs:complexType>
 <xs:attribute name="ssn" type="addr:ssn"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
. . .
 </xs:sequence>
 <xs:attributeGroup ref="addr:nationality"/>
 <xs:attribute name="ssn" type="addr:ssn"/>
 <xs:anyAttribute namespace="http://www.w3.org/1999/xlink"
 processContents="skip"/>
 </xs:complexType>
 </xs:element>

Now, an xs:keyref element in the addressBook element declaration enforces the
constraint that the ssn attribute of a particular kid element must match an ssn
attribute on an address element in the current document:

<xs:element name="addressBook">
. . .

http://lib.ommolketab.ir

 <xs:key name="ssnKey">
 <xs:selector xpath="addr:address"/>
 <xs:field xpath="@addr:ssn"/>
 </xs:key>
 <xs:keyref name="kidSSN" refer="addr:ssnKey">
 <xs:selector xpath="addr:address/kids/kid"/>
 <xs:field xpath="@addr:ssn"/>
 </xs:keyref>
 </xs:element>

Now, if any kid element in an instance document refers to a nonexistent address
record, the schema validat or will generate an error.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 17. Programming Models

 17.1 Common XML Processing Models

 17.2 Common XML Processing Issues

This chapter briefly explains the most popular programming models for parsing and
manipulating XML data in use today. XML processing includes a diverse set of tools,
which require different approaches but offer distinct advantages and disadvantages.

XML processors of all kinds are available in a wide variety of
languages, including C, C#, C++, COBOL, Haskell, Java, JavaScript
(ECMAScript/JScript), Pascal, Perl, Python, Ruby, SmallTalk, Tcl,
and Visual Basic. If you can't find XML support built into your
programming environment, a quick search will likely locate a library.
XML.com maintains a list of XML resources that may be a good place
to start at http://www.xml.com/resourceguide/ .

17.1 Common XML Processing Models

XML's structured and labeled text can be processed by developers in several of ways.
Programs can look at XML as text, as a stream of events, as a tree, or as a serialization
of some other structure. Tools supporting all of these options are widely available.

17.1.1 Treating XML as Text

At their foundation, XML documents are text. The content and markup are both
represented as text, and text-editing tools can be extremely useful for XML document
inspection, creation, and modification. XML's textual foundations make it possible for
developers to work with XML directly, using XML-specific tools only when they choose.

Despite this textual nature, however, XML presents some serious limitations for
programs that attempt to process XML documents as text documents. It is possible to
process extremely simple XML documents reliably using basic textual tools like regular
expressions, but this becomes much more difficult as features such as attribute
defaulting, entity processing, and namespaces are added to documents. Using these
features is extremely difficult when treating a document purely as text.

Textual tools are a key part of the XML toolset, however. Many developers use text

http://lib.ommolketab.ir

editors such as vi , Emacs, NotePad, WordPad, BBEdit, and UltraEdit to create or
modify XML documents. Regular expressions - in environments such as sed, grep,
Perl, and Python - can be used for search and replace or for tweaking documents prior
to XML parsing or XSLT processing. These tools can also be very useful for searching
and querying the information in XML documents, even without an understanding of the
surrounding structure.

Textual tools may also be applied to the results of an XML parser. Regular expressions
and similar text-processing tools can be applied usefully to the results of an XML parse,
working on the document when its XML-specific nature has already been resolved. The
W3C's XML Schema, for instance, includes regular-expression matching as one
mechanism for validating data types, as discussed in Chapter 16 . A smart search and
replace or spell checker might process only the contents of elements (and perhaps
attributes), not the markup that defines the structures.

Text-based processing can be preformed in conjunction with other XML processing.
Parsing and then reserializing XML documents after other processing has taken place
doesn't always produce the desired results. XSLT, for instance, will remove entity
references and replace them with entity content. Preserving entities requires replacing
them in the original document with unique placeholders, and then replacing the
placeholder as it appears in the result. With regular expressions, this is quite easy to do.
Developers may also need to replace particular characters with references to images;
this approach can be very useful where an obscure or nonstandard glyph is needed in
XHTML.

XML's dependence on Unicode means that developers need to be
careful about the text-processing tools they choose. Many
development environments have been upgraded to support Unicode,
but there are still tools available that don't. Before using text-
processing tools on the results of an XML parse, make sure they
support Unicode. Text-processing tools being applied to raw XML
documents must support the character encoding used for the
document.

17.1.2 Treating XML as Events

As an XML parser reads a document, it moves from the beginning of the document to
the end. It may pause to retrieve external resources-for a DTD or an external entity, for
instance-but it builds an understanding of the document as it moves along. Enforcing
well-formedness and validity constraints and applying namespaces requires keeping
track of context; applying attribute defaults and entities requires keeping a list of

http://lib.ommolketab.ir

appropriate content to insert; but the end result is a complete "reading" of the XML
document.

Event-based parsers report this reading as it happens, in a stream of events
representing the information in the document. The "events" are, for example, the start of
an element, the content of an element, and the end of an element. For example, given
this document:

<name><given>Keith</given><family>Johnson</family></name>

an event-based parser might report events such as this:

startElement:name
startElement:given
content: Keith
endElement:given
startElement:family
content:Johnson
endElement:family
endElement:name

The list and structure of events can become much more complex as features, such as
namespaces, attributes, whitespace between elements, comments, processing
instructions, and entities are added, but the basic mechanism is quite simple and
generally very efficient.

Event-based parsers only have to keep track of a limited amount of information. They
need to understand the contents of DTDs (and possibly schemas), if the documents use
them, and they need to maintain context stacks for element names and namespace
declarations. They don't need to build a complete record of the document as they parse
it, which minimizes the amount of memory needed for the parse.

Event-based parsers require the consumer of the events to do a lot more work, however.
Processing events typically means the creation of a state machine, i.e., code that
understands current context and can route the information in the events to the proper
consumer. Because events occur as the document is read, applications must be
prepared to discard results should a fatal error occur partway through the document.
Applications can't depend on information that occurs later in a document to interpret the
current event, either, making it hard to use some kinds of XPaths, for instance, in an
event-based environment. These factors can make it difficult to work directly with event-
based parsers.

Despite the potential difficulty, event-based parsers are very useful for a wide variety of
tasks. Filters can process and modify events before passing them to another processor,

http://lib.ommolketab.ir

efficiently performing a wide range of transformations. Filters can be stacked, providing
a relatively simple means of building XML processing pipelines, where the information
from one processor flows directly into another. Applications that want to feed information
directly from XML documents into their own internal structures may find events to be the
most efficient means of doing that. Even parsers that report XML documents as
complete trees, as described in the next section, typically build those trees from a
stream of events.

The Simple API for XML (SAX), described in Chapter 19 and Chapter
25 , is the most commonly used event-based API. SAX2, the current
version of SAX, is hosted at http://www.saxproject.org .Expat, which
is a widely used XML parser written in C, also uses an event-based
API. For more information on the expat parser and its API, see
http://www.jclark.com/xml/expat.html .

17.1.3 Treating XML as Tree Models

XML documents, because of the requirements for well-formedness, describe tree
structures. Documents typically contain an element that then contains text, attributes,
and other elements, and these may contain elements, text, and attributes, and so on.
Declarations, comments, and processing instructions enrich the mix, but all basically
hold positions in the overall tree.

There are a wide variety of tree models for XML documents. XPath (described in
Chapter 9), used in XSLT transformations, has a slightly different set of expectations
than does the Document Object Model (DOM) API, which is also different from the XML
Information Set (Infoset), another W3C project. XML Schema (described in Chapter 16
and Chapter 21) defines a Post-Schema Validation Infoset (PSVI), which has more
information in it (derived from the XML Schema) than any of the others.

Developers who want to manipulate documents from their programs typically use APIs
that provide access to an object model representing the XML document. Tree-based
APIs typically present a model of an entire document to an application once parsing has
successfully concluded. Applications don't have to worry about figuring out context or
dealing with rollback when an error is encountered, since the tree model and parsing
already address those issues. Rather than following a stream of events, an application
can just navigate a tree to find the desired pieces of a document. Browsers and editors
can present or modify the tree in conformance with user or script requests, using the
tree as a persistent reference to the current content of the document.

Working with a tree model of a document isn't very different conceptually from working
with a document as text. The entire document is always available, and moving around

http://www.jclark.com/xml/expat.html
http://lib.ommolketab.ir

well-formed portions of a document or modifying them is fairly easy. The complete set of
context for any given part of the document is always available. Developers can use
XPath expressions to locate content and make decisions based on content anywhere in
the document where APIs support XPath. (DOM Level 3 adds formal support for XPath,
and various implementations provide their own support.)

Tree models of documents have a few drawbacks. They can take up large chunks of
memory, typically multiplying the original document's size. Navigating documents can
require additional processing after the parse, as developers have more options available
to them. (Tree models don't impose the same kinds of discipline as event-based
processing.) Both of these issues can make it difficult to scale and share applications
that rely on tree models, though they may still be appropriate where small numbers of
documents or small documents are being used.

The Document Object Model (DOM), described in Chapter 18 and
Chapter 24 , is the most common tree-based API. JDOM
(http://jdom.org/) and DOM4J (http://dom4j.org/) are Java-only
alternatives.

17.1.4 Transformations

Another facility available to the XML programmer is a form of the XML transformation
library. The Extensible Stylesheet Language Transformation (XSLT) language, covered
in Chapter 8 , is the most popular tool currently available for transforming XML to HTML,
XML, or any other regular language that can be expressed in XSLT. In some cases,
using a transformation to perform pre- or post-processing on XML data when processing
it with either DOM or SAX might be simpler or more efficient. For instance, XSLT could
be used as a preprocessor for a screen-scraping application that starts from XHTML
documents. A script could extract the meaningful features from the XHTML document
and pour them into an application-specific XML format.

Transformations may be used by themselves, in browsers, or at the command line, but
many XSLT implementations and other transformation tools offer SAX or DOM
interfaces, simplifying the task of using them to build pipelines.

17.1.5 Abstracting XML Away

Developers who want to take advantage of XML's cross-platform benefits but have no
patience for the details of markup can use various tools that rely on XML but don't
require direct exposure to XML's structures. Web Services, mentioned in Chapter 15 ,
can be seen as a move in this direction. You can still touch the XML directly if you need

http://lib.ommolketab.ir

to, but toolkits make it easier to avoid doing so.

These kinds of applications are generally built as a layer on top of event- or tree-based
processing, presenting their own API to the underlying information. This level of
abstraction may be very useful in some cases or an inefficient inconvenience in others.
It's probably helpful to understand more direct connections to XML if you need to
evaluate the advantages and disadvantages of abstraction, as well as provide a bridge
to systems that don't support a particular abstraction layer but still need access to the
information.

17.1.6 Standards and Extensions

The SAX and DOM specifications, along with the various core XML specifications,
provide a foundation for XML processing. Implementations of these standards,
especially implementations of the DOM, sometimes vary from the specification. Some
extensions are themselves formally specified-Scalable Vector Graphics (SVG), for
instance, specifies extensions to the DOM that are specific to working with SVG. Others
are just kind of tacked on, adding functionality that a programmer or vendor felt was
important but wasn't in the original specification. The multiple levels and modules of the
DOM have also led to developers claiming support for the DOM, but actually supporting
particular subsets (or extensions) of the available specifications.

Porting standards also leads to variations. SAX was developed for Java, and the core
SAX project only defines a Java API. The DOM uses Interface Definition Language (IDL)
to define its API, but different implementations have interpreted the IDL slightly
differently. SAX2 and the DOM are somewhat portable, but moving between
environments may require some unlearning and relearning.

Some environments also offer libraries well outside the SAX and DOM interfaces. Perl
and Python both offer libraries that combine event and tree processing-for instance,
permitting applications to work on partial trees rather than SAX events or full DOM trees.
Microsoft .NET's XMLReader offers similarly flexible processing. These approaches do
not make moving between environments easy, but they can be very useful.

17.1.7 Combining Approaches

While text, events, trees, and transformations may seem very different, it isn't unusual to
combine them. Most parsers that produce DOM trees also offer the option of SAX
events, and there are a number of tools that can create DOM trees from SAX events or
vice versa. Some tools that accept and generate SAX events actually build internal
trees-many XSLT processors operate this way, using optimized internal models for
their trees rather than the generic DOM. XSLT processors themselves often accept

http://lib.ommolketab.ir

either SAX events or DOM trees as input and can produce these models (or text) for
their output.

Most programmers who want direct access to XML documents start with DOM trees,
which are easier to figure out initially. If they have problems that are better solved in
event-based environments, they can either rewrite their code for events-it's a big
change-or mix and match event processing with tree processing.

17.2 Common XML Processing Issues

As with any technology, there are several ways to accomplish most design goals when
developing a new XML application, as well as a few potential problems worth knowing
about ahead of time. An understanding of the intended uses for these features can help
ensure that new applications will be compatible not only with their intended target
audience, but also with other XML processing systems that may not even exist yet.

17.2.1 What You Get Is Not What You Saw

The XML specification provides several loopholes that permit XML parsers to play fast
and loose with your document's literal contents, while retaining the semantic meaning.
Comments can be omitted and entity references silently replaced by the parser without
any warning to the client application. Nonvalidating parsers aren't required to retrieve
external DTDs or entities, though the parser should at least warn applications that this is
happening. While reconstructing an XML document with exactly the same logical
structure and content is possible, guaranteeing that it will match the original in a byte-by-
byte comparison is not.

XML Canonicalization defines a form of XML and a process for
getting there that permits a much higher degree of predictability in
reconstructing documents from their logical model. For details, see
http://www.w3.org/TR/xml-c14n .

Authors of simple XML processing tools that act on data without storing or modifying it
might not consider these constraints particularly restrictive. The ability to reconstruct an
XML document precisely from in-memory data structures, however, becomes more
critical for authors of XML editing tools and content-management solutions. While no
parser is required to make all comments, whitespace, and entity references available
from the parse stream, many do or can be made to do so with the proper configuration
options.

The only real option to ensure that your parser reports documents as you want, and not

http://www.w3.org/TR/xml-c14n
http://lib.ommolketab.ir

just the minimum required by the XML 1.0 specification, is to check its documentation
and configure (or choose) your parser accordingly.

17.2.2 Comments

Despite a long history in HTML of using comments for tasks like Server-Side Includes
(SSI) and for hiding JavaScript code and Cascading Style Sheets, using comments for
anything other than human-readable notes is generally a bad idea in XML. XML parsers
may (and frequently do) discard comments entirely, keeping them from reaching an
application at all. Transformations generally discard comments as well.

17.2.3 Processing Instructions

XML parsers are required to provide client applications access to XML processing
instructions. Processing instructions provide a mechanism for document authors to
communicate with XML-aware applications behind the scenes in a way that doesn't
interfere with the content of the documentation. DTD and schema validation both ignore
processing instructions, making it possible to use them anywhere in a document
structure without changing the DTD or schema. The processing instruction's most widely
recognized application is its ability to embed stylesheet references inside XML
documents. The following XML fragment shows a stylesheet reference:

<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="test.css"?>

An XML-aware application, such as Internet Explorer 5.5, would be capable of
recognizing the XML author's intention to display the document using the test.css
stylesheet. This processing instruction can also be used for XSLT stylesheets or other
kinds of stylesheets not yet developed, though the application needs to understand how
to process them to make this work. Applications that do not understand the processing
instructions can still parse and use the information in the XML document while ignoring
the unfamiliar processing instruction.

For more information on how to use processing instructions to
designate a stylesheet(s), see the W3C Recommendation
Associating Style Sheets with XML Documents at
http://www.w3.org/TR/xml-stylesheet/ .

The furniture example from Chapter 20 (see Figure 20-1) gives a hypothetical
application of processing instructions. A processing instruction in the bookcase.xml file
signals the furniture example's processor to verify the parts list from the document

http://www.w3.org/TR/xml-stylesheet/
http://lib.ommolketab.ir

against the true list of parts required to build the furniture item:

 <parts_list>
 <part_name id="A" count="1">END PANEL</part_name>
 <part_name id="B" count="2">SIDE PANEL</part_name>
 <part_name id="C" count="1">BACK PANEL</part_name>
 <part_name id="D" count="4">SHELF</part_name>
 <part_name id="E" count="8">HIDDEN CONNECTORS</part_name>
 <part_name id="F" count="8">CONNECTOR SCREWS</part_name>
 <part_name id="G" count="22">7/16" TACKS</part_name>
 <part_name id="H" count="16">SHELF PEGS</part_name>
 </parts_list>

<?furniture_app verify_parts_list?>

This processing instruction is meaningless unless the parsing application understands
the given type of processing instruction.

The XML specification also permits the association of the processing instruction's
target-the XML name immediately after the <? with a notation, as described in the next
section-but this is not required and is rarely used in XML.

17.2.4 Notations

The notation syntax of XML provides a way for the document author to specify an
external unparsed entity's type within the XML document's framework. If an application
requires access to external data that cannot be represented in XML, consider declaring
a notation name and using it where appropriate when declaring external unparsed
entities. For example, if an XML application were an annotated Java source-code
format, the compiled bytecode could then be referenced as an external unparsed entity.

Notations effectively provide metadata, identifiers that applications may apply to
information. Using notations requires making declarations in the DTD, as described in
Chapter 3 . One use of notations is with NOTATION-type attributes. For example, if a
document contained various scripts designed for different environments, it might declare
some notations and then use an attribute on a containing element to identify what kind of
script it contained:

<!NOTATION DOS PUBLIC "-//MS/DOS Batch File/">
<!NOTATION BASH PUBLIC "-//UNIX/BASH Shell Script/">
<!ELEMENT batch_code (#PCDATA)*>
<!ATTLIST batch_code
 lang NOTATION (DOS | BASH)>

http://lib.ommolketab.ir

. . .
<batch_code lang="DOS">
 echo Hello, world!
</batch_code>

Applications that read this document and recognized the public identifier could interpret
the foreign element data correctly, based on its type. (Notations can also have system
identifiers, and applications can use either approach.)

Categorizing processing instructions is the other use of notations important to custom
XML applications. For instance, the previous furniture_app processing-instruction
example could have been declared as a notation in the DTD:

<!NOTATION furniture_app SYSTEM "http://namespaces.example.com/furniture">

Then the furniture-document processing application could verify that the processing
instruction was actually intended for itself and not for another application that used a
processing instruction with the same name.

17.2.5 Unparsed Entities

Unparsed entities combine attribute and notation declarations to define references to
content that will require further (unspecified) processing by the application. Unparsed
entities are described in more detail in Chapter 3 , but though they are a feature
available to applications, they are also rarely used and not generally considered
interoperable among XML processors. The linking and referencing tools described in the
next section are more commonly used instead.

17.2.6 Links and References

The ability to create links between and within documents is important to XML's long-term
success, both on the World Wide Web and for other applications concerned about the
relationships between information. The XLink specification, described in Chapter 10 ,
defines the semantics of how these links can be created. Unlike simple HTML links,
XLinks can express sophisticated relationships between the source and target elements
of a link.

If an XML application requires the ability to encode relationships between various parts
of an XML document, or between different documents, implementing this functionality
using the XLinks recommendation should be considered. Not only would it save the
effort of defining a new (and incompatible) linking scheme, the resulting documents
would be intelligible to new XML authoring tools and browsers as XLinks support
becomes more widespread. RDDL, described in Chapter 14 , makes extensive use of

http://lib.ommolketab.ir

XLink for machine-readable linking.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 18. Document Object Model (DOM)

 18.1 DOM Foundations

 18.2 Structure of the DOM Core
 18.3 Node and Other Generic Interfaces

 18.4 Specific Node-Type Interfaces
 18.5 The DOMImplementation Interface

 18.6 Parsing a Document with DOM

 18.7 A Simple DOM Application

The Document Object Model (DOM) defines an API for accessing and manipulating XML
documents as tree structures. The DOM is defined by a set of W3C Recommendations
that describe a programming language-neutral object model used to store hierarchical
documents in memory. The most recently completed standard, DOM Level 2, provides
models for manipulating XML documents, HTML documents, and CSS stylesheets. This
chapter covers only the parts of the DOM that are applicable to processing XML
documents.

This chapter is based on the Document Object Model (DOM) Level 2 Core Specification,
which was released on November 13, 2000. This version of the recommendation, along
with any errata that have been reported, is available on the W3C web site
(http://www.w3.org/TR/DOM-Level-2-Core/). At the time of this writing, the latest DOM
Level 3 Core working draft had been released on January 14, 2002. The working draft
corrects omissions and deficiencies in the Level 2 recommendation and includes some
basic support for integrating validation into DOM API document manipulation. Additional
modules of DOM Level 3 add support for content models (DTDs and schemas), as well
as support for loading and saving XML into and out of DOM.

18.1 DOM Foundations

At its heart, the DOM is a set of APIs. Various DOM implementations use their own
objects to support the interfaces defined in the DOM specification. The DOM interfaces
themselves are specified in modules, making it possible for implementations to support
parts of the DOM without having to support all of it. XML parsers, for instance, aren't
required to provide support for the HTML-specific parts of the DOM, and modularization
has provided a simple mechanism that allows software developers to identify which
parts of the DOM are supported or are not supported by a particular implementation.

http://lib.ommolketab.ir

Successive versions of the DOM are defined as levels. The Level 1 DOM was the
W3C's first release, and it focused on working with HTML and XML in a browser context.
Effectively, it supported dynamic HTML and provided a base for XML document
processing. Because it expected documents to exist already in a browser context, Level
1 only described an object structure and how to manipulate it, not how to load a
document into that structure or reserialize a document from that structure.

Subsequent levels have added functionality. DOM Level 2, which was published as a set
of specifications, one per module, includes updates for the Core and HTML modules of
Level 1, as well as new modules for Views, Events, Style, Traversal, and Range. DOM
Level 3 will add Abstract Schemas, Load, Save, XPath, and updates to the Core and
Events modules.

Other W3C specifications have defined extensions to the DOM particular to their own
needs. Mathematical Markup Language (MathML), Scalable Vector Graphics (SVG),
Synchronized Multimedia Integration Language (SMIL), and SMIL Animation have all
defined DOMs that provide access to details of their own vocabularies.

For a complete picture of the requirements that all of these modules
are supposed to address, see http://www.w3.org/TR/DOM-
Requirements . For a listing of all of the DOM specifications,
including those still in progress, see http://www.w3.org/DOM/DOMTR
. The DOM has also been included by reference in a variety of other
specifications, notably the Java API for XML Processing (JAXP).

Developers using the DOM for XML processing typically rely on the Core module as the
foundation for their work.

18.1.1 DOM Notation

The Document Object Model is intended to be operating system- and language- neutral;
therefore, all DOM interfaces are specified using the Interface Description Language
(IDL) notation defined by the Object Management Group organization
(http://www.omg.org). To conform to the language of the specification, this chapter and
Chapter 24 will use IDL terminology when discussing interface specifics. For example,
the word "attribute" in IDL-speak refers to what would be a member variable in C++. This
should not be confused with the XML term "attribute," which is a name-value pair that
appears within an element's start-tag.

The language-independent IDL interface must then be translated (according to the rules
set down by the OMG) into a specific language binding. Take the following interface, for
example:

http://lib.ommolketab.ir

interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
};

This interface would be expressed as a Java interface like this:

package org.w3c.dom;

 public interface NodeList {
 public Node item(int index);

 public int getLength();

 }

The same interface would be described for ECMAScript this way:

Object NodeList
 The NodeList object has the following properties:
 length
 This read-only property is of type Number.
 The NodeList object has the following methods:
 item(index)
 This method returns a Node object.
 The index parameter is of type Number.
 Note: This object can also be dereferenced using square
 bracket notation (e.g. obj[1]). Dereferencing with an
 integer index is equivalent to invoking the item method
 with that index.

The tables in this chapter represent the information DOM presents as IDL conveying
both the available features and when they became available. DOM implementations vary
in their implementation of these features-be sure to check the document of the
implementation you choose for details on how precisely it supports the DOM interfaces.

18.1.2 DOM Strengths and Weaknesses

Like all programming tools, the DOM is better for addressing some classes of problems
than others. Since the DOM object hierarchy stores references between the various
nodes in a document, the entire document must be read and parsed before it is
available to a DOM application. This step also demands that the entire document be
stored in memory, often with a significant amount of overhead. Some early DOM

http://lib.ommolketab.ir

implementations required many times the original document's size when stored in
memory. This memory usage model makes DOM unsuitable for applications that deal
with very large documents or have a need to perform some intermediate processing on
a document before it has been completely parsed.

However, for applications that require random access to different portions of a document
at different times or applications that need to modify the structure of an XML document
on the fly, DOM is one of the most mature and best-supported technologies available.

18.2 Structure of the DOM Core

The DOM Core interfaces provide generic access to all supported document content
types. For example, the DOM defines a set of HTML-specific interfaces that expose
specific document structures, such as tables, paragraphs, and elements,
directly. Besides using these specialized interfaces, you can access the same
information using the generic interfaces defined in the core.

Since XML is designed as a venue for creating new, unique, structured markup
languages, standards bodies cannot define application-specific interfaces in advance.
Instead, the DOM Core interfaces are provided to manipulate document elements in a
completely application-independent manner.

The DOM Core is further segregated into the Fundamental and Extended Interfaces.
The Fundamental Interfaces are relevant to both XML and HTML documents, whereas
the Extended Interfaces deal with XML-only document structures, such as entity
declarations and processing instructions. All DOM Core interfaces are derived from the
Node interface, which provides a generic set of interfaces for accessing a document or
document fragment's structure and content.

18.2.1 Generic Versus Specific DOM Interfaces

To simplify different types of document processing and enable efficient implementation
of DOM by some programming languages, there are actually two distinct methods for
accessing a document tree from within the DOM Core: through the generic Node
interface and through specific interfaces for each node type. Although there are several
distinct types of markup that may appear within an XML document (elements, attributes,
processing instructions, and so on), the relationships between these different document
features can be expressed as a typical hierarchical tree structure. Elements are linked to
both their predecessors and successors, as well as their parent and child nodes.
Although there are many different types of nodes, the basic parent, child, and sibling
relationships are common to everything in an XML document.

http://lib.ommolketab.ir

The generic Node interface captures the minimal set of attributes and methods that are
required to express this tree structure. A given Node contains all of the tree pointers
required to locate its parent node, child nodes, and siblings. The next section describes
the Node interface in detail.

In addition to the generic Node interface, the DOM also defines a set of XML-specific
interfaces that represent distinct document features, such as elements, attributes,
processing instructions, and so on. All of the specific interfaces are derived from the
generic Node interface, which means that a particular application can switch methods
for accessing data within a DOM tree at will by casting between the generic Node
interface and the actual specific object type it represents. Section 18.4 later in this
chapter discusses the specific interfaces and their relationship to the generic Node
interface.

18.3 Node and Other Generic Interfaces

The Node interface is the DOM Core class hierarchy's root. Though never instantiated
directly, it is the root interface of all specific interfaces, and you can use it to extract
information from any DOM object without knowing its actual type. It is possible to access
a document's complete structure and content using only the methods and properties
exposed by the Node interface. As shown in Table 18-1 , this interface contains
information about the type, location, name, and value of the corresponding underlying
document data.

Table 18-1. Node interface

Type Name Read-only DOM 2.0

Attributes

DOMString nodeName

DOMString nodeValue

Short Unsigned type

Node parentNode

NodeList childNodes

Node firstChild

Node lastChild

Node previousSibling

Node nextSibling

NamedNodeMap attributes

http://lib.ommolketab.ir

Document ownerDocument

DOMString namespaceURI

DOMString Prefix

DOMString localName

Methods

Boolean hasAttributes

Node insertBefore

 Node newChild

 Node refChild

Node replaceChild

 Node newChild

 Node oldChild

Node removeChild

 Node oldChild

Node appendChild

 Node newChild

Boolean hasChildNodes

Node cloneNode

 Boolean Deep

Void normalize

Boolean isSupported

 DOMString Feature

 DOMString Version

Since the Node interface is never instantiated directly, the nodeType attribute contains
a value that indicates the given instance's specific object type. Based on the nodeType
, it is possible to cast a generic Node reference safely to a specific interface for further
processing. Table 18-2 shows the node type values and their corresponding DOM
interfaces, and Table 18-3 shows the values they provide for nodeName , nodeValue
, and attributes attributes.

Table 18-2. DOM node types and interfaces

http://lib.ommolketab.ir

Node type DOM interface

ATTRIBUTE_NODE Attr

CDATA_SECTION_NODE CDATASection

COMMENT_NODE Comment

DOCUMENT_FRAGMENT_NODE DocumentFragment

DOCUMENT_NODE Document

DOCUMENT_TYPE_NODE DocumentType

ELEMENT_NODE Element

ENTITY_NODE Entity

ENTITY_REFERENCE_NODE EntityReference

NOTATION_NODE Notation

PROCESSING_INSTRUCTION_NODE ProcessingInstruction

TEXT_NODE Text

Table 18-3. DOM node types and method results

Node type nodeName nodeValue Attributes

ATTRIBUTE_NODE att name att value null

CDATA_SECTION_NODE
#cdata-
section content null

COMMENT_NODE #comment content null

DOCUMENT_FRAGMENT_NODE
#document-
fragment null null

DOCUMENT_NODE #document null null

DOCUMENT_TYPE_NODE
document type
name

null null

ELEMENT_NODE tag name null NamedNodeMap

ENTITY_NODE entity name null null

ENTITY_REFERENCE_NODE name of entity
referenced

null null

NOTATION_NODE notation name null null

PROCESSING_INSTRUCTION_NODE target
content
excluding the
target

null

TEXT_NODE #text content null

http://lib.ommolketab.ir

Note that the nodeValue attribute returns the contents of simple text and comment
nodes, but returns nothing for elements. Retrieving the text of an element requires
inspecting the text nodes it contains.

18.3.1 The NodeList Interface

The NodeList interface provides access to the ordered content of a node. Most
frequently, it is used to retrieve text nodes and child elements of element nodes. See
Table 18-4 for a summary of the NodeList interface.

Table 18-4. NodeList interface

Type Name Read-only DOM 2.0

Attributes

Long length

Methods

Node item

 Long index

The NodeList interface is extremely basic and is generally combined with a loop to
iterate over the children of a node.

18.3.2 The NamedNodeMap Interface

The NamedNodeMap interface is used for unordered collections whose contents are
identified by name. In practice, this interface is used to access attributes. See Table 18-
5 for a summary of the NamedNodeMap interface.

Table 18-5. NamedNodeMap interface

http://lib.ommolketab.ir

Type Name Read-only DOM 2.0

Attributes

Long length

Methods

Node getNamedItem

 DOMString name

Node setNamedItem

 Node arg

Node removeNamedItem

 DOMString name

Node getNamedItemNS

 DOMString namespaceURI

 DOMString localName

Node setNamedItemNS

 Node arg

Node removeNamedItemNS

 DOMString namespaceURI

 DOMString localName

18.3.3 Relating Document Structure to Nodes

Although the DOM doesn't specify an interface to cause a document to be parsed, it
does specify how the document's syntax structures are encoded as DOM objects. A
document is stored as a hierarchical tree structure, with each item in the tree linked to its
parent, children, and siblings:

<sample bogus="value"><text_node>Test data.</text_node></sample>

Figure 18-1 shows how the preceding short sample document would be stored by a
DOM parser.

Figure 18-1. Document storage and linkages

http://lib.ommolketab.ir

Each Node -derived object in a parsed DOM document contains references to its
parent, child, and sibling nodes. These references make it possible for applications to
enumerate document data using any number of standard tree-traversal algorithms.
"Walking the tree" is a common approach to finding information stored in a DOM and is
demonstrated in Example 18-1 at the end of this chapter.

18.4 Specific Node-Type Interfaces

Though it is possible to access the data from the original XML document using only the
Node interface, the DOM Core provides a number of specific node-type interfaces that
simplify common programming tasks. These specific node types can be divided into two
broad types: structural nodes and content nodes.

18.4.1 Structural Nodes

Within an XML document, a number of syntax structures exist that are not formally part
of the content. The following interfaces provide access to the portions of the document
that are not related to character or element data.

18.4.1.1 DocumentType

The DocumentType interface provides access to the XML document type definition's
notations, entities, internal subset, public ID, and system ID. Since a document can have
only one !DOCTYPE declaration, only one DocumentType node can exist for a given
document. It is accessed via the doctype attribute of the Document interface. The

http://lib.ommolketab.ir

definition of the DocumentType interface is shown in Table 18-6 .

Table 18-6. DocumentType interface, derived from Node

Type Name Read-only DOM 2.0

Attributes

NamedNodeMap entities

DOMString name

NamedNodeMap notations

DOMString publicId

DOMString systemId

Using additional fields available from DOM Level 2, it is now possible to fully reconstruct
a parsed document using only the information provided with the DOM framework. No
programmatic way to modify DocumentType node contents currently exists.

18.4.1.2 ProcessingInstruction

This node type provides direct access to an XML name processing instruction's
contents. Though processing instructions appear in the document's text, they may also
appear before or after the root element, as well as in DTDs. Table 18-7 describes the
ProcessingInstruction node's attributes.

Table 18-7. ProcessingInstruction interface, derived from Node

Type Name Read-only DOM 2.0

Attributes

DOMString data

DOMString target

Though processing instructions resemble normal XML tags, remember that the only
syntactically defined part is the target name, which is an XML name token. The
remaining data (up to the terminating >) is free-form. See Chapter 17 for more
information about uses (and potential misuses) of XML processing instructions.

18.4.1.3 Notation

XML notations formally declare the format for external unparsed entities and processing
instruction targets. The list of all available notations is stored in a NamedNodeMap

http://lib.ommolketab.ir

within the document's DOCTYPE node, which is accessed from the Document
interface. The definition of the Notation interface is shown in Table 18-8 .

Table 18-8. Notation interface, derived from Node

Type Name Read-only DOM 2.0

Attributes

DOMString publicId

DOMString systemId

18.4.1.4 Entity

The name of the Entity interface is somewhat ambiguous, but its meaning becomes
clear when it is connected with the EntityReference interface, which is also part of
the DOM Core. The Entity interface provides access to the entity declaration's
notation name, public ID, and system ID. Parsed entity nodes have childNodes ,
while unparsed entities have a notationName . The definition of this interface is
shown in Table 18-9 .

Table 18-9. Entity interface, derived from Node

Type Name Read-only DOM 2.0

Attributes

DOMString notationName

DOMString publicId

DOMString systemId

All members of this interface are read-only and cannot be modified at runtime.

18.4.2 Content Nodes

The actual data conveyed by an XML document is contained completely within the
document element. The following node types map directly to the XML document's
nonstructural parts, such as character data, elements, and attribute values.

18.4.2.1 Document

Each parsed document causes the creation of a single Document node in memory.
(Empty Document nodes can be created through the DOMImplementation

http://lib.ommolketab.ir

interface.) This interface provides access to the document type information and the
single, top-level Element node that contains the entire body of the parsed document. It
also provides access to the class factory methods that allow an application to create
new content nodes that were not created by parsing a document. Table 18-10 shows all
attributes and methods of the Document interface.

Table 18-10. Document interface, derived from Node

Type Name Read-only DOM 2.0

Attributes

DocumentType doctype

DOMImplementation implementation

Element documentElement

Methods

Attr createAttribute

 DOMString name

Attr createAttributeNS

 DOMString namespaceURI

 DOMString qualifiedName

CDATASection createCDATASection

 DOMString data

Comment createComment

 DOMString data

DocumentFragment createDocumentFragment

Element createElement

 DOMString tagName

Element createElementNS

 DOMString namespaceURI

 DOMString qualifiedName

EntityReference createEntityReference

 DOMString name

ProcessingInstruction createProcessingInstruction

 DOMString target

 DOMString data

Text createTextNode

http://lib.ommolketab.ir

 DOMString data

Element getElementById

 DOMString elementId

NodeList getElementsByTagName

 DOMString tagname

NodeList getElementsByTagNameNS

 DOMString namespaceURI

 DOMString localName

Node importNode

 Node importedNode

 Boolean deep

The various create...() methods are important for applications that wish to modify
the structure of a document that was previously parsed. Note that nodes created using
one Document instance may only be inserted into the document tree belonging to the
Document that created them. DOM Level 2 provides a new importNode() method
that allows a node, and possibly its children, to be essentially copied from one document
to another.

Besides the various node-creation methods, some methods can locate specific XML
elements or lists of elements. The getElementsByTagName() and
getElementsByTagNameNS() methods return a list of all XML elements with the
name, and possibly namespace, specified. The getElementById() method returns
the single element with the given ID attribute.

18.4.2.2 DocumentFragment

Applications that allow real-time editing of XML documents sometimes need to
temporarily park document nodes outside the hierarchy of the parsed document. A
visual editor that wants to provide clipboard functionality is one example. When the time
comes to implement the cut function, it is possible to move the cut nodes temporarily to
a DocumentFragment node without deleting them, rather than having to leave them
in place within the live document. Then when they need to be pasted back into the
document, they can be moved back. The DocumentFragment interface, derived from
Node , has no interface-specific attributes or methods.

18.4.2.3 Element

Element nodes are the most frequently encountered node type in a typical XML
document. These nodes are parents for the Text , Comment , EntityReference ,

http://lib.ommolketab.ir

ProcessingInstruction , CDATASection , and child Element nodes that
comprise the document's body. They also allow access to the Attr objects that contain
the element's attributes. Table 18-11 shows all attributes and methods supported by the
Element interface.

Table 18-11. Element interface, derived from Node

Type Name Read-only DOM 2.0

Attributes

DOMString tagName

Methods

DOMString getAttribute

 DOMString name

Attr getAttributeNode

 DOMString name

Attr getAttributeNodeNS

 DOMString namespaceURI

 DOMString localName

DOMString getAttributeNS

 DOMString namespaceURI

 DOMString localName

NodeList getElementsByTagName

 DOMString name

NodeList getElementsByTagNameNS

 DOMString namespaceURI

 DOMString localName

Boolean hasAttribute

 DOMString name

Boolean hasAttributeNS

 DOMString namespaceURI

 DOMString localName

Void removeAttribute

 DOMString name

Attr removeAttributeNode

 Attr oldAttr

http://lib.ommolketab.ir

Attr removeAttributeNS

 DOMString namespaceURI

 DOMString localName

Void setAttribute

 DOMString name

Attr setAttributeNode

 Attr newAttr

Attr setAttributeNodeNS

 Attr newAttr

Attr setAttributeNS

 DOMString namespaceURI

 DOMString qualifiedName

 DOMString value

18.4.2.4 Attr

Since XML attributes may contain either text values or entity references, the DOM stores
element attribute values as Node subtrees. The following XML fragment shows an
element with two attributes:

<!ENTITY bookcase_pic SYSTEM "bookcase.gif" NDATA gif>
<!ELEMENT picture EMPTY>
<!ATTLIST picture
 src ENTITY #REQUIRED
 alt CDATA #IMPLIED>
. . .
<picture src="bookcase_pic" alt="3/4 view of bookcase"/>

The first attribute contains a reference to an unparsed entity; the second contains a
simple string. Since the DOM framework stores element attributes as instances of the
Attr interface, a few parsers make the contents of attributes available as actual
subtrees of Node objects. In this example, the src attribute would contain an
EntityReference object instance. Note that the nodeValue of the Attr node
gives the flattened text value from the Attr node's children. Table 18-12 shows the
attributes and methods supported by the Attr interface.

Table 18-12. Attr interface, derived from Node

http://lib.ommolketab.ir

Type Name Read-only DOM 2.0

Attributes

DOMString name

Element ownerElement

Boolean specified

DOMString value

Besides the attribute name and value, the Attr interface exposes the specified flag
that indicates whether this particular attribute instance was included explicitly in the XML
document or inherited from the !ATTLIST declaration of the DTD. There is also a back
pointer to the Element node that owns this attribute object.

18.4.2.5 CharacterData

Several types of data within a DOM node tree represent blocks of character data that do
not include markup. CharacterData is an abstract interface that supports common
text-manipulation methods that are used by the concrete interfaces Comment , Text ,
and CDATASection . Table 18-13 shows the attributes and methods supported by the
CharacterData interface.

Table 18-13. CharacterData interface, derived from Node

Type Name Read-only DOM 2.0

Attributes

DOMString data

Unsigned long length

Methods

Void appendData

 DOMString arg

Void deleteData

 Unsigned long offset

 Unsigned long count

Void insertData

 Unsigned long offset

 DOMString arg

Void replaceData

 Unsigned long offset

http://lib.ommolketab.ir

 Unsigned long count

 DOMString arg

18.4.2.6 Comment

DOM parsers are not required to make the contents of XML comments available after
parsing, and relying on comment data in your application is poor programming practice
at best. If your application requires access to metadata that should not be part of the
basic XML document, consider using processing instructions instead. The Comment
interface, derived from CharacterData , has no interface-specific attributes or
methods.

18.4.2.7 EntityReference

If an XML document contains references to general entities within the body of its
elements, the DOM-compliant parser may pass these references along as
EntityReference nodes. This behavior is not guaranteed because the parser is free
to expand any entity or character reference included with the actual Unicode character
sequence it represents. The EntityReference interface, derived from Node , has
no interface-specific attributes or methods.

18.4.2.8 Text

The character data of an XML document is stored within Text nodes. Text nodes are
children of either Element or Attr nodes. After parsing, every contiguous block of
character data from the original XML document is translated directly into a single Text
node. Once the document has been parsed, however, it is possible that the client
application may insert, delete, and split Text nodes so that Text nodes may be side
by side within the document tree. Table 18-14 describes the Text interface.

Table 18-14. Text interface, derived from CharacterData

Type Name DOM 2.0

Methods

Text splitText

 Unsigned long offset

The splitText method provides a way to split a single Text node into two nodes at
a given point. This split would be useful if an editing application wished to insert
additional markup nodes into an existing island of character data. After the split, it is

http://lib.ommolketab.ir

possible to insert additional nodes into the resulting gap.

18.4.2.9 CDATASection

CDATA sections provide a simplified way to include characters that would normally be
considered markup in an XML document. These sections are stored within a DOM
document tree as CDATASection nodes. The CDATASection interface, derived
from Text , has no interface-specific attributes or methods.

18.5 The DOMImplementation Interface

This interface could be considered the highest level interface in the DOM. It exposes the
hasFeature() method, which allows a programmer using a given DOM
implementation to detect if specific features are available. In DOM Level 2, it also
provides facilities for creating new DocumentType nodes, which can then be used to
create new Document instances. Table 18-15 describes the DomImplementation
interface.

Table 18-15. DOMImplementation interface

Type Name DOM 2.0

Methods

Document createDocument

 DOMString namespaceURI

 DOMString qualifiedName

 DocumentType doctype

DocumentType createDocumentType

 DOMString qualifiedName

 DOMString publicId

 DOMString systemId

Boolean hasFeature

 DOMString feature

 DOMString version

18.6 Parsing a Document with DOM

Though the DOM standard doesn't specify an actual interface for parsing a document,

http://lib.ommolketab.ir

most implementations provide a simple parsing interface that accepts a reference to an
XML document file, stream, or URI. After this interface successfully parses and validates
the document (if it is a validating parser), it generally provides a mechanism for getting a
reference to the Document interface's instance for the parsed document. The following
code fragment shows how to parse a document using the Apache Xerces XML DOM
parser:

// create a new parser
DOMParser dp = new DOMParser();

// parse the document and get the DOM Document interface
dp.parse("http://www.w3.org/TR/2000/REC-xml-20001006.xml");
Document doc = dp.getDocument();

DOM Level 3 will be adding standard mechanisms for loading XML
documents and reserializing (saving) DOM trees as XML. JAXP also
provides standardized approaches for these processes in Java,
though JAXP and DOM Level 3 may offer different approaches.

18.7 A Simple DOM Application

Example 18-1 illustrates how you might use the interfaces discussed in this chapter in a
typical programming situation. This application takes a document that uses the
furniture.dtd sample DTD from Chapter 20 and validates that the parts list included in the
document matches the actual parts used within the document.

Example 18-1. Parts checker application

/**
 * PartsCheck.java
 *
 * DOM Usage example from the O'Reilly _XML in a Nutshell_ book.
 *
 */

// we'll use the Apache Software Foundation's Xerces parser.
import org.apache.xerces.parsers.*;
import org.apache.xerces.framework.*;

// import the DOM and SAX interfaces
import org.w3c.dom.*;
import org.xml.sax.*;

http://lib.ommolketab.ir

// get the necessary java support classes
import java.io.*;
import java.util.*;

/**
 * This class is designed to check the parts list of an XML document that
 * represents a piece of furniture for validity. It uses the DOM to
 * analyze the actual furniture description and then check it against the
 * parts list that is embedded in the document.
 */
public class PartsCheck {
 // static constants
 public static final String FURNITURE_NS =
 "http://namespaces.oreilly.com/furniture/";
 // contains the true part count, keyed by part number
 HashMap m_hmTruePartsList = new HashMap();

 /**
 * The main function that allows this class to be invoked from the command
 * line. Check each document provided on the command line for validity.
 */
 public static void main(String[] args) {
 PartsCheck pc = new PartsCheck();

 try {
 for (int i = 0; i < args.length; i++) {
 pc.validatePartsList(args[i]);
 }
 } catch (Exception e) {
 System.err.println(e);
 }
 }

 /**
 * Given a system identifier for an XML document, this function compares
 * the actual parts used to the declared parts list within the document. It
 * prints warnings to standard error if the lists don't agree.
 */
 public void validatePartsList(String strXMLSysID) throws IOException,
 SAXException

http://lib.ommolketab.ir

 {
 // create a new parser
 DOMParser dp = new DOMParser();

 // parse the document and get the DOM Document interface
 dp.parse(strXMLSysID);
 Document doc = dp.getDocument();

 // get an accurate parts list count
 countParts(doc.getDocumentElement(), 1);

 // compare it to the parts list in the document
 reconcilePartsList(doc);
 }

 /**
 * Updates the true parts list by adding the count to the current count
 * for the part number given.
 */
 private void recordPart(String strPartNum, int cCount)
 {
 if (!m_hmTruePartsList.containsKey(strPartNum)) {
 // this part isn't listed yet
 m_hmTruePartsList.put(strPartNum, new Integer(cCount));
 } else {
 // update the count
 Integer cUpdate = (Integer)m_hmTruePartsList.get(strPartNum);
 m_hmTruePartsList.put(strPartNum, new Integer(cUpdate.intValue() + cCount));
 }
 }

 /**
 * Counts the parts referenced by and below the given node.
 */
 private void countParts(Node nd, int cRepeat)
 {
 // start the local repeat count at 1
 int cLocalRepeat = 1;

 // make sure we should process this element
 if (FURNITURE_NS.equals(nd.getNamespaceURI())) {

http://lib.ommolketab.ir

 Node ndTemp;

 if ((ndTemp = nd.getAttributes().getNamedItem("repeat")) != null) {
 // this node specifies a repeat count for its children
 cLocalRepeat = Integer.parseInt(ndTemp.getNodeValue());
 }

 if ((ndTemp = nd.getAttributes().getNamedItem("part_num")) != null) {
 // start the count at 1
 int cCount = 1;
 String strPartNum = ndTemp.getNodeValue();

 if ((ndTemp = nd.getAttributes().getNamedItem("count")) != null) {
 // more than one part needed by this node
 cCount = Integer.parseInt(ndTemp.getNodeValue());
 }

 // multiply the local count by the repeat passed in from the parent
 cCount *= cRepeat;

 // add the new parts count to the total
 recordPart(strPartNum, cCount);
 }
 }

 // now process the children
 NodeList nl = nd.getChildNodes();
 Node ndCur;

 for (int i = 0; i < nl.getLength(); i++) {
 ndCur = nl.item(i);

 if (ndCur.getNodeType() == Node.ELEMENT_NODE) {
 // recursively count the parts for the child, using the local repeat
 countParts(ndCur, cLocalRepeat);
 }
 }
 }

 /**
 * This method reconciles the true parts list against the list in the document.

http://lib.ommolketab.ir

 */
 private void reconcilePartsList(Document doc)
 {
 Iterator iReal = m_hmTruePartsList.keySet().iterator();

 String strPartNum;
 int cReal;
 Node ndCheck;

 // loop through all of the parts in the true parts list
 while (iReal.hasNext()) {
 strPartNum = (String)iReal.next();
 cReal = ((Integer)m_hmTruePartsList.get(strPartNum)).intValue();

 // find the part list element in the document
 ndCheck = doc.getElementById(strPartNum);

 if (ndCheck == null) {
 // this part isn't even listed!
 System.err.println("missing <part_name> element for part #" +
 strPartNum + " (count " + cReal + ")");
 } else {
 Node ndTemp;

 if ((ndTemp = ndCheck.getAttributes().getNamedItem("count")) != null) {
 int cCheck = Integer.parseInt(ndTemp.getNodeValue());

 if (cCheck != cReal) {
 // counts don't agree
 System.err.println("<part_name> element for part #" +
 strPartNum + " is incorrect: true part count = " + cReal +
 " (count in document is " + cCheck + ")");
 }
 } else {
 // they didn't provide a count for this part!
 System.err.println("missing count attribute for part #" +
 strPartNum + " (count " + cReal + ")");
 }
 }
 }
 }

http://lib.ommolketab.ir

}

When this application is run over the bookcase.xml sample document from Chapter 20 ,
it generates the following output:

missing count attribute for part #HC (count 8)

<part_name> element for part #A is incorrect: true part count = 2 (count in document is 1)

To compile and use this sample application, download and install the Xerces Java
Parser from the Apache-XML project (http://xml.apache.org/xerces-j). The code was
compiled and tested with Sun's JDK Version 1.3.1.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 19. Simple API for XML (SAX)

 19.1 The ContentHandler Interface

 19.2 SAX Features and Properties
 19.3 Filters

The Simple API for XML (SAX) is a straightforward, event-based API for reading XML
documents. Many different XML parsers, including Xerces, Crimson, MSXML, the Oracle
XML Parser for Java, and Ælfred, implement the SAX API. SAX was originally defined
as a Java API and is primarily intended for parsers written in Java. Therefore, this
chapter focuses on the Java version of the API. However, SAX has been ported to most
other major object-oriented languages, including C++, Python, Perl, and Eiffel. The
translation from Java is usually fairly obvious.

The SAX API is unusual among XML APIs because it's an event-based push model
rather than a tree-based pull model. As the XML parser reads an XML document, it
sends your program information from the document in real time. Each time the parser
sees a start-tag, an end-tag, character data, or a processing instruction, it tells your
program. The document is presented to your program one piece at a time from
beginning to end. You can either save the pieces you're interested in until the entire
document has been read or process the information as soon as you receive it. You do
not have to wait for the entire document to be read before acting on the data at the
beginning of the document. Most importantly, the entire document does not have to
reside in memory. This feature makes SAX the API of choice for very large documents
that do not fit into available memory.

This chapter covers SAX2 exclusively. In 2002 all major parsers that
support SAX support SAX2. The major change in SAX2 from SAX1 is
the addition of namespace support. This addition necessitated
changing the names and signatures of almost every method and
class in SAX. The old SAX1 methods and classes are still available,
but they're now deprecated, and you shouldn't use them.

SAX is primarily a collection of interfaces in the org.xml.sax package. One such
interface is XMLReader . This interface represents the XML parser. It declares methods
to parse a document and configure the parsing process, for instance, by turning
validation on or off. To parse a document with SAX, first create an instance of
XMLReader with the XMLReaderFactory class in the org.xml.sax.helpers

http://lib.ommolketab.ir

package. This class has a static createXMLReader() factory method that
produces the parser-specific implementation of the XMLReader interface. The Java
system property org.xml.sax.driver specifies the concrete class to instantiate:

try {
 XMLReader parser = XMLReaderFactory.createXMLReader();
 // parse the document...
}
catch (SAXException e) {
 // couldn't create the XMLReader
}

The call to XMLReaderFactory.createXMLReader() is wrapped in a try -
catch block that catches SAXException . This is the generic checked exception
superclass for almost anything that can go wrong while parsing an XML document. In
this case, it means either that the org.xml.sax.driver system property wasn't set
or that it was set to the name of a class that Java couldn't find in the class path.

You can choose which concrete class to instantiate by passing its name as a string to
the createXMLReader() method. This code fragment instantiates the Xerces
parser by name:

try {
 XMLReader parser = XMLReaderFactory.createXMLReader(
 "org.apache.xerces.parsers.SAXParser");
 // parse the document...
}
catch (SAXException e) {
 // couldn't create the XMLReader
}

Now that you've created a parser, you're ready to parse some documents with it. Pass
the system ID of the document you want to parse to the parse() method. The system
ID is either an absolute or a relative URL encoded in a string. For example, this code
fragment parses the document at http://www.slashdot.org/slashdot.xml :

try {
 XMLReader parser = XMLReaderFactory.createXMLReader();
 parser.parse("http://www.slashdot.org/slashdot.xml");
}
catch (SAXParseException e) {
 // Well-formedness error
}

http://www.slashdot.org/slashdot.xml
http://lib.ommolketab.ir

catch (SAXException e) {
 // Could not find an XMLReader implementation class
}
catch (IOException e) {
 // Some sort of I/O error prevented the document from being completely
 // downloaded from the server
}

The parse() method throws a SAXParseException if the document is
malformed, an IOException if an I/O error such as a broken socket occurs while the
document is being read, and a SAXException if anything else goes wrong. Otherwise,
it returns void . To receive information from the parser as it reads the document, you
must configure it with a ContentHandler .

19.1 The ContentHandler Interface

ContentHandler , shown in stripped-down form in Example 19-1 , is an interface in
the org.xml.sax package. You implement this interface in a class of your own
devising. Next, you configure an XMLReader with an instance of your implementation.
As the XMLReader reads the document, it invokes the methods in your object to tell
your program what's in the XML document. You can respond to these method
invocations in any way you see fit.

This class has no relation to the moribund
java.net.ContentHandler class. However, you may
encounter a name conflict if you import both java.net.* and
org.xml.sax.* in the same class. It's better to import just the
java.net classes you actually need, rather than the entire
package.

Example 19-1. The org.xml.sax.ContentHandler Interface

package org.xml.sax;

public interface ContentHandler {
 public void setDocumentLocator(Locator locator);
 public void startDocument() throws SAXException;
 public void endDocument() throws SAXException;
 public void startPrefixMapping(String prefix, String uri)
 throws SAXException;
 public void endPrefixMapping(String prefix) throws SAXException;

http://lib.ommolketab.ir

 public void startElement(String namespaceURI, String localName,
 String qualifiedName, Attributes atts) throws SAXException;
 public void endElement(String namespaceURI, String localName,
 String qualifiedName) throws SAXException;
 public void characters(char[] text, int start, int length)
 throws SAXException;
 public void ignorableWhitespace(char[] text, int start, int length)
 throws SAXException;
 public void processingInstruction(String target, String data)
 throws SAXException;
 public void skippedEntity(String name) throws SAXException;

}

Every time the XMLReader reads a piece of the document, it calls a method in its
ContentHandler . Suppose a parser reads the simple document shown in Example
19-2 .

Example 19-2. A simple XML document

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type='text/css' href='person.css'?>
<!DOCTYPE person SYSTEM "person.dtd">
<person xmlns="http://xml.oreilly.com/person">
 <name:name xmlns:name="http://xml.oreilly.com/name">
 <name:first>Sydney</name:first>
 <name:last>Lee</name:last>
 </name:name>
 <assignment project_id="p2"/>
</person>

The parser will call these methods in its ContentHandler with these arguments in
this order. The values of the arguments passed to each method are given after each
method name:

setDocumentLocator(Locator locator)
locator: org.apache.xerces.readers.DefaultEntityHandler@1f953d

startDocument()

processingInstruction(String target, String data)

http://lib.ommolketab.ir

target: "xml-stylesheet"
data: "type='text/css' href='person.css'"

startPrefixMapping(String prefix, String namespaceURI)
prefix: ""
namespaceURI: "http://xml.oreilly.com/person"

startElement(String namespaceURI, String localName,
String qualifiedName, Attributes atts)
namespaceURI: "http://xml.oreilly.com/person"
localName: "person"
qualifiedName: "person"
atts: {} (no attributes, an empty list)

ignorableWhitespace(char[] text, int start, int length)
text: <?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type='text/css' href='person.css'?>
<!DOCTYPE person SYSTEM "person.dtd">
<person xmlns="http://xml.oreilly.com/person">
 <name:name xmlns:name="http://xml.oreilly.com/name">
 <name:first>Sydney</name:first>
 <name:last>Lee</name:last>
 </name:name>
 <assignment project_id="p2"/>
</person>
start: 181
length: 3

startPrefixMapping(String prefix, String uri)
prefix: "name"
uri: "http://xml.oreilly.com/name")

startElement(String namespaceURI, String localName,
String qualifiedName, Attributes atts)
namespaceURI: "http://xml.oreilly.com/name"
localName: "name"
qualifiedName: "name:name"
atts: {} (no attributes, an empty list)

http://lib.ommolketab.ir

ignorableWhitespace(char[] text, int start, int length)
text: <?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type='text/css' href='person.css'?>
<!DOCTYPE person SYSTEM "person.dtd">
<person xmlns="http://xml.oreilly.com/person">
 <name:name xmlns:name="http://xml.oreilly.com/name">
 <name:first>Sydney</name:first>
 <name:last>Lee</name:last>
 </name:name>
 <assignment project_id="p2"/>
</person>
start: 236
length: 5

startElement(String namespaceURI, String localName,
String qualifiedName, Attributes atts)
namespaceURI: "http://xml.oreilly.com/name"
localName: "first"
qualifiedName: "name:first"
atts: {} (no attributes, an empty list)

characters(char[] text, int start, int length)
text: <?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type='text/css' href='person.css'?>
<!DOCTYPE person SYSTEM "person.dtd">
<person xmlns="http://xml.oreilly.com/person">
 <name:name xmlns:name="http://xml.oreilly.com/name">
 <name:first>Sydney</name:first>
 <name:last>Lee</name:last>
 </name:name>
 <assignment project_id="p2"/>
</person>
start: 253
length: 6

endElement(String namespaceURI, String localName, String qualifiedName)
namespaceURI: "http://xml.oreilly.com/name"
localName: "first"
qualifiedName: "name:first"

http://lib.ommolketab.ir

ignorableWhitespace(char[] text, int start, int length)
text: <?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type='text/css' href='person.css'?>
<!DOCTYPE person SYSTEM "person.dtd">
<person xmlns="http://xml.oreilly.com/person">
 <name:name xmlns:name="http://xml.oreilly.com/name">
 <name:first>Sydney</name:first>
 <name:last>Lee</name:last>
 </name:name>
 <assignment project_id="p2"/>
</person>
start: 272
length: 5

startElement(String namespaceURI, String localName, String qualifiedName, Attributes atts)
namespaceURI: "http://xml.oreilly.com/name"
localName: "last"
qualifiedName: "name:last"
atts: {} (no attributes, an empty list)

characters(char[] text, int start, int length)
text: <?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type='text/css' href='person.css'?>
<!DOCTYPE person SYSTEM "person.dtd">
<person xmlns="http://xml.oreilly.com/person">
 <name:name xmlns:name="http://xml.oreilly.com/name">
 <name:first>Sydney</name:first>
 <name:last>Lee</name:last>
 </name:name>
 <assignment project_id="p2"/>
</person>
start: 288
length: 3

endElement(String namespaceURI, String localName, String qualifiedName)
namespaceURI: "http://xml.oreilly.com/name"
localName: "last"
qualifiedName: "name:last"

ignorableWhitespace(char[] text, int start, int length)

http://lib.ommolketab.ir

text: <?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type='text/css' href='person.css'?>
<!DOCTYPE person SYSTEM "person.dtd">
<person xmlns="http://xml.oreilly.com/person">
 <name:name xmlns:name="http://xml.oreilly.com/name">
 <name:first>Sydney</name:first>
 <name:last>Lee</name:last>
 </name:name>
 <assignment project_id="p2"/>
</person>
start: 303
length: 3

endElement(String namespaceURI, String localName, String qualifiedName)
namespaceURI: "http://xml.oreilly.com/name"
localName: "name"
qualifiedName: "name:name"

endPrefixMapping(String prefix)
prefix: "name"

ignorableWhitespace(char[] text, int start, int length)
text: <?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type='text/css' href='person.css'?>
<!DOCTYPE person SYSTEM "person.dtd">
<person xmlns="http://xml.oreilly.com/person">
 <name:name xmlns:name="http://xml.oreilly.com/name">
 <name:first>Sydney</name:first>
 <name:last>Lee</name:last>
 </name:name>
 <assignment project_id="p2"/>
</person>
start: 318
length: 3

startElement(String namespaceURI, String localName, String qualifiedName, Attributes atts)
namespaceURI: "http://xml.oreilly.com/person"
localName: "assignment"
qualifiedName: "assignment
atts: {project_id="p2"}

http://lib.ommolketab.ir

endElement(String namespaceURI, String localName, String qualifiedName)
namespaceURI: "http://xml.oreilly.com/person"
localName: "assignment"
qualifiedName: "assignment"

ignorableWhitespace(char[] text, int start, int length)
text: <?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type='text/css' href='person.css'?>
<!DOCTYPE person SYSTEM "person.dtd">
<person xmlns="http://xml.oreilly.com/person">
 <name:name xmlns:name="http://xml.oreilly.com/name">
 <name:first>Sydney</name:first>
 <name:last>Lee</name:last>
 </name:name>
 <assignment project_id="p2"/>
</person>
start: 350
length: 1

endElement(String namespaceURI, String localName, String qualifiedName)
namespaceURI: "http://xml.oreilly.com/person"
localName: "person"
qualifiedName: "person"

endPrefixMapping(String prefix)
prefix: ""

endDocument()

Some pieces of this are not deterministic. Note that the char array passed to each call
to characters() and ignorableWhitespace() actually contains the entire
document! The specific text block that the parser really returns is indicated by the
second two arguments. This is an optimization that Xerces-J performs. Other parsers
are free to pass different char arrays as long as they set the start and length
arguments to match. Indeed, the parser is also free to split a long run of plain text across
multiple calls to characters() or ignorableWhitespace() , so you cannot
assume that these methods necessarily return the longest possible contiguous run of
plain text. Other details that may change from parser to parser include attribute order
within a tag and whether a Locator object is provided by calling

http://lib.ommolketab.ir

setDocumentLocator() .

Suppose you want to count the number of elements, attributes, processing instructions,
and characters of plain text that exist in a given XML document. To do so, first write a
class that implements the ContentHandler interface. The current count of each of
the four items of interest is stored in a field. The field values are initialized to zero in the
startDocument() method, which is called exactly once for each document parsed.
Each callback method in the class increments the relevant field. The endDocument(
) method reports the total for that document. Example 19-3 is such a class.

Example 19-3. The XMLCounter ContentHandler

import org.xml.sax.*;

public class XMLCounter implements ContentHandler {

 private int numberOfElements;
 private int numberOfAttributes;
 private int numberOfProcessingInstructions;
 private int numberOfCharacters;

 public void startDocument() throws SAXException {
 numberOfElements = 0;
 numberOfAttributes = 0;
 numberOfProcessingInstructions = 0;
 numberOfCharacters = 0;
 }

 // We should count either the start-tag of the element or the end-tag,
 // but not both. Empty elements are reported by each of these methods.
 public void startElement(String namespaceURI, String localName,
 String qualifiedName, Attributes atts) throws SAXException {
 numberOfElements++;
 numberOfAttributes += atts.getLength();
 }

 public void endElement(String namespaceURI, String localName,
 String qualifiedName) throws SAXException {}

 public void characters(char[] text, int start, int length)
 throws SAXException {
 numberOfCharacters += length;

http://lib.ommolketab.ir

 }

 public void ignorableWhitespace(char[] text, int start, int length)
 throws SAXException {
 numberOfCharacters += length;
 }

 public void processingInstruction(String target, String data)
 throws SAXException {
 numberOfProcessingInstructions++;
 }

 // Now that the document is done, we can print out the final results
 public void endDocument() throws SAXException {
 System.out.println("Number of elements: " + numberOfElements);
 System.out.println("Number of attributes: " + numberOfAttributes);
 System.out.println("Number of processing instructions: "
 + numberOfProcessingInstructions);
 System.out.println("Number of characters of plain text: "
 + numberOfCharacters);
 }

 // Do-nothing methods we have to implement only to fulfill
 // the interface requirements:
 public void setDocumentLocator(Locator locator) {}
 public void startPrefixMapping(String prefix, String uri)
 throws SAXException {}
 public void endPrefixMapping(String prefix) throws SAXException {}
 public void skippedEntity(String name) throws SAXException {}

}

This class needs to override most methods in the
ContentHandler interface. However, if you only really want to
provide one or two ContentHandler methods, you may want to
subclass the DefaultHandler class instead. This adapter class
implements all methods in the ContentHandler interface with do-
nothing methods, so you only have to override methods in which
you're genuinely interested.

Next, build an XMLReader , and configure it with an instance of this class. Finally,
parse the documents you want to count, as in Example 19-4 .

http://lib.ommolketab.ir

Example 19-4. The DocumentStatistics driver class

import org.xml.sax.*;
import org.xml.sax.helpers.*;
import java.io.IOException;

public class DocumentStatistics {

 public static void main(String[] args) {

 XMLReader parser;
 try {
 parser = XMLReaderFactory.createXMLReader();
 }
 catch (SAXException e) {
 // fall back on Xerces parser by name
 try {
 parser = XMLReaderFactory.createXMLReader(
 "org.apache.xerces.parsers.SAXParser");
 }
 catch (SAXException ee) {
 System.err.println("Couldn't locate a SAX parser");
 return;
 }
 }

 if (args.length == 0) {
 System.out.println(
 "Usage: java DocumentStatistics URL1 URL2...");
 }

 // Install the Content Handler
 parser.setContentHandler(new XMLCounter());

 // start parsing...
 for (int i = 0; i < args.length; i++) {

 // command line should offer URIs or file names
 try {
 parser.parse(args[i]);
 }

http://lib.ommolketab.ir

 catch (SAXParseException e) { // well-formedness error
 System.out.println(args[i] + " is not well formed.");
 System.out.println(e.getMessage()
 + " at line " + e.getLineNumber()
 + ", column " + e.getColumnNumber());
 }
 catch (SAXException e) { // some other kind of error
 System.out.println(e.getMessage());
 }
 catch (IOException e) {
 System.out.println("Could not report on " + args[i]
 + " because of the IOException " + e);
 }

 }

 }

}

Running the program in Example 19-4 across the document in Example 19-2 results in
the following output:

D:\books\xian\examples\18>java DocumentStatistics 18-2.xml
Number of elements: 5
Number of attributes: 1
Number of processing instructions: 1
Number of characters of plain text: 29

This generic program of Example 19-4 works on any well-formed XML document. Most
SAX programs are more specific and only work with certain XML applications. They look
for particular elements or attributes in particular places and respond to them accordingly.
They may rely on patterns that are enforced by a validating parser. Still, this behavior
comprises the fundamentals of SAX.

The complicated part of most SAX programs is the data structure you must build to store
information returned by the parser until you're ready to use it. Sometimes this
information can be as complicated as the XML document itself, in which case you may
be better off using DOM, which at least provides a ready-made data structure for an
XML document. You usually want only some information, though, and the data structure
you construct should be less complex than the document itself.

http://lib.ommolketab.ir

19.2 SAX Features and Properties

SAX uses properties and features to control parser behavior. Each feature and property
has a name that's an absolute URI. Like namespace URIs, these URIs are only used to
name things and do not necessarily point to a real page you can load into a web
browser. Features are either true or false; that is, they're Booleans. Properties have
values of an appropriate Object type.

The http://xml.org/sax/features/validation feature controls whether a parser validates. If
this feature is true, then the parser will report validity errors in the document to the
registered ErrorHandler ; otherwise, it won't. This feature is turned off by default. To
turn a feature on, pass the feature's name and value to the XMLReader 's
setFeature() method:

try {
 parser.setFeature("http://xml.org/sax/features/validation", true);
}
catch (SAXNotSupportedException e) {
 System.out.println("Cannot turn on validation right now.");
}
catch (SAXNotRecognizedException e) {
 System.out.println("This is not a validating parser.");
}

Not all parsers can validate. If you try to turn on validation in a parser that doesn't
validate or set any other feature the parser doesn't provide, setFeature() throws a
SAXNotRecognizedException . If you try to set a feature the parser does
recognize but cannot change at the current time-e.g., you try to turn on validation when
the parser has already read half of the document-setFeature() throws a
SAXNotSupportedException . Both are subclasses of SAXException .

You can check a feature's current value using XMLReader 's getFeature()
method. This method returns a boolean and throws the same exceptions for the same
reasons as setFeature() . If you want to know whether the parser validates, you
can ask in the following manner:

try {
 boolean isValidating =
 parser.getFeature("http://xml.org/sax/features/validation");
}
catch (SAXException e) {
 System.out.println("This is not a validating parser");

http://xml.org/sax/features/validation
http://lib.ommolketab.ir

}

Properties are similar to features, but they allow a broader choice than a simple Boolean
on/off, true/false dichotomy. Each property value is an object of unspecified type. For
example, if you want to know the literal string of data parsed to produce the current SAX
event, you can ask by reading the http://xml.org/sax/properties/xml-string property with
the getProperty() method:

try {
 String tag = (String) parser.getProperty(
 "http://xml.org/sax/properties/xml-string");
}
catch (SAXNotSupportedException e) {
 System.out.println("This parser does not provide the original data");
}
catch (SAXNotRecognizedException e) {
 System.out.println("Parser does not recognize the " +
 "http://xml.org/sax/properties/xml-string property");
}

You can change a property value by invoking the setProperty() method with two
arguments. The first is the URI of the property to set. The second is the object specifying
the value for the property. For example, this code fragment attempts to set the
http://xml.org/sax/properties/LexicalHandler property to a new instance of the
MyLexicalHandlerClass . The parser reports lexical events (comments, CDATA
sections, and entity references) to the org.xml.sax.ext.LexicalHandler
implementation object named by this property:

try {
 parser.setProperty(
 "http://xml.org/sax/properties/LexicalHandler",
 new MyLexicalHandlerClass()
);
}
catch (SAXException e) {
 System.out.println("This parser does not provide lexical events.");
}

If you pass in the wrong kind of object for a property (e.g., an object that does not
implement the LexicalHandler interface for the
http://xml.org/sax/properties/LexicalHandler property), then setProperty() throws
a SAXNotSupportedException .

http://xml.org/sax/properties/xml-string
http://xml.org/sax/properties/LexicalHandler
http://xml.org/sax/properties/LexicalHandler
http://lib.ommolketab.ir

Not all features and properties can be set at all times. For example, you cannot suddenly
decide to start validating when the parser is already halfway through a document. An
attempt to do so will fail and throw a SAXNotSupportedException . However, you
can change a parser's features in between documents - after parsing one document,
but before parsing the next. You can read most feature and property values at any time.

19.3 Filters

A SAX filter sits in between the parser and the client application and intercepts the
messages that these two objects pass to each other. It can pass these messages
unchanged or modify, replace, or block them. To a client application, the filter looks like
a parser, that is, an XMLReader . To the parser, the filter looks like a client application,
that is, a ContentHandler .

SAX filters are implemented by subclassing the
org.xml.sax.helpers.XMLFilterImpl class.[1] This class implements all the
required interfaces of SAX for both parsers and client applications. That is, its signature
is as follows:

public class XMLFilterImpl implements XMLFilter, XMLReader,
 ContentHandler, DTDHandler, ErrorHandler

Your own filters will extend this class and override those methods that correspond to the
messages you want to filter. For example, if you wanted to filter out all processing
instructions, you would write a filter that would override the
processingInstruction() method to do nothing, as shown in Example 19-5 .

Example 19-5. A SAX filter that removes processing instructions

import org.xml.sax.helpers.XMLFilterImpl;

public class ProcessingInstructionStripper extends XMLFilterImpl {

 public void processingInstruction(String target, String data) {
 // Because we do nothing, processing instructions read in the
 // document are *not* passed to client application
 }

}

If instead you wanted to replace a processing instruction with an element whose name
was the same as the processing instruction's target and whose text content was the

http://lib.ommolketab.ir

processing instruction's data, you'd call the startElement() , characters() ,
and endElement() methods from inside the processingInstruction()
method after filling in the arguments with the relevant data from the processing
instruction, as shown in Example 19-6 .

Example 19-6. A SAX filter that converts processing instructions to elements

import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class ProcessingInstructionConverter extends XMLFilterImpl {

 public void processingInstruction(String target, String data)
 throws SAXException {

 // AttributesImpl is an adapter class in the org.xml.sax.ext package
 // for precisely this case. We don't really want to add any attributes
 // here, but we need to pass something as the fourth argument to
 // startElement().
 Attributes emptyAttributes = new AttributesImpl();

 // We won't use any namespace for the element
 startElement("", target, target, emptyAttributes);
 // converts String data to char array
 char[] text = data.toCharArray();
 characters(text, 0, text.length);

 endElement("", target, target);

 }

}

We used this filter before passing Example 19-2 into a program that echoes an XML
document onto System.out and were a little surprised to see this come out:

<xml-stylesheet>type="text/css" href="person.css"</xml-stylesheet>
<person xmlns="http://xml.oreilly.com/person">
 <name:name xmlns:name="http://xml.oreilly.com/name">
 <name:first>Sydney</name:first>
 <name:last>Lee</name:last>
 </name:name>

http://lib.ommolketab.ir

 <assignment project_id="p2"></assignment>
</person>

This document is not well-formed! The specific problem is that there are two
independent root elements. However, on further consideration that's really not too
surprising. Well-formedness checking is normally done by the underlying parser when it
reads the text form of an XML document. SAX filters should but are not absolutely
required to provide well-formed XML data to client applications. Indeed, they can
produce substantially more malformed data than this by including start-tags that are not
matched by end-tags, text that contains illegal characters such as the formfeed or the
vertical tab, and XML names that contain non-name characters such as * and §. You
need to be very careful before assuming data you receive from a filter is valid or well-
formed.

If you want to invoke a method without filtering it or you want to invoke the same method
in the underlying handler, you can prefix a call to it with the super keyword. This
invokes the variant of the method from the superclass. By default, each method in
XMLFilterImpl just passes the same arguments to the equivalent method in the
parent handler. Example 19-7 demonstrates with a filter that changes all character data
to uppercase by overriding the characters() method.

Example 19-7. A SAX filter that converts text to uppercase

import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class UpperCaseFilter extends XMLFilterImpl {

 public void characters(char[] text, int start, int length)
 throws SAXException {

 String temp = new String(text, start, length);
 temp = temp.toUpperCase();
 text = temp.toCharArray();
 super.characters(text, 0, text.length);

 }

}

Actually, using a filter involves these steps:

Create a filter object, normally by invoking its own constructor.1.
2.

http://lib.ommolketab.ir

1.
Create the XMLReader that will actually parse the document, normally by calling
XMLReaderFactory.createXMLReader() .

2.

Attach the filter to the parser using the filter's setParent() method.3.
Install a ContentHandler in the filter.4.
Parse the document by calling the filter's parse() method.5.

Details can vary a little from application to application. For instance, you might install
other handlers besides the ContentHandler or change the parent between
documents. However, once the filter has been attached to the underlying XMLReader ,
you should not directly invoke any methods on this underlying parser; you should only
talk to it through the filter. For example, this is how you'd use the filter in Example 19-7
to parse a document:

XMLFilter filter = new UpperCaseFilter();
filter.setParent(XMLReaderFactory.createXMLReader());
filter.setContentHandler(yourContentHandlerObject);
filter.parse(document);

Notice specifically that you invoke the filter's parse() method, not the underlying
parser's parse() method.

[1] There's also an org.xml.sax.XMLFilter interface. However, this interface is arranged exactly

backwards for most use cases. It filters messages from the client application to the parser, but not the much more important

messages from the parser to the client application. Furthermore, implementing the XMLFilter interface directly

requires a lot more work than subclassing XMLFilterImpl . Almost no experienced SAX programmer would

choose to implement XMLFilter directly rather than subclassing the XMLFilterImpl adapter class.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 20. XML 1.0 Reference

 20.1 How to Use This Reference

 20.2 Annotated Sample Documents
 20.3 XML Syntax

 20.4 Constraints
 20.5 XML Document Grammar

This chapter is intended to serve as a comprehensive reference to the Extensible
Markup Language (XML) 1.0 W3C recommendation (Second Edition), dated 6 October
2000. We have made every effort to cover the contents of the official W3C document
exhaustively. However, if you are implementing an XML parser, editor, or other tool, you
should also review the latest revision of the recommendation on the Web at
http://www.w3.org/TR/REC-xml .

20.1 How to Use This Reference

This chapter consists of examples of XML documents and DTDs, followed by detailed
reference sections that describe every feature of the 1.0 specification and a listing of
possible well-formedness and validity errors. The syntax elements of a valid XML
document are introduced in the rough order in which they appear in an XML document.
Each entry explains the syntactic structure, where it can be used, and the applicable
validity and well-formedness constraints. Each reference section contains a description
of the XML language structure, an informal syntax, and an example of the syntax's
usage where appropriate.

20.2 Annotated Sample Documents

These examples are intended as a mnemonic aid for XML syntax and as a quick map
from a specific instance of an XML language construct to its corresponding XML syntax
reference section. The sample document and DTD incorporate features defined in the
XML 1.0 and Namespaces in XML recommendations.

The sample XML application describes the construction of a piece of furniture. Within
the figures, each distinct language construct is enclosed in a box, with the relevant
reference section name provided as a callout. By locating a construct in the sample,
then locating the associated reference section, you can quickly recognize and learn
about unfamiliar XML syntax. Four files make up this sample application:

http://www.w3.org/TR/REC-xml
http://lib.ommolketab.ir

bookcase.xml

The document shown in Figure 20-1 uses furniture.dtd to describe a simple
bookcase.

Figure 20-1. bookcase.xml

http://lib.ommolketab.ir

furniture.dtd

The XML document type definition shown in Figure 20-2 provides a simple
grammar for describing components and assembly details for a piece of furniture.

Figure 20-2. furniture.dtd

http://lib.ommolketab.ir

bookcase_ex.ent

The external entity file shown in Figure 20-3 contains additional bookcase-specific
elements for the bookcase.xml document.

Figure 20-3. bookcase_ex.ent

http://lib.ommolketab.ir

parts_list.ent

Figure 20-4 contains an external parsed general entity example that contains the
parts list for the bookcase example document.

Figure 20-4. parts_list.ent

20.3 XML Syntax

For each section of this reference that maps directly to an XML language structure, an

http://lib.ommolketab.ir

informal syntax reference describes theat structure's form. The following conventions are
used with these syntax blocks:

Format Meaning

DOCTYPE
Bold text indicates literal characters that must appear as written within the
document (e.g., DOCTYPE).

encoding-
name

Italicized text indicates that the user must replace the text with real data.
The item indicates what type of data should be inserted (e.g., encoding-
name = en-us).

|
The vertical bar | indicates that only one out of a list of possible values
can be selected.

[] Square brackets indicate that a particular portion of the syntax is optional.

20.3.1 Global Syntax Structures

Every XML document is broken into two primary sections: the prolog and the document
element . A few documents may also have comments or processing instructions that
follow the root element in a sort of epilog (an unofficial term). The prolog contains
structural information about the particular type of XML document you are writing,
including the XML declaration and document type declaration. The prolog is optional,
and if a document does not need to be validated against a DTD, it can be omitted
completely. The only required structure in a well-formed XML document is the top-level
document element itself.

The following syntax structures are common to the entire XML document. Unless
otherwise noted within a subsequent reference item, the following structures can appear
anywhere within an XML document.

Whitespace

Whitespace is defined as a space, tab, or empty line (which is composed of a carriage
return, line feed, or combination of the two). Whitespace serves the same purpose in
XML as it does in most programming and natural languages: to separate tokens and
language elements from one another. XML has simplified the task of determining which
whitespace is significant to an application and which is not. To an XML parser, all
whitespace in element content is significant and will be passed to the client application.
Whitespace within tags-for instance, between attributes-is not significant. Consider

http://lib.ommolketab.ir

the following example:

<p> This sentence has extraneous
 line breaks.</p>

After parsing, the character data from this example element is passed to the underlying
application as:

 This sentence has extraneous
line breaks.

Though XML specifies that all whitespace in element content be preserved for use by
the client application, an additional facility is available to the XML author to further hint
that an element's character data's space and formatting should be preserved. For more
information, see the discussion of the xml:space attribute in Special Attributes later in
this chapter.

Names

To ease the burden of those who write XML parsers, XML names must adhere to the
following lexical conventions:

Begin with a letter, _ , or : character.

After the first character, be composed only of letters, digits, . , - , _ , and :
characters.

In this context, a letter is any Unicode character that matches the Letter production
from the EBNF grammar at the end of this chapter.

According to the XML 1.0 specification, the : character may be used freely within

names, although the character is now officially reserved as part of the Namespaces in
XML recommendation. Even if a document does not use namespaces, the colon should
still not be used within identifiers to maintain compatibility with namespace-aware
parsers. See the Section 20.3.4 in this chapter for more information about how
namespace-aware identifiers are formed.

Names should also avoid starting with the three-letter sequence X, M, L, unless
specifically sanctioned by an XML specification.

http://lib.ommolketab.ir

Character References

&#decimal-number;
&#xhexadecimal-number;

All XML parsers are based on the Unicode character set, no matter what the external
encoding of the XML file is. It is theoretically possible to author documents directly in
Unicode, but many text-editing, storage, and delivery systems still use the ASCII
character set. To allow XML authors to include Unicode characters in their documents'
content without forcing them to abandon their existing editing tools, XML provides the
character reference mechanism.

A character reference allows an author to insert a Unicode character by number into the
output stream produced by the parser to an XML application. Consider an XML
document that includes the following character data:

© 2002 O'Reilly & Associates

In this example, the parser would replace the character reference with the actual
Unicode character and pass it to the client application:

© 2002 O'Reilly & Associates

Character references may not be used in element or attribute names, though they may
be used in attribute values.

Predefined Entities

Besides user-defined entity references, XML includes the five named entity references
shown in Table 20-1 that can be used without being declared. These references are a
subset of those available in HTML documents.

Table 20-1. Predefined entities

http://lib.ommolketab.ir

Entity Character XML declaration

< < <!ENTITY lt "&#60;">

> > <!ENTITY gt ">">

& & <!ENTITY amp "&#38;">

' " <!ENTITY apos "'">

" " <!ENTITY quot """>

The < and & entities must be used wherever < or & appear in document
content. The > entity is frequently used wherever > appears in document content,
but is only mandatory to avoid putting the sequence]]> into content. ' and
" are generally used only within attribute values to avoid conflicts between the
value and the quotes used to contain the value.

Though the parser must recognize these entities regardless of whether they have been
declared, you can declare them in your DTD without generating errors.

The presence of these "special" predefined entities creates a conundrum within an XML
document. Because it is possible to use these references without declaring them, it is
possible to have a valid XML document that includes references to entities that were
never declared. The XML specification actually encourages document authors to declare
these entities to maintain the integrity of the entity declaration-reference rule. In practical
terms, declaring these entities only adds unnecessary complexity to your document.

CDATA (Character Data) Sections

<![CDATA[unescaped character & markup data]]>

XML documents consist of markup and character data. The < or & characters cannot be
included inside normal character data without using a character or entity reference, such
as & or & . By using a reference, the resulting < and & characters are not
recognized as markup by the parser, but will become part of the data stream to the
parser's client application.

For large blocks of character data-particularly if the data contains markup, such as an
HTML or XML fragment-the CDATA section can be used. Within a CDATA block, every
character between the opening and closing tag is considered character data. Thus,
special characters can be included in a CDATA section with impunity, except for the
CDATA closing sequence,]]> .

CDATA sections are very useful for tasks such as enclosing XML or HTML documents

http://lib.ommolketab.ir

inside of tutorials explaining how to use markup, but it is difficult to process the contents
of CDATA sections using XSLT, the DOM, or SAX as anything other than text.

CDATA sections cannot be nested. The character sequence]]>
cannot appear within data that is being escaped, or the CDATA block
will be closed prematurely. This situation should not be a problem
ordinarily, but if an application includes XML documents as unparsed
character data, it is important to be aware of this constraint. If it is
necessary to include the CDATA closing sequence in the data, close
the open CDATA section, include the closing characters using
character references to escape them, then reopen the CDATA section
to contain the rest of the character data.

Entity References

An XML entity can best be understood as a macro replacement facility, in which the
replacement can be either parsed (the text becomes part of the XML document) or
unparsed. If unparsed, the entity declaration points to external binary data that cannot
be parsed. Additionally, the replacement text for parsed entities can come from a string
or the contents of an external file. During parsing, a parsed entity reference is replaced
by the substitution text that is specified in the entity declaration. The replacement text is
then reparsed until no more entity or character references remain.

To simplify document parsing, two distinct types of entities are used in different
situations: general and parameter. The basic syntax for referencing both entity types is
almost identical, but specific rules apply to where each type can be used.

Parameter Entity References

%name;

When an XML parser encounters a parameter entity reference within a document's DTD,
it replaces the reference with the entity's text. Whether the replacement text is included
as a literal or included from an external entity, the parser continues parsing the
replacement text as if it had always been a part of the document. This parsing has
interesting implications for nested entity references:

<!ENTITY % YEAR "2001">

http://lib.ommolketab.ir

<!ENTITY COPYRIGHT "© %YEAR;">
. . .
<copyright_notice>©RIGHT;</copyright_notice>

After the necessary entity replacements are made, the previous example would yield the
following canonical element:

<copyright_notice>© 2001</copyright_notice>

XML treats parameter entity references differently depending on
where they appear within the DTD. References within the literal value
of an entity declaration (such as Copyright © %YEAR;)
are valid only as part of the external subset. Within the internal
subset, parameter entity references may occur only where a
complete markup declaration could exist. In other words, within the
internal subset, parameter references can be used only to include
complete markup declarations.

Parameter entity references are recognized only within the DTD; therefore, the %
character has no significance within character data and does not need to be escaped.

General Entity References

&name;

General entity references are recognized only within the parsed character data in the
body of an XML document. They may appear within the parsed character data contained
in an element start- and end-tag, or within the value of an attribute. They are not
recognized within a document's DTD (except inside default values for attributes) or
within CDATA sections.

The sequence of operations that occurs when a parsed general entity
is included by the XML parser can lead to interesting side effects. An
entity's replacement text is, in turn, read by the parser. If character or
general entity replacements exist in the entity replacement text, they
are also parsed and included as parsing continues.

Comments

<!-- comment text -->

http://lib.ommolketab.ir

Comments can appear anywhere in your document or DTD, outside of other markup
tags. XML parsers are not required to preserve contents of comment blocks, so they
should be used only to store information that is not a part of your application. In reality,
most information you might consider storing in a comment block probably should be
made an official part of your XML application. Rather than storing data that will be read
and acted on by an application in a comment, as is frequently done in HTML documents,
you should store it within the element structure of the actual XML document. Enhancing
the readability of a complex DTD or temporarily disabling blocks of markup are effective
uses of comments.

The character sequence -- cannot be included within a comment
block, except as part of the tag closing text. Because comments
cannot be nested, commenting out a comment block is impossible. If
large blocks of markup that include comments must be temporarily
disabled, consider wrapping them in a CDATA section to cause the
parser to read them as simple text instead of markup.

Processing Instructions

<?target [processing-instruction data]?>

Processing instructions provide an escape mechanism that allows an XML application to
include instructions to an XML processor that are not part of the XML markup or
character data. The processing instruction target can be any legal XML name, except
xml in any combination of upper- and lowercase (see Chapter 2). Linking to a
stylesheet to provide formatting instructions for a document is a common use of this
mechanism. According to the principles of XML, formatting instructions should remain
separate from the actual content of a document, but some mechanism must associate
the two. Processing instructions are significant only to applications that recognize them.

The notation facility can indicate exactly what type of processing instruction is included,
and each individual XML application must decide what to do with the additional data. No
action is required by an XML parser when it recognizes that a particular processing
instruction matches a declared notation. When this facility is used, applications that do
not recognize the public or system identifiers of a given processing instruction target
should realize that they could not properly interpret its data portion.

http://lib.ommolketab.ir

Character Encoding Autodetection

The XML declaration must be the very first item in a document so that the XML
parser can determine which character encoding was used to store the
document. A chicken-and-egg problem exists, involving the XML declaration's
encoding="..." clause: the parser can't parse the clause if it doesn't know
what character encoding the document uses. However, since the first five
characters of your document must be the string <?xml (if it includes an XML
declaration), the parser can read the first few bytes of your document and, in
most cases, determine the character encoding before it has read the
encoding declaration.

XML Declaration

<?xml version="1.0" [encoding="encoding-name"][standalone="yes|no"]?>

The XML declaration serves several purposes. It tells the parser what version of the
specification was used, how the document is encoded, and whether the document is
completely self-contained or has references to external entities.

The XML declaration, if included, must be the first thing that appears in an XML
document. Nothing, except possibly a Unicode byte-order mark, may appear before this
structure's initial < character.

Version Information

... version="1.0" ...

The version information attribute denotes which version of the XML specification was
used to create the current document. At this time, the only valid version is 1.0 .

Encoding Declaration

... encoding="encoding-name" ...

The encoding declaration, if present, indicates which character-encoding scheme was

http://lib.ommolketab.ir

used to store the document. Although all XML documents are ultimately handled as
Unicode by the parser, the external storage scheme may be anything from an ASCII text
file using the Latin-1 character set (ISO-8859-1) to a file with native Japanese
characters.

XML parsers may also recognize other encodings, but the XML specification only
requires that they recognize UTF-8 and UTF-16 encoded documents. Many parsers also
support additional character encodings. For a thorough discussion of character-
encoding schemes, see Chapter 26 .

Standalone Declaration

... standalone="yes|no" ...

If a document is completely self contained (the DTD, if there is one, is contained
completely within the original document), then the standalone="yes" declaration
may be used. If this declaration is not given, the value no is assumed, and all external
entities are read and parsed. It is possible to convert any document in which
standalone="no" to a standalone document by replacing each external entity
reference with the text contained in the external entity file.

From the standpoint of an XML application developer, this flag has no effect on how a
document is parsed. However, if it is given, it must be accurate. Setting
standalone="yes" when a document does require DTD declarations that are not
present in the main document file is a violation of XML validity rules.

20.3.2 DTD (Document Type Definition)

Chapter 2 explained the difference between well-formed and valid documents. Well-
formed documents that include and conform to a given DTD are considered valid.
Documents that include a DTD and violate the rules of that DTD are invalid. The DTD is
comprised of the DOCTYPE declaration and both the internal subset (declarations

contained directly within the document) and the external subset (declarations that are
included from outside the main document).

Parameter Entities

The parameter entity mechanism is a simple macro replacement facility that is only valid

http://lib.ommolketab.ir

within the context of the DTD. Parameter entities are declared and then referenced from
within markup or possibly from within other entity declarations. The source of the entity
replacement text can be either a literal string or the contents of an external file.
Parameter entities simplify maintenance of large, complex documents by allowing
authors to build libraries of commonly used entity declarations.

Parameter Entity Declarations

<!ENTITY % name "Replacement text.">
<!ENTITY % name SYSTEM
 "system-literal">
<!ENTITY % name PUBLIC "pubid-literal"
 "system-literal">

Parameter entities are declared within the document's DTD and must be declared before
they are used. The declaration provides two key pieces of information:

The name of the entity, which is used when it is referenced

The replacement text, either directly or indirectly through a link to an external entity

Be aware that an XML parser performs some preprocessing on the replacement text
before it is used in an entity reference. Most importantly, parameter entity references in
the replacement text are recursively expanded before the final version of the
replacement text is stored. Character references are also replaced immediately with the
specified character. This replacement can lead to unexpected side effects, particularly
when constructing parameter entities that declare other parameter entities. For full
disclosure of how entity replacement is implemented by an XML parser and what kinds
of unexpected side effects can occur, see Appendix D of the XML 1.0 specification. The
specification is available on the World Wide Web Consortium web site
(http://www.w3.org/TR/REC-xml#sec-entexpand).

General Entities

General entities are declared within the document type definition and then referenced
within the document's text and attribute content. When the document is parsed, the

http://lib.ommolketab.ir

entity's replacement text is substituted for the entity reference. The parser then resumes
parsing, starting with the text that was just replaced.

General entities are declared within the DTD using a superset of the syntax used to
declare parameter entities. Besides the ability to declare internal parsed entities and
external parsed entities, you can declare external unparsed entities and associate an
XML notation name with them.

Internal entities are used when the replacement text can be efficiently stored inline as a
literal string. The replacement text within an internal entity is included completely in the
entity declaration itself, obviating the need for an external file to contain the replacement
text. This situation closely resembles the string replacement macro facilities found in
many popular programming languages and environments:

<!ENTITY name "Replacement text">

There are two types of external entities: parsed and unparsed. When a parsed entity is
referenced, the contents of the external entity are included in the document, and the
XML parser resumes parsing, starting with the newly included text. When an unparsed
entity is referenced, the parser supplies the application with the unparsed entity's URI,
but it does not insert that data into the document or parse it. What to do with that URI is
up to the application. Any entity declared with an XML notation name associated with it
is an external unparsed entity, and any references to it within the document must be
made using attribute values of type ENITITY or ENTITIES :

<!ENTITY name SYSTEM
 "system-literal">
<!ENTITY name PUBLIC
 "pubid-literal" "system-literal">

Text Declarations

<?xml[version="1.0"] encoding="encoding-name"?>

Files that contain external parsed entities must include a text declaration if the entity file
uses a character encoding other than UTF-8 or UTF-16. This declaration would be
followed by the replacement text of the external parsed entity.

http://lib.ommolketab.ir

External parsed entities may contain only document content or a
completely well-formed subset of the DTD. This restriction is
significant because it indicates that external parameter entities
cannot be used to play token-pasting games by splitting XML syntax
constructs into multiple files, then expecting the parser to reassemble
them.

Unparsed Entities

It may be necessary at times to include data in your XML document that should not be
parsed. For instance, your XML document may need to include pointers to graphics files
that will be used by an application. These files are logically part of the document, but
should not be parsed. The XML language allows you to declare external unparsed
entities that can be included as attribute values within the content of your document:

<!ENTITY name SYSTEM
 "system-literal" NDATA notation_name >
<!ENTITY name PUBLIC "pubid-literal "
 "system-literal" NDATA notation_name >

To include unparsed entities, you must first declare a notation that will be referenced in
the actual entity declaration:

<!NOTATION gif SYSTEM "images/gif">

Then declaring the entity itself is possible:

<!ENTITY bookcase_pic SYSTEM "bookcase.gif" NDATA gif>

As an unparsed general entity, it can be referenced only as an attribute value of type
ENTITY or ENTITIES :

<picture src="bookcase_pic" type="gif"/>

When an XML parser parses this element, the information contained in the entity and
notation declarations can be used to identify the actual type of data stored in the
external entity. For example, a program could choose to display the contents of a GIF
external entity on the screen, once the actual format is known.

http://lib.ommolketab.ir

XLink and similar mechanisms are commonly used in place of
unparsed entities.

External Subset

The document type declaration can include part or all of the document type definition
from an external file. This external portion of the DTD is referred to as the external DTD
subset and may contain markup declarations, conditional sections, and parameter entity
references. It must include a text declaration if the character encoding is not UTF-8 or
UTF-16:

<?xml[version="1.0"] encoding="encoding-name"?>

This declaration (if present) would then be followed by a series of complete DTD markup
statements, including ELEMENT , ATTLIST , ENTITY , and NOTATION declarations,
as well as conditional sections, and processing instructions. For example:

<!ELEMENT furniture_item (desc, %extra_tags; user_tags?, parts_list,
 assembly+)>

<!ATTLIST furniture_item
 xmlns CDATA #FIXED "http://namespaces.oreilly.com/furniture/"
>
...

Internal DTD Subset

The internal DTD subset is the portion of the document type definition included directly
within the document type declaration between the [and] characters. The internal DTD
subset can contain markup declarations and parameter entity references, but not
conditional sections. A single document may have both internal and external DTD
subsets, which, when taken together, form the complete document type definition. The
following example shows the internal subset, which appears between the [and]
characters:

<!DOCTYPE furniture_item SYSTEM "furniture.dtd"

http://lib.ommolketab.ir

[
<!ENTITY % bookcase_ex SYSTEM "Bookcase_ex.ent">

%bookcase_ex;

<!ENTITY bookcase_pic SYSTEM "bookcase.gif" NDATA gif>
<!ENTITY parts_list SYSTEM "parts_list.ent">
]>

Element Type Declaration

Element type declarations provide a template for the actual element instances that
appear within an XML document. The declaration determines what type of content, if
any, can be contained within elements with the given name. The following sections
describe the various element content options available.

Since namespaces are not explicitly included in the XML 1.0
recommendation, element and attribute declarations within a DTD
must give the complete (qualified) name that will be used in the target
document. This means that if namespace prefixes will be used in
instance documents, the DTD must declare them just as they will
appear, prefixes and all. While parameter entities may allow instance
documents to use different prefixes, this still makes complete and
seamless integration of namespaces into a DTD-based application
very awkward.

Empty Element Type

<!ELEMENT name EMPTY>

Elements that are declared empty cannot contain content or nested elements. Within the
document, empty elements may use one of the following two syntax forms:

<name [attribute="value" ...]/>
<name [attribute="value" ...]></name>

Any Element Type

http://lib.ommolketab.ir

<!ELEMENT name ANY>

This content specifier acts as a wildcard, allowing elements of this type to contain
character data or instances of any valid element types that are declared in the DTD.

Mixed Content Element Type

<!ELEMENT name (#PCDATA [| name]+)*>
<!ELEMENT name (#PCDATA)>

Element declarations that include the #PCDATA token can include text content mixed
with other nested elements that are declared in the optional portion of the element
declaration. If the #PCDATA token is used, it is not possible to limit the number of times
or sequence in which other nested elements are mixed with the parsed character data. If
only text content is desired, the asterisk is optional.

Constrained Child Nodes

<!ELEMENT name (child_node_regexp)[? | * | +]>

XML provides a simple regular-expression syntax that can be used to limit the order and
number of child elements within a parent element. This language includes the following
operators:

Operator Meaning

Name Matches an element of the given name

(...) Groups expressions for processing as sets of sequences (using the comma
as a separator) or choices (using | as a separator)

?
Indicates that the preceding name or expression can occur zero or one times
at this point in the document

*
Indicates that the preceding name or expression can occur zero or more
times at this point in the document

+ Indicates that the preceding name or expression must occur one or more
times at this point in the document

Attribute List Declaration

http://lib.ommolketab.ir

<!ATTLIST element_name [attribute_name attribute_type default_decl]*>

In a valid XML document it is necessary to declare the attribute names, types, and
default values that are used with each element type.

The attribute name must obey the rules for XML identifiers, and no duplicate attribute
names may exist within a single declaration.

Attributes are declared as having a specific type. Depending on the declared type, a
validating XML parser will constrain the values that appear in instances of those
attributes within a document. The following table lists the various attribute types and
their meanings:

Attribute type Meaning

CDATA Simple character data.

ID
A unique ID value within the current XML document. No two ID
attribute values within a document can have the same value, and no
element can have two attributes of type ID .

IDREF,
IDREFS

A single reference to an element ID (IDREF) or a list of IDs
(IDREFS), separated by spaces. Every ID token must refer to a valid
ID located somewhere within the document that appears as the ID
type attribute's value.

ENTITY,
ENTITIES

A single reference to a declared unparsed external entity (ENTITY) or
a list of references (ENTITIES), separated by spaces.

NMTOKEN,
NMTOKENS

A single name token value (NMTOKEN) or a list of name tokens
(NMTOKENS), separated by spaces.

NOTATION Attribute Type

... NOTATION (notation [| notation]*) ...

The NOTATION attribute mechanism lets XML document authors indicate that the
character content of some elements obey the rules of some formal language other than
XML. The following short sample document shows how notations might be used to
specify the type of programming language stored in the code_fragment element:

<?xml version="1.0"?>
<!DOCTYPE code_fragment
[
<!NOTATION java_code PUBLIC "Java source code">

http://lib.ommolketab.ir

<!NOTATION c_code PUBLIC "C source code">
<!NOTATION perl_code PUBLIC "Perl source code">
<!ELEMENT code_fragment (#PCDATA)>
<!ATTLIST code_fragment
 code_lang NOTATION (java_code | c_code | perl_code) #REQUIRED>

]>
<code_fragment code_lang="c_code">
 main() { printf("Hello, world."); }
</code_fragment>

Enumeration Attribute Type

... (name_token [| name_token]*) ...

This syntax limits the possible values of the given attribute to one of the name tokens
from the provided list:

<!ELEMENT door EMPTY>
<!ATTLIST door
 state (open | closed | missing) "open">
. . .
<door state="closed"/>

Default Values

If an optional attribute is not present on a given element, a default value may be
provided to be passed by the XML parser to the client application. The following table
shows various forms of the attribute default value clause and their meanings:

Default value
clause

Explanation

#REQUIRED A value must be provided for this attribute.

#IMPLIED A value may or may not be provided for this attribute.

[#FIXED] "
default value "

If this attribute has no explicit value, the XML parser substitutes the
given default value. If the #FIXED token is provided, this attribute's
value must match the given default value. In either case, the parent
element always has an attribute with this name.

http://lib.ommolketab.ir

The #FIXED modifier indicates that the attribute may contain only the value given in the
attribute declaration. Although redundant, it is possible to provide an explicit attribute
value on an element when the attribute was declared as #FIXED . The only restriction is
that the attribute value must exactly match the value given in the #FIXED declaration.

Special Attributes

Some attributes are significant to XML and must be declared and implemented in a
particular way:

xml:space

The xml:space attribute tells an XML application whether the whitespace within the
specified element is significant:

<!ATTLIST element_name xml:space (default|preserve)
 default_decl>
<!ATTLIST element_name xml:space (default) #FIXED 'default' >
<!ATTLIST element_name xml:space (preserve) #FIXED 'preserve' >
xml:lang

For an element's character content, the xml:lang attribute allows a document
author to specify the human language for an element's character content. If used in a
valid XML document, the document type definition must include an attribute type
declaration with the xml:lang attribute name. See Chapter 5 for an explanation of
language support in XML.

Notation Declaration

<!NOTATION notation_name SYSTEM "system-literal">
<!NOTATION notation_name PUBLIC "pubid-literal">
<!NOTATION notation_name PUBLIC "pubid-literal" "system-literal">

Notation declarations are used to provide information to an XML application about the
format of the document's unparsed content. Notations are used by unparsed external
entities, processing instructions, and some attribute values.

Notation information is not significant to the XML parser, but it is preserved for use by
the client application. The public and system identifiers are made available to the client

http://lib.ommolketab.ir

application so that it may correctly interpret non-XML data and processing instructions.

Conditional Sections

The conditional section markup provides support for conditionally including and
excluding content at parse time within an XML document's external subset. Conditional
sections are not allowed within a document's internal subset. The following example
illustrates a likely application of conditional sections:

<!ENTITY % debug 'IGNORE' >
<!ENTITY % release 'INCLUDE' >

<!ELEMENT addend (#PCDATA)>
<!ELEMENT result (#PCDATA)>

<![%debug;[
<!ELEMENT sum (addend+, result)>
]]>
<![%release;[
<!ELEMENT sum (result)>
]]>

20.3.3 Document Body

Elements are an XML document's lifeblood. They provide the structure for character
data and attribute values that make up a particular instance of an XML document type
definition. The !ELEMENT and !ATTLIST declarations from the DTD restrict the
possible contents of an element within a valid XML document. Combining elements
and/or attributes that violate these restrictions generates an error in a validating parser.

Start-Tags and End-Tags

<element_name [attribute_name="attribute value"]*> ...</element_name>

Elements that have content (either character data, other elements, or both) must start
with a start-tag and end with an element end-tag.

http://lib.ommolketab.ir

Empty-Element Tags

<element_name [attribute_name="attribute value"]*></empty_element>
<element_name [attribute_name="attribute value"]* />

Empty elements have no content and are written using either the start- and end-tag
syntax mentioned previously or the empty-element syntax. The two forms are
functionally identical, but the empty-element syntax is more succinct and more
frequently used.

Attributes

attribute_name="attribute value"
attribute_name='attribute value'

Elements may include attributes. The order of attributes within an element tag is not
significant and is not guaranteed to be preserved by an XML parser. Attribute values
must appear within either single or double quotations. Attribute values within a
document must conform to the rules explained in Section 20.4.1 of this chapter.

Note that whitespace may appear around the = character.

The value that appears in the quoted string is tested for validity, depending on the
attribute type provided in the !ATTLIST declaration for the element type. Attribute
values can contain general entity references, but cannot contain references to external
parsed entities. See Section 20.4.1 of this chapter for more information about attribute-
value restrictions.

20.3.4 Namespaces

Although namespace support was not part of the original XML 1.0 recommendation,
Namespaces in XML was approved less than a year later (January 14, 1999).
Namespaces are used to identify uniquely the element and attribute names of a given
XML application from those of other applications. See Chapter 4 for more detailed
information.

The following sections describe how namespaces impact the formation and

http://lib.ommolketab.ir

interpretation of element and attribute names within an XML document.

Unqualified Names

name

An unqualified name is an XML element or attribute name that is not associated with a
namespace. This could be because it has no namespace prefix and no default
namespace has been declared. All unprefixed attribute names are unqualified because
they are never automatically associated with a default namespace. XML parsers that do
not implement namespace support (of which there are very few) or parsers that have
been configured to ignore namespaces will always return unqualified names to their
client applications. Two unqualified names are considered to be the same if they are
lexically identical.

Qualified Names

[prefix:]local_part

A qualified name is an element or attribute name that is associated with an XML
namespace. There are three possible types of qualified names:

Unprefixed element names that are contained within the scope of a default
namespace declaration

Prefixed element names

Prefixed attribute names

Unlike unqualified names, qualified names are considered the same only if their
namespace URIs (from their namespace declarations) and their local parts match.

Default Namespace Declaration

xmlns="namespace_URI"

http://lib.ommolketab.ir

When this attribute is included in an element start-tag, it and any unprefixed elements
contained within it are automatically associated with the namespace URI given. If the
xmlns attribute is set to the empty string, any effective default namespace is ignored,
and unprefixed elements are not associated with any namespace.

An important caveat about default namespace declarations is that
they do not affect unprefixed attributes. Unprefixed attributes are
never explicitly named in any namespace, even if their containing
element is.

Namespace Prefix Declaration

xmlns:prefix="namespace_URI"

This declaration associates the namespace URI given with the prefix name given. Once
it has been declared, the prefix may qualify the current element name, attribute names,
or any other element or attribute name within the scope of the element that declares it.
Nested elements may redefine a given prefix, using a different namespace URI if
desired.

20.4 Constraints

In addition to defining the basic structures used in documents and DTDs, XML 1.0
defines a list of rules regarding their usage. These constraints put limits on various
aspects of XML usage, and documents cannot in fact be considered to be "XML" unless
they meet all of the well-formedness constraints. Parsers are required to report
violations of these constraints, though only well-formedness constraint violations require
that processing of the document halt completely. Namespace constraints are defined in
Namespaces in XML , not XML 1.0.

20.4.1 Well-Formedness Constraints

Well-formedness refers to an XML document's physical organization. Certain lexical
rules must be obeyed before an XML parser can consider a document well-formed.
These rules should not be confused with validity constraints, which determine whether a
particular document is valid when parsed using the document structure rules contained
in its DTD. The Backus-Naur Form (BNF) grammar rules must also be satisfied. The
following sections contain all well-formedness constraints recognized by XML Version
1.0 parsers, including actual text from the 1.0 specification.

http://lib.ommolketab.ir

PEs in Internal Subset

Text from specification

In the internal DTD subset, parameter entity references can occur only where markup
declarations can occur, not within markup declarations. (This does not apply to
references that occur in external parameter entities or to the external subset.)

Explanation

It is only legal to use parameter entity references to build markup declarations within the
external DTD subset. In other words, within the internal subset, parameter entities may
only be used to include complete markup declarations.

External Subset

Text from specification

The external subset, if any, must match production for extSubset .

Explanation

The extSubset production constrains what type of declaration may be contained in
the external subset. This constraint generally means that the external subset of the DTD
must only include whole declarations or parameter entity references. See the
extSubset production in the EBNF grammar at the end of this chapter for specific
limitations.

PE Between Declarations

Text from specification

http://lib.ommolketab.ir

The replacement text of a parameter entity reference in a DeclSep must match the
production extSubsetDecl .

Explanation

The replacement text of parameter entities may contain declarations that might not be
allowed if the replacement text appeared directly. Parameter entity references in the
internal subset cannot appear within declarations, but this rule does not apply to
declarations that have been included via parameter entities.

Element Type Match

Text from specification

The Name in an element's end-tag must match the element type in the start-tag.

Explanation

Proper element nesting is strictly enforced, and every open tag must be matched by a
corresponding close tag. Of course empty elements do not require and may not have a
close tag.

Unique Att Spec

Text from specification

No attribute name may appear more than once in the same start-tag or empty- element
tag.

Explanation

Attribute names must be unique within a given element.

No External Entity References

http://lib.ommolketab.ir

Text from specification

Attribute values cannot contain direct or indirect entity references to external entities.

Explanation

XML parsers report an error when asked to replace references to external parsed
entities within attribute values.

No < in Attribute Values

Text from specification

The replacement text of any entity referred to directly or indirectly in an attribute value
(other than "< ") must not contain a < .

Explanation

This restriction is meant to simplify the task of parsing XML data. Since attribute values
can't even appear to contain element data, simple parsers need not track literal strings.
Just by recognizing < and > characters, simple parsers can check for proper markup
formation and nesting.

Legal Character

Text from specification

Characters referred to using character references must match the production for Char .

Explanation

Any characters that the XML parser generates must be real characters. A few character

http://lib.ommolketab.ir

values in Unicode are not valid standalone characters.

Entity Declared

Text from specification

In a document without any DTD, a document with only an internal DTD subset which
contains no parameter entity references, or a document with standalone='yes' , for
an entity reference that does not occur within the external subset or a parameter entity,
the Name given in the entity reference must match that in an entity declaration that does
not occur within the external subset or a parameter entity, except that well-formed
documents need not declare any of the following entities: amp , lt , gt , apos , quot .
The declaration of a parameter entity must precede any reference to it. Similarly, the
declaration of a general entity must precede any reference to it which appears in a
default value in an attribute-list declaration. Note that if entities are declared in the
external subset or in external parameter entities, a non-validating processor is not
obligated to read and process their declarations; for such documents, the rule that an
entity must be declared is a well-formedness constraint only if standalone='yes' .

Explanation

This long constraint lists the only situations in which an entity reference may appear
without a corresponding entity declaration. Since a nonvalidating parser is not obliged to
read and parse the external subset, the parser must give the document the benefit of the
doubt, if an entity could possibly have been declared.

Parsed Entity

Text from specification

An entity reference must not contain the name of an unparsed entity. Unparsed entities
may be referred to only in attribute values declared to be of type ENTITY or ENTITIES
.

Explanation

http://lib.ommolketab.ir

Since unparsed entities can't be parsed, don't try to force the parser to parse them.

No Recursion

Text from specification

A parsed entity must not contain a recursive reference to itself, either directly or
indirectly.

Explanation

Be careful how you structure your entities; make sure you don't inadvertently create a
circular reference:

<!ENTITY a "&b;">
<!ENTITY b "&c;">
<!ENTITY c "&a;"> <!--wrong!-->

In DTD

Text from specification

Parameter entity references may only appear in the DTD.

Explanation

This constraint is self evident because the % character has no significance outside of the
DTD. Therefore, it is perfectly legal to have an element like this in your document:

<ok>%noproblem;</ok>

The text %noproblem; is passed on by the parser without generating an error.

20.4.2 Validity Constraints

The following sections contain all validity constraints that are enforced by a validating

http://lib.ommolketab.ir

parser. Each includes actual text from the XML 1.0 specification and a short explanation
of what the constraint actually means.

Root Element Type

Text from specification

The Name in the document type declaration must match the element type of the root
element.

Explanation

The name provided in the !DOCTYPE declaration identifies the root element's name and
must match the name of the root element in the document.

Proper Declaration/PE Nesting

Text from specification

Parameter entity replacement text must be properly nested with markup declarations.
That is to say, if either the first character or the last character of a markup declaration is
contained in the replacement text for a parameter entity reference, both must be
contained in the same replacement text.

Explanation

This constraint means you can't create a parameter entity that completes one DTD
declaration and begins another; the following XML fragment would violate this constraint:

<!ENTITY % finish_it ">">
<!ENTITY % bad "won't work" %finish_it; <!--wrong!-->

Standalone Document Declaration

http://lib.ommolketab.ir

Text from specification

The standalone document declaration must have the value "no " if any external markup
declarations contain declarations of: attributes with default values, if elements to which
these attributes apply appear in the document without specifications of values for these
attributes, or entities (other than amp , lt , gt , apos , quot), if references to those
entities appear in the document, or attributes with values subject to normalization, where
the attribute appears in the document with a value which will change as a result of
normalization, or element types with element content, if whitespace occurs directly within
any instance of those types.

Explanation

This laundry list of potential standalone flag violations can be read to mean, "If you have
an external subset in your DTD, ensure that your document doesn't depend on anything
in it if you say standalone='yes' in your XML declaration." A more succinct
interpretation would be, "If your document has an external DTD subset, just set
standalone to no ."

Element Valid

Text from specification

An element is valid if there is a declaration matching elementdecl where the Name
matches the element type, and one of the following holds: The declaration matches
EMPTY and the element has no content. The declaration matches children and the
sequence of child elements belongs to the language generated by the regular
expression in the content model, with optional whitespace (characters matching the
nonterminal S) between the start-tag and the first child element, between child
elements, or between the last child element and the end-tag. Note that a CDATA section
containing only whitespace does not match the nonterminal S , and hence cannot
appear in these positions. The declaration matches Mixed and the content consists of
character data and child elements whose types match names in the content model. The
declaration matches ANY , and the types of any child elements have been declared.

Explanation

If a document includes a DTD with element declarations, make sure the actual elements

http://lib.ommolketab.ir

in the document match the rules set down in the DTD.

Attribute Value Type

Text from specification

The attribute must have been declared; the value must be of the type declared for it.

Explanation

All attributes used on elements in valid XML documents must have been declared in the
DTD, including the xml:space and xml:lang attributes. If you declare an attribute
for an element, make sure that every instance of that attribute has a value conforming to
the type specified. (For attribute types, see Attribute List Declaration .)

Unique Element Type Declaration

Text from specification

No element type may be declared more than once.

Explanation

Unlike entity and attribute declarations, only one declaration may exist for a particular
element type.

Proper Group/PE Nesting

Text from specification

Parameter entity replacement text must be properly nested with parenthesized groups.
That is to say, if either of the opening or closing parentheses in a choice , seq , or

http://lib.ommolketab.ir

Mixed construct is contained in the replacement text for a parameter entity, both must
be contained in the same replacement text.

For interoperability, if a parameter entity reference appears in a choice , seq , or
Mixed construct, its replacement text should contain at least one non-blank character,
and neither the first nor last non-blank character of the replacement text should be a
connector (| or ,).

Explanation

This constraint restricts the way parameter entities can be used to construct element
declarations. It is similar to the Proper Declaration/PE Nesting constraint in that
parameter entities may not be used to complete or open new parenthesized
expressions. It prevents the XML author from hiding significant syntax elements inside
parameter entities.

No Duplicate Types

Text from specification

The same name must not appear more than once in a single mixed-content declaration.

Explanation

Don't list the same element type name more than once in the same mixed-content
declaration.

ID

Text from specification

Values of type ID must match the Name production. A name must not appear more than
once in an XML document as a value of this type; i.e., ID values must uniquely identify
the elements which bear them.

Explanation

http://lib.ommolketab.ir

No two attribute values for attributes declared as type ID can have the same value. This
constraint is not restricted by element type, but it is global across the entire document.

One ID per Element Type

Text from specification

No element type may have more than one ID attribute specified.

Explanation

Each element can have at most one ID type attribute.

ID Attribute Default

Text from specification

An ID attribute must have a declared default of #IMPLIED or #REQUIRED .

Explanation

To avoid potential duplication, you can't declare an ID attribute to be #FIXED or
provide a default value for it.

IDREF

Text from specification

Values of type IDREF must match the Name production, and values of type IDREFS
must match Names ; each Name must match the value of an ID attribute on some
element in the XML document; i.e., IDREF values must match the value of some ID

http://lib.ommolketab.ir

attribute.

Explanation

ID references must refer to actual ID attributes that exist within the document.

Entity Name

Text from specification

Values of type ENTITY must match the Name production, and values of type
ENTITIES must match Names ; each Name must match the name of an unparsed
entity declared in the DTD.

Explanation

Attributes declared to contain entity references must contain references to unparsed
entities declared in the DTD.

Name Token

Text from specification

Values of type NMTOKEN must match the Nmtoken production; values of type
NMTOKENS must match Nmtokens .

Explanation

If an attribute is declared to contain a name or list of names, the values must be legal
XML name tokens.

Notation Attributes

http://lib.ommolketab.ir

Text from specification

Values of this type must match one of the notation names included in the declaration; all
notation names in the declaration must be declared.

Explanation

Attributes that must contain notation names must contain names that reference
notations declared in the DTD.

One Notation per Element Type

Text from specification

No element type may have more than one NOTATION attribute specified.

Explanation

A given element can have only one attribute declared with the NOTATION attribute type.
This constraint is provided for backward compatibility with SGML.

No Notation on Empty Element

Text from specification

For compatibility, an attribute of type NOTATION must not be declared on an element
declared EMPTY .

Explanation

Empty elements cannot have NOTATION attributes in order to maintain compatibility
with SGML.

Enumeration

http://lib.ommolketab.ir

Text from specification

Values of this type must match one of the Nmtoken tokens in the declaration.

Explanation

Assigning a value to an enumerated type attribute that isn't listed in the enumeration is
illegal in the DTD.

Required Attribute

Text from specification

If the default declaration is the keyword #REQUIRED , then the attribute must be
specified for all elements of the type in the attribute-list declaration.

Explanation

Required attributes must appear in the document and have a value assigned to them if
they are declared as #REQUIRED in the DTD.

Attribute Default Legal

Text from specification

The declared default value must meet the lexical constraints of the declared attribute
type.

Explanation

If you provide a default attribute value, it must obey the same rules that apply to a
normal attribute value within the document.

http://lib.ommolketab.ir

Fixed Attribute Default

Text from specification

If an attribute has a default value declared with the #FIXED keyword, instances of that
attribute must match the default value.

Explanation

If you choose to provide an explicit value for a #FIXED attribute in your document, it
must match the default value given in the attribute declaration.

Proper Conditional Section/PE Nesting

Text from specification

If any of the "<![", "[", or "]]> " of a conditional section is contained in the
replacement text for a parameter entity reference, all of them must be contained in the
same replacement text.

Explanation

If you use a parameter entity to contain the beginning of a conditional section, the
parameter entity must also contain the end of the section.

Entity Declared

Text from specification

In a document with an external subset or external parameter entities with
"standalone='no'" , the Name given in the entity reference must match that in an

http://lib.ommolketab.ir

entity declaration. For interoperability, valid documents should declare the entities amp ,
lt , gt , apos , quot , in the form specified in 4.6 Predefined Entities. The declaration
of a parameter entity must precede any reference to it. Similarly, the declaration of a
general entity must precede any attribute-list declaration containing a default value with
a direct or indirect reference to that general entity.

Explanation

Parameter and general entity declarations must precede any references to these
entities. All entity references must refer to previously declared entities. The specification
also states that declaring the five predefined general entities (amp , lt , gt , apos ,
and quot) is a good idea. In reality, declaring the predefined general entities adds
unnecessary complexity to most applications.

Notation Declared

Text from specification

The Name must match the declared name of a notation.

Explanation

External unparsed entities must use a notation that is declared in the document.

Unique Notation Name

Text from specification

Only one notation declaration can declare a given Name .

Explanation

Declaring two notations with the same name is illegal.

20.4.3 Namespace Constraints

http://lib.ommolketab.ir

The following list contains all constraints defined by the namespaces specification. Each
includes actual text from the Namespaces in XML specification and a short explanation
of what the constraint actually means.

Leading "XML"

Text from specification

Prefixes beginning with the three-letter sequence x, m, l, in any case combination, are
reserved for use by XML and XML-related specifications.

Explanation

Just like most other names in XML, namespace prefixes names can't begin with xml
unless they've been defined by the W3C.

Prefix Declared

Text from specification

The namespace prefix, unless it is xml or xmlns , must have been declared in a
namespace declaration attribute in either the start-tag of the element where the prefix is
used or in an ancestor element (i.e., an element in whose content the prefixed markup
occurs). The prefix xml is by definition bound to the namespace name
http://www.w3.org/XML/1998/namespace . The prefix xmlns is used only for
namespace bindings and is not itself bound to any namespace name.

Explanation

You have to declare all namespaces before you can use them. The prefixes have no
meaning without the declarations, so using a prefix without a declaration context is an
error. The namespace with the prefix xml is permanently defined, so there is no need to
redeclare it. The xmlns prefix used by namespace declarations is not considered a
namespace prefix itself, and no declaration is needed for it.

http://www.w3.org/XML/1998/namespace
http://lib.ommolketab.ir

20.5 XML Document Grammar

The Extended Backus-Naur Form (EBNF) grammar, shown in the following section, was
collected from the XML 1.0 Recommendation , Second Edition. It brings all XML
language productions together in a single location and describes the syntax that is
understood by XML 1.0-compliant parsers. Each production has been numbered and
cross-referenced using superscripted numbers.

20.5.1 Extended Backus-Naur Form (EBNF) Grammar

20.5.1.1 Document

[1] document ::= prolog22 element39 Misc27

20.5.1.2 Character range

[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

20.5.1.3 Whitespace

[3] S ::= (#x20 | #x9 | #xD | #xA)+

20.5.1.4 Names and tokens

[4] NameChar ::= Letter84 | Digit88 | '.' | '-' | '_' | ':' | CombiningChar 87 | Extender89

[5] Name ::= (Letter84 | '_' | ':') (NameChar4)*
[6] Names ::= Name5 (#x20 Name5)*
[7] Nmtoken ::= (NameChar4)+
[8] Nmtokens ::= Nmtoken7 (#x20 Nmtoken7)*

20.5.1.5 Literals

[9] EntityValue ::= '"' ([^%&"] | PEReference 69 | Reference67)* '"' | "'" ([^%&'] | PEReference 69 | Reference67)* "'"
[10] AttValue ::= '"' ([^<&"] | Reference 67)* '"' | "'" ([^<&'] | Reference 67)* "'"
[11] SystemLiteral ::= ('"' [^"]* '"') | ("'" [^']* "'")
[12] PubidLiteral ::= '"' PubidChar 13* '"' | "'" (PubidChar13 - "'")* "'"
[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-'()+,./:=?;!*#@$_%]

20.5.1.6 Character data

[14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)

http://lib.ommolketab.ir

20.5.1.7 Comments

[15] Comment ::= '<!--' ((Char2 - '-') | ('-' (Char2 - '-')))* '-->'

20.5.1.8 Processing instructions

[16] PI ::= '<?' PITarget17 (S3 (Char2* - (Char2* '?>' Char2*)))? '?>'
[17] PITarget ::= Name5 - (('X' | 'x') ('M' | 'm') ('L' | 'l'))

20.5.1.9 CDATA sections

[18] CDSect ::= CDStart19 CData20 CDEnd21

[19] CDStart ::= '<![CDATA['
[20] CData ::= (Char2* - (Char2* ']]>' Char2*))
[21] CDEnd ::= ']]>'

20.5.1.10 Prolog

[22] prolog ::= XMLDecl23? Misc27* (doctypedecl28 Misc27*)?
[23] XMLDecl ::= '<?xml' VersionInfo 24 EncodingDecl80? SDDecl32? S3? '?>'
[24] VersionInfo ::= S3 'version' Eq ("'" VersionNum26 "'" | '"' VersionNum26 '"')
[25] Eq ::= S3? '=' S3?
[26] VersionNum ::= ([a-zA-Z0-9_.:] | '-')+
[27] Misc ::= Comment15 | PI16 | S3

20.5.1.11 Document type definition

[28] doctypedecl ::= '<!DOCTYPE' S 3 Name5 (S3 ExternalID)? S3? ('[' intSubset28b ']' S3?)? '>'
[28a] DeclSep ::= PEReference69 | S3

[28b] intSubset ::= (markupdecl29 | DeclSep28a)*
[29] markupdecl ::= elementdecl45 | AttlistDecl52 | EntityDecl70 | NotationDecl82 | PI16 | Comment15

20.5.1.12 External subset

[30] extSubset ::= TextDecl77? extSubsetDecl31

[31] extSubsetDecl ::= (markupdecl 29 | conditionalSect61 | DeclSep28a)*

20.5.1.13 Standalone document declaration

[32] SDDecl ::= S3 'standalone' Eq (("'" ('yes' | 'no') "'") | ('"' ('yes' | 'no') '"'))

20.5.1.14 Element

http://lib.ommolketab.ir

[39] element ::= EmptyElemTag44 | STag40 content43 ETag42

20.5.1.15 Start-tag

[40] STag ::= '<' Name5 (S3 Attribute)* S3? '>'
[41] Attribute ::= Name5 Eq AttValue10

20.5.1.16 End-tag

[42] ETag ::= '</' Name5 S3? '>'

20.5.1.17 Content of elements

[43] content ::= CharData14? ((element39 | Reference67 | CDSect18 | PI16 | Comment15) CharData14?)*

20.5.1.18 Tags for empty elements

[44] EmptyElemTag ::= '<' Name5 (S3 Attribute41)* S3? '/>'

20.5.1.19 Element type declaration

[45] elementdecl ::= '<!ELEMENT' S 3 Name5 S3 contentspec46 S3? '>'
[46] contentspec ::= 'EMPTY' | 'ANY' | Mixed 51 | children47

20.5.1.20 Element-content models

[47] children ::= (choice49 | seq50) ('?' | '*' | '+')?
[48] cp ::= (Name5 | choice49 | seq50) ('?' | '*' | '+')?
[49] choice ::= '(' S3? cp48 (S3? '|' S3? cp48)+ S3? ')'
[50] seq ::= '(' S3? cp48 (S3? ',' S3? cp48)* S3? ')'

20.5.1.21 Mixed-content declaration

[51] Mixed ::= '(' S3? '#PCDATA' (S3? '|' S3? Name5)* S3? ')*' | '(' S3? '#PCDATA' S3? ')'

20.5.1.22 Attribute-list declaration

[52] AttlistDecl ::= '<!ATTLIST' S 3 Name5 AttDef53* S3? '>'
[53] AttDef ::= S3 Name5 S3 AttType54 S3 DefaultDecl60

20.5.1.23 Attribute types

http://lib.ommolketab.ir

[54] AttType ::= StringType55 | TokenizedType56 | EnumeratedType57

[55] StringType ::= 'CDATA'
[56] TokenizedType ::= 'ID' | 'IDREF' | 'IDREFS' | 'ENTITY' | 'ENTITIES' |
'NMTOKEN' | 'NMTOKENS'

20.5.1.24 Enumerated attribute types

[57] EnumeratedType ::= NotationType58 | Enumeration59

[58] NotationType ::= 'NOTATION' S 3 '(' S3? Name5 (S3? '|' S3? Name5)* S3? ')'
[59] Enumeration ::= '(' S3? Nmtoken7 (S3? '|' S3? Nmtoken7)* S3? ')'

20.5.1.25 Attribute defaults

[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED' | (('#FIXED' S 3)? AttValue10

20.5.1.26 Conditional section

[61] conditionalSect ::= includeSect62 | ignoreSect63

[62] includeSect ::= '<![' S 3? 'INCLUDE' S3? '[' extSubsetDecl31 ']]>'
[63] ignoreSect ::= '<![' S3? 'IGNORE' S3? '[' ignoreSectContents64* ']]>'
[64] ignoreSectContents ::= Ignore65 ('<![' ignoreSectContents64 ']]>' Ignore65)*
[65] Ignore ::= Char2* - (Char2* ('<![' | ']]>') Char2*)

20.5.1.27 Character reference

[66] CharRef ::= '&#' [0-9]+ ';'
| '&#x' [0-9a-fA-F]+ ';'

20.5.1.28 Entity reference

[67] Reference ::= EntityRef68 | CharRef66

[68] EntityRef ::= '&' Name5 ';'
[69] PEReference ::= '%' Name5 ';'

20.5.1.29 Entity declaration

[70] EntityDecl ::= GEDecl71 | PEDecl72

[71] GEDecl ::= '<!ENTITY' S 3 Name5 S3 EntityDef73 S3? '>'
[72] PEDecl ::= '<!ENTITY' S 3 '%' S3 Name5 S3 PEDef74 S3? '>'
[73] EntityDef ::= EntityValue9 | (ExternalID75 NDataDecl76?)
[74] PEDef ::= EntityValue9 | ExternalID75

http://lib.ommolketab.ir

20.5.1.30 External entity declaration

[75] ExternalID ::= 'SYSTEM' S3 SystemLiteral11 | 'PUBLIC' S3 PubidLiteral12 S3 SystemLiteral11

[76] NDataDecl ::= S3 'NDATA' S3 Name5

20.5.1.31 Text declaration

[77] TextDecl ::= '<?xml' VersionInfo 24? EncodingDecl80 S3? '?>'

20.5.1.32 Well-formed external parsed entity

[78] extParsedEnt ::= TextDecl77? content43

[79] extPE ::= TextDecl77? extSubsetDecl31

20.5.1.33 Encoding declaration

[80] EncodingDecl ::= S3 'encoding' Eq ('"' EncName81 '"' | "'" EncName81 "'")
[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | '-')*

20.5.1.34 Notation declarations

[82] NotationDecl ::= '<!NOTATION' S 3 Name5 S3 (ExternalID75 | PublicID83) S3? '>'
[83] PublicID ::= 'PUBLIC' S 3 PubidLiteral12

20.5.1.35 Characters

[84] Letter ::= BaseChar85 | Ideographic86

[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6] |
[#x00D8-#x00F6] | [#x00F8-#x00FF] | [#x0100-#x0131] | [#x0134-#x013E] |
[#x0141-#x0148] | [#x014A-#x017E] | [#x0180-#x01C3] | [#x01CD-#x01F0] |
[#x01F4-#x01F5] | [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] | #x0386 |
[#x0388-#x038A] | #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE] | [#x03D0-#x03D6] |
#x03DA | #x03DC | #x03DE | #x03E0 | [#x03E2-#x03F3] | [#x0401-#x040C] |
[#x040E-#x044F] | [#x0451-#x045C] | [#x045E-#x0481] | [#x0490-#x04C4] |
[#x04C7-#x04C8] | [#x04CB-#x04CC] | [#x04D0-#x04EB] | [#x04EE-#x04F5] |
[#x04F8-#x04F9] | [#x0531-#x0556] | #x0559 | [#x0561-#x0586] | [#x05D0-#x05EA] |
[#x05F0-#x05F2] | [#x0621-#x063A] | [#x0641-#x064A] | [#x0671-#x06B7] |
[#x06BA-#x06BE] | [#x06C0-#x06CE] | [#x06D0-#x06D3] | #x06D5 | [#x06E5-#x06E6] |
[#x0905-#x0939] | #x093D | [#x0958-#x0961] | [#x0985-#x098C] | [#x098F-#x0990] |
[#x0993-#x09A8] | [#x09AA-#x09B0] | #x09B2 | [#x09B6-#x09B9] | [#x09DC-#x09DD] |
[#x09DF-#x09E1] | [#x09F0-#x09F1] | [#x0A05-#x0A0A] | [#x0A0F-#x0A10] |
[#x0A13-#x0A28] | [#x0A2A-#x0A30] | [#x0A32-#x0A33] | [#x0A35-#x0A36] |

http://lib.ommolketab.ir

[#x0A38-#x0A39] | [#x0A59-#x0A5C] | #x0A5E | [#x0A72-#x0A74] | [#x0A85-#x0A8B] |
#x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8] | [#x0AAA-#x0AB0] | [#x0AB2-#x0AB3] |
[#x0AB5-#x0AB9] | #x0ABD | #x0AE0 | [#x0B05-#x0B0C] | [#x0B0F-#x0B10] |
[#x0B13-#x0B28] | [#x0B2A-#x0B30] | [#x0B32-#x0B33] | [#x0B36-#x0B39] | #x0B3D |
[#x0B5C-#x0B5D] | [#x0B5F-#x0B61] | [#x0B85-#x0B8A] | [#x0B8E-#x0B90] |
[#x0B92-#x0B95] | [#x0B99-#x0B9A] | #x0B9C | [#x0B9E-#x0B9F] | [#x0BA3-#x0BA4] |
[#x0BA8-#x0BAA] | [#x0BAE-#x0BB5] | [#x0BB7-#x0BB9] | [#x0C05-#x0C0C] |
[#x0C0E-#x0C10] | [#x0C12-#x0C28] | [#x0C2A-#x0C33] | [#x0C35-#x0C39] |
[#x0C60-#x0C61] | [#x0C85-#x0C8C] | [#x0C8E-#x0C90] | [#x0C92-#x0CA8] |
[#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] | #x0CDE | [#x0CE0-#x0CE1] | [#x0D05-#x0D0C] |
[#x0D0E-#x0D10] | [#x0D12-#x0D28] | [#x0D2A-#x0D39] | [#x0D60-#x0D61] |
[#x0E01-#x0E2E] | #x0E30 | [#x0E32-#x0E33] | [#x0E40-#x0E45] | [#x0E81-#x0E82] |
#x0E84 | [#x0E87-#x0E88] | #x0E8A | #x0E8D | [#x0E94-#x0E97] | [#x0E99-#x0E9F] |
[#x0EA1-#x0EA3] | #x0EA5 | #x0EA7 | [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0 |
[#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-#x0EC4] | [#x0F40-#x0F47] | [#x0F49-#x0F69] |
[#x10A0-#x10C5] | [#x10D0-#x10F6] | #x1100 | [#x1102-#x1103] | [#x1105-#x1107] |
#x1109 | [#x110B-#x110C] | [#x110E-#x1112] | #x113C | #x113E | #x1140 | #x114C |
#x114E | #x1150 | [#x1154-#x1155] | #x1159 | [#x115F-#x1161] | #x1163 | #x1165 |
#x1167 | #x1169 | [#x116D-#x116E] | [#x1172-#x1173] | #x1175 | #x119E | #x11A8 |
#x11AB | [#x11AE-#x11AF] | [#x11B7-#x11B8] | #x11BA | [#x11BC-#x11C2] | #x11EB |
#x11F0 | #x11F9 | [#x1E00-#x1E9B] | [#x1EA0-#x1EF9] | [#x1F00-#x1F15] |
[#x1F18-#x1F1D] | [#x1F20-#x1F45] | [#x1F48-#x1F4D] | [#x1F50-#x1F57] | #x1F59 |
#x1F5B | #x1F5D | [#x1F5F-#x1F7D] | [#x1F80-#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE |
[#x1FC2-#x1FC4] | [#x1FC6-#x1FCC] | [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB] |
[#x1FE0-#x1FEC] | [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | #x2126 | [#x212A-#x212B] |
#x212E | [#x2180-#x2182] | [#x3041-#x3094] | [#x30A1-#x30FA] | [#x3105-#x312C] |
[#xAC00-#xD7A3]
[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029]
[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] |
[#x0591-#x05A1] | [#x05A3-#x05B9] | [#x05BB-#x05BD] | #x05BF | [#x05C1-#x05C2] |
#x05C4 | [#x064B-#x0652] | #x0670 | [#x06D6-#x06DC] | [#x06DD-#x06DF] |
[#x06E0-#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED] | [#x0901-#x0903] | #x093C |
[#x093E-#x094C] | #x094D | [#x0951-#x0954] | [#x0962-#x0963] | [#x0981-#x0983] |
#x09BC | #x09BE | #x09BF | [#x09C0-#x09C4] | [#x09C7-#x09C8] | [#x09CB-#x09CD] |
#x09D7 | [#x09E2-#x09E3] | #x0A02 | #x0A3C | #x0A3E | #x0A3F | [#x0A40-#x0A42] |
[#x0A47-#x0A48] | [#x0A4B-#x0A4D] | [#x0A70-#x0A71] | [#x0A81-#x0A83] | #x0ABC |
[#x0ABE-#x0AC5] | [#x0AC7-#x0AC9] | [#x0ACB-#x0ACD] | [#x0B01-#x0B03] | #x0B3C |
[#x0B3E-#x0B43] | [#x0B47-#x0B48] | [#x0B4B-#x0B4D] | [#x0B56-#x0B57] |
[#x0B82-#x0B83] | [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-#x0BCD] | #x0BD7 |
[#x0C01-#x0C03] | [#x0C3E-#x0C44] | [#x0C46-#x0C48] | [#x0C4A-#x0C4D] |
[#x0C55-#x0C56] | [#x0C82-#x0C83] | [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8] |

http://lib.ommolketab.ir

[#x0CCA-#x0CCD] | [#x0CD5-#x0CD6] | [#x0D02-#x0D03] | [#x0D3E-#x0D43] |
[#x0D46-#x0D48] | [#x0D4A-#x0D4D] | #x0D57 | #x0E31 | [#x0E34-#x0E3A] |
[#x0E47-#x0E4E] | #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC] | [#x0EC8-#x0ECD] |
[#x0F18-#x0F19] | #x0F35 | #x0F37 | #x0F39 | #x0F3E | #x0F3F | [#x0F71-#x0F84] |
[#x0F86-#x0F8B] | [#x0F90-#x0F95] | #x0F97 | [#x0F99-#x0FAD] | [#x0FB1-#x0FB7] |
#x0FB9 | [#x20D0-#x20DC] | #x20E1 | [#x302A-#x302F] | #x3099 | #x309A
[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-#x06F9] |
[#x0966-#x096F] | [#x09E6-#x09EF] | [#x0A66-#x0A6F] | [#x0AE6-#x0AEF] |
[#x0B66-#x0B6F] | [#x0BE7-#x0BEF] | [#x0C66-#x0C6F] | [#x0CE6-#x0CEF] |
[#x0D66-#x0D6F] | [#x0E50-#x0E59] | [#x0ED0-#x0ED9] | [#x0F20-#x0F29]
[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #x0E46 | #x0EC6 |
#x3005 | [#x3031-#x3035] | [#x309D-#x309E] | [#x30FC-#x30FE]

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 21. Schemas Reference

 21.1 The Schema Namespaces

 21.2 Schema Elements
 21.3 Primitive Types

 21.4 Instance Document Attributes

The W3C XML Schema Language (schemas) is a declarative language used to describe
the allowed contents of XML documents by assigning types to elements and attributes.
The schema language includes several dozen standard types and allows you to define
your own custom types. The combination of the information in an XML document
instance and the types in that document as defined by the schema is sometimes called
the Post Schema Validation Infoset (PSVI).

A schema processor reads both an input XML document and a schema (which is itself
an XML document because the W3C XML Schema Language is an XML application)
and returns a Boolean result specifying whether the document adheres to the
constraints in the schema. A document that satisfies all the schema's constraints and in
which all the document's elements and attributes are declared is said to be schema-valid
, though in this chapter we will mostly just call such documents valid . A document that
does not satisfy all of the constraints is said to be invalid .

21.1 The Schema Namespaces

All standard schema elements are in the http://www.w3.org/2001/XMLSchema
namespace. In this chapter, we assume that this URI is mapped to the xs prefix using
an appropriate xmlns:xs declaration. This declaration is almost always placed on the
root element start-tag:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

In addition, several attributes are used in instance documents to associate schema
information with them, including schemaLocation and type . These attributes are in

the http://www.w3.org/2001/XMLSchema-instance namespace. In this chapter, we
assume that this URI is mapped to the xsi prefix with an appropriate xmlns:xsi
declaration on either the element where this attribute appears or one of its ancestors.

In a few cases, schema elements may contain elements from other, arbitrary
namespaces or no namespace at all. This occurs primarily inside xs:appinfo and

http://www.w3.org/2001/XMLSchema-instance
http://lib.ommolketab.ir

xs:documentation elements, which provide supplementary information about the
schema itself or the documents the schema describes to systems that are not schema
validators or to people reading the schema.

Finally, most schema elements can have arbitrary attributes from other namespaces.
For instance, this allows you to make an xs:attribute element a simple XLink by
giving it xlink:type and xlink:href attributes or to identify the language of an
xs:notation using an xml:lang attribute. However, this capability is not much
used in practice.

21.2 Schema Elements

The W3C XML Schema Language defines 42 elements, which naturally divide into
several categories:

One root element

xs:schema
Three declaration elements

xs:element , xs:attribute , and xs:notation
Eight elements for defining types

xs:complexContent , xs:complexType , xs:extension , xs:list ,
xs:restriction , xs:simpleContent , xs:simpleType , and
xs:union

Seven elements for defining content models

xs:all , xs:any , xs:anyAttribute , xs:attributeGroup ,
xs:choice , xs:group , and xs:sequence

Five elements for specifying identity constraints

xs:field , xs:key , xs:keyref , xs:selector , and xs:unique
Three elements for assembling schemas out of component parts

xs:import , xs:include , and xs:redefine
12 facet elements for constraining simple types

xs:enumeration , xs:fractionDigits , xs:length ,
xs:maxExclusive , xs:maxInclusive , xs:maxLength ,
xs:minExclusive , xs:minInclusive , xs:minLength , xs:pattern ,
xs:totalDigits , and xs:whiteSpace

Three elements for documenting schemas

http://lib.ommolketab.ir

xs:appinfo , xs:annotation , and xs:documentation

Elements in this section are arranged alphabetically from xs:any to xs:whiteSpace
. Each element begins with a sample implementation in the following form:

<xs:elementName
 attribute1 = "allowed attribute values"
 attribute2 = "allowed attribute values"
>
 <!-- Content model -->
</xs:elementName>

Most attribute values can be expressed as one of the 44 XML Schema built-in simple
types, such as xs:string , xs:ID , or xs:integer . Some attribute values are
specified as an enumeration of the legal values in the form (value1 | value2 |
value3 | etc.) . In this case, the default value, if there is one, is given in
boldface.

Element content models are given in a comment in the form they might appear in an
ELEMENT declaration in a DTD. For example, an xs:all element may contain a single
optional xs:annotation child element followed by zero or more xs:element
elements. Thus its content model is written like this:

<!-- (xs:annotation?, xs:element*) -->

xs:all

<xs:all
 id = "ID "
 maxOccurs = "1 "
 minOccurs = "(0 | 1)">
 <!-- (xs:annotation?, xs:element*) -->
</xs:all>

The xs:all element indicates that every element represented by one of its child
xs:element elements must appear. However, the order of the child elements in the
instance element does not matter. For example, an xs:all element can require that
each FullName element have exactly one FirstName child and exactly one
LastName child, but that the order of the two child elements does not matter; the first
name can come first or the last name can come first.

The xs:all element must be the top group in its content model (i.e., an xs:group ,

http://lib.ommolketab.ir

xs:choice , or xs:sequence cannot contain an xs:all element). The complete
group represented by the xs:all element can occur either zero or one time as
indicated by its minOccurs and maxOccurs attributes. By default it must occur
exactly once. Furthermore, the minOccurs attribute of each of the individual
xs:element elements inside the xs:all element must also be set to either 0 or 1,
and the maxOccurs attribute of each of these elements must be set to 1. xs:all
cannot indicate, for example, that a FullName element must contain between zero and
five FirstName s and between one and three LastName s in any order.

xs:annotation

<xs:annotation
 id = "ID">
 <!-- (xs:appinfo | xs:documentation)* -->
</xs:annotation>

The xs:annotation element is ignored by schema validators. Its purpose is to
provide metainformation about the schema or schema element in which it appears.
Information intended for human readers is placed in xs:documentation child
elements. Information intended for software programs is placed in xs:appinfo child
elements.

xs:any

<xs:any
 id = "ID"
 maxOccurs = "nonNegativeInteger | unbounded"
 minOccurs = "nonNegativeInteger"
 namespace = " ##any | ##other | anyURI* ##targetNamespace? ##local? "
 processContents = " lax | skip | strict ">
 <!-- xs:annotation? -->
</xs:any>

The wildcard element xs:any is useful when writing schemas for languages such as
XSLT that routinely include markup from multiple vocabularies that are unknown when
the schema is written. It indicates that between minOccurs and maxOccurs ,
elements from one or more namespaces identified by the namespace attribute may

http://lib.ommolketab.ir

appear at that position in a content model. As well as literal namespace URIs, the
special value ##targetNamespace can be included in the list to indicate that any
element from the schema's target namespace can be used. The special value ##local
can be included in the list to indicate that elements not in any namespace can be used.
Instead of the list of namespace URIs, you can use the special value ##any to indicate
that all elements from any namespace or no namespace are allowed, or the special
value ##other to indicate that elements from namespaces other than the schema's
target namespace can be used.

The processContents attribute indicates whether the elements represented by
xs:any have to be declared or whether they can be completely unfamiliar to the
schema. It has one of these three values:

strict

Elements represented by this xs:any element must be declared or have an
xsi:type attribute. Furthermore, the element must be valid according to its
declaration or type.

skip

Elements represented by this xs:any element need not be declared in the
schema and need not be valid even if they are declared.

lax

Elements represented by this xs:any element must be validated if they are
declared or if they have an xsi:type attribute, but must not be validated if they
are neither declared nor have an xsi:type attribute.

The default value is strict .

xs:anyAttribute

<xs:anyAttribute
 id = "ID "
 namespace = "##any | ##other | anyURI * ##targetNamespace? ##local?"
 processContents = "(lax | skip | strict)" >
 <!-- (xs:annotation?) -->
</xs:anyAttribute>

The xs:anyAttribute element appears inside xs:complexType elements, where
it indicates that elements of that type can have any attribute from one or more

http://lib.ommolketab.ir

namespaces. It can also appear inside xs:attributeGroup elements, where it adds
attributes from one or more namespaces as potential members of the group. The
namespace attribute contains a whitespace-separated list of the namespace URIs that
are allowed for this element's attributes. As well as literal namespace URIs, the special
value ##targetNamespace can be included in the list to indicate that any attribute
from the schema's target namespace can be used. The special value ##local can be
included in the list, indicating that attributes not in any namespace (unprefixed attributes)
may be used. Instead of the list of namespace URIs, you can use the special value
##any to indicate that all attributes from any namespace are allowed or the special
value ##other to indicate that attributes from namespaces other than the schema's
target namespace can be used.

The processContents attribute indicates whether the attributes themselves have to
be declared, generally as top-level attributes. It has one of these three values:

strict

Attributes represented by this xs:anyAttribute element must be declared,
and the attribute must be valid according to its declaration. This is the default.

lax

Attributes represented by this xs:anyAttribute element must be validated if
they are declared, but must not be validated if they are not declared.

skip

Attributes represented by this xs:anyAttribute element need not be declared
in the schema and need not be valid even if they are declared.

xs:appinfo

<xs:appinfo
 source = "anyURI">
 <!-- any well-formed XML markup -->
</xs:appinfo>

The xs:appinfo element appears exclusively inside xs:annotation elements,
where it provides machine-readable information about the schema or schema element
it's documenting. It has no effect on schema validation. It can contain absolutely any
XML markup: an XSLT stylesheet for the schema, a schema for the schema, a schema
in a different schema language such as Schematron, or anything else you can imagine.
The only restriction is that the contents must be well-formed. Alternately, instead of or in

http://lib.ommolketab.ir

addition to including this information directly, the source attribute can point to it using a
URI.

xs:attribute

<xs:attribute
 default = "string "
 fixed = "string "
 form = "(qualified | unqualified)
 id = "ID "
 name = "NCName "
 ref = "QName "
 type = "QName "
 use = "(optional | prohibited | required)">
 <!-- (xs:annotation?, xs:simpleType?) -->
</xs:attribute>

The xs:attribute element declares an attribute. Inside an xs:complexType
element it indicates that elements of that type can have an attribute with the specified
name and type.

Attributes

id , optional

An XML name unique among all of the ID-type attributes in this schema document.
default , optional

The default value of the attribute reported for those elements in the instance
document that do not contain an explicit specification of this attribute.

fixed , optional

A default value for this attribute that may not be overridden in the instance
document. An xs:attribute element cannot have both fixed and default
attributes.

form , optional

If this has the value qualified , then the attribute must be in the schema's
target namespace. If this has the value unqualified , then the attribute must
not be in any namespace. The default value for this is set by the
attributeFormDefault attribute on the root xs:schema element.

http://lib.ommolketab.ir

name , optional

The local name of the attribute.
ref , optional

The qualified name of the attribute declared by a top-level xs:attribute
element elsewhere in the schema. Either the name or ref attribute should be
provided, but not both.

type , optional

The qualified name of the type of the attribute, either a built-in simple type such as
xs:integer or a user-defined simple type.

use , optional

One of the three keywords, optional , prohibited , or required , which
have the following meanings:

optional

Authors of instance documents may or may not include this attribute as they
choose. This is the default.

prohibited

Authors of instance documents must not include this attribute.
required

Authors of instance documents must include this attribute on all elements of
the requisite type.

Contents

The xs:attribute element may contain a single xs:annotation element to
describe itself. This has no effect on the attribute type.

In place of a type attribute, the xs:attribute element may contain a single
xs:simpleType element that provides an anonymous type for the attribute derived
from a base simple type.

xs:attributeGroup

<xs:attributeGroup
 id = "ID"

http://lib.ommolketab.ir

 name = "NCName"
 ref = "QName">
 <!--
 (xs:annotation?, (xs:attribute | xs:attributeGroup)*,
 xs:anyAttribute?)
 -->
</xs:attributeGroup>

The xs:attributeGroup element is used in two ways. At the top level of the
schema, it has a name attribute and defines a new attribute group. The attributes in the
group are indicated by the child elements of the xs:attributeGroup element.
Inside an xs:complexType element or another xs:attributeGroup , it has a
ref attribute but no name and adds the attributes in the referenced group to the type or
group's list of attributes.

xs:choice

<xs:choice
 id = "ID"
 maxOccurs = "(nonNegativeInteger | unbounded)"
 minOccurs = "nonNegativeInteger">
 <!--
 (xs:annotation?, (xs:element | xs:group | xs:choice
 | xs:sequence | xs:any)*)
 -->
</xs:choice>

The xs:choice element indicates that any element or group represented by one of its
child elements may appear at that position in the instance document. At least
minOccurs elements from the choice must appear. At most maxOccurs elements
from the choice must appear. The default for both minOccurs and maxOccurs is 1 .

xs:complexContent

<xs:complexContent
 id = "ID"
 mixed = "(true | false)">

http://lib.ommolketab.ir

 <!-- (xs:annotation?, (xs:restriction | xs:extension)) -->
</xs:complexContent>

The xs:complexContent element is used inside xs:complexType elements to
derive a new complex type from an existing complex type by restriction or extension.
When deriving by extension, the mixed attribute must have the same value as the base
type's mixed attribute. When deriving by restriction, the mixed attribute can have the
value false to disallow mixed content that would be allowed in the base type. It can
have the value true only if the base type allows mixed content. In other words, a
derived type can disallow mixed content that's allowed in the base type, but cannot allow
it if the base type doesn't already allow it.

xs:complexType

<xs:complexType
 abstract = "(true | false)"
 block = "(#all | extension | restriction)"
 final = "(#all | extension | restriction)"
 id = "ID "
 mixed = "(true | false)"
 name = "NCName "
 >
 <!-- (xs:annotation?, (xs:simpleContent | xs:complexContent
 | ((xs:group | xs:all | xs:choice | xs:sequence)?,
 ((xs:attribute | xs:attributeGroup)*, xs:anyAttribute?)))) -->
</xs:complexType>

The xs:complexType element defines a new complex type, that is, an element type
that can potentially contain either child elements, attributes, or both. The valid child
elements and attributes for elements of this type are specified by the contents of the
xs:complexType element. The mixed attribute specifies whether the complex type
is allowed to contain text interspersed with its child elements. If the xs:complexType
element is a top-level element, then it has a name attribute and defines a named type.
Otherwise, if the xs:complexType element appears inside an xs:element
element, then it does not have a name attribute and defines an anonymous type for that
element alone.

If the abstract attribute has the value true , then no elements of this type can be
included in instance documents-only elements of subtypes derived from this type,
which are marked as elements of this type by an xsi:type attribute. If the final

http://lib.ommolketab.ir

attribute has the value restriction , then this type cannot be subtyped by restriction.
If the final attribute has the value extension , then this type cannot be subtyped by
extension. If the final attribute has the value #all , then this type cannot be
subtyped by either restriction or extension. The default value of the final attribute is
set by the finalDefault attribute on the root xs:schema element. If the block
attribute has the value extension or restriction , then instances of this type
cannot be replaced in instance documents by instances of subtypes derived from this
type by extension or restriction, respectively, though such subtypes may still be defined
and used for other elements. If the block attribute has the value #all , then this type
cannot be replaced in instance documents by instances of any subtype. The default
value of the block attribute is set by the blockDefault attribute on the root
xs:schema element.

xs:documentation

<xs:documentation
 source = "anyURI"
 xml:lang = "language">
 <!-- any well-formed XML markup -->
</xs:documentation>

The xs:documentation element appears exclusively inside xs:annotation
elements where it provides human-readable information about the schema or schema
element it's annotating. It has no effect on schema validation. It can contain absolutely
any XML markup: XHTML, DocBook, or just plain text. The only restriction is that the
contents must be well-formed. Alternately, instead of or in addition to including this
information directly, the source attribute can point to it using a URI. The xml:lang
attribute can be used to indicate the language in which the description is written. You
could even include multiple xs:documentation elements in different languages.

xs:element

<xs:element
 abstract = "(true | false)"
 block = "(#all | extension | restriction | substitution)"
 default = "string "
 final = "(#all | extension | restriction)"

http://lib.ommolketab.ir

 fixed = "string "
 form = "(qualified | unqualified)"
 id = "ID "
 maxOccurs = "(nonNegativeInteger | unbounded)"
 minOccurs = "nonNegativeInteger "
 name = "NCName "
 nillable = "(true | false)"
 ref = "QName "
 substitutionGroup = "QName "
 type = "QName ">
 <!-- (xs:annotation?,
 ((xs:simpleType | xs:complexType)?,
 (xs:unique | xs:key | xs:keyref)*)) -->
</xs:element>

The xs:element element declares an element, including its name and type. Used at
the top level of the schema, it indicates a potential root element. Used inside an
xs:complexType element, it indicates a potential child element of another element.
Alternately, instead of specifying a name and a type, it can have a ref attribute that
points to an element declaration elsewhere in the schema.

Attributes

id , optional

id is an XML name unique within ID-type attributes in this schema document.
abstract , optional

If the abstract attribute has the value true , then only elements from this
element's substitution group are allowed in instance documents, not elements of
this type itself.

default , optional

default is the default value of the element reported for empty elements of this
type in the instance document.

block , optional

If the block attribute contains the value extension , restriction , or
substitution , then this element cannot be replaced in instance documents
and substitution groups by instances of subtypes derived from this element's type
by extension, restriction, or substitution, respectively. If the block attribute has the
value #all , then this element cannot be replaced in instance documents by
instances of any subtype of the element's type.

http://lib.ommolketab.ir

final , optional

The final attribute controls which elements can refer to this element as the head of
their substitution group. If the value contains the keyword restriction , then
restrictions of this element's type cannot do so. If the value contains the keyword
extension , then extensions of this element's type cannot do so. If the value is
#all , then neither extensions nor restrictions of this type can do so.

form , optional

If the form attribute has the value qualified , then the element is in the
schema's target namespace. If it has the value unqualified , then the element
is not in any namespace. The default value is set by the elementFormDefault
attribute on the root xs:schema element. This attribute can only be used on
locally declared elements. All globally declared elements are always in the
schema's target namespace.

maxOccurs , optional

This signifies the maximum number of times this element may be repeated in valid
instance documents.

minOccurs , optional

This signifies the minimum number of times this element must be repeated in valid
instance documents.

name , optional

This represents the name of the element.
nillable , optional

If nillable has the value true , then this element can be specified as being
"nil" using an xsi:nil="true" attribute in the instance document.

ref , optional

This represents the qualified name of the element declared by a top-level
xs:element element elsewhere in the schema.

type , optional

This is the qualified name of the type of the element, either a built-in simple type
such as xs:integer or a user-defined type.

substitutionGroup , optional

This is the qualified name of a globally declared element for which this element
may substitute in instance documents.

Contents

http://lib.ommolketab.ir

The xs:element element may contain an optional xs:annotation . If and only if
the xs:element element does not have a type attribute, then it must have either an
xs:simpleType child element or an xs:complexType child element that provides
an anonymous type for this element. Finally, it may have any number of xs:key ,
xs:keyref , and xs:unique elements to set uniqueness and identity constraints.

xs:enumeration

<xs:enumeration
 id = "ID"
 value = "anySimpleType">
 <!-- (xs:annotation?) -->
</xs:enumeration>

The xs:enumeration facet element is used inside xs:restriction elements to
derive new simple types by listing all valid values. The value attribute contains a single
valid value of the type specified by the parent xs:restriction 's base attribute.
This xs:restriction element contains one xs:enumeration child element for
each valid value.

xs:extension

<xs:extension
 base = "QName"
 id = "ID">
 <!-- (xs:annotation?,
 ((xs:group | xs:all | xs:choice | xs:sequence)?,
 ((xs:attribute | xs:attributeGroup)*, xs:anyAttribute?))) -->
</xs:extension>

The xs:extension element is used inside xs:simpleContent and
xs:complexContent elements to derive a new complex type that adds attributes
and/or child elements not present in the base type. The base type being extended is
given by the value of the base attribute. The child elements and attributes added to the
base type's content model are specified by the content of the xs:extension element.
An instance of such an extended type must have all the child elements required by the
base type followed by all the child elements required in the xs:extension .

http://lib.ommolketab.ir

xs:field

<xs:field
 id = "ID"
 xpath = "XPath expression">
 <!-- (xs:annotation?) -->
</xs:field>

One or more xs:field elements are placed inside each xs:unique , xs:key , and
xs:keyref element to define a value calculated by the XPath expression in the
xpath attribute. The context node for this expression is set in turn to each element in
the node set selected by the xs:selector element.

Not all XPath expressions are allowed here. In particular, the XPath expression must
limit itself to the child axis, except for the last step, which may use the attribute axis. The
only node tests used are name tests (element and attribute names, the * wildcard, and
the prefix :* wildcard). Abbreviated syntax must be used, and predicates are not
allowed. Thus, person/name/first_name/@id is a legal XPath expression for this
attribute, but person//name/@id is not. Several instances of this restricted form of
XPath expression can be combined with the vertical bar so that
person/name/first_name/@id | person/name/last_name/@id is also
an acceptable XPath expression. Finally, the XPath expression may begin with .// so
that .//name/@id is legal. However, this is the only place the descendant-or-self axis
can be used. No other forms of XPath expression are allowed here.

xs:fractionDigits

<xs:fractionDigits
 fixed = "(true | false)"
 id = "ID "
 value = "nonNegativeInteger " >
 <!-- (xs:annotation?) -->
</xs:fractionDigits>

The xs:fractionDigits facet element is used when deriving from xs:decimal
(and its subtypes) by restriction. It limits the number of digits allowed after the decimal
point to at most the number specified by the value attribute. This sets only the

http://lib.ommolketab.ir

maximum number of digits after the decimal point. If you want to set the minimum
number of digits required, you'll have to use the xs:pattern element instead. If the
fixed attribute has the value true , then types derived from this type are not allowed
to override the value of fractionDigits given here.

xs:group

<xs:group
 name = "NCName"
 ref = "NCName"
 minOccurs = "nonNegativeInteger"
 maxOccurs = "nonNegativeInteger | unbounded">
 <!-- (xs:annotation?, (xs:all | xs:choice | xs:sequence)) -->
</xs:group>

The xs:group element can be used in two ways. As a top-level element with a name
attribute, it defines a model group that can be referenced from complex types elsewhere
in the schema. The content model of the group is established by a child xs:all ,
xs:choice , or xs:sequence element.

The second use is inside a xs:complexType element. Here the xs:group element
indicates that the contents of the group should appear at this point in the instance
document at least as many times as indicated by the minOccurs attribute and at most
as many times as indicated by the maxOccurs attribute. The default for both of these is
1. The group to be included is indicated by the ref attribute that contains the name of a
top-level xs:group element found elsewhere in the schema.

xs:import

<xs:import
 id = "ID"
 namespace = "anyURI"
 schemaLocation = "anyURI" >
 <!-- (xs:annotation?) -->
</xs:import>

Since each schema document has exactly one target namespace, the top-level
xs:import element is needed to create schemas for documents that involve multiple

http://lib.ommolketab.ir

namespaces. The namespace attribute contains the namespace URI for the
application that the imported schema describes. If the imported schema describes
elements and types in no namespace, then the namespace attribute is omitted. The
optional schemaLocation attribute contains a relative or absolute URL pointing to the
actual location of the schema document to import.

There is no limit to import depth. Schema A can import schema B, which itself imports
schema C and schema D. In such a case, schema A can use definitions and
declarations from all four schemas. Even recursion (schema A imports schema B, which
imports schema A) is not prohibited. Since the imported schema must describe a
different target namespace than the importing schema, conflicts between definitions in
the multiple schemas are normally not a problem. However, if conflicts do arise, then the
schema is in error and cannot be used. There are no precedence rules for choosing
between multiple conflicting definitions or declarations.

xs:include

<xs:include
 id = "ID"
 schemaLocation = "anyURI">
 <!-- (annotation?) -->
</xs:include>

The top-level xs:include element is used to divide a schema into multiple separate
documents. The schemaLocation attribute contains a relative or absolute URI
pointing to the schema document to include. It differs from xs:import in that all
included files describe the same target namespace.

There is no limit to inclusion depth. Schema A can include schema B, which itself
includes schema C and schema D. In such a case, schema A can use definitions and
declarations from all four documents. Even recursion (schema A includes schema B,
which includes schema A) is not prohibited, though it is strongly discouraged. Instance
documents would refer only to the top-level schema A in their xsi:schemaLocation
or xsi:noNamespaceSchemaLocation attribute.

Validation is performed after all includes are resolved. If there are any conflicts between
the including schema and an included schema-for instance, one schema declares that
the FullName element has a simple type, and another declares that the FullName
element has a complex type-then the schema is in error and cannot be used. Most of
the time schemas should be carefully managed so that each element and type is defined

http://lib.ommolketab.ir

in exactly one schema document.

xs:key

<xs:key
 id = "ID"
 name = "NCName" >
 <!-- (xs:annotation?, (xs:selector, xs:field+)) -->
</xs:key>

Keys establish uniqueness and co-occurrence constraints among various nodes in the
document. For example, you can define a key for an Employee element based on its
EmployeeNumber child element and then require that each Assignment element
have a team attribute whose contents are a list of employee keys.

The xs:key element defines a new key. It appears only as a child of an xs:element
element following the element's type. The name of the key is specified by the name
attribute. The elements that have a value for this key are identified by the
xs:selector child element. The value of the key for each of these nodes is given by
the xs:field child element and must be unique within that set. If there is more than
one xs:field child element, then the key has multiple values.

xs:keyref

<xs:keyref
 id = "ID"
 name = "NCName"
 refer = "QName" >
 <!-- (xs:annotation?, (xs:selector, xs:field+)) -->
</xs:keyref>

The xs:keyref element is placed inside xs:element elements to indicate that a
certain part of those elements must match the key with the name given by the refer
attribute. The value that is matched against the specified key is determined by the XPath
expressions used in the xs:selector child and the xs:field child elements.

xs:length

http://lib.ommolketab.ir

<xs:length
 fixed = "(true | false)"
 id = "ID "
 value = "nonNegativeInteger " >
 <!-- (xs:annotation?) -->
</xs:length>

The xs:length facet element specifies the exact number of characters in a type
derived from xs:string , xs:QName , xs:language , xs:anyURI , or
xs:NOTATION . When applied to a list type such as xs:ENTITIES , this facet
specifies the number of items in the list. Finally, when applied to xs:hexBinary and
xs:base64Binary , it specifies the number of bytes in the decoded data, rather than
the number of characters in the encoded data. If the fixed attribute has the value
true , then types derived from this type are not allowed to override the value of
length given here.

xs:list

<xs:list
 id = "ID"
 itemType = "QName" >
 <!-- (xs:annotation?, (xs:simpleType?)) -->
</xs:list>

The xs:list element is placed inside an xs:simpleType element to derive a new
list simple type from a base atomic type identified by the itemType attribute.
Alternately, instead of referencing an existing simple type with itemType , a new
anonymous atomic type for the list can be created by an xs:simpleType child
element. In either case, the newly defined simple type is a whitespace-separated list of
atomic-type instances.

xs:maxExclusive

<xs:maxExclusive
 fixed = "(true | false)"

http://lib.ommolketab.ir

 id = "ID "
 value = "anySimpleType " >
 <!-- (xs:annotation?) -->
</xs:maxExclusive>

The xs:maxExclusive facet element applies to all ordered types, including
xs:decimal , xs:float , xs:double , xs:date , xs:duration ,
xs:dateTime , xs:time , xs:gDay , xs:gMonthYear , xs:gMonth ,
xs:gYear , and their subtypes. The value attribute contains the maximum value in a
form appropriate for the type. For example, the maximum for a type derived from
xs:integer might be 75; the maximum for a type derived from xs:double might be
1.61803; and the maximum for a type derived from xs:date might be 2001-09-26. All

instances of this type must be strictly less than the maximum value. They may not be
equal to the maximum. If the fixed attribute has the value true , then types derived
from this type are not allowed to override the value of maxExclusive given here.

xs:maxInclusive

<xs:maxInclusive
 fixed = "(true | false)"
 id = "ID "
 value = "anySimpleType " >
 <!-- (xs:annotation?) -->
</xs:maxInclusive>

The xs:maxInclusive facet element applies to all ordered types, including
xs:decimal , xs:float , xs:double , xs:date , xs:duration ,
xs:dateTime , xs:time , xs:gDay , xs:gMonthYear , xs:gMonth ,
xs:gYear , and their subtypes. The value attribute contains the maximum value in a
form appropriate for the type. For example, the maximum for a type derived from
xs:integer might be 75; the maximum for a type derived from xs:double might be
1.61803; and the maximum for a type derived from xs:date might be 2001-09-26. All

instances of this type must be less than or equal to the maximum value. They may be
equal to the maximum. If the fixed attribute has the value true , then types derived
from this type are not allowed to override the value of maxInclusive given here.

xs:maxLength

http://lib.ommolketab.ir

<xs:maxLength
 fixed = "(true | false)"
 id = "ID "
 value = "nonNegativeInteger " >
 <!-- (xs:annotation?) -->
</xs:maxLength>

The xs:maxLength facet element specifies the maximum number of characters in a
type derived from xs:string , xs:QName , xs:language , xs:anyURI , or
xs:NOTATION . It can also be used to restrict xs:hexBinary and
xs:base64Binary . However, in this case, it refers to the maximum number of bytes

in the decoded data rather than the maximum number of characters in the encoded
data. Finally, when applied to a list type such as xs:IDREFS , it describes the
maximum number of items in the list. If the fixed attribute has the value true , then
types derived from this type are not allowed to override the value of maxLength given
here.

xs:minExclusive

<xs:minExclusive
 fixed = "(true | false)"
 id = "ID "
 value = "anySimpleType " >
 <!-- (xs:annotation?) -->
</xs:minExclusive>

The xs:minExclusive facet element applies to all ordered types, including
xs:decimal , xs:float , xs:double , xs:date , xs:duration ,
xs:dateTime , xs:time , xs:gDay , xs:gMonthYear , xs:gMonth ,
xs:gYear , and their subtypes. The value attribute contains the minimum value in a
form appropriate for the type. For example, the minimum for a type derived from
xs:integer might be 75; the minimum for a type derived from xs:double might be
1.61803; and the minimum for a type derived from xs:date might be 2001-09-26. All

instances of this type must be strictly greater than the minimum value. They may not be
equal to the minimum. If the fixed attribute has the value true , then types derived
from this type are not allowed to override the value of minExclusive given here.

http://lib.ommolketab.ir

xs:minInclusive

<xs:minInclusive
 fixed = "(true | false)"
 id = "ID "
 value = "anySimpleType " >
 <!-- (xs:annotation?) -->
</xs:minInclusive>

The xs:minInclusive facet element applies to all ordered types, including
xs:decimal , xs:float , xs:double , xs:date , xs:duration ,
xs:dateTime , xs:time , xs:gDay , xs:gMonthYear , xs:gMonth ,
xs:gYear , and their subtypes. The value attribute contains the minimum value in a
form appropriate for the type. For example, the minimum for a type derived from
xs:integer might be 75; the minimum for a type derived from xs:double might be
1.61803; and the minimum for a type derived from xs:date might be 2001-09-26. All
instances of this type must be greater than or equal to the minimum value. If the fixed
attribute has the value true , then types derived from this type are not allowed to
override the value of minInclusive given here.

xs:minLength

<xs:minLength
 fixed = "(true | false)"
 id = "ID "
 value = "nonNegativeInteger " >
 <!-- (xs:annotation?) -->
</xs:minLength>

The xs:minLength facet element specifies the minimum number of characters in a
type derived from xs:string , xs:QName , xs:language , xs:anyURI , or
xs:NOTATION . It can also be used to restrict xs:hexBinary and
xs:base64Binary . However, in this case, it refers to the minimum number of bytes

in the decoded data rather than the minimum number of characters in the encoded data.
Finally, when applied to a list type such as xs:IDREFS , it describes the minimum
number of items in the list. If the fixed attribute has the value true , then types

http://lib.ommolketab.ir

derived from this type are not allowed to override the value of maxLength given here.

xs:notation

<xs:notation
 id = "ID"
 name = "NCName"
 public = "PUBLIC identifier"
 system = "anyURI" >
 <!-- (xs:annotation?) -->
</xs:notation>

The top-level xs:notation element defines a notation. It's the schema equivalent of
the DTD's <!NOTATION> declaration. Each notation has a name, a public ID, and a
system ID identified by the relevant attribute on this element.

xs:pattern

<xs:pattern
 id = "ID"
 value = "regular expression" >
 <!-- (xs:annotation?) -->
</xs:pattern>

The xs:pattern facet element is used to derive new simple types by specifying a
regular expression against which values of the type are compared. It applies to all
simple types. The schema regular-expression grammar is quite similar to that used in
Perl 5.6 and later. (The big change from earlier versions of Perl is support for Unicode
character class-based regular expressions.) Most strings and characters match
themselves, but a few characters have special meanings, as summarized in Table 21-1 .
In this table, A and B are subexpressions; n and m are non-negative integers; a , b
, c , and d are all single Unicode characters; and X is a name.

Table 21-1. XML Schema regular-expression syntax

Pattern Matches

http://lib.ommolketab.ir

(A) A string that matches A

A | B A string that matches A or a string that matches B

AB A string that matches A followed by a string that matches B

A ? Zero or one repetitions of a string that matches A

A * Zero or more repetitions of a string that matches A

A + One or more repetitions of a string that matches A

A {n
,m }

A sequence of between n and m strings, each of which matches A

A {n } A sequence of exactly n strings, each of which matches A

A {n
,}

A sequence of at least n strings, each of which matches A

[abcd
] Exactly one of the characters listed inside the square brackets

[^abcd
]

Exactly one character not listed inside the square brackets

[a-z] Exactly one character with a Unicode value between a and z , inclusive

[a-z -
[d-h
]]

Exactly one character included in the outer range but not in the inner range

\n The newline;

\r The carriage return; 

\t The tab; 	

\\ The backslash, \

\| The vertical bar, |

\. The period, .

\- The hyphen, -

\^ The caret, ^

\? The question mark, ?

* The asterisk, *

\+ The plus sign, +

\{ The left curly brace, {

\} The right curly brace, }

\(The left parenthesis, (

\) The right parenthesis,)

\[The left square bracket, [

http://lib.ommolketab.ir

\] The right square bracket,]

. Any single character except the carriage return or line feed

\s A space, tab, carriage return, or line feed

\S Any single character except a space, tab, carriage return, or line feed

\i An XML name-start character

\c An XML name character

\d A decimal digit

\D Any single character except a decimal digit

\w A "word character," that is, any single character that is not a punctuation
mark, a separator, or "other" (as defined by Unicode)

\W Any single character that is a punctuation mark, a separator, or "other" (as
defined by Unicode)

\p{X }
Any single character from the Unicode character class X ; character class
names are listed in Table 21-2

\P{X } Any single character not in the Unicode character class X

\p{IsX
}

Any single character from the Unicode character block X . Block names
include BasicLatin, Latin-1Supplement, LatinExtended-A, LatinExtended-B,
IPAExtensions, SpacingModifierLetters, CombiningDiacriticalMarks, Greek,
Cyrillic, Armenian, Hebrew, Arabic, Syriac, Thaana, Devanagari, Bengali,
Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Sinhala,
Thai, Lao, Tibetan, Myanmar, Georgian, HangulJamo, Ethiopic, Cherokee,
UnifiedCanadianAboriginalSyllabics, Ogham, Runic, Khmer, Mongolian,
LatinExtendedAdditional, GreekExtended, GeneralPunctuation,
SuperscriptsandSubscripts, CurrencySymbols, CombiningMarksforSymbols,
LetterlikeSymbols, NumberForms, Arrows, MathematicalOperators,
MiscellaneousTechnical, ControlPictures, OpticalCharacterRecognition,
EnclosedAlphanumerics, BoxDrawing, BlockElements, GeometricShapes,
MiscellaneousSymbols, Dingbats, BraillePatterns, CJKRadicalsSupplement,
KangxiRadicals, IdeographicDescriptionCharacters,
CJKSymbolsandPunctuation, Hiragana, Katakana, Bopomofo,
HangulCompatibilityJamo, Kanbun, BopomofoExtended,
EnclosedCJKLettersandMonths, CJKCompatibility,
CJKUnifiedIdeographsExtensionA, CJKUnifiedIdeographs, YiSyllables,
YiRadicals, HangulSyllables, HighSurrogates, HighPrivateUseSurrogates,
LowSurrogates, PrivateUse, CJKCompatibilityIdeographs,
AlphabeticPresentationForms, ArabicPresentationForms-A,
CombiningHalfMarks, CJKCompatibilityForms, SmallFormVariants,
ArabicPresentationForms-B, Specials, HalfwidthandFullwidthForms, Specials,
OldItalic, Gothic, Deseret, ByzantineMusicalSymbols, MusicalSymbols,

http://lib.ommolketab.ir

MathematicalAlphanumericSymbols, CJKUnifiedIdeographsExtensionB,
CJKCompatibilityIdeographsSupplement, Tags, and PrivateUse. The
characters from many of these blocks are shown in Chapter 26 .

\P{IsX
}

Any single character not in the Unicode character block X

Table 21-2. Unicode character classes

Unicode character
class

Includes

L Letters

Lu Uppercase letters

Ll Lowercase letters

Lt Titlecase letters

Lm Modifier letters

Lo Other letters

M All marks

Mn Nonspacing marks

Mc Spacing combining marks

Me Enclosing marks

N Numbers

Nd Decimal digits

Nl Number letters

No Other numbers

P Punctuation

Pc Connector punctuation

Pd Dashes

Ps Opening punctuation

Pe Closing punctuation

Pi Initial quotes

Pf Final quotes

Po Other punctuation

Z Separators

Zs Spaces

Zl Line breaks

Zp Paragraph breaks

http://lib.ommolketab.ir

S Symbols

Sm Mathematical symbols

Sc Currency symbols

Sk Modifier symbols

So Other symbols

C
Other characters (nonletters, nonsymbols, non-numbers,
nonseparators)

Cc Control characters

Cf Format characters

Co Private use characters

Cn Unassigned code points

xs:redefine

<xs:redefine
 id = "ID"
 schemaLocation = "anyURI" >
 <!-- (annotation | (simpleType | complexType | group | attributeGroup))*
 -->
</xs:redefine>

The xs:redefine element is used much like xs:include . That is, it inserts
definitions and declarations for the same target namespace from a schema document
found at a URL specified by the schemaLocation attribute. However, unlike
xs:include , xs:redefine can override type, model group, and attribute group
definitions from the included schema. The new type and group definitions are children of
the xs:redefine element. They must extend or restrict the original definition of the
redefined type or group. Note, however, that xs:redefine cannot override element
and attribute declarations made in the included schema.

xs:restriction

<xs:restriction
 base = "QName"
 id = "ID">
 <!-- (xs:annotation?, (

http://lib.ommolketab.ir

 (xs:simpleType?,
 (xs:minExclusive | xs:minInclusive | xs:maxExclusive
 | xs:maxInclusive | xs:totalDigits | xs:fractionDigits
 | xs:length | xs:minLength | xs:maxLength | xs:enumeration
 | xs:whiteSpace | xs:pattern)*)
 | ((xs:group | xs:all | xs:choice | xs:sequence)?,
 ((xs:attribute | xs:attributeGroup)*, xs:anyAttribute?))
) -->
</xs:restriction>

The xs:restriction element derives a new type from an existing base type
identified by either a base attribute or an xs:simpleType child element. When
deriving by restriction, all valid values of the derived type must also be legal values of
the base type. However, the reverse is not true. The valid values of the derived type are
a subset (almost always a proper subset) of the valid values of the base type. For
derived simple types, the allowed values are identified by the various facet child
elements of the xs:restriction element. For derived complex types, the allowed
values are identified by the same elements you'd find inside an xs:complexType
element-that is, zero or one group elements such as xs:all , xs:choice , or
xs:sequence followed by attribute representation elements such as xs:attribute
, xs:attributeGroup , and xs:anyAttribute .

xs:schema

<xs:schema
 attributeFormDefault = "(qualified | unqualified)"
 elementFormDefault = "(qualified | unqualified)"
 blockDefault = "(#all | extension | restriction | substitution)
 finalDefault = "(#all | extension | restriction)
 id = "ID "
 targetNamespace = "anyURI "
 version = "token"
 xml:lang = "language" >
 <!-- (
 (xs:include | xs:import | xs:redefine | xs:annotation)*,
 (((xs:simpleType | xs:complexType | xs:group
 | xs:attributeGroup) | xs:element | xs:attribute
 | xs:notation), xs:annotation*)*
) -->

http://lib.ommolketab.ir

</xs:schema>

xs:schema is the root element of all schema documents. It contains all the top-level
elements described elsewhere in this chapter. First come all the elements that somehow
reference other schema documents, including xs:include , xs:import , and
xs:redefine . These are followed by the various elements that define types and
groups and declare elements and attributes. As usual, xs:annotation elements can
be placed anywhere that is convenient.

Attributes

id , optional

id is an XML name unique within ID-type attributes in this schema document.
targetNamespace , optional

The namespace URI for the XML application described by this schema. If not
present, then this schema describes elements in no namespace. If the XML
application uses multiple namespaces, then there must be a separate schema
document for each different namespace. These schemas can be connected with
xs:import elements.

version , optional

You can use this attribute to specify the version of the schema, e.g., 1.0, 1.0.1, 1.1,
1.2, 1.3b1, 2.0, etc. This refers to the version of the specific schema, not the
version of the W3C XML Schema Language used in this document.

blockDefault , optional

The blockDefault attribute establishes the default value for the block
attributes of xs:element and xs:complexType elements in this schema.

finalDefault , optional

The finalDefault attribute establishes the default value for the final
attributes of xs:element and xs:complexType elements in this schema.

xml:lang , optional

This is the human language in which this schema is primarily written, such as en or
fr-CA .

attributeFormDefault , optional

This sets the default value for the form attribute of xs:attribute elements.
This specifies whether or not locally declared attributes are namespace qualified by
the target namespace. If this attribute is not used, locally declared attributes are
unqualified unless the form attribute of the xs:attribute element has the

http://lib.ommolketab.ir

value qualified .
elementFormDefault , optional

This sets the default for the form attribute of xs:element elements. This
specifies whether locally declared elements are namespace-qualified by the target
namespace. By default, locally declared elements are unqualified unless the form
attribute of the xs:element element has the value qualified .

elementFormDefault is part of a misguided effort to make child
elements and attributes equivalent. If you're using namespaces at all,
just put all elements in the target namespace of the schema and set
elementFormDefault to qualified .

xs:selector

<xs:selector
 id = "ID"
 xpath = "XPath expression" >
 <!-- (xs:annotation?) -->
</xs:selector>

A single xs:selector element is placed inside each xs:unique , xs:key , and
xs:keyref element to specify the element nodes for which the key on key reference is
defined. The node set is selected by an XPath expression contained in the value of the
xpath attribute. The context node for this XPath expression is the element matched by
the xs:element declaration in which the xs:unique , xs:key , or xs:keyref
element appears.

Not all XPath expressions are allowed here. In particular, the XPath expression must be
an abbreviated location path that limits itself to the child axis. The only node tests used
are element name, the * wildcard, and the prefix :* wildcard. Abbreviated syntax
must be used; predicates are not allowed. Thus, person/name/first_name is a
legal XPath expression for this attribute, but person//name and
name/first_name/@id are not. Several instances of this restricted form of XPath
expression can be combined with the vertical bar so that
person/name/first_name | person/name/last_name is also an acceptable
XPath expression. Finally, the XPath expression may begin with .// so that .//name
is valid. However, this is the only place the descendant-or-self axis can be used. No
other forms of XPath expression are allowed here.

http://lib.ommolketab.ir

xs:sequence

<xs:sequence
 id = "ID"
 maxOccurs = "(nonNegativeInteger | unbounded)"
 minOccurs = "nonNegativeInteger" >
 <!-- (xs:annotation?,
 (xs:element | xs:group | xs:choice | xs:sequence | xs:any)*
)
 -->
</xs:sequence>

The xs:sequence element indicates that the elements represented by its child
elements should appear at that position in the instance document in the order they're
listed here. The sequence must repeat at least minOccurs times and at most
maxOccurs times. The default for both minOccurs and maxOccurs is 1. The
maxOccurs attribute can be set to unbounded to indicate that the sequence may
repeat indefinitely.

xs:simpleContent

<xs:simpleContent
 id = "ID" >
 <!-- (xs:annotation?, (xs:restriction | xs:extension)) -->
</xs:simpleContent>

The xs:simpleContent element is used inside xs:complexType elements
whose content is a simple type, such as xs:string or xs:integer , rather than
child elements or mixed content. This is customarily done when the only reason an
element has a complex type instead of a simple type is for the purpose of attributes.

xs:simpleType

<xs:simpleType

http://lib.ommolketab.ir

 final = "(#all | list | union | restriction)"
 id = "ID"
 name = "NCName" >
 <!-- (xs:annotation?, (xs:restriction | xs:list | xs:union)) -->
</xs:simpleType>

The xs:simpleType element defines a new simple type for elements and attributes.
A simple type is composed purely of text but no child elements-#PCDATA , in DTD
parlance. A top-level xs:simpleType element has a name given in the name
attribute by which it can be referred to from the type attribute of xs:element and
xs:attribute elements. Alternately, an xs:element or xs:attribute element
can have an xs:simpleType child without a name attribute that defines an

anonymous type for that element or attribute.

New types are derived from existing types in one of three ways: by restricting the range
of a base type using an xs:restriction child element, by combining multiple base
types with an xs:union child element, or by allowing multiple values of a base type
separated by whitespace with an xs:list child element.

The final attribute can be used to prevent a simple type from being subtyped. If
final contains the value list , the type cannot be extended by listing. If final
contains the value restriction , the type cannot be extended by restriction. If
final contains the value union , the type cannot become a member of a union.
These three values can be combined in a whitespace-separated list. For instance,
final="list union" prevents derivation by list and union but not by restriction. If
final has the value #all , the type cannot be used as a base type in any way.

xs:totalDigits

<xs:totalDigits
 fixed = "(true | false)"
 id = "ID "
 value = "positiveInteger " >
 <!-- (xs:annotation?) -->
</xs:totalDigits>

The xs:totalDigits facet element is used when deriving from xs:decimal
elements and its descendants (xs:integer , xs:long ,
xs:nonNegativeInteger , xs:unsignedLong , etc.) by restriction. It specifies
the maximum number of digits allowed in the number, including both the integer and

http://lib.ommolketab.ir

fractional parts, but not counting the decimal point or the sign. This only sets the
maximum number of digits. If you want to specify a minimum number of digits, use the
xs:pattern element instead. If the fixed attribute has the value true , then types
derived from this type are not allowed to override the value of fractionDigits given
here.

xs:union

<xs:union
 id = "ID"
 memberTypes = "List of QName" >
 <!-- (xs:annotation?, (xs:simpleType*)) -->
</xs:union>

The xs:union element is placed inside an xs:simpleType to indicate that an
element or attribute can contain any one of multiple types. For example, it can say that
an element can contain either an xs:integer or an xs:token . The names of the
types that participate in the union are listed in the memberTypes attribute separated by
whitespace. Furthermore, the types defined in the xs:simpleType children of the
xs:union are also members of the union.

xs:unique

<xs:unique
 id = "ID"
 name = "NCName" >
 <!-- (xs:annotation?, xs:selector, xs:field+) -->
</xs:unique>

The xs:unique element requires that a specified subset of elements and/or attributes
in the instance document have unique values calculated from each of those
elements/attributes. This is similar to the constraint imposed by declaring an attribute to
have type xs:ID , but much more flexible. The xs:selector child element uses
XPath to specify the subset of nodes from the instance document over which
uniqueness is calculated. The xs:field children use XPath expressions to specify
what properties of those nodes must be unique within the subset.

http://lib.ommolketab.ir

xs:whiteSpace

<xs:whiteSpace
 fixed = "(true | false)"
 id = "ID "
 value = "(collapse | preserve | replace)" >
 <!-- (xs:annotation?) -->
</xs:whiteSpace>

The xs:whiteSpace facet element is unusual in that it does not constrain values.
Instead, it tells the validator how it should normalize whitespace before validating the
value against other facets. The value attribute has one of three values:

preserve

All whitespace is significant; this is conceptually similar to the pre element in
HTML.

collapse

Before the value is validated, tabs, carriage returns, and line feeds are replaced by
spaces; leading and trailing whitespace is deleted; and runs of more than one
consecutive space are condensed to a single space.

replace

Tabs, carriage returns, and line feeds are replaced by spaces before the value is
validated.

21.3 Primitive Types

The W3C XML Schema Language provides 44 built-in simple types for text strings. Each
type has a value space and a lexical space. The value space is the set of unique
meanings for the type, which may or may not be text. In some sense, the value space is
composed of Platonic forms. The lexical space is the set of text strings that correspond
to particular points in the value space. For example, the xs:boolean type has the
value space true and false. However, its lexical space contains four strings: true ,
false , 0 , and 1 . true and 1 both map to the same value true, while false and 0
map to the single value false. In cases like this where multiple strings in the lexical
space map to a single value, then one of those strings is selected as the canonical
lexical representation . For instance, the canonical lexical representations of true and

http://lib.ommolketab.ir

false are the strings true and false .

The primitive types are organized in a hierarchy. All simple types descend from an
abstract ur-type called xs:anySimpleType , which is itself a descendant of an
abstract ur-type called xs:anyType that includes both simple and complex types.
Simple types are derived from other simple types by union, restriction, or listing. For
example, the xs:nonNegativeInteger type is derived from the xs:integer type
by setting its minInclusive facet to 0. The xs:integer type is derived from the
xs:decimal type by setting its fractionDigits facet to 0. Figure 21-1 diagrams
the complete hierarchy of built-in types. The xs:simpleType element allows you to
apply facets to these types to create your own derived types that extend this hierarchy.

Figure 21-1. The simple type hierarchy

The types are organized in the following section alphabetically. For each type the value
and lexical spaces are described, and some examples of permissible instances are

http://lib.ommolketab.ir

provided.

xs:anyURI

The xs:anyURI type indicates a Uniform Resource Identifier. This includes not only
Uniform Resource Locators (URLs), but also Uniform Resource Names (URNs). Both
relative and absolute URLs are allowed. Legal xs:anyURI values include the
following:

http://www.cafeaulait.org/

http://[FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]/

http://www.w3.org/TR/xmlschema-2/#anyURI

#xpointer(/book/chapter[20]/sect1[2]/sect2[1])

gopher://spinaltap.micro.umn.edu/00/Weather/

mailto:elharo@metalab.unc.edu

chapters/ch03.html

http://ibiblio.org/nywc/compositions.phtml?
category=Concertos

More specifically, elements of this type must be composed exclusively of the ASCII
letters A-Z and a-z and digits 0-9, as well as the ASCII punctuation marks -, _, ., !, ~, *, ',
(, and). In addition, the ASCII punctuation marks ;, /, ?, :, @, &, =, +, $, %, and , may be
used for their intended purposes in URLs, e.g., the forward slash can be used as the
path separator but not as part of a filename. All other characters must be escaped by
encoding each byte of their UTF-8 representation as a percent sign followed by the
hexadecimal value of the character. Although there are other restrictions on what does
and does not make a legal URI, in practice the only conditions that schema processors
check are the limitations on the characters that may appear.

Constraining facets that apply to xs:anyURI are length , minLength ,
maxLength , pattern , enumeration , and whiteSpace .

xs:base64Binary

http://www.cafeaulait.org/
http://[FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]/
http://www.w3.org/TR/xmlschema-2/#anyURI
http://ibiblio.org/nywc/compositions.phtml?
http://lib.ommolketab.ir

The xs:base64Binary type represents an arbitrary sequence of bytes that has been
encoded in ASCII characters using the Base-64 algorithm defined in RFC 2045,
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies . The data is divided into lines of 76 characters or less. The letters A-Z and a-z,
the digits 0-9, and the punctuation marks + and / are used to encode data. The equals
sign is use to pad data at the end if necessary. Other characters are allowed, but are
ignored by the Base-64 decoder.

The constraining facets that apply to xs:base64Binary are length , minLength ,
maxLength , pattern , enumeration , and whiteSpace . Unlike string types, the
values specified by the length , minLength , and maxLength facets refer to the
number of bytes in the decoded data, not to the number of characters in the encoded
data.

xs:boolean

The xs:boolean type represents a logical Boolean whose value is either true or false.
There are exactly four legal values for elements and attributes whose type is Boolean:

true

false

0

1

0is the same as false, and 1 is the same as true. Only two constraining facets apply to
xs:boolean : pattern and whiteSpace .

xs:byte

The xs:byte type represents an integer with a value between -128 and 127. It is a
subtype of the xs:short type. Legal values include any sequence of digits whose

http://lib.ommolketab.ir

value is less than or equal to 127 and greater than or equal to -128. An optional leading
plus or minus sign is allowed. For example, these are legal bytes:

127

-128

0

52

+52

0000052

Constraining facets that apply to xs:byte are length , minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
whiteSpace , and totalDigits .

xs:date

The xs:date type represents a specific day in history such as September 26, 2001.
Dates are written in the form CCYY -MM -DD . For example, September 26, 2001 is
written as 2001-09-26 . Dates in the far future and distant past can be written with
more than four digits in the year, but at least four digits are required. Dates before year 1
are written with a preceding minus sign. (There was no year 0.) An optional time zone
indicator in the form ±hh:mm may be suffixed to provide a time zone as an offset from
Coordinated Universal Time (Greenwich Mean Time, UTC). For example, 2001-09-
26-05:00 is September 26, 2001 in the U.S. Eastern time zone. A Z can be used
instead to indicate UTC. These are all valid values of type xs:date :

2001-01-01

1999-12-31Z

0482-11-24

-0052-10-23

2002-12-23+12:00

http://lib.ommolketab.ir

87500-01-01

Constraining facets that apply to xs:date are minInclusive , maxInclusive ,
minExclusive , maxExclusive , pattern , enumeration , and whiteSpace
. Note, however, that when the time zone is not specified, it's not always possible to
determine unambiguously whether one date begins after another.

xs:dateTime

The xs:dateTime type represents a specific moment in history, such as 3:32 P.M.,
September 26, 2001. Dates are written in the form CCYY -MM -DD Thh :mm :ss .
For example, 3:32 P.M., September 26, 2001 is written as 2001-09-26T15:32:00 .
Decimal fractions of a second can be indicated by appending a period and any number
of digits after the seconds. Dates in the far future and distant past can be written with
more than four digits in the year, but at least four digits are required. Dates before year 1
are written with a preceding minus sign. (There was no year 0.) An optional time zone
indicator in the form ±hh:mm may be suffixed to provide a time zone as an offset from
Coordinated Universal Time (Greenwich Mean Time, UTC). For example, 2001-09-
26T15:32:00-05:00 is 3:32 P.M., September 26, 2001 in the U.S. Eastern time
zone. A Z can be used instead to indicate UTC. These are all valid values of type
xs:dateTime :

2001-01-01T03:32:00-05:00

1999-12-31T00:00:00Z

2002-12-23T17:08:30.121893632178

Constraining facets that apply to xs:dateTime are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
and whiteSpace . Note, however, that when the time zone is not specified, it's not
always possible to determine unambiguously whether one time falls after another.

xs:decimal

xs:decimal is the base type for all numeric built-in schema types, except xs:float

http://lib.ommolketab.ir

and xs:double . It represents a base 10 number with any finite number of the digits 0-
9 before and after the decimal point. It may be prefixed with either a plus sign or a minus
sign. These are all valid values of type xs:decimal :

3.1415292

03.1415292

127

+127

-128

0.0

0.

.0

This type is not conducive to localization. Only European digits can be used, and only a
period can be used as a decimal point. Exponential and scientific notation are not
supported.

Constraining facets that apply to xs:decimal are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
whiteSpace , fractionDigits , and totalDigits .

xs:double

The xs:double type is designed to represent eight-byte, binary floating-point numbers
in IEEE 754 format, such as is used by the double type in Java and many C compilers.
This includes the special values INF for infinity and NaN for not a number, used for the
results of unconventional operations like dividing by zero and taking the square root of a
negative number. Because not all binary numbers can be precisely represented by
decimal numbers, it is possible that two different decimal representations in the lexical
space map to the same value (and vice versa). In this case, the closest approximation
IEEE-754 value is chosen. These are all legal values of type xs:double :

3.1415292

http://lib.ommolketab.ir

-03.1415292

6.022E23

127E-13

+2.998E+10

-128e12

0.0

INF

NaN

-INF

Constraining facets that apply to xs:double are minInclusive , maxInclusive ,
minExclusive , maxExclusive , pattern , enumeration , and whiteSpace
.

xs:duration

The xs:duration type represents a length of time such as 15 minutes; 2 hours; or 3
years, 7 months, 2 days, 8 hours, 32 minutes, and 12 seconds. It does not have a
specific beginning or end, just a length. Durations are represented using the ISO-8601
standard format Pn Yn Mn DTn Hn Mn S . n Y gives the number of years, n M the
number of months, n D the number of days, n H the number of hours, n M the number
of minutes, and n S the number of seconds. The number of years, months, days, hours,
minutes, and seconds are all given as non-negative integers. The number of seconds is
a decimal number with as many places after the decimal point as necessary. For
example, in this format, 3 years, 7 months, 2 days, 8 hours, 32 minutes, and 12 seconds
is written as P3Y7M2DT8H32M12S . Any values that are zero can be omitted. Thus, a
duration of 2 years and 2 minutes can be written as P2YT2M . If there are no hours,
minutes, or seconds, then the T is omitted. Thus, a duration of two years is written as
P2Y . A leading minus sign before the P indicates a negative duration.

Constraining facets that apply to xs:duration are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
and whiteSpace . However, because the number of days in a month varies from 28 to

http://lib.ommolketab.ir

31 and the number of days in a year varies from 365 to 366, durations are not always
perfectly ordered. For instance, whether P1M is greater than, equal to, or less than
P30D depends on which month it is.

xs:ENTITIES

The xs:ENTITIES type indicates that the value is a whitespace-separated list of
unparsed entity names declared in the instance document's DTD. This is the same as
the DTD ENTITIES attribute type.

Constraining facets that apply to xs:ENTITIES are length , minLength ,
maxLength , enumeration , pattern , and whiteSpace . The length ,
minLength , and maxLength facets all refer to the number of entity names in the list.

xs:ENTITY

The xs:ENTITY type is a subtype of xs:NCNAME with the additional restriction that the
value be declared as an unparsed entity in the document's DTD. The legal lexical values
of type xs:ENTITY are exactly the same as for xs:NCNAME . Constraining facets that
apply to xs:ENTITY are length , minLength , maxLength , pattern ,
enumeration , and whiteSpace .

A schema cannot declare either parsed or unparsed entities. An XML
document that uses any entities other than the five predefined ones
must have a DOCTYPE declaration and a DTD.

xs:float

The xs:float type represents four-byte, binary floating-point numbers in IEEE-754
format, such as is the float type in Java and many C compilers. This includes the
special values INF for infinity and NaN for not a number, used for the results of
unconventional operations like dividing by zero and taking the square root of a negative
number. Because not all binary numbers can be precisely represented by decimal

http://lib.ommolketab.ir

numbers, it is possible that two different decimal representations in the lexical space
map to the same value (and vice versa). In this case, the closest approximation of the
IEEE-754 value is chosen. These are all legal values of type xs:float :

3.1415292

-03.1415292

6.022E23

127E-13

+2.998E+10

-128e12

0.0

INF

NaN

-INF

Constraining facets that apply to xs:float are minInclusive , maxInclusive ,
minExclusive , maxExclusive , pattern , enumeration , and whiteSpace
.

xs:gDay

The xs:gDay type represents a certain day of the month such as the 14th or the 23rd

in no particular month. The format used is -- -DD plus an optional time zone suffix in the
form ±hh:mm or Z to indicate Coordinated Universal Time (UTC). These are all valid
xs:gDay values:

---01

---28

---29Z

http://lib.ommolketab.ir

---31+02:00

---15-11:00

The g indicates that the day is given in the Gregorian calendar. Schema date types are
not localizable to non-Gregorian calendars. If you need a different calendar, you'll need
to derive from xs:string using the pattern facet.

Constraining facets that apply to xs:gDay are minInclusive , maxInclusive ,
minExclusive , maxExclusive , pattern , enumeration , and whiteSpace
. However, if the time zones are not specified it may not be possible to conclusively
determine whether one day is greater than or less than another. If time zones are
specified, days are compared by when they start. Thus ---29-05:00 is greater than -
--29Z , which is greater than ---29+02:00 .

xs:gMonth

The xs:gMonth type represents a certain month of the year in the Gregorian calendar
as an integer between --01-- and --12-- . An optional time zone suffix in the form
±hh:mm or Z to indicate Coordinated Universal Time (UTC) can be added as well.
These are all valid xs:gMonth values:

--01--

--12--

--12--Z

--09--+02:00

--03---11:00

XML Schema Part 2: Datatypes has a mistake here. The date time
data types are supposed to be in the format specified by the ISO-
8601 standard, according to which the proper format for a month is
an integer between --01 and --12 with no trailing hyphens. Exactly
how this will be fixed remains to be determined, though at the least
months of the form --01 and --10 will be allowed in the future.

The g indicates that the month is given using the Gregorian calendar. Schema date

http://lib.ommolketab.ir

types are not localizable to non-Gregorian calendars. If you need a different calendar,
you'll need to derive from xs:string using the pattern facet.

Constraining facets that apply to xs:gMonth are minInclusive , maxInclusive ,
minExclusive , maxExclusive , pattern , enumeration , and whiteSpace
. However, if the time zones are not specified, it may not be possible to determine
conclusively whether one month starts before another. If time zones are specified,
months are compared by their first moment. Thus, --12---05:00 is greater than --
12--Z , which is greater than --12--+02:00 .

xs:gMonthDay

The xs:gMonthDay type represents a certain day of a certain month in no particular

year. It is written in the format -- MM-DD plus an optional time zone suffix in the form
±hh:mm or Z to indicate Coordinated Universal Time (UTC). These are all valid
xs:gMonthDay values:

--10-31

--12-25Z

--01-01+05:00

--07-04-02:00

The g indicates that the month and day are specified in the Gregorian calendar. Schema
date types are not localizable to non-Gregorian calendars. For a different calendar, you'll
have to derive from xs:string using the pattern facet.

Constraining facets that apply to xs:gMonthDay are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
and whiteSpace . However, if the time zones are not specified, it is not always
possible to determine conclusively whether one day starts before another. If time zones
are specified, days are compared by their first moment in the same year.

xs:gYear

http://lib.ommolketab.ir

The xs:gYear type represents a year in the Gregorian calendar. It is written in the
format CCYY plus an optional time zone suffix in the form ±hh:mm or Z to indicate
Coordinated Universal Time (UTC). Dates before year 1 can be indicated by a minus
sign. At least four digits are used, but additional digits can be added to indicate years
after 9999 or before 9999 BCE. These are all valid xs:gYear values in their order of
occurrence:

-15000000000

0004

0600

1492

2002+10:00

2002Z

2002-04:30

100000

800000000

Constraining facets that apply to xs:gYear are minInclusive , maxInclusive ,
minExclusive , maxExclusive , pattern , enumeration , and whiteSpace
. However, if the time zones are not specified, it may not be possible to determine
conclusively whether one year starts before another. If time zones are specified, years
are compared by their first moment.

xs:gYearMonth

The xs:gYearMonth type represents a month and year in the Gregorian calendar,

such as March, 2002. It is written in the format CCYY-MM plus an optional time zone
suffix in the form ±hh:mm or Z to indicate Coordinated Universal Time (UTC). Dates
before year 1 can be indicated by a minus sign. At least four digits are used, but
additional digits can be added to indicate years after 9999 or before 9999 BCE. These
are all valid xs:gYearMonth values in their order of occurrence:

http://lib.ommolketab.ir

-15000000000-05

0004-04

0600-10

1492-11

2002-03+10:00

2002-03Z

2002-03-04:30

100000-07

100000-08

Constraining facets that apply to xs:gYearMonth are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
and whiteSpace . However, if the time zones are not specified it may not be possible
to determine conclusively whether one month and year starts before another.

xs:hexBinary

The xs:hexBinary type represents an arbitrary sequence of bytes that has been
encoded by replacing each byte of data with two hexadecimal digits from 0 through F (A
is 10, B is 11, C is 12, etc.). Either upper- or lowercase letters may be used in whatever
character set the document is written. In UTF-8 or ASCII, this has the effect of exactly
doubling the space used for the data.

The constraining facets that apply to xs:hexBinary are length , minLength ,
maxLength , pattern , enumeration , and whiteSpace . Unlike string types, the
values specified by the length , minLength , and maxLength facets refer to the
number of bytes in the decoded data, not to the number of characters in the encoded
data.

xs:ID

http://lib.ommolketab.ir

xs:ID is a subtype of xs:NCName with the additional restriction that the value is
unique among other items of type xs:ID within the same document. The legal lexical
values of type xs:ID are exactly the same as for xs:NCName . Constraining facets
that apply to xs:ID are length , minLength , maxLength , pattern ,
enumeration , and whiteSpace .

xs:IDREF

xs:IDREF is a subtype of xs:NCName with the additional restriction that the value is
used elsewhere in the instance document on an item with type xs:ID . The legal lexical
values of type xs:ID are exactly the same as for xs:NCName . Constraining facets
that apply to xs:IDREF are length , minLength , maxLength , pattern ,
enumeration , and whiteSpace .

xs:IDREFS

The xs:IDREFS type indicates that the value is a whitespace-separated list of xs:ID
type values used elsewhere in the instance document. This is the same as the DTD
IDREFS attribute type.

Constraining facets that apply to xs:IDREFS are length , minLength ,
maxLength , enumeration , pattern , and whiteSpace . The length ,
minLength , and maxLength facets all refer to the number of IDREFs in the list.

xs:int

The xs:int type represents a signed integer small enough to be represented as a
four-byte, two's complement number such as Java's int primitive data type. It is
derived from xs:long by setting the maxInclusive facet to 2147483647 and the
minInclusive facet to -2147483648. These are all legal values of type xs:int :

200

http://lib.ommolketab.ir

200000

-200000

+2147483647

-2147483648

0

Constraining facets that apply to xs:int are minInclusive , maxInclusive ,
minExclusive , maxExclusive , pattern , enumeration , whiteSpace ,
and totalDigits .

xs:integer

The xs:integer type represents a mathematical integer of arbitrary size. The type is
derived from xs:double by fixing the fractionDigits facet at 0. It may be
prefixed with either a plus sign or a minus sign. If no sign is present, a plus is assumed.
These are all legal values of type xs:integer :

3

3000

349847329847983264983264987326487326487324678346374

+127

-128

0

+0

-0

Constraining facets that apply to xs:integer are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
whiteSpace , and totalDigits .

xs:language

http://lib.ommolketab.ir

Elements and attributes with type xs:language contain a language code as defined

in RFC 1766, Tags for the Identification of Languages . These are essentially the
acceptable values for the xml:lang attribute described in Chapter 5 . If possible, this
should be one of the two-letter language codes defined in ISO 639, possibly followed by
a country code. For languages that aren't listed in ISO 639, you can use one of the i-
codes registered with IANA. If the language you need isn't present in either of these
sets, you can make up your own language tag beginning with the prefix "x-" or "X-".
Thus, these are acceptable language values:

en

en-US

en-GB

fr-CA

i-klingon

x-quenya

X-PigLatin

Constraining facets that apply to xs:language are length , minLength ,
maxLength , pattern , enumeration , and whiteSpace .

xs:long

The xs:long type represents a signed integer that can be represented as an eight-
byte, two's complement number such as Java's long primitive data type. It is derived
from xs:integer by setting the maxInclusive facet to 9223372036854775807
and the minInclusive facet to -9223372036854775808. These are all legal values of
type xs:long :

2

http://lib.ommolketab.ir

200

+9223372036854775807

-9223372036854775808

5000000000

0

Constraining facets that apply to xs:long are minInclusive , maxInclusive ,
minExclusive , maxExclusive , pattern , enumeration , whiteSpace ,
and totalDigits .

xs:Name

xs:Name is a subtype of xs:token that is restricted to legal XML 1.0 names. In other
words, the value must consist exclusively of letters, digits, ideographs, and the
underscore, hyphen, period, and colon. Digits, the hyphen, and the period may not be
used to start a name, though they may be used inside the name. These are all legal
values of type xs:Name :

G127

_128

Limit

xml-stylesheet

svg:rect

Constraining facets that apply to xs:Name are length , minLength , maxLength ,
pattern , enumeration , and whiteSpace .

xs:NCName

http://lib.ommolketab.ir

An xs:NCName is a noncolonized name as defined in Namespaces in XML . This is a
legal XML name that does not contain a colon. The value must consist exclusively of
letters, digits, ideographs, and the underscore, hyphen, and period. Digits, the hyphen,
and the period may not be used to start a name, though they may be used inside the
name. These are all legal values of type xs:NCName :

I-10

_128

Limit

xml-stylesheet

Constraining facets that apply to xs:NCName are length , minLength ,
maxLength , pattern , enumeration , and whiteSpace .

xs:negativeInteger

The xs:negativeInteger type represents a mathematical integer that is strictly
less than zero. It is derived from xs:integer by setting the maxInclusive facet to
-1. These are all legal values of type xs:negativeInteger :

-2

-200

-9223372036854775809

-9223372036854775808922337203685477580892233720368

-34

Constraining facets that apply to xs:negativeInteger are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
whiteSpace , and totalDigits .

http://lib.ommolketab.ir

xs:NMTOKEN

An xs:NMTOKEN is the schema equivalent of the DTD NMTOKEN attribute type. It is a
subtype of xs:token that is restricted to legal XML 1.0 name tokens. These are the
same as XML names except that there are no restrictions on what characters may be
used to start the name token. In other words, the value must consist of one or more
letters, digits, ideographs, and the underscore, hyphen, period, and colon. These are all
legal values of type xs:NMTOKEN :

127

-128

Limit

integration

svg:rect

Constraining facets that apply to xs:NMTOKEN are length , minLength ,
maxLength , pattern , enumeration , and whiteSpace .

xs:NMTOKENS

The xs:NMTOKENS type is the schema equivalent of the DTD NMTOKENS attribute
type. xs:NMTOKENS is derived from xs:NMTOKEN by list. Thus, a value of type
xs:NMTOKENS contains one or more whitespace-separated name tokens. These are all
legal values of type xs:NMTOKENS :

127 126 125 124 123 122 121 120 119 118

-128

http://lib.ommolketab.ir

Limit Integral Sum Sup Liminf Limsup

Jan Feb Mar Apr May June July Sept Nov Dec

svg:rect

Constraining facets that apply to xs:NMTOKENS are length , minLength ,
maxLength , enumeration , pattern , and whiteSpace . The length ,
minLength , and maxLength facets all refer to the number of name tokens in the list.

xs:nonNegativeInteger

The xs:nonNegativeInteger type represents a mathematical integer that is
greater than or equal to zero. It is derived from xs:integer by setting the
minInclusive facet to 0. These are all legal values of type
xs:nonNegativeInteger :

2

+200

9223372036854775809

9223372036854775808922337203685477580892233720368

0

Constraining facets that apply to xs:nonNegativeInteger are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
whiteSpace , and totalDigits .

xs:nonPositiveInteger

The xs:nonPositiveInteger type represents a mathematical integer that is less
than or equal to zero. It is derived from xs:integer by setting the maxInclusive
facet to 0. These are all legal values of type xs:nonPositiveInteger :

http://lib.ommolketab.ir

-2

-200

-9223372036854775809

-9223372036854775808922337203685477580892233720368

0

Constraining facets that apply to xs:nonPositiveInteger are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
whiteSpace , and totalDigits .

xs:normalizedString

xs:normalizedString is derived from xs:string by setting the whiteSpace
facet to replace so that the carriage return (#xD) and tab (#x9) characters are
replaced by spaces in the normalized value. A normalized string can contain any
characters that are allowed in XML, though depending on context, special characters
such as < , & , and " may have to be escaped with character or entity references in the
usual way. All legal strings are also legal lexical representations of type
xs:normalizedString . However, a schema-aware parser that presents the
normalized value of an element instead of the literal characters in the document will
replace all carriage returns and tabs with spaces before passing the string to the client
application.

Constraining facets that apply to xs:normalizedString are length ,
minLength , maxLength , pattern , enumeration , and whiteSpace .

xs:NOTATION

The xs:NOTATION type restricts a value to those qualified names declared as
notations using an xs:notation element in the schema. This is an abstract type. In
other words, you cannot directly declare that an element or attribute has type
xs:NOTATION . Instead, you must first derive a new type from xs:NOTATION , most
commonly by enumeration, and then declare that your element or attribute possesses

http://lib.ommolketab.ir

the subtype. Constraining facets that apply to xs:NOTATION are length ,
minLength , maxLength , pattern , enumeration , and whiteSpace .

xs:positiveInteger

The xs:positiveInteger type represents a mathematical integer that is strictly
greater than zero. It is derived from xs:integer by setting the minInclusive facet
to 1. These are all legal values of type xs:positiveInteger :

1

+2

9223372036854775809

9223372036854775808922337203685477580892233720368

34

Constraining facets that apply to xs:positiveInteger are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
whiteSpace , and totalDigits .

xs:QName

An xs:QName is a base type that is restricted to namespace-qualified names. The
logical value of a qualified name is a namespace URI, local part pair. Lexically, qualified
names are the same as XML names except that they may not contain more than one
colon and that colon may not be the first character in the name. A qualified name may or
may not be prefixed. If it is prefixed, then the prefix must be properly mapped to a
namespace URI. If it is not prefixed, then the name must occur in the scope of a default
namespace. These are all legal values of type xs:QName provided that this condition is
met in context:

xsl:apply-templates

http://lib.ommolketab.ir

svg:rect

limit

xml:lang

body

xlink:href

Constraining facets that apply to xs:QName are length , minLength , maxLength
, pattern , enumeration , and whiteSpace .

xs:short

The xs:short type indicates a signed integer small enough to be represented as a
two-byte, two's complement number such as Java's short primitive data type. It is
derived from xs:int by setting the maxInclusive facet to 32767 and the
minInclusive facet to -32768. These are all legal values of type xs:int :

2000

+2000

-2000

32767

-32768

0

Constraining facets that apply to xs:short are minInclusive , maxInclusive ,
minExclusive , maxExclusive , pattern , enumeration , whiteSpace ,
and totalDigits .

xs:string

http://lib.ommolketab.ir

This is the most general simple type. Elements and attributes with type xs:string can
contain any sequence of characters allowed in XML, though depending on context
certain characters such as < , & , and " may have to be escaped with character or entity
references in the usual way.

Constraining facets that apply to xs:string are length , minLength ,
maxLength , pattern , enumeration , and whiteSpace .

xs:time

The xs:time type represents a specific time of day on no particular day, such as 3:32

P.M. Times are written in the form ±hh:mm:ss.xxx using a 24-hour clock and as many
fractions of a second as necessary. For example, 3:41 P.M. is written as 15:41:00 .
3:41 A.M. and a half-second is written as 03:41:00.5 . The Z suffix indicates
Coordinated Universal Time (Greenwich Mean Time, UTC). Otherwise, the time zone
can be indicated as an offset in hours and minutes from UTC. For example,
15:41:00-05:00 is 3:41 P.M., in the U.S. Eastern time zone. The time zone may be
omitted, in which case the actual time is somewhat nondeterministic. These are all valid
values of type xs:time :

03:32:00-05:00

00:00:00Z

08:30:34.121893632178

23:59:59

Constraining facets that apply to xs:time are minInclusive , maxInclusive ,
minExclusive , maxExclusive , pattern , enumeration , and whiteSpace
. Note, however, that when the time zone is not specified, it's not always possible to
determine unambiguously whether one time falls after another.

xs:token

xs:token is a subtype of xs:normalizedString whose normalized value does
not contain any line feed (#xA) or tab (#x9) characters, does not have any leading or

http://lib.ommolketab.ir

trailing whitespace, and has no sequence of two or more spaces. All legal strings are
also legal lexical representations of type xs:normalizedString . However, a
schema-aware parser that presents the normalized value of an element instead of the
literal characters in the document will trim leading and trailing whitespace and compress
all others runs of whitespace characters with a single space before passing the string to
the client application.

Constraining facets that apply to xs:token are length , minLength , maxLength
, pattern , enumeration , and whiteSpace .

xs:unsignedByte

The xs:unsignedByte type represents a non-negative integer that can be stored in
one byte, such as the unsigned char type used by some (but not all) C compilers. It is
derived from xs:unsignedShort by setting the maxInclusive facet to 255 (28-1).
These are all legal values of type xs:unsignedByte :

3

200

+255

50

0

Constraining facets that apply to xs:unsignedByte are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
whiteSpace , and totalDigits .

xs:unsignedInt

The xs:unsignedInt type represents a non-negative integer that can be stored in
four bytes, such as the unsigned int type used by some C compilers. It is derived from
xs:unsignedLong by setting the maxInclusive facet to 4294967295 (2321-1).
These are all legal values of type xs:unsignedInt :

http://lib.ommolketab.ir

2

200

+4294967295

100000

0

Constraining facets that apply to xs:unsignedInt are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
whiteSpace , and totalDigits .

xs:unsignedLong

The xs:unsignedLong type represents a non-negative integer that can be stored in
eight bytes, such as the unsigned long type used by some C compilers. It is derived
from xs:nonNegativeInteger by setting the maxInclusive facet to
18446744073709551615 (264-1). These are all legal values of type
xs:unsignedLong :

2

200

+9223372036854775807

18446744073709551615

5000000000

0

Constraining facets that apply to xs:unsignedLong are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
whiteSpace , and totalDigits .

xs:unsignedShort

http://lib.ommolketab.ir

The xs:unsignedShort type represents a non-negative integer that can be stored in
four bytes, such as the unsigned short type used by some C compilers. It is derived
from xs:unsignedInt by setting the maxInclusive facet to 65535 (216-1). These
are all legal values of type xs:unsignedShort :

3

300

+65535

50000

0

Constraining facets that apply to xs:unsignedShort are minInclusive ,
maxInclusive , minExclusive , maxExclusive , pattern , enumeration ,
whiteSpace , and totalDigits .

21.4 Instance Document Attributes

The W3C XML Schema Language defines four attributes in the
http://www.w3.org/2001/XMLSchema-instance namespace (here mapped to the xsi
prefix), which are attached to elements in the instance document rather than elements in
the schema. These are as follows: xsi:nil , xsi:type , xsi:schemaLocation ,
and xsi:noNamespaceSchemaLocation . All four of these attributes are special in
that the schemas do not need to declare them.

xsi:nil

The xsi:nil attribute indicates that a certain element does not have a value or that
the value is unknown. This is not the same as having a value that is zero or the empty
string. Semantically, it is equivalent to SQL's null. For example, in this full_name
element, the last_name child has a nil value:

<full_name xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

http://www.w3.org/2001/XMLSchema-instance
http://lib.ommolketab.ir

 <first_name>Cher</first_name>
 <last_name xsi:nil="true"/>
</full_name>

It is not relevant whether an empty-element tag or a start-tag/end-tag pair is used to
represent the nil element. However, a nil element may not have any content.

In order for this document to be valid, the element declaration for the name element
must explicitly specify that nil values are allowed by setting the nillable attribute to
true . For example:

<xs:element name="last_name" type="xs:string" nillable="true"/>

xsi:noNamespaceSchemaLocation

The xsi:noNamespaceSchemaLocation attribute locates the schema for
elements that are not in any namespace. (Attributes that are not in any namespace are
assumed to be declared in the same schema as their parent element.) Its value is a
relative or absolute URL where the schema document can be found. It is most
commonly attached to the root element but can appear further down the tree. For
example, this person element claims that it should be validated against the schema

found at the URL http://www.elharo.com/person.xs :

<person xsi:noNamespaceSchemaLocation="http://www.elharo.com/person.xs">
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <profession>computer scientist</profession>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
</person>

These are only suggestions. Schema processors may use other means of locating the
relevant schemas and to ignore the hints provided by
xsi:noNamespaceSchemaLocation .

xsi:schemaLocation

http://www.elharo.com/person.xs
http://lib.ommolketab.ir

The xsi:schemaLocation attribute locates schemas for elements and attributes
that are in a specified namespace. Its value is a namespace URI followed by a relative
or absolute URL where the schema for that namespace can be found. It is most
commonly attached to the root element but can appear further down the tree. For
example, this person element in the http://www.cafeconleche.org/namespaces/person
namespace claims that it should be validated against the schema found at the URL
http://www.elharo.com/person.xs :

<person xmlns="http://www.cafeconleche.org/namespaces/person"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.cafeconleche.org/namespaces/person
 http://www.elharo.com/person.xs">
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <profession>computer scientist</profession>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
</person>

If more than one namespace is used in a document, then each namespace must have
its own schema. The namespace URIs and schema URLs can be listed in sequence in
the same xsi:schemaLocation attribute. For example, the
xsi:schemaLocation attribute on this person element says that items from the

http://www.cafeconleche.org/namespaces/person namespace should be validated
against the schema found at the URL http://www.elharo.com/person.xs , while items
from the http://www.cafeconleche.org/namespaces/names namespace should be
validated against the schema found at the relative URL names.xs .

<person xmlns="http://www.cafeconleche.org/namespaces/person"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.cafeconleche.org/namespaces/person
 http://www.elharo.com/person.xs
 http://www.cafeconleche.org/namespaces/names
 names.xs">
 <name xmlns="http://www.cafeconleche.org/namespaces/names">
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>

http://www.cafeconleche.org/namespaces/person
http://www.elharo.com/person.xs
http://www.cafeconleche.org/namespaces/person
http://www.elharo.com/person.xs
http://www.cafeconleche.org/namespaces/names
http://lib.ommolketab.ir

 </name>
 <profession>computer scientist</profession>
 <profession>mathematician</profession>
 <profession>cryptographer</profession>
</person>

These are only suggestions. Schema processors are allowed to use other means of
locating the relevant schemas and to ignore the hints provided by
xsi:schemaLocation .

xsi:type

The xsi:type attribute may be used in instance documents to indicate the type of an
element, even when a full schema is not available. For example, this length element
has type xs:decimal :

<length xsi:type="xs:decimal">23.5</length>

More importantly, the xsi:type attribute enables a limited form of polymorphism. That
is, it allows you to place an instance of a derived type where an instance of the base
type would normally be expected. The instance of the derived type must carry an
xsi:type attribute identifying it as an instance of the base type. For example, suppose
a schema says that a transport element must contain exactly one vehicle
element. If bus , train , and airplane are all subtypes of vehicle , then these are
valid transport elements:

<transport>
 <airplane xsi:type="airplane">Boeing 767</airplane>
</transport>
<transport>
 <bus xsi:type="bus">Greyhound</bus>
</transport>

However, when the xsi:type attributes are removed, these are no longer valid
transport elements:

<transport>
 <airplane>Boeing 767</airplane>
</transport>
<transport>

http://lib.ommolketab.ir

 <bus>Greyhound</bus>
</transport>

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 22. XPath Reference

 22.1 The XPath Data Model

 22.2 Data Types
 22.3 Location Paths

 22.4 Predicates
 22.5 XPath Functions

XPath is a non-XML syntax for expressions that identify particular nodes and groups of
nodes in an XML document. It is used by both XPointer and XSLT, as well as by some
native XML databases and query languages.

22.1 The XPath Data Model

XPath views each XML document as a tree of nodes. Each node has one of seven
types:

Root

Each document has exactly one root node, which is the root of the tree. This node
contains one comment node child for each comment outside the document
element, one processing-instruction node child for each processing instruction
outside the document element, and exactly one element node child for the
document element. It does not contain any representation of the XML declaration,
the document type declaration, or any whitespace that occurs before or after the
root element. The root node has no parent node. The root node's value is the value
of the document element.

Element

An element node represents an element. It has a name, a namespace URI, a
parent node, and a list of child nodes, which may include other element nodes,
comment nodes, processing-instruction nodes, and text nodes. An element node
also has a list of attributes and a list of in-scope namespaces, none of which are
considered to be children of the element. The value of an element node is the
complete, parsed text between the element's start- and end-tags that remains after
all tags, comments, and processing instructions are removed and all entity and
character references are resolved.

Attribute

http://lib.ommolketab.ir

An attribute node represents an attribute. It has a name, a namespace URI, a
value, and a parent element. However, although elements are parents of attributes,
attributes are not children of their parent elements. The biological metaphor breaks
down here. xmlns and xmlns:prefix attributes are not represented as
attribute nodes. An attribute node's value is the normalized attribute value.

Text

Each text node represents the maximum possible contiguous run of text between
tags, processing instructions, and comments. A text node has a parent node but
does not have children. A text node's value is the text of the node.

Namespace

A namespace node represents a namespace in scope on an element. In general,
each namespace declaration by an xmlns or xmlns:prefix attribute produces
multiple namespace nodes in the document tree. Like attribute nodes, each
namespace node has a parent element but is not the child of that parent. The
name of a namespace node is the prefix. The value of a namespace node is the
namespace URI.

Processing instruction

A processing-instruction node represents a processing instruction. It has a target,
data, a parent node, and no children. The name of a processing-instruction node is
its target. The value of a processing-instruction node is the data of the processing
instruction, not including any initial whitespace.

Comment

A comment node represents a comment. It has a parent node and no children. The
value of a comment is the string content of the comment, not including the <!--
and --> .

The XML declaration and the document type declaration are not included in XPath's
view of an XML document. All entity references, character references, and CDATA
sections are resolved before the XPath tree is built. The references themselves are not
included as a separate part of the tree.

22.2 Data Types

Each XPath expression evaluates to one of four types:

Boolean

A binary value that is either true or false. In XPath, Booleans are most commonly
produced by using the comparison operators = , != , < , > , <= , and >= . Multiple

http://lib.ommolketab.ir

conditions can be combined using the and and or operators, which have their
usual meaning in logic (e.g., 3>2 or 2>1 is true.) XPath does not offer Boolean
literals. However, the true() and false() functions fill that need.

Number

All numbers in XPath, which are IEEE 754-compliant, 64-bit floating point numbers.
This is the same as the double type in Java. Numbers range from
4.94065645841246544e-324d to 1.79769313486231570e+308d, and are either
positive or negative. Numbers also include the special values Inf (positive
infinity), -Inf (negative infinity), and NaN (not a number), which is used for the
results of illegal operations, such as dividing by zero. XPath provides all the
customary operators for working with numbers, including:

+

Addition
-

Subtraction; however, this operator should always be surrounded by
whitespace to avoid accidental misinterpretation as part of an XML name

*

Multiplication
div

Division
mod

Taking the remainder
String

Sequence of zero or more Unicode characters. String literals are enclosed in either
single or double quotes, as convenient. Unlike Java, XPath does not allow strings
to be concatenated with the plus sign. However, the concat() function serves
this purpose.

Node-set

Collection of zero or more nodes from an XML document. Location paths produce
most node-sets. Generally, a single node-set can contain every kind of node: root,
element, attribute, namespace, comment, processing instruction, and text.
However, most node-sets contain a single type of node.

Some standards that use XPath also define additional data types. For instance, XSLT
defines a result tree fragment type that represents the result of processing an XSLT

http://lib.ommolketab.ir

instruction or instantiating a template. XPointer defines a location set type that extends
node-sets to include points and ranges.

22.3 Location Paths

Node-sets are returned by location-path expressions. Location paths consist of location
steps. Each location step contains an axis and a node test separated by a double colon.
That is, a location step looks like this:

axis::node test

The axis specifies in which direction from the context node the processor searches for
nodes. The node test specifies which nodes along that axis are selected. These are
some location steps with different axes and node tests:

child::set
descendant-or-self::node()
ancestor-or-self::*
attribute::xlink:href

Each location step may be suffixed with one or more predicates enclosed in square
brackets that further winnow the node-set. For example:

child::set[position()=2]
descendant-or-self::node()[.='Eunice']
ancestor-or-self::*[position()=2][.="Celeste"]
attribute::xlink:href[starts-with('http')]

Each individual location step is itself a relative location path. The context node against
which the relative location path is evaluated is established by some means external to
XPath-for example, by the current matched node in an XSLT template.

Location steps can be combined by separating them with forward slashes. Each step in
the resulting location path sets the context node (or nodes) for the next path in the step.
For example:

ancestor-or-self::*/child::*[position()=1]
child::document/child::set[position()=2]/following-sibling::*
descendant::node()[.='Eunice']/attribute::ID

An absolute location path is formed by prefixing a forward slash to a relative location
path. This sets the context node for the first step in the location path to the root of the
document. For example, these are all absolute location paths:

http://lib.ommolketab.ir

/descendant::ship/ancestor-or-self::*/child::*[position()=1]
/child::document/child::set[position()=2]/following-sibling::*
/descendant::node()[.='Eunice']/attribute::ID

Multiple location paths can be combined with the union operator (|) to form an
expression that selects a node-set containing all the nodes identified by any of the
location paths. For example, this expression selects a node-set containing all the set
children of the context node, all the vector descendants of the context node, all
ancestor elements of the context node and the root node, and all attributes of
the context node named href :

child::set | descendant::vector | ancestor::* | attribute::href

22.3.1 Abbreviated Syntax

An abbreviated syntax is available for particularly common location steps. This is the
syntax allowed in XSLT match patterns. In this syntax, five axes may use this shorthand:

.

The context node
..

The parent node
name

The child element or elements with the specified name
//

All descendants of the context node, and the context node itself
@ name

The attribute of the context node with the specified name

Using the abbreviated syntax, the previous examples can be rewritten in the following
manner:

set
descendant-or-self::node()
ancestor-or-self::*
@xlink:href
set[position()=2]
descendant-or-self::node()[.='Eunice']
ancestor-or-self::*[position()=2][.="Celeste"]

http://lib.ommolketab.ir

@xlink:href[starts-with('http')]
ancestor-or-self::*/*[position()=1]
document/set[position()=2]/following-sibling::*
descendant::node()[.='Eunice']/@ID
//ship/ancestor-or-self::*/*[position()=1]
/document/set[position()=2]/following-sibling::*
/descendant::node()[.='Eunice']/@ID
set | .//vector | ancestor::* | @href

Not all location steps can be rewritten using the abbreviated syntax. In particular, only
the child, self, attribute, descendant-or-self, and parent axes can be abbreviated. The
remaining axes must be spelled out in full.

22.3.2 Axes

Each XPath location step moves along an axis from a context node. The context node is
a particular root, element, attribute, comment, processing-instruction, namespace, or
text node in the XML document. (In practice, it's almost always an element node or the
root node.) The context node may be a node selected by the previous location step in
the location path, or it may be determined by extra-XPath rules, such as which node is
matched by an xsl:template element.

However the context node is determined, it has some relationship to every other node in
the document. The various axes divide the document into different, overlapping sets,
depending on their relationship to the context node. There are exactly 13 axes you can
use in an XPath location step:

child

All children of the context node. Only root and element nodes have children.
Attribute and namespace nodes are not children of any node, though they do have
parent nodes.

descendant

All nodes contained inside the context node, that is, a child node, a child of a child
node, a child of a child of a child node, and so on. Only root and element nodes
have descendants. Like the child axis, the descendant axis never contains
attribute or namespace nodes.

descendant-or-self

Any descendant of the context node or the context node itself. // is an
abbreviation for /descendant-or-self::node()/ .

parent

http://lib.ommolketab.ir

The element or root node that immediately contains the context node. Only the root
node does not have a parent node. .. is an abbreviation for parent::node()
.

ancestor

The root node and all element nodes that contain the context node. The root node
itself has no ancestors.

ancestor-or-self

All ancestors of the context node, as well as the node itself.
following-sibling

All nodes that follow the end of the context node and have the same parent node.
Attribute and namespace nodes do not have siblings.

preceding-sibling

All nodes that precede the start of the context node and have the same parent
node. Attribute and namespace nodes do not have siblings.

following

All nodes that begin after the context node ends, except for attribute nodes and
namespace nodes; that is, all nodes after the context node except descendants.

preceding

All nodes that end before the context node begins, except for attribute nodes and
namespace nodes; that is, all nodes before the context node except ancestors.

attribute

All attributes of the context node; the axis is empty if the context node is not an
element node. This axis does not contain xmlns and xmlns:prefix attributes.
@name is an abbreviation for attribute::name .

namespace

All namespaces in scope (not merely declared) on the context node; this axis is
empty if the context node is not an element node.

self

The context node itself. A single period (.) is an abbreviation for self::node .

22.3.3 Node Tests

Each location step has at least an axis and a node test. The node test further refines the
nodes selected by the location step. In an unabbreviated location step, a double colon
(::) separates the axis from the node test. There are seven kinds of node tests:

http://lib.ommolketab.ir

name

An XML name matches all elements with the same name. However, along the
attribute axis it matches all attributes with the same name instead; along the
namespace axis it matches all namespaces with that prefix. As usual, if the
element or attribute name is prefixed, only the URI to which the prefix is mapped
matters, not the prefix itself.

prefix : *

Along most axes, this node test matches all element nodes whose namespace
URIs are the same as the namespace URI to which this prefix is mapped,
regardless of name. However, along the attribute axis, this node test matches all
attribute nodes whose namespace URIs are the same as the namespace URI to
which this prefix is mapped.

comment()

This includes all comment nodes.
text()

This includes all text nodes. Each text node is a maximum contiguous run of text
between other types of nodes.

processing-instruction()
processing-instruction(' target ')

With no arguments, this node test selects all processing instructions. With a single
string argument, it selects all processing instructions that have the specified target.

node()

This node test selects all nodes, regardless of type: attribute, namespace, element,
text, comment, processing instruction, and root.

*

This test normally selects all element nodes, regardless of name. However, if the
axis is the attribute axis, then it selects all attribute nodes. If the axis is the
namespace axis, then it selects all namespace nodes.

22.4 Predicates

Each location step may have zero or more predicates. A predicate is an XPath
expression enclosed in square brackets that follows the node test in the location step.
This expression most commonly, but not necessarily, returns a Boolean value. In the
following location path:

http://lib.ommolketab.ir

/person[position()=1]/profession[.="physicist"][position()<3]

[position()=1] , [.="physicist"] , and [position()<3] are
predicates. An XPath processor works from left to right in an expression. After it has
evaluated everything that precedes the predicate, it's left with a context node list that
may contain no nodes, one node, or more than one node. For most axes, including
child, following-sibling, following, and descendant, this list is in document order. For the
ancestor, preceding, and preceding-sibling axes, this list is in reverse document order.

The predicate is evaluated against each node in the context node list. If the expression
returns true, then that node is retained in the list. If the expression returns false, then the
node is removed from the list. If the expression returns a number, then the node being
evaluated is left in the list if and only if the number is the same as the position of that
node in the context node list. If the expression returns a non-Boolean, non-number type,
then that return value is converted to a Boolean using the boolean() function,
described later, to determine whether it retains the node in the set.

22.5 XPath Functions

XPath 1.0 defines 27 built-in functions for use in XPath expressions. Various
technologies that use XPath, such as XSLT and XPointer, also extend this list with
functions they need. XSLT even allows user-defined extension functions.

Every function is evaluated in the context of a particular node, called the context node .
The higher-level specification in which XPath is used, such as XSLT or XPointer,
decides exactly how this context node is determined. In some cases the function
operates on the context node. In other cases it operates on the argument, if present, and
the context node, if no argument exists. The context node is ignored in other cases.

In the following sections, each function is described with at least one signature in this
form:

return-type function-name(type argument, type argument, ...)

Compared to languages like Java, XPath argument lists are quite loose. Some XPath
functions take a variable number of arguments and fill in the arguments that are omitted
with default values or the context node.

Furthermore, XPath is weakly typed. If you pass an argument of the wrong type to an
XPath function, it generally converts that argument to the appropriate type using the
boolean() , string() , or number() functions, described later. The
exceptions to the weak-typing rule are the functions that take a node-set as an
argument. Standard XPath 1.0 provides no means of converting anything that isn't a

http://lib.ommolketab.ir

node-set into a node-set. In some cases a function can operate equally well on multiple
argument types. In this case, its type is given simply as object .

boolean()

boolean boolean(object o)

The boolean() function converts its argument to a Boolean according to these rules:

Zero and NaN are false. All other numbers are true.

Empty node-sets are false. Nonempty node-sets are true.

Empty strings are false. Nonempty strings are true.

ceiling()

number ceiling(number x)

The ceiling() function returns the smallest integer greater than or equal to x . For
example, ceiling(3.141592) is 4. ceiling(-3.141592) is -3. Before the
ceiling is calculated, non-number types are converted to numbers as if by the number(
) function.

concat()

string concat(string s1, string s2)
string concat(string s1, string s2, string s3)
string concat(string s1, string s2, string s3, string s4)
...

This function concatenates its arguments in order from left to right and returns the
combined string. It may take two or more arguments. Nonstrings may be passed to this
function as well, in which case they're converted to strings automatically as if by the
string() function.

http://lib.ommolketab.ir

contains()

boolean contains(string s1, string s2)

This function returns true if s2 is a substring of s1 -that is, if s1 contains s2 - fa lse
otherwise. For example, contains("A very Charming cat", "Charm") is
true, but contains("A very Charming cat", "Marjorie") is false. The test
is case-sensitive. For example, contains("A very charming cat",
"Charm") is false. Nonstrings may also be passed to this function, in which case
they're automatically converted to strings as if by the string() function.

count()

number count(node-set set)

The count() function returns the number of nodes in the argument node-set, that is,
the length of the set.

false()

boolean false()

The false() function always returns false. It makes up for the lack of Boolean literals
in XPath.

floor(3e)

number floor(number x)

The floor() function returns the greatest integer less than or equal to x . For
example, floor(3.141592) is 3. floor(-3.141592) is -4. Before their floor is
calculated, non-number types are converted to numbers as if by the number()
function.

http://lib.ommolketab.ir

id()

node-set id(string IDs)
node-set id(node-set IDs)

The id() function returns a node-set containing all elements in the document with any
of the specified IDs. If the argument is a string, then this string is interpreted as a
whitespace-separated list of IDs, and the function returns a node-set containing any
elements that have an ID matching one of these IDs. If the argument is a node-set, then
each node in the set is converted to a string, which is in turn treated as a white-space-
separated list of IDs. The returned node-set contains all the elements whose ID matches
any ID in the string value of any of these nodes. Finally, if the argument is any other
type, then it's converted to a string, as by the string() function, and it returns the
same result as passing that string value to id() directly.

lang()

boolean lang(string languageCode)

The lang() function returns true if the context node is written in the language
specified by the languageCode argument; false otherwise. The nearest xml:lang
attribute on the context node or one of its ancestors determines the language of any
given node. If no such xml:lang attribute exists, then lang() returns false.

The lang() function takes into account country and other subcodes before making its
determination. For example, lang('fr') returns true for elements whose language
code is fr-FR , fr-CA , or fr . However, lang('fr-FR') is not true for elements
whose language code is fr-CA or fr .

last()

number last()

The last() function returns the size of (i.e., the number of nodes in) the context
node-set.

http://lib.ommolketab.ir

local-name()

string local-name()
string local-name(node-set nodes)

With no arguments, this function returns the context node's local name, that is, the part
of the name after the colon, or the entire name if it isn't prefixed. For a node-set
argument, it returns the local name of the first node in the node-set. If the node-set is
empty or the first node in the set does not have a name (e.g., it's a comment or root
node), then it returns the empty string.

name()

string name()
string name(node-set nodes)

With no arguments, this function returns the qualified (prefixed) name of the context
node or the empty string if the context node does not have a name (e.g., it's a comment
or root node). With a node-set as an argument, it returns the qualified name of the first
node in the node-set. If the node-set is empty or if the set's first node does not have a
name, then it returns the empty string.

namespace-uri()

string namespace-uri()
string namespace-uri(node-set nodes)

With no arguments, this function returns the namespace URI of the context node. With a
node-set as an argument, it returns the namespace URI of the first node in the node-set.
If this node does not have a namespace URI (i.e., it's not an element or an attribute
node; it is an element or attribute node, but is not in any namespace; or the node-set is
empty), then it returns the empty string.

normalize-space()

http://lib.ommolketab.ir

string normalize-space()
string normalize-space(string s)

The normalize-space() function strips all leading and trailing whitespace from its
argument and replaces each run of whitespace with a single space character. Among
other effects, this removes all line breaks. If the argument is omitted, it normalizes the
string value of the context node. A nonstring may be passed to this function, in which
case it's automatically converted to a string, as if by the string() function, and that
string is normalized and returned.

not()

boolean not(boolean b)

The not() function inverts its argument; that is, false becomes true and true becomes
false. For example, not(3 > 2) is false, and not(2+2=5) is true. Non-Booleans are
converted as by the boolean() function before being processed.

number()

number number()
number number(object o)

The number() function converts its argument to a number according to these rules:

A string is converted by first stripping leading and trailing whitespace and then
picking the IEEE 754 value that is closest (according to the IEEE 754 round-to-
nearest rule) to the mathematical value represented by the string. If the string does
not seem to represent a number, it is converted to NaN. Exponential notation (e.g.,
75.2E-12) is not recognized.

True Booleans are converted to 1; false Booleans are converted to 0.

Node-sets are first converted to a string as if by the string() function. The
resulting string is then converted to a number.

http://lib.ommolketab.ir

If the argument is omitted, then it converts the context node.

position()

number position()

The position() function returns a number equal to the position of the current node
in the context node-set. For most axes it counts forward from the context node.
However, if the axis in use is ancestor, ancestor-or-self, preceding, or preceding-sibling,
then it counts backward from the context node instead.

round()

number round(number x)

The round() function returns the integer closest to x . For example,
round(3.141592) returns 3. round(-3.141592) returns -3. If two integers are
equally close to x , then the one that is closer to positive infinity is returned. For
example, round(3.5) returns 4, and round(-3.5) returns -3. Non-number types
are converted to numbers as if by the number() function, before rounding.

starts-with()

boolean starts-with(string s1, string s2)

The starts-with() function returns true if s1 starts with s2 ; false otherwise. For
example, starts-with("Charming cat", "Charm") is true, but starts-with
("Charming cat", "Marjorie") is false. The test is case-sensitive. For example,
starts-with("Charming cat", "charm") is false. Nonstrings may be passed
to this function as well, in which case they're automatically converted to strings as if by
the string() function, before the test is made.

string()

http://lib.ommolketab.ir

string string()
string string(object o)

The string() function converts an object to a string according to these rules:

A node-set is converted to the string value of the first node in the node-set. If the
node-set is empty, it's converted to the empty string.

A number is converted to a string as follows:

NaN is converted to the string NaN .

Positive Inf is converted to the string Infinity .

Negative Inf is converted to the string -Infinity .

Integers are converted to their customary English form with no decimal point
and no leading zeros. A minus sign is used if the number is negative, but no
plus sign is used for positive numbers.

Nonintegers (numbers with nonzero fractional parts) are converted to their
customary English form with a decimal point, with at least one digit before the
decimal point and at least one digit after the decimal point. A minus sign is
used if the number is negative, but no plus sign is used for positive numbers.

A Boolean with the value true is converted to the English word "true." A Boolean
with the value false is converted to the English word "false." Lowercase is always
used.

The object to be converted is normally passed as an argument, but if omitted, the
context node is converted instead.

The XPath specification specifically notes that the "string function is
not intended for converting numbers into strings for presentation to
users." The primary problem is that it's not localizable and not
attractive for large numbers. If you intend to show a string to an end
user, use the format-number() function and/or xsl:number
element in XSLT instead.

string-length()

http://lib.ommolketab.ir

number string-length(string s)
number string-length()

The string-length() function returns the number of characters in its argument.
For example, string-length("Charm") returns 5. If the argument is omitted, it
returns the number of characters in the string value of the context node. A nonstring may
be passed to this function, in which case it's automatically converted to a string, as if by
the string() function, and that string's length is returned.

substring()

string substring(string s, number index, number length)
string substring(string s, number index)

The substring() function returns the substring of s starting at index and
continuing for length characters. The first character in the string is at position 1 (not 0,
as in Java and JavaScript). For example, substring('Charming cat', 1, 5)
returns "Charm" . If length is omitted, then the substring to the end of the string is
returned. For example, substring('Charming cat', 10) returns "cat" . As
usual, any type of object may be passed to this function in place of the normal argument,
in which case it is automatically converted to the correct type.

substring-after()

string substring-after(string s1, string s2)

The substring-after() function returns the substring of s1 that follows the first
occurrence of s2 in s1 , or it returns the empty string, if s1 does not contain s2 . For
example, substring-after('Charming cat', 'harm') returns "ing cat" .
The test is case-sensitive. As usual, nonstring objects may be passed to this function, in
which case they're automatically converted to strings as if by the string() function.

substring-before()

http://lib.ommolketab.ir

string substring-before(string s1, string s2)

The substring-before() function returns the substring of s1 that precedes the
first occurrence of the s2 in s1 , or it returns the empty string if s1 does not contain s2 .
For example, substring-before('Charming cat', 'ing') returns "Charm" .
The test is case-sensitive. Nonstring objects may be passed to this function, in which
case they're automatically converted to strings as if by the string() function.

sum()

number sum(node-set nodes)

The sum() function converts each node in the node-set to a number, as if by the
number() function, then it adds up those numbers and returns the sum.

translate()

string translate(string s1, string s2, string s3)

The translate() function looks in s1 for any characters found in s2 . It replaces
each character with the corresponding character from s3 . For example,
translate("XML in a Nutshell", " ", "_") replaces the spaces with
underscores and returns "XML_in_a_Nutshell" . translate("XML in a
Nutshell", "XMLN", "xmln") replaces the uppercase letters with lowercase
letters and returns "xml in a nutshell" . If s3 is shorter than s2 , then
characters in s1 and s2 with no corresponding character in s3 are simply deleted. For
example, translate("XML in a Nutshell", " ", "") deletes the spaces and
returns "XMLinaNutshell" . Once again, nonstring objects may be passed to this
function, in which case they're automatically converted to strings, as if by the string(
) function.

true()

http://lib.ommolketab.ir

boolean true()

The true() function simply returns true. It makes up for the lack of Boolean literals in
XPath.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 23. XSLT Reference

 23.1 The XSLT Namespace

 23.2 XSLT Elements
 23.3 XSLT Functions

 23.4 TrAX

Extensible Stylesheet Language Transformations (XSLT) is a functional programming
language used to specify how an input XML document is converted into another text
document-possibly, though not necessarily, another XML document. An XSLT
processor reads both an input XML document and an XSLT stylesheet (which is itself an
XML document because XSLT is an XML application) and produces a result tree as
output. This result tree may then be serialized into a file or written onto a stream.
Documents can be transformed using a standalone program or as part of a larger
program that communicates with the XSLT processor through its API.

23.1 The XSLT Namespace

All standard XSLT elements are in the http://www.w3.org/1999/XSL/Transform
namespace. In this chapter, we assume that this URI is mapped to the xsl prefix using
an appropriate xmlns:xsl declaration somewhere in the stylesheet. This mapping is
normally declared on the root element like this:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <!-- XSLT top-level elements go here -->
</xsl:stylesheet>

23.2 XSLT Elements

XSLT defines 37 elements, which break down into 3 overlapping categories:

Two root elements:
xsl:stylesheet
xsl:transform

12 top-level elements. These elements may appear as immediate children of the

http://www.w3.org/1999/XSL/Transform
http://lib.ommolketab.ir

root and are the following:
xsl:attribute-set xsl:decimal-format
xsl:import xsl:include
xsl:key xsl:namespace-alias
xsl:output xsl:param
xsl:preserve-space xsl:strip-space
xsl:template xsl:variable

23 instruction elements. These elements appear in the content of elements that
contain templates. Here we don't mean the xsl:template element. We mean
the content of that and several other elements, such as xsl:for-each and
xsl:message , which are composed of literal result elements, character data, and
XSLT instructions that are processed to produce part of the result tree. These
elements are as follows:
xsl:apply-imports xsl:apply-templates
xsl:attribute xsl:call-template
xsl:choose xsl:comment
xsl:copy xsl:copy-of
xsl:element xsl:fallback
xsl:for-each xsl:if
xsl:message xsl:number
xsl:otherwise xsl:param
xsl:processing-instruction xsl:sort
xsl:text xsl:value-of
xsl:variable xsl:with-param
xsl:when

Most XSLT processors also provide various nonstandard extension elements and allow
you to write your own extension elements in languages such as Java and JavaScript.

Elements in this section are arranged alphabetically from xsl:apply-imports to
xsl:with-param . Each element begins with a synopsis in the following form:

<xsl:elementName
 attribute1 = "allowed attribute values"
 attribute2 = "allowed attribute values"
>
 <!-- Content model -->
</xsl:elementName>

Most attribute values are one of the following types:

expression

http://lib.ommolketab.ir

An XPath expression. In cases where the expression is expected to return a value
of a particular type, such as node-set or number, it is prefixed with the type and a
hyphen, for example, node-set-expression or number-expression .
However, XPath is weakly typed, and in most cases, any supplied type will be
converted to the requested type. For instance, an attribute that should contain a
string might in fact contain a number or a node-set. The processor automatically
converts this number or set to a string, according to the rules given in the last
chapter for XPath's string() function. The only exception to this rule is node-
set-expression . XSLT does not convert other types to node-sets
automatically. If an attribute requires a node-set-expression , then it is an
error to set its value to another type of expression such as a boolean or string.

QualifiedName

An XML name, such as set or mathml:set . If the name is in a nondefault
namespace, then it has a prefix.

PrefixedName

An XML name that must have a prefix such as mathml:set but not set .

pattern

An XSLT pattern; that is, a group of one or more XPath location-path expressions
separated by | . in which each location step uses only the child or attribute axis.
The initial step may be an id() or key() function call with a literal argument.

langcode

An RFC 1766 language code, such as en or fr-CA .

string

A literal string of text.
char

A single Unicode character.
enumerated type

One value in a finite list of values. The values shown here are separated by vertical
bars, as in an enumerated content model in an ATTLIST declaration.

URI

A relative or absolute URI reference. In practice, these are normally URLs. Relative
URIs are relative to the location of the stylesheet itself.

Some attributes that contain strings-whether those strings are literals, expressions,
names, or something else-can be given as attribute value templates. This is an XPath
expression enclosed in curly braces, which is evaluated to provide the final value of the

http://lib.ommolketab.ir

attribute. When this is the case, it is indicated in the description of each attribute.

Potentially nonempty elements have content models given in a comment in the form
they might appear in an ELEMENT declaration. If an element can contain a template, we
use the word "template" to stand in for all the possible elements that may appear.

xsl:apply-imports

<xsl:apply-imports />

The xsl:apply-imports instruction processes the current node using only
templates that were imported into the stylesheet with xsl:import . A template rule
that overrides a template rule in an imported stylesheet can invoke the overridden
template rule with xsl:apply-imports .

xsl:apply-templates

<xsl:apply-templates
 select = "node-set-expression"
 mode = "QualifiedName">
 <! -- (xsl:sort | xsl:with-param)* -- >
</xsl:apply-templates>

The xsl:apply-templates instruction tells the processor to search for and apply
the highest-priority template in the stylesheet that matches each node identified by the
select attribute.

Attributes

select , optional

This is an XPath expression that returns a node-set. Each node in this set will be
processed further. If the select attribute is omitted, then all child nodes of the
context node should be processed.

mode , optional

If the mode attribute is present, then only templates that have a matching mode
attribute will be applied. If the mode attribute is absent, then only templates without

http://lib.ommolketab.ir

a mode attribute will be applied.

Contents

The xsl:apply-templates element may have xsl:sort child elements to
specify the order in which the selected nodes will be processed. Without any xsl:sort
children, the default is to process nodes in document order.

The xsl:apply-templates element may have xsl:with-param child elements
to pass parameter values to the matched templates.

xsl:attribute

<xsl:attribute
 name = "QualifiedName"
 namespace = "URI">
 <! -- template for the attribute value -- >
</xsl:attribute>

The xsl:attribute instruction adds an attribute to an element in the result tree. This
element can be a child of an xsl:attribute-set element, an xsl:element
instruction, or a literal result element. In each case, all xsl:attribute elements
must precede all literal result elements and other instructions that insert content into the
output element.

Attributes

name , required, attribute value template

The name of the attribute this instruction creates.
namespace , optional, attribute value template

The namespace URI of the attribute. If a nonempty namespace URI is specified,
then the processor will pick an appropriate prefix for the attribute, probably but not
necessarily the one used in the name attribute.

Contents

The contents of this element are a template whose instantiation only produces text
nodes. The value of the attribute added to the result tree is determined by instantiating
the template.

http://lib.ommolketab.ir

xsl:attribute-set

<xsl:attribute-set
 name = "QualifiedName"
 use-attribute-sets = "QualifiedNames">
 <! -- xsl:attribute* -- >
</xsl:attribute-set>

The xsl:attribute-set top-level element defines a collection of attributes that can
be applied to elements elsewhere in the stylesheet. For instance, you could define an
attribute set that includes the necessary attributes to create a simple XLink, and then
you could attach the set to each simple XLink element.

Attributes

name , required

The name attribute gives a name for the set, by which xsl:element and other
xsl:attribute-set elements can load this attribute set.

use-attribute-sets , optional

The use-attribute-sets attribute adds attributes from a different attribute set
into this attribute set. More than one attribute set can be loaded by separating
multiple names with whitespace. The attributes defined in all loaded sets and all
attributes defined by child xsl:attribute elements are merged so that no
attribute appears in the set more than once. It is an error if an attribute set uses
itself directly or indirectly.

Contents

This element contains zero or more xsl:attribute elements. Each such element
adds one attribute to the set.

xsl:call-template

http://lib.ommolketab.ir

<xsl:call-template
 name = "QualifiedName">
 <! -- xsl:with-param* -- >
</xsl:call-template>

The xsl:call-template instruction invokes a template by name. The current node
and context node list are the same for the called template as for the calling template.
Templates may be called recursively; an xsl:template element may contain an
xsl:call-template element that calls that very xsl:template element. This
technique is useful for doing things you'd accomplish with loops in a traditional
procedural programming language.

Attributes

name , required

The name of the xsl:template element to call.

Contents

This element contains zero or more xsl:with-param elements that pass parameters
to the named template.

xsl:choose

<xsl:choose>
 <! -- (xsl:when+, xsl:otherwise?) -- >
</xsl:choose>

The xsl:choose element selects zero or one of a sequence of alternatives.

Contents

This element contains one or more xsl:when elements, each of which has a test
condition. The contents are output for the first xsl:when child whose test condition is
true.

The xsl:choose element may have an optional xsl:otherwise element whose

http://lib.ommolketab.ir

contents are output only if none of the test conditions in any of the xsl:when elements
is true.

If no xsl:otherwise element exists and none of the test conditions in any of the
xsl:when child elements is true, then this element will not produce output.

xsl:comment

<xsl:comment>
 <! -- template -- >
</xsl:comment>

The xsl:comment instruction inserts a comment into the result tree.

Contents

The content of xsl:comment is a template that will be instantiated to form the text of
the comment inserted into the result tree. The result of instantiating this template must
only be text nodes that do not contain the double hyphen (--) (since comments cannot
contain the double hyphen).

xsl:copy

<xsl:copy
 use-attribute-sets = "QualifiedName1 QualifiedName2...">
 <! -- template -- >
</xsl:copy>

The xsl:copy element copies the current node from the source document into the
output document. It copies the node itself and any namespace nodes the node
possesses. However, it does not copy the node's children or attributes.

Attributes

use-attribute-sets , optional

A whitespace-separated list of xsl:attribute-set names. These attribute
sets are merged, and all attributes in the merged set are added to the copied

http://lib.ommolketab.ir

element. The use-attribute-sets attribute can be used only when the
copied node is an element node.

Contents

If the current node is an element node, attributes can be added via xsl:attribute
children. If the current node is the root node or an element node (a node that can have
children), then xsl:copy may contain a template that specifies the content of the
element inserted into the result tree. All xsl:attribute elements must precede the
output template.

xsl:copy-of

<xsl:copy-of
 select = "expression" />

The xsl:copy-of instruction inserts whatever is identified by the select attribute
into the output document. This instruction copies the specific nodes identified by the
expression, as well as all those nodes' children, attributes, namespaces, and
descendants. This is how it differs from xsl:copy : if the expression selects something
other than a node-set or a result-tree fragment, such as a number, then the expression
is converted to its string value and the string is output.

Attributes

select , required

An XPath expression identifying the object to copy into the result tree.

xsl:decimal-format

http://lib.ommolketab.ir

<xsl:decimal-format
 name = "QualifiedName">
 decimal-separator = "char"
 grouping-separator = "char"
 infinity = "string"
 minus-sign = "char"
 NaN = "string"
 percent = "char"
 per-mille = "char"
 zero-digit = "char"
 digit = "char"
 pattern-separator = "char" />

The xsl:decimal-format top-level element defines a pattern by which the
format-number() function can convert floating point numbers into text strings. The
defaults work well for English, but details may change for other languages and locales,
such as French or Chinese.

Attributes

name , optional

The string by which the format-number() function identifies the
xsl:decimal-format element to use. If this attribute is omitted, then this
element establishes the default decimal format used by the format-number()
function.

decimal-separator , optional

The character that separates the integer part from the fractional point in a floating
point number. This character is a period (decimal point) in English and a comma in
French. It may be something else in other languages.

grouping-separator , optional

The character that separates groups of digits (e.g., the comma that separates
every three digits in English).

infinity , optional

The string that represents IEEE 754 infinity; Infinity by default.
minus-sign , optional

The character prefixed to negative numbers; a hyphen by default.

http://lib.ommolketab.ir

NaN , optional

The string that represents IEEE 754 Not a Number; NaN by default.
percent , optional

The character that represents a percent; % by default.
per-mille , optional

The character that represents a per mille; by default.

zero-digit , optional

The character that represents zero; 0 by default. Digits 1 through 9 will be
represented by the nine subsequent Unicode values after this one. For instance,
setting zero-digit to A would set 1 to B , 2 to C , 3 to D , and so on. This is also
the character used to represent 0 in format patterns.

digit , optional

The character that represents a digit in a format pattern; # by default.
pattern-separator , optional

The character that separates positive and negative subpatterns in a format pattern;
; by default.

xsl:element

<xsl:element
 name = "QualifiedName"
 namespace = "URI"
 use-attribute-sets = "QualifiedName1 QualifiedName2...">
 <! -- template -- >
</xsl:element>

The xsl:element instruction inserts an element into the result tree. The element's
name is given by the name attribute. The element's namespace URI, if any, is given by
the optional namespace attribute. Attributes can be added via xsl:attribute
children or by referencing an xsl:attribute-set declared elsewhere in the
stylesheet from the use-attribute-sets attribute. Finally, the element's contents
are determined by instantiating the template contained in the xsl:element element's
content.

Attributes

http://lib.ommolketab.ir

name , required, attribute value template

The name of the element this instruction creates.
namespace , optional, attribute value template

The namespace URI of the element this instruction creates. If this attribute is
omitted, then the namespace is determined by matching the name's prefix (or lack
thereof) to the namespace declarations in scope at this point in the stylesheet.

use-attribute-sets , optional

A whitespace-separated list of names of xsl:attribute-set elements
declared as top-level elements elsewhere in the stylesheet. These attribute sets
are merged, and all attributes in the merged set are added to the element.

Contents

The contents of this element are a template. Once instantiated, this template forms the
content of the element inserted into the result tree.

xsl:fallback

<xsl:fallback>
 <! -- template -- >
</xsl:fallback>

The xsl:fallback instruction normally appears as a child of an extension element. If
the processor does not recognize the extension element, then it instantiates the
contents of all the element's xsl:fallback children in order. If the processor does
recognize the element in which the xsl:fallback element appears, then the
contents of the xsl:fallback element will not be output.

Contents

The contents of this element are a template that is instantiated and output if and only if
the XSLT processor does not recognize the xsl:fallback element's parent element.

xsl:for-each

http://lib.ommolketab.ir

<xsl:for-each
 select = "node-set-expression">
 <! -- (xsl:sort*, template) -- >
</xsl:for-each>

The xsl:for-each instruction iterates over the nodes identified by its select
attribute and applies templates to each one.

Attributes

select , required

An XPath node-set expression identifying which nodes to iterate over.

Contents

Normally, the selected nodes are processed in the order in which they appear in the
document. However, nodes can be sorted using xsl:sort child elements. The first
such element is the primary sort key; the second is the secondary sort key; and so on.

The xsl:for-each element must also contain a template that is instantiated once for
each member of the node-set returned by the node-set expression in the select
attribute.

xsl:if

<xsl:if
 test = "boolean-expression">
 <! -- template -- >
</xsl:if>

The xsl:if instruction contains a template that is instantiated if and only if the XPath
expression contained in its test attribute is true . There is no xsl:else or
xsl:else-if element. For these purposes, use xsl:choose instead.

Attributes

test , required

http://lib.ommolketab.ir

An XPath expression returning a Boolean. If this expression is true , the contents
of the xsl:if element are instantiated. If it's false , they're not.

Contents

A template is instantiated if the test attribute evaluates to true .

xsl:import

<xsl:import
 href = "URI" />

The xsl:import top-level element imports the XSLT stylesheet found at the URI
given by the href attribute. Source documents are processed using the combination of
templates in the imported and importing stylesheets. In the event of a conflict between
templates in the two stylesheets, the ones in the importing stylesheet take precedence.
In the event of a conflict between imported stylesheets, the last one imported takes
precedence.

All xsl:import elements must be immediate children of the root xsl:stylesheet
element. Furthermore, they must appear before all other top-level elements.

An imported stylesheet may itself import another stylesheet. A stylesheet may not import
a stylesheet that was already imported, directly or indirectly. That is, it's an error if A
imports B, which imports A, thus creating a circular reference.

Attributes

href , required

The relative or absolute URI of the stylesheet to import. Relative URIs are resolved
relative to the base URI of the importing stylesheet.

xsl:include

<xsl:include
 href = "URI" />

The xsl:include top-level element copies the contents of the xsl:stylesheet or

http://lib.ommolketab.ir

xsl:transform element found at the URI given by the href attribute. Unlike
xsl:import , whether a template or other rule comes from the including or the
included stylesheet has absolutely no effect on the precedence of the various rules.

An included stylesheet may include another stylesheet. A stylesheet may not include a
stylesheet that was already included, directly or indirectly; it is an error if A includes B,
which includes A.

Attributes

href , required

The relative or absolute URI of the stylesheet to include. Relative URIs are
resolved relative to the including stylesheet's base URI.

xsl:key

<xsl:key
 name = "QualifiedName"
 match = "pattern"
 use = "expression" />

The xsl:key top-level element defines one or more keys that can be referenced from
elsewhere in the stylesheet using the key() function. Each key has a name, a string
value, and a node.

Attributes

name , required

The key's name.
match , required

An XSLT match pattern, like that used by xsl:template , specifying which
nodes have this key. If this pattern matches more than one node in the source
document, then a single xsl:key element may define many keys, all with the
same name and possibly the same value, but with different nodes.

use , required

An XPath expression that is converted to a string to give the value of keys defined
by this element. The expression is evaluated with respect to each key's node. If

http://lib.ommolketab.ir

match identifies multiple nodes, then use may produce different values for each
key.

xsl:message

<xsl:message
 terminate = "yes" | "no">
 <! -- template -- >
</xsl:message>

The xsl:message instruction sends a message to the XSLT processor. Which
messages the processor understands and what it does with messages it does
understand is processor dependent. Printing debugging information on stderr or
stdout is one common use of xsl:message .

Attributes

terminate , optional

If the attribute is present and has the value yes , then the XSLT processor should
halt after the message is delivered and acted on.

Contents

An xsl:message element's content is a template instantiated to create an XML

fragment . The result is then delivered to the XSLT processor as the message.

The XSLT specification does not define XML fragment, and various
XSLT processors interpret it differently. It may be a result tree
fragment or an XML fragment, as defined by the now moribund XML
Fragment Interchange working draft. It may be something else.
Clarification from the W3C is necessary.

xsl:namespace-alias

<xsl:namespace-alias
 stylesheet-prefix = "prefix"
 result-prefix = "prefix" />

http://lib.ommolketab.ir

The top-level xsl:namespace-alias element declares that one namespace URI in
the stylesheet should be replaced by a different namespace URI in the result tree.
Aliasing is particularly useful when you're transforming XSLT into XSLT using XSLT;
consequently, which names belong to the input, which belong to the output, and which
belong to the stylesheet is not obvious.

Attributes

stylesheet-prefix , required

The prefix used inside the stylesheet itself. May be set to #default to indicate
that the nonprefixed default namespace should be used.

result-prefix , required

The prefix used in the result tree. May be set to #default to indicate that the
nonprefixed default namespace should be used.

xsl:number

<xsl:number
 value = "number-expression"
 count = "pattern"
 from = "pattern"
 level = "single" | "multiple" | "any"
 format = "letter or digit"
 lang = "langcode"
 letter-value = "alphabetic" | "traditional"
 grouping-separator = "char"
 grouping-size = "number" />

The xsl:number instruction inserts a formatted integer into the result tree.

Attributes

value , optional

This XPath expression returns the number to be formatted. If necessary, the result
of the expression is rounded to the nearest integer. The value attribute is often
omitted, in which case the number is calculated from the position of the current
node in the source document. The position is calculated as specified by the level

http://lib.ommolketab.ir

, count , and from attributes.
level , optional

This attribute specifies which levels of the source tree should be considered in
determining the position of the current node. It can be set to single to count the
preceding siblings of the current node's ancestor that match the count pattern. It
can be set to any to count all nodes in the document that match the count
pattern and precede the current node. It can be set to multiple to produce
hierarchical sequences of numbers such as 2.7.3, where each number in the
sequence is calculated from the preceding sibling's ancestor node that matches
the count pattern. The default is single .

count , optional

This attribute contains a pattern that specifies which nodes should be counted at
those levels. The default is to count all nodes with the same node type (element,
text, attribute, etc.) and name as the current node.

from , optional

This attribute contains a pattern identifying the node from which counting starts;
that is, it identifies a node that serves as a cutoff point. Any nodes that precede this
node are not counted, even if they match the count pattern.

format , optional, attribute value template

This attribute determines how the list is numbered. Format tokens and sequences
they produce include the following:

1

1, 2, 3, 4, 5, 6, . . .
01

01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, . . .
A

A, B, C, D, . . . ,Z, AA, AB, AC, . . .
a

a, b, c, d, . . . ,z, aa, ab, ac, . . .
i

i, ii, iii, iv, v, vi, vii, viii, ix, x, xi, . . .
I

I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, . . .

http://lib.ommolketab.ir

You can also change the starting point; for instance, setting the format token
to 5 would create the sequence 5, 6, 7, 8, 9, . . .

lang , optional, attribute value template

This is the RFC 1766 language code describing the language in which the number
should be formatted (e.g., en or fr).

letter-value , optional, attribute value template

The default is traditional . However, you can set this attribute to
alphabetic to indicate that a format of I should start the sequence I, J, K, L,
M, N, . . . rather than I, II, III, IV, V, VI, . . .

grouping-separator , optional, attribute value template

This is the character that separates groups of digits. For instance, in English the
comma customarily separates every three digits, as in 2,987,667,342. In French a
space is used instead, so this number would be formatted as 2 987 667 342.

grouping-size , optional, attribute value template

This is the number of digits in each group. In most languages, including English,
digits are divided into groups of three. However, a few languages use groups of
four.

xsl:otherwise

<xsl:otherwise>
 <! -- template -- >
</xsl:otherwise>

The xsl:otherwise element only appears as the last child element of an
xsl:choose element. It serves as the default result if no xsl:when element in the
same xsl:choose element is instantiated.

Contents

The contents are a template that is instantiated if and only if none of the xsl:choose
element's xsl:when sibling elements is true .

xsl:output

http://lib.ommolketab.ir

<xsl:output
 method = "xml" | "html" | "text" | " PrefixedName"
 version = "NMTOKEN"
 encoding = "encoding_name"
 omit-xml-declaration = "yes" | "no"
 standalone = "yes" | "no"
 doctype-public = "PUBLIC_ID"
 doctype-system = "SYSTEM_ID" cdata-section-elements = "element_name_1 element_name_2..."
 indent = "yes" | "no"
 media-type = "string" />

The top-level xsl:output element helps determine the exact formatting of the XML
document produced when the result tree is stored in a file, written onto a stream, or
otherwise serialized into a sequence of bytes. It has no effect on the production of the
result tree itself.

Attributes

method , optional

The default method is xml , which simply means that the serialized output
document will be a well-formed external parsed entity or XML document. If
method is set to html or if the method attribute is not present and the root
element of the output tree is html , in any combination of case, then the processor
attempts to generate HTML that is more compatible with existing browsers. For
example, empty-element tags like
 are converted to
 . The text
method outputs only the contents of the text nodes in the output tree. It strips all
markup. XSLT processors may also recognize and support other values that are
indicated by prefixed names such as saxon:xhtml and jd:canonical-xml .

version , optional

This is a name token that identifies the output method's version. In practice, this
has no effect on the output.

encoding , optional

This is the name of the encoding the outputter should use, such as ISO-8859-1 or
UTF-16.

omit-xml-declaration , optional

If this attribute has the value yes , then no XML declaration is included. If it has the
value no or is not present, then an XML declaration is included.

http://lib.ommolketab.ir

standalone , optional

This attribute sets the standalone attribute's value in the XML declaration. Like
that attribute, it must have the value yes or no .

doctype-public , optional

This attribute sets the public identifier used in the document type declaration.
doctype-system , optional

This attribute sets the system identifier used in the document type declaration.
cdata-section-elements , optional

This is a whitespace-separated list of qualified element names in the result tree
whose contents should be emitted using CDATA sections rather than character
references.

indent , optional

If this attribute has the value yes , then the processor is allowed (but not required)
to insert extra whitespace to attempt to "pretty-print" the output tree. The default is
no .

media-type , optional

This is the output's MIME media type, such as text/html or text/xml .

xsl:param

<xsl:param
 name = "QualifiedName"
 select = "expression">
 <! -- template -- >
</xsl:param>

Inside an xsl:template element, an xsl:param element receives a named
argument passed to the template by xsl:with-param . It also provides a default
value that's used when the caller does not provide a value for the parameter. A top-level
xsl:param element provides a default value for multiple templates. If an
xsl:apply-templates or xsl:call-template passes in a parameter value
using xsl:with-param when the template is invoked, then this value overrides any
default value the xsl:param element may have. The parameter can be dereferenced
using the form $ name in expressions.

http://lib.ommolketab.ir

Attributes

name , required

The parameter's name.
select , optional

An XPath expression that is evaluated to produce the parameter's value. If
xsl:param has a select attribute, then it must be an empty element. If a
nonempty xsl:param element does not have a select attribute, then the value
is taken from the element's contents. If an empty xsl:param element does not
have a select attribute, then the value is the empty string.

Contents

An xsl:param element's content is a template that is instantiated to produce a result-
tree fragment. This result-tree fragment then becomes the parameter's value. A
nonempty xsl:param element must not have a select attribute.

xsl:preserve-space

<xsl:preserve-space
 elements="QualifiedName_1 QualifiedName_2..." />

The top-level xsl:preserve-space element specifies which elements in the source
document will not have whitespace stripped from them before they are transformed.
Whitespace stripping removes text nodes that contain only whitespace (the space
character, the tab character, the carriage return, and the linefeed). By default,
whitespace is preserved in an element unless its name is listed in the elements
attribute of an xsl:strip-space element. This element allows you to override the
list given in xsl:strip-space ; if an element is listed in both xsl:strip-space
and xsl:preserve-space , then its whitespace is preserved.

Attributes

elements , required

A whitespace-separated list of elements in which space should be preserved.
Besides element names, the elements attribute can contain an asterisk to
indicate that whitespace should be preserved in all elements or contain a
namespace prefix followed by a colon and an asterisk to indicate that whitespace

http://lib.ommolketab.ir

should be preserved in all elements in the given namespace.

xsl:processing-instruction

<xsl:processing-instruction
 name = "target">
 <! -- template -- >
</xsl:processing-instruction>

The xsl:processing-instruction element inserts a processing instruction into
the result tree.

Attributes

name , required, attribute value template

The processing instruction's target.

Contents

The xsl:processing-instruction element's contents are a template that is
instantiated to produce the processing-instruction data. This template may include XSLT
instructions, provided that the result of instantiating this template is text that does not
contain the two-character string ?> .

xsl:sort

<xsl:sort
 select = "string-expression"
 data-type = "text" | "number" | "PrefixedName"
 lang = "langcode"
 order = "ascending" | "descending"
 case-order = "upper-first" | "lower-first" />

The xsl:sort instruction appears as a child of either xsl:apply-templates or
xsl:for-each . It changes the order in which templates are applied to the context
node list from document order to another order, such as alphabetic. You can perform
multiple key sorts (e.g., sort first by last name, then by first name, then by middle name)

http://lib.ommolketab.ir

using multiple xsl:sort elements in descending order of the keys' importance.

Attributes

select , optional

This is the key to sort by. If select is omitted, then the sort key is set to the value
of the current node.

data-type , optional, attribute value template

By default, sorting is purely alphabetic. However, alphabetic sorting leads to
strange results with numbers. For instance, 10, 100, and 1000 all sort before 2, 3,
and 4. You can specify numeric sorting by setting the data-type attribute to
number .

lang , optional, attribute value template

Sorting is language dependent. Setting the lang attribute to an RFC 1766
language code changes the language. The default language is system dependent.

order , optional, attribute value template

This is the order by which strings are sorted. This order can be either
descending or ascending . The default is ascending order.

case-order , optional, attribute value template

The case-order attribute can be set to upper-first or lower-first to
specify whether uppercase letters sort before lowercase letters, or vice versa. The
default depends on the language.

xsl:strip-space

<xsl:strip-space
 elements="QualifiedName_1 QualifiedName_2..." />

The top-level xsl:strip-space element specifies which elements in the source
document have whitespace stripped from them before they are transformed. Whitespace
stripping removes all text nodes that contain only whitespace (the space character, the
tab character, the carriage return, and the linefeed). By default whitespace is not
stripped from an element unless its name is listed in the elements attribute of an
xsl:strip-space element.

This element does not trim leading or trailing whitespace or otherwise normalize

http://lib.ommolketab.ir

whitespace in elements that contain even a single nonwhitespace character.

Attributes

elements , required

A whitespace-separated list of elements in which space should be stripped.
Besides element names, the elements attribute can contain an asterisk to
indicate that whitespace should be stripped in all elements or contain a namespace
prefix followed by a colon and asterisk to indicate that whitespace should be
stripped in all elements in the given namespace.

xsl:stylesheet

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 id = "ID"
 extension-element-prefixes = "prefix1 prefix2..."
 exclude-result-prefixes = "prefix1 prefix2..."
 version = "1.0">
 <! -- (xsl:import*, top-level-elements) -- >
</xsl:stylesheet>

The xsl:stylesheet element is the root element for XSLT documents.

Attributes

xmlns:xsl , technically optional but de facto required

A standard namespace declaration that maps the prefix xsl to the namespace
URI http://www.w3.org/1999/XSL/Transform . The prefix can be
changed if necessary.

version , required

Currently, always the value 1.0 . However, XSLT 2.0 may be released in 2003
with a concurrent updating of this number.

id , optional

Any XML name that's unique within this document's ID type attributes.
extension-element-prefixes , optional

http://www.w3.org/1999/XSL/Transform
http://lib.ommolketab.ir

A whitespace-separated list of namespace prefixes used by this document's
extension elements.

exclude-result-prefixes , optional

A whitespace-separated list of namespace prefixes whose declarations should not
be copied into the output document.

Contents

Any xsl:import elements, followed by any other top-level elements in any order.

xsl:template

<xsl:template
 match = "pattern"
 priority = "number"
 name = "QualifiedName"
 mode = "QualifiedName">
 <! -- (xsl:param*, template) -- >
</xsl:template>

The xsl:template top-level element is the key to all of XSLT. A little confusingly, the
xsl:template element itself is not a template. Rather, it contains a template. The
entire xsl:template element is called a template rule . The match attribute contains
a pattern against which nodes are compared as they're processed. If the pattern
matches a node, then the template (i.e., the contents of the template rule) is instantiated
and inserted into the output tree.

Attributes

match , optional

A pattern against which nodes can be compared. This pattern is a location path
using only the child, attribute, and descendant-or-self axes.

name , optional

A name by which this template rule can be invoked from an xsl:call-
template element, rather than by node matching.

priority , optional

A number. If more than one template rule with the same import precedence

http://lib.ommolketab.ir

matches a given node, the one with the highest priority is chosen. If this attribute is
not present, then the template rule's priority is calculated in the following way:

Template rules with match patterns composed of just an element or attribute
name (e.g., person or @profession) have priority 0.

Template rules with match patterns composed of just a processing-
instruction('target ') node test have priority 0.

Template rules with match patterns in the form prefix :* have priority -
0.25.

Template rules with match patterns that just have a wildcard node test (* , @*
, comment() , node() , text() , and processing-instruction(
)) have priority -0.5. (This means that built-in template rules have priority -0.5.
However, they are also imported before all other template rules, and thus
never override any explicit template rule, regardless of priority.)

Template rules with any other patterns (person[name='Feynman'] ,
people/person/@profession , person/text() , etc.) have priority
0.5.

It is an error if two or more template rules match a node and have the same
priority. However, in this case most XSLT processors choose the last template
rule occurring in the stylesheet rather than signaling the error.

mode , optional

If the xsl:template element has a mode, then this template rule is matched
only when the calling instruction's mode attribute matches this mode attribute's
value.

Contents

The template that should be instantiated when this element is matched or called by
name.

xsl:text

http://lib.ommolketab.ir

<xsl:text
 disable-output-escaping = "yes" | "no">
 <! -- #PCDATA -- >
</xsl:text>

The xsl:text instruction is used inside templates to indicate that its contents should
be output as text. Its contents are pure text, not elements. If the contents are composed
exclusively of whitespace, then that whitespace is copied literally into the output
document, rather than being stripped as it would be by default in most other elements.

Attributes

disable-output-escaping , optional

Setting the disable-output-escaping attribute to yes indicates that
characters such as < and & , which are normally replaced by character or entity
references such as < or < , should instead be output as the literal
characters themselves. Note that the xsl:text element's content in the
stylesheet must still be well-formed, and any < or & characters must be written as
< or & or the equivalent character references. However, when the output
document is serialized, these references are replaced by the actual represented
characters rather than references that represent them.

xsl:transform

<xsl:transform
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 id = "ID"
 extension-element-prefixes = "prefix1 prefix2..."
 exclude-result-prefixes = "prefix1 prefix2..."
 version = "1.0">
 <! -- (xsl:import*, top-level-elements) -- >
</xsl:transform>

The xsl:transform element is a seldom-used synonym for the xsl:stylesheet
root element. It has the same attributes and contents as xsl:stylesheet and is
used in exactly the same way as xsl:stylesheet . See the description of the
xsl:stylesheet " element for the discussion of its attributes and content.

http://lib.ommolketab.ir

xsl:value-of

<xsl:value-of
 select = "expression"
 disable-output-escaping = "yes" | "no" />

The xsl:value-of element computes the string value of an XPath expression and
inserts it into the result tree. The values of the seven different kinds of nodes are as
follows:

element

The text content of the element after all entity references are resolved and all tags,
comments, and processing instructions are stripped

text

The text of the node
attribute

The normalized value of the attribute
root

The value of the root element
processing instruction

The processing instruction data (<? , ?> , and the target are not included)

comment

The text of the comment (<!-- and --> are not included)

namespace

The namespace URI

You can also take values of things that aren't nodes. The value of a node-set is the
value of the first node in the set. The value of a string expression is the string. The value
of a number expression is the string form of the number. The value of a Boolean
expression is the string true if the Boolean is true or the string false if the Boolean is
false.

Attributes

http://lib.ommolketab.ir

select , required

This is the XPath expression whose value is inserted into the result tree.
disable-output-escaping , optional

If this attribute has the value yes , then when the output document is serialized,
characters such as < and & in the value are not replaced with entity or character
references. This may result in a malformed document.

xsl:variable

<xsl:variable
 name = "QualifiedName"
 select = "expression">
 <! -- template -- >
</xsl:variable>

The xsl:variable element binds a name to a value of any type (string, number,
node-set, etc.). This variable can then be dereferenced elsewhere using the form $
name in an expression.

The word variable is a little misleading. Once the value of an
xsl:variable is set, it cannot be changed. An xsl:variable
is more like a named constant than a traditional variable.

name , required

The variable's name.
select , optional

An XPath expression that sets the value of the variable. If xsl:variable has a
select attribute, then it must be an empty element.

Contents

A template that is instantiated to produce the variable's value as a result-tree fragment.
If an xsl:variable is not an empty element, it must not have a select attribute. If

http://lib.ommolketab.ir

xsl:variable is empty and does not have a select attribute, then its value is the
empty string.

xsl:when

<xsl:when
 test = "boolean-expression">
 <! -- template -- >
</xsl:when>

The xsl:when element only appears as a child of an xsl:choose element.

Attributes

test , required

An XPath expression that evaluates to either true or false. The xsl:when
contents are inserted into the result tree if and only if this is the first xsl:when
element in the xsl:choose element whose test attribute evaluates to true.

Contents

The template to be instantiated and inserted into the result tree if the test attribute is
true.

xsl:with-param

<xsl:with-param
 name = "QualifiedName"
 select = "expression">
 <! -- template -- >
</xsl:with-param>

The xsl:with-param element passes a named parameter to a template that expects
it. This can either be a child of xsl:apply-templates or xsl:call-template .
An xsl:template element receives the parameter via an xsl:param element with
the same name. If a template expects to receive a particular parameter and doesn't get
it, then it can take the default from the xsl:param element instead.

http://lib.ommolketab.ir

Attributes

name , required

The name of the parameter.
select , optional

An XPath expression evaluated to form the value of the parameter. If xsl:with-
param has a select attribute, then it must be an empty element. If xsl:with-
param does not have a select attribute, then the value is taken from the
element's contents.

Contents

A template that is instantiated and passed as the parameter's value. If xsl:with-
param is not an empty element, it must not have a select attribute. If xsl:with-
param is empty and does not have a select attribute, then its value is the empty
string.

23.3 XSLT Functions

XSLT supports all functions defined in XPath. In addition, it defines 10 extra functions.
Most XSLT processors also make several extension functions available and allow you to
write your own extension functions in Java or other languages. The extension API is
nonstandard and processor dependent.

XPath and XSLT functions are weakly typed. Although one type or another is
occasionally preferred, the processor normally converts any type you pass in to the type
the function expects. Functions that only take node-sets as arguments are an exception
to the weak-typing rule. Other data types including strings, numbers, and booleans
cannot be converted to node-sets automatically.

XPath and XSLT functions also use optional arguments, which are filled in with defaults
if omitted. In the following sections, we list the most common and useful variations of
each function.

current()

node-set current()

http://lib.ommolketab.ir

The current() function returns a node-set containing a single node, the current
node. Outside of an XPath predicate, the current node and the context node
(represented by a period in the abbreviated XPath syntax) are identical. However, in a
predicate, the current node may change based on other contents in the predicate, while
the context node stays the same.

document()

node-set document(string uri)
node-set document(node-set uris)
node-set document(string uri, node-set base)
node-set document(node-set uris, node-set base)

The document() function loads the XML document at the URI specified by the first
argument and returns a node-set containing that document's root node. The URI is
normally given as a string, but may be given as another type that is converted to a string.
If the URI is given as a node-set, then each node in the set is converted to a string, and
the returned node-set includes root nodes of all documents referenced by the URI
argument.

If the URI contains a fragment identifier, then the node-set returned may indicate
something other than the root node and thus contain more than one node. If an error
occurs while retrieving a document, most XSLT processors stop processing the
stylesheet.

The document() function may also take a node-set as an optional second argument,
in which case the first node (in document order) in this set is used as the base URI with
which to resolve relative URIs given in the first argument. If the second argument is
omitted, then base URIs are resolved relative to the stylesheet's location.

element-available()

boolean element-available(string qualifiedElementName)

element-available() returns true if and only if the argument identifies an XSLT
element the processor recognizes. If the qualified name maps to a non-null namespace
URI, then it refers to an extension element. Otherwise, it refers to a standard XSLT
element. Assuming use of a fully conformant processor, you don't need to use this

http://lib.ommolketab.ir

function to test for standard elements; just use it for extension elements.

format-number()

string format-number(number x, string pattern)
string format-number(number x, string pattern, string decimalFormat)

The format-number() function converts the number x to a string using the pattern
specified by the second argument, as well as the xsl:decimal-format element
named by the third argument (or the default decimal format, if the third argument is
omitted).

This function's behavior is modeled after the java.text.DecimalFormat class in
Java 1.1 (not 1.2 or later). See
http://java.sun.com/products/jdk/1.1/docs/api/java.text.DecimalFormat.html for full
documentation of the pattern passed as the second argument.

The pattern specifies whether leading and trailing zeros should be printed, whether the
number's fractional part is printed, the number of digits in a group, and the leading and
trailing suffixes for negative and positive numbers. The patterns are described using an
almost Backus-Naur Form grammar, given here:

pattern -> subpattern{;subpattern}
subpattern -> {prefix}integer{.fraction}{suffix}
prefix -> '\\u0000'..'\\uFFFD' - specialCharacters
suffix -> '\\u0000'..'\\uFFFD' - specialCharacters
integer -> '#'* '0'* '0'
fraction -> '0'* '#'*

The first line is not pure BNF. The first subpattern is used for positive numbers. The
second subpattern, which may not be present, is used for negative numbers. If it's not
present, negative numbers use the positive format, but are prefixed with a minus sign.
Table 23-1 defines the symbols used in the grammar.

Table 23-1. Symbols used in the pattern grammar

http://java.sun.com/products/jdk/1.1/docs/api/java.text.DecimalFormat.html
http://lib.ommolketab.ir

Symbol Meaning

0
A digit, including leading or trailing zeros; may be set to a different character
using the zero-digit attribute of xsl:decimal-format .

#
A digit, except for leading or trailing zero; may be set to a different character
using the digit attribute of xsl:decimal-format .

.
A decimal separator; may be set to a different character using the decimal-
separator attribute of xsl:decimal-format .

,
A grouping separator; may be set to a different character using
xsl:decimal-format 's grouping-separator attribute.

;
Separates the positive and negative format patterns in a format string; may be
set to a different character using the pattern-separator attribute of
xsl:decimal-format .

-
A default negative prefix; may be set to a different character using
xsl:decimal-format 's minus-sign attribute.

%
Multiplies by 100 and shows as percentage; may be set to a different character
using xsl:decimal-format 's percent attribute.

Multiplies by 1,000 and shows as per mille; may be set to a different character
using xsl:decimal-format 's permille attribute.

X Indicates that any other character can be used in the prefix or suffix.

' Used to quote special characters in a prefix or suffix.

For instance, #,##0.### is a common decimal-format pattern. The # mark indicates any
digit character except a leading or trailing zero. The comma is the grouping separator.
The period is the decimal separator. The 0 is a digit that is printed even if it's a
nonsignificant zero. This pattern is interpreted as follows:

The integer part contains as many digits as necessary.1.
The grouping separator separates every three digits.2.
If the integer part only contains zeros, a single zero is placed before the decimal
separator.

3.

Up to three digits are printed after the decimal point. However, any trailing zeros are
not printed.

4.

No separate pattern is included for negative numbers. Thus, negative numbers are
printed the same as positive numbers, but prefixed with a minus sign.

5.

function-available()

http://lib.ommolketab.ir

boolean function-available(string qualifiedName)

function-available() returns true if the argument identifies a function in the
processor's function library; false otherwise. If the qualified name maps to a non-null
namespace URI, then it refers to an extension function. Otherwise, it refers to a built-in
function from XPath or XSLT. Assuming you're using a fully conformant processor,
however, you don't need to test for standard functions, only for extension functions.

generate-id()

string generate-id(node-set node)
string generate-id()

The generate-id() function returns a string that can be used as the value of an ID
type attribute. This function always produces the same string for the same node and a
different string for a different node. If the node-set contains more than one node, then
only the first node in the set is considered. If the argument is omitted, then the node-set
is set to the context node. If the node-set is empty, then the empty string is returned.

key()

node-set key(string keyName, string value)
node-set key(string keyName, node-set values)

The key() function returns a node-set containing all nodes in the source document
that have a key with the name given by the first argument and the value given by the
second argument. If the second argument is a node-set, then the node-set returned
contains all nodes that have a key with the specified name and a value that matches that
of any node in the second argument. Otherwise, the returned node-set contains all
nodes that have a key with the specified name and a value that matches the second
argument's string value. Key names and values are assigned to nodes using the
xsl:key element.

system-property()

http://lib.ommolketab.ir

object system-property(string qualifiedPropertyName)

The system-property() function returns the value of the named property. The
type of the returned object is processor- and property-dependent. If the processor does
not recognize the property name, then it returns an empty string.

XSLT processors are required to recognize and return values for these three properties:

xsl:version

A number specifying the version of XSLT implemented by the processor; this is
normally 1.0, but may become 2.0 during this book's life span.

xsl:vendor

A string identifying the XSLT processor's vendor; for instance, Apache Software
Foundation for Xalan or SAXON 6.4.4 from Michael Kay for SAXON.

xsl:vendor-url

A string containing a URL for the XSLT processor's vendor; for instance,
http://xml.apache.org/xalan for Xalan or
http://saxon.sourceforge.net for SAXON.

Implementations may also recognize and return values for other processor-dependent
properties.

unparsed-entity-uri()

string unparsed-entity-uri(string entityName)

The unparsed-entity-uri() function returns the URI of the unparsed entity with
the specified name declared in the source document's DTD or the empty string, if no
unparsed entity with that name exists.

23.4 TrAX

Unfortunately, there is no standard API for XSLT that works across languages and
engines: each vendor provides its own unique API. The closest thing to a standard XSLT
API is TrAX (the Transformations API for XML), included in JAXP. However, this is
limited to Java and is not even supported by all Java-based XSLT engines.

http://xml.apache.org/xalan
http://saxon.sourceforge.net
http://lib.ommolketab.ir

Nonetheless, since it is the closest thing to a standard there is, we will discuss it here.

Code that transforms an XML document using an XSLT stylesheet through TrAX follows
these six steps. All of the classes mentioned are in the javax.xml.transform
package, a standard part of Java 1.4 and a separately installable option in earlier
versions.

Call the TransformerFactory.newInstance() factory method to create a
new TransformerFactory object.

1.

Construct a Source object from the XSLT stylesheet.2.
Pass this Source object to the TransformerFactory object's
newTransform() method to create a Transform object.

3.

Construct a Source object from the input XML document you wish to transform.4.
Construct a Result object into which the transformed XML document will be
output.

5.

Pass the Source and the Result to the Transform object's transform()
method.

6.

The source can be built from a DOM Document object, a SAX InputSource , or an
InputStream -- represented by the javax.xml.transform.dom.DOMSource ,
javax.xml.transform.sax.SAXSource , and
javax.xml.transform.stream.StreamSource classes, respectively. The
result of the transform can be a DOM Document object, a SAX ContentHandler , or
an OutputStream . These are represented by the
javax.xml.transform.dom.DOMResult ,
javax.xml.transform.sax.SAXResult , and
javax.xml.transform.stream.StreamResult classes, respectively.

For example, this code fragment uses the XSLT stylesheet found at
http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl to transform the file
people.xml in the current working directory onto System.out :

TransformerFactory factory = TransformerFactory.newInstance();
URL u = new URL(
 "http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl");
InputStream in = u.openStream();
Source stylesheet = new StreamSource(in);
Transformer xform = factory.newTransformer(stylesheet);
InputStream people = new FileInputStream("people.xml");
Source original = new StreamSource(people);
Result transformed = new StreamResult(System.out);
xform.transform(original, transformed);

http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl
http://lib.ommolketab.ir

The procedure is much the same when the source or result is a DOM Document object
or a SAX event stream. Just use the DOMSource , SAXSource , DOMResult , and/or
SAXResult classes as appropriate. For example, this code fragment transforms the
DOM Document object doc according to the stylesheet at

http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl and passes the result
through the SAX ContentHandler object named handler :

Document doc;
// Build the doc object in the usual way...
TransformerFactory factory = TransformerFactory.newInstance();
URL u = new URL(
 "http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl");
InputStream in = u.openStream();
Source stylesheet = new StreamSource(in);
Transformer xform = factory.newTransformer(stylesheet);
ContentHandler handler = new XMLCounter(); // From Chapter 19
Source original = new DOMSource(doc);
Result transformed = new SAXResult(handler);
xform.transform(original, transformed);

CONTENTS

http://www.cafeconleche.org/books/xian/examples/08/8-8.xsl
http://lib.ommolketab.ir

CONTENTS

Chapter 24. DOM Reference

 24.1 Object Hierarchy

 24.2 Object Reference

The Document Object Model (DOM) is a language- and platform-independent object
framework for manipulating structured documents (see Chapter 18 for additional
information). The current W3C recommendation specifies what is called the Level 2
DOM. The full Level 2 DOM is designed to support editing of HTML documents, with
several classes and methods specific to HTML document structures. This larger DOM is
built on top of a smaller, but complete, subset called the Core DOM. Only the Core DOM
is required to support editing of XML documents.

Other parts of DOM Level 2 may be useful for specific kinds of XML
processing, particularly the Style, Traversal, and Range modules.

This reference section documents the Levels 1 and 2 Core DOM objects, using the
language-neutral OMG IDL object descriptions. Included with each IDL description is the
language-specific binding for the Java programming language. Level 2-only constructs
are indicated using the 2 symbol after the given attribute or method name.

This chapter is based on the Document Object Model (DOM) Level 2
Core Specification, which was released on November 13, 2000. The
latest version of this recommendation, along with any errata that have
been reported, is available on the W3C DOM Activity's web site
(http://www.w3.org/DOM/DOMTR).

The DOM structures a document as a hierarchy of Node objects. The Node interface is
the base interface for every member of a DOM document tree. It exposes attributes
common to every type of document object and provides a few simple methods to
retrieve type-specific information without resorting to downcasting. This interface also
exposes all methods used to query, insert, and remove objects from the document
hierarchy. The Node interface makes it easier to build general- purpose tree-
manipulation routines that are not dependent on specific-document element types.

24.1 Object Hierarchy

http://lib.ommolketab.ir

The following table shows the DOM object hierarchy:

Object Permitted child objects

Document

Element (one is the maximum)

ProcessingInstruction

Comment

DocumentType (one is the maximum)

DocumentFragment

Element
ProcessingInstruction
Comment
Text
CDATASection
EntityReference

DocumentType None (leaf node)

EntityReference

Element
ProcessingInstruction
Comment
Text
CDATASection
EntityReference

Element

Element
Text
Comment
ProcessingInstruction
CDATASection
EntityReference

Attr
Text
EntityReference

ProcessingInstruction None (leaf node)

Comment None (leaf node)

Text None (leaf node)

CDATASection None (leaf node)

Entity

Element
ProcessingInstruction
Comment
Text
CDATASection

http://lib.ommolketab.ir

EntityReference

Notation None (leaf node)

24.2 Object Reference

This section details the XML DOM Level 2 Core objects. The reference sections detail
the descriptions, attributes, and methods of each object in the language- independent
IDL specification. Java examples and bindings are presented to illustrate usage.

Attr

The Attr interface represents the value assigned to an attribute of an XML element.
Since the attributes NamedNodeList attribute of the Element interface is the
only access to Attr objects within the DOM, the parentNode , previousSibling
, and nextSibling attributes always return null . Although the Attr interface
inherits the Node base interface, many basic Node methods are not applicable.

An XML element can acquire an attribute in several ways. An element has an attribute
value if:

The XML document explicitly provides an attribute value.

The document DTD specifies a default attribute value.

An attribute is added programmatically using the setAttribute() or
setAttributeNode() methods of the Element interface.

Though an Attr node is not officially part of the DOM document tree, it can be the
parent of a value subtree. An Attr object can have EntityReference objects as
children. The value attribute provides the expanded DOMString representation of
this attribute. To determine if any entity replacements were made, it is necessary to
check the Attr node for child nodes.

//Get the element's size attribute as an Attr object
Attr attrName = elem.getAttributeNode("size");

Attributes

http://lib.ommolketab.ir

The following attributes are defined for the Attr object:

name: DOMString

The name of the attribute. Read-only.

Java binding

Public String getName();

Java example

// Dump element attribute names
Attr attr;

for (int i = 0; i < elem.getAttributes().getLength(); i++) {
 // temporarily alias the attribute
 attr = (Attr)elem.getAttributes().item(i);
 System.out.println(attr.getName());
 }

ownerElement: Element2

This property provides a link to the Element object that owns this attribute. If the
attribute is currently unowned, it equals null . Read-only.

Java binding

public Element getOwnerElement();

specified: boolean

This indicates whether this attribute was explicitly set in the XML source for the parent
element or it is a default value specified in the DTD. Read-only.

http://lib.ommolketab.ir

Java binding

public boolean getSpecified();

Java example

// Dump element attribute names
for (int i = 0; i < elem.getAttributes().getLength(); i++) {
 // temporarily alias the attribute
 attr = (Attr)elem.getAttributes().item(i);
 // only show attributes that were explicitly included in the XML
 //source file
 // (i.e. ignore default attributes from the DTD.)
 if (attr.getSpecified()) {
 System.out.println(attr.getName());
 }
}

value: DOMString

This attribute provides a simple way to set and retreive the Attr object's text value.
When used to get the text value, the attribute includes the expanded value of any
general entity references. When used to set the value, it creates a child Text node that
contains the string value. Attempting to set the value on a read-only node raises the
NO_MODIFICATION_ALLOWED_ERR DOM exception.

Java bindings

public String getValue();
public void setValue(String value);

Java example

// Make all attribute values lowercase
Attr attr;

for (int i = 0; i < elem.getAttributes().getLength(); i++) {
 attr = (Attr)elem.getAttributes().item(i);
 attr.setValue(attr.getValue().toLowerCase());

http://lib.ommolketab.ir

}

CDATASection

The CDATASection interface contains the unparsed, unescaped data contained within
CDATA blocks in an XML document. Though this interface inherits the Text interface,
adjacent CDATASection blocks are not merged by the normalize() method of
the Element interface.

Java example

// Open an XML source file
try {
 FileInputStream fis = new FileInputStream("phone_list.xml");
 StringBuffer sb = new StringBuffer();
 // read the XML source file into memory
 int ch;
 while ((ch = fis.read()) != -1) {
 sb.append((char)ch);
 }

 // now, create a CDATASection object to contain it within
 // an element of our document using the CDATA facility
 CDATASection ndCDATA = doc.createCDATASection(sb.toString());
} catch (IOException e) {
 ...

CDATASection is a pure subclass of the Text interface and has no attributes or
methods of its own. See the Text interface section of this chapter for a list of applicable
methods for accessing character data in nodes of this type.

CharacterData

The CharacterData interface is completely abstract, extending the basic Node
interface only to support manipulation of character data. Every DOM object type that
deals with text data inherits, directly or indirectly, from this interface.

http://lib.ommolketab.ir

This interface's string-handling facilities are similar to those found in most modern
programming languages. Like C/C++ string-processing routines, all CharacterData
routines are zero-based.

Java example

// Create a new, unattached Text node
Text ndText = doc.createTextNode("The truth is out there.");
// cast it to the CharacterData interface
CharacterData ndCD = (CharacterData)ndText;

Attributes

The following attributes are defined for CharacterData :

data: DOMString

This attribute allows access to the "raw" data of the CharacterData node. Though a
given DOM implementation cannot arbitrarily limit the amount of character data that can
be stored in a CharacterData node, you may need to use the substringData
method to retrieve the data in manageable sections because of implementation
constraints.

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Raised on a write attempt when the data attribute is read-only for this DOM object
type.

DOMSTRING_SIZE_ERR

Raised if the read value that would be returned is too large to be contained by a
DOMString type in the given implementation.

Java bindings

public String getData() throws DOMException;
public void setData(String data) throws DOMException;

http://lib.ommolketab.ir

Java example

// Quote the CharacterData node contents
CharacterData ndCD =
 (CharacterData)doc.createTextNode("Unquoted text.");
...
ndCD.setData('\"' + ndCD.getData() + '\"');

length: unsigned long

The size of the DOMString stored in the data attribute. For all methods of this
interface that take an index parameter, the valid range for the index is <= index <
length . This value can be 0, since having an empty CharacterData node is
possible. Read-only.

Java binding

public long getLength();

Java example

// Display the contents of a CharacterData node
CharacterData ndCD = (CharacterData)doc.createTextNode("This string has
 30 characters.");

System.out.println("The string \'" + ndCD.getData() + "\' has "
 + Long.toString(ndCD.getLength()) + " characters.");

CharacterData (continued)

Methods

The following methods are defined for CharacterData :

appendData: arg

http://lib.ommolketab.ir

This method appends contents of the arg parameter to the current contents of the
data attribute.

Argument

arg: DOMString

The string to append.

Exception

NO_MODIFICATION_ALLOWED_ERR

Raised if this node is read-only.

Java binding

public void appendData(String arg) throws DOMException;

Java example

// Append to an existing string
// Create a new Text object and reference the CharacterData interface

CharacterData ndCD = (CharacterData)doc.createTextNode("The truth is ");
// flip a coin

ndCD.appendData((Math.random() < 0.5) ? "out there." : "in here.");
System.out.println(ndCD.getData());

deleteData: offset, count

This truncates the DOMString in the data attribute. This method removes count
characters, starting at the offset position.

Arguments

http://lib.ommolketab.ir

offset: unsigned long

The position in the data attribute to remove count characters.

count: unsigned long

The count of characters to remove. If the offset + count is >= the length
attribute, the remainder, starting at position offset , is deleted.

Exceptions

INDEX_SIZE_ERR

Raised if the offset parameter is not a valid zero-based index into the data
DOMString.

NO_MODIFICATION_ALLOWED_ERR

Raised if the node is read-only.

Java binding

public void deleteData(long offset, long count)
 throws DOMException;

Java example

// Create a new Text object and reference the CharacterData interface
CharacterData ndCD = (CharacterData)doc.createTextNode("The truth is
 not out there.");

// change of heart
ndCD.deleteData(12, 4);

System.out.println(ndCD.getData());

insertData: offsec, arg

This method takes a string, splits the data attribute's current contents at the given
offset , then inserts the string from the arg parameter between the two substrings.

Arguments

http://lib.ommolketab.ir

offset: unsigned long

The zero-based offset in the data attribute where the insertion is made.

arg: DOMString

The string to be inserted.

Exceptions

INDEX_SIZE_ERR

Raised if the offset parameter is not a valid, zero-based index into the data
DOMString .

NO_MODIFICATION_ALLOWED_ERR

Raised if the node is read-only.

Java binding

public void insertData(long offset, String arg) throws
 DOMException;

Java example

// Insert data into a string
boolean fCynical = true;

// create a new Text object, and reference the CharacterData interface
CharacterData ndCD = (CharacterData)doc.createTextNode("The truth is
 out there.");

...

// check for cynicism
if (fCynical) {
 ndCD.insertData(12, " not");
}

System.out.println(ndCD.getData());

replaceData: offset, count, arg

http://lib.ommolketab.ir

This replaces a substring within the data attribute with another string value arg , using
the specifed offset and count parameters.

Arguments

offset: long

The offset of the beginning of the replacement region.
count: long

The number of characters to replace. If offset + count is >= the length
attribute, everything beyond the offset character position is replaced.

arg: DOMString

The replacement string.

The replaceData operation is the equivalent of the following code fragment:

cdNode.deleteData(offset, count);
 cdNode.insertData(offset, arg);

Exceptions

INDEX_SIZE_ERR

Raised if the offset parameter is not a valid, zero-based index into the data
DOMString .

NO_MODIFICATION_ALLOWED_ERR

Raised if the node is read-only.

Java binding

public void replaceData(long offset, long count,
 String arg) throws DOMException;

Java example

 // Create a new Text object and reference the CharacterData interface
CharacterData ndCD = (CharacterData)doc.createTextNode("The truth is
 not out there.");

http://lib.ommolketab.ir

// replace the truth
String strFind = "truth";
String strReplace = "dog";

ndCD.replaceData(ndCD.getData().indexOf(strFind), strFind.length(),
 strReplace);

System.out.println(ndCD.getData());

substringData: offset, count

This returns a DOMString that contains a subset of the string stored in the data
attribute. The offset and count arguments define the substring. Though the offset
argument must represent a valid position within the node data, the end-point of the
substring could fall past the end of the data attribute. If this happens, the method
returns everything between the offset position and the end of the data string.

Arguments

offset: unsigned long

Zero-based, starting offset of the substring to return. A valid offset must be >= 0
and < the length attribute of the node.

count: unsigned long

Count of characters to return.

Exceptions

INDEX_SIZE_ERR

Raised if the given offset is < 0, >= the length attribute, or if the count
parameter is negative.

DOMSTRING_SIZE_ERR

Raised if the value that would be returned is too large to be contained by a
DOMString type in the given implementation.

Java binding

http://lib.ommolketab.ir

public String substringData(unsigned long offset, unsigned long count)
 throws DOMException;

Java example

// Get a reference to the CharacterData interface
CharacterData ndCD = (CharacterData)doc.createTextNode("The truth is
 out there.");

// we only want the "truth"
String strTruth = ndCD.substringData(4, 5);

System.out.println("The substring is '" + strTruth + '\'');

Comment

This object contains the text of an XML comment (everything between the opening <!-
- and closing -->). It inherits from CharacterData .

The DOM specification does not require XML parsers to preserve the
original document comments after the document is parsed. Some
implementations strip comments as part of the parsing process.

Java example

// Create a comment
Comment ndComment = doc.createComment("Document was parsed by
 DOM utility.");

// and add it to the document
doc.appendChild(ndComment);

Document

The Document interface represents an entire, well-formed XML document. Once the
Document object is created via the DOMImplementation interface, you can access

http://lib.ommolketab.ir

every aspect of the underlying XML document through the various tree-navigation
methods exposed by the Node interface, the parent of the Document interface.

In DOM documents, document elements cannot exist outside of a parent document. For
this reason, the Document interface exposes several factory methods used to create
new document elements.

Attributes

The following attributes are defined for the Document object:

doctype: DocumentType

This attribute returns an instance of the DocumentType interface representing the
DTD for this document. If no DTD was declared in the document, this property is null .
Read-only.

Java binding

public DocumentType getDoctype();

Java example

// Get the parsed DTD information for this document
DocumentType docType = docIn.getDoctype();

if (docType == null) {
 System.out.println("warning: no DTD provided");
}

documentElement: Element

This attribute points to the single Element node that is the root of the XML document
tree. Read-only.

Java binding

http://lib.ommolketab.ir

public Element getDocumentElement();

// Identify the root element
Element elRoot = docIn.getDocumentElement();
System.out.println("This is a '" + elRoot.getTagName() + "' document.");

implementation: DOMImplementation

This returns a reference to the DOMImplementation that is responsible for this
document. It is conceivable (using Adobe's SVG plug-in within Microsoft's Internet
Explorer, for example) that a single application might use DOM objects from multiple
DOM implementations. Read-only.

Java binding

public DOMImplementation getImplementation();

Java example

// Ensure the support of DOM Level 1 XML
DOMImplementation di = doc.getImplementation();
if (!di.hasFeature("XML", "1.0")) {
 return false;
}

Document (continued)

Methods

The following methods are defined for the Document object:

createAttribute: name

http://lib.ommolketab.ir

This function creates an Attr object with the given name. Attr nodes construct
complex element attributes that can include EntityReference objects and text data.

Argument

name: DOMString

The name of the XML attribute.

Return value

The new Attr object.

Exception

INVALID_CHARACTER_ERR

Indicates that the name you passed to createAttribute() doesn't conform
to a valid XML name. See Chapter 2 for the XML restrictions on name construction.

Java binding

public Attr createAttribute(String name) throws DOMException;

Java example

// Create an entity reference
EntityReference er = doc.createEntityReference("name_entity");

// must create an Attribute object to include an explicit
// entity reference
Attr attr = doc.createAttribute("name");

// append the entity reference
attr.appendChild(er);

createAttributeNS: namespaceURI, qualifiedName2

This method serves the same purpose as the createAttribute method, but
includes support for XML namespaces. See Chapter 4 for more information about

http://lib.ommolketab.ir

namespaces.

Arguments

namespaceURI: DOMString

The URI associated with the namespace prefix in the qualifiedName
parameter.

qualifiedName: DOMString

The name of the attribute to instantiate; includes the namespace prefix associated
with the namespace URI given in the namespaceURI parameter.

Return value

The new Attr object is returned with the following attribute values:

Attribute Value

Node.nodeName The complete, fully qualified name given in the
qualifiedName parameter

Node.namespaceURI The given namespace URI

Node.prefix The namespace prefix, which is parsed from the
qualifiedName parameter

Node.localName
The local part of the qualified name, located to the right of the
: character

Attr.name The qualifiedName

Exceptions

INVALID_CHARACTER_ERR

Indicates that the name passed to createAttributeNS() doesn't conform to
a valid XML name. See Chapter 2 for the XML restrictions on name construction.

NAMESPACE_ERR

Raised if the qualifiedName is malformed or has a prefix but no
namespaceURI , or if the reserved xml namespace prefix was used incorrectly.

Java binding

public Attr createAttributeNS(String namespaceURI, String qualifiedName)
 throws DOMException;

http://lib.ommolketab.ir

createCDATASection: data

This creates a new CDATASection node that contains the data text. CDATASection
nodes contain non-XML text content that would be inconvenient or impractical to quote
using the standard XML entities, such as & , < , or > .

Argument

data: DOMString

The text contained by the new CDATASection object.

Exception

NOT_SUPPORTED_ERR

Occurs if you try to call this method on an HTML document.

Java binding

public CDATASection createCDATASection(String data) throws DOMException;

Java example

// Use CDATASection to embed XML characters
CDATASection cds = doc.createCDATASection("
<xml_example>This is sample text.</xml_example>
");

createComment: data

This returns a new Comment node containing the specified string. See the Comment
object reference earlier in this chapter for special restrictions that apply to the contents
of Comment nodes.

Argument

http://lib.ommolketab.ir

data: DOMString

The comment text.

Comment text restriction

The XML specification indicates that the -- characters must not appear in the comment
text for compatibility reasons. Despite this warning, some DOM implementations don't
flag comments containing double hyphens as syntax errors.

Java binding

public Comment createComment(String data);

Java example

// Create a timestamp comment
StringBuffer sb = new StringBuffer();
Date dtNow = new Date();

sb.append("\tModified " + dtNow.toString() + '\n');

Comment cmt = doc.createComment(sb.toString());

createDocumentFragment()

This returns an empty DocumentFragment object. See the DocumentFragment
reference later in this chapter for a discussion of a document fragment's uses and
limitations.

Java binding

public DocumentFragment createDocumentFragment();

createElement: tagName

This creates a new, empty Element node for use within the parent document. The
element name is given as an argument to the method. The resulting Element node

http://lib.ommolketab.ir

belongs to the parent Document object, but is not part of the document element
hierarchy. See Node later in this chapter for more information about how the document
hierarchy manipulation methods are used.

Argument

tagName: DOMString

The XML name used to create the new Element node. This name is assigned to
the nodeName attribute of the resulting Element node.

Return value

The new Element object.

Exception

INVALID_CHARACTER_ERR

Indicates that the name you passed to createElement() doesn't conform to a
valid XML name. See Chapter 2 for the XML restrictions on name construction.

Java binding

public Element createElement(String tagName) throws DOMException;

Java example

// Create the new my_tag Element
Element elOut = doc.createElement("my_tag");

createElementNS: namespaceURI, qualifiedName2

This method serves the same purpose as the createElement method, but includes
support for XML namespaces. See Chapter 4 for more information about namespaces.

Arguments

namespaceURI: DOMString

http://lib.ommolketab.ir

The URI associated with the namespace prefix in the qualifiedName
parameter.

qualifiedName: DOMString

The name of the element to instantiate, including the namespace prefix associated
with the namespace URI given in the namespaceURI parameter.

Return value

The new Element object is returned with the following attribute values:

Attribute Value

Node.nodeName The complete, fully qualified name given in the
qualifiedName parameter

Node.namespaceURI The given namespace URI

Node.prefix The namespace prefix, which is parsed from the
qualifiedName parameter

Node.localName
The local part of the qualified name, located to the right of the
: character

Element.tagName
The full element tag name, which is the same as the
qualifiedName

Exceptions

INVALID_CHARACTER_ERR

Indicates that the name you passed to createElementNS() doesn't conform
to a valid XML name. See Chapter 2 for the XML restrictions on name construction.

NAMESPACE_ERR

Raised if the qualifiedName is malformed, has a prefix but no
namespaceURI , or if the reserved xml namespace prefix was used incorrectly.

Java binding

public Element createElementNS(String namespaceURI,
 String qualifiedName)
 throws DOMException;

createEntityReference: name

http://lib.ommolketab.ir

This creates an EntityReference object.

Argument

name: DOMString

The name of the XML entity to be referenced. The name must match an XML entity
declaration that is valid in the current document.

Exceptions

INVALID_CHARACTER_ERR

Indicates that the name you passed to createEntityReference() doesn't
conform to a valid XML name. See Chapter 2 for the XML restrictions on name
construction.

NOT_SUPPORTED_ERR

Generated if you attempted to create an entity reference using an HTML document.

Java binding

public EntityReference createEntityReference(String name)
 throws DOMException;

Java example

// Create an entity reference
EntityReference er = doc.createEntityReference("name_entity");

createProcessingInstruction: target, data

This creates a new ProcessingInstruction node with the given target name and

data values. The processing-instruction target name "xml" (case insensitive) is reserved
by the XML working group and can't be used by an application.

Arguments

http://lib.ommolketab.ir

target: DOMString

The target name of the processing instruction. This name identifies the application
that will interpret the data portion of the instruction.

data: DOMString

The application-specific data for the resulting ProcessingInstruction node.

Exceptions

INVALID_CHARACTER_ERR

Indicates that the name you passed in to createProcessing Instruction
doesn't conform to a valid XML name. See Chapter 2 for the XML restrictions on
name construction.

NOT_SUPPORTED_ERR

Generated if you attempt to create a ProcessingInstruction using an HTML
document.

Java binding

public ProcessingInstruction createProcessingInstruction(String target,
 String data) throws DOMException;

Java example

// Add the application-specific processing instruction
ProcessingInstruction pi = doc.createProcessingInstruction("my_app",
 "action=\"save\"");

createTextNode: data

This creates a new Text node that contains the given data string.

Argument

data: DOMString

The string that will be the contents of the new node.

http://lib.ommolketab.ir

Java binding

public Text createTextNode(String data);

Java example

// Create a new node that contains character data
Text txtDesc = doc.createTextNode("Character data contents for a new
 Element.");

getElementById: elementID2

This method returns the Element node with the given value for its ID attribute.

It is important not to confuse attributes that have the name ID with ID

attributes. ID attributes are attributes that were declared with the ID
attribute type within the document type definition. See the Attribute
List Declaration section in Chapter 20 for more information about ID
attributes.

Argument

elementID: DOMString

The unique ID value for the desired element.

Return value

A single Element object that has the requested ID attribute or null, if no match is found.

Java binding

public Element getElementById(String elementId);

getElementsByTagName: tagName

This function returns a list of Element nodes from the current document whose

http://lib.ommolketab.ir

tagName attribute matches the given tagName parameter. The nodes are returned in
the same order in which they appear in the source document.

Argument

tagName: DOMString

The name of the tag to use as a filter. The special name * matches any tag.

Java binding

public NodeList getElementsByTagName(String tagName);

Java example

// Get a list of all phone numbers in the document
NodeList nl = doc.getElementsByTagName("phone_number");

getElementsByTagNameNS: namespaceURI, localName2

Like the getElementsByTagName() method, this method returns a list of
Element nodes (a NodeList object) that match the criteria given in the
namespaceURI and localName parameters. The resulting list contains all elements
matching the namespace URI and local name restrictions, as they would be
encountered in the original order of the document on which the tree was constructed.

Arguments

namespaceURI: DOMString

The namespace URI of the elements to be matched. The special * value matches
any namespace.

localName: DOMString

The local name part of the elements to be matched. The special value * matches
any local name.

Java binding

public NodeList getElementsByTagNameNS(String namespaceURI,

http://lib.ommolketab.ir

 String localName);

importNode: importedNode, deep2

This method's name is somewhat deceptive. It creates a copy of a Node object from
another document that can be inserted within the current document's node hierarchy.
Specifics of this copy operation vary, depending on the type of copied node.

Node type Result Effect of deep flag

ATTRIBUTE_NODE

Copies the source
attribute and all its
children. The
ownerElement
attribute is set to null
, and the specified
flag is set to true .

None.

DOCUMENT_FRAGMENT_NODE
Creates an empty
DocumentFragment
node.

Fully copies the
children of the source
DocumentFragment
node.

DOCUMENT_NODE Cannot be imported. N/A.

DOCUMENT_TYPE_NODE Cannot be imported. N/A.

ELEMENT_NODE

Copies the attribute
nodes with the
specified flag set
to the new element.

Recursively copies all
the source element's
children.

ENTITY_NODE

Copies the publicId
, systemId , and
notationName
attributes.

Recursively copies all
of the Entity node's
children.

ENTITY_REFERENCE_NODE

Copies only the
EntityReference
node. Its value, if any,
is taken from the DTD
of the document doing
the import.

None.

Imports the
notation node, but

http://lib.ommolketab.ir

NOTATION_NODE
since in Level 2 the
DocumentType
interface is read-only,
it cannot be included in
the target document.

None.

PROCESSING_INSTRUCTION_ NODE
Copies the target
and data values.

None.

TEXT_NODE,
CDATA_SECTION_NODE, COMMENT_NODE

Copies the data and
length attributes.

None.

The new (copied) node object is returned based on the arguments.

Arguments

importedNode: Node

The node duplicated for use in the current document hierarchy.
deep: boolean

Whether to copy the single node given or the entire subtree of its children. For
details, see the previous table.

Exception

NOT_SUPPORTED_ERR

Thrown if an attempt is made to import an unsupported Node type, such as a
Document node.

Java binding

public Node importNode(Node importedNode, boolean deep)
 throws DOMException;

DocumentFragment

The DocumentFragment is a lightweight container used to store XML document
fragments temporarily. Since it has no properties or methods of its own, it can only
provide the same functionality exposed by the Node object. It is intended to serve as a
container for at least one well-formed XML subtree.

http://lib.ommolketab.ir

This object's most obvious application is in the case of clipboard or drag-and-drop
operations in a visual editor. The user may elect to select several sub-trees that appear
at the same level of the tree to be copied:

<xml_example>
 <caption><filename>sample.xml</filename> before DocumentFragment
 copy operation</caption>
 <document>
 <parent>
 <child_1></child_1>
 <child_2></child_2>
 </parent>
 <parent>
 </parent>
 </document>
</xml_example>

If the user decides to copy the two child nodes to the clipboard, the DOM application
would:

Create a DocumentFragment object.

Attach copies of the child nodes to the new object using the cloneNode() and
appendChild() methods.
<xml_example>
 <caption>DocumentFragment object on clipboard.</caption>
 <DocumentFragment frame="dashed">
 <child_1></child_1>
 <child_2></child_2>
 </DocumentFragment>
</xml_example>

Then, when the user decides to paste the copied nodes to a new location, the new
DocumentFragment node is passed to this target node's appendChild()
method. During the copy operation, the DocumentFragment node itself is ignored,
and only the children are attached to the target node.

<xml_example>
 <caption><filename>sample.xml</filename> after DocumentFragment copy
 operation</caption>
 <document>
 <parent>

http://lib.ommolketab.ir

 <child_1></child_1>
 <child_2></child_2>
 </parent>
 <parent>
 <child_1></child_1>
 <child_2></child_2>
 </parent>
 </document>
</xml_example>

Java example

// Create a Document Fragment object
DocumentFragment dfNorm = doc.createDocumentFragment();

DocumentType

The Document interface includes a single attribute, docType , that points either to a
description of the DTD for the current document or to null if none exists.

Java example

// get document type information
 DocumentType dtDoc = doc.getDoctype();

Attributes

The DocumentType object contains the following attributes:

entities: NamedNodeMap

This attribute provides a list of all general entities declared in the document's DTD. If the
same entity is declared more than once within a single document, only the first
occurrence is preserved in this NamedNodeMap . Note that parameter entity
declarations are not available through the DocumentType interface. Each member of
this list implements the Entity interface. Read-only.

http://lib.ommolketab.ir

Java binding

public NamedNodeMap getEntities();

Java example

// Dump the document entities
NamedNodeMap nnm = doc.getDoctype().getEntities();

Entity ndEnt;
for (int i = 0; i < nnm.getLength(); i++) {
 ndEnt = (Entity)nnm.item(i);

 System.out.println(ndEnt.getNodeName());

 if (ndEnt.getPublicId() != null) {
 System.out.println("\tPublic Identifier: " +
 ndEnt.getPublicId());
 }

 if (ndEnt.getSystemId() != null) {
 System.out.println("\tSystem Identifier: " +
 ndEnt.getSystemId());
 }

 if (ndEnt.getNotationName() != null) {
 System.out.println("\tNotation Name: " +
 ndEnt.getNotationName());
 }
}

internalSubset: DOMString

This attribute contains the document's internal subset as a string value. The content's
actual format depends on the level of support provided by a particular XML parser.
Read-only.

Java binding

http://lib.ommolketab.ir

public String getInternalSubset();

name: DOMString

This is the name of the DTD, which is the XML name following the XML DOCTYPE
keyword in the source document. Read-only.

Java binding

public String getName();

Java example

// Display document type information
DocumentType dtDoc = doc.getDoctype();

System.out.println("This is a " + dtDoc.getName() + " document.");

notations: NamedNodeMap

A NamedNodeMap contains a list of XML notation declarations for the current
document. Each member of this list implements the Notation interface, and the list
itself is read-only.

Java binding

public NamedNodeMap getNotations();

Java example

// Dump the document notations
NamedNodeMap nnm = doc.getDoctype().getNotations();
Notation ndNotation;
for (int i = 0; i < nnm.getLength(); i++) {
 ndNotation = (Notation)nnm.item(i);

 System.out.println(ndNotation.getNodeName());

http://lib.ommolketab.ir

 if (ndNotation.getPublicId() != null) {
 System.out.println("\tPublic Identifier: " +
 ndNotation.getPublicId());
 }
 if (ndNotation.getSystemId() != null) {
 System.out.println("\tSystem Identifier: " +
 ndNotation.getSystemId());
 }
}

publicId: DOMString

This is the public identifier of the external subset. Read-only.

Java binding

public String getPublicId();

systemId: DOMString

The system identifier (URI) of this document's external subset. Read-only.

Java binding

public String getSystemId();

DOMException

For languages and runtime platforms that support them, structured exceptions provide a
way to separate the code that deals with abnormal or unexpected problems from the
normal flow of execution. For languages that don't support exceptions, such as
ECMAScript or Perl, these conditions are reported to your program as error codes from
the method that recognized the condition.

http://lib.ommolketab.ir

The ExceptionCode is an integer value that indicates what type of exception was
detected. The following ExceptionCodes are defined, with unused numeric codes
reserved for future use by the W3C:

INDEX_SIZE_ERR [unsigned short, value: 1]

An index outside the expected range was passed to a method that accepts an index.
The expected range for most collections is 0 <= index < collection. length
.

Java binding

public static final short INDEX_SIZE_ERR = 1;

DOMSTRING_SIZE_ERR [unsigned short, value: 2]

The DOMString that would be returned from a method is too large.

Java binding

public static final short DOMSTRING_SIZE_ERR = 2;

HIERARCHY_REQUEST_ERR [unsigned short, value: 3]

The node insertion you requested violates the document structure's integrity. For
example, the insertion would cause a node to become one of its own children.

Java binding

public static final short HIERARCHY_REQUEST_ERR = 3;

WRONG_DOCUMENT_ERR [unsigned short, value: 4]

http://lib.ommolketab.ir

An attempt to insert a node from one document directly into another. A given
implementer of the DOM framework determines whether this insertion generates an
error.

Java binding

public static final short WRONG_DOCUMENT_ERR = 4;

INVALID_CHARACTER_ERR [unsigned short, value: 5]

An invalid character was used in a name, e.g., trying to create an Element object with
the name "my element" , as spaces are not allowed.

Java binding

public static final short INVALID_CHARACTER_ERR = 5;

NO_DATA_ALLOWED_ERR [unsigned short, value: 6]

Data was assigned to a node that doesn't support data, like an Element node.

Java binding

public static final short NO_DATA_ALLOWED_ERR = 6;

NO_MODIFICATION_ALLOWED_ERR [unsigned short, value: 7]

An attempt was made to modify a node that cannot be modified.

Java binding

public static final short NO_MODIFICATION_ALLOWED_ERR = 7;

NOT_FOUND_ERR [unsigned short, value: 8]

http://lib.ommolketab.ir

A node was modified in a context in which it could not be found.

Java binding

public static final short NOT_FOUND_ERR = 8;

NOT_SUPPORTED_ERR [unsigned short, value: 9]

If in the specific implementation of the DOM you chose not to implement an optional
feature, this exception would be thrown.

Java binding

public static final short NOT_SUPPORTED_ERR = 9;

INUSE_ATTRIBUTE_ERR [unsigned short, value: 10]

An attempt was made to add an attribute that was already in use elsewhere. This error
could occur if you acquired an attribute via the getAttributeNode() method and
tried to add the same object instance to another element using the
setAttributeNode() method. You would first need to create a new Attr object,
probably using the cloneNode() method.

Java binding

public static final short INUSE_ATTRIBUTE_ERR = 10;

INVALID_STATE_ERR [unsigned short, value: 11]2

An attempt was made to use an object that is no longer usable.

Java binding

http://lib.ommolketab.ir

public static final short INVALID_STATE_ERR = 11;

SYNTAX_ERR [unsigned short, value: 12]2

An invalid or illegal string was specified.

Java binding

public static final short SYNTAX_ERR = 12;

INVALID_MODIFICATION_ERR [unsigned short, value: 13]2

An attempt was made to change the type's underlying object.

Java binding

public static final short INVALID_MODIFICATION_ERR = 13;

NAMESPACE_ERR [unsigned short, value: 14]2

An attempt was made to use a method that supports XML namespaces in a way that
would violate namespace rules. This error could occur if a qualified name were given to
a method without a corresponding namespace URI.

Java binding

public static final short NAMESPACE_ERR = 14;

INVALID_ACCESS_ERR [unsigned short, value: 15]2

The underlying object does not support a parameter or operation.

http://lib.ommolketab.ir

Java binding

public static final short INVALID_ACCESS_ERR = 15;

DOMImplementation

The DOMImplementation interface provides global information about the DOM
implementation you currently use. The only way to obtain a reference to the
DOMImplementation interface is through the getImplementation() method
of the Document object.

Java example

// Check for DOM Level 1 support
DOMImplementation di = doc.getImplementation();
// make sure that DOM Level 1 XML is supported
if (!di.hasFeature("XML", "1.0")) {
 return null;
}

Methods

The DOMImplementation object defines the following methods:

createDocument: namespaceURI, qualifiedName, doctype2

Creates a new, empty Document object with the given document type. It also creates
the single, top-level document element using the given qualified name and namespace
URI.

Arguments

namespaceURI: DOMString

The namespace URI used to create the top-level document element. Can be null
if no namespace is used.

http://lib.ommolketab.ir

qualifiedName: DOMString

The namespace-aware qualified name of the top-level document element to be
created. The prefix given in this parameter is associated with the namespace URI
given in the namespaceURI parameter.

doctype: DOMString

The document type definition object to be associated with the new document. If this
parameter is not null , the DocumentType node's ownerDocument attribute
is set to point to the new document object.

Exceptions

INVALID_CHARACTER_ERR

Indicates that the qualifiedName parameter has a malformed XML identifier.

NAMESPACE_ERR

Raised if an inconsistency exists between the values given for the
namespaceURI and the qualifiedName parameters. Passing in a qualified
name with a namespace prefix and not passing in a namespace URI is illegal. This
can also be generated if a reserved namespace prefix, such as "xml" , is given
with an incorrect namespace URI.

WRONG_DOCUMENT_ERR

Raised if the DocumentType node passed in the doctype parameter is already
associated with another document object. New DocumentType objects must be
created using the new createDocumentType method of the
DOMImplementation interface.

Java binding

public Document createDocument(String namespaceURI,
 String qualifiedName, DocumentType doctype) throws DOMException;

createDocumentType: qualifiedName, publicId, systemId2

Creates an empty DocumentType node that is not associated with any document. No
entity declarations or notations are available in this new, empty DocumentType object.
No support currently exists in the DOM to populate this object.

http://lib.ommolketab.ir

Arguments

qualifiedName: DOMString

The qualified name of the document type to be created.
publicId: DOMString

The external subset's public identifier.
systemId: DOMString

The system identifier (URI) of the external subset to be created.

Return value

A new DocumentType object with the ownerDocument attribute set to null .

Exceptions

INVALID_CHARACTER_ERR

Indicates that the qualifiedName parameter has a malformed XML identifier.

NAMESPACE_ERR

Raised if the qualified name is malformed.

Java binding

public DocumentType createDocumentType(String qualifiedName,
 String publicId, String systemId) throws DOMException;

hasFeature: feature, version

Tests to see if the DOM implementation supports a given named feature package. It
returns true if the particular version of the specified feature is available; otherwise,
returns false .

Arguments

feature: DOMString

The package name of the feature to test. The following feature names (and others

http://lib.ommolketab.ir

listed at http://www.w3.org/TR/DOM-Level-2-Core/introduction.html-ID-
Conformance) are valid:

XML

Supports DOM Level 1.0 or 2.0 Core objects.
HTML

Supports DOM Level 1.0 or 2.0 HTML objects.
version: DOMString

Represents the DOM version level of the specified feature to test. If no
versionnull number is specified, the function returns true if any version is
supported.

Java binding

public boolean hasFeature(String feature, String version);

Java example

// Make sure that DOM Level 1 XML is supported
if (!di.hasFeature("XML", "1.0")) {
 return null;
}

The HTML-specific DOM objects are beyond the scope of this book,
but they are extremely useful tools for building applications that
perform transformations on HTML documents. An excellent reference
to the HTML DOM objects can be found in the book Dynamic HTML:
The Definitive Reference , by Danny Goodman (O'Reilly &
Associates).

Element

The Element object type provides access to the XML document's structure and data.
Every XML element is translated into a single Element node. The document's root
element is accessible through the documentElement property of the Document
object. From this node, it is possible to re-create the full structure of the original XML
document by traversing the element tree.

http://lib.ommolketab.ir

Java example

// Get the XML document's root element
Element elem = doc.getDocumentElement();

This interface extends the basic Node interface to allow access to the XML attributes of
the document element. Two sets of methods allow access to attribute values, either as
Attr object trees or as simple DOMStrings .

Attribute

The Element object defines one attribute that contains the XML tag name:

tagName: DOMString

The XML tag name from the original document.

Java binding

public String getTagName();

// Show the name of the root element tag
Element elem = doc.getDocumentElement();
System.out.println("This is a " + elem.getTagName() + " document.");

Element (continued)

Methods

The following methods are defined for this object:

getAttribute: name

http://lib.ommolketab.ir

Returns the attribute specified by the name parameter as a DOMString . See the
getAttributeNode:name for a complete explanation of how an attribute value is
determined. This returns an empty string if no attribute is set and if no default attribute
value was specified in the DTD.

Java binding

public String getAttribute(String name);

Java example

// Check for the name attribute
Element elem = doc.getDocumentElement();

if (elem.getAttribute("name") == "") {
 System.out.println("warning: " + elem.getTagName() +
 " element: no name attribute");
}

getAttributeNS: namespaceURI, localName2

Returns an attribute as a DOMString , based on the namespace and local part of the
qualified name.

Arguments

namespaceURI: DOMString

The namespace URI of the attribute to return.
localName: DOMString

The local name portion of the qualified attribute name to return.

Return value

Returns an empty string if no attribute is set and if no default attribute value was
specified in the DTD.

Java binding

http://lib.ommolketab.ir

public String getAttributeNS(String namespaceURI, String localName);

getAttributeNode: name

Retrieves the Attr for the name attribute. Returns a reference to the attribute object if it
is found; otherwise, null .

Arguments

name: DOMString

Name of the attribute to retrieve.

Java binding

public Attr getAttributeNode(String name);

Java example

// Use the id attribute
Attr attr;

if ((attr = elem.getAttributeNode("id")) == null) {
 System.out.println("warning: element " + elem.getTagName() +
 ": no id attribute provided.");
}

getAttributeNodeNS: namespaceURI, localName2

Retrieves the Attr object for the attribute specified by the given namespace URI and
local name. Returns a reference to the attribute object if it is found; otherwise returns
null .

Arguments

namespaceURI: DOMString

Namespace URI of the target attribute.

http://lib.ommolketab.ir

localName: DOMString

Local name of the target attribute. The local name is the part of the name to the
right of the : in a qualified name.

Java binding

public Attr getAttributeNodeNS(String namespaceURI, String localName);

getElementsByTagName: name

Returns a NodeList of all descendant Element nodes whose tagName attribute
matches the given name parameter. The nodes are returned in the same order in which
they would be encountered in a preorder traversal of the document tree. A preorder
traversal conforms to the order in which the XML elements appear in the source
document.

Argument

name: DOMString

The name of the tag to use as a filter. The special name * matches any tag.

Java binding

public NodeList getElementsByTagName(String name);

Java example

// Find every address element in the document
Element elem = doc.getDocumentElement();
NodeList nlAddrs = elem.getElementsByTagName("address");

getElementsByTagNameNS: namespaceURI, localName2

Like the getElementsByTagName method, returns a list of Element nodes,
descendants of the Element node on which the method is called, that match the
criteria given in the namespaceURI and localName parameters. The resulting list

http://lib.ommolketab.ir

contains all elements matching the namespace URI and local name restrictions, as they
would be encountered in a preorder traversal of the document tree.

Arguments

namespaceURI: DOMString

The namespace URI of elements to be matched. The special * value matches any
namespace.

localName: DOMString

The local name part of elements to be matched. The special value * matches any
local name.

Java binding

public NodeList getElementsByTagNameNS(String namespaceURI,
 String localName);

hasAttribute: name2

Returns true if an attribute with the given name has been set or has a default value.
Returns false if the attribute isn't defined.

Argument

name: DOMString

The name of the attribute to be identified.

Java binding

public boolean hasAttribute(String name);

hasAttributeNS: namespaceURI, localName2

Returns true if an attribute with the given namespaceURI and localName has
been set or has a default value. Returns false if the attribute isn't defined.

http://lib.ommolketab.ir

Arguments

namespaceURI: DOMString

The namespace URI of the attribute to be identified.
localName: DOMString

The local name of the attribute to be identified.

Java binding

public boolean hasAttribute(String namespaceURI, String localName);

normalize

Traverses the subtree of the current Element , combining adjacent Text nodes into a
single node.

This method was moved to the Node interface as part of the DOM
Level 2 specification. It is still accessible from the Element
interface, as it inherits from the Node interface.

Java binding

public void normalize();

Java example

// Merge all adjacent text nodes below this element
elem.normalize();

removeAttribute: name

Removes the named element attribute from this element's attributes collection. If
the attribute to be removed has a default value declared in the DTD, subsequent
attempts to retrieve the attribute value return the default value.

http://lib.ommolketab.ir

Argument

name: DOMString

Name of the attribute to remove.

Exception

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

Java binding

public void removeAttribute(String name) throws DOMException;

Java example

// Remove the unique ID
...
elem.removeAttribute("id");
...

removeAttributeNS: namespaceURI, localName2

Uses the given namespace URI and local name parameters to remove the desired
attribute from the element's attributes collection.

Arguments

namespaceURI: DOMString

Namespace URI of the target attribute.
localName: DOMString

Local name part of the target attribute. The local name is the part to the right of the
final : in a qualified name.

Exception

NO_MODIFICATION_ALLOWED_ERR

http://lib.ommolketab.ir

Raised if the element is read-only.

Java binding

public void removeAttributeNS(String namespaceURI, String localName)
 throws DOMException;

removeAttributeNode: oldAttr

Removes the referenced attribute node from this element's attributes collection. If
the attribute to be removed has a default value declared in the DTD, subsequent
attempts to retrieve the attribute value return the default value.

Argument

oldAttr: Attr

The attribute node to remove.

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Raised if the node is read-only.
NOT_FOUND_ERR

Raised if no attribute name matching the oldAttr parameter is found in the map.

Java binding

public Attr removeAttributeNode(Attr oldAttr) throws DOMException;

Java example

// Find and remove temporary attributes
Attr attr;

if ((attr = elem.getAttributeNode("temp")) != null) {
 // remove it
 elem.removeAttributeNode(attr);

http://lib.ommolketab.ir

}

setAttribute: name, value

Sets the attribute specified by the name parameter to the DOMString passed in the
value argument. The string is not parsed for entity references and is set as a Text
node child of the corresponding member of the attributes collection. If an attribute
with the given name already exists, the value is set to the value argument.

Arguments

name: DOMString

The attribute name to set or modify.
value: DOMString

The new attribute value.

Exceptions

INVALID_CHARACTER_ERR

Indicates that the attribute name you passed in doesn't represent a valid XML
attribute name.

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

Java binding

public void setAttribute(String name, String value) throws DOMException;

Java example

// Check for the name attribute
if (elem.getAttribute("name") == "") {
 // oh well, set a reasonable default
 elem.setAttribute("name", elem.getTagName());
}

setAttributeNS: namespaceURI, qualifiedName, value2

http://lib.ommolketab.ir

This method is the namespace-enabled version of the basic setAttribute method.
The namespace URI and the qualified name update the attributes collection of the
element in question.

Arguments

namespaceURI: DOMString

The namespace URI of the attribute value to set.
qualifiedName: DOMString

The qualified name (including namespace prefix) of the new value to set.
value: DOMString

The new attribute value.

Exceptions

INVALID_CHARACTER_ERR

Indicates that the attribute name you passed in doesn't represent a valid XML
attribute name.

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.
NAMESPACE_ERR

Raised if the namespaceURI and qualifiedName parameters would violate
rules concerning namespaces. If the qualified name includes a prefix, the
namespace URI cannot be null or an empty string. If the reserved xml or xmlns
prefixes are used, the namespace URI must match the corresponding specified
system URI. See Chapter 4 for more information about namespaces and prefixes.

Java binding

public void setAttributeNS(String namespaceURI, String qualifiedName,
 String value) throws DOMException;

setAttributeNode: newAttr

http://lib.ommolketab.ir

Sets or replaces the attribute in the Node interface's attributes collection with the
given Attr object. The attribute name is retrieved from the name attribute of the new
attribute object. If an Attr object with the given name already exists in the
attributes collection, this method returns a reference to the old Attr object.
Otherwise, it returns null .

Argument

newAttr: Attr

The new Attr object to set.

Exceptions

WRONG_DOCUMENT_ERR

Raised if the newAttr node was created in a document different than the parent
node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the new parent node is read-only.
INUSE_ATTRIBUTE_ERR

Raised if another Element already uses the new Attr node. Each element must
have a distinct Attr object.

Java binding

public Attr setAttributeNode(Attr newAttr) throws DOMException;

Java example

// Make sure you have an id attribute to work with
Attr attr;

if ((attr = elem.getAttributeNode("id")) == null) {
 // add a default, unique id
 attr = doc.createAttribute("id");

 elem.setAttributeNode(attr);

http://lib.ommolketab.ir

 // continue processing
}

setAttributeNodeNS: newAttr2

Sets or replaces the attribute in the element's attributes collection that matches the
namespace URI and the given Attr object's local name. This operation is identical to
the setAttributeNode method, except that it considers namespace differences
between attributes. If an Attr object with the given name in the attributes
collection already exists, this method returns a reference to the old Attr object;
otherwise, it returns null .

Argument

newAttr: Attr

The new Attr object to set.

Exceptions

WRONG_DOCUMENT_ERR

Raised if the newAttr node was created in a different document than the parent
node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the new parent node is read-only.
INUSE_ATTRIBUTE_ERR

Raised if another Element already uses the newAttr node. Each element must
have a unique Attr object.

Java binding

public Attr setAttributeNodeNS(Attr newAttr) throws DOMException;

Entity

http://lib.ommolketab.ir

The Entity object represents a given general XML entity's replacement value.
Depending on whether a given DOM implementation is validating or nonvalidating and
whether it chooses to expand entity references inline during parsing, Entity objects
may not be available to the DOM user.

Java example

// Locate the my_entity entity declaration
Entity ndEnt = (Entity)doc.getDoctype().getEntities().
 getNamedItem("my_entity");

Attributes

The following read-only attributes are defined for the Entity object:

notationName:

If this entity is unparsed, the entity's notation name. For parsed entities, this attribute is
null .

Java binding

public String getNotationName();

Java example

// Find out if it's a parsed entity
boolean fParsedEnt = ndEnt.getNotationName() == null;

publicId: DOMString

The public identifier URL (URI) given for this entity, or null if none was specified.

Java binding

public String getPublicId();

http://lib.ommolketab.ir

Java example

// Locate the my_entity entity declaration
Entity ndEnt = (Entity)doc.getDoctype().getEntities().getNamedItem("my_
entity");

// if my_entity type was found and there is a public-ID (URL)...
if (ndEnt != null && ndEnt.getPublicId() != null) {
 try {
 // ...get the URL protocol
 URL urlSys = new URL(ndEnt.getPublicId());
 System.out.println("Entity " + ndEnt.getNodeName() +
 ": protocol " + urlSys.getProtocol());
 } catch (MalformedURLException e) {
 }
}

systemId: DOMString

The system identifier URL (URI) given for this entity, or null if none was specified.

Java binding

public String getSystemId();

Java example

// Get the Public ID or System ID for this entity
Entity ndEnt = (Entity)doc.getDoctype().getEntities().getNamedItem("my_ entity");

String strURL = ndEnt.getPublicId();

// if can't find the public URL
if (strURL == null) {
 // find the system URL
 strURL = ndEnt.getSystemId();
}

EntityReference

http://lib.ommolketab.ir

EntityReference nodes appear within the document hierarchy wherever an XML
general entity reference is embedded within the source document. Depending on the
DOM implementation, a corresponding Entity object may exist in the entities
collection of the docType attribute of the Document object. If such an entity exists,
then the child nodes of both the Entity and EntityReference represent the
replacement text associated with the given entity.

Java example

// Create a new entity reference
EntityReference ndER = doc.createEntityReference("my_entity");

NamedNodeMap

The NamedNodeMap interface provides a mechanism used to retrieve Node objects
from a collection by name. Though this interface exposes the same methods and
attributes as the NodeList class, they are not related. While it is possible to
enumerate the nodes in a NamedNodeMap using the item() method and length
attribute, the nodes are not guaranteed to be in any particular order.

Java example

// Get an element's attributes
NamedNodeMap nnm = elem.getAttributes();

Attribute

The NamedNodeMap defines one attribute:

length: unsigned long

The total number of Node objects in the list.

http://lib.ommolketab.ir

Java binding

public long getLength();

Java example

// Iterate over the attribute list
for (int i = 0; i < nnm.getLength(); i++) {
 ...
}

NamedNodeMap (continued)

Methods

The following methods are defined for the NamedNodeMap object:

getNamedItem: name

Returns a reference to the node with the given nodeName property specified by name.

Argument

name: DOMString

Name of the node to retrieve.

Java binding

public Node getNamedItem(String name);

Java example

// Check to see if an ID attribute exists
// in this map, and add it if necessary
// nnm was created by getting the attributes

http://lib.ommolketab.ir

// from an element
if (nnm.getNamedItem("id") == null) {
 // get the document
 Document doc = elem.getOwnerDocument();
 // create a new attribute Node
 Attr attrID = doc.createAttribute("id");

 // set the attribute value
 attrID.appendChild(doc.createTextNode(makeUniqueID(elem)));
 // ... and add it to the NamedNodeMap
 nnm.setNamedItem(attrID);
}

getNamedItemNS: namespaceURI, localName2

Extends the basic getNamedItem method to include support for namespaces. Instead
of finding an item in the list based only on the local part of the node name, it is possible
to incorporate the namespace URI into the search.

Arguments

namespaceURI: DOMString

Namespace URI of the node to retrieve.
localName: DOMString

Local name of the node to retrieve.

Java binding

public Node getNamedItemNS(String namespaceURI, String localName);

item: index

Returns a reference to the Node object at position index . If the given index is < 0 or
>= the length attribute of the NodeList , this function returns null .

Argument

http://lib.ommolketab.ir

index: unsigned long

Zero-based index of the list of the node to return.

Java binding

public Node item(long index);

Java example

// Remove the last attribute from the list
if (nnm.getLength() > 0) {
 nnm.removeNamedItem(nnm.item(nnm.getLength()-1).getNodeName());
}

removeNamedItem: name

Removes the Node object with the nodeName property that matches the name
parameter and returns a reference to the removed object. If the node you plan to remove
is an Attr node and if it has a defined default value, the node will be replaced
immediately with a new Node object set to the default value.

Argument

name: DOMString

The nodeName value of the node to be removed.

Exception

NOT_FOUND_ERR

Raised if no node matching the name parameter is found in the map.

Java binding

public Node removeNamedItem(String name) throws DOMException;

Java example

http://lib.ommolketab.ir

// Remove the ID node attribute
NamedNodeMap nnm = elem.getAttributes();

if (nnm.removeNamedItem("id") == null) {
 System.err.println("no ID attribute found");
}

removeNamedItemNS: namespaceURI, localName2

Removes the Node object with the matching namespaceURI and localName
properties and returns a reference to the removed object. If the node you plan to remove
is an Attr node and if it has a defined default value, a new Node object set to the
default value will replace the node immediately.

Arguments

namespaceURI: DOMString

Namespace URI of the node to retrieve.
localName: DOMString

Local name of the node to retrieve.

Exception

NOT_FOUND_ERR

Raised if no node matching the namespaceURI and localName parameter is
found in the map.

Java binding

public Node removeNamedItemNS(String namespaceURI, String localName);

setNamedItem: arg

Inserts the given Node object into the list, using its nodeName attribute. Since many
DOM node types expose the same, hardcoded value for this property, storing only one

http://lib.ommolketab.ir

of them in a single NamedNodeMap is possible. Each subsequent insertion overwrites
the previous node entry. See the nodeName: DOMString topic for a discussion of these
special name values.

This method returns a reference to the Node object that the new node replaces. If no
nodes with the same nodeName value are currently in the map, this method returns
null .

Argument

arg: Node

The Node object to be stored in the map. The value of the nodeName property is
used as the lookup key. A node with the same nodeName value as the new node
is replaced with the node referenced by arg .

Exceptions

WRONG_DOCUMENT_ERR

Raised if a document different than the creator of the target NamedNodeMap
created the arg node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the NamedNodeMap is read-only.

INUSE_ATTRIBUTE_ERR

Raised if the arg node is an Attr node that is already in use by another
element's attributes map.

Java binding

public Node setNamedItem(Node arg) throws DOMException;

Java example

// Check to see if an ID attribute exists
// in this map, and add it if necessary
if (nnm.getNamedItem("id") == null) {
 // get the document
 Document doc = elem.getOwnerDocument();
 // create a new attribute Node
 Attr attrID = doc.createAttribute("id");

http://lib.ommolketab.ir

 // set the attribute value
 attrID.appendChild(doc.createTextNode(makeUniqueID(elem)));

 // ... and add it to the NamedNodeMap
 nnm.setNamedItem(attrID);
}

setNamedItemNS: arg2

Identical in function to the basic setNamedItem method, except that it considers
namespace properties in the Node object. A reference to the replaced Node object is
returned.

Argument

arg: Node

The Node object to be stored in the map. The values of the namespaceURI and
localName properties are used as the lookup key. If another node with identical
values for these two properties exists, the new node replaces it.

Exceptions

WRONG_DOCUMENT_ERR

Raised if a document different than the creator of the target NamedNodeMap
created the arg node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the NamedNodeMap is read-only.

INUSE_ATTRIBUTE_ERR

Raised if the arg node is an Attr node already in use by another element's
attributes map.

Java binding

public Node setNamedItemNS(Node arg) throws DOMException;

Node

http://lib.ommolketab.ir

The Node interface is the base interface for every member of a DOM document tree. It
exposes attributes common to every type of document object and provides simple
methods to retrieve type-specific information without resorting to downcasting. For
instance, the attributes list provides access to the Element object's attributes, but
it would have no meaning for a ProcessingInstruction node. (Extracting
pseudoattributes from a processing instruction requires your application to parse the
contents of the processing instruction.)

This interface also exposes all methods for querying, inserting, and removing objects
from the document hierarchy. The Node interface makes it easier to build general-
purpose tree-manipulation routines that are not dependent on specific document
element types.

Attributes

The following attributes provide information about where the Node object is located
within the document tree. These attributes are read-only. Additional methods allow the
insertion and removal of nodes from the document tree.

attributes: NamedNodeMap

Has meaning only for Element objects. It provides access to a list of Attr objects in a
NamedNodeMap . For all other object types, it returns null .

Java binding

public NamedNodeMap getAttributes();

// List the attributes of an Element node
NamedNodeMap nnm = doc.getDocumentElement().getAttributes();

if (nnm != null) {

 for (int i = 0; i < nnm.getLength(); i++) {
 // print the attribute and value

http://lib.ommolketab.ir

 System.out.println(nnm.item(i).getNodeName() + " = \"" +
 nnm.item(i).getNodeValue() + "\"");
 }
}

childNodes: NodeList

Returns a NodeList containing a reference to every child of this Node .

Java binding

public NodeList getChildNodes();

Java example

// List the text contents of an element
NodeList nlChildren = elem.getChildNodes();
Node ndChild;

for (int iNode = 0; iNode < nlChildren.getLength(); iNode++) {
 ndChild = nlChildren.item(iNode);

 if (ndChild.getNodeType() == Node.TEXT_NODE) {
 System.out.println(ndChild.getNodeValue());
 }
}

Dynamic Tree References

Throughout the DOM, several places return lists or collections of nodes that
represent the current state of the document tree. These references are all live;
any modifications to the document hierarchy, made by inserting or removing
nodes, are reflected in the list immediately.

Whether due to multithreading or unforeseen side effects of procedure calls,
the contents of the list being used could change. To reduce the likelihood of
difficult-to-find bugs resulting from stale values, request values (such as the
length of a list) directly from the NodeList or NamedNodeMap objects. This
option is safer than storing values in intermediate variables.

http://lib.ommolketab.ir

firstChild: Node

Points to the head of the linked list of children of this node. If no child nodes exist, it
returns null .

Java binding

public Node getFirstChild();

Java example

// List the contents of a node
for (Node nd = ndDump.getFirstChild(); nd != null;
 nd = nd.getNextSibling()) {
 if (nd.getNodeValue() != null) {
 System.out.println(nd.getNodeValue());
 }
}

lastChild: Node

Returns a pointer to the end of a given Node object's linked list of child nodes. If no
children exist, it returns null .

Java binding

public Node getLastChild();

Java example

// List the value of a node in reverse order
for (Node nd = ndDump.getLastChild(); nd != null;
 nd = nd.getPreviousSibling()) {
 if (nd.getNodeValue() != null) {
 System.out.println(nd.getNodeValue());
 }

http://lib.ommolketab.ir

}

localName: DOMString2

Returns the local part of the fully qualified node name. This part of the name is to the
right of the final : in a namespace-qualified name.

Java binding

public String getLocalName();

namespaceURI: DOMString2

Represents the namespace URI given to this Node object at creation time; returns
null if no namespace was given. The value is null if the node's been created by a
createNodeType () method rather than a createNodeTypeNS () method.

Java binding

public String getNamespaceURI();

nextSibling: Node

Returns the next node in the sibling list. If this node is the end of the list, nextSibling
returns null .

Java binding

public Node getNextSibling();

Java example

// List the contents of a node
for (Node nd = ndDump.getFirstChild(); nd != null;
 nd = nd.getNextSibling()) {

http://lib.ommolketab.ir

 if (nd.getNodeValue() != null) {
 System.out.println(nd.getNodeValue());
 }
}

nodeName: DOMString

Intended to represent the underlying DOM object's name. Depending on the object type,
this attribute may map to another attribute of the object or a constant string:

Object type nodeName

Element Tag name

Attr Attribute name

Text "#text"

CDATASection "#cdata-section"

EntityReference Name of entity referenced

Entity Entity name

ProcessingInstruction Target

Comment "#comment"

Document "#document"

DocumentType Document type name

DocumentFragment "#document-fragment"

Notation Notation name

Java binding

public String getNodeName();

// Print the document root tag name
Node ndDoc = (Node)doc.getDocumentElement();
System.out.println("Document root element type: " + ndDoc.getNodeName());

nodeType: unsigned short

Contains a value that indicates the true type of the object referenced through the Node

http://lib.ommolketab.ir

interface. The following table shows this attribute's possible values, along with the actual
object types they represent:

Constant name Object type Constant value

ELEMENT_NODE Element 1

ATTRIBUTE_NODE Attr 2

TEXT_NODE Text 3

CDATA_SECTION_NODE CDATASection 4

ENTITY_REFERENCE_NODE EntityReference 5

ENTITY_NODE Entity 6

PROCESSING_INSTRUCTION_NODE ProcessingInstruction 7

COMMENT_NODE Comment 8

DOCUMENT_NODE Document 9

DOCUMENT_TYPE_NODE DocumentType 10

DOCUMENT_FRAGMENT_NODE DocumentFragment 11

NOTATION_NODE Notation 12

The parent-child and sibling relationships between nodes can be visualized as two
doubly linked lists. One list links parents to children, while the other links nodes that exist
at the same level.

Java binding

public short getNodeType();

Java example

// Check to see if a node is an Element type node
public boolean isElement(Node nd) {
 return nd.getNodeType() == Node.ELEMENT_NODE;
}

nodeValue: DOMString

Intended to provide a reasonable string value for the underlying DOM object. Depending
on the nodeType , this property may be read-only, read/ write, or null .

http://lib.ommolketab.ir

Object type nodeValue

Element null

Attr Attribute value

Text Text node content

CDATASection CDATA section content

EntityReference null

Entity null

ProcessingInstruction Entire content, excluding the target

Comment Comment content

Document null

DocumentType null

DocumentFragment null

Notation null

Exceptions

NO_MODIFICATION_ALLOWED_ERR

Indicates the nodeValue attribute is read-only for this DOM object type.

DOMSTRING_SIZE_ERR

This exception is raised if the value that would be returned is too large to be
contained by a DOMString type in the given implementation.

Java bindings

public String getNodeValue() throws DOMException;
public void setNodeValue(String nodeValue) throws DOMException;

Java example

// If this node is a text node, make the value lowercase
if (nd.getNodeType() == Node.TEXT_NODE) {
 // make it lowercase
 nd.setNodeValue(nd.getNodeValue().toLowerCase());
}

ownerDocument: Document

http://lib.ommolketab.ir

Returns a reference to the Document used to create this Node object. Since the
Document object is the only mechanism exposed for creating new nodes, even these
newly created, empty nodes have the ownerDocument property set. This attribute can
be null only for Document nodes and DocumentType nodes that are not yet part of
a document. You can't move a node directly to another document; instead you must
import it. This property can be useful for checking where a node came from.

Java binding

public Document getOwnerDocument();

Java example

// Add my two cents
Document doc = elem.getOwnerDocument();
Text txtAdd = doc.createTextNode("My $.02");
elem.appendChild(txtAdd);

parentNode: Node

Provides a reference to the parent of this node. All node types, except Document ,
DocumentFragment , and Attr , may have a parent node. Every node within a
Document hierarchy has a parent. Nodes that are not part of the document tree, such
as new nodes and nodes removed from the document using the replaceChild()
or removeChild() methods, have a parentNode attribute of null .

Java binding

Node getParentNode();

Java example

// Unlink an element from the document tree
elem.getParentNode().removeChild(elem);

prefix: DOMString2

http://lib.ommolketab.ir

Represents the namespace prefix of this node, used for nodes that support namespace
prefixes. For ELEMENT_NODE and ATTRIBUTE_NODE type nodes, changing the
namespace prefix also affects the nodeName , tagName , and name attributes. Since
these properties hold the qualified name of the node, changing the prefix also updates it.

Exceptions

INVALID_CHARACTER_ERR

Raised if the prefix includes an illegal character.

NO_MODIFICATION_ALLOWED_ERR

Indicates that the prefix attribute is read-only for this DOM object type.

NAMESPACE_ERR

Raised if the prefix is malformed, according to the rules of namespace identifier
formation. This exception is also raised if the namespaceURI attribute is null ,
or if an attempt was made to violate the XML rules of identifier formation. Such an
attempt includes invalid use of the xml or xmlns identifier. For more information
about namespaces, see Chapter 4 .

Java bindings

public String getPrefix();
public void setPrefix(String prefix) throws DOMException;

previousSibling: Node

Returns the preceding node in the sibling list. If this node is the head of the sibling list, it
returns null .

Java binding

public Node getPreviousSibling();

Java example

http://lib.ommolketab.ir

// List the value of a node in reverse order
for (Node nd = ndDump.getLastChild(); nd != null;
 nd = nd.getPreviousSibling()) {
 if (nd.getNodeValue() != null) {
 System.out.println(nd.getNodeValue());
 }
}

Node (continued)

Methods

The following methods are defined for Node interface objects:

appendChild: newchild

Appends the newchild node to the end of the child list. If newchild is already linked
into the document tree, it is unlinked before the append is performed. This method
returns a reference to the newchild node.

Argument

newchild: Node

The node to append. If the node is a DocumentFragment node, the children of
newchild are appended in sequence to the end of the node's child list.

Exceptions

HIERARCHY_REQUEST_ERR

Raised if the insert operation violates at least one document structure rule. For
instance, the node doesn't allow children or doesn't allow children of the
newchild node type. This exception is also raised if the operation creates a
circular reference (i.e., it tries to insert a node's parent as a node's child).

WRONG_DOCUMENT_ERR

http://lib.ommolketab.ir

Raised if the newchild node is created in a different document than that of the
new parent node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the new parent node is read-only.

Java binding

public Node appendChild(Node newChild) throws DOMException;

Java example

// Move the first child to the end of the child node list
if (elem.getFirstChild() != null) {
 elem.appendChild(elem.getFirstChild());
}

cloneNode: deep

Returns a copy of the node without a parent node. If the cloned node is specified as
deep (true), the subtree under the node is also copied. Otherwise, the cloned node
does not contain child nodes.

Argument

deep: boolean

If true , child nodes are copied to the cloned node. If false , only the original
node is copied.

Java binding

public Node cloneNode(boolean deep);

Java example

// Make a copy of this element and all children
elem.cloneNode(true);

hasAttributes ()

http://lib.ommolketab.ir

Indicates whether an Element node has any attributes. Returns true if the node has
attributes; otherwise, it returns false .

Java binding

public boolean hasAttributes();

hasChildNodes ()

Provides a quick way to determine if a node has children. Returns true if the node has
any children; otherwise, it returns false .

Java binding

public boolean hasChildNodes();

insertBefore: newchild, refchild

Inserts the Node object newchild into the child list of the parent node that invokes it.
The refchild parameter allows you to specify where to insert the new node in the list.
If refchild is null , the new node is inserted at the end of the child list. (This
behavior is the same as appendChild .) If it is not null , the new node is inserted
into the list in front of the specified node. If the newchild node is already part of the
document tree, it is unlinked before it is inserted in its new position. Also, if the
newchild node references a DocumentFragment object, each of its children are
inserted, in order, before the refchild node. A reference to the newchild node is
returned.

Arguments

newchild: Node

The new node to insert.
refchild: Node

http://lib.ommolketab.ir

The node that follows the new node in the child list, or null , if the new node is
inserted at the end of the child list.

Exceptions

HIERARCHY_REQUEST_ERR

Raised if the insert operation would violate at least one document structure rule.
For instance, the node doesn't allow children or doesn't allow children of the
newchild node type. This exception is also raised if the operation creates a
circular reference (i.e., it tries to insert a node's parent as a node's child).

WRONG_DOCUMENT_ERR

Raised if the newchild node was created in a document different than that of the
new parent node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the new parent node is read-only.
NOT_FOUND_ERR

Raised if the node pointed to by refchild is not a child of the node performing
the insert.

Java binding

public Node insertBefore(Node newChild, Node refChild)
 throws DOMException;

Java example

// Insert a new node at the head of the child list of a parent node
ndParent.insertBefore(ndNew, ndParent.getFirstChild());

isSupported: feature, version2

Checks to see if a particular DOM feature is available for this implementation. For more
information about the feature names, see the hasFeature: feature, version method of the
DOMImplementation object earlier in this chapter. This method returns true if the feature
is available, false if it is not.

http://lib.ommolketab.ir

Arguments

feature: DOMString

The name of the feature to test for. See detail of the hasFeature: feature, version
method of the DOMImplementation object for a list of this parameter's valid values.

version: DOMString

The version number of the feature to test. For DOM Level 2, Version 1, this string
should be 2.0. If the version is not specified, this method tests for any version of
the feature.

Java binding

public boolean supports(String feature, String version);

normalize () 2

Recursively combines all adjacent Text nodes into a single node. It also removes
empty Text nodes from the document tree. This operation is useful for operations that
require absolute references within a document or if two documents must be compared.

Java binding

public void normalize();

removeChild: oldchild

Unlinks the oldchild node from the child list of a given node and returns a reference
to the now detached Node object.

Argument

oldchild: Node

The node to be removed.

Exceptions

http://lib.ommolketab.ir

NO_MODIFICATION_ALLOWED_ERR

Raised if the parent node is read-only.
NOT_FOUND_ERR

Raised if the oldchild node is not a child of this node.

Java binding

public Node removeChild(Node oldChild) throws DOMException;

Java example

// Unlink an element and all its children
// from the document tree
elem.getParentNode().removeChild(elem);

replaceChild: newchild, oldchild

Replaces the child node oldchild with newchild . If newchild is currently linked
into the document tree, it is removed before the replace is performed. The method
returns a reference to the oldchild node.

Arguments

newchild: Node

The node to be inserted.
oldchild: Node

The node being replaced.

Exceptions

HIERARCHY_REQUEST_ERR

Raised if the insert operation violates at least one document structure rule. For
instance, the node doesn't allow children or doesn't allow children of the
newchild node type. This exception is also raised if the operation creates a
circular reference (i.e., it tries to insert a node's parent as a node's child).

http://lib.ommolketab.ir

WRONG_DOCUMENT_ERR

Raised if the newchild node was created in a different document than the new
parent node.

NO_MODIFICATION_ALLOWED_ERR

Raised if the new parent node is read-only.
NOT_FOUND_ERR

Raised if the node pointed to by oldchild is not a child of the node performing
the replacement.

Java binding

public Node replaceChild(Node newChild, Node oldChild)
 throws DOMException;

Java example

// Replace an old node with a new one
ndOld.getParentNode().replaceChild(ndNew, ndOld);

NodeList

The NodeList interface allows DOM classes to expose an ordered collection of nodes.
A NodeList represents a read-only, zero-based array of Node objects. Since no
mechanism exists for creating, adding, or removing nodes from a NodeList , DOM
users cannot use this class as a general-purpose utility class.

Java example

// List the text contents of an element
NodeList nlChildren = elem.getChildNodes();
Node ndChild;

for (int iNode = 0; iNode < nlChildren.getLength(); iNode++) {
 ndChild = nlChildren.item(iNode);

 if (ndChild.getNodeType() == Node.TEXT_NODE) {
 System.out.println(ndChild.getNodeValue());

http://lib.ommolketab.ir

 }
}

Attributes

The NodeList interface defines one attribute:

length: unsigned long

The total number of Node objects in the list.

Java binding

public long getLength();

NodeList (continued)

Methods

The NodeList interface defines one method:

item:

Returns a reference to the Node object at position index or returns null if the index
is invalid. If the index given is < 0 or >= the length attribute of the NodeList , this
function returns null .

Argument

index: unsigned long

Zero-based index into the list of the Node to return.

http://lib.ommolketab.ir

Java binding

public Node item(long index);

ProcessingInstruction

This interface provides access to the contents of an XML processing instruction.
Processing instructions provide a mechanism for embedding commands to an XML
processing application that is in line with the XML content.

Java example

// Add an application-specific processing instruction
ProcessingInstruction pi = doc.createProcessingInstruction("my_app",
 "action=\"save\"");

Attributes

The interface defines two attributes:

data: DOMString

Returns the data portion of this processing instruction. The data portion is identified
starting at the first nonwhitespace character after the target token and ending at the
closing ?>.

Write exception

NO_MODIFICATION_ALLOWED_ERR

Raised if the node is read-only.

Java bindings

public String getData();
public void setData(String data) throws DOMException;

http://lib.ommolketab.ir

Java example

// Check the application's data attribute
if (pi.getTarget() == "MY_APPLICATION") {
 // check the data attribute for my own application-specific info
 if (pi.getData() == "CHECK_SIBLINGS") {
 // check the siblings
 ...
 }

 pi.setData("SIBLINGS_CHECKED");
}

target: DOMString

Returns the target portion of this processing instruction. The target is the first
whitespace-delimited token within the processing-instruction block.

Processing instructions are meant to embed application-specific instructions for
automatic content generation, parsing, etc., within the XML stream. The instruction's
target portion is the flag that allows different processing applications to coexist.
Applications that use processing instructions for formatting should ignore processing
instructions they do not recognize.

Java binding

public String getTarget();

// Check to see if your application is targeted
if (pi.getTarget() == "MY_APPLICATION") {
 // do my application-specific processing here
}

Text

Text nodes contain the nonmarkup character data contained within the XML document.

http://lib.ommolketab.ir

After the XML document is parsed, exactly one Text node exists for each uninterrupted
block of nonmarkup text:

<text_node>This is text.</text_node>

Method

The following method is defined for the Text interface:

splitText: offset

Splits a Text node into two adjacent Text nodes. The contents of the original node are
divided at the given split offset, with the second substring used as the new node's value.
The first substring remains in the original node. If the node is currently linked into the
DOM tree, the new node with the split content becomes the next sibling of the original
node. A new Text node containing the second part of the split data is returned.

Argument

offset (unsigned long)

Zero-based offset where the split occurs.

Exceptions

INDEX_SIZE_ERR

Raised if the offset given is < 0 and >= the length attribute.

NO_MODIFICATION_ALLOWED_ERR

Raised if the element is read-only.

Java binding

public Text splitText(long offset) throws DOMException;

Java example

// Make one Text node
long = doc.createTextNode("This text is split.");

http://lib.ommolketab.ir

// and split it
Text ndSplit = ndText.splitText(9);

Text is a subclass of the CharacterData interface. See the
CharacterData interface section in this chapter for a list of applicable
methods for accessing character data in nodes of this type.

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 25. SAX Reference

 25.1 The org.xml.sax Package

 25.2 The org.xml.sax.helpers Package
 25.3 SAX Features and Properties

 25.4 The org.xml.sax.ext Package

SAX, the Simple API for XML, is a straightforward, event-based API used to parse XML
documents. David Megginson, SAX's original author, placed SAX in the public domain.
SAX is bundled with all parsers that implement the API, including Xerces, MSXML,
Crimson, the Oracle XML Parser for Java, and Ælfred. However, you can also get it and
the full source code from http://sax.sourceforge.net/ .

SAX was originally defined as a Java API and is intended primarily for parsers written in
Java, so this chapter will focus on its Java implementation. However, its port to other
object-oriented languages, such as C++, Python, Perl, and Eiffel, is common and usually
quite similar.

This chapter covers SAX2 exclusively. In 2002, all major parsers that
support SAX support SAX2. The major change from SAX1 to SAX2
was the addition of namespace support. This addition necessitated
changing the names and signatures of almost every method and
class in SAX. The old SAX1 methods and classes are still available,
but they're now deprecated and shouldn't be used.

25.1 The org.xml.sax Package

The org.xml.sax package contains the core interfaces and classes that comprise the
Simple API for XML.

The Attributes Interface

An object that implements the Attributes interface represents a list of attributes on a
start-tag. The order of attributes in the list is not guaranteed to match the order in the
document itself. Attributes objects are passed as arguments to the

http://lib.ommolketab.ir

startElement() method of ContentHandler . You can access particular
attributes in three ways:

By number

By namespace URI and local name

By qualified (prefixed) name

This list does not include namespace declaration attributes (xmlns and
xmlns:prefix) unless the http://xml.org/sax/features/namespace-prefixes feature is
true. It is false by default.

If the namespace-prefixes feature is false, qualified name access may not be available;
if the http://xml.org/sax/features/namespaces feature is false, local names and
namespace URIs may not be available:

package org.xml.sax;

public interface Attributes {

 public int getLength();
 public String getURI(int index);
 public String getLocalName(int index);
 public String getQName(int index);
 public int getIndex(String uri, String localName);
 public int getIndex(String qualifiedName);
 public String getType(int index);
 public String getType(String uri, String localName);
 public String getType(String qualifiedName);
 public String getValue(String uri, String localName);
 public String getValue(String qualifiedName);
 public String getValue(int index);

}

The ContentHandler Interface

ContentHandler is the key piece of SAX. Almost every SAX program needs to use

http://xml.org/sax/features/namespace-prefixes
http://xml.org/sax/features/namespaces
http://lib.ommolketab.ir

this interface. ContentHandler is a callback interface. An instance of this interface is
passed to the parser via the setContentHandler() method of XMLReader . As
the parser reads the document, it invokes the methods in its ContentHandler to tell
the program what's in the document:

package org.xml.sax;

public interface ContentHandler {

 public void setDocumentLocator(Locator locator);
 public void startDocument() throws SAXException;
 public void endDocument() throws SAXException;
 public void startPrefixMapping(String prefix, String uri)
 throws SAXException;
 public void endPrefixMapping(String prefix) throws SAXException;
 public void startElement(String namespaceURI, String localName,
 String qualifiedName, Attributes atts) throws SAXException;
 public void endElement(String namespaceURI, String localName,
 String qualifiedName) throws SAXException;
 public void characters(char[] text, int start, int length)
 throws SAXException;
 public void ignorableWhitespace(char[] text, int start, int length)
 throws SAXException;
 public void processingInstruction(String target, String data)
 throws SAXException;
 public void skippedEntity(String name) throws SAXException;

}

The DTDHandler Interface

By passing an instance of the DTDHandler interface to the setDTDHandler()
method of XMLReader , you can receive notification of notation and unparsed entity
declarations in the DTD. You can store this information and use it later to retrieve
information about the unparsed entities you encounter while reading the document:

package org.xml.sax;

public interface DTDHandler {

http://lib.ommolketab.ir

 public void notationDecl(String name, String publicID, String systemID)
 throws SAXException;
 public void unparsedEntityDecl(String name, String publicID,
 String systemID, String notationName) throws SAXException;

}

The EntityResolver Interface

By passing an instance of the EntityResolver interface to the
setEntityResolver() method of XMLReader , you can intercept parser
requests for external entities, such as the external DTD subset or external parameter
entities, and redirect those requests in order to substitute different entities. For example,
you could replace a reference to a remote copy of a standard DTD with a local one or
find the sources for particular public IDs in a catalog. The interface is also useful for
applications that use URI types other than URLs:

package org.xml.sax;

public interface EntityResolver {

 public InputSource resolveEntity(String publicID, String systemID)
 throws SAXException, IOException;

}

The ErrorHandler Interface

By passing an instance of the ErrorHandler interface to the setErrorHandler(
) method of XMLReader , you can provide custom handling for particular classes of
errors detected by the parser. For example, you can choose whether to stop parsing
when a validity error is detected. The SAXParseException passed to each of the
three methods in this interface provides details about the specific cause and location of
the error:

package org.xml.sax;

http://lib.ommolketab.ir

public interface ErrorHandler {

 public void warning(SAXParseException exception) throws SAXException;
 public void error(SAXParseException exception) throws SAXException;
 public void fatalError(SAXParseException exception)
 throws SAXException;

}

Warnings represent possible problems noticed by the parser that are not technically
violations of XML's well-formedness or validity rules. For instance, a parser might issue
a warning if an xml:lang attribute's value was not a legal ISO-639 language code.
The most common kind of error is a validity problem. The parser should report it, but it
should also continue processing. A fatal error violates well-formedness. The parser
should not continue parsing after reporting such an error.

The Locator Interface

Unlike most other interfaces in the org.xml.sax package, the Locator interface
does not have to be implemented. Instead, the parser has the option to provide an
implementation. If it does so, it passes its implementation to the
setDocumentLocator() method in your ContentHandler instance before it
calls startDocument() . You can save a reference to this object in a field in your
ContentHandler class, like this:

private Locator locator;

public void setDocumentLocator(Locator locator) {
 this.locator = locator;
}

Once you've found the locator, you can then use it inside any other ContentHandler
method, such as startElement() or characters() , to determine in exactly
which document and at which line and column the event took place. For instance, the
locator allows you to determine that a particular start-tag began on the third column of
the document's seventeenth line at the URL http://www.slashdot.org/slashdot.xml :

package org.xml.sax;

http://www.slashdot.org/slashdot.xml
http://lib.ommolketab.ir

public interface Locator {

 public String getPublicId();
 public String getSystemId();
 public int getLineNumber();
 public int getColumnNumber();

}

The XMLFilter Interface

An XMLFilter is an XMLReader that obtains its events from another parent
XMLReader , rather than reading it from a text source such as InputStream . Filters
can sit between the original source XML and the application and modify data in the
original source before passing it to the application. Implementing this interface directly is
unusual. It is almost always much easier to use the more complete
org.xml.sax.helpers.XMLFilterImpl class instead.

package org.xml.sax;

public interface XMLFilter extends XMLReader {

 public void setParent(XMLReader parent);
 public XMLReader getParent();

}

The XMLReader Interface

The XMLReader interface represents the XML parser that reads XML documents. You
generally do not implement this interface yourself. Instead, use the
org.xml.sax.helpers.XMLReaderFactory class to build a parser-specific
implementation. Then use this parser's various setter methods to configure the parsing
process. Finally, invoke the parse() method to read the document, while calling back
to methods in your own implementations of ContentHandler , ErrorHandler ,
EntityResolver , and DTDHandler as the document is read:

http://lib.ommolketab.ir

package org.xml.sax;

public interface XMLReader {

 public boolean getFeature(String name)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public void setFeature(String name, boolean value)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public Object getProperty(String name)
 throws SAXNotRecognizedException, SAXNotSupportedException;

 public void setProperty(String name, Object value)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public void setEntityResolver(EntityResolver resolver);
 public EntityResolver getEntityResolver();
 public void setDTDHandler(DTDHandler handler);
 public DTDHandler getDTDHandler();
 public void setContentHandler(ContentHandler handler);
 public ContentHandler getContentHandler();
 public void setErrorHandler(ErrorHandler handler);
 public ErrorHandler getErrorHandler();

 public void parse(InputSource input) throws IOException, SAXException;
 public void parse(String systemID) throws IOException, SAXException;

}

The InputSource Class

The InputSource class is an abstraction of a data source from which the raw bytes of
an XML document are read. It can wrap a system ID, a public ID, an InputStream , or
a Reader . When given an InputSource , the parser tries to read from the Reader .
If the InputSource does not have a Reader , the parser will try to read from the
InputStream using the specified encoding. If no encoding is specified, then it will try
to autodetect the encoding by reading the XML declaration. Finally, if neither a Reader
nor an InputStream has been set, then the parser will open a connection to the URL
given by the system ID.

package org.xml.sax;

http://lib.ommolketab.ir

public class InputSource {

 public InputSource();
 public InputSource(String systemID);
 public InputSource(InputStream byteStream);
 public InputSource(Reader reader);

 public void setPublicId(String publicID);
 public String getPublicId();
 public void setSystemId(String systemID);
 public String getSystemId();
 public void setByteStream(InputStream byteStream);
 public InputStream getByteStream();
 public void setEncoding(String encoding);
 public String getEncoding();
 public void setCharacterStream(Reader reader);
 public Reader getCharacterStream();

}

The SAXExceptions Class

Most exceptions thrown by SAX methods are instances of the SAXException class or
one of its subclasses. The single exception to this rule is the parse() method of
XMLReader , which may throw a raw IOException if a purely I/O-related error
occurs, for example, if a socket is broken before the parser finishes reading the
document from the network.

Besides the usual exception methods, such as getMessage() and
printStackTrace(), that SAXException inherits from or overrides in its
superclasses, SAXException adds a getException() method to return the
nested exception that caused the SAXException to be thrown in the first place:

package org.xml.sax;

public class SAXException extends Exception {

http://lib.ommolketab.ir

 public SAXException(String message);
 public SAXException(Exception ex);
 public SAXException(String message, Exception ex);

 public String getMessage();
 public Exception getException();
 public String toString();

}

SAXParseException

If the parser detects a well-formedness error while reading a document, it throws a
SAXParseException , a subclass of SAXException . SAXParseException s
are also passed as arguments to the methods of the ErrorHandler interface, where
you can decide whether you want to throw them.

Besides the methods it inherits from its superclasses, this class adds methods to get the
line number, column number, system ID, and public ID of the document where the error
was detected:

package org.xml.sax;

public class SAXParseException extends SAXException {

 public SAXParseException(String message, Locator locator);
 public SAXParseException(String message, Locator locator,
 Exception e);
 public SAXParseException(String message, String publicID,
 String systemID, int lineNumber, int columnNumber);
 public SAXParseException(String message, String publicID,
 String systemID, int lineNumber, int columnNumber, Exception e);

 public String getPublicId();
 public String getSystemId();
 public int getLineNumber();
 public int getColumnNumber();

}

http://lib.ommolketab.ir

SAXNotRecognizedException

A SAXNotRecognizedException is thrown if you attempt to set a property or
feature the parser does not recognize. Besides the constructors, all its methods are
inherited from superclasses:

package org.xml.sax;

public class SAXNotRecognizedException extends SAXException {

 public SAXNotRecognizedException();
 public SAXNotRecognizedException(String message);

}

SAXNotSupportedException

A SAXNotSupportedException is thrown if you attempt to set a property or feature
that the parser recognizes, but either cannot set or get now or cannot set the value to
which you want to set it. Besides the constructors, all of its methods are inherited from
superclasses:

package org.xml.sax;

public class SAXNotSupportedException extends SAXException {

 public SAXNotSupportedException();
 public SAXNotSupportedException(String message);

}

25.2 The org.xml.sax.helpers Package

The org.xml.sax.helpers package contains support classes for the core SAX
classes. These classes include factory classes used to build instances of particular
org.xml.sax interfaces and default implementations of those interfaces.

http://lib.ommolketab.ir

The AttributesImpl Class

AttributesImpl is a default implementation of the Attributes interface that SAX
parsers and filters may use. Besides the methods of the Attributes interface, this
class offers manipulator methods so the list of attributes can be modified or reused.
These methods allow you to take a persistent snapshot of an Attributes object in
startElement() and construct or modify an Attributes object in a SAX driver
or filter:

package org.xml.sax.helpers;

public class AttributesImpl implements Attributes {

 public AttributesImpl();
 public AttributesImpl(Attributes atts);

 public int getLength();
 public String getURI(int index);
 public String getLocalName(int index);
 public String getQName(int index);
 public String getType(int index);
 public String getValue(int index);
 public int getIndex(String uri, String localName);
 public int getIndex(String qualifiedName);
 public String getType(String uri, String localName);
 public String getType(String qualifiedName);
 public String getValue(String uri, String localName);
 public String getValue(String qualifiedName);
 public void clear();
 public void setAttributes(Attributes atts);
 public void addAttribute(String uri, String localName,
 String qualifiedName, String type, String value);
 public void setAttribute(int index, String uri, String localName,
 String qualifiedName, String type, String value);
 public void removeAttribute(int index)
 public void setURI(int index, String uri)
 public void setLocalName(int index, String localName)

http://lib.ommolketab.ir

 public void setQName(int index, String qualifiedName);
 public void setType(int index, String type);
 public void setValue(int index, String value);

}

The DefaultHandler Class

DefaultHandler is a convenience class that implements the EntityResolver ,
DTDHandler , ContentHandler , and ErrorHandler interfaces with do-nothing
methods. You can subclass DefaultHandler and override methods for events to
which you actually want to respond. You never have to use this class. You can always
implement the interfaces directly instead. The pattern is similar to the adapter classes in
the AWT, such as MouseAdapter and WindowAdapter :

package org.xml.sax.helpers;

public class DefaultHandler
 implements EntityResolver, DTDHandler, ContentHandler, ErrorHandler {

 // Default implementation of the EntityResolver interface.
 public InputSource resolveEntity(String publicID, String systemID)
 throws SAXException {
 return null;
 }

 // Default implementation of the DTDHandler interface.
 public void notationDecl(String name, String publicID, String systemID)
 throws SAXException {}
 public void unparsedEntityDecl(String name, String publicID,
 String systemID, String notationName) throws SAXException{}

 // Default implementation of the ContentHandler interface.
 public void setDocumentLocator(Locator locator) {}
 public void startDocument() throws SAXException {}
 public void endDocument() throws SAXException {}
 public void startPrefixMapping(String prefix, String uri)
 throws SAXException {}
 public void endPrefixMapping(String prefix) throws SAXException {}

http://lib.ommolketab.ir

 public void startElement(String uri, String localName,
 String qualifiedName, Attributes attributes) throws SAXException {}
 public void endElement(String uri, String localName,
 String qualifiedName) throws SAXException {}
 public void characters(char[] text, int start, int length)
 throws SAXException {}
 public void ignorableWhitespace(char[] whitespace, int start,
 int length) throws SAXException {}
 public void processingInstruction(String target, String data)
 throws SAXException {}
 public void skippedEntity(String name) throws SAXException {}

 // Default implementation of the ErrorHandler interface.
 public void warning(SAXParseException ex) throws SAXException {}
 public void error(SAXParseException ex) throws SAXException {}
 public void fatalError(SAXParseException ex) throws SAXException {
 throw ex;
 }

}

The LocatorImpl Class

LocatorImpl is a default implementation of the Locator interface for the
convenience of parser writers. You probably won't need to use it directly. Besides the
constructors, it adds setter methods to set the public ID, system ID, line number, and
column number returned by the getter methods declared in Locator :

package org.xml.sax.helpers;

public class LocatorImpl implements Locator {

 public LocatorImpl();
 public LocatorImpl(Locator locator);

 public String getPublicId();
 public String getSystemId();
 public int getLineNumber();
 public int getColumnNumber();

http://lib.ommolketab.ir

 public void setPublicId(String publicID);
 public void setSystemId(String systemID);
 public void setLineNumber(int lineNumber);
 public void setColumnNumber(int columnNumber);

}

The NamespaceSupport Class

NamespaceSupport provides a stack that can track the namespaces in scope at
various points in the document. To use it, push a new context at the beginning of each
element's namespace mappings, and place it at the end of each element. Each
startPrefixMapping() invocation should call declarePrefix() to add a
new mapping to the NamespaceSupport object. Then at any point where you need to
figure out to which URI a prefix is bound, you can call getPrefix() . The empty
string indicates the default namespace. The getter methods can then tell you the prefix
that is mapped to any URI or the URI that is mapped to any prefix at each point in the
document. If you reuse the same NamespaceSupport object for multiple documents,
be sure to call reset() in between documents.

package org.xml.sax.helpers;

public class NamespaceSupport {

 public final static String XMLNS="http://www.w3.org/XML/1998/namespace";

 public NamespaceSupport();

 public void reset();
 public void pushContext();
 public void popContext();
 public boolean declarePrefix(String prefix, String uri);
 public String[] processName(String qualifiedName, String[] parts,
 boolean isAttribute);
 public String getURI(String prefix);
 public Enumeration getPrefixes();
 public String getPrefix(String uri);
 public Enumeration getPrefixes(String uri);
 public Enumeration getDeclaredPrefixes();

http://lib.ommolketab.ir

}

The ParserAdapter Class

The ParserAdapter class uses the adapter design pattern to convert a SAX1
org.xml.sax.Parser object into a SAX2 org.xml.sax.XMLReader object. As
more parsers support SAX2, this class becomes less necessary. Note that some SAX2
features are not available through an adapted SAX1 parser. For instance, a parser
created with this adapter does not report skipped entities and does not support most
features and properties, not even the core features and properties:

package org.xml.sax.helpers;

public class ParserAdapter implements XMLReader, DocumentHandler {

 public ParserAdapter() throws SAXException;
 public ParserAdapter(Parser parser);

 // Implementation of org.xml.sax.XMLReader.
 public void setFeature(String name, boolean state)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public boolean getFeature(String name)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public void setProperty(String name, Object value)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public Object getProperty(String name)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public void setEntityResolver(EntityResolver resolver);
 public EntityResolver getEntityResolver();
 public void setDTDHandler(DTDHandler handler);
 public DTDHandler getDTDHandler();
 public void setContentHandler(ContentHandler handler);
 public ContentHandler getContentHandler();
 public void setErrorHandler(ErrorHandler handler);
 public ErrorHandler getErrorHandler();
 public void parse(String systemID) throws IOException, SAXException;
 public void parse(InputSource input) throws IOException, SAXException;

http://lib.ommolketab.ir

 // Implementation of org.xml.sax.DocumentHandler.
 public void setDocumentLocator(Locator locator);
 public void startDocument() throws SAXException;
 public void endDocument() throws SAXException;
 public void startElement(String qualifiedName,
 AttributeList qualifiedAttributes) throws SAXException;
 public void endElement(String qualifiedName) throws SAXException;
 public void characters(char[] text, int start, int length)
 throws SAXException;
 public void ignorableWhitespace(char[] text, int start, int length)
 throws SAXException;
 public void processingInstruction(String target, String data)
 throws SAXException;

}

The XMLFilterImpl Class

XMLFilterImpl is invaluable for implementing XML filters correctly. An instance of
this class sits between an XMLReader and the client application's event handlers. It
receives messages from the reader and passes them to the application unchanged, and
vice versa. However, by subclassing this class and overriding particular methods, you
can change the events that are sent before the application gets to see them. You chain
a filter to an XMLReader by passing the reader as an argument to the filter's
constructor. When parsing, you invoke the filter's parse() method, not the reader's
parse() method.

package org.xml.sax.helpers;

public class XMLFilterImpl implements XMLFilter, EntityResolver,
 DTDHandler, ContentHandler, ErrorHandler {

 public XMLFilterImpl();
 public XMLFilterImpl(XMLReader parent);

 // Implementation of org.xml.sax.XMLFilter
 public void setParent(XMLReader parent);
 public XMLReader getParent();

http://lib.ommolketab.ir

 // Implementation of org.xml.sax.XMLReader
 public void setFeature(String name, boolean state)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public boolean getFeature(String name)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public void setProperty(String name, Object value)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public Object getProperty(String name)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public void setEntityResolver(EntityResolver resolver);
 public EntityResolver getEntityResolver();
 public void setDTDHandler(DTDHandler handler);
 public DTDHandler getDTDHandler();
 public void setContentHandler(ContentHandler handler);
 public ContentHandler getContentHandler();
 public void setErrorHandler(ErrorHandler handler);
 public ErrorHandler getErrorHandler();
 public void parse(InputSource input) throws SAXException, IOException;
 public void parse(String systemID) throws SAXException, IOException

 // Implementation of org.xml.sax.EntityResolver
 public InputSource resolveEntity(String publicID, String systemID)
 throws SAXException, IOException;

 // Implementation of org.xml.sax.DTDHandler
 public void notationDecl(String name, String publicID, String systemID)
 throws SAXException;
 public void unparsedEntityDecl(String name, String publicID,
 String systemID, String notationName) throws SAXException;

 // Implementation of org.xml.sax.ContentHandler
 public void setDocumentLocator(Locator locator);
 public void startDocument() throws SAXException;
 public void endDocument() throws SAXException;
 public void startPrefixMapping(String prefix, String uri)
 throws SAXException;
 public void endPrefixMapping(String prefix) throws SAXException;
 public void startElement(String namespaceURI, String localName,
 String qualifiedName, Attributes atts) throws SAXException;
 public void endElement(String namespaceURI, String localName,

http://lib.ommolketab.ir

 String qualifiedName) throws SAXException;
 public void characters(char[] text, int start, int length)
 throws SAXException;
 public void ignorableWhitespace(char[] text, int start, int length)
 throws SAXException;
 public void processingInstruction(String target, String data)
 throws SAXException;
 public void skippedEntity(String name) throws SAXException;

 // Implementation of org.xml.sax.ErrorHandler
 public void warning(SAXParseException ex) throws SAXException;
 public void error(SAXParseException ex) throws SAXException;
 public void fatalError(SAXParseException ex) throws SAXException;

}

The XMLReaderAdapter Class

XMLReaderAdapter is the reverse of ParserAdapter ; it uses the Adapter design
pattern to adapt a SAX2 XMLReader to a SAX1 Parser . This lets you use SAX2
parsers for legacy programs written to a SAX1 interface:

package org.xml.sax.helpers;

public class XMLReaderAdapter implements Parser, ContentHandler {

 public XMLReaderAdapter() throws SAXException;
 public XMLReaderAdapter(XMLReader reader);

 // Implementation of org.xml.sax.Parser.
 public void setLocale(Locale locale) throws SAXException;
 public void setEntityResolver(EntityResolver resolver);
 public void setDTDHandler(DTDHandler handler);
 public void setDocumentHandler(DocumentHandler handler);
 public void setErrorHandler(ErrorHandler handler);
 public void parse(String systemID) throws IOException, SAXException;
 public void parse(InputSource input) throws IOException, SAXException

 // Implementation of org.xml.sax.ContentHandler.

http://lib.ommolketab.ir

 public void setDocumentLocator(Locator locator);
 public void startDocument() throws SAXException;
 public void endDocument() throws SAXException;
 public void startPrefixMapping(String prefix, String uri)
 throws SAXException;
 public void endPrefixMapping(String prefix) throws SAXException;
 public void startElement(String namespaceURI, String localName,
 String qualifiedName, Attributes atts) throws SAXException;
 public void endElement(String namespaceURI, String localName,
 String qualifiedName) throws SAXException;
 public void characters(char[] text, int start, int length)
 throws SAXException;
 public void ignorableWhitespace(char[] text, int start, int length)
 throws SAXException;
 public void processingInstruction(String target, String data)
 throws SAXException;
 public void skippedEntity(String name) throws SAXException;

}

The XMLReaderFactory Class

XMLReaderFactory creates XMLReader instances in a parser-independent
manner. The noargs createXMLReader() method instantiates the class named by
the org.xml.sax.driver system property. The other createXMLReader()
method instantiates the class named by its argument. This argument should be a fully
packaged qualified name, such as org.apache.xerces.parsers.SAXParser :

package org.xml.sax.helpers;

public final class XMLReaderFactory {

 public static XMLReader createXMLReader() throws SAXException;
 public static XMLReader createXMLReader(String className)
 throws SAXException;

}

http://lib.ommolketab.ir

25.3 SAX Features and Properties

Absolute URIs are used to name a SAX parser's properties and features. Features have
a boolean value; that is, for each parser, a recognized feature is either true or false.
Properties have object values. SAX defines six core features and two core properties
that parsers should recognize. In addition, parsers can add features and properties to
this list, and most do.

SAX Core Features

All SAX parsers should recognize six core features. Of these six, two
(http://xml.org/sax/features/namespaces and http://xml.org/sax/features/namespace-
prefixes) must be implemented by all conformant processors. The other four are
optional and may not be implemented by all parsers:

http://xml.org/sax/features/namespaces

When true, this feature indicates that the startElement() and
endElement() methods provide namespace URIs and local names for
elements and attributes. When false, the parser provides prefixed element and
attribute names to the startElement() and endElement() methods. If a
parser does not provide something it is not required to provide, then that value will
be set to the empty string. However, most parsers provide all three (URI, local
name, and prefixed name) regardless of the value of this feature. This feature is
true by default.

http://xml.org/sax/features/namespace-prefixes

When true, this feature indicates that xmlns and xmlns:prefix attributes will
be included in the attributes list passed to startElement() . When false,
these attributes are omitted. Furthermore, if this feature is true, then the parser will
provide the prefixed names for elements and attributes. The default is false unless
http://xml.org/sax/features/namespaces is false, in which case this feature defaults
to true. You can set both http://xml.org/sax/features/namespaces and
http://xml.org/sax/features/namespace-prefixes to true to guarantee that local
names, namespace URIs, and prefixed names are all available.

http://xml.org/sax/features/string-interning

When this feature is true, all element names, prefixes, attribute names, namespace
URIs, and local names are internalized using the intern() method of

http://xml.org/sax/features/namespaces
http://xml.org/sax/features/namespace-
http://xml.org/sax/features/namespaces
http://xml.org/sax/features/namespace-prefixes
http://xml.org/sax/features/namespaces
http://xml.org/sax/features/namespaces
http://xml.org/sax/features/namespace-prefixes
http://xml.org/sax/features/string-interning
http://lib.ommolketab.ir

java.lang.String ; that is, equal names compare equally when using == .

http://xml.org/sax/features/validation

When true, the parser validates. When false, it doesn't. The default is false for
most parsers. If you turn on this feature, you'll probably also want to register an
ErrorHandler with the XMLReader to receive notice of any validity errors.

http://xml.org/sax/features/external-general-entities

When true, the parser resolves external parsed general entities. When false, it
doesn't. The default is true for most parsers that can resolve external entities.
Turning on validation automatically activates this feature because validation
requires resolving external entities.

http://xml.org/sax/features/external-parameter-entities

When true, the parser resolves external parameter entities. When false, it doesn't.
Turning on validation automatically activates this feature because validation
requires resolving external entities.

SAX Core Properties

SAX defines two core properties, though implementations are not required to support
them:

http://xml.org/sax/properties/dom-node

This property's value is an org.w3c.dom.Node object that represents the
current node the parser is visiting.

http://xml.org/sax/properties/xml-string

This property's value is a java.lang.String object containing the characters
that were the source for the current event. As of mid-2001, no Java parsers are
known to implement this property.

25.4 The org.xml.sax.ext Package

The org.xml.sax.ext package provides optional interfaces that parsers may use to
provide further functionality. Not all parsers support these interfaces, though most major
ones do.

http://xml.org/sax/features/validation
http://xml.org/sax/features/external-general-entities
http://xml.org/sax/features/external-parameter-entities
http://xml.org/sax/properties/dom-node
http://xml.org/sax/properties/xml-string
http://lib.ommolketab.ir

The DeclHandler Interface

DeclHandler is a callback interface that provides information about the ELEMENT ,
ATTLIST , and parsed ENTITY declarations in the document's DTD. To configure an
XMLReader with a DeclHandler , pass the name

http://xml.org/sax/properties/DeclHandler and an instance of your handler to the reader's
setProperty() method:

try {
 parser.setProperty(
 "http://xml.org/sax/properties/DeclHandler",
 new YourDeclHandlerImplementationClass());
}
catch(SAXException e) {
 System.out.println("This parser does not provide declarations.");
}

If the parser does not provide declaration events, it throws a
SAXNotRecognizedException . If the parser cannot install a DeclHandler at
this moment (generally because it's in the middle of parsing a document), then it throws
a SAXNotSupportedException . If it doesn't throw one of these exceptions, it will
call back to the methods in your DeclHandler as it parses the DTD:

package org.xml.sax.ext;

public interface DeclHandler {

 public void elementDecl(String name, String model) throws SAXException;
 public void attributeDecl(String elementName, String attributeName,
 String type, String defaultValue, String value) throws SAXException;
 public void internalEntityDecl(String name, String value)
 throws SAXException;
 public void externalEntityDecl(String name, String publicID,
 String systemID) throws SAXException;

}

The LexicalHandler Interface

http://xml.org/sax/properties/DeclHandler
http://lib.ommolketab.ir

LexicalHandler is a callback interface that provides information about aspects of
the document that are not normally relevant, specifically:

CDATA sections

Entity boundaries

DTD boundaries

Comments

Without a LexicalHandler , the parser simply ignores comments and expands entity
references and CDATA sections. By using the LexicalHandler interface, however,
you can read the comments and learn which text came from regular character data,
which came from a CDATA section, and which came from which entity reference.

To configure an XMLReader with a LexicalHandler , pass an instance of your
handler to the reader's setProperty() method with the name

http://xml.org/sax/properties/LexicalHandler :

try {
 parser.setProperty(
 "http://xml.org/sax/properties/LexicalHandler",
 new YourLexicalHandlerClass()
);
}
catch(SAXException e) {
 System.out.println("This parser does not provide lexical events.");
}

If the parser does not provide lexical events, it throws a
SAXNotRecognizedException . If the parser cannot install a LexicalHandler
at this moment (generally because it's in the middle of parsing a document), then it
throws a SAXNotSupportedException . If it doesn't throw one of these exceptions,
it calls back to the methods in your LexicalHandler as it encounters entity
references, comments, and CDATA sections. The basic content of the resolved entities
and CDATA sections are still reported through the ContentHandler interface, as
normal:

package org.xml.sax.ext;

http://xml.org/sax/properties/LexicalHandler
http://lib.ommolketab.ir

public interface LexicalHandler {

 public void startDTD(String name, String publicID, String systemID)
 throws SAXException;
 public void endDTD() throws SAXException;
 public void startEntity(String name) throws SAXException;
 public void endEntity(String name) throws SAXException;
 public void startCDATA() throws SAXException;
 public void endCDATA() throws SAXException;
 public void comment(char[] text, int start, int length)
 throws SAXException;

}

CONTENTS

http://lib.ommolketab.ir

CONTENTS

Chapter 26. Character Sets

 26.1 Character Tables

 26.2 HTML4 Entity Sets
 26.3 Other Unicode Blocks

By default, an XML parser assumes that XML documents are written in the UTF-8
encoding of Unicode. However, documents may instead be written in any character set
the XML processor understands, provided that there's either some external metadata
like an HTTP header or internal metadata like a byte order mark or an encoding
declaration that specifies the character set. For example, a document written in the
Latin-5 character set would need this XML declaration:

<?xml version="1.0" encoding="ISO-8859-9"?>

Most good XML processors understand many common character sets. The XML
specification recommends the character names shown in Table 26-1. When using any of
these character sets, you should use these names. Of these character sets, only UTF-8
and UTF-16 must be supported by all XML processors, though many XML processors
support all character sets listed here, and many support additional character sets
besides. When using character sets not listed here, you should use the names specified
in the IANA character sets registry at http://www.iana.org/assignments/character-sets.

Table 26-1. Character set names defined by the XML 1.0 specification

Name Character set

UTF-8

The default encoding used in XML documents, unless an encoding
declaration, byte order mark, or external metadata specifies otherwise; a
variable-width encoding of Unicode that uses one to six bytes per character.
UTF-8 is designed such that all ASCII documents are legal UTF-8
documents, which is not true for other character sets, such as UTF-16 and
Latin-1. This character set is the best encoding choice if your XML
documents contain limited Chinese, Japanese, or Korean.

UTF-16

A two-byte encoding of Unicode in which all Unicode characters defined in
Unicode 3.0 and earlier (including the ASCII characters) occupy exactly two
bytes. However, characters from planes 1 through 14, added in Unicode 3.1
and later, are encoded using surrogate pairs of 4 bytes each. This encoding
is the best choice if your XML documents contain substantial amounts of

http://www.iana.org/assignments/character-sets
http://lib.ommolketab.ir

Chinese, Japanese, or Korean.

ISO-
10646-
UCS-2

The Basic Multilingual Plane of Unicode, i.e., plane 0. This character set is
the same as UTF-16, except that it does not allow surrogate pairs to
represent characters with code points beyond 65,535. The difference is only
significant in Unicode 3.1 and later. Each Unicode character is represented
as exactly one two-byte, unsigned integer. Determining endianness requires
a byte-order mark at the beginning of the file.

ISO-
10646-
UCS-4

A four-byte encoding of Unicode in which each Unicode character is
represented as exactly one four-byte, unsigned integer. Determining
endianness requires a byte-order mark at the beginning of the file.

ISO-8859-
1

Latin-1, ASCII plus the characters needed for most Western European
languages, including Danish, Dutch, English, Faroese, Finnish, Flemish,
German, Icelandic, Irish, Italian, Norwegian, Portuguese, Spanish, and
Swedish. Some non-European languages, such as Hawaiian, Indonesian,
and Swahili, also use these characters.

ISO-8859-
2

Latin-2, ASCII plus the characters needed for most Central European
languages, including Croatian, Czech, Hungarian, Polish, Slovak, and
Slovenian.

ISO-8859-
3

Latin-3, ASCII plus the characters needed for Esperanto, Maltese, Turkish,
and Galician. Latin-5, ISO-8859-9, however, is now preferred for Turkish.

ISO-8859-
4

Latin-4, ASCII plus the characters needed for the Baltic languages Latvian,
Lithuanian, Greenlandic, and Lappish. Now largely replaced by ISO-8859-
10, Latin-6.

ISO-8859-
5

ASCII plus the Cyrillic characters used for Byelorussian, Bulgarian,
Macedonian, Russian, Serbian, and Ukrainian.

ISO-8859-
6

ASCII plus Arabic

ISO-8859-
7

ASCII plus modern Greek.

ISO-8859-
8

ASCII plus Hebrew.

ISO-8859-
9

Latin-5, which is essentially the same as Latin-1 (ASCII plus Western

Europe), except that the Turkish letters , 1, , , , and replace the

less-commonly used Icelandic letters , , , , , and .

ISO-8859-
10

Latin-6, which covers the characters needed for the Northern European
languages Estonian, Lithuanian, Greenlandic, Icelandic, Inuit, and Lappish.

It's similar to Latin-4, but drops some symbols and the Latvian letter, adds

a few extra letters needed for Inuit and Lappish, and moves various

http://lib.ommolketab.ir

characters around. ISO-8859-13 now supersedes this character set.

ISO-8859-
11

Adds the Thai alphabet to basic ASCII. However, it is not well supported by
current XML parsers, and you're probably better off using Unicode instead.

ISO-8859-
12

Not yet in existence and unlikely to exist in the foreseeable future. At one
point, this character set was considered for Devanagari, so the number was
reserved. However, this effort is not yet off the ground, and it now seems
likely that the increasing acceptance of Unicode will make such a character
set unnecessary.

ISO-8859-
13

Another character set designed to cover the Baltic languages. This set adds

back in the Latvian letter and other symbols dropped from Latin-6.

ISO-8859-
14

Latin-8; a variant of Latin-1 with extra letters needed for Gaelic and Welsh,

such as , , and . These letters mostly replace punctuation marks, such

as x and |.

ISO-8859-
15

Known officially as Latin-9 and unofficially as Latin-0; a revision of Latin-1
that replaces the international currency symbol ¤ with the Euro sign . It also
replaces the seldom-used fraction characters 1/4, 1/2, and 3/4 with the

uncommon French letters , , , and the ¬, , and ' symbols with the

Finnish letters , , and . Otherwise, it's identical to ISO-8859-1.

ISO-8859-
16

Latin-10; intended primarily for Romanian.

ISO-2022-
JP

A seven-bit encoding of the character set defined in the Japanese national
standard JIS X-0208-1997 used on web pages and in email; see RFC 1468.

Shift_JIS
The encoding of the Japanese national standard character set JIS X-0208-
1997 used in Microsoft Windows.

EUC-JP
The encoding of the Japanese national standard character set JIS X-0208-
1997 used by most Unixes.

Some parsers do not understand all these encodings. Specifically, parsers based on
James Clark's expat often support only UTF-8, UTF-16, ISO-8859-1, and US-ASCII
encodings. Xerces-C supports ASCII, UTF-8, UTF-16, UCS4, IBM037, IBM1140, ISO-
8859-1, and Windows-1252. IBM's XML4C parser, derived from the Xerces codebase,
adds over 100 more encodings, including ISO-8859 character sets 1 through 9 and 15.
However, for maximum cross-parser compatibility, you should convert your documents
to either UTF-8 or UTF-16 before publishing them, even if you author them in another
character set.

26.1 Character Tables

http://lib.ommolketab.ir

The XML 1.0 specification divides Unicode into five overlapping sets:

Name characters

Characters that can appear in an element, attribute, or entity name. These
characters are letters, ideographs, digits, and the punctuation marks _, -, ., and
:. In the tables that follow, name characters are shown in bold type, such as A, Å,

, , , 1, 2, 3, , , and _.

Name start characters

Characters that can be the first character of an element, attribute, or entity name.
These characters are letters, ideographs, and the underscore _. In the tables that

follow, these characters are shown with a gray background, such as A, Å, , , ,

, , and _. Because name start characters are a subset of name characters, they
are also shown in bold.

Character data characters

All characters that can be used anywhere in an XML document, including element
and attribute content, comments, and DTDs. This set includes almost all Unicode
characters, except for surrogates and most C0 control characters. These
characters are shown in a normal typeface. If they are name characters, then they
will be bold. If they are also name start characters, they'll have a gray background.

Illegal characters

Characters that may not appear anywhere in an XML document, such as in part of
a name, character data, or comment text. These characters are shown in italic,
such as NUL or BEL. Most of these characters are either C0 control characters or
half of a surrogate pair.

Unassigned code points

Bytes or byte sequences that are not assigned to a character as of Unicode 3.1.1.
Theoretically, a program could produce a file containing one of these byte
sequences, but their meaning is undefined and they should be avoided. They are
represented in the following tables as n/a.

Figure 26-1 shows the relationship between these sets. Note that all name start
characters are name characters and that all name characters are character data
characters.

Figure 26-1. XML's division of Unicode characters

http://lib.ommolketab.ir

In all the tables that follow, each cell's upper lefthand corner contains the character's
two-digit Unicode hexadecimal value and the upper righthand corner contains the
character's Unicode decimal value. You can insert a character in an XML document by
prefixing the decimal value with &# and suffixing it with a semicolon. Thus, Unicode
character 69, the capital letter E, can be written as E. Hexadecimal values work
the same way, except that you prefix them with &#x;. In hexadecimal, the letter E is 45,
so it can also be written as E.

26.1.1 ASCII

Most character sets in common use today are supersets of ASCII. That is, code points 0
through 127 are assigned to the same characters to which ASCII assigns them. Figure
26-2 lists the ASCII character set. The only notable exceptions are the EBCDIC-derived
character sets. Specifically, Unicode is a superset of ASCII, and code points 1 through
127 identify the same characters in Unicode as they do in ASCII.

Figure 26-2. The first 128 Unicode characters (known as the ASCII character set)

http://lib.ommolketab.ir

Characters 0 through 31 and character 127 are nonprinting control characters,
sometimes called the C0 controls to distinguish them from the C1 controls used in the
ISO-8859 character sets. Of these 33 characters, only the carriage return, linefeed, and
horizontal tab may appear in XML documents. The other 29 may not appear anywhere in
an XML document, including in tags, comments, or parsed character data. They may not
be inserted with character references, such as . For example, you may not use
form feeds to insert page breaks.

26.1.2 ISO-8859-1, Latin-1

http://lib.ommolketab.ir

Character sets defined by the ISO-8859 standard comprise one popular superset of the
ASCII character sets. These characters all provide the normal ASCII characters from
code points 0 through 127 and the C1 controls from 128 to 159, as well as change the
characters from 160 through 255.

In particular, many Western European and American systems use a character set called
Latin-1. This set is the first code page defined in the ISO-8859 standard and is also
called ISO-8859-1. Though all common encodings of Unicode map code points 128
through 255 differently than Latin-1, code points 128 through 255 map to the same
characters in both Latin-1 and Unicode. This situation does not occur in other character
sets.

26.1.2.1 C1 controls

All ISO-8859 character sets begin with the same 32 extra nonprinting control characters
in code points 128 through 159. These sets are used on terminals like the DEC VT-320
to provide graphics functionality not included in ASCII, for example, erasing the screen
and switching it to inverse video or graphics mode. These characters cause severe
problems for anyone reading or editing an XML document on a terminal or terminal
emulator.

Fortunately, these characters are not necessary in XML documents. Their inclusion in
XML 1.0 was an oversight. They should have been banned like the C0 controls.
Unfortunately, many editors and documents incorrectly label documents written in the
Cp1252 Windows character set as ISO-8859-1. This character set does use the code
points between 128 and 159 for noncontrol graphics characters. When documents
written with this character set are displayed or edited on a dumb terminal, they can
effectively disable the user's terminal. Similar problems exist with most other Windows
code pages for single-byte character sets.

In the spirit of being liberal in what you accept and conservative in what you generate,
you should never use Cp1252, correctly labeled or otherwise. You should also avoid
using other nonstandard code pages for documents that move beyond a single system.
On the other hand, if you receive a document labeled as Cp1252 (or any other Windows
code page), it can be displayed if you're careful not to throw it at a terminal unchanged.
If you suspect that a document labeled as ISO-8859-1 that uses characters between 128
and 159 is in fact a Cp1252 document, you should probably reject it. This decision is
difficult, however, given the prevalence of broken software that does not identify
documents sent properly.

26.1.2.2 Latin-1

http://lib.ommolketab.ir

Latin-1 covers most Western European languages that use some variant of the Latin
alphabet. Characters 0 through 127 in this set are identical to the ASCII characters with
the same code points. Characters 128 to 159 are the C1 control characters used only for
dumb terminals. Character 160 is the nonbreaking space. Characters 161 through 255
are accented characters, such as è, á, and ö, non-U.S. punctuation marks, such as £

and ¿, and a few new letters, such as the Icelandic and ß. Figure 26-3 shows the

upper half of this character set. The lower half is identical to the ASCII character set
shown in Figure 26-2.

Figure 26-3. Unicode characters between 160 and 255 and the second half of the
Latin-1, ISO-8859-1 character set

http://lib.ommolketab.ir

26.2 HTML4 Entity Sets

HTML 4.0 predefines several hundred named entities for use in your documents, many
of which are quite useful. For instance, the nonbreaking space is . XML,
however, defines only five named entities:

&

The ampersand (&)
<

The less-than sign (<)
>

The greater-than sign (>)
"

The straight double quote (")
'

The apostrophe (')

Other needed characters can be inserted with character references in decimal or
hexadecimal format. For instance, the nonbreaking space is Unicode character 160
(decimal). Therefore, you can insert it in your document as either or . If
you really want to type it as , you can define this entity reference in your DTD.
Doing so requires you to use a character reference:

<!ENTITY nbsp " ">

The XHTML 1.0 specification includes three DTD fragments that define the familiar
HTML character references:

Latin-1 characters (http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent)

http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent
http://lib.ommolketab.ir

The non-ASCII, graphic characters included in ISO-8859-1 from code points 160
through 255, shown in Figure 26-3

Special characters (http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent)

A few useful letters and punctuation marks not included in Latin-1
Symbols (http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent)

The Greek alphabet, plus various arrows, mathematical operators, and other
symbols used in mathematics

Feel free to borrow these entity sets for your own use. They should be included in your
document's DTD with these parameter entity references and PUBLIC identifiers:

<!ENTITY % HTMLlat1 PUBLIC
 "-//W3C//ENTITIES Latin 1 for XHTML//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent">
%HTMLlat1;
<!ENTITY % HTMLspecial PUBLIC
 "-//W3C//ENTITIES Special for XHTML//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent">
%HTMLspecial;
<!ENTITY % HTMLsymbol PUBLIC
 "-//W3C//ENTITIES Symbols for XHTML//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent">
%HTMLsymbol;

However, we do recommend saving local copies and changing the system identifier to
match the new location, rather than downloading them from the http://www.w3.org every
time you need to parse a file. You may import just one, two, or all three of them,
depending on what you need. There are no interdependencies.

Alternatively, just use the character references given in Table 26-4 through Table 26-6.

Table 26-4. The HTML Latin-1 entity set

Character Meaning
XHTMLentity

reference
Hexadecimalcharacter

reference
Decimalcharacter

reference

Nonbreaking
space

¡
Inverted
exclamation
mark

¡ ¡ ¡

http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent
http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent
http://www.w3.org
http://lib.ommolketab.ir

¢ Cent sign ¢ ¢ ¢

£ Pound sign £ £ £

¤ Currency sign ¤ ¤ ¤

¥
Yen sign, Yuan
sign

¥ ¥ ¥

|
Broken vertical
bar

¦ ¦ ¦

§ Section sign § § §

Dieresis,
spacing dieresis

¨ ¨ ¨

© Copyright sign © © ©

ª
Feminine
ordinal indicator

ª ª ª

«

Left-pointing
double angle
quotation mark,
left-pointing
guillemot

« « «

¬ Not sign ¬ ¬ ¬

-
Soft hyphen,
discretionary
hyphen

­ ­ ­

®
Registered
trademark sign

® ® ®

¯
Macron,
overline, APL
overbar

¯ ¯ ¯

° Degree sign ° ° °

±
Plus-or-minus
sign

± ± ±

2 Superscript digit
two, squared

² ² ²

3 Superscript digit
three, cubed

³ ³ ³

´
Acute accent,
spacing acute

´ ´ ´

Micro sign µ µ µ

http://lib.ommolketab.ir

¶
Pilcrow sign,
paragraph sign

¶ ¶ ¶

Middle dot,
Georgian
comma, Greek
middle dot

· · ·

¸
Cedilla, spacing
cedilla

¸ ¸ ¸

1 Superscript digit
one

¹ ¹ ¹

º
Masculine
ordinal indicator

º º º

»

Right-pointing
double angle
quotation mark,
right-pointing
guillemot

» » »

1/4
Vulgar fraction
one-quarter

¼ ¼ ¼

1/2
Vulgar fraction
one-half

½ ½ ½

3/4
Vulgar fraction
three-quarters

¾ ¾ ¾

¿
Inverted
question mark

¿ ¿ ¿

À
Latin capital
letter A with
grave

À À À

Á
Latin capital
letter A with
acute

Á Á Á

Â
Latin capital
letter A with
circumflex

Â Â Â

Ã
Latin capital
letter A with
tilde

Ã Ã Ã

http://lib.ommolketab.ir

Ä
Latin capital
letter A with
dieresis

Ä Ä Ä

Å

Latin capital
letter A with ring
above, Latin
capital letter A
ring

Å Å Å

Æ

Latin capital
letter AE, Latin
capital ligature
AE

Æ Æ Æ

Ç
Latin capital
letter C with
cedilla

Ç Ç Ç

È
Latin capital
letter E with
grave

È È È

É
Latin capital
letter E with
acute

É É É

Ê
Latin capital
letter E with
circumflex

Ê Ê Ê

Ë
Latin capital
letter E with
dieresis

Ë Ë Ë

Ì
Latin capital
letter I with
grave

Ì Ì Ì

Í
Latin capital
letter I with
acute

Í Í Í

Î
Latin capital
letter I with
circumflex

Î Î Î

Ï
Latin capital
letter I with
dieresis

Ï Ï Ï

http://lib.ommolketab.ir

Latin capital
letter eth

Ð Ð Ð

Ñ
Latin capital
letter N with
tilde

Ñ Ñ Ñ

Ò
Latin capital
letter O with
grave

Ò Ò Ò

Ó
Latin capital
letter O with
acute

Ó Ó Ó

Ô
Latin capital
letter O with
circumflex

Ô Ô Ô

Õ
Latin capital
letter O with
tilde

Õ Õ Õ

Ö
Latin capital
letter O with
dieresis

Ö Ö Ö

x
Multiplication
sign

× × ×

Ø
Latin capital
letter O with
stroke

Ø Ø Ø

Ù
Latin capital
letter U with
grave

Ù Ù Ù

Ú
Latin capital
letter U with
acute

Ú Ú Ú

Û
Latin capital
letter U with
circumflex

Û Û Û

Ü
Latin capital
letter U with
dieresis

Ü Ü Ü

http://lib.ommolketab.ir

Latin capital
letter Y with
acute

Ý Ý Ý

Latin capital
letter thorn

Þ Þ Þ

ß
Latin small
letter sharp s,
ess-zett

ß ß ß

à
Latin small
letter a with
grave

à à à

á
Latin small
letter a with
acute

á á á

â
Latin small
letter a with
circumflex

â â â

ã
Latin small
letter a with tilde

ã ã ã

ä
Latin small
letter a with
dieresis

ä ä ä

å
Latin small
letter a with ring
above

å å å

æ

Latin small
letter ae, Latin
small ligature
ae

æ æ æ

ç
Latin small
letter c with
cedilla

ç ç ç

è
Latin small
letter e with
grave

è è è

é
Latin small
letter e with
acute

é é é

http://lib.ommolketab.ir

ê
Latin small
letter e with
circumflex

ê ê ê

ë
Latin small
letter e with
dieresis

ë ë ë

ì
Latin small
letter i with
grave

ì ì ì

í
Latin small
letter i with
acute

í í í

î
Latin small
letter i with
circumflex

î î î

ï
Latin small
letter i with
dieresis

ï ï ï

Latin small
letter eth

ð ð ð

ñ
Latin small
letter n with tilde

ñ ñ ñ

ò
Latin small
letter o with
grave

ò ò ò

ó
Latin small
letter o with
acute

ó ó ó

ô
Latin small
letter o with
circumflex

ô ô ô

õ
Latin small
letter o with tilde

õ õ õ

ö
Latin small
letter o with
dieresis

ö ö ö

÷ Division sign ÷ ÷ ÷

http://lib.ommolketab.ir

Latin small
letter o with
stroke

ø ø ø

ù
Latin small
letter u with
grave

ù ù ù

ú
Latin small
letter u with
acute

ú ú ú

û
Latin small
letter u with
circumflex

û û û

ü
Latin small
letter u with
dieresis

ü ü ü

Latin small
letter y with
acute

ý ý ý

Latin small
letter thorn

þ þ þ

ÿ
Latin small
letter y with
dieresis

ÿ ÿ ÿ

Table 26-5. The HTML special characters entity set

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

"
Quotation mark,
APL quote

" " "

& Ampersand & & &

' Apostrophe mark ' ' '

< Less-than sign < < <

> Greater-than sign > > >

Latin capital
ligature OE

Œ Œ Œ

http://lib.ommolketab.ir

Latin small ligature
oe

œ œ œ

Latin capital letter S
with caron

Š Š Š

Latin small letter s
with caron

š š š

Latin capital letter Y
with dieresis

Ÿ Ÿ Ÿ

~
Modifier letter
circumflex accent

ˆ ˆ ˆ

~ Small tilde ˜ ˜ ˜

 En space      

 Em space      

 Thin space      

Nonprinting
character

Zero width
nonjoiner

‌ ‌ ‌

Nonprinting
character

Zero width joiner ‍ ‍ ‍

Nonprinting
character

Left-to-right mark ‎ ‎ ‎

Nonprinting
character

Right-to-left mark ‏ ‏ ‏

- En dash – – –

- Em dash — — —

`
Left single
quotation mark

‘ ‘ ‘

'
Right single
quotation mark

’ ’ ’

,
Single low-9
quotation mark

‚ ‚ ‚

"
Left double
quotation mark

“ “ “

"
Right double
quotation mark

” ” ”

Double low-9
quotation mark

„ „ „

Dagger † † †

http://lib.ommolketab.ir

Double dagger ‡ ‡ ‡

Per mille sign ‰ ‰ ‰

Single left-pointing
angle quotation
mark

‹ ‹ ‹

Single right-pointing
angle quotation
mark

› › ›

Euro sign € € €

Table 26-6. The HTML symbol entity set

Character Meaning
XHTML entity

reference

Hexadecimal
character
reference

Decimal
character
reference

Latin small f with hook,
function, florin

ƒ ƒ ƒ

A
Greek capital letter
alpha

Α Α Α

B
Greek capital letter
beta

Β Β Β

Greek capital letter
gamma

Γ Γ Γ

Greek capital letter
delta

Δ Δ Δ

E
Greek capital letter
epsilon

Ε Ε Ε

Z
Greek capital letter
zeta

Ζ Ζ Ζ

H Greek capital letter eta Η Η Η

Greek capital letter
theta

Θ Θ Θ

I Greek capital letter iota Ι Ι Ι

K
Greek capital letter
kappa

Κ Κ Κ

Greek capital letter
lambda

Λ Λ Λ

http://lib.ommolketab.ir

M Greek capital letter mu Μ Μ Μ

N Greek capital letter nu Ν Ν Ν

Greek capital letter xi Ξ Ξ Ξ

O
Greek capital letter
omicron

Ο Ο Ο

Greek capital letter pi Π Π Π

Greek capital letter rho Ρ Ρ Ρ

Greek capital letter
sigma

Σ Σ Σ

T Greek capital letter tau Τ Τ Τ

Greek capital letter
upsilon

Υ Υ Υ

Greek capital letter phi Φ Φ Φ

Greek capital letter chi Χ Χ Χ

Greek capital letter psi Ψ Ψ Ψ

Greek capital letter
omega

Ω Ω Ω

Greek small letter
alpha

α α α

Greek small letter beta β β β

Greek small letter
gamma

γ γ γ

Greek small letter delta δ δ δ

Greek small letter
epsilon

ε ε ε

Greek small letter zeta ζ ζ ζ

Greek small letter eta η η η

Greek small letter theta θ θ θ

Greek small letter iota ι ι ι

Greek small letter
kappa

κ κ κ

Greek small letter
lambda

λ λ λ

Greek small letter mu μ μ μ

Greek small letter nu ν ν ν

http://lib.ommolketab.ir

Greek small letter xi ξ ξ ξ

Greek small letter
omicron

ο ο ο

Greek small letter pi π π π

Greek small letter rho ρ ρ ρ

Greek small letter final
sigma

ς ς ς

Greek small letter
sigma

σ σ σ

Greek small letter tau τ τ τ

Greek small letter
upsilon

υ υ υ

Greek small letter phi φ φ φ

Greek small letter chi χ χ χ

Greek small letter psi ψ ψ ψ

Greek small letter
omega

ω ω ω

Greek small letter theta
symbol

ϑ ϑ ϑ

Greek upsilon with
hook symbol

ϒ ϒ ϒ

Greek pi symbol ϖ ϖ ϖ

·
Bullet, black small
circle

• • •

...
Horizontal ellipsis,
three-dot leader

… … …

´ Prime, minutes, feet ′ ′ ′

Double prime,
seconds, inches

″ ″ ″

¯
Overline, spacing
overscore

‾ ‾ ‾

/ Fraction slash ⁄ ⁄ ⁄

Black letter capital I,
imaginary part

ℑ ℑ ℑ

Script capital P, power
set, Weierstrass p

℘ ℘ ℘

http://lib.ommolketab.ir

Black letter capital R,
real part symbol

ℜ ℜ ℜ

™ Trademark sign ™ ™ ™

Aleph symbol, first
transfinite cardinal

ℵ ℵ ℵ

Leftward arrow ← ← ←

Upward arrow ↑ ↑ ↑

Rightward arrow → → →

Downward arrow ↓ ↓ ↓

Left-right arrow ↔ ↔ ↔

Downward arrow with
corner leftward,
carriage return

↵ ↵ ↵

Leftward double arrow ⇐ ⇐ ⇐

Upward double arrow ⇑ ⇑ ⇑

Rightward double
arrow

⇒ ⇒ ⇒

Downward double
arrow

⇓ ⇓ ⇓

Left-right double arrow ⇔ ⇔ ⇔

For all ∀ ∀ ∀

Partial differential ∂ ∂ ∂

There exists ∃ ∃ ∃

Empty set, null set,
diameter

∅ ∅ ∅

Nabla, backward
difference

∇ ∇ ∇

Element of ∈ ∈ ∈

Not an element of ∉ ∉ ∉

Contains as member ∋ ∋ ∋

N-ary product, product
sign

∏ ∏ ∏

N-ary summation ∑ ∑ ∑

- Minus sign − − −

* Asterisk operator ∗ ∗ ∗

http://lib.ommolketab.ir

Square root, radical
sign

√ √ √

Proportional to ∝ ∝ ∝

Infinity ∞ ∞ ∞

Angle ∠ ∠ ∠

Logical and, wedge ∧ ∧ ∧

Logical or, vee ∨ ∨ ∨

Intersection, cap ∩ ∩ ∩

Union, cup ∪ ∪ ∪

Integral ∫ ∫ ∫

Therefore ∴ ∴ ∴

~
Tilde operator, varies
with, similar to

∼ ∼ ∼

Approximately equal to ≅ ≅ ≅

Almost equal to,
asymptotic to

≈ ≈ ≈

Not equal to ≠ ≠ ≠

Identical to ≡ ≡ ≡

Less than or equal to ≤ ≤ ≤

Greater than or equal
to

≥ ≥ ≥

Subset of ⊂ ⊂ ⊂

Superset of ⊃ ⊃ ⊃

Not a subset of ⊄ ⊄ ⊄

Subset of or equal to ⊆ ⊆ ⊆

Superset of or equal to ⊇ ⊇ ⊇

Circled plus, direct sum ⊕ ⊕ ⊕

Circled times, vector
product

⊗ ⊗ ⊗

Up tack, orthogonal to,
perpendicular

⊥ ⊥ ⊥

Dot operator ⋅ ⋅ ⋅

Left ceiling, APL upstile ⌈ ⌈ ⌈

Right ceiling ⌉ ⌉ ⌉

http://lib.ommolketab.ir

Left floor, APL
downstile

⌊ ⌊ ⌊

Right floor ⌋ ⌋ ⌋

Left-pointing angle
bracket, bra

⟨ 〈 〈

Right-pointing angle
bracket, ket

⟩ 〉 〉

Lozenge ◊ ◊ ◊

Black spade suit ♠ ♠ ♠

Black club suit,
shamrock

♣ ♣ ♣

Black heart suit,
valentine

♥ ♥ ♥

Black diamond suit ♦ ♦ ♦

26.3 Other Unicode Blocks

So far we've accounted for a little over 300 of the more than 90,000 Unicode characters.
Many thousands are still unaccounted for. Outside the ranges defined in XHTML and
SGML, standard entity names don't exist. You should either use an editor that can
produce the characters you need in the appropriate character set or you should use
character references. Most of the 90,000-plus Unicode characters are either Han
ideographs, Hangul syllables, or rarely used characters. However, we do list a few of the
most useful blocks later in this chapter. Others can be found online at
http://www.unicode.org/charts/ or in The Unicode Standard Version 3.0 by the Unicode
Consortium (Addison Wesley, 2000).

In the tables that follow, the upper lefthand corner contains the character's hexadecimal
Unicode value, and the upper righthand corner contains the character's decimal Unicode
value. You can use either value to form a character reference so as to use these
characters in element content and attribute values, even without an editor or fonts that
support them.

26.3.1 Latin Extended-A

The 128 characters in the Latin Extended-A block of Unicode are used in conjunction
with the normal ASCII and Latin-1 characters. They cover most European Latin letters
missing from Latin-1. The block includes various characters you'll find in the upper

http://www.unicode.org/charts/
http://lib.ommolketab.ir

halves of the other ISO-8859 Latin character sets, including ISO-8859-2, ISO-8859-3,
ISO-8859-4, and ISO-8859-9. When combined with ASCII and Latin-1, this block lets
you write Afrikaans, Basque, Breton, Catalan, Croatian, Czech, Esperanto, Estonian,
French, Frisian, Greenlandic, Hungarian, Latvian, Lithuanian, Maltese, Polish,
Provençal, Rhaeto-Romanic, Romanian, Romany, Sami, Slovak, Slovenian, Sorbian,
Turkish, and Welsh. See Figure 26-7.

Figure 26-7. Unicode's Latin Extended-A block

http://lib.ommolketab.ir

26.3.2 Latin Extended-B

The Latin Extended-B block of Unicode is used in conjunction with the normal ASCII and
Latin-1 characters. It mostly contains characters used for transcription of non-European
languages not traditionally written in a Roman script. For instance, it's used for the
Pinyin transcription of Chinese and for many African languages. See Figure 26-8.

Figure 26-8. The Latin Extended-B block of Unicode

http://lib.ommolketab.ir

26.3.3 IPA Extensions

Linguists use the International Phonetic Alphabetic (IPA) to identify uniquely and
unambiguously particular sounds of various spoken languages. Besides the symbols
listed in this block, the IPA requires use of ASCII, various other extended Latin
characters, the combining diacritical marks in Figure 26-11, and a few Greek letters. The
block shown in Figure 26-9 only contains the characters not used in more traditional
alphabets.

Figure 26-9. The IPA Extensions block of Unicode

http://lib.ommolketab.ir

26.3.4 Spacing Modifier Letters

The Spacing Modifier Letters block, shown in Figure 26-10, includes characters from
multiple languages and scripts that modify the preceding or following character,
generally by changing its pronunciation.

Figure 26-10. The Spacing Modifier Letters block of Unicode

http://lib.ommolketab.ir

26.3.5 Combining Diacritical Marks

The Combining Diacritical Marks block contains characters that are not used on their
own, such as the accent grave and circumflex. Instead, they are merged with the
preceding character to form a single glyph. For example, to write the character Ñ, you
could type the ASCII letter N followed by the combining tilde character, like this:
Ñ. When rendered, this combination would produce the single glyph Ñ. In
Figure 26-11 the character to which the diacritical mark is attached is a dotted circle
(Unicode code point &0x25CC;) but of course it could be any normal character.

Figure 26-11. The Combining Diacritical Marks block of Unicode

26.3.6 Greek and Coptic

http://lib.ommolketab.ir

The Greek block of Unicode is used primarily for the modern Greek language. Currently,
it's the only option for the Greek-derived Coptic script, but it doesn't really serve that
purpose very well, and a separate Coptic block is a likely addition in the future.
Extending coverage to classical and Byzantine Greek requires many more accented
characters, which are available in the Greek Extended Block, shown in Figure 26-22, or
by combining these characters with the Combining Diacritical Marks in Figure 26-11.
The Greek alphabet is also a fertile source of mathematical and scientific notation,
though some common letters, such as and , are encoded separately in the
Mathematical Operators block in Figure 26-27 and the Mathematical Alphanumeric
Symbols block in Figure 26-28 for their use as mathematical symbols. The Greek and
Coptic block of Unicode is shown in Figure 26-12.

Figure 26-12. The Greek and Coptic block of Unicode

http://lib.ommolketab.ir

26.3.7 Cyrillic

While the Cyrillic script shown in Figure 26-13 is most familiar to Western readers from
its use for Russian, it's also used for other Slavic languages, including Serbian,
Ukrainian, and Byelorussian, and for many non-Slavic languages of the former Soviet
Union, such as Azerbaijani, Tuvan, and Ossetian. Indeed, many characters in this block
are not actually found in Russian, but exist only in other languages written in the Cyrillic
script. Following the breakup of the Soviet Union, some non-Slavic languages, such as
Moldavian and Azerbaijani, are now reverting to Latin-derived scripts.

Figure 26-13. The Cyrillic block of Unicode

http://lib.ommolketab.ir

http://lib.ommolketab.ir

26.3.8 Armenian

The Armenian script shown in Figure 26-14 is used for writing the Armenian language,
currently spoken by about seven million people around the world.

Figure 26-14. The Armenian block of Unicode

http://lib.ommolketab.ir

26.3.9 Hebrew

The Hebrew alphabet is used for Hebrew, Yiddish, and Judezmo. It's also occasionally
used for mathematical notation. See Figure 26-15.

Figure 26-15. The Hebrew block of Unicode

http://lib.ommolketab.ir

26.3.10 Arabic

The Arabic script shown in Figure 26-16 is used for many languages besides Arabic,
including Kurdish, Pashto, Persian, Sindhi, and Urdu. Turkish was also written in the
Arabic script until early in the twentieth century when Turkey converted to a modified
Latin alphabet.

Figure 26-16. The Arabic block of Unicode

http://lib.ommolketab.ir

http://lib.ommolketab.ir

26.3.11 Devanagari

The Devanagari script is used for many languages of the Indian subcontinent, including
Awadhi, Bagheli, Bhatneri, Bhili, Bihari, Braj Bhasa, Chhattisgarhi, Garhwali, Gondi,
Harauti, Hindi, Ho, Jaipuri, Kachchhi, Kanauji, Konkani, Kului, Kumaoni, Kurku, Kurukh,
Marwari, Mundari, Newari, Palpa, and Santali. It's also used for the classical language
Sanskrit. See Figure 26-17.

http://lib.ommolketab.ir

Figure 26-17. The Devanagari block of Unicode

26.3.12 Thai

The Thai script is used for Thai and other Southeast Asian languages, including Kuy,
Lavna, and Pali. See Figure 26-18.

Figure 26-18. The Thai block of Unicode

http://lib.ommolketab.ir

26.3.13 Tibetan

The Tibetan script is used to write the various dialects of Tibetan and Dzongkha,
Bhutan's main language. Like Chinese, Tibetan is divided into mutually unintelligible
spoken languages, though the written forms are identical. See Figure 26-19.

Figure 26-19. The Tibetan block of Unicode

http://lib.ommolketab.ir

http://lib.ommolketab.ir

26.3.14 Ethiopic

The Ethiopic script is used by several languages in Ethiopia, including Amharic. Tigre,
Oromo, and the liturgical language Ge'ez. See Figure 26-20.

Figure 26-20. The Ethiopic block of Unicode

http://lib.ommolketab.ir

http://lib.ommolketab.ir

http://lib.ommolketab.ir

26.3.15 Latin Extended Additional

The Latin Extended Additional characters are single code-point representations of letters
combined with diacritical marks. This block is particularly useful for modern Vietnamese.
See Figure 26-21.

Figure 26-21. The Latin Extended Additional block of Unicode

http://lib.ommolketab.ir

http://lib.ommolketab.ir

26.3.16 Greek Extended

The Greek Extended block shown in Figure 26-22 contains mostly archaic letters and
accented letters that are used in classical and Byzantine Greek, but not in modern
Greek.

Figure 26-22. The Greek Extended block of Unicode

http://lib.ommolketab.ir

http://lib.ommolketab.ir

26.3.17 General Punctuation

The General Punctuation block shown in Figure 26-23 contains punctuation characters
used across a variety of languages and scripts that are not already encoded in Latin-1.
Characters 0x2000 through 0x200B are all varying amounts of whitespace ranging from
zero width (0x200B) to six ems (0x2007). 0x200C through 0x200F and 0x206A through
0x206F are nonprinting format characters with no graphical representation.

Figure 26-23. The General Punctuation block of Unicode

http://lib.ommolketab.ir

26.3.18 Currency Symbols

The Currency Symbols block includes a few monetary symbols not already encoded in
other blocks, such as the Indian rupee, the Italian lira, and the Greek drachma. See
Figure 26-24.

Figure 26-24. The Currency Symbols block of Unicode

26.3.19 Letter-Like Symbols

The Letter-Like Symbols block covers characters that look like letters, but really aren't,

such as the symbol used to represent a prescription. See Figure 26-25.

Figure 26-25. The Letter-Like Symbols block of Unicode

http://lib.ommolketab.ir

26.3.20 Arrows

The Arrows block contains commonly needed arrow characters, as shown in Figure 26-
26.

Figure 26-26. The Arrows block of Unicode

http://lib.ommolketab.ir

26.3.21 Mathematical Operators

The Mathematical Operators block shown in Figure 26-27 contains a wide variety of
symbols used in higher mathematics. A few of these symbols superficially resemble
letters in other blocks. For instance, in most fonts character 2206, , is virtually identical
to the Greek capital letter delta. However, using characters in this block is preferable for
mathematical expressions, as it allows software to distinguish between letters and
mathematical symbols. Fonts may use the same glyph to represent different code points
in cases like this.

Figure 26-27. The Mathematical Operators block of Unicode

http://lib.ommolketab.ir

http://lib.ommolketab.ir

Unicode 3.1.1 adds one more block of mathematical alphanumeric symbols in Plane 1
between 0x1D400 and 0x1D7FF as shown in Figure 26-28. Mostly these are repetitions
of the ASCII and Greek letters and digits in what would normally be considered font
variations. For instance, 0x1D400 is mathematical bold capital A. The justification for
these is that when used in an equation, they really aren't the same characters as the
equivalent glyphs in text.

Figure 26-28. The Mathematical Alphanumeric Symbols block of Unicode

http://lib.ommolketab.ir

http://lib.ommolketab.ir

http://lib.ommolketab.ir

http://lib.ommolketab.ir

http://lib.ommolketab.ir

http://lib.ommolketab.ir

http://lib.ommolketab.ir

26.3.22 Miscellaneous Technical

The Miscellaneous Technical block shown in Figure 26-29 contains an assortment of
symbols taken from electronics, quantum mechanics, the APL programming language,
the ISO-9995-7 standard for language-neutral keyboard pictograms, and other sources.

Figure 26-29. The Miscellaneous Technical block of Unicode

http://lib.ommolketab.ir

26.3.23 Optical Character Recognition

http://lib.ommolketab.ir

The Optical Character Recognition (OCR) block shown in Figure 26-30 includes the
OCR-A characters that are not already encoded as ASCII and magnetic-ink character-
recognition symbols used on checks.

Figure 26-30. The Optical Character Recognition block of Unicode

26.3.24 Geometric Shapes

The Geometric Shapes block combines simple triangles, squares, circles, and other
shapes found in various characters sets Unicode attempts to superset. See Figure 26-
31.

Figure 26-31. The Geometric Shapes block of Unicode

http://lib.ommolketab.ir

26.3.25 Miscellaneous Symbols

The Miscellaneous Symbols block contains mostly pictographic symbols found in vendor
and national character sets that preceded Unicode. See Figure 26-32.

Figure 26-32. The Miscellaneous Symbols block of Unicode

http://lib.ommolketab.ir

26.3.26 Dingbats

The Dingbats block shown in Figure 26-33 is based on characters in the popular Adobe
Zapf Dingbats font.

Figure 26-33. The Dingbats block of Unicode

http://lib.ommolketab.ir

CONTENTS

http://lib.ommolketab.ir

	XML in a Nutshell, 2nd Edition
	Copyright
	Preface
	What This Book Covers
	What's New in the Second Edition
	Organization of the Book
	Conventions Used in This Book
	Request for Comments
	Acknowledgments

	Part I: XML Concepts
	Chapter 1. Introducing XML
	1.1 The Benefits of XML
	1.2 Portable Data
	1.3 How XML Works
	1.4 The Evolution of XML

	Chapter 2. XML Fundamentals
	2.1 XML Documents and XML Files
	2.2 Elements, Tags, and Character Data
	2.3 Attributes
	2.4 XML Names
	2.5 Entity References
	2.6 CDATA Sections
	2.7 Comments
	2.8 Processing Instructions
	2.9 The XML Declaration
	2.10 Checking Documents for Well-Formedness

	Chapter 3. Document Type Definitions (DTDs)
	3.1 Validation
	3.2 Element Declarations
	3.3 Attribute Declarations
	3.4 General Entity Declarations
	3.5 External Parsed General Entities
	3.6 External Unparsed Entities and Notations
	3.7 Parameter Entities
	3.8 Conditional Inclusion
	3.9 Two DTD Examples
	3.10 Locating Standard DTDs

	Chapter 4. Namespaces
	4.1 The Need for Namespaces
	4.2 Namespace Syntax
	4.3 How Parsers Handle Namespaces
	4.4 Namespaces and DTDs

	Chapter 5. Internationalization
	5.1 Character-Set Metadata
	5.2 The Encoding Declaration
	5.3 Text Declarations
	5.4 XML-Defined Character Sets
	5.5 Unicode
	5.6 ISO Character Sets
	5.7 Platform-Dependent Character Sets
	5.8 Converting Between Character Sets
	5.9 The Default Character Set for XML Documents
	5.10 Character References
	5.11 xml:lang

	Part II: Narrative-Centric Documents
	Chapter 6. XML as a Document Format
	6.1 SGML's Legacy
	6.2 Narrative Document Structures
	6.3 TEI
	6.4 DocBook
	6.5 Document Permanence
	6.6 Transformation and Presentation

	Chapter 7. XML on the Web
	7.1 XHTML
	7.2 Direct Display of XML in Browsers
	7.3 Authoring Compound Documents with Modular XHTML
	7.4 Prospects for Improved Web-Search Methods

	Chapter 8. XSL Transformations (XSLT)
	8.1 An Example Input Document
	8.2 xsl:stylesheet and xsl:transform
	8.3 Stylesheet Processors
	8.4 Templates and Template Rules
	8.5 Calculating the Value of an Element withxsl:value-of
	8.6 Applying Templates with xsl:apply-templates
	8.7 The Built-in Template Rules
	8.8 Modes
	8.9 Attribute Value Templates
	8.10 XSLT and Namespaces
	8.11 Other XSLT Elements

	Chapter 9. XPath
	9.1 The Tree Structure of an XML Document
	9.2 Location Paths
	9.3 Compound Location Paths
	9.4 Predicates
	9.5 Unabbreviated Location Paths
	9.6 General XPath Expressions
	9.7 XPath Functions

	Chapter 10. XLinks
	10.1 Simple Links
	10.2 Link Behavior
	10.3 Link Semantics
	10.4 Extended Links
	10.5 Linkbases
	10.6 DTDs for XLinks

	Chapter 11. XPointers
	11.1 XPointers on URLs
	11.2 XPointers in Links
	11.3 Bare Names
	11.4 Child Sequences
	11.5 Namespaces
	11.6 Points
	11.7 Ranges

	Chapter 12. Cascading Style Sheets (CSS)
	12.1 The Three Levels of CSS
	12.2 CSS Syntax
	12.3 Associating Stylesheets with XML Documents
	12.4 Selectors
	12.5 The Display Property
	12.6 Pixels, Points, Picas, and Other Units ofLength
	12.7 Font Properties
	12.8 Text Properties
	12.9 Colors

	Chapter 13. XSL Formatting Objects (XSL-FO)
	13.1 XSL Formatting Objects
	13.2 The Structure of an XSL-FO Document
	13.3 Laying Out the Master Pages
	13.4 XSL-FO Properties
	13.5 Choosing Between CSS and XSL-FO

	Chapter 14. Resource Directory Description Language(RDDL)
	14.1 What's at the End of a Namespace URL?
	14.2 RDDL Syntax
	14.3 Natures
	14.4 Purposes

	Part III: Data-Centric XML
	Chapter 15. XML as a Data Format
	15.1 Why Use XML for Data?
	15.2 Developing Data-Oriented XML Formats
	15.3 Sharing Your XML format

	Chapter 16. XML Schemas
	16.1 Overview
	16.2 Schema Basics
	16.3 Working with Namespaces
	16.4 Complex Types
	16.5 Empty Elements
	16.6 Simple Content
	16.7 Mixed Content
	16.8 Allowing Any Content
	16.9 Controlling Type Derivation

	Chapter 17. Programming Models
	17.1 Common XML Processing Models
	17.2 Common XML Processing Issues

	Chapter 18. Document Object Model (DOM)
	18.1 DOM Foundations
	18.2 Structure of the DOM Core
	18.3 Node and Other Generic Interfaces
	18.4 Specific Node-Type Interfaces
	18.5 The DOMImplementation Interface
	18.6 Parsing a Document with DOM
	18.7 A Simple DOM Application

	Chapter 19. Simple API for XML (SAX)
	19.1 The ContentHandler Interface
	19.2 SAX Features and Properties
	19.3 Filters

	Part IV: Reference
	Chapter 20. XML 1.0 Reference
	20.1 How to Use This Reference
	20.2 Annotated Sample Documents
	20.3 XML Syntax
	20.4 Constraints
	20.5 XML Document Grammar

	Chapter 21. Schemas Reference
	21.1 The Schema Namespaces
	21.2 Schema Elements
	21.3 Primitive Types
	21.4 Instance Document Attributes

	Chapter 22. XPath Reference
	22.1 The XPath Data Model
	22.2 Data Types
	22.3 Location Paths
	22.4 Predicates
	22.5 XPath Functions

	Chapter 23. XSLT Reference
	23.1 The XSLT Namespace
	23.2 XSLT Elements
	23.3 XSLT Functions
	23.4 TrAX

	Chapter 24. DOM Reference
	24.1 Object Hierarchy
	24.2 Object Reference

	Chapter 25. SAX Reference
	25.1 The org.xml.sax Package
	25.2 The org.xml.sax.helpers Package
	25.3 SAX Features and Properties
	25.4 The org.xml.sax.ext Package

	Chapter 26. Character Sets
	26.1 Character Tables
	26.2 HTML4 Entity Sets
	26.3 Other Unicode Blocks

