
 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

SpamAssassin

By Alan Schwartz

Publisher: O'Reilly

Pub Date: July 2004

ISBN: 0-596-00707-8

Pages: 256

Sys admins can field scores of complaints and spend months testing software suites that turn out to
be too aggressive, too passive, or too complicated to setup only to discover that SpamAssassin (SA),
the leading open source spam-fighting tool, is free, flexible, powerful, highly-regarded, and
remarkably effective. The drawback? Until now, it was SpamAssassin's lack of published
documentation. This clear, concise new guide provides the expertise you need to take back your
inbox.

"Detailed, accurate and informative--recommended for spam-filtering beginners and experts alike." --
Justin Mason, SpamAssassin development team

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

SpamAssassin

By Alan Schwartz

Publisher: O'Reilly

Pub Date: July 2004

ISBN: 0-596-00707-8

Pages: 256

 Copyright

 Preface

 Scope of This Book

 Versions Covered in This Book

 Conventions Used in This Book

 Using Code Examples

 Comments and Questions

 Acknowledgments

 Chapter 1. Introducing SpamAssassin

 Section 1.1. How SpamAssassin Works

 Section 1.2. Organization of SpamAssassin

 Section 1.3. Mailers and SpamAssassin

 Section 1.4. The Politics of Scanning

 Chapter 2. SpamAssassin Basics

 Section 2.1. Prerequisites

 Section 2.2. Building SpamAssassin

 Section 2.3. Invoking SpamAssassin with procmail

 Section 2.4. Using spamc/spamd

 Section 2.5. Invoking SpamAssassin in a Perl Script

 Section 2.6. SpamAssassin and the End User

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 3. SpamAssassin Rules

 Section 3.1. The Anatomy of a Test

 Section 3.2. Modifying the Score of a Test

 Section 3.3. Writing Your Own Tests

 Section 3.4. The Built-in Tests

 Section 3.5. Whitelists and Blacklists

 Chapter 4. SpamAssassin as a Learning System

 Section 4.1. Autowhitelisting

 Section 4.2. Bayesian Filtering

 Chapter 5. Integrating SpamAssassin with sendmail

 Section 5.1. Spam-Checking at Delivery

 Section 5.2. Spam-Checking During SMTP

 Section 5.3. Building a Spam-Checking Gateway

 Chapter 6. Integrating SpamAssassinwith Postfix

 Section 6.1. Postfix Architecture

 Section 6.2. Spam-Checking During Local Delivery

 Section 6.3. Spam-Checking All Incoming Mail

 Section 6.4. Building a Spam-Checking Gateway

 Chapter 7. Integrating SpamAssassin with qmail

 Section 7.1. qmail Architecture

 Section 7.2. Spam-Checking During Local Delivery

 Section 7.3. Spam-Checking All Incoming Mail

 Section 7.4. Building a Spam-Checking Gateway

 Chapter 8. Integrating SpamAssassin with Exim

 Section 8.1. Spam-Checking via procmail

 Section 8.2. Spam-Checking All Incoming Mail

 Section 8.3. Using Routers and Transports

 Section 8.4. Using exiscan

 Section 8.5. Using sa-exim

 Section 8.6. Building a Spam-Checking Gateway

 Chapter 9. Using SpamAssassin as a Proxy

 Section 9.1. Using Pop3proxy

 Section 9.2. Using SAproxy Pro

 Appendix A. Resources

 Section A.1. General Spam Resources

 Section A.2. Spam-Filtering

 Section A.3. SpamAssassin

 Section A.4. Mail Transport Agents

 Section A.5. Related Mail Tools

 Colophon

 Index

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The association between SpamAssassin and the image of a King vulture, and
related trade dress, are trademarks of O'Reilly Media, Inc.

SpamAssassin is a registered trademark of Apache Software Foundation. Many of the designations
used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

 < Day Day Up >

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Preface
If you use email, it's likely that you've recently been visited by a piece of spam-an unsolicited,
unwanted message, sent to you without your permission.[1] If you manage an email system, it's
almost certain that you've had to help your users avoid the deluge of unwanted email.

[1] Spam is also a registered trademark of Hormel Foods, which uses the word to describe a canned luncheon
meat. In this book, the word "spam" is used exclusively to refer to Internet spam and not the meat.

System administrators pay for spam with their time. The Internet's email system was designed to
make it difficult to lose email messages: when a computer can't deliver a message to the intended
recipient, it does its best to return that message to the sender. If it can't send the message to the
sender, it sends it to the computer's postmaster-because something must be seriously wrong if both
the email addresses of the sender and the recipient of a message are invalid.

The well-meaning nature of Internet mail software becomes a positive liability when spammers come
into the picture. In a typical bulk mailing, anywhere from a few hundred to tens of thousands of email
addresses might be invalid. Under normal circumstances these email messages would bounce back to
the sender. But the spammer doesn't want them! To avoid being overwhelmed, spammers often use
invalid return addresses. The result: the email messages end up in the mailboxes of the Internet
postmasters, who are usually living, breathing system administrators.

System administrators at large sites are now receiving hundreds to thousands of bounced spam
messages each day. Unfortunately, each of these messages has to be carefully examined, because
mixed in with these messages are the occasional bounced mail messages from misconfigured
computers that actually should be fixed.

As the spam problem grows worse and worse, system administrators are increasingly taking
themselves off their computers' "postmaster" mailing lists. The result is predictable: they're deluged
with less email, but problems that they would normally discover by receiving postmaster email are
being missed as well. The Internet as a whole suffers as a result.

Although there are many important ways to reduce spam-including obscuring email addresses,
complaining to spammers' service providers, and seeking legal and legislative relief-few remedies
are as immediately effective as filtering email messages on the basis of content and format, and few
filtering systems are as widely used and well maintained as SpamAssassin™.

This book is for mail system administrators, network administrators, and Internet service providers
who are concerned about the growing toll that spam is taking on their systems and their users and
are looking for a way to regain some control or reduce the burden on their users.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Scope of This Book

This book is divided into nine chapters and one appendix. The first four chapters deal with core
SpamAssassin concepts that are independent of the underlying mail system.

Chapter 1

Explains what SpamAssassin does, and provides a conceptual overview of its organization and
features.

Chapter 2

Covers the installation, testing, and basic operation of SpamAssassin.

Chapter 3

Details the configuration of SpamAssassin, and focuses particularly on SpamAssassin's spam-
detection rules. It explains how to increase or decrease the impact of rules, write new rules,
and add addresses to blacklists and whitelists.

Chapter 4

Reviews the learning features of SpamAssassin: automatic whitelisting and Bayesian filtering. It
provides the theory behind these features and discusses how to configure, train, and tune
them.

The remaining five chapters detail the integration of SpamAssassin with several popular mail
transport agents (MTAs) to provide sitewide spam-checking. They also explain how to set up a
SpamAssassin gateway to check all incoming mail before delivery to an internal mail host.

Chapter 5

Explains how to integrate SpamAssassin with the sendmail MTA, using the milter interface. As
an example of this approach, the installation and configuration of MIMEDefang is described.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6

Explains how to integrate SpamAssassin with the Postfix MTA, using the content_filter
interface. As an example of this approach, the installation and configuration of amavisd-new, a
daemonized content filter, is described.

Chapter 7

Explains how to integrate SpamAssassin with the qmail MTA.

Chapter 8

Explains how to integrate SpamAssassin with the Exim MTA using several different popular
approaches including custom transports, exiscan, and sa-exim.

Chapter 9

Explains how to set up a SpamAssassin POP mail proxy to support users who download their
email with POP clients.

The Appendix lists useful resources for more information about SpamAssassin and other antispam
approaches.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Versions Covered in This Book

At the time this book went to press, SpamAssassin 2.63 was the latest released version of
SpamAssassin and was in wide use. The next-generation release of SpamAssassin, SpamAssassin
3.0, was available for beta-testing and is expected to be released at about the time this book appears
in stores. SpamAssassin 3.0 introduces several important new features and changes parts of the Perl
API.

Accordingly, this book covers both versions of SpamAssassin. When a topic or setting is specific to
one version, I so note it.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Conventions Used in This Book

The following conventions are used in this book:

Italic

Used for Unix file, directory, user, and group names and for Perl modules, objects, method
names, and method options. It is also used for example URLs (uniform resource locators) and
to emphasize new terms and concepts when they are introduced.

Constant Width

Used for Unix commands, code examples, and system output. It is also used for scripts,
process names, and SpamAssassin directives.

Constant Width Italic

Used in examples for variable input (e.g., a filename you must provide).

$

The Unix Bourne shell or Korn shell prompt.

#

The Unix superuser prompt. I use this symbol for examples that should be executed by root.

This icon designates a note, which is an important aside to the nearby text.

This icon designates a warning related to the nearby text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Using Code Examples

All the code in this book is available for download from http://www.oreilly.com/catalog/spamassassin.
See the file readme.txt in the download for installation instructions.

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, and
publisher; for example: "SpamAssassin, by Alan Schwartz (O'Reilly)."

If you feel your use of code examples falls outside fair use or the permission given previously, feel
free to contact us at permissions@oreilly.com.

 < Day Day Up >

http://www.oreilly.com/catalog/spamassassin
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (U.S. and Canada)
(707) 827-7000 (international/local)
(707) 829-0104 (fax)

You can also contact O'Reilly by email. To be put on the mailing list or request a catalog, send a
message to:

info@oreilly.com

We have a web page for this book, which lists errata, examples, and additional information. You can
access this page at:

http://www.oreilly.com/catalog/spamassassin

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about O'Reilly books, conferences, Resource Centers, and the O'Reilly Network,
see the O'Reilly web site at:

http://www.oreilly.com/

 < Day Day Up >

http://www.oreilly.com/catalog/spamassassin
http://www.oreilly.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Acknowledgments

Bob Amen, Justin Mason, and Matt Riffle served as technical reviewers for this book. Any remaining
errors, of course, are mine.

I have once again had the pleasure of collaborating with an excellent O'Reilly editor, Jonathan
Gennick. The O'Reilly production crew for this book included Darren Kelly, Ellie Volckhausen, and
Nancy Crumpton.

This book is dedicated to the developers and user community of SpamAssassin, for their fine work in
helping to stem the flood of unwanted email.

Never-ending thanks to M.G. and Ari, who make it all worthwhile.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 1. Introducing SpamAssassin
The SpamAssassin system is software for analyzing email messages, determining how likely they are to be
spam, and reporting its conclusions. It is a rule-based system that compares different parts of email
messages with a large set of rules. Each rule adds or removes points from a message's spam score. A
message with a high enough score is reported to be spam.

SpamAssassin was a trademark of Deersoft, and Deersoft has been acquired by
Network Associates. In this book, I won't write SpamAssassin™ each time I mention
it because that would be distracting, but you should assume that the trademark
symbol is there.

Many spam-checking systems are available. SpamAssassin has become popular for several reasons:

It uses a large number of different kinds of rules and weights them according to their diagnosticity.
Rules that have been demonstrated to be more effective at discriminating spam from non-spam
email are given higher weightings.

It is easy to tune the scores associated with each rule or to add new rules based on regular
expressions.

SpamAssassin can adapt to each system's email environment, learning to recognize which senders
are to be trusted and to identify new kinds of spam.

It can report spam to several different spam clearinghouses and can be configured to create spam
traps- email addresses that are used only to forward spam to a clearinghouse.

It is free software, distributed under either the GNU Public License or the Artistic License. Either
license allows users to freely modify the software and redistribute their modifications under the same
terms.

Example 1-1 shows a message that has been tagged as spam by SpamAssassin. Elements added by
SpamAssassin appear in bold.

Example 1-1. A message tagged by SpamAssassin

From riverol5380503@jubii.dk Fri Nov 7 18:26:05 2003

Received: from localhost [127.0.0.1] by localhost

 with SpamAssassin (2.60 1.212-2003-09-23-exp);

 Sun, 09 Nov 2003 12:24:22 -0600

http://lib.ommolketab.ir
http://lib.ommolketab.ir

From: "brianj" <riverol5380503@jubii.dk>

To: <Undisclosed.Recipients@mailin-2.priv.cc.uic.edu>

Subject: Live your dream life!! MPNWSTU

Date: Fri, 07 Nov 2003 15:32:41 -0800

Message-Id: <000016646728$00007347$00000042@mail3.mailnara.net>

X-Spam-Status: Yes, hits=12.9 required=5.0 tests=CLICK_BELOW,

 FORGED_MUA_EUDORA,FROM_ENDS_IN_NUMS,MISSING_OUTLOOK_NAME,

 MSGID_OUTLOOK_INVALID,MSGID_SPAM_ZEROES,NORMAL_HTTP_TO_IP,

 SUBJ_HAS_SPACES,SUBJ_HAS_UNIQ_ID autolearn=no version=2.60

X-Spam-Flag: YES

X-Spam-Checker-Version: SpamAssassin 2.60 (1.212-2003-09-23-exp)

X-Spam-Level: ************

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="----------=_3FAE8656.371BED4D"

This is a multi-part message in MIME format.

------------=_3FAE8656.371BED4D

Content-Type: text/plain

Content-Disposition: inline

Content-Transfer-Encoding: 8bit

Spam detection software, running on the system has

identified this incoming email as possible spam. The original message

has been attached to this so you can view it (if it isn't spam) or block

similar future email. If you have any questions, see

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the administrator of that system for details.

Content preview: Do you owe large sums of money? Are you stuck with high

 interest ra{tes? We can help! You can do what tens of thousands of

 americans have done, consolidate your high interest bills into one

 easy, low interest, monthly payment. [...]

Content analysis details: (12.9 points, 5.0 required)

 pts rule name description

---- ---------------------- --

 1.0 SUBJ_HAS_SPACES Subject contains lots of white space

 4.3 MSGID_SPAM_ZEROES Spam tool Message-Id: (12-zeroes variant)

 0.9 FROM_ENDS_IN_NUMS From: ends in numbers

 0.2 NORMAL_HTTP_TO_IP URI: Uses a dotted-decimal IP address in URL

 0.2 SUBJ_HAS_UNIQ_ID Subject contains a unique ID

 4.3 MSGID_OUTLOOK_INVALID Message-Id is fake (in Outlook Express format)

 0.1 MISSING_OUTLOOK_NAME Message looks like Outlook, but isn't

 1.9 FORGED_MUA_EUDORA Forged mail pretending to be from Eudora

 0.0 CLICK_BELOW Asks you to click below

The original message was not completely plain text, and may be unsafe to

open with some email clients; in particular, it may contain a virus,

or confirm that your address can receive spam. If you wish to view

it, it may be safer to save it to a file and open it with an editor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

------------=_3FAE8656.371BED4D

Content-Type: message/rfc822; x-spam-type=original

Content-Description: original message before SpamAssassin

Content-Disposition: attachment

Content-Transfer-Encoding: 8bit

Received: (qmail 25515 invoked from network); 7 Nov 2003 18:26:02 -0600

Received: from mailin-2.cc.uic.edu (HELO mailin-2.priv.cc.uic.edu) (128.248.155.213)

 by email0.cc.uic.edu with SMTP; 7 Nov 2003 18:26:02 -0600

Received: from mail3.mailnara.net (c-24-98-136-187.atl.client2.attbi.com [24.98.136.187])

 by mailin-2.priv.cc.uic.edu (8.12.10/8.12.9) with ESMTP id hA80PxJk011669;

 Fri, 7 Nov 2003 18:26:00 -0600

Message-ID: <000016646728$00007347$00000042@mail3.mailnara.net>

To: <Undisclosed.Recipients@mailin-2.priv.cc.uic.edu>

From: "brianj" <riverol5380503@jubii.dk>

Subject: Live your dream life!! MPNWSTU

Date: Fri, 07 Nov 2003 15:32:41 -0800

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="----------=_1068251164-2528-687"

X-Priority: 3

X-MSMail-Priority: Normal

X-Mailer: QUALCOMM Windows Eudora Version 5.1

X-MimeOLE: Produced By Microsoft MimeOLE V5.00.3018.1300

Content-Length: 2290

Lines: 72

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Do you owe large sums of money? Are you stuck with

high interest ra{tes? We can help!

You can do what tens of thousands of americans have

done, consolidate your high interest bills into one

easy, low interest, monthly payment.

By first reducing, and then completely removing your

d+ebts, you will be able to start fresh. Why keep

dealing with the stress, headaches, and wasted money,

when you can consolidate your d+ebt and pay them off

much sooner!

Click below to learn more:

http://61.186.254.9?affiliateid=mailer10

hjeuubnfs

------------=_3FAE8656.371BED4D--

The SpamAssassin report is revealing. Despite the fact that this message includes several tricks to fool
spam-checkers, such as random characters at the end and breaking up the words "rates" and "debt" with
symbols, SpamAssassin identifies several suspicious characteristics and assigns a high spam score.

http://61.186.254.9?affiliateid=mailer10
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.1 How SpamAssassin Works

There are several ways that SpamAssassin makes up its mind about a message:

The message headers can be checked for consistency and adherence to Internet standards
(e.g., is the date formatted properly?).

The headers and body can be checked for phrases or message elements commonly found in
spam (e.g., "MAKE MONEY FAST" or instructions on how to be removed from future
mailings)-in several languages.

The headers and body can be looked up in several online databases that track message
checksums of verified spam messages.

The sending system's IP address can be looked up in several online lists of sites that have been
used by spammers or are otherwise suspicious.

Specific addresses, hosts, or domains can be blacklisted or whitelisted. A whitelist can be
automatically constructed based on the sender's past history of messages.

SpamAssassin can be trained to recognize the types of spam that you receive by learning from
a set of messages that you consider spam and a set that you consider non-spam.
(SpamAssassin and the spam-filtering community often refer to non-spam messages as ham.)

The sending system's IP address can be compared to the sender's domain name using the
Sender Policy Framework (SPF) protocol (http://spf.pobox.com) to determine if that system is
permitted to send messages from users at that domain. This feature requires SpamAssassin
3.0.

SpamAssassin can privilege senders who are willing to expend some extra computational power
in the form of Hashcash (http://www.hashcash.org). Spammers cannot do these computations
and still send out huge amounts of mail rapidly. This feature requires SpamAssassin 3.0.

http://spf.pobox.com
http://www.hashcash.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other Antispam Approaches

SpamAssassin combines message format validation, content-filtering, and the ability to
consult network-based blacklists. Filtering systems require little user intervention and
introduce little delay into the process of sending and receiving email. There are other
approaches to preventing spam, each of which comes with its own advantages and
disadvantages (and many of which can be used in addition to, as well as in place of,
SpamAssassin).

In a challenge/response system, the system holds all messages from unknown senders
and sends them a reply message with a unique code or set of instructions (the
challenge). The senders must reply to the challenge in some fashion that verifies their
email addresses and (generally speaking) proves that they are human beings, rather
than an automated bulk mail program (the response). After a successful response, the
system allows messages from the sender to be accepted, rather than holding them.

In greylisting systems, the mail server initially returns a temporary SMTP (Simple Mail
Transfer Protocol) failure code to messages from new senders or sending systems. If the
sending system attempts to resend the message after a reasonable time period, the mail
server accepts the message and subsequent messages from the sending host. Because
spammers are likely either to treat the temporary failure as a permanent failure, or to
attempt to deliver messages continually during the greylisting time period, their
messages are not received.

In time-limited address systems, users generate unique variations of their email address
to include in different web forms, email messages, newsgroup postings, etc. Addresses
may be valid only for a limited time or may be valid until revoked by the user. In these
systems, if a user receives spam at one of his addresses, he can usually identify the
company that spammed him (or sold his address to a spammer), and he can quickly
invalidate the address to prevent further spam.

In micropayment systems, senders must pay a small fee for each message they send,
making large-scale spam runs costly. In some of these systems, the micropayment is
refunded when the recipient determines that the message is in fact non-spam.
(SpamAssassin 3.0 supports a variation of micropayments in the form of Hashcash, in
which the payment is made in processing time rather than money.)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.2 Organization of SpamAssassin

At heart, SpamAssassin is a set of modules written in the Perl programming language, along with a
Perl script that accepts a message on standard input and checks it using the modules. For higher-
performance applications, SpamAssassin also includes a daemonized version of the spam-checker
and a client program in C that can accept a message on standard input and check it with the
daemon.

Most of SpamAssassin's behavior is controlled through a systemwide configuration file and a set of
per-user configuration files. The per-user configuration can also be stored in an SQL database.

For a great deal more about Perl, check out Learning Perl, by Randal L.
Schwartz and Tom Phoenix, or Programming Perl, by Larry Wall, Tom
Christiansen, and Jon Orwant, both from O'Reilly.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.3 Mailers and SpamAssassin

Although it's possible to run SpamAssassin manually on a single message, SpamAssassin becomes
really useful when all incoming messages are scanned automatically. There are several ways that this
can be done.

Figure 1-1 shows a typical mail transmission. The sending system connects to the recipient's mail
transport agent (MTA) and transmits the message. If the message is destined for a user on the MTA's
system, the MTA hands the message off to the local mail delivery agent (MDA), which is responsible
for storing the message in a user's mailbox. Users may log into the system and read their mail
directly from their mailboxes (as is typical on multiuser Unix systems), or, if the system runs the
appropriate servers, users may download their mail using a mail client that supports the POP (Post
Office Protocol) or IMAP (Internet Message Access Protocol) protocols.

Figure 1-1. A typical mail transmission

SpamAssassin can be run in three fundamental places: at the MTA, at the MDA, and as a POP proxy.
Each has advantages and disadvantages.

1.3.1 Scanning at the MTA

Some MTAs provide a way for incoming messages to be passed through a filter during the SMTP
transaction; others can pass messages through a filter after the SMTP transaction is complete. Spam-
checking is one kind of filtering that can be usefully performed at the MTA; virus-checking is another.
In many cases, sophisticated filtering daemons have been developed for specific MTAs, and these
daemons are capable of calling SpamAssassin to perform spam checks.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because all email destined for users on the system must pass through the MTA, it is a natural place
for centralized spam-checking. If you run a gateway MTA that delivers mail to several internal
systems, you can perform spam-checking at the gateway MTA to limit the amount of spam that any
internal server will receive.

In addition to tagging messages that appear to be spam, MTA-based filters can often take other
actions, such as blocking a message (either refusing to complete the SMTP transaction or discarding
it after the SMTP transaction has taken place) or redirecting it to quarantine area. If the MTA is
already running a filtering system to do virus-checking, spam-checking can usually be performed by
the same filter and share some of the overhead associated with filtering.

A disadvantage of scanning at the MTA alone is that the MTA filtering system may not be able to
access per-user preferences for scanning if the filter does not have access to the recipient
information, if the recipient is at another host, or if the message is destined for multiple users on the
same system.

1.3.2 Scanning at the MDA

On many Unix systems, the mail delivery agent is procmail, which can submit messages to
SpamAssassin and act on the results. This is the most typical way that SpamAssassin is installed
alone, as it does not require any MTA-specific filter interfaces.

This configuration maximizes flexibility. Systemwide SpamAssassin rules can be applied to all
incoming messages, and users can supplement or modify them with their own per-user
SpamAssassin configuration, because, by definition, the MDA always knows the recipient to which it is
delivering the message. Users who are proficient in writing procmail recipes gain complete control
over the disposition of messages marked as likely spam; procmail can be instructed to discard them,
file them in a separate mailbox, modify message headers, or take many other actions.

The downside of this configuration is that spam-checking is applied only after a message has been
received by the system and has consumed some system resources. Another disadvantage is that
spam-checking must be set up on every system that has local recipients, rather than at a single
centralized MTA gateway.

1.3.3 Scanning with a POP Proxy

POP mail users who want the benefits of SpamAssassin on mail servers that don't provide it can use a
proxy to perform spam-checking. The proxy runs on the client computer and integrates with the POP
mail reader to scan messages as they are downloaded via POP.

The best known POP proxy for SpamAssassin on Windows systems is SAproxy by Stata Labs.
SAproxy Pro is a commercial product, but the source code is freely available under the same terms as
SpamAssassin itself for administrators who wish to compile it and provide it to their users.

Proxies are the most decentralized approach to spam-checking and require the mail server to be
liberal in accepting messages so that each user's proxy can apply their own standards. This may
increase the storage load on the mail server. On the other hand, proxies completely remove the
computational load from the mail server, as all spam-checking is performed by the client.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3.4 Scanning at Multiple Places

It's entirely possible to run SpamAssassin at two or even all three of the places discussed in the
previous sections. An MTA-based filter could use SpamAssassin with conservative settings to refuse
messages that are highly suspicious. An MDA filter on the same system could apply a more liberal
(and per-user) definition of spam in order to tag messages for users who read their mail on the
server itself. Finally, POP users could apply their own spam-checking by running SAproxy on their
client machines.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.4 The Politics of Scanning

If you're an ISP that provides email service, many of your users will want-perhaps even
demand-spam-tagging or spam-filtering of their incoming email. Other users, however, may not
want their email tagged or filtered, either because they don't get much spam, don't perceive the
spam they receive to be a problem, or are concerned about the possibility of a real message being
mistakenly tagged as spam.

Before you implement systemwide or sitewide spam-checking, consider carefully the needs of your
users and your responsibilities toward them. At minimum, you must inform users (and would-be
users) of any unconditional spam-checking you perform on their email. Better yet is to provide spam-
tagging only for those users who opt to turn it on. Best of all is to enable each user to configure their
own settings and threshold for how spam is recognized. This is doubly important if you not only tag
messages for users but actually filter or block spam for them.

SpamAssassin is an excellent tool for distinguishing spam and non-spam email, but only if you've
determined that your users want you to distinguish the two.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 2. SpamAssassin Basics
This chapter explains how to get and install SpamAssassin and its components, perform basic
configuration, test the system, and start using it for spam-checking. It covers the basics of using
SpamAssassin from the shell or from procmail, and discusses the setup of the daemonized version of
the spam-checker. The configuration examples in this chapter provide only the basic functionality.
The following chapters cover rule-tweaking, white- and blacklisting, and learning.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.1 Prerequisites

SpamAssassin is written for a Unix or Unix-like environment that includes Perl Version 5, preferably
5.6.1 or later. Perl is now standard on most Unix systems, but if you don't have it, the source code
for Perl can be downloaded at http://www.cpan.org.

SpamAssassin requires several Perl modules to be installed. If you install SpamAssassin using CPAN
(the Comprehensive Perl Archive Network), as described in the next section, these modules will be
automatically downloaded and installed as well. If you install SpamAssassin manually, you'll need to
be sure that you also have up-to-date versions of the Perl modules ExtUtils::MakeMaker, File::Spec,
Pod::Usage, HTML::Parser, Sys::Syslog, DB_File, Digest::SHA1, and Net::DNS. You may also want
Net::Ident and IO::Socket::SSL if you plan to use the daemonized checker (spamd) and its client
(spamc) and you will allow remote clients to access your daemon.

SpamAssassin can consult several spam checksum clearinghouses. A spam clearinghouse is a server
(or a distributed network of servers) that gathers spam messages reported by thousands of users
around the world and provides a mechanism for a client to check a new message to see if it matches
a message in the clearinghouse. These clearinghouses are known as checksum-based clearinghouses
because rather than transmit and store complete email messages, they work with cryptographic
checksums of messages. A cryptographic checksum is a much smaller data string (typically no more
than 256 bits) that is, for all practical purposes, unique to the message from which it is computed.

As of version 3.0, SpamAssassin can consult three clearinghouses: Vipul's Razor
(http://razor.sourceforge.net), Pyzor (http://pyzor.sourceforge.net), and DCC
(http://www.rhyolite.com/anti-spam/dcc/). SpamAssassin can also be used to report spam to the
clearinghouses. Each clearinghouse uses its own client software, and you should install these clients
before you install SpamAssassin. In most cases, each SpamAssassin user will have to manually run
the clearinghouse's client program to initialize it before SpamAssassin can use it.

In many sitewide SpamAssassin configurations, you will create a dedicated
special user account to run SpamAssassin. If you do and you intend to use
spam clearinghouses, be sure that you follow the client software instructions for
initialization and that you do so as the dedicated user, rather than as root.

 < Day Day Up >

http://www.cpan.org
http://razor.sourceforge.net
http://pyzor.sourceforge.net
http://www.rhyolite.com/anti-spam/dcc/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.2 Building SpamAssassin

The easiest way to download and install SpamAssassin is through CPAN. Here's what a CPAN-install of
SpamAssassin looks like:

$ su

Password: XXXXXXX

perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.61)

ReadLine support enabled

cpan> o conf prerequisites_policy ask

 prerequisites_policy ask

cpan> install Mail::SpamAssassin

CPAN: Storable loaded ok

CPAN: LWP::UserAgent loaded ok

Fetching with LWP:

 ftp://ftp.perl.org/pub/CPAN/authors/01mailrc.txt.gz

...

Running install for module Mail::SpamAssassin

Running make for J/JM/JMASON/Mail-SpamAssassin-2.60.tar.gz

Fetching with LWP:

ftp://ftp.perl.org/pub/CPAN/authors/id/J/JM/JMASON/Mail-SpamAssassin-2.60.tar.gz

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CPAN: Digest::MD5 loaded ok

Fetching with LWP:

ftp://ftp.perl.org/pub/CPAN/authors/id/J/JM/JMASON/CHECKSUMS

Checksum for /root/.cpan/sources/authors/id/J/JM/JMASON/Mail-SpamAssassin-2.60.tar.gz

ok

Scanning cache /root/.cpan/build for sizes

Mail-SpamAssassin-2.60/

Mail-SpamAssassin-2.60/ninjabutton.png

...

Mail-SpamAssassin-2.60/sample-spam.txt

 CPAN.pm: Going to build J/JM/JMASON/Mail-SpamAssassin-2.60.tar.gz

What email address or URL should be used in the suspected-spam report

text for users who want more information on your filter installation?

(In particular, ISPs should change this to a local Postmaster contact)

default text: [the administrator of that system] postmaster@example.com

Checking if your kit is complete...

Looks good

Writing Makefile for Mail::SpamAssassin

Makefile written by ExtUtils::MakeMaker 6.03

/usr/bin/perl build/preprocessor -Mconditional -Mbytes -DPERL_VERSION=5.8.0 -Mvars -

DVERSION=2.60 -DPREFIX=/usr <lib/Mail/SpamAssassin/AutoWhitelist.pm >blib/lib/Mail/

SpamAssassin/AutoWhitelist.pm

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...

gcc -g -O2 spamd/spamc.c spamd/libspamc.c spamd/utils.c \

 -o spamd/spamc -ldl

...

Manifying blib/man3/Mail::SpamAssassin::PerMsgLearner.3pm

 /usr/bin/make -- OK

Running make test

PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e" "test_harness(0,

'blib/lib', 'blib/arch')" t/*.t

t/basic_lint................ok

...

t/zz_cleanup................ok

All tests successful, 1 test skipped.

Files=40, Tests=301, 426 wallclock secs (238.53 cusr + 14.19 csys = 252.72 CPU)

 /usr/bin/make test -- OK

Running make install

Installing /usr/lib/perl5/site_perl/5.8.0/Mail/SpamAssassin.pm

Installing /usr/lib/perl5/site_perl/5.8.0/Mail/SpamAssassin/PerMsgLearner.pm

...

Installing /usr/bin/spamc

Installing /usr/bin/spamd

Installing /usr/bin/sa-learn

Installing /usr/bin/spamassassin

Writing /usr/lib/perl5/site_perl/5.8.0/i586-linux-thread-multi/auto/Mail/

SpamAssassin/.packlist

Appending installation info to /usr/lib/perl5/5.8.0/i586-linux-thread-multi/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

perllocal.pod

/usr/bin/perl "-MExtUtils::Command" -e mkpath /etc/mail/spamassassin

...

 /usr/bin/make install -- OK

cpan> quit

It is also possible to install SpamAssassin manually by downloading the code as a gzip ped tar archive
from http://www.spamassassin.org and following these steps from the directory where you keep local
source code (/usr/local/src on many systems):

$ gunzip -c Mail-SpamAssassin-2.60.tar.gz | tar xf -

$ cd Mail-SpamAssassin-2.60

$ perl Makefile.PL

What email address or URL should be used in the suspected-spam report

text for users who want more information on your filter installation?

(In particular, ISPs should change this to a local Postmaster contact)

default text: [the administrator of that system] postmaster@example.com

Checking if your kit is complete...

Looks good

Writing Makefile for Mail::SpamAssassin

$ make

...compilation mesages...

$ su

Password: XXXXXXXX

make install

...installation messages...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you install SpamAssassin manually, remember that you may need to install or
update other Perl modules listed in Section 2.1 , earlier in this chapter, prior to
installing SpamAssassin.

FreeBSD users can install SpamAssassin from the ports collection, where it is available both as a
traditional port (in which it downloads the source code and compiles it) and as a precompiled package.
For example, SpamAssassin 2.63 is included in the collection as p5-Mail-SpamAssassin-2.63 .

Finally, Linux users can install SpamAssassin in one of several packaged formats. SpamAssassin is
available in the Debian GNU/Linux and Gentoo Linux packaging systems as the "spamassassin" and
"Mail-SpamAssassin" packages, respectively. Many other distributions of Linux bundle SpamAssassin
(although not always the latest version). The latest version of SpamAssassin is also distributed as a
source rpm by one of its developers. The source rpm is used to build three platform-specific rpm s that
are then installed in the usual way. Example 2-1 shows the process on a RedHat Linux system.

Example 2-1. Building SpamAssassin from source rpm

(download spamassassin-2.60-1.src.rpm from http;//w:w.spamassassin.org)

rpm -Uvh spamassassin-2.60-1.src.rpm

 1:spamassassin ###################################### [100%]

cd /usr/src/redhat/SPECS

rpm -bb spamassassin.spec

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.57624

...

cd ../RPMS/i386

ls -l

perl-Mail-SpamAssassin-2.60-1.i386.rpm spamassassin-tools-2.60-1.i386.rpm

spamassassin-2.60-1.i386.rpm

rpm -Uvh Perl-Mail-Spam*rpm spamassassin*2.6.0*.rpm

...installation messages...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Installing SpamAssassin for Personal Use

If you do not have superuser access on your mail server, but do have a shell account, it is
possible to install SpamAssassin into private directories in your account.

Follow the instructions for manual installation and indicate the directory structure you'd
like to use for the installation of the program and libraries, and for the configuration files.
For example, if you have personal bin , share , lib , and etc directories under your home
directory, you might use this build process:

$ perl Makefile.PL PREFIX=~ SYSCONFDIR=~/etc

$ make

$ make install

Note that you must still have the prerequisite Perl modules installed systemwide or you
must install them into your private directories as well.

To use a personal installation of SpamAssassin, you will need to make sure that
<PREFIX>/bin is on your PATH.

2.2.1 What Gets Installed

An installation of SpamAssassin includes the following components:

Perl modules

SpamAssassin's core functions are in a set of Perl modules. The most important of these are
Mail::SpamAssassin , the top-level module that includes most of the others, and
Mail::SpamAssassin::Conf , the module that includes documentation of the configuration files for
SpamAssassin. These modules are usually installed under a directory with a name like
/usr/lib/perl5/site_perl/5.8.1 , but you do not need to know their location, as the Perl installer
will ensure that they are installed in a path that Perl will search when loading modules.

SpamAssassin 3.0 introduced a distinction between core SpamAssassin modules and plug-ins ,
modules that may be written for SpamAssassin by third parties and loaded in rulesets. Plug-in
modules will have names in the Mail::SpamAssassin::Plugin hierarchy (e.g.,
Mail::SpamAssassin::Plugin::URIDNSBL).

Rulesets

The rules that SpamAssassin uses to help decide whether or not a message is spam are kept in a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set of configuration files that are usually installed in /usr/share/spamassassin . You can find the
default location of these files by running spamassassin --local --debug , but you can always

specify alternative locations.

A systemwide configuration file

The systemwide configuration file controls the default behavior of the spamassassin (and spamd

) programs when not overridden by per-user preferences. The file is called local.cf and is
installed in /etc/mail/spamassassin . Other applications that use the Mail::SpamAssassin
modules often put their systemwide configuration files in this directory as well. You can find the
default location of these files by running spamassassin --local --debug , but you can always

specify alternative locations.

spamassassin

The spamassassin program is a Perl script that accepts a message on standard input, applies

the functions of Mail::SpamAssassin , and returns the message on standard output with spam
scores, reports, or other modifications added as warranted. It has several other functions as
well, which are described in detail later in this chapter. It is usually installed in /usr/bin .

spamd and spamc

On sites that receive large amounts of mail, invoking the spamassassin script for each message

is costly, due to the overhead associated with starting a new process and running the Perl
interpreter. spamd is a daemon that is started once (at system boot) and remains in memory to

perform spam-checking. It listens on either a Unix domain socket or a TCP port to receive
requests to check messages, and performs checks; it returns the (possibly modified) messages
to the client.

spamc is the client program for sites that run the spamd daemon. It accepts a message on
standard input, transmits it to spamd , and returns the response on standard output. Like
spamassassin , it is invoked for each message, but it is written in C and compiled, and thus

avoids the overhead associated with invoking Perl. It provides the most important functionality of
spamassassin .

spamc and spamd are usually installed in /usr/bin . They are described in greater detail later in

this chapter.

sa-learn

The sa-learn script is used to train SpamAssassin's Bayesian spam classification system. It

teaches SpamAssassin which messages you consider spam and which you consider non-spam.
Eventually, SpamAssassin can use this information to make better judgments of whether or not
you want a message marked as spam. SpamAssassin's learning systems are described in detail
in Chapter 4 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2.2 Basic Configuration

Once SpamAssassin has been installed, it's a good idea to adjust the basic systemwide configuration
before testing. A complete guide to the configuration directives is given in Chapter 3 ; only the most
commonly adjusted systemwide directives are described here.

Configuration is usually controlled by the file /etc/mail/spamassassin/local.cf . Example 2-2 shows a
typical local.cf that might be used with SpamAssassin 2.63.

Example 2-2. A typical local.cf file

This is the right place to customize your installation of SpamAssassin.

#

See 'perldoc Mail::SpamAssassin::Conf' for details of what can be

tweaked.

#

###

How high a score is considered spam?

required_hits 5

How should spam reports be inserted into the message?

report_safe 1

Should we tag the subject of spam messages?

rewrite_subject 1

By default, SpamAssassin will run RBL checks. If your ISP already

does this, set this to 1.

skip_rbl_checks 0

Blank lines and lines beginning with a number sign (#) are ignored in configuration files. Other lines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

begin with a configuration directive (e.g., required_score), followed by whitespace and then the
value for the directive (e.g., 5).

The directives you will most want to adjust are:

required_hits (SpamAssassin 2.63) or required_score (SpamAssassin 3.0)

Each SpamAssassin rule that matches a message adds (or subtracts) points from the message's
total spam score. When the total score reaches the value of this directive, SpamAssassin reports
the message as spam. The default value, 5, is suitable for most installations. If you are
particularly worried about false positives, you can increase this value, which will also have the
effect of reducing the number of true positives (i.e., some spam will be missed).

report_safe

This directive determines how SpamAssassin modifies messages that it determines are spam.

No matter how report_safe is set, SpamAssassin adds three headers to spam mail: X-Spam-

Level (set to a number of asterisks representing the spam score), X-Spam-Status (set to a one-
line description of the spam score and matching tests), and X-Spam-Flag (set to Yes).

When report_safe is set to 0, the message body is kept intact, and the header X-Spam-Report
is added with a detailed description of the rules that matched. When report_safe is set to 1, a

new MIME message is created with the spam report as an attachment and the original spam
message as an attachment with content-type message/rfc822 . When report_safe is set to 2,

SpamAssassin behaves similarly, but the original spam message is attached with content-type
text/plain .

rewrite_subject (SpamAssassin 2.x only)

If this directive is set to 1, SpamAssassin will prepend "*****SPAM*****" to the message
subject in the Subject header if the message is considered spam. This is useful when users have
mail clients that can filter only on standard headers.

rewrite_header (SpamAssassin 3.0 only)

This directive can be used to rewrite the Subject , From , or To headers of messages that
SpamAssassin considers spam. Rewriting the Subject header prepends a given string to the
message subject. For example, to prepend "*****SPAM*****" to a spam message's subject,
use the following:

rewrite_header subject *****SPAM*****

Rewriting From or To headers adds the given string to the email address as a parenthetical comment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

skip_rbl_checks

SpamAssassin typically looks up a sender's IP address in a set of Domain Name System (DNS)-
based real-time blacklists (DNSBLs or RBLs) to determine whether they have been listed as
known spam source, open proxy or relay, dialup host, etc. Many ISPs perform these checks in
the MTA itself in order to reject connections from such hosts at the earliest possible point. If you
do that, you can prevent SpamAssassin from doing its own lookups by setting this directive to 1;
the default is 0. It is also possible to perform lookups against one set of DNSBLs at the MTA and
a different set in SpamAssassin.

2.2.3 Testing SpamAssassin

Once the basic systemwide configuration is in place, it's a good idea to test SpamAssassin to ensure
that it can correctly distinguish a known non-spam message from a known spam message. To facilitate
this, the SpamAssassin source code includes two files, sample-nonspam.txt and sample-spam.txt . The
former contains an email message that has very few hallmarks of spam; the latter contains an email
message that includes the GTUBE (Generic Test for Unsolicited Bulk Email) string, a special test string
that is used to validate spam-checkers.

If you installed SpamAssassin using CPAN, you'll find the sample-nonspam.txt
and sample-spam.txt files in whichever directory CPAN performs its builds. Often
that will be a subdirectory of root 's home directory named .cpan/build/Mail-
Spamassassin-2.63 .

To test the spamassassin script, run it in test mode by using the --test-mode command-line
argument and provide one of the sample files on its standard input. In test mode, spamassassin will

produce a spam score at the bottom of the message whether or not the message meets the required
score for spam. Example 2-3 shows a test of spamassassin on the sample-nonspam.txt file, which

produces a final score of 0.0.

Example 2-3. Testing spamassassin with sample-nonspam.txt

$ cd Mail-SpamAssassin-2.63

$ spamassassin --test-mode < sample-nonspam.txt

Return-Path: <tbtf-approval@world.std.com>

Delivered-To: foo@foo.com

Received: from europe.std.com (europe.std.com [199.172.62.20])

 by mail.netnoteinc.com (Postfix) with ESMTP id 392E1114061

 for <foo@foo.com>; Fri, 20 Apr 2001 21:34:46 +0000 (Eire)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...

Content preview: -----BEGIN PGP SIGNED MESSAGE----- TBTF ping for

 2001-04-20: Reviving T a s t y B i t s f r o m t h e T e c h n o l o g

 y F r o n t [...]

Content analysis details: (0.0 points, 5.0 required)

 pts rule name description

---- ---------------------- --

 0.0 LINES_OF_YELLING BODY: A WHOLE LINE OF YELLING DETECTED

Example 2-4 shows the same test using sample-spam.txt , which produces a final score of 1000.

Example 2-4. Testing spamassassin with sample-spam.txt

$ spamassassin --test-mode < sample-spam.txt

Received: from localhost [127.0.0.1] by tala.mede.uic.edu

 with SpamAssassin (2.60 1.212-2003-09-23-exp);

 Sun, 16 Nov 2003 21:38:03 -0600

...

Content preview: This is the GTUBE, the Generic Test for Unsolicited

 Bulk Email. If your spam filter supports it, the GTUBE provides a test

 by which you can verify that the filter is installed correctly and is

 detecting incoming spam. You can send yourself a test mail containing

 the following string of characters (in uppercase and with no white

 spaces and line breaks): [...]

Content analysis details: (1000.0 points, 5.0 required)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pts rule name description

---- ---------------------- ---

1000 GTUBE BODY: Generic Test for Unsolicited Bulk Email

If these tests succeed, you might try testing with a few real spam and non-spam messages from your
mailbox to get a feel for how the scoring works.

2.2.4 SpamAssassin Options

The spamassassin script has a large number of command-line options that control its behavior. Some

of the most commonly used for spam-checking are detailed here; others are featured in Chapter 3 and
Chapter 4 . A complete list of options can be found in the man page for spamassassin .

2.2.4.1 Locating configuration files

SpamAssassin expects to find its rulesets in /usr/share/spamassassin , its systemwide configuration file
at /etc/mail/spamassassin , and per-user preferences in ~/.spamassassin/user_prefs . If you've
installed SpamAssassin in different locations, you may need to use these command-line options to help
the spamassassin script locate these files.

--configpath /path/to/ruleset/directory

Specifies the path to the directory containing the SpamAssassin ruleset configuration files. This
option also can be called as --config-file or --config-dir .

--siteconfigpath /path/to/sitewide/directory

Specifies the path to the directory containing the sitewide configuration file local.cf .

--prefspath /path/to/user_prefs

Specifies the path to the file containing user preferences for the user running spamassassin . --
prefs-file can also be used.

2.2.4.2 Scripting and testing options

Two spamassassin options are useful in scripting.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

--exit-code [integer]

When this option is used, the spamassassin script will exit with a nonzero exit code if the

message it checked was determined to be spam, and a zero exit code if it was not. The default
spam exit code is 5, but you can specify one as an argument to this option. If spamassassin

exits due to a program error, it returns exit code 64 (if bad arguments were given to
spamassassin) or 70 (for other errors).

This option provides a useful way for a calling script to determine if a message is considered
spam.

--log-to-mbox /path/to/mbox/file (SpamAssassin 2.x only)

This option causes copies of all of the messages processed by spamassassin to be logged to the
given file in mbox format. The messages are logged in the form in which spamassassin receives

them, with no spam-tagging. This option can be used to preserve pristine copies of email, but
such a function is probably better performed by the MTA itself, rather than by SpamAssassin.

2.2.4.3 Untagging

No spam-checking system is perfect. If SpamAssassin mistakenly tags a non-spam message as spam,
it will add several message headers and reformat the message to include its report as the first MIME
attachment and the original message as a second attachment. To remove these headers and restore
the message to a near-original state, pipe the message to spamassassin with the --remove-markup

option, as shown in Example 2-5 .

Example 2-5. Removing SpamAssassin markup

$ spamassassin < sample-spam.txt > marked-message

$ spamassassin --remove-markup < marked-message > unmarked-message

$ diff -s sample-spam.txt unmarked-message

Files sample-spam.txt and unmarked-message are identical

Messages that have been tagged and then untagged via --remove-markup may

differ in minor ways from the original message. For example, headers that may
have included line breaks in the original message may be concatenated into one
long line.

2.2.4.4 Reporting

If you've installed clients for spam checksum clearinghouses, you can report spam to those
clearinghouses by piping a message to spamassassin --report . The message will be untagged before

http://lib.ommolketab.ir
http://lib.ommolketab.ir

being reported. In SpamAssassin 2.63, if you also provide the --warning-from= emailaddress

option, the sender of the spam will receive an email (apparently from the provided emailaddress)

warning her that her message has been reported as spam. This is rarely useful (because most spam
forges or obfuscates the sender's address), and this option has been removed in SpamAssassin 3.0.

You can also use SpamAssassin's reporting capability to set up spam traps . A spam trap is an email
address that has never been used by a real recipient and never requests email from anyone. People
who set up spam trap addresses often include the addresses on web pages or in Usenet postings with
instructions that people should not send mail to the addresses-instructions that spammers' address-
harvesting programs will ignore. Because any email that's sent to the spam trap address can be safely
assumed to be spam, you can report it as such to spam clearinghouses. To set up a spam trap with
SpamAssassin, create an email alias that pipes messages to spamassassin --report . For most

clearinghouse systems, you will need to determine which user your mail system will invoke
spamassassin --report as and set up some files in that user's home directory to control how it will

interact with the clearinghouse client. See your clearinghouse documentation for details.

Never report spam sent to a legitimate address that you have not verified with
your own eyes . The clearinghouse systems rely on these spam reports, and their
effectiveness is diminished when non-spam messages are reported as spam. If
you do accidentally report a non-spam message, you can revoke your report by
piping the message to spamassassin --revoke . Not all clearinghouses support

message revocation. As of SpamAssassin 3.0, only Vipul's Razor does.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.3 Invoking SpamAssassin with procmail

Running spamassassin from a shell is a handy way to test the system, but for daily use you'd like to

have it automatically run on every incoming email message that's being delivered to your system's
mailboxes. One easy way to do this is to have your system's MDA program filter all messages
through SpamAssassin as part of the delivery process.

procmail is a mail-processing program that accepts messages on standard input and applies a set of
rules or actions (a "recipe") for the disposition of the message. Because the default message
disposition is "append to the user's mailbox," and because procmail is written to be very safe in its
handling of messages, it makes an excellent MDA. Indeed, many Unix systems use the procmail
program as their default local MDA. If procmail is available and isn't the system MDA, it's usually easy
for users to configure the message-forwarding feature of the system's MTA to filter messages
through procmail. In either environment, procmail can be a good place to pass messages through
SpamAssassin. Figure 2-1 illustrates this configuration.

Figure 2-1. Invoking SpamAssassin with procmail

The easiest way to use SpamAssassin with procmail is to call it in the systemwide procmail recipe file,
which is usually /etc/procmailrc. Example 2-6 shows a complete /etc/procmailrc.

Example 2-6. A complete /etc/procmailrc

DROPPRIVS=yes

PATH=/bin:/usr/bin:/usr/local/bin

SHELL=/bin/sh

Spamassassin

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:0fw

* <300000

|/usr/bin/spamassassin

In this example, the SpamAssassin recipe comprises the three lines beneath the comment #
Spamassassin. The first line tells procmail that the message should be filtered (f) and that procmail
should wait (w) for the filter's successful exit before considering the message filtered. The second line

indicates that this recipe should be applied to messages less than 300,000 bytes in length and serves
to prevent a lengthy SpamAssassin invocation on a long message that is unlikely to be spam. The
third line directs procmail to pipe the message to spamassassin. (For more information about

procmail recipes, see the man pages for procmail, procmailrc, and procmailex.)

By placing this recipe in the systemwide procmail configuration file, it will be activated every time
procmail is invoked, either as the default MDA or by a user. If you don't have access to the
systemwide procmail configuration file, you can still invoke SpamAssassin for your own messages in
your account's per-user procmail recipe file, which is usually ~/.procmailrc. This might also be useful
if you wish to run SpamAssassin a second time with a different set of command-line arguments.

If your system doesn't provide procmail, it may provide another mail- filtering
system. Any mail filter that can pass a message to a program on standard input
and read back the (modified) message from the program's standard output can
use SpamAssassin in this way.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.4 Using spamc/spamd

If you are filtering a lot of incoming mail, the processing time required to invoke a new spamassassin

script (and starting the Perl interpreter) for each message can become prohibitive. An alternative
approach is to run the SpamAssassin daemon, spamd. spamd is started once at system boot and loads
the SpamAssassin Perl modules to perform spam-checking. Instead of running the spamassassin
script on each message, messages are piped to the spamc program. spamc is a lightweight client,
written in C and compiled to an executable that simply takes messages, relays them to spamd, and

returns the results.

spamd has several important command-line arguments that control its operation. Once it's properly
set up, however, using spamc is simple.

2.4.1 Setting up spamd

By default, spamd is installed in /usr/bin. It is typically started by root from a system boot script but
can also be started by root from the shell for testing. The simplest invocation of spamd is:

/usr/bin/spamd --daemonize --pidfile /var/run/spamd.pid

The --daemonize command-line option directs spamd to operate as a daemon in the background. The
--pidfile command-line option specifies the file to which spamd will write its process ID number.
This option is important because spamd must be signaled with a HUP signal to its process ID

whenever the systemwide SpamAssassin configuration is changed (you'll find an example later in this
chapter).

When spamd receives a connection, it forks a child process to handle the connection. Typically, the

child process reads a request to perform spam-checking from the client (including the account name
of the user making the request, the message to check, and other data), performs the requested
check, returns the (possibly tagged) message back to the client, and exits.

Several options are used with spamd in many environments. The most common are detailed in the

following sections.

2.4.1.1 Connection type

spamd can accept connections from spamc clients either by listening on a TCP port or a Unix domain
socket. By default, spamd binds TCP port 783 on the local 127.0.0.1 IP address, which should prevent

remote users from connecting to it. You can change how it listens with these command-line options:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

--socketpath /path/to/socket

Listen on a Unix domain socket at the specified path instead of a TCP port. Using a Unix domain
socket is more efficient than a TCP port and ensures that only local users can access the
daemon.

--listen-ip ip-address

Listen on a TCP port on the specified IP address. This can be used to override the default
127.0.0.1 IP address and allow spamd to receive connections from remote machines. This might

be useful if you wanted to dedicate a single machine in a LAN to spam-checking in order to
manage the processing load or to let many client machines share a well-tuned daemon.

--port port-number

Listen on a TCP port other than the default port (783).

--allowed-ips ip-address,ip-address,...

Specify a comma-separated list of IP addresses from which connections will be accepted.
Although this provides a measure of access control for a daemon that accepts remote
connections, it should be supplemented with host-based firewall rules for greater security.

--ssl

Require connections from clients to use the SSL/TLS (Secure Sockets Layer/Transport Layer
Security) protocol. This provides for encryption of the data between client and server and
potentially for authentication of the server to the client, although SpamAssassin's spamc does

not attempt to verify the server certificate.

--server-key keyfile

Specifies the file containing the SSL private key for spamd, if SSL connections are to be

required.

--server-cert certfile

Specifies the file containing the SSL certificate for spamd, if SSL connections are to be required.

If you want to provide secure remote access to spamd, the SSL support in spamd/spamc is not
sufficient, as it provides no mechanism for spamd to authenticate spamc clients. An alternative

approach would be to wrap the server and client connections in an SSL tunnel with a program like

http://lib.ommolketab.ir
http://lib.ommolketab.ir

stunnel that does provide two-way authentication.

2.4.1.2 Running as a non-root user

You must start spamd as root so that it can bind its TCP port or open its socket for connections. By
default, spamd continues to run as root. When it receives a connection from spamc, it drops privileges
and runs as the user that spamc claims to be running as. This enables it to access private, per-user

configuration files.

Many system administrators are uncomfortable running spamd as root. A bug in spamd could provide
an attacker with root privileges; a local attacker could also spoof spamc and claim to be a different
user (which can be ameliorated with the --auth-ident option discussed later).

To provide additional security, spamd can be instructed to run as a non-root user. After binding its
TCP port or Unix socket, spamd gives up root privileges and runs as the specified user. Ideally, you

should create a new user (e.g., spamd) with its own group (spamd) and a private home directory
(/home/spamd). All systemwide configuration files should be made readable by the new user, and the
pid file given to the --pidfile command-line option should be in a directory writable by the new
user (perhaps its home directory). If spamd is using a Unix domain socket, the socket will

automatically have its owner set to the new user, so no changes to this path are necessary, but the
directory in which the socket will be created must be writable by the user.

After creating your new user, start spamd like this, as root:

/usr/bin/spamd --daemonize --username spamd --pidfile /home/spamd/spamd.pid

The --username command-line option specifies the name of the user that spamd will run as.

If you want to allow per-user configuration, users' home directories and .spamassassin subdirectories
will have to be searchable by the new user (which typically means they must be world-searchable),
and files in their .spamassassin directories will have to be readable by the new user. Alternatively,
you can turn off per-user configuration with the --nouser-config command-line option (or store

per-user configuration in an SQL database, as discussed in Chapter 3).

You can also run spamd as a non-root user simply by starting it as a non-root
user. In this case, the user running spamd must be able to read all of the

relevant system configuration files, and you must specify a port number higher
than 1024 (or a Unix domain socket in a directory the spamd user can write in).

2.4.1.3 Other security features

Three command-line options provide additional assurances that spamd will operate only when the
user running spamc is actually the user that spamc claims to be running for.

--auth-ident

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This option causes spamd to perform an ident (RFC 1413) lookup on the connection. If the

client's system is running a (trustworthy) ident server, the lookup will return the username of
the user running spamc. spamd will confirm that this username matches the username provided
by spamc and will refuse to respond if it does not.

--ident-timeout number-of-seconds

Specify the number of seconds to wait for the ident server to respond. If the response doesn't
come after this number of seconds, spamd will refuse to perform spam-checking for the

connection.

--paranoid

Specify that spamd should report an error and exit if it finds itself still running as root after it
should have changed to a non-root user ID (either the one given by --username or the user
running spamc), or if it cannot look up a given user's name. Without this option, spamd

continues running as the nobody user.

One command-line option can protect spamd from being used to commit a denial-of-service attack

against its server.

--max-children number

Specifies the maximum number of child processes that spamd will fork. When this maximum is

reached, connections will be queued until the number of children drops below the maximum
again (or until the operating system can no longer queue connections). If max-children is
used, spamd must open pipes to communicate with each child.

In SpamAssassin 3.0, the --max-children option defaults to 5, but in

SpamAssassin 2.x, the default number of children is unlimited. I highly
recommend explicitly setting --max-children to a reasonable value for your

system.

Here's what a typical invocation of spamd might look like for a system that is only performing spam-

checking for local users and that runs an ident server:

/usr/bin/spamd --daemonize --username spamd --pidfile /home/spamd/spamd.pid --auth-

ident --paranoid --max-children=25

2.4.1.4 Locating configuration files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Like SpamAssassin, spamd looks for rulesets in /usr/share/spamassassin and systemwide

configuration files in /etc/mail/spamassassin. If you've installed SpamAssassin in different locations,
you can use the --configpath and --siteconfigpath command-line options to help spamd locate
these files. These options work just as they do for the spamassassin script and were described

earlier.

2.4.2 Testing spamc

Once spamd is running, use spamc instead of the spamassasin script to check a mail message. You
can test spamc/spamd much as you would test spamassassin:

$ cd Mail-SpamAssassin-2.63

$ spamc -c < sample-nonspam.txt

0.0/5.0

$ spamc -c < sample-spam.txt

1000.0/5.0

The -c command-line option instructs spamc to produce only the score (and the spam threshold
score) that spamd computes for each message. It also causes the spamc process to return an exit

code of 1 for messages judged to be spam and 0 for messages judged not to be spam, which can be
useful in scripting.

2.4.3 spamc Options

Like the spamassassin script, spamc takes several command-line options that modify its behavior.
Here are some of the most useful (see the manpage for spamc for a complete list).

2.4.3.1 Connection type

By default, spamc attempts to connect to spamd at TCP port 783 on localhost. If you run spamd on a

different IP address (perhaps on a different machine altogether) or listening on a Unix domain socket,
spamc must be told where to connect.

spamc can take advantage of multiple spamd servers at different hosts to increase reliability or
balance the processing load. In addition to specifying the proper command-line options to spamc

(descriptions follow), you must designate a hostname in DNS with multiple A records, each listing the
IP address of a spamd server host.

These command-line options control the spamc connection to spamd.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-d host

Connect to the spamd server on host, instead of localhost. If host is a hostname that resolves

to multiple IP addresses, each one will be tried in turn until a successful connection can be
made.

-p port

Specify the TCP port number to connect to spamd on. If multiple servers are used, all servers

must use the same port number.

-H

When multiple spamd servers are used, try servers in random order instead of the order in

which they are returned by the DNS server. This promotes load-balancing across the servers.

-S

Make connections to spamd with SSL. If multiple spamd servers are used, all servers must

support SSL connections.

-U /path/to/socket

Specify a Unix domain socket to connect to spamd on, instead of using TCP.

2.4.3.2 Handling problems

By default, if spamc is unable to contact a spamd server, it returns the message unprocessed. This
ensures that mail will not be lost due to problems with spamd but means that spam may be accepted

without tagging. Two command-line options modify this behavior.

-t number-of-seconds

Specifies the number of seconds that spamc should wait for a reply from spamd before
considering the spamd server unreachable. It defaults to 600 seconds (10 minutes), which may

be too long to wait on a busy mail server. Setting the number-of-seconds to 0 disables the
timeout altogether-spamc will wait as long as it takes (and potentially forever).

-x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This option prevents spamc from returning messages unprocessed when it can't contact a
spamd server. Instead, spamc will exit with an error code. Ideally, whatever process is calling
spamc will interpret this error code properly, and the message will be queued for later retry.

This option requires great care.

spamc's options are different than those accepted by spamassassin, so it is not
generally possible to simply substitute spamc for spamassasin in scripts without
reviewing each option. Some of the options to spamassassin are instead given
as options to spamd when it is started.

2.4.4 Invoking spamc with procmail

Just as spamc is run manually in place of the spamassassin script, it can also be run in a procmail
recipe. Example 2-7 shows a typical /etc/procmailrc recipe for a system using spamd:

Example 2-7. A complete /etc/procmailrc for spamd

DROPPRIVS=yes

PATH=/bin:/usr/bin:/usr/local/bin

SHELL=/bin/sh

Spamassassin

:0fw

* <300000

|/usr/bin/spamc

2.4.5 Changing SpamAssassin Configuration Files

To increase efficiency, spamd caches the spam-checking rules in memory when it starts up.
Therefore, when spamd is in use, the daemon must be signaled whenever you make changes to the

SpamAssassin rulesets or systemwide configuration file. Changes in user preferences do not require a
signal because user preference files, if they are used, are reread each time they are needed.

spamd reloads configuration files when it receives a HUP signal. To send a process a HUP signal, read

the process ID from the pidfile and use the kill command to send the signal:

kill -HUP `cat /home/spamd/spamd.pid`

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you can't find the pidfile, use the ps command to locate the process ID:

ps auxw | grep spamd (On SysV systems, ps elf)

spamd 30124 0.0 0.6 22200 1596 ? S Nov22 0:02 usr/bin/spamd --

daemonize --username spamd --pidfile /home/spamd/spamd.pid

alansz 30521 0.0 0.1 1520 508 pts/1 S 15:44 0:00 grep -E spamd

kill -HUP 30124

After reloading, spamd will have a new process ID.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.5 Invoking SpamAssassin in a Perl Script

Because the heart of the SpamAssassin system is a set of Perl modules, it's fairly straightforward to
call SpamAssassin from a Perl script to perform spam-checking of an email message. The
Mail::SpamAssassin module (and its submodules) provide an object-oriented interface to the spam-
checking and message-tagging logic. Many MTA-based filtering systems are written in Perl, and use
the SpamAssassin modules to perform spam-checking on messages without invoking a separate
program.

Examples Example 2-8 and Example 2-9 show Perl scripts that work like simple versions of the
spamassassin script, accepting a message on standard input, checking it, and producing the

(possibly rewritten) message on standard output. Example 2-8 illustrates the process for
SpamAssassin 2.63.

Example 2-8. Using Mail::SpamAssassin 2.63 in Perl

#!/usr/bin/perl

use Mail::SpamAssassin;

my @lines = <STDIN>;

my $mail = Mail::SpamAssassin::NoMailAudit->new(data => \@lines);

my $spamtest = Mail::SpamAssassin->new();

my $status = $spamtest->check($mail);

$status->rewrite_mail() if $status->is_spam();

print $status->get_full_message_as_text();

Before any SpamAssassin objects can be created, the script must use the Mail::SpamAssassin
module. The message is read from standard input and saved to the array @lines. Then, the new()

method of Mail::SpamAssassin::NoMailAudit is called, with a reference to the array provided as the
value of the data parameter.[1] This method returns a Mail::SpamAssassin::Message object
encapsulating the email message, which I call $mail in the example.

[1] On systems with the Mail::Audit module, Mail::SpamAssassin 2.x can be used as a plug-in for Mail::Audit.
See the documentation for both modules for details. SpamAssassin 3.0 no longer supports Mail::Audit, however;
so this approach should be avoided for new installations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A new Mail::SpamAssassin object called $spamtest is then created, and its check() method is
called, passing in the message as an argument. check() returns a
Mail::SpamAssassin::PerMsgStatus object, called $status in the script, that contains a copy of the
message as well as the results of the spam check. In particular, the is_spam() method of $status

returns 1 if the message was judged to be spam, and 0 otherwise.

If the message was spam, the rewrite_mail() method of the $status object is called and

performs the complete SpamAssassin tagging process on the message, including adding relevant
headers and MIME-encapsulating a spam report and the original message. Finally, the script prints
the message to standard output by calling the get_full_message_as_text() method of $status

and printing the result.

Example 2-9 illustrates the process for SpamAssassin 3.0.

Example 2-9. Using Mail::SpamAssassin 3.0 in Perl

#!/usr/bin/perl

use Mail::SpamAssassin;

my @lines = <STDIN>;

my $spamtest = Mail::SpamAssassin->new();

my $mail = $spamtest->parse(\@lines);

my $status = $spamtest->check($mail);

print $status->rewrite_mail();

Before any SpamAssassin objects can be created, the script must use the Mail::SpamAssassin
module. The message is read from standard input and saved to the array @lines. Then, the new()
method of Mail::SpamAssassin is called to create a new Mail::SpamAssassin object named
$spamtest.

The parse() method on $spamtest is invoked and passed a reference to the array of message

lines. This method returns a Mail::SpamAssassin::Message object encapsulating the email message,
which I call $mail in the example.

Next, $spamtest's check() method is called, passing in the message as an argument. check()
returns a Mail::SpamAssassin::PerMsgStatus object, called $status in the script that contains a copy

of the message as well as the results of the spam check.

Finally, the rewrite_mail() method of the $status object is called, which performs the complete

SpamAssassin tagging process on the message, including adding relevant headers and, if the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

message is spam, MIME-encapsulating a spam report and the original message. The return value of
rewrite_mail() is the rewritten message, so the script prints it to standard output.

As these scripts illustrate, simple spam-checking is easily added to Perl scripts that process email
messages. The options to the spamassassin script are all available through Perl either as arguments

that can be passed to the Mail::SpamAssassin constructor (e.g., to specify the location of the
sitewide configuration file) or as methods of the Mail::SpamAssassin::PerMsgStatus object (e.g., to
get the spam score or the specific tests that were triggered). The manual (or perldoc) pages for
Mail::SpamAssassin, and Mail::SpamAssassin::PerMsgStatus provide complete details. Other
SpamAssassin modules support SpamAssassin's advanced features, such as learning, and are also
documented with perldoc.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.6 SpamAssassin and the End User

The discussion so far in this chapter has focused on getting SpamAssassin to analyze incoming mail
and mark spam by modifying the message before delivery. For end users who read their email on the
server or download it with a POP or IMAP client, the final step is to take action on messages.
Messages processed through SpamAssassin fall into one of the categories described in the next four
sections.

2.6.1 True Negatives (ham)

True negatives are messages that both you and SpamAssassin agree are non-spam, or ham,
messages. SpamAssassin does not modify these messages much. It adds an X-Spam-Status header
beginning with the word "No," and an X-Spam-Checker-Version header giving the version of
SpamAssassin in use. These messages look just as they should to a user's mail reader.

2.6.2 True Positives (spam)

True positives are messages that both you and SpamAssassin agree are spam. These messages are
tagged by SpamAssassin. At minimum, SpamAssassin adds X-Spam-Level, X-Spam-Status, and X-
Spam-Flag headers. If rewrite_subject is on, SpamAssassin also changes the subject of the

message to begin with *****SPAM*****. Example 2-10 shows these headers.

Example 2-10. Headers added to spam by SpamAssassin

Subject: *****SPAM***** Live your dream life!! MPNWSTU

X-Spam-Status: Yes, hits=12.9 required=5.0 tests=CLICK_BELOW,

 FORGED_MUA_EUDORA,FROM_ENDS_IN_NUMS,MISSING_OUTLOOK_NAME,

 MSGID_OUTLOOK_INVALID,MSGID_SPAM_ZEROES,NORMAL_HTTP_TO_IP,

 SUBJ_HAS_SPACES,SUBJ_HAS_UNIQ_ID autolearn=no version=2.60

X-Spam-Flag: YES

X-Spam-Checker-Version: SpamAssassin 2.60 (1.212-2003-09-23-exp)

X-Spam-Level: ************

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most people will want either to complain about spam to the spammer's ISP or to discard it. In the
former case, simply being able to quickly identify spam messages on sight is usually sufficient, and
the modified Subject header makes that simple. If the user is reading his mail on a system with the
spamassassin script and applications for distributed spam clearinghouses, he can pipe the message
to spamassassin --report to report the message to the clearinghouses.

In the latter case, that of wanting to discard spam, users can set up their personal mail filters to
delete spam or save it to a "spam" mailbox that they can check now and then. Users on shell
accounts with procmail might use the following recipes in their ~/.procmailrc file:

:0

* ^X-Spam-Level: ***************

/dev/null

:0

* ^X-Spam-Flag: YES

spambox

The first recipe checks to see if the message has at least 15 asterisks in the X-Spam-Level header.
These messages are very likely to be true positives and are discarded by delivering them to
/dev/null. The second recipe catches all other messages that SpamAssassin considers spam (e.g.,
with scores between 5.0 and 14.99) and saves them to a separate mailbox file called spambox.

Users of POP mail clients can use their client's filtering capabilities. Nearly all modern POP mail clients
provide the ability to filter messages based on strings contained in the Subject header, so spam can
be redirected by checking the Subject for *****SPAM*****. Some POP clients provide greater
control over filtering and allow checking arbitrary headers; these clients can do the equivalent of the
preceding procmail recipes.

2.6.3 False Positives

False positives are the bane of all spam-checkers. A false positive occurs when SpamAssassin
incorrectly marks a message as spam that you actually wanted to receive. Because of the potential
for false positives, it's a good idea to encourage users to think of SpamAssassin's tags as advisory
and to avoid discarding messages unseen on the basis of a spam classification by SpamAssassin.
Instead, as illustrated in the earlier section on true positives, spam can be filtered to a special spam
mailbox that the user can check periodically to ensure that it does not contain any false positives.

If you're reading email on a system that has the spamassassin script and you find a false positive,
you can pipe the message through spamassassin --remove-markup to remove the SpamAssassin

report and restore the message to its untagged state.

Identifying false positives and reporting them to SpamAssassin is key to improving SpamAssassin's
Bayesian classifier. The Bayesian classifier is discussed in detail in Chapter 4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6.4 False Negatives

A false negative is a missed spam. It occurs when SpamAssassin fails to tag a message as spam that
you actually consider spam. The more false negatives you get, the less effective the spam-checking is
in saving you time. You can reduce false negatives by lowering SpamAssassin's threshold score, but
you will increase false positives at the same time. Keeping track of false negatives can help you find
patterns that may let you tweak SpamAssassin's rules to match your environment more closely.

As with true positives, if the user is reading her mail on a system with the spamassassin script and
applications for distributed spam clearinghouses, she can pipe the message to spamassassin --
report to report the message to the clearinghouses."

Identifying false negatives and reporting them to SpamAssassin is key to improving SpamAssassin's
Bayesian classifier. The Bayesian classifier is discussed in detail in Chapter 4.

Measuring SpamAssassin's Performance

One of the ways that SpamAssassin's developers measure SpamAssassin's performance is by
running SpamAssassin on large corpora of messages that are known to be spam or non-spam
and measuring the rate of true and false positives and negatives at different thresholds (from
-4 to 20) and with different features enabled. The results of these tests are distributed in the
rules directory in files STATISTICS.txt (statistics without network or Bayesian tests),
STATISTICS-set1.txt (statistics with network tests but no Bayesian tests), STATISTICS-
set2.txt (statistics with Bayesian tests but no network tests), and STATISTICS-set3.txt
(statistics with both network and Bayesian tests).

Here's an example of the contents of STATISTICS-set3.txt showing performance with a spam
threshold of 5.0:

SUMMARY for threshold 5.0:

Correctly non-spam: 15550 46.59% (99.90% of non-spam corpus)

Correctly spam: 17648 52.87% (99.08% of spam corpus)

False positives: 15 0.04% (0.10% of nonspam, 1133 weighted)

False negatives: 164 0.49% (0.92% of spam, 437 weighted)

TCR: 74.527197 SpamRecall: 99.079% SpamPrec: 99.915% FP: 0.04% FN: 0.49%

With those features and that threshold, SpamAssassin had a true positive rate of 99.08%, a
true negative rate of 99.9%, a false positive rate of 0.1%, and a false negative rate of
0.92%.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 3. SpamAssassin Rules
SpamAssassin performs its spam-checking by applying a series of tests to an email message. Most
tests examine the message headers or body for patterns that are suggestive of spam; others
perform Internet lookups against network-based blacklists of IP addresses or checksums of spam
messages. Each positive test yields a score, and the sum of the scores is the total spam score of the
message.

This chapter describes the SpamAssassin pattern-based and network-based tests: how they are
written and scored, and how you can modify the score of a built-in test or write your own custom
tests. This chapter also covers whitelist and blacklist rules, which can override SpamAssassin's usual
determination of whether or not a message is spam.

The tests described in this chapter are all static tests-they don't change over time as SpamAssassin
analyzes messages. Chapter 4 explains learning tests, which use information from messages seen in
the past to improve decisions in the future.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.1 The Anatomy of a Test

Most SpamAssassin tests consist of the same basic components:

A test name, consisting of up to 22 uppercase letters, numbers, or underscores. Names that
begin T_ refer to rules in testing.

A more verbose description of the test, which is used in the reports generated by
SpamAssassin. Typically, descriptions are up to 50 characters long.

An indication of where to look. Tests can be applied to the message headers only, the message
body only, uniform resource identifiers (URIs) in the message body, or the complete message.
When testing the message body, the body can be analyzed in its raw state, after MIME-decoding
the text, or after MIME-decoding, stripping of HTML, and removal of all line breaks.

A description of what to look for. Tests can specify a header to check for existence, a Perl
regular expression pattern to match, a DNS-based blacklist to query, or a SpamAssassin
function to evaluate.

Optional test flags that control the conditions under which the test is applied or other
exceptional features.

A score or scores for the test. Tests can have a single score that is always used, or they can
have separate scores for messages that test positive under each of four conditions:

When the Bayesian classifier and network tests are not in use

When the Bayesian classifier is not in use, but network tests are

When the Bayesian classifier is in use, but network tests are not

When the Bayesian classifier and network tests are both in use

Example 3-1 shows the complete definition of a test that matches when a message's From address
begins with at least two numbers. This test is defined in the file
/usr/share/spamassassin/20_head_tests.cf (although its score appears in the 50_scores.cf file).

Example 3-1. A test definition and score

header FROM_STARTS_WITH_NUMS From =~ /^\d\d/

describe FROM_STARTS_WITH_NUMS From: starts with nums

http://lib.ommolketab.ir
http://lib.ommolketab.ir

score FROM_STARTS_WITH_NUMS 0.390 1.574 1.044 0.579

How does this test work? The header directive defines it as a test that will be applied to the message
headers and gives the test name (FROM_STARTS_WITH_NUMS) and the test itself, a match of the From
header against the regular expression /^\d\d/. That regular expression denotes a string that begins

with two digits.

For information about how to read and write regular expressions, see the Perl
manual page perlre, or Jeffrey Friedl's book Mastering Regular Expressions
(O'Reilly).

The describe directive provides a human-readable description of the test that SpamAssassin will
insert in reports when the test matches. The score directive determines how many points

SpamAssassin will add to the spam score of a message if the test matches. Higher scores mean that
a message that matches the test is more likely to be spam. In this example, SpamAssassin will add
0.39 points to the spam score of a matching message if network and Bayesian tests are not in use,
1.574 points if network tests are in use but Bayesian tests are not, 1.044 points if Bayesian tests are
in use but network tests are not, and 0.579 points if both network and Bayesian tests are in use.

The tests distributed with SpamAssassin are typically stored in files in /usr/share/spamassassin.
Tests are stored in a set of ruleset files based on the type of test being performed, and scores for all
tests are stored together in one file. These tests are discussed in detail later in this chapter. Following
are some other examples of test definitions from the distributed tests, along with their scores.

Testing for a To, From, or Cc header that mentions friend@public.com (this test is distributed
disabled):

header FRIEND_PUBLIC ALL =~ /^(?:to|cc|from):.*friend\@public\.com/im

describe FRIEND_PUBLIC sent from or to friend@public.com

score FRIEND_PUBLIC 0

Testing for the existence of the X-PMFLAGS header:

header X_PMFLAGS_PRESENT exists:X-PMFLAGS

describe X_PMFLAGS_PRESENT Message has X-PMFLAGS header

score X_PMFLAGS_PRESENT 2.900 2.800 2.800 2.700

Testing for long lines of hexadecimal code in the message body:

body LARGE_HEX /[0-9a-fA-F]{70,}/

describe LARGE_HEX Contains a large block of hexadecimal code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

score LARGE_HEX 0.633 1.595 1.193 1.160

Testing for a Subject header in all capital letters, by evaluating a SpamAssassin function:

header SUBJ_ALL_CAPS eval:subject_is_all_caps()

describe SUBJ_ALL_CAPS Subject is all capitals

score SUBJ_ALL_CAPS 0.550 0.567 0 0

Testing for a message that includes HTML to open a new window with JavaScript (disabled by
default):

body HTML_WIN_OPEN eval:html_test('window_open')

describe HTML_WIN_OPEN Javascript to open a new window

score HTML_WIN_OPEN 0

Testing for an HTTP (Hypertext Transfer Protocol) URI anywhere in the message that uses a numeric
IP address (e.g., http:// 3502894884):

uri NUMERIC_HTTP_ADDR /^https?\:\/\/\d{7,}/is

describe NUMERIC_HTTP_ADDR Uses a numeric IP address in URL

score NUMERIC_HTTP_ADDR 2.899 2.800 2.696 0.989

 < Day Day Up >

http:// 3502894884
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.2 Modifying the Score of a Test

You may find some tests more indicative of spam than SpamAssassin does by default. If
SpamAssassin already provides a test that you value but doesn't assign it a high enough score
(higher scores are more indicative of spam), you can easily modify the score of the test. Similarly, if
one of SpamAssassin's tests is giving you too many false positives, you can reduce its score or
disable the test entirely by setting its score to 0. SpamAssassin will not attempt to run a test with a
score of 0.

3.2.1 Modifying Scores Systemwide

Make systemwide score adjustments in the systemwide configuration file, typically
/etc/mail/spamassassin/local.cf. To modify the score of a test, you must first determine its test
name, either by reading the ruleset files or by examining the spam report from a message. To get a
spam report on a message that doesn't score high enough for SpamAssassin to generate a report,
you can use spamassassin --test-mode, as described in Chapter 2.

To change the score of a test, simply add a new score directive to the configuration file, like this:

score HTML_WIN_OPEN 2

This will enable the HTML_WIN_OPEN test and add two points to the score of messages that test
positive on this test.

You can use the same approach to modify the descriptions of tests by adding new describe

directives. For example, the default description for the HOT_NASTY test is "Possible porn - Hot,
Nasty, Wild, Young". To shorten that to "Possible porn", add this directive to the configuration file:

describe HOT_NASTY Possible porn

3.2.2 Modifying Scores on a Per-User Basis

Users can use the score directive in per-user preference files to change the scoring of a test for an

individual user. To do so, a user edits the .spamassassin/user_prefs file in her home directory and
adds score directives. This approach to customizing scores is the simplest, but it requires users to

have accounts on the system and access to files in their accounts.

3.2.3 Storing Scores in an SQL Database

When users do not have accounts or shell access (e.g., on a system that is an IMAP or webmail

http://lib.ommolketab.ir
http://lib.ommolketab.ir

server), per-user scores can be stored in an SQL database and spamd can be configured to look up

scores in the database. To store scores in SQL, you must install the DBI Perl module and an
appropriate driver module for your SQL database server. Common choices are DBD-mysql (for the
MySQL server), DBD-Pg (for the PostgreSQL server), and DBD-ODBC (for connection to an ODBC-
compliant server).[1]

[1] "ODBC" stands for Open Database Connectivity.

You should create a database and a user with privileges to access it. You must then create a table in
the database to store the user scores. The SpamAssassin source code includes a schema for a MySQL
table in the sql subdirectory, which is shown in Example 3-2. SpamAssassin 3.0 also includes a
schema for a PostgreSQL table.

Example 3-2. A MySQL table for user scores

CREATE TABLE userpref (

 username varchar(100) NOT NULL,

 preference varchar(30) NOT NULL,

 value varchar(100) NOT NULL,

 prefid int(11) NOT NULL auto_increment,

 PRIMARY KEY (prefid),

 INDEX (username)

) TYPE=MyISAM;

You can use a different name for the table. The name given in Example 3-2 is the default, however,
and using it will require the least amount of SpamAssassin configuration effort.

Each row in this table specifies the score for a single test for an individual user. SpamAssassin
expects the columns to contain the following information:

username

Gives the username or email address of the user (the latter is more useful in virtual hosting
environments). The special username @GLOBAL can be used to define global values in SQL
that will be applied to all users.

preference

Gives the name of the test to modify the score of. The column can also be used with other

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directives (e.g., required_hits, auto_report_threshold, and the whitelisting and blacklisting

directives described later in this chapter) but cannot define new rules or modify administrative
settings.

value

Gives the new score for the test or a new value for one of the other directives (e.g., number of
hits required to call a message spam or an email address to add to the whitelist).
SpamAssassin does not provide any tools for adding data to these tables.

The prefid column and the PRIMARY KEY and INDEX clauses are useful but not necessary. prefid
defines a primary key for the table, and an index is built on the username column to speed up

queries.

To configure SQL support for user scores, set the following configuration parameters in your
systemwide configuration file (local.cf):

user_scores_dsn DSN

This directive defines the data source name (DSN) for the SQL database. It tells spamd how it

will connect to the database server. A typical DSN, for the Perl DBI module, is written like this:
DBI:databasetype:databasename:hostname:port

For example, to use a MySQL database named sascores running on a database server on the
SpamAssassin host, the DSN would read:

DBI:mysql:sascores:localhost:3306

If the server were running PostgreSQL, the DSN would read:

dbi:Pg:dbname=sascores;host=localhost;port=5432;

user_scores_sql_username username

This directive defines the username that will be used to connect to the database server. This
user must have permission to issue SELECT queries against the table but need not be
permitted to modify the data or database structure.

user_scores_sql_password password

This directive defines the password associated with the username that will be used to connect
to the server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

user_scores_sql_table tablename

This directive defines the name of the table that contains user preferences. The default
tablename is "userpref".

user_scores_sql_custom_query query (SpamAssassin 3.0)

This directive specifies the SQL query that SpamAssassin will use to look up user preferences.
The query must be specified on a single (long) line in the configuration file. The default query
is:

SELECT preference, value FROM _TABLE_

WHERE username = _USERNAME_ OR username = '@GLOBAL'

ORDER BY username ASC

This is read as "return the preference and value fields from the configured table (_TABLE_) for those
rows with the specified username (_USERNAME_) or with the @GLOBAL username, in ascending
lexicographic order." Because SpamAssassin will use the value of each matching preference it
encounters in order, and because @GLOBAL sorts before all usernames, user-specific preferences will
effectively override global preferences.

You can use this directive to construct your own custom queries. Custom queries must also return
the preference and value columns (in that order). Queries may use the special symbols _TABLE_
(replaced by the name of the table where user preferences are stored), _USERNAME_ (replaced by the
user's username), _MAILBOX_ (replaced by the portion of the username before an at sign [@] or the
whole username if there is no at sign), and _DOMAIN_ (replaced by the portion of the username after

an at sign or a null value if there is none). The manpage for Mail::SpamAssassin::Conf provides a
few interesting examples of default queries. To support individual, domain, and global settings, add
rows to the table with usernames of @~domain (which will sort after @GLOBAL but before real

usernames) and use this query:

SELECT preference, value FROM _TABLE_

WHERE username = _USERNAME_ OR username = '@GLOBAL'

OR username = '@~'||_DOMAIN_

ORDER BY username ASC

If you prefer to have some global preferences that cannot be overridden by users and others that
can, you can add rows to the table for the unchangeable preferences with username ~GLOBAL (which
will sort after all usernames) and rows for the changeable preferences with username @GLOBAL and

use this query:

SELECT preference, value FROM _TABLE_

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WHERE username = _USERNAME_ OR username = '@GLOBAL'

OR username = '~GLOBAL'

ORDER BY username ASC

Finally, you'll need to start spamd with the --nouser-config command-line option and either the --
sql-config or --setuid-with-sql option to enable SQL-based configuration (and disable the use of
~/.spamassassin/user_prefs files, which cannot be used by spamd together with SQL). If spamd runs
as a non-root user, or if your users don't have home directories, use --sql-config; if spamd runs as
root and users have home directories, using --setuid-with-sql will enable spamd's usual practice of
changing uid to the user running spamc so that it can access the user's autowhitelist files.

3.2.4 Storing Scores in an LDAP Database

Another way to store per-user preferences in SpamAssassin 3.0 is in an LDAP (Lightweight Directory
Access Protocol) database. This approach may appeal particularly to sites that already store their
user account configuration in LDAP. To store scores in LDAP, you must install the Net::LDAP and URI
Perl modules.

LDAP objects (like those that represent users) and their attributes (such as username, password,
email address, etc.) are defined by one or more LDAP schemas. To add SpamAssassin preferences to
your users, extend the objectClass that represents a user to allow an additional, optional
spamassassin attribute, which you should define like this:

 # spamassassin

 # see http://SpamAssassin.org/ .

 attributetype (2.16.840.1.113730.3.1.217

 NAME 'spamassassin'

 DESC 'SpamAssassin user preferences settings'

 EQUALITY caseExactMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

The attribute SYNTAX must be multivalued (as in the example, which specifies the DirectoryString

syntax with object identifier (OID) 1.3.6.1.4.1.1466.115.121.1.15), because a user object will have
multiple spamassassin attributes, one for each preference setting.

The attributes themselves should be stored in the database. A spamassassin LDAP attribute should

be set to the name of a SpamAssassin configuration directive followed by the value for the directive,
separated by a space. SpamAssassin 3.0 includes an example of what such user definitions might
look like in LDIF (LDAP Interchange Format) format. The spamassassin attribute added to this user's

LDAP entry is emphasized:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dn: cn=Curley Anderson,ou=MemberGroupB,o=stooges

ou: MemberGroupB

o: stooges

cn: Curley Anderson

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

mail: CAnderson@isp.com

givenname: Curley

sn: Anderson

uid: curley

initials: Joe

homePostalAddress: 14 Cherry Ln.$Plano TX 78888

postalAddress: 15 Fitzhugh Ave.

spamassassin: add_header all Foo LDAP read

l: Dallas

st: TX

postalcode: 76888

pager: 800-555-1319

homePhone: 800-555-1313

telephoneNumber: (800)555-1214

mobile: 800-555-1318

title: Developemnt Engineer

facsimileTelephoneNumber: 800-555-3318

userPassword: curleysecret

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To configure LDAP support for user scores, set the following configuration parameters in your
systemwide configuration file (local.cf):

user_scores_dsn DSN

Defines the data source name for the LDAP database. It tells spamd how it will connect to the

LDAP server. LDAP DSNs are specified as URLs according to RFC 2255, like this:
ldap://host:port/basedn?attr?scope?filter

For example, to use the LDAP server on the SpamAssassin host to search for objects under the base
DN of dc=example,dc=com and to return the spamassassin attributes for those in which the uid

attribute matches the username that SpamAssassin is running for, the DSN would be:

ldap://localhost:389/dc=example,dc=com?spamassassin?sub?uid=_ _USERNAME_ _

user_scores_ldap_username bind_dn

Provides the DN that SpamAssassin should use to bind to the LDAP server. This DN must have
sufficient privileges to perform the query defined in the DSN.

user_scores_ldap_password password

Provides the password that SpamAssassin should use to authenticate itself when binding to the
LDAP server with the specified bind_dn.

Finally, you'll need to start spamd with the --nouser-config command-line option and either the --
ldap-config or --setuid-with-ldap option to enable LDAP-based configuration (and disable the
use of ~/.spamassassin/user_prefs files, which cannot be used by spamd together with LDAP). If
spamd runs as a non-root user, or if your users don't have home directories, use --ldap-config; if
spamd runs as root and users have home directories, using --setuid-with-ldap will enable spamd's
usual practice of changing uid to the user running spamc so that it can access the user's autowhitelist

files.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.3 Writing Your Own Tests

When none of the existing tests does what you'd like, you can write a custom test of your own. Custom
tests are just like the distributed tests, except that you install them in the systemwide configuration file or
in a per-user preference file.

Users can write their own tests in their per-user preference files, but for security
reasons these tests will not be used when spamd is performing spam-checking,
unless the allow_user_rules option is set to 1 in the systemwide configuration.
However, setting this option is dangerous because spamd runs as root and a

malicious or inexperienced user can construct a custom test that causes the system
to hang or to invoke an arbitrary command as nobody or as spamd 's uid. Users who
want their own tests on a system that uses spamd should reinvoke the
spamassassin script on their incoming mail (probably in their .procmailrc). Chapter

2 illustrates this approach.

The first step in writing a custom test is to choose a symbolic test name and write a meaningful test
description with the describe directive. For now, do not begin any of your names with a double
underscore (_ _). Test names that begin with two underscores are not listed in test hit reports, nor are

they added to the spam score on their own; such names are used for creating sets of subtests that should
be applied in combination. SpamAssassin calls these combinations meta tests , and they are discussed
later in this section.

Second, determine what part of the message you wish to test. Table 3-1 summarizes the directives used
to test different portions of a message. Each is covered in greater detail in the following sections.

Table 3-1. Message portions and associated test directives

Message part Directive Possible tests

Headers
header
TESTNAME

Match a regexp

Don't match a regexp

Exists

Evaluate Perl code

Check Received headers against
DNSBL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Message part Directive Possible tests

Message subject and text of message body, decoding
all textual MIME parts, with HTML tags and line
breaks removed

body
TESTNAME

Match a regexp

Evaluate Perl code

Text of message body, decoding all textual MIME
parts, with HTML tags and line breaks retained

rawbody
TESTNAME

Match a regexp

Evaluate Perl code

Undecoded message body including all MIME parts full TESTNAME
Match a regexp

Evaluate Perl code

URIs in the message body uri TESTNAME Match a regexp

URIs in the message body
uridnsbl
TESTNAME

(SpamAssassin 3.0) Check for
address in a DNS-based blacklist

Third, decide if your test requires any special test flags. Test flags are used to inform SpamAssassin that
your test may apply only under certain conditions or may do something unusual. Use the tflags TESTNAME

flaglist directive to indicate test flags. The flaglist is a space-separated list of flags. Table 3-2 lists

the available flags in SpamAssassin and their effects.

Table 3-2. Test flags

Flag Meaning

net
A network-based test that will not be run when SpamAssassin is directed to run local tests
only

learn A test that requires training before use (e.g., the Bayesian tests)

userconf
A test that requires user configuration before use (e.g., a test that expects the user to
provide a list of addresses)

nice A test that will be given a negative score

noautolearn
(Spamassassin 3.0) A test that will not be applied in the spam score when determining
whether the message should be automatically learned as spam or non-spam

For example, the RCVD_IN_BL_SPAMCOP_NET test, which checks the message's Received headers against
the DNS-based blacklist at bl.spamcop.net is defined in 20_dnsbl_tests.cf like this:[2]

[2] Section 3.3.1 explains the details of how DNS-based blacklist-checking is performed.

header RCVD_IN_BL_SPAMCOP_NET eval:check_rbl_txt('spamcop', 'bl.spamcop.net.')

describe RCVD_IN_BL_SPAMCOP_NET Received via a relay in bl.spamcop.net

tflags RCVD_IN_BL_SPAMCOP_NET net

Message subject and text of message body, decoding
all textual MIME parts, with HTML tags and line
breaks removed

body
TESTNAME

Match a regexp

Evaluate Perl code

Text of message body, decoding all textual MIME
parts, with HTML tags and line breaks retained

rawbody
TESTNAME

Match a regexp

Evaluate Perl code

Undecoded message body including all MIME parts full TESTNAME
Match a regexp

Evaluate Perl code

URIs in the message body uri TESTNAME Match a regexp

URIs in the message body
uridnsbl
TESTNAME

(SpamAssassin 3.0) Check for
address in a DNS-based blacklist

Third, decide if your test requires any special test flags. Test flags are used to inform SpamAssassin that
your test may apply only under certain conditions or may do something unusual. Use the tflags TESTNAME

flaglist directive to indicate test flags. The flaglist is a space-separated list of flags. Table 3-2 lists

the available flags in SpamAssassin and their effects.

Table 3-2. Test flags

Flag Meaning

net
A network-based test that will not be run when SpamAssassin is directed to run local tests
only

learn A test that requires training before use (e.g., the Bayesian tests)

userconf
A test that requires user configuration before use (e.g., a test that expects the user to
provide a list of addresses)

nice A test that will be given a negative score

noautolearn
(Spamassassin 3.0) A test that will not be applied in the spam score when determining
whether the message should be automatically learned as spam or non-spam

For example, the RCVD_IN_BL_SPAMCOP_NET test, which checks the message's Received headers against
the DNS-based blacklist at bl.spamcop.net is defined in 20_dnsbl_tests.cf like this:[2]

[2] Section 3.3.1 explains the details of how DNS-based blacklist-checking is performed.

header RCVD_IN_BL_SPAMCOP_NET eval:check_rbl_txt('spamcop', 'bl.spamcop.net.')

describe RCVD_IN_BL_SPAMCOP_NET Received via a relay in bl.spamcop.net

tflags RCVD_IN_BL_SPAMCOP_NET net

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, after adding or modifying a test, you should run spamassassin --lint to check your new rules for

correct syntax. This command will attempt to parse all of the rules and configuration files in the ruleset
directory and systemwide configuration directory. It exits quietly if no errors are found.

Versioning Your Rules

If you plan to create an extensive set of new rules, and especially if you plan to distribute
them to other SpamAssassin users, you should use the version_tag configuration option to

set a string that will denote your version of the rules. This string will appear in the X-Spam-
Status header, after SpamAssassin's version number.

For example, set version_tag like this:

version_tag example.com

to produce the following in the header:

X-Spam-Status: No, hits=0.9 required=5.0 tests= FROM_NO_LOWER autolearn=no

version=3.0.0-example.com

If your rules rely on a particular version of SpamAssassin, include the require_version

directive, followed by the required version number. When SpamAssassin sees this directive
when parsing a file, it skips the rest of the file unless the version number is an exact match
for the running version. For example, to ensure that custom rules you wrote for
SpamAssassin 2.63 won't be used in SpamAssassin 3.0, add this line to the top of the file
containing your rules:

require_version 2.63

3.3.1 Header Tests

Use the header directive to define a header test. Header tests can test for the existence of a header or
check to see if a header matches (or fails to match) a regular expression.

To check for the existence of a header, use the following syntax:

header TESTNAME exists:headername

Regular expression tests can be applied to any single header in a message, both the To and Cc headers, all
Message-Id headers, or all headers. Use the following form to match a header to a Perl regular expression:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

header TESTNAME headername =~ /regexp/modifiers

Use this next syntax to test whether a header does not match a regular expression:

header TESTNAME headername !~ /regexp/modifiers

In these tests, the headername can be the name of a single header, or can be ToCc (to match in the To or

Cc header), MESSAGEID (to match in any Message-Id header), or ALL (to match in any header).
SpamAssassin 3.0 also supports headername EnvelopeFrom to match against the address supplied in the

SMTP MAIL FROM command if the MTA provides this information to SpamAssassin.

A header that does not exist will not match any regular expression. To handle the possibility of a
nonexistent header, you can add an optional [if-unset : STRING] after the regular expression and

modifiers, and STRING will be tested against the regular expression if the header does not exist. For
example, to look for a Reply-To header that either contains @localhost or is missing, you could use this

rule:

header LOCAL_OR_NO_REPLY reply-to =~ /@localhost/ [if-unset: @localhost]

Many of the methods available in the Mail::SpamAssassin::EvalTests module test headers. This module is
not documented, but you can learn about its methods by reading the rules distributed with SpamAssassin.
For example, the subject_is_all_caps() method matches when the Subject header contains all capital

letters. This test is the basis of the SUBJ_ALL_CAPS rule distributed with SpamAssassin:

header SUBJ_ALL_CAPS eval:subject_is_all_caps()

3.3.1.1 Configurable header tests (SpamAssassin 3.0)

Some of the header tests in SpamAssassin 3.0 that use Mail::SpamAssassin::EvalTests methods have
configurable parameters that control their operation. These parameters should be defined in sitewide or
user configuration files.

The check_for_from_dns() method performs a DNS lookup on the address in the message's Reply-To or

From header to ensure that an MX record listing a host willing to receive mail for the message sender's
host exists. Because DNS lookups can be slow, two configuration file options, check_mx_attempts and
check_mx_delay are provided so you can adjust these lookups. Set check_mx_attempts to the number of
lookup attempts you are willing to have SpamAssassin make (the default is 2). Set check_mx_delay to the

number of seconds to wait between attempts in case the domain name server is temporarily down (the
default is 5).

The check_hashcash_value() and check_hashcash_double_spend() methods implement Hashcash

verification (http://www.hashcash.org). If a message includes an X-Hashcash header, SpamAssassin can
quickly verify that the sender spent the required processing time to produce a valid header and reduces
the message's spam score in proportion to how difficult it was for the sender to produce the header. To
control SpamAssassin's use of Hashcash, define the following configuration variables:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

use_hashcash

If this variable is set to 1 (the default), Hashcash headers in messages will be checked. To disable
Hashcash-checking, set this variable to 0 .

hashcash_accept address(es)

In order for SpamAssassin to perform a Hashcash check, it must know all of the valid addresses that
could receive mail with Hashcash headers. Set this variable to provide those addresses.

You can use multiple hashcash_accept directives or multiple addresses in a single directive to list

several addresses. You can also use an asterisk (*) as a wildcard for zero or more characters and
the question mark (?) as a wildcard for zero or one character, much as you would to specify
filename patterns in a shell. Finally, you can use %u to represent the current user's username in a

sitewide configuration file. For example, a sitewide configuration file for users at example.com might
include:

hashcash_accept %u@example.com %u@*.example.com

hashcash_doublespend_path /path/to/file

Set this variable to the path at which SpamAssassin will create and maintain a (Berkeley DB format)
database of previously seen Hashcash headers to prevent a sender from reusing a header. The
default file is ~/.spamassassin/hashcash_seen . For a shared sitewide database, the user
SpamAssassin runs as must have permission to write to this file and its directory.

hashcash_doublespend_file_mode mode

The file mode, in octal, for the Hashcash double-spend database. The default file mode is 0700. The
file mode should include execute bits so that SpamAssassin can create directories, if necessary; i.e.,
use 0700 rather than 0600.

3.3.1.2 check_rbl()

A set of methods that can be the basis for new tests are the check_rbl() , check_rbl_txt() , and
check_rbl_sub() methods. These methods extract IP addresses from a message's Received headers,

discard those that are known to be reserved addresses or on trusted networks, and query a DNS-based
blacklist for each address. If any of the addresses are listed in the blacklist, the test matches. Rules using
these methods are written like other eval rules:

header A_NEW_BLACKLIST eval:check_rbl('nasties','new.blacklist.zone')

Call check_rbl() with two arguments. The first argument is the zone ID , a string that's used to identify

the blacklist. It's primarily useful when you're querying a blacklist that's composed of many different lists,
and you later want to evaluate the query result by which sublists the addresses were on (this topic is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

discussed later in this chapter).

If you append -notfirsthop to the name of the zone ID, the originating IP address will be excluded from
RBL lookups unless it is the only IP address. This is useful when querying blacklists of dialup or DSL (Digital
Subscriber Line) hosts that are expected to relay all their email through an ISP's mail server. If
new.blacklist.zone was this kind of blacklist, you might have written the test like this:

header A_NEW_BLACKLIST eval:check_rbl('nasties-not-firsthop','new.blacklist.zone')

Similarly, you can append -firsttrusted to check the IP address that appears in the Received header that
was added by the most remote trusted server (IP addresses in Received headers added by more remote
relays cannot be trusted). This is useful for querying a DNS-based whitelist to determine whether the
server that first relayed the email to a trusted server appears on the whitelist. By appending -untrusted ,
you will check only the untrusted IP addresses (those more remote than the most remote trusted server).
Here's a definition for a test of a DNS-based whitelist:

header A_NEW_WHITELIST eval:check_rbl('friends-firsttrusted','new.whitelist.zone')

tflags A_NEW_WHITELIST nice

(Remember, as Table 3-2 points out, when defining a test that will lower the spam score, you must set the
nice test flag.)

Trusted and Untrusted Servers

Some mail servers are more trustworthy than others. In many organizations, email is
received at an SMTP (Simple Mail Transfer Protocol) gateway on the Internet, checked for
viruses, and then relayed through a firewall to an internal SMTP gateway that is responsible
for delivering mail to individual machines on the internal network. In such a configuration,
messages received by internal machines will have Received headers added by the internal
SMTP gateway and the external SMTP gateway. The organization may also maintain (or
contract with) off-site machines that serve as backup mail exchangers if the main SMTP
gateway is unreachable. All of these machines are under the organization's control (or the
control of a trusted provider), and the information in their headers can be trusted. Received
headers added by other machines may be forged.

SpamAssassin doesn't check the IP addresses of trusted relays against DNS-based blacklists.
By default, SpamAssassin works backward through the Received headers, beginning with the
one added by the MTA on its own system (which is always trusted), and decides whether or
not the addresses in each header are trusted. SpamAssassin treats Received lines that show
messages being received from the local host, from a host on the same /16 subnet, from a
host with a private IP address, or by a host with a private IP address as accurate and uses
them to infer trusted relays.

When these simple inferences are not sufficient, you can manually define a set of trusted
relays or networks using the trusted_networks configuration option, like this:

trusted_networks 10/8 127/8 209.58.173.10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This specifies that all hosts in the 10.*.*.* range, all hosts in the 127.*.*.* range, and the
single host 209.58.173.10 are to be trusted. Multiple trusted_networks directives can be

used.

SpamAssassin 3.0 adds the internal_networks configuration option. Set
internal_networks to the list of relays or networks that you trust because you manage

them (or they are within your organization or are mail exchangers for your organization).
trusted_networks may include other hosts that you trust but that are not part of your mail

organization. Separating these concepts allows SpamAssassin 3.0 to do a better job of
detecting spam from dialup hosts being routed around their ISP's designated outgoing mail
server, while still allowing messages from trusted sites to skip blacklist-testing.

The second argument is the DNS zone for the blacklist. SpamAssassin checks the blacklist by performing a
DNS query for a hostname in this zone. SpamAssassin determines the hostname by reversing the IP
address that it's trying to check (e.g., 128.0.10.0 becomes 0.10.0.128) and prepending it to the zone
name (e.g., creating 0.10.0.128.new.blacklist.zone). It then issues a query for a DNS A record associated
with that hostname. Typically, if an address is blacklisted, the DNS query will be successful-it will return
an IP address (usually 127.0.0.1). If the address is not on the blacklist, the DNS query will fail (returning
an NXDOMAIN response).

3.3.1.3 check_rbl_txt()

Some blacklists are based on DNS TXT records instead of DNS A records. (Blacklist operators should
indicate which kind of lookup is appropriate for their blacklist.) Use the check_rbl_txt() method to
perform lookups using a blacklist based on TXT records. check_rbl_txt() accepts the same arguments
as check_rbl() and works analogously. SpamAssassin reverses the IP address that it's trying to check

(e.g., 128.0.10.0 becomes 0.10.0.128) and prepends it to the zone name (e.g., creating
0.10.0.128.new.blacklist.zone). It then issues a query for a DNS TXT record associated with that
hostname. If the address is blacklisted, the TXT query will return a string explaining why the address is
blacklisted. If the address is not on the blacklist, the DNS query will fail (returning an NXDOMAIN
response).

3.3.1.4 check_rbl_sub()

Some DNSBLs are aggregations of many different blacklists. These DNSBLs typically return different IP
addresses in response to a successful A lookup to indicate on which sublist(s) the blacklisted address
appears (e.g., the query returns 127.0.0.1 for addresses on sublist 1, 127.0.0.2 for addresses on sublist 2,
etc.).

Use the check_rbl_sub() method to query a combined DNSBL and determine if the IP address is on a

specific sublist. This method also takes two arguments: the first is a zone ID, and the second indicates
which response is associated with the desired sublist. For example, if the new.blacklist.zone blacklist is
composed of sublists that return 127.0.0.1 and 127.0.0.2, you could check IP addresses against only the
second sublist:

header A_NEW_BLACKLIST eval:check_rbl('nasties','new.blacklist.zone')

header NEW_BLACKLIST_2 eval:check_rbl_sub('nasties','127.0.0.2')

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Less commonly, composite lists may return a single A record whose IP address is to be interpreted as a
bitmask of matching sublists. To check a sublist in this case, provide a bitmask (as a positive decimal
number) as the second argument to check_rbl_sub() .

Note that you must have a rule that uses check_rbl() or check_rbl_txt() to associate a zone ID

string with the blacklist in order to check the result against a sublist.

3.3.2 Body Tests

The body , rawbody , and full directives define tests on the body of an email message. Two basic kinds of

tests are provided. Message bodies can be tested against a regular expression pattern, and message
bodies can be submitted to an eval test defined in Mail::SpamAssassin::Evaltests .

The body directive defines a test to be applied to the text of a message, as it would be likely to appear to a

person reading the message in a text-based mail client. The Subject header is considered to be the first
paragraph of the message body. All textual MIME components of the message are decoded, and HTML tags
are removed. The message is reformatted into paragraphs (text separated by multiple newlines), and
newlines within paragraphs are removed. The test is then applied to each message paragraph. Here's an
example of a body test distributed with SpamAssassin that matches if the word "remove" appears in
quotes in the body:

body REMOVE_IN_QUOTES /\"remove\"/i

The rawbody directive defines a test to be applied to the text of a message, as it would be likely to appear

to a person reading the message in an HTML-based mail client. The Subject header is not included. All
textual MIME components of the message are decoded, and the message is split into lines based on the
line breaks in the message. The test is then applied to each message line. Here's an example of a rawbody
test distributed with SpamAssassin that's designed to find a JavaScript statement that's common in spam:

rawbody HIDE_WIN_STATUS /<[^>]+onMouseOver=[^>]+window\.status=/I

Note that this test could not be written as a body test because this JavaScript appears inside an HTML tag.

The full directive defines a test to be applied to the full text of a message. All headers are included, along

with all textual MIME components of the message body, but no decoding is performed. The message is
split into lines based on the line breaks in the message, and the test is then applied to each header and
message line. SpamAssassin does not distribute any full tests that match regular expressions; it reserves
full for eval tests that must submit the raw message to external spam clearinghouses (which are discussed
later in this chapter).

Body tests are powerful but slow. Be especially careful when defining regular
expressions to test message bodies, as these expressions will be applied to large
amounts of text. Consult Jeffrey Friedl's book Mastering Regular Expressions
(O'Reilly) for important tips on optimizing regular expression processing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3.3 URI Tests

The uri directive defines a test on all URIs that appear in an email message. SpamAssassin creates a list

of http , https , ftp , mailto , javascript , and file URIs and transforms bare hostnames starting with www
or ftp into appropriate URIs. The test is applied to each URI in the message.

URIs can be matched against a regular expression pattern. Here's an example of a distributed URI test
that checks for a mailto URI with the string "remove" in the address portion:

uri MAILTO_TO_REMOVE /^mailto:.*?remove/is

SpamAssassin 3.0 includes a plug-in called Mail::SpamAssassin::Plugin::URIDNSBL . When loaded, this
plug-in enables the uridnsbl directive, which takes each URI in the message, extracts the name of the

host in the URI, looks up its IP address in DNS, and then checks the IP address against a specified DNSBL.
These tests catch spam that is relayed through innocent (or temporary) mail servers but that advertise
web sites on spammer servers. Here's a portion of SpamAssassin 3.0's 25_rules.cf file that defines a
uridnsbl test called URIBL_SBLXBL :

loadplugin Mail::SpamAssassin::Plugin::URIDNSBL

...

uridnsbl URIBL_SBLXBL sbl-xbl.spamhaus.org. TXT

header URIBL_SBLXBL eval:check_uridnsbl('URIBL_SBLXBL')

describe URIBL_SBLXBL Contains a URL listed in the SBL/XBL blocklist

3.3.4 Meta Tests

A meta test is a test that combines the results of several other tests using Boolean logic. For example, a
meta test might be positive if either of two subtests are positive, or might specify that both subtests must
be positive. A meta test can combine several tests using Boolean operators for and (&&), or (||), and
not (!), along with parentheses to modify the precedence in the expression.

When using meta tests, you will often want some or all of the subtests to contribute only to the meta test
and not to be separately scored. To achieve this effect, give the subtests names that begin with two
underscores. This prevents SpamAssassin from scoring them separately. You can then assign a single
score to the meta test. Because non-scoring subtests will never be listed in a SpamAssassin report, you
need not include a describe directive for these tests.

Example 3-3 shows the CLICK_BELOW meta test in SpamAssassin.

Example 3-3. A meta test and its subtests

body CLICK_BELOW_CAPS /CLICK\s.{0,30}(?:HERE|BELOW)/s

describe CLICK_BELOW_CAPS Asks you to click below (in capital letters)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

body _ _CLICK_BELOW /click\s.{0,30}(?:here|below)/is

meta CLICK_BELOW (_ _CLICK_BELOW && !CLICK_BELOW_CAPS)

describe CLICK_BELOW Asks you to click below

The CLICK_BELOW_CAPS test is standard body test that is positive if the words "CLICK BELOW" or "CLICK
HERE" appear in the message in uppercase. Although it is a standard test that is used and scored on its
own, SpamAssassin also uses it as a subtest in a meta test. The _ _CLICK_BELOW test is a nonscoring
subtest that is positive if the same phrases appear in any combination of upper- and lowercase letters. The
CLICK_BELOW meta test is positive when _ _CLICK_BELOW is positive and CLICK_BELOW_CAPS is not
positive-that is, when the phrase appears in anything except all uppercase. Typically, a mixed or
lowercase occurrence is assigned a lower score than the uppercase version.

In addition to using Boolean logic operators, it's also possible to use arithmetic operators (+ , - , * , /)
and comparisons (> , >= , < , <= , != , =). When you combine tests with arithmetic operators, the values

of subtests are 1 if they are positive and 0 if they are negative. One such meta test in SpamAssassin is
MULTI_FORGED, which counts the number of positive tests for different kinds of Received header forgery
and is positive when two or more forgeries appear in the same message. This test is shown in Example 3-4
.

Example 3-4. The MULTI_FORGED meta test

meta MULTI_FORGED ((FORGED_AOL_RCVD + FORGED_HOTMAIL_RCVD + FORGED_EUDORAMAIL_RCVD +

FORGED_YAHOO_RCVD + FORGED_JUNO_RCVD + FORGED_GW05_RCVD) > 1)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.4 The Built-in Tests

SpamAssassin is distributed with over 700 test rules defined for English-language spam.
SpamAssassin 2.63 includes another 2,900 rules for spam in other languages. (Language support in
SpamAssassin 3.0 is currently available only for French and German, but language support is likely to
increase as SpamAssassin gets into wider release.) Reading the rules distributed with SpamAssassin is
an excellent way to learn to write your own rules.

SpamAssassin's rules are defined in a set of files typically installed in /usr/share/spamassassin :

10_misc.cf

The 10_misc.cf file defines templates for the spam report that SpamAssassin attaches to spam
messages, definitions of headers that SpamAssassin adds to messages, and default settings for
the most common configuration options. This file is described in more detail later in this
chapter.

10_plugins.cf (SpamAssassin 3.0)

This file provides a convenient place to load SpamAssassin plug-in modules with the
loadplugin directive. Plug-ins extend SpamAssassin's features.

20_fake_helo_tests.cf

This file defines a set of rules used to test for forged HELO hostnames. This file is also described
in more detail later in this chapter.

20_body_tests.cf

This file defines most tests against message bodies, spam clearinghouses, message languages,
and message locales. It's described in more detail later.

20_dnsbl_tests.cf

This file defines tests against many different DNS blacklists, using the check_rbl() ,
check_rbl_sub() , and check_rbl_txt() eval tests described earlier in this chapter. These

blacklists include NJABL (http://www.dnsbl.njabl.org/), SORBS (http://www.dnsbl.sorbs.net/),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OPM (http://opm.blitzed.org/), Spamhaus (http://www.spamhaus.org/sbl/), DSBL
(http://dsbl.org), Spamcop (http://www.spamcop.net/bl.shtml), MAPS (http://www.mail-
abuse.org), and several others.

20_ratware.cf and 20_anti_ratware.cf

The 20_ratware.cf file contains tests that look for tell-tale signs of specialized mail programs
known to be used by spammers (ratware or spamware). Most of them are tests of message
headers. The 20_anti_ratware.cf file is designed to contain tests that look for signs of non-spam
mail programs that might be mistaken for spamware, but it doesn't contain any active tests as
of SpamAssassin 3.0.

20_head_tests.cf

This file contains most of the tests that SpamAssassin performs against message headers. This
includes tests for blacklisted and whitelisted addresses in the From and To headers (discussed
in greater detail in Chapter 4).

20_porn.cf (all SpamAssassin versions) and 20_drugs.cf (SpamAssassin 3.0)

These files contain body tests that look for common indicators of pornographic spam and online
pharmacy spam, respectively.

20_phrases.cf

This file contains body tests that look for common phrases that appear in spam. Most of them
are either instructions for how you can be removed from the mailing list or claims that the
message conforms to a bill that putatively regulates unsolicited email.

20_uri_tests.cf

This file contains most of the tests that SpamAssassin performs against URIs that appear in
messages.

20_compensate.cf

Tests in this file are intended to compensate for common false positives in header tests and are
"nice" tests (with negative spam scores).

20_html_tests.cf

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This file contains body tests that target messages that contain HTML markup. Certain types of
markup are very commonly seen in spam, and several of these tests make for interesting
reading.

20_meta_tests.cf

This file contains meta tests. Meta tests are tests that combine other tests, and are described
earlier in this chapter.

23_bayes.cf

This file contains tests that act on the results of the Bayesian classifier. The Bayesian system
and these tests are described in greater detail in Chapter 5 .

25_head_tests_es.cf, 25_body_tests_es.cf, 25_head_tests_pl.cf, 25_body_tests_pl.cf (SpamAssassin
2.6x)

These files contain header and body tests for Spanish (es) and Polish (pl) messages.

25_uribl.cf (SpamAssassin 3.0)

This file loads the URIDNSBL plug-in and defines URI tests against DNS blacklists.

30_text_*.cf (de,es,fr,it,pl,sk)

These files don't define any new tests but provide translations of test descriptions and report
templates into different languages, such as German (de), Spanish (es), French (fr), Italian (it),
Polish (pl), and Slovak (sk). SpamAssassin 3.0 includes only German and French tests at the
time of this writing.

50_scores.cf

This file defines the scores associated with all of the tests defined in the other files. The scores
are separated into a single file because they are generated by an algorithm that applies each
test to a large corpus of spam and non-spam messages and adjusts the scores to minimize
false positives and false negatives.

60_whitelist.cf

The rules in this file set up default whitelists for several large well-known addresses and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

companies, such as Amazon.com .

Because these files are overwritten whenever SpamAssassin is upgraded, they should not be
changed. All local rules or changes to the scoring of distributed rules should be performed in the
systemwide configuration file (or in per-user preference files) rather than in these files. Reading these
files, however, provides the most information about how SpamAssassin rules are designed.

The following sections describe some of the more important rule files in greater detail.

3.4.1 10_misc.cf

The 10_misc.cf file defines special rules that are not spam tests. These include templates for the
spam report that SpamAssassin attaches to spam messages, definitions of headers that
SpamAssassin adds to messages, and default settings for the most common configuration options
(such as those described in Chapter 2).

Templates are defined with the repo rt, unsafe_report , and spamtrap directives, and the
corresponding utility directives clear_report_templa te, clear_unsafe_report_template , and
clear_spamtrap_template . Use the report template to design the report that SpamAssassin
attaches to spam messages. Use the unsafe_report template to design the report that
SpamAssassin attaches to messages that contain potentially executable code. Use the spamtrap

template to design the message that SpamAssassin sends back to senders who email a spam trap
address that calls the spamassassin script with the --report and --warning-from options (spam-

reporting is discussed in Chapter 2).

Each time it encounters a template directive, SpamAssassin appends new text to the template.
Accordingly, to ensure that you're starting with a clean slate when you define a new template, you
must first clear the template and then add your desired text. Here's how the spam report might be
defined in SpamAssassin:

clear_report_template

report Spam detection software, running on the system "_HOSTNAME_", has

report identified this email as possible spam. The original message

report is attached to this so you can view it (if it isn't spam) or block

report similar future email. If you have any questions, see

report _CONTACTADDRESS_ for details.

report

report Content preview: _PREVIEW_

report

report Content analysis details: (_HITS_ points, _REQD_ required)

report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

report " pts rule name description"

report ---- ---------------------- ------------------------------------

report _SUMMARY_

HOSTNAME , _CONTACTADDRESS_ , _PREVIEW_ , _HITS_ , _REQD_ , and _SUMMARY_ are variables that

are replaced by their values when the template is generated for each message. The complete list of
variables, which appears in the Mail::SpamAssassin::Conf manpage, is given in Table 3-3 .

Table 3-3. Variables for use in report and header templates

Variable Value

Variables that depend on the message

YESNOCAPS "YES" if message is spam; "NO" if message is not spam.

YESNO "YES" if message is spam; "NO" if message is not spam.

HITS Spam score for message.

BAYES Bayesian classifier score.

AUTOLEARN
"spam" if message was auto-learned as spam by the Bayesian
classifier; "ham" if auto-learned as non-spam; "NO" if the
message was not auto-learned.

AWL Autowhitelist score modifier.

DATE Date and time of SpamAssassin scan in RFC 2822 format.

STARS
A string containing one asterisk for each point of spam score
(up to 50).

STARS(character)
A string containing one of character for each point of spam

score (up to 50).

RELAYSTRUSTED
List of relays found in the message and deemed to be trusted.
The list includes the IP address, reverse DNS lookup, and HELO
address for each relay.

RELAYSUNTRUSTED
List of relay IP addresses found in the message and deemed to
be untrusted.

TESTS, _TESTSSCORES_
Comma-separated list of tests matched, or tests matched and
their associated scores.

TESTS(character), _TESTS-

SCORES(character)_

As in _TESTS_, _TESTSSCORES_ but separated by character

instead of comma.

LANGUAGES
List of languages that SpamAssassin thinks a message is written
in.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variable Value

PREVIEW Preview of message content.

SUMMARY Multiline list of tests matched and their scores and descriptions.

REPORT One line list of tests matched.

RBL Results of positive DNSBL queries.

DCCB, _DCCR_ Checking host and results of DCC check of message.

PYZOR Results of Pyzor check of message.

Variables that don't depend on the message

REQD SpamAssassin's threshold score for calling a message spam.

VERSION, _SUBVERSION_ Version and subversion of SpamAssassin.

HOSTNAME Hostname of SpamAssassin host.

CONTACTADDRESS
The value of the report_contact directive (typically, the email

address of the postmaster).

The variables in Table 3-3 can also be added to customized message headers for messages processed
by SpamAssassin by using the add_header directive, which takes the following form:

add_header messagetype headername string

The messagetype can be spam , ham (non-spam), or all and determines which kind of messages will

have the header added. The new header will be named X-Spam- headername , and string , which

should be enclosed in double quotes, will be the value of the header. For example, the following
directive, which appears in the distributed 10_misc.cf file, adds an X-Spam-Status header to all
messages-spam or not-that shows whether or not each message is spam, the spam score, the
spam threshold score, the tests that were matched, whether the message is being automatically
learned (see Chapter 5), and the version of SpamAssassin:

add_header all Status "_YESNO_, hits=_HITS_ required=_REQD_ tests=_TESTS_ autolearn=_

AUTOLEARN_ version=_VERSION_"

If you want to change or remove a default header, you can use the remove_header directive:

remove_header messagetype headername

You can remove all headers with the clear_headers directive.

3.4.2 20_fake_helo_tests.cf

This file defines a set of rules that use the eval test check_for_rdns_helo_mismatch() . This test

PREVIEW Preview of message content.

SUMMARY Multiline list of tests matched and their scores and descriptions.

REPORT One line list of tests matched.

RBL Results of positive DNSBL queries.

DCCB, _DCCR_ Checking host and results of DCC check of message.

PYZOR Results of Pyzor check of message.

Variables that don't depend on the message

REQD SpamAssassin's threshold score for calling a message spam.

VERSION, _SUBVERSION_ Version and subversion of SpamAssassin.

HOSTNAME Hostname of SpamAssassin host.

CONTACTADDRESS
The value of the report_contact directive (typically, the email

address of the postmaster).

The variables in Table 3-3 can also be added to customized message headers for messages processed
by SpamAssassin by using the add_header directive, which takes the following form:

add_header messagetype headername string

The messagetype can be spam , ham (non-spam), or all and determines which kind of messages will

have the header added. The new header will be named X-Spam- headername , and string , which

should be enclosed in double quotes, will be the value of the header. For example, the following
directive, which appears in the distributed 10_misc.cf file, adds an X-Spam-Status header to all
messages-spam or not-that shows whether or not each message is spam, the spam score, the
spam threshold score, the tests that were matched, whether the message is being automatically
learned (see Chapter 5), and the version of SpamAssassin:

add_header all Status "_YESNO_, hits=_HITS_ required=_REQD_ tests=_TESTS_ autolearn=_

AUTOLEARN_ version=_VERSION_"

If you want to change or remove a default header, you can use the remove_header directive:

remove_header messagetype headername

You can remove all headers with the clear_headers directive.

3.4.2 20_fake_helo_tests.cf

This file defines a set of rules that use the eval test check_for_rdns_helo_mismatch() . This test

http://lib.ommolketab.ir
http://lib.ommolketab.ir

takes two arguments: a regular expression pattern to match against the reverse DNS lookup of the
connecting client's IP address, and a regular expression pattern to match against the hostname
provided by the client during in the SMTP HELO command. Spammers often use mail programs that
forge the HELO hostname, and these tests look for such forgeries when the clients have hostnames
that match those of major commercial ISPs. Here's an example of a test from this file:

header FAKE_HELO_AOL eval:check_for_rdns_helo_mismatch("aol\.com","aol\.com")

describe FAKE_HELO_AOL Host HELO did not match rDNS: aol.com

This test matches if the client connects from an IP address that reverse-resolves to an aol.com
hostname but claims in the HELO to have a hostname that does not match "aol.com". These tests are
applied to all of the Received headers from untrusted relays.

You can use this eval test to reject messages that claim, in their HELO, to be from your own host. If
your hostname is myhost.example.com , and you know that your IP address reverse-resolves to the
same hostname, you could add a rule like this (to the systemwide configuration file):

header FAKE_MY_HELO eval:check_for_rdns_helo_mismatch("(?!myhost\.example\.com).

{18}$","myhost\.example\.com")

describe FAKE_MY_HELO Host HELO faked my hostname

score FAKE_MY_HELO 5.0

The regular expression (?!myhost\.example\.com).{18}$ matches any hostname containing at

least 18 characters that does not end in myhost.example.com , which should match the reverse DNS
lookup of any untrusted relay host other than your own. If any such host claims in their HELO to be
myhost.example.com , it is forging your hostname.

3.4.3 20_body_tests.cf

This file contains most of the tests that SpamAssassin performs against message bodies. In addition
to tests for regular expressions in the body, this file defines tests against spam clearinghouses and
tests of message language and locale.

A spam clearinghouse is a server that maintains a database of checksums of messages reported as
spam and allows clients to test a message against the checksum database. SpamAssassin supports
three spam clearinghouses: Vipul's Razor (http://razor.sf.net/), Pyzor (http://pyzor.sf.net), and the
Distributed Checksum Clearinghouse, or DCC (http://rhyolite.com/anti-spam/dcc/). Special client
software must be installed on the system in order for SpamAssassin to use these tests. The
spamassassin -report command can be used to report confirmed spam to these clearinghouses as
well.

In SpamAssassin 3.0, the pyzor_options configuration directive can be set to a string of additional

options to be passed to the Pyzor client on the command line when SpamAssassin invokes it.
Similarly, the dcc_options directive can be set to provide additional options to the DCC client.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.5 Whitelists and Blacklists

Although SpamAssassin generally does a good job of avoiding false positives, you may find that some
mail that you want to receive contains enough spamlike characteristics that SpamAssassin regularly
tags them as spam. You may want to be sure that SpamAssassin will never mistake email from an
important user, client, vendor, or other sender for spam. You may even have users who don't like
spam-filtering. SpamAssassin allows you to set up systemwide or user-specific lists of senders whose
mail should not be considered spam, and (systemwide) lists of users who don't want their email
filtered. Such lists are called whitelists.

On the other hand, you may regularly receive unwanted mail from a particular sender that doesn't
get tagged reliably by SpamAssassin. You may know ahead of time that you don't want to receive
mail from certain organizations or senders. SpamAssassin also allows you to set up system-wide or
user-specific lists of senders whose mail should be tagged as spam. Such lists are called blacklists.

This chapter discusses how to set up whitelists and blacklists. It begins by examining the
SpamAssassin directives for systemwide whitelisting and blacklisting, and then explores two different
ways to manage user-specific lists. A related feature, autowhitelists, is covered in Chapter 4.

3.5.1 Systemwide Whitelists

SpamAssassin whitelists reduce the spam scores of messages when the sender or recipient appears
on the whitelist. Whitelists are most commonly used to ensure that messages from important senders
are not marked as spam, but they can also be used to change the spam threshold for recipients or
enable recipients to effectively opt out of spam-tagging.

3.5.1.1 Whitelisting senders

Use the whitelist_from directive to whitelist a sender's address. The sender's address is the

address that appears in the Resent-From header, if that header exists, or in any of the headers:
From, Envelope-Sender, Resent-Sender, or X-Envelope-From. If a sender's address matches a
whitelist_from address, the spam score of the message is reduced by 100 points, which makes it

nearly impossible for the message to be tagged as spam.

For example, if you receive important messages from boss@mybigclient.com, you can ensure that
they won't be tagged as spam by using this line in the systemwide configuration file:

whitelist_from boss@mybigclient.com

You can use multiple whitelist_from directives or multiple addresses in a single directive to

whitelist several addresses. You can also use an asterisk (*) as a wildcard for zero or more
characters and a question mark (?) as a wildcard for zero or one character, much as you would to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specify filename patterns in a shell. For example, you could whitelist all mail from mybigclient.com
and from all hosts in the example.com domain with these lines:

whitelist_from *@mybigclient.com

whitelist_from example.com *.example.com

A whitelist entry can be removed with the unwhitelist_from directive. Because SpamAssassin is

distributed with several default whitelist entries (in the 60_whitelist.cf file), you may find that you
want to remove some of them. The unwhitelist_from directive is also useful in per-user

configuration files, to remove one of the systemwide whitelist entries. To remove a whitelist entry,
the address in the unwhitelist_from directive must exactly match the one given to
whitelist_from.

3.5.1.2 Whitelisting senders by relay

Sometimes whitelisting by the sender's address alone isn't sufficient. For example, the sender's
address might be one that's easily guessed or likely to be spoofed by spammers. For example, a
spammer might try to ensure that you read his message by forging the sender's address to
hostmaster@internic.net or billing@amazon.com.

SpamAssassin offers more control over whitelisted senders with the whitelist_from_rcvd directive.

This directive associates a sender's email address with the hostname or domain name of the last
trusted relay. SpamAssassin uses DNS to do a reverse-lookup of the IP address of the last trusted
relay; the reverse-lookup yields one or more hostnames associated with the IP address. Here's how
you would whitelist boss@mybigclient.com only if the last trusted relay reverse-resolves to a
hostname in the mybigclient.com domain:

whitelist_from_rcvd boss@mybigclient.com mybigclient.com

Messages that match a whitelist_from_rcvd directive have their spam scores lowered by 100.

In order for SpamAssassin to distinguish trusted and untrusted relays, you may
need to set the trusted_networks option, which was described earlier. If your

mail topology is relatively simple-you or your ISP control all of the IP
addresses in the class B network that includes your mail server's public IP
address-SpamAssassin can usually make a reasonable guess.

SpamAssassin is distributed with several, default, relay-based whitelist entries in the 60_whitelist.cf
file. These entries are defined with the def_whitelist_from_rcvd directive, which works just like
whitelist_from_rcvd but lowers the spam score by only 15 when a message matches.

As you might expect, whitelist entries based on relays can be removed with the
unwhitelist_from_rcvd address directive. The address must exactly match the address defined in
a whitelist_from_rcvd or def_whitelist_from_rcvd directive. If the whitelist_from_rcvd
directive uses wildcards, the unwhitelist_from_rcvd directive must specify those same wildcards.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5.1.3 Whitelisting recipients

SpamAssassin provides three levels of whitelisting for message recipients. Whitelisting a recipient
lowers the spam score on all messages addressed to the recipient. Use recipient-whitelisting to
prevent any spam-checking from being performed on behalf of a recipient. You can also use
recipient-whitelisting as a crude mechanism for increasing the spam threshold-lowering the false
positive rate at the cost of more false negatives-for a recipient.

A recipient's address may appear in several headers. If Resent-To and/or Resent-Cc headers are
present, the address is checked against only those headers. Otherwise, the address may be matched
in the last three Received headers or the headers To, Apparently-To, Delivered-To, Envelope-
Recipients, Apparently-Resent-To, X-Envelope-To, Envelope-To, X-Delivered-To, X-Original-To, X-
Rcpt-To, X-Real-To, or Cc.

The three levels of recipient-whitelisting are configured with the directives whitelist_to (lower
spam score by 6), more_spam_to (lower spam score by 20), and all_spam_to (lower spam score by

100). For example, to ensure that no messages to root or postmaster are tagged as spam, you could
use the following lines:

all_spam_to root@*

all_spam_to postmaster@*

No unwhitelist_to directive is provided because whitelisting by recipient is really useful only in
systemwide configuration. Individual users can just change their required_hits setting in their

.spamassassin/user_prefs file instead.

3.5.2 Systemwide Blacklists

SpamAssassin has only two blacklist directives (and two directives to unblacklist addresses). You can
blacklist sender addresses or recipient addresses.

The blacklist_from directive is used to specify a sender's address to blacklist. The sender's address

is the address that appears in the Resent-From header, if that header exists, or in any of the headers
From, Envelope-Sender, Resent-Sender, or X-Envelope-From. If the sender's address matches a
blacklist_from address, the spam score of the message is increased by 100 points, which makes it

almost certain that the message will be tagged as spam.

For example, a spammer might send messages from support@microsofts.com in the hope that you'll
think it's an important message from an operating system vendor. If you never expect to receive
legitimate messages from support@microsofts.com, you can ensure that any message from that
address will be tagged as spam by using this line in the systemwide configuration file:

blacklist_from support@microsofts.com

You can use multiple blacklist_from directives or multiple addresses in a single directive to blacklist

several addresses. You can also use an asterisk (*) as a wildcard for zero or more characters and a
question mark (?) as a wildcard for zero or one character, much as you would to specify filename

http://lib.ommolketab.ir
http://lib.ommolketab.ir

patterns in a shell. For example, you could blacklist all mail from public.com and from all hosts in the
example.com domain with these lines:

blacklist_from *@public.com

blacklist_from example.com *.example.com

You can remove a blacklist entry with the unblacklist_from directive. To remove a blacklist entry,
the address in the unblacklist_from directive must exactly match the one given to
blacklist_from.

The blacklist_to directive performs blacklisting based on recipient address. As with whitelisting, a

recipient's address may appear in several headers. If Resent-To and/or Resent-Cc headers are
present, the address is checked only against those headers. Otherwise, the address may be matched
in the last three Received headers or the headers To, Apparently-To, Delivered-To, Envelope-
Recipients, Apparently-Resent-To, X-Envelope-To, Envelope-To, X-Delivered-To, X-Original-To, X-
Rcpt-To, X-Real-To, or Cc. If a recipient address matches a blacklist_to entry, the spam score of

the message is increased by 10 points.

Blacklisting by recipient is most useful when spammers use software that sends mail with
recognizably forged To headers (specifying the real recipient in the SMTP transaction, of course). For
example, it used to be popular to send spam with a To header of friend@public.com. Although
SpamAssassin already includes a special test for this address in headers, you could also use the
blacklist_to configuration directive to increase the spam score for such messages by 10 points:

blacklist_to friend@public.com

No unblacklist_to directive is provided. Simply don't blacklist a recipient who should continue to

receive mail.

It's possible, but silly, for the same address to be both blacklisted and
whitelisted. In this case, both lists are applied and, if the blacklist adds 100 to
the spam score and the whitelist subtracts 100, cancel one another out.

3.5.3 Per-User Whitelists and Blacklists

Email from a given address may be welcomed by one user and shunned by another. Although
systemwide whitelists and blacklists are useful antispam tools, in many cases, each user will want her
own individual whitelist and blacklist entries.

SpamAssassin provides two mechanisms for per-user whitelists and blacklists. The first mechanism is
the simplest: add the appropriate configuration directives to the per-user configuration file for the
user's account (typically ~/.spamassassin/user_prefs). The disadvantage of this approach is that it
requires users to have accounts and access to their home directories.The second mechanism is to
configure spamd to look up per-user test scores and whitelists and blacklist entries in an SQL or LDAP

database, as described earlier in this chapter.

If users want to remove systemwide whitelist or blacklist entries, they can use the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unwhitelist_from or unblacklist_from directives described earlier in this chapter.

Whitelists and Blacklists Without SpamAssassin

If SpamAssassin is not run on a systemwide basis on all messages, users can also
implement whitelists and blacklists by carefully organizing the filters they use to run
SpamAssassin on their messages.

For example, on a Unix system that uses procmail for message delivery, a user could
whitelist boss@mybigclient.com and blacklist support@microsofts.com with procmail
recipes before the recipe that runs SpamAssassin. The user's .procmailrc might contain:

:0

* ^From:.*boss@mybigclient.com

$DEFAULT

:0

* ^From:.*support@microsofts.com

/dev/null

:0fw

* <300 000

|/usr/bin/spamassassin

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 4. SpamAssassin as a Learning
System
SpamAssassin provides many rules that have proven useful in distinguishing spam from non-spam
messages, and these rules are updated at each new release. But SpamAssassin provides more than
just generic rules; it has the capability of learning about your email environment and adapting its
detection behavior to maximize its accuracy in that environment.

SpamAssassin includes two adaptive systems that can be used in concert: autowhitelisting and
Bayesian filtering. This chapter discusses the principles, configuration, and operation of both systems.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.1 Autowhitelisting

SpamAssassin's autowhitelisting algorithm learns each sender's history of sending spam or non-spam
messages and modifies the spam score of their subsequent mailings on the basis of this history. The
primary goal of autowhitelisting is to reduce false positives-to make it less likely that a non-spam
message will be tagged as spam-by assuming that people who send you non-spam messages will
not begin to spam you. It can also reduce false negatives if a spammer consistently sends email from
the same email address, but this happens infrequently enough that autowhitelisting rarely has a
significant effect on false negatives.

4.1.1 Principles

When autowhitelisting is enabled, SpamAssassin maintains a database keyed on message senders'
email addresses and the IP addresses of their nearest untrusted relay (if any). Each time a message
from a given sender is received, the message's spam score is added to the sender's total score in the
database, and a count of the number of messages received from that sender is updated.

The average sender score-the total score divided by the number of messages received-is used to
modify the spam score of new messages from that sender. Specifically, the difference between the
average score and the new message's score is multiplied by a configurable factor, and the result is
added to the new message's spam score. The effect is that when the new message has a higher
spam score than average, its spam score is adjusted downward; when the new message has a lower
spam score than average, its spam score is adjusted upward.

As you might expect from this explanation, the autowhitelist tests are the last ones performed by
SpamAssassin. All other tests must be run first in order to have the most accurate spam score for a
message before comparing it to the sender's historical average. In addition, the sender's historical
average is updated with the spam score of a new message before the autowhitelist modifier is
applied.

4.1.2 Configuration

The most important decisions to make in autowhitelisting are how much weight SpamAssassin should
put on a sender's history of sending spam or non-spam messages and how much weight it should put
on the spam score of the message it is checking.

Use the auto_whitelist_factor directive to set the multiplier that is applied to the difference

between a message's spam score and the sender's historical average score. It can range from to 1.
The default factor is 0.5, which causes the final spam score to be halfway between the message's
spam score and the sender's average score.

To put more weight on the historical average, increase the auto_whitelist_factor. When the
auto_whitelist_factor is set to 1, the historical average alone will be the new message's spam

http://lib.ommolketab.ir
http://lib.ommolketab.ir

score (recall, however, that the score before autowhitelisting is performed is fed back into the system
and becomes part of the new historical average).

To put less weight on the historical average, decrease the auto_whitelist_factor. When the
auto_whitelist_factor is set to 0, the historical average is ignored, and the current message's

spam score will not be modified based on the sender's past messages.

Table 4-1 illustrates the impact of several different settings for auto_whitelist_factor. Each row of

the table represents a new message from the same sender. Table columns show the spam score of
each message before applying an autowhitelist modifier, the sender's historical average score, and
the spam score after applying an autowhistelist modifier. In this example, the sender sends several
non-spam messages and then sends a message that looks like spam to SpamAssassin (a false
positive). As you can see, with autowhitelisting using factors of 0.5, 0.75, or 1, the message will not
reach the usual spam threshold of 5 because of the sender's history of non-spam messages. Without
autowhitelisting (i.e., with an factor of 0), the message receives a score of 6.

Table 4-1. The impact of auto_whitelist_factor (AWF)

Message
number

Message score (before
autowhitelist)

Sender
average score

Score after autowhitelist with
given AWF

 0 .5 .75 1

1 2 (none) 2 2 2 2

2 1 2 1 1.5 1.75 2

3 1 1.5 1 1.25 1.375 1.5

4 0 1.33 0 0.67 1.00 1.33

5 2 1.0 2 1.5 1.25 1.0

6 6 1.2 6 3.6 2.4 1.2

SpamAssassin stores its autowhitelist data in database files. SpamAssassin lets Perl's AnyDBM
module choose which database format will be used, based on which system libraries are available. In
SpamAssassin 3.0, you can control this choice by setting the auto_whitelist_db_modules option to

a space-separated list of Perl database modules to be tried in order; the first module that loads
successfully will be used. For example, the default module order is specified like this:

auto_whitelist_db_modules DB_File GDBM_File NDBM_File SDBM_File

How you configure autowhitelisting also depends on whether you want each user to have his own
whitelist database, or whether you want to use one database in common across all users.

4.1.2.1 Configuring per-user autowhitelists

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, SpamAssassin maintains a separate autowhitelist for each user on the system.
SpamAssassin stores the autowhitelist database for a user in the auto-whitelist file in the
.spamassassin subdirectory of each user's home directory. SpamAssassin uses one of several
database formats for this file, depending on what database libraries are available on the system; the
Berkeley DB format is chosen when it's available.

SpamAssassin 3.0 can also store autowhitelists in an SQL database, which is useful when users don't
have accounts on the mail server. To store addresses in SQL, you must install the DBI Perl module
and an appropriate driver module for your SQL server. Common choices are DBD-mysql (for the
MySQL server), DBD-Pg (for the PostgreSQL server), and DBD-ODBC (for connection to an ODBC-
compliant server).

You should create a database and a user with privileges to access it. You must then create a table in
the database to store the user autowhitelist. The SpamAssassin source code includes schemas for
MySQL and PostgreSQL tables in the sql subdirectory. Here is the MySQL schema:

CREATE TABLE awl (

 username varchar(100) NOT NULL default '',

 email varchar(200) NOT NULL default '',

 ip varchar(10) NOT NULL default '',

 count int(11) default '0',

 totscore float default '0',

 PRIMARY KEY (username,email,ip)

) TYPE=MyISAM;

Each row in this table specifies an autowhitelist entry for a single sender for an individual
SpamAssassin user. SpamAssassin uses the columns to store the following information:

username

Stores the username or email address of the user (the latter is more useful in virtual hosting
environments).

email

Stores the email address of a sender whose messages' spam scores are being tracked.

ip

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stores the IP address of the sender.

count

Stores the total number of messages received from the sender.

totscore

Stores the total spam score of messages received from the sender.

To configure SQL support for autowhitelists, set the following configuration parameters in your
systemwide configuration file (local.cf):

auto_whitelist_factory Mail::SpamAssassin::SQLBasedAddrList

Configures SpamAssassin to use SQL-based autowhitelists instead of file-based autowhitelists.

user_awl_dsn DSN

Defines the data source name for the SQL database, telling spamd how it will connect to the

database server. A typical DSN for the Perl DBI module is written like this:
DBI:databasetype:databasename:hostname:port

For example, to use a MySQL database named saawl running on a database server on the
SpamAssassin host, the DSN would read:

DBI:mysql:saawl:localhost:3306

If the server were running PostgreSQL, the DSN would read:

dbi:Pg:dbname=saawl;host=localhost;port=5432;

user_awl_sql_username username

Defines the username that will be used to connect to the database server. This user must have
permission to modify the data in the table (including inserting and deleting rows).

user_awl_sql_password password

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Defines the password associated with the username that will be used to connect to the server.

user_awl_sql_table tablename

Defines the name of the table that contains autowhitelist data. The default tablename is awl.

4.1.2.2 Configuring a system-wide autowhitelist

It is often desirable to maintain a single autowhitelist for all users of a system. When users don't
have home directories, such an approach is not just desirable but may be necessary if
autowhitelisting is to be used. You can configure a systemwide autowhitelist by setting the
auto_whitelist_path directive to the full path of the autowhitelist database file. Set
auto_whitelist_path in the systemwide configuration file. For example, to set up a systemwide

autowhitelist in the file /etc/mail/spamassassin/auto-whitelist, use the following directive:

auto_whitelist_path /etc/mail/spamassassin/auto-whitelist

If SpamAssassin encounters this directive, it checks to be sure the database file exists. If the file does
not exist, SpamAssassin attempts to create it. You may not want to give SpamAssassin write access
to the directory you specify. One way around that is to create the file as root, change its ownership to
the SpamAssassin user, and set the mode to allow read/write access, all before you add the
auto_whitelist_path to your configuration file.

However you create it, the systemwide autowhitelist database file should be readable and writable by
the user running SpamAssassin. Depending on your configuration, SpamAssassin may be running as
root, as one of several users on the system, or as a default unprivileged user such as nobody. If you

let SpamAssassin create the systemwide autowhitelist database file, you can use the
auto_whitelist_file_mode directive to specify the file's mode. It defaults to 0700 but may need to

be set to 0770 or 0777 depending on your configuration, when multiple users must access the file.

Using a systemwide autowhitelist with mode 0777 (or 0770 and an
inappropriate group) will enable a curious local user to learn the email
addresses of message senders and their average spam scores or to modify
those scores. A malicious user could modify the database to give legitimate
senders a false history of spamming. In general, file modes other than 0700
should be avoided.

4.1.3 Using an Autowhitelist

Once the autowhitelisting system is configured, you must instruct SpamAssassin to use it. In
SpamAssassin 2.63, if you invoke SpamAssassin with the spamassassin script, add the --auto-
whitelist option to direct the script to consult your autowhitelist. If you invoke SpamAssassin with
the spamc client, you should start spamd (the daemon) with the --auto-whitelist option to direct it

to consult user autowhitelists.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SpamAssassin 3.0 contains no --auto-whitelist command-line options. Instead, autowhitelists are
always used when the use_auto_whitelist configuration option is set in a user's (or a systemwide)

configuration file.

Using Autowhitelists in Perl

If you've written a Perl application that uses Mail::SpamAssassin to checks messages,
you can take advantage of autowhitelists, but it requires a little additional setup. You
must create an address list factory, an object that generates objects to store
autowhitelisted addresses, and you must associate the address list factory with your
Mail::SpamAssassin object. Here is sample code that does this:

#!/usr/bin/perl

use Mail::SpamAssassin;

my $spamtest = Mail::SpamAssassin->new();

my $awl = Mail::SpamAssassin::DBBasedAddrList->new;

$spamtest->set_persistent_address_list_factory($awl);

Now go on to use $spamtest as usual.

Mail::SpamAssassin also provides methods for adding and removing addresses from the
autowhitelist. See the manpage for more information.

You can use the spamassassin script to manipulate the contents of your autowhitelist. The following
command-line options to spamassassin operate on your autowhitelist:

--add-addr-to-whitelist= emailaddress

Adds emailaddress to the autowhitelist with an initial score of -100. SpamAssassin will forget

any past history associated with the address.

--add-addr-to-blacklist= emailaddress

Adds emailaddress to the autowhitelist with an initial score of 100. SpamAssassin will forget

http://lib.ommolketab.ir
http://lib.ommolketab.ir

any past history associated with the address.

--remove-addr-from-whitelist= emailaddress

Removes emailaddress from the autowhitelist. SpamAssassin will forget any past history

associated with the address.

--add-to-whitelist

When you pipe an email message to spamassassin --add-to-whitelist, SpamAssassin adds

all email addresses found in the To, From, Cc, Reply-To, Sender, Errors-To, and Mail-Followup-
To headers or in the body of the message to the autowhitelist with initial scores of -100.
SpamAssassin will forget any past history associated with these addresses.

--add-to-blacklist

When you pipe an email message to spamassassin --add-to-blacklist, SpamAssassin adds

all email addresses found in the To, From, Cc, Reply-To, Sender, Errors-To, and Mail-Followup-
To headers or in the body of the message to the autowhitelist with initial scores of 100.
SpamAssassin will forget any past history associated with these addresses. Because this
behavior will probably result in the blacklisting of your own email address, this option is usually
useless.

--remove-from-whitelist

When you pipe an email message to spamassassin --remove-from-whitelist, SpamAssassin

removes all email addresses found in the To, From, Cc, Reply-To, Sender, Errors-To, and Mail-
Followup-To headers or in the body of the message from the autowhitelist and forgets any past
history associated with these addresses.

Be careful with --add-to-blacklist. A malicious spammer could send you

HTML email with friendly addresses (including your own) embedded in invisible
<mailto:> tags. Piping this message to spamassassin --add-to-blacklist

causes SpamAssassin to add all of those addresses to the autowhitelist as likely
spammers! Using --add-addr-to-blacklist with individual email addresses is

safer.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.2 Bayesian Filtering

SpamAssassin's Bayesian classifier learns to distinguish the features that characterize spam from
those that characterize non-spam in the messages that you receive. Properly trained, the Bayesian
classifier can reduce both false positives and false negatives.

4.2.1 Principles

Bayesian filtering is based on Bayes' Theorem, a statement of probability theory propounded by the
Reverend Thomas Bayes in 1763. Bayes' Theorem is important in many fields where classifying data
is essential, including computer vision, psychophysics, and diagnostic decision-making in health care.
SpamAssassin's implementation is mostly based on the work of Paul Graham (archived at
http://www.paulgraham.com) and Gary Robinson (http://www.garyrobinson.net).

Conceptually, Bayes' Theorem states that the probability of some event (such as a message being
spam) given a test result (such as matching a spam-checking rule) depends on the baseline
probability of the event before the test result is known and on the discriminating power of the test. A
corollary is that the discriminating power of a test can be measured by comparing the probability of
the event given a known test result to the baseline probability before the result is known. The more
the test result can increase (or decrease) the probability from baseline, the stronger the test.

Actually, SpamAssassin's "Bayesian" system doesn't really compute the
baseline probability or frequency of spam versus non-spam messages-which
some have argued means it's not strictly Bayesian at all. Instead it assumes
values that seem reasonable and useful.

In the context of spam-checking, a Bayesian approach amounts to developing potential rules and
asking how much each rule, if matched, should change the system's perception of the likelihood that
a message is spam. Very strong rules come in two forms. Some are patterns that only occur in spam
(and never in non-spam), thus yielding a high probability that a message that matches one of the
patterns is spam. Others are patterns that only occur in non-spam (and never in spam), thus yielding
a low probability that a message that matches the pattern is spam. Weaker rules-patterns found in
both spam and non-spam messages but with different frequencies-result in less extreme
probabilities.

To use Bayesian filtering successfully, you must have a corpus of messages that you have decided
are definitely spam, a corpus of messages that you have decided are definitely non-spam, and an
algorithm for analyzing the two sets of messages to develop rules and test their strength.
SpamAssassin provides the algorithm and a script that you can use to identify messages as spam or
non-spam in order to train the filter. It also provides a mechanism for training itself with messages
that are very likely to be spam or non-spam.

The results of the SpamAssassin learning process are a set of databases. One database contains

http://www.paulgraham.com
http://www.garyrobinson.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

tokens (strings of 3-15 characters) that have been seen, how often each has been seen in spam and
non-spam messages, and the date and time that each token last proved useful in classifying a
message. During learning, tokens are derived from both the message headers (with several
commonly misleading headers ignored) and message body. Tokens that haven't been useful in a long
time may be removed from the database to increase efficiency. Another database keeps track of
which messages have been learned, so SpamAssassin doesn't waste time relearning old messages.

During spam-checking, a message to be checked is split into tokens. SpamAssassin then looks up
each token in the token database. Up to 150 of the most diagnostic tokens in the message are
identified, and their associated predictive values are combined using one of two mathematical
functions to yield a final prediction of the probability that the message is spam. This predicted
probability is matched by special SpamAssassin rules that associate probability ranges with spam
score modifiers.

4.2.2 Configuration

SpamAssassin's Bayesian classifier is controlled by more than a dozen configuration directives,
though only a few are regularly modified by system administrators. These are the most useful:

use_bayes

This directive controls whether the Bayesian classifier is used at all. It defaults to 1 (use
Bayesian filtering). By setting it to 0, Bayesian filtering is disabled completely.

bayes_auto_learn, bayes_auto_learn_threshold_nonspam,
bayes_auto_learn_threshold_spam

These directives configure the automatic learning system, which automatically feeds messages
with very high or very low spam scores to the Bayesian classifier. The bayes_auto_learn
directive enables (1) or disables (0) this feature; it is enabled by default. The threshold

directives determine which messages will be automatically learned as spam or non-spam.
Messages with spam scores lower than bayes_auto_learn_threshold_nonspam are learned as

non-spam; this value defaults to 0.1. Messages with spam scores higher than
bayes_auto_learn_threshold_spam are learned as spam; this value defaults to 12 and

cannot be set lower than 6. The spam score used for making this determination does not
include modifiers for the Bayesian system itself, for the autowhitelist, or for user-configured
whitelists or blacklists.

bayes_ignore_header headername

This directive tells the Bayesian classifier to ignore the given header when learning or
classifying messages. It is most often used when another spam-tagging system adds headers
before SpamAssassin receives the message, in order to prevent the classifier from learning the
other spam tag instead of the features of the actual message.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bayes_ignore_from address (SpamAssassin 3.0)

This directive prevents Bayesian classification and learning from being performed on messages
sent from address and is a form of whitelisting. It's most useful when you want to receive

messages from a few senders and the messages may include tokens that would otherwise
suggest spam.

You can use multiple bayes_ignore_from directives or multiple addresses in a single directive

to whitelist several addresses. You can also use as asterisk (*) as a wildcard for zero or more
characters and a question mark (?) as a wildcard for zero or one character, much as you would
to specify filename patterns in a shell.

bayes_ignore_to address (SpamAssassin 3.0)

This directive prevents Bayesian classification and learning from being performed on messages
sent to address, and is a form of whitelisting recipients. It's useful in sitewide Bayesian filtering

to prevent any learning from being performed from messages sent to postmaster, for example,
who is likely to receive forwarded spam, non-spam messages discussing spam, etc. Specify
addresses as you would to the bayes_ignore_from directive discussed previously.

bayes_learn_during_report

When this directive is enabled (1), messages that are reported to clearinghouses as spam with
the spamassassin --report command are also learned as spam by the Bayesian classifier.

This saves you an extra learning step. Set the directive to 0 to disable this feature. It is
enabled by default.

bayes_path and bayes_file_mode

By default, SpamAssassin maintains separate Bayesian databases for each user on the system.
The databases for a user are stored in the .spamassassin subdirectory of the user's home
directory and their names begin bayes_, such as bayes_seen and bayes_toks. These files are
kept in one of several possible database formats (Berkeley DB format is generally preferred
when it's available to SpamAssassin).

Separate databases for each user are ideal for Bayesian learning because different users may
receive different kinds of spam and non-spam messages. However, it is often necessary to
maintain a single Bayesian database for all users of a system, either to save on disk space or
because users don't have home directories. You can configure a systemwide Bayesian database
set by setting the bayes_path directive to the full path of the Bayesian database file prefix. For

example, to set up systemwide Bayesian databases in the files
/etc/mail/spamassassin/bayes_*, use the following directive:

bayes_path /etc/mail/spamassassin/bayes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, the Bayesian databases are created with mode 0700. The bayes_file_mode directive can

be used to set a different file mode (e.g., 0770) if you need to share the databases among a group.
This might be necessary if SpamAssassin can be invoked with the privileges of different users. Care
should be taken with this directive, as a malicious user with access to the Bayesian databases can
cause legitimate email to be mistagged as spam.

The following directives influence the internal workings of the Bayesian classifier. For the most part,
they can be left to the default settings.

bayes_min_ham_num and bayes_min_spam_num

These directives set the minimum number of ham (non-spam) and spam messages that must
be learned by SpamAssassin before it will use the predictions of the Bayesian classifier to score
new messages. They default to 200 each; until 200 ham and 200 spam messages have been
learned, the SpamAssassin rules that rely on the Bayesian classifier will not be applied to email.

bayes_use_hapaxes

Hapaxes are tokens that have been seen only once during learning so far. Accordingly,
SpamAssassin's concept of whether a hapax is associated with spam or ham is based on limited
data and may not be reliable. On the other hand, SpamAssassin can learn hundreds or
thousands of hapaxes, and using hapaxes seems to provide better accuracy, so this setting
defaults to 1 (enabled).

bayes_use_chi2_combining

This directive controls which of the two mathematical functions are used to combine token
probabilities into an overall message probability. When enabled (1), the approach is based on
the distribution of the chi-squared statistic; when disabled (0), a so-called "naïve Bayesian"
function combines the probabilities using the assumption that errors in classification from each
token are independent of one another. SpamAssassin's maintainers have found the chi-squared
method more useful, and it is the default.

bayes_auto_expire and bayes_expiry_max_db_size

When bayes_auto_expire is enabled (1), SpamAssassin will automatically attempt to remove
old tokens during learning when the token database exceeds bayes_expiry_max_db_size

tokens. This is the default. When disabled (0), token expiration must be performed manually.
Automatic expiration occurs no more than once every 12 hours.

bayes_learn_to_journal and bayes_journal_max_size

When bayes_learn_to_journal is enabled (1), SpamAssassin will store newly learned data in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a journal file, rather than directly into the Bayesian databases. The journal file will be
synchronized into the databases at least daily, or when the journal exceeds
bayes_journal_max_size bytes (102,400 by default). Using journaling reduces disk contention

for the databases, which must be exclusively locked while being updated, but results in a delay
between the time a message is learned and the time the learned tokens can be used to classify
further messages. Journaling might be particularly useful if the journal could be kept in a
different location than the databases (e.g., on a RAM disk), but this directive is not supported
as of SpamAssassin 3.0. bayes_learn_to_journal is disabled by default.

4.2.3 Training

There are two main strategies for training a Bayesian classifier: train everything and train-on-error.
In the train everything strategy, you train the classifier with every message that you receive. This
strategy is highly responsive to changes in spam patterns but may change too quickly in response to
unrelated variability in messages. In addition, it is resource intensive to scan every message. In the
train-on-error strategy, you train the classifier only with messages that it has previously classified
incorrectly (i.e., false positives and false negatives). This strategy is resource efficient but may not
train the classifier as quickly when spam patterns change.

Based on experiments conducted by Greg Louis (and described at http://www.bgl.nu/bogofilter/), the
train everything strategy appears to be more efficient for initial training. Once a suitable number of
messages have been learned, however, switching to a train-on-error approach saves resources,
because many fewer messages must be trained. Louis suggests that switching to train-on-error after
10,000 spam and 10,000 non-spam message have been learned may be reasonable. You can train
SpamAssassin's Bayesian classifier with either strategy.

The sa-learn script is your primary interface for training the Bayesian classifier. The first step in

using Bayesian filtering is collecting a corpus of messages you've received that you have verified are
spam and a corpus that you've verified are non-spam. The easiest and best way to do so is to simply
start saving spam you receive to one folder and any non-spam messages that you would ordinarily
delete to another. The two collections of messages can either be in maildir format (in which each file
contains a single message) or mbox format (in which a single file contains multiple messages).

It's important that the messages be from the same time period; if you train SpamAssassin with a set
of spam messages from 2003 and a set of non-spam messages from 2004, it will quickly learn that
an effective way to detect spam is to look for messages in 2003! Similarly, forwarded spam, or
messages discussing spam in your corpus ("Hey, look at this spam I just got; it's really strange. Here
it is . . . ") can result in the classifier learning artificial rules that will degrade its accuracy with normal
messages.

Next, run sa-learn on each corpus, using either the --spam or --ham command-line options to

specify what each corpus represents. Example 4-1 shows the process for a set of mbox files-a file of
saved spam, a file of saved (non-spam) messages related to a project, and the user's mail spool. The
project files and mail spool files together form a corpus of known good messages. This example
assumes that each user maintains her own Bayesian databases, so sa-learn is run by each user on

her own messages.

Example 4-1. Learning from a set of mbox files

http://www.bgl.nu/bogofilter/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ ls -F Mail

spam myproject

$ sa-learn --mbox --spam Mail/spam

$ sa-learn --mbox --ham mail/myproject

$ sa-learn --mbox --ham /var/spool/mail/$LOGNAME

Example 4-2 shows the process for a set of maildirs, again assuming that each user has his own
Bayesian databases. The commands in the example are those that would be executed by each
individual user. Providing a directory as an argument to sa-learn causes it to learn from every file in
that directory. The example also illustrates the use of the --no-rebuild option to defer rebuilding of
the databases until the --rebuild option is used. When performing learning on a large set of small

files (the very essence of a maildir), deferring the expensive database-rebuilding step is more
efficient than rebuilding after each file.

Example 4-2. Learning from a set of maildirs

$ ls -F mail

INBOX/ spam/ myproject/

$ sa-learn --no-rebuild --spam mail/spam

$ sa-learn --no-rebuild --ham mail/INBOX

$ sa-learn --no-rebuild --ham mail/myproject

$ sa-learn --rebuild

If you're the sort who likes to see the progress of the training (or who worries when you run a
command that takes longer than a few seconds to finish), you can add the --showdots option to
cause sa-learn to print a period for each message it processes.

You can also call sa-learn on an individual file containing a mail message, or you can pipe a mail
message to sa-learn's standard input. Finally, you can put the names of mailboxes, files, or

directories into a file and run sa-learn with the --folders=filename option, and it will read the file

and directory names from the filename file and learn from each.

The Bayesian classifier is most effective when trained on large collections of
both spam and non-spam messages. In particular, training using many spam
messages and fewer non-spam messages is likely to produce an ineffective
filter. Aim for a couple thousand messages of each type, collected prospectively
from your personally received mail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you mistakenly train the Bayesian classifier that a message is spam, simply direct sa-learn to
relearn it as ham; if you mistakenly learn a message as ham, you can direct sa-learn to relearn it

as spam. This process is also how you later train the classifier on errors. You can also cause
SpamAssassin to forget a message entirely by running sa-learn --forget on the message.

sa-learn also accepts the same --configpath /path/to/ruleset/directory, --prefspath

/path/to/user_prefs, and --siteconfigpath /path/to/sitewide/directory directives that the
spamassassin script does. They are described in Chapter 2.

What's Being Learned?

Once your Bayesian classifier has been trained and is contributing to spam-checking, you
might be curious to find out which tokens are actually being used. The sa-learn --dump

type command displays that information. type can be one of these choices:

data will cause sa-learn to display all of the tokens it has learned, with their

associated spam probabilities, number of occurrences in spam and ham messages,
and last time used.

magic will cause sa-learn to display "magic" tokens. Although they're stored in the

database, these tokens don't represent parts of email messages. They include such
information as the number of spam and ham messages in the databases, the last
time a token was used, etc.

all will cause sa-learn to display tokens of both types.

Here are the first and last five lines of sa-learn --dump data | sort -n as executed

on one system:

0.000 0 110 1072880922 discussion

0.000 0 112 1071162080 HMBOX-Line:2002

0.000 0 112 1072907632 modify

0.000 0 113 1072915324 H*u:Windows

0.000 0 115 1072900545 Sender

...

1.000 310 0 1071162080 N:HEADER_NBITS

1.000 316 0 1072026198 8-bit

1.000 323 0 1071162080 HEADER_8BITS

1.000 328 0 1072026198 N:N-bit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.000 394 0 1072910571 Forged

The first five lines show tokens that have only exclusively appeared in non-spam
messages. The last five show tokens that have exclusively appeared in spam messages.
Tokens starting with H were found in headers; some headers are abbreviated with
special codes starting with an asterisk (*)-so H*u: means the User-Agent header.

Tokens starting with N: indicate that Ns that appear in the token should match any
sequence of digits.

You can restrict which tokens are shown by sa-learn --dump by adding the --regexp

regexp command-line option and providing a regular expression pattern regexp. Only

tokens that match regexp will be displayed. This option is useful when you want to see

the spam probability associated with specific tokens.

4.2.4 Daily Use

When you first enable the Bayesian classifier in SpamAssassin, you will initially notice little change in
the way messages are checked for spam. Once you've trained the classifier with enough messages,
however, your spam scores for messages will begin to change substantially in two ways:

Messages will show that they are hitting SpamAssassin rules with names like BAYES_44 or
BAYES_80. These rules, which can be found in the 23_bayes.cf file, are triggered when the
Bayesian classifier assigns a given probability of spam to a message. For example, the
BAYES_44 rule is matched when a message has a probability of spam between 0.44 and
0.4999; the BAYES_80 rule is triggered when a message has a probability of spam between
0.80 and 0.90. Rules that match on probabilities less than 0.5 lower spam scores, and those
that match on probabilities greater than 0.5 raise spam scores.

Most of the non-Bayesian rules assign different scores when the classifier is trained and in use
than when it is not. In many cases, non-Bayesian rules produce less extreme scores, which
reflects the supposition that the Bayesian classifier should be better than static rules at
distinguishing spam from non-spam.

4.2.4.1 Ongoing training

Ongoing training is essential to maintaining the performance of a Bayesian filter. As in initial training,
you must continue to provide examples of both spam and non-spam messages.

As you receive messages, check each message classified as spam to be sure that it is really spam
and not a false positive. If the message's spam score is higher than the threshold for automatic
learning, the message should have already been fed back into the classifier to train it. You can
determine if this has happened by looking at the autolearn= section of the X-Spam-Status header

added by SpamAssassin. If the message's spam score wasn't high enough for automatic learning,
submit it to sa-learn --spam yourself. If you come across a false positive, submit it to sa-learn --
ham instead.

Similarly, you can submit your non-spam messages to sa-learn --ham if their spam scores are too

http://lib.ommolketab.ir
http://lib.ommolketab.ir

high for the automatic learning threshold for ham. Any spam SpamAssassin misses should definitely
be submitted to sa-learn --spam.

You can make the ongoing training process more convenient using one of two common ways. If you
read your email with an email client that allows you to bind commands to keys, you could define
keystrokes to invoke sa-learn --ham or sa-learn --spam on the current message. Another

approach is to save all spam messages into a single mail folder and all non-spam messages that you
plan to delete into a second folder, and then run sa-learn on each folder (and possibly on your inbox

if you keep many undeleted messages there) at the end of your mail-reading session. Users or
system administrators can set up cron jobs to automate this process.

4.2.4.2 Expiration and importing

Expiration and importing are two other functions of sa-learn that you will use infrequently.

Expiration removes old tokens from the database, and importing updates the database if a new
SpamAssassin release changes database formats.

As discussed earlier in this chapter, when bayes_auto_expire is enabled (the default),

SpamAssassin's Bayesian classifier regularly reviews its database of tokens to determine if any
should be expired. Expiration is always skipped when fewer than 100,000 tokens are in the database.
The automatic expiration process runs no more than once every 12 hours and only when the number
of tokens exceeds bayes_expiry_max_db_size.

If you do not use bayes_auto_expire, or if you want to expire tokens manually, you can force an
expiration attempt by running sa-learn --force-expire. Doing so may not actually expire any

tokens; for example, when fewer than 100,000 tokens or all tokens have been recently used, no
tokens will be expired.

The sa-learn --import command is used to update the Bayesian databases from their format in an

older version of SpamAssassin to the current format. The release notes for new versions of
SpamAssassin should tell you when running sa-learn --import is necessary. In many cases,

SpamAssassin will perform importation when it automatically learns a new message, so this
command may not be necessary.

The import process can be both CPU and disk intensive, especially with a large
database of tokens. It is best run during off-hours or times of low system load.

4.2.5 Storing Bayesian Data in SQL

SpamAssassin 3.0 can optionally store per-user Bayesian data in an SQL database, which is useful
when users don't have accounts on the mail server. To store Bayesian data in SQL, you must install
the DBI Perl module and an appropriate driver module for your SQL server. Common choices are
DBD-mysql (for the MySQL server), DBD-Pg (for the PostgreSQL server), and DBD-ODBC (for
connection to an ODBC-compliant server).

You should create a database and a user with privileges to access it. You must then create a set of
tables in the database to store the Bayesian data. The SpamAssassin source code includes schemas
for MySQL, PostgreSQL, and SQLite tables in the sql subdirectory. Here is the MySQL schema:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CREATE TABLE bayes_expire (

 username varchar(200) NOT NULL default '',

 runtime int(11) NOT NULL default '0',

 KEY bayes_expire_idx1 (username)

) TYPE=MyISAM;

CREATE TABLE bayes_global_vars (

 variable varchar(30) NOT NULL default '',

 value varchar(200) NOT NULL default '',

 PRIMARY KEY (variable)

) TYPE=MyISAM;

INSERT INTO bayes_global_vars VALUES ('VERSION','2');

CREATE TABLE bayes_seen (

 username varchar(200) NOT NULL default '',

 msgid varchar(200) binary NOT NULL default '',

 flag char(1) NOT NULL default '',

 PRIMARY KEY (username,msgid),

 KEY bayes_seen_idx1 (username,flag)

) TYPE=MyISAM;

CREATE TABLE bayes_token (

 username varchar(200) NOT NULL default '',

 token varchar(200) binary NOT NULL default '',

 spam_count int(11) NOT NULL default '0',

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ham_count int(11) NOT NULL default '0',

 atime int(11) NOT NULL default '0',

 PRIMARY KEY (username,token)

) TYPE=MyISAM;

CREATE TABLE bayes_vars (

 username varchar(200) NOT NULL default '',

 spam_count int(11) NOT NULL default '0',

 ham_count int(11) NOT NULL default '0',

 last_expire int(11) NOT NULL default '0',

 last_atime_delta int(11) NOT NULL default '0',

 last_expire_reduce int(11) NOT NULL default '0',

 PRIMARY KEY (username)

) TYPE=MyISAM;

For each user, these tables maintain information about token expiration (bayes_expire), messages
seen (bayes_seen), tokens seen (bayes_token), and per-user configuration variables (bayes_vars).
A table for global configuration variables (bayes_global_vars) is also available. The names of rows

in these tables are similar to the corresponding SpamAssassin configuration variables and indicate
the data they store.

To configure SQL support for Bayesian data, set the following configuration parameters in your
systemwide configuration file (local.cf):

bayes_store_module Mail::SpamAssassin::BayesStore::SQL

Configures SpamAssassin to use SQL-based storage for Bayesian data instead of file-based
(DBM) storage.

bayes_sql_dsn DSN

Defines the data source name for the SQL database. See the earlier definition of
bayes_awl_dsn for examples of how to define a DSN.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bayes_dsn_sql_username username

Defines the username that will be used to connect to the database server. This user must have
permission to modify the data in the table (including inserting and deleting rows).

bayes_dsn_sql_password password

Defines the password associated with the username that will be used to connect to the server.

SpamAssassin will now store Bayesian data learned from messages (either automatically or via sa-
learn) in the SQL database and will look up tokens in this database when checking messages for a

user.

SpamAssassin provides one additional configuration variable for SQL storage of Bayesian data:

bayes_sql_override_username someusername

When this directive is set, the SQL query for Bayesian data will use someusername in place of

the current user's name when adding new message data or retrieving data for message-
checking. Generally, this directive should only be used in per-user configuration files so that
most users have their own personal Bayesian data. In principle, you could also use it in the
site-wide configuration file to create a sitewide Bayesian database, and then use it in per-user
configuration files to exclude certain users from the sitewide data.

4.2.6 A Sitewide Bayesian Classifier

Bayesian filtering is most effective when each user maintains his own set of token databases trained
from his own email. By learning about the peculiar characteristics of spam and non-spam messages
received by an individual user, the Bayesian classifier becomes an effective test for future messages
to that user. A pharmacist might receive a lot of legitimate email about sildenafil citrate, and having
all of these messages tagged as spam (or worse) could be a serious problem.

Many sites, however, prefer to have a single set of databases for all users at the site, either to save
disk space or because users do not have home directories and setting up SpamAssassin 3.0's SQL
storage is infeasible. Setting up a sitewide Bayesian classifier is possible with SpamAssassin. Perform
the following steps:

Set bayes_path and bayes_file_mode in the systemwide configuration file. Be sure the
directory specified in bayes_path is readable, writable, and searchable by the user that
SpamAssassin will be running as, so that it can create the proper files. The bayes_file_mode

should be as strict as possible, typically 0700, which is the default setting. It's a good idea to set
it explicitly, rather than rely on the default.

1.

Provide a mechanism for users or administrators to submit messages for training. This step is2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the most difficult part of a sitewide Bayesian classifier. Because the database files will be owned
by the user that SpamAssassin runs as, even local users typically will not be able to run sa-
learn with the proper permissions to update the databases.

2.

One solution for enabling users to submit spam messages for training is to ask users to bounce any
spam they receive to a central mailbox that can be processed by a privileged script. For example, set
up an email alias of spamtrap on the SpamAssassin system that pipes incoming messages to a script
like that shown in Example 4-3. As an extra benefit, you can publicize the spamtrap address on public
web pages or in Usenet postings and actually use it as a spam trap-spammers who harvest the
address and send spam to it will find their spam fed into your learning and reporting systems.

Example 4-3. A sitewide script for learning spam

#!/bin/sh

#

This script accepts an email message on its standard input

and feeds it to SpamAssassin's learning and/or reporting systems

It is meant to be run as root or as the user who owns the

SpamAssassin Bayesian databases

PATH=/bin:/usr/bin:/sbin:/usr/sbin

Three choices:

1. Uncomment the following line to use --report if

you have bayes_learn_during_report enabled.

spamassassin --report

2. Uncomment the following line to use sa-learn and

spamassassin --report when you don't have

bayes_learn_during_report enabled

sa-learn --spam | spamassassin --report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3. Uncomment the following line to use sa-learn

alone.

#sa-learn --spam

If you ask users to use a centralized spamtrap address, it is crucial that they
bounce or redirect their messages, rather than forward their messages. A
forwarded message's headers will show the message as being sent by the
forwarding user, which is not what you want the Bayesian classifier to learn!
Most mail clients provide a function for redirecting a message to a new address
so that it still appears to be coming from the original sender. If your mail clients
add extra headers when they do this, these headers are good candidates for
bayes_ignore_header. You have to test to determine which, if any, headers

your mail clients add and to be sure SpamAssassin is ignoring them.

A similar solution for non-spam messages is much more difficult-for social, rather than technical,
reasons. Users may well be reluctant to forward their legitimate email to any central address.
Unfortunately, without a good corpus of non-spam messages, the Bayesian filter will not perform
well. One possible approach is to raise the bayes_auto_learn_threshold_nonspam slightly (e.g., to

0.5 or 1.0) so that much legitimate email will be auto-learned.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 5. Integrating SpamAssassin with
sendmail
sendmail has long been the most widely used mail transport agent in the world. It was routing mail
before the Internet existed as such and continues to form the backbone of many of the largest mail
servers on the Net today. This chapter explains how to integrate SpamAssassin into a sendmail-
based mail server to perform spam-checking for local recipients or to create a spam-checking mail
gateway.

sendmail is a complex piece of software and can have several security
implications for systems on which it runs. You should always run the most up-
to-date version of sendmail and keep track of new bug reports and security
advisories. This chapter assumes that you are running the latest release of
sendmail-Version 8.12-and does not cover how to securely install, configure,
or operate sendmail itself. For that information, see the sendmail
documentation and the book sendmail by Bryan Costales and Eric Allman
(O'Reilly).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.1 Spam-Checking at Delivery

The easiest way to add SpamAssassin to a sendmail system is to configure sendmail to use procmail
as its local delivery agent, and to add a procmail recipe for spam-tagging to /etc/procmailrc. The
advantages of this approach are

It's very easy to set up.

You can run spamd, and the procmail recipe can use spamc for faster spam-checking.

User preference files, autowhitelists, and Bayesian databases can be used.

There are also some disadvantages:

sendmail must complete the SMTP transaction and accept an email message for local delivery
before spam-checking takes place. Accordingly, you can't save bandwidth or mailbox space by
rejecting spam during the SMTP transaction.

sendmail only runs the local delivery agent for email destined for a local recipient. You cannot
create a spam-checking gateway with this approach.

To configure sendmail to use procmail as its local delivery agent, add the following line to your
sendmail.mc file (before the MAILER(`local') line) and regenerate sendmail.cf from it:

FEATURE(`local_procmail',`/path/to/procmail')dnl

When you restart sendmail, it will use procmail instead of the system's default local MDA (e.g.,
/bin/mail) for mail delivery.

Next, configure procmail to invoke SpamAssassin. If you want to invoke SpamAssassin on behalf of
every user, do so by editing the /etc/procmailrc file. Example 5-1 shows an /etc/procmailrc that
invokes SpamAssassin.

Example 5-1. A complete /etc/procmailrc

DROPPRIVS=yes

PATH=/bin:/usr/bin:/usr/local/bin

SHELL=/bin/sh

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Spamassassin

:0fw

* <300 000

|/usr/bin/spamassassin

If you run spamd, replace the call to spamassassin in procmailrc with a call to spamc instead. Using
spamc/spamd will significantly improve performance on most systems, but makes it more difficult to

allow users to write their own rules.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.2 Spam-Checking During SMTP

If you want to refuse spam before it reaches your recipients, or set up a spam-checking gateway to an
internal email server, you need a way to perform spam-checking during the SMTP transaction. If a message
is found to be spam, you may want to refuse it and end the SMTP session, or accept it and add headers that
users can use in their mail client filters. sendmail provides a general-purpose filtering interface, called milter
, for use during the SMTP transaction.

5.2.1 The Milter Interface

In sendmail's parlance, milter refers to several things. Milter is an application programming interface (API)
for writing filters for sendmail, and a protocol for communication between sendmail and a filter. A milter is
also a filter program written using this API that listens for connections from a sendmail process and defines

functions to call at different points of the SMTP transaction to accept, reject, discard, temporarily refuse, or
modify a message. The milter library, libmilter , provides most of the code required to set up a milter and
manage the work of calling your filtering functions during an SMTP transaction.

A milter can provide functions that sendmail will call at the following points in an SMTP transaction:

When a mail client connects to sendmail

After the SMTP HELO or EHLO commands

After the SMTP MAIL FROM command

After the SMTP RCPT TO command

After each message header is transmitted during the DATA step

After all message headers are transmitted

After each piece of the message body is transmitted

At the end of the DATA step, after the entire message has been transmitted

When the SMTP transaction is aborted

When the client connection is closed

Milter functions can perform the following operations on a message:

Add, change, or delete a header

Add or remove a recipient

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Replace the message body

Reject a connection, message, or recipient

Temporarily fail a connection, message, or recipient

Accept and discard a message

Accept a message

Milters operate as daemons. They are typically started before sendmail during system startup and listen for
connections from a sendmail process on a TCP or Unix domain socket. Milters do not have to be run as root

. For more information about writing milters, visit http://www.milter.org .

You configure sendmail to use a milter by adding an INPUT_MAIL_FILTER() macro to the sendmail.mc

configuration file and generating a new sendmail.cf file. Example 5-2 shows parts of a sendmail.mc file that
includes a milter.

Example 5-2. A sendmail.mc file with a milter

divert(0)dnl

VERSIONID(`example mc')dnl

OSTYPE(linux)dnl

DOMAIN(generic)dnl

...

INPUT_MAIL_FILTER(`mymilter', `S=unix:/var/run/mymilter.sock, F=T, T=S:60s;R:60s;E:

5m')dnl

...

MAILER(smtp)dnl

MAILER(local)dnl

MAILER(procmail)dnl

The INPUT_MAIL_FILTER macro takes two arguments. The first provides the name of the milter (mymilter

in Example 5-2), and the second tells sendmail how to interact with the milter. The second argument in
turn consists of several instructions, separated by commas:

S= socket description

This argument describes how sendmail should connect to the milter. The socket description consists of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a protocol (unix for a Unix domain socket, inet for a TCP/IP socket, inet6 for a TCP/IPv6 socket), a

colon, and a protocol-specific address. For Unix domain sockets, the address is the path to the socket
file. For TCP sockets, the address is in the form port@host .

F= failure mode

This argument determines how sendmail will behave if it fails to connect to the milter process. Use
F=T to cause sendmail to temporarily refuse email when it can't contact the milter. Use F=R to cause
sendmail to reject connections when it can't contact the milter. Omit an F= argument to cause

sendmail to accept messages without filtering when it can't contact the milter.

T= timeout list

This argument determines how long sendmail should wait for the milter to respond before treating the
connection attempt as a failure. It consists of a set of states and the amount of time to allow for each,
separated by semicolons. In Example 5-1 , sendmail uses a 60-second timeout for sending data to the
milter (S:60s), a 60-second timeout for reading replies from the milter (R:60s), and a 5-minute
timeout for waiting for the milter's final acknowledgment after sending the message (E:5m). There is
also a C timeout for connecting to the milter. If you leave any timeouts unspecified, sendmail uses its

default timeouts: 10 seconds for sending and reading, and 5 minutes for connecting and final
acknowledgment.

The INPUT_MAIL_FILTER macro results in the following lines being added to the sendmail.cf file when you

generate it:

O InputMailFilters=mymilter

...

Xmymilter, S=unix:/var/run/mymilter.sock, F=T, T=S:60s;R:60s;E:5m

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Milter in sendmail 8.11

The milter interface was formally announced in sendmail 8.12 but is available as an
experimental feature in sendmail 8.11. To use milter in sendmail 8.11, add the following line to
your sendmail.mc file:

define(`_FFR_MILTER')dnl

Milter support in sendmail 8.11 is not as complete as in sendmail 8.12, however, and I strongly
encourage you to upgrade to sendmail 8.12 or later rather than use sendmail 8.11's milter
subsystem.

Older versions of sendmail do not provide milter. If you must use one of these versions, you
are limited to integrating SpamAssassin through procmail.

SpamAssassin itself is not a milter. However, several milters have been written that invoke SpamAssassin
on messages and then take action during the SMTP transaction.

5.2.2 MIMEDefang

MIMEDefang is one of the most popular sendmail milters. It provides a general framework for performing
milter functions in Perl and comes with a default configuration that performs several functions:

Messages can be checked with a virus scanner, and messages carrying viruses can be refused,
discarded, or quarantined.

MIME attachments can be examined, and messages can be refused, discarded, or quarantined if they
contain attached files with given filename extensions (e.g., extensions that denote executable
Windows files).

The HTML attachment in a message of type multipart/alternative (containing both text and HTML
versions of the same message) can be dropped.

SpamAssassin can be invoked on the message, and spam can be refused, discarded, quarantined, or
tagged.

MIMEDefang is developed by Roaring Penguin Software and is available as free software at
http://www.mimedefang.org . Roaring Penguin also produces commercial products, CanIt and CanIt-PRO,
which are based on MIMEDefang and SpamAssassin and add several other features including web-based
interfaces for administrators and users.

The rest of this section details the installation, operation, and customization of MIMEDefang 2.42 as an
example of a full-scale, milter-based approach to using SpamAssassin. MIMEDefang's other functions, such
as virus-checking, are mentioned but not covered in detail; read the MIMEDefang documentation for more
information.

http://www.mimedefang.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the latest available version of MIMEDefang. In particular, only versions 2.42 and
later support SpamAssassin 3.0.

5.2.2.1 Installing MIMEDefang

MIMEDefang is written in Perl and invokes SpamAssassin through the Mail::SpamAssassin Perl modules.
Because MIMEDefang itself is a daemon, you do not need to run spamd . It's easiest to install SpamAssassin

(and your antivirus software) first and then install MIMEDefang.

A good way to begin a MIMEDefang installation is to verify that you have the prerequisite Perl modules on
hand. MIMEDefang requires sendmail 8.12 (or later). MIMEDefang also requires several Perl modules,
including: MIME::Tools , IO::Stringy , MIME::Base64 , MailTools , Digest::SHA1 , and HTML::Parser . Most
of them can be installed using CPAN.

MIMEDefang will not work correctly with the standard version of MIME::Tools 5.411a.
Either install MIME::Tools 6 or later, or install the special version of MIME::Tools
5.411a available from Roaring Penguin's web site.

You should create a new user account and group for running MIMEDefang; the usual name for both the user
and group is defang . This user will own MIMEDefang's files, and the user (or group) must have access to
SpamAssassin's configuration and database files as well.

MIMEDefang uses two important directories. It uses /var/spool/MIMEDefang as a working directory for
unpacking email messages and scanning them. For optimal performance, place this directory on a fast
disk-even a RAM disk if your operating system supports it and you have enough memory to spare.
MIMEDefang stores quarantined email messages in /var/spool/MD-Quarantine . Speed is not so critical with
this directory, and it should never be located on a RAM disk because you will want to be sure that you can
access quarantined files. Create these directories before you install MIMEDefang. The directories should be
owned by user and group defang and should not be world-readable or world-searchable.

Next, download the MIMEDefang source code from http://www.roaringpenguin.com , unpack it, run the
configure script, make , and perform a make install as root . Example 5-3 shows this process from the
point of running the configure script:

Example 5-3. Compiling MIMEDefang

$./configure

creating cache ./config.cache

...

creating config.h

http://lib.ommolketab.ir
http://lib.ommolketab.ir

*** Virus scanner detection results:

H+BEDV 'antivir' NO (not found)

Vexira 'vexira' NO (not found)

NAI 'uvscan' NO (not found)

BDC 'bdc' NO (not found)

Sophos 'sweep' NO (not found)

TREND 'vscan' NO (not found)

CLAMSCAN 'clamav' YES - /usr/bin/clamscan

AVP 'AvpLinux' NO (not found)

FSAV 'fsav' NO (not found)

FPROT 'f-prot' NO (not found)

SOPHIE 'sophie' NO (not found)

NVCC 'nvcc' NO (not found)

CLAMD 'clamd' YES - /usr/sbin/clamd

File::Scan NO (not found)

TROPHIE 'trophie' NO (not found)

Found Mail::SpamAssassin. You may use spam_assassin_* functions

Did not find Anomy::HTMLCleaner. Do not use anomy_clean_html()

Found HTML::Parser. You may use append_html_boilerplate()

Note: SpamAssassin, File::Scan, HTML::Parser and Anomy::HTMLCleaner are

detected at run-time, so if you install or remove any of those modules, you

do not need to re-run ./configure and make a new mimedefang.pl.

$ make

gcc -g -O2 -Wall -Wstrict-prototypes -pthread -D_POSIX_PTHREAD_SEMANTICS -DPERL_PATH=\"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/usr/local/bin/perl\" -DMIMEDEFANG_PL=\"/usr/local/bin/mimedefang.pl\" -DRM=\"/bin/rm\" -

DVERSION=\"2.42\" -DSPOOLDIR=\"/var/spool/MIMEDefang\" -DQDIR=\"/var/spool/MD-Quarantine\

" -DCONFDIR=\"/etc/mail\" -I../sendmail-8.12.11/include -c -o mimedefang.o mimedefang.c

...

$ su

Password: XXXXXX

make install

mkdir -p /etc/mail && chmod 755 /etc/mail

...

Please create the spool directory, '/var/spool/MIMEDefang',

if it does not exist. Give it mode 700, and make

it owned by the user you intend to run MIMEDefang as.

Please do the same with the quarantine directory, '/var/spool/MD-Quarantine'.

#

The following programs and files are installed:

mimedefang

The milter itself. This program receives requests from sendmail to filter messages and pass them on
to mimedefang-multiplexor to perform the checks. It then communicates the results back to

sendmail.

mimedefang-multiplexor

A program to receive requests from mimedefang and farm them out to a pool of mimedefang.pl Perl

processes for scanning. It is responsible for maintaining the process pool, creating and destroying
processes as necessary. This approach minimizes the time and CPU overhead required in starting new
processes for each scan.

mimedefang.pl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A Perl script to perform all of the message-checking functions of MIMEDefang. During the several
stages of checking a message, this script calls functions defined in /etc/mail/mimedefang-filter .

md-mx-ctrl

A command-line tool for viewing the status of the multiplexor or for ordering it to reload its slave
processes.

watch-mimedefang

A graphical interface based on Tcl/Tk.

/etc/mail/spamassassin/sa-mimedefang.cf

A sitewide configuration file used by MIMEDefang. By default, MIMEDefang's install process generates
a simple file, with few options.

/etc/mail/mimedefang-filter

A file containing Perl subroutines called by mimedefang.pl at different stages of message-processing.
These subroutines check messages or message parts, and direct MIMEDefang to accept, quarantine,
discard, or bounce a message. MIMEDefang installs a default mimedefang-filter that invokes
SpamAssassin to add an X-Spam-Score header and a SpamAssassin report to all messages. To
implement more complex spam-checking behavior, you'll edit mimedefang-filter . This file is discussed
in greater detail in Section 5.3.3 , later in this chapter.

5.2.2.2 Starting the MIMEDefang multiplexor

To run MIMEDefang, you must start two processes: the multiplexor (mimedefang-multiplexor) and the
milter (mimedefang). You should start the multiplexor first because the milter process will connect to it.

Start each process as root ; each changes its uid to the defang user after startup.

mimedefang-multiplexor has over a dozen command-line options, but you will typically need to use only a

few of them. The most common are described here; for complete information, see the manpage.

-U user

Instructs mimedefang-multiplexor to run as the given user (e.g., defang). Running as a non-root

user is an important security measure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-s /path/to/socket

Specifies the path to the Unix domain socket that the multiplexor will use to listen for requests from
the milter process. It defaults to /var/spool/MIMEDefang/mimedefang-multiplexor.sock .

-p filename

Causes the multiplexor to write its process ID to the specified file. You can use this ID to signal the
multiplexor to reread the filter when you change it or to stop the multiplexor (these operations are
discussed later in this section).

-m number-of-slaves

Specifies the minimum number of slave, mimedefang.pl processes that should be running at any
given time. This value defaults to 0, but on most systems, you want to have at least two slave
processes running at all times to minimize startup overhead.

-x number-of-slaves

Specifies the maximum number of slave, mimedefang.pl processes that should be running at any
given time. This value defaults to 2, but busy mail servers will require more than two processes to be
available at any given time. You should plan to increase this value to 5, 10, or higher, depending on
your needs.

-q number-of-requests

Causes the multiplexor to queue an incoming request when a multiplexor is not immediately available
to service that request. By default, the multiplexor causes sendmail to temporarily fail a message
when all slave processes are busy (returning a 4xx SMTP status code to the sending MTA, which
should retain the message in its queue and try to deliver it again later).

-D

Causes the multiplexor to run in the foreground, for debugging purposes. Without this option, the
multiplexor detaches from the terminal and runs in the background.

A typical invocation of mimedefang-multiplexor might be:

/usr/local/bin/mimedefang-multiplexor -U defang -p /var/run/mimedefang-multiplexor.

pid -m 2 -x 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2.2.3 Checking multiplexor status

Once the multiplexor is running, use the md-mx-ctrl command to examine its status. md-mx-ctrl status
provides a human-readable status report on the multiplexor's slave processes; md-mx-ctrl msgs shows the

total number of messages processed by the multiplexor. If you're using a nondefault socket for the
multiplexor, you can specify that socket to md-mx-ctrl using the -s /path/to/socket command-line
option. Example 5-4 shows these md-mx-ctrl invocations and their output. On the system in the example,

the multiplexor has been configured with a minimum of two slaves (both of which are idle) and a maximum
of ten, and has processed 17,366 messages.

Example 5-4. Invoking md-mx-ctrl

md-mx-ctrl status

Max slaves: 10

Slave 0: stopped

Slave 1: stopped

Slave 2: idle

Slave 3: stopped

Slave 4: stopped

Slave 5: stopped

Slave 6: idle

Slave 7: stopped

Slave 8: stopped

Slave 9: stopped

md-mx-ctrl msgs

17366

5.2.2.4 Starting the MIMEDefang milter

mimedefang performs a simpler task than the multiplexor. Its job is to receive filtering requests from

sendmail and pass them on to the multiplexor to handle. Accordingly, it has fewer command-line options.
Here are the most commonly used options.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-p /path/to/socket

Specifies the path to the Unix domain socket that the milter process will listen on for requests from
sendmail. This path must match the path you specify in sendmail's INPUT_MAIL_FILTER() macro. A

typical choice is /var/spool/MIMEDefang/mimedefang.sock , which is a required option.

-m /path/to/multiplexor/socket

Specifies the Unix domain socket on which the multiplexor is listening for requests. mimedefang sends

requests to the multiplexor on this socket. This option is required, and the value should match that of
the multiplexor's -s option (typically /var/spool/MIMEDefang/mimedefang-multiplexor.sock).

-U user

Instructs mimedefang to run as the given user (e.g., defang). You must provide the same user to
mimedefang-multiplexor and mimedefang .

-P filename

Directs mimedefang to write its process ID to the specified file. Note that this option uses a capital P.

A typical invocation of mimedefang might be:

/usr/local/bin/mimedefang -U defang -P /var/run/mimedefang.pid \

-p /var/spool/MIMEDefang/mimedefang.sock \

-m /var/spool/MIMEDefang/mimedefang-multiplexor.sock

A sample boot script for automatically starting and stopping MIMEDefang can be found in the examples
directory of MIMEDefang's source code. Editing this script and installing it with your other system boot
scripts is an easy way to properly configure MIMEDefang, as it lists all of the multiplexor and milter process
options as shell variables. Ideally, the script should run before sendmail's startup script so that the milter
socket is in place before sendmail starts. Likewise, you should stop sendmail before you stop MIMEDefang's
process.

5.2.2.5 Verifying the MIMEDefang processes

You can use the ps command to verify that all your MIMEDefang processes are running. Example 5-5 shows

the process listing and the contents of /var/spool/MIMEDefang and /var/spool/MD-Quarantine on a typical
system running sendmail and MIMEDefang. MIMEDefang's processes include one mimedefang-multiplexor

process, three slave mimedefang.pl processes started by the multiplexor for scanning messages, and four
mimedefang milter processes started by sendmail. All processes are running as user defang . The

/var/spool/MIMEDefang directory contains working directories used temporarily by MIMEDefang (names
starting with "mdefang"), as well as Unix domain sockets and pid files. The /var/spool/MD-Quarantine

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directory includes subdirectories holding quarantined messages.

Example 5-5. Processes and layout of a typical MIMEDefang system

ps auxw | egrep 'mime'

defang 27145 0.0 0.0 1312 688 ? S Jan15 0:42 /usr/local/bin/mimedefang-

multiplexor -p /var/spool/MIMEDefang/mimedefang-multiplexor.pid -m 2 -x 10 -U defang -b

300 -l -T -s /var/spool/MIMEDefang/mimedefang-multiplexor.sock

defang 27162 0.0 0.1 2552 856 ? S Jan15 0:00 /usr/local/bin/mimedefang

-P /var/spool/MIMEDefang/mimedefang.pid -U defang -m /var/spool/MIMEDefang/mimedefang-

multiplexor.sock -p /var/spool/MIMEDefang/mimedefang.sock

defang 20548 1.0 2.8 23464 22416 ? S 12:05 1:43 perl -w /usr/local/bin/

mimedefang.pl -server

defang 25089 0.0 0.1 2552 856 ? S 13:57 0:00 /usr/local/bin/mimedefang

-P /var/spool/MIMEDefang/mimedefang.pid -U defang -m /var/spool/MIMEDefang/mimedefang-

multiplexor.sock -p /var/spool/MIMEDefang/mimedefang.sock

defang 25142 0.0 0.1 2552 856 ? S 13:59 0:00 /usr/local/bin/mimedefang

-P /var/spool/MIMEDefang/mimedefang.pid -U defang -m /var/spool/MIMEDefang/mimedefang-

multiplexor.sock -p /var/spool/MIMEDefang/mimedefang.sock

defang 25589 0.0 0.1 2552 856 ? S 14:11 0:00 /usr/local/bin/mimedefang

-P /var/spool/MIMEDefang/mimedefang.pid -U defang -m /var/spool/MIMEDefang/mimedefang-

multiplexor.sock -p /var/spool/MIMEDefang/mimedefang.sock

defang 26616 0.3 2.6 21588 20572 ? S 14:35 0:04 perl -w /usr/local/bin/

mimedefang.pl -server

defang 26617 0.2 2.6 21492 20492 ? S 14:35 0:03 perl -w /usr/local/bin/

mimedefang.pl -server

ls -l /var/spool/MIMEDefang

http://lib.ommolketab.ir
http://lib.ommolketab.ir

drwx------ 3 defang defang 149 Jan 28 14:47 mdefang-i0SKkoMD027104

drwx------ 3 defang defang 149 Jan 28 14:48 mdefang-i0SKlwMB027198

-rw------- 1 defang defang 6 Jan 15 10:40 mimedefang-multiplexor.pid

srw------- 1 defang defang 0 Jan 15 10:40 mimedefang-multiplexor.sock

-rw------- 1 defang defang 6 Jan 15 10:40 mimedefang.pid

srwx------ 1 defang defang 0 Jan 15 10:40 mimedefang.sock

ls -l /var/spool/MD-Quarantine

drwx------ 2 defang defang 212 Dec 27 10:37 qdir-2004-01-28-10.37.35-001

drwx------ 2 defang defang 212 Dec 27 16:25 qdir-2004-01-28-16.25.03-001

5.2.2.6 Customizing MIMEDefang

Use the mimedefang-filter file to configure the actions that MIMEDefang takes when filtering messages. The
file is written in Perl. MIMEDefang distributes and installs a working sample file, typically in /etc/mail , but
you will need to modify several settings in the file for your local environment. Example 5-6 shows the
configuration settings near the beginning of this file. You should always change $AdminAddress ,
$AdminName , and $DaemonAddress . Generally, $AddWarningsInline and md_graphdefang_log_enable(
) can be left unchanged, and $MaxMIMEParts should be uncommented to prevent denial-of-service attacks.

Example 5-6. Configuration section of mimedefang-filter

#***

Set administrator's e-mail address here. The administrator receives

quarantine messages and is listed as the contact for site-wide

MIMEDefang policy. A good example would be 'defang-admin@mydomain.com'

#***

$AdminAddress = 'postmaster@localhost';

$AdminName = "MIMEDefang Administrator's Full Name";

#***

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Set the e-mail address from which MIMEDefang quarantine warnings and

user notifications appear to come. A good example would be

'mimedefang@mydomain.com'. Make sure to have an alias for this

address if you want replies to it to work.

#***

$DaemonAddress = 'mimedefang@localhost';

#***

If you set $AddWarningsInline to 1, then MIMEDefang tries *very* hard

to add warnings directly in the message body (text or html) rather

than adding a separate "WARNING.TXT" MIME part. If the message

has no text or html part, then a separate MIME part is still used.

#***

$AddWarningsInline = 0;

#***

To enable syslogging of virus and spam activity, add the following

to the filter:

md_graphdefang_log_enable();

You may optionally provide a syslogging facility by passing an

argument such as: md_graphdefang_log_enable('local4'); If you do this, be

sure to setup the new syslog facility (probably in /etc/syslog.conf).

An optional second argument causes a line of output to be produced

for each recipient (if it is 1), or only a single summary line

for all recipients (if it is 0.) The default is 1.

Comment this line out to disable logging.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#***

md_graphdefang_log_enable('mail', 1);

#***

Uncomment this to block messages with more than 50 parts. This will

NOT work unless you're using Roaring Penguin's patched version

of MIME tools, version MIME-tools-5.411a-RP-Patched-02 or later.

#

WARNING: DO NOT SET THIS VARIABLE unless you're using at least

MIME-tools-5.411a-RP-Patched-02; otherwise, your filter will fail.

#***

$MaxMIMEParts = 50;

The remainder of the mimedefang-filter file is a set of Perl functions that mimedefang.pl will call when
checking a message. You can modify these functions to customize MIMEDefang's behavior. The functions
include:

filter_begin()

Called with no arguments at the start of filtering. Suitable for setting variables that you expect to use
throughout the filter, or for performing whole-message checks like virus-scanning immediately.

filter_multipart(entity,name,extension,type)

Called for each MIME part of the message that contains other MIME parts within it. The entity is a

MIME::Entity object, name is the suggested filename of the part, extension is the file extension, and

type is the MIME type. Suitable for validating MIME parts or refusing specific multipart types (e.g.,

message/partial).

filter(entity,name,extension,type)

Called for each MIME part of the message that does not contain other MIME parts within it. Arguments
are the same as for filter_multipart() . Suitable for validating filenames, virus-scanning

individual MIME parts, or refusing specific MIME types.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

filter_end(entity)

Called at the end of filtering with the MIME::Entity object representing the entire message to be
returned to sendmail. Suitable for checking variables that you set elsewhere in the filter and
performing computationally expensive whole-message checks like spam-tagging if necessary.

These functions can make decisions about the disposition or modification of individual message parts by
calling one of the MIMEDefang action functions. In most cases, actions should be taken only by the filter(
) or filter_multipart() functions. The most commonly used action functions are:

action_accept(), action_accept_with_warning(string)

Accept the current message part, possibly adding a warning to the message.

action_drop(), action_drop_with_warning(string)

Drop the current message part, possibly adding a warning to the message.

action_replace_with_warning(string)

Replace the current message part with a warning message.

action_quarantine(entity,string)

Drop and quarantine the current message part, and add a warning to the message.

action_quarantine_entire_message(string)

Quarantine the entire message, and add a warning to the administrator notification if one is
generated. This action only quarantines; it does not also discard or bounce the message. You must
call action_discard() or action_bounce() afterward.

action_bounce(string[,SMTP reply code[,DSN code]])

Instruct sendmail to reject the message with string returned to the sender as the reason for

rejection. You can optionally specify an SMTP reply code (which defaults to 554) and a DSN code
(which defaults to 5.7.1). Bouncing a message does not stop MIMEDefang from continuing to process
other message parts; the bounce occurs after all parts have been processed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

action_tempfail(string[,SMTP reply code[,DSN code]])

Instruct sendmail to temporarily reject the message with string returned to the sender as the

reason for rejection. You can optionally specify an SMTP reply code (which defaults to 450) and a DSN
code (which defaults to 4.7.1).

action_discard()

Discard the entire message silently once all parts have been processed.

action_notify_sender(string)

Generate an email notification back to the message sender containing the given string, which may
consist of multiple lines.

action_notify_administrator(string)

Generate an email notification back to the MIMEDefang administrator containing the given string,
which may consist of multiple lines.

action_add_part(entity,type,encoding,data,fname,disposition[,offset])

Add a new MIME part to the message represented by entity . The new part will have a MIME

content-type of type and content-encoding of encoding . The new part itself should be stored in

data and its associated filename in fname . The MIME content-disposition is given by disposition .

The optional offset specifies where to add the part; it defaults to -1 (add at end). This action may
be performed in filter_end() .

action_add_header(header,value)

Add a new header to the message. The header's name is given in header , without a trailing colon,

and the value to set the header to is given in value . It is possible to add multiple headers with the

same name.

action_change_header(header,value[,index])

Change a header in the message. The header's name is given in header , without a trailing colon,

and the new value to set the header to is given in value . If index is given, changes the index 'th

header with that name. Changing a header that does not exist will add a new header.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

action_delete_header(header[,index])

Delete a header in the message. The header's name is given in header , without a trailing colon. If

index is given, deletes the index 'th header with that name instead of the first one.

action_delete_all_headers(header)

Deletes all headers in the message with a given name. The header's name is given in header ,

without a trailing colon.

If you call one of the notification functions (e.g., action_notify_sender),

MIMEDefang creates a notification message and sends it by invoking sendmail in its
deferred mode ; sendmail will enqueue the notification message in its client mail
queue rather than sending it immediately. You must run a sendmail process that
periodically sends messages in the client queue. One way to do so is to issue the
following command at system boot (via a boot script):

/usr/sbin/sendmail -Ac -q5m

See the sendmail documentation for more information about deferred mode and
client queue runners.

By calling these functions, you can configure MIMEDefang to suit nearly any email management policy you
wish to institute.

When you make changes to the mimedefang-filter script, you must signal mimedefang-multiplexor to

reread the configuration and restart its slave processes. The easiest way to signal the multiplexor is to use
the md-mx-ctrl reread command. Another way is to use the kill -INT process-id command to send a

SIGINT signal to the multiplexor process; you can identify the process ID from ps output or by examining
the pid file if the multiplexor was started with the -p option.

5.2.3 SpamAssassin Integration

MIMEDefang expects to find a SpamAssassin configuration file called sa-mimedefang.cf in your sitewide
configuration directory (usually /etc/mail/spamassassin). If it doesn't, it will also look for local.cf in the
same directory. This gives you the flexibility of creating different SpamAssassin configurations to be used
when SpamAssassin is invoked by MIMEDefang and when SpamAssassin is invoked by local users or scripts.

If you're going to be invoking SpamAssassin only through MIMEDefang, or if there
should be no differences in the configuration file based on how MIMEDefang is
invoked, consider making a hard or symbolic link from local.cf to sa-mimedefang.cf .
MIMEDefang will find the configuration file it first looks for, and you will avoid the
possibility of later creating two different configurations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When running SpamAssassin via MIMEDefang, you may not use any of SpamAssassin's configuration
directives that modify a mail message. Attempting to modify the Subject header or add new headers using
SpamAssassin directives will not work. All such changes must be performed by MIMEDefang in the
mimedefang-filter script.

If you want SpamAssassin to perform network-based tests (such as DNSBL lookups), you must add a line to
mimedefang-filter (just after the $AdminName setting works well) to set the $SALocalTestsOnly variable

to 0, like this:

$SALocalTestsOnly = 0;

The section of the default mimedefang-filter that handles spam-tagging appears in the filter_end()

function and is agreeably easy to read. It is presented in Example 5-7 .

Example 5-7. Spam-tagging section of mimedefang-filter

 # Spam checks if SpamAssassin is installed

 if ($Features{"SpamAssassin"}) {

 if (-s "./INPUTMSG" < 300*1024) {

 # Only scan messages smaller than 300kB. Larger messages

 # are extremely unlikely to be spam, and SpamAssassin is

 # dreadfully slow on very large messages.

 my($hits, $req, $names, $report) = spam_assassin_check();

 my($score);

 if ($hits < 40) {

 $score = "*" x int($hits);

 } else {

 $score = "*" x 40;

 }

 # We add a header which looks like this:

 # X-Spam-Score: 6.8 (******) NAME_OF_TEST,NAME_OF_TEST

 # The number of asterisks in parens is the integer part

 # of the spam score clamped to a maximum of 40.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # MUA filters can easily be written to trigger on a

 # minimum number of asterisks...

 action_change_header("X-Spam-Score", "$hits ($score) $names");

 if ($hits >= $req) {

 md_graphdefang_log('spam', $hits, $RelayAddr);

 # If you find the SA report useful, add it, I guess...

 action_add_part($entity, "text/plain", "-suggest",

 "$report\n",

 "SpamAssassinReport.txt", "inline");

 } else {

 # Delete any existing X-Spam-Score header?

 action_delete_header("X-Spam-Score");

 }

 }

 }

First, the code checks to be sure that MIMEDefang detected SpamAssassin on the system when it started. It
then checks to be sure that the INPUTMSG file, which contains the message to scan, is smaller than 300
kilobytes. If that's the case, the code calls MIMEDefang's spam_assassin_check() function, which uses

Mail::SpamAssassin to check the message and returns the number of hits, number of required hits for
tagging, names of tests hit, and the text of SpamAssassin's spam report for the message. The code creates
a $score variable containing one asterisk for each hit (up to 40).

Next, the code in Example 5-7 calls the MIMEDefang action_change_header() function to change (or

add) the X-Spam-Score header. The header will include the number of hits (expressed numerically and as a
line of asterisks) and the names of tests that matched.

If the number of hits is greater than or equal to the required number to declare the message spam, the
code calls MIMEDefang's md_graphdefang_log() function to make a log entry and then adds the
SpamAssassin report text to the message as an additional MIME part using the action_add_part()

function. If the number of hits is less than the required number for tagging, the script removes the X-Spam-
Score header.

You might customize this code in filter_end() in several easy ways to suit your needs. By commenting
out the action_delete_header() line, you can have the X-Spam-Score header added to all messages,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

spam or not. If you want to modify the Subject header of spam messages as SpamAssassin does, add the
following code before the action_add_part() line:

action_change_header("Subject", "*****SPAM***** $Subject");

The $Subject variable will already contain the message subject.

Remember that you must signal the MIMEDefang milter to reread mimedefang-filter
whenever you change it or any Perl modules on which it depends-including
SpamAssassin and its configuration. If you update SpamAssassin or modify settings
in /etc/mail/spamassassin/sa-mimedefang.cf , you should signal the milter.

5.2.3.1 Adding sitewide Bayesian filtering

Adding a sitewide Bayesian filter for use with MIMEDefang is relatively easy. Use the usual SpamAssassin
use_bayes and bayes_path directives in sa-mimedefang.cf , and ensure that the defang user has
permission to create the databases in the directory named in bayes_path . One way to do this is to create a

directory for the databases that is owned by defang , such as /var/spool/MD-Bayes . Another option is to
locate the databases in a directory owned by another user but to create them ahead of time and chown
them to defang. If local users need access to the databases (e.g., they will be running sa-learn) , you may

have to make the databases readable or writable by a group other than defang and adjust the
bayes_file_mode , or make them world-readable or world-writable. Doing so, however, puts the integrity

of your spam-checking at the mercy of the good intentions and comprehension of your users.

5.2.3.2 Adding sitewide autowhitelisting

In SpamAssassin 3.0, autowhitelisting is easy to enable. You need only add the usual autowhitelist
directives to sa-mimedefang.cf to determine where and how the autowhitelist database will be stored. Be
sure to enable the use_auto_whitelist configuration option to turn on autowhitelisting.

Using a sitewide autowhitelist database in SpamAssassin 2.63 requires just a bit more effort. In addition to
adding the SpamAssassin autowhitelist directives to sa-mimedefang.cf , you must modify mimedefang.pl to
provide SpamAssassin with an address list factory, as discussed in Chapter 4 . Example 5-8 shows the
spam_assassin_init() function in mimedefang.pl . Add the emphasized lines to support autowhitelisting.
Don't forget to signal mimedefang-multiplexor to reread its configuration after making these changes.

Example 5-8. Adding an address list factory to mimedefang.pl

sub spam_assassin_init (;$) {

 unless ($Features{"SpamAssassin"}) {

 md_syslog('err', "$MsgID: Attempt to call SpamAssassin function, but SpamAssassin

is not installed.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return undef;

 }

 if (!defined($SASpamTester)) {

 my $config = shift;

 unless ($config)

 {

 if (-r "/etc/mail/spamassassin/sa-mimedefang.cf") {

 $config = "/etc/mail/spamassassin/sa-mimedefang.cf";

 } elsif (-r "/etc/mail/spamassassin/local.cf") {

 $config = "/etc/mail/spamassassin/local.cf";

 } else {

 $config = "/etc/mail/spamassassin.cf";

 }

 }

 $SASpamTester = Mail::SpamAssassin->new({

 local_tests_only => $SALocalTestsOnly,

 dont_copy_prefs => 1,

 userprefs_filename => $config});

 require Mail::SpamAssassin::DBBasedAddrList;

 my $awl = Mail::SpamAssassin::DBBasedAddrList->new();

 $SASpamTester->set_persistent_address_list_factory ($awl);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return $SASpamTester;

}

5.2.3.3 Adding per-domain or per-user streaming

By default, MIMEDefang processes each message once and applies SpamAssassin's spam determination to
the message. This process works well if you run a small mail server for a single domain, but it presents a
problem for mail gateways, virtual hosts, and larger servers. What should be done when an email message
is received for multiple recipients-possibly at multiple domains? MIMEDefang provides two functions that
you can use to implement solutions to this problem, stream_by_recipient() and stream_by_domain() .

Each works in the same way.

If you add a call to stream_by_recipient() to the filter_begin() function , stream_by_recipient(
) checks to see if a message has only a single recipient. If so, it returns 0, and the filter should continue to
work on the message. If the message has multiple recipients, stream_by_recipient() reinjects the

message by connecting to sendmail and resubmitting the message as a series of new messages, one for
each recipient of the original message. Figure 5-1 illustrates this process. In this case,
stream_by_recipient() returns 1, and the original, multirecipient message should be discarded. When
the new single-recipient messages arrive at the filter, they will pass through stream_by_recipient() and

continue on to the rest of the filter, which can now safely perform per-recipient functions (such as using
personal whitelists and blacklists or other user preferences).

Figure 5-1. Streaming by recipients

stream_by_domain() works similarly but only reinjects one new copy of a message for each recipient

domain in the original message. The rest of the filter can behave differently for different recipient domains,
which permits virtual hosting providers to apply different spam criteria for different domains they host.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although some MIMEDefang features will work with sendmail 8.11,
stream_by_domain() and stream_by_recipient() require sendmail 8.12.

Moreover, locally submitted messages must be sent via SMTP for these functions to
work (sendmail must be running as user smmsp rather than as user root).

Example 5-9 shows how you could use stream_by_domain() to offer different policies to different recipient

domains. Policies are stored in a Berkeley database file /etc/mail/spampolicy.db that is generated from a
text file /etc/mail/spampolicy using the standard sendmail makemap program. Each line of the text file
should contain a domain name, white space, and a policy, which should be either TAG (tag spam at

SpamAssassin's default level), TAG n (tag messages with over n hits), BLOCK (reject spam at

SpamAssassin's default level), BLOCK n (reject messages with over n hits), or IGNORE (do no spam-

checking). spampolicy.db must be owned by defang .

Example 5-9. Using stream_by_domain()

use DB_File;

sub getpolicy {

 # Where do we find the policy db?

 my $policydb = '/etc/mail/spampolicy.db';

 # If a domain isn't listed, what's the default policy?

 my $default_policy = 'TAG';

 my $host = shift;

 tie %policy, 'DB_File', $policydb, O_RDONLY, 0640, $DB_HASH;

 my $policy = $policy{"\L$host"};

 untie %policy;

 return defined($policy) ? "\U$policy" : $default_policy;

}

sub filter_begin () {

 if ($SuspiciousCharsInHeaders) {

 md_graphdefang_log('suspicious_chars');

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return action_discard();

 }

 # Per-domain streaming is turned on here so we get the $Domain var

 # set later on.

 return if stream_by_domain();

 ...

}

sub filter_end ($) {

 my($entity) = @_;

 send_quarantine_notifications();

 # No sense doing any extra work

 return if message_rejected();

 # Spam checks if SpamAssassin is installed

 if ($Features{"SpamAssassin"}) {

 if (-s "./INPUTMSG" < 100*1024) {

 # Spam policy selection, based on $Domain, using a Berkeley db lookup

 my $spampolicy = getpolicy($Domain);

 action_add_header("X-Spam-Policy", "$spampolicy $Domain");

 if ($spampolicy ne "IGNORE") {

 my($hits, $req, $names, $report) = spam_assassin_check();

 $req = $1 if ($spampolicy =~ /(\d+)/);

 if ($hits >= $req) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 md_graphdefang_log('spam', $hits, $RelayAddr);

 if ($spampolicy =~ /BLOCK/) {

 action_bounce("Message rejected by SpamAssassin");

 return;

 }

 my($score);

 if ($hits < 40) {

 $score = "*" x int($hits);

 } else {

 $score = "*" x 40;

 }

 action_change_header("X-Spam-Score", "$hits ($score) $names");

 action_add_part($entity, "text/plain", "-suggest",

 "$report\n",

 "SpamAssassinReport.txt", "inline");

 } else {

 action_delete_header("X-Spam-Score");

 }

 }

 }

 }

}

You could similarly use stream_by_recipient() in an environment where you want to read SpamAssassin

user preferences for each recipient from an SQL database. The Mail::SpamAssassin object used in
mimedefang-filter is named $SASpamTester . A simple approach is to call the load_scoreonly_sql()

method on that object, passing the recipient's email address as an argument, like this:

@Recipients in mimedefang-filter is an array of recipient emails,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

but if you're using stream_by_recipient, there should only be a single

recipient at this point.

my $recip = $Recipient[0];

If your SQL database uses usernames rather than email addresses, uncomment:

$recip =~ s/@.*//;

$SASpamTester->load_scoreonly_sql($recip);

This approach creates a new database connection for each mail message. A more complicated, but more
efficient approach would be to set up a database connection in filter_begin() and write SQL queries by
hand in filter_end() . On the other hand, using SpamAssassin's own functions, like
load_scoreonly_sql() , ensures that your code will be compatible with future SpamAssassin releases

that might change the database format.

Although stream_by_recipient() and stream_by_domain() solve an important problem, they do so at

a cost in performance. Messages that arrive for multiple recipients (or domains) will have to be split up and
reinjected, considerably increasing the overall load on the mail server.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.3 Building a Spam-Checking Gateway

By combining sendmail, MIMEDefang, and SpamAssassin, you can build a complete spam-checking
gateway. Such systems are increasingly popular as external mail exchangers, receiving messages
from the Internet and relaying them to internal mail servers that don't perform their own spam-
checking (either for performance reasons or because they run operating systems that don't provide
cost-effective antispam solutions). I assume that users relay outgoing mail through an internal mail
server, rather than through the spam-checking gateway. Figure 5-2 illustrates this topology.

Figure 5-2. Spam-checking gateway topology

The example gateway in this section is based on actual gateways in operation on the Internet.
Although I provide complete configuration files for the example, I discuss only those aspects of
configuration directly relevant to spam-checking.

5.3.1 sendmail Configuration

In our scenario, the spam-checking gateway should accept messages for our domains, check them
for spam, and relay them to an internal mail server. Accordingly, I include the following in our
sendmail configuration:

The mailertable feature, which we may use to indicate the internal server to which we'll relay
checked messages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A one-hour timeout before sending a warning message about delayed delivery, and a seven-day
timeout before bouncing messages. If the internal server should fail and need to be replaced,
senders will quickly know that their messages have been delayed, but messages won't be
bounced unless you can't replace the internal server within a week.

Several configuration options to limit sendmail's resource usage. We limit sendmail to 60 forked
child processes and 10 connections per second. We limit messages to 10Mb and 500 recipients
each.

An INPUT_MAIL_FILTER definition for MIMEDefang.

Example 5-10 is the sendmail.mc configuration file for the gateway and is used to generate
/etc/mail/sendmail.cf.

Example 5-10. sendmail.mc file for a spam-checking gateway

divert(-1)

#

Spam-checking gateway configuration

#

divert(0)dnl

VERSIONID(`Spam-checking gateway')

OSTYPE(linux)dnl

DOMAIN(generic)dnl

FEATURE(virtusertable)dnl

FEATURE(mailertable)dnl

FEATURE(access_db)dnl

FEATURE(always_add_domain)dnl

FEATURE(nouucp,`reject')dnl

FEATURE(`relay_based_on_MX')dnl

define(`confDEF_USER_ID',``8:12'')dnl

define(`confPRIVACY_FLAGS',`goaway,noreceipts,restrictmailq,restrictqrun,noetrn'

dnl Since this is for a gateway MX, we keep the queue around for a long

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dnl time without bouncing messages, but we warn about delivery delay

dnl rather quickly

define(`confTO_QUEUERETURN',`7d')dnl

define(`confTO_QUEUEWARN_NORMAL',`1h')dnl

dnl Options to prevent denial-of-service

define(`confMAX_DAEMON_CHILDREN',`60')dnl

define(`ConfMAX_MESSAGE_SIZE',`10000000')dnl

define(`confMAX_CONNECTION_RATE_THROTTLE',`10')dnl

define(`confMAX_RCPTS_PER_MESSAGE',`500')dnl

INPUT_MAIL_FILTER(`mimedefang', `S=unix:/var/spool/MIMEDefang/mimedefang.sock, T

MAILER(smtp)dnl

MAILER(local)dnl

MAILER(procmail)dnl

Because mail destined for the example.com domain should not be delivered locally on the external
gateway, do not include example.com as one of the gateway's local hostnames in the /etc/mail/local-
host-names (/etc/mail/sendmail.cw on some systems) file.

5.3.2 SpamAssassin Configuration

Store the SpamAssassin configuration for a gateway in /etc/mail/sa-mimedefang.cf. In addition to
setting the typical options, it's a wise idea to use the trusted_networks (and, in SpamAssassin 3.0,
internal_networks) directive to define the boundary between trusted and untrusted networks.

Example 5-11 shows the sa-mimedefang.cf file on a system configured to use a sitewide Bayesian
database.

Example 5-11. sa-mimedefang.cf file for a spam-checking gateway

required_hits 5

These are hosts that we control

internal_networks 192.168.10/24

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is a backup MX that's offsite

trusted_networks 111.222.333.444

bayes_path /var/spool/MD-Bayes/bayes

5.3.3 MIMEDefang Configuration

After installing MIMEDefang, set up three directories:

/var/spool/MIMEDefang

To contain MIMEDefang's working directories, and to hold the socket and pid files. Mount this
directory on a RAM disk for increased performance.

/var/spool/MD-Quarantine

To contain quarantine directories.

/var/spool/MD-Bayes

To hold the Bayesian database files.

Each of these directories should be owned by the user under which MIMEDefang runs (typically,
defang).

Edit mimedefang-filter to configure it for your gateway. Example 5-12 shows the first portion of a
mimedefang-filter script corresponding to the example gateway I'm describing in this chapter. Each
of the key variables in the file is defined.

Example 5-12. mimedefang-filter configuration for a spam-checking
gateway

#***

Set administrator's e-mail address here. The administrator receives

quarantine messages and is listed as the contact for site-wide

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MIMEDefang policy. A good example would be 'defang-admin@mydomain.com'

#***

$AdminAddress = 'postmaster@example.com';

$AdminName = "Example.com Postmaster";

#***

Set the e-mail address from which MIMEDefang quarantine warnings and

user notifications appear to come. A good example would be

'mimedefang@mydomain.com'. Make sure to have an alias for this

address if you want replies to it to work.

#***

$DaemonAddress = 'mimedefang@example.com';

Allow SpamAssassin to use network-based tests

$SALocalTestsOnly = 0;

5.3.4 Routing Email

Mail from the Internet for example.com should be sent to the spam-checking gateway
mail.example.com. To accomplish that, add a DNS mail exchanger (MX) record for the example.com
domain that points to mail.example.com.

Once received by mail.example.com, messages will be spam-checked and should then be relayed to
internal.example.com. You can accomplish that relaying in one of two ways:

Using DNS

Provide mail.example.com with an MX record for example.com pointing to
internal.example.com and having a lower preference value (more preferred) than the
mail.example.com MX record. This requires that you provide different results to DNS queries
from Internet hosts versus queries from mail.example.com. Do so by running so-called split
DNS, or by using BIND 9's view directives. Internet hosts should see only the

mail.example.com MX record, but mail.example.com (and probably all internal hosts and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

clients) should see the internal.example.com MX record.

Using mailertable

Add FEATURE(`mailertable') to the sendmail.mc file, and create a /etc/mail/mailertable file

that instructs sendmail where to forward messages destined for example.com:
example.com esmtp:internal.example.com

or:

example.com esmtp:[192.168.10.55]

After editing mailertable, be sure to use makemap to build the mailertable.db database from the

mailertable file.

5.3.5 Internal Server Configuration

Once the external mail gateway is in place, you can configure the internal mail server to accept only
SMTP connections from the gateway (for incoming Internet mail). If you don't have a separate server
for outgoing mail, the internal mail server should also accept SMTP connections from hosts on the
internal network. This restriction is usually enforced by limiting access to TCP port 25 using a host-
based firewall or a packet-filtering router.

5.3.6 Testing

You should now have a complete, spam-checking gateway. Test the gateway by sending spam and
non-spam messages to user@example.com. Messages should arrive at internal.example.com with
Received headers that show that they were first received by mail.example.com and then by
internal.example.com, and X-Scanned-By headers that mention MIMEDefang. Spam messages
should have X-Spam-Status headers added as well.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 6. Integrating SpamAssassinwith
Postfix
Postfix is a mail transport agent written by security researcher Wietse Venema. Not surprisingly,
Postfix is designed from the ground up to be a highly secure system. It consists of several
components, each of which runs with least privilege and none of which trust data from the other
without validating it themselves. Despite the extensive security emphasis in the system's
architecture, Postfix is capable of very good performance in normal conditions; because of
architectural decisions, it is also fault tolerant and capable of good performance under adverse
conditions such as resource starvation. It has become a popular replacement for sendmail because it
provides a compatible command-line interface.

This chapter explains how to integrate SpamAssassin into a Postfix-based mail server to perform
spam-checking for local recipients or to create a spam-checking mail gateway.

Postfix is a complex piece of software, and, like most MTAs, offers scores of
configuration options. This chapter assumes that you are running Postfix 1.1 or
2.x (recommended) and does not cover how to securely install, configure, or
operate Postfix itself. For that information, see the Postfix documentation and
the book Postfix: The Definitive Guide by Kyle D. Dent (O'Reilly).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.1 Postfix Architecture

Several different Postfix components play roles in receiving messages from the Internet. The master

daemon is responsible for the coordination of the components. Messages from the Internet typically
enter the mail server via the smtpd daemon, which listens on port 25 and conducts the SMTP
transaction with the remote sender. smtpd passes each message to the cleanup daemon, which

performs sanity checks, fixes missing headers, and (with the help of the trivial-rewrite program)
rewrites addresses. cleanup then deposits each message in the incoming mail queue and alerts the
qmgr daemon. qmgr moves messages from the incoming queue to the active queue, and then calls
local for delivery to local recipients (or smtp for relaying to remote recipients by SMTP). Figure 6-1

illustrates the flow of email through Postfix components.

Figure 6-1. The Postfix architecture during message receipt

Most systems keep Postfix's configuration files in /etc/postfix. The most important files are main.cf,
which contains nearly all of the configuration directives for Postfix, and master.cf, which configures
the master daemon and determines how the various Postfix components will be run. After you make
changes to either of these files, you should issue the postfix reload command to cause Postfix to

re-read the files.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.2 Spam-Checking During Local Delivery

The easiest way to add SpamAssassin to a Postfix system is to configure Postfix to use procmail as its
local delivery agent, rather than the Postfix local program. Then add a procmail recipe for spam-

tagging to /etc/procmailrc.

The advantages of this approach are:

It's very easy to set up.

You can run spamd, and the procmail recipe can use spamc for faster spam-checking.

User preference files, autowhitelists, and Bayesian databases can be used.

However, Postfix runs a local delivery agent only for email destined for a local recipient. You cannot
create a spam-checking gateway with this approach.

Instructions for configuring procmail for spam-checking can be found in Example 2-6 in Chapter 2. To
configure Postfix to use procmail as the local delivery agent, use the mailbox_command directive in

main.cf:

mailbox_command = procmail -a "$EXTENSION"

If you configure Postfix to use procmail as the local delivery agent, you must be
sure that you have an alias for root in your aliases file (typically in /etc or
/etx/postfix). The alias should point to another local user. Without such an
alias, Postfix may be unable to deliver mail to root using procmail.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.3 Spam-Checking All Incoming Mail

If you want to set up a spam-checking gateway for all recipients, local or not, you need a way to perform
spam-checking as mail is received, before final delivery. Postfix provides a general-purpose filtering
directive called content_filter .

The content_filter directive specifies a mail transport that Postfix will invoke after receiving a

message. The mail transport hands the message to a filtering program. The filter checks the message
and then either refuses it (which will cause Postfix to generate a bounce message), discards it, or
reinjects the (possibly modified) message into Postfix for further delivery. Messages that pass the filter
are reinjected so that Postfix can operate on them almost as if they were new messages; this allows
Postfix to behave properly if the content filter rewrites message headers. You can use the
content_filter directive in main.cf , in which case the directive will be used by both smtpd (for email
received via SMTP) and pickup (for email received locally). You can also specify content_filter as an
invocation option to smtpd or pickup , which is useful when you only want to filter email received from

outside (or inside) the system.

Content filters can be programs that are invoked for each message. They read a message on standard
input and reinject filtered messages via the sendmail program. They can also be daemons that listen on

a local TCP port, receiving messages via SMTP or LMTP (Local Mail Transfer Protocol), and reinjecting
filtered messages via SMTP by communicating with a second instance of smtpd listening on a local port.

Don't confuse Postfix's sendmail program with sendmail. sendmail is an entirely
different MTA that also uses an executable named sendmail to perform nearly all
of its functions. Postfix's sendmail program is much more limited but is designed

to serve as a replacement for sendmail's to facilitate converting systems from
sendmail to Postfix.

SpamAssassin itself is not suitable for use as a content filter, because it doesn't know how to reinject a
tagged message. However, SpamAssassin can be invoked by a content filter in several ways.

6.3.1 Using a Program as a Content Filter

The simplest content filters are programs that accept messages on standard input, perform spam-
checking, and either exit with an error status code or reinject the message to Postfix. When you use a
program as a content filter, you do not need to run any additional daemons-Postfix invokes the program
for each message. If your system receives a lot of mail, you are likely to get better performance by using
a daemonized content filter, which is discussed in the next section.

To use a program as a content filter requires a series of steps:

Create a new system user that Postfix will use to run the filter program or shell script.
SpamAssassin will use this user's SpamAssassin preferences (in the .spamassassin/user_prefs file in

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

their home directory) when checking messages that have multiple recipients. In the following steps,
assume the user is named spamfilt .

1.

Create a program (or shell script) that can accept an email message on standard input, perform
filtering, and pass the modified message to sendmail 's standard input. The filter should also return
an appropriate status code, usually the exit code from sendmail , which Postfix will understand.

Your program (or shell script) should expect to receive command-line arguments consisting of the
sender's email address and a space-separated list of recipient email addresses.

Here's an example of a filter script called pf-spamfilt that calls SpamAssassin using spamc . If the
message being checked has only a single recipient, spamc 's -u option is used to load the per-user
preferences. When the message has multiple recipients, the script runs spamc without -u , and,
because the script will be running as the spamfilt user, spamc will use spamfilt 's preferences file.

2.

#!/bin/sh

#

pf-spamfilt: An example spam filtering script for postfix

#

sender=$1

shift

recip="$@"

if ["$#" -eq 1]; then

 /usr/bin/spamc -u $recip

else

 /usr/bin/spamc

fi | /usr/sbin/sendmail -i -f $sender -- $recip

exit $?

Because this filter uses the spamc client, you must be running a spamd server. Save the filter

somewhere publicly accessible (e.g., /usr/local/bin/pf-spamfilt) and set its permissions to
allow anyone to read and execute it.

Define a new mail transport in master.cf that invokes the filter you created in step 2. The following
example shows how you add a transport called spamcheck , defined as a Unix service. By defining
the transport as shown, you specify that the mail transport will use Postfix's pipe command to run

/usr/local/bin/pf-spamfilt as user spamfilt , and will pass the email address of the sender and the
email addresses of recipients as command-line arguments to pf-spamfilt . The flag argument
includes the R flag (add a Return-Path header) and the q flag (quote the sender and recipient

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

addresses for use in the command line).

===

service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (50)

===

spamcheck unix - n n - - pipe

 flags=Rq user=spamfilt argv=/usr/local/bin/pf-spamfilt ${sender} ${recipient}

Direct Postfix to use the new mail transport as a content filter for the smtpd daemon. Replace this

line in master.cf :

4.

smtp inet n - - - - smtpd

with these two lines:

smtp inet n - - - - smtpd

 -o content_filter=spamcheck:

If you always want to use per-user preferences, instruct Postfix to call the spamcheck transport with

only a single recipient per message by adding this line to main.cf :

5.

spamcheck_destination_recipient_limit = 1

Run postfix reload to re-read the configuration files. Test the system by sending an email from

the Internet and see whether SpamAssassin is called to check the message.

6.

6.3.2 Using a Daemon as a Content Filter

Although it's more complicated to run a daemonized content filter, most larger sites will want to do so in
order to avoid the overhead associated with starting the content filter for each email and running
sendmail for reinjection. In the daemonized approach, the filter listens on a TCP port bound to the

loopback address (127.0.0.1). On receiving a message from the Internet, Postfix connects to the filter
daemon and relays the message using the SMTP or LMTP protocol.

The daemon can reject the message during the SMTP/LMTP transaction, which will cause Postfix to
bounce the message, or the daemon can accept the message, modify it, and reinject it by SMTP. To
prevent mail loops, Postfix must run a second smtpd daemon, bound to another TCP port on the loopback
address. The second smtpd is configured to accept messages without rerunning the filter (or performing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the checks that would normally be performed on a message received from the Internet).

To use a daemon as a content filter requires five steps:

Install a daemon that performs content-filtering in the fashion that Postfix expects. Section 6.4
provides an example. Typically, you will need to know or configure:

The port on which the daemon accepts incoming messages to check (e.g., 10024).

The protocol (SMTP or LMTP) by which the daemon expects to receive an incoming message.

The port to which the daemon will connect to reinject a message to Postfix (e.g., 10025).

The user that will run the daemon. Ideally, you should run daemons under a single-purpose,
non-root user.

1.

Define a new mail transport in master.cf that sends mail to the daemon. In the following example,
the transport is called spamcheck and is defined as a Unix service that will use Postfix's smtp
command. You can use the disable_dns_lookups option to save overhead, as you know that the

transport will be configured to relay mail to your loopback IP address, so the daemon will never
need to perform a DNS MX lookup. The example uses the maxproc feature in master.cf to limit the
number of messages that can use this mail transport at one time to two.

2.

===

service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (50)

===

spamcheck unix - - n - 2 smtp

 -o disable_dns_lookups=yes

If you are using Postfix 2.0 or later, you can define the spamcheck
transport to use Postfix's lmtp command instead of smtp . The LMTP

protocol has some advantages over SMTP-notably, LMTP servers
(including amavisd) can return individual accept/refuse codes for each
message recipient during an LMTP transaction. Postfix's lmtp client can

also cache connections to an LMTP server for greater performance. Bugs
in the lmtp client existed in Postfix versions earlier than 2.0 so using
smtp is recommended with these versions.

Define a new mail transport that receives mail from the daemon in master.cf. This transport will use
Postfix's smtpd daemon and is defined by the IP address and port number on which it will listen

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(127.0.0.1 and 10025, respectively). smtpd is an inet service, and many option parameters are

provided to prevent further filtering and to restrict access to this mail transport to the local host
only. Here is an example of such a definition in master.cf :

3.

===

service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (50)

===

127.0.0.1:10025 inet n - n - - smtpd

 -o content_filter=

 -o myhostname=localhost.yourdomain

 -o local_recipient_maps=

 -o relay_recipient_maps=

 -o smtpd_restriction_classes=

 -o smtpd_client_restrictions=

 -o smtpd_helo_restrictions=

 -o smtpd_sender_restrictions=

 -o smtpd_recipient_restrictions=permit_mynetworks,reject

 -o mynetworks=127.0.0.0/8

 -o strict_rfc821_envelopes=yes

 -o smtpd_error_sleep_time=0

 -o smtpd_soft_error_limit=1001

 -o smtpd_hard_error_limit=1000

The -o myhostname=localhost .yourdomain option is important if the

content filter issues the SMTP HELO command with the same hostname
that it originally received from Postfix. If Postfix sees a HELO from itself,
it rejects the connection to avoid a mail loop. By telling the new smtpd

that its hostname is something else, you prevent this problem.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Direct Postfix to the use the daemon's mail transport as a content filter for mail received by the
primary smtpd daemon. Replace this line in master.cf :

4.

smtp inet n - - - - smtpd

with these two lines:

smtp inet n - - - 2 smtpd

 -o content_filter=spamcheck:[127.0.0.1]:10024

The primary smtpd daemon will filter incoming messages by passing them to the spamcheck

mail transport that is listening on port 10024 of the loopback address 127.0.0.1.

Run postfix reload to re-read the configuration files. Test the system by sending email from the

Internet.

5.

Figure 6-2 illustrates this configuration.

Figure 6-2. Postfix with a daemonized content filter

6.3.3 Filtering Before Address-Rewriting

The Postfix queue manager invokes content filters once it has queued a message. A potential problem
with the simple content-filtering approaches outlined earlier is that the messages to be filtered have
passed through the cleanup service on their way to the queue, and cleanup performs virtual address
lookups and address canonicalization-that is, cleanup may rewrite addresses in message headers.

Accordingly, the message that Postfix sends to the content filter (and thus to SpamAssassin) to check is
not exactly the same as the message that Postfix received. The changes to addresses may rob
SpamAssassin's rules (or the Bayesian classifier) of useful determinants of spam.

If you are running Postfix 2.0 or later, you can fix this problem by setting up a separate, pre-cleanup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

service that does not perform address canonicalization. Messages received by Postfix's smtpd and pickup
can be routed through the pre-cleanup and then to the queue. Filter-checked messages received by the
second smtpd instance can then be routed through the standard cleanup service for address-rewriting

before returning to the queue for further delivery processing.

To use a two-cleanup design, set up a daemonized filter configuration as described in the previous section
and then make the following configuration changes:

Add a new pre-cleanup service to /etc/postfix/master.cf that calls the cleanup daemon but turns

off address canonicalization:

1.

pre-cleanup unix n - n - 0 cleanup

 -o canonical_maps=

 -o sender_canonical_maps=

 -o recipient_canonical_maps=

 -o masquerade_domains=

 -o virtual_alias_maps=

Configure smtpd and pickup to use the pre-cleanup service in /etc/postfix/master.cf by changing

their entries from

2.

smtp inet n - - - - smtpd

pickup fifo n - - 60 1 pickup

to

smtp inet n - - - - smtpd

 -o cleanup_service_name=pre-cleanup

pickup fifo n - - 60 1 pickup

 -o cleanup_service_name=pre-cleanup

To improve performance, modify the entry for cleanup so that it does not perform some of the
message checks that will have already been handled by pre-cleanup . You can turn off any checks
that would have already been performed on message headers (via the Postfix header_checks ,
mime_header_checks , or nested_header_checks options) or bodies (via the Postfix body_checks

options) by defining each option to be empty:

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cleanup unix n - n - 0 cleanup

 -o header_checks=

 -o mime_header_checks=

 -o nested_header_checks=

 -o body_checks=

Figure 6-3 illustrates this configuration.

Figure 6-3. Postfix with a daemonized content filter and two cleanup
services

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.4 Building a Spam-Checking Gateway

Several content-filtering daemons that call SpamAssassin are available for Postfix. This section provides a
complete sample installation of amavisd-new, a particularly efficient filter that supports both spam-
checking and virus-checking. amavisd-new is written in Perl and available at
http://www.ijs.si/software/amavisd/ . The version used in this chapter's example is 20030616-p9, which
supports both SpamAssassin 2.63 and SpamAssassin 3.0.

amavisd-new is based on amavis, another virus-scanning package that is also actively developed and
widely used. Although amavisd-new's most important program is also named amavisd , amavisd-new has

developed separately and is a significantly different package. Some of amavisd-new's features include:

avisd-new was specifically developed and tested for Postfix as a daemonized content filter.

Messages can be rejected based on MIME type or extensions of attached filenames.

Messages can be checked with multiple virus scanners, and messages carrying viruses can be
refused, discarded, or quarantined.

SpamAssassin can be invoked on a message, and spam can be refused, discarded, quarantined, or
tagged.

Per-user configuration of amavisd-new is possible through an SQL or LDAP database.

The rest of this chapter details the installation, configuration, and operation of amavisd-new as an example
of a full-scale, daemonized, content filter approach to using SpamAssassin with Postfix. amavisd-new's
other functions, such as virus-checking, are mentioned but not covered in detail; read the documentation
to learn more about these other amavisd-new features.

6.4.1 Installing amavisd-new

amavisd-new is written in Perl, and invokes SpamAssassin through the Mail::SpamAssassin Perl modules.
Because amavisd-new itself is a daemon, you do not need to run spamd . It's easiest to install

SpamAssassin (and your antivirus software) first, and then install amavisd-new. amavisd-new also
requires several other Perl modules, including: Archive::Tar , Archive::Zip , Compress::Zlib ,
Convert::TNEF , Convert::UUlib , MIME::Base64 , MIME::Tools , Mail::Internet , Net::Server , Net::SMTP
, Digest::MD5 , IO::Stringy , Time::Hires , and Unix::Syslog . If you plan to do per-user configuration of
amavisd-new through SQL or LDAP, you'll need appropriate Perl modules for database access (DBI and a
DBD:: module for SQL, or Net::LDAP for LDAP). You can install most of these Perl modules using CPAN as
described in Chapter 2 .

The standard version of MIME::Tools 5.411a has bugs. Install MIME::Tools 6 or later
from http://search.cpan.org/dist/MIME-tools .

http://www.ijs.si/software/amavisd/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Begin the install process by creating a new user account and group for running amavisd-new; the usual
name for both the user and group is amavis . This user will own amavisd-new's files, and the user (or
group) must have access to SpamAssassin's configuration and database files as well. The user's home
directory is traditionally /var/amavis , but you can create it anywhere that fits your system's needs.

amavisd-new uses several important directories. It keeps two files in its home directory, one containing its
current process ID, and the other used for locking. It uses a working directory for unpacking email
messages and scanning them; by default, this is the home directory or the tmp subdirectory of the home
directory. For optimal performance, this directory should be on a fast disk-even a RAM disk if your
operating system supports it and you have enough memory to spare. amavisd-new stores quarantined
email messages in /var/virusmails by default, but you can select any directory for this purpose. Speed is
not so critical with this directory, and it should never be located on a RAM disk because you will often want
to be sure that you can access quarantined files. If you plan to physically locate these directories
somewhere unusual (e.g., to mount new disk partitions or a RAM disk as /var/amavis/tmp), you should do
so before you install amavisd-new. The directories should be owned by user and group amavis and should
not be world-readable or world-searchable.

Next, download the amavisd-new source code from http://www.ijs.si/software/amavisd/ and unpack it. As
root , copy the amavisd script to a suitable directory for executable daemons (e.g., /usr/bin ,
/usr/local/sbin , etc.), chown it to root , and use chmod to set its permissions to 0755 (readable and

executable by all users, writable only by root).

Copy the amavisd.conf file to a suitable directory for configuration files (e.g., /etc , /etc/amavis ,
/usr/local/etc , etc.). By default, amavisd expects to find this file in /etc , and if you locate it anywhere

else, you will have to add an extra command-line option (-c filename) when invoking amavisd to tell it

the new location. The amavisd.conf file should also be owned by root and should have permissions 0644
(readable by all, writable only by root).

6.4.2 Configuring amavisd-new

amavisd-new is configured through the amavisd.conf file. amavisd.conf is parsed as a Perl script and can
contain any legal Perl code. Because it is parsed as Perl, you must escape any at sign (@), question mark
($), or backslash (\) characters that appear in double-quoted strings by prepending a backslash. For
example:

$some_email = "sample\@example.com";

Email addresses must be specified without surrounding brackets and without RFC 2821 quoting.

Edit amavisd.conf to set the (many) available configuration options to control amavisd . The file is

organized in logical sections; the most important options are in Section I, but you'll need to read through
the entire file to customize the system completely. The following sections explain commonly modified
portions of the configuration file in the order that you'll encounter them.

6.4.2.1 Essential options

Example 6-1 shows the first portion of the configuration file and the settings of the essential options. Set
$MYHOME to the amavis user's home directory. Set $mydomain to your domain name. Set $daemon_user
and $daemon_group to name of the amavis user and group. Set $TEMPBASE to the directory to use for

unpacking messages; for improved performance, this directory should be a mounted RAM disk.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-1. Essential settings in amavisd.conf

Section I - Essential daemon and MTA settings

#

$MYHOME serves as a quick default for some other configuration settings.

More refined control is available with each individual setting further down.

$MYHOME is not used directly by the program. No trailing slash!

$MYHOME = '/var/amavis'; # (default is '/var/amavis')

$mydomain serves as a quick default for some other configuration settings.

More refined control is available with each individual setting further down.

$mydomain is never used directly by the program.

$mydomain = 'example.com'; # (no useful default)

Set the user and group to which the daemon will change if started as root

(otherwise just keeps the UID unchanged, and these settings have no effect):

$daemon_user = 'amavis'; # (no default; customary: vscan or amavis)

$daemon_group = 'amavis'; # (no default; customary: vscan or amavis)

Runtime working directory (cwd), and a place where

temporary directories for unpacking mail are created.

(no trailing slash, may be a scratch file system)

#$TEMPBASE = $MYHOME; # (must be set if other config vars use is)

$TEMPBASE = "$MYHOME/tmp"; # prefer to keep home dir /var/amavis clean?

6.4.2.2 MTA options

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-2 shows the settings of the MTA options. Set $forward_method to the method you will use to

reinject checked mail to the MTA. For Postfix, this method should be of the form smtp :ipaddress

:portnumber , where ipaddress is the IP address of the Postfix system (usually 127.0.0.1) and

portnumber is the TCP port number on which the second smtpd instance is running. Because amavisd-new

was designed with Postfix in mind, you may not need to change this section at all.

Example 6-2. MTA options in amavisd.conf

MTA SETTINGS, UNCOMMENT AS APPROPRIATE,

both $forward_method and $notify_method default to 'smtp:127.0.0.1:10025'

POSTFIX, or SENDMAIL in dual-MTA setup, or EXIM V4

(set host and port number as required; host can be specified

as IP address or DNS name (A or CNAME, but MX is ignored)

$forward_method = 'smtp:127.0.0.1:10025'; # where to forward checked mail

$notify_method = $forward_method; # where to submit notifications

6.4.2.3 Daemon process options

Example 6-3 shows the daemon process settings. The most important setting is $max_servers , which you
should set to the same number of smtp processes you have configured Postfix to use concurrently to send

messages to amavisd-new.

Example 6-3. Daemon process settings in amavisd.conf

Net::Server pre-forking settings

You may want $max_servers to match the width of your MTA pipe

feeding amavisd, e.g. with Postfix the 'Max procs' field in the

master.cf file, like the '2' in the: smtp-amavis unix - - n - 2 smtp

#

$max_servers = 2; # number of pre-forked children (default 2)

6.4.2.4 Distinguishing local domains

http://lib.ommolketab.ir
http://lib.ommolketab.ir

amavisd-new distinguishes local domains from remote domains. Recipients at local domains can take
advantage of several per-user features that are not directly available to remote recipients, including local
customization of SpamAssassin settings. Example 6-4 shows that part of amavisd.conf that bears on per-
user customization.

You can provide your local domain information in several ways. You can set the @local_domains_acl
array to a list of domain names that should be considered local. You can set the %local_domains hash
instead, providing local domain names as keys and 1 as their values, or use the read_hash function to

read in a list of local domain names from an external file. Finally, you can define local domain names by
invoking the new_RE function with a regular expression that matches the local domain names and assigning
the result to $local_domains_re . No matter which method you use, adding a period (.) to the beginning

of a domain name means that the domain and any subdomains should all be considered local.

Example 6-4 shows this section of the configuration file, using the @local_domains_acl variable to define

local domains.

Example 6-4. Setting local domains in amavisd.conf

Lookup list of local domains (see README.lookups for syntax details)

#

NOTE:

For backwards compatibility the variable names @local_domains (old) and

@local_domains_acl (new) are synonyms. For consistency with other lookups

the name @local_domains_acl is now preferred. It also makes it more

obviously distinct from the new %local_domains hash lookup table.

#

local_domains* lookup tables are used in deciding whether a recipient

is local or not, or in other words, if the message is outgoing or not.

This affects inserting spam-related headers for local recipients,

limiting recipient virus notifications (if enabled) to local recipients,

in deciding if address extension may be appended, and in SQL lookups

for non-fqdn addresses. Set it up correctly if you need features

that rely on this setting (or just leave empty otherwise).

#

With Postfix (2.0) a quick reminder on what local domains normally are:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a union of domains specified in: $mydestination, $virtual_alias_domains,

$virtual_mailbox_domains, and $relay_domains.

#

#@local_domains_acl = (".$mydomain"); # $mydomain and its subdomains

@local_domains_acl = qw(); # default is empty, no recipient treated as local

@local_domains_acl = qw(.example.com);

@local_domains_acl = qw(.example.com !host.sub.example.net .sub.example.net);

@local_domains_acl = (".$mydomain", '.example.com', 'sub.example.net');

@local_domains_acl = qw/

example.com

example.net

example.org

/;

or alternatively(A), using a Perl hash lookup table, which may be assigned

directly, or read from a file, one domain per line; comments and empty lines

are ignored, a dot before a domain name implies its subdomains:

#

#read_hash(\%local_domains, '/var/amavis/local_domains');

#or alternatively(B), using a list of regular expressions:

$local_domains_re = new_RE(qr'[@.]example\.com$'i);

6.4.2.5 Postfix-specific options

Section II of amavsid.conf specifies options that differ by MTA and is shown in Example 6-5 . Because
amavisd-new was designed with Postfix in mind, you need to modify relatively few options. Set the
$inet_socket_port variable to the TCP port number on which amavisd should listen for SMTP connections
from Postfix. To prevent this port from being accessed by remote hosts, set $inet_socket_bind to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

'127.0.0.1 ', which will cause amavisd to listen only on the loopback interface and not on other network
interfaces. If you want to allow access by a set of remote hosts (if, for example, you want to run amavisd
on a different host than your Postfix MTA), don't set $inet_socket_bind but do set @inet_acl to a list of

IP addresses for hosts that should be permitted to connect. This list is checked in order; the first match
wins. You may specify these IP addresses as single addresses or as CIDR-style address / netmask (e.g.,

192.168.1/255.255.255.0) or address / bits (e.g., 192.168.1/24) ranges.[1] You may prepend an IP
address with an exclamation point (!) to disallow connections from that address, even if a larger range
that contains the address is permitted (e.g., !192.168.0/24 192.168/16 to allow all 192.168.*.*

addresses except 192.168.0.* addresses).

[1] "CIDR" stands for Classless Interdomain Routing.

Example 6-5. Postfix-specific options in amavisd.conf

SMTP SERVER (INPUT) PROTOCOL SETTINGS (e.g. with Postfix, Exim v4, ...)

(used when MTA is configured to pass mail to amavisd via SMTP or LMTP)

$inet_socket_port = 10024; # accept SMTP on this local TCP port

 # (default is undef, i.e. disabled)

multiple ports may be provided: $inet_socket_port = [10024, 10026, 10028];

SMTP SERVER (INPUT) access control

- do not allow free access to the amavisd SMTP port !!!

#

when MTA is at the same host, use the following (one or the other or both):

$inet_socket_bind = '127.0.0.1'; # limit socket bind to loopback interface

 # (default is '127.0.0.1')

@inet_acl = qw(127.0.0.1); # allow SMTP access only from localhost IP

 # (default is qw(127.0.0.1))

6.4.2.6 Logging options

Section III of amavisd.conf deals with logging and is shown in Example 6-6 . amavisd can log using syslog
, or it can log to a file. Set $DO_SYSLOG to 1 to instruct amavisd to use syslog for logging; you can change
the syslog facility and priority using the $SYSLOG_LEVEL variable. Set $DO_SYSLOG to 0 to instruct amavisd
to log to a file; set $LOGFILE to specify the filename. The log file must be in a directory the amavis user

can write to.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The $log_level variable controls the amount of detail that amavisd logs. A log level of 0 results in

minimal logging; a log level of 5 produces highly verbose logging.

Example 6-6. Logging options

Section III - Logging

#

true (e.g. 1) => syslog; false (e.g. 0) => logging to file

$DO_SYSLOG = 1; # (defaults to false)

#$SYSLOG_LEVEL = 'user.info'; # (defaults to 'mail.info')

Log file (if not using syslog)

$LOGFILE = "$MYHOME/amavis.log"; # (defaults to empty, no log)

#NOTE: levels are not strictly observed and are somewhat arbitrary

0: startup/exit/failure messages, viruses detected

1: args passed from client, some more interesting messages

2: virus scanner output, timing

3: server, client

4: decompose parts

5: more debug details

$log_level = 1; # (defaults to 0)

6.4.2.7 Spam-handling options

Most of Section IV of amavisd.conf focuses on detailed configuration of how amavisd will handle detected

viruses and spam. Only those options related to spam handling are discussed in detail here.

When amavisd detects a spam email, it logs a message to its log file by default. It can also quarantine the

email and/or notify an administrator. It can then generate a bounce message to the sender. Finally, it can
either accept and deliver the message, or discard the message. Many different configuration variables are
involved in these decisions. Unfortunately, the order of the variables in the file is largely the reverse of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

order in which they are checked during the spam-handling process.

Enable a spam quarantine by setting the following two variables:

$QUARANTINEDIR

Set this variable to the directory or mailbox file in which to store the quarantined messages.

$spam_quarantine_method

Set this variable to "local:spam-%b-%i-%n ", to specify the filename format for quarantined spam
messages. In that format, %b expands to a digest of the message body, %i expands to the date and
time, and %n expands to the amavisd message identifier.

To control the spam quarantine on a per-recipient basis, set the $spam_quarantine_to variable to a

reference to a hash, keyed by the recipient's address, like this:

$local_delivery_aliases{'sam-spam'} = '/home/sam/mail/spam';

$spam_quarantine_to =

 { 'example.net' => undef

 'jane@example.com' => 'spam@jane.example.com',

 'sam@example.com' => 'sam-spam',

 'example.com' => 'spam-quarantine',

 };

If the hash value is undefined or empty, spam is not quarantined. In this example, spam sent to
example.net will not be quarantined at all. If the hash value contains an asterisk (@) , spam will be

forwarded. Spam sent to jane@example.com will be forwarded to spam@jane.example.com . Otherwise,
the hash value is looked up in the %local_delivery_aliases hash, and the spam is quarantined in the
file or directory returned from that lookup. If the lookup fails, amavisd logs a warning and doesn't
quarantine the message. Several default local delivery aliases are defined in amavisd , including spam-
quarantine , which quarantines a message in $QUARANTINEDIR . In the preceding example, spam to

sam@example.com will be quarantined in the /home/sam/mail/spam mailbox (or mail directory), and
other spam to example.com will be quarantined in the default directory.

You can also write your $spam_quarantine_to policies with regular expressions:

$spam_quarantine_to = new_RE(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [qr/^sam@example\.com$/i => 'sam-spam'],

 [qr/^jane@example\.com$/i => 'spam@jane.example.com'],

 [qr/@example\.com$/i => 'spam-quarantine'],

 [qr/@example\.net$/i => undef]

);

Because regular expressions are matched in the order that you list them, you must put the most specific
matches first (/^sam@example\.com/ before /@example\.com/). Because regular expression matches are
case sensitive, you should generally include the i (case-insensitive) modifier to the qr// operator.

Spam to recipients that don't match any entry in $spam_quarantine_to will not be quarantined, so if you

want to quarantine all spam by default, you should either provide a rule for each domain you receive mail
for, or use the regular expression approach and include a rule for the regular expression qr/.*/ at the

end.

amavisd-new is smart about per-recipient policies like $spam_quarantine_to . If some message recipients

choose to quarantine spam and some do not, amavisd-new will honor those preferences. If multiple
recipients choose the same quarantine destination, a message sent to two or more of those recipients is
written only once to the quarantine destination .

You can also make quarantine decisions based on a spam's sender in an analogous way using
$spam_quarantine_bysender_to , but this alternative is rarely useful, as spammers often falsify their

sending addresses or use throwaway accounts.

To notify an administrator when spam is received, set $spam_admin to the address of the administrator.
These notifications are disabled by default. Consider carefully before setting $spam_admin to the email

address of a real person; given the amount of spam on the Internet today, it's easy to get hundreds of
notifications or more, and difficult to know what to do about them. An alternative that might be useful for
service providers is to set $spam_admin to a reference to a hash based on the spam sender's address, in

order to detect outgoing spam from customers. For example, to notify the security staff about spam being
sent from the example.com domain but nowhere else, use:

$spam_admin =

 { '.example.com' => 'security@example.com',

 '.' => undef

 };

The $final_spam_destiny variable controls the final disposition of spam recognized by amavisd .

Although this variable appears first in this section of the configuration file, it is consulted last during spam-
handling. When using amavisd-new with Postfix, there are three useful settings for $final_spam_destiny

:

Set $final_spam_destiny to D_PASS to accept and deliver all spam. Use this strategy when your

http://lib.ommolketab.ir
http://lib.ommolketab.ir

goal is simply to tag spam and let clients do their own filtering. If you set $warnspamsender to 1, you

will also generate a bounce message to the sender. I don't recommend this, however, as spammers
often falsify return addresses.

Set $final_spam_destiny to D_DISCARD to discard spam that scores above a "kill level" (specified in

Section VII of amavisd.conf); spam below the kill level will be tagged and accepted. Use this strategy
when your goal is to reduce bandwidth or storage space by dropping messages that are very likely to
be spam and tagging others.

Set $final_spam_destiny to D_BOUNCE to generate a bounce message to the sender and then

discard the message. Because spammers often falsify their return addresses, you will rarely want to
use this setting.

6.4.2.8 Recipient whitelists

Section V of the amavisd.conf file focuses on spam policy controls for individual recipients or recipient
domains. Its function is analogous to SpamAssassin's whitelist_to feature. You can prevent any spam-

checking at all, or you can continue to perform spam-checking but prevent spam-handling actions for
detected spam.

To prevent any spam-checking at all for email sent to a recipient, set the @bypass_spam_checks_acl ,
%bypass_spam_checks , or $bypass_spam_checks_re variables. You may use domain names instead of

recipient addresses to whitelist all mail sent to a given domain. Here's how you'd set the
@bypass_spam_checks_acl array to a list of recipients that want to opt out of spam-checking:

@bypass_spam_checks_acl = qw(chris@example.com robin@example.com);

To use the %bypass_spam_checks hash instead, provide recipient addresses as keys and 1 as their values.
You might prefer this approach to using @bypass_spam_checks_acl if you have a very long list of

recipients, because searching a hash is much faster than searching a long list. You can also use the
read_hash function to read in a list of recipients from an external file and assign them to
%bypass_spam_checks . This is useful when you want to keep a long list of recipients separate from the

amavisd.conf file. For example:

read_hash(\%bypass_spam_checks, '/var/amavis/bypass_spam');

Finally, you can define recipients to opt out by providing a list of regular expressions that match recipient
addresses to the new_RE function and assigning the result to $bypass_spam_checks . This method is useful

when you can parsimoniously specify your whitelisted recipients with a regular expression or two. For
example:

$bypass_spam_checks = new_RE(qr'^(chris|robin)@example\.com'i);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Spam checks are bypassed only if all of the recipients of a message have been
added to one of these variables. If even one recipient is not listed, spam-checking
will still be performed. To ensure that spam is still delivered to whitelisted recipients
in such cases, use the "spam_lovers" features discussed next.

If spam checks are bypassed, SpamAssassin's Bayesian classifier will not have an
opportunity to learn from a message, whether or not it is spam.

To prevent spam-handling (e.g., tagging or quarantine) from being performed for a recipient when a
message has been checked and designated as spam, set the @spam_lovers_acl , %spam_lovers , or
$spam_lovers_re variables. These variables are set analogously to the @bypass_spam_checks_acl ,
%bypass_spam_checks , and $bypass_spam_checks_re variables.

In Example 6-7 , jane@example.com always receives every message, spam or not, and spam-tagging is
skipped when messages are addressed to her alone. In addition, if a message is destined for a domain
other than example.com (i.e., it's outgoing mail from our domain), spam-tagging is skipped.
postmaster@example.com also receives every message, but spam-checking is still performed.

Example 6-7. Whitelisting by recipient

Avoid running a spam check if jane is the only recipient, or if

all recipients are outside of example.com

@bypass_spam_checks_acl = ('jane@example.com', '!.example.com');

Even if we run a check, don't act on the results for jane or postmaster

@spam_lovers_acl = ('jane@example.com', 'postmaster@example.com');

6.4.2.9 Sender whitelists and blacklists

amavisd can maintain whitelists and blacklists of message senders. It uses a message's envelope address

(the one provided in the SMTP MAIL FROM command) as the sender address. Whitelisting ensures that
amavisd will allow mail from a whitelisted sender to continue to its intended recipients; blacklisting ensures
that amavisd will treat mail from a blacklisted sender as spam.

amavisd 's whitelist and blacklist features do not interact in the same manner as

SpamAssassin's. For example, if an address is both whitelisted and blacklisted in
SpamAssassin, neither takes effect. If an address is both whitelist and blacklisted in
amavisd , both take effect-the message is marked as spam and also allowed to

pass to the recipient.

As with other amavisd address-matching features, you can specify addresses to globally whitelist by an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

array, keys of a hash, or by a set of regular expressions. Set the @whitelist_sender_acl array to a list
of sender addresses to whitelist. To use the %whitelist_sender hash instead, provide sender addresses
as keys and 1 as their values, or use the read_hash function to read in a list of senders from an external

file. Finally, you can specify senders to whitelist by providing a list of regular expressions that match the
sender addresses to the new_RE function and assigning the result to $whitelist_sender_re . You may

use domain names instead of sender addresses to whitelist all mail sent from a given domain.

You can use a similar set of variables for globally blacklisting senders. The array is
@blacklist_sender_acl , the hash is %blacklist_sender , and the regular expression version is
$blacklist_sender_re .

The default amavisd.conf defines $blacklist_sender_re and %whitelist_sender as shown in Example

6-8 . Many username patterns typical of spammers are blacklisted, such as investments ; many addresses
of well-known security and vendor mailing lists are whitelisted. You can modify these definitions or use one
of the other variables to add additional sender addresses to the whitelist or blacklist.

Example 6-8. Default blacklist and whitelist entries in amavisd.conf

$blacklist_sender_re = new_RE(

 qr'^(bulkmail|offers|cheapbenefits|earnmoney|foryou|greatcasino)@'i,

 qr'^(investments|lose_weight_today|market.alert|money2you|MyGreenCard)@'i,

 qr'^(new\.tld\.registry|opt-out|opt-in|optin|saveonlsmoking2002k)@'i,

 qr'^(specialoffer|specialoffers|stockalert|stopsnoring|wantsome)@'i,

 qr'^(workathome|yesitsfree|your_friend|greatoffers)@'i,

 qr'^(inkjetplanet|marketopt|MakeMoney)\d*@'i,

);

map { $whitelist_sender{lc($_)}=1 } (qw(

 cert-advisory-owner@cert.org

 owner-alert@iss.net

 slashdot@slashdot.org

 bugtraq@securityfocus.com

 NTBUGTRAQ@LISTSERV.NTBUGTRAQ.COM

 security-alerts@linuxsecurity.com

 amavis-user-admin@lists.sourceforge.net

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 notification-return@lists.sophos.com

 mailman-announce-admin@python.org

 owner-postfix-users@postfix.org

 owner-postfix-announce@postfix.org

 owner-sendmail-announce@Lists.Sendmail.ORG

 owner-technews@postel.ACM.ORG

 lvs-users-admin@LinuxVirtualServer.org

 ietf-123-owner@loki.ietf.org

 cvs-commits-list-admin@gnome.org

 rt-users-admin@lists.fsck.com

 clp-request@comp.nus.edu.sg

 surveys-errors@lists.nua.ie

 emailNews@genomeweb.com

 owner-textbreakingnews@CNNIMAIL12.CNN.COM

 spamassassin-talk-admin@lists.sourceforge.net

 yahoo-dev-null@yahoo-inc.com

 returns.groups.yahoo.com

));

amavisd-new also supports per-recipient blacklists and whitelists of senders. Per-recipient lists override the
global lists. Use the $per_recip_blacklist_sender_lookup_tables and
$per_recip_whitelist_sender_lookup_tables variables to specify these lists. Each variable is a

reference to a hash keyed by the recipient's address (or domain). The hash value should be a reference to
an array of sender addresses, a reference to a hash keyed on sender addresses (with hash values of 1), a
call to the read_hash function to read the addresses from a file, or a call to new_RE with a list of regular

expressions to match sender addresses against. For example, you could add the following code to
amavisd.conf to maintain a list of whitelisted senders for jane@example.com in the file /etc/mail/jane-
whitelist :

$per_recip_whitelist_sender_lookup_tables =

 { 'jane@example.com' => read_hash('/etc/mail/jane-whitelist')

 };

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4.2.10 SpamAssassin settings

Several variables in amavisd.conf affect the way that amavisd invokes SpamAssassin or the actions it

takes based on a message's score from SpamAssassin:

$sa_local_tests_only

Set this variable to 1 if you want SpamAssassin to skip network-based tests. It defaults to 0
(perform network-based tests).

$sa_auto_whitelist

Set this variable to 1 to enable SpamAssassin's autowhitelist feature. It defaults to (no

autowhitelist). Specify the location of the autowhitelist database in SpamAssassin's sitewide
configuration file, local.cf . Be sure that the amavis user has permission to read from and write to
the database.

$sa_mail_body_size_limit

If you set this variable to a size (in bytes), messages larger than the given size will not be checked
for spam. This conserves system resources, as SpamAssassin can take a long time to check large
messages, and large messages are rarely spam. The variable is undefined by default, which implies
no limit. A reasonable value might be 65536 (64Kb) or 102400 (100Kb).

$sa_tag_level_deflt

This variable determines the spam score at or above which X-Spam-Status and X-Spam-Level
headers will be added to the message to show the spam status and level of the message. The
default is 3, which is suitable for seeing which tests are and are not being triggered for suspicious
messages. If you like to see the spam status of all messages, set this value to -10 or so.

This variable can be defined on a per-recipient basis much like
$per_recip_blacklist_sender_lookup_tables . Set $sa_tag_level_deflt to a reference to a

hash keyed on recipient addresses, with the tag level as the hash value.

$sa_tag2_level_deflt

This variable determines the spam score at or above which amavisd adds an X-Spam-Flag: YES

header and an X-Spam-Report header to the message. It may also modify the Subject header to tag
the message as spam. The default is 6.3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This variable can be defined on a per-recipient basis much like
$per_recip_blacklist_sender_lookup_tables . Set $sa_tag2_level_deflt to a reference to a

hash keyed on recipient addresses, with the tag2 level as the hash value.

$sa_kill_level_deflt

This variable determines the spam score at or above which amavisd will perform spam-handling on

the message, such as quarantining the message, discarding it, notifying administrators, etc. By
default, this variable is set to the value of $sa_tag2_level_deflt so spam-handling is performed

on all spam detected. If you want to discard messages that are extremely likely to be spam and tag
messages that are less likely to be spam, set this variable to a higher score (e.g., 12), and only
messages above that level will be subject to special handling.

The variable can be defined on a per-recipient basis much like
$per_recip_blacklist_sender_lookup_tables . Set $sa_kill_level_deflt to a reference to a

hash keyed on recipient addresses, with the kill level as the hash value.

$sa_spam_modifies_subj

If this variable is set to 1, amavisd may modify the Subject header of messages with spam scores
above the $sa_tag2_level_dflt setting. You can also set this variable to a reference to a list of

recipients who should have their Subject headers modified, a reference to a hash table keyed on
recipients who should have their headers modified (with hash values of 1), or the return value of a
new_RE() call on a list of regular expressions to match against recipients who should have their

headers modified. This variable is not defined by default.

$sa_spam_subject_tag

Set this variable to the string to prepend to the Subject header of spam messages when
$sa_spam_modifies_subj is true. If you do not define this, Subject headers will never be modified.
It is not defined by default; a common definition would be '*****SPAM***** '.

6.4.2.11 Storing recipient preferences in external databases

It's possible to store amavisd-new recipient preferences in an SQL or LDAP database. This can be useful if
you want to permit users to modify their own preferences, particularly if you already use an SQL- or LDAP-
based user directory. SQL and LDAP lookups override variables defined in amavisd.conf .

Database entries indicate user preferences, including whether a user has opted out of spam-checking,
whether amavisd should modify the Subject of spam messages, and user spam tag levels (tag, tag2, kill).

Database entries may also specify sender addresses that the recipient wants to blacklist or whitelist.

To enable SQL lookups, define the variable @lookup_sql_dsn in amavisd.conf . This variable should

contain a list of references to three-element arrays that represent database connections. The first element
of each array is a Perl DBI DSN that defines the database driver to use, the database name, and the name
of the database server host. The second element is a database username that amavisd will provide for

identification to the database server, and the third element is the associated password for authentication.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The distributed amavisd.conf file provides the following commented-out example:

@lookup_sql_dsn =

(['DBI:mysql:database=mail;host=127.0.0.1;port=3306', 'user1', 'passwd1'],

['DBI:mysql:database=mail;host=host2', 'username2', 'password2']);

In this example, amavisd will first attempt to connect to the MySQL database server on port 3306 of the

local host in order to access the mail database. It will log into the database server as user1 with password

passwd1 . If this connection fails, amavisd will try the next database server, a MySQL server running on

host2 , using user username2 and password password2 .

The file README_FILES/README.lookups in the amavisd-new source code provides definitions for a set of
SQL tables that are suitable for configuring user policies and whitelists and blacklists in amavisd . You can

add these tables to your SQL database and follow the instructions in README.lookups to add appropriate
database queries to amavisd.conf .

amavisd-new's SQL support should not be confused with SpamAssassin's SQL
support. Each controls different aspects of mail-processing.

The amavisd-new source code includes an LDAP schema for an auxiliary class (amavisAccount) that can be
added to user accounts. The class defines attributes that determine whether a user has opted out of spam-
checking, whether amavisd should modify the Subject of spam messages, a user's desired spam tag levels

(tag, tag2, kill), and sender addresses to blacklist or whitelist for a user.

To enable LDAP lookups, set the $enable_ldap variable in amavisd.conf to 1, and provide LDAP server
information in the $default_ldap variable as a reference to a hash:

$default_ldap = {

 hostname => 'ldap-server-hostname',

 tls => 1,

 base => 'base DN for ldap searches',

 query_filter => '(&(objectClass=amavisAccount)(mail=%m))'}

};

For each preference for which amavisd can perform an LDAP query, you must define additional query

parameters to specify (at minimum) the result attribute to be returned from the LDAP database to
amavisd . Parameters left undefined will prevent LDAP queries from being performed for that preference.
The amavisd source code provides the examples in Example 6-9 .

Example 6-9. Defining LDAP query parameters for user preferences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$bypass_spam_checks_ldap = {res_attr => 'amavisBypassSpamChecks'};

$spam_tag_level_ldap = {res_attr => 'amavisSpamTagLevel'};

$spam_kill_level_ldap = {res_attr => 'amavisSpamKillLevel'};

$spam_whitelist_sender_ldap = {

 query_filter => '(&(objectClass=amavisAccount)(mail=%m)

 (amavisWhitelistSender=%s))',

 res_filter => 'OK'};

$spam_blacklist_sender_ldap = {

 query_filter => '(&(objectClass=amavisAccount)(mail=%m)

 (amavisBlacklistSender=%s))',

 res_filter => 'OK'};

See the file README_FILES/README.lookups in the source code for more information.

6.4.3 Basic Operations

Once you've configured the options in amavisd.conf , you're ready to test amavisd . Start amavisd either

as the amavis user or as root (in which case it will change its UID and GID to that of amavis during
startup).

During your first test, start amavisd with the debug argument. This causes amavisd to run in the

foreground and produce debugging information that you can watch to be sure that it's working correctly.
Example 6-10 shows a debug startup for a properly functioning configuration:

Example 6-10. Starting amavisd with the debug arguments

amavisd debug

Feb 7 16:58:16 tala amavisd[924]: starting. amavisd at tala amavisd-new-20030616-p7

Feb 7 16:58:16 tala amavisd[924]: Perl version 5.006001

Feb 7 16:58:16 tala amavisd[924]: Module Amavis::Conf 1.15

Feb 7 16:58:16 tala amavisd[924]: Module Archive::Tar 1.08

Feb 7 16:58:16 tala amavisd[924]: Module Archive::Zip 1.09

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Feb 7 16:58:16 tala amavisd[924]: Module Compress::Zlib 1.32

Feb 7 16:58:16 tala amavisd[924]: Module Convert::TNEF 0.17

Feb 7 16:58:16 tala amavisd[924]: Module Convert::UUlib 1.0

Feb 7 16:58:16 tala amavisd[924]: Module MIME::Entity 6.109

Feb 7 16:58:16 tala amavisd[924]: Module MIME::Parser 6.108

Feb 7 16:58:16 tala amavisd[924]: Module MIME::Tools 6.110

Feb 7 16:58:16 tala amavisd[924]: Module Mail::Header 1.60

Feb 7 16:58:16 tala amavisd[924]: Module Mail::Internet 1.60

Feb 7 16:58:16 tala amavisd[924]: Module Mail::SpamAssassin 2.63

Feb 7 16:58:16 tala amavisd[924]: Module Net::Cmd 2.24

Feb 7 16:58:16 tala amavisd[924]: Module Net::DNS 0.45

Feb 7 16:58:16 tala amavisd[924]: Module Net::SMTP 2.26

Feb 7 16:58:16 tala amavisd[924]: Module Net::Server 0.86

Feb 7 16:58:16 tala amavisd[924]: Module Time::HiRes 1.54

Feb 7 16:58:16 tala amavisd[924]: Module Unix::Syslog 0.99

Feb 7 16:58:16 tala amavisd[924]: Found myself: /usr/local/sbin/amavisd -c /etc/amavisd.

conf

Feb 7 16:58:16 tala amavisd[924]: Lookup::SQL code NOT loaded

Feb 7 16:58:16 tala amavisd[924]: Lookup::LDAP code NOT loaded

Feb 7 16:58:16 tala amavisd[924]: AMCL-in protocol code NOT loaded

Feb 7 16:58:16 tala amavisd[924]: SMTP-in protocol code loaded

Feb 7 16:58:16 tala amavisd[924]: ANTI-VIRUS code loaded

Feb 7 16:58:16 tala amavisd[924]: ANTI-SPAM code loaded

Feb 7 16:58:16 tala amavisd[924]: Net::Server: 2004/02/07-16:58:16 Amavis (type Net::

Server::PreForkSimple) starting! pid(924)

Feb 7 16:58:16 tala amavisd[924]: Net::Server: Binding to TCP port 10024 on host 127.0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0.1

Feb 7 16:58:16 tala amavisd[924]: Net::Server: Setting gid to "110 110"

Feb 7 16:58:16 tala amavisd[924]: Net::Server: Setting uid to "2013"

Feb 7 16:58:16 tala amavisd[924]: Net::Server: Setting up serialization via flock

Feb 7 16:58:16 tala amavisd[924]: Found $file at /usr/bin/file

Feb 7 16:58:16 tala amavisd[924]: No $arc, not using it

Feb 7 16:58:16 tala amavisd[924]: Found $gzip at /bin/gzip

Feb 7 16:58:16 tala amavisd[924]: Found $bzip2 at /usr/bin/bzip2

Feb 7 16:58:16 tala amavisd[924]: Found $lzop at /bin/lzop

Feb 7 16:58:16 tala amavisd[924]: Found $lha at /usr/bin/lha

Feb 7 16:58:16 tala amavisd[924]: Found $unarj at /usr/bin/arj

Feb 7 16:58:16 tala amavisd[924]: Found $uncompress at /bin/uncompress

Feb 7 16:58:16 tala amavisd[924]: No $unfreeze, not using it

Feb 7 16:58:16 tala amavisd[924]: Found $unrar at /usr/bin/unrar

Feb 7 16:58:16 tala amavisd[924]: Found $zoo at /usr/bin/zoo

Feb 7 16:58:16 tala amavisd[924]: Found $cpio at /bin/cpio

Feb 7 16:58:16 tala amavisd[924]: Using internal av scanner code for (primary) Clam

Antivirus-clamd

Feb 7 16:58:16 tala amavisd[924]: No primary av scanner: KasperskyLab AVP - aveclient

...many other messages about detecting av scanners...

Feb 7 16:58:16 tala amavisd[924]: SpamControl: initializing Mail::SpamAssassin

Feb 7 16:58:16 tala amavisd[924]: SpamControl: turning on SA auto-whitelisting

Feb 7 16:58:23 tala amavisd[924]: SpamControl: done

Feb 7 16:58:23 tala amavisd[924]: Net::Server: Beginning prefork (2 processes)

Feb 7 16:58:23 tala amavisd[924]: Net::Server: Starting "2" children

Feb 7 16:58:23 tala amavisd[924]: Net::Server: Parent ready for children.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Feb 7 16:58:23 tala amavisd[929]: Net::Server: Child Preforked (929)

Feb 7 16:58:23 tala amavisd[930]: Net::Server: Child Preforked (930)

After the startup messages, you should begin to see amavisd processing incoming messages (which will

produce a copious amount of debugging information). When you are satisfied that messages are being
properly delivered back to Postfix, hit Ctrl-C to stop amavisd debug and run amavisd with no arguments

to start the daemon in the background.

If you've chosen to locate your configuration file somewhere other than /etc , you
should either make a symbolic link to /etc/amavisd.conf or use the -c

/path/to/amavisd.conf command-line option to amavisd .

Once amavisd is running and you confirm that ordinary email is being delivered correctly, test the

SpamAssassin functions by sending a copy of the GTUBE string to yourself from a remote system. Because
SpamAssassin assigns GTUBE a spam score of 1000, which should be higher than your spam kill level, you
should see the message handled by amavisd 's spam-handling options.

If amavisd appears to work, but SpamAssassin does not, you can enable SpamAssassin debugging by
editing amavisd.conf and setting the $sa_debug variable to 1. This variable appears at the end of
amavisd.conf . You must stop amavisd and restart it with the debug argument for SpamAssassin

debugging to be performed.

Anytime you make a change to amavisd.conf , you must inform amavisd by issuing
the command amavisd reload (or stopping and restarting the daemon).

The amavisd-new distribution includes a script named amavisd_init.sh that you can use as a boot script

for systems based on RedHat Linux. With a little modification, it makes a suitable boot script for other Unix
systems to automatically start and stop amavisd .

6.4.4 Adding Sitewide Bayesian Filtering

You can easily add sitewide Bayesian filtering to amavisd-new. Use the usual SpamAssassin use_bayes
and bayes_path directives in local.cf , and ensure that the amavis user has permission to create the
databases in the directory named in bayes_path . One way to do this is to use a directory for the

databases that is owned by amavis , such as /var/amavis . Another option is to locate the databases in a
directory owned by another user but to create them ahead of time and chown them to amavis. If local
users need to have access to the databases (e.g., they will be running sa-learn) , you might have to
make the databases readable or writable by a group other than amavis and adjust the bayes_file_mode ,

or make them world readable or writable. Doing so, however, puts the integrity of your spam-checking at
the mercy of the good intentions and comprehension of your users.

If users have shell accounts on the system, you can use per-user Bayesian filtering with amavisd-new
instead. Configure SpamAssassin for per-user databases as usual, but ensure that each user's databases
are group-owned by the amavis group and have group read/write permissions so that amavisd-new can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

use them. Doing so allows users to run sa-learn themselves to train their databases, while still permitting

amavisd-new to access them. With SpamAssassin 3.0, you could also store per-user Bayesian data in an
SQL database.

6.4.5 Adding Sitewide Autowhitelisting

amavisd knows how to use autowhitelisting (see the discussion of $sa_auto_whitelist earlier in this
chapter). Just add the usual SpamAssassin auto_whitelist_path and auto_whitelist_file_mode

directives to local.cf . As with the Bayesian databases, the amavis user must have permission to create the
autowhitelist database and read and write to it.

6.4.6 Routing Email Through the Gateway

Once Postfix and amavisd-new are receiving messages for the local host and performing SpamAssassin
checks on them, you can start accepting email for your domain and routing it to an internal mail server
after spam-checking. Figure 6-4 illustrates this topology.

Figure 6-4. Spam-checking gateway topology

6.4.6.1 Postfix changes

To configure Postfix to relay incoming mail for example.com to internal.example.com , add the following
line to /etc/postfix/main.cf :

transport_maps=hash:/etc/postfix/transport

Then, create the /etc/postfix/transport file, and add either:

example.com smtp:internal.example.com

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or, if mail.example.com cannot resolve the name internal.example.com , you could use

example.com smtp:[129.168.10.55]

Run the command postmap /etc/postfix/transport to build the transport map from
/etc/postfix/transport , and run postfix reload to reload Postfix's configuration.

6.4.6.2 Routing changes

Mail from the Internet for example.com should be sent to the spam-checking gateway mail.example.com .
Add a DNS MX record for the example.com domain that points to mail.example.com .

Once received by mail.example.com , messages will be spam-checked and should then be relayed to
internal.example.com by Postfix. No DNS records for internal.example.com need be published to the
Internet, but it's useful if mail.example.com can resolve internal.example.com .

6.4.6.3 Internal server configuration

Once the external mail gateway is in place, you can configure the internal mail server to accept SMTP
connections only from the gateway (for incoming Internet mail). If you don't have a separate server for
outgoing mail, the internal mail server should also accept SMTP connections from hosts on the internal
network. These restrictions are usually enforced by limiting access to TCP port 25 using a host-based
firewall or a packet-filtering router.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 7. Integrating SpamAssassin with
qmail
qmail is a mail transport agent written by cryptography researcher Dan Bernstein and designed to
provide a highly secure mail system. It consists of several components, each of which runs with least
privilege and none of which trusts data from the other without validating it itself. qmail works best in
concert with several other systems designed by Bernstein that take over other functions traditionally
performed by standard system utilities.

This chapter explains how to integrate SpamAssassin into a qmail-based mail server to perform
spam-checking for local recipients or to create a spam-checking mail gateway.

qmail is a complex piece of software and, like most MTAs, offers scores of
configuration choices. This chapter assumes that you are running the netqmail
1.05 version of qmail 1.03 and does not cover how to securely install,
configure, or operate qmail itself. For that information, see the qmail
documentation, David Sill's Life with qmail web site
(http://www.lifewithqmail.org) and The qmail Handbook by David Sill (Apress)
or qmail by John Levine (O'Reilly).

This chapter assumes that you have set up your qmail system as described in
Life with qmail and that you are using the recommended daemontools and
ucspi-tcp packages.

 < Day Day Up >

http://www.lifewithqmail.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.1 qmail Architecture

Several different qmail components play roles in receiving messages from the Internet. Messages
from the Internet typically enter the mail server via the qmail-smtpd daemon, which listens on port
25 and conducts the SMTP transaction with the remote sender. qmail-smtpd passes the messages to
the qmail-queue program, which stores them in an outgoing queue for further processing. The
qmail-send daemon reads the messages in the outgoing queue and attempts to deliver them using
either the qmail-lspawn daemon (which passes it to the qmail-local program for local delivery) or
the qmail-rspawn daemon (which passes them to the qmail-remote program for relaying to remote

hosts). Figure 7-1 illustrates the flow of email through qmail components.

Figure 7-1. qmail architecture during message receipt

Most systems keep all of qmail's files in /var/qmail. Configuration files reside in /var/qmail/control.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.2 Spam-Checking During Local Delivery

The easiest way to add SpamAssassin to a qmail system is to configure qmail to pipe messages
through SpamAssassin during local delivery.

The advantages of this approach are:

It's easy to set up.

You can run spamd and can use spamc for faster spam-checking.

User preference files, autowhitelists, and Bayesian databases can be used, because qmail will
invoke SpamAssassin as the user to whom it is delivering a message.

However, qmail runs a local delivery agent only for email destined for a local recipient. You cannot
create a spam-checking gateway with this approach.

If you're using the installation described in the Life with qmail web site, the
/var/qmail/control/defaultdelivery file contains a line that specifies either a directory (e.g., ./Maildir/)
or a filename (e.g., ./Mailbox). The /var/qmail/rc script passes the contents of defaultdelivery to
qmail-start, and thence to qmail-lspawn and qmail-local.

If you deliver to a maildir directory, change the line in your defaultdelivery file to read:

| /usr/bin/spamc | maildir ./Maildir/

In this case, be sure you've installed the safecat package, which includes the maildir script. You can

get safecat at http://www.pobox.com/~lbudney/linux/software/safecat.html.

If you deliver to a mailbox file in each user's home directory, install procmail and change the line in
defaultdelivery to read:

 | preline procmail

In this case, the system's /etc/procmailrc file should have a default recipe that looks like this:

:0fw

* <300000

|/usr/bin/spamc

:0:

http://www.pobox.com/~lbudney/linux/software/safecat.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

$HOME/Mailbox

The default delivery method is used only when users don't have their own
.qmail files. This permits users to override spam-checking. Conversely, if you
don't do spam-checking by default during local delivery, any user can add the
preceding lines to her .qmail file and have her messages checked.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.3 Spam-Checking All Incoming Mail

If you want to set up a spam-checking gateway for all recipients, local or not, you need a way to
perform spam-checking as mail is received, before final delivery. qmail provides this capability
through the QMAILQUEUE patch, which is included in the netqmail distribution of qmail (and most
packaged qmail distributions).

You can find out if your qmail installation has the QMAILQUEUE patch applied
by executing the following commands:

cd /var/qmail/bin

strings qmail-smtpd | grep QMAILQUEUE

QMAILQUEUE

If you don't see QMAILQUEUE in response to the strings command, the patch has

not been applied. You will have to recompile qmail from the netqmail source
code.

With the QMAILQUEUE patch applied, the qmail-smtpd daemon checks to see if the environment
variable QMAILQUEUE has been set. If so, qmail-smtpd hands the message off to the program
specified in that variable instead of to the default qmail-queue program. The new program can call
SpamAssassin and then pass the (possibly tagged) message to qmail-queue. Figure 7-2 illustrates

this arrangement.

Figure 7-2. qmail configuration to check all incoming email for spam

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SpamAssassin includes a small C program called qmail-spamc by John Peacock, with its source code

(in the qmail subdirectory in SpamAssassin 2.63, and in the spamc subdirectory in SpamAssassin
3.0). When compiled, qmail-spamc is suitable for use as a QMAILQUEUE program; it invokes spamc on
an incoming message and pipes the result to qmail-queue. Because it's written in C and is a very
simple program, it runs quickly. To set up qmail-spamc, perform the following steps:

Compile qmail-spamc.c. On most systems, issue a command like the following in the directory
containing qmail-spamc.c:

1.

cc -O -o qmail-spamc qmail-spamc.c

As root, install qmail-spamc in an appropriate location on your system (e.g., /var/qmail/bin or

/usr/local/bin). Make it executable. For example:

2.

install -m 755 qmail-spamc /var/qmail/bin

Ensure that qmail-queue is on the system's default path. The easiest way to do so is usually to

create a symbolic link from /var/qmail/bin/qmail-queue to /usr/bin/qmail-queue. Do the same
for spamc if it is not already installed in /usr/bin. For example:

3.

ln -s /var/qmail/bin/qmail-queue /usr/bin/qmail-queue

Ensure that spamd is running.4.

Ensure that qmail-smtpd has enough memory available to allow it to run qmail-spamc and
spamc. Edit /var/qmail/supervise/qmail-smtpd/run and modify the -m and/or -a arguments of
softlimit to increase the number of bytes available to qmail-smtpd and its child processes to

an amount sufficient to allow all of the processes to execute completely on a large message. A
setting of 10MB (roughly 10,000,000) is usually sufficient, but you may have to vary the setting
and keep an eye on your logs to find the right amount. If the setting is too low, you will see
errors such as the following at the end of the DATA step during SMTP transactions:

5.

fatal: qq temporary problem (#4.3.0)

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Edit /etc/tcp.smtp. This file controls access to the SMTP service when you're using ucspi-tcp.
Add or modify the line shown in bold:

6.

127.:allow,RELAYCLIENT=""

:allow,QMAILQUEUE="/var/qmail/bin/qmail-spamc"

This change causes the QMAILQUEUE environment variable to be set when qmail-smtpd is

invoked by a connection from hosts outside the 127. network (i.e., spam-checking will be
performed on email from remote hosts, but not from the local host).

With the version of qmail-spamc distributed with SpamAssassin 3.0, you can customize
the way spamc is invoked by adding additional environment variables to the list in

/etc/tcp.smtp, including:

SPAMDSOCK= "/path/to/socket"

Direct spamc to use the given path to a Unix socket for connecting to spamd.

SPAMDHOST= "hostname"

Direct spamc to connect to spamd at the given host.

SPAMDPORT= "port-number"

Direct spamc to connect to spamd at the given TCP port number.

SPAMDSSL="1"

Direct spamc to connect to spamd using SSL.

SPAMDSIZE= "number-of-bytes"

Direct spamc not to perform spam-checking on messages that exceed number-of-bytes

in size.

SPAMDUSER= "username"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Direct spamc to supply the given username to spamd.

Update the TCP rules database by running the command qmailctl cdb, which is found in your

/var/qmail/bin/ directory. At this point, all incoming remote SMTP connections should have their
messages passed through qmail-spamc.

7.

You can emulate the QMAILQUEUE approach without the QMAILQUEUE patch by
renaming qmail-queue to qmail-queue.orig and writing a new qmail-queue
script that pipes the message through SpamAssassin and then to qmail-
queue.orig, like this:

#!/bin/sh

PATH=/var/qmail/bin:$PATH

| spamc | qmail-queue.orig

However, this approach is less flexible than using QMAILQUEUE and more prone
to causing trouble later when you want to queue messages without spam-
checking them.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.4 Building a Spam-Checking Gateway

Several content-filtering daemons that call SpamAssassin are available for qmail. This section provides a
complete sample installation of qmail-scanner, a particularly flexible filter that supports both spam-
checking and virus-checking. qmail-scanner is written in Perl and available at http://qmail-
scanner.sourceforge.net/ . The version used in this section's example is 1.21. Some of qmail-scanner's
features include:

The filter was specifically developed and tested for qmail.

Messages can be rejected based on MIME type or extensions of attached filenames.

Messages can be rejected based on invalid formatting.

Messages can be checked with multiple virus scanners, and messages carrying viruses can be
refused, discarded, or quarantined.

SpamAssassin can be invoked on a message, and spam can be refused, discarded, quarantined, or
tagged.

The rest of this chapter details the installation, configuration, and operation of qmail-scanner as an
example of a full-scale approach to using SpamAssassin with qmail. qmail-scanner's other functions, such
as virus-checking, are mentioned but not covered in detail; read the documentation to learn more about
these features.

7.4.1 Installation

qmail-scanner is written in Perl and invokes SpamAssassin by running spamc , so you must run spamd to
use qmail-scanner. You should set up spamd before you install qmail-scanner. Install SpamAssassin (and

your antivirus software) first, then install qmail-scanner. qmail-scanner also requires some other Perl
modules, including: Time::HiRes , DB_File , and Sys::Syslog . You can install these Perl modules using
CPAN as described in Chapter 2 . You must also install the Maildrop software package (http://www.courier-
mta.org/download.php), and if you plan to perform virus-checking, TNEF
(http://sourceforge.net/projects/tnef/).

qmail-scanner requires the 5.005_03 version of Perl or later. Perl must be compiled
to allow setuid Perl scripts; often this means that a separate suidperl program is

available on the system. If your system's Perl does not support setuid Perl scripts,
you may be able to find a package for your system that does, you may build Perl
from source code and enable support, or you may compile a setuid wrapper
program in C (described later in this chapter).

Begin the install process by creating a new user account and group for running qmail-scanner; the usual

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name for both the user and group is qscand . The new user will own qmail-scanner's files, and the user (or
group) must have access to SpamAssassin's configuration and database files as well. The user's home
directory is traditionally /home/qscand , but you can create it anywhere that fits your system's needs.

qmail-scanner uses several important directories and files in /var/spool/qmailscan . For example,
quarantined messages are stored in /var/spool/qmailscan/quarantine , and qmail-scanner logs its
operations in /var/spool/qmailscan/qmail-queue.log . The directories /var/spool/qmailscan/tmp and
/var/spool/qmailscan/working are temporary directories used for unpacking and processing messages. For
optimal performance, these directories should be on a fast disk-even a RAM disk if your operating system
supports it and you have enough memory to spare. In contrast, the quarantine directory should never be
located on a RAM disk because you will often want to be sure that you can access quarantined files.

Next, download the qmail-scanner source code, unpack it, and build it. You must be root to configure and
build qmail-scanner. The qmail-scanner build process uses the familiar configure command to configure

and build qmail-scanner's components, which you then install.

qmail-scanner Configuration Options

qmail-scanner has only a few configure options related to SpamAssassin. If you don't
specify any options, qmail-scanner will use spamc -c for spam-checking and will add X-Spam-

Status and X-Spam-Level headers to messages, but will not modify the Subject header of
spam messages.

If you specify the --scanners 'fast_spamassassin= string ' command-line option to
configure , qmail-scanner will also modify the Subject header of spam messages by

prepending a string . A typical choice for string might be SPAM . If you plan to use other

virus-scanners, you must specify thom in this command-line option as well or qmail-scanner
will not use them. (If you've already installed qmail-scanner and want to start adding a
Subject header tag, you can also edit the /var/qmail/bin/qmail-scanner-queue.pl file itself;
search for the line that defines the $spamc_subject variable, and modify it to set your

subject prefix.)

If you specify the --scanners verbose_spamassassin command-line option to configure ,
qmail-scanner will use spamc without the -c option. This alternative runs more slowly,
because the entire spam-checked message is read back from spamc instead of just the spam

scores. The advantage of this configuration, however, is that messages will be tagged exactly
as defined in the SpamAssassin rules and report templates. For example, you'll get the
SpamAssassin headers that report which spam tests matched, any custom headers you've
defined, and full MIME-rewriting of messages. If you plan to use other virus scanners, you
must specify them in this command-line option as well or qmail-scanner will not use them.

To configure qmail-scanner, use the commands shown in Example 7-1 . The example also reproduces the
output you should expect.

Example 7-1. Building qmail-scanner

$ tar xfz qmail-scanner-1.21.tar.gz
$ cd qmail-scanner-1.21

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ su
Password: XXXXXXXX
./configure --install
Building Qmail-Scanner 1.21...

This script will search your system for the virus scanners it knows
about, and will ensure that all external programs
qmail-scanner-queue.pl uses are explicitly pathed for performance
reasons.

It will then generate qmail-scanner-queue.pl - it is up to you to install it
correctly.

Continue? ([Y]/N) Y

/usr/bin/uudecode works as expected on system...

The following binaries and scanners were found on your system:

mimeunpacker=/usr/local/bin/reformime
uudecode=/usr/bin/uudecode
unzip=/usr/bin/unzip

Content/Virus Scanners installed on your System

fprot=/usr/local/bin/f-prot
fast_spamassassin=/usr/local/bin/spamc

Qmail-Scanner details.

log-details=0
fix-mime=2
ignore-eol-check=0
debug=1
notify=psender,nmlvadm
redundant-scanning=no
virus-admin=postmaster@example.com
local-domains='example.com'
silent-
viruses='klez','bugbear','hybris','yaha','braid','nimda','tanatos','sobig','winevar','pal
yh','fizzer','gibe','cailont','lovelorn','swen','dumaru','sober','hawawi','holar-
i','mimail','poffer','bagle','worm.galil','mydoom','worm.sco','tanx','novarg','@mm'
scanners="fprot_scanner","fast_spamassassin"

If that looks correct, I will now generate qmail-scanner-queue.pl
for your system...
Continue? ([Y]/N) Y

Finished. Please read README(.html) and then go over the script to
check paths/etc, and then install as you see fit.

Remember to copy quarantine-attachments.txt to /var/spool/qmailscan and then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

run "qmail-scanner-queue.pl -g" to generate DB version.

 ****** FINAL TEST ******

Please log into an unpriviledged account and run
/var/qmail/bin/qmail-scanner-queue.pl -g

If you see the error "Can't do setuid", or "Permission denied", then
refer to the FAQ.

(e.g. "setuidgid qmaild /var/qmail/bin/qmail-scanner-queue.pl -g")

That's it! To report success:

 % (echo 'First M. Last'; cat SYSDEF)|mail jhaar-s4vstats@crom.trimble.co.nz
Replace First M. Last with your name.

No setuid Perl

When qmail-scanner's configure script can't find a suitable version of Perl for running setuid

scripts, it prints out an error like this:

Testing suid nature of /usr/bin/suidperl...
Whoa - broken perl install found.
Cannot even run a simple script setuid
Installation of Qmail-Scanner FAILED

If you can't (or don't want to) install a Perl that runs setuid scripts, you can use a setuid
wrapper in C instead. Follow these steps as root :

Install qmail-scanner with ./configure --skip-setuid-test --install . This will

produce an error at the end of the installation.

1.

Compile and install the C wrapper with (cd contrib; make install) . If you're not
using the default qscand user and group and /var/qmail/bin directory for installation,

you'll have to edit contrib/Makefile first.

2.

Remove the setuid bit from /var/qmail/bin/qmail-scanner-queue.pl with chmod 0755
/var/qmail/bin/qmail-scanner-queue.pl .

3.

Edit /var/qmail/bin/qmail-scanner-queue.pl and change the first line from
#!/usr/bin/suidperl -T to #!/usr/bin/perl -T .

4.

Use qmail-scanner-queue (the compiled C wrapper) in place of qmail-scanner-queue.pl
in the rest of the qmail-scanner setup process.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As with qmail-spamc , ensure that qmail-smtpd has enough memory available to allow it to run qmail-
scanner-queue.pl , any virus checkers you have configured, and spamc . Edit
/var/qmail/supervise/qmail-smtpd/run and modify the -m and/or -a arguments of softlimit to increate
the number of bytes available to qmail-smtpd and its child processes to an amount sufficient to allow all of

the processes to execute completely on a large message.

To enable qmail-scanner, edit /etc/tcp.smtp . Add or modify lines such as those shown in bold:

127.:allow,RELAYCLIENT=""
192.168.:allow,RELAYCLIENT="",QMAILQUEUE="/var/qmail/bin/qmail-scanner-queue.pl "
10.:allow,RELAYCLIENT="",QS_SPAMASSASSIN="on",QMAILQUEUE="/var/qmail/bin/qmail-
scanner-queue.pl"
:allow,QMAILQUEUE="/var/qmail/bin/qmail-scanner-queue.pl"

When you invoke qmail-scanner with qmail's RELAYCLIENT variable set, as in the line for connections from
the 192.168/16 network, only virus-checking is performed, unless you also include QS_SPAMASSASSIN="on
", as in the line for connections from the 10/8 network. When you invoke it without setting RELAYCLIENT ,

as in the line for default connections, both virus-checking and spam-checking are performed.

Be sure to run /var/qmail/bin/qmailctl cdb after updating /etc/tcp.smtp .

7.4.2 Initialization

The first time you install qmail-scanner, you must direct it to initialize its databases. As the qscand user,
run these commands:

$ /var/qmail/bin/qmail-scanner-queue.pl -z
$ /var/qmail/bin/qmail-scanner-queue.pl -g
perlscanner: generate new DB file from /var/spool/qmailscan/quarantine-attachments.txt
perlscanner: total of 9 entries.

7.4.3 Basic Operations

qmail-scanner comes with a shell script called test_installation.sh that can be used to exercise an

installation. Example 7-2 shows how to run the script, along with its output.

Example 7-2. Testing qmail-scanner

cd contrib
QMAILQUEUE="/var/qmai/bin/qmail-scanner-queue.pl" ./test_installation.sh -doit

Sending standard test message - no viruses...
done!

Sending eicar test virus - should be caught by perlscanner module...
done!

Sending eicar test virus with altered filename - should only be caught by commercial

http://lib.ommolketab.ir
http://lib.ommolketab.ir

anti-virus modules (if you have any)...

Sending bad spam message for anti-spam testing - In case you are using SpamAssassin...
Done!

Finished test. Now go and check Email for root

If qmail-scanner's spam-checking is operating properly, root (or the user that receives root 's email)
should receive a non-spam message like this:

From MAILER-DAEMON Tue Mar 23 05:03:28 2004
From: Qmail-Scanner Test <example.com@example.com>
Received: from by example.com by uid 0 with qmail-scanner-1.21
 (f-prot: 3.11/. spamassassin: 2.63. Clear:RC:1(127.0.0.1):SA:0(0.0/5.0): .
 Processed in 5.577981 secs); 23 Mar 2004 05:03:28 -0000
To: Root Account <root@example.com>
Subject: Qmail-Scanner test (1/4): inoffensive message
Date: 23 Mar 2004 05:03:22 -0000
Delivered-To: root@example.com
X-Spam-Status: No, hits=0.0 required=5.0

Message 1/4

This is a test message. It should arrive unaffected.

The same user should also receive a spam message like this:

From MAILER-DAEMON Tue Mar 23 05:03:41 2004
Received: from by example.com by uid 0 with qmail-scanner-1.21
 (f-prot: 3.11/. spamassassin: 2.63. Clear:RC:1(127.0.0.1):SA:1(16.7/5.0): .
 Processed in 5.129358 secs); 23 Mar 2004 05:03:40 -0000
X-Spam-Status: Yes, hits=16.7 required=5.0
X-Spam-Level: ++++++++++++++++
Delivery-Date: Mon, 19 Feb 2001 13:57:29 +0000
Delivered-To: jm@netnoteinc.com
Received: from webnote.net (mail.webnote.net [193.120.211.219])
 by mail.netnoteinc.com (Postfix) with ESMTP id 09C18114095
 for <jm7@netnoteinc.com>; Mon, 19 Feb 2001 13:57:29 +0000 (GMT)
Received: from netsvr.Internet (USR-157-050.dr.cgocable.ca [24.226.157.50] (may
+be forged))
 by webnote.net (8.9.3/8.9.3) with ESMTP id IAA29903
 for <jm7@netnoteinc.com>; Sun, 18 Feb 2001 08:28:16 GMT
From: sb55sb55@yahoo.com
Received: from R00UqS18S (max1-45.losangeles.corecomm.net [216.214.106.173]) by
+netsvr.Internet with SMTP (Microsoft Exchange Internet Mail Service Version
+5.5.2653.13)
 id 1429NTL5; Sun, 18 Feb 2001 03:26:12 -0500
DATE: 18 Feb 01 12:29:13 AM
Message-ID: <9PS291LhupY>
Subject: Qmail-Scanner anti-spam test (4/4): checking SpamAssassin [if present]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

+(There yours for FREE!)
To: undisclosed-recipients: ;

Congratulations! You have been selected to receive 2 FREE 2 Day VIP Passes to
Universal Studios!

Click here http://209.61.190.180

As an added bonus you will also be registered to receive vacations discounted 25%-
75%!

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
This mailing is done by an independent marketing co.
We apologize if this message has reached you in error.
Save the Planet, Save the Trees! Advertise via E mail.
No wasted paper! Delete with one simple keystroke!
Less refuse in our Dumps! This is the new way of the new millennium
To be removed please reply back with the word "remove" in the subject line.
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

Note the bold lines in the messages. These are headers demonstrating that the messages were processed
by qmail-scanner, and in the case of the spam message, that qmail-scanner can recognize spam.

qmail-scanner uses /var/spool/qmailscan as a working directory and quarantine area for viruses. By
default, qmail-scanner's operations are logged to the /var/spool/qmailscan/qmail-queue.log file, which
should be added to your log rotation schedule. Errors are also reported to qmail's log files.

When an SMTP session is dropped partway, temporary files may remain in /var/spool/qmailscan . These
messages can be cleared out by running /var/qmail/bin/qmail-scanner-queue.pl -z . Set up a cron

job to execute this command once a day to delete older files in this directory.

7.4.4 Per-User Spam Preferences

qmail-scanner invokes spamc with the -u recipient argument when a message has a single recipient.

Accordingly, in this case, per-user spam-checking preferences (either from users'
.spamassassin/user_prefs files or from an SQL or LDAP database if spamd is so configured) will be applied

when qmail-scanner checks messages. When a message has multiple recipients, qmail-scanner uses the
default preferences.

Although there is no way to configure qmail to force senders to send messages with one recipient at a
time, qmail itself always breaks up a multirecipient message when it is sending and sends copies of the
message to single recipients. Ron Culler pointed out in a December 2003 message to the qmail-scanner-
general mailing list that one way to ensure that every message has only a single recipient is to run a pair
of qmail gateways. The first gateway receives messages from the Internet and can perform some general
scanning (e.g., refusing viruses) before forwarding messages on to the second gateway for spam-
checking. Because the first qmail server will always split up multirecipient messages before sending them,
the second qmail server will always receive messages with a single recipient and can apply per-user spam
preferences.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you built qmail-scanner using the default fast_spamassassin configuration
(described in the qmail-scanner Configuration Options sidebar), spamc is invoked
with the -c option. This limits which per-user spam preferences are applied: spam

thresholds and score modifications will work, but preferences that affect the way
messages or headers are rewritten will not (because spamc -c returns only a spam
score, not a rewritten message). Use the verbose_spamassassin configuration if

you need to enable these preferences.

7.4.5 Sitewide Bayesian Filtering

You can easily add sitewide Bayesian filtering to qmail-scanner. Use the usual SpamAssassin use_bayes
and bayes_path directives in local.cf , and ensure that the spamd user has permission to create the
databases in the directory named in bayes_path .

7.4.6 Sitewide Autowhitelisting

Adding autowhitelisting is just as easy. Add the usual SpamAssassin auto_whitelist_path directive to
local.cf , and if you're using SpamAssassin 2.63, invoke spamd with the --auto-whitelist option (which is

unnecessary in SpamAssassin 3.0). As with the Bayesian databases, the spamd user must have permission
to create the autowhitelist database and read and write to it.

7.4.7 Routing Email Through the Gateway

Once you have qmail and qmail-scanner receiving messages for the local host and performing
SpamAssassin checks on them, you can start accepting email for your domain and routing it to an internal
mail server after spam-checking. Figure 7-3 illustrates this topology.

Figure 7-3. Spam-checking gateway topology

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following sections describe the changes you need to make to implement the topology shown in Figure
7-3 .

7.4.7.1 qmail changes

To configure qmail to relay incoming mail for example.com to internal.example.com , add the following line
to /var/qmail/control/rcpthosts :

example.com

Then, create the /var/qmail/control/smtproutes file, and add either:

example.com:internal.example.com

or, if mail.example.com can look up an (internal) MX record for example.com that points to
internal.example.com (and possibly other internal mail servers), you could use

example.com:

7.4.7.2 Routing changes

Mail from the Internet for example.com should be sent to the spam-checking gateway mail.example.com .
Add a DNS MX record for the example.com domain that points to mail.example.com .

Once received by mail.example.com , messages will be spam-checked and should then be relayed to
internal.example.com by qmail. No DNS records for internal.example.com need be published to the
Internet, but it's necessary that mail.example.com can resolve internal.example.com .

7.4.7.3 Internal server configuration

Once the external mail gateway is in place, you can configure the internal mail server to accept SMTP
connections only from the gateway (for incoming Internet mail). If you don't have a separate server for
outgoing mail, the internal mail server should also accept SMTP connections from hosts on the internal
network. These restrictions are usually enforced by limiting access to TCP port 25 using a host-based
firewall or a packet-filtering router.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 8. Integrating SpamAssassin with
Exim
Exim is an MTA developed by Philip Hazel at the University of Cambridge. Exim is designed for
Internet mail hosts and provides flexibility, performance, and strong access controls. It has become a
popular replacement for sendmail because it provides a compatible command-line interface.

This chapter explains how to integrate SpamAssassin into an Exim-based mail server to perform
spam-checking for local recipients or to create a spam-checking mail gateway.

Exim is a complex piece of software and, more than most MTAs, has an
extensive and complicated set of configuration options. This chapter assumes
that you are running Exim 4 and does not cover how to securely install,
configure, or operate Exim itself. For that information, see the Exim
documentation, the web site http://www.exim.org, and the book The Exim
SMTP Mail Server: Official Guide for Release 4 by Philip Hazel (UIT Cambridge).

Exim consists primarily of a single setuid executable, exim, that performs different functions

depending on its command-line arguments. These functions include listening on the SMTP port and
receiving and enqueuing incoming messages, adding locally generated messages to the queue, and
processing the queue to transmit outgoing messages. When compiled from source code, exim is

installed in /usr/exim/bin, and the examples in this chapter assume that directory is used.

Exim's configuration file defaults to /usr/exim/configure. The configuration file determines the
behavior of Exim and defines three important logical entities: access control lists (ACLs), routers, and
transports. ACLs define tests that can be performed during incoming SMTP sessions to determine
whether Exim will accept a message. Routers determine how messages to a given address should be
delivered (or rewritten to new addresses) and queue them up for transports. Transports define
delivery mechanisms-methods by which a message can be copied from Exim's queue to a local
mailbox, a remote host, or elsewhere. Each of these entities has its own section in the configuration
file.

While you can define ACLs and transports in any order, you must define routers
in the order in which they are to run. In the default configuration, the router
order is dnslookup (look up remote hostnames and route messages via SMTP),
system_aliases (redirect messages on the basis of the /etc/aliases file),
userforward (redirect messages on the basis of user .forward files), and
localuser (route message via the local delivery agent).

 < Day Day Up >

http://www.exim.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.1 Spam-Checking via procmail

One easy way to add SpamAssassin to an Exim system is to configure Exim to use procmail as its
local delivery agent. Then add a procmail recipe for spam-tagging to /etc/procmailrc.

The advantages of this approach are

It's very easy to set up.

You can run spamd, and the procmail recipe can use spamc for faster spam-checking.

User preference files, autowhitelists, and Bayesian databases can be used.

However, Exim runs a local delivery agent only for email destined for a local recipient. You cannot
create a spam-checking gateway with this approach.

To configure Exim to use procmail for local delivery, add the following transport to the Exim
configuration file (in the transports section):

 procmail_pipe:

 driver = pipe

 command = /usr/local/bin/procmail -d $local_part

 return_path_add

 delivery_date_add

 envelope_to_add

 check_string = "From "

 escape_string = ">From "

 user = $local_part

 group = mail

Ensure that you provide the proper path to procmail and an appropriate group for running procmail in
the definition of the procmail_pipe transport.

Next add a new router to direct messages to the procmail_pipe transport. This router should be
added to the routers section of the configuration file before (or in place of) the localuser router,

which is usually the last router.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 procmail:

 driver = accept

 check_local_user

 transport = procmail_pipe

 cannot_route_message = Unknown user

 no_verify

 no_expn

Local addresses that reach the procmail router will be accepted and delivered via the
procmail_pipe transport, which invokes procmail in its role as a local delivery agent.

After any change to the Exim configuration file, you must send a SIGHUP signal
to the Exim daemon to cause it to reread the configuration file. You can test
configuration changes before you do this by running exim -bV.

Next, configure procmail to invoke SpamAssassin. If you want to invoke SpamAssassin on behalf of
every user, do so by editing the /etc/procmailrc file. Example 8-1 shows an /etc/procmailrc that
invokes SpamAssassin.

Example 8-1. A complete /etc/procmailrc

DROPPRIVS=yes

PATH=/bin:/usr/bin:/usr/local/bin

SHELL=/bin/sh

Spamassassin

:0fw

* <300000

|/usr/bin/spamassassin

If you run spamd, replace the call to spamassassin in procmailrc with a call to spamc instead. Using
spamc/spamd significantly improves performance on most systems but makes it more difficult to

enable users to write their own rules.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.2 Spam-Checking All Incoming Mail

If you want to set up a spam-checking gateway for all recipients, local or not, you need a way to
perform spam-checking as mail is received, before final delivery. Exim provides three different ways
to do this: via routers, via exiscan, and via defining a local_scan() function.

In a router-based configuration, SpamAssassin is invoked after Exim has received a message during
the process of routing each delivery address in the message. If the message is destined for a local
user, SpamAssassin can use per-user preference files; if the message will be relayed to a remote
user, SpamAssassin still checks the message using sitewide settings. In this configuration,
SpamAssassin may be invoked several times for each message received (once for each message
recipient). Figure 8-1 illustrates this configuration.

Figure 8-1. A router-based configuration for spam-checking in Exim

In an exiscan configuration, Exim invokes SpamAssassin during the SMTP transaction by means of a
new ACL. Messages that SpamAssassin considers spam can be rejected before the SMTP transaction
is complete, or accepted and tagged. However, you cannot use per-user preferences in this
configuration without negatively impacting performance. Figure 8-2 illustrates this approach.

Figure 8-2. An exiscan-based configuration for spam-checking in Exim

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In a configuration using local_scan(), Exim invokes SpamAssassin during the SMTP transaction
when it calls the local_scan() function for the incoming message. The message can be accepted or
rejected in the SMTP transaction; if local_scan() accepts the message, tagging headers can be

added. Other interesting effects, including teergrubing-responding very slowly during the SMTP
transaction when spam is detected in order to tie up the spammer's MTA-are possible with this
approach, but it is difficult to use per-user preferences in this configuration. Figure 8-3 illustrates this
approach.

Figure 8-3. A local_scan()-based configuration for spam-checking in
Exim

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each of these methods is described in detail in the following sections.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.3 Using Routers and Transports

You can configure Exim to pass all incoming mail through SpamAssassin by writing a transport that
pipes messages to SpamAssassin and then reinjects them into Exim, and a router that directs
messages to the transport. To prevent the reinjected messages from being spam-checked again, you
can set their $received_protocol to indicate they've been checked when you reinject them, and use
the $received_protocol value as a condition to determine whether or not the router will send them

for checking.

8.3.1 Configuring the Transport

Example 8-2 shows the configuration of the transport in /usr/exim/configure.

Example 8-2. A transport for spam-checking

spamassassin:

 driver = pipe

 use_bsmtp = true

 command = /usr/exim/bin/exim -bS -oMr sa-checked

 transport_filter = /usr/bin/spamc -f

 home_directory = "/tmp"

 current_directory = "/tmp"

 user = exim

 group = exim

 log_output = true

 return_fail_output = true

 return_path_add = false

The spamassassin transport in Example 8-2 uses Exim's pipe driver to deliver a message to a

command. The example specifies that Exim should use the batched SMTP (BSMTP) format to transmit
the message. The command is another invocation of exim itself, with the -bS option to accept BSMTP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

input and the -oMr sa-checked option to set the $received_protocol variable to sa-checked.

Before Exim pipes the message to the command, it filters the message through the program specified
by transport_filter-in this case, spamc-and uses the output of the filter as the message to

deliver. The other transport options provide home and working directories for running the command,
specify that the command should be run as user and group exim, cause command output to be
logged and any failure messages to be included in a bounce message, and indicate that a Return-
Path header should not be added (because this transport is not performing final delivery).

You must specify that the exim command used in the transport will be run as one of Exim's trusted
users in order for the -oMr sa-checked option to work. The Exim user (specified during Exim's

installation) is always trusted. You can add other trusted users in the configuration file with the
trusted_users or trusted_groups directives.

8.3.2 Configuring the Router

The transport provides a mechanism for Exim to filter messages through SpamAssassin and reinject
them. You must also define a router that will invoke this transport during delivery. Example 8-3
displays a definition for such a router in /usr/exim/configure.

Example 8-3. A spam-checking router in Exim

spamassassin_router:

 driver = accept

 transport = spamassassin

 condition = "${if {!eq {$received_protocol}{sa-checked}} {1} {0}}"

 no_verify

 no_expn

The spamassassin_router in Example 8-3 uses the accept driver, which simply delivers a message
to a transport. The transport directive specifies our spamassassin transport. The condition

directive prevents a spam-checking loop when messages are reinjected by insuring that the value of
$received_protocol is not sa-checked. The no_verify and no_expn directives instruct Exim to

skip this router when performing address verification or expansion.

Add the router definition from Example 8-3 to the section of /usr/exim/configure that lists routers.
The order of the router definitions is significant. Where you add the spamassassin_router router in

the list determines which messages will be checked, as shown in Table 8-1. Most sites will probably
want to add the router between system_aliases and userforward (or possibly between
userforward and a procmail router), but spam-checking gateways are likely to need the router
before dnslookup as nearly all of their mail will be destined for remote sites.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 8-1. Effect of the position of spamassassin_router in the Exim
router list

Position Effect

First in the list (before
dnslookup)

SpamAssassin invoked on all messages, including local deliveries,
outgoing messages, and messages relayed to remote hosts.

Between dnslookup and
system_aliases

SpamAssassin invoked on messages with addresses in locally hosted
domains. System aliases and user .forward files will receive messages
already spam-checked (and can act on tagging).

Between
system_aliases and
userforward

SpamAssassin invoked on messages with addresses in locally hosted
domains, unless system alias file redirected them to a remote host. User
.forward files will receive messages already spam-checked (and can act
on tagging).

Between userforward
and localuser

SpamAssassin invoked only on messages that will be delivered locally.
User .forward files will receive messages without spam-checking. Spam-
checked messages will be delivered to local mailbox.

After localuser Too late! Messages will already have been delivered.

8.3.3 Using Per-User Spam-Checking Preferences

Because Exim routes each delivery address separately, you can configure it to behave differently for
messages that will be delivered locally and messages that will be relayed to remote hosts. You can
take advantage of this flexibility to direct SpamAssassin to use per-user preferences when checking a
message that is destined for a local user and to use sitewide preferences when checking a message
that is destined for a remote user. This approach requires a second transport and a second router.
Add another transport such as that shown in Example 8-4 to your Exim configuration file.

Example 8-4. Transport for local spam-checking in Exim

spamassassin_local:

 driver = pipe

 use_bsmtp = true

 command = /usr/exim/bin/exim -bS -oMr sa-checked

 transport_filter = /usr/bin/spamc -f -u $local_part

 home_directory = "/tmp"

 current_directory = "/tmp"

 user = exim

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 group = exim

 log_output = true

 return_fail_output = true

 return_path_add = false

The key addition in the spamassassin_local transport is the use of spamc's -u user command-line
option to specify the user on whose behalf spamc is running. spamc will convey the username to
spamd, which will examine the user's .spamassassin/user_prefs file for preferences.

For this transport to work, spamd must be able to read users' preference files.
Because you should run spamd under a dedicated user and group, this user or

group must be able to search the .spamassassin subdirectory of each user's
home directory and read the user_prefs file. (You may instead run spamd as

root, but using a dedicated user is a better security practice.)

You must not invoke spamd with the --nouser-config or --auth-ident
options when using this transport. If you use --nouser-config, spamd will
ignore spamc's -u argument, and user preferences will not be examined. If you
use --auth-ident, spamd will attempt to confirm that spamc is being run by
the user given in its -u argument. Because Exim runs as its own user, the
authentication will fail and spamd will refuse to look up user preferences.

Next, add a router that uses the spamassassin_local transport, as shown in Example 8-5.

Example 8-5. A spam-checking router with user preferences in Exim

spamassassin_local_router:

 driver = accept

 transport = spamassassin_local

 condition = "${if {!eq {$received_protocol}{sa-checked}} {1} {0}}"

 no_verify

 no_expn

You should also modify spamassassin_router to limit its use to non-local domains. This modification

is shown in Example 8-6.

Example 8-6. A spam-checking router for non-local domains in Exim

http://lib.ommolketab.ir
http://lib.ommolketab.ir

spamassassin_router:

 driver = accept

 transport = spamassassin

 domains = ! +local_domains

 condition = "${if {!eq {$received_protocol}{sa-checked}} {1} {0}}"

 no_verify

 no_expn

Arrange the routers in the following order:

spamassassin_router, to perform spam-checking for messages addressed to remote domains1.

dnslookup, to route messages addressed to remote domains via SMTP2.

system_aliases, to redirect messages with addresses in /etc/aliases3.

spamassassin_local_router, to perform spam-checking for messages addressed to local users

with the per-user preferences of the local user (who may, however, choose to forward the
tagged message elsewhere)

4.

userforward, to redirect messages with addresses in user .forward files5.

localuser, to route messages via the local delivery agent6.

To illustrate how this approach functions, consider an Exim system running on mail.example.com and
configured to relay messages for example.com to an internal mail server. On mail.example.com,
postmaster is an alias for the local user chris. When a spammer sends a message addressed to
sam@example.com and postmaster@mail.example.com, Exim passes each address through its list of
routers. sam@example.com is routed by spamassassin_router, so a copy of the message is tagged

by SpamAssassin using its sitewide configuration and then reinjected. The reinjected message
bypasses spamassassin_router and is routed by dnslookup, which queues it for remote delivery.

Meanwhile, postmaster@mail.example.com is destined for a local domain and bypasses both
spamassassin_router and dnslookup. The system_aliases router rewrites the address to

chris@mail.example.com, which Exim then begins routing. This address bypasses
spamassassin_router, dnslookup, and system_alias and is routed by
spamassassin_local_router, which tags a copy of the message using chris's SpamAssassin
preferences and reinjects it. The reinjected message bypasses spamassassin_router, dnslookup,
system_alias, and spamassassin_local_router, and assuming chris does not have a .forward file,

Exim delivers it to chris's local mailbox. Figure 8-4 illustrates this process.

Figure 8-4. Exim router lookups during delivery

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.4 Using exiscan

One of Exim's most powerful and flexible features is its ACL system. Each ACL is a set of rules or
tests that Exim performs when receiving a message; for example, an ACL is available for each stage
of the SMTP transaction (start of connection, after HELO, after MAIL FROM, etc.). Rules are evaluated
in order until one matches, and the associated action is then performed. Actions can include allowing
the transaction to proceed, deferring the transaction, rejecting the transaction, ignoring the
transaction, adding warning headers to the message, or dropping the connection altogether. If no
rule matches, the ACL rejects the corresponding portion of the SMTP transaction.

exiscan is a set of patches for Exim that introduces the ability to invoke SpamAssassin in the
acl_smtp_data ACL that Exim consults after the DATA step of an SMTP transaction. You can

download exiscan from http://duncanthrax.net/exiscan-acl/; many precompiled versions of Exim
(e.g., in Linux distributions) have the patch already applied. exiscan's new ACL actions also include
blocking MIME attachments, virus-checking, and checking headers against regular expressions.

8.4.1 Installing exiscan

If you're not using a version of Exim that has exiscan already compiled in, you should download the
exiscan patch file and apply it to your Exim source code with the GNU patch program. Example 8-7

shows the patch process, assuming that both the Exim source code and the patch are in
/usr/local/src. Stop and restart Exim after you install the patched version.

Example 8-7. Patching the Exim source code with exiscan

$ cd /usr/local/src/exim-4.30

$ patch -p1 -s < ../exiscan-acl-4.30-14.patch

$ rm -rf build-*

$ make

...Compilation messages...

$ su

Password: XXXXXXXX

make install

http://duncanthrax.net/exiscan-acl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The rm -rf build-* command removes any old Exim build directories that

may be present and forces Exim's Makefile to recreate them and repopulate
them with symbolic links to source code files. This is important, because
exiscan adds new source code files that would otherwise not have links in the
build directory.

8.4.2 Writing acl_smtp_data

exiscan extends Exim's ACL language by adding a new rule, spam, that makes a connection to spamd

to request a message check on behalf of a specified user and returns true if the message would
exceed the user's SpamAssassin spam threshold. Example 8-8 shows a simple acl_smtp_data that
uses the spam condition to add an X-Spam-Flag: YES header to spam messages.

Example 8-8. Adding an X-Spam-Flag header with exiscan

acl_smtp_data:

 warn message = X-Spam-Flag: YES

 spam = nobody

In this ACL, the condition spam = nobody invokes spamc as the user nobody. If the message's spam
score exceeds nobody's threshold, Exim takes the warn action, adding the X-Spam-Flag header.

Similarly, the following ACL rule will generate a second Subject header with a spam tag for spam
messages.

warn message = Subject: *SPAM* $h_Subject

 spam = nobody

ACLs can add headers but cannot remove them or modify them in situ. To
replace the Subject header with a tagged version, you must add a new header
through the ACL (e.g., X-Spam-Subject) and direct Exim's system filter to
replace the message subject with the new header if it's present. An example of
how to do this is included with the exiscan documentation.

The spam condition also sets several useful Exim variables as a side effect:

$spam_bar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If SpamAssassin gives a message a positive spam score, exiscan sets this variable to a string
of plus (+) characters, with one plus for each point of spam score, up to 50. If SpamAssassin
gives a message a negative spam score, exiscan sets this variable to a string of minus
characters (-), with one minus for each negative point of spam score. If SpamAssassin gives a
message a zero spam score, exiscan sets this variable to a slash (/) character.

$spam_report

The full SpamAssassin report on a message.

$spam_score

The score assigned to a message by SpamAssassin.

$spam_score_int

The score assigned to a message by SpamAssassin multiplied by 10. exiscan stores this
variable in the message's spool file, so Exim can use this value in later processing (e.g., in
routers) to handle high-scoring messages differently than low-scoring messages.

These variables can be used with warn or deny actions to implement several kinds of spam policies.

Example 8-9, adapted from the exiscan documentation, shows how you can direct Exim to add an X-
Spam-Score header for all messages, to add an X-Spam-Report header for spam, and to reject a
message completely if the spam score is higher than 12.

Example 8-9. Spam policies with exiscan

warn message = X-Spam-Report: $spam_report

 spam = nobody

warn message = X-Spam-Score: $spam_score ($spam_bar)

 spam = nobody:true

deny message = This message scored $spam_score spam points.

 spam = nobody

 condition = ${if >{$spam_score_int}{120}{1}{0}}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first rule performs spam-checking and adds the X-Spam-Report header if a message exceeds the
spam threshold. exiscan caches the spam-checking results, so future calls to the spam condition for
this message will not actually recheck the message. The second rule uses the :true option, which

causes the condition to be evaluated as true regardless of the results of the spam check. Accordingly,
Exim will add an X-Spam-Score header to all messages. Finally, Exim executes the deny action

(refusing the message with the given text added to the SMTP rejection response) if the
$spam_score_int is greater than 120 (which corresponds to a SpamAssassin score greater than

12.0).

8.4.3 Using Per-User Preferences

Because exiscan checks messages for spam just once-at message receipt after the SMTP DATA
command-it's difficult to use SpamAssassin's per-user preference files. Messages may have multiple
recipients, some of whom are not local, and exiscan will not be able to determine whose preferences
should be used.

You can continue to use per-user preferences with exiscan in two ways, but each comes at a
performance cost.

You can ensure that each email message will have only a single recipient by writing an ACL for
the SMTP RCPT TO phase that defers all recipients except the first one. The sending MTA will
retry delivery to the deferred recipients but may not do so immediately. As a result, some
copies of messages with multiple recipients may be significantly delayed. The exiscan
documentation includes an example of how to do this.

You can use exiscan to perform initial spam-checking and refuse messages with high scores,
and then use the router/transport approach described earlier to reinvoke SpamAssassin on the
remaining messages for local recipients. This approach results in an extra spamd connection for

each message with a local recipient but might be worthwhile if exiscan can refuse enough very
obvious spam sent to multiple recipients.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.5 Using sa-exim

Exim calls its local_scan() function once just before accepting a message (via SMTP or from a local

process). By default, this function does nothing-the implementation of the function in Exim's source
code simply instructs Exim to accept the message. What makes local_scan() powerful is that you can

replace Exim's version with your own code to perform custom message-checking. This function can be a
good place to perform spam-checking.

Even better, you don't have to write a new local_scan() yourself if you want to invoke
SpamAssassin. Marc Merlin has written one for you: sa-exim. sa-exim invokes spamc in its local_scan(
) function and can thus take advantage of all of spamd 's configuration options. This section describes

the installation and configuration of sa-exim. You can download it at http://sa-exim.sf.net . It requires
Exim 4.11 or later.

8.5.1 Buiding sa-exim for Static Integration

Once you've unpacked the source code, you can choose one of two approaches to integrating sa-exim
with Exim. This section focuses on static integration , which embeds sa-exim within Exim at compile
time. The examples in this section assume you have unpacked Exim's source code in
/usr/local/src/exim-4.30 and sa-exim's in /usr/local/src/sa-exim-3.1 .

Whichever approach you choose for integrating sa-exim, be sure that
LOCAL_SCAN_HAS_OPTIONS has not been set to yes in Exim's Local/Makefile (it is

not set by default).

To use the static integration approach, you edit sa-exim's sa-exim.c file, then replace Exim's
src/local_scan.c file with sa-exim's sa-exim.c file, copy sa-exim's sa-exim.h file to the same location,
and recompile (and reinstall) Exim. The local_scan() function in sa-exim.c replaces the default

function.

Two macro definitions in sa-exim.c must be edited. They appear in the code under the comment
"Compile time config values" and provide the location of spamc (by default, /usr/bin/spamc) and sa-

exim's own configuration file (by default, /etc/exim4/sa-exim.conf , but you might change this location
to /usr/exim/sa-exim.conf or /etc/sa-exim.conf as suits your system).

$ cd /usr/local/src/sa-exim-3.1

...Edit sa-exim.c in your favorite editor...

$ make sa-exim.h

echo "char *version=\"`cat version` (built `date`)\";" > sa-exim.h

$ cp sa-exim.c ../exim-4.30/src/local_scan.c

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ cp sa-exim.h ../exim-4.30/src

$ cd ../exim-4.30

$ make

$ su

Password: XXXXXXXX

make install

The static integration approach is easy but requires you to recompile Exim whenever you want to update
sa-exim.

8.5.2 Building sa-exim for Dynamic Integration

Using the dynamic integration approach, you patch Exim to allow the local_scan() function to be

dynamically loaded at runtime, and you compile sa-exim as a dynamically loadable executable. Many
packaged versions of Exim are distributed with the dynamic loading patch already applied, but sa-exim
includes two versions of the patches by David Woodhouse that you can apply to your Exim source code
yourself. Use localscan_dlopen_up_to_4.14.patch to patch Exim versions 4.11 to 4.14; use
localscan_dlopen_exim_4.20_or_better.patch to patch Exim 4.20 and later versions. Example 8-10
illustrates the patch process.

Example 8-10. Patching Exim to support dynamic loading

$ cd /usr/local/src/exim-4.30

$ patch -p1 < ../sa-exim-3.1/localscan_dlopen_exim_4.20_or_better.patch

patching file src/EDITME

Hunk #1 succeeded at 505 (offset 117 lines).

patching file src/config.h.defaults

Hunk #1 succeeded at 20 (offset 3 lines).

patching file src/globals.c

Hunk #1 succeeded at 108 (offset 5 lines).

patching file src/globals.h

Hunk #1 succeeded at 72 (offset 5 lines).

patching file src/local_scan.c

http://lib.ommolketab.ir
http://lib.ommolketab.ir

patching file src/readconf.c

Hunk #1 succeeded at 224 (offset 42 lines).

$ make

$ su

Password: XXXXXXXX

make install

After installing the patched Exim, compile sa-exim as a dynamically loadable object file by editing its
Makefile . Check that the definitions of CC , CFLAGS , and LDFLAGS are suitable for building a shared

object file with your compiler. Set the following macros in the Makefile :

SACONF

The path where you will locate sa-exim's configuration file (e.g., /etc/exim4/sa-exim.conf ,
/usr/exim/sa-exim.conf , or whatever suits your system)

SPAMC

The location of spamc (e.g. /usr/bin/spamc)

EXIM_SRC

The path to the Exim source code's src directory (e.g., /usr/local/src/exim-4.30/ src)

Run make to compile sa-exim; make should produce the shared object files sa-exim-3.1.so and accept.so
. The former is the sa-exim replacement for the local_scan() function. The latter is a replacement for
local_scan() that simply accepts all messages; you can use accept.so to test that dynamic loading

works properly without the complexities of sa-exim.

Copy these shared object files to an appropriate Exim directory (e.g., /usr/exim or /usr/exim/libexec),
and add the following lines to the beginning of Exim's configuration file:

 local_scan_path = /usr/exim/accept.so

 #local_scan_path = /usr/exim/sa-exim-3.1.so

Restart Exim, and confirm that messages are being received. After you finish configuring sa-exim, edit
Exim's configuration file again, comment out the accept.so line, uncomment the sa-exim.so line, and
restart Exim again to activate sa-exim.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5.3 Configuring SpamAssassin for sa-exim

sa-exim invokes SpamAssassin using spamc , so you must be running the spamd daemon to use sa-

exim.

sa-exim behaves as you'd expect with most of the settings you'd be likely to have in your sitewide
configuration file (typically /etc/mail/spamassassin/local.cf). One that requires particular care, however,
is the report_safe setting.

If you set report_safe to 0, SpamAssassin only adds spam-tagging headers and does not modify the

body of messages. This setting works with sa-exim without any additional configuration and provides the
fastest message-checking performance.

If you prefer to have SpamAssassin modify the body of the message to add its report and convert the
original message into an attachment, you can set report_safe to 1 (include original message as

message/rfc822 attachment) or 2 (include original message as text/plain attachment). In this case, you
have to set the SARewriteBody variable in sa-exim.conf (described in the next section). Because sa-

exim must read the modified body back from SpamAssassin, message-checking will be slightly slower
than with report_safe 0. In addition, if you perform message-archiving, the archives will contain the

SpamAssassin-modified message.

Finally, ensure that spamd is not being invoked with the --create-prefs option, as it should run as an
unprivileged user and be unable to create user preference files anyway. You may wish to include the --
nouser-config option as well.

8.5.4 Configuring sa-exim

You configure sa-exim by editing its sa-exim.conf configuration file. During the build of sa-exim, you
should have specified a location for this file. Begin configuration by copying the sa-exim.conf file
included with the sa-exim source code to this location. Edit the file to configure sa-exim.

The sa-exim.conf file is copiously commented. As the first comment describes, sa-exim is picky about
the formatting of options in this file. For example, the following are examples of valid options in sa-
exim.conf :

SApermreject: 12.0

SARewriteBody: 0

The option below is commented out, and thus not set

#SApermrejectsave: /var/spool/exim/SApermreject

But none of this next set of options are valid:

No spaces are allowed before the colon! One and only one is required after!

Sapermreject :12.0

Only thresholds may be floating point numbers!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SARewriteBody: 0.0

This sets the option, with an empty value! Not the way to unset it!

SApermrejectsave:

Later definitions of the same option override earlier ones.

The configuration file determines how sa-exim handles spam: sa-exim can accept messages (returning a
2xx SMTP code), accept and discard messages, temporarily fail messages (returning a 4xx SMTP code),
reject messages (returning a 5xx SMTP code), or perform teergrubing during the SMTP connection. For
each sa-exim action, you can control at what spam threshold the action is triggered, whether a message
that triggered the action should be saved to an archive directory, and the location of the archive
directory. sa-exim usually names files in the archive directory by concatenating the time (in seconds
since 00:00:00 UTC on January 1, 1970) and the value of the Message-ID header of a given message.

Teergrubing

One interesting strategy that sa-exim provides for dealing with spam is teergrubing .
Teergrube is the German word for "tar pit," and teergrubing is the practice of identifying
spam while an SMTP connection is in progress and slowing down the SMTP connection. The
goal is to tie up the spammers' mail server for as long as possible, reducing the rate at
which they can spam.

If you want to interfere with spammers' operations, sa-exim's teergrubing features may be
for you. Note that you also tie up your own SMTP server processes while connections are
maintained, but these processes will consume few resources as they'll primarily be sleeping.

The following sections examine the options in the sa-exim.conf configuration file.

8.5.4.1 Choosing messages on which to run SpamAssassin

The SAEximRunCond option specifies an Exim conditional expression that will be evaluated to determine

whether SpamAssassin should be invoked on a message. To disable SpamAssassin, comment the option
out or set its value to 0. To enable SpamAssassin on all messages, set the option's value to 1. The
configuration file presents an example of how you can set this variable to check all messages except
those originating from the local host or those with an X-SA-Do-Not-Run: Yes header:

SAEximRunCond: ${if and {{def:sender_host_address} {!eq {$sender_host_address}{127.0.

0.1}} {!eq {$h_X-SA-Do-Not-Run:}{Yes}} } {1}{0}}

8.5.4.2 Choosing messages on which to take antispam actions

The SAEximRejCond option specifies an Exim conditional expression that will be evaluated to determine

http://lib.ommolketab.ir
http://lib.ommolketab.ir

whether sa-exim should take actions on messages that SpamAssassin considers spam. By disabling the
option, you can have messages checked by SpamAssassin (and tagged, if appropriate) but
unconditionally accepted. The configuration file provides an example in which actions are taken on all
spam messages except those with an X-SA-Do-Not-Rej: Yes header:

X-SA-Do-Not-Rej should be set as a warn header if mail is sent to postmaster

and abuse (in the RCPT ACL), this way you're not bouncing spam abuse reports

sent to you

SAEximRejCond: ${if !eq {$h_X-SA-Do-Not-Rej:}{Yes} {1}{0}}

The X-SA-Do-Not-Run and X-SA-Do-Not-Rej headers can be added by the acl_smtp_rcpt ACL in Exim's

own configuration file, using directives such as these:

 warn message = X-SA-Do-Not-Run: Yes

 hosts = +relay_from_hosts

 warn message = X-SA-Do-Not-Run: Yes

 authenticated = *

 warn message = X-SA-Do-Not-Rej: Yes

 local_parts = postmaster:abuse

These ACL directives will add X-SA-Do-Not-Run headers to messages from authenticated senders or
from hosts from which Exim should relay messages, and will add X-SA-Do-Not-Rej headers to messages
to postmaster or abuse . The X-SA-Do-Not-Run header should be removed before messages are relayed
to remote hosts; add a headers_remove directive in the definition of the remote_smtp transport:

remote_smtp:

 driver = smtp

 headers_remove = "X-SA-Do-Not-Run"

You may wish to use different header names or values to prevent spammers from guessing your header
and adding it to their spam messages to bypass sa-exim.

8.5.4.3 Limiting how much of the message is fed to SpamAssassin

SAmaxbody determines how many bytes of a message body sa-exim will feed to SpamAssassin for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

checking; it defaults to 256,000. If SATruncBodyCond evaluates to a false value, messages larger than
SAmaxbody are not scanned at all. If SATruncBodyCond evaluates to a true value, such messages are
truncated, and the first SAmaxbody bytes are scanned. This is generally not a good idea because proper

MIME message formatting requires a closing MIME boundary string at the end of a message, and if
SpamAssassin receives a partial body missing this string, it may complain that the message is
misformatted.

8.5.4.4 Allowing SpamAssassin to rewrite message bodies

If you set SpamAssassin's report_safe option to 1 or 2 (asking SpamAssassin to rewrite message
bodies), you must set the SARewriteBody variable to 1.

8.5.4.5 Archiving messages when actions are taken

Archiving message bodies preserves copies of messages in case they are needed later, and archived
messages can be used as a quarantine system.

The value of SAmaxarchivebody determines the amount of a message (in bytes) to save when archiving

messages after taking action on them. It defaults to 20,971,520 (20MB), which is a reasonable value.
Similarly, SAerrmaxarchivebody determines the number of bytes of a message to save when a

message causes an error in sa-exim. It defaults to 1,073,741,824 (1GB).

If SAPrependArchiveWithFrom is set to 1, sa-exim will add fake From lines to the beginning of archived

messages so that the archive file will be in standard mbox format. This is usually desirable because it's
easy to use most mail readers to examine an mbox file.

8.5.4.6 Passing SMTP senders and recipients to SpamAssassin

Because sa-exim is invoked at the end of the SMTP DATA step, it has access to the list of recipients
provided in the SMTP RCPT commands from the sending MTA. If you set SAmaxrcptlength to a value

higher than 0, sa-exim adds an X-SA-Exim-Rcpt-To header containing the list of recipients as long as
the list doesn't exceed the smaller of SAmaxrcptlength bytes or 8 KB.

sa-exim also has access to the SMTP MAIL FROM command and adds the SMTP sender to the message
in the X-SA-Exim-Mail-From header

The recipient list can be useful to SpamAssassin, as messages with a large number of recipients might
be more likely to indicate spam, and the true list of recipients may not appear in the message To and Cc
headers. Similarly, knowing the SMTP sender might help identify a known spammer or a spammer using
an invalid sender address. By setting the SAaddSAEheaderBeforeSA option to 1, you direct sa-exim to

add these headers before invoking SpamAssassin on a message, which is the default. Set
SAaddSAEheaderBeforeSA to 0 if you prefer SpamAssassin to see messages with no sa-exim headers

added.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Adding the X-SA-Exim-Rcpt-To header will expose recipients who were blind
carbon copied (Bcc) and foil other legitimate strategies to keep the list of message
recipients private. You should remove this header in your message transports
(using the remove_headers directive) before messages are delivered.

If you allow SpamAssassin to rewrite message bodies, however, the headers will
be encapsulated in the body of spam messages and cannot be removed. This may
be acceptable to you, as these messages are spam anyway, but the privacy risk in
the case of a false positive should be considered.

8.5.4.7 Setting a timeout on spamc

sa-exim must wait for spamc to check messages but should not wait forever. By setting SAtimeout to a
value in seconds, you ensure that if spamc should fail to check a message in a reasonable time, the
message will be accepted. If you set SAtimeout to 0 (or to more than 300 seconds), Exim itself will
interrupt a spamc run after five minutes, but it will cause the SMTP connection to return a temporary
failure for the message, instead of accepting it. I recommend that you set SAtimeout and use a value

between 60 and 240 seconds.

If a message is accepted due to a spamc timeout, and you set SAtimeoutsave to the absolute path of a
directory, the message will be saved in that directory so you can see the impact of your SAtimeout

settings. The directory must be writable by the Exim user; if it does not exist, sa-exim will attempt to
create it.

You can limit which of these messages are saved by defining SAtimeoutSavCond to an Exim conditional
expression. When spamc times out checking a message and the conditional expression returns a true
value, the message will be saved. The default SAtimeoutSavCond is 1, which saves all messages when
spamc times out.

8.5.4.8 Handling messages that cause sa-exim errors

Because sa-exim is a robust framework, it considers the possibility that a message might cause an error
in sa-exim itself and provides the ability to handle such messages. If a message causes an error, and
you set SAerrorsave to the absolute path of a directory, the message will be saved in that directory.

The directory must be writable by the Exim user; if it does not exist, sa-exim will attempt to create it.

You can limit which error-causing messages are saved by defining SAerrorSavCond to an Exim

conditional expression. If an error occurs and the conditional expression returns a true value, the
message will be saved. The default SAerrorSavCond is 1, which saves all messages that cause sa-exim

errors.

By default, sa-exim will accept messages that cause errors, which prevents mail loss. An alternative is
to have sa-exim instruct Exim to temporarily fail such messages, which will cause the sending MTA to
queue them and retry delivery later. To temporarily fail messages that cause errors, set
SAtemprejectonerror to 1. Set the SAtemprejectonerror variable to change the message that will
be returned to the sending MTA when a message is temporarily failed by setting the SAmsgerror

variable.

8.5.4.9 Teergrubing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you want sa-exim to perform teergrubing of a connection when spam is detected, set the
SAteergrube variable to the SpamAssassin spam score at or above which teergrubing should take

place. If you don't define this variable, sa-exim will not teergrube. See the sidebar Teergrubing , earlier
in this chapter for an explanation of that technique.

Set the SAteergrubcond variable to an Exim conditional expression to determine whether teergrubing
should be performed when the spam score exceeds the SAteergrube threshold; teergrubing will be

performed only when the expression evaluates to a true value. Use this variable to prevent teergrubing
from affecting you or your secondary mail exchangers. The default sa-exim.conf file includes the
following example, which prevents teergrubing of connections from 127.0.0.1 and 127.0.0.2:

SAteergrubecond: ${if and { {!eq {$sender_host_address}{127.0.0.1}} {!eq {$sender_

host_address}{127.0.0.2}} } {1}{0}}

You can configure the teergrube delay-the total amount of time, in seconds, that you want to try to tie
up the sending MTA-by setting the SAteergrubetime variable. The default is 900 (15 minutes). Every

ten seconds during the teergrubing period, sa-exim will transmit SMTP code 451 with the reason given
in SAmsgteergrubewait (which defaults to "wait for more output"). At the end of the teergrubing
period, sa-exim will temporarily fail the message with the reason given in SAmsgteergruberej (which

defaults to "Please try again later"). sa-exim temporarily fails the messages in the hopes that the
sending MTA will later attempt to resend the message and spend more time in the tar pit.

If a message qualifies a connection for teergrubing, and you set SAteergrubesave to the absolute path

of a directory, the message will be saved in that directory. The directory must be writable by the Exim
user; if it does not exist, sa-exim will attempt to create it.

You can limit which of these messages are saved by defining SAteergrubeSavCond to an Exim

conditional expression. If the conditional expression returns a true value, the message will be saved.
The default SAteergrubeSavCond is 1, which saves all messages that trigger teergrubing.

Because sa-exim temporarily fails teergrubed mail after the teergrubing period, the sending MTA is likely
to resend the same message. If you are saving messages that trigger teergrubing, it could lead to
repeatedly saving multiple copies of the same message. To prevent this, set SAteergrubeoverwrite to

1 (which is the default), and sa-exim will use only the message ID as the filename when saving
teergrubed messages. Because resends should have the same message ID, this will result in a single
copy of the message being kept, as older copies are overwritten by newer copies assigned the same
filename.

8.5.4.10 Accepting and discarding spam

If you want sa-exim to accept and discard spam, set the SAdevnull variable to the SpamAssassin spam

score at or above which messages should be accepted and discarded. If you don't define this variable,
sa-exim will not take those actions.

If a message is to be discarded, and you set SAdevnullsave to the absolute path of a directory, the

message will be saved in that directory. The directory must be writable by the Exim user; if it does not
exist, sa-exim will attempt to create it.

You can limit which of these messages are saved by defining SAdevnullSavCond to an Exim conditional

http://lib.ommolketab.ir
http://lib.ommolketab.ir

expression. If the conditional expression returns a true value, the message will be saved. The default
SAdevnullSavCond is 1, which saves all messages that are discarded.

8.5.4.11 Rejecting spam

If you want sa-exim to reject spam during the SMTP connection, set the SApermreject variable to the

SpamAssassin spam score at or above which messages should be rejected. If you don't define this
variable, sa-exim will not take this action. You can customize the rejection explanation that is sent along
with the SMTP rejection code by setting SAmsgpermreject .

If a message is to be rejected, and you set SApermrejectsave to the absolute path of a directory, the

message will be saved in that directory. The directory must be writable by the Exim user; if it does not
exist, sa-exim will attempt to create it.

You can limit which of these messages are saved by defining SApermrejectSavCond to an Exim

conditional expression. If the conditional expression returns a true value, the message will be saved.
The default SApermrejectSavCond is 1, which saves all messages that are rejected.

8.5.4.12 Temporarily failing spam

If you want sa-exim to temporarily fail spam during the SMTP connection, set the SAtempreject

variable to the SpamAssassin spam score at or above which messages should be temporarily failed. If
you don't define this variable, sa-exim will not take this action. You can customize the rejection
explanation that is sent along with the SMTP rejection code by setting SAmsgtempreject .

If a message is to be temporarily failed, and you set SAtemprejectsave to the absolute path of a

directory, the message will be saved in that directory. The directory must be writable by the Exim user;
if it does not exist, sa-exim will attempt to create it.

You can limit which of these messages are saved by defining SAtempmrejectSavCond to an Exim

conditional expression. If the conditional expression returns a true value, the message will be saved.
The default SAtemprejectSavCond is 1, which saves all messages that are temporarily failed.

When sa-exim temporarily fails a message, the sending MTA is likely to resend the same message. If
you are saving messages that trigger temporary rejections, this could lead to repeatedly saving multiple
copies of the same message. To prevent this, set SAtemprejectoverwrite to 1 (which is the default),

and sa-exim will use only the message ID as the filename when saving temporarily failed messages.
Because resends should have the same message ID, this will result in single copies of messages being
kept, as older copies are overwritten by newer copies assigned the same filename.

There are few good reasons to temporarily fail spam. If you do not want to receive spam at all,
permanently reject or accept and discard it instead. If you want to tie up spammer MTAs, teergrube
instead. sa-exim includes temporary failing for completeness, but I do not recommend its use.

8.5.4.13 Archiving accepted spam

When sa-exim receives a message that SpamAssassin tags as spam but that does not meet any of the
sa-exim action thresholds, sa-exim will accept the (tagged) message and allow it to be delivered to the
recipient.

If a message is to be accepted, and you set SAspamacceptsave to the absolute path of a directory, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

message will be saved in that directory. The directory must be writable by the Exim user; if it does not
exist, sa-exim will attempt to create it.

You can limit which of these messages are archived by defining SAspamacceptSavCond to an Exim

conditional expression. If the conditional expression returns a true value, a message will be archived.
The default SAspamacceptSavCond is 0, which does not archive any accepted spam messages.

Although this feature is not useful for end users, mail administrators can use it to help decide whether to
lower one of the other action thresholds by examining the saved messages. If there are no false
positives, you might lower the action thresholds.

8.5.4.14 Archiving non-spam messages

When sa-exim receives a message that SpamAssassin does not consider spam, sa-exim will (of course)
accept the message and allow it to be delivered to the recipient.

If a non-spam message is received, and you set SAnotspamsave to the absolute path of a directory, the

message will be saved in that directory. The directory must be writable by the Exim user; if it does not
exist, sa-exim will attempt to create it.

You can limit which of these messages are saved by defining SAnotspamSavCond to an Exim conditional

expression. If the conditional expression returns a true value, the message will be saved. The default
SAnotspamSavCond is 0, which does not save any accepted non-spam messages.

A mail administrator might use this feature to analyze a group of non-spam messages to determine
whether SpamAssassin is making too many false negative judgments, but on a busy mail site, saving
extra copies of all legitimate incoming mail is probably not a good idea. sa-exim includes this feature
primarily for completeness.

8.5.4.15 Debugging sa-exim

Set the SAEximDebug variable to a number between 1 and 9 to enable extra logging; higher numbers

produce more debugging output. The distributed sa-exim.conf file sets this variable to 1, which will log a
notice whenever sa-exim saves a new message to one of its archive directories, invokes spamc , rewrites
message bodies, or evaluates an Exim conditional expression. Increasing SAEximDebug is a good idea,

particularly when testing new conditional expressions.

Example 8-11 shows a complete sa-exim.conf file (without comments). In this example, sa-exim is
configured to reject (but save) messages with spam scores higher than 15.

Example 8-11. A complete sa-exim.conf file

Run SpamAssassin unless the message was submitted locally or the

X-SA-Do-Not-Run header is set to 'secret'. We configure Exim elsewhere

to set this header for messages from authenticated senders or hosts

we relay for

SAEximRunCond: ${if and {{def:sender_host_address} {!eq {$sender_host_address}{127.0.0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1}} {!eq {$h_X-SA-Do-Not-Run:}{secret}} } {1}{0}}

Don't take action on messages if X-SpamAssassin-Do-Not-Rej header is set to

'secret'. We configure Exim to set this header for messages to the postmaster.

SAEximRejCond: ${if !eq {$h_X-SA-Do-Not-Rej:}{Yes} {1}{0}}

Feed up to 300Kb to SpamAssassin, and if the message is longer, don't

bother spam checkign

SAmaxbody: 307200

SATruncBodyCond: 0

We don't let SpamAssassin rewrite message bodies, so we don't set this

SARewriteBody: 0

I prefer to avoid the X-SA-Exim-Rcpt-To header, for privacy reasons.

SAmaxrcptlistlength: 0

Allow spamc 2 minutes for each message. If it times out, don't bother

saving messages, just accept them.

SAtimeout: 120

SAtimeoutsave:

SAtimeoutSavCond: 0

Do save messages that cause an error in sa-exim, but accept them

SAerrorsave: /var/spool/exim/SAerrorsave

SAerrorSavCond: 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SAtemprejectonerror: 0

Reject messages with SpamAssassin scores of 15 or higher, but save a

copy of them.

SApermreject: 15.0

SApermrejectSavCond: 1

SApermrejectsave: /var/spool/exim/SApermreject

8.5.5 Using Per-User Preferences

Like exiscan, sa-exim checks messages for spam just once-at message receipt after the SMTP DATA
command. And like exiscan, it's difficult to use SpamAssassin's per-user preference files with sa-exim.
Messages may have multiple recipients, some of whom are not local, and sa-exim will not be able to
determine whose preferences should be used.

You can use per-user preferences with sa-exim in the same ways as you can with exiscan, and with the
same performance costs:

You can ensure that each email message will have only a single recipient by writing an ACL for the
SMTP RCPT TO phase that defers all recipients except the first one. The sending MTA will retry
delivery to the deferred recipients but may not do so immediately. As a result, some copies of
messages with multiple recipients may be significantly delayed.

You can use sa-exim to perform initial spam-checking and refuse messages with high scores, and
then use the router/transport approach described earlier to reinvoke SpamAssassin on the
remaining messages for local recipients. This approach results in an extra spamd connection for

each message with a local recipient but might be worthwhile if sa-exim can refuse enough very
obvious spam sent to multiple recipients.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.6 Building a Spam-Checking Gateway

Any of the approaches discussed earlier can form the basis for a spam-checking Exim gateway.
exiscan or sa-exim will likely yield better performance than a router/transport approach, and I
recommend using them unless you need per-user preferences and are prepared to configure spamd to

perform SQL-based lookups. The remainder of this chapter explains how to configure an Exim-based
gateway for routing messages and how to add sitewide Bayesian filtering and autowhitelisting.

8.6.1 Routing Email Through the Gateway

Once you have Exim receiving messages for the local host and performing SpamAssassin checks on
them using any of the methods outlined earlier, you can start accepting email for your domain and
routing it to an internal mail server after spam-checking. Figure 8-5 illustrates this topology.

Figure 8-5. Spam-checking gateway topology

8.6.1.1 Exim domain lists

To configure Exim to relay incoming mail for example.com to internal.example.com, add the following
lines to Exim's configuration file:

domainlist local_domains = @

domainlist relay_to_domains = example.com

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The key feature of this configuration is that example.com is a domain to which Exim may relay but is
not on the list of local domains (for which mail is to be delivered on this host). Remember that you
must restart Exim after changing its configuration file.

8.6.1.2 Routing changes

Mail from the Internet for example.com should be sent to the spam-checking gateway
mail.example.com. Add a DNS MX record for the example.com domain that points to
mail.example.com.

Once received by mail.example.com, messages will be spam-checked and should then be relayed to
internal.example.com by Exim. There are two ways to get Exim to relay these messages:

Set up an internal DNS MX record for example.com pointing to internal.example.com. When
Exim on mail.example.com attempts to deliver messages for example.com, the dnslookup

router will look up this MX record and deliver the messages to the internal mail host. This
configuration may require that you run a "split DNS" system or use BIND 9's views feature to
ensure that different MX records for example.com are published to the Internet and to internal
hosts.

Set up a new Exim router using the manualroute driver to manually route incoming messages

for example.com to the internal mail host. The router definition, shown in Example 8-12, should
be placed in the list of routers before the dnslookup router. In this case, mail.example.com

need only be able to resolve internal.example.com (or the IP address for internal.example.com
could be substituted for its name in the router definition).

Example 8-12. Using a manualroute router to relay messages

internal_relay:

 driver = manualroute

 domains = example.com

 transport = remote_smtp

 route_list = example.com internal.example.com

8.6.1.3 Internal server configuration

Once the external mail gateway is in place, you can configure the internal mail server to accept only
SMTP connections from the gateway (for incoming Internet mail). If you don't have a separate server
for outgoing mail, the internal mail server should also accept SMTP connections from hosts on the
internal network. These restrictions are usually enforced by limiting access to TCP port 25 using a
host-based firewall or a packet-filtering router.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.6.2 Adding Sitewide Bayesian Filtering

You can easily add sitewide Bayesian filtering to any of the Exim approaches because they are all
based on spamd. Use the usual SpamAssassin use_bayes and bayes_path directives in local.cf, and
ensure that spamd has permission to create the databases in the directory named in bayes_path. Use
a directory for the databases that is owned by spamd's user, such as /var/spamd (or perhaps use
/etc/mail/spamassassin). If local users need access to the databases (e.g., they will be running sa-
learn), you may have to make the databases readable or writable by a group other than spamd's
and adjust bayes_file_mode. Or you can make the databases world-readable or world-writable.

Doing so, however, is unlikely to be necessary on a gateway system and puts the integrity of your
spam-checking at the mercy of the good intentions and comprehension of your users.

8.6.3 Adding Sitewide Autowhitelisting

Adding sitewide autowhitelisting is very similar to adding a sitewide Bayesian database. Just add the
usual SpamAssassin auto_whitelist_path and auto_whitelist_file_mode directives to local.cf.
As with the Bayesian databases, spamd's user must have permission to create the autowhitelist
database and read and write to it. In SpamAssassin 2.6x, spamd must be started with the --auto-
whitelist option; this option is not needed (and is deprecated) in SpamAssassin 3.0 .

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 9. Using SpamAssassin as a Proxy
In some environments, it makes no sense to install SpamAssassin on the mail server. For example,
the mail server may be underpowered to perform content-checking. Or perhaps users have widely
ranging preferences for how much (or indeed whether) spam-checking should be performed, and
they may not have accounts on the mail server or any convenient way of configuring their
preferences. In these environments, one way to provide those users who want the power of
SpamAssassin with spam-checking is to help them install a SpamAssassin POP proxy.

Many more POP proxies are available than IMAP proxies, primarily because
IMAP is a much more complex protocol and doesn't require that messages be
downloaded to the client. At the time of writing, no freely distributed
SpamAssassin IMAP proxies for Windows clients were available.

In addition, most extant proxies call SpamAssassin through the Perl API to
avoid having to run the spamassassin shell script or a persistent spamd

daemon. Because the Perl API will change in SpamAssassin 3.0, proxies written
for SpamAssassin 2.63 are unlikely to continue to work until they are upgraded.

Proxy software is middleware. A proxy receives connections from a client and relays them to a
server, intercepting all communication in each direction. Application proxies have been used to pierce
smart holes in strong firewalls, to cache frequently accessed data, and to perform a variety of other
functions.

Logically, POP proxies sit between a mail client and a POP server. Actually, these proxies typically run
on the same computer as the mail client. The proxies discussed in this chapter not only relay data
(email messages) between the client and server, but also invoke SpamAssassin to perform spam-
checking on the email after it has been received from the server but before it is relayed to the client.
Users continue to use their favorite POP client; no changes need be made at the POP server.

In this chapter, I review two SpamAssassin proxies. The first is the venerable Pop3proxy, a freely
distributed command-line proxy script written in Perl and suitable for use on several operating
systems. The second is the commercial proxy SAproxy Pro from Stata Labs.

POP proxies do not offer the complete functionality of POP servers; in
particular, they may be limited in how they can perform authentication and
secure the transaction. Using a POP proxy may result in sending your email
password across the Internet in the clear.

Figure 9-1 illustrates the example topology for this chapter. pop.example.com is a POP mail server.
win.example.com is a Windows-based user workstation that runs a POP mail client (e.g., Outlook
Express, Eudora, Netscape Messenger). The SpamAssassin POP proxy will be installed on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

win.example.com, and the mail client will be configured to connect to the proxy rather than to the
POP server. The proxy will be configured to connect to the POP server and to run SpamAssassin on
messages as they are downloaded.

Figure 9-1. An example POP mail topology with a client-side proxy

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.1 Using Pop3proxy

Pop3proxy, by Dan McDonald, is one of the oldest SpamAssassin POP proxies and, to its credit, still
functions well with SpamAssassin 2.63. It's a no-fills proxy written in Perl and requires manual
installation and configuration. It does not perform network-based SpamAssassin tests. Download
Pop3proxy (and read the manual) at http://mcd.perlmonk.org .

9.1.1 Installing Pop3proxy

Follow these steps to install Pop3proxy:

Download pop3proxy.zip and unpack it into a directory of your choice. For this example, I assume
you've unpacked it in C:\pop3proxy so a directory listing of that directory would look like this:

1.

C:\pop3proxy>dir /s

 Directory of C:\pop3proxy

03/26/2004 09:56p <DIR> .

03/26/2004 09:56p <DIR> ..

03/26/2004 09:56p <DIR> pop3proxy

08/18/2002 05:40p 60,781 pop3proxy.pl

08/18/2002 05:40p 28,798 pop3proxy.html

 2 File(s) 89,579 bytes

 Directory of C:\pop3proxy\pop3proxy

03/26/2004 09:56p <DIR> .

03/26/2004 09:56p <DIR> ..

08/12/2002 08:19a 6,240 Artistic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

08/11/2002 08:45p 567 kill_proxy.pl

08/12/2002 08:30a 536 hostmap.sam

 3 File(s) 7,343 bytes

Install a version of Perl for Windows that includes the Time::HiRes module. Several Perl
distributions for Windows are available, but one that is known to work (and provides a
precompiled version of the module) is ActivePerl, available at
http://www.activestate.com/Products/ActivePerl . Either ActivePerl 5.6.1 or 5.8.3 works well with
Pop3proxy. ActivePerl 5.8.3 supports Unicode. ActivePerl 5.6.1 does not support Unicode but has
been extensively tested with SpamAssassin. In this example, I assume you've installed ActivePerl
in C:\perl .

Time::Hires can be installed through ActivePerl's Perl Package Manager. After installing
ActivePerl, run the Perl Package Manager, and type install Time::HiRes at the ppm> prompt.
Type quit to exit the Package Manager.

2.

Download and unpack SpamAssassin. Copy all of the files and directories in SpamAssassin's lib
directory to ActivePerl's C:\perl\site\lib directory. Copy SpamAssassin's rules directory and all its
contents to C:\pop3proxy\rules . Copy the user_prefs.template file from the rules directory to
C:\pop3proxy and rename it user_prefs. The C:\pop3proxy directory should now look like this:

3.

C:\pop3proxy>dir /w /s

 Directory of C:\pop3proxy

[.] [..] [pop3proxy] pop3proxy.html

pop3proxy.log pop3proxy.pl [rules] user_prefs

 4 File(s) 110,825 bytes

 Directory of c:\pop3proxy\pop3proxy

[.] [..] Artistic hostmap.sam kill_proxy.pl

 3 File(s) 7,343 bytes

 Directory of C:\pop3proxy\rules

http://www.activestate.com/Products/ActivePerl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[.] [..] 10_misc.cf

20_anti_ratware.cf 20_body_tests.cf 20_compensate.cf

20_dnsbl_tests.cf 20_fake_helo_tests.cf 20_head_tests.cf

20_html_tests.cf 20_meta_tests.cf 20_phrases.cf

20_porn.cf 20_ratware.cf 20_uri_tests.cf

23_bayes.cf 25_body_tests_es.cf 25_body_tests_pl.cf

25_head_tests_es.cf 25_head_tests_pl.cf 30_text_de.cf

30_text_es.cf 30_text_fr.cf 30_text_it.cf

30_text_pl.cf 30_text_sk.cf 50_scores.cf

60_whitelist.cf languages local.cf

regression_tests.cf STATISTICS-set1.txt STATISTICS-set2.txt

STATISTICS-set3.txt STATISTICS.txt triplets.txt

user_prefs.template

Edit C:\pop3proxy\user_prefs and set up SpamAssassin preferences. See Chapter 2 and Chapter
3 for configuration details.

4.

9.1.2 Starting Pop3proxy

To start Pop3proxy, you must invoke Perl on the pop3proxy.pl script and provide command-line
arguments to identify the POP server. If you allowed ActivePerl to associate its perl.exe program with
.pl file extensions, you should be able to execute pop3proxy.pl directly. Otherwise, set up a shortcut

or batch file containing:

c:\perl\bin\perl c:\pop3proxy\pop3proxy.pl --host pop.example.com

When invoked, the shortcut will open a DOS window and execute the proxy script. You can stop the
proxy by typing CTRL-C in the DOS window. When you've confirmed that it's working as you like, you
can replace \perl\bin\perl with \perl\bin\wperl in the shortcut. wperl runs the script in the background

(without opening a DOS window); use it when you plan to keep Pop3proxy running all the time. You
can stop the proxy by invoking the kill_proxy.pl script included with Pop3proxy, or by using the
Windows Task Manager to kill the wperl process.

Here is a complete list of Pop3proxy's command-line arguments:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

--host hostname[:port]

Provide the hostname (and optionally, the port number) of the remote POP server to proxy.

--logfile filename

Provide the name of a file to log connection and status information to. This defaults to
pop3proxy.log . The log file can be useful in debugging problems with Pop3proxy. Example 9-1
shows a Pop3proxy log of a successful connection in which Pop3proxy downloaded two messages
and classified one as spam.

--maxscan bytes

Specify the largest message, in bytes, that Pop3proxy will invoke SpamAssassin on. The default
is 250,000, which is reasonable. Larger sizes cause more messages to be scanned, but larger
messages scan more slowly.

--nopad

POP servers sometimes provide POP clients with message- and mailbox-size information.
Running SpamAssassin on a message when it's between server and client can change (typically,
enlarge) the message size. Most modern clients handle this situation with no problems, but if
yours does not, the --nopad option causes Pop3proxy to overwrite text in existing headers

rather than adding new ones, maintaining a constant size at the cost of obfuscating the message
headers to a small degree.

--allowtop

The POP protocol provides a TOP command that the client uses to request only a limited amount

of a message from the server (deferring the retrieval of the rest of the message until it's
explicitly asked for). TOP doesn't interact well with spam-checking proxies, and Pop3proxy
normally prevents the client from using it. If you want to try it out anyway, use the --allowtop

argument.

--exitport portnumber

The kill_proxy.pl script works by connecting to a second port that pop3proxy.pl listens on.
Any connections on this port cause pop3proxy.pl to exit. By default, the port number is 9625,
but you can use the --exitport option to change it if you use that port number for something
else. If you change the port number, you must edit the kill_proxy.pl script and change the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

value of $exitport near the beginning of the file.

Example 9-1. A log from Pop3proxy

New connection:

From: 127.0.0.1:2094

To: 192.168.0.4:110

192.168.0.4:110 (Server) said +OK to none

+OK POP3 Ready pop.example.com

127.0.0.1:2094 (Client) said CAPA

192.168.0.4:110 (Server) said -ERR to CAPA

127.0.0.1:2094 (Client) said USER

192.168.0.4:110 (Server) said +OK to USER

127.0.0.1:2094 (Client) said PASS

192.168.0.4:110 (Server) said +OK to PASS

127.0.0.1:2094 (Client) said STAT

192.168.0.4:110 (Server) said +OK to STAT

127.0.0.1:2094 (Client) said UIDL

192.168.0.4:110 (Server) said +OK to UIDL

127.0.0.1:2094 (Client) said LIST

192.168.0.4:110 (Server) said +OK to LIST

127.0.0.1:2094 (Client) said RETR

192.168.0.4:110 (Server) said +OK to RETR

Snarfing RETR response

Detected end of snarfed multiline

35510 bytes, SPAM, Message-id: <200402062012.i16KCGBb015885@example.com>

127.0.0.1:2094 (Client) said LIST

http://lib.ommolketab.ir
http://lib.ommolketab.ir

192.168.0.4:110 (Server) said +OK to LIST

127.0.0.1:2094 (Client) said RETR

192.168.0.4:110 (Server) said +OK to RETR

Snarfing RETR response

Detected end of snarfed multiline

2096 bytes, NOT spam, Message-id: <1063926361.20040206152006@oreilly.com>

127.0.0.1:2094 (Client) said QUIT

192.168.0.4:110 (Server) said +OK to QUIT

192.168.0.4:110 - socket close on read

Flushing peer on close

127.0.0.1:2094 - peer gone after write, closing

Pop3proxy can proxy multiple POP servers through the use of a hostmap file. See the Pop3proxy
manual for more information about setting up such a file.

9.1.3 Configuring the POP Client

Finally, you must reconfigure a mail client to connect to localhost (or 127.0.0.1) instead of the usual
POP server. Connections to localhost will be received by Pop3proxy and proxied to the POP server.
Figure 9-2 shows the Eudora 5.1 dialog box for configuring the incoming POP server for an account.

Figure 9-2. Configuring Eudora to use Pop3proxy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.2 Using SAproxy Pro

SAproxy Pro, by Stata Labs, began as a commercialized version of Pop3proxy, but it has been
extensively developed with a focus on ease-of-use and access to both SpamAssassin and POP client
features. It's available for Windows operating systems. At the time of this writing, the latest version
is 2.5 and is selling for $29.95, which includes a year of free upgrades. A free 15-day trial is
available. You can download the trial version or purchase the product at
http://www.statalabs.com/products/saproxy/.

SAproxy Pro 2.5 includes its own Perl library and SpamAssassin 2.63, so you don't have to install
either of those products separately. When SpamAssassin 3.0 is released, a future version of SAproxy
Pro is likely to distribute SpamAssassin 3.0 instead, and upgrading should be relatively simple.

9.2.1 Installing SAproxy Pro

SAproxy Pro uses a downloadable InstallShield installer. Once you've downloaded the installer, run it.
You'll be prompted to select your mail client; for several of the most widely used mail clients, the
installer includes a training video that demonstrates how to configure mail accounts to use the proxy.
You may be required to reboot your computer to finish the installation.

9.2.2 Starting SAproxy Pro

After SAproxy Pro is installed, you can start it manually from the Windows Start menu. The installer
also offers to configure SAproxy Pro to start automatically on system startup. When SAproxy Pro is
running, a system tray icon will appear; right-clicking this icon brings up a menu for configuring or
shutting down SAproxy Pro.

9.2.3 Configuring the POP Client

Configuring a POP client to use SAproxy Pro is straightforward. Set the incoming POP server to
localhost or 127.0.0.1. Set the POP login name to your usual POP account name, followed by a colon
and the hostname of the remote POP server. Figure 9-3 shows an example of this configuration in
Microsoft Outlook Express 6. In the example, Outlook Express will connect to 127.0.0.1 and log in as
alansz:pop.example.com. SAproxy Pro will accept the connection and will proxy for the POP server
pop.example.com, using alansz as the login name.

Figure 9-3. Configuring Outlook Express 6 to use SAproxy Pro

http://www.statalabs.com/products/saproxy/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stata Labs also distributes an SSL plug-in module for SAproxy Pro at
http://www.statalabs.com/products/saproxy/ssl/. If your POP server supports SSL connections,
install the plug-in and add :ssl to the end of the POP login name (e.g., alansz:pop.example.com:ssl

) to direct SAproxy Pro to make an SSL connection to the POP server.

9.2.4 Configuring SAproxy Pro

SAproxy Pro really shines in its configuration interface, which is available by double-clicking the
SAproxy Pro system tray icon, or by right-clicking the icon and selecting Configure SAproxy Pro. Most
of the configuration options are the same as those available in Pop3proxy, and through
SpamAssassin's preference files. The graphical interface makes them much easier for inexperienced
users to select. The Configuration dialog box is divided into nine tabs:

Always Spam

Use this section to add blacklist entries. You can blacklist messages by sender email address,
sender domain, or keyword.

Never Spam

Use this section to add whitelist entries. You can whitelist messages by sender email address or
sender domain.

http://www.statalabs.com/products/saproxy/ssl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Spam Training

Use this section to enable use of SpamAssassin's Bayesian classifier (including auto-learning).
SAproxy Pro can also manually scan email folders that you specify as containing spam or non-
spam messages in order to train the classifier.

Language Settings

Use this section to limit the set of languages that you expect to receive email in; email in other
languages will be treated as spam.

Safety Settings

Use this section to configure the report_safe SpamAssassin directive.

Tagging Options

Use this section to turn on subject-tagging for spam messages and to set the SpamAssassin
threshold score for spam. SAproxy Pro allows thresholds between 3.5 and 6.5.

Advanced Settings

Use this section to turn on such options as logging, proxying of the TOP and AUTH commands,

and the use of SpamAssassin's network tests. DCC, Pyzor, Vipul's Razor, and DNSBL tests are
available, and you can turn each on or off independently. You can use the Host Map part of this
section to configure SAproxy Pro to listen on different local ports to proxy connections to
different remote POP servers.

Statistics

This section displays a line graph comparing the number of spam and non-spam messages
received each day of the last month.

Help

This section provides links to SAproxy Pro help.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Appendix A. Resources
This appendix lists useful online resources for further information about spam, spam-filtering,
SpamAssassin, each of the mail transport agents discussed in this book, and several other
SpamAssassin-related software packages.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

A.1 General Spam Resources

"Help! I've been spammed! What do I do?"-originally written by Chris Lewis and maintained by Greg
Byshenk-is an helpful (if dated) guide to spam and spam-prevention for the beginner. Find it at
http://www.byshenk.net/ive.been.spammed.html.

Internet Request For Comments (RFC) documents describe proposed standards for the Internet. You
can get RFCs from http://www.rfc-editor.org. Some notable RFCs related to spam and spam filtering
include

RFC 2822: Internet Message Format

The basic document that describes the formatting of email messages.

RFC 2821: Simple Mail Transfer Protocol

Explains SMTP, the protocol used to transfer email from system to system.

RFC 2505: Anti-spam Recommendations for Internet MTAs

Describes a set of best practices for mail servers.

The SPAM-L FAQ, maintained by Doug Muth at http://www.claws-and-paws.com/spam-l/, provides
information about the SPAM-L mailing list, one of the oldest discussion forums for spam fighters.

http://spam.abuse.net is a long-standing site with information for antispam advocates and system
adminstrators.

The Coalition Against Unsolicited Commercial Email (CAUCE) has a web site at http://www.cauce.org.
CAUCE focuses primarily on advocacy and legislation.

The groups in the news.admin.net-abuse Usenet hierarchy are devoted to discussing and reporting
Net abuse, including spam (see particularly news.admin.net-abuse.email).

 < Day Day Up >

http://www.byshenk.net/ive.been.spammed.html
http://www.rfc-editor.org
http://www.claws-and-paws.com/spam-l/
http://spam.abuse.net
http://www.cauce.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

A.2 Spam-Filtering

http://www.openrbl.org provides a long list of DNSBLs that may be suitable for spam-filtering. It
includes hit rates (but not false positive rates) against its own recently collected spam corpus for
each DNSBL.

Vipul's Razor, Pyzor, and DCC are collaborative spam-filtering clearinghouses that can be consulted
by SpamAssassin. Vipul's Razor is available at http://razor.sourceforge.net. Pyzor is at
http://pyzor.sourceforge.net. DCC is at http://www.rhyolite.com/anti-spam/dcc/.

DSPAM is a spam-filtering system using statistical-algorithmic hybrid filtering-filters that are trained
like SpamAssassin's Bayesian classifier. Find it at http://www.nuclearelephant.com/projects/dspam/.

CRM114, the Controllable Regex Multilator, is a spam-filtering system based on learning regular
expressions. Download it at http://crm114.sourceforge.net/.

 < Day Day Up >

http://www.openrbl.org
http://razor.sourceforge.net
http://pyzor.sourceforge.net
http://www.rhyolite.com/anti-spam/dcc/
http://www.nuclearelephant.com/projects/dspam/
http://crm114.sourceforge.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

A.3 SpamAssassin

The home page for SpamAssassin itself is, of course, http://www.spamassassin.org. The site contains
links to the spamassassin-users and spamassassin-dev mailing lists.

SAProxy Pro, a commercial client-side SpamAssassin proxy, is available from
http://www.statalabs.com.

 < Day Day Up >

http://www.spamassassin.org
http://www.statalabs.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

A.4 Mail Transport Agents

In this book, I describe how to use SpamAssassin in conjunction with several MTAs. The following
sections point you to more information about each of those agents.

A.4.1 Sendmail

Sendmail has two primary web sites. The open source version maintained by the Sendmail
consortium can be found at http://www.sendmail.org. Sendmail's commercial face is
http://www.sendmail.com.

Sendmail's own antispam provisions are documented at
http://www.sendmail.org/m4/anti_spam.html. If you're not a Sendmail guru, pick up Bryan Costales'
book Sendmail (O'Reilly), the Sendmail bible. If you are a Sendmail guru, you probably already have
a copy! Another good source is Frederick Avolio and Paul Vixie's Sendmail: Theory and Practice
(Digital Press).

Sendmail's filtering architecture, milter, has led to the development of many filtering tools. The web
site http://www.milter.org is the most comprehensive catalog of such filters.

A.4.2 Postfix

The home page for the Postfix MTA is http://www.postfix.org.

Two useful manuals for Postfix are Postfix: The Definitive Guide by Kyle Dent (O'Reilly) and The Book
of Postfix by Ralf Hildebrandt and Patrick Koetter (No Starch Press).

A.4.3 qmail

The home page for the qmail MTA is http://www.qmail.org. The netqmail distribution of qmail
includes the QMAILQUEUE patch, which is used by most SpamAssassin-integration solutions.

The online book Life with qmail (http://www.lifewithqmail.org) provides excellent documentation for
qmail.

A.4.4 Exim

The home page for the Exim MTA is http://www.exim.org. The site includes a link to the Exim
specification, which serves as the manual for the MTA. Those preferring a real book should purchase
Philip Hazel's The Exim SMTP Mail Server: Official Guide for Release 4 (UIT Cambridge).

http://www.sendmail.org
http://www.sendmail.com
http://www.sendmail.org/m4/anti_spam.html
http://www.milter.org
http://www.postfix.org
http://www.qmail.org
http://www.lifewithqmail.org
http://www.exim.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

A.5 Related Mail Tools

The following sections point to information about various other mail tools mentioned in this book.

A.5.1 procmail

procmail is a popular and powerful Unix filtering program that acts as a full-featured local email
delivery agent. It's available at http://www.procmail.org.

A.5.2 MIMEDefang

MIMEDefang is a Sendmail milter application written in Perl that provides a framework for mail
content scanning, including virus-scanning, spam-checking with SpamAssassin, and MIME validation.
It's available at http://www.mimedefang.org. Versions after 2.42 support SpamAssassin 3.0.

A.5.3 amavisd-new

amavisd-new is a high-performance daemonized content scanner, designed for use with Postfix, but
it also supports Sendmail (including a milter version) and Exim. It's available at
http://www.ijs.si/software/amavisd/. Don't confuse amavisd-new with amavis, amavis-perl, amavisd,
or amavis-ng, all of which are other content scanners, most not actively in development, that now
share little code in common with amavisd-new.

A.5.4 sa-exim

sa-exim is a local_scan.c replacement for Exim that provides SpamAssassin message-scanning during
a SMTP transaction. It offers many options for how to handle spam that it detects, including
teergrubing. sa-exim's home page is http://marc.merlins.org/linux/exim/sa.html.

A.5.5 exiscan-acl

exiscan-acl is a patch for Exim 4 that adds new content-scanning ACL directives to Exim. These
directives can be used to invoke SpamAssassin on messages during a SMTP transaction. Some
prepackaged Exim distributions already have this patch added. You can download it at
http://duncanthrax.net/exiscan-acl/.

http://www.procmail.org
http://www.mimedefang.org
http://www.ijs.si/software/amavisd/
http://marc.merlins.org/linux/exim/sa.html
http://duncanthrax.net/exiscan-acl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.5.6 qmail-scanner

qmail-scanner is a content scanner for qmail that can run SpamAssassin on messages early in the
delivery process. It contains its own implementation of spamc for faster checking. Find it at

http://qmail-scanner.sourceforge.net.

 < Day Day Up >

http://qmail-scanner.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of SpamAssassin is a King vulture. King vultures (Sarcoramphus papa) are
found in tropical lowland forests from Mexico to Argentina. Vultures serve a useful purpose in
disposing of dead and decaying animal remains.

Their extremely thick and strong bills are well adapted for tearing, as are their long, thick claws for
holding meat. King vultures have a very heavy beak, a necessary asset for tearing into large, thick-
skinned animals. The absence of feathers on a vulture's head helps the bird "clean up" after a messy
meal.

King vultures do not build nests. The female simply deposits her single egg in the hollow of a rotten
tree trunk or in a crack caused by age or lightning. Both parents take turns incubating the egg. When
hatched, King vulture chicks have no feathers, but soon are covered with a white down. They do not
acquire their adult plumage until they are 18 months old.

While they have very keen eyesight, King vultures have a poor sense of smell. They often rely on
other vulture species to locate food. Much larger and stronger than other vultures, the King vulture is
useful to the others because it is capable of tearing open tough skin. When other vultures have found
carrion, a King vulture or two often arrive and immediately dominate the carcass-hence the name
"King."

King vultures will sometimes glide in wide circles for long periods, spying on their domain below and
searching for food. By making perfect use of the air currents, vultures are able to soar for hours at a
time, without once flapping their wings.

Darren Kelly was the production editor, Nancy Crumpton was the copyeditor, and Jan Fehler was the
proofreader for SpamAssassin. Reg Aubry and Claire Cloutier provided quality control. Nancy
Crumpton provided production services and wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book was
converted by Andrew Savikas to FrameMaker 5.5.6 with a format conversion tool created by Erik
Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is
Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and
warning icons were drawn by Christopher Bing. This colophon was written by Darren Kelly.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

! (exclamation point)

 IP addresses

 not operator

!= (exclamation point and equal sign), meta tests

(number sign), configuration files

&& (double ampersand), and operator

> (greater than sign), meta tests

>= (greater than and equal), meta tests

< (less than sign), meta tests

<= (less than and equal sign), meta tests

* (asterisk)

 hash value

 meta tests

 token names

+ (plus sign), meta tests

--host option (Pop3proxy)[host option (Pop3proxy)

-; (minus sign)

 meta tests

 $spam_bar variable

. (period)

 domain names

/ (forward slash)

 $spam_bar variable

= (equal sign), meta tests

? (question mark), amavisd.conf

@ (at sign). amavisd.conf

\ (backslash), amavisd.conf

__ (double underscore)

 meta test names

 test names

|| (double vertical bar), or operator

10_misc.cf file

20_body_tests.cf file

20_fake_helo_tests.cf file

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

access control lists [See ACLs]

acl_smtp_data ACL, exiscan

ACLs (access control lists)

 Exim and 2nd

 writing

 headers

ActivePerl

--add-addr-to-blacklist option

--add-addr-to-whitelist option

--add-to-blacklist option

--add-to-whitelist option

add_header directive 2nd

Advanced Settings (SAproxy Pro Configuration dialog)

all option (sa-learn script)

all_spam_to directive

--allowed-ips option (spamd)

--allowtop option (Pop3proxy)

Always Spam (SAproxy Pro Configuration dialog)

amavis user

 autowhitelist database, creating

amavisd script

amavisd-new filter

 configuring

 local domains, distinguishing

 options, daemon process

 options, essential

 options, logging

 options, MTA

 options, Postfix-specific

 options, spam-handling

 recipient preferences, storing in external databases

 recipient whitelists

 sender whitelists/sender blacklists

 SpamAssassin settings

 installing

 resources for further information

 sitewide Bayesian filtering, adding

 source code

amavisd.conf file 2nd

 LDAP lookups, enabling

 locating

 modifying

amavisd_init.sh script

and operator (&&)

antispam, approaches to

AnyDBM module, database format for autowhitelist data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

arithmetic operators, meta tests

asterisk (*)

 hash value

 meta tests

 token names

at sign (@), amavisd.conf

AUTH command (POP), turning on (SAproxy Pro)

--auth-ident option 2nd

authentication, POP proxies and

auto-whitelist file

--auto-whitelist option (SpamAssassin 2.6.3)

auto_whitelist_db_modules directive (SpamAssassin 3.0)

auto_whitelist_factor directive

auto_whitelist_file_mode directive

auto_whitelist_path directive

 sitewide autowhitelisting, adding to qmail-scanner

autowhitelist tests

autowhitelisting

 configuring

 file modes

 enabling in SpamAssassin 3.0

 sitewide

 qmail-scanner

 zzz [See also autowhitelists sitewide autowhitelists][See also autowhitelists sitewide autowhitelists]

autowhitelists

 modifying, options for

 per-user

 sitewide [See sitewide autowhitelists]

 SpamAssassin 2.63

 spamassassin script command-line options

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

batched SMTP (BSMTP)

Bayes' Theorem

bayes_auto_expire directive 2nd

bayes_auto_learn directive

bayes_auto_learn_threshold_nonspam directive

 sitewide Bayesian classifier

bayes_auto_learn_threshold_spam directive

bayes_expiry_max_db_size directive

bayes_file_mode directive

 sitewide Bayesian classifier 2nd

bayes_ignore_from directive

bayes_ignore_header directive

bayes_ignore_to directive

bayes_journal_max_size directive

bayes_learn_during_report directive

bayes_learn_to_journal directive

bayes_min_ham_num directive

bayes_min_spam_num directive

bayes_path directive

 amavisd-new

 sitewide Bayesian filtering

 qmail-scanner, adding to

bayes_use_chi2_combining directive

bayes_use_hapaxes directive

Bayesian classification system 2nd [See also per-user Bayesian filtering; sitewide Bayesian filtering]

 configuring

 installing SpamAssassin and

 per-user filtering

 SAproxy Pro, enabling for

 storing per-user data in SQL databases

 tests, acting on results of

 tokens

 training classifier

 train everything versus train-on-error strategies

 using large collections

 using

blacklist_from directive

blacklist_to directive

blacklists

 DNS TXT records, based on

 per-user

 SAproxy Pro, adding entries

 of senders

 systemwide

blackslash (\), amavisd.conf

body directive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

body tests

 20_body_tests.cf

 common phrases used in spam

 HTML markup

 pornographic sites and online pharmacies

 Spanish/Polish messages

 writing

Boolean operators, meta tests

BSMTP (batched SMTP)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

-c option

 amavisd

 spamc

C programming language

CanIt and CanIt-PRO programs

CAUCE (Coalition Against Unsolicited Commercial Email)

challenge/response system

check_for_from_dns()

check_hashcash_double_spend()

check_hashcash_value()

check_mx_attempts option

check_mx_delay option

check_rbl()

check_rbl_sub() 2nd

check_rbl_txt() 2nd 3rd

checksum-based clearinghouses [See clearinghouses]

cleanup daemon (Postfix)

clear_headers directive

clear_report_template directive

clear_spamtrap_template directive

clear_unsafe_report_template directive

clearinghouses

 clients for

 reporting spam to 2nd

 autolearning by Bayesian classifier

 message revocation

 spam traps and

 tests against

client, SpamAssassin [See spamc client]

Coalition Against Unsolicited Commercial Email (CAUCE)

Comprehensive Perl Archive Network [See CPAN]

condition directive, preventing spam-checking loops

--configpath option

configuration 2nd [See also installation, SpamAssassin]

 amavisd-new

 local domains, distinguishing

 options, daemon process

 options, essential

 options, logging

 options, MTA

 options, Postfix-specific

 options, spam-handling

 recipient preferences, storing in external databases

 recipient whitelists

 sender whitelists/sender blacklists

 SpamAssassin settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 autowhitelisting system

 file modes

 parameters for SQL support of

 autowhitelists

 per-user

 sitewide

 Bayesian classification system

 default delivery

 Exim

 exiscan

 local_scan()

 router-based 2nd

 spamassassin transport

 using procmail as local delivery agent

 files [See configuration files]

 for SpamAssassin/Exim gateway

 internal server

 for sendmail/MIMEDefang/SpamAssassin gateway

 for SpamAssassin/Postfix gateway

 for SpamAssassin/qmail gateway

 POP client

 for Pop3proxy

 for SAproxy Pro

 Postfix

 relaying mail to spam-checking gateway

 using procmail as local delivery agent

 qmail

 as local delivery agent

 routing mail through spam-checking gateway

 qmail-scanner

 sa-exim

 message-handling options

 spam-handling options

 teergrubing, enabling

 SAproxy Pro

 options

 report_safe directive

 sendmail

 spam-checking gateway

 using procmail as local delivery agent

 spam traps

 SpamAssassin

 MIMEDefang, invoked by

 for sa-exim

 sitewide autowhitelists

 spam-checking gateway

 SQL-based, enabling

 user accounts, dedicated user

 by users, enabling

configuration directives [See directives]

configuration files

 changing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 custom tests in

 directives

 documentation for

 Exim 2nd

 SIGHUP signal, sending to daemon

 MIMEDefang

 number sign (#) in

 options for locating

 Postfix

 qmail

 spam-checking default delivery method

 rulesets

 definitions for

 locating

 sitewide

 autowhitelist option, setting

 locating

 spamd location for

 user preferences

 zzz [See also local.cf file][See also local.cf file]

content filters

 filtering before address-rewriting

 qmail-scanner

 using daemon as

 using program as

content_filter directive

Controllable Regex Multilator (CRM114), spam-filtering system

CPAN (Comprehensive Perl Archive Network)

 installing SpamAssassin

 sample-nonspam.txt/sample-spam.txt files

--create-prefs option, spamd and

CRM114 (Controllable Regex Multilator), spam-filtering system

customizing MIMEDefang

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

-D option (mimedefang-multiplexor)

-d option (spamc)

--daemonize option

daemons

 as content filters, using for spam-checking

 filtering

 milters as

 Postfix

 qmail

 spamd [See spamd daemon]

daemontools package

DATA command (STMP), exiscan message-checking

data option (sa-learn script)

data source name (DSN)

databases

 autowhitelist data 2nd

 Bayesian

 single database set for all users

 updating

 external, amavisd-new recipient preferences

 test scores in, table for

DB_File module

 qmail-scanner and

DBD-mysql module 2nd

DBD-ODBC module 2nd

DBD-Pg module 2nd

DBI module

 per-user autowhitelists, configuring

DCC (Distributed Checksum Clearinghouse)

DCC clearinghouse 2nd

dcc_options directive (SpamAssassin 3.0)

Debian GNU/Linux, installing SpamAssassin

debugging

 information from amavisd message-processing

 MIMEDefang multiplexor

 sa-exim

 SpamAssassin spam-checking gateway operations

def_whitelist_from_rcvd directive

defang username/group name

default delivery, configuring

denial-of-service attacks, preventing

 in MIMEDefang

describe directive, test descriptions

 modifying systemwide

Digest::SHA1 module

directives

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Exim, removing

 inability to use when running SpamAssassin via MIMEDefang

 test, message portions associated with

directories

 amavisd-new

 MIMEDefang

 qmail

 qmail-queue

 qmail-scanner

disable_dns_lookups directive, using content-filtering daemon

Distributed Checksum Clearinghouse (DCC)

DNS (Domain Name System)

 routing email through spam-checking gateway

DNS MX record, adding routing changes to spam-checking gateway

 SpamAssassin/Exim integration

 SpamAssassin/Postfix integration

 SpamAssassin/qmail integration

 SpamAssassin/sendmail integration

DNSBLs (Domain Name System real-time blacklists)

 test definitions

 writing custom headers

Domain Name System [See DNS]

Domain Name System real-time blacklists [See DNSBLs]

double ampersand (&&), and operator

double underscore (__)

 meta test names

 test names

double vertical bar (||), or operator

DSBL blacklist

DSN (data source name)

DSPAM spam-filtering system

--dump option

dynamic integration

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

email [See messages]

email addresses, time-limited systems

end users, processing messages

 false negatives

 false positives

 ham

 spam

environment variable, QMAILQUEUE

equal sign (=), meta tests

errors, programming, spamassassin exit

exclamation point (!)

 IP addresses

 not operator

exclamation point and equal sign(!=), meta tests

Exim

 configuration files

 integrating SpamAssassin with

 configuring spamassassin transport

 exiscan

 per-user preferences

 router, configuring

 sa-exim

 spam-checking all incoming mail

 spam-checking gateway, building

 spam-checking via procmail

 transport, configuring

 zzz [See also exiscan][See also exiscan]

 packaged versions of

 resources for further information

Exim 4

exim command

exim executable 2nd [See also Exim]

exiscan

 ACLs, writing

 installing

 per-user preferences 2nd

exiscan-acl patch, resources for further information

--exit-code option

--exitport option (Pop3proxy)

ExtUtils::MakeMaker module

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

false negatives

 end-user processing of

 reducing number of [See Bayesian classification system]

false positives

 avoiding

 end-user processing of

 reducing number of [See autowhitelisting Bayesian classification system]

 testing compensating for

fast_spamassassin option (qmail-scanner)

 per-user spam preferences

File::Spec module

files

 configuration [See configuration files]

 journal, Bayesian classification system

 modes of

 Bayesian databases

 systemwide autowhitelisting

 qmail-scanner

filter()

filter_begin()

filter_end()

filter_multipart()

filtering

 daemons [See daemons, filtering]

 at MDA

 at MTA

 at multiple places

 politics of

 at POP proxy

 resources for further information

 during SMTP transaction

 whitelists/blacklists, implementing without SpamAssassin

 zzz [See also Bayesian classification system][See also Bayesian classification system]

filters

 content [See content filters]

 MTA

 resources for further information

flexibility, filtering at MDA

--force-expire option

forward slash (/)

 meta tests

 $spam_bar variable

FreeBSD, installing SpamAssassin

full directive

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

gateway MTAs, spam-checking at

Generic Test for Unsolicited Bulk Email (GTUBE)

Gentoo Linux, installing SpamAssassin

GNU Public License (GPL)

GPL (GNU Public License)

greater than and equal (>=), meta tests

greater than sign (>), meta tests

greylisting systems

GTUBE (Generic Test for Unsolicited Bulk Email)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

-H option (spamc)

ham

 exit code indication of

 user-processing of

--ham option (sa-learn script)

hapaxes

Hashcash

 configurable header tests in SpamAssassin 3.0

header directive, test definitions 2nd

header tests

 configurable (SpamAssassin 3.0)

 Spanish/Polish messages

 writing

 methods providing basis for

headers

 ACLs and

 custom

 default, changing/removing

 ignored by Bayesian classifier

 matching to regular expressions

 rewriting

 spam, adding to

 testing

Help (SAproxy Pro Configuration dialog)

HTML, testing for 2nd

HTML::Parser module

HTTP (Hypertext Transfer Protocol)

HUP signal, sending

Hypertext Transfer Protocol (HTTP), testing for

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

--ident-timeout option

IMAP (Internet Message Access Protocol)

 proxies, availability of

--import option

initialization, qmail-scanner

INPUT_MAIL_FILTER() macro 2nd

 arguments and instructions

installation

 amavisd-new

 exiscan

 Pop3proxy

 qmail-scanner 2nd

 qmail-spamc

 SAproxy Pro

 SpamAssassin [See installation, SpamAssassin]

installation, SpamAssassin

 through CPAN

 sample-nonspam.txt/sample-spam.txt files

 components of

 through CPAN

 on FreeBSD

 on Linux

 MIMEDefang

 prerequisites

 for personal use

 prerequisites

 clearinghouse client installation

InstallShield (Saproxy Pro)

internal_networks directive (SpamAssassin 3.0)

 SpamAssassin configuration for gateway

Internet Message Access Protocol [See IMAP]

IO::Socket::SSL module

IP addresses

 autowhitelisting and

 connections from, specifying list of

 extracting from Received headers

 message-processing and

 numeric, testing for

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

kill command

 signaling mimedefang-multiplexor

kill_proxy.pl script

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Language Settings (SAproxy Pro Configuration dialog)

LDAP (Lightweight Directory Access Protocol)

 database, test scores in

 lookups, enabling

 schemas

learn test flag

learning systems

 autowhitelisting

 configuring

 Bayesian classification [See Bayesian classification system]

less than and equal sign (<=), meta tests

less than sign (<), meta tests

libmilter library

Lightweight Directory Access Protocol [See LDAP]

--lint option

Linux, installing SpamAssassin

--listen-ip option

LMTP (Local Mail Transfer Protocol)

lmtp command (Postfix 2.0), using instead of smtp

load-balancing, spamc

local delivery agent

 procmail as, configuring Exim to use

 procmail as, configuring Postfix to use

 procmail as, configuring sendmail to use

 qmail as, configuring

local domains, configuring amavisd-new to distinguish

Local Mail Transfer Protocol (LMTP)

local.cf file

 LDAP support for test scores, configuring

 locating

 report_safe setting

 SQL support for autowhitelists, configuring

 SQL support for test scores, configuring

 test scores, modifying systemwide

 typical, used with SpamAssassin 2.63

local_scan() (Exim) 2nd

LOCAL_SCAN_HAS_OPTIONS, integrating sa-exim

localhost, connections to, Pop3proxy and

localscan_dlopen_exim_4.20_or_better.patch

localscan_dlopen_up_to_4.14.patch

--log-to-mbox option

--logfile option (Pop3proxy)

logging

 messages processed by spamassassin

 Pop3proxy

 Postfix options

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SAproxy Pro

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

-m option

 mimedefang-multiplexor

 mimedefang

magic option (sa-learn script)

mail delivery agents [See MDAs]

mail exchanger (MX)

mail gateways [See spam-checking gateway, building]

mail servers, trusted/untrusted

mail transport agents [See MTAs]

Mail::SpamAssassin module

 amavisd-new and

 autowhitelisting, enabling

 installing SpamAssassin

 as interface to spam-checker

 MIMEDefang invoking SpamAssassin

Mail::SpamAssassin::Conf module

 default SQL queries

 installing SpamAssassin

Mail::SpamAssassin::EvalTests module

 configurable header tests in SpamAssassin 3.0

 eval test for body tests

Mail::SpamAssassin::NoMailAudit module

Mail::SpamAssassin::Plugin module

Mail::SpamAssassin::Plugin::URIDNSBL module (SpamAssassin 3.0)

mailbox_command directive

maildir format, training Bayesian classifier

Maildrop program, qmail installation

mailers 2nd [See also MDAs MTAs][See also MDAs MTAs]

mailertable file

 routing email through spam-checking gateway

 sendmail configuration for spam-checking gateway

mailing lists

 SPAM-L discussion forum

 for SpamAssassin users and system administrators

main.cf file

 configuring Postfix to use procmail as local delivery agent

MAPS blacklists

master daemon (Postfix)

master.cf file

--max-children option

--maxscan option (Pop3proxy)

mbox format

 training Bayesian classifier

md-mx-ctrl command

MDAs (mail delivery agents)

 filtering at

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 procmail

message language, tests against

message locale, tests against

messages

 end-user processing of

 false negatives

 false positives

 ham

 spam

 headers [See headers]

 milter functions operations on

 MIMEDefang management of

 non-spam [See ham]

 routing through Exim gateway

 domain lists

 internal server configuration

 routing changes

 routing through qmail-scanner gateway 2nd

 qmail, changes to

 routing through sendmail/MIMEDefang/SpamAssassin gateway

 routing through SpamAssassin/Postfix gateway

 internal server configuration

 Postfix changes

 routing changes

 spam-checking [See spam-checking gateway, building]

 SpamAssassin processing of

 untagging options

meta tests 2nd 3rd

micropayment systems

milter interface

 MIMEDefang

MIME::Tools module v5.411a, problems with 2nd

MIME::Tools module v6

MIMEDefang

 configuring for spam-checking gateway

 customizing

 installing

 prerequisites

 integrating SpamAssassin with

 per-domain or per-user streaming, adding

 sitewide autowhitelisting, adding

 sitewide Bayesian filtering, adding

 message-checking functions

 messages, managing

 multiple recipients

 milter, starting

 multiplexor

 checking status of

 messages processed by, displaying number of

 starting

 processes

 resources for further information

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sendmail, invoking in deferred mode for notification messages

 username/group name

 version of

mimedefang program

 command-line options for

 user, specifying

mimedefang-filter file

 changes to

 MIMEDefang configuration

 for spam-checking gateway

 network tests, SpamAssassin performing

 Perl functions in

 signaling MIMEDefang milter to reread

 spam-tagging section

 SpamAssassin directives, using instead of

mimedefang-multiplexor program

 command-line options

 incoming requests, queuing

 running in foreground for debugging

 signaling to restart slave processes

 starting

mimedefang.pl script

 address list factory, adding to

 Perl subroutines called by

 slave processes, specifying number of

minus sign (-;)

 meta tests

 $spam_bar variable

modules

 Perl

 amavisd-new, required by

 MIMEDefang, required by

 prerequisites for SpamAssassin installation

 plug-in

 distinguishing from Perl

more_spam directive

msgs option (md-mc-ctrl)

MTAs (mail transport agents)

 filtering at

 gateway

 resources for further information

MX (mail exchanger)

MySQL server

 configuring per-user autowhitelists

 test scores in

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

net test flag

Net::DNS module

Net::Ident module

Net::LDAP module, storing test scores

netqmail 1.05

Never Spam (SAproxy Pro Configuration dialog)

new()

nice test flag

NJABL blacklist

--no-rebuild option

no_expn directive

no_verify directive

noautolearn test flag

non-root user, running spamd as

non-spam messages [See ham]

--nopad option (Pop3proxy)

not operator

-;-nouser-config option 2nd

--nouser-config option

 spamd and

number sign (#), configuration files

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

object identifier (OID)

ODBC-compliant server

 configuring per-user autowhitelists

 test scores in

OID (object identifier)

-oMr sa-checked option (Exim)

OPM blacklist

options

 configuration files, locating

 reporting

 scripting

 spamc

 untagging messages

or operator (||)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

-p option

 mimedefang

 mimedefang-multiplexor

 spamc

-P option (mimedefang)

--paranoid option

passwords

 test scores for database-server connection

 test scores in LDAP database

PATH variable, installing SpamAssassin for personal use

per-user Bayesian filtering, enabling SpamAssassin 3.0

performance

 body tests

 measuring

 per-user preferences, exiscan

 per-user preferences, sa-exim

 stream_by_recipient()/stream_by_domain()

period (*)

 domain names

Perl

 autowhitelisting in

 milter functions in

 modules [See Perl modules]

 qmail-scanner and

 scripts, invoking SpamAssassin from

 SpamAssassin installation prerequisites

 SpamAssassin organization and

Perl for Windows, Pop3proxy installation

Perl modules

 amavisd-new, required by

 MIMEDefang, required by

 prerequisites for SpamAssassin installation

Perl Package Manager (ActivePerl)

Perl Version 5

perldoc, Mail::SpamAssassin/Mail::SpamAssassin::PerMsgStatus modules

--pidfile option

plug-in modules 2nd

plus sign (+), meta tests

Pod::Usage module

POP (Post Office Protocol)

 clients [See POP clients]

 proxies [See POP proxies]

POP clients

 configuring

 for Pop3proxy

 for SAproxy Pro

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 filtering spam

POP proxies

 availability of

 scanning with

Pop3proxy

 configuring POP client

 installing

 log file

 starting

pop3proxy.pl script

--port option

ports collection (FreeBSD)

Post Office Protocol [See POP]

Postfix

 architecture

 configuring, relaying mail to spam-checking gateway

 integrating SpamAssassin with

 spam-checking during local delivery

 spam-checking gateway, building

 spam-checking incoming mail

 logging options

 mail transport, invoking

 options

 resources for further information

 security

Postfix 2.0

 filtering before address-rewriting

 spam-checking transport

PostgreSQL server

 configuring per-user autowhitelists

 test scores in

postmaster, protecting messages to

--prefspath option

process ID

 locating with ps command

 MIMEDefang

 spamd, specifying file for

procmail

 blacklists and

 invoking SpamAssassin

 invoking spamc

 as local delivery agent

 configuring sendmail to use

 configuring Exim to use

 configuring Postfix to use

 qmail configuration as local delivery agent

 recipes [See procmail recipes]

 resource for further information

 whitelists and

procmail recipes

 discarding spam

procmail_pipe transport

http://lib.ommolketab.ir
http://lib.ommolketab.ir

procmailrc file

 spam-tagging recipe, adding to

programming errors, spamassassin exit

proxy

 IMAP

 Perl API, calling SpamAssassin

 SpamAssassin as, using

 Pop3proxy

 SAproxy Pro

 SpamAssassin, using as

 zzz [See also POP proxies][See also POP proxies]

ps command

 MIMEDefang processes, verifying

Pyzor clearinghouse 2nd

pyzor_options directive (SpamAssassin 3.0)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

-q option (mimedefang-multiplexor)

qmail 2nd [See also qmail-scanner filter]

 daemons

 installing, QMAILQUEUE patch and

 integrating SpamAssassin with

 qmail architecture

 spam-checking all incoming mail

 spam-checking at delivery

 spam-checking gateway, building

 local delivery agent,configuring as

 resources for further information

 security and

qmail-local program

qmail-queue program

qmail-rspawn daemon

qmail-scanner filter

 basic operations

 configuration options

 directories/files

 initializing

 installing

 per-user spam preferences

 Perl v5.005_03

 resources for further information

 routing email through gateway

 qmail, changes to

 routing changes

 sitewide autowhitelisting, adding to

 sitewide Bayesian filtering, adding to

 spamd and

qmail-send daemon

qmail-smtpd daemon

 memory requirements

 spam-checking all incoming mail

qmail-spamc program, installing

qmailctl cdb command

QMAILQUEUE patch

 qmail installation

 QMAILQUEUE, emulating

QMAILQUEUE variable

qmgr daemon (Postfix)

qscand user

question mark (?), amavisd.conf

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

ratware, testing for

rawbody directive

RBLs (real-time blacklists)

 zzz [See also DNSBLs][See also DNSBLs]

real-time blacklists (RBLs)

RedHat Linux

 amavisd-new boot script for

 source rpm SpamAssassin installation

--regexp option

regular expressions

 body tests, testing against

 header tests, matching to

 uri tests, matching against

relays, distinguishing trusted from untrusted

reload command, modifying amavisd.conf and

--remove-addr-from-whitelist option

--remove-from-whitelist option

--remove-markup option 2nd

remove_header directive

report directive

--report option 2nd

report_safe directive

 local.cf file

 SAproxy Pro, configuring in

reports

 messages with low test scores

 options for

 templates for 2nd

 variables

 test descriptions in

Request For Comments (RFC), resources about spam

required_hits directive, configuring SpamAssassin 2.63

required_score directive, configuring SpamAssassin 3.0

--revoke option

rewrite_header directive

rewrite_subject directive

RFC (Request for Comments), resources about spam

rm -rf build-* command

root user

 amavisd script

 messages to, protecting

 MIMEDefang processes, starting as

 qmail-scanner source code, building

 spamd, running as

router changes

routers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 configuring in Exim

 order of, defining

 per-user preferences

 router order, defining

rules 2nd

 in custom tests

 files defining

 10_misc.cf file

 20_body_tests.cf file

 20_fake_helo_tests.cf file

 report_safe directive and

 sets of [See rulesets]

rulesets

 exiscan

 spamd location for

 test storage

 testing forged HELO hostnames

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

-s option

 mimedefang-multiplexor

 md-mx-ctrl

-S option (spamc)

sa-exim

 configuring

 message-handling options

 spam-handling options

 teergrubing, enabling

 debugging

 dynamic integration, building for

 resources for further information

 SpamAssassin, configuring for

 static integration, building for

sa-exim.conf file

 configuration options

 example of

sa-learn script 2nd

 expiring tokens

 ongoing training of Bayesian classifier

 options for displaying tokens

sa-mimedefang.cf file

 autowhitelist directives, adding to

 MIMEDefang and

 SpamAssassin configuration for gateway

Safety Settings (SAproxy Pro Configuration dialog)

sample-nonspam.txt file

sample-spam.txt file

SAproxy Pro 2nd 3rd

 configuring

 POP client

 installing

 SSL module

 starting

SAproxy Pro 2.5

--scanners option (qmail-scanner)

scanning [See filtering]

score directive

 spam scores

 test scores, modifying

scripting, options for

Secure Sockets Layer [See SSL]

Secure Sockets Layer/Transport Layer Security (SSL/TLS)

security 2nd [See also denial-of-service attacks, preventing]

 ::allowed-ips option

 file mode used to create Bayesian databases

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 mimedefang-multiplexor and

 POP proxies and

 Postfix and

 qmail and

 sendmail and

 SSL support in spamd/spamc

Sender Policy Framework (SPF)

senders, privileging

sendmail

 configuring

 milter use

 procmail as local delivery agent

 for spam-checking gateway

 deferred mode

 integrating SpamAssassin with

 spam-checking at delivery

 spam-checking during SMTP transaction

 spam-checking gateway, building

 resources for further information

 security and

 smmsp user, running as

sendmail 8.11, milter interface in

sendmail 8.12, milter interface in

sendmail.cf file, regenerating from sendmail.mc file

sendmail.mc file, configuring sendmail

 milter use

 procmail as local delivery agent

 sendmail 8.11 milter

--server-cert option

--server-key option

setuid scripts, qmail-scanner requirement for 2nd

--showdots option

Simple Mail Transfer Protocol [See SMTP]

--siteconfigpath option

sitewide autowhitelists

 amavisd-new

 MIMEDefang, adding to

sitewide Bayesian filtering

 amavisd-new spam-checking gateway

 Exim spam-checking gateway

 forwarded messages, avoiding

 MIMEDefang, adding to

 qmail-scanner

skip_rbl_checks directive

smmsp user

SMTP (Simple Mail Transfer Protocol)

 filtering messages

 greylisting systems and

 transactions [See SMTP transactions]

 trusted/untrusted mail servers

SMTP transactions

 milter functions called by sendmail during

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 spam-checking during

smtpd daemon (Postfix)

--socketpath option

SORBS blacklist

source rpm distribution

spam condition

spam mail

 end-user processing of

 exit code indication of

 modifying

 quarantine, enabling

 resources for further information

 subject-tagging, SAproxy Pro

--spam option (sa-learn script)

spam score

 autowhitelisting and

 average sender score

 configuring required_hits/required_score directives

 exiscan and

 produced by spamd

 in test mode

Spam Training (SAproxy Pro Configuration dialog)

spam traps 2nd

spam-checkers

 daemonized [See spamd daemon]

 validating

spam-checking

 all incoming mail

 Exim configurations

 Postfix

 qmail configuration

 at delivery

 Postfix, configuring to use procmail

 qmail

 sendmail, configuring to use procmail

 gateway [See spam-checking gateway, building]

 on LANs

 at MTAs

 options for

 configuration files, locating

 Perl scripts for

 Postfix

 content filter, using daemon as

 content filter, using program as

 filtering before address-rewriting

 during SMTP transaction

 milter interface

 MIMEDefang

spam-checking gateway, building

 with amavisd-new

 configuration

 with qmail

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 initialization

 internal server configuration

 operations

 per-user preferences

 routing email through

 sitewide autowhitelisting

 sitewide Bayesian filtering

 with sendmail, MIMEDefang, and SpamAssassin

 with amavisd-new

 installation

 routing email through

 sitewide autowhitelisting

 testing

 with Exim

 routing email through

 sitewide Bayesian filtering

 with MIMEDefang, adding per-domain or per-user streaming

 with qmail

 installation

 with sendmail, MIMEDefang, and SpamAssassin

 MIMEDefang configuration

 internal server configuration

 routing email through

 sendmail configuration

 SpamAssassin configuration

 testing

 SpamAssassin, configuring for

SPAM-L FAQ/SPAM-L mailing list

SpamAssassin

 amavisd-new, settings for

 client [See spamc]

 configuring [See configuration configuration files spam-checking gateways, building]

 integrating with Exim

 exiscan

 per-user preferences

 router, configuring

 sa-exim

 spam-checking all incoming mail

 spam-checking gateway

 spam-checking via procmail

 transport, configuring

 integrating with MIMEDefang

 per-domain or per-user streaming

 sitewide autolisting, adding

 sitewide Bayesian filtering, adding

 integrating with Postfix

 spam-checking during local delivery

 spam-checking gateway, building

 spam-checking incoming mail

 integrating with qmail

 qmail architecture

 spam-checking all incoming mail

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 spam-checking at delivery

 spam-checking gateway, building

 integrating with sendmail

 spam-checking at delivery

 spam-checking during SMTP transaction

 spam-checking gateway, building

 learning systems [See learning systems]

 organization of

 as proxy

 Pop3proxy

 SAproxy Pro

 reasons for popularity

 resources for further information

 rules [See rules]

 sa-exim, configuring for

 testing [See testing]

SpamAssassin 2.63

 invoking with Perl script

 language support in

 local.cf file, typical example of

 options for reporting spam

 Pop3proxy and

 proxies for

 required_hits directive

 SAproxy Pro 2.5

 sitewide autowhitelisting, enabling

 spamassassin script

SpamAssassin 2.x

 logging messages

 --max-children option default

 rewrite_subject directive

SpamAssassin 3.0

 autowhitelisting 2nd 3rd

 configurable header tests

 Hashcash 2nd

 language support in

 --max-children option default

 message revocation

 per-user Bayesian data, storing in SQL databases

 Perl modules, distinguishing from plug-ins

 Perl script, invoking with

 proxies for

 required_score directive

 rewrite_header directive

 spamc invocation

spamassassin program

 consulting autowhitelists

 options

 sitewide configuration file

 spamc and

 testing

spamassassin script, autowhitelist options

http://lib.ommolketab.ir
http://lib.ommolketab.ir

spamassassin transport, configuring in Exim

spambox

spamc client 2nd

 load-balancing

 options

 procmail, invoking with

 security and

 sitewide configuration file

 SpamAssassin 3.0, invoking in

 SpamAssassin installation and

 spamd server, connecting to

 SSL connections

 testing

 user running, identifying

Spamcop blacklist

spamd daemon 2nd

 configuring

 Exim routers and

 connection type, specifying

 identifying user running spamc

 non-root user, running as

 qmail-scanner and

 rulesets, locating

 security and

 options

 setting up

 sitewide configuration files, location of

 SpamAssassin installation and

 test scores in LDAP database

 test scores in SQL database

 test-scores in SQL database

 whitelists/blacklists and

spamd servers, using multiple

Spamhaus blacklist

spamtrap directive

spamware, testing for

SPF (Sender Policy Framework)

SQL databases

 per-user Bayesian data

 SpamAssassin 3.0

 test scores in

SQL queries, constructing

SQL server, Perl driver modules for

SSL (Secure Sockets Layer)

 spamc-to-spamd connection

 spamd certificate, specifying file for

 spamd private key, specifying file for

--ssl option

SSL plug-in module, SAproxy Pro

SSL/TLS (Secure Sockets Layer/Transport Layer Security), requiring use of

static integration

Statistics (SAproxy Pro Configuration dialog), comparing number of spam to non-spam messages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

STATISTICS.txt files

stream_by_domain()

 multiple policies for multiple recipient domains

 sendmail 8.12 requirement

stream_by_recipient()

 sendmail 8.12 requirement

 SpamAssassin user preferences for each recipient from SQL database

stunnel program

Subject header

 rewriting

 testing for

Sys::Syslog module

 qmail-scanner and

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

-t option (spamc)

Tagging Options (SAproxy Pro Configuration dialog)

Tcl/Tk, MIMEDefang interface based on

TCP port

 spamc connection

 spamd, bound by

tcp.smtp file

teergrubing 2nd

test mode

test scores

 database table for

 specifying name of

 definitions of

 LDAP database, storing in

 low

 modifying

 on per-user basis

 systemwide

 SQL databases, storing in

--test-mode option

testing

 amavisd-new gateway

 headers

 messages 2nd [See also tests]

 for ratware/spamware

 SAproxy Pro, enabling in

 sendmail/MIMEDefang/SpamAssassin gateway 2nd

 SpamAssassin

 spamc

tests

 built-in

 components of

 definitions of

 examples

 descriptions, translations of

 directory location

 flags

 for forged HELO hostnames

 meta [See meta tests]

 scores [See test scores]

 writing

text/plain content-type, report_safe directive and

Time::HiRes module

 Pop3proxy installation

 qmail-scanner and

TNEF program, qmail installation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To headers, forged, blacklisting and

tokens

 automatically removing

 expiration of

 used by Baysian classifier

TOP command (POP)

 turning on, SAproxy Pro

transport directive

transports, Exim and

true negatives [See ham]

true positives [See spam mail]

trusted_networks directive, SpamAssassin configuration for gateway

trusted_networks option 2nd

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

-U option

 mimedefang

 mimedefang-multiplexor

 spamc

-u option (spamc)

ucspi-tcp package

 accessing SMTP service

unblacklist_from directive

uniform resource identifiers [See URIs]

Unix

 domain socket [See Unix domain socket]

Unix domain socket

 MIMEDefang, path to

 mimedefang-multiplexor, used by

 spamc-to-spamd connection

unsafe_report directive

unwhitelist_from directive

unwhitelist_from_rcvd directive

uri directive

URI module, LDAP database, storing test scores in

URI tests

 DNS blacklists

 writing

uridnsbl directive (SpamAssassin 3.0)

URIDNSBL plug-in

URIs (uniform resource identifiers)

 testing for [See URI tests]

use_auto_whitelist option (SpamAssassin 3.0) 2nd

use_bayes directive

 amavisd-new

 sitewide Bayesian filtering

 qmail-scanner, adding to

Usenet resources about spam

user accounts, shell, installing SpamAssassin

user preferences, configuration file

user_prefs file

user_scores_dsn directive 2nd

user_scores_ldap_password directive

user_scores_ldap_username directive

user_scores_sql_custom_query directive

user_scores_sql_password directive

user_scores_sql_table directive

user_scores_sql_username directive

userconf test flag

--username option

usernames

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 amavis

 autowhitelist database, creating

 qscand

 smmsp

 specifying

 test scores, database-server connection

 LDAP

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

version_spamassassin option (qmail-scanner)

version_tag option

Vipul's Razor clearinghouse 2nd

virtual hosts, per-domain or per-user stream

virus-checking

 at MTAs

 qmail-scanner

 TNEF and

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

--warning-from option

watch-mimedefang interface

whitelist_from directive

whitelist_from_rcvd directive

whitelist_to directive

whitelists

 per-user

 of recipients

 SAproxy Pro, adding entries

 of senders

 setting up default

 systemwide

 zzz [See also autowhitelisting][See also autowhitelisting]

Windows Task Manager, killing wperl process

wperl file

writing tests

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

-x option

 mimedefang-multiplexor

 spamc

X-PMFLAGS header, testing for

X-Spam-Checker-Version header, setting

X-Spam-Flag header

X-Spam-Level header 2nd

X-Spam-Report header, rules description

X-Spam-Status header 2nd

 adding to messages

 for ham

X-Spam_Flag header

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	SpamAssassin
	Table of Contents
	Copyright
	Preface
	Scope of This Book
	Versions Covered in This Book
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Acknowledgments

	Chapter 1. Introducing SpamAssassin
	1.1 How SpamAssassin Works
	1.2 Organization of SpamAssassin
	1.3 Mailers and SpamAssassin
	1.4 The Politics of Scanning

	Chapter 2. SpamAssassin Basics
	2.1 Prerequisites
	2.2 Building SpamAssassin
	2.3 Invoking SpamAssassin with procmail
	2.4 Using spamc/spamd
	2.5 Invoking SpamAssassin in a Perl Script
	2.6 SpamAssassin and the End User

	Chapter 3. SpamAssassin Rules
	3.1 The Anatomy of a Test
	3.2 Modifying the Score of a Test
	3.3 Writing Your Own Tests
	3.4 The Built-in Tests
	3.5 Whitelists and Blacklists

	Chapter 4. SpamAssassin as a Learning System
	4.1 Autowhitelisting
	4.2 Bayesian Filtering

	Chapter 5. Integrating SpamAssassin with sendmail
	5.1 Spam-Checking at Delivery
	5.2 Spam-Checking During SMTP
	5.3 Building a Spam-Checking Gateway

	Chapter 6. Integrating SpamAssassinwith Postfix
	6.1 Postfix Architecture
	6.2 Spam-Checking During Local Delivery
	6.3 Spam-Checking All Incoming Mail
	6.4 Building a Spam-Checking Gateway

	Chapter 7. Integrating SpamAssassin with qmail
	7.1 qmail Architecture
	7.2 Spam-Checking During Local Delivery
	7.3 Spam-Checking All Incoming Mail
	7.4 Building a Spam-Checking Gateway

	Chapter 8. Integrating SpamAssassin with Exim
	8.1 Spam-Checking via procmail
	8.2 Spam-Checking All Incoming Mail
	8.3 Using Routers and Transports
	8.4 Using exiscan
	8.5 Using sa-exim
	8.6 Building a Spam-Checking Gateway

	Chapter 9. Using SpamAssassin as a Proxy
	9.1 Using Pop3proxy
	9.2 Using SAproxy Pro

	Appendix A. Resources
	A.1 General Spam Resources
	A.2 Spam-Filtering
	A.3 SpamAssassin
	A.4 Mail Transport Agents
	A.5 Related Mail Tools

	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X

