

•
Table of

Contents

• Index

• Reviews

•
Reader

Reviews

• Errata

• Academic

Linux in a Windows World

By Roderick W. Smith

Publisher: O'Reilly

Pub Date: February 2005

ISBN: 0-596-00758-2

Pages: 494

The latest in O'Reilly's line of bestselling Linux titles, Linux in a Windows
World is an invaluable companion for any system administrator interested
in integrating Linux into their Windows environment. This book takes an
in-depth look at exactly how Linux can be brought into an organization
that's currently based on Microsoft Windows systems. Featuring a litany of
insider tips and techniques, Linux in a Windows World dispenses all the
practical advice you need to migrate to this revolutionary open source
software.

http://lib.ommolketab.ir

•
Table of

Contents

• Index

• Reviews

•
Reader

Reviews

• Errata

• Academic

Linux in a Windows World

By Roderick W. Smith

Publisher: O'Reilly

Pub Date: February 2005

ISBN: 0-596-00758-2

Pages: 494

 Copyright

 Dedication

 Preface

 Audience

 Contents of This Book

 Conventions Used in This Book

 Using Code Examples

 Comments and Questions

 Safari Enabled

 Acknowledgments

 Part I: Linux's Place in a Windows Network

 Chapter 1. Linux's Features

 Section 1.1. Where Linux Fits in a Network

 Section 1.2. Linux as a Server

 Section 1.3. Linux on the Desktop

 Section 1.4. Comparing Linux and Windows Features

 Section 1.5. Summary

 Chapter 2. Linux Deployment Strategies

 Section 2.1. Linux Server Options

 Section 2.2. Linux Desktop Migration

 Section 2.3. Linux and Thin Clients

 Section 2.4. Summary

 Part II: Sharing Files and Printers

 Chapter 3. Basic Samba Configuration

 Section 3.1. Installing Samba

 Section 3.2. The Samba Configuration File Format

 Section 3.3. Identifying the Server

http://lib.ommolketab.ir

 Section 3.4. Setting Master Browser Options

 Section 3.5. Setting Password Options

 Section 3.6. Summary

 Chapter 4. File and Printer Shares

 Section 4.1. Common File Share Options

 Section 4.2. Printing with CUPS

 Section 4.3. Creating a Printer Share

 Section 4.4. Delivering Printer Drivers to Windows Clients

 Section 4.5. Example Shares

 Section 4.6. Summary

 Chapter 5. Managing a NetBIOS Network with Samba

 Section 5.1. Enabling Domain Controller Functions

 Section 5.2. Enabling NBNS Functions

 Section 5.3. Assuming Master Browser Duties

 Section 5.4. Summary

 Chapter 6. Linux as an SMB/CIFS Client

 Section 6.1. Using NetBIOS Name Resolution

 Section 6.2. Accessing File Shares

 Section 6.3. Printing to Printer Shares

 Section 6.4. Configuring GUI Workgroup Browsers

 Section 6.5. Summary

 Part III: Centralized Authentication Tools

 Chapter 7. Using NT Domains for Linux Authentication

 Section 7.1. The Principles Behind Winbind

 Section 7.2. Samba Winbind Configuration

 Section 7.3. PAM and NSS Winbind Options

 Section 7.4. Winbind in Action

 Section 7.5. Summary

 Chapter 8. Using LDAP

 Section 8.1. The Principles Behind LDAP

 Section 8.2. Configuring an OpenLDAP Server

 Section 8.3. Creating a User Directory

 Section 8.4. Configuring Linux to Use LDAP for Login Authentication

 Section 8.5. Configuring Windows to Use LDAPfor Login Authentication

 Section 8.6. Summary

 Chapter 9. Kerberos Configuration and Use

 Section 9.1. Kerberos Fundamentals

 Section 9.2. Linux Kerberos Server Configuration

 Section 9.3. Kerberos Application Server Configuration

 Section 9.4. Linux Kerberos Client Configuration

 Section 9.5. Windows Kerberos Tools

 Section 9.6. Summary

 Part IV: Remote Login Tools

 Chapter 10. Remote Text-Mode Administration and Use

 Section 10.1. What Can Text-Mode Logins Do?

 Section 10.2. SSH Server Configuration

http://lib.ommolketab.ir

 Section 10.3. Telnet Server Configuration

 Section 10.4. Windows Remote-Login Tools

 Section 10.5. Summary

 Chapter 11. Running GUI Programs Remotely

 Section 11.1. What Can GUI Logins Do?

 Section 11.2. Using Remote X Access

 Section 11.3. Encrypting X by SSH Tunneling

 Section 11.4. VNC Configuration and Use

 Section 11.5. Running Windows Programs from Linux

 Section 11.6. Summary

 Chapter 12. Linux Thin Client Configurations

 Section 12.1. The Role of Thin Client Computing

 Section 12.2. Hardware Requirements

 Section 12.3. Linux as a Server for Thin Clients

 Section 12.4. Linux as a Thin Client

 Section 12.5. Summary

 Part V: Additional Server Programs

 Chapter 13. Configuring Mail Servers

 Section 13.1. Linux Mail Server Options

 Section 13.2. Configuring Sendmail

 Section 13.3. Configuring Postfix

 Section 13.4. Configuring POP and IMAP Servers

 Section 13.5. Scanning for Spam, Worms, and Viruses

 Section 13.6. Supplementing a Microsoft Exchange Server

 Section 13.7. Using Fetchmail

 Section 13.8. Summary

 Chapter 14. Network Backups

 Section 14.1. Backup Strategies

 Section 14.2. Backing Up the Linux System

 Section 14.3. Backing Up with Samba

 Section 14.4. Backing Up with AMANDA

 Section 14.5. Summary

 Chapter 15. Managing a Network with Linux

 Section 15.1. Delivering IP Addresses with DHCP

 Section 15.2. Delivering Names with DNS

 Section 15.3. Keeping Clocks Synchronized with NTP

 Section 15.4. Summary

 Part VI: Appendixes

 Appendix A. Configuring PAM

 Section A.1. PAM Principles

 Section A.2. The PAM Configuration File Format

 Section A.3. PAM Modules

 Section A.4. Sample PAM Configurations

 Section A.5. Summary

 Appendix B. Linux on the Desktop

 Section B.1. Linux Desktop Applications for All Occasions

http://lib.ommolketab.ir

 Section B.2. Configuring Applications and Environments

 Section B.3. Running Windows Programs in Linux

 Section B.4. File and Filesystem Compatibility

 Section B.5. Font Handling

 Section B.6. Summary

 Colophon

 Index

http://lib.ommolketab.ir

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Linux series designations, Linux in a Windows World, images of the American
West, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://safari.oreilly.com
http://lib.ommolketab.ir

Dedication
This book is for Theo.

May his Apatosaurs, Dilophosaurs, and Gigantosaurs forever be his friends.

http://lib.ommolketab.ir

Preface
Hardly a day goes by when Linux doesn't make the news. Judging by the buzz, you might think that
Linux is poised for world dominationthe stated goal for Linux in a now-famous quip by its creator,
Linus Torvalds. In truth, Linux still faces numerous challenges before it can dominate the computing
world, much less the world at large. One of these challenges is the huge installed base of Microsoft
Windows systems. As a practical matter, Linux must coexist with these systems. Indeed, the
challenge of coexisting with Windows can be viewed as an opportunity: Linux can be integrated into a
Windows network, providing a reliable and low-cost platform on which to run vital services for
Windows systems, or even serving as a workstation on an otherwise Windows-dominated network.

This book is dedicated to describing this opportunity for Linux. If you're reading this Preface, chances
are you work with a Windows-dominated network but know something about Linux and wonder how
you can best use Linux to improve your Windows network. In broad strokes, you can replace
Windows servers, supplement Windows servers with Linux servers, use Linux to implement new
services you don't currently run, deploy Linux-based thin clients, or migrate some or all of your
Windows desktop systems to Linux. This book provides guidance about how to accomplish these
tasks, with an emphasis on Linux in the role of network server operating system (OS).

This book will help you reduce costs and improve reliability by describing how several common Linux
programs and protocolsSamba, OpenLDAP, VNC, BIND, and so oncan be integrated into a Windows
network. This book provides enough information to get any of these programs up and running,
provided you've already got a working Linux system. Of course, a book of this size can't cover every
detail; if you need to do very complex things, you'll need to consult other books or documentation.
The relevant chapters provide pointers.

http://lib.ommolketab.ir

Audience

I've written this book with an administrator of a Windows network in mind, but with the assumption
that you know the basics of Linux system administration. You might be uncertain of the details as to
where Linux might fit into your network or how to get started configuring particular Linux server
programs. That's where this book can help: it introduces the most cost-effective ways to add Linux to
your network and describes the basics of how to get started configuring specific servers.

If you're not already familiar with basic Linux system administration, you should consult a book on
the topic, such as Running Linux (O'Reilly) or Linux System Administration (Sybex). Such books will
help you with tasks ranging from installing Linux to recompiling your kernel.

You should be familiar with networking basics. Although I sometimes provide brief overviews of
important prerequisite knowledge, this book doesn't dwell on the details of the TCP/IP stack or how
best to lay out a network. Likewise, knowledge of your own network is vital; you shouldn't start
adding servers to a network you don't understand. Perhaps you have little idea of how you want to
deploy Linux, or perhaps you've got specific plans. If the former, reading the first couple of chapters
of this book will give you a better idea of how Linux can be used. If you have well-formed plans, you
can skip ahead to more relevant chapters, although reading the first couple of chapters may help you
verify (or not verify) that your plans are reasonable.

http://lib.ommolketab.ir

Contents of This Book

This book is organized in five parts, plus two appendixes. If you want a good general grounding in
how Linux can be deployed on a network, you can read this book cover to cover; however, most
chapters are self-contained enough to be useful on their own. There are a few exceptions to this rule,
though. As already noted, if you're not sure how to deploy Linux, you should read Part I for some
basic tips. Chapter 4 (on Samba share definitions) depends on Chapter 3, so you should probably
read those two sequentially. Likewise, the remaining chapters in Part II depend on Chapter 3. If you
intend to use a remote authentication database from Linux rather than deploy Linux solely as the
repository for such a database, you should read Appendix A with any of the chapters of Part III.
Kerberos depends on all the systems having matching clocks, so you should read the NTP section of
Chapter 15 in conjunction with Chapter 9. Some backup strategies described in Chapter 14 depend
on Samba information, particularly as described in Chapter 3 and Chapter 4. These interdependencies
are pointed out in the chapters themselves.

Part I

This part of the book provides an overview of how Linux can be used to improve an otherwise
Windows-dominated network. It consists of two chapters that describe Linux's features and
provide an overview of strategies for deploying Linux. This material is targeted at readers who
have the least experience with Linux or who aren't sure precisely how Linux can help them.

Part II

This part of the book describes Samba, a file- and printer-sharing server package that is
arguably the most important Windows integration tool available for Linux. Samba implements
the Server Message Block/Common Internet File System protocol, which has long been the
backbone of file and printer sharing in the Windows world. A Linux system running the Samba
suite can fit right in, delivering files or making printers accessible to Windows systems. This
part's four chapters describe basic Samba configuration, creating file and printer shares, using
Samba as a domain controller, and using Linux's SMB/CIFS client features.

Part III

Many networks employ centralized authentication tools that enable you to maintain a single
account database for all the clients and servers on your network. If you wish to use Linux on a
network that already runs such a system, you should know how to get Linux working with it.
You can also use Linux to manage accounts for Windows systems. This part of the book
describes three such systems: Windows NT domains, the Lightweight Directory Access Protocol,
and Kerberos.

http://lib.ommolketab.ir

Part IV

One of Linux's strengths has always been its support for remote login protocolsthe ability to
use Linux from remote locations. This support is handy both for system administration
(simplifying your life should a server need support while you're not physically present) and for
regular users who remotely access Linux or wish to use Linux to remotely access other
systems. This part of the book includes three chapters that describe text-mode remote access
protocols, GUI remote-access protocols, and use of Linux in a thin-client configuration (that is,
using a minimal OS on a simple computer to run programs on a more powerful central login
computer).

Part V

This part of the book describes several miscellaneous server programs. Chapter 13 describes
mail server programs that enable Linux to function as a network's primary mail server or as a
supplementary system to filter mail or retrieve mail from outside sites and forward it to
another computer. Chapter 14 describes network backups. Linux can be a good platform for
this task because its backup software packages are inexpensive (most are free), and some of
Linux's other tools (such as Samba) provide several opportunities for backing up Windows
systems. Chapter 15 describes three other protocols and their servers: the Dynamic Host
Configuration Protocol for remotely configuring client computer's network stacks, the Domain
Name System for managing hostname-to-IP-address mappings, and the Network Time Protocol
for keeping clocks synchronized.

Part VI

Two appendixes describe some additional miscellaneous topics. Appendix A covers the
Pluggable Authentication Module approach to Linux authentication. Knowing how to modify a
PAM configuration is vital if Linux is to coexist with a network's centralized authentication tools,
as covered in Part III of the book. Appendix B covers the basics of deploying Linux on the
desktop. If you decide to replace Windows desktop systems with Linux systems, Appendix B
provides help to get this job done.

http://lib.ommolketab.ir

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, macros, the contents
of files, or the output from commands.

Constant width bold

Indicates commands or other text that should be typed literally by the user.

Constant width italic

Indicates text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

http://lib.ommolketab.ir

This icon indicates a warning or caution.

http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You don't need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Linux in a Windows World by Roderick W. Smith. Copyright 2005
O'Reilly Media, Inc., 0-596-00758-2."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

http://lib.ommolketab.ir

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There's a web page for this book that lists errata, examples, and any additional information. You can
access this page at:

http://www.oreilly.com/catalog/linuxwinworld

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/linuxwinworld
http://www.oreilly.com
http://lib.ommolketab.ir

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
it means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir

Acknowledgments

Published books aren't the creation of just one person; they're collaborative efforts, although the
person identified as the author is the most visible of this team. For this book, I'd like to thank O'Reilly
editors Andy Oram, who got the ball rolling, and David Brickner, who saw the project through to the
end. Technical reviewers for this book were Gerald Carter, Steve Suehring, Alan Schwartz, and Curtis
Preston; these people kept me from making technical blundersbut if any remain, they're my own.
Mary Anne Weeks Mayo provided copy editing, to keep my prose not just technically accurate, but
readable. The book's proofreader, Marlowe Shaeffer, guarded against typos and similar problems.
Finally, I'd like to thank Neil Salkind and others at Studio-B, who helped get things started and
provided the occasional necessary prod to keep them moving.

http://lib.ommolketab.ir

Part I: Linux's Place in a Windows Network
The fact that you're reading this book suggests that you want to use Linux on a Windows-
dominated network. Most of this book is devoted to specific ways in which you can accomplish
this goalconfiguring a Samba server, using a Linux backup server, or migrating desktop systems
to Linux, for instance. To begin, though, this book provides some context. Chapter 1 covers
Linux's featureswhere you can use it in a network, what types of hardware and software you
need, and how it compares to Windows. Chapter 2 continues this examination by looking at
some broad strategies you can adopt when introducing Linux on an existing Windows network.

http://lib.ommolketab.ir

Chapter 1. Linux's Features
Linux can be an effective addition to a Windows network for several reasons, most of which boil down
to cost. Windows has achieved dominance, in part, by being less expensive than competitors from
the 1990s, but today Linux can be less expensive to own and operate. This is particularly true if
you're running Windows NT 4.0, which has reached end-of-life and is no longer supported. (Windows
2000 will soon fall into this category, as well.) For these old versions of Windows, you're faced with
the prospect of paying to upgrade to a newer version of Windows or switch to another operating
system. Linux can be that other OS, but you should know something about Linux's features and
capabilities before you deploy it.

Effectively deploying Linux requires understanding the OS's capabilities and where it makes the most
sense to use. This chapter begins with a look at the Linux roles that this book describes in
subsequent chapters. The bulk of this chapter is devoted to an overview of Linux's capabilities and
requirements when used as a server or as a desktop system. Because you may be considering
replacing Windows systems with Linux, this chapter concludes with a comparison of Linux to Windows
in these two roles.

http://lib.ommolketab.ir

1.1. Where Linux Fits in a Network

Most operating systemsand Linux is no exception to this rulecan be used in a variety of ways. You
can run Linux (or Windows, or Mac OS, or most other common general-purposes OSs) on personal
productivity desktop systems, on mail server computers, on routers, and so on. This book doesn't
cover every possible use of Linux; instead, it focuses on how Linux interacts with Windows systems
on a local area network (LAN) or how Linux can take over traditional Windows duties. This book will
further focus on areas in which you can get the most "bang for the buck" by deploying Linux, either
in addition to or instead of Windows systems. Chapter 2 covers Linux deployment strategies in
greater detail, but, for now, consider Figure 1-1, which depicts a typical office network. Linux's
mascot is a penguin (known as Tux), so Figure 1-1 uses penguin images to mark the areas of Linux
deployment covered in this book.

Figure 1-1. The uses for Linux described in this book

Of course, Linux can be used in roles not shown in Figure 1-1. In fact, Linux can be an excellent
choice for an OS for such roles as a web server; however, because such uses aren't LAN-centric or
don't tie closely to Windows, this book doesn't cover them. You might want to begin with just one or
two functions for Linux on your network, such as a file server or a Dynamic Host Configuration
Protocol (DHCP) server. Some systems, such as backend database servers, may be so vital and data-
intensive that replacing them with Linux systems, although possible, is a major undertaking that
can't be adequately covered here.

http://lib.ommolketab.ir

1.2. Linux as a Server

Traditionally, Linux's strength has been as a server OS. Many businesses rely upon Linux to handle
email, share files and printers, assign IP addresses, and so on. Linux provides a plethora of open
source programs to handle each of these server tasks, and many more. Before you attempt to deploy
a Linux server, though, you should understand Linux's strengths and weaknesses in this role, what
type of hardware you're likely to need, and what types of software you'll need.

1.2.1. Linux Server Capabilities

As seen in Figure 1-1, Linux can be deployed in many different ways. Indeed, Figure 1-1 presents an
incomplete picture because it focuses on only those roles described in this book. Linux firewalls, web
servers, databases, and more are all available. Still, Linux has certain strengths and weaknesses as a
server that you should understand as you plan where to use it. Linux's greatest strengths as a server
include the following:

Reliability

Linux has earned a reputation as a very reliable OS, which, of course, is a critically important
characteristic for servers.

Cost

You can download Linux from the Internet at no cost (aside from connect charges), which can
be important in keeping costs down. Of course, the up-front purchase price (or lack of it) is
only part of the equation; support costs, hardware costs, and other factors can be much more
important. Linux's total cost of ownership (TCO) is a matter of some debate, but most studies
give Linux high marks in this area.

License issues

The Linux kernel is licensed under the GNU General Public License (GPL), and much of the rest
of Linux uses the same license. Most other Linux programs use other open source licenses. The
result is that you're not bound by restrictive commercial license terms; as a user or
administrator, you can do anything with Linux that you can do with a commercial OS, and then
some. If you want to redistribute changes to a program, though, some open source licenses
impose restrictions, so you should check the license to see how you're permitted to distribute
the changes. (Of course, most commercial OSs don't even let you see the source code!)

http://lib.ommolketab.ir

Security issues

Linux isn't vulnerable to the worms and viruses that plague the Internet today; almost all of
these pests target Windows systems. Of course, a Linux server can still be inconvenienced by
worms and viruses because it may need to process them in some way; a Linux mail server may
still need to accept email with worms and perhaps then identify and delete the worm. Linux
won't be infected by the worm, thoughat least, not by any worm that's known to be spreading
as I write.

Server software selection

As a Unix-like OS, Linux has inherited many popular Unix servers, such as sendmail and
Samba. In fact, some of these, including Samba, were written using Linux as a primary target
OS.

Remote administration

Linux provides several remote administration methods, ranging from remote logins using text-
mode tools such as Secure Shell (SSH) or Telnet to tools designed for remote administration
via web browsers, such as Webmin (http://www.webmin.com). Of course, remote
administration isn't unique to Linux, but Linux presents more options than do most non-Unix
OSs.

Resource use

With Linux, you have fine control over what programs you run, which enables you to trim a
system of unnecessary items to help get the most out of your hardware. For instance, most
servers don't need to run a local GUI, so Linux enables you to run a system without one, and
even to omit the X files and programs from the hard disk.

Customization

In addition to customizing the system to minimize resource use, you can modify Linux to
achieve other ends. For instance, you can recompile the kernel to add or omit features that
help the system operate as a router, or you can alter the startup sequence to accommodate
special needs. Taken to the extreme, these features help those who run Linux on specialized
embedded devices, but such uses are well beyond the scope of this book.

Hardware flexibility

Linux is available on a variety of hardware, ranging from specialized embedded versions of
Linux to supercomputers. This book is designed to help those running Linux on fairly traditional

http://www.webmin.com
http://lib.ommolketab.ir

small- to mid-sized servers and desktop systems using conventional Intel Architecture 32 (IA-
32; a.k.a. x86) hardware or other hardware of comparable power. Even in this realm, Linux is
very flexible; you can run it on AMD64, PowerPC (PPC), Alpha, and other CPUs, which lets you
standardize your OS even if you happen to have different hardware platforms.

Most of these advantages are advantages of Unix-like OSs generally, and so
apply to other OSs, such as Solaris and FreeBSD. Compared to such OSs,
Linux's greatest strengths are its hardware flexibility, open source licensing,
and low cost (although several other low-cost and open-source Unix-like OSs
exist).

Of course, no good thing is without its problems, and Linux is no exception to this rule. Fortunately,
Linux's problems are minor, particularly when the OS is used on a server:

Administrative expertise requirements

Linux requires more in the way of administrative expertise than do some alternatives. For most
organizations, this factor ultimately boils down to one of the variables in TCO calculations:
Linux administrators are likely to demand higher salaries than Windows administrators do. On
the other hand, Linux's reliability, scalability, and other factors frequently more than
compensate for this problem in the TCO equation.

Security issues

Although immunity to infection by common Windows worms and viruses is a Linux advantage,
Linux has its own security drawbacks. Crackers frequently attempt to break into Linux servers,
and they sometimes succeed. In theory, this should be difficult to do with a well-administered
system, but neglecting a single package upgrade or making some other minor mistake can
leave you vulnerable. Of course, Linux isn't alone in this drawback, but it's one to which you
should be alert at all times.

The term hacker is used by the popular media to refer to computer
miscreantsthose who break into computers and otherwise wreak havoc. This
term has an older and honorable meaning as referring to skilled and
enthusiastic computer experts, and particularly programmers. Many of the
people who wrote the Linux kernel and the software that runs on it consider
themselves hackers in this positive sense. For this reason, I use an alternative
term, cracker, to refer to computer criminals.

Overall, Linux's strengths as a server far outweigh its weaknesses. The OS's robustness and the
number of server programs it runs are powerful arguments in its favor. Indeed, those are the
reasons commercial Unix variants have traditionally run many important network services. Linux has
been slowly eroding the commercial Unix market share, and its advantages can help you fill the gaps
in a Windows-dominated network or even replace existing Windows servers.

http://lib.ommolketab.ir

1.2.2. Typical Linux Server Hardware

As noted earlier, one of Linux's strengths is that it runs on a very wide range of hardware. Of course,
this isn't to say that you can use any hardware for any particular role; Linux won't turn a 10-year-old
80486 system with a 1-GB hard disk into a powerhouse capable of delivering files to thousands of
users.

Linux most commonly runs on IA-32 hardware, and much Linux documentation, including this book,
frequently presents IA-32 examples. IA-32 hardware is inexpensive, and it's the original and best-
supported hardware platform for Linux. Still, other options are available, and some of these are well
worth considering for a Linux server.

One of the problems with IA-32 is that it's a 32-bit platform. Among other things, this means that IA-
32 CPUs are limited to addressing 232 bytes, or 4 GB, of RAM. (Intel Xeon processors provide a
workaround that involves page swapping, or hiding parts of memory to keep the total available to the
CPU at just 4 GB.) Although a 4-GB memory limit isn't a serious problem for many purposes, some
high-powered serversparticularly those that support many user loginsneed more RAM. For them,
using a 64-bit CPU is desirable. Such CPUs can address 264, or 1.8x1019, bytes of RAM, at least in
theory. (In practice, many impose lower limits at the moment, but those limits are still usually in the
terabyte range.

Several 64-bit CPUs are available, including the DEC (now Compaq) Alpha, several AMD and Intel
CPUs that use the AMD64 architecture, Intel's IA-64 Itanium, the IBM Power64 (the first of which is
the PowerPC G5), and the SPARC-64. Of these, the Power64 and AMD64 platforms are likely to
become more common in the next few years. With AMD and Intel both producing AMD64 CPUs, they
are likely to take over the market dominated by IA-32 CPUs through most of the 1990s and early
2000s. Apple is rapidly shifting its Macintosh line to the Power64, and IBM and a few others are
producing Power64-based servers. Of course, if you already have another type of 64-bit system, or
you have an opportunity to get one at a good price, you can run Linux on it quite well. Linux support
for the AMD64 and Power64 platforms is likely to be more mature than for other 64-bit platforms,
though.

Of course, not all servers need 64-bit CPUs. For them, IA-32 CPUs, such as Intel's Pentium 4 or
AMD's Athlon, are perfectly adequate. In fact, many systems can make do with much weaker CPUs. A
DHCP server can run quite well on an old 80386, for instance. Just how much CPU power you need
depends on the function of the server. Functions such as handling thin-client or other remote logins,
converting PostScript into non-PostScript printer formats (particularly for multiple heavily used
printers), and handling hundreds or thousands of clients, are likely to require lots of CPU power.
Lighter duties, such as running a DHCP server, a local Domain Name System (DNS) server, or even a
remote login server for a network with a dozen or so computers, requires much less in the way of
CPU power. For such purposes, you can probably run Linux on a spare or retired computer. Even a
system that's too weak to run a modern version of Windows can make a good small server.

Disk space requirements also vary with the server's intended role. Most obviously, a file server is
likely to require lots of disk space. Precisely what "lots" is, though, depends on how many users you
have and what types of files they store. Disk-intensive servers frequently use Small Computer
Systems Interface (SCSI) hard disks rather than Advanced Technology Attachment (ATA) disks,
because SCSI disks scale better in multidisk setups and because disk manufacturers often offer
higher-performance disks in SCSI form only. SCSI disks cost more than do ATA disks, though. You'll
have to judge for yourself whether your budget permits the use of SCSI disks. Recently, Serial ATA

http://lib.ommolketab.ir

(SATA) disks have started to emerge as an alternative to traditional parallel ATA disks and SCSI.
Depending on the drivers, SATA disks may appear to be SCSI disks in Linux, but they aren't.

Although servers can vary greatly in their major hardware components and needs, network
connectivity is a common factor. All servers require good network links. On a LAN, this most
commonly means 100- or 1000-Mbps (1-Gbps, or gigabit) Ethernet. Linux ships with excellent
Ethernet support; chances are any Ethernet adapter will work. Modern motherboards frequently
come with built-in Ethernet, too. Of course, not all Ethernet adapters are created equal: some are
more stable, produce better throughput, or consume less CPU time. As a general rule, Ethernet
adapters from major manufacturers, such as Intel, 3Com, and Linksys, are likely to perform best.
No-name bargain-basement Ethernet cards will almost certainly work, but they may give more
problems or perform less well under heavy network loads.

Most servers have similar video display capabilities. In this case, though, servers' needs are
unusually light; because a server's primary duty is to deliver data over a network, a high-end
graphics card is not a requirement. You might want something that's at least minimally supported by
Linux (or by a Linux X server, to be precise) so you can administer the computer at the console using
GUI administration tools; however, this isn't a requirement.

1.2.3. Typical Linux Server Software

When deciding how to deploy Linux on a LAN, you must consider what hardware and software to use.
Linux isn't a monolithic beast you can decide to install and be done with; you must make choices
about your Linux installation. These choices begin with your decision about a Linux distributiona
collection of software and configuration files that's bundled together with an installation program.
Some distributions are better suited than others to use on a server, although with enough extra
effort, you can use just about any Linux distribution on a server computer. Beyond the distribution,
you must pick individual server programs. These choices are very specific for the purpose of the
computer. For instance, if you run a mail server computer, you need to decide which mail server
program to run, and this decision can have important consequences for everything else you do on the
computer. Such a decision is likely to be relatively unimportant on other types of server computers.

The term server can have multiple meanings; it can refer to either an individual
program that delivers network services or to the computer on which that
program runs. (A similar dual meaning applies to the word client on the other
end of the connection.) In most cases, the meaning is obvious from the
context, but when necessary, I clarify by explicitly specifying a server computer
or program. Some people use the term service to refer to server programs or
to the features that they provide.

1.2.3.1 Picking a distribution for server use

Your choice of distribution depends partly on your choice of hardware platform. Some distributions,
such as Debian GNU/Linux, are available on a wide range of CPU architectures, whereas others, such
as Slackware Linux, are available for just one CPU. If you're already familiar with a distribution, and
you want to use it for your server, you may want to plan your hardware purchases around this fact.
If you already have the hardware, though, or if you're constrained to use a particular platform for
policy or budget reasons, you may need to narrow the range of your hardware choices. Broadly

http://lib.ommolketab.ir

speaking, the IA-32 platform has the most choices for distributions, although a few distributions run
only on other platforms. The most popular Linux distributions used on servers include the following:

CentOS

This distribution, headquartered at http://freshmeat.net/projects/centos/, is a community-
based fork of Red Hat's Enterprise Linux. As such, it's technically very similar to Red Hat, but
support details are quite different.

Debian

This distribution is one of the few completely noncommercial distributions; it's maintained
entirely by volunteers. It uses the Debian package format and is well-respected for its stable
main ("stable") branch. This branch is on a very long release cycle, though, so it sometimes
lags when major new versions of component packages are released. (Bug-fix and security
updates are prompt, however.) Debian's "unstable" branch is much more up to date, but it's
not as well-tested as the reliable main "stable" branch. Keeping up to date is fairly simple
because of Debian's Advanced Package Tools (APT) package, which enables software updates
over the Internet by typing a couple of commands. Because Debian doesn't sell official
packages with support, obtaining outside support requires you to hire an independent
consultant. To configure Debian, you normally edit text-mode configuration files in a text editor
rather than use a GUI configuration tool. Overall, Debian is a good choice for servers, which
usually must be stable above all else. Debian is available for an unusually wide range of CPUs,
including IA-32, SPARC, PowerPC, Alpha, IA-64, and several other platforms. To learn more,
check Debian's web site, http://www.debian.org.

Fedora Core

This distribution is the freely redistributable version of Red Hat. Its development cycle is faster
than that of the official Red Hat releases, and part of Fedora's purpose is to serve as a test bed
for new packages that will eventually work their way into Red Hat. Fedora can be a good choice
if you like Red Hat, don't have a lot of money to spend on a commercial distribution, and don't
mind doing without the official Red Hat support. Fedora Core is available for IA-32 and AMD64
CPUs; you can find it at http://fedora.redhat.com.

Gentoo

Like Debian, Gentoo is maintained by volunteers. This distribution emphasizes building
packages from source code; its package manager, known as portage, enables you to type a
one-line command that downloads the source code and patches, compiles the software, and
installs it. (This system is similar to the ports system of FreeBSD.) Portage can be a good way
to tweak compiler settings for your CPU, installed libraries, and so on, but the time spent
compiling packages can be a drawback. Also, if you maintain many systems with differing
hardware, you may have trouble cloning a system, because the optimizations used on your

http://freshmeat.net/projects/centos/
http://www.debian.org
http://fedora.redhat.com
http://lib.ommolketab.ir

original system may not work on other systems. One advantage of Gentoo is that it's easy to
keep up to date with the latest packages, but you can make your system unstable if the latest
version of an important package breaks other programs. Like Debian, Gentoo eschews GUI
configuration tools in favor of raw text-mode configuration file editing. Gentoo is available for
IA-32, AMD64, SPARC, and PowerPC CPUs. You can learn more at http://www.gentoo.org.

Red Hat

Red Hat is probably the most popular distribution in North America, particularly if you include
its Fedora variant. This distribution originated the RPM Package Manager (RPM) package
format. Even many programs that don't ship with Red Hat are available in IA-32 and source
RPM packages, which makes software installation easy. Many third-party programs are
released with Red Hat in mind, making Red Hat a safe bet for running such programs. With the
release of Fedora 1, Red Hat has been focused its main product line (Red Hat Enterprise) on
the business market, especially servers, although it can certainly be used on desktops. The
main selling point of Red Hat Enterprise is its support, including system updates and
maintenance via the Red Hat Network. These include GUI update tools that can grab updates
over the Internet. Red Hat ships with a number of Red Hat-specific GUI configuration tools, but
they're often limited enough that you'll need to bypass them and edit configuration files by
hand. IA-32 is the primary Red Hat platform, although some versions are available for AMD64,
Itanium, and certain IBM servers. Some older versions ran on SPARC and Alpha CPUs, but
these versions are very outdated. The official Red Hat web site is http://www.redhat.com.

Slackware

Slackware is the oldest of the common Linux distributions. It uses tarballs as its package
distribution format and eschews GUI configuration tools. Slackware ships with fewer packages
than most Linux distributions; to install more exotic programs, you may need to compile them
from source. Slackware may be a good choice if you're used to "old-style" Unix system
administration, but if you're relatively new to Linux, you may want to pick something else.
Slackware is available only on the IA-32 platform. You can learn more at
http://www.slackware.com.

SuSE

This distribution is RPM-based but isn't derived from Red Hat directly. It's a good choice for
both server and desktop use, and it includes a GUI administration tool called YaST. You can
update packages over the Internet with this tool, as well as administer the local system. SuSE
is primarily an IA-32 and AMD64 distribution, although an older PowerPC release is also
available. Check http://www.suse.com for more information. SuSE was originally an
independent German company, but it was purchased by Novell in early 2004.

Ultimately, any of these distributions (or various other less popular ones) can be configured to work
equally well, assuming you're using IA-32 hardware. You may be better able to get along with a
particular distribution depending on your system administration style and particular needs, though. If
you like to tweak your system to get the very best possible performance, Gentoo's local-build
approach may be appealing. If you like GUI configuration tools for handling the simple tasks, Red Hat

http://www.gentoo.org
http://www.redhat.com
http://www.slackware.com
http://www.suse.com
http://lib.ommolketab.ir

or SuSE should work well. For an extremely stable system, Debian is hard to beat. If your hardware
is old, consider Debian or Slackware, which tend to install less extraneous software than the others.
If you want to use the most popular distribution, look at Red Hat. If the package management tool is
important, pick a distribution that uses the tool you like.

Although the Linux kernel and most Linux tools are open source, some distributions include small
amounts of proprietary software. This inclusion makes redistribution of the OS illegal. For this reason,
you should check license terms before doing so or before installing it on many systems. Most
distributions are freely redistributable, although most of them are available for sale. Buying a full
package helps provide financial support to the distributions, which helps to advance future
development. (Debian and Gentoo are exceptions; no commercial packages of these distributions are
available, although you can buy them on cut-rate CDs that provide little or no profit to the actual
developers. CentOS and Fedora have no for-sale versions, either, unless you count Red Hat in that
role.)

Distribution choice is a highly personal matter. What works well for one administrator may be a poor
choice for another. You may also run into policy issues at your workplace; for instance, you may need
to buy a package from a vendor that offers certain support terms, which might rule out some
distributions. If you haven't used Linux extensively in the past, you should study the options,
focusing on distributions that provide GUI configuration tools you can use to get the basics up and
running quickly. For more experienced administrators, I recommend whatever you've used in the
past, provided you found it satisfactory. If you've used other Unix-like OSs but not Linux, try to find a
Linux distribution with an administrative style similar to what you've used before. You should also try
to minimize the number of Linux distributions you use, ideally to just one; this helps simplify system
administration because you'll have just one set of distribution-specific tools and packages to learn,
and you can retrieve package updates from just one source.

1.2.3.2 Picking individual server programs

Once you've picked and installed a Linux distribution, you'll need to decide what server programs to
use. For most major server classes, most distributions provide a single default choice, such as the
sendmail mail server. It's usually easiest to stick with the default, but if the server in question is the
primary function of the computer, and if the default choice isn't what you'd like to use, you can
change it.

Sometimes the alternative programs work with the same protocol as the default; for instance, the
Postfix, Exim, and qmail servers are all popular alternatives to sendmail. All are implementations of
the Simple Mail Transfer Protocol (SMTP), and you can replace one package with another without
changing the server computer's interactions with other computers. (You usually need to implement
minor or major changes to the server system's local configuration, though, and perhaps replace some
support programs.) Other protocols for which multiple server program implementations are available
in Linux include pull email using the Post Office Protocol (POP) or Internet Message Access Protocol
(IMAP), the File Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP; a.k.a. web server
protocol), the Kerberos authentication protocol, the Remote Frame Buffer (RFB) remote GUI login
protocol, and the DNS protocol. This book covers many, but not all, of these protocols. In some
cases, alternative servers are configured in similar ways, but sometimes configuration is very
different for the various server programs.

Other times, you may need to choose between two incompatible protocols that accomplish similar
tasks. For instance, POP and IMAP are two different ways to deliver email received by an SMTP server
to client systems (that is, users running mail programs such as Outlook Express or KMail). Other

http://lib.ommolketab.ir

examples include RFB and X11R6 for remote GUI access; Telnet and SSH for remote text-mode
access; the Server Message Block/Common Internet File System (SMB/CIFS), Network File System
(NFS), and AppleShare for remote file-sharing protocols; SMB/CIFS, AppleShare, Line Printer
Daemon (LPD), and Common Unix Printing System (CUPS) for printer sharing; SSH and FTP for
remote file transfers; and NetBIOS domain logins, Lightweight Directory Access Protocol (LDAP),
Kerberos, and Network Information Services (NIS) for remote authentication. In all these cases, the
competing protocols have their own advantages and disadvantages. For instance, SSH provides
encryption whereas FTP and Telnet do not. Some protocols are closely associated with particular OSs;
for instance, SMB/CIFS and NetBIOS most commonly are used on Windows-dominated networks,
whereas NFS is used in Unix-to-Unix file sharing and AppleShare is used most often with Mac OS
systems. This book covers many of these protocols, but it focuses on those that are used most
commonly on Windows-dominated networks, or at least that have potential to enhance such
networks.

Chapter 2 describes in greater detail when you're likely to deploy each server covered in this book,
and subsequent chapters describe the protocols and servers themselves.

http://lib.ommolketab.ir

1.3. Linux on the Desktop

Although it's only one system in Figure 1-1 (or two, if you count the thin client), Linux use as a
desktop OS is different enough from Linux server use that it requires its own description. Several
classes of differences are particularly noteworthy.

User interfaces

Generally speaking, desktop systems require better user interface devices (video cards,
monitors, keyboard, and mice) than do servers. Linux usually works well with the same
hardware as Windows systems, but with one caveat: the very latest video cards sometimes
aren't well supported in Linux. Staying a generation or two behind the leading edge is therefore
desirable in Linux.

Disk and network hardware

Many classes of servers require the very best in disk and network hardware, but this is less
often the case for desktop uses. You can often get by with average ATA devices and typical
Ethernet (or other network) hardware. Some desktop systems, though, do need excellent disk
or network hardware. These are typically high-performance systems that run scientific
simulations, specialized engineering software, and so on.

RAM

Desktop systems' needs for powerful CPUs and lots of RAM vary with the application. Generally
speaking, modern GUI environments are RAM-hungry, so you should equip a modern desktop
system with at least 256 MB of RAM, and probably 512 MB or even 1 GB if possible. Linux does
support slimmer environments that can work well in 128 MB or less if necessary, though. Most
desktop applications don't really need powerful 64-bit CPUs, but some programs are written
inefficiently enough that a fast CPU is desirable. Also, certain applications are CPU-intensive.

Peripheral hardware

One of Linux's weakest hardware points as a desktop system is its degree of support for
peripheral hardware that's common on desktop systems but less common on servers, such as
scanners, digital cameras, video input cards, external hard drives, and so on. Drivers for all
major classes of hardware exist, but many specific devices are unsupported. If you're buying or
building a new system, including such peripherals, you can easily work around this problem by
doing a bit of research and buying only compatible devices. If you want to convert existing

http://lib.ommolketab.ir

systems to Linux, though, existing incompatible hardware can drive up the conversion cost.

Linux distributions

The distributions outlined earlier, in Section 1.2.3.1, can all function as desktop distributions.
Others, such as Mandrake and Xandros, are geared more toward desktop use.

Configuration and administration

Configuring and administering a desktop Linux system is much like handling a server system,
but certain details do differ, mostly related to the specific software used to support each role.
You might not even install an SMTP mail server on a desktop system, for instance; instead, you
might install the OpenOffice.org office suite. The kernel, the basic startup procedures, and so
on are likely to be similar for both types of system.

The terms desktop and workstation have similar meanings in the computer
world; both refer to systems that are used by end users to accomplish real-
world use. Typically, workstation refers to slightly more powerful computers, to
those used for scientific or engineering functions as opposed to office
productivity, to systems running Unix or Unix-like OSs as opposed to Windows,
or to those with better network connections. The exact word use differs from
one author to another, though. I use the two words interchangeably, but I use
desktop most frequently.

Traditionally, Linux hasn't been a major player in the workstation arena; however, it does have all
the basic features needed to be used in this way. Over the past few years, Linux's user interface has
been improving rapidly, in large part because of the K Desktop Environment (KDE;
http://www.kde.org) and the GNU Network Object Model Environment (GNOME;
http://www.gnome.org). These are two desktop environments for Linux that provide a GUI desktop
metaphor familiar to users of Windows, Mac OS, OS/2, and other GUI-oriented OSs. These
environments rest atop the X Window System (or X for short) that provides low-level GUI tools such
as support for opening windows and displaying text. Finally, tools such as office suites
(OpenOffice.org, KOffice, GNOME Office, and so on), GUI mail readers, and web browsers make Linux
a productive desktop OS. All these tools, but particularly desktop environments and office suites,
have advanced substantially over the past few years, and today Linux is roughly as easy to use as
Windows, although Linux is less familiar to the average office worker.

Many people think of Linux as a way to save money over using a commercial OS. Although Linux can
indeed help you save money in the long term, you shouldn't blindly believe that Linux will do so,
particularly in the short term. Costs in the switch, such as staff time installing Linux on dozens or
hundreds of computers, retraining, replacing hardware for which no Linux drivers exist, and
converting existing documents to new file formats, can create a net short-term cost to switching to
Linux. In the long term, Linux may save money in license fees and easier long-term administration,
but sometimes Linux's limitations can put a drag on these advantages. You'll need to evaluate Linux
with an eye to how you intend to use it on your network.

Appendix B describes in more detail some of the issues involved in using Linux on the desktop.

http://www.kde.org
http://www.gnome.org
http://lib.ommolketab.ir

http://lib.ommolketab.ir

1.4. Comparing Linux and Windows Features

When deploying Linux, you must consider the overall feature sets of both Linux and its potential
competitors. In an environment that's dominated by Windows, the most relevant comparison is often
to Windows, so that comparison will be described in the rest of this chapter.

Linux shares many of its strengths with other Unix-like OSs, and particularly
with other open source Unix-like OSs, such as FreeBSD. Linux is probably the
most popular and fastest-growing of these OSs because of its dynamic
community and large number of distributions. If you prefer to run, say,
FreeBSD, you certainly may, and much of this book is applicable to such
environments; however, this book does focus on Linux, and it doesn't always
point out where FreeBSD or other Unix-like OSs fit into the picture.

Linux is a powerful operating system, but Microsoft's latest offerings (Windows 2003 and Windows
XP) are also powerful. Important differences between the two OS families include the following:

Cost

Linux itself is low-cost, and this fact can be a big plus; however, the cost of the software is
likely to be a small factor in the overall cost of running a computer. The TCO of Linux versus
Windows is a matter of some debate, but it's likely to be lower for Linux if experienced Linux or
Unix administrators are already available to deal with the system.

GUI orientation

All versions of Windows are largely tied to their GUIs; administering a Windows box without its
GUI is virtually impossible. This linkage can make picking up Windows administration a bit
easier for those unfamiliar with text-mode configuration, but it imposes some overhead on the
computer itself, and it restricts the ways in which the system can be administered. These
limitations are particularly severe for servers, which may not need a flashy GUI to handle mail
or deliver IP addresses, except insofar as the OS itself requires these features. Linux, by
contrast, is not nearly so GUI-oriented. Many distributions do provide GUI tools, but bypassing
those tools to deal with the underlying text-mode configuration files and tools is usually a
simple matter, provided you know where those files and tools are located and how to handle
them.

Hardware requirements

http://lib.ommolketab.ir

In part because of Windows' reliance on its GUI, it requires slightly more powerful hardware
than does an equivalent Linux server. This factor isn't extremely dramatic, though; chances are
you won't be able to replace a 3-GHz Pentium 4 Windows system with a 200-MHz Pentium
Linux system and achieve similar performance. Linux also runs on an extremely broad range of
hardware platformsIA-32, AMD64, PowerPC, Sparc, and so on. On the other hand, in the IA-32
world, the vast majority of hardware comes with Windows drivers, whereas Linux driver
support isn't quite as complete. Linux drivers are available for most, but not all, IA-32
hardware.

Software choices

Both Linux and Windows provide multiple choices for many server software categories, such as
mail servers or FTP servers; however, those choices are different. The best choices depend on
the server type and your specific needs. Much of this book focuses on servers that work very
well for Linux and for which the Windows equivalents have problems of one sort or anothercost,
reliability, flexibility, or something else.

Windows client integration

This issue is really one of server features. Many Windows server programs are designed around
proprietary or semiproprietary Microsoft protocols, or provide extended features that can be
accessed from Microsoft clients. For these functions, Linux servers must necessarily either play
catch-up or use alternative protocols. For instance, the Samba server on Linux does not
provide the full features of a Windows 2000 or 2003 Active Directory (AD) domain controller.
Thus, if you want such features, you must run either the Windows server or find some other
way to implement the features you want.

File compatibility

Because Linux doesn't run the popular Windows programs except under emulators, file format
compatibility may be an issue. This can be a factor when you read your own existing files or
exchange files with other sites (with clients, say). In the office field, OpenOffice.org provides
very good, but not absolutely perfect, Microsoft Office document compatibility. Appendix B
describe this issue in greater detail.

On the whole, Linux makes an excellent choice for many small, mid-sized, and even large servers
that use open protocols. When the server uses proprietary protocols or Microsoft extensions, the
situation may change. Linux can also be a good choice as a desktop OS, particularly if your
organization isn't tied to proprietary Microsoft file formats.

http://lib.ommolketab.ir

1.5. Summary

Linux is a flexible OS that can be deployed in many places on an existing Windows network. Its most
common use is as a server to supplement or replace Windows servers, but you can also run Linux as
a workstation OS. When deploying Linux, you'll have to match the Linux software to the hardware by
selecting an appropriate distribution for your CPU and for the role you intend Linux to play on the
network. You then need to select the server programs or end user applications you wish to run.

http://lib.ommolketab.ir

Chapter 2. Linux Deployment Strategies
Creating a plan for deploying Linux can make the difference between success and failure in that
endeavor. Although it's possible to simply drop one or two isolated Linux boxes onto a network and
have them work correctly, integration with other systemsparticularly Windows computersrequires
careful planning. You need to select particular server programs to use on the Linux computer that
interact with the clients in the way you intend, so as not to disrupt existing servers. In the case of a
desktop migration, careful planning and testing is in order. The problem in this case isn't so much the
technical challenges of configuring a single system, but the difficulties involved in ensuring that all
your existing files are accessible and that all your users are comfortable with the new systems.
Finally, thin client deployment poses its own challenges. Knowing when to use thin clients, and how
Linux can fit into a thin client strategy, will help you plan and implement such a plan.

One of the most fundamental aspects of deploying Linux is installing the OS.
This book doesn't provide a chapter on Linux installation, both because the task
varies substantially from one distribution to another and because I presume
you don't need that level of detail. If you're completely new to Linux, you
should probably buy a more introductory book, ideally one targeted at the
distribution you've chosen. At a minimum, you should consult the
documentation that came with your distribution for help on how to install it.

http://lib.ommolketab.ir

2.1. Linux Server Options

Chapter 1 described Linux's features as a server OS in broad strokes, including information on
common server distributions and pointers to a few specific server programs. This chapter continues
this examination with a closer look at the types of servers covered in this book. This information isn't
enough to get the server programs up and running, though; for that, you should consult the relevant
chapters of this book. Rather, these descriptions are intended to help you decide precisely what
servers you should runwhether to use NetBIOS domains or Kerberos for authentication, for instance.

2.1.1. Linux File and Print Servers

One very popular role for Linux servers on Windows-dominated networks is as file and print servers.
These computers can store users' files and Windows programs, and make printers available to all
users in an area. Some server programs handle both file and print services, but others perform just
one role. Common file server protocols on Linux include:

NFS

The Network File Server is a popular file server for Unix-to-Unix file sharing. It provides Unix-
style file metadata, such as ownership and permissions, so it's very well suited to file sharing
between Linux systems or between Linux and other Unix-like OSs. NFS is not, however, ideal
for file sharing with Windows clients; NFS client software for Windows isn't common, and NFS
lacks support for some Windows filesystem features, such as system and hidden bits. For this
reason, this book doesn't describe configuring Linux as an NFS server or running NFS clients on
Windows.

AppleShare

This protocol is a common one on Macintosh networks, particularly those with systems that run
the older Mac OS Classic (that is, Mac OS prior to Mac OS X). Sometimes referred to as
AppleTalk, which is the lower-level protocol upon which AppleShare relies, this protocol
provides features required by Mac OS but not used by other OSs. This protocol isn't common
on Windows-only networks. You might want to run it to support Mac OS clients, but it's not
described in this book. Two AppleShare servers are common on Linux: Netatalk
(http://netatalk.sourceforge.net) and the Columbia AppleTalk Package (CAP;
http://www.cs.mu.oz.au/appletalk/cap.html).

NCP

http://netatalk.sourceforge.net
http://www.cs.mu.oz.au/appletalk/cap.html
http://lib.ommolketab.ir

The NetWare Core Protocol is a file- and printer-sharing protocol traditionally used by Novell's
NetWare product. It's a server OS that delivers files to DOS, Windows, and other clients. As
such, it is, in principle, a good candidate for a protocol to run on a Windows-dominated
network; however, Linux's NCP server software, MARS_NWE (http://www.compu-
art.de/mars_nwe/), has never been enthusiastically embraced. For this reason, I don't describe
it in this book and instead focus on SMB/CIFS.

SMB/CIFS

The Server Message Block/Common Internet File System is the most popular file- and printer-
sharing protocol in the Windows world. In Linux, it's implemented by the Samba server
(http://www.samba.org). SMB/CIFS provides the filesystem features used by Windows, so
Linux servers must find a way to implement them, and Samba provides numerous options to
do so. Because of its popularity on Windows networks, this book devotes all of Part II to
Samba.

AppleTalk, NCP, and SMB/CIFS all provide printer sharing as well as file sharing; however, NFS is a
file sharing system only. To provide printer sharing among themselves, Unix systems typically use
another protocol. These protocols are also used for local printing: programs submit print jobs locally
to the same server that accepts remote print jobs. The most common tools for the job are as follows:

LPD

The Line Printer Daemon is both the name of a server and the protocol it implements. This has
been the most common network printer sharing protocol in the Unix and Linux worlds for a
long time. Until recently, Linux systems have used LPD as the default local printing queue, as
well. Two LPD server implementations are common in Linux: the original Berkeley Standard
Distribution (BSD) LPD and the next-generation LPRng (http://www.lprng.com).

IPP

The Internet Printing Protocol is implemented most often by the Common Unix Printing System.
This protocol was designed to simplify network printer sharing configuration by supporting
auto-detection of local printers. It also features mechanisms to deliver information about
printers to applications so that they can set margins appropriately, give users the option of
activating duplexers and other advanced features, and so on. Most major Linux distributions
now use CUPS as their default printing systems. Although IPP is seldom used directly by
Windows, Chapter 4 describes some basics of CUPS configuration in support of sharing printers
with Windows systems via Samba.

A non-Unix printing system

You can use a non-Unix printing system, such as AppleShare, NCP, or SMB/CIFS, to share
printers between Linux systems. This approach can sometimes be convenient if you've shared
a printer using one of these systems and want to make the printer available to other Linux

http://www.compu-
http://www.samba.org
http://www.lprng.com
http://lib.ommolketab.ir

systems. If you use CUPS, sharing between the Linux systems should be simpler.

Because of the dominant role of SMB/CIFS in Windows file and printer sharing, this book strongly
emphasizes the use of Samba as a file and printer sharing tool for Windows networks. Configuring a
basic Samba server requires adjusting just a few configuration options, but the server provides
numerous options that enable you to fine-tune the configuration and define file and printer shares for
all occasions.

2.1.2. Linux Authentication Servers

Maintaining local account databases can quickly become a major hassle when more than a handful of
computers are involved, particularly when users frequently move between computers (as in a
university's computing center). Part Vof this book is devoted to authentication serversservers that tell
other computers whether a user has entered a valid username and password (or otherwise provided
valid authentication credentials). By localizing the authentication process to just one computer (or
conceivably a master computer and a small number of backups), account maintenance can be greatly
simplified. Several authentication systems are in common use:

NIS and NIS+

Network Information Services and its variant, NIS+, have been the traditional Unix methods of
providing centralized login services. In fact, NIS and NIS+ go beyond this duty, but providing
authentication services has been one of their main purposes. Like LPD, though, NIS and NIS+
are showing their age. They're also not commonly used on Windows networks, so this book
doesn't cover them.

Windows NT domains

The authentication system used by SMB/CIFS can provide network authentication. This system
is built around Windows NT domains, which use a computer known as the domain controller to
authenticate users on behalf of all servers. Configuring Samba to function as a domain
controller is described in Chapter 5, and configuring a Linux system to authenticate accounts
against a domain controller is described in Chapter 7. Note that, when Linux is configured to
use a domain controller for its own accounts, that domain controller can be either a Linux (or
other Unix-like) system running Samba or a Windows NT/200x domain controller.

LDAP

The Lightweight Directory Access Protocol is essentially a type of database. It's often used to
store account information, and when so configured, you can set up clients to access the LDAP
server. Although configuring Windows systems to directly access an LDAP server for
authentication is unusual, it is possible, and LDAP is becoming increasingly common.
Furthermore, LDAP is used as a component in Microsoft's Active Directory authentication
system. For these reasons, Chapter 8 describes LDAP authentication.

http://lib.ommolketab.ir

Kerberos

This tool, named after the underworld's three-headed guard dog from Greek mythology, is a
high-security cross-platform authentication and encryption system. You can configure clients to
use Kerberos for a few protocols or for everything, including local logins. One of the main
advantages of Kerberos is that it supports single-login operation; that is, you enter your
username and password once, and thereafter you don't need to enter them again, even when
you access new servers. For instance, after Kerberos-based local login, you don't need to enter
your password when retrieving your mail from a POP server or logging into a remote system
via Telnet. Kerberos is also a component of Microsoft's AD. Chapter 9 describes this system in
more detail.

Active Directory

If your network already uses AD, chances are it already uses both LDAP and Kerberos
(Kerberos might not be enabled in AD, but it usually is); however, Microsoft's Kerberos
implementation is a bit odd, and AD configuration in Linux is complex. Windows AD servers,
however, can also use the same NT domain protocols Linux systems use. Thus, if you want a
Linux server to authenticate users against an existing AD domain controller, your best bet is to
treat it like an NT domain controller. If you want Linux to take over AD domain controller
duties, you're out of luck, at least as of early 2005. You can migrate the network to another
authentication system, though.

Which authentication system should you use? In most cases, you should stick with whatever you're
using now, unless that system is causing you problems. If you don't currently use a centralized
authentication system but want to implement one, any of these tools should work well. NT domains
are particularly useful if you've got many older Windows 9x/Me systems. LDAP's strength is in
handling large numbers of users and in creating synchronized sets of login servers for redundancy in
case of network problems. Kerberos was designed with security, cross-platform operation, and
single-login operation in mind, but to get the most out of it, you need to use special Kerberized
clients and serversthat is, programs that have been modified to use Kerberos.

2.1.3. Remote Login Servers

Remote login servers, as the name implies, enable you to log into a computer remotely. Broadly
speaking, these servers come in two types: text-mode and GUI. Examples of these servers include:

rlogin

This protocol and server was once a common way to access one Unix system from another in
text mode; however, its security is based on a trusted-hosts model, which means that the
server trusts the security on the client. In today's network environment, this is an unsound
assumption on any but the most private of LANs, and then only when all users can be trusted.
For this reason, rlogin is a poor choice for remote login duties and isn't further described in this

http://lib.ommolketab.ir

book.

Telnet

This protocol and server normally requires authentication by entering a username and
password during the text-mode login process. This is a step up from rlogin, but Telnet (like
rlogin) sends all data, including the password, over the network in an unencrypted form. This
makes Telnet a very risky protocol on any but very well-protected LANs, and it should never be
used over the Internet at large. Nonetheless, Telnet is still fairly common.

SSH

The Secure Shell protocol provides encryption for all data it passes between systems, including
the username, the password, and all other data. This characteristic makes it the preferred
protocol for remote text-mode logins. SSH also supports tunnelling datapassing data through
SSH to create an encrypted connection for a protocol that doesn't normally support encryption.
This ability is most easily accessed for X servers; it enables SSH to function as an encrypted
link for remote GUI logins, thus straddling the line between the text-mode and GUI tools.
Chapter 10 describes SSH in more detail.

The X Window System

Linux's default GUI environment, the X Window System (or X for short) is network-enabled;
you can have a program (an X client) running on one computer and use the X server on
another computer to display a window and accept keyboard and mouse input. One unusual
feature of this arrangement is that it places the server on the computer at which the user is
sitting. This fact can be confusing because most people think of servers as being remote and
powerful computers. This arrangement also creates a chicken-and-egg problem: how do you
tell the remote client to launch a program that uses your local X server as a display? One
answer is to use a text-mode login tool, such as Telnet or SSH, to create an initial connection,
as described in Chapter 11. Another answer is to use a dedicated X login server protocol,
described next.

XDMCP

The X Display Manager Control Protocol is a login protocol for X. An XDMCP server runs on the
X client system and accepts login requests from X servers. Linux uses XDMCP locally to provide
GUI login screens for users, but you can reconfigure the XDMCP server to accept remote logins,
as well. Three XDMCP servers are common in Linux: the original X Display Manager (XDM), the
KDE Display Manager (KDM), and the GNOME Display Manager (GDM). All these tools are
described in Chapter 11.

RFB

http://lib.ommolketab.ir

The Remote Frame Buffer protocol can transfer an entire desktop bitmap over the network wire
and accept back keyboard and mouse inputs. RFB is most commonly implemented in a server
known as Virtual Network Computing (VNC). Under Linux, VNC is implemented as a special X
server that uses a network connection to a VNC client rather than a local display, keyboard,
and mouse for input and output. One consequence of this arrangement is that the VNC
client/server terminology is more intuitive to most people: the VNC client runs on the user's
computer, and the server is the remote system the user wants to access. A conventional Linux
VNC configuration involves the user running a VNC server after making a text-mode connection
in some different capacity, but you can configure VNC in other ways. VNC servers for Windows
are also available, enabling you to log into Windows systems from Linux. Chapter 11 describes
VNC.

As a general rule, SSH is the best choice for text-mode logins because of its security features.
(Kerberos ships with a version of Telnet that encrypts data, though, so the Kerberos Telnet can be a
good choice, too.) You can also use SSH to tunnel an X connection, thus providing encryption for your
X session. When it comes to remote GUI access, both "plain" X and VNC have their advocates. The
two systems send data over the network in different ways, so their performance differs in ways that
depend on the characteristics of the network. As a general rule, VNC performs well when the network
has lots of bandwidth and either high or low latencies. X, by contrast, sends less data and so needs
less bandwidth, but X sends lots of back-and-forth transactions and so works best when network
latencies are low. You should treat these rules of thumb with some skepticism, though; variant
protocols, tunneling X through SSH, and so on can alter both protocols' performance characteristics
radically.

2.1.4. Mail Servers

Mail is an important part of many small networks, as well as on the Internet at large. Broadly
speaking, mail protocols can be classified as push mail protocols, in which the sender initiates the
transfer, or pull mail protocols, in which the recipient initiates the transfer. Several mail protocols
exist, and for each of these, several servers can handle them:

SMTP

The Simple Mail Transfer Protocol is the most common push mail protocol on the Internet. On
Linux, sendmail (http://www.sendmail.org), Postfix (http://www.postfix.org), and Exim
(http://www.exim.org) are the most common SMTP servers to ship with Linux; qmail
(http://www.qmail.org) is also popular. Each is a major server, so to conserve space, this book
describes just two in Chapter 13: sendmail and Postfix. The most popular SMTP server on the
Internet is sendmail, and it's the default with many Linux distributions; however, sendmail is
also tricky to configure for anything but a basic default setup, at least for those who aren't
already sendmail adepts. Postfix was designed as an alternative to sendmail using a modular
design and streamlined configuration process, and distributions have slowly been switching to it
as the default mail server. The default Postfix configuration file is very well-commented, and
Postfix is usually easier for novice mail administrators to configure. Both sendmail and Postfix
can interface with other mail server tools, which can perform virus scanning, spam checking,
and other mail-related services.

http://www.sendmail.org
http://www.postfix.org
http://www.exim.org
http://www.qmail.org
http://lib.ommolketab.ir

IMAP

The Internet Message Access Protocol is a popular way to deliver mail to end users. In a simple
configuration, a mail server computer runs an SMTP server to receive off-site mail and also
runs a POP or IMAP server to deliver mail to end users who run mail clients such as Microsoft's
Outlook or KDE's KMail. IMAP enables users to store mail in folders on the server, which makes
it handy if users want to access their mail from different programs or computers. This feature
can increase the disk requirements of the mail server computer, though. Numerous IMAP
servers for Linux exist, including the University of Washington IMAP (UW-IMAP;
http://www.washington.edu/imap/), Cyrus IMAP (http://asg.web.cmu.edu/cyrus/imapd/),
Courier IMAP (http://www.inter7.com/courierimap/), and Dovecot (http://dovecot.org). Which
one you use depends in part on your SMTP server because the IMAP server must be able to
read the mail stored by the SMTP server. UW-IMAP and Cyrus IMAP both read mail in the
format that's the default for sendmail, Postfix, and Exim. If you use qmail and its maildir
format, or if you reconfigure another SMTP server to use this format, Courier IMAP is a better
choice. Dovecot can handle both formats. IMAP servers are covered in Chapter 13.

POP

The Post Office Protocol is another pull mail server, similar in basic concept to IMAP. POP,
though, provides no means to store mail in folders on the server; typically, the client
downloads all the messages and deletes them from the server. The user then stores messages
locally, if desired. The four IMAP servers just mentioned also support POP. Several others, such
as Qpopper (http://www.eudora.com/qpopper/) and qmail-pop3d (which ships with qmail) are
also available. POP servers are covered in Chapter 13.

2.1.5. Miscellaneous Linux Servers

In addition to file and printer sharing, authentication, remote login protocols, and mail servers, this
book covers several others that are likely to be useful on Windows-dominated networks. These
protocols don't fit into neat categories, but some are extremely important, and, in fact, entire books
have been written about some of them:

Backup software

Various servers can be used for backup purposes. One of these is Samba; you can mount a
shared volume and back it up using local tools or more sophisticated techniques to do so in
other ways. Chapter 14 covers this topic, as well as a more specialized backup utility, the
Advanced Maryland Automatic Network Disk Archiver (AMANDA; http://www.amanda.org).
AMANDA's strength is in scheduling automated backups of many systems on a network, which
can be a great boon if you need to automate the backup of a whole network. Commercial
products, such as Veritas Netbackup (http://www.veritas.com) and Legato
(http://www.legato.com), are also available.

http://www.washington.edu/imap/
http://asg.web.cmu.edu/cyrus/imapd/
http://www.inter7.com/courierimap/
http://dovecot.org
http://www.eudora.com/qpopper/
http://www.amanda.org
http://www.veritas.com
http://www.legato.com
http://lib.ommolketab.ir

DHCP

The Dynamic Host Configuration Protocol enables a single server to deliver IP addresses and
other basic TCP/IP configuration information to clients when they boot or bring their network
interfaces online. Even a modest Linux system can make an excellent DHCP server for your
network. The Internet Software Consortium (ISC; http://www.isc.org) produces a reference
DHCP server that's easily the most common Linux DHCP server. Chapter 15 covers this server.

DNS

The Domain Name System converts hostnames into IP addresses and vice versa. Each DNS
server functions locally, but servers usually link together to function globally, providing name
resolution for systems worldwide. The ISC's DNS server, the Berkeley Internet Name Domain
(BIND), is the standard one for Linux. Alternatives do exist, though, such as djbdns
(http://cr.yp.to/djbdns.html). The latter can be somewhat easier to configure, although
managing a full Internet domain with either package isn't trivial. Linux can make a good DNS
server, but how you do this depends on your intent. If you want to run a server so that the
world can resolve your domain's IP addresses, you need to create a robust DNS server with
good Internet connections. If you want to run a local DNS server so that local computers can
resolve each others addresses as well as addresses on the Internet, without providing your
systems' names on the Internet, you can probably get by with a much simpler DNS server.
Chapter 15 covers both BIND and djbdns.

NTP

The Network Time Protocol enables a computer to set its clock to the time maintained by an
atomic clock accessible on the Internet. (In fact, many Internet time sources are available, all
of which link back to highly accurate sources in one way or another.) The Linux NTP server
(http://www.ntp.org) ships with most distributions and functions as both a client and a server.
It obtains its time from one or more remote sources and can operate as a server for your own
local systems. Even a modest Linux system can function as an NTP server for all but very large
networks. One alternative to NTP is to use a time-setting protocol that's part of SMB/CIFS. NTP
is generally the cleaner approach on Linux, but you might use the SMB/CIFS time server
functionality to set clocks on Windows clients from a Linux NTP server. Chapter 15 covers NTP.

Some protocolsmost notably Kerberosrely upon clients and servers having
synchronized clocks. Thus, if you use Kerberos, you should also configure NTP
or some other time protocol on all your Kerberos clients and servers.

http://www.isc.org
http://cr.yp.to/djbdns.html
http://www.ntp.org
http://lib.ommolketab.ir

2.2. Linux Desktop Migration

In some ways, migrating desktop systems to Linux is more difficult than migrating a server. The
problem isn't the migration process itself; that's very similar, although configuration of individual
programs obviously differs. The problem is the scale of the migration; if you plan to migrate all of a
site's users to Linux, you need to install and configure the OS on multiple systems, train the users,
and deal with the inevitable glitches that will arise.

When considering a Linux desktop migration, you should begin by examining several factors that will
likely influence the likelihood of a successful transition. These factors include the availability of
administrative expertise, the need and your capacity for end-user training, the availability of
appropriate desktop software for your site, the need for generating Windows-compatible files or
reading files generated on Windows from off-site, and Linux compatibility of your existing hardware.
Any of these factors might present a real challenge to Linux migration. Other changes you're planning
can also interact with these factors; for instance, if you intend to upgrade some hardware, existing
hardware compatibility may not be as important. In the end, you must evaluate the feasibility of a
Linux migration yourself, based on your own site's needs.

If you decide to proceed with a migration, you should begin by examining your needs and developing
a plan of action. Decide what software you'll need (both the distribution and the applications you'll
run) and begin the migration with a small-scale test; it's better to iron out any wrinkles you
encounter on a dozen machines rather than on a hundred machines. The small-scale deployment will
enable you to fine-tune your deployment strategy before scaling it up. In fact, for a very large
deployment, you may want to scale it up in several stages, starting with one or two test systems,
then moving to a dozen or so, then a hundred, and so on.

http://lib.ommolketab.ir

2.3. Linux and Thin Clients

A lot of attention has been devoted to Linux on the desktop recently. The primary goal of Linux
desktop operation is to give users access to typical desktop applicationsword processors,
spreadsheets, web browsers, etc. An alternative exists to this configuration, though: thin client
computing. In many respects, thin client computing is very old; the typical mainframe model, with a
large central server and many dumb terminals attached to it, closely resembles thin client computing.
Thin clients, though, give users the ability to run GUI programs. Thin client computing has certain
advantages and disadvantages compared to traditional workstation configurations. You can use Linux
as a thin client OS or as the OS accessed by thin clients. Before going too far with a desktop Linux
deployment, you may want to consider a Linux thin client solution. It's not for everybody, but some
sites can benefit from it. For more details about thin client configuration, consult Chapter 12.

In a thin client configuration, most computers are thin clientsrelatively limited computers that consist
of a keyboard, a mouse, a monitor, and just enough computing power to display data on the screen
and communicate with a central login server. This login server is a multiuser system that can handle
all of the network's users' ordinary desktop computing tasks. As such, the central system must
usually be quite powerful. Because a typical desktop computer's CPU is mostly idle as a user types or
reads, and because a multiuser system can save memory by using shared libraries and similar tricks,
the central system doesn't need to be as powerful as the combination of all the workstations it
replaces. For instance, consider an office of 10 users that require 10 2-GHz Pentium 4 computers
with 512 MB of RAM. In a thin client configuration, you probably don't need a 20-GHz Pentium 4 with
5 GB of RAM (if such a computer even existed!); something along the lines of a dual 3-GHz Pentium
4 with 2 GB of RAM will suffice. Actual requirements will depend on the specific applications, the
network bandwidth, and other factors.

The thin clients themselves can be either dedicated hardware devices or recycled older computers.
Even an 80486 system might make an acceptable thin client. Thin clients frequently boot from the
network using Ethernet cards that support network boots and an appropriate set of servers. You
typically need a DHCP server and a server running the Trivial File Transfer Protocol (TFTP). One type
of thin client is known as an X terminal. This is basically a computer that runs an X server and little
else. Other thin clients can use the RFB protocol or other protocols. As described in Chapter 12,
several dedicated Linux thin client distributions exist, as well as tools that enable thin clients intended
for Windows to connect to Linux servers.

One big advantage of thin clients is that, by centralizing the bulk of the desktop software on one
system, you can simplify system administration tasks. The thin clients themselves are simple enough
that they require little in the way of maintenance, and as they download their OSs from a server, you
can even administer them centrally. More important, the central login server is just one
systemadmittedly, one with many users, but one system nonetheless. Instead of rolling out a
software update to dozens of computers, you can deal with just one. Particularly if you have a
number of old computers on hand that you can recycle as thin clients, this approach can save money
on hardware compared to upgrading desktop systems.

Thin clients are not without their drawbacks, though. Because GUI displays must be copied over the
network, they require better network infrastructure than is required in a more conventional
workstation configuration. The central login server will be particularly hard-hit by this requirement.

http://lib.ommolketab.ir

You may need to upgrade your network to a higher speed or segment it and give the central server
multiple network interfaces. As a rule of thumb, an unswitched 100-Mbps network can handle about a
dozen thin clients; if you use switches, the number goes up to about 100 users. Configuring the thin
clients to support sound and give users access to local floppy disks or other removable media may
take extra effort. Because the entire network is wholly dependent on a single computer, a failure of
that computer will be devastating.

Linux can function as a thin client OS. Typically, you'll prepare a custom Linux installation and
configure it to load from the network or from a hard disk in the thin client itself. When connected to a
Linux remote login server, you're likely to use X's networking capabilities to handle the
communications. However, Linux can be used with RFB or with other protocols to provide users with
remote access to a Windows remote login server.

Linux can also function as the central login server. Typically, you'll use X terminals (either dedicated
hardware X terminals or old desktop systems configured as X terminals) as the thin clients, but you
can use RFB instead, if you prefer or if you've found thin clients that support this protocol but not the
X protocols. As a multiuser OS, Linux is particularly well-suited to function as a central login server.
Of course, for all but the smallest network, you'll need a pretty powerful computer to fill this
roleprobably a multi-CPU system with several gigabytes of RAM.

http://lib.ommolketab.ir

2.4. Summary

Linux can be deployed in many different ways on a Windows network. One common approach is to
install Linux as a server OS, supplementing or replacing Windows servers. This type of installation is
often fairly well-defined in terms of its role and can be done with a modest amount of planning. You
need to know the system's intended role and what server programs are available to help the system
fill that role. Another type of deployment, and a much more ambitious one, is to put Linux on the
desktop. This approach typically involves replacing many Windows systems with Linux and requires
careful attention to detail, both in terms of Linux's technical features and in terms of users'
interactions with Linux. Finally, instead of performing a workstation rollout, you can use a thin client
configuration, in which Linux serves as a thin client OS or as a central login server for thin clients.
This approach can save money and reduce administrative headaches, but it has drawbacks, including
network bandwidth requirements and increased vulnerability to a single system's failure.

http://lib.ommolketab.ir

Part II: Sharing Files and Printers
Most Windows-dominated networks use SMB/CIFS for sharing files and printers. The importance
of this protocol on such networks makes Linux software for handling it a potentially valuable
tool. The Linux server suite for SMB/CIFS is known as Samba, and it's described in the first
three chapters of this part of the book. Chapter 3 describes global Samba configuration options
required to get Samba to work and to take on a handful of other modest duties. Chapter 4
covers defining Samba sharesdirectories and printers to be shared with clients. Chapter 5
describes configuring Samba as a domain controller, which can authenticate users for other
servers. The fourth and final chapter of this part of the book, Chapter 6, describes Linux
SMB/CIFS client operations. These can be important both when Linux is running on a desktop
system and for some types of server operations, such as a Linux backup server (which may
take on the file-sharing client role in order to back up Windows systems). Between these
functions, Linux can take on some of the most important server functions routinely held by
Windows systems in a Windows networksharing files, sharing printers, and authenticating users.
(Part III describes other authentication protocols and also covers using Linux as an NT domain
client.)

Samba is a complex server suite. This book can cover the basics of Samba operation, but if you
want to take advantage of Samba's more exotic features, you may want to consult a separate
book on the server, such as Definitive Guide to Samba 3 (Apress) or Using Samba (O'Reilly).

http://lib.ommolketab.ir

Chapter 3. Basic Samba Configuration
All major Linux distributions ship with Samba, the Server Message Block/Common Internet File
System (SMB/CIFS) server for Unix-like systems. This server package enables Linux to serve files
and printers to Windows clients, providing a reliable and low-cost platform to fill this role. In fact,
despite some fundamental differences between the Linux/Unix and Windows platforms, Samba
handles its duties so well that Samba servers are often more trouble-free than their Windows
counterparts, so network administrators have sometimes gone to great lengths to deploy Linux
running Samba rather than Windows in this role.

This chapter describes basic Samba configuration, starting with installing the server. Other topics
include the configuration file format, how you identify the server to other computers on the network,
minimal options to help Samba get along with other systems in terms of its browsing features, and
setting password options. You must set these basic features before you can move on to the next
topic, configuring file and printer shares; that topic is covered in Chapter 4.

An experienced Samba administrator who's familiar with the local network can
set all the options described in this chapter in just a minute or two. Many of
these options require some time to fully describe because of changes in
SMB/CIFS over time and because of peculiarities of integrating SMB/CIFS with
Linux's traditional networking tools, but you'll change only a handful of Samba
configuration file options. If you're impatient to get started, pay particular
attention to Section 3.3.2 and Section 3.5.

http://lib.ommolketab.ir

3.1. Installing Samba

Samba isn't a single server; rather, it's a family of servers that together provide the full functionality
of the package. (Nonetheless, references to "the Samba server" or similar phrases are common.)
Four daemons provide the most important Samba features.

smbd

This daemon handles the file- and printer-serving functions per se. Clients connect to it using
TCP port 139 or 445 to request the transfer of files.

nmbd

This daemon handles most of the SMB/CIFS functionality not provided by smbd, including
NetBIOS name resolution (as described in Section 3.3) and browsing features (as described
briefly in the Section 3.4 and in more detail in Chapter 5). Iff you run smbd, chances are you'll
also run nmbd. This server binds to UDP ports 137 and 138.

SWAT

The Samba Web Administration Tool (SWAT) provides a web-based GUI administration tool for
Samba. Running it isn't necessary, and I don't describe it further in this book. It can be a
handy tool for new Samba administrators, though, and it provides some functions that can help
ordinary users, such as an interface to change their passwords. It usually runs on TCP port
901.

Winbind

This daemon, which is also known as winbindd, provides a way for Linux to access NetBIOS
name and Windows NT domain information. The main upshot is that a system that runs
Winbind can authenticate its local users against the Windows domain's user database, as
described in Chapter 7. Although Winbind is a daemon, it isn't a server for other computers; it
enables extra functionality solely for the computer on which it runs.

In addition to these daemons, Samba provides a number of support utilities and client programs.
These include the smbclient client program, which provides FTP-like access to SMB/CIFS shares; the
smbmount utilities, which helps you mount SMB/CIFS shares in Linux; and the smbpasswd utility for
handling Samba passwords. Some of these tools are described in this chapter, but others are covered
elsewhere in this book.

http://lib.ommolketab.ir

Most Linux distributions deliver these programs in one or more packages. Typically, a base package is
called samba or samba-common. Additional functionality often ships in other packages, such as
samba-clients or swat. Consult your distribution's package list and descriptions to learn what you
need to install for the functionality you require. Alternatively, you can download and install Samba
from its own web site, http://www.samba.org. This site's download area provides links to binaries for
many distributions and to a source code tarball that should compile on any Linux distribution. (Just
one source tarball contains all the major Samba components described here.)

Samba (or at least the smbd and nmbd daemons) is typically launched through SysV startup scripts,
and these usually install from the distribution's main Samba package. If you installed Samba from a
source tarball, though, you'll need to create your own SysV startup script, run Samba from a local
startup script, or launch Samba manually on an as-needed basis. (The packaging subdirectory of the
Samba source package includes sample SysV startup scripts for several distributions.) Although it's
possible to run Samba from a super server such as inetd or xinetd, doing so is uncommon and isn't
recommended. In fact, nmbd tends to be a bit difficult to run in this way.

A few features related to SMB/CIFS aren't part of the main Samba package. Most notably, the ability
to mount SMB/CIFS shares on a Linux system is built into the Linux kernel, although it relies on the
external smbmount command, which is part of the Samba package. Some GUI SMB/CIFS network
browsers are also available separately. Many of these tools nonetheless rely on the basic Samba
configuration described in this chapter for certain default values.

http://www.samba.org
http://lib.ommolketab.ir

3.2. The Samba Configuration File Format

Before delving into Samba configuration, you should understand the Samba configuration file format.
This file is called smb.conf, and it's typically located in /etc/samba, although a few distributions
(particularly old ones) place it in some variant location, such as /etc/samba.d or /etc. When you
compile from source code, it goes in /usr/local/samba/lib unless you change a configuration option.

Wherever it's located, the smb.conf file is broken into several distinct sections, each of which has its
purposes. Within each section, lines have a simple structure consisting of a parameter that's to be set
and one or more values to be assigned to the parameter, or they may be comment lines. You should
also understand the use of Samba variables, which enable you to set a parameter to a value you may
not know when creating the configuration file.

3.2.1. Configuration File Sections

Example 3-1 shows a short but complete smb.conf configuration file. In this file, the section names
appear between square brackets ([]). In this example, the section names are [global], [homes],
and [freefiles].

Example 3-1. A short smb.conf file

[global]
 workgroup = GREENHOUSE
 netbios name = MANDRAKE
 server string = Free files for all
 encrypt passwords = Yes
 security = User
 os level = 2
 domain master = No
 preferred master = No
 domain logons = No

[homes]
 browseable = No
 writeable = Yes

Put all our public files in a logical place....
[freefiles]
 path = /usr/share/samba/public
 browseable = Yes
 writeable = No

The [global] section of smb.conf is the only section that's really required. It sets global-level

http://lib.ommolketab.ir

parameters that affect the operation of the server as a whole, such as setting its NetBIOS name and
password encryption settings. In addition, you can place most share-level parameters in the
[global] section, in which case the parameter effectively changes the default behavior. For instance,
the writeable parameter is share-level, meaning that you can set it differently for each share. If
placed in the [global] section, though, this parameter sets the default for the rest of the shares.

This can be handy if you have many shares that use similar options; rather than set the same
parameter in all the shares, you can set it just once, in the [global] section.

Sections after the [global] sectionthe [homes] and [freefiles] sections in Example 3-1all define

individual Samba shares. Each share definition begins with its name and ends with the next share
definition or the end of the file. All the parameters in a share definition must be share-level
parameters.

Frequently, the share names are not indented, while parameters belonging to a share are indented.
This practice makes it easy to locate the parameters you want to adjust, but it's not required; Samba
ignores most whitespace in smb.conf, including indentation of configuration lines.

3.2.2. Parameters, Values, and Comments

If you examine Example 3-1, you'll quickly discern the basic form of an smb.conf parameter line:

parameter = Value

The parameter is a keyword that holds particular meaning to Samba. Some Samba functions can be
accessed through multiple parameter names; for instance, writeable is synonymous with writable
and write ok, and read only is an antonym for these. In other words, writeable = Yes has the
same effect as read only = No.

The Value is the value that's assigned to the parameter. Several different types of values exist:

Boolean values

Many Samba parameters require Boolean options. For these, Yes, TRue, and 1 are all
synonymous, while No, False, and 0 are their opposites. A few Booleans also accept other

options to set a feature automatically or have some other parameter-specific effect.

Numeric values

Some parameters take numeric values, such as a time in seconds or a file size in bytes or
kilobytes. Both integral and real numeric values are possible, although some parameters
expect one type or the other. Some parameters take values that are special numbers or sets of
numbers, such as IP addresses.

String values

http://lib.ommolketab.ir

You can provide strings to some parameters, such as the values of the workgroup, netbios
name, server string, and path parameters in Example 3-1. Sometimes these strings can be
almost anything you like, as in server string. Other strings must be constrained in some
way, though; for instance, path is a local Linux pathname. When a string value contains

spaces, you do not normally need to enclose it in quotes, although you can do so if you prefer.
Quotes may also be necessary with lists of string items that contain spaces.

Delimited values

Some parameters accept a limited range of strings as values. For instance, Example 3-1 shows
the security parameter, which accepts just a handful of values.

Lists

Many parameters accept multiple values as options, such as several IP addresses or
hostnames. Lists are normally delimited by commas or spaces, although a few parameters use
other characters as delimiters.

For the most part, Samba doesn't care about the case of its parameters or values; domain master =
No has the same effect as DOMAIN MASTER = no or any other variant. Some values, though, are case-

sensitive for reasons other than Samba. For instance, a Linux filename provided as a value is case-
sensitive because the underlying Linux filesystem is case-sensitive.

Similarly, parameters aren't sensitive to whitespace; you can insert or remote spaces from
parameters without causing problems. For instance, server string = Free files for all is identical
to serverstring = Free files for all. Whitespace may be important to parameters' values,

though.

If a configuration line is very long, you can break it across multiple lines by ending the first line (and
any subsequent nonterminal lines) with a backslash (\):

hosts allow = daisy.greenhouse.example.com, 172.24.21.27, \
 192.168.7.107

This example sets the hosts allow parameter to three valuesa hostname and two IP addresses.

Instead of or in addition to a parameter and value, an smb.conf line may hold a comment. These are
denoted by a hash mark (#) or a semicolon (;); Samba ignores lines that begin with one of these

characters. (Whitespace before comments is ignored.) Many sample smb.conf files contain numerous
comments describing the function of each configuration line in the file.

Samba provides a parameter called comment. This is not to be confused with a
comment! The comment parameter sets a free-form string that's associated

with a share for the benefit of users.

http://lib.ommolketab.ir

3.2.3. Variables and Their Uses

In most cases, you can set a Samba parameter to a constant value. All the parameters in Example 3-
1 do this. Samba also supports variables as parameter values. A variable is a placeholder, denoted by
a leading percent symbol (%), that can take on a particular value depending upon the machine on

which Samba is running, the Samba version, the username of the person accessing the share, and so
on. Table 3-1 summarizes Samba's variables. Note that variable identifiers are case-sensitive; for
instance, %d and %D are distinct variables.

Table 3-1. Samba variables

Variable Meaning

%a
The client's OS. Possible values are OS2 (OS/2), Samba, UNKNOWN, WfWg (DOS or
Windows for Workgroups), Win2K (Windows 2000), Win95 (Windows 9x/Me), or WinNT

(Windows NT).

%c A print job's length in pages, if known.

%d The daemon's process ID number.

%D The client's workgroup or NT domain name, if known.

%f The sender of a WinPopUp message.

%g The primary group of %u.

%G The primary group of %U.

%h The server's DNS hostname, if known.

%H The home directory of %u

%I The client's IP address.

%J A print job's name.

%L The server's NetBIOS name.

%m The client's NetBIOS name, if known.

%M The client's DNS hostname, if known.

%N The NIS home directory server.

%p The path to an automounted share's root directory.

%P The path to the share's root directory.

%R
The level of the SMB protocol in use. Legal values are CORE, COREPLUS, LANMAN1,
LANMAN2, and NT1.

%s
A filename. In printer shares, this identifies the file passed by the client to be printed.
It can also refer to a file that holds a WinPopUp message.

http://lib.ommolketab.ir

Variable Meaning

%S The share's name.

%t A WinPopUp message's destination.

%T The current date and time.

%u The effective Linux username. This may not be the same as %U.

%U The username sent by the client.

%v Samba's version number.

%z A print job's size in bytes.

%$(envvar) The value of the environment variable envvar.

You can use a variable much as you'd use any other value in a parameter. It will be expanded to its
full replacement value when Samba needs to do so. You can even combine variables with regular text
or with other variables. For instance, consider the following parameter:

log file = /var/log/samba/log.%m

A line like this is a common sight in the global sections of smb.conf files. If the client's NetBIOS name
is DAISY, Samba logs information on accesses by this client in /var/log/samba/log.daisy. (Samba
usually converts NetBIOS names to lowercase.) If Samba doesn't know the client's NetBIOS name,
the IP address is substituted for the NetBIOS name. Separating logfiles in this way can be handy
when debugging problems or tracing usage patterns for the server.

Some environment variables aren't guaranteed to be available. For instance, %L is only available if

the client uses the NetBIOS over TCP/IP (NBT) method of connecting to the server, using TCP port
139. This variable is meaningless or will return an IP address for a client that uses the newer "raw"
SMB/CIFS over on TCP port 445. Similarly, %h and %M work correctly only if your network's DNS

server is working correctly. Variables that convert IP addresses to DNS names also require you to set
the hostname lookups = Yes parameter to work correctly. Some parameters have meaning only in
particular contexts; for instance, %S is meaningless when used with global parameters because a

share name can apply only to an individual share and not to the system as a whole.

3.2.4. The include Parameter

Normally, a Samba server uses a single smb.conf configuration file; however, you can use the
include parameter to merge in multiple files. This parameter takes a filename as an option. Samba

reads the specified file and uses its contents as if they were part of the main smb.conf file, at the
location of the include parameter.

Typically, you pass a variable as part of the filename that you give to include. You can use this

ability to provide customized configurations for different client computers, client OSs, users, and so
on. For instance, you can set options that adjust the server's delivery of filenames to clients (as
described in Chapter 4) based on the client OS:

%S The share's name.

%t A WinPopUp message's destination.

%T The current date and time.

%u The effective Linux username. This may not be the same as %U.

%U The username sent by the client.

%v Samba's version number.

%z A print job's size in bytes.

%$(envvar) The value of the environment variable envvar.

You can use a variable much as you'd use any other value in a parameter. It will be expanded to its
full replacement value when Samba needs to do so. You can even combine variables with regular text
or with other variables. For instance, consider the following parameter:

log file = /var/log/samba/log.%m

A line like this is a common sight in the global sections of smb.conf files. If the client's NetBIOS name
is DAISY, Samba logs information on accesses by this client in /var/log/samba/log.daisy. (Samba
usually converts NetBIOS names to lowercase.) If Samba doesn't know the client's NetBIOS name,
the IP address is substituted for the NetBIOS name. Separating logfiles in this way can be handy
when debugging problems or tracing usage patterns for the server.

Some environment variables aren't guaranteed to be available. For instance, %L is only available if

the client uses the NetBIOS over TCP/IP (NBT) method of connecting to the server, using TCP port
139. This variable is meaningless or will return an IP address for a client that uses the newer "raw"
SMB/CIFS over on TCP port 445. Similarly, %h and %M work correctly only if your network's DNS

server is working correctly. Variables that convert IP addresses to DNS names also require you to set
the hostname lookups = Yes parameter to work correctly. Some parameters have meaning only in
particular contexts; for instance, %S is meaningless when used with global parameters because a

share name can apply only to an individual share and not to the system as a whole.

3.2.4. The include Parameter

Normally, a Samba server uses a single smb.conf configuration file; however, you can use the
include parameter to merge in multiple files. This parameter takes a filename as an option. Samba

reads the specified file and uses its contents as if they were part of the main smb.conf file, at the
location of the include parameter.

Typically, you pass a variable as part of the filename that you give to include. You can use this

ability to provide customized configurations for different client computers, client OSs, users, and so
on. For instance, you can set options that adjust the server's delivery of filenames to clients (as
described in Chapter 4) based on the client OS:

http://lib.ommolketab.ir

include = /etc/samba/smb-%a.conf

You then create files called smb-Win95.conf, smb-Samba.conf, or other appropriate values, and place
OS-specific options in each file. You can place such a call in the [global] section or in a share

definition. In fact, you can even place entire share definitions in an included configuration file. This
type of configuration can be useful when one OS works better with one set of options than another.
For instance, you might want to set different case-sensitivity options depending on the client OS's
capabilities.

http://lib.ommolketab.ir

3.3. Identifying the Server

The first task you must undertake when configuring a Samba server is setting various identification
options. SMB/CIFS was designed for non-TCP/IP networks and includes server identification tools that
are independent of common TCP/IP naming systems, such as DNS hostnames. SMB/CIFS machines
are identified by NetBIOS names, and computers belong to workgroups or NT domains (an NT
domain is simply a workgroup with some extra features). Although most recent SMB/CIFS clients can
contact servers using DNS hostnames or raw IP addresses rather than NetBIOS names, you must
give your Samba server a NetBIOS name and a workgroup (or NT domain) name for interaction with
older clients, such as DOS and Windows 9x systems. You may also want to adjust a few additional
identification options, which tell the system what operating system to pretend to be, among other
things.

3.3.1. NetBIOS Name Options

A NetBIOS name is similar to a computer's DNS hostname (without the domain name component).
It's a string of up to 15 characters that can contain letters, numbers, and various punctuation marks.
(Using punctuation can be confusing, though, and so is usually best avoided.) NetBIOS names are
case-insensitive, although I generally present them in all-uppercase in this book to distinguish them
from DNS hostnames, which I present in lowercase.

Technically, the NetBIOS name as just described is only the base of the
NetBIOS name. The full NetBIOS name includes a one-byte code that identifies
the type of service available under the name; for instance, a NetBIOS name
might end with a hexadecimal 0x20 to signify a file or print service. A single

computer is likely to register several NetBIOS names using a single NetBIOS
base name and different type codes. Samba handles this automatically; you
just give it the NetBIOS base name, and it registers the names required based
on other smb.conf options.

You set your computer's NetBIOS name with the global netbios name parameter:

netbios name = MANDRAKE

If you don't include this parameter in the smb.conf file, the default is to use your computer's DNS
hostname, minus the domain component. For instance, if your computer is called
mandrake.greenhouse.example.com, Samba registers the NetBIOS name MANDRAKE. This default is
usually reasonable, assuming your DNS hostname is set correctly; however, you may want to set the
NetBIOS name explicitly just to be sure. (When you do so, this setting overrides the DNS hostname
for NetBIOS purposes but not for other TCP/IP protocols.) In most cases, you shouldn't try to use
different NetBIOS and DNS names on a single computer because it will most likely confuse your
users.

http://lib.ommolketab.ir

Occasionally, you may want to give a computer multiple NetBIOS names. Samba supports this option
via the global netbios aliases parameter, which enables you to specify names to be registered in
addition to the name provided with netbios name (or the DNS hostname, if you omit netbios name

from your smb.conf file). For instance, suppose that MANDRAKE should also be known as
MANDRAGORA and MANDRAGORIN>. You can do so by using the following line in addition to the
netbios name line shown earlier:

netbios aliases = MANDRAGORA MANDRAGORIN

You can use this parameter to give a system multiple NetBIOS names if it also has multiple DNS
hostnames. You can also use it to consolidate several servers in one. For instance, if you replace two
old file server computers with one new server, you can have the new server appear under both
names by assigning one name with netbios name and the second with netbios aliases. You'll need

to define file or printer shares to match those found on both original servers, though.

If you use the %L variable as part of a filename in an include parameter, you

can load different shares depending on which NetBIOS name a client uses to
address the server. This can help minimize user confusion should you want to
consolidate many servers into one; to users, your single server can look like the
two old ones, complete with different shares available under each name. Be
aware, though, that many newer clients, including Windows 2000 and XP, no
longer use NetBIOS names by default, so this trick may not be useful on all
networks. Specifying smb ports = 139 limits Samba to using port 139, and

hence NetBIOS and its naming conventions. This forces the desired behavior
even with most newer clients.

NetBIOS name resolution can work in any of several ways. The most common methods are broadcast
name resolution and a NetBIOS Name Server (NBNS) computer, a.k.a. a Windows Internet Name
Service (WINS) system. In broadcast name resolution, a client sends a broadcast that contains the
name of the system it wants to contact, and that system responds to the broadcasts. Broadcast
name resolution is easy to configure (no special Samba parameters are required), but it doesn't work
well in networks with multiple subnets.

If your network includes an NBNS system, you should point Samba at it with the global wins server
parameter, which requires the IP address (or DNS hostname, if you also set hostname lookups =
Yes) of the NBNS system:

wins server = 172.24.21.1

Samba 3.0 and later supports multiple NBNS systems (separated by spaces or commas on the wins
server line).

Conceptually, you can consider an NBNS system to be much like a DNS server; clients contact it to
turn names into IP addresses. Unlike a DNS server, though, an NBNS system requires no explicit
configuration to add hostnames to it. Instead, clients contact the NBNS system when they start up
and at various times thereafter in order to register their configured names. The wins server

parameter has the dual effect of telling Samba (or nmbd, to be more precise) to register with the
NBNS system and to use that system for NBNS lookups, when they're required.

http://lib.ommolketab.ir

While you're setting the wins server option, you should check to be sure that wins support is set to
No. If this value is Yes, Samba attempts to operate as an NBNS system. This is likely to cause

confusion if your network has an existing NBNS system. Of course, if you really want your computer
to take on these duties, you should set wins support = Yes, but, in this case, you should omit the
wins server parameter; Samba knows to refer to itself for this function when it's configured as an

NBNS system.

You can tell Samba which name lookup methods to use with the name resolve order parameter,

which takes an ordered list of one to four values:

lmhosts

This option tells Samba to use an lmhosts file, which is conceptually and structurally similar to
an /etc/hosts file: it's a list of IP addresses and associated NetBIOS names, one per line. The
file is typically stored in the same directory as smb.conf.

host

This option refers to lookups using the computer's normal TCP/IP hostname lookup
mechanismstypically /etc/hosts and DNS. This lookup method doesn't work for some service
types, so you shouldn't rely on it exclusively.

wins

This option refers to NBNS-based lookups; it requires that you set wins server (or wins
support = Yes).

bcast

You can have Samba perform broadcast name resolution with this option.

The default name resolution order is lmhosts host wins bcast, but you can remove options or
change their order by specifying them with name resolve order:

name resolve order = wins bcast lmhosts

This example causes NBNS lookups to be tried first, followed by broadcasts, followed by lmhosts
lookups. In this example, ordinary TCP/IP hostname lookups are not attempted by Samba.

3.3.2. Workgroup Name Options

The NetBIOS naming system is basically flat; all computers on a network have names in the same

http://lib.ommolketab.ir

namespace, with no hierarchical structure. This contrasts with DNS names, which provide for an
arbitrary number of domains and subdomains. NetBIOS avoids name conflicts primarily by restricting
the scope of the network; NetBIOS name broadcasts don't normally pass over routers, and NBNS
computers typically serve just one organization's computers.

NetBIOS does provide the illusion of a two-tiered structure, though, through the use of workgroups
and NT domains. On a conceptual level, a workgroup is a collection of computers that are related in
some way, such as those in a single department. On a technical level, workgroups are implemented
by having members of the workgroup register NetBIOS names based on the workgroup name and
using particular service type codes.

In any event, you must tell Samba the name of the workgroup to which it belongs. You do this with
the global workgroup parameter, which takes a workgroup name as its value. These names follow

the same naming rules as NetBIOS machine names, but because the computer's DNS domain name
is less likely to be a suitable substitute, it's not used as the default value. Instead, the default if you
omit the workgroup parameter is a compile-time option, but it's usually WORKGROUP.

If you fail to set the computer's workgroup correctly, you may not be able to browse to the server
from Windows clients, or the server may appear under its own unique workgroup in the clients'
browsers. Thus, it's important that you set this option appropriately for your network. If you're
configuring a new network, select a workgroup name as you see fit. Perhaps your organization's
domain name will work, or maybe a subdomain name will be more appropriate. In some cases, you
might even use something unrelated, but to avoid confusion, it's usually best to employ a DNS
domain or subdomain name as the workgroup name.

Windows NT domains are just workgroups with a special server, the domain
controller, which handles centralized logons and typically some other tasks. If
you use a domain configuration, you set the NT domain name using the
workgroup parameter.

3.3.3. Miscellaneous Identification Options

In addition to setting the NetBIOS name, workgroup name, and related options, you may need to
attend to a few miscellaneous identification parameters. These can affect how other systems interact
with your Samba server:

server string

This parameter sets a free-form string that appears along with the NetBIOS name in many
operating systems' network browsers. In fact, in Windows XP, this string is more prominent
than the NetBIOS name.

protocol

This parameter sets the maximum protocol level that Samba uses. (The %R entry in Table 3-1

http://lib.ommolketab.ir

describes the values that this parameter accepts.) Chances are you won't need to change this
value, but it's conceivable that downgrading will help when dealing with very old clients.

announce as

You can tell Samba to announce itself as any number of different Windows OSs with this
parameter. Legal values are NT Server (the default), NT (a synonym for NT Server), NT
Workstation, Win95, and WfW. As with protocol, chances are you won't need to adjust this

parameter except perhaps with some very old clients, which might not be able to cope with
newer settings.

announce version

This parameter sets an OS version number that goes along with the announce as value. The
default value for recent versions of Samba is 4.9, and this should almost never be changed.

Chances are you'll only want to set the server string parameter, which has a direct effect on

clients. This is shown in Figure 3-1, which depicts a Windows XP computer's view of the servers on a
network using the My Network Places browsing tool. In most cases, the NetBIOS name appears in
parentheses after the value of the server string variable. (HALRLOPRILLALAR Figure 3-1 is an
exception because it lacks the server string value, or rather, it lacks its equivalent because this

computer is the Windows computer used to take the screen shot.) Many default smb.conf files place
the %v variable in the server string parameter, which has the effect of displaying the Samba

version number to clients, as in the TEELA server in Figure 3-1. This information, though, can be
useful to miscreants wanting to break into the computer. To be sure, they can discover the version in
some other way, but there's no point in making it easy for them; I recommend not using %v in your
server string parameter.

Figure 3-1. Windows displays the value of the server string variable
alongside the NetBIOS name in its network browser

http://lib.ommolketab.ir

http://lib.ommolketab.ir

3.4. Setting Master Browser Options

In order to handle local network browsers like the one shown in Figure 3-1, SMB/CIFS requires one
computer to be designated a master browser. This computer collects data on the computers on the
network and provides it to any computer that asks for the information. The clients then present the
data to users in one form or another (Figure 3-1 being one example).

In the context of SMB/CIFS, a network browser is a tool that provides
information about, and typically a way to access, SMB/CIFS file and printer
shares. Typically, it's integrated into the OS's local file manager. In Windows,
it's called either My Network Places or Network Neighborhood, depending on
the version of Windows. SMB/CIFS browsers use different protocols from web
browsers. Although some programs, such as the K Desktop Environment's
(KDE's) Konqueror, can serve as both SMB/CIFS and web browsers, the two
protocols are entirely unrelated.

In fact, two types of SMB/CIFS master browsers exist. A local master browser handles browsing
tasks on a single subnet. A domain master browser helps integrate multiple subnets. The local master
browser is selected automatically by the computers on a network using a process known as an
election. Samba provides options that influence how it participates in elections; you can "rig" an
election so that Samba wins or loses it, as you see fit. Domain master browser status is acquired
based on server configuration, and Samba provides options to control this process, as well. Chapter 5
describes these parameters in more detail. For the moment, though, if you don't want Samba to
acquire either type of master browser status, you should add the following parameters to your
smb.conf file's [global] section:

domain master = No
local master = No
os level = 0
preferred master = No

In fact, the first two options should be sufficient to keep Samba from acquiring master browser
status; the last two options simply provide added insurance, should you accidentally mis-set the
local master parameter. Of course, on some networks you might want Samba to acquire local

master browser status; to do so, set the following options:

local master = Yes
os level = 33
preferred master = Yes

http://lib.ommolketab.ir

Configuring Samba to become a local master browser on a network on which
browsing works fine may cause problems. If Samba acquires master browser
duties over a working master browser, the result can be disruptions should that
old system try to reacquire master browser status periodically. Each such
attempt to reacquire master browser status will result in a temporary browsing
outage. Likewise, network topology and other issues can cause problems when
changing a master browser. If in doubt, configure Samba to not try to take on
these duties.

http://lib.ommolketab.ir

3.5. Setting Password Options

New Samba installations are frequently plagued by two problems: incorrectly set workgroup names
and password encryption difficulties. The first problem is easily corrected by changing the workgroup

parameter, as described earlier. Password problems are harder to overcome because they may
require changing more than just one or two Samba parameters. To address these issues, you must
first understand them. You must then decide whether to use unencrypted or encrypted passwords.
On some networks, you may need to decide whether to use a password server for authentication, as
well.

3.5.1. Password Issues

Samba password issues can be complicated. SMB/CIFS provides several different ways to encode
passwords, to authenticate clients using passwords, and to store them. In fact, some of these issues
are negotiated between client and server, with no need for explicit configuration, but others require
your attention.

The simplest case of Samba password handling, at least from the point of view of Samba
administration, is to have Samba accept unencrypted (or cleartext) passwords from clients and
authenticate users against the local Linux account database. Conceptually, this works much like Linux
authentication for FTP, Telnet, SSH, or other servers that use the Linux account database.
Unfortunately, this approach has some problems. Most importantly, exchanging passwords in
cleartext makes them vulnerable to sniffinginterception by unauthorized third parties who have
physical access to your network wires. (In an Internet exchange, sniffing can also occur on
intervening routers or their networks.) Thus, unencrypted passwords are undesirable from a security
point of view. (On the other hand, the password encryption systems used by some versions of
SMB/CIFS are not much better than cleartext, so you shouldn't consider encrypted passwords to be
proof against sniffing.) In terms of practicality, cleartext passwords are also a problem because
recent versions of Windows use encrypted passwords by default and don't drop back to cleartext
passwords. Although you can reconfigure Windows clients to use cleartext passwords, doing so on a
large network can be tedious.

So, what about encrypted passwords? Unfortunately, the password encryption systems used by
SMB/CIFS aren't compatible with the encrypted form of Linux passwords used in a standard Linux
password database (/etc/passwd or, more commonly, /etc/shadow). Therefore, in order to support
SMB/CIFS encrypted passwords, Samba must maintain its own password database. Typically, this
database is stored in a file called smbpasswd and is located in the same directory as smb.conf or a
subdirectory of that directory. Other methods of storing this database exist but are beyond the scope
of this book. If you want to use encrypted passwords, you must not only configure Samba to use
them but create the encrypted password file, populate it with account information, and assign
passwords to users. Because the Linux passwords are stored in a hash (basically, a one-way
encryption system), they can't be decrypted, and you'll need to either assign random Samba
passwords to users or have them enter passwords in some way. This task can be tedious on a large
network.

http://lib.ommolketab.ir

A third approach to handling passwords is to defer to another computer. For instance, if your network
is configured as a Windows NT domain or an AD domain, you can have Samba defer to the domain
controller. This approach greatly simplifies Samba setup because you don't need to configure a local
password database. Samba provides several options for how to defer to a remote system.

No matter what method you use, each user of your system must have a local account. (Using guest
accounts can relax this restriction, but this topic is beyond the scope of this book.) Thus, you must
still create local Linux accounts even if you use a Windows domain controller for authentication. If this
task is tedious because you have many users, you may want to consult Chapter 7, which describes
joining a Linux system to an NT domain in a way that enables the underlying Linux accounts to mirror
the NT domain's accounts. Although this configuration can be a bit tricky to set up, it can greatly
simplify account maintenance on a large network that has an NT domain controller (either a Windows
system or a Samba server).

3.5.2. Using Cleartext Passwords

From a Samba configuration perspective, the simplest authentication method is to use cleartext
passwords. You can do so by setting encrypt passwords = No in the [global] section of smb.conf.

This configuration is the default in Samba versions prior to 3.0; however, with Version 3.0, the
default setting changed to Yes. To avoid confusion, I recommend setting the value explicitly,

whatever version of Samba you're using. When configured to use cleartext passwords, Samba
doesn't attempt to negotiate an encrypted password exchange with clients; it does attempt to
authenticate users against the passwords stored in the local Linux password database. Thus, users
must have valid local Linux passwords, not just valid accounts. (With encrypted passwords, Samba
users' accounts could conceivably exist but have disabled local passwords.)

Windows versions since Windows 95 OEM Service Release 2 (OSR2) and Windows NT 4.0 Service
Pack 3 (SP3) require the use of encrypted passwords by default. Thus, these OSs will not work with a
Samba server configured to use cleartext passwords unless you change a Windows Registry entry.
One relatively painless way to do so is to use a .reg file that ships with Samba. In fact, several such
files exist, one for each version of Windows. The filename takes the form WinVer_PlanPassword.reg,

where Ver is the Windows version. For instance, Win2000_PlainPassword.reg is the file for Windows

2000, and WinXP_PlainPassword.reg does the job for Windows XP. Some distributions deliver these
files in compressed form, so .gz may be tacked onto the end; if so, you'll need to uncompress the file
with gunzip before you use it. Precisely where you can find these files also varies. Most place them in
the Registry subdirectory of the Samba documentation directory, as in /usr/share/doc/samba-
3.0.2a/full_docs/Registry, but the precise path varies.

Try using your distribution's package management tools to locate these files.
For instance, on a computer that uses the RPM Package Manager (RPM), you
could type rpm -ql samba | grep PlainPassword to locate the files in the

samba package that contain the string PlainPassword in their names.

Once you've located these files, copy the ones you need to a floppy disk, put them on an FTP site,
send them via email, or otherwise make them accessible to clients. On a Windows system, double-
click the file from the file manager to install the changes in the Registry. You then need to reboot the
computer for the changes to take effect. In a small office, you should be able to apply the patch to all
the Windows clients in a few minutes by walking from one system to another with a floppy disk in

http://lib.ommolketab.ir

your hand. Alternatively, you can make the changes manually using a Windows Registry editor;
however, applying the changes automatically is almost certain to be both faster and more reliable.

Once you've configured the Samba server and your clients to use cleartext passwords, the clients
should be able to access the server, assuming appropriate accounts with valid passwords exist on the
server. However, a few additional parameters can affect access:

password level

Linux's local passwords are case-sensitive, but many SMB/CIFS clients assume passwords will
be treated in a case-insensitive way. For instance, Windows 9x/Me converts all passwords to
uppercase when using certain SMB/CIFS protocol levels. In order to work around this problem,
the global password level parameter tells Samba to try case variants. The default value for
this parameter is 0, which causes Samba to try the password as delivered and the password

converted to all-lowercase if it was sent in all-uppercase. Higher values cause Samba to
convert the password to lowercase and then to convert the specified number of letters to
uppercase. For instance, if password level = 1 and if a client gives RHUMBA as the password,
Samba tries to authenticate the user with passwords of RHUMBA, rhumba, Rhumba, rHumba, and
so on. Using high numbers as the password level parameter can therefore improve the odds

of a successful login using a valid password that's been corrupted by the client. These attempts
increase the time for Samba to confirm that a password is invalid, though, and, in some cases,
to verify a valid password. They also increase the odds of a successful break-in by effectively
eliminating case as a security feature in your local passwords.

username level

This global parameter is similar to password level, but it applies to usernames rather than

passwords. One other minor difference is that when this parameter is set to its default value of
0, Samba tests the username converted to lowercase followed by the username converted to

lowercase but with an initial capital letter. If you give higher values, Samba tries up to the
number of letters converted to uppercase that you specify, just as with password level.

username

This share-level parameter specifies a list of usernames against which to test a password. This
is necessary when using some very old clients (such as some antiquated DOS clients) that
don't send usernames, just passwords. Samba tries the password with each of the usernames
specified. Ordinarily, this parameter isn't needed because all modern clients deliver usernames
by default. This parameter can be used with encrypted passwords as well as with cleartext
ones, but because the clients most likely to force its use employ unencrypted passwords, I've
described it here.

On the whole, using cleartext passwords is normally undesirable on modern networks. Between the
increased risks of password sniffing with cleartext passwords, and the fact that most modern
SMB/CIFS clients don't use them by default, you're usually better off switching to an encrypted
password system or to a password server. Encrypted passwords can be more of a hassle to configure

http://lib.ommolketab.ir

on the Samba server, but they're easier to configure on the clients.

3.5.3. Using Encrypted Passwords

Because all modern versions of Windows use encrypted passwords by default, this approach is the
easiest one from a client configuration point of view. You will, though, need to take some steps to get
encrypted passwords working on the server.

From a client perspective, the difference between using encrypted passwords
on the file or print server and using a password server is nil. In both cases, the
client engages in a challenge-response authentication exchange with the file or
print server; only the configuration of that file or print server differs.

Only one smb.conf entry needs changing to use encrypted passwords: encrypt passwords = Yes.
This is the default value for Samba 3.0 and later, but earlier versions used No as the default, so I

recommend setting it explicitly to avoid confusion. A few other parameters can influence how Samba
treats encrypted passwords, but they probably don't need adjustment:

smb passwd file

You can tell Samba what file to use for holding encrypted passwords with this global
parameter. Ordinarily, Samba uses a file called smbpasswd, which is usually located in the
same directory as smb.conf or a subdirectory thereof.

passdb backend

This parameter tells Samba how to store its password database. The usual value, smbpasswd,
specifies that the smbpasswd file (or another file specified by smb passwd file) be used. Other

options tell Samba to use more specialized types of databases, such as an LDAP directory. Fully
describing these alternatives is beyond the scope of this book.

lanman auth

The LANMAN hashing scheme is one of several SMB/CIFS encrypted authentication systems.
This global Boolean parameter enables or disables support for this protocol. The default value is
Yes, and the parameter must be set to this value to support Windows 9x/Me systems.

ntlm auth

The NT LANMAN (NTLM) hash is an improvement on LANMAN authentication, and this
parameter controls whether Samba accepts this authentication method. The default value is

http://lib.ommolketab.ir

Yes. If this option and lanman auth are both set to No, only the newest NTLMv2 protocol will

work; however, this protocol was added only to Windows NT 4.0 SP4; older clients (and many
non-Microsoft clients) don't support NTLMv2.

In addition to setting encrypt passwords = Yes and, if desired, any ancillary password-related

parameters, you must prepare a local Samba password database. This database is maintained using
the smbpasswd command. In particular, you add users to the database using the -a parameter
(which can only be used as root):

smbpasswd -a linnaeus
New SMB password:
Retype new SMB password:
Added user linnaeus

This command adds a Samba password entry for the user linnaeus. If your system lacks a current
smbpasswd file or its equivalent, you'll see an error message to the effect that it doesn't exist; but
don't fear, the smbpasswd utility creates the file and adds the user to it. In any event, you should
repeat this command for every user on your system. Note that Samba requires the username to
match an existing Linux account, so if you're configuring a new system, you should create a Linux
account first, and then create a Samba password database entry for it.

Running smbpasswd in this way isn't very difficult for a network with just a few users, but on a larger
network, it can be quite tedious. If you want to script the operation, you can deliver a password to
the utility within a script by appending the password to the username, separated by a percent symbol
(%):

smbpasswd -a linnaeus%apassword

Of course, your script will need to generate passwords in some (preferably random) way. You'll then
need to either communicate this information to your users or help them enter their passwords later.
Another option is to use a script called mksmbpasswd, mksmbpasswd.sh, or something similar. These
scripts create a new smbpasswd file from your regular Linux passwd database. Such scripts used to
ship with Samba packages, but they're less common today, perhaps because they save very little
time. The scripts can't convert Linux passwords to a form that SMB/CIFS can use, so they
deliberately generate accounts with invalid passwords. Thus, you must still help users enter their
encrypted passwords manually.

In theory, the global update encrypted parameter can help you enter encrypted passwords. When
set to Yes, this parameter causes Samba to set a user's encrypted password to the value of an

unencrypted password that a client computer sends when the user logs on. Unfortunately, this
requires you to configure your clients to send unencrypted passwords. Thus, although update
encrypted might help you convert a network from cleartext to encrypted passwords, it won't be of

much help when adding a new Linux system to an existing network that already uses encrypted
passwords.

The case options described earlier, in Section 3.5.2, are inapplicable to encrypted passwords.
Depending on the hash chosen by the client, passwords may be case-sensitive or -insensitive, and
Samba provides the same case sensitivity as clients. Thus, in this respect encrypted passwords are
simpler than unencrypted passwords.

The smbpasswd command can be used to change passwords for existing accounts, as well as create

http://lib.ommolketab.ir

new ones. Type smbpasswd username, where username is the username whose password you want to

change, to do the job. Individual users can also use this utility to change their passwords, but they
must have shell access to the server to do so.

If users don't need shell access to the server, you can set their login shells to
/usr/bin/smbpasswd. When users log in using Telnet or SSH, they'll enter their
Linux passwords and then be prompted to change their Samba passwords.
Once this is done, they're immediately logged out.

3.5.4. Using a Password Server

Instead of using a local password database, you can defer authentication to another
computertypically a domain controller, but perhaps some other system. In fact, Samba provides
three different ways to do this. You choose the method using the security parameter, but

depending upon the method you choose, you may need to perform some additional configuration
steps.

All these methods of authentication require you to set encrypt passwords = Yes. Instead of

maintaining the account database locally, though, you point Samba at an external server.

3.5.4.1 Setting the security mode

The security parameter tells Samba what security mode to usethat is, what rules to apply for

authenticating users. This parameter takes one of five possible values:

Share

When using this security level, Samba attempts to emulate the default access control method
of Windows 9x/Me, which is to assign passwords to individual shares and not use usernames.
To do this, Samba tries to authenticate using the password that the client sends and a series of
different accounts, such as an account used by a previous logon from the client or the name of
the share itself. Share-level security is a poor match to Linux's underlying security model,
though, and so it's seldom used.

User

This security model is the default, and it corresponds to the use of a local account
databaseeither a cleartext Linux account database or an encrypted Samba account database,
depending on the value of encrypt passwords.

Server

http://lib.ommolketab.ir

When using server-level security, Samba authenticates users against a remote server in much
the way that Windows 9x/Me servers do. On a technical level, this authentication method is
similar to a man-in-the-middle attack; the Samba server essentially passes the data on from
the client as if it were making the logon request, then honors the reply from the server. This
approach is easy to configure but occasionally doesn't work correctly. It can be used to
authenticate against a server that's not a domain controller, but the remote server must be
configured to enable remote authentication. This option is being deprecated in Samba 3.0 and
later; it still works, but is likely to eventually vanish.

Domain

In a domain-level configuration, the Samba server fully joins an NT domain, much as Windows
NT/200x/XP systems do. Samba can then exchange credentials with the domain controller and
use the full NT domain authentication system for its users.

ADS

This is the latest authentication method. It links Samba to a Windows 200x Active Directory
(AD) controller and uses native AD protocols for authentication. This system is also the most
difficult to configure and isn't fully described in this book.

If you use server-, domain-, or ADS-level security, you must tell Samba where to find the password
server. This task can be accomplished with the global password server parameter, which accepts a

list of one or more names or IP addresses. If you specify a name, it's looked up in the order specified
by the name resolve order parameter. If you use domain- or ADS-level security, the remote servers
must be domain controllers. Alternatively, you can specify an asterisk (*) to have Samba attempt to

locate its domain controller automatically.

Don't use the password server parameter or domain- or ADS-level security on

a system that you configure as a domain controller. Such systems should use
user-level security and should omit the password server parameter.

3.5.4.2 Using server-level security

Server-level security can be a quick way to use a remote password server. This configuration
requires you to enter options like this:

security = Server
password server = 172.24.21.98

Of course, you'd adjust the IP address for your own network. Little else is required for this
configuration, at least on the Samba server that users access directly. You must ensure that
appropriate user accounts exist on the password server system, though. Those accounts must also
match the local Linux user accounts on the Samba server you're configuring; using a remote
password server doesn't obviate the need to provide local Linux accounts for Samba's use.

http://lib.ommolketab.ir

Windows networks frequently employ longer usernames than do Linux systems;
for instance, CarlLinnaeus rather than linnaeus. If your password server uses
such usernames, you can map them to conventional Linux usernames with the
username map parameter. This parameter accepts a filename that contains
mappings of Linux to Windows usernames, as in linnaeus = "Carl Linnaeus".

When Samba receives a logon request from CarlLinnaeus, it authenticates
against the password server using that name but uses the local linnaeus
account. Although you can use this parameter with user-level security, it's most
frequently employed with server-, domain-, or ADS-level security.

3.5.4.3 Using domain-level security

A more complex configuration than server-level security looks nearly identical to it in smb.conf:

security = Domain
password server = 172.24.21.98

However, this configuration requires joining the Samba server to the domain using the net command.
You can accomplish this task by passing the join subcommand to net:

net join member -U
adminuser

In this example, the system is joined as a member of the domain specified by the workgroup
parameter in smb.conf and controlled by the domain controller pointed to by password server. You
must specify an account to use on the domain controller for this operation with the -U parameter.

This account must have administrative access to the domain controller's account database, because it
must add a machine trust account for your Samba server. This machine trust account is used in the
authentication process for individual user logons.

As a practical matter, domain-level security is a bit tougher to configure than is server-level security,
but it's more reliable in some situations. If necessary, you can use the username map parameter, as

described in Section 3.5.4.2, to associate Linux usernames with Windows usernames.

Chapter 5 describes configuring a Samba server as a domain controller,
including the domain controller configuration options required to enable joining
other Samba servers as full domain members.

http://lib.ommolketab.ir

3.6. Summary

If you've been making changes to your Samba server's configuration as you've read this chapter, it
should now be functioning in a rather minimal way on your network. You should understand the
basics of the Samba configuration file format, and you should be able to make your server appear in
clients' SMB/CIFS browsers. If at least one share is defined (as is common in sample smb.conf files),
you should also be able to log on to the Samba server from clients, thanks to appropriate settings for
the password options on both client and server. Of course, these tasks aren't enough; in most cases,
you run a Samba server in order to share files or printers, which means you need to be able to define
appropriate shares. This task is the topic of Chapter 4.

http://lib.ommolketab.ir

Chapter 4. File and Printer Shares
Chapter 3 described basic Samba configurationassigning NetBIOS and workgroup names to the
Samba server, setting password options, and so on. In most cases, though, a Samba server's
primary responsibility is to provide file and printer shares to clients. This is the topic of this chapter.

This chapter begins with a look at file shareshow to define them, set access options, and so on.
Printer shares are basically just variants of file shares, but because they must interface with the
Linux printing system, this chapter describes a few details of Linux's printing architecture, including
the basics of configuring the Common Unix Printing System, the most popular printing software on
Linux. Another printing-related feature is the delivery of printer drivers to Windows systems;
SMB/CIFS and Samba support special options to handle this task. Finally, this chapter concludes with
several example shares that demonstrate common file- and printer-sharing scenarios.

http://lib.ommolketab.ir

4.1. Common File Share Options

At many sites, file sharing is the most important duty of a Samba server. File shares can store users'
data files and programs run by many users, exchange data between users, be part of a network
backup system, and serve other purposes. (Examples of shares for many of these roles appear in the
later Section 4.5.) You can create a basic file share with just one line in smb.conf, but fine-tuning it to
do what you want will take more lines. Options you may want to tune include those that control write
access to the share, those that adjust how Samba reports filenames to clients, and those that
influence local Linux or client filesystem security features.

4.1.1. Defining a File Share

A minimal file share consists of a single line that contains the share name in square brackets:

[sample]

If you include this line in smb.conf at the end of the file, or with another share definition immediately
following it, Samba will create a file share called SAMPLE. This share will be a read-only share
corresponding to the /tmp directory on the server. Chances are these options aren't the ones you
want. At a minimum, you'll almost certainly want to use the path parameter or its synonym,
directory. These parameters tell Samba what directory to use as the root of the share you define.

For instance, to share /var/samba/somedir, you might enter a share definition like this:

[sample]
 path = /var/samba/somedir

This entry creates a file share that appears in Windows network browsers as SAMPLE, just like the
previous definition; but this share provides read-only access to files in /var/samba/somedir. Note
that the share name (SAMPLE in this example) and the name of the directory to be shared
(/var/samba/somedir) are unrelated. Of course, they could be related, and doing so can help you
administer your system, but doing it isn't strictly necessary. Other share-level options you might
want to use include the following:

available

This parameter's value defaults to Yes, which makes the share available. If you want to
temporarily disable a share, you can set available = No. (This won't work for the [homes]

share, which is described in the later Section 4.5.1.) The effect is much the same as
commenting out or deleting the entire share definition.

http://lib.ommolketab.ir

comment

This share-level parameter is a share's equivalent of the global server string parameter; it

creates a description of the share that's visible from clients' file browsers.

browseable

Shares that are browseable appear in file browsers on clients. Those that aren't browseable
don't appear in browse lists but are still accessible to users who type the share name into an
access tool. By default, Samba makes file shares browseable, but you can hide them by setting
browseable = No. This parameter is also usually set to No for [homes] shares, as described in

Section 4.5.1.

4.1.2. Setting Write Access

The default for Samba file shares is to provide read-only access. Of course, many types of shares
must be read/write in order to be useful, so Samba provides a way to provide this type of accessin
fact, several ways. The writeable, writable, and write ok parameters are all synonyms, and when
any of them is set to Yes, read/write access to the share becomes possible. The read only parameter
is an antonym for these parameters; setting read only = No has the same effect as setting
writeable = Yes.

In addition to the critical writeable parameter or one of its synonyms, several other parameters

affect write access to the share based on other features:

invalid users

This share-level parameter doesn't strictly affect write access; instead, it provides a list of
users who are denied all access to the share. All users who aren't explicitly listed are granted
access to the share. You can specify a Linux group by preceding its name with an at sign (@) or
a plus sign (+), as in @students. (The @ sign first attempts to look up a netgroup name and

then uses the local group database. The plus sign uses the local group database alone.)

read list

You can provide a list of users who are permitted only to read the files on an otherwise
read/write share with this share-level parameter.

valid users

This share-level parameter is the opposite of invalid users; it provides a list of users who are

permitted to access the share. Attempts by other users to access the share are denied. You

http://lib.ommolketab.ir

can specify a Linux group by preceding its name with an at sign (@) or a plus sign (+), as in
@students.

write list

This share-level parameter is the opposite of read list; you provide a list of users who are

permitted to write to an otherwise read-only share. It's often used to specify share
administrators who may add files to a share.

Setting writeable = Yes, one of its synonyms, or one of the modifier parameters, is enough to

provide read/write access to a shared directory from Samba's perspective, but you must also
consider the underlying Linux permissions. In most cases, Samba uses the access rights of the user
who initiated a connection. For instance, if the user linnaeus is accessing a share, and if linnaeus
doesn't have write access to a directory, Samba won't be able to save files in that directory for this
user. Thus, you should consider user access rights from a traditional Linux permissions perspective
when preparing file shares. Modifying Samba's permissions system is described in Section 4.1.4, and
practical examples of some systems are described in the Section 4.5.

Samba provides some extremely powerful options for modifying both read and
write access to its shares. As a general rule, though, it's best to keep it simple;
overuse of sophisticated access control tools can create a complicated
configuration that will easily break. Worse, you might inadvertently create a
security hole that a user can exploit accidentally or deliberately.

4.1.3. Setting Filename Options

Windows and Linux make different assumptions about filenames. Because SMB/CIFS is so strongly
associated with Windows and related clients, Samba is designed around the Windows assumptions.
The problem comes in translating filenames stored on a Linux filesystem into the format expected by
Windows. Samba provides many parameters that help you accomplish this goal. Broadly speaking,
differences come in a few areas:

Filename length

Most Linux filesystems provide long filenamestypically up to 255 characters. Windows clients
can use long filenames, but they also expect to see short filenames (eight characters with a
three-character extension, or so-called 8.3 filenames) in addition to the long filenames. Older
DOS clients can use only the short filenames. DOS and 16-bit Windows programs require short
filenames even when they're run from more modern versions of Windows. Because Linux
native filesystems store a single filename and don't automatically create shortened filenames
that correspond to long filenames, Samba generates short filenames on the fly, using a process
called filename mangling. Samba provides several parameters that enable you to fine-tune this
mangling process.

http://lib.ommolketab.ir

Filename case

Linux filesystems are case-sensitive; two filenames that differ only in case, such as afile.txt and
AFile.TXT, are considered unique. Both files can exist in a single directory, and if you enter the
filename's case incorrectly, Linux won't be able to access an existing file. Windows, by contrast,
is case-retentive: filename case is preserved when you save a file, but the OS doesn't care
about case when you specify a filename. This means that two files that differ only in case can't
exist in the same directory. DOS is even more primitive; it uses completely case-insensitive
filenames. DOS stores all filenames entirely in uppercase. (DOS programs can usually access
lowercase filenames on a Samba server, though.) Samba provides case-sensitivity options,
some of which interact with filename mangling options, to accommodate these different case-
handling systems.

Character sets

Traditionally, filenames have been stored on both Windows and Linux filesystems using the
American Standard Code for Information Interchange (ASCII). ASCII is inadequate, though, for
storing filenames that contain letters from non-Roman alphabets, such as Cyrillic or Arabic
letters. An older solution to this problem involved code pages, which are basically alternatives
to ASCII. A more modern solution uses Unicode, which uses a 16-bit encoding system for
characters, thus greatly increasing the number of characters that can be used in filenames.
Samba must have a way to translate between either system and the filenames actually stored
on the disk.

As a general rule, Samba's default options work well. These defaults cause Samba to present the
illusion of a case-retentive filesystem with both long and short filenames. Samba does this by looking
for files that differ only in case when a provided filename can't be found, and by creating mangled
filenames to go along with long filenames when the client requests them. Sometimes, though, you
may need to tweak these settings by using some parameters:

case sensitive

This share-level Boolean parameter controls whether Samba treats filename access in a case-
sensitive way. The default value of No works well with DOS and Windows clients, and, in fact,

DOS and Windows 9x/Me clients will likely misbehave in various ways if you set this option to
Yes. Windows NT/200x/XP is better at handling case-sensitive filenames, but case sensitive
= No is still the preferred option for it. Some Linux and Unix clients may work better with case
sensitive = Yes, but this setting usually isn't required even for these clients. Samba 3.0.6
introduced the Auto value for this option and made it the default. This setting enables the
server to detect some clients' preferred case sensitivity and should work with the Linux cifs

filesystem, among others.

preserve case

When set to the default value, Yes, this share-level Boolean parameter causes Samba to store
new files in the same case as provided by clients. When set to No, Samba converts filenames to

http://lib.ommolketab.ir

the case specified by default case (described shortly). Setting this option to No can be handy

if you have clients that generate ugly all-uppercase filenames, and you want to access the files
from other clients.

short preserve case

This parameter works just like preserve case, but it applies only to short (8.3) filenames.

default case

This share-level parameter accepts values of Upper and Lower. It defaults to Lower, but this
default is meaningless unless you set either preserve case or short preserve case to No. If

you do so, Samba converts newly created filenames to the specified case.

mangled names

When set to Yes (the default), this share-level Boolean parameter causes Samba to generate

mangled filenames for files longer than the DOS 8.3 limits. These names are delivered in
addition to the regular filenames, so this option won't cause problems for clients that expect
long filenames. This feature is most important for DOS clients, but it can also be important for
Windows clients that run DOS or 16-bit Windows programs.

mangle case

Ordinarily, Samba doesn't mangle short filenames that don't match the client's case
expectations. If you set mangle case = Yes, though, Samba mangles filenames that aren't
entirely in the case specified by default case. Chances are this action won't be necessary,

and in fact it's likely to produce very ugly results, but it's conceivable you'll run across some
DOS programs that choke on lowercase names, in which case using this option may be your
only solution. This option was eliminated over the development of the 3.0.x versions of Samba.

mangled map

This share-level option specifies pairs of filename wildcards that should be mangled in particular
ways. For instance, mangled map = (*.html *.htm) converts all filenames that end in .html so

that they end in .htm instead. Unlike other mangling options, this one applies to all filenames,
not just those delivered to DOS or as short filename alternatives to Windows clients. This
option is not being actively maintained and so may develop bugs in the future.

mangling method

Samba uses one of two methods to create mangled filenames. You can specify which method

http://lib.ommolketab.ir

to use with this global parameter, which accepts values of hash and hash2. The latter option,

which is the default with Samba 3.0 and later, produces filenames that bear less resemblance
to the original than does the first, but hash2 is also less likely to produce collisionsidentical

hashes derived from different original filenames.

mangle prefix

This global parameter sets the number of characters to be preserved from the original filename
when creating a mangled filename using the hash2 mangling method. The default value is 1,

but you can improve the intelligibility of mangled filenames by increasing this value (the
maximum is 6).

unicode

This global Boolean parameter defaults to Yes, which tells Samba to support Unicode filenames

provided by clients. Normally there's no need to change this parameter. It's available only in
early 3.0.x releases and has been dropped in later versions.

dos charset

You can tell Samba what code page to use when communicating with older clients that don't
support Unicode with this global parameter. You specify code pages using three-digit codes
preceded by the string CP, as in CP850 (Latin 1, which works well for most North American
systems) or CP866 (Cyrillic). This option is new with Samba 3.0.

unix charset

This global parameter sets the name of the character set Linux uses for its filenames. The
default value is UTF8. This value stands for Unicode Transformation Format 8, which is a

method of encoding Unicode in an 8-bit character set such as ASCII. Ordinarily, you won't
change this option, which is new with Samba 3.0.

client code page

This global parameter was used through the 2.2.x versions of Samba as a way to specify what
code page the client used. It's since been replaced by dos charset. This parameter takes code
page numbers without a preceding CP string, as in 850 or 866.

character set

This global parameter was used in Samba through the 2.2.x series to tell the server how to
encode different code pages on the server's filesystem. Values were character set values, such

http://lib.ommolketab.ir

as ISO8859-1 (Latin 1) or KOI8-R (Cyrillic). This parameter has been replaced by unix
charset in Samba 3.0 and later.

This list of parameters may be intimidating (and I've even left out some of the more exotic options!),
but in most cases, you need not change any of these values. When dealing with DOS clients, though,
you might want to adjust the short preserve case option, if you want to force DOS filenames to

appear in all-lowercase on the server. (This will make them look better in most non-DOS clients.)
Changing mangle prefix can improve the intelligibility of mangled filenames on DOS clients. Linux
and Unix clients can benefit from setting case sensitive = Yes, but this change isn't usually
required. (For versions of Samba that support Auto for this parameter, using this feature is usually

better, too.) If your users regularly create files with non-ASCII filenames, you may need to
investigate the various character set and code page options.

You can place filename options in OS-specific configuration files and use the
include parameter with the %a variable in the [global] section to load them
only for appropriate client OSs. For instance, add include = smb-%a.conf to

smb.conf and then create files called smb-WfW.conf, smb-Samba.conf, and so
on, in which you store OS-specific options. Table 3-1 describes the %a variable

and its possible values.

4.1.4. Setting Access Control Features

Linux uses Unix-style access control mechanisms, which provide read, write, and execute permissions
for each of three classes of users: the file's owner, the file's group, and all other users (a.k.a. world
access). Linux also provides access control lists (ACLs) in most of its native filesystems, although
Linux ACL support is still new and few programs are designed with it in mind.

Windows and SMB/CIFS, by contrast, originally provided little in the way of access controls; users
who mounted a share were given access to all files on the share. Windows NT/200x/XP, though,
provides ACLs similar to Linux ACLs. Integrating these two access control heritages can be tricky
sometimes, particularly because Samba must support both older clients that don't use ACLs and
newer clients that do. In order to accomplish this task, Samba provides a series of options that affect
the way it treats Linux file ownership, Linux file permissions, DOS-style filesystem features, and
ACLs. Recent versions of Samba also support Unix extensions, which are extensions to SMB/CIFS
that more directly support Unix-style ownership and permissions. Samba's Unix extensions support is
intended for Linux or Unix clients.

4.1.4.1 Setting Linux ownership

Linux's local file security model relies heavily on the concept of file ownershipboth the file's owner and
the file's group. In order to interface Samba clients with this system, Samba provides several
smb.conf parameters that affect the ownership of files a user creates. In conjunction with existing
files' permissions, Samba's ownership parameters also influence whether a user is granted the right
to read or change an existing file. The most important of these parameters are as follows:

http://lib.ommolketab.ir

force user

You can pass a local Linux username to this share-level parameter to have Samba treat all file
accesses as if they originated with the specified user. For instance, force user = linnaeus tells

Samba to give the user read access to those files that linnaeus can read, write access to files
that linnaeus can write, and so on. Files created when accessing the share are owned by
linnaeus. In addition, unless you use force group, the group used for accesses is set to the

specified user's default group. The default is to use the account of the username provided by
the user (or mapped by username map, if you employ that parameter).

force group

This share-level parameter is similar to force user, but it applies to the group used for file
accesses. A synonym for this parameter is group.

guest ok

This Boolean share-level parameter tells Samba whether to accept guest accesses to the
sharethat is, accesses without the benefit of a password. If guest ok = Yes and if a guest
logon occurs, Samba uses the account specified by guest account for accesses, much as if
force user had been used. A synonym for this parameter is public. Note that the global map
to guest parameter must also be set appropriately before this parameter will work.

guest account

This global option sets the account used for guest accesses, as authorized on a share-by-share
basis by guest ok. The default value is a compile-time option, but it's usually set to nobody.

map to guest

This global parameter controls the conditions that trigger a guest logon. Samba accepts values
of Never (Samba never accepts a guest logon; this is the default value), Bad User (Samba
accepts a guest logon when a user specifies an invalid username), and Bad Password (Samba

accepts a guest logon when a user specifies an invalid username or password).

Generally speaking, the best approach is to use Samba's default options. Forcing Samba to use
particular users or groups can be a convenient way to avoid having to set permissions properly on
files (including ensuring that Samba sets them in a sensible way), but forcing a user or group also
means that you'll lose information. Should strange files begin appearing, for instance, it may become
very difficult to track down who's creating the files if you use force user.

4.1.4.2 Setting Linux permissions

File ownership alone doesn't go very far in Linux. To be effective, ownership must be paired with file

http://lib.ommolketab.ir

permissions (a.k.a. the file mode). Linux's traditional Unix-style permissions apply read, write, and
execute permissions to each of three classes of users: the owner, the group, and the world. Each of
these permissions is a single bit, for a total of nine bits of permission information. These may be
expressed as a string, as in rwxr-x---, in which a dash (-) stands for no permission and an r, w, or
x stands for read, write, or execute permission, respectively. Alternatively, ownership may be

expressed as three octal (base-8) numbers corresponding to the 3-bit value for read, write, and
execute permission, as in 750 for rwxr-x---. A leading 0 is often added to the octal form of the

mode; higher values signify some special file-permission bits. A leading dash is often added to the
string value. This dash is replaced by other characters to signify particular file types, such as d for a

directory.

Because DOS and Windows know nothing about Unix-style permissions, and therefore don't pass
information on appropriate permissions when creating new files, Samba must generate this
information. It does so as specified by these parameters:

create mask

This share-level parameter specifies the default and maximum permissions to apply to new files
created by the client. It's expressed in an octal form, as in create mask = 744 (the default

value). Note that clients can remove write access by setting the DOS read-only flag. If you
enable any execute permissions (by specifying an odd value for any of the three octal digits),
they can also be removed by the client if the appropriate DOS attribute mappings are
configured, as described in Section 4.1.4.3. A synonym for this parameter is create mode.

directory mask

This share-level parameter works just like create mask, except that it applies to directories

rather than files. Because Linux requires the execute permission bit to be set on directories for
some read operations, this parameter typically uses octal values of 7, 5, or 0, as in directory
mask = 755 (the default value). A synonym for this parameter is directory mode.

inherit permissions

This share-level Boolean parameter defaults to No, but if you set it to Yes, it overrides create
mask and directory mask. In this case, files and directories acquire permissions based on the

values of their parent directories. (The execute bits of parent directories are stripped when
creating files, however.) For instance, if a directory has a mode of 750 and a user creates a
subdirectory in that directory, it will also have a mode of 750.

You should give careful thought to the values you specify for these parameters. Setting permissions
too loosely can enable users who don't own the file the ability to read (or potentially even write) files
and directories to which they should have no access. On the other side, setting these values too
strictly can deny access to users who should be able to read or write files. Precisely what policy is
right varies from one site to another, and perhaps even one share to another. Several examples
appear in the Section 4.5.

http://lib.ommolketab.ir

4.1.4.3 Mapping DOS-style flags

DOS and its descendent operating systems, including Windows, support several filesystem flags that
don't appear in Linux or Unix filesystems. In order to support these flags, Samba can optionally map
them onto the execute permission bit, which DOS and Windows don't use. Several parameters control
this mapping:

map archive

The DOS/Windows archive bit is set when a file is created and cleared when it's backed up with
certain backup tools. If you set map archive = Yes (the default), Samba maps this bit to the

owner execute bit.

map hidden

The DOS/Windows hidden bit signals certain programs, such as file managers, to hide the
presence of a file from users. The file is still accessible but won't appear in file listings. This bit
can be used to hide files that would likely confuse users. If you set map hidden = Yes (the
default is No), Samba stores this bit using the world execute bit.

map system

The DOS/Windows system bit marks certain critical OS files as such. Most file managers hide
these files, and some utilities treat them differently from other files. Chances are you won't be
storing system files on a Samba server, so the default value of this parameter is No, but if you
set it to Yes, Samba stores this bit in the group execute bit.

store dos attributes

This share-level Boolean parameter defaults to No. When set to Yes and when the preceding
three options are all set to No, store dos attributes causes Samba to store the DOS-style

archive, hidden, and system attributes as extended attributes (EAs) on the Linux filesystem.
EAs are supported only on the 2.6.x and later kernels and require the user_xattr filesystem

mount option. They also require explicit filesystem support, which is present in ext2fs, ext3fs,
ReiserFS, JFS, and XFS, but Linux doesn't support EAs in most non-Linux filesystems. One
advantage of this parameter is that it supports storing attributes for directories as well as files.
This parameter was added to Version 3.0.3 of Samba.

The first three of these parameters interact with the settings of the create mask parameter; if either
create mask or the appropriate mapping parameter disables a particular execute bit, users can't set

the matching DOS/Windows flag. The mapping works both ways; if you enable a mapping and then
create a file under Linux that has execute permissions set (say, a script), it appears to Samba clients
with the archive, hidden, or system bits set. For this reason, if you wish to let users legitimately
create executable Linux files, leave these parameters at the default; this prevents the files from

http://lib.ommolketab.ir

disappearing from view in Samba clients because of hidden or system bits appearing on these files.
Disabling the archive bit (either by setting map archive = No or by setting a create mask value that

disables access to the user execute bit) prevents files created on Samba clients from appearing under
Linux as executable files.

Under Linux, the equivalent of hidden files are dot filesfiles whose names begin with dots (.). If a
share will be accessible both from Samba clients and from Linux logins, you may want to ensure that
hide dot files is set to Yes, as it is by default. This option tells Samba to set the hidden bit on all
Linux dot files, no matter what the setting s of the world execute bit and the map hidden parameter

are.

4.1.4.4 Using ACLs

ACLs provide a finer-grained method of access control than do Unix-style permissions. Windows NT
has long supported ACLs on its New Technology File System (NTFS), and SMB/CIFS also supports
ACLs. This support has only recently started to become common with Linux, though. In particular,
the 2.6.x kernel series adds ACL support to most common Linux filesystemsas of the 2.6.7 kernel,
ext2fs, ext3fs, JFS, and XFS all support ACLs. (With earlier kernels and most common Linux
filesystems, you had to patch the kernel to add ACL support. Consult http://acl.bestbits.at for
details.)

Samba has long supported the SMB/CIFS ACLs as a tool for accessing Unix-style permissions from
Windows NT/200x/XP systems. If you use an ACL-enabled filesystem, this same support gives
Windows users fuller access to the Linux filesystem's ACL features. This support is, however, a
compile-time option. To determine whether your Samba binary includes ACL support, type smbd -b |
grep -i HAVE.*ACL. The result is a list of the ACL features in the smbd binary. The following

parameters control this support:

inherit acls

This Boolean share-level parameter is similar to inherit permissions, but it tells Samba to
copy ACLs from a parent directory when creating new subdirectories. The default value is No.

nt acl support

This Boolean share-level parameter is the key ACL feature; setting it to Yes tells Samba to

enable SMB/CIFS ACL support, mapping it to the server's Unix-style permissions and, if
supported, local filesystem ACLs.

security mask

This share-level parameter tells Samba which Unix-style permissions should be accessible to
clients. The default value (777) gives users access to all the Unix-style permission bits.

http://acl.bestbits.at
http://lib.ommolketab.ir

directory security mask

This share-level parameter works just like security mask, but it applies to directories rather

than files.

Samba's ACL features require the client to know more about the underlying
Linux accounts than is necessary for most other purposes. Samba can most
easily provide this information in user- or domain-level security modes (set with
the security parameter, as described in Chapter 3). Attempting to use ACLs

when using share- or server-level security is likely to cause problems. In the
case of share-level security, username mapping can vary between logins; for
server-level security, the authentication against the logon server is too
convoluted to be traced properly by Samba.

Whether your underlying filesystem supports ACLs or not, clients access these features using the
file's Properties dialog box, which can be obtained by right-clicking the file in a Windows file browser
and selecting Properties from the resulting dialog box. The Security tab provides access to the ACLs
or Unix-style permissions, as shown in Figure 4-1.

Figure 4-1. Windows ACL access tools work on Samba shares once
they've been appropriately enabled

Precisely how you manipulate ACLs differs between Windows versions. Figure 4-1 shows a Windows

http://lib.ommolketab.ir

2000 dialog box, in which users can click on the appropriate box in the Allow column to enable or
disable access. If your Samba server system supports true ACLs, users can also click the Add button
to add a new ACL that gives some other user access to the file. Older versions of Windows used a
more awkward ACL-access mechanism that involved more dialog boxes. Even if Samba supports
ACLs, these features aren't accessible from Windows 9x/Me or from the Home version of Windows
XP.

4.1.4.5 Enabling Unix extensions

Most Samba features are designed with Microsoft-style clients (DOS, Windows, or OS/2) in mind. A
few, though, cater to other operating systems; unix extensions is one that may be of particular

interest. It's a global Boolean parameter that tells Samba whether to support a set of SMB/CIFS
extensions that deliver Unix-style filesystem dataUnix-style ownership, Unix-style permissions, and a
few special file types such as hard and symbolic links. This parameter defaults to Yes in Samba 3.0

and later and shouldn't cause problems for non-Unix clients; thus, chances are you don't need to
change it.

In order to do any good, the unix extensions parameter must be paired with a client that can use

them. As the name suggests, these extensions are intended for use by Unix-like OSs; Windows
clients can't use them. Some Linux clients can use them, though, including Samba's own smbclient
and the cifs filesystem type code for Linux's mount command. Chapter 6 describes how to use the

Unix extensions from a Linux client computer.

Linux client-side Unix extensions support is still rather limited. Enabling it on
the Samba server shouldn't do any harm, but for Linux-to-Linux (or Linux-to-
Unix) file sharing, NFS still offers better support for Unix-style filesystem
features than does Samba. This may change in the future as the Unix
extensions support matures, both in Samba and in the Linux kernel.

http://lib.ommolketab.ir

4.2. Printing with CUPS

Although file shares are an important feature of many Samba servers, printer shares are also
important. Before you can configure a Samba printer share, though, you must have a working local
printer configuration. Most Linux distributions now use the Common Unix Printing System (CUPS;
http://www.cups.org) as the local printing software. Therefore, before moving on to describing
Samba printer share configuration, I present some basic information on CUPS configuration.

4.2.1. Installing CUPS

Because CUPS is a standard part of most Linux distributions, it may be installed on your system
already. Use your package tools to look for a package called cups. If it's not installed, your computer
either has no printing system installed or it uses an older printing system, such as LPRng or BSD LPD.

If your system uses an older printing system, you can either uninstall it and install CUPS in its place
or forgo CUPS and use the older system instead. Samba configuration is similar in either case, and if
local printing is working to your satisfaction, leaving your current printing system in place is likely to
be the less troublesome solution, so you may want to skip ahead to Section 4.3. If you want to switch
to CUPS, you should uninstall your existing printing software, if it's installed. In an RPM-based
distribution, the -e parameter to rpm can uninstall the software: rpm -e lprng uninstalls the lprng
package, if that's what your system uses. In Debian or its derivatives, the -r parameter to dpkg
should do the job, as in dpkg -r lprng.

Once your system is shed of any printing system, the best way to install CUPS is to use a package for
your distribution. These packages include SysV startup scripts designed for your distribution, as well
as sample configuration files and perhaps patches. As with uninstalling programs, using your package
system is usually the best approach. Some tools, such as Debian's apt-get and Gentoo's emerge,
work over the network; for instance, typing emerge cups on a Gentoo system downloads and installs

CUPS. Other tools, such as rpm on an RPM-based system or Debian's dpkg, require that you have a
package file available locally. Frequently, these files are available on your installation CD-ROMs.

If you're using an older distribution, or one of the rare modern ones that doesn't yet provide CUPS as
at least an option, you can obtain the CUPS source code from its web page. You must then compile
and install the software locally. Consult the CUPS documentation if you need help doing this.

Linux printing, like the Unix printing systems before it, typically works on a PostScript model: printers
are assumed to be PostScript printers, and programs that print generate PostScript files. (Some
programs with simpler printing needs generate plain-text printing output, though.) Most printers sold
today aren't PostScript models, though. For this reason, CUPS, like other printing tools, relies on
Ghostscript (http://www.cs.wisc.edu/~ghost/) and related tools to convert PostScript into formats
suitable for whatever printer you actually use. Frequently, installing CUPS automatically installs
Ghostscript and perhaps a set of drivers and descriptions that CUPS uses to help pass data through
Ghostscript. Particularly if you use a lower-level package management tool, you may need to install
these tools manually before you can install CUPS; the package tool will complain about an unmet
dependency if you haven't installed the appropriate prerequisites. In some cases, you may need to

http://www.cups.org
http://www.cs.wisc.edu/~ghost/
http://lib.ommolketab.ir

search for and manually install some driver files. One site that's likely to be helpful in this respect is
the Linux Printing web site, http://www.linuxprinting.org/printer_list.cgi. Enter your printer brand and
model in the selection boxes, and then click the Show button to obtain a report on the printer's
compatibility with Linux. This page may include links to special drivers for some particularly new and
exotic models. In most cases, downloading the PostScript Printer Description (PPD) file is worthwhile;
it's often not necessary, but when it is, you can quickly add it to your system's printer list.

A basic CUPS installation knows how to handle generic PostScript printers and a few common non-
PostScript models from a handful of manufacturers. If you begin following the options presented in
the Section 4.2.2 and can't locate your printer model, you may need to track down and install
additional drivers and/or CUPS printer descriptions. These are available from several different
sources:

Your distribution

Most Linux distributions ship printer definitions in a package called cups-drivers or something
similar. This package may just be a renamed version of one or more other printing packages.

Foomatic

The Linux Printing site provides a series of CUPS printer definitions at
http://www.linuxprinting.org/foomatic.html. The information for particular printers on the Linux
Printing site is likely to point you to a Foomatic driver for the printer.

GIMP Print

The GNU Image Manipulation Program (GIMP) is a popular graphics package for Linux, and it's
spawned a series of Ghostscript drivers and CUPS printer definitions that can be used even
without the GIMP. Check http://gimp-print.sourceforge.net for more information on this
package.

ESP Print Pro

Easy Software Products (ESP) developed CUPS and released it as open source software. ESP
makes commercial printer definitions available, though; check
http://www.easysw.com/printpro/ for details.

After you install one of these packages and restart the CUPS daemon, you should be able to select
your printer by make and model in the CUPS configuration tools. In a few cases, though, you'll need
to select a compatible model. For instance, many mid-range laser printers use the Printer Control
Language (PCL) created by Hewlett-Packard (HP). Thus, you may be able to get a printer working by
selecting an appropriate HP LaserJet model even if yours is another make. Consult your printer's
documentation to learn if it's compatible with a more popular model.

http://www.linuxprinting.org/printer_list.cgi
http://www.linuxprinting.org/foomatic.html
http://gimp-print.sourceforge.net
http://www.easysw.com/printpro/
http://lib.ommolketab.ir

Printer Definition Files

In the case of PostScript printers, you should be able to use a generic PostScript
configuration. Pointing CUPS to a definition for your specific model can improve the
ability of some Linux programs to use printer-specific features, such as duplexing or wide
carriages. The printer definitions just described include appropriate files for many
models. If you can find a PPD file (their filenames end in ppd or PPD) on a CD-ROM that
shipped with the printer or on the printer manufacturer's web site, though, you can use
it. CUPS PPD files reside in subdirectories of the /usr/share/ppd directory, so place the
file in an appropriate subdirectory or create a new one. (Subdirectories are named for
printer manufacturers.) The files should show up when you try to add a printer, as
described shortly.

Non-PostScript printers require PPD files with a few extra features, such as a
*cupsFilter line to specify the Ghostscript driver to be used. Thus, this approach is

unlikely to work for non-PostScript printers, unless you can find a PPD file designed to
use with CUPS and Ghostscript; that's what the printer description packages, such as
Foomatic and GIMP Print, are designed to do. Some, but not all, ways of delivering
drivers to Samba clients rely on the PPD files you install in CUPS, as described in Section
4.4.

4.2.2. Adding Printers to CUPS

The simplest way to add printers to CUPS is to use the CUPS web-based administration tool. This tool
runs on port 631 and is accessible by entering http://localhost:631 in a web browser running on the
computer you want to configure. (You may be able to use the hostname rather than localhost, or
even access a CUPS server from another computer on your network, depending on the CUPS security
settings.) The result is a list of CUPS server options, such as Manage Printer Classes and Manage
Jobs. Click the Manage Printers item to add, delete, or modify printer definitions. If this is the first
time you've done this in your current session, you'll be asked for an administrative username and
password. Type root and the root password. The result should resemble Figure 4-2, although this

figure shows a system with several printers already configured, and yours may show none set up.

Figure 4-2. CUPS provides a web-based tool for managing printers

http://localhost:631
http://lib.ommolketab.ir

CUPS can be configured to refuse all web-based administration features.
Configuring CUPS access controls is covered in the section Section 4.2.3, so
check there if you can't get into the CUPS web-based interface.

To add a local printer using the web-based interface, follow these steps from the printer
administration screen shown in Figure 4-2:

Click the Add Printer button at the bottom of the printer list. (This button is below the edge of
the page shown in Figure 4-2.)

1.

In the page that results, enter text for the name, location, and description of the printer. You'll
use the name you enter to refer to the printer, so make it short and descriptive, such as
hp4000 if your network has just one HP 4000 printer. The location and description fields provide
additional information for you and your users, so you can enter anything you like for them.
When you're done, click Continue.

2.

CUPS now asks for the printer devicethe hardware port to which it's connected. Chances are
you'll select a parallel or USB port. You can also select various network printer options, should
you want to configure a Linux system to use a remote printer queue. For this description, I
assume you're configuring a parallel printer; some options (particularly for network printers)

3.

http://lib.ommolketab.ir

deviate somewhat from this description. In particular, you must enter a network path for a
network printer device, such as lpd://server/queue for an LPD printer. Click Continue when
you're done.

CUPS presents you with a list of printer makes. If you've installed Foomatic, GIMP Print, or
some other printer description package, this list will be fairly long, and chances are your make
will be available. If not, either install additional packages and restart the CUPS daemon or select
a compatible make, such as HP or HEWLETT-PACKARD if you're using a PCL printer. Click
Continue when you're done.

4.

CUPS presents you with a list of printer models. Select yours. Sometimes you may need to pick
between two drivers for a single model. You can pick the one that's flagged as being
recommended, configure two queues so you can try both, or consult a source such as the Linux
Printing web site for advice. If you don't see your model, either pick a compatible one or use
your browser's back button to look for an alternate spelling for your printer make. When you've
selected a model, click Continue.

5.

CUPS should respond that the printer has been added. You can then click its name to bring up a
control panel for the printer. Figure 4-2 shows these options for three printers.

6.

Click Print Test Page to test the printer's functionality. After a brief delay, the printer should
spring into action and print a test page.

7.

Of course, the CUPS web interface, like other Linux GUI administration tools, works by modifying text
files. In the case of CUPS, most configuration files reside in /etc/cups and its subdirectories. In
particular, the file printers.conf defines the actual printers. If you prefer to directly modify the
configuration file yourself, you can do so by editing this file. Printer definitions begin with the string
Printer or DefaultPrinter (the latter is for the default printer; there should be only one of these)
followed by the printer name and enclosed in angle brackets (<>). Subsequent lines set the options

entered in the web-based tool; each begins with a keyword and continues with a string of some sort.
A few options, such as State, are adjusted by CUPS as it operates. An example entry looks like this:

<DefaultPrinter hp4000>
Info Hewlett-Packard HP LaserJet 4000 Series
Location Parallel printer on /dev/lp1
DeviceURI parallel:/dev/lp1
State Idle
Accepting Yes
JobSheets none none
QuotaPeriod 0
PageLimit 0
KLimit 0
</Printer>

As a general rule, it's easiest to create printer definitions using the CUPS web-based tool. Directly
editing the printers.conf file can be tricky because you must know the syntax for all of the options, as
well as option names. Directly editing the file can be a handy way to quickly make a change, though,
such as changing the default printer.

4.2.3. Adjusting CUPS Browsing and Security

http://lib.ommolketab.ir

In addition to printers.conf, another CUPS configuration file is critically important: cupsd.conf. This
file, which also resides in /etc/cups, controls overall server operations, including security features and
browsing. In the context of CUPS, browsing refers to the automatic discovery of printers that are
shared via the Internet Printing Protocol (IPP), the printing protocol used by CUPS for CUPS-to-CUPS
printer sharing. One of the main advantages of CUPS over earlier Linux printing systems is that CUPS
supports browsing. This fact can greatly simplify printer configuration on Linux clients: just ensure
that the server and client support browsing, and the client will automatically detect remote printers
and add them to its printer list. If you subsequently add a printer to a CUPS server, you won't need
to touch the clients; they'll detect the new printers within a matter of minutes.

To enable browsing on a CUPS server, open cupsd.conf in a text editor, and look for the Browsing

line, which will probably be about half-way through the file:

Browsing On

The default value for this option is On, meaning that browsing is enabled. Some distributions set this
parameter to Off, though, presumably as a security precaution. If you want a server to announce its
printers to other computers, be sure that Browsing is set to On.

After you make a change to the CUPS configuration file and restart the CUPS
daemon, it may take several seconds for clients to see the new printers.

You may also want to adjust the BrowseAddress lines, which appear shortly after the Browsing

option. This parameter specifies the network addresses to which browse lists should be broadcast. On
a small LAN, a value of @LOCAL should do well. This option tells CUPS to broadcast browse lists to its

local network interfaces. You can also specify network blocks using broadcast IP addresses, as in
192.168.17.255 to send broadcasts to the 192.168.17.0/24 network. In fact, you can include several
BrowseAddress lines to specify multiple networks:

BrowseAddress @LOCAL
BrowseAddress 192.168.17.255

On the client side, the BrowseAllow and BrowseDeny options specify addresses from which browse

packets should or should not be accepted. You can set these options as DNS hostnames, as domain
names preceded by dots (as in .example.com), as IP addresses, as IP address/netmask pairs, or in
various other forms. You can also use the same @LOCAL notation accepted by BrowseAddress.

Typically, you'll set a CUPS client to accept browse packets from your local network, and perhaps
from some others:

BrowseAllow @LOCAL
BrowseAllow 192.168.17.0/24

The default for BrowseAllow is All, which accepts all browse packets. This configuration is

appropriate for CUPS clients on small LANs, but if you're configuring a system on a larger network,
you may want to restrict the remote printers it adds by explicitly setting BrowseAllow.

http://lib.ommolketab.ir

Most of the options in cupsd.conf are global; they apply to the CUPS configuration as a whole. CUPS
also supports more fine-grained control in sections that are delimited by Location directives. These
begin with the keyword Location and a location name, surrounded by angle brackets (<>), and end
with </Location>:

<Location /printers>
Order Deny,Allow
Deny From All
Allow from 127.0.0.1
Allow from 192.168.1.0/24
Allow from 172.24.21.0/24
Allow From @LOCAL
</Location>

This example uses the Allow directive to tell CUPS to grant access to the specified computers and
networks. This example also controls access to the /printers location, which, as you might expect,
provides the means to access printers. Other locations of interest include the root (/), which sets the
default security policy; /jobs, which controls the ability to adjust job priorities, delete jobs, and so
on; and /admin, which controls administrative functions such as adding new printers. This last
section frequently includes AuthType and AuthClass options, which tell CUPS to require

authentication; after all, you don't want to let just anybody access the printer administration tools.

If you can't access the CUPS administration web page, try examining the
/admin location. Be sure that an Allow line grants access to the computer used
to access the server. Frequently, this is set to 127.0.0.1, for localhost access

only, but you can add more lines to grant access to other computers. I
recommend doing so with caution, though; granting other computers access to
a CUPS server is a potential security risk.

http://lib.ommolketab.ir

4.3. Creating a Printer Share

Now that you've got printers working on the Samba server using CUPS or some other printing
software, it's time to begin configuring a printer share in Samba itself. Printer shares are very much
like file shares, so you can configure printer shares much as you would configure file shares, but with
a few key differences. You'll also need to decide whether to share a non-PostScript printer as a
PostScript model (using Ghostscript to convert PostScript into the printer's native format) or using
native drivers on the clients (bypassing Ghostscript on the server).

4.3.1. File Shares Versus Printer Shares

SMB/CIFS printer shares are virtually identical to file shares from a Samba configuration perspective.
The difference is what the server does with files sent to the share by clients. In the case of file
shares, the files are stored in a local directory and then ignoredat least, until they're accessed by the
same or another client. In the case of printer shares, though, the server stores the file and then
passes that file to the local printing system. The printing system typically prints the file and then
deletes it. (Samba supports specifying an arbitrary command as the printing system, though, so you
can use "printer" shares to perform unusual tasks, such as creating a CD-R.)

Because SMB/CIFS printer shares are so similar to file shares, they're defined just as you would
define a file share, by placing the share name in square brackets, as in [okidata] to create a printer

share called OKIDATA. In order to create a printer share, though, you must set one or more
additional parameters:

printable

This share-level Boolean parameter, when set to Yes (the default is No), defines a printer

share; it alone will create a printer share, although it might not work, depending on other
parameters and the overall computer configuration. This parameter overrides the writeable

parameter and its synonyms; all printable shares are necessarily read/write. A synonym for
this parameter is print ok.

printing

This parameter sets the printing system that Linux uses. Samba supports 11 values (BSD, AIX,
LPRng, PLP, SysV, HPUX, QNX, SoftQ, CUPS, OS2, and NT), but only BSD, LPRng, and CUPS are
common in Linux. (The SoftQ option was removed early in the 3.0.x series, while OS2 and NT

are recent additions.) This parameter sets the defaults for several other parameters, enabling
Samba to most efficiently submit print jobs to your local print queues. Until Samba 3.0.3, this
parameter was global, but it's a now a share-level parameter.

http://lib.ommolketab.ir

print command

This share-level parameter sets the command that's used to print a file. The default depends
on the printing parameter. You can tweak this option to achieve special effects, such as

setting duplex printing. If you try changing this parameter, be sure that the command you
specify deletes the input file (identified by the Samba %s variable).

printer name

You can specify the name of the local print queue with this parameter. If you omit it, the
default is based on the share name; for instance, if the share is called OKIDATA, Samba will try
to submit the job to a queue called okidata. One important exception is described shortly. This
option actually sets the %p variable, which specifies the print queue in the print command.

printcap name

This parameter points Samba at a file that defines local printers. It's important only if you
define a [printers] share, as described shortly. Ordinarily, this parameter points to
/etc/printcap, but if you set printing = CUPS, you can also set printcap name = CUPS to

have Samba use the CUPS API to obtain a printer list. This requires CUPS support in the Samba
binary, which may be added or omitted as a compile-time option. If this support is missing, you
may still use printing = CUPS, but Samba won't use the CUPS API, and you may need to set
printcap name = /etc/printcap.

load printers

This global Boolean parameter tells Samba whether to load the printers specified in printcap
name for browsing. This parameter defaults to Yes, and if you intend to use a [printers]

share, you shouldn't change it.

min print space

To minimize the risk of problems due to insufficient disk space, you can specify a minimum that
must be present before Samba will accept a print job. This parameter takes disk space in
kilobytes; if less space is free in the target directory, Samba will refuse the print job. The
default value is 0, which disables this check.

Several other options are available to tweak features, such as the commands used to delete print
jobs, pause the print queue, and so on. Consult the smb.conf manpage for details. In addition, some
common file share parameters are important. Most notable of these is directory or its synonym,
path. These parameters tell Samba where to store the print job before it's submitted to the print
queue. The default value of /tmp usually works, but you may want to change this to a Samba-specific
directory, such as /var/spool/samba. You should not try pointing Samba to your CUPS, LPRng, or

other local printing system's queue! If you create a new Samba printer queue directory, be sure it's

http://lib.ommolketab.ir

readable to all users who are authorized to use the printer. You may also want to set the sticky bit on
the directory, which will prevent users other than the files' owners from deleting a file:

mkdir /var/spool/samba
chmod 777 /var/spool/samba
chmod o+t /var/spool/samba

One unusual printer share is defined as [printers]. If this share is present, Samba creates
individual shares for all of the shares in /etc/printcap (or another file specified by printcap name).
Using a [printers] share can greatly simplify printer configuration, particularly on a server with

many printers you want to share. This share is described in more detail in Section 4.5.4.

4.3.2. Sharing PostScript Printers

In Linux's native printing system, most programs treat printers as PostScript models. Part of the job
of CUPS (or any other Linux printing queue) is to pass PostScript files through Ghostscript to convert
them into formats that the printer can actually understand. (Of course, if the printer is a PostScript
model, this conversion process isn't necessary when programs generate PostScript output.) From a
purely Linux point of view, Samba is just another program; the fact that the files Samba prints
originate from another computer is unimportant.

The result of this arrangement is that sharing a printer as a PostScript printer is usually fairly
straightforward. If you can print from the Samba server computer itself using commands like lpr or
the CUPS test page printout, you can share a printer with a fairly basic smb.conf entry:

[epson]
 directory = /var/spool/samba
 printable = Yes

This entry makes a printer share called EPSON available to clients. On the clients, you must use a
PostScript driver to print to the printer, whether or not the printer is really a PostScript model; to the
client, it looks like a PostScript printer. (Windows printer drivers are described in more detail in
Section 4.4.)

Some Windows PostScript drivers generate output that can confuse a normal
Linux queue into thinking the file is not, in fact, PostScript. If your Windows
printouts to genuine PostScript printers consist of PostScript code rather than
the documents you intended, one workaround is to use a raw queue like the
one described in the Section 4.3.3, on the Samba server.

Sharing printers as PostScript models means that print jobs are sent over the network as PostScript.
In the case of text documents, this is generally fairly efficient because the content is mostly text,
rather than text converted to bitmaps. Using PostScript can also simplify driver installation and
maintenance on a network with many printers; you may be able to use just one driver for several
different printers. On the other hand, if the printer isn't really a PostScript model, the Samba server
computer will need to convert the text into some other form (usually a printer-specific bitmap), which
can consume a fair amount of CPU time on the server.

http://lib.ommolketab.ir

4.3.3. Sharing Non-PostScript Printers

When sharing a non-PostScript printer, another option is available: you can share the printer using a
"raw" Linux printer queue. This queue uses the local Linux printing system, such as CUPS, but it
bypasses Ghostscript. The result is that programs, such as Samba and its clients, must produce files
the printer can parse. Typically, you do this by installing and using a printer's native drivers, as
supplied by the manufacturer, on the Windows clients.

The Samba printer share configuration for a non-PostScript printer is likely to look much like the
configuration for a PostScript printer. The main difference on the Samba server side is in the Linux
printer queue configuration. In the case of CUPS, when you provide CUPS with the printer's make (in
Step #4 of the procedure in the Section 4.2.2), you select Raw, followed by Raw Queue as the model.
Alternatively, in Samba 3.0.3 and later, you can use the Samba cups options = raw parameter if
you set printing = CUPS. This option tells CUPS to handle the input as if it were to a raw queue. If
you're using LPRng or BSD LPD, omit the if line in /etc/printcap to create a raw queue.

When sharing printers in this way, the client generates printer-specific codes. For many low-end
printers, this means that the clients generate bitmaps, even when printing text. These bitmaps are
likely to be larger than PostScript files describing the same page, so raw printer queues may increase
the network bandwidth requirements of printing. On the other hand, because Ghostscript isn't
involved on the print server, the CPU requirements on the server are likely to be reduced. Non-
PostScript Windows printer drivers are also likely to provide access to printer features that aren't
easily adjusted through PostScript drivers, such as a printer's resolution.

When deciding between PostScript and raw queues, your best bet is to set up both types of queue
and evaluate performance yourself. Try printing some documents in both ways and judge the output
quality, print speed, and network load. You can then decide which method to use when you make the
printers available to all your users. In some cases, you may want to make a printer accessible in both
ways. This will enable your users to pick the optimum driversay, to use a PostScript driver when
printing text but to use a printer-specific driver when printing graphics.

http://lib.ommolketab.ir

4.4. Delivering Printer Drivers to Windows Clients

One critically important part of Samba printer configuration is distributing drivers to Windows clients.
This task can be accomplished in several different ways. One approach that requires little explanation
is to use the driver CD-ROM that came with the printer (or a generic PostScript driver for Ghostscript-
driven printers) to install the driver on all the clients. This approach is simple enough on a small
network, but it becomes awkward when many clients are involved. For these cases, SMB/CIFS
provides mechanisms to help deliver drivers to many clients, and Samba supports these mechanisms.

If you fail to configure Linux to deliver a Windows printer driver, Windows
NT/200x/XP clients may display spurious "unable to connect" error messages.
To avoid this problem, set use client driver = Yes. However, you should not

use this option if you configure Linux to deliver printer drivers to Windows
NT/200x/XP clients.

You can take a middle ground. Instead of using the semiautomated driver installation mechanisms
described here, you can create an ordinary file share that holds the printer drivers. You can then
install the drivers from that share on all the clients. This procedure obviates the need to carry a CD-
ROM around from one computer to another, or to keep track of the CD-ROM for the benefit of
computers you add after setting up the printer.

4.4.1. Picking a Driver

The first task you must undertake in driver installation is to select the drivers you want to install. To
a large extent, this decision depends on whether you share the printer using a PostScript queue or a
raw queue. (This difference is moot, of course, in the case of PostScript printers.) In many cases,
though, you can choose between drivers from more than one source:

OS drivers

Windows (and most other operating systems) ship with an array of printer drivers. You may be
able to select a driver from among those that ship with the OS. This is true for both PostScript
and non-PostScript drivers.

Printer manufacturer drivers

Printer manufacturers invariably ship Windows drivers with their printers. For older printers,
you may need to check the manufacturer's web site to obtain drivers that can work with more
recent versions of Windows.

http://lib.ommolketab.ir

Adobe's PostScript drivers

Adobe makes drivers for PostScript printers available from its downloads page
(http://www.adobe.com/support/downloads/). These drivers are generic PostScript drivers that
require PPD files to operate. (Adobe makes these available for printers with Adobe interpreters,
as well.) They're also licensed only for printers that use PostScript interpreters written by
Adobe.

The CUPS PostScript driver

A Windows PostScript driver is associated with the CUPS project. Because you can install this
driver from the Samba server computer without the help of a Windows system, it's particularly
simple to install, as described in Section 4.4.3.1. The CUPS driver works only on Windows
NT/200x/XP systems, however; if you need to deliver drivers to Windows 9x/Me systems, you'll
need another driver source, at least for those clients.

Because of the array of printers available today, I can't make a blanket recommendation for what
driver to use; any of the preceding classes of drivers might work well. In fact, chances are any of
them will work well with most printers, with the exception of PostScript drivers if you already know
you want to share a non-PostScript printer raw.

4.4.2. Defining Necessary Shares

Samba 2.2 and later use a special file share to deliver printer drivers. This share is defined as
[print$]. Ultimately, printer driver files will reside in this share, but for the moment you must
simply create it. A typical [print$] share looks like this:

[print$]
 comment = Printer Driver Storage
 directory = /usr/share/samba/drivers
 browseable = No
 read only = Yes
 write list = gutenberg

The location of the shared directory is somewhat arbitrary, but the key point is that it must exist.
This directory must also be readable to all those who might want to add printers to their machines.
You'll typically give one or more users write access to the share (gutenberg in this example). These

users are the printer administrators; they're authorized to add printer drivers to the share. Be sure
that the printer administrators have Linux write privileges to the location you've chosen as the
PRINT$ share directory. You should also list these users on the printer admin line in the [global]

section of smb.conf:

printer admin = gutenberg

Before adding drivers, you must also define some printer shares. If you want to share all the printers

http://www.adobe.com/support/downloads/)
http://lib.ommolketab.ir

on the server, a [printers] share, as described in the section Section 4.5.4, should do nicely.

[printers]
 comment = All Printers
 path = /var/spool/samba
 printable = Yes

After you make these changes to smb.conf, you must either wait a minute or two for Samba to
discover and implement the changes or force Samba to restart or reload its configuration file.

Samba stores printer driver files in the PRINT$ share, but it stores information
about these files in Trivial Data Base (TDB) files located elsewheretypically in
/var/cache/samba and /var/cache/samba/printing. In theory, you can edit
these files with the help of Samba's rpcclient command, but unless you're an
expert with this tool, doing so is extremely tedious. In case of errors when
installing printer drivers, you may need to delete these files and start from
scratch.

4.4.3. Installing the Driver on the Server

Once you've reconfigured Samba with the PRINT$ share and one or more printer shares, you can

install Windows printer drivers in Samba. You can perform this task from the Samba server, from
another Linux or Unix system, or from a Windows client. The CUPS driver can only be installed from a
Linux or Unix system, the Adobe PostScript driver can be installed in either way, and most other
drivers can be most easily installed from a Windows client.

4.4.3.1 Installing drivers from Linux

CUPS ships with a program, called cupsaddsmb, which can install Windows printer drivers on a
Samba server computer. This command's syntax is as follows:

cupsaddsmb [-H samba-server] [-U samba-user] [-h cups-server] [-v]

 {-a | printer-list}

In the simplest case, you can type cupsaddsmb -a on the server system as the printer administrator.
The system defaults to installing the CUPS drivers from localhost to localhost. The -a parameter tells

the program to add drivers for all available CUPS printers. If you don't share all these printers, you
must specify them individually. The -v parameter increases the verbosity of the program's output,

which can be handy for debugging problems.

Of course, cupsaddsmb can't conjure printer drivers out of thin air; you must place them somewhere
the program can find them before executing the program. By default, cupsaddsmb looks for drivers in
/usr/share/cups/drivers. These drivers can come from one of two sources:

http://lib.ommolketab.ir

The CUPS PostScript drivers for Windows

These drivers can be found at http://www.cups.org/windows.php. The CUPS documentation
recommends using them. As of CUPS 1.1.20, though, these drivers support only Windows
NT/200x/XP.

The Adobe PostScript drivers for Windows

You can find Adobe's drivers at http://www.adobe.com/support/downloads/. These drivers
support Windows 9x/Me as well as NT/200x/XP.

In either case, you must install driver files in /usr/share/cups/drivers, but how you place them there
depends on the driver. In the case of the CUPS drivers, you download a tarball from the CUPS web
site, extract the tarball, and run the cups-samba.install script from the tarball. This script asks for
confirmation and installs the files in /usr/share/cups/drivers. You can then run cupsaddsmb to install
the drivers on the Samba server.

The Adobe drivers, on the other hand, were designed to be installed from a Windows system to a
Windows system. They come in the form of a Windows executable (.EXE) file. This file is a self-
extracting Microsoft Cabinet archive, which can be extracted in Linux using the cabextract program.
(Check your distribution for this program, or visit http://freshmeat.net/projects/cabextract/ to
download the source code or a binary package.) When you extract the drivers file, you must copy
several files into /usr/share/cups/drivers, as detailed in Table 4-1. Note that cupsaddsmb expects
these files to appear in all-uppercase, but some of them are in lowercase or mixed case in the
archive; you need to rename some of the files to change their case. Also, these files are scattered
about in the Windows and WinNT subdirectories. In my experience, this option works well for
Windows NT/200x/XP, but Windows 9x/Me tends to complain about a missing .INF file when installing
the drivers installed in this way. If you run into this problem, you may need to install Windows 9x/Me
drivers another way.

Table 4-1. Adobe PostScript driver files

Windows 9x/Me Windows NT/200x/XP

ADFONTS.MFM ADOBEPS5.DLL

ADOBEPS4.DRV ADOBEPSU.DLL

ADOBEPS4.HLP ADOBEPSU.HLP

DEFPRTR2.PPD -

ICONLIB.DLL -

PSMON.DLL -

Once you've installed the CUPS or Adobe driver files, you can type cupsaddsmb -a or whatever

variant you need to type, given your printer administration username and other variables. The

http://www.cups.org/windows.php
http://www.adobe.com/support/downloads/
http://freshmeat.net/projects/cabextract/
http://lib.ommolketab.ir

program should ask for your password on the Samba server, copy the driver files, and configure the
server to deliver the files to clients when they connect, as described in Section 4.4.4.

Unfortunately, cupsaddsmb is rather delicate and sometimes doesn't work correctly. Likely problems
include missing driver files, an attempt to install drivers without appropriate privileges on the server,
and a mismatch of CUPS and Samba printer names (cupsaddsmb assumes that these names match).
If you have problems, check these items. You may also want to add the -v parameter and check

your Samba log files for clues to the cause of the problem.

Whenever possible, cupsaddsmb copies the PPD files used by CUPS as part of
the driver installation. Both the CUPS and Adobe PostScript drivers for Windows
use PPD files. It's possible, though, that the PPD file used by CUPS for Linux
clients will not work well from Windows. If you suspect this is the problem, try
replacing the PPD file on the Samba server and then re-install the driver on the
clients. Look for a PPD file with your Windows PostScript driver package and
copy it to the name and location in which Samba looks for the PPD file for that
driver.

4.4.3.2 Installing drivers from Windows NT/200x/XP

In theory, any Windows driver can be installed from Linux. The cupsaddsmb command merely copies
files to the server and issues a few commands using the smbclient utility. You should be able to do
the same for any printer driver files. In practice, though, the task is tedious without the help of
cupsaddsmb, and it only supports the CUPS and Adobe PostScript drivers. For this reason, you may
want to install some drivers from Windows clients. (This task can be accomplished only from Windows
NT/200x/XP clients; Windows 9x/Me doesn't support this operation.) Doing so employs the same
facilities on the Samba server cupsaddsmb uses, but the Windows driver-installation tools use these
features.

Some drivers, particularly for older printers, come with installation programs
that assume the printer will be connected locally or that don't support network
installations. These drivers can be very difficult to install on a network print
server. If you have such drivers and can't find more network-friendly updates,
you may want to consider creating an ordinary Samba file share in which you
can place the installer. You can then run the installer from each client that
needs to use the printer.

When installing drivers from Windows, you must take one extra step on the Samba server computer.
Windows printer drivers are installed in fixed directories on the Samba server's PRINT$ share. You
must create these directories and set their permissions so that the user adding the drivers can write
to them. Table 4-2 summarizes the directories you must add.

Table 4-2. Windows driver directories in PRINT$ share

http://lib.ommolketab.ir

Client OS Directory name

Windows 9x/Me win40

Windows NT/200x/XP for x86 CPUs w32x86

Windows NT for Alpha CPUs x32alpha

Windows NT for MIPS CPUs w32mips

Windows NT for PowerPC CPUs w32ppc

Before proceeding, you should obtain the driver installation files. If you choose to use a driver that
ships with Windows, you need only the Windows installation CD-ROM. Alternatively, you can
download drivers from the printer manufacturer, from Adobe, or conceivably from some other source.
Once you've obtained the drivers, follow these steps on the Windows computer to install drivers for
the OS you're running:

In My Network Places, browse to the Samba server on which the share you want to install is
located, and open the Printers and Faxes or Printers folder.

1.

Right-click the printer you want to install and select Properties from the resulting pop-up menu.
If no driver is installed, Windows asks if you want to install one.

2.

Click No in response to the question about installing a driver. Clicking Yes will install a driver
locally, not to the print server. Windows now displays a Properties dialog box.

3.

Select the Advanced tab in the Properties dialog box.4.

Click the New Driver button in the Advanced tab of the Properties dialog box. Windows launches
an Add Printer wizard to help guide you through the driver installation process.

5.

Click Next in the Add Printer wizard's introductory screen. The result is a dialog box in which
you can select the make and model of your printer from a list of standard Windows drivers, as
shown in Figure 4-3.

Figure 4-3. Windows ships with a large number of printer drivers

6.

http://lib.ommolketab.ir

Select the driver for your printer from the list and click Next. Alternatively, click Have Disk to
point the wizard at driver files you've obtained from another source.

If you can't find your printer in the list and don't have a disk, try using the
Apple LaserWriter IINT driver for monochrome PostScript printers or the
QMS magicolor driver for color PostScript printers. These drivers are fairly
generic and usually produce acceptable results.

7.

The Wizard informs you that you're about to add drivers. Click Finish to do so.8.

This procedure adds drivers for the OS that the client you used to install them is running. If you want
to add drivers for additional operating systems, follow these steps.

Open the Properties dialog box for the printer in question, if necessary.1.

Click the Sharing tab in the Properties dialogue box.2.

Click the Additional Drivers button in the Sharing tab. This action brings up an Additional Drivers
dialog box, as shown in Figure 4-4.

Figure 4-4. You can install drivers for additional Windows OSs

3.

http://lib.ommolketab.ir

Check the box next to the Windows version for which you want to install drivers.4.

Click OK. Windows will ask for the location of the drivers.5.

Enter the path to the driver files or browse to them. The system will present a list of printers
similar to that shown in Figure 4-3.

6.

Select the printer and click OK. Windows should install the drivers.7.

4.4.4. Installing Drivers on Clients

Windows printer drivers, by their very nature, are Windows programs and so must be installed on
Windows print clients. Installing them on a Samba server merely makes the drivers available for
semiautomatic installation on Windows clients, thus obviating the need to keep track of driver
installation CD-ROMs or files. Despite the fact that installing the drivers on the Samba server
simplifies client driver installation, this task isn't wholly automatic, at least not when using SMB/CIFS
printing. To install a driver on a Windows client, follow these steps:

Browse to the print server that hosts the printer you want to add to the computer. You should
see an icon for the printer you want to add. If you don't, chances are the server is
misconfigured.

1.

Double-click the icon corresponding to the printer you want to add. The result is a notice that
you're about to connect to a printer and add a driver for it.

2.

Click Yes to continue the setup process. In some versions of Windows (most notably Windows
9x/Me), you'll be asked some additional questions, such as whether you intend to print to this
printer from DOS programs.

3.

If all goes well, you'll see a dialog box summarizing the progress as the client transfers files from the
server. An icon for the printer should then appear in your Printers or Printers and Faxes window,
which you can open from the Control Panel. Windows 9x/Me asks if you want to print a test page
during the install process. You should probably do so to test the printer's operation, particularly on
the first client you install. If you skip this step during installation but want to do so afterwards, right-
click the printer icon in the Printers or Printers and Faxes window and select Properties from the
resulting menu. This action opens a Properties dialog box. Click Print Test Page from the General tab

http://lib.ommolketab.ir

in this dialog box to print a test page.

Under Windows NT/200x/XP, one reason you may not be able to print is
because the printer data in the Registry didn't get set correctly. You can set this
data by setting the default page orientation in the printer control dialog box.

Some Windows PostScript printer drivers generate PostScript that can confuse Linux printer queues
into thinking the file is plain text. The result is a printout of PostScript commands, rather than the file
you'd intended to print. If this happens, you can try several solutions.

Look for client-side options to disable a Ctrl-D before the print job. This character, if present,
can be the cause of problems.

Look for client-side options to disable printer mode-setting features. Some printer drivers
generate special code to kick dual-language printers into PostScript mode, but this code can
have the effect of confusing the Linux printer queue.

Define a new raw printer queue on the Samba server and share the printer using that queue
rather than the normal queue used from Linux.

Change the driver used on the Windows client. If you've installed it in Samba, this action
requires reinstalling the driver in Samba, which itself may require deleting TDB files.

http://lib.ommolketab.ir

4.5. Example Shares

Knowing what the parameters are that control Samba share definitions and knowing how to use
those parameters are two different things. Failing to see the forest for the trees, as it were, is easy to
do when confronted with a list of Samba parameters. For this reason, this chapter concludes with a
look at several common uses of Samba file and printer shares: the [homes] share, which provides

users with data storage space for their own files; a share that can store program files, templates, and
other shared read-only files; shares for exchanging files between users; a closer look at the
[printers] share introduced earlier; and a "printer" share that generates PDF files rather than

paper printouts.

4.5.1. The [homes] Share

Many Samba server computers function, in whole or in part, as centralized storage locations for
users' files. Users store their important files on the Samba server, enabling them to store more or
larger files than would fit on their clients' disks and to move from one client to another and access
their own home files. This strategy can also greatly simplify backup; if users' data files are on a single
server, that server can be backed up more easily than can an entire network's worth of files, thus
providing more reliable insurance in case of hardware failure.

The user data storage function is so important that Samba provides a special share name just for this
purpose: [homes]. This share functions much like an ordinary file share but with several important

differences:

The share can be accessed via the user's username, as in LINNAEUS for the user linnaeus. The
share can also be accessed by the name HOMES, but this name is usually considered secondary.

In a Windows-dominated network, the username-based share name is typically what appears in
network browsers. The HOMES name might not appear in browsers; this detail depends on
configuration options, as described shortly.

The default path for the share is the user's home directory, as specified in /etc/passwd or other
account-definition files.

A typical [homes] share definition can be quite short:

[homes]
 comment = Home Directories
 writeable = Yes
 create mask = 644
 browseable = No

The Samba default is to make shares read-only, but because the intended [homes] shares enable

users to store files that they create, changing this default is particularly important for these shares.

http://lib.ommolketab.ir

The create mask = 644 parameter isn't necessary, and, in fact, it's undesirable if you want to

preserve the archive bit on files. Using this parameter keeps the owner execute bit from being set,
though, which may be desirable if users make heavy use of shell access or access via NFS or some
other means that preserves this bit as such.

Ordinarily, shares on which you set browseable = No aren't visible in file browsers, but [homes]
shares are exceptions to this rule. Specifically, the browseable parameter applies to the share called
HOMES; if you omit the browseable = No parameter or set it to Yes, a share called HOMES appears
in clients' network browsers. Part of the definition of the [homes] share is that a share named after

the user who accesses the server appears in the user's browse lists. (Only the home share for the
user who accesses the server is displayed; users won't see other users' home shares, although they
can be accessed by entering their names directly.)

This example share doesn't specify a directory or path; it relies on the [homes] default. Although

you can set a directory for the share, setting a static directory is usually undesirable. If you want to
provide users with different home directories for remote text-mode or GUI logins than for Samba
access, you can specify a Samba directory that is unique for each user by including variables such as
%S, %u, or %U; these variables all expand to values related to the username. (In many cases, they
expand to the same value.) For instance, you might set the path like this:

path = /home/samba/%u

Some clients, such as the BeOS network browser, don't deliver a username
until after they've retrieved lists of shares. For these network browsers, a
[homes] share will be invisible unless you set browseable = Yes. Such clients
might also not work well if you use a %S (share name) variable in a [homes]
share's path or directory parameter.

Many sample smb.conf files include [homes] shares, so this share may already exist on your server.

Of course, if you don't need it, you can delete it or change the definition to suit your particular needs.

4.5.2. A Windows Program Share

Samba servers can also be used as central repositories for files that many clients must access in a
read-only mannerprogram executables, templates, clip art, fonts, and so on. Most users have no
need to write to such shares, so most users receive read-only access. Somebody must maintain
these shares, though, so a write list parameter provides an exception to the rule:

[programs]
 comment = Program Files for All Users
 path = /usr/share/samba/windows-programs
 write list = linnaeus, mendel
 force user = linnaeus
 force group = users
 read only = Yes
 create mask = 660
 directory mask = 770

http://lib.ommolketab.ir

In addition to the write list, this example share includes force user and force group parameters.

These parameters force all files to be owned by a single user and group; even those files written by
mendel will be owned by linnaeus, which makes for a cleaner on-server set of ownerships; however,
this also means you can't track whoever installed a particular file. These parameters also guarantee
that all users will be able to read the files in the share, at least assuming that no files are written to
the share through non-Samba means. Note that the force user parameter in conjunction with write
list does not give all users write access to the share; write list applies to users' true logon
usernames, not their identities as determined by force user.

If you create a share like this, be sure to set appropriate permissions on the share's directory
(/usr/share/samba/windows-programs in this example). If you don't give linnaeus write access to the
directory, neither linnaeus nor mendel can store files in the share. You may also want to consider
local Samba server security issues. For instance, if the share contains files that shouldn't be
accessible to some non-Samba users of the server, you should set create mask and directory
mask parameters that deny world access (as in the example) and ensure that these users aren't in
the group specified by force group.

4.5.3. File-Exchange Shares

A read-only share such as the [programs] share is relatively straightforward to configure. A share

that's used for data exchange between users is much more complex because you must decide how to
set ownership and permissions that enable those who should be able to write to files to do so, while
preventing those who shouldn't. Several approaches to solving this problem exist:

Shared access to [homes] directories

You can set permissions on users' home directories such that they can read each others' files.
If necessary, you can create local Linux groups and enable read access to group members
while denying world access, thus providing support for groups of users. One drawback to this
approach is that users will have to type in their collaborators' usernames when accessing
shares; they won't be able to browse directly to those directories. (Creating symbolic links
between users' home directories from Linux may provide a partial fix to this problem.)

Multiple file exchange shares

You can create several shares for file exchange, giving different groups access to different
shares. You can use valid users or invalid users to control access. Using Linux groups and

permissions on files in shares also works to this end. Depending on your needs, using multiple
sharing directories can be awkward because it clutters your list of shares if you need to create
shares for many different groups

One big happy file exchange share

http://lib.ommolketab.ir

You can create a single share with lenient permissionssay, setting create mask=666 and
directory mask=777 or using force user to set ownership of all files to a single user. The

effect is that all users can read and write all files in the share. This can be a good approach on
servers on which you don't need to worry too much about keeping files from particular groups
of local users. Even if that's the case, judicious use of such a share may be acceptable, but
users will have to be warned against placing sensitive files on the data-exchange share.

One big exchange share with internal security

If you use the inherit permissions = Yes parameter, you can use a single file-exchange

share but maintain internal security by setting up subdirectories with different ownership and
modes. For instance, one subdirectory might have 777 (rwxrwxrwx) permissions, enabling
anybody to read and write it, whereas another subdirectory might have 770 (rwxrwx---)

permissions, enabling members of its group to use it to exchange files while keeping it off-limits
to other users. This approach is very flexible, but you need to give some thought to the local
Linux permissions on the subdirectories. You also need to create these subdirectories from
Linux. Users are likely to find this scheme confusing, but giving the subdirectories descriptive
names, such as dna-analysis-group or instructors-only, should help on that score.

Precisely how you would configure such a share depends on which approach you take and on your
Linux server's local security configuration. For one example, consider this file share:

[sanescientists]
 comment = Share for Use by Sane Scientists Only
 path = /usr/share/samba/sane
 valid users = @sane, linnaeus, mendel, curie
 writeable = Yes
 force group = sane
 create mask = 660
 directory mask = 770

[madscientists]
 comment = Share for Use by Mad Scientists Only
 path = /usr/share/samba/mad
 valid users = @mad, morbius, moreau, frankenstein
 writeable = Yes
 force group = mad
 create mask = 660
 directory mask = 770

These two shares, in combination, provide separate file-exchange areas for two groups of users. The
first grants access to all members of the Linux sane group, plus three others who might or might not
be members of that group. The second share does the same for the mad group and three other
users. You can include a user in both groups if you like, in which case that user has access to both
shares. For instance, you can place the user jekyl in both the sane and mad groups, or add the user
explicitly to one or both shares' valid users lines. If you want to give one group read-only access to
another group's shares, add the members of both groups to the share's valid users line but use
read list to restrict some users' access to the share.

http://lib.ommolketab.ir

Another way to implement a similar system is to create a single share:

[scientists]
 comment = Share for Use by All Scientists
 path = /usr/share/samba/scientists
 valid users = @sane, @mad
 writeable = Yes
 inherit permissions = Yes

You then create subdirectories within the share's directory with appropriate permissions set to enable
only members of particular groups to access the directories. The result might look like this, as viewed
using Linux's ls:

ls -l /usr/share/samba/scientists
total 8
drwxrwx--- 2 root mad 4096 May 2 14:47 mad
drwxrwx--- 2 root sane 4096 May 2 14:47 sane

The result is that members of the mad group can exchange files in the mad subdirectory, and
members of the sane group can exchange files in the sane subdirectory. As configured, members of
each group can't view the contents of or read files from the other group's subdirectory unless the
individual is a member of both Linux groups. By changing permissions on the directories to 775
(rwxrwxr-x) rather than 770 (rwxrwx---), you can enable members of the groups to read but not

write files in each others' directories. Because of the reliance on the local Linux groups, this scheme
doesn't work well if some users aren't members of the underlying groups; this is the reason the
individual users (linnaeus, morbius, and so on) were omitted from the valid users line in the share

definition. You should also attend to ownership and permissions on the share directory itself;
depending on its settings, users could create new subdirectories, which can complicate your security
settings.

Both examples omit the nt acl support parameter, which defaults to Yes. As

a result, Windows NT/200x/XP users can set ACLs on their files, which will
complicate access permissions. Of course, these ACLs won't help users read
files if the users can't read the shares or directories in which they're stored, but
if users can read the directories, ACLs can broaden or restrict access to specific
files, particularly if the underlying filesystem supports ACLs.

These are just two examples of common-access file shares. Many variants and alternatives are
possible, that use Samba's security features, Linux's security features, or an interaction of the two.
As a general rule, it's best to start with a simple security system; trying to use too many
sophisticated features can lead you into trouble if you forget an important consequence or
interaction.

4.5.4. The [printers] Share

Most print servers use a single [printers] share to make all printers available. This share can

http://lib.ommolketab.ir

consist of just a few lines, but it relies on a few global settings, and some of its implications deserve
elaboration. First, before defining a [printers] share, be sure to set the following parameters in the
[global] section of smb.conf:

printing = CUPS
printcap name = CUPS
load printers = Yes

printer admin = gutenberg
guest ok = Yes

In this example, the printing and printcap name parameters are both set to CUPS, which tells

Samba to use CUPS for printing, including using CUPS' own API for determining what printers are
available. Of course, if you use another printing system, you'll change these parameters
appropriatelysay, to printing = LPRng and printcap name = /etc/printcap.

Samba provides CUPS support as a compile-time option. If Samba wasn't
compiled on a system with appropriate CUPS development libraries installed, or
if CUPS support was explicitly disabled, Samba won't include the necessary
tools to use the CUPS API. In this case, you can still use printing = CUPS

(Samba will use old-style printing commands rather than the CUPS API to
submit print jobs). You may need to set printcap name = /etc/printcap,

though. If Samba doesn't find your printers, try making this change. In fact,
CUPS provides compatibility commands, so it should work even if you set
printing = LPRng, printing = BSD, or certain other values.

The load printers = Yes parameter tells Samba to read information on available local printers from
the file pointed to by printcap name (or, if printcap name = CUPS, to read the data using the CUPS
API). By itself, this doesn't do anything; only if you provide an explicit [printers] share does this

parameter have any effect.

The printer admin line is optional; it sets the Linux username of a printer administratora user

whose accesses to printer shares are done as if by root. This user should be able to delete others'
print jobs and otherwise perform maintenance on the queues.

The guest ok = Yes parameter tells Samba to accept guest access to the printer shares. This can be

handy if you don't want to maintain a user database on a dedicated print server, but you'll need to
adjust the global map to guest and guest account parameters. Enabling guest access also opens

the system to potential abuses, particularly if the server is accessible to the Internet at large.
(Imagine coming in one morning to discover that a high-speed, high-capacity printer has printed its
entire load of paper with completely black pages, wasting both paper and toner or ink.)

Once you've set the global options, you can create a [printers] share. This share is likely to be

fairly uninteresting on the surface:

[printers]
 comment = All Printers
 path = /var/spool/samba
 printable = Yes

http://lib.ommolketab.ir

Once this share is defined, and Samba either detects the changes (which it should do after a few
minutes) or is restarted, you should see printer shares corresponding to all of your local printers that
appear in clients' network browsers. The shares won't be usable, though; you must first install printer
drivers on the clients, as described in Section 4.4.

Using a [printers] share doesn't mean that you're restricted from creating other printer shares.

You can do so in either of two ways:

You can create a separate printer share using a name that doesn't correspond to a print queue
on the underlying Linux computer. This share will be presented to users in addition to the
shares created by the [printers] share.

You can create a printer share that uses the same name as one of the printer queues on the
underlying Linux computer. This share will override the share of the same name created by the
[printers] share.

The shares generated by [printers] may be PostScript printers, non-PostScript printers that appear

to clients as PostScript printers because of the use of Ghostscript in the Linux printer queue, or non-
PostScript printers with raw Linux printer queues for which native printer drivers are necessary on
the clients. In fact, you can provide a mixture of share types; the [printers] share simply doesn't

care.

4.5.5. A PDF-Generation Printer Share

Samba printer shares can be unusually flexible. This flexibility is derived, in part, from the print
command parameter, which enables you to bypass the usual print processing. In fact, you can do

some extremely complex and unusual things with this parameter, but in this section I describe a use
that's at least related to printing: creating Portable Document Format (PDF) files.

Several tools exist to generate PDF files from various formats. One of these is almost certainly
already installed on your Linux computer: Ghostscript. In addition to generating output in formats
that can be printed by your printer, Ghostscript can generate several common file formats, such as
Tagged Image File Format (TIFF), Portable Network Graphics (PNG), and PDF. To create a Samba
share that generates a PDF file, you call Ghostscript (with appropriate parameters) as the print
command:

[makepdf]
 comment = Share to Make PDFs
 path = /var/spool/samba
 printable = Yes
 print command = gs -dNOPAUSE -dBATCH -q -sDEVICE=pdfwrite \
 -sOutputFile=%H/%s.pdf; rm %s

When the MAKEPDF share receives a PostScript file, it passes it through Ghostscript (gs), specifying
various parameters to generate PDF output without prompts and saving the output as %H/%s.pdf.
Because %H is the user's home directory and %s is the print job's filename, the result is a file whose

name begins with the Samba print job name and ends in .pdf. This filename is likely to be ugly, but it
will at least be unique. The print command line ends with rm %s, which deletes the original print job,

keeping it from cluttering the disk.

http://lib.ommolketab.ir

Of course, the [makepdf] share, as just presented, requires users to have access to their home
directories, presumably through a [homes] share. If this isn't true of your system, you can deliver

the results in some other ways. For instance, you might have Samba email the PDF files to users. If
necessary, you can write a script that passes the file through Ghostscript, looks up users' email
addresses in a list, and sends the file. Then call the script on the print command line, passing it
whatever Samba variables you need, such as the print job filename (%s) and the username (%u or
%U).

To clients, this particular share is indistinguishable from a real printer's share. Because it expects
PostScript input, you should install PostScript drivers on clientsideally a fairly generic PostScript
driver. Instead of printed output, though, users will find PDF files in their home directories soon after
printing documents. This share can be a good way to provide basic PDF-generation capabilities to all
users in all their programs that can print. It might not be enough for all functions; some dedicated
PDF-generation tools support features that aren't available through Ghostscript or Windows
PostScript printer drivers.

You may want to install drivers in Samba for the share for automated delivery
to clients, as described in Section 4.4. You can do so from a Windows client, as
described in the Section 4.4.3.2. If you create a CUPS queue with the name of
the PDF-generation share and set it up using a generic PPD file, you can then
install the CUPS PostScript drivers for Windows as described in Section 4.4.3.1.
You can then delete the bogus CUPS queue. Alternatively, you can generate the
queue to print to a networked SMB/CIFS queue to begin with and point it as the
Samba queue you're creating. If you do the latter, CUPS clients can create
PDFs by printing to CUPS, which then submits the print job to Samba.

http://lib.ommolketab.ir

4.6. Summary

Samba was created as a file and print server for Linux and other Unix-like operating systems,
enabling these systems to fill an important role on many LANs. Although Samba has grown over the
years to take on many other SMB/CIFS duties, such as domain controller and NetBIOS name server,
sharing files and printers remains at the core of Samba's functionality. Creating these shares requires
that you understand the basic Samba share-creation parameters. File shares are likely to use many
of these options, but printer shares are likely to use a smaller subset of these options, along with a
few printer-specific options. Printer shares also require configuring a local Linux printer queue, which
in the case of modern Linux distributions usually means CUPS. Actually using printer shares usually
requires driver installation on clients, and Samba provides tools to help automate this process.

http://lib.ommolketab.ir

Chapter 5. Managing a NetBIOS Network
with Samba
Samba makes a fine file and print server for Windows clients, as described in the previous chapter.
Samba's capabilities go further than that, though; the software can also take on many of the
ancillary roles on a NetBIOS LAN. Many of these duties are associated with NT domain controllers.
Domain controllers are basically centralized logon databases for systems on a NetBIOS network;
servers consult the domain controller when asked to authenticate users. This topic is first up in this
chapter. A couple of additional roles that are often associated with domain controllers, but can exist
even in a nondomain configuration, are described next: providing NetBIOS name resolution services
and collecting browse lists for delivery to clients. Finally, this chapter concludes with a look at
configuring Windows clients to use these features of a Samba server.

A domain controller can serve as an authentication tool for both Windows and
Linux clients. In fact, you can use a Linux computer running Samba as an
authentication server for other Linux computers. To do so, you must configure
the Samba domain controller features, as described in Section 5.1; the Linux
client configuration is described in Chapter 7.

Linux can make an excellent NT domain controller on a Windows network for many of the same
reasons that Linux is an excellent platform for other network roles: Linux is reliable, less vulnerable
to security problems than Windows, and low in cost. Samba is also more flexible than Windows in
certain domain control details; you can set many options individually that aren't available or that are
linked to other options in Windows. On the other hand, Linux and Samba don't yet implement full
Active Directory (AD) domain controller support, only the older NT domain support. (Linux can
function on an AD network, but it can't function as an AD controller.)

http://lib.ommolketab.ir

5.1. Enabling Domain Controller Functions

Samba's domain control features enable it to provide authentication services for Windows 9x/Me,
Windows NT/200x/XP, Linux, and various other operating systems. Used in this way, the domain
controller client (which may itself be a server to other computers) uses the account database on the
domain controller to authenticate users. In order to support this functionality, Samba requires that
you set a few smb.conf parameters. This part of the domain controller configuration isn't the tough
part, though; you must also maintain an encrypted password database for your users and also keep
machine trust accounts, which enable Samba to authenticate the machines that are asking for
authentication services. Many domain controllers also deliver a few special share types, which you
might want to configure on your domain controller.

5.1.1. The Role of a Domain Controller

An NT domain controller serves as a backend for authentication requests directed at an SMB/CIFS
server, as illustrated by Figure 5-1. Samba servers can actually take on the role of the NT domain
controller, the SMB/CIFS server (a.k.a. the domain member server), or both systems. Linux or other
Samba-using systems can also function as SMB/CIFS clients, as described in Chapter 6.

Figure 5-1. NT domain controllers regulate access to other servers'
shares

Figure 5-1 most accurately depicts one of two major authentication methods supported by NT domain
controllers and Samba. Specifically, this figure depicts pass-through authentication, which is used by
Windows 9x/Me domain members and Samba file servers when you set security = Server in their

smb.conf files. Even in this case, Figure 5-1 presents a simplified view of the exchanges involved.
Windows NT/200x/XP computers and Samba servers configured with security = Domain use a more

complex arrangement, known as NetLogon authentication, in which the domain member server
contacts the domain controller and obtains enough information from the domain controller to
authenticate users itself, using data from the domain controller, rather than a local password file.
Both systems look the same to SMB/CIFS clients. In fact, from the client's point of view, these
systems are also indistinguishable from one in which servers use local authentication databases.

Not all Windows networks use domain configurations. Simpler networks use workgroup configuration,
which are essentially NT domains without domain controllers. Workgroups are easier to configure, but
they're missing some of the features provided by domain controllers, such as the ability to use a
central authentication database and to store local user configurations on a central server.

The advantage of a domain configuration, at least in terms of authentication, is that you need to
maintain a user password database only on one system. Consider a network with half a dozen
SMB/CIFS servers. If your users had to maintain separate passwords on all these servers, they'd

http://lib.ommolketab.ir

either never change them or they'd forget all the different passwords. Your system administration
task would also be more difficult in this case, because you'd need to explicitly create and delete
accounts on all six servers. In a domain configuration, though, only one password database needs to
be maintained, which greatly simplifies administration and users' own account maintenance tasks.

Samba domain member server computers must maintain local Linux user
accounts as well as Samba passwords (or defer to a domain controller for the
latter). Thus, the administration benefits of a domain configuration are
somewhat lower for Samba than for Windows SMB/CIFS serversat least, unless
you take additional steps. As described in Chapter 7, you can configure Linux to
use an NT domain controller for the Linux account database. This can be more
effort to set up but will reduce long-term administrative effort if your network
hosts several Samba servers or if you want to integrate Linux and Windows
accounts into one system. Alternatively, you can point the global add user
script parameter to a script that creates an account for users who are

authenticated by the domain controller but who don't already have local
accounts. For instance, setting add user script = useradd -m %u in the
[global] section of smb.conf may do the trick, although you may want to write

a script that does more than this.

Frequently, the domain controller serves as a file and print server, in addition to functioning as a
domain controller. This part of the Samba domain controller configuration is described in Chapter 4.
It also delivers other NetBIOS functions on the LAN; specifically, it typically functions as a NetBIOS
name server and as a domain master browser. These duties are described in Section 5.2 and Section
5.3.

5.1.2. Domain Controller Parameters

In order to function as a domain controller, Samba must be configured with certain options set in its
smb.conf file's [global] section.

security = User

This parameter, described in Chapter 3, sets the local authentication system. Because the
domain controller serves as an authentication tool for other servers, user-level security is
appropriate for the domain controller. Setting this parameter incorrectly causes the domain
controller to function incorrectly.

encrypt passwords = Yes

You must tell Samba to use encrypted passwords; if you don't, it won't be able to parse the
encrypted password exchange initiated by domain member servers. On a domain controller,
this setting also requires you to maintain a local encrypted password database, as described in
the next section.

http://lib.ommolketab.ir

passdb backend

This parameter specifies how Samba is to store its password database. The default value,
smbpasswd, is simple and easy to administer compared to the alternatives, but it tends to be

slow. This speed problem is extremely minor for networks with a few dozen, or even over a
hundred, users. If your network has many hundreds or thousands of users, though, you may
want to look into alternatives, such as TDbsam and ldapsam. These alternatives also support

additional features, such as the ability to deliver time-based restrictions on user access. These
alternatives require additional configuration, though, and such configuration is beyond the
scope of this book.

domain logons = Yes

This parameter is the defining one for a domain controller; it tells Samba to accept remote
logon requests. The default value is No, so be sure to change it on your domain controller.

Conversely, be sure not to change it on domain member servers and clients.

In addition to setting these parameters, you should be sure not to set the password server

parameter. This parameter tells a Samba domain member server where the domain controller is, so
it isn't needed for a domain controller. In fact, setting it can cause confusion because you're telling
Samba to do two contradictory thingsfunction as a domain controller and function as a domain
member server.

Because most domain controllers also take on name server and master browser
duties, you must also set smb.conf parameters related to these functions, as
described later in this chapter.

5.1.3. Maintaining the Password Database

Fortunately, maintaining the password database on a domain controller isn't much different from
maintaining a password database on an isolated Samba server that uses local (user-level)
authentication. This task is described in more detail in Chapter 3.

One point that deserves reiteration is that Samba's password database, whether for an isolated
server or a domain controller, relies upon corresponding entries in an underlying Linux account
database. Thus, you must maintain both Linux and Samba accounts on the system, and they must
match. Normally this means that the usernames must be identical for both systems, although you
can use the username map parameter and the mapping file to which it points to link together

dissimilar usernames. This requirement also exists on Samba domain member servers, although you
can use Winbind on them so that the domain controller provides the basis for the Linux accounts, if
you like. (This topic is covered in Chapter 7.) Alternatively, domain member servers can set the add
user script to add accounts automatically when the user authenticates and no matching Linux

account exists. Windows servers can use the domain controller exclusively, as described in the
Section 5.1.6.

Perhaps the toughest challenge in maintaining the password database relates to actual

http://lib.ommolketab.ir

maintenanceadding and deleting users, enabling users to change their passwords, and so on. This
task, although easy on a user-by-user basis, can become a time-consuming chore on larger
networks. Fortunately, several procedures can help minimize the effort required to handle this task:

Adding users

If you add users on a regular basis, you can write a simple shell script that adds both Linux and
Samba accounts at once. Something as simple as Example 5-1 might serve well. This example
requires you to type users' passwords twice, though, at least if they should have access to the
server system both through Samba and through some other means. A more complex script can
disable the Linux account for non-Samba logins, prompt for a password and deliver it to both
useradd and smbpasswd, or otherwise work in a way that's suitable for your network.

Example 5-1. Sample script for adding Linux and Samba users

#!/bin/bash
useradd -m $1
passwd $1
smbpasswd -a $1

Deleting users

As with adding users, you should be sure to delete both the Samba and the Linux accounts
when you do this. If you forget to delete the Linux account, users who should no longer have
access to the server might be able to get in. A simple script that calls userdel and smbpasswd
with appropriate options can help on this score.

Changing user passwords

You can enable users to change their passwords several ways. One grants users shell access to
the Linux domain controller, in which case they can call smbpasswd themselves. If users
shouldn't have shell access to the server, access to another Linux system can do as well;
passing the -r parameter and a machine name causes smbpasswd to change the password on

the specified remote system. Setting users' login shells to smbpasswd is another way to let
them change their passwords; they can log in using Secure Shell (SSH), Telnet, or even
console access, and they'll immediately be prompted to change their passwords. The Samba
Web Administration Tool (SWAT) is another way to enable users to change their passwords.
When users access this server with a web browser, they can change their Samba passwords.
SWAT doesn't support encryption, though, which is a potentially important limitation.

Synchronizing Linux and Samba passwords

http://lib.ommolketab.ir

Keeping Linux and Samba passwords synchronized can be a tricky proposition. Setting the
global Samba unix password sync parameter to Yes can help. This setting requires one of two
additional options, though. One is the pam password change parameter, which should be set to
Yes. Instead of setting pam password change = Yes, you can set passwd program to specify the
local password-changing program, and set passwd chat to a chat script that controls the

password-changing exchange.

When creating or modifying Linux accounts, remember to consider Linux groups. Depending on your
shares' security settings and your overall server security policy, you may need to specify particular
groups for your users. This detail is highly site-specific, though. If you don't specify a group, chances
are the group will be either users or a group created specifically for the user you've added, depending
on your Linux distribution.

5.1.4. Configuring Machine Trust Accounts

As noted earlier, Samba supports two methods of interacting with domain member servers: pass-
through authentication and NetLogon authentication. (Technically, systems that use pass-through
authentication aren't domain member servers, but they fill the same role in the network as a whole,
so I don't try to draw a distinction in this chapter.) Windows 9x/Me servers and Linux servers
configured with security = Server use pass-through authentication. If your network contains

nothing but such servers, you can safely skip this section. Windows NT/200x/XP servers and Samba
servers configured with security = Domain, though, use the NetLogon authentication method. This

method requires that servers have accounts on the domain controller. Thus, to support such servers,
you must create appropriate accounts, which are known as machine trust accounts.

Technically, machine trust accounts are required only by servers; however,
many Windows NT/200x/XP systems configured as clients try to use these
accounts when you log onto them. Thus, you may need to create these
accounts for all your Windows systems.

Like ordinary user accounts, machine trust accounts must exist both in the underlying Linux account
database and in Samba. The Samba-side accounts are created in a semiautomated way once certain
Samba options are set, though.

Typically, you create a special Linux group to hold the Linux-side machine trust accounts. For
instance, you might call the group trust:

groupadd trust

You should then create Linux-side accounts for all the domain member servers and any clients that
you expect to require such accounts. These accounts are named after the computers' NetBIOS
names, but they are in lowercase and with dollar signs ($) appended to the names. For instance,

you'd create an account called tulip$ for the computer whose NetBIOS name is TULIP. These
accounts would be members of the machine trust group you created. They can also be non-login
accounts, so they can be configured to refuse logins. A command to add such an account might look
like this:

useradd -g trust -d /tmp -s /bin/false tulip$

http://lib.ommolketab.ir

This command creates a new account (tulip$) in the test group (-g test) using the /tmp directory as
the account's home directory (-d /tmp) and /bin/false as the default shell (-s /bin/false). Some of
these parameters, such as setting the default shell to /bin/false, provide an extra measure of
security. Of course, you may want to tweak these options for your local system's requirements.

If you must add many machine trust accounts, you can streamline the process by placing the
command in the [global] section of smb.conf, using the add machine script parameter:

add machine script = useradd -g trust -d /tmp -s /bin/false %u

This parameter enables Samba to create a machine trust account itself when a machine attempts to
join the domain. The joining machine must present appropriate authentication first,
thoughpresumably indicating that you or another authorized administrator is sitting at its console.

Once you add the Linux-side machine trust accounts, you should configure an administrative user.
You can either add root to the list of Samba user accounts (a potentially risky proposition), or you
can specify an administrative user with the admin users parameter in the [global] section of
smb.conf: admin users = linnaeus. This user then has root privileges when accessing the server.

For added security, comment out the admin users line when you don't need it,

and specify an account you don't normally use for this purpose. That way, the
risks of system compromise due to a compromise of this account are
minimized. You can reduce the risk of using the root account if you employ that
approach, using different Samba and Linux passwords for root.

Once these tasks are accomplished, Samba begins accepting domain member server requests to be
added to the domain. This process is described in Section 5.1.6, for Windows systems, and in Chapter
7, for Linux systems.

5.1.5. Common Domain Controller File Shares

NT domain controllers can and often do function as ordinary file and print servers, in addition to
handling domain logons. If you want to configure home shares, file-exchange shares, and the like,
consult Chapter 4. However, a couple of shares are common to domain controllers: domain logon
shares and roaming profile shares. The former deliver domain logon scripts to clients, enabling you to
provide consistent environments to all domain members. The latter enable you to store user desktop
settings (icon placement, theme selections, and so on) on the domain controller, which can help
provide users with consistent settings in environments in which users frequently move from one
physical computer to another.

The roaming profile share is optional. Although some documentation refers to
the netlogon share as required, in practice, the domain controller can function

without one. These shares both provide functionality that's important for some
domains, though.

http://lib.ommolketab.ir

5.1.5.1 Configuring domain logon shares

A domain logon script is a Windows script (a.k.a. a batch file) that the Windows client retrieves and
runs automatically when a user logs onto the computer. Clients retrieve these scripts from a share
called NETLOGON, so if you want to use this feature, you must create this share:

[netlogon]
 comment = Network Logon Share
 path = /usr/share/samba/netlogon
 writeable = No
 write list = linnaeus

This share definition is fairly ordinary; it's a typical read-only file share, but with a user appointed
with write privileges. The unusual feature of the share is actually defined in the [global] section of

smb.conf, with a pointer to the logon script's filename:

logon script = LOGON.BAT

This line tells Samba to deliver the LOGON.BAT file from the NETLOGON share to clients when they
log on. Note that you can use Samba's variables to deliver different logon scripts to different clients.
For instance, specifying LOGON-%a.BAT tells Samba to deliver files with the clients' OS codes in the

filenames, such as LOGON-Win95.BAT for Windows 9x/Me systems or LOGON-Win2K.BAT for
Windows 2000 systems.

What should go in domain logon scripts, though? Anything you want. These scripts are Windows
batch files, so you can run any command accessible on all the Windows client computers (or on any
network share accessible to them). A simple example might set the systems' clocks and open users'
home directories:

NET TIME \\TULIP /SET /YES
NET USE M: \\TULIP\HOMES /YES
EXPLORER M:

This example uses the NET command on Windows to set the time and mount the HOMES share from
the TULIP server, then launch the Windows EXPLORER file manager on the share. You can do more or
less, though; it's up to you.

5.1.5.2 Configuring roaming profiles

Normally, Windows stores users' preferences for user interface settings like icon placement and
window themes on the local hard disk. This configuration works perfectly well on networks whose
users generally have their own systems, such as office workers who have their own offices or
cubicles. In other environments, though, users may regularly move from one computer to anotherfor
instance, in a college computer center. In such cases, roaming profiles are handy. These enable users
to store their personalized settings on the domain controller, so that they appear on whatever client
they use, even if a user has never used a particular computer before.

http://lib.ommolketab.ir

Unfortunately, roaming profiles work slightly differently for Windows 9x/Me as opposed to Windows
NT/200x/XP systems. (They're also completely unavailable for Windows XP Home systems, which
technically can't participate in domains, although they can treat a domain as a workgroup.) To
support Windows 9x/Me systems, Samba uses the global logon home parameter, which typically

points to a subdirectory of the user's home directory:

logon home = \\%L\%U\.roamingprofile

This parameter specifies a Windows-style share locator (note the backslashes in the path). In this
example, %L expands to the server's own name, and %U expands to the user's username; thus, this

example should point to the .roamingprofile subdirectory in the user's home directory.

Windows NT/200x/XP requires a somewhat different definition. This is provided by a global parameter
called logon path:

logon path = \\%L\PROFILES\%U\%a

This definition requires that a share called PROFILES exist on your server. The logon path includes
the %a variable, which expands to the OS name, because Windows NT, 2000, and XP profiles aren't

interchangeable. The profile share can be a fairly ordinary file-storage share, but for security
purposes, it's best to set create mode and directory mode to fairly restrictive values:

[profiles]
 comment = NT Roaming Profiles
 directory = /usr/share/samba/profiles
 read only = No
 create mode = 0600
 directory mode = 0700
 browseable = No

The share directory itself (/usr/share/samba/profiles in this example) must be writeable to all users;
if it's not, users can't create their roaming profiles. In theory, you can point Windows NT/200x/XP
systems to a subdirectory of users' home shares; however, Windows NT/200x/XP doesn't always
completely disconnect from shares when users log out, which can complicate such an arrangement.

5.1.6. Configuring Windows Clients and Servers as Domain Members

Configuring Samba as a domain controller won't do any good unless you also configure computers as
members of the domain. In theory, only domain member servers need to be so configured; however,
in practice, clients may need to be configured in this way, too. Precisely how you accomplish this goal
varies with the OS you're using. In particular, Windows 9x/Me and Windows NT/200x/XP have
different domain membership requirements and options.

Samba servers can also join domains, as described in Chapter 3. To use a
domain controller as a way to control non-Samba access to a Linux system,
consult Chapter 7.

http://lib.ommolketab.ir

5.1.6.1 Activating Windows 9x/Me domain membership

Ordinarily, when a Windows 9x/Me system is configured to use a workgroup, it presents a logon
screen with a two-field logon prompt, as shown in Figure 5-2. This logon screen provides no real
security, though; clicking Cancel bypasses the logon screen and gives you full local access to the
computer. This screen merely provides a way for Windows to cache your username and password for
network accesses. Switching to a domain configuration won't change this lack of security.

Figure 5-2. The Windows 9x/Me logon screen for a workgroup
configuration

To reconfigure a Windows system with a workgroup-style logon to use a domain, follow these steps:

Open the Network item in the Control Panel. Windows displays a Network dialog box.1.

Select the Client for Microsoft Networks item in the Network dialog box and click Properties.
Windows displays a Client for Microsoft Networks Properties dialog box, as shown in Figure 5-3.

Figure 5-3. The Windows 9x/Me Client for Microsoft Networks
Properties dialog box

2.

http://lib.ommolketab.ir

Check the "Log on to Windows NT domain" check box.3.

Enter the name of your NT domain in the Windows NT domain field.4.

Click OK in the two open dialog boxes. Windows will inform you that it must reboot in order to
implement the changes.

5.

Allow Windows to reboot, or do so yourself. When the system starts up again, you should see a
new logon dialog box, similar to the one shown in Figure 5-4.

Figure 5-4. In a domain configuration, Windows 9x/Me provides a
three-field logon dialog box

Configuring Windows 9x/Me systems as just described doesn't improve security or change the
system's logon procedures. It does, however, tell the Windows client to use a domain logon
script, if you've configured your domain controller to provide one. It also enables the client to

6.

7.

http://lib.ommolketab.ir

use roaming profiles, although extra configuration steps are required to actually use them.

Double-click the Passwords item in the Control Panel. Windows displays the Passwords
Properties dialog box.

7.

Click the User Profiles tab in the Passwords Properties dialog box.8.

Click the Users Can Customize Their Preferences... radio button in the Passwords Properties
dialog box. This action tells Windows to store different desktops for each user. In a domain
configuration in which the domain controller supports roaming profiles, these are stored on the
domain controller.

9.

Click OK. Windows informs you that it must reboot. Do so.10.

When Windows starts up again and you log on, the system tells you that you haven't logged on
before. Click Yes to tell Windows to create the roaming profile.

11.

Ordinarily, Windows 9x/Me assigns passwords to any drives you share, using share-level security.
Once you've configured a Windows 9x/Me system as a member of a domain, though, you can tell it to
defer to the domain controller for authenticating its share access:

Open the Network icon in the Control Panel. The result is the Network dialog box.1.

Click the Access Control tab in the Network dialog box.2.

Click the User-Level Access Control radio button.3.

Enter the name of your domain in the "Obtain List of Users and Groups From" field.4.

Click OK in the Network dialog box. Windows displays a dialog box warning that you'll need to
reconfigure your shared directories.

5.

Click Yes in the warning dialog box. You'll then be asked to restart the computer. Do so.6.

After making this change, you'll need to redo your sharing configuration. The changes add the ability
to specify user-based access control, so you can grant or deny access to the share to particular
users.

5.1.6.2 Activating Windows NT/200x/XP domain membership

Windows 9x/Me systems use the pass-through authentication protocol, whereas Windows
NT/200x/XP uses NetLogon authentication. For this reason, Windows NT/200x/XP systems require
that you prepare a machine trust account on the domain controller, as described in the earlier
Section 5.1.4, before you add the computer to the domain. (Windows XP Home doesn't support
domain configurations, though, so you can't configure it this way. You can only treat a domain as if it
were a workgroup from Windows XP Home.) Once you've created domain trust accounts on the
domain controller, you can add a computer to the domain as follows:

Log onto the Windows system as Administrator. Don't open any shares on the domain1.

2.

http://lib.ommolketab.ir

controller.
1.

Open the System object in the Control Panel. Windows should display the System Properties
dialog box.

2.

Click the tab called Network Identification or Computer Name, depending on the version of
Windows you're running.

3.

Click the Properties or Change button. Windows should display the Identification Changes or
Computer Name Changes dialog box shown in Figure 5-5.

Figure 5-5. Windows NT/200x/XP lets you set the computer's name
and its workgroup or domain affiliation in a single dialog box

4.

If it's not already set, enter the computer's NetBIOS name in the "Computer name" field.5.

Click Domain in the "Member of area," and enter the name of the NT domain. If the computer is
configured as a member of a workgroup of the same name as the domain you enter, Windows
may complain. If this happens, try changing the workgroup name to a fictitious one, reboot, and
start again.

6.

Click OK in the Identification Changes dialog box. Windows opens a dialog box asking for a
username and password.

7.

Enter the username of the administrative user you specified with admin users on the Samba

domain controller, along with the associated password. After you do this, you should see a
message welcoming you to the domain and a notice that you must reboot the computer.

8.

Dismiss the dialog boxes, and reboot the computer.9.

http://lib.ommolketab.ir

9.

After you've made these changes and rebooted, Windows displays a new three-field logon window
similar to the one shown in Figure 5-4. (Some versions of Windows NT/200x/XP differ in certain
details; in fact, some hide the third logon field in an advanced options area.) Unlike the Windows
9x/Me logon screen, the Windows NT/200x/XP logon screen provides real security; you can't simply
click Cancel to gain access to the computer without a password. You may want to bypass the domain
authentication, though, and use the system's local account database. This is particularly handy when
performing administrative tasks as the Administrator. To do so, select the computer's name rather
than the domain name in the new Log On To field at the bottom of the logon prompt.

Windows should automatically use the domain controller for authentication when users try to access
shares on a Windows NT/200x/XP server; thus, you shouldn't need to reconfigure the system to use
the domain controller, as you do with Windows 9x/Me systems. Recent versions of Windows
NT/200x/XP also use roaming profiles by default in a domain configuration. If you want to reconfigure
a client to use local profiles instead, follow these steps:

Right-click My Computer on the desktop or in the Start menu and select Properties from the
resulting context menu. The System Properties dialog box should appear in response.

1.

In Windows 2000, select the User Profiles tab. In Windows 2003 or XP, select the Advanced tab
and then click the Settings button in the User Profiles area. The result is a User Profiles dialog
box or tab, as shown in Figure 5-6.

Figure 5-6. The Windows NT/200x/XP User Profiles selection dialog

2.

Double-click the line for the account you want to modify. (Figure 5-6 shows just one account,
for Administrator on NESSUS.) A Change Profile Type dialog box appears, enabling you to select
a roaming or a local profile.

3.

Click the profile type you want to set in the Change Profile Type dialog box, and then click OK in4.

http://lib.ommolketab.ir

all the open dialog boxes.
4.

http://lib.ommolketab.ir

5.2. Enabling NBNS Functions

Name resolutionconverting computer names into IP addressesis a problem that must be solved with
any networking system. NetBIOS supports several methods of name resolution. One of these, the
use of a NetBIOS Name Server (NBNS) system, is often associated with running a domain controller,
although you don't need a domain configuration to use NBNS. Naturally, Samba can function as an
NBNS system. Doing so requires setting just a couple of Samba options; the rest is fairly automatic,
from Samba's perspective. Client configuration may be another matter, though; you must know how
to tell clients to use the NBNS system.

5.2.1. The Role of the NBNS System

NetBIOS and Samba support several methods of name resolution, as described in Chapter 3. The
simplest of these to configure is broadcast name resolution, in which computers needing to contact
other computers broadcast the names, and the so-named computers respond to these broadcasts.
Windows systems use broadcast name resolution by default. Broadcasts work well on small networks
with just one subnet, but in a multisubnet configuration, broadcasts are typically blocked at the
routers between subnets. Thus, other methods are used in such situations.

One type of solution to this problem is to use an NBNS computer. The NBNS system fills a role similar
to that of a DNS server, but the NBNS system is specific to NetBIOS name resolution. It listens for
name registrations from clients, caches them, and then delivers those names to other clients who ask
for them. Because clients are told where to find NBNS systems, broadcasts aren't needed in NBNS-
based name resolution. This means that NBNS is a superior name resolution system when a network
spans multiple subnets.

NBNS-based name resolution is designed to work in a conceptually similar way to broadcast name
resolution, in that clients register the names they want to use. Unlike a DNS server (described in
Chapter 15), there's no need to explicitly tell an NBNS system about the names or IP addresses it's
to share. If your network uses the Dynamic Host Configuration Protocol (DHCP) to deliver IP
addresses to computers, they may change from time to time. An NBNS system automatically tracks
these changes.

You can configure Linux to use an NBNS system or broadcast NetBIOS name
resolution (instead of or, more commonly, in addition to DNS) even for non-
Samba name resolution. This can be a convenient way to get name resolution
working on a network on which IP addresses are likely to change from time to
time. This topic is covered in Chapter 6.

5.2.2. Defining Samba NBNS Functions

Because the name resolution features of SMB/CIFS, including NBNS functions, were designed to work

http://lib.ommolketab.ir

fairly automatically, Samba provides relatively few options related to these features. Only one option
is required to activate NBNS features, although a few more will help fine-tune the operation:

wins support

This global Boolean parameter controls NBNS functions. (Microsoft refers to the NBNS features
as the Windows Internet Name Service, or WINS, hence the parameter name.) This option
defaults to No; setting it to Yes causes Samba to function as an NBNS system.

wins proxy

This global Boolean parameter tells Samba whether it should respond to broadcast name
resolution requests on behalf of its NBNS clients. The default value is No, which is usually fine,
but sometimes setting it to Yes improves the reliability of name resolution; try that if you're

having problems.

dns proxy

Ordinarily, the NetBIOS and DNS name spaces are logically distinct, although most
administrators prefer to use the same names for specific computers in both spaces to avoid
confusion. If you specify dns proxy = Yes (the default is No), though, Samba configured as an

NBNS system will perform DNS lookups on any names it can't resolve using its NBNS name
cache. This practice can improve reliability in some cases, but it can also slow down lookups,
particularly if the DNS server is slow. This feature only works for lookups of file and print
servers, though, not for lookups of other types of systems, such as domain controllers.

If you set wins support = Yes, be sure not to set the wins server parameter

(described in Chapter 3). This parameter tells Samba what computer to refer to
as an NBNS system. Ordinarily, an NBNS system automatically uses itself in
this role, so specifying both parameters will likely result in malfunctions.

Overall, the NBNS system only needs to have wins support = Yes set; additional options just tweak

the operation of the server. You should set this option on one server only; configuring multiple
servers as NBNS systems is likely to cause confusion unless they can communicate with one another,
which Samba doesn't supportat least as of the early 3.0.x versions. If two different clients are
configured to use two different NBNS servers, they won't be able to locate each other via these
servers, and possibly not at all if they aren't configured to use broadcasts as fallback or if they aren't
on the same subnet.

5.2.3. Delivering NBNS Information via DHCP

Just as with DNS, the clients of NBNS systems must know how to contact their servers. Also just as
with DNS, this task is accomplished by giving the clients the IP addresses of their servers. You can do

http://lib.ommolketab.ir

this by entering the information on each client manually, but if your network uses DHCP, a simpler
solution is to deliver the information via DHCP. (Even in this case, some client configuration may be
necessary.)

In Linux, you specify the NBNS system using Samba's wins server parameter,

as described in Chapter 3. This is true even if you use DHCP to configure the
Linux system.

5.2.3.1 DHCP server configuration

If your network uses DHCP for assigning IP addresses to Windows systems, the simplest way to
configure those systems to use your NBNS system is to deliver the information via DHCP. Doing so
requires modifying your DHCP server's configuration, though. Chapter 15 describes DHCP
configuration generally, so you should consult that chapter first if you need to get your DHCP system
operational. This section assumes you're using the Internet Software Consortium's (ISC) DHCP
server, which is the most common one on Linux systems. Its configuration file is usually called
/etc/dhcpd.conf, although it's likely to be stored in /usr/local/etc if you compile it from source rather
than install it via a package for your Linux distribution.

Don't confuse the ISC DHCP server, dhcpd, with the ISC DHCP client, dhcpcd.
The one-letter difference in the daemons' names, and similar differences in
their configuration filenames, can be easy to overlook.

The /etc/dhcpd.conf file is composed of several parts. At the top of the file are a series of global
options. Chances are you'll include the NBNS options with these. The configuration file is likely to
contain one or more declarations for particular subnets, which begin with the subnet keyword and
include options for the subnet within lines delimited by curly braces ({ }). If you want to configure

different NBNS servers for separate domains on different subnets, you can place the configuration
options within these subnet declarations. In any event, to point DHCP clients at your NBNS system,

add these lines:

option netbios-name-servers 192.168.1.1;
option netbios-node-type 8;

The first of these options specifies the IP addresses of your NetBIOS name servers. You would
change the IP address as appropriate for your network, of course. Although the ISC DHCP server
supports delivering multiple NBNS addresses (separated by commas), you're likely to deliver one only
if you use Samba as an NBNS system, because Samba doesn't yet support exchanging NetBIOS
name information with other Samba servers, so you're effectively limited to one NBNS system.

The netbios-node-type option specifies a code for the order in which the client attempts various
lookup methods. Specifically, passing 1 as this value tells clients to use broadcasts alone; 2 means to
use the NBNS system alone; 4 means to try broadcasts first and then to try the NBNS system if the
broadcast fails; and 8 means to try the NBNS system and then to use broadcasts if the NBNS
attempt fails. In most cases, 8 is the appropriate option.

http://lib.ommolketab.ir

Once you've made these changes, you need to restart the DHCP server. In most cases, passing
restart to a SysV startup script, as in /etc/init.d/dhcpd restart, does the trick.

5.2.3.2 Windows client configuration

Unless they're told otherwise, Windows clients use broadcast name resolution by default. Even if you
configure DHCP to deliver NBNS information to clients, Windows 9x/Me systems ignore this
information by default, so you must make a change to such systems' configurations to have them
use DHCP-provided information. Windows NT/200x/XP, though, uses DHCP-provided information by
default. Thus, you may not need to change these clients' configurations if you configure a DHCP
server to deliver NBNS information.

If your network is dominated by older Windows 9x/Me systems, you might
think that using DHCP to deliver NBNS information is pointless because you
must reconfigure clients to use this information. Using DHCP does have certain
advantages, though. For one thing, you can't mistype the IP address on a
client, so misconfiguration of individual systems is less likely. Another
advantage of using DHCP is that you can easily change the configuration of all
clients merely by changing the server, should the NBNS system's IP address
ever change.

To set NBNS information in a Windows 9x/Me client, follow these steps:

Open the Control Panel, and double-click the Network icon. Windows should display a Network
dialog box in which you can select various drivers, network stacks, and so on.

1.

Select the TCP/IP network stack for your local network's network card.2.

Click Properties. Windows should display a TCP/IP Properties dialog box.3.

Click the WINS Configuration tab in the TCP/IP Properties dialog box. The result should
resemble Figure 5-7.

Figure 5-7. Windows 9x/Me lets you disable an NBNS system, specify
an NBNS system explicitly, or obtain the information from a DHCP

server

4.

http://lib.ommolketab.ir

If you don't want the client to obtain information from a DHCP server, click the Enable WINS
Resolution radio button, enter the IP address for your NBNS system in the WINS Server Search
Order box, and click Add.

5.

If you want to have Windows obtain information from the DHCP server, click the "Use DHCP for
WINS Resolution" radio button.

6.

Click OK in the TCP/IP Properties dialog box and then in the Network dialog box.7.

Windows must be restarted for the changes to take effect, and it should prompt you to do so. After
the restart, Windows should use your NBNS system for name resolution.

If you use Windows NT 4.0, the method of setting the NBNS system is similar to that in Windows
9x/Me, although there are a few differences. For instance, you must select the tab called WINS
Address rather than WINS Configuration, and the field in which you enter an NBNS system's IP
address is configured slightly differently.

Windows 200x and XP use a substantially different way to specify NBNS information. These OSs use
the information delivered by the DHCP server by default, so you shouldn't need to adjust them if you
use this method. If you must specify IP addresses explicitly, though, you can do so:

Open the Control Panel, and then open the Network and Dial-Up Connections (Windows 2000)
or Network Connections (Windows XP) object in the Control Panel.

1.

Right-click the Local Area Connections object. This action produces a context menu, in which
you should select the Properties item. Windows should now display a Local Area Connection
Properties dialog box.

2.

3.

http://lib.ommolketab.ir

2.

In the Local Area Connection Properties dialog box, select the Internet Protocol (TCP/IP)
component and click the Properties button. This action should bring up a new dialog box called
Internet Protocol (TCP/IP) Properties.

3.

Click the Advanced button in the Internet Protocol (TCP/IP) Properties dialog box. Windows
displays the Advanced TCP/IP Settings dialog box.

4.

In the Advanced TCP/IP Settings dialog box, click the WINS tab. The result should resemble
Figure 5-8, although chances are no addresses will appear in the address list. (Some details are
different in the Windows 2000 version of this dialog box; Figure 5-8 was taken on a Windows XP
system.)

Figure 5-8. Windows 200x/XP WINS options are buried deeply in the
TCP/IP configuration system

5.

Click the Add button to add an NBNS system to the list. The result is the TCP/IP WINS Server
dialog box.

6.

Type your NBNS system's IP address in the TCP/IP WINS Server dialog box, and click Add.7.

Click OK or Close in each of the open dialog boxes.8.

http://lib.ommolketab.ir

8.

http://lib.ommolketab.ir

5.3. Assuming Master Browser Duties

Windows networks use a system known as the master browser to help maintain browse listslists of
computers, the workgroups or domains to which they belong, and the types of services they offer.
This may sound a lot like the duty of the NBNS system, but it's not quite the same. The master
browser's list doesn't include mappings to IP addresses; it's used by clients to present lists of
computers on the local network in network browsers.

In fact, there are two types of master browser: the domain master browser and the local master
browser. The domain master browser is most often associated with networks that use an NT domain
configuration, and in such configurations, the domain controller takes on this role. If you use a
workgroup configuration, chances are you won't have a domain master browser. All NetBIOS
networks have local master browsers, though. Samba provides configuration options that affect its
ability to function in both roles.

5.3.1. The Role of the Master Browser

Master browsers maintain lists of computers and the services they offer. In this context, services
refers to the types of SMB/CIFS duties they perform, such as file server, NBNS system, and so on.
Master browsers don't maintain lists of the specific shares offered on particular servers; for that
detail, clients must contact the servers themselves.

As mentioned earlier, two types of master browsers exist: local master browsers and domain master
browsers. Domain master browsers normally also function as local master browsers. Both types
deliver basically the same information, but domain master browsers add more methods of operation.

Local master browsers serve just one subnet on a LAN. The computers on a single subnet
automatically determine which system is to function as the local master browser via an election, in
which each computer broadcasts a set of credentials to the entire subnet, and the system with the
best credentials claims victory. Because of this automatic selection system, you can't simply set a
Samba parameter or two and be sure the system will become a local master browser. You can,
however, set Samba parameters that will make it more or less likely to winideally, so likely to win
that it's all but a sure thing, if that's what you desire. You can also tell Samba not to participate in
elections, if you like. The next section describes configuring a system to win or lose local master
browser elections.

Domain master browsers integrate information from local master browsers on multiple subnets,
providing a way to enable browsing across subnets. They're usually part of an NT domain
configuration, although you can configure a domain master browser in a workgroup. You must
explicitly configure one computer as a domain master browser; they aren't selected through an
election process. The Section 5.3.3 describes how to do this.

No client-side configuration is required to point clients at either type of master browser. Clients
should be able to find local master browsers by using broadcasts. Domain master browsers can be
found via any NetBIOS name lookup method.

http://lib.ommolketab.ir

5.3.2. Winning (or Not Winning) Local Master Browser Elections

The local master browser election process is designed to give local master browser status to the
computer that's best able to handle this duty. Election criteria include the OS version, whether the
computer is functioning as a domain controller, whether the computer is functioning as an NBNS
system, and so on. The most important factor is the OS version, so adjusting this detail is a critical
step in "rigging" an election that you want a Samba server to win. Several other factors are
important as well, though. Overall, you should consider these global parameters:

local master

This Boolean parameter tells Samba whether it should participate in local master browser
elections. The default value is Yes, so you should change this parameter only if you want to

ensure that a server doesn't become the local master browser.

os level

This parameter sets the OS version. It takes an integer as a value, with higher values making
the server more likely to win. OS levels for Microsoft OSs vary; for instance, Windows 9x/Me is
1, Windows 2000 Professional is 16, and Windows 2000 Server is 32the highest value of any
Microsoft OS, at least as of late 2004. Samba's default os level is 20, so Samba will win over

Windows 9x/Me or Windows 2000 Professional by default, but it will lose against Windows 2000
Server. If you want Samba to acquire local master browser status, you should set this value to
33 or above. If your network contains only one Samba server, any value above 32 should work

fine. Inexpertly managed Samba servers may have higher values set by mistake, though, so
you may need to use a higher value. This may also be necessary to win against future versions
of Windows or other OSs. The highest value this parameter accepts is 255.

domain logons

This Boolean parameter is described earlier in this chapter, in Section 5.1.2. The local master
browser election procedure gives an edge to domain controllers, but this factor is less
important than the OS level.

wins support

This Boolean parameter is also described earlier in this chapter, in Section 5.2.2. A domain
master browser doesn't have to be an NBNS system, but the election criteria give these
systems a slight edge.

preferred master

http://lib.ommolketab.ir

If this Boolean parameter is set to Yes, nmbd calls for an election whenever it's started, and

periodically thereafter. This setting also gives the server a slight boost in the election. The
default value is No.

Setting preferred master = Yes inappropriately can cause problems because

master browser elections take time, during which browsing ceases to function.
Therefore, you should be sure that you don't use this setting on a system
unless you're reasonably sure it will win the election (by setting a high os
level value).

browse list

The default for this Boolean parameter is Yes, which causes Samba to maintain a browse list

for the network. Maintaining the browse list does no harm if the computer doesn't function as a
master browser, so there's normally no need to change this option. If you do set it to No, the

system won't participate in browser elections.

The os level parameter trumps all the others, aside from local master and browse list. That is,
in a contest between computers with os level parameters set to say, 32 and 33, the system with os
level = 33 will win every master browser election, even if the other system is configured with domain
logons = Yes, wins support = Yes, and preferred master = Yes. Overall, you can be fairly certain
that a system will function as a local master browser if you set options like these in the [global]

section of smb.conf:

local master = Yes
preferred master = Yes
os level = 64

If your network has some Samba systems with inappropriately high os level parameters, you may

need to increase that value. (On the other hand, tracking down the offending systems and fixing their
configurations may be a preferable solution.) If the computer also functions as a domain controller or
NBNS system, you may need to set appropriate options for those functions, too. These settings
shouldn't be necessary to have the system take on local master browser duties, though.

5.3.3. Configuring Samba Domain Master Browser Features

The domain master browser isn't elected by all the computers on the network; it's assigned by a
network administrator. For this reason, Samba provides a parameter that tells Samba to take on this
duty: domain master. This parameter is a global Boolean, and you should be careful about setting it.
Don't set this parameter to Yes if you're not certain the system should be functioning as a domain
master browser; do set it to Yes if the computer takes on this role.

Normally, the domain controller takes on domain master browser duties. Some workgroup
configurations also use domain master browsers, even though they don't have domain controllers.
This configuration can be helpful if your network spans multiple subnets, but you don't want to use a
full domain configuration.

http://lib.ommolketab.ir

You should be sure to configure a domain master browser to win the local master browser election for
its subnet, as described in the previous section. That section describes some options related to
domain controller status as factors in browser elections; however, these factors are small ones, and
they're completely irrelevant if two systems' OS levels don't match. Thus, you should be sure your
domain controller has the highest os level parameter of any computer on the network.

http://lib.ommolketab.ir

5.4. Summary

Samba can take on many duties that are helpful or even necessary on Windows networks but that
don't relate to sharing files or printers directly. Most of these duties are related to handling NT
domain controller functions, and, in fact, functioning as a domain controller is one of these key
functions. Related functions include handling NetBIOS name resolution as an NBNS system and
becoming the local master browser or domain master browser. Using Linux as the operating system
for any of these functions can help improve your network's overall reliability because of its excellent
overall stability.

http://lib.ommolketab.ir

Chapter 6. Linux as an SMB/CIFS Client
Linux often functions as a tool for running Samba as a server on a network that's otherwise
dominated by Windows systems. Sometimes, though, you might need to reverse this role and have
Linux function as the client in an SMB/CIFS environment. Perhaps a few Linux desktop systems must
access Windows servers; maybe a Linux system that works as a server for other protocols must do
so. Whatever the details, the Samba package includes client tools, and the Linux kernel also supports
accessing SMB/CIFS file shares. Thus, Linux can function in the client role, using Windows, Samba, or
other SMB/CIFS servers on other computers.

This chapter covers several specific client roles for Linux on an SMB/CIFS network: using NetBIOS
name resolution, accessing file and printer shares, and using GUI network browsers for Linux.

http://lib.ommolketab.ir

6.1. Using NetBIOS Name Resolution

As described in Chapter 3 and Chapter 5, NetBIOS provides a computer-naming system that's
independent of DNS, which is used by most TCP/IP protocols. In fact, Windows enables its clients to
use these NetBIOS names in place of DNS names for most protocols, at least for local computers. For
this reason, some LANs rely heavily on these names, and if you want to refer to computers by name
rather than by IP address from Linux, you may need to know how to configure Linux utilities to use
these addresses. For the most part, this task can be handled with a setting or two in smb.conf. If
your LAN doesn't use DNS hostnames for its local computers, though, you may want to expand this
configuration to enable Linux to use NetBIOS names in non-SMB/CIFS tools, such as web browsers
and email clients.

6.1.1. Setting Name Resolution Options in smb.conf

Most SMB/CIFS client tools in Linux support the use of NetBIOS names. These tools rely on libraries
that ship with Samba and that are configured in the [global] section of your smb.conf file. In
particular, you should review the name resolve order, wins server, and hostname lookups

parameters, all of which are described in Chapter 3. For the most part, the default settings work well
on small LANs that are configured to use broadcast name resolution. You might want to set hostname
lookups = Yes if you want to specify computers by their DNS hostnames in smb.conf, though. If your
network hosts an NBNS system, you may also want to point Linux systems to it with wins server.

If a computer functions as an NBNS system, do not set wins server. Even

pointing the server to itself with this parameter can result in odd behavior.

The parameter that requires the most attention is name resolve order. This parameter takes one to
four of several values: lmhosts, hosts, wins, and bcast. The default lookup order is lmhosts host
wins bcast, which minimizes the use of network resources. You can change this order if you like,

though, or even omit options entirely. For instance, suppose you know your lmhosts file is empty,
and suppose you don't want to use DNS except as a last resort because of possible name conflicts.
You might then include these lines in smb.conf:

name resolve order = wins bcast hosts

wins server = 192.168.24.1

6.1.2. Using NetBIOS Name Resolution in Non-Samba Programs

In most cases, the NetBIOS name-resolution methods you set with name resolve order and other

options in smb.conf apply only to Samba and related tools. These name-resolution methods have
been split off into a library, though, and it's possible to splice this library into Linux's normal name-
resolution system. When you configure Linux this way, you can use NetBIOS names in any Linux

http://lib.ommolketab.ir

program that employs the normal name-resolution system, such as web browsers, mail clients, FTP
clients, and so on. This can be a handy way to get name resolution working on a small network that
doesn't have its own DNS server. (You'd presumably use your ISP's DNS server for handling names
on the Internet, but it might not have entries for your local computers.)

Using NetBIOS names for non-SMB/CIFS tools can be convenient, but it can also cause problems.
NetBIOS names lack Internet domain names, and so a few programs that rely on Internet domain
names can choke if they're fed NetBIOS names. If DNS and NetBIOS names don't match, you can
also cause problems when reverse lookups don't match forward lookups or when one name masks
another one. These problems aren't always serious, but if you see strange error messages about
failed lookups, you might want to consider using local /etc/hosts files or running your own DNS server
for local use, as described in Chapter 15.

The first step to using NetBIOS name resolution in non-Samba programs is to check for the presence
of the necessary support libraries. These appear under the name libnss_wins.so (typically with a
symbolic link called libnss_wins.so.2), usually in /lib. If you can't find these files, you may need to
install additional or newer Samba packages for your distribution. If you compiled Samba from source
code, try typing make nsswitch from the Samba source directory, copying the resulting

nsswitch/libnss_wins.so file to /lib, and creating a symbolic link called libnss_wins.so.2. Usually, you
will need to type ldconfig to have the system recognize the new library.

Once the library is installed, you must configure Linux to use it. This task can be accomplished by
editing /etc/nsswitch.conf. Look for the hosts line in this file. It probably contains entries for files,
dns, and perhaps other name-resolution methods. Add wins to this list:

hosts: files dns wins

Linux tries name lookups in the order specified, so this example uses NetBIOS name lookups as the
last resort. You might want to move wins earlier in the list, but doing so increases the odds for

problems should a name be resolved in multiple ways and a program needs an Internet domain
name.

Although the option in /etc/nsswitch.conf is called wins, the name-resolution

system it enables works with both NBNS systems and broadcast name lookups.
The libnss_wins.so library uses the NBNS computer specified by the wins
server parameter in smb.conf, but it ignores the name resolve order

parameter.

http://lib.ommolketab.ir

6.2. Accessing File Shares

One of the most complex topics in Linux SMB/CIFS client operations is file share access. Several tools
exist to handle such accesses: the Samba smbclient utility, the smbmount tool for mounting shares,
the standard Linux mount command, and the standard Linux /etc/fstab file. (These final three
methods are all closely related to one another.) No matter what method you use, you should be
aware of some of the limitations of file accesses using SMB/CIFS, as described later.

6.2.1. Using smbclient

The smbclient program ships with Samba and is usually installed in the main samba package or in a
package called samba-clients. This program is modelled after text-mode FTP client programs such as
ftp. Basic use is fairly straightforward: type smbclient, followed by a NetBIOS name and share

name in the form //SERVER/SHARE. The result is a prompt for a password followed by smbclient's own

prompt. You can then type FTP-style commands, such as dir, get, put, and exit. A typical session
looks like this:

$ smbclient //MANDRAGORA/DDRIVE
Password:
smb: \> put chapter06.xml
putting file chapter06.xml as \chapter06.xml (613.4 kb/s) (average 613.4 kb/s)
smb: \> dir
 _Restore DHS 0 Sat Oct 18 13:15:50 2003
 Recycled DHS 0 Sat Oct 18 13:17:28 2003
 utils D 0 Sat Oct 18 13:37:28 2003
 APPS D 0 Sun Oct 19 00:07:20 2003
 drivers D 0 Sat Oct 18 15:47:42 2003
 chapter06.xml A 11935 Fri May 14 22:20:28 2004
 chapter05.xml A 64236 Fri May 14 22:19:50 2004
 flashplayer7installer.exe A 658586 Sat Oct 25 11:20:54 2003
 RECYCLED D 0 Sun Nov 2 12:07:38 2003
 Font Navigator D 0 Mon Mar 1 12:55:40 2004

 47889 blocks of size 65536. 44706 blocks available
smb: \> del chapter05.xml
smb: \> exit

By default, smbclient uses your login username as the SMB/CIFS username. You can change this
detail, and several others, with smbclient parameters, including:

-I IP-address

http://lib.ommolketab.ir

If you use this parameter, smbclient connects to the IP address you specify, rather than
resolving the machine name.

-N

This parameter suppresses the normal prompt for a password, which can be handy if you know
the share doesn't require one.

-U username[%password]

If your username on the server is different from your Linux username, you can specify the
correct username with this parameter. If you like, you can also include your password after the
username, using a percent symbol (%) as a separator.

-A auth-file

The auth-file specified with this parameter contains a username, password, and optionally a
domain, one to a line and labeled, as in username = linnaeus. You can use this option to

deliver authentication information to smbclient in scripts.

-c command string

This option passes a series of commands to smbclient, separated by semicolons (;). This
feature is most commonly used by scripts. It implies -N, so you must usually deliver a
password to smbclient in some other way, such as via -A.

-L server

This parameter causes smbclient to display a list of services available on the specified server.

You omit the usual server and share specification if you use this parameter.

-M server

You can send text to another system to appear as a WinPopUp message with this parameter.
When you use this option, smbclient accepts text you type until you press Ctrl-D. Alternatively,
you can use redirection operators to send a file to another computer. When you use this
parameter, you omit the usual server and share specification.

http://lib.ommolketab.ir

This list of options only hits on the highlights; smbclient supports many more
options, some of which are highly specialized. Consult the smbclient manpage
for more details.

Once smbclient is running, you can type any of about 50 FTP-style commands. The most useful of
these commands are:

? or help

You can obtain a list of commands by typing one of these commands. If you follow it by the
name of a command (as in help cd), smbclient displays basic usage information on the

requested command.

cd [directory]

Type this command to change into a directory on the server.

lcd [directory]

This command changes the working directory on the Linux client.

put local-name [remote-name]

Upload a file from the client to the server with this command.

get remote-name [local-name]

This command transfers a file from the server to the client.

ls [mask] or dir [mask]

These commands are equivalent; they produce a directory listing from the server, optionally of
a subset of files or from a subdirectory if you include an appropriate mask.

rm mask

This command deletes a file or set of files matching the specified mask on the server.

http://lib.ommolketab.ir

rmdir directory

This command deletes the specified directory on the server.

rename old-name new-name

Unsurprisingly, this command renames a file on the server.

print filename

This command submits a local file as a print job to a printer share. It's covered in more detail
in Section 6.3.1.

These commands should be sufficient for most casual uses of smbclient. For information on more
exotic commands, consult the smbclient manpage or use its internal ? or help commands.

6.2.2. Mounting Shares Using smbmount

Accessing SMB/CIFS shares with smbclient is sufficient in some cases, but sometimes you need more.
For instance, you might want to directly access a clip art collection using a word processor or
graphics program, without having to copy files to the local computer using a separate program. For
this purpose, Linux supports mounting SMB/CIFS shares as filesystems in the Linux directory tree.
You can do this using the smbmount or mount commands or by adding an entry to /etc/fstab.

All these SMB/CIFS mounting options rely on your kernel having SMB/CIFS client support. In 2.6.x
kernels, this option appears in the File Systems Network File Systems menu in the kernel
configuration system, under the name SMB File System Support. (One option relies on the CIFS
Support option instead, as described in Section 6.2.3.2.) Most distributions' stock kernels include this
support, but if yours doesn't, you need to recompile your kernel or at least add this support as a
module and compile it that way. Once you've added the necessary support to the kernel, you can use
smbmount, which takes the following syntax:

smbmount //SERVER/SHARE mount-point [-o options]

As an example, typing smbmount //MANDRAGORA/DDRIVE /home/linnaeus/mandragora mounts the

DDRIVE share from MANDRAGORA on /home/linnaeus/mandragora. Normally, though, this command
prompts you for a password, so you must enter it. What's more, like smbclient, smbmount passes
your current Linux username as the username for the server. Because only root may run smbmount
by default, this means you may need to pass another username to the command or change the
default in order to run it as an ordinary user. The former task can be accomplished by passing a
parameter to smbmount with the -o parameter. Some of the more useful options you can pass in

this way include:

http://lib.ommolketab.ir

username= user

You can specify a remote username other than your current username with this option.

password= pass

You can specify a password to be used with this option. (If you omit it, smbmount normally
prompts for a password.)

Delivering a password on the command line is potentially risky; it briefly
appears in ps outputs and also appears in your shell's command history. For
this reason, you should avoid using the password option whenever possible.

credentials=auth-file

You can deliver a username and password in a file with this option, which points to a file with
the same format as the credentials file for smbclientthe string username= followed by the
username, and the string password= followed by the password on the next line.

uid= UID

This option sets the user ID (UID) that will own all the files on the share you mount. If you
omit this option, files are owned by the user who runs smbmount.

gid= GID

This option works like uid, but it sets the group ID (GID) rather than the UID.

fmask= mode

You can set the mode (specified in octal format) of files on the remote share with this
parameter. The defaultif you omit this optionis based on the current umask.

dmask= mode

This option works like fmask, but it sets the mode for directories on the share.

http://lib.ommolketab.ir

guest

Pass this option if you know the share doesn't require a password; smbmount won't prompt for
one.

ro

This option causes smbmount to mount a share read-only, even if the share supports write
access.

rw

This option attempts a read/write mount and is the default.

The smbmount command accepts several additional parameters, most of which set fairly obscure
options. Consult its manpage if you need more details.

As an example, consider this scenario: you want to mount the DDRIVE share from MANDRAGORA at
/usr/share/clipart in such a way that all users can read the share and the user with a UID of 1027
can write to it. You want to use the username linnaeus and the password bu9N!nEp on the server.
The following command accomplishes this goal:

smbmount //MANDRAGORA/DDRIVE /usr/share/clipart \
 -o uid=1027,fmask=644,dmask=755,credentials=/etc/samba/mandragora.creds

This command requires a credentials file (/etc/samba/mandragora.creds) with the following contents:

username=linnaeus
password=bu9N!nEp

Credentials files are extremely sensitive. They should be set to be readable only
by the user who'll use the SMB/CIFS client programs that read them.

When you're done using a share, you can unmount it with the smbumount command, which works
much like the standard Linux umount command:

smbumount /usr/share/clipart

One problem with the smbmount command as just described is that only root may use it. This
problem can be overcome by setting the set-user-ID (SUID) bit on the smbmnt helper program and
on smbumount:

chmod a+s /usr/bin/smbmnt /usr/bin/smbumount

http://lib.ommolketab.ir

After you make this change, ordinary users may run smbmount and smbumount. They must,
however, own their mount points. This configuration can be handy on multiuser systems or when
shares should be mounted and unmounted on a regular basis. On the other hand, any SUID root
program is a potential security risk, so you shouldn't set this option unless it's necessary. If a share
should be mounted at all times, you might consider adding it to /etc/fstab, as described in Section
6.2.4.

Some versions of smbumount often have problems identifying shares that are
mounted by smbmount. If you see the error message:

 /mount/point probably not smb-filesystem

you need to use umount as root to unmount the filesystem.

6.2.3. Mounting Shares Using mount

An alternative to smbmount that's very similar is to use the standard Linux mount command. To use
this command, specify the smbfs or cifs filesystem type codes. These codes correspond to two
different SMB/CIFS clients in the Linux kernel. The first, smbfs, is the older of the two. It works with

any common SMB/CIFS server, using TCP port 139 and NetBIOS over TCP/IP, and is quite reliable.
The cifs code is much newer (it was only added as a standard part of the kernel with the 2.6.x

series) and isn't quite as reliable. This driver works using newer "raw" SMB/CIFS over port 445,
which isn't supported by older servers such as those that ship with Windows 9x/Me. The cifs driver

supports some more recent low-level SMB/CIFS features, though, and so it might eventually provide
faster operation.

Ordinary users can't use mount as described here; however, if you add an
entry to /etc/fstab, as described in Section 6.2.4Section 6.2.4, and if that entry
includes the user, users, or owners option, ordinary users can use mount to

mount a share. To do so, users specify the mount point only, rather than the
full set of options mount normally accepts.

6.2.3.1 Using the smbfs driver

To use the smbfs driver, you must include support for it in the kernel, as described in Section 6.2.2.
Once that's done, you can use mount to do the job by passing it a filesystem type code of smbfs and

a share specification like the one you'd pass to smbmount. You can also use the same options that
smbmount supports. For instance, you might issue a command like this:

mount -t smbfs //MANDRAGORA/DDRIVE /usr/share/clipart \
 -o uid=1027,fmask=644,dmask=755,credentials=/etc/samba/mandragora.creds

http://lib.ommolketab.ir

This command is equivalent to the similar one shown in the previous section. Like that command, it
relies on a credentials file (/etc/samba/mandragora.creds). In fact, as a practical matter, the two
commands are virtually identical. One practical difference, when typed at a shell prompt by root, is
that you use umount rather than smbumount to unmount a share mounted via mount. Using mount
also enables you to use mount-specific options not provided by smbmount, such as the remount
option to -o, which tells Linux to remount a filesystem with different options.

6.2.3.2 Using the cifs driver

The cifs driver was added to the 2.6.x kernel series as a way to support certain features not
supported by the smbfs driver. Most of these are low-level features relating to protocol operational

details, though, so they have no obvious consequences to users or system administrators. (Some
features, such as Kerberos and DFS support, are under development or are important in some
environments, though.) This driver works exclusively with recent servers, such as Samba and
Windows 200x/XP. The driver uses "raw" SMB/CIFS over TCP port 445, rather than the port 139
that's used by earlier SMB/CIFS implementations. As a practical matter, the main reason to use the
cifs driver is if you want to close off port 139 on the server (say, for security reasons). One other
practical difference between the drivers is that cifs accepts DNS hostnames but not NetBIOS names
for the server specification; smbfs accepts both name forms. (However, if you configure NetBIOS
name resolution for Linux TCP/IP applications, as described in Section 6.1.2, cifs will accept

NetBIOS names.)

The cifs driver works with a helper application, mount.cifs. Recent distributions and versions of

Linux ship with this tool. If yours didn't, you can find it at http://linux-cifs.samba.org, along with
assorted other cifs documentation and tools, including the latest version of the driver. (This may be

more recent than the version included in the latest Linux kernel.)

In theory, cifs accepts basically the same set of mount options as smbfs, so you should be able to
use it in precisely the same way. In practice, though, cifs is still new enough (at least, as of the
2.6.7 kernel) that some options don't work or have only recently begun working. The credentials

option didn't work properly until somewhere between the 2.6.4 and 2.6.6 kernel, for instance. If you
run into problems with the cifs driver, therefore, you may want to drop back to the smbfs driver, at

least for troubleshooting purposes.

My experience with cifs is that it's not as stable as smbfs. Sometimes it refuses to mount a share

for no apparent reason, and when a share does mount, file accesses are sometimes unreliable. All in
all, then, I recommend you avoid cifs if possible. On the other hand, raw SMB/CIFS over TCP port

445 supports features that aren't supported using the older NetBIOS over TCP port 139, such as
Unicode filenames, better locking, and so on. Thus, it's possible that cifs will one day provide
superior features and performance, compared to smbfs.

6.2.4. Editing /etc/fstab

Both smbmount and mount can be used by root to mount shares on an as-needed basis, and
smbmount can be used by ordinary users if its support programs are given SUID root status. What if
you want to make a share available at all times, though? You can place a mount or smbmount
command in a startup script, of course, but as a general rule, the way filesystems are mounted

http://linux-cifs.samba.org
http://lib.ommolketab.ir

automatically in Linux is to use entries in /etc/fstab. You can do the same with SMB/CIFS shares,
using the filesystem type codes smbfs or cifs, just as you would with the mount command.

An /etc/fstab entry for an SMB/CIFS share looks much like any other /etc/fstab entry, except that it
uses an SMB/CIFS server/share specification rather than a device filename and smbfs or cifs

optionswhich are the same as those for smbmount, as described earlier. All told, entries might
resemble these:

//MANDRAGORA/SHARED /mnt/shared smbfs \
credentials=/etc/samba/creds/shared,uid=1027,gid=100,fmask=666,dmask=777 0 0
//tulip/CLIPART /mnt/clipart cifs guest 0 0

This example mounts two shares: //MANDRAGORA/SHARED is mounted using smbfs at /mnt/shared,
while //tulip/CLIPART is mounted using cifs at /mnt/clipart.

The first mount's options are so lengthy that the /etc/fstab entry is split across two lines in this book,
using a backslash (\) as a line-continuation indicator. You'd replace this character with the second

line's contents in a real /etc/fstab file. This entry uses credentials stored in the specified file, assigns
ownership of all files to the user with UID 1027, and gives everybody full read and write access to the
share. The idea is that this is a share to which everybody should be able to write, probably on an old
Windows 9x/Me system, although it could be a Windows NT/200x/XP server or a Samba share.

The second mount's options are shorter because the assumption is that file ownership and
permissions will be acquired from the server using Unix extensions (as described in the next section).
Thus, there's no need for the uid, gid, fmask, or dmask options. This share supports guest access,
and so this entry uses the guest option to access the share. (This option began working between the
2.6.4 and 2.6.6 kernels; on earlier versions, the guest option didn't work with the cifs driver.)

If a share requires a password, you should store it in a credentials file and
restrict access to that file. Storing anything but bogus passwords in /etc/fstab
is potentially quite risky because it's readable to all users of the system.

After making changes to /etc/fstab, you should unmount the shares if they're already mounted.
You can then type mount -a to have Linux mount all your filesystems using the new values. If the

operation doesn't succeed, check the /var/log/messages file on the client and the relevant Samba log
files on the server for clues to what went wrong. The cifs filesystem can be particularly troublesome,
in my experience; you might want to try smbfs instead, at least for testing purposes.

Normally, shares specified in /etc/fstab are mounted at boot time. (Some distributions seem to have
problems mounting SMB/CIFS shares at boot time, though. To do so, you may need to add a call to
mount -a to a startup script.) If you include the noauto option along with user, users, or owner,
though, the share doesn't mount automatically. However, users can mount the share by typing mount

/mount/point, where /mount/point is the mount point specified in /etc/fstab. The user and users
parameters both permit any user to mount a share. They differ in that users enables any user to
unmount the share, whereas user gives this authority only to root and the user who mounted the
share. The owner option requires that the user who mounts the share own the mount point.

6.2.5. File Share Access Limitations

http://lib.ommolketab.ir

SMB/CIFS was originally designed with non-Unix systems in mind, and so most SMB/CIFS servers
don't support Unix-style filesystem features, such as ownership, permissions, and symbolic links.
(SMB/CIFS does support NT-style equivalents to some of these features, but they don't yet integrate
cleanly with Linux clients.) Some features, such as ownership and permissions, are fundamental to
Linux filesystem handling, so Linux SMB/CIFS mounting tools provide parameters to set these options
on a filesystem-wide basiseffectively, giving ownership of all files to a particular user and setting all
files' permissions identically. (Setting the DOS-style read-only bit, though, removes all write
permissions.)

Depending on how you want to use an SMB/CIFS share, these limitations might or might not be a
problem. For instance, if you want to give individual users access to their home shares on a remote
server, you can enable them to mount their own shares with smbmount. These shares are then
owned by the users in question, which is probably just fine for access to ordinary files. Setting up
such access in /etc/fstab can be tedious, though. You probably can't simply mount all a server's
home shares with one entry, and even if a server were set up to enable such access, the ownership
of all files would be assigned to a single user, which is probably unacceptable. Thus, you need to
create separate /etc/fstab entries for each user, and give users some way to set their passwords
(presumably in a credentials file in their own home directories). Maintaining such a configuration is
tedious at best. If the server is a Unix or Linux system, chances are you should use NFS rather than
SMB/CIFS.

On the surface, Unix extensions can help with these problems. These are extensions to the SMB/CIFS
parameters that support Unix-style ownership, permissions, symbolic links, and so on. On a Samba
server, you can enable Unix extensions by setting unix extensions = Yes, which is the default as of

Samba 3.0. These extensions aren't available on Windows servers, though.

When the cifs driver, or recent versions of smbfs or the smbmount command mount a share that's

delivered by a remote server that supports Unix extensions, the server delivers ownership and file
permissions information to the client. Unfortunately, this system only goes so far; the server still
authenticates a single user for file accesses. Therefore, files are accessed in that user's name, which
may not be the same as the user who's really accessing the file. For instance, suppose you use the
linnaeus account to mount a remote share. If mendel tries to access a file that's owned by mendel
with 600 (rw-------) permissions, access is denied, because from the server's point of view, it's

linnaeus, not mendel, who's trying to access the file, and linnaeus lacks appropriate permissions.
Samba's developers are working to overcome this limitation, but it still exists, at least as of the 2.6.8
kernel and Samba 3.0.7.

Nonetheless, using Unix extensions can still be a useful security tool for preventing unauthorized
access to files. You can change ownership and permissions on the server to restrict access to files
from the client in ways that can't be done using SMB/CIFS alone. File owners can set their Unix-style
permissions, including the execute bit, within limits imposed by the create mask and directory
mask parameters on the server, which can be handy if users need to store program executable files

on the server. The Unix extensions also support hard and symbolic links. On the other hand, if you
prefer to rely on Samba's server-side security features, you can set unix extensions = No to
disable this support, in which case client-side options, such as the uid and fmask mount options,

begin working again.

http://lib.ommolketab.ir

6.3. Printing to Printer Shares

A popular SMB/CIFS client feature on Linux is the ability to print to printers that are connected to
Windows systems or to other systems that support SMB/CIFS printing. (Many dedicated print server
appliances support SMB/CIFS printing, for instance.) Precisely how this task is accomplished depends
on the software installed on your Linux system. One way that should always work, given an
appropriately formatted file, is to use smbclient to submit a print job. You can also configure your
Linux print queue to submit jobs to a remote server via SMB/CIFS, but the details vary with your
local print queue. This section describes how to configure CUPS to configure an SMB/CIFS printer, as
well as how to do the job with BSD LPD or LPRng.

6.3.1. Printing Using smbclient

If you have a one-time need to print to a Windows printer from Linux, you may want to consider
using smbclient to do the job directly. As described earlier, smbclient is a basic text-mode tool for
transferring files using SMB/CIFS. Many smbclient features and commands are modelled after those
in text-mode FTP clients. One command in particular, though, is of interest here: print. Once you've
started smbclient and connected to a print server, you can use this command to transfer a print job
to the server. The transaction looks something like this:

$ smbclient //MANDRAGORA/HP4000
Password:
Domain=[GREENHOUSE] OS=[Unix] Server=[Samba 3.0.3]
smb: \> print myoutput.ps
putting file myoutput.ps as myoutput.ps (29.8 kb/s) (average 29.8 kb/s)
smb: \> quit

This operation is fairly straightforward for printing a single file (or even a few files), but it does have a
few caveats. Most obviously, it requires that you have a file on hand. Most Linux programs that can
print can also "print" to a file, so this requirement is seldom a problem. A more important caveat is
that the file you submit (myoutput.ps in this example) must be in a format that the remote printer
can parse. Most Linux programs generate PostScript output, so if you're printing to a PostScript
printer, this will probably work fine. If the printer isn't a PostScript model, though, you may be in a
bind. Many printers can handle ASCII (a.k.a. plain text) files, so if you want to print simple text (such
as the output of an ls command), you may be fine; just put the information in a text file and submit
it. For more complex data, you may need to use Ghostscript (gs) to convert PostScript to the remote
printer's native format. For instance, to convert PostScript to PCL, which is used by many mid-range
laser printers, you might type a command like this:

$ gs -dNOPAUSE -dBATCH -sDEVICE=ljet4 -sOutputFile=myoutput.pcl myoutput.ps

The -sDEVICE option sets the output driver; ljet4 stands for LaserJet 4one of Hewlett-Packard's

(HP's) PCL printers (and for which one PCL version's Ghostscript driver is named). If you don't know

http://lib.ommolketab.ir

what driver to use, you may need to check http://www.linuxprinting.org for advice, or at least type
gs --help to obtain a list of drivers available in your Ghostscript executable. With luck, one of the

abbreviations will be familiar to you.

Using smbclient directly can become tedious. If you need to print to an SMB/CIFS printer on a regular
basis, you can configure your local Linux printing queue to do so automatically. To do so, manually
configure a queue or use a configuration tool, as described in the next two sections.

6.3.2. Defining SMB/CIFS Printers Using CUPS

Most Linux distributions today ship with the Common Unix Printing System, which provides both local
and remote printing services for Linux systems. Chapter 4 describes basic CUPS configuration, so if
you're not already familiar with CUPS, you should consult the relevant section of that chapter before
proceeding.

Configuring an SMB/CIFS printer from CUPS works much like configuring a local printer. Instead of
selecting the local printer port (such as a parallel or USB port), though, you pick the "Windows Printer
via SAMBA" option as the device. Once you do this, the CUPS GUI asks you for the printer device's
uniform resource identifier (URI). In theory, this is the same as the share name, as delivered to
smbclient and other tools, except that it's preceded by smb:. This basic form, though, works only with

printers that are shared for anonymous users. If your printer share requires a username and
password, you must add this information to the URI, so that it takes the form
smb://username:password@NetBIOS-name/share-name. For instance, you might enter
smb://linnaeus:bu9N!nEp@BIRCH/EPSON to print to the EPSON share on BIRCH using the linnaeus

account and the password bu9N!nEp. Several variants on this form are possible; consult the
smbspool manpage for details (smbspool is a part of the Samba package that helps CUPS by
submitting the print job to the remote server). If you include a username and password in the device
URI, they won't appear in subsequent pages of the CUPS web-based configuration tool; they're
hidden from view, but used internally.

When you enter the password as part of the device URI, it appears in the web
browser's text-entry field. Worse, the username and password are both stored
in /etc/cups/printers.conf. For these reasons, it's best to use a dedicated
printing-only account that has no other access to the print server. (Windows
9x/Me print servers normally ignore the username and provide share-level
access to the printer, using a password only.)

When printing to a printer on a Windows server, you should normally select a CUPS printer definition
for the printer in question, as described in Chapter 4. This causes the Linux system to pass programs'
output through Ghostscript, if necessary, and turn it into a form that's acceptable to the remote
printer. If the server is a Linux or Unix system running Samba, though, a raw queue may work better
than a printer-specific queue. This is true even for genuine PostScript printers and their printer-
specific definitions; sometimes these definitions add lines to the PostScript file that can confuse the
server's print queue and cause it to print PostScript code rather than the file you want to see. Of
course, when printing from Linux to another Linux or Unix system, chances are you'll use Unix-centric
printing protocols rather than SMB/CIFS, but you can use SMB/CIFS if you have some reason to do
so.

http://www.linuxprinting.org
http://lib.ommolketab.ir

6.3.3. Defining SMB/CIFS Printers Using LPRng or BSD LPD

Although CUPS has become the most popular printing package in Linux, some distributions still
provide an option to use LPRng or even BSD LPD. These printing systems weren't designed with
much thought for printing to non-LPD remote printers, but they can do so by bypassing the normal
local printer queue and calling a remote-printing tool as part of a print filter. For instance, a normal
local printer queue using LPRng or BSD LPD is defined by a set of lines in /etc/printcap:

lp|lp0|hp4000:\
 :sd=/var/spool/lpd/hp4000:\
 :mx#0:\
 :sh:\
 :lp=/dev/lp0:\
 :if=/var/spool/lpd/hp4000/filter:

The if line defines an input filter for the queuea program that processes the print jobs for printing.

Normally, this filter attempts to identify the file's type and passes it through programs such as
Ghostscript to convert it to a format that's appropriate for the printer, whereupon the print job
continues on to the output device specified by lp. To print to an SMB/CIFS printer, you instead point
if at a program that delivers the print job to the remote queue, bypassing the lp line entirely.

Normally the task of submitting the print job to an SMB/CIFS queue is fairly complex: the submitted
file's type must be identified, the file must be converted into a format suitable for the printer, and the
file is delivered via an SMB/CIFS client program. Printer configuration tools can handle all these
tasks. In the past, distributions such as Red Hat and SuSE shipped with distribution-specific tools for
printer configuration. (These tools frequently called smbprint as part of their operation, but this detail
was hidden from the user.) Most such tools have now been altered to configure CUPS rather than
BSD LPD or LPRng, though, or omitted entirely in favor of CUPS web-based tools. If you're still using
a non-CUPS print queue, you should check your distribution's documentation and look for options
akin to those provided by CUPS.

If you've deliberately installed BSD LPD or LPRng on a distribution that normally uses CUPS, you may
want to look into Apsfilter (http://www.apsfilter.org). This package is a set of configuration tools and
smart filters that can identify various file types and apply appropriate transformations to them. Once
you've installed Apsfilter, you should be able to launch its configuration utility by typing
/usr/share/apsfilter/SETUP (the SETUP utility might exist in another directory on some systems,
though). When you set up a queue, select the Windows/NT (Samba) option and then enter the

appropriate information about the server's name, the queue name, etc.

http://www.apsfilter.org
http://lib.ommolketab.ir

6.4. Configuring GUI Workgroup Browsers

If you're migrating desktop users from Windows to Linux, chances are your users will be familiar with
the Windows Network Neighborhood or My Network Places network browsers. These browsers enable
users to easily locate network resources in a friendly visual manner. The core Linux SMB/CIFS client
tools, though, are purely textual, and hence decidedly unfriendly to users who aren't comfortable
with text-mode commands. Fortunately, some tools exist that provide GUI frontends to the text-
based tools or that integrate SMB/CIFS functionality into primarily GUI tools. Installing and
configuring such tools can help make former Windows users feel at home on a Linux desktop system.

6.4.1. A Rundown of GUI Network Browsers

Fitting with the Unix tradition of creating small programs that work together, many SMB/CIFS
network browsers serve as frontends to the text-mode tools. Others use functions that are now
provided in Samba libraries to handle much of the grunt work of SMB/CIFS interactions. These tools
differ in their levels of sophistication and precise feature sets. Examples include:

Konqueror

This program is the file manager and web browser in the K Desktop Environment (KDE;
http://www.kde.org) package. It supports accessing SMB/CIFS shares when the user enters an
SMB/CIFS URI, such as smb://MANDRAGORA/SHARED, in a window's path specification.
Konqueror doesn't actually mount shares on the Linux filesystem.

Nautilus

The GNOME file manager, Nautilus, supports SMB/CIFS access. You may need to select the File
 Open Location option in the program and enter a URI for your share. Like Konqueror,

Nautilus doesn't actually mount the SMB/CIFS share, but it does provide drag-and-drop access
to files.

LinNeighborhood

This program provides a GUI frontend to several Samba and related utilities, the end result
being a system that's similar to Network Neighborhood or My Network Places in overall
capabilities. It uses smbclient to mount remote shares, so they're accessible to all programs. If
LinNeighborhood doesn't ship with your distribution, you can obtain it from
http://www.bnro.de/~schmidjo/.

http://www.kde.org
http://www.bnro.de/~schmidjo/
http://lib.ommolketab.ir

Gnomba

Like LinNeighborhood, Gnomba is an SMB/CIFS network browser that supports mounting
shares you discover in the Linux filesystem tree. You can obtain it from its home page,
http://gnomba.sourceforge.net.

xSMBrowser

This program doesn't actually mount remote shares, but it enables easy browsing of the
network. Check the project's home page, http://www.public.iastate.edu/~chadspen/, for more
information.

SMB2WWW

This tool is unusual in that it's an interface between HTTP, which is used by web browsers, and
SMB/CIFS. The program runs as a Common Gateway Interface (CGI) program from a web
server, giving web browsers that access the server the ability to browse the local SMB/CIFS
network. You can obtain more information and download the program from
http://www.scintilla.utwente.nl/users/frank/smb2www/.

There are several more GUI tools for Linux SMB/CIFS interfacing, including some very specialized
ones. Check http://www.samba.org/samba/GUI/ for brief descriptions and links to those tools that
have been registered with the main Samba project.

6.4.2. Using LinNeighborhood

LinNeighborhood provides fairly typical network-browsing features, although its user interface isn't
quite as polished as some users might expect. Still, it works with a variety of desktop environments,
which can be a big plus. Before you can use it in any significant way, you must install and configure
it:

Check your distribution or the LinNeighborhood web site itself for the program. The web page
includes binaries in several different formats, or you can download and install the source code.

1.

As an ordinary user, type LinNeighborhood in an xterm or similar window. The result is the

main LinNeighborhood window.

2.

Click the Prefs button in the LinNeighborhood window. LinNeighborhood displays its main
Preferences dialog box, as shown in Figure 6-1.

Figure 6-1. LinNeighborhood configuration

3.

http://gnomba.sourceforge.net
http://www.public.iastate.edu/~chadspen/
http://www.scintilla.utwente.nl/users/frank/smb2www/
http://www.samba.org/samba/GUI/
http://lib.ommolketab.ir

Enter the information in the Scan tab. The workgroup is particularly important, but you may
want to enter the IP address of your NBNS system. LinNeighborhood should be able to find the
primary master browser automatically, and because this can change unexpectedly, it's probably
best to leave this field alone. Adjusting the various checkboxes can also help in some cases; for
instance, you might want to perform scans as your logon user rather than anonymously.

4.

Click the Programs tab, and check the entries there; they relate to the programs
LinNeighborhood uses to do the real work. Chances are you won't need to adjust these entries.

5.

Click the Miscellaneous tab, and check the items there. Particularly if you checked "Always scan
as user" on the Scan tab, you may want to enter a default user. If you enter a default
password, be aware that LinNeighborhood will store it in a plain-text file,
~/.LinNeighborhood/password, in your home directory. Be sure that file is readable only to you!

6.

Click the Post Mount tab, and adjust the items there. This tab enables you to launch a file
manager on shares you mount, or conceivably perform other arbitrary actions.

7.

When you're done with the Preferences dialog box, click Save, followed by Close.8.

The LinNeighborhood configuration files are in the ~/.LinNeighborhood
directory, and in particular, in the preferences file. You can configure
LinNeighborhood as you like and then copy this file to all users' home
directories. You may need to omit or customize the default_user line from

this file, though.

LinNeighborhood should now be configured and ready to function. If you don't yet see a list of
systems in the main window, as shown in Figure 6-2, try right-clicking the machine name, and select
Rescan Groups from the resulting pop-up menu.

http://lib.ommolketab.ir

Figure 6-2. The main LinNeighborhood window provides point-and-click
network browsing

You can browse the network in a way that should be familiar to those with GUI file manager or
network browser experience: double-click machine names (such as HALRLOPRILLALAR and LOUISWU
in Figure 6-2) to open them, or click the plus or minus symbol next to the name to open or close a
machine that's already been visited. Depending on your settings, you may be asked to enter a
username and password when you do this. Double-clicking a share's folder under a machine (such as
CDRIVE or EDRIVE in Figure 6-2) brings up a mount dialog box in which you specify the mount point,
username, password, and so on. LinNeighborhood then mounts the share and displays it in the
bottom pane of its main window, along with other SMB/CIFS mounts. If you configured
LinNeighborhood to launch a file manager after mounting a share, your file manager window should
appear.

To mount shares, LinNeighborhood requires that you either enter the root
password in the mount dialog box or set the SUID bit on the smbmount binary,
as described in Section 6.2.2.

To unmount a share, right-click the share or its mount point in the bottom pane of the window, and
select Unmount from the resulting pop-up menu. LinNeighborhood should unmount the shareif it can.
If any programs have open files on the share, LinNeighborhood won't be able to comply.

http://lib.ommolketab.ir

On some systems, smbumount won't be able to unmount the filesystem,
despite the fact that it was mounted with smbmount. This appears to be a bug
in smbumount.

6.4.3. Using Konqueror

Konqueror, the primary web browser and file manager for KDE, also supports SMB/CIFS; however,
this support is fairly recent and is still improving. Konqueror's support also doesn't actually mount the
share in the Linux filesystem. This means that if you attempt to directly access a file (say, by double-
clicking it), either Konqueror must copy the file to a temporary local location and then copy it back
when you're through or the application used to access the file must implement its own SMB/CIFS
support. Konqueror, like other GUI SMB/CIFS tools, also relies on other support libraries. For the
most part, these are installed with your main Samba or Samba clients package.

To use Konqueror's SMB/CIFS features, you should first launch it. Most Linux distributions place a link
for Konqueror in a menu or on the desktop, particularly when you run KDE rather than GNOME or
some other desktop environment. If you can't find a link, type konqueror in an xterm or similar

window.

Once Konqueror is running, type a URI (beginning with smb://) for the machine or share you want to

access in the Location field. If you enter a complete share specification, Konqueror asks for a
username and password, which you must enter correctly. (If you enter a machine name without a
share name, Konqueror defers asking for a username and password until you try to access a share.)
Konqueror should then present a list of file shares on a server or files and folders in a share. For
instance, Figure 6-3 shows Konqueror's display of the shares on the SPEAKER server. You can browse
your entire network by entering smb:/ as the device URI (the number of slashes is critically
important: you must place one slash after smb:).

Figure 6-3. Konqueror displays shares and their files much as it displays
local files

http://lib.ommolketab.ir

In theory, you should be able to use an SMB/CIFS share much as you'd use a local directory, by
clicking folders to open them and clicking files to launch applications that will read the files. In
practice, though, this sometimes doesn't work correctly. Konqueror may hang during file transfers to
temporary locations, or programs may fail to load the files. These problems will likely diminish as
Konqueror's SMB/CIFS support matures.

http://lib.ommolketab.ir

6.5. Summary

Although Linux often functions as an SMB/CIFS server with the help of Samba, the Samba suite and
Linux kernel both provide support for SMB/CIFS client operations. You can use these features to
enable NetBIOS name resolution for ordinary TCP/IP applications, to access files on Windows or other
SMB/CIFS file servers, and to print to shared printers. An array of GUI tools can also make accessing
SMB/CIFS resources easy for less computer-savvy users, although these tools may require
configuration by more experienced users.

http://lib.ommolketab.ir

Part III: Centralized Authentication Tools
Networks with many computers frequently set aside one system as an authentication servera
computer that authenticates users for the benefit of other computers. This practice can greatly
simplify account maintenance, because you need to maintain only one set of user accounts
rather than separate accounts on each computer. This goal is more complex on a multi-OS
network than in a single-OS environment, though, because different OSs support different
protocols for performing these tasks. This part of the book looks at three protocols that can be
used in a mixed Windows/Linux environment: Chapter 7 describes using an NT domain
controller, Chapter 8 describes using the Lightweight Directory Access Protocol (LDAP), and
Chapter 9 describes using Kerberos. Chapter 7 emphasizes Linux configuration as an
authentication client; the Linux server and Windows client sides are covered in Chapter 5.
Chapter 8 and Chapter 9 describe both client and server configuration for Linux and client
configuration for Windows.

Which tool should you use? All can do the job, but each has its strengths and weaknesses.
Broadly speaking, using an NT domain controller works well when you have an existing NT
domain controller for file share access and want to apply this existing account database to other
purposes. LDAP provides the best support for Linux account data and can also work well with
Windows 200x/XP systems, but it doesn't support Windows 9x/Me very well. Kerberos was
designed to provide a single sign-onthat is, to enable users to enter their passwords once per
session, even if they log in and out of multiple servers during this session. It doesn't maintain all
the necessary account data, though, and it can be tricky to use for some cross-platform tasks.

http://lib.ommolketab.ir

Chapter 7. Using NT Domains for Linux
Authentication
If your existing network uses an NT domain or an Active Directory domain, you may want to tap into
your existing domain controller for Linux authentication. For instance, you might want a Linux POP
server to use your existing Windows domain accounts. Doing so presents certain challenges, though;
the Windows and Linux authentication systems require different types of information, so some
information Linux needs isn't available from the domain controller. Fortunately, Samba's Winbind
software helps bridge this gap. Winbind links together the domain controller's database and Linux's
native authentication system, the Pluggable Authentication Modules (PAM). Using Winbind requires
configuring Samba options for Winbind, as well as for PAM and another helper tool, the Name Service
Switch (NSS).

Active Directory, introduced with Windows 2000, is the successor to NT
domains. AD domain controllers support the older NT domain controller
protocols for the sake of backward compatibility, so you can authenticate Linux
systems against an AD controller using the methods described in this chapter.
You can also authenticate Linux systems against an NT domain controller that
runs Samba.

Because Winbind is part of Samba, you should understand the basics of Samba configuration before
proceeding, even if you don't want to run the full Samba server suite on the system you're
configuring. If you're not already familiar with the basics of Samba, you should read Chapter 3. If you
want to have Linux fill the role of the NT domain controller, you should read Chapter 5.

http://lib.ommolketab.ir

7.1. The Principles Behind Winbind

When configuring a Linux system to authenticate users against an NT domain controller, you should
understand the basic principles behind this operationthat is, how Linux can work with an account
database that wasn't designed with Linux or other Unix-like OSs in mind. Essentially, the problem is
one of integrating two dissimilar systemsthe NT domain system and Linux's PAM. Winbind is a tool
that performs most of this integration, although some details are left to other tools.

7.1.1. The Problem: Linux Users on an NT Domain

As a practical matter, the desirability of running Linux as an NT domain controller's client (that is, as
a domain member server) varies from one network to another. The most common use for this
approach is limited to file shares on a Samba server, and that procedure is described in Chapter 3.
This configuration, though, works only for Samba shares, not for other services the computer might
offer, such as a POP server, an SSH login server, or console logins. If a computer should be used in
any of these ways in addition to or instead of being used as a Samba server, you must normally
maintain local Linux-only accounts. On a network that already uses NT domain authentication for
Windows systems, this separation can be a serious problem. You need to recreate your NT domain
accounts on your Samba servera tedious undertaking for you and for your users, who will have to
reenter their passwords. If you want to run multiple Linux server computers or add Linux desktop
systems, you need to either maintain separate Linux account databases on each Linux system or use
some other network authentication database. In other words, you'll be throwing away the benefits of
the NT domain controller for the new Linux systems.

Using an NT domain controller can be a good way to minimize the account maintenance difficulties
when you start adding Linux systems. Instead of using a Unix-centric centralized account system or
using local Linux account databases, you can tap into the NT domain controller. Once you've done
this, a Linux POP server, SSH server, or most other servers automatically accepts logins using the
usernames and passwords supported by the NT domain controller. You can even use this method to
enable console logins using the NT domain's accounts.

Typically, some accounts are still maintained locally. Most notably, you should
leave the root account defined only in the local Linux account database. This
practice enables you to log in even if network problems exist. It also enables
you to set different root passwords for each Linux system, which can help
improve your overall network security; a breach of one system won't
necessarily translate into a breach of all your systems.

NT domain authentication was designed with the needs of Windows computers in mind. These
authentication tools provide some information that Linux requires, such as a username and
password. This information isn't always available in a form the Linux system will find immediately
useful, though; for instance, the password is encrypted using a method that's foreign to Linux.
Worse, NT domain accounts lack some information that's critical to Linux, such as the Linux account's

http://lib.ommolketab.ir

home directory and default shell. Thus, Winbind must make up some of this information using values
set in Samba's smb.conf file. Other differences, such as NT domain password encryption, are handled
by Winbind's PAM integration modules.

7.1.2. Linux's PAM and NSS Systems

Linux relies on two systems to help manage accounts: PAM and NSS. PAM is described in detail in
Appendix A. In brief, PAM tells login services whether a user may log in or not, helps programs
change passwords, and handles a few related tasks. PAM is a modular system, so you can
reconfigure PAM to use authentication modules based on authentication tools other than the common
/etc/passwd and /etc/shadow files. In particular, this chapter describes how to configure PAM
modules that link to an NT domain controller with the Winbind tool.

In addition to PAM, Linux relies on another software component, NSS, for account information.
Rather than authentication information, though, NSS provides more mundane information, such as a
mapping of UIDs to usernames and the account's default shell. Like PAM, NSS is designed in a
modular way and sits between applications that ask for this information and the actual account
databases. Although you may think in terms of domain authentication, which is what PAM provides,
this ancillary information is just as important, so you must configure NSS to query Winbind. Most of
the information NSS delivers is made up rather than pulled out of the NT domain controller, though,
because this is the information the domain controller doesn't support.

7.1.3. Winbind: Linking PAM and NSS to an NT Domain

Winbind is implemented as a daemon, winbindd. This daemon ships with the official Samba source
code tarball, although some Linux distributions split it off into its own package, such as winbind. As
described in the later Section 7.2.2, this daemon runs at all times on any server that authenticates
users against a domain controller. Although winbindd is a daemon, it's not an externally accessible
server; it doesn't bind to a port and listen for external connections. It does, though, use Unix domain
sockets to communicate with local processesnamely, the PAM and NSS libraries that are also part of
the Winbind package.

Winbind connects to the domain controller to authenticate users and thus functions as a domain
member server to a domain controller. Winbind works in this way only when the computer on which
it's running is fully joined to a domain using the Samba net command, which is described in Section
7.2.1.

http://lib.ommolketab.ir

7.2. Samba Winbind Configuration

Much of the configuration of Winbind is done using Samba. The main Winbind options appear in
smb.conf (although, as described earlier, some options are set in the PAM and NSS configuration
files, as well). Thus, you must know how to set these Samba options. Running the Winbind daemon is
also critically important to getting the system running.

This configuration occurs on the domain member serverthe Linux system you
want to configure to use a domain controller's account database. If you use a
Samba server as the domain controller, it requires its own configuration, which
need not include most of the options described here.

7.2.1. Winbind Options in smb.conf

You should configure the smb.conf file on the domain member server much as you would for any
Samba server on a domain, as described in Chapter 3. Most notably, you should set the workgroup,
security, encrypt passwords, and password server global options:

workgroup = GREENHOUSE
security = Domain
encrypt passwords = Yes

password server = 192.168.1.1

You should adjust the values of the workgroup and password server parameters for your network,
of course. The security parameter must be set to Domain, and encrypt passwords must be set to
Yes.

If your domain controller supports AD, you can set security = ADS instead of
security = Domain, but this configuration requires setting additional options

and can be finicky. It provides somewhat better security on your LAN because it
uses the extremely robust Kerberos authentication system.

In addition to these options, which are the same as those you must set for any Samba domain
member server, you may want to set several other global parameters. These parameters set values
for information required by Linux accounts but not provided by the domain controller:

winbind use default domain

http://lib.ommolketab.ir

Ordinarily, Winbind returns Linux usernames that are based on a combination of the NT domain
name and the NT username. This feature enables you to maintain multiple domains and
support users with duplicate usernames in these domains without causing conflicts. If you set
this Boolean parameter's value to Yes, though, Winbind omits the domain name from

usernames, which results in shorter and more sensible usernames. Doing this is safest when
you have just one domain or when you're sure that no usernames are duplicated on multiple
domains. This parameter's default value is No.

winbind separator

This parameter specifies a character that separates domain names from usernames when
winbind use default domain = No. The default character is a backslash (\).

winbind enum users

Linux provides certain system calls that enable programs to enumerate users on a system.
Winbind supports these features if this parameter is set to Yes (the default), but this support

can be slow. Thus, if the programs you run on a system don't require this support, setting this
parameter to No can improve performance.

winbind enum groups

This parameter works much like winbind enum users, but it affects system calls for

enumerating groups rather than users.

idmap uid

Linux uses UIDs internally for tracking users. NT domains use a number called a Security
Identifier (SID) for a similar purpose; however, the two numbers aren't identical. Thus, you
can give Winbind a range of local UID numbers to use for the accounts it handles. This range is
given as two numbers separated by a dash, as in 2000-5000. You should never create local

Linux accounts in the range you reserve for Winbind in this way. This parameter's default range
is undefined. Prior to Samba 3.0.6, this value had to be set, but in Samba 3.0.6 and later, an
undefined idmap uid causes Winbind to try to map NT domain usernames to locally defined

accounts, which can be useful if you have existing Linux accounts but want to rely on a domain
controller for password authentication. A synonym for this parameter is winbind uid.

idmap gid

This parameter works much like idmap uid, but it reserves a range of GID numbers rather

than UID numbers. This parameter's default value is undefined. A synonym for this parameter
is winbind gid.

Winbind makes no guarantees about the UIDs and GIDs assigned to particular users and groups. In

http://lib.ommolketab.ir

particular, two Linux systems might assign completely different UIDs and GIDs to a user, even if you
specify the same range of UIDs with idmap uid. This can complicate certain Linux-to-Linux protocols,

such as NFS, which identifies accounts by UID rather than username. You can overcome this problem
using the idmap backend parameter to point to an LDAP directory that holds the UID mapping
information.

Samba maintains information about UID and GID mapping in Trivial Database
(TDB) files, typically in /var/cache/samba or a similar location. If these files are
damaged or deleted, Winbind has to rebuild these mappings, and they may not
match the originals. If this happens, you have to reassign ownership of all your
users' files and home directories.

template shell

An /etc/passwd file normally specifies a default shell for a user; this program is run when a
user logs in at a text-mode console, via SSH, and so on. NT domain controllers don't maintain
this information, though, so you must tell Winbind what value to provide. The default is
/bin/false, which is a conservative choice from a security point of view and may be good for

some functions. However, for systems that should support shell access, another value, such as
/bin/bash, will function better. You can't customize this value on a per-user basis; all accounts

mediated by Winbind must use the same shell.

template homedir

Just as with the default shell, NT domain controllers don't maintain information on the users'
home directories. You specify this information with this parameter, which defaults to
/home/%D/%U. Because %D is a Samba variable for the domain name and %U stands for the

username, this value sets a unique home directory for each user. As of Samba 3.0.6, only the
%D, %N, %U, and %u variables are supported in this option.

winbind cache time

This parameter sets the amount of time, in seconds, that Winbind will cache authentication
information before querying the server again, should a new authentication request occur. The
default value is 300 (five minutes). You may want to reduce this value during testing.

The most important of these parameters to set or change are usually idmap uid, idmap gid, and
template shell. Setting other parameters can sometimes be desirable, though. For instance, you

might use parameters like these for testing in a one-domain configuration:

winbind use default domain = Yes
idmap uid = 2000-5000
idmap gid = 2000-5000
template shell = /bin/bash
template homedir = /home/%U

http://lib.ommolketab.ir

winbind cache time = 5

Once you're convinced everything is working, you should increase the cache time so as to reduce the
number of queries the system makes of the domain controller. Changes to some other parameters
might require additional system changes; for instance, if you alter template homedir, you have to

move users' home directories yourself.

Before proceeding, remember to add a machine trust account to the domain controller for the Linux
computer. This can be done from the Linux system using the net utility. For instance, to join a
computer to the domain specified by the workgroup parameter in smb.conf, type this command:

net join member -U
adminuser

This command needs to be run just once. In this example, adminuser is the username of an account

on the domain controller that may add machine trust accounts. (This topic is covered in more detail
in Chapter 3.) If the domain controller is a Samba server, consult Chapter 5 for information on
configuring the necessary machine trust accounts.

7.2.2. Running the Winbind Daemon

Because Winbind relies on a running daemon, you must configure it to run at all times. For testing
purposes, though, you may want to run it manually:

/usr/sbin/winbindd -i

The winbindd program file may be in another directory on your system.
/usr/local/samba/sbin is common if you compiled Samba from source code
yourself. If you can't find the binary on your system, check your distribution's
Samba packages; you might not have installed the package in which the
daemon ships.

To run the daemon permanently, you should do one of two things:

Add a line to launch the program to a local startup script, such as the /etc/rc.d/rc.local script in
Fedora Core, Mandrake, or Red Hat; /etc/init.d/boot.local in SuSE; or /etc/conf.d/local.start in
Gentoo.

Configure a SysV startup script to launch the daemon. Many distributions' Samba packages
include such scripts, usually called winbind or something similar. Create appropriate symbolic
links or use whatever SysV startup script management tools your distribution provides to do the
job.

In either case, you should remove the -i option from the line that launches winbindd. This option

causes the daemon to log information on its operation to standard output and to not detach from the

http://lib.ommolketab.ir

current terminal, which is handy when testing the daemon but not when using it in normal operation.

Once Winbind is running, you can test its basic operation using the wbinfo command. This command
supports numerous options that return information on accounts maintained by the domain controller.
Some options enable you to modify those accounts, as well. To test the most basic operation, use the
-t option to test the trust account you've created and the basic Winbind functionality:

$ wbinfo -t
checking the trust secret via RPC calls succeeded

If this call returns an error message, review your smb.conf options and check the logs on the Linux
system and the domain controller for clues to the cause. A subsequent testing step involves -u; this

option returns a list of accounts maintained by the domain controller:

$ wbinfo -u
linnaeus
mendel
britton

This example shows output consistent with a setting of winbind use default
domain = Yes. If this option is set to No, the usernames include domain names,
as in GREENHOUSE\linnaeus rather than linnaeus.

If wbinfo -u returns a list of users, you can be confident that Winbind is operating, at least

minimally. If you receive an error message, though, you should look into the matter. Review your
smb.conf entries, and check the logs on both the Linux system and the domain controller for clues.

http://lib.ommolketab.ir

7.3. PAM and NSS Winbind Options

Getting the Winbind daemon up and running is only part of the configuration required on the domain
member server. Once Winbind is functioning, you must configure PAM and NSS to use Winbind to
authenticate users and return additional account information to programs that need it. These tasks
are handled by special modules and configuration of these two subsystems. You may also want to
configure Linux to create home directories automatically when they don't exist.

7.3.1. NSS and PAM Winbind Modules

PAM and NSS both rely on modules to interface with Winbind. These module files, pam_winbind.so
and libnss_winbind.so, are usually installed as part of a Samba package, such as samba-common.
The pam_winbind.so file usually appears in /lib/security or /usr/lib/security. The libnss_winbind.so file
usually resides in /lib and is linked to another file, libnss_winbind.so.2 (either file may be a symbolic
link to the other).

If you've installed Samba from source code, you may need to install these libraries independently.
The source code appears in the source/nsswitch subdirectory of the Samba source code package, and
the compiled libraries should appear there after you build the main Samba package. (These files
appear only if you select the --with-pam configure option.) Copy the files to appropriate directories,
and create an appropriate link for the libnss_winbind.so file. You can then type ldconfig to force

Linux to reexamine the library directories and register the new libraries.

7.3.2. Configuring NSS

NSS provides nonauthentication information on accounts to tools that require it. Before PAM allows
you to log in using Winbind, you must configure NSS to use Winbind. This can be done by editing the
/etc/nsswitch.conf file. Locate the passwd and group lines in this file. (The shadow line usually
separates them, but you won't edit this line.) Add winbind to the passwd and group lines:

passwd: files winbind
shadow: files
group: files winbind

Some distributions place other options on these lines in addition to files.
Some use compat instead of files. If yours is so configured, simply add
winbind to the end of the list, or to an earlier position if you prefer. (NSS

consults each source in turn for account information.)

7.3.3. Configuring PAM

http://lib.ommolketab.ir

PAM enables you to customize authentication options on a service-by-service basis. For instance, you
can tell Linux to use only the local account database for console logins, to use only the NT domain
controller for FTP logins, and to use either method for remote SSH logins. PAM accomplishes this goal
by using one or more configuration files: either a file called /etc/pam.conf or files in the /etc/pam.d
directory named after the particular systems they control. Modifying these files to use additional PAM
modules, such as those that support NT domain authentication, is described in Appendix A.

When reconfiguring PAM, you can easily render your system unable to support
logins. Thus, I recommend experimenting with one login server at a time,
leaving yourself some way to log in should you create an inoperable system.
For instance, experiment with the login service and leave the gdm or xdm

service alone.

As an example of adding NT domain authentication, consider Example 7-1. This listing shows the
contents of the /etc/pam.d/login file on a Debian system, which defines how PAM handles
authentication for text-mode console logins and logins via such servers as Telnet.

Example 7-1. Sample PAM configuration file

auth requisite pam_securetty.so
auth requisite pam_nologin.so
auth required pam_env.so
auth required pam_unix.so nullok

account requisite pam_time.so
account required pam_unix.so

session required pam_unix.so
session optional pam_lastlog.so
session optional pam_motd.so
session optional pam_mail.so standard noenv

password required pam_unix.so nullok min=6 max=255 md5

PAM configurations vary both from one service to another and from one
distribution to another. If your PAM configuration file doesn't look exactly like
Example 7-1, don't panic. The most important part of PAM Winbind
configuration is adding lines, as described shortly.

To add NT domain authentication to this system, you should add a couple of lines to this file. These
lines tell PAM to use the pam_winbind.so library for authentication and account validity checks. The
result of adding these lines appears in Example 7-2, with the added or changed material shown in
bold.

http://lib.ommolketab.ir

Example 7-2. Sample PAM configuration file with Winbind support

auth requisite pam_securetty.so
auth requisite pam_nologin.so
auth required pam_env.so
auth sufficient pam_winbind.so
auth required pam_unix.so nullok try_first_pass

account requisite pam_time.so
account sufficient pam_winbind.so
account required pam_unix.so

session required pam_unix.so
session optional pam_lastlog.so
session optional pam_motd.so
session optional pam_mail.so standard noenv
session required pam_mkhomedir.so skel=/etc/skel umask=0027

password required pam_unix.so nullok min=6 max=255 md5

This configuration adds an auth line just before the existing auth line that references pam_unix.so
and adds the try_first_pass parameter to that existing line. These changes add Winbind to the
authentication system and cause pam_unix.so to use the password entered for Winbind if Winbind
authentication fails. A second set of changes is in the account stack, which adds a Winbind call to it.
Finally, this configuration adds a call to pam_mkhomedir.so, which creates a new home directory for

the user if one doesn't already exist. You need to make these changes for every service that should
use the NT domain controller.

Some distributions, including Red Hat, Fedora, and Gentoo, now use the
pam_stack.so module rather than pam_unix.so or pam_unix2.so. If you see
calls to this module, you can either add your calls to pam_winbind.so to the file

as described here or modify the /etc/pam/system-auth file instead of the file
for the individual servers. The pam_stack.so module pushes part of the PAM

configuration into the system-auth file, as described in Appendix A.

You should also change the /etc/pam.d/passwd file, which controls the passwd command's actions.
As described in Appendix A, this change requires adding references to pam_winbind.so to the auth,
account, and password stacks.

You normally don't need to change the /etc/pam.d/samba configuration. The
Samba server provides its own tools for authenticating against the domain
controller, and in fact, if you configure Winbind properly, Samba is
automatically configured to use the domain controller directly. Thus, although it
has one, there's no need to edit Samba's PAM configuration file.

http://lib.ommolketab.ir

7.4. Winbind in Action

In theory, Winbind should now be working. In practice, though, various problems can occur. You can
perform tests to check on Winbind's operation that will point you to likely solutions for any problems
that might exist. Once the system is up and running, you can begin using it, but you should
understand its capabilities and limitations in day-to-day operation.

7.4.1. Testing Winbind Operation

We looked at the wbinfo tool that tests Winbind operation in Section 7.2.2. This tool queries the
domain controller via Winbind without using the NSS or PAM libraries, and as such, it's a good test of
"pure" Winbind operation. It provides several options you can use to test basic Winbind operations:

-a username%password

This option performs a test authentication using the provided username and password. If it

succeeds, Winbind can authenticate users. This option only works when run as root.

-g

This option displays all groups available on the current domain.

-n name

Winbind returns the SID of the specified name, which is normally a username but could be a

group name.

-p

This option checks for the presence of Winbind; if it's running and working at least minimally,
the program responds Ping to winbindd succeeded.

-t

Use this option to check the validity of your domain trust account. If it's valid, wbinfo responds:

http://lib.ommolketab.ir

checking the trust secret via RPC calls succeeded

-u

As described earlier, this option displays a list of usernames managed by Winbind.

Some additional options provide more features for converting between SIDs, Unix usernames, and
Unix UIDs. Still more options can be used for account management. Consult the wbinfo manpage for
more information.

When debugging problems, I recommend using the -p, -t, -u, and -g options to check for basic

functionality. (The last of these may return an empty list under some circumstances, though.) Using
options that work on specific accounts or groups, such as -a and -n, can help you verify that more

advanced features are working. If any tests fail, the pattern of failures can be informative. For
instance, if -t fails, but -p works, you should check your machine trust account, and if necessary

recreate it.

A second layer of tests uses the getent command. This tool returns the contents of administrative
databases, such as /etc/passwd or /etc/group. The tool works through NSS, though, so when you
configure NSS to use a domain controller, getent should return information from the local
/etc/passwd or /etc/group files, followed by constructed entries for the NT domain accounts and
groups. You obtain these lists by typing the command followed by the databasethat is, getent
passwd or getent group. Check the outputs of these commands for the accounts and groups that are

defined on your domain controller. If either output lacks entries that should be present, you might
have mistyped an entry in /etc/nsswitch.conf, or your system might be missing the appropriate
library. Remember to type ldconfig after adding libraries.

You should also check the output of getent for appropriate UID and GID numbers. The NT domain
accounts and groups should use numbers specified in the idmap uid and idmap gid parameters,

respectively, in smb.conf. If these numbers overlap those of locally defined accounts, reconfigure
smb.conf so they don't overlap.

Sorting the getent output by UID can sometimes be helpful. Typing getent
passwd | sort -t: -k3 -n will do this.

7.4.2. Winbind Logins

Once you've performed these tests, you can try logging in using Winbind. Doing so may require you
to restart the login process you're using, though. If you can't seem to log in, try terminating the
server you're using and restarting it. (The local login process, which handles text-mode logins,
normally starts anew whenever you log out. The same is true of processes run from a super server.)

If all goes well, you should be able to log into your system using the NT domain controller just as you
would using the local login database; you should see absolutely no difference. To be sure you're using
the NT domain controller, use an account that exists on the domain controller but not in the Linux
system's local account database.

http://lib.ommolketab.ir

Some PAM configuration errors enable you to log into an account with no
password or with an incorrect password, so be sure to test not only your ability
to log in, but Linux's response to incorrect passwords.

If you set winbind use default domain = No, you'll have to provide the domain name as part of

each username, as in GREENHOUSE\linnaeus rather than linnaeus. This can be awkward, so you
should set this parameter to Yes, if possible.

If your server should support multiple login services, such as text-mode console, GDM, and FTP
accesses, be sure to test all of them. Of course, you'll also have to adjust each service's /etc/pam.d
file.

Some servers require unusual configurations, either in their PAM configuration
files or in their own configuration files. For instance, OpenSSH requires you to
set UsePrivilegeSeparation no in its /etc/ssh/sshd_config file. Some servers

also provide optional PAM support, which must be enabled either in a
configuration file or when building the server. If you find that most servers
work with NT domain authentication but some don't, try a web search on
Winbind or PAM and the server name for clues about any server-specific quirks.

If your domain controller is a Samba server, you might find that your NT domain accounts don't
belong to an explicitly defined group. The usual symptom is a GID number rather than a group name
in ls listings:

$ ls -l
total 0
-rw-r--r-- 1 linnaeus 2009 0 May 23 15:55 myfile.txt

Note the GID number (2009) in this output where a group name normally appears. This problem is a
result of the fact that Samba doesn't automatically map its local Linux groups to NT domain groups.
You may be able to safely ignore this problem, but if groups are important to you, you can overcome
it using the net utility to set up a mapping of Linux to NT domain groups. First, create NT groups
using the GROUP ADD subcommand:

$ net GROUP ADD
Botanists

Now, set up a mapping of existing Linux groups to the NT domain groups:

$ net GROUPMAP ADD ntgroup=
Botanists unixgroup=botany

Of course, the Linux group must exist before you type this command; if it doesn't, you should create
it first, using groupadd or some other tool. You may be asked for a password after typing these

http://lib.ommolketab.ir

commands. You may also need to add the -U adminuser option to perform this action as the

specified administrative user. If you want to configure multiple groups, you must set up each
individually. In any event, after performing these steps, group mapping should operate in a fairly
straightforward way.

Another approach to the problem of missing group mappings is to use NIS, LDAP, or some other tool
to share group information between the Samba server and the Winbind client. This approach requires
either setting winbind trusted domains only = Yes or not setting the idmap gid parameter. In

either case, the Winbind client then uses the GID information distributed via the alternative protocol,
such as NIS or LDAP.

In normal operation, Winbind attempts to authenticate users against the NT domain controller. This
attempt can fail, though. This can happen because of a failure of the domain controller, network
problems, or local configuration problems or because the account doesn't exist on the domain
controller. In such situations, if you've configured Winbind as described in this chapter, Linux falls
back on its local account database. You may want to keep this database populated with a few critical
accountsmost importantly, the root account, so that you can perform system maintenance even if the
domain authentication system fails. However, if you maintain redundant accounts (for instance, if
linnaeus is defined both locally and on the domain controller), which account is used depends on the
order of entries in the PAM configuration file and the /etc/nsswitch.conf file. As a general rule,
defining an account in both ways is likely to lead to confusion, so this practice should be avoided.

http://lib.ommolketab.ir

7.5. Summary

Many Windows networks use NT domain controllers or AD domain controllers to provide
authentication services to Windows systems. You can tap into this existing resource to provide
automatic account creation and password authentication on a Linux systemeven one that doesn't
function as a Samba server. To do this, you must adjust some smb.conf entries, run the Winbind
daemon, and configure the PAM and NSS systems to use Winbind for account authentication and
information queries. Once this system is configured and running, users shouldn't be able to tell that
Winbind is in use; everything should work just as it does with a local account database.

http://lib.ommolketab.ir

Chapter 8. Using LDAP
The Lightweight Directory Access Protocol is the second of three cross-platform authentication tools
described in this book. In reality, though, LDAP is much more than an authentication tool; it's a
protocol for accessing directories, which in this context are essentially databases designed to be read
more often than they're written. As such, LDAP can store many different types of informationUnix or
Windows account databases, mappings of hostnames to IP addresses, employee contact information,
and so on. This chapter focuses on one narrow use for LDAP, as a network-accessible account
authentication system. LDAP makes a viable alternative to NT or Active Directory domains for
network authentication of both Windows and Linux servers and desktop systems. It can provide
better Linux account database integration, so it's the smarter choice if you use many Linux systems.
It can also provide much more than account authentication information, although such configurations
are beyond the scope of this book. Using Linux as an LDAP platform gives you all of Linux's usual
advantages, such as its reliability and low cost.

When setting up an LDAP authentication system, you should first understand some LDAP basics.
Despite the word lightweight in the protocol's name, LDAP is a complex system, with its own
terminology and peculiarities. In fact, several LDAP implementations exist, so you must pick one and
install it on your Linux LDAP server. You must then set up your directories to handle authentication.
Only then can you begin configuring your LDAP clients to use your network's account directory. (Note
that LDAP clients can be servers for other protocols.) Of course, the details of this configuration vary
between Linux and Windows clients, so you must know how to handle both.

You can use a non-Linux LDAP server for authentication. In fact, if you
currently use a Windows 200x Active Directory domain controller, it already
runs LDAP. You can use this server to authenticate users on Linux systems, but
you need to add Unix-style account information to the LDAP directories.
Alternatively, you can configure the Linux systems to access the Windows
server as an NT domain controller, as described in Chapter 7. This solution
requires no changes on the Windows LDAP server and so is likely to be slightly
simpler to configure.

http://lib.ommolketab.ir

8.1. The Principles Behind LDAP

At its core, LDAP is a protocol for exchanging data between computers. The LDAP protocol has been
independently implemented in several packages, but understanding what problems LDAP is intended
to solve will help you understand its features and implementations. As a practical matter, you must
also pick an LDAP implementation to run on your LDAP server, as well as LDAP clients for systems
that should authenticate against the server.

8.1.1. The Problem: Providing a Network-Accessible Directory

Directories, and LDAP in particular, are tools for storing data. At this level of analysis, directories are
similar to databases. In order to understand directories, though, you should understand a couple of
key differences between directories and databases:

Directories are designed to be read more often than they're written; databases are designed for
more equal distribution of read and write accesses. This characteristic simplifies many aspects
of a directory's design and can lead to faster lookups in directories.

The internal structure of databases is designed to support easy sorting and cross-referencing,
but the entries are otherwise unstructured. Directories, by contrast, use a hierarchical structure
but are less easily sorted than database entries.

LDAP provides tools that enable accessing directories across a network, with the goal of centralizing
this information. The central directory can host a variety of information. For instance, it might hold
individuals' computer account information, telephone numbers, office numbers, birth dates,
departmental affiliations, and so on. This information is unlikely to change frequently, and individuals
throughout an organization may have need to access it. Thus, a network-accessible directory protocol
is the ideal way to store such information.

LDAP, and directories more generally, can handle more than just account or
even personal information. For instance, you might store computer help
documentation in a directory. This chapter focuses on LDAP as a tool for storing
computer account information. For more information on LDAP, including
additional potential uses, consult a book on the subject, such as LDAP System
Administration (O'Reilly).

One important characteristic of LDAP is that it's a protocol description. The actual data storage can be
in any of several different forms, depending on the features of the LDAP server you choose. For
instance, an LDAP server might use plain-text files, a proprietary binary format, or a well-
documented database file format. The choice of backend data file format doesn't affect the operations
that can be performed by clients, but it may influence the server's overall performance level.

http://lib.ommolketab.ir

8.1.2. LDAP Terminology and Features

LDAP documentation is filled with its own jargon. Some LDAP terms should be familiar to most Linux
administrators, but some of it is unique or used oddly:

Directory

This term, as already described, refers to a data-storage system. Note that the term is
unrelated to a filesystem directory, although the two types of directories do have certain
common features, such as being methods of data storage. A directory tree refers to the entire
collection of structured entries in the directory.

Attributes

An LDAP attribute is similar to a variable in a programming language; it's a named identifier for
data stored in the directory. Attributes, though, can sometimes hold multiple values.

Object class

Every entry in a directory is a member of an object class, which defines a collection of
attributes for data. You set the object class by setting the objectClass attribute to a particular
value. For instance, when using LDAP to handle accounts, you'll use the posixAccount class,
among others. This class defines attributes called uid, userPassword, and so on, to store

account information.

Schema

This is a way to define several object classes at once. LDAP implementations ship with
standardized schema files that provide many predefined object classes, including some that are
useful for handling user accounts. (The schema is a structure for holding data, not the data
itself.)

DC

A domain component identifies the scope of an entry or of an entire tree. Typically, you'll set
dc= attributes that correspond to your DNS domain or subdomain name.

DN

A distinguished name is the name of an attribute along with a description of where the entry
belongs in the directory tree. It's described in more detail later in this chapter.

http://lib.ommolketab.ir

OU

An organizational unit is a common subdivision in a directory. It's often used to separate
departments from one another within a single organization, enabling (for instance) duplication
of usernames in two different departments.

LDIF

The LDAP Data Interchange Format describes information in a way that LDAP can understand.
It's covered in more detail later in this chapter.

LDAP directories are often represented in graphical form, such as that shown in Figure 8-1. In
practice, these trees are constructed through the data you place in individual entries, which appear at
the nodes in the tree. The topmost entry in the tree (dc=pangaea,dc=edu in Figure 8-1), or its root,

defines the naming context of the directory. In this example, the naming context includes two DCs,
which together are equivalent to the pangaea.edu DNS domain.

Figure 8-1. LDAP enables you to define a hierarchical tree of entries

8.1.3. LDAP Software

Of course, you need actual software to implement an LDAP server. In Linux, the most popular LDAP
package is OpenLDAP, which is headquartered at http://www.openldap.org. Other LDAP packages are
available, though, and some are popular on non-Linux systems. The most notable of these is
probably Microsoft's Active Directory, which incorporates LDAP and Kerberos functionality. Other
products include Sun's SunOne and Novell's eDirectory.

Because OpenLDAP is the most common LDAP package for Linux, the rest of this chapter uses it as
an example, at least for server operations. In particular, this chapter describes OpenLDAP 2.2. LDAP
client configuration should be the same even if you use another LDAP server, though. Many details
differ for other LDAP servers, so if you choose to use one, you'll have to consult its documentation to
learn how it differs from OpenLDAP.

http://www.openldap.org
http://lib.ommolketab.ir

8.2. Configuring an OpenLDAP Server

The first step in using LDAP as a distributed login database is to get the server software running. This
process entails obtaining and installing the software, setting it up to handle your domain, setting
encryption options, and running the server. The Section 8.3 will show you how to create a directory
that contains all your site's user accounts.

8.2.1. Obtaining and Installing OpenLDAP

OpenLDAP's official home page is http://www.openldap.org. You can obtain the OpenLDAP source
code from this site, but the OpenLDAP site doesn't host any precompiled binaries. Fortunately, most
major Linux distributions provide such binaries, usually under the name openldap or openldap2 (the
current OpenLDAP major version number is 2, hence that digit at the end of some OpenLDAP
package names). Because most Linux distributions ship with OpenLDAP packages, the assumption in
this chapter is that you're installing the server in this way. If you compile the server from source
code, you may need to adjust some filesystem directory paths in the coming descriptions because
OpenLDAP installs in /usr/local by default, compared to /usr for most precompiled Linux OpenLDAP
binaries.

Whether you install a binary package or compile OpenLDAP from source code, you may need to
install several dependencies. These programs are either required for proper OpenLDAP functioning or
are optional tools that OpenLDAP can use to provide improved security or other features:

SSL and TLS

The Secure Sockets Layer and Transport Layer Security are cryptography tools. They're used
to encrypt connections between two computers on a networka useful feature for a network
authentication system. In Linux, OpenSSL (http://www.openssl.org) is the most common
implementation of both protocols.

SASL

The Simple Authentication and Security Layer is a tool for mediating between applications and
authentication systems. It's optional if you compile OpenLDAP from source code, but your
distribution's binary packages may require it. The main reasons to include it are if you want to
enable Kerberos authentication with OpenLDAP or if you want to use other SASL-enabled
applications, such as SASL-enabled SMTP or IMAP mail servers. Check
http://asg.web.cmu.edu/sasl/ for more information on SASL.

http://www.openldap.org
http://www.openssl.org
http://asg.web.cmu.edu/sasl/
http://lib.ommolketab.ir

Kerberos

This tool, described in more detail in Chapter 9, is an encryption and remote login tool. It's
possible to integrate Kerberos with LDAP authentication (in fact, that's what Microsoft's AD
does), but such integration isn't necessary. However, binary OpenLDAP distributions may
require that you install a Kerberos package as a dependency.

Database backends

LDAP is primarily a tool for computer-to-computer communication. To do any good, though,
LDAP requires data to be stored on the server, and OpenLDAP relies on a database backend to
do this job. Several database backends are supported, but the most common is the Berkeley
DB package (http://www.sleepycat.com). Most Linux distributions provide this software in a
package called db.

In addition to these packages, binary distributions are likely to have more mundane dependencies,
such as a requirement that glibc be installed. If you're using a tool such as the Advanced Package
Tool's (APT's) apt-get (used mainly with Debian but also available for many RPM-based distributions)
or Gentoo's emerge, dependencies should be installed automatically when you install OpenLDAP. If
you use a lower-level tool such as rpm or dpkg, however, you may see errors about missing
dependencies. To correct them, you need to locate and install the dependencies.

The OpenLDAP package contains several programs. Only one is the actual server program; others are
support tools of various types, including:

slapd

This program is the main LDAP server.

slurpd

This server, which helps synchronize LDAP directories on multiple computers, is an advanced
LDAP feature that's beyond the scope of this book.

ldapadd

This program adds entries to an LDAP directory. Normally, you pass it an LDIF file containing
one or more account entries, as described in the later Section 8.3.3.

ldapmodify

This program modifies entries in an LDAP directory.

http://www.sleepycat.com
http://lib.ommolketab.ir

ldapdelete

This program deletes entries from an LDAP directory.

ldapsearch

This program searches an LDAP directory for entries that match criteria you specify.

ldapcompare

This program compares entries in an LDAP directory using criteria you specify.

ldappasswd

This program changes the password attribute in an LDAP entry. It's similar to the standard
Linux passwd command.

ldapwhoami

This program reports your identity as passed to the LDAP server. It can be a useful diagnostic
tool when you can't seem to obtain the results you expect.

slapadd

This local program adds entries to an LDAP directory, using an LDIF original file as input.

slapcat

This local program displays entries in an LDAP directory, displaying them as LDIF files.

slapindex

This local program creates an LDIF index file from the current LDAP directory.

slappasswd

This utility generates a password suitable for inclusion in an LDIF file and subsequent addition

http://lib.ommolketab.ir

to an LDAP directory via slapadd.

You needn't be too concerned about the details of how these programs work just yet. The upcoming
pages describe how to use some of them to help create and maintain your OpenLDAP server and an
account directory for it. For more information, consult these programs' manpages. One point to note,
though, is that the utilities whose names begin with slap operate on the directory that's housed on
the local computer; that is, they must be run from the OpenLDAP server computer. The programs
whose names begin with ldap, by contrast, are network tools; you can run them on the OpenLDAP
server or any of its clients, provided they've been properly configured to refer to the LDAP server.

8.2.2. Basic OpenLDAP Configuration

OpenLDAP's main server configuration file is slapd.conf. It usually resides in /etc/openldap, but it
might appear in another location, particularly if you compile from source.

LDAP client tools, including programs like ldapmodify and ldapsearch, use the
ldap.conf file rather than slapd.conf. This file is described in more detail in
Section 8.3.4.

The slapd.conf file is a typical Linux text-mode configuration file. Hash marks (#) denote comments;

lines beginning with this character are ignored. Parameters are identified by name with one or more
values following them; equal signs are not used. One unusual feature of the slapd.conf format is that
a line that begins with a space is interpreted as a continuation of the preceding line. This convention
is used instead of the more common backslash (\) at the end of the first line to denote a line

continuation.

The slapd.conf file begins with a series of lines that specify the server's overall performancewhat
schemas it uses, where it stores its PID number, and so on. Following this global configuration are
one or more sections, each beginning with the keyword database, that define directories. Each
database section continues until the next database section or until the end of the file. These sections
include options that specify the backend database type (the database directive itself does this, in

fact), where the database is to be stored, the root of the directory tree, and so on.

Consider Example 8-1. This listing is a complete (if simple) slapd.conf file that's suitable for handling
an LDAP server that functions solely as a remote authentication system.

Example 8-1. A Sample slapd.conf file

####
Global section

Load schemas for storing user accounts
include /etc/openldap/schema/core.schema
include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/nis.schema

Logging options

http://lib.ommolketab.ir

loglevel 296
pidfile /var/run/slapd/slapd.pid
argsfile /var/run/slapd/slapd.args

TLS options
TLSCipherSuite HIGH
TLSCertificateFile /etc/openldap/ssl/slapd-cert.crt
TLSCertificateKeyFile /etc/openldap/ssl/slapd-key.pem

Set high security
security ssf=128

Miscellaneous security options
password-hash {SSHA}

Default access level
defaultaccess search

####
Database section

database bdb

The root suffix for the directory
suffix "dc=pangaea,dc=edu"

The root DN for administration
rootdn "cn=Manager,dc=pangaea,dc=edu"

The password used for administrative access
rootpw {SSHA}vHVUhjRetxArbQCTPOhyXC1a0s9z3Ej1

Linux directory housing database files
directory /var/lib/ldap/

Ensure that files may be read ONLY by their owner
mode 0600

ACLs to control access to the directory

Allow users to authenticate against and modify their own
passwords
access to attrs=userPassword
 by self write
 by * auth

Allow users to read all non-password data
access to *
 by * read

Of course, Example 8-1 is only a starting point; you'll need to customize several of its entries for your

http://lib.ommolketab.ir

system. The meanings of these options are:

Loading schemas

The first few lines of Example 8-1 load three schema files: core.schema, cosine.schema, and
nis.schema. The last of these is the critical one, but it depends on the first two. The nis.schema
schema provides a framework for handling all the data an NIS server normally manages.
Because this includes Unix-style account information, it's a common choice for implementing an
authentication server. These schema files ship with OpenLDAP, but their location may not be as
shown in Example 8-1 on your system; adjust the directory paths as required.

Logging options

The loglevel line sets logging options. These are set using bit flags converted to decimal
notation. A value of 296 is reasonable for most production systems. This value logs information

on connection statistics, filter processing, and connection management. (Consult the slapd.conf
manpage for details.) The pidfile and argsfile options specify files in which slapd stores its

PID and the arguments with which it was run. If your OpenLDAP binary includes a sample
configuration file that sets these values in a particular way, you should probably leave them as
such; it's possible that your SysV startup scripts or other tools rely on this location.

TLS options

The next three options set TLS features; the assumption in Example 8-1 is that the server will
use TLS or SSL encryption, which is a reasonable configuration in most cases. (If you want to
use another encryption system, you'll have to consult OpenLDAP's documentation.) As with
other Linux directory paths, you may need to adjust the path shown in Example 8-1 for your
system. Preparing the TLS certificates is described in the next section.

Security level

The security keyword sets security options. Example 8-1 sets security ssf=128, which sets

the server's overall security strength factor (SSF) to 128a code that stands for a class of
encryption algorithms that includes Blowfish, RC4, and others that are fairly strong. If you
must use less robust encryption algorithms, you can change 128 to 112 or 56. A value of 0

disables the encryption requirement.

Password hashing

The password-hash option specifies how OpenLDAP hashes passwords it stores. {SSHA} means

that OpenLDAP uses the Salted Secure Hash Algorithm (SSHA), which is the preferred means
of storing passwords on an LDAP server. Other possible values include {CRYPT} (the method
used by the system crypt() call), {MD5} (the Message Digest 5 system, which is often used

http://lib.ommolketab.ir

in /etc/passwd or /etc/shadow files), {SHA} (a less-secure variant of SSHA), and {CLEARTEXT}
(no encryption). Of these, {CLEARTEXT} is the least secure and should be avoided. Note that
individual users' passwords may be stored using any method; the password-hash option only

sets the default.

The database definition

The database bdb line begins the one and only database definition in Example 8-1. This line
tells OpenLDAP to use the Berkeley DB (hence, bdb) system for its backend. Other possible
backend codes are ldbm (an older variant of bdb that can be handled by the BerkeleyDB
software or the GNU Database Manager), passwd (a quick-and-dirty interface to your existing
/etc/passwd file), and shell (an interface to other database tools).

The root suffix

The suffix line specifies the DN for the directory. In most cases, this root suffix is built from

your network's domain name. In the case of Example 8-1, OpenLDAP is configured to manage
passwords for the pangaea.edu domain.

The administrative DN

You can specify a root DN for administration with the rootdn parameter. This DN is built from
the root suffix's DN by adding a cn value, typically Manager (as in Example 8-1) or admin. This
line and the following rootpw enTRy are useful mainly for initial OpenLDAP configuration; once

the system is working, you may want to remove them to improve the server's security.

The administrative password

The rootpw line sets an administrative password that's associated with the rootdn item. You

can generate a password with the slappasswd command; type it and enter a password twice,
then paste it into the file in place of the password shown in Example 8-1. The password you
generate should begin with {SSHA} (or possibly some other value in curly braces); replace
everything from {SSHA} on with the output of slappasswd from your system.

The Linux database directory

The directory line refers to a Linux filesystem directory, not an LDAP directory; it's the

location of the database files maintained by the database system specified by the preceding
database line. This directory must be specified as an absolute path. You may need to adjust

this option for your system.

The database mode

http://lib.ommolketab.ir

The mode line specifies a Linux file mode for the database files. Normally, 0600 is appropriate: it

prevents unauthorized snooping or modifications.

ACLs

Access Control Lists specify who may access particular types of data in the directory and in
what way. They're conceptually similar to filesystem ACLs, but the details differ. The last few
lines of Example 8-1 define two ACLs, each of which begins with the keyword access. The first
of these sets accesses conditions to the userPassword attribute: users may modify their own
passwords (by self write), and all users may access this attribute for authentication (by *
auth). The second ACL gives all users read access to all other attributes. ACLs are applied in

order, with the earlier ACLs taking precedence over the later ones. In the case of Example 8-1,
the more restrictive ACL for the userPassword attribute must precede the read-only ACL for

other attributes, lest users be granted the ability to read each other's passwords.

Once you've tweaked Example 8-1 for your system, OpenLDAP is basically configured. You must still
prepare the TLS certificates, though. Once that's done, you can start the slapd server.

8.2.3. Preparing Keys and Certificates

Although it's possible to run an LDAP server without using encryption, doing so is inadvisable, at least
when the LDAP server is functioning as a network authentication tool. Encryption keeps your
passwords secure; without it, passwords will be sent over the network in cleartext, which makes
them susceptible to sniffing.

Use of SASL generally includes its own encryption mechanism, so if you use
SASL, preparing encryption as described here isn't necessary. This chapter
doesn't cover LDAP's SASL capabilities, though.

In Example 8-1, the three lines under the TLS options comment set options related to SSL and TLS

encryption, enabling OpenLDAP to engage in encrypted communications. In order for this
configuration to work, though, you must first configure the TLS and SSL encryption tool, which is
provided by the OpenSSL package (http://www.openssl.org). This package should be a dependency
of any binary OpenLDAP package that can use SSL or TLS encryption, and it's also required to
compile OpenLDAP with support for these methods of encryption. (If you compile OpenLDAP yourself,
you may need to install a separate OpenSSL development package.)

As described in Section 8.2.1, LDAP supports encryption methods other than
SSL and TLS. In order to keep this chapter manageable, though, and because
SSL and TLS are popular and well-respected encryption tools for LDAP, they're
the only ones described here.

SSL and TLS support a set of encryption tools, some of which require one-time manual preparation
before they can be used. Most notable among these are keys and certificates. A key is a numeric

http://www.openssl.org
http://lib.ommolketab.ir

code that can encrypt or decrypt data. Once data is encrypted with a key, it can only be decrypted
with a matching key. Keys can be generated fairly automatically, but certificates require at least
minimal input from users. They're designed to authenticate a site's identity and are essentially files
with information on the owner of a server, signed and encrypted with a key that the other system
trusts. One type of certificate is created by Certificate Authorities (CAs), which are organizations
founded to create certificates for the sake of e-commerce and the like. web sites that use encrypted
transmissions usually employ certificates created for them by CAs; web browsers can then decrypt
the certificates sent by web sites and verify that they were signed by a trusted CA. If a certificate's
signature doesn't check out, the web browser notifies the user that the site might not be trustworthy.

For in-house use, though, you don't need to go to a CA; you can create a certificate yourself. The
OpenSSL package includes the tools necessary to do so. The simplest and most direct way is to call
openssl with a series of options that cause it to generate a certificate and a key:

openssl req -x509 -days 365 -newkey rsa: -nodes \
 -keyout slapd-key.pem -out slapd-cert.crt
Generating a 1024 bit RSA private key
..........................++++++
.....++++++
writing new private key to 'server.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:RI
Locality Name (eg, city) []:Woonsocket
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Very Old University
Organizational Unit Name (eg, section) []:CS Dept
Common Name (eg, YOUR name) []:ldap.pangaea.edu
Email Address []:johndoe@pangaea.edu

Of course, you should customize the information in the certificate to describe your organization. Pay
particular attention to the data you enter at the Common Name (eg, YOUR name) prompt; some

clients, including the Windows LDAP authentication client, require this to match the hostname or IP
address of the LDAP server. The result of running this command is two files: slapd-key.pem and
slapd-cert.crt. These files contain a private key and a public certificate, respectively. Be sure that the
private key can be read only by its owner; 600 (rw-------) permissions are appropriate, so type
chmod 600 slapd-key.pem to set this file mode. (Some other OpenLDAP files, such as slapd.conf,

should be readable to all users, though.) Ordinarily, slapd runs as a specific user (such as ldap,
although this username varies from one distribution to another), so you should give ownership of the
file to that user. If you run into problems launching the server you should check to see what user is
running the server and adjust ownership of this file accordingly. You should now move the sldapd-
key.pem and slapd-cert.crt files to the location specified by the TLSCertificateKeyFile and
TLSCertificateFile parameters in slapd.conf/etc/openldap/ssl in Example 8-1.

http://lib.ommolketab.ir

8.2.4. Running the Server

At this point, it's time to run the server. You can run slapd on a one-time basis by typing the server's
filename (you may need to include the full path) or by using a SysV startup script. For instance, on a
SuSE system, the SysV startup script is /etc/init.d/ldap, so the following command does the trick:

/etc/init.d/ldap start

As you test the server, you're likely to start and stop it frequently. Once it's running the way you
want it to run, you'll probably want to configure your system to launch slapd at startup. You can do
this as you would any other server that runs constantly. (Typically, slapd is run from a SysV or local
startup script, not from a super server.) Typing chkconfig ldap on will do this on many systems,

but some distributions use other commands instead of or in addition to chkconfig. Consult
distribution-specific documentation if you need help with this task.

One problem you may encounter is getting the server to bind to appropriate ports, particularly if you
intend to use SSL encryption. By default, slapd binds to port 389, which is used for cleartext
connections and those that negotiate TLS encryption after making an initial connection. Some clients,
though, including the pGina tool that's described in Section 8.5, must use a dedicated SSL LDAP (that
is, LDAPS) encryption port, 636. To force slapd to bind to this port, you must pass an appropriate
parameter to the server with the -h option. Passing -h ldap:/// causes slapd to bind to port 389
only, whereas passing -h ldap:/// ldaps:/// causes it to bind to both ports 389 and 636. You

may need to modify your slapd SysV startup script to add this option. Some SysV startup scripts,
such as the one for SuSE Linux, include a variable in which you can pass these options; in the SuSE
script, you edit the SLAPD_URLS variable to include ldaps:///.

http://lib.ommolketab.ir

8.3. Creating a User Directory

Once the server is running, you must populate the directory with information about your network's
users. To do this, you must understand distinguished name notation. Understanding at least the
basics of LDIF files, which can be used to enter information into the directory, is also a necessity.
With these pieces of information, you can actually begin populating the directory with user accounts.

8.3.1. Distinguished Names

Distinguished Names (DNs) are the pointers to data in a directory. They're similar in many ways to
filenames in hard-disk filesystems. For example, the Linux filename /etc/X11/xdm/Xaccess refers to
the Xaccess file in the /etc/X11/xdm directory, which in turn can be broken down into a series of
subdirectories leading to the root directory of the Linux directory tree. Similarly, DNs are typically
composed of multiple elements that enable an LDAP implementation to quickly locate the data. In the
case of DNs, though, these elements are labeled according to type. Common types in an LDAP
directory used for authentication include Domain Class (DC), Common Name (CN), User ID (UID,
which is equivalent to a username rather than a numeric UID), and sometimes Organizational Unit
(OU). Each abbreviation is converted to lowercase and separated from its value by an equal sign;
these are then strung together with commas and identified as a DN by using the dn code and a

colon:

dn: cn=Carl Linnaeus,dc=pangaea,dc=edu

This example refers to an entry for the common name Carl Linnaeus in the pangaea.edu domain.
You may have noticed that this notation is similar to the one for the rootdn item in the slapd.conf
file, as illustrated in Example 8-1. This is no accident; the rootdn enTRy identifies a DN for a user

with special privileges on the server.

Although the DC components of DN frequently combine to form an Internet
domain name that's associated with the LDAP server, this isn't a requirement.

Occasionally, variants on this notation are necessary. One of these occurs when the CN for a user is
not unique. For instance, suppose your organization has two users named Carl Linnaeus, one in the
Botany department and one in the Genetics department. You might then create two DNs that add the
appropriate OUs:

dn: cn=Carl Linnaeus+ou=Botany,dc=pangaea,dc=edu
dn: cn=Carl Linnaeus+ou=Genetics,dc=pangaea,dc=edu

http://lib.ommolketab.ir

In practice, you'll create these DNs in files with intervening lines that specify
other account characteristics, as described in Section 8.3.2.

In this example, the DN begins with a Relative Distinguished Name (RDN)cn=Carl
Linnaeus+ou=Botany or cn=Carl Linnaeus+ou=Genetics. An RDN uses a plus sign (+) to separate

two attributes, neither of which is unique by itself. In this example, two users named Carl Linnaeus
exist, and presumably both the Botany and Genetics OUs host other users.

The use of the plus sign to separate RDN components means that this symbol
can't be used within an element without taking special steps. Specifically, if an
element must contain a plus sign, the plus sign should be preceded by a
backslash (\). Other special characters that should be preceded by a backslash
include a hash mark (#) at the start of a string, a space at the end of a string, a
comma (,), a double quote ("), a backslash, a semicolon (;), and angle
brackets (< or >). Chances are you won't need to use any of these symbols in

the DN elements for a Unix-based account database, although spaces are
common in databases that originate on Windows systems.

DNs are usually case-insensitive, but case is preserved in storing them. Thus, cn=carl
linnaeus,dc=pangaea,dc=edu is equivalent to cn=Carl Linnaeus,dc=pangaea,dc=EDU. This

characteristic is based on matching rules defined in the schema, though, so it's not always true.

8.3.2. Understanding LDIF

Behind the scenes, OpenLDAP may use any of several databases for data storage; but to examine
and modify data, a common plain-text format is desirable. This is where LDIF comes into the picture;
it represents LDAP directory entries that are invariant across OpenLDAP backends, and even across
LDAP implementations. For the most part, it consists of a series of attribute names and values,
separated by colons. Entries begin with the DN entry, as described earlier. Subsequent entries'
content depend on the schemas a directory uses. The NIS schema defines several object classes,
each of which defines several attributes. For the purposes of this chapter, the posixAccount object

class is one of the most important of these object classes. This object class's attributes roughly
correspond to entries in the traditional Linux /etc/passwd file, as shown in Figure 8-2.

Figure 8-2. The posixAccount object class defines data traditionally found
in /etc/passwd

Every field in the /etc/passwd file maps to an attribute in the posixAccount object class, although
the names aren't always intuitive. In particular, the uid attribute maps to the Linux username; the
uidNumber attribute holds the Linux UID number. The posixAccount object class also defines two
attributes, cn and description, that aren't present in /etc/passwd. Of these, cn is required and

http://lib.ommolketab.ir

typically holds the user's real name.

Figure 8-3 shows a mapping of the shadowAccount object class to entries traditionally found in
/etc/shadow. All these entries except uid are optional. This attribute, though, as well as the
userPassword and description attributes, are in fact shared with the posixAccount object class.

Specifying values for all the required attributes in these two object classes creates a user account.

Figure 8-3. The shadowAccount object class defines data traditionally
found in /etc/shadow

In traditional Linux accounts, using shadow passwords and the /etc/shadow file
increases security. The equivalent use of the shadowAccount object class in

LDAP does not have this effect, though. When properly configured, an LDAP
account directory should be at least as secure as a Linux shadow passwords
system, whether or not you place data in the shadowAccount structures. What
shadowAccount does provide is a place to store password aging and expiration

information.

Between these two object classes, you can define an account. To do so in an LDIF file, you create one
line per attribute, plus a few objectClass attributes pointing to the objects upon which the
posixAccount and shadowAccount objects rely. The result looks something like this:

dn: uid=linnaeus,ou=People,dc=pangaea,dc=edu
uid: linnaeus
cn: Carl Linnaeus
objectClass: account
objectClass: posixAccount
objectClass: top
objectClass: shadowAccount
userPassword: {crypt}KpP.s/mnFoEoI
shadowLastChange: 12561
shadowMax: 99999
shadowWarning: 7
loginShell: /bin/bash
uidNumber: 780
gidNumber: 100
homeDirectory: /home/linnaeus
gecos: Carl Linnaeus

Don't start generating accounts by copying this entry. As described in Section
8.3.3, there are easier ways to populate your directory than creating LDIF files
by hand.

http://lib.ommolketab.ir

Figure 8-4 shows a mapping of the posixGroup object class to entries traditionally found in

/etc/group. These entries are necessary if the server is to deliver group information as well as
account information to clients. Note that these objects are not directly related to accounts, although
they do refer to accounts; the memberUid attribute points to user accounts. (Likewise, the gidNumber
field in the posixAccount object class points to a posixGroup via its gidNumber field.)

Figure 8-4. The posixGroup object class defines data traditionally found
in /etc/group

The NIS schema file defines several object classes in addition to those described here. These object
classes enable an LDAP server to deliver information that's traditionally contained in /etc/fstab,
/etc/hosts, /etc/protocols, and morein short, the data that's normally delivered by an NIS server.
Configuring OpenLDAP to deliver this information is similar to configuring it to deliver account and
group information, but such configurations are beyond the scope of this chapter.

8.3.3. Creating the Directory

The simplest way to populate an OpenLDAP directory with account and group information is to
convert this information from existing account and group files. You can perform this task with scripts
available on the Internet. If you're not migrating accounts directly, you may want to use these tools
on a dummy password file to create a template you can use to create new accounts in piecemeal
fashion.

The scripts you use to migrate an existing set of Linux accounts can be obtained from
http://www.padl.com/OSS/MigrationTools.html. The download links at the bottom of this page
retrieve a file called MigrationTools.tgz. This tarball contains a series of Perl scripts, each of which
reads the contents of one or more system configuration files and creates an equivalent LDIF file.

The migration tools package described here has a project version number of
45, as revealed in the CVSVersionInfo.txt file. If you obtain a more recent
version, you may find that some of the details have changed.

Before running the conversion scripts, you must edit one of them (migrate_common.ph) so that it
holds appropriate site-specific information. Specifically, change the $DEFAULT_MAIL_DOMAIN and
$DEFAULT_BASE variables, defined on lines 71 and 74, to point to your DNS domain and your

directory's base. For instance, to conform to the options shown in Example 8-1, set these options as
follows:

$DEFAULT_MAIL_DOMAIN = "pangaea.edu";
$DEFAULT_BASE = "dc=pangaea,dc=edu";

Once this task is done, you can create LDIF files using the appropriate scripts. Of particular interest
are the migrate_passwd.pl and migrate_group.pl scripts, which migrate your account database

http://www.padl.com/OSS/MigrationTools.html
http://lib.ommolketab.ir

(including both /etc/passwd and /etc/shadow) and your /etc/group file, respectively. Both scripts
accept the name of the source file (just /etc/passwd in the case of migrate_passwd.pl) followed by an
output file:

./migrate_passwd.pl /etc/passwd passwd.ldif
./migrate_group.pl /etc/group group.ldif

You can examine the contents of these LDIF files, if you like. At a minimum, you might want to
perform a quick check to verify that all your users have entries in the password file. You might also
want to eliminate system accounts that don't require authentication and those that you don't want to
be authenticated via the LDAP server. If you eliminate such accounts, though, be sure that they
either exist in your clients' local account databases or aren't required by your clients.

The migration scripts can't decrypt the already encrypted passwords in the
password database. Therefore, they're entered into the LDIF file using the
{crypt} encoding notation.

These scripts don't create entries for the top-level DNs. If you haven't created them already, you
should add them to the start of each file. For the password file, the entries for the example domain
are these:

dn: dc=pangaea,dc=edu
objectClass: domain
dc: pangaea

dn: ou=People,dc=pangaea,dc=edu
objectClass: organizationalUnit
ou: People

The entry to add to the start of the groups file is similar:

dn: ou=Group,dc=pangaea,dc=edu
objectClass: organizationalUnit
ou: Group

Of course, in both cases, you must make changes to the dn and dc lines suitable for your

organization. Once you've done this, you're ready to add the LDIF files to your LDAP directory. You
can do this with either the ldapadd command or the slapadd command, using the -f or -l

parameters (respectively) to pass the name of the LDIF file you want to add. You might also want to
use -v, which provides feedback on the success of the operations. (If you use ldapadd, though, you'll

first need to perform additional client configurations, as described in the next section.) For instance,
these commands add both the files created earlier:

slapadd -v -l passwd.ldif
slapadd -v -l group.ldif

http://lib.ommolketab.ir

8.3.4. Account Maintenance

Account maintenance on an OpenLDAP server uses various utilities whose names begin with ldap, as
described earlier. Of particular interest are ldapadd, which adds accounts; ldapmodify, which modifies
existing accounts; and ldapdelete, which deletes accounts. You can run these commands on any
LDAP client computer (including the LDAP server itself, if it's properly configured as a client); they
use the network protocol to communicate with the server.

These tools rely on the /etc/openldap/ldap.conf configuration file. Before you can use these tools,
therefore, you should edit this file. Normally, you must set the BASE and URI options, and possibly

point the system to a certificate file:

BASE dc=pangaea,dc=edu
URI ldaps://ldap.pangaea.edu
TLS_CACERT /etc/openldap/ssl/certs/slapd-cert.crt

The first of these entries should be familiar by now; it's the root of the LDAP directory you'll be using.
The URI entry points to the LDAP server, using a URI format similar to that used to express web
addresses, except that it begins with the ldaps:// keyword. You can use ldap:// rather than
ldaps:// if you don't want to require the use of SSL encryption. (The system may still negotiate TLS

encryption during the session, however.) If you specify an LDAPS port in the URI, you must point the
server to a file that contains certificates (via TLS_CACERT) or to a directory that contains certificate
files (via TLS_CACERTDIR). You must copy the certificate you generated on the server to this location.

If you don't, the client tools will refuse to communicate with the server.

In order to perform most account maintenance tasks, you must access the server with sufficient
privileges; by default, the LDAP utilities perform anonymous accesses. You can specify a suitable
high-privilege DN with the -D option. When you do, you must also include the -W option to have the

utility prompt you for a password. You can use the administrative DN and password you specified in
your slapd.conf.

To add an account, you should prepare an LDIF file. You can use an entry from an LDIF file created
from /etc/passwd using migrate_passwd.pl as a model, if you like. You can then pass this file to
ldapadd:

$ ldapadd -D cn=manager,dc=pangaea,dc=edu -W -f acct.ldif

Because you're passing the authentication information to the server, you don't
need type this command as root.

The ldapmodify command works in much the same way, except that the file you pass to the utility
contains modifications to an existing entry rather than new account information. To delete an
account, you use the ldapdelete command, omit the -f parameter, and instead pass the DN of the

account you want to delete:

$ ldapdelete -D cn=manager,dc=pangaea,dc=edu -W uid=linnaeus,ou=People,
dc=pangaea,dc=edu

http://lib.ommolketab.ir

This example deletes the linnaeus account in the People unit on the LDAP server. Changing a
password is similar, but you must also pass the -S option to be prompted for the new password, as

well as changing the name of the tool:

$ ldappasswd -D cn=manager,dc=pangaea,dc=edu -S -W uid=linnaeus,ou=People,
dc=pangaea,dc=edu
New password:
Re-enter new password:
Enter LDAP Password:
Result: Success (0)

Unlike the standard Linux passwd command, ldappasswd prompts for the new password before
prompting for the administrative LDAP password. As with most password-handling tools, this one
doesn't echo the passwords to the screen.

The ldappasswd command isn't intended as a full replacement for passwd. If
you configure the /etc/pam.d/passwd file to use LDAP, as described in Section
8.4.4 and Appendix A, the standard Linux passwd command will change users'
passwords on the LDAP server instead of or in addition to changing the local
password when an ordinary user calls this tool. The ldappasswd command is
useful mainly when a user has forgotten a password; you can use your LDAP
administrative access to replace the forgotten password.

If you're used to normal Linux account maintenance tools such as useradd and userdel, these LDAP
account maintenance tools may seem awkward at first. If you keep a template LDIF file handy and
prepare scripts with the necessary options, DNs can save you a lot of typing and make using these
tools far more intuitive.

Various additional tools exist that help manage LDAP accounts. For instance, phpLDAPadmin
(http://phpldapadmin.sourceforge.net/) is a web-based tool that provides a point-and-click interface
to your account database. You could also write some scripts yourself to help simplify these tasks.

http://phpldapadmin.sourceforge.net/
http://lib.ommolketab.ir

8.4. Configuring Linux to Use LDAP for Login
Authentication

At this point, your LDAP server should be running and should contain account information for your
site. In order to do any good, though, you must be able to use that LDAP server for user
authentication. In the case of Linux systems, this entails configuring the Pluggable Authentication
Modules system and the Name Service Switch system to interface with LDAP. This requires
understanding the basic relationships between these systems, installing necessary modules, and
configuring the modules.

To use Windows as an LDAP login client, consult the Section 8.5.

8.4.1. LDAP, PAM, and NSS

The PAM and NSS systems are at the core of Linux's account management. These systems are
described in Chapter 7 and in Appendix A. In brief, PAM is a set of libraries that sits between
applications and the account database for authentication purposes. Instead of accessing account
databases directly, PAM-enabled applications consult PAM. This arrangement enables you to modify
your authentication system (such as adding LDAP) with relative ease, by reconfiguring PAM rather
than rewriting all the programs that require authentication. Similarly, NSS manages access to
nonauthentication account information, such as home directory locations.

In order to configure a Linux system to use LDAP, you must tie LDAP into these two systems. This is
done by installing PAM and NSS support modules and by modifying PAM and NSS configuration files
to call the LDAP modules.

8.4.2. Basic LDAP Client Configuration

Most Linux distributions make PAM and NSS modules for LDAP available in one or two packages that
are separate from the main LDAP package. Packages that are called pam_ldap and nss_ldap are
common, but some variants exist, such as Debian's libpam-ldap and libnss-ldap.

The PAM and NSS modules both rely on a configuration file called ldap.conf, which is normally stored
in /etc. (Instead of a single ldap.conf file, though, Debian uses two: libnss-ldap.conf and
pam_ldap.conf, both in /etc. You must make similar changes to both files.) Before configuring PAM-
and NSS-specific options, you should load this configuration file into an editor to customize it for your
network.

http://lib.ommolketab.ir

The OpenLDAP package also includes a configuration file called ldap.conf, but
this file is likely to reside in the same directory as slapd.confusually
/etc/openldap.

The /etc/ldap.conf file might be installed as part of any number of different packages. Most
frequently, it's installed with the NSS LDAP package, but Debian places its two configuration files in
the libnss-ldap and libpam-ldap packages, and SuSE distributes the file in the pwdutils package.

For the basic configuration described earlier in the chapter, you must modify two items, host and
base, in the /etc/ldap.conf (or equivalent) file:

host 192.168.1.1
base dc=pangaea,dc=edu

The host item points the LDAP clients to the LDAP server by IP address or hostname. (The system

must be able to locate the server without the use of LDAP, so if you're using LDAP for local hostname
resolution, it's particularly important that you use an IP address.) The base item specifies the base of

the directory tree that's served by your LDAP server.

If you've configured your system for high security, you must also set security options. Most
importantly, you must uncomment one of two ssl lines:

ssl start_tls
ssl on

The first of these lines tells the client to negotiate TLS encryption after making a connection to the
traditional LDAP port (389); the second tells the client to use SSL and connect to the LDAPS port
(636). Several other security options also reside in this file; for instance, you can point the tools to a
certificate file or directory with the tls_cacertfile or tls_cacertdir options. One of these options
is required if you set tls_checkpeer yes, which makes the server refuse connections to a server if it

has an unknown certificate.

8.4.3. Configuring the LDAP NSS Modules

NSS provides basic account information to the Linux system. It's controlled via its configuration file,
/etc/nsswitch.conf. To tell NSS to use LDAP as part of its operation, you must change just three lines
in this file. Specifically, you should look for the lines beginning with the keywords passwd, shadow,
and group. Each line contains a list of tools NSS uses to look up account information, and you should
add ldap to each of these lines:

passwd: files ldap
shadow: files ldap
group: files ldap

http://lib.ommolketab.ir

As with PAM configuration files, the /etc/nsswitch.conf file varies from one
distribution to another. If yours contains entries instead of or in addition to the
files entry, the safest course is to add ldap to the end of whatever entries
already exist. (The compat source is common with distributions based on glibc

2.3, for instance.) If you want LDAP to replace an existing authentication tool,
though, you can remove the reference to that old tool.

If you want to use LDAP to take over additional duties, you can add ldap to
additional appropriate lines in /etc/nsswitch.conf. If you add ldap to the hosts

line, for instance, the system attempts to use LDAP for hostname resolution. Of
course, such configurations require adding appropriate directory entries to the
LDAP server, much as you added user accounts to the server.

8.4.4. Configuring the LDAP PAM Modules

Once you've configured /etc/ldap.conf or its equivalent and modified /etc/nsswitch.conf, you can
begin telling PAM to use LDAP for authentication of various services. This process is described in
Appendix A, so look there for details of PAM configuration. This section describes some LDAP-specific
features. In most cases, you'll modify files in /etc/pam.d; each file is named after the login or account
maintenance service you want to adjust.

To add LDAP to the login authentication, you must add a couple of lines to the PAM configuration file
for the service you want to use LDAP:

auth sufficient /lib/security/pam_ldap.so try_first_pass
account sufficient /lib/security/pam_ldap.so

Modifying your PAM configuration modifies how Linux authenticates you. A
mistake can result in an inability to log into the computer. For this reason, I
recommend modifying these files one at a time, leaving at least one known-
working login tool unmodified. This way, if you create a nonfunctional service,
you'll still be able to log in using another tool to correct the problem. Backing
up the original files can also help you recover from such an error.

Typically, you'll modify all your active login services' PAM modules in analogous ways. These are
likely to include login, gdm, xdm, sshd, ftp, and perhaps some others. If your system uses the
pam_stack system, though, you may be able to get away with modifying just one file: system-auth.

However, you might want to keep some authentication tools local. For instance, you might want to
use the local database only for sudo, which is often used to obtain root privileges; if your LDAP
directory doesn't include information on the root account, it obviously won't be useful for sudo's
typical uses.

8.4.5. Verifying Proper Functioning

http://lib.ommolketab.ir

At this point, the Linux system should be using the LDAP server for user authentication. One way to
check this is to type getent passwd. This command returns user account information. (A similar
command, getent group, returns group information.) On a system that uses only its local account
files, the result is similar to typing cat /etc/passwd; however, on a system that uses an LDAP

server, you should see additional entries for LDAP-accessible accounts. A partial output might look
like this:

getent passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/bin/false
linnaeus:x:500:100:C. Linnaeus:/home/linnaeus:/bin/bash
linnaeus:x:500:100:Carl Linnaeus:/home/linnaeus:/bin/bash

This output reveals an oddity: the user linnaeus has two entries. One entry is in the computer's local
/etc/passwd file; the other originates on the LDAP server. (If the two lines are different, you can tell
which is which by comparing the lines to the contents of the local /etc/passwd file.) In this case, no
harm comes of this because information from the two sources is identical, aside from the minor detail
of the user's full name. If the entries had different data, though, such as different UIDs or home
directories, confusion can result. Thus, it's best not to duplicate accounts between the LDAP server
and the local system. If duplicates do occur, the first one takes precedence. NSS orders accounts
according to the order specified on the passwd, shadow, and group lines in /etc/nsswitch.conf, so
placing ldap after files in this file gives local files precedence over LDAP entries.

If you've been able to verify your LDAP-generated accounts with getent, you can proceed to testing
the login tools. Use whatever login tool you've modified to use LDAP and try to log in. Try entering
accounts that are defined only via LDAP and only via the local account files, to be sure both work. Try
entering both correct and incorrect passwords to be sure that the system is correctly handling the
case of login failures. If a password is correct for one system (such as LDAP or your local files) but
incorrect for the other, the behavior will vary depending on your precise configuration, as described
in Appendix A.

http://lib.ommolketab.ir

8.5. Configuring Windows to Use LDAPfor Login
Authentication

All this talk of using LDAP for Linux authentication is well and good, but this book is about integrating
Linux and Windows on a network. How, then, does LDAP help you with Windows clients? The answer
is that Windowsor at least, Windows NT/200x/XPuses an authentication system known as Graphical
Identification and Authentication (GINA). Supplements to the Microsoft-supplied GINA are available,
and you can use one of these to have Windows authenticate against your LDAP server.

One of the most flexible GINA supplements is known as pGina (http://pgina.xpasystems.com), which
is a modular open source GINA tool. You can find pGina modules that support LDAP, MySQL, NIS,
SecurID, and many more authentication systems. The following pages are devoted to pGina's LDAP
functionality. Unfortunately, pGina is limited to working with Windows 200x/XP; it doesn't work with
Windows 9x/Me. (In theory, pGina should work with Windows NT, but its LDAP module requires
features that were added with Windows 2000.) Using pGina requires installing it and configuring it to
use your LDAP server.

8.5.1. Obtaining and Installing pGina

You can obtain pGina from its web site. You'll need to download both the main pGina package
(available from http://pgina.xpasystems.com/files/) and the LDAP plugin module (available from
http://pgina.xpasystems.com/plugins/). Both packages come in the form of installer applications.
This chapter uses pGina 1.7.6 and the LDAPAuth 1.4-beta plugin as references; some details may
differ if you use another version of the package.

To work with Windows XP SP2, pGina Version 1.7.7.4 or later is required for
best functionality.

Once you've downloaded the two installer programs, you should run them both as the Windows
Administrator. These are typical Windows program installers; they ask you to accept a license
agreement (the GPL), where to install the program, and so on, then drop the files in the appropriate
locations. The main pGina installer then runs the pGina configuration utility, but if you install it first,
you'll have to run the LDAP plugin installer before you can configure pGina to use LDAP.

As with configuring PAM in Linux, installing and configuring pGina incorrectly
can produce a system you can't access. You should prepare an emergency
recovery disk and be prepared to use it with the Windows Safe Mode should
problems occur. Completely backing up the Windows boot partition may be
wise, as well. If you're preparing to install pGina on an entire network, try
installing it first on a test system that holds no important data.

http://pgina.xpasystems.com
http://pgina.xpasystems.com/files/
http://pgina.xpasystems.com/plugins/
http://lib.ommolketab.ir

8.5.2. Registering Your Certificate

If you're using strong encryption, as is wise on most networks, you must register your SSL certificate
with Windows. This step is necessary because Windows is fussier about certificates than are the Linux
PAM and NSS LDAP modules; if Windows can't verify your certificate, you won't be able to establish
an encrypted SSL connection with the LDAP server.

To do the deed, you should begin by making the LDAP certificate file (slapd-cert.crt), which you
created earlier. You can place it on a file share, move it around on a floppy, or whatever's
convenient. (This file is not sensitive from a security point of view, so you needn't take any
precautions to prevent it from being seen by others.) Once the file is available in Windows, follow
these steps:

Double-click the certificate file. This action should bring up the Certificate dialog box shown in
Figure 8-5. If it doesn't, check the filename; it should end in a .crt extension. If it doesn't,
correct the matter, and try again.

Figure 8-5. Windows provides a tool for registering certificates you
generate

1.

Click Install Certificate. This action yields a certificate installation wizard.2.

3.

http://lib.ommolketab.ir

2.

Click Next in the wizard. The result resembles Figure 8-6, except that this figure shows some
data entered as described in the next few steps.

Figure 8-6. The certificate installation wizard lets you select how to
categorize your certificate

3.

Click Place all certificates in the following store.4.

Click Browse. The wizard displays a dialog box called Select Certificate Store.5.

In the Select Certificate Store dialog box, check the Show Physical Stores checkbox.6.

In the Select Certificate Store dialog box, expand the Trusted Root Certification Authorities item.7.

An object called Local Computer should now be visible. Highlight it and click OK in the Select
Certificate Store dialog box. Your wizard should now show the same path in the Certificate Store
field as is shown in Figure 8-6.

8.

Click Next. The wizard presents a summary screen.9.

Click Finish. A message stating that the import was successful should appear.10.

At this point, your certificate should be installed, which should enable you to use SSL encryption with
your LDAP server, provided the server is properly configured to accept this encryption.

8.5.3. Configuring pGina for LDAP Client Use

Before proceeding to actual pGina configuration, I recommend you test the LDAP module. To do so,
select Start Programs pGina PluginTester from the Windows desktop. The result is a
large pGina Plugin Simulation dialog box. Click the Browse button to locate the LDAP plugin, which by
default is installed in a subdirectory of your main pGina installation directory. You can then click the
Configure button, which brings up the pGina LDAPAuth configuration dialog box, shown in Figure 8-7.

http://lib.ommolketab.ir

Figure 8-7. To configure pGina's LDAP module, use a dialog box to enter
many of the options you enter in Linux LDAP client configuration files

You must give pGina's LDAPAuth dialog box some basic information on your LDAP server. The most
important information items are the LDAP Server, Use SSL, and Contexts items. The other items can
be important in some situations, but are beyond the scope of this chapter to describe; consult the
pGina documentation for details. Enter your server's IP address or hostname in the LDAP Server field.
If you're using SSL encryption, you must use the name you specified in the Common Name (eg, YOUR
name) item when you created your certificate, as described in Section 8.2.3. You must also check the

Use SSL checkbox to enable SSL encryption. For the Contexts, you must enter a context in the field
just above the Add Context button, then click that button. Your entry will then be moved to the larger
field to the right of the button. Typically, the context you enter will be your root DN, as shown in
Figure 8-7.

After entering this information, click OK. The system says it's saved the settings. You can then type a
username and password into the large pGina Plugin Simulation dialog box, and click Login. (Note that
your password will echo when you type it, and it will also appear in the dialog box once it's been
authenticated.) If all goes well, the program reports "plugin reported success", along with information
on the account in the main dialog box. If the tool instead reports a failure, you should click Configure
to go back to the configuration dialog box and make changes. Because of pGina's insistence on
verifying the server's certificate, this can be a problem area. You may want to temporarily disable
SSL encryption (on both the client and the server) to simplify matters while you troubleshoot. Once
you can authenticate users, click Exit.

To fully configure pGina, select Start Programs pGina Configuration Tool. (The installer
launches this program automatically by default, so it may already be running.) The result is the main
pGina configuration dialog box, shown in Figure 8-8. Basic configuration at this point is fairly simple:
click Browse to locate the LDAP plugin. If you haven't tested the plugin, though, you'll also need to
click Configure to configure it. Testing your configuration can be tricky unless you use the plugin

http://lib.ommolketab.ir

tester program, as just described.

Figure 8-8. The main pGina configuration dialog box

In addition to the basic configuration, you may want to adjust some of the more advanced features
of pGina:

You can tell pGina to map network drives by entering a mapping in the Drive Maps field. For
instance, entering M:\\MANDRAGORA\SHARED maps the SHARED share on the MANDRAGORA

server to the local M: drive letter. (This requires that the SMB/CIFS server use the same
password that's stored by the LDAP server.)

You can force all users to belong to a specified set of groups by entering those groups in the
Groups field. Separate groups with semicolons (;), as in Users;Staff to make all users

members of both the Users and Staff groups.

You can set features of the logon display, such as the graphic shown and any login messages,
by using the Logon Window tab.

By default, pGina keeps users' profiles between logons, meaning that users can customize their
desktops and keep these settings. If you want users to see a standard desktop at each logon,
you can uncheck the Keep Profiles item on the Account Information tab. The Force Login
checkbox on this tab tells pGina to store the authenticated password locally, which should
enable local logins even if the LDAP server goes down, provided the user has authenticated
before. (This option might be handy on laptop computers.)

http://lib.ommolketab.ir

The Domain Interaction tab presents options that enable pGina to perform domain
authentication, as well as LDAP authentication. If your network hosts both an LDAP server and
an NT Domain controller, each with its own set of accounts, this option enables a client to
authenticate against either server.

Once you've configured pGina, you need to reboot the computer for the changes to take effect. Once
you do, you'll be greeted by a new pGina login prompt, as shown in Figure 8-9. You should be able to
log on using any of the accounts defined on your LDAP server, as well as any accounts that are
defined locally on the Windows system. When you log on using an LDAP account, pGina automatically
generates a matching local account. The user thereafter appears in the local user database unless
you manually delete the accounts or uncheck the Keep Profiles checkbox, as just described.

Figure 8-9. Once pGina is working, it presents its own logon screen
rather than the default Windows logon screen

http://lib.ommolketab.ir

8.6. Summary

LDAP is an extremely powerful tool for managing information on a network. Although by no means its
only possible role, one good way to begin using LDAP is as a cross-platform authentication tool. In
order to configure an LDAP server for this role, you must begin by installing a server package, such
as OpenLDAP. Much of the tedium of LDAP configuration comes with properly configuring the server;
you must set basic server configuration options, enable security options, and create an initial account
database backend for the server. Only then can you configure your clients, which is a relatively
straightforward task involving setting options in a few configuration files. Windows clients require a
helper application, such as pGina, to integrate with an LDAP server, but once this software is
installed, these servers can work quite nicely. The result of all this work is integrated Linux/Windows
account information and simplified account maintenance, particularly on a mid-sized or large
network. On a complex or large network, the savings in day-to-day administrative hassles more than
compensates for the time you invest in configuring LDAP.

http://lib.ommolketab.ir

Chapter 9. Kerberos Configuration and Use
The Kerberos protocol, the third network authentication tool described in this book, is named after
the three-headed dog from Greek mythology, which guarded the entrance to the underworld. Like its
mythological namesake, the modern Kerberos is a gatekeeper. Its principles and the problems it
solves are different from those of NT domains and LDAP, though, which means that Kerberos's best
areas of application are also different. Broadly speaking, Kerberos works best as a way to manage
logins to multiple systems using multiple protocols; Kerberos provides single-sign-on capabilities that
aren't well matched by competing protocols. As with NT domain configurations, Kerberos requires
software on three classes of systems: the main Kerberos server; Kerberos application servers which
are servers for other protocols that defer to the Kerberos server for authentication; and clients of the
application servers. You can use either Linux or Windows in any of these roles, although not all
combinations work equally well. Some Microsoft application servers and clients, in particular, don't
work as well with Linux Kerberos servers as with their Microsoft counterparts. This chapter presents
Kerberos first from a Linux perspective and concludes with Windows-specific information.

This chapter emphasizes setting up the basic Kerberos environment, using a
few Kerberized tools that come with Kerberos, and configuring basic login
authentication via Kerberos. It can be used for more protocols, though, such as
providing single-sign-on for POP email retrieval. Going beyond the protocols
provided with the Kerberos package requires installing additional software.

http://lib.ommolketab.ir

9.1. Kerberos Fundamentals

Kerberos is a centralized login tool. This statement, although true, is deceptively simple. Kerberos
was designed to solve certain authentication problems that aren't easily handled by other protocols.
Understanding these problems, and how Kerberos solves them, will help you configure a Kerberos
server, as well as determine whether you want to do so. You'll also have to decide what Kerberos
software you want to run, both in terms of the server itself and the Kerberos application servers and
clients you'll run with it. Many of these decisions are likely to be Linux-centric, but depending on your
needs, chances are you'll need to make Windows-related Kerberos decisions, as well.

9.1.1. The Problem: Centralized Single-Authentication Logins

Large local networks are likely to host many servers. This arrangement makes centralized
authentication tools, such as NT domains and LDAP, desirable. However, centralizing login control in
one server is just part of the answer. Kerberos was actually designed to meet three major needs:

Centralize authentication

The most fundamental Kerberos design goal is to centralize authentication. This goal is
basically the same as the primary goal of NT domains and is one of the many possible functions
of LDAP. Kerberos also gives considerable weight to a sort of reverse authentication: providing
an assurance to clients that the servers they connect to are the ones they claim to be. This
identity verification helps ensure that, for instance, you're actually saving your departmental
budget on your real departmental file server, rather than on the laptop of an industrial spy
who's pretending to be a photocopier technician.

Protect passwords

One problem with many network protocols that require authentication is that they're
susceptible to password sniffing. To be sure, the last few years have seen great strides in this
area, with secure protocols such as SSH largely displacing less secure protocols, such as
Telnet. Still, Kerberos was designed with a high degree of attention to password security. It's
also designed as a tool that can be used by many protocols, so any Kerberized client and
server (that is, programs that have been designed to use Kerberos authentication) can gain the
Kerberos password security benefits. Many Kerberized applications also provide encryption of
non-password data, although this isn't a necessary feature of such tools.

Provide single-login operation

http://lib.ommolketab.ir

This is arguably Kerberos's most unusual design feature. The idea is that users frequently log
into a computer and proceed to use it to access many other computers. You might retrieve
your email from a POP server, use a remote login protocol to run programs on another system,
upload files to a third computer using FTP, submit print jobs using a printing protocol, and so
on. Typing a password for each access becomes tedious at best. To be sure, some tools save
your password on disk to mitigate the problem, but this practice is a potential security risk.
Kerberos was designed to solve the problem by enabling single logins: once you've
authenticated yourself to the Kerberos server, you don't need to do so again with any Kerberos
application server that defers to the main Kerberos server.

Of these features, the first two are handled reasonably well by both NT domains and LDAP, although
neither really addresses the issue of server authentication for clients. (The NT domain controller and
LDAP servers' identities may be authenticated, but other servers are not.) The single-login feature of
Kerberos isn't well addressed by either of these alternatives. (Windows caches passwords for file
server access, which presents the illusion of a single logon to the NT domain. This caching only helps
with certain protocols, though.)

On the flip side, Kerberos wasn't designed with account management at the forefront. In particular,
tools for delivering full account information to Linux clientsthe tasks performed by NSS in Linuxare
lacking in Kerberos. Although you can use Kerberos as part of a workstation login procedure, you
need to maintain local accounts using local databases, LDAP, or some other tool.

Microsoft's Active Directory uses LDAP in conjunction with Kerberos. These two
tools provide some overlap in function, but they also complement each other
very well. Unfortunately, Microsoft's Kerberos implementation is a bit odd and
doesn't interact well with some non-Microsoft versions. These matters are
described in Section 9.1.4 and Section 9.5.

9.1.2. An Overview of Kerberos Operation

Discussions of Kerberos, like those of LDAP and NT domains, tend to be filled with lots of jargon.
Understanding these terms is necessary for understanding how Kerberos works and how to configure
it.

KDC

The key distribution center is the heart of Kerberos; it's the system that manages Kerberos
logins. In other words, it's the Kerberos server. Some networks host multiple KDCs, in which
case one is a master KDC, and the others are slave KDCs. For brevity's sake, this chapter
describes only master KDC configuration. Slave KDCs are configured in much the same way as
their masters, but both master and slave require additional components to propagate the
password database to all KDCs.

Kerberized

http://lib.ommolketab.ir

This adjective describes server or client programs that support the Kerberos protocols. They
rely on the KDC for authentication, albeit in an indirect way, as described shortly. They can
often also authenticate users in more conventional ways as a backup to their Kerberos
functionality.

Kerberos application server

An application server runs Kerberized servers.

Kerberos client

This term refers to any computer that obtains a ticket (described shortly) from a KDC.
Normally, the Kerberos client is a client program run by a user.

Realm

A Kerberos realm is the range of the KDC's responsibility. Kerberos realms are often named
after DNS domains or subdomains, but realm names are case-sensitive and are conventionally
uppercase. For instance, if you're configuring a Kerberos system for the example.com domain,
you'd probably call the realm EXAMPLE.COM. The realm need not correspond exactly to the
domain, though; it can include or exclude specific computers, as you see fit.

Tickets

Tickets are at the heart of Kerberos authentication. A ticket is an encrypted hunk of data that's
passed between systems as a mode of authentication. Most tickets are encrypted using a
password, meaning that proper encryption of the ticket is proof of the ticket's validity.

TGT

A ticket-granting ticket is a special type of ticket that can obtain additional tickets. The KDC
delivers a TGT to a user; the Kerberos client tools use the TGT to request tickets for accessing
specific servers.

TGS

The ticket-granting service is the KDC subsystem that's responsible for granting TGTs.

Principals

http://lib.ommolketab.ir

A Kerberos principal is a user or server identification. Principals take the form
primary/instance@REALM, where primary is a name (frequently a username), instance is an

optional expansion that enables one user to have multiple principals, and REALM is the realm

name. For instance, fluffy@EXAMPLE.COM is a possible principal for the user fluffy on the
EXAMPLE.COM realm. Administrators frequently have a secondary principal with the instance
name of admin, so if fluffy were an administrator, the account's administrative instance would
be fluffy/admin@EXAMPLE.COM. Principals for application servers are named after the server,
as in telnet/mandragora.example.com@EXAMPLE.COM for the Telnet server on
mandragora.example.com. Computers that run application servers also require principals, on
which the primary name is host, as in host/mandragora.example.com@EXAMPLE.COM. Much of
the administrative work of running Kerberos involves managing principals.

The fact that Kerberos is reliant on tickets makes its operation a bit different from that of most other
network authentication tools, although many details can be hidden from users. In broad strokes, the
system works like this: the user requests a TGT from the KDC, which delivers the TGT to the
Kerberos tools on the user's system. When the user then initiates a connection to an application
server, the Kerberos utilities on the client pass the TGT back to the KDC along with information on
the server the user wants to connect to. The KDC replies with a new ticket, which is encrypted with
the application server's password. This ticket includes the username and other relevant information.
The user's system then forwards this ticket to the application server, which knows the ticket is valid
because it's been encrypted with its own password (which is known only to the application server and
the KDC). At this point, the user is authenticated to use the application server, and the session can
proceed much as it would with a more direct username/password exchange. (The application server
can, of course, apply its own local security rules to limit access on a user-by-user basis, up to and
including denying specific users access even if they've been authenticated by the KDC.)

Kerberos tickets include time stamps, and they expire after a limited period of
time, which varies depending on your Kerberos options and the type of ticket.
Thus, if a computer's clock is set incorrectly, it may not be able to authenticate
on a Kerberos network. For this reason, if you use Kerberos, you should also
use a network clock-setting tool to ensure that your systems' clocks are all set
correctly. Chapter 15 describes one tool you can use for this purpose, the
Network Time Protocol.

In practice, and from a user's point of view, using Kerberos involves two operations: authentication
with the KDC and accessing servers. Tools for the former, and for managing Kerberos sessions, are
described in Section 9.4.3. Some tools can integrate KDC authentication with a desktop system's
basic login, so the process can be quite seamless from a user's perspective. Still, the focus for
Kerberos is on providing centralized network accesses, whereas the focus for LDAP, and to a lesser
extent NT domains, is in providing centralized authentication for desktop logins. This distinction can
be subtle, but is important in understanding when and how to deploy Kerberos, as opposed to other
tools. Kerberos is best suited to environments in which users must frequently access a variety of
password-protected servers for which Kerberized variants are available. Kerberos is less useful in
environments in which users log into their desktop systems and then seldom need to access other
password-protected computers. For desktop authentication alone, LDAP or NT domains do a better
job. (NT domain logins, particularly for Windows desktop systems, also provide the illusion of
password-less access to file and printer shares, but not to most other types of servers.)

9.1.3. Kerberos Tools for Linux

http://lib.ommolketab.ir

One of the difficulties with Kerberos is in deciding which Kerberos to use. Broadly speaking, Kerberos
packages can be classified as V4 or V5, V5 being the latest. Linux implementations of both versions
include:

MIT Kerberos

Kerberos originated at MIT, and so many people consider the original MIT Kerberos to be the
standard. You can peruse its official web site, http://web.mit.edu/kerberos/www/, and
download it from there. Kerberos is available in source code form and as binary packages for
several OSs, including Linux, Windows, and Mac OS (both pre-X and X versions). MIT's Linux
binaries, though, are available only in the form of a tarball. The latest version, 1.3.5, is a
Kerberos V5 implementation.

Heimdal

This version of the Kerberos V5 protocol is hosted in Sweden, at
http://www.pdc.kth.se/heimdal/. This site hosts source code and some binary packages,
including versions for Linux, Solaris, DEC Unix, and Mac OS X. Version 0.6.3 is the latest as I
write.

eBones

This package, headquartered at http://www.pdc.kth.se/kth-krb/, is a Kerberos V4
implementation. It's sometimes released with Linux distributions under a package name such
as krb4. As a Kerberos V4 implementation, it's a bit dated, but if your site uses Kerberos V4,
you might consider using it. The latest version as I write is Version 1.2.2.

Many distributions ship with one or more of these implementations in binary form. Typically, MIT
Kerberos is available under the package name mit-krb5 or krb5, whereas Heimdal is available as
heimdal or something similar. Some distributions split the Kerberos package into parts, separating
base tools, application servers, and clients. In theory, you should be able to mix and match Kerberos
V5 implementations (MIT Kerberos and Heimdal, for instance); however, in practice you may find it
easier to stick to a single product whenever possible. Problems are most likely to crop up in
administrative tools and trying to mix master and slave KDCs of different types; problems between
clients and KDCs or application servers are less common. Likewise, cross-OS mixes (using Linux MIT
Kerberos clients and a MacOS MIT Kerberos KDC, for instance) should work, although problems
sometimes crop up. Because Kerberos V4 is becoming rather elderly and has some protocol security
bugs, this chapter describes V5 exclusively.

This chapter uses Heimdal and MIT Kerberos V5 implementations as references.
The reference realm's primary KDC runs Heimdal 0.6 on SuSE 9.1, but this
chapter describes both Heimdal and MIT Kerberos tools and commands for
most tasks.

http://web.mit.edu/kerberos/www/
http://www.pdc.kth.se/heimdal/
http://www.pdc.kth.se/kth-krb/
http://lib.ommolketab.ir

Linux Kerberos packages ship with several Kerberized servers and clients, including Telnet, rlogin,
FTP, rsh, and rcp programs. Subsequent sections of this chapter describe some of these tools in
greater detail.

Kerberos was designed to enable just about any protocol that requires authentication to use it. Thus,
the list of Kerberized protocols isn't limited to those that ship with the main Kerberos package. If you
want to use Kerberos in conjunction with a protocol that's not supported by a client or server that
ships with Kerberos, you should search for support elsewhere. Although Kerberos support is far from
universal, many clients and servers do support the protocol. Sometimes this support comes in the
form of a compile-time option, so you may need to recompile your software to include the Kerberos
features. In other cases, you may need to switch from one client or server package to another one.
Unfortunately, Kerberos support, although far from restricted to the clients and servers provided with
Kerberos packages, is also far from universal; you may need to search long and hard to find
Kerberized tools for a particular task.

9.1.4. Windows and Kerberos

In theory, Windows can fit into a Kerberos realm as easily as Linux. In practice, of course, you'll need
to learn to configure both Linux and Windows; configuration file locations and the like will differ
between the two platforms. You might also run into compatibility problems related to specific
Kerberos implementations.

Of particular note along these lines is the fact that Windows 2000 and later ship with AD support, and
AD includes Kerberos as one of its components. Microsoft, however, implemented Kerberos in a
slightly different way than did other providers. Some notable areas of divergence include:

Encryption algorithms

For political and technical reasons, Microsoft chose to support a different set of encryption
algorithms than did the versions of Kerberos available in 2000. The practical upshot of this
decision is that, if you use an AD controller as your KDC, you must either enable Data
Encryption Standard (DES) encryption on the KDC and change users' passwords or use a
recent version of Kerberos (such as MIT Kerberos 1.3 or later) on the non-Microsoft systems.

The PAC

Perhaps the biggest Windows/non-Windows Kerberos compatibility issue is the Privilege Access
Certificate (PAC). This is an extra field added to tickets returned by a Windows KDC. Microsoft's
own Windows clients typically refuse to work with a KDC that doesn't return a PAC, which
makes interoperating with a Linux KDC difficult, for example. Microsoft developed the PAC in a
proprietary way, but in late 2003 some documentation on the PAC became available, so this
problem is also fading in importance. Fortunately, non-Microsoft Kerberos implementations
typically ignore the PAC, so Linux Kerberos application servers and clients should be able to
operate with a Windows KDC.

http://lib.ommolketab.ir

Cached credentials

Windows systems cache their login credentials as a way of supporting logins on laptops or in
case of a KDC or network failure. Ordinarily, this practice poses no problems, but if a user logs
on using a cached credential and a non-Microsoft KDC then becomes available, the system isn't
likely to notice the KDC, resulting in an inability to access network resources.

Overall, using Microsoft's own KDC as your network's KDC in conjunction with Linux application
servers and clients works well. If you're using older Kerberos implementations, though, you may
need to enable DES support and then change users' passwords so that the new password is encoded
in DES form. This step shouldn't be necessary with recent Kerberos V5 implementations for Linux,
though. (If in doubt, check whether the Kerberos implementation supports the RC4-HMAC encryption
algorithm.) For the most part, the details of administering a Windows KDC are beyond the scope of
this book.

Using Windows clients with a non-Microsoft KDC is a bit trickier, but it is possible. You must create
local Windows accounts on the Windows system for your users and use special tools to configure
Windows to use the KDC for authentication. This process is described later in this chapter, in Section
9.5.3. Alternatively, you can install a non-Microsoft Kerberos package and run it without using
Kerberos for logon authentication. Instead, you'd use regular Kerberized clients and servers under
Windows, much as you would their equivalents under Linux.

http://lib.ommolketab.ir

9.2. Linux Kerberos Server Configuration

The single most complex task when you implement Kerberos on your network is to set up the
Kerberos serverthe KDC. To do this, you start by editing a server configuration file. This isn't the end
of the job, though. You must also create a master key, which is used to encrypt the KDC's
communications. Practical use of a Kerberos realm also requires such administrative tasks as creating
principals and configuring access control rules. Finally, you must run the Kerberos servers (the main
server and, typically, a separate administrative server).

9.2.1. Kerberos Realm Configuration

MIT Kerberos uses two configuration files: krb5.conf and kdc.conf. Heimdal, though, dispenses with
the latter file, so you needn't be concerned with kdc.conf if you're configuring Heimdal. The krb5.conf
file contains assorted information about your realm and the server's operation, while the kdc.conf file
contains KDC-specific information.

Application servers and clients need to know much of the realm information in
krb5.conf, and so these systems use this file, as well, although some sections
are missing or ignored on these systems.

9.2.1.1 Editing krb5.conf

The KDC's main configuration file is called krb5.conf. If you install Kerberos from a package, chances
are this file will reside in /etc. A sample krb5.conf file appears in Example 9-1.

Example 9-1. Sample krb5.conf listing

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 ticket_lifetime = 28800
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false

[realms]
 EXAMPLE.COM = {
 kdc = kdc.example.com:88

http://lib.ommolketab.ir

 admin_server = kdc.example.com:749
 default_domain = example.com
 }

[domain_realm]
 .example.com = EXAMPLE.COM
 tropical.pangaea.edu = EXAMPLE.COM

This file is broken into sections, with each section denoted by a section name within square brackets
([]). Most options span a single line and consist of an option name followed by an equal sign and its

value. Some, though, use compound values, which themselves span multiple lines. These are
denoted by curly braces ({ }), as in the EXAMPLE.COM item within the [realms] section. Many of the

krb5.conf parameters are self-explanatory, but some deserve additional elaboration:

Logging options

The options in the [logging] section tell the server where to log data related to Kerberos

operation. This section is not required for application server and client installations, just for
KDCs.

Ticket lifetime

The ticket_lifetime option sets the default lifetime for most tickets issued by the KDC, in
seconds. The value of 28800 shown in Example 9-1 corresponds to eight hours. A too-long

lifetime increases the risk of security breaches caused by stolen tickets, while a too-short
lifetime will be inconvenient for users because they have to reinitialize their Kerberos sessions.

Default realm

The default_realm option sets the realm that the KDC is to manage. This is likely to be

named after your DNS domain name, but it doesn't have to be.

DNS lookup options

The dns_lookup_realm and dns_lookup_kdc options tell Kerberos to use DNS to help locate

systems.

Realm definitions

The [realms] section defines realms. In Example 9-1, one realm is defined: EXAMPLE.COM.

This definition includes pointers to a single KDC and one administrative server. (If your realm
has slave KDCs, they're defined just like the master, using a kdc line.) The administrative

http://lib.ommolketab.ir

server handles administrative functions, such as adding principals; it's normally the same as
the master KDC. These definitions include port numbers88 for the KDC and 749 for the
administrative server. The default_domain option specifies the DNS domain name that's

associated with Kerberos principals, when appropriate. A single krb5.conf file may define
multiple realms. In such cases, you'd define each in its own set of lines, in a single [realms]

section.

Domain/realm mapping

The [domain_realm] section specifies a mapping of computers to realms. In Example 9-1, all

computers in the example.com domain and the computer tropical.pangaea.edu are included in
the EXAMPLE.COM realm. Subdomains are indicated by a leading dot (.); entries lacking this
dot are interpreted as referring to individual computers.

In addition to the entries shown in Example 9-1, MIT Kerberos is likely to have an additional section
that points to the kdc.conf file:

[kdc]
 profile = /var/kerberos/krb5kdc/kdc.conf

You may also see a section called [appdefaults] in sample configuration files. This section modifies

settings for individual application servers and clients. For instance, you might increase or decrease a
ticket lifetime based on the likely session length for a particular service.

9.2.1.2 Editing kdc.conf

MIT Kerberos implementations typically place some KDC options in a separate file, called kdc.conf,
which are referred to by a profile option in the [kdc] section of krb5.conf. Example 9-2 shows a

typical example of this file. You should leave most of these options alone, but you can change the
name of the Kerberos realm on the first line of the [realms] section to match your needs. The
master_key_type and supported_enctypes options relate to the encryption methods that Kerberos

supports.

Example 9-2. Sample kdc.conf listing

[kdcdefaults]
 acl_file = /var/kerberos/krb5kdc/kadm5.acl
 dict_file = /usr/share/dict/words
 admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
 v4_mode = nopreauth

[realms]
 EXAMPLE.COM = {
 master_key_type = des-cbc-crc
 supported_enctypes = arcfour-hmac:normal arcfour-hmac:norealm
arcfour-hmac:onlyrealm
des3-hmac-sha1:normal des-hmac-sha1:normal des-cbc-md5:normal

http://lib.ommolketab.ir

des-cbc-crc:normal des-cbc-
crc:v4 des-cbc-crc:afs3
}

9.2.2. Creating a Master Key

Because of the high priority Kerberos places on security, it uses a cryptographic master key to
control access to itself. Without this key, Kerberos won't start. The key is generated from a
password, and it's possible to store this password in a stash file. Using a stash file, Kerberos can start
automatically when the computer boots; without a stash file, you must enter a password whenever
you start the server.

In Heimdal, the utility to create a master key and a stash file is called kstash. (Heimdal actually
creates a single file for both purposes.) To perform this task, type this command:

kstash
Master key:
Verifying - Master key:
kstash: writing key to `/var/heimdal/m-key'

As with most utilities that ask for passwords, kstash doesn't echo the password you type. MIT
Kerberos uses another utility, kdb5_util, to create its master key and stash file:

kdb5_util create -r EXAMPLE.COM -s
Loading random data
Initializing database '/var/kerberos/krb5kdc/principal' for realm 'EXAMPLE.COM',
master key name 'K/M@EXAMPLE.COM'
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key:
Re-enter KDC database master key to verify:

The master key, stash file, and password are all extremely sensitive. The
utilities should create files with appropriate permissions to protect them
(typically 0600), at least assuming the Kerberos server isn't compromised. You
should be extremely careful to both remember the password and not let it fall
into unauthorized hands. Pick a password that's as close to a random collection
of letters, digits, and punctuation as possible without running the risk of
forgetting it, and don't re-use this password for any other account or server.

9.2.3. Realm Administration

At this point, your KDC is nearly ready to be used; however, you must still set up principals and
define access control rules. Both tasks are critical for normal Kerberos operations. In fact, you're
likely to return to these tasks, and particularly principal creation, many times in the future.

http://lib.ommolketab.ir

9.2.3.1 Creating principals

Principals are, essentially, Kerberos accounts. Kerberos requires certain principals in order to
function, and you'll presumably want to create principals for your ordinary users. This section
describes both tasks. Application servers also require principals, but this task is described in Section
9.3.2.

Kerberos provides a tool called kadmin to manage principals. Ordinarily, this tool connects to the
Kerberos administrative server (specified by the admin_server option in krb5.conf) to manage

principals. At this point, though, this server isn't running because it's not yet fully configured, so you
must create principals without using this server. In Heimdal, this task is accomplished by passing the
-l option to kadmin. In MIT Kerberos, you use a variant command, kadmin.local. In Heimdal, the

interaction for initializing the realm looks like this:

kadmin -l
kadmin> init EXAMPLE.COM
Realm max ticket life [unlimited]:
Realm max renewable ticket life [unlimited]:
kadmin> add admin/admin@EXAMPLE.COM
Max ticket life [1 day]:
Max renewable life [1 week]:
Principal expiration time [never]:
Password expiration time [never]:
Attributes []:
admin/admin@EXAMPLE.COM's Password:
Verifying - admin/admin@EXAMPLE.COM's Password:

The init command initializes the Kerberos database; it should be the first command you type when
you use this program for the first time. The add command adds a principal for the administrative
user. (You can use other primary and instance names if you like, though the principal should be in
your realm.) If you're using MIT Kerberos, there's no need to begin with the init command, and the
add command is called addprinc. You do, however, need to use the ktadd command to prepare a
keytab, which is a special key Kerberos uses to handle administrative principals:

kadmin.local: ktadd -k /var/kerberos/krb5kdc/kadm5.keytab
kadmin/admin kadmin/changepw

The system should respond with a rather verbose report concerning the creation of the keytab files.

Whether you're using Heimdal or MIT Kerberos, you might want to take the time now to create at
least one or two test accounts. These accounts might not have instance names for simplicity's sake.
You can also omit the realm name, if you're adding a principal to your default realm:

kadmin> add fluffy

Heimdal is more verbose in the questions it asks at this point, and you can select the default for most
of these. Whichever server you're using, though, you'll have to enter a password.

http://lib.ommolketab.ir

Once you've started the KDC and the kadmind server, you can use kadmin to
administer the server remotely, with one caveat: you can't use the kadmin
from MIT Kerberos to administer a Heimdal server or vice versa; the
administrative protocols aren't compatible.

9.2.3.2 ACL definitions

Kerberos uses ACLs to determine who may access the server (that is, kadmind, not the KDC as a
whole) and in what ways. Kerberos ACLs are conceptually similar to filesystem ACLs, but they're not
identical, nor do they rely on filesystem ACLs. Kerberos ACLs are defined in a special ACL file. In
Heimdal, this file is normally /var/heimdal/kadmind.acl; in MIT Kerberos, it's the file pointed to by the
acl_file entry in kdc.conf. (You can specify the same parameter in a [kdc] section in Heimdal's

krb5.conf file, if you want to use another file in Heimdal.) The ACL file consists of a series of lines,
each with two or three entries:

Kerberos-Principal Permissions [Target-Principal]

The first entry, Kerberos-Principal, is the principal to which the ACL appliesthat is, the user whose

permissions are being defined. The Permissions string is a collection of one or more letters (in MIT

Kerberos) or a comma-separated list of codes (in Heimdal), as summarized in Table 9-1, that define
the operations the user can perform. If no third option is present, these permissions apply to all other
principals. If a third entry is present, however, it refers to the principals that the first principal may
modify in the specified ways. For instance, you might want to give some users the ability to modify
certain classes of principals but not others.

Table 9-1. Kerberos ACL permission codes

MIT Kerberos code Heimdal code Meaning

a add Principals or policies can be added.

A - Principals or policies can't be added.

d delete Principals or policies can be deleted.

D - Principals or policies can't be deleted.

m modify Principals or policies can be modified.

M - Principals or policies can't be modified.

c cpw or change-password Passwords can be changed.

C - Passwords can't be changed.

i get Database inquiries can be made.

I - Database inquiries can't be made.

http://lib.ommolketab.ir

MIT Kerberos code Heimdal code Meaning

l list Principals or policies can be listed.

L - Principals or policies can't be listed.

x or * all Wildcard for all "can" ACLs (admcil).

In the case of both principal specifications, an asterisk (*) can be used as a wildcard for part of the

specification. For instance, you can give all users in the admin instance the ability to do anything in
MIT Kerberos:

*/admin@EXAMPLE.COM *

In MIT Kerberos, an entry similar to this is the default, but you should modify it to point to your
realm. You might also want to fine-tune the ACLs to suit your own needsfor instance, providing
different groups of administrators different levels of access to the server's administrative functions.
In Heimdal, the ACL file is absent by default, so you'll probably want to create it. A failure to create
this file means that you can't perform administrative tasks from other systems, including adding
principals and extracting keytabstasks that are required for adding application servers to a Kerberos
realm. (You can still perform these tasks from the KDC itself, but then you'll have to move highly
sensitive keytab files to the application server in some other way, such as on a floppy disk or via a
network file transfer.)

9.2.4. Running the KDC

The KDC must be run in order to be useful. On most Linux distributions, you can do this by running a
SysV startup script:

/etc/init.d/kdc start

Details vary from one distribution to another, though; the script may be called kdc, krb5kdc, mit-
krb5kdc, or something else. You may need to use your distribution's package system or simply
peruse your SysV startup scripts to locate the correct script.

Some KDC startup scripts start the Kerberos administrative server along with the KDC server.
Others, though, provide a separate script to start the administrative server. This second script may
be called mit-krb5kadmind, kadmin, or something else. Again, checking the SysV scripts installed
with your package or perusing the startup scripts may be necessary. Normally, you'll want to run the
administrative server on the master KDC; without it, your ability to administer your realm from
anything but the KDC itself will be limited.

Starting the KDC and administrative server manually is fine for testing, but, in operation, you'll
probably want to configure your system to start the servers on a regular basis. On many
distributions, the chkconfig command can be used to do this:

chkconfig --add kdc

l list Principals or policies can be listed.

L - Principals or policies can't be listed.

x or * all Wildcard for all "can" ACLs (admcil).

In the case of both principal specifications, an asterisk (*) can be used as a wildcard for part of the

specification. For instance, you can give all users in the admin instance the ability to do anything in
MIT Kerberos:

*/admin@EXAMPLE.COM *

In MIT Kerberos, an entry similar to this is the default, but you should modify it to point to your
realm. You might also want to fine-tune the ACLs to suit your own needsfor instance, providing
different groups of administrators different levels of access to the server's administrative functions.
In Heimdal, the ACL file is absent by default, so you'll probably want to create it. A failure to create
this file means that you can't perform administrative tasks from other systems, including adding
principals and extracting keytabstasks that are required for adding application servers to a Kerberos
realm. (You can still perform these tasks from the KDC itself, but then you'll have to move highly
sensitive keytab files to the application server in some other way, such as on a floppy disk or via a
network file transfer.)

9.2.4. Running the KDC

The KDC must be run in order to be useful. On most Linux distributions, you can do this by running a
SysV startup script:

/etc/init.d/kdc start

Details vary from one distribution to another, though; the script may be called kdc, krb5kdc, mit-
krb5kdc, or something else. You may need to use your distribution's package system or simply
peruse your SysV startup scripts to locate the correct script.

Some KDC startup scripts start the Kerberos administrative server along with the KDC server.
Others, though, provide a separate script to start the administrative server. This second script may
be called mit-krb5kadmind, kadmin, or something else. Again, checking the SysV scripts installed
with your package or perusing the startup scripts may be necessary. Normally, you'll want to run the
administrative server on the master KDC; without it, your ability to administer your realm from
anything but the KDC itself will be limited.

Starting the KDC and administrative server manually is fine for testing, but, in operation, you'll
probably want to configure your system to start the servers on a regular basis. On many
distributions, the chkconfig command can be used to do this:

chkconfig --add kdc

http://lib.ommolketab.ir

Other distributions use other tools to do this job. Consult distribution-specific documentation if you
need help with this task.

http://lib.ommolketab.ir

9.3. Kerberos Application Server Configuration

Setting up a master KDC is the most involved part of configuring a Kerberos realm; however, by
itself, a KDC doesn't do much good. The next step in this process is to configure one or more
application servers. Each application server computer must have a basic Kerberos configuration,
which is similar in some details to the KDC's configuration. You must also create principals for each
application server and set up appropriate keytabs. Once this is done, you can run the server programs
to make them available.

9.3.1. Setting Up Kerberos

Any Linux system that runs a Kerberos application server requires certain basic preparation, some of
which is the same as that for the KDC. In particular, you must set up the /etc/krb5.conf file in much
the same way, as described in Section 9.2.1.1 . You can, however, omit some sections from this file,
namely the [logging] and [kdc] sections.

9.3.2. Preparing Application Server Principals

Before you can run an application server, you must prepare principals for the server (both the server
computer and the individual server programs). Furthermore, you must install keytabs for these
principals on the application server computer.

The first step in this process is to create the principals. You do this much as you do for ordinary users,
with the help of the kadmin or kadmin.local command. To simplify the procedure, pass the -r (in
Heimdal) or -randkey (in MIT Kerberos) option. This assigns a random password to the principal.

Because the password need only be "known" to software on the server computer, this practice should
work well. Generally speaking, you must create principals with the instance name of the computer's
DNS hostname and primary names of host (for the computer as a whole) and named after each

server. Some specific servers don't need their own principals, though. For instance, to enable
gingko.example.com to function as a Kerberized Telnet server, you can type (using Heimdal's kadmin
) the following:

kadmin> add -r host/gingko.example.com
Max ticket life [1 day]:
Max renewable life [1 week]:
Principal expiration time [never]:
Password expiration time [never]:
Attributes []:
kadmin> add -r telnet/gingko.example.com
Max ticket life [1 day]:
Max renewable life [1 week]:
Principal expiration time [never]:
Password expiration time [never]:
Attributes []:

http://lib.ommolketab.ir

The Kerberized Telnet server doesn't need its own principal. Thus, you can still
run it if you omit the second add command in the preceding example.

With the principals created, you must then extract them to a keytab file. You do this with the
ext_keytab (Heimdal) or ktadd (MIT Kerberos) command within kadmin :

kadmin> ext_keytab -k gingko.keytab host/gingko.example.com telnet/gingko.example.com

The -k option tells the utility what file to use to store the keytab. If you perform this step from the

application server itself, you can give the filename /etc/krb5.keytab directly. If you do this job from
another computer, such as the KDC, you can store the keytab under any convenient name, but you
must then transfer the file to the application server and store it as /etc/krb5.keytab . Be sure this file
is readable only by root (or by the account that will be used to run the server). If you add new
Kerberized server programs to an application server, you need to add new principals and repeat this
step, specifying principals for all of your server programs. Alternatively, you can combine multiple files
using cat or similar tools, adding only the new principals, as needed.

Keytab files function as proof of a server's identity. For this reason, they're extremely sensitive. Never
transfer them using unencrypted network protocols, such as an unencrypted FTP or NFS server. For
network transfers, scp (part of the SSH package) is an acceptable choice. You can also use a floppy
disk or other removable media, but when you're done, be sure to do a low-level reformat of a floppy
disk or otherwise securely wipe the keytab file from the disk (say, using wipe); don't just delete the
file with rm . Also, if you use a KDC to generate the keytabs, delete the keytab file from the KDC's
disk, ideally using wipe or another tool that completely destroys the data in a file. The KDC stores a
copy in its principals database, and a copy in a disk file might fall into the wrong hands if not given
sufficient protection.

9.3.3. Running the Servers

Once the application server's keytab is in place, you can run the server programs. Doing so is much
like running non-Kerberos servers. The servers that come standard with Kerberos are typically run
from a super server (inetd or xineted). For instance, Example 9-3 shows a file, stored in /etc/xinetd.d
, that will launch the Kerberized Telnet server (ktelnetd) that ships with MIT Kerberos.

Example 9-3. Sample xinetd configuration for the Kerberized Telnet
server

service telnet
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 group = root
 server = /usr/sbin/ktelnetd

http://lib.ommolketab.ir

 server_args = -a valid
}

The standard Kerberos servers support additional options you must use to enable Kerberos
authentication:

klogind

This program works in conjunction with the rlogin command. You'll ordinarily use the options -k
(enable Kerberos authentication), -e (enable encryption), and -c (require a cryptographic

checksum from the client, which improves security).

kshd

This remote shell server is used with rsh to enable remote program execution. You'll probably
use the same -k , -e , and -c parameters described for klogind .

kftp

This program is a Kerberized FTP server. With some versions of this program, you'll probably
use it with the -a valid option, which enables Kerberos authentication. Other versions of the

server don't require this option. Consult your package's documentation to learn which option is
required.

ktelnetd

This server provides Kerberized Telnet access to a computer. Like kftpd , it may require a -a
valid option to enable Kerberos authentication.

These servers support encryption, but only when used with matching Kerberized
clients, such as those that ship with Kerberos packages. When used with
ordinary non-Kerberized clients, these servers provide no advantages over their
non-Kerberized counterparts.

These servers support additional options, too, some of which aren't related to Kerberos operation.
Depending on their configuration options, they might or might not accept non-Kerberos logins. If you
need more details, consult their manpages or other documentation. (Some packages lack manpages
for their servers.)

http://lib.ommolketab.ir

Some Kerberos packages (notably Heimdal) omit the leading k from the server
filenames. In addition, the server files' locations vary depending on the
Kerberos package. Check your package's contents to learn the details.

In addition to these basic servers, Kerberized versions of other servers are available. In some,
Kerberos support is part of the main server, although it may be a compile-time option. For instance,
Samba supports Kerberos authentication, but only if you provide appropriate compile-time options.
(The details of Samba's Kerberos features are actually rather complex and are beyond the scope of
this book.) For some protocols, Kerberos support is available in some servers but not others. Thus, if
you want to support Kerberos for particular protocols, you should check the documentation for your
preferred servers. If they don't support Kerberos, try performing a web search. Precisely how you
might activate Kerberos support for these tools varies greatly from one server to another, so you'll
have to consult your server's documentation.

http://lib.ommolketab.ir

9.4. Linux Kerberos Client Configuration

Kerberized clients are simpler to configure than KDCs or Kerberized application servers. Nonetheless,
these tools do require some basic configuration to work. You may even need to track down
Kerberized versions of clients for specific protocols, particularly if you want to use tools that aren't
provided with Kerberos. Once everything's set up, you should know something about the basic
Kerberos user management tools, because they control user access to the realm.

9.4.1. Preparing Kerberos Clients

The main requirement for Kerberos client configuration is to set up the Kerberos configuration file,
krb5.conf, as described earlier. Note that there's no need for a [logging] or [kdc] section, and,

consequently, no need for a kdc.conf fileeven if you're using MIT Kerberos.

You can mix and match an MIT Kerberos KDC with Heimdal clients, or a
Heimdal KDC with MIT Kerberos clients. As described in the section Section 9.5,
still other Kerberos implementations can interact with these common Linux
Kerberos tools.

Because the Kerberos clients don't maintain Kerberos databases, you don't need to use kadmin or
kadmin.local to set up local Kerberos databases on the clients. You do, though, need to create
principals for your users, as described earlier in this chapter.

9.4.2. Installing Kerberized Clients

Kerberized clients can be classified in two categories: those that ship with the main Kerberos package
and third-party tools. The "official" Kerberized clients are those that match the "official" Kerberized
servers, as described earlier in Section 9.3.3. If you install Kerberos from source code, these clients
install with the main Kerberos package, so the easiest way to install them is to compile the whole
Kerberos package. Some Linux distributions, though, split the Kerberos clients into a separate
package, such as Fedora's krb5-workstation. (Such tools may depend on others, such as Fedora's
krb5-libs.) Other distributions place everything in one huge package.

If you want to use additional protocols, such as POP or IMAP, you need to track down Kerberized
clientsin the case of POP or IMAP, this is a Kerberized mail reader, such as Pine
(http://www.washington.edu/pine/). As with matching Kerberized servers, tracking these down can
be tricky. A web search on appropriate terms, such as Kerberos IMAP, may help.

http://www.washington.edu/pine/
http://lib.ommolketab.ir

Many clients and servers provide Kerberos support as a compile-time option. If
you can't seem to get Kerberos support working, particularly if you're using
precompiled binaries and the documentation says that the client supports
Kerberos, you can try recompiling the program locally. This may require that
you install a Kerberos development package, though.

9.4.3. Using Kerberized Clients

Kerberos is a network login protocol, but Linux Kerberos packages don't automatically enable
Kerberized authentication for desktop logins. (This option is described in the next section.) Instead,
you can manage a Kerberos session after you've logged into your normal Linux (or other OS)
session. Once you've done this, you can use the following four Kerberos client tools to manage your
Kerberos session:

kinit

This program initializes a Kerberos session. More precisely, it obtains a TGT from the KDC.
Once you've acquired a TGT, the Kerberos utilities can easilyand transparentlyobtain tickets to
specific servers. Thus, kinit manages the "single sign-on" feature of Kerberos. To use the tool,
type its name; it will ask you for a password, using your Linux username as the primary of the
principal and the default realm defined in krb5.conf. You can obtain a TGT for another principal
by passing its name to kinit, as in kinit linnaeus/admin@EXAMPLE.COM. This is handy if you

have multiple principals, such as one for regular use and another for administrative functions.

klist

This program displays information on your current tickets, including the TGT. If you can't seem
to log in using a Kerberos client, using klist can be a good starting point. You might discover
that you're missing a necessary ticket.

kpasswd

This command is the Kerberos equivalent of the Linux passwd command; it changes your
Kerberos realm password. You must have a TGT to use it.

kdestroy

This command destroys all your tickets. In theory, you should run this command just before
logging out of the computer from which you're managing your Kerberos session. If you fail to
do so, the tickets might remain in memory and could, in theory, be misappropriated by
somebody with sufficient privilege. Some session management tools destroy tickets
automatically, though, so this may not be necessary. You can also use this tool to destroy

http://lib.ommolketab.ir

tickets you no longer need, which enables you to authenticate using a "clean slate" for testing
purposes.

Of these commands, only kinit is necessary for using Kerberos as a client, and it can be replaced by
other tools, as described later. To illustrate the use of these tools, though, consider the following
sequence of commands:

$ kinit
Password for fluffy@EXAMPLE.COM:
$ klist
Ticket cache: FILE:/tmp/krb5cc_500
Default principal: fluffy@EXAMPLE.COM

Valid starting Expires Service principal
06/23/04 19:24:42 06/24/04 19:24:39 krbtgt/EXAMPLE.COM@EXAMPLE.COM

Kerberos 4 ticket cache: /tmp/tkt500
klist: You have no tickets cached
$ kpasswd
Password for fluffy@EXAMPLE.COM:
Enter new password: :
Enter it again: :
Password changed.
$ /usr/lib/heimdal/bin/telnet -af mandragora
Trying 192.168.1.3...
Connected to mandragora (192.168.1.3).
Escape character is '^]'.
[Kerberos V5 accepts you as ``fluffy@EXAMPLE.COM'']
Last login: Wed Jun 23 19:24:25 from halrloprillalar
fluffly@mandragora> logout
Connection closed by foreign host.
$ klist
Ticket cache: FILE:/tmp/krb5cc_500
Default principal: fluffy@EXAMPLE.COM

Valid starting Expires Service principal
06/23/04 19:24:42 06/24/04 19:24:39 krbtgt/EXAMPLE.COM@EXAMPLE.COM
06/23/04 19:26:16 06/24/04 19:24:39 host/mandragora.example.com@EXAMPLE.COM

Kerberos 4 ticket cache: /tmp/tkt500
klist: You have no tickets cached
$ kdestroy
$ klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_500)

Kerberos 4 ticket cache: /tmp/tkt500
klist: You have no tickets cached

This example begins with a call to kinit, which obtains the initial TGT
(krbtgt/EXAMPLE.COM@EXAMPLE.COM, as revealed by the first call to klist). The call to klist also
displays the TGT's starting and ending timesone day apart in this example. The call to kpasswd

http://lib.ommolketab.ir

results in a password-change exchange much like the one that results from the standard Linux
passwd command.

The Kerberized telnet command works much like the stock telnet, but passing the -a and -f

parameters are necessary to have the client attempt an automatic login and forward its credentials to
the server, respectively. Without these options, you'll be prompted for your username and password.
Note also that this example includes the complete path to the Kerberized binary. Depending on your
PATH environment variable and where your Kerberized and normal telnet binaries are located, this

may or may not be necessary to ensure use of the Kerberized tool. After logging out of the remote
system, a second call to klist reveals that the system is still holding onto the TGT but has acquired a
new ticket, host/mandragora.example.com@EXAMPLE.COM, which corresponds to the server system
to which you've connected. After using the kdestroy command, klist reveals that no tickets are
present. At this point, an attempt to use Kerberized clients will either fail or result in a conventional
login prompt, or at least a request for a password. If this happens, Kerberos is not being used for
authentication.

Of the clients that ship with Kerberos, ftp provides the most verbose
information while connecting to the server. This fact can be useful when you're
debugging problems.

Many of the stock Kerberos client programs (telnet, rlogin, and so on) require the -a and/or -f

options to enable automatic logins using Kerberos credentials. Some packages use a leading k to
differentiate the Kerberized programs from their non-Kerberized counterparts, as in ktelnet. You'll
need to consult your local documentation and package information to learn the details for your
system.

9.4.4. Using Kerberos for Network Logins

One of the limitations of Kerberos, at least as it's delivered in the main Kerberos package, is that it
isn't a very good tool for logging into individual desktop systems. To use Kerberos as just described,
you must log into your desktop system, including entering a password, and then use kinit to initialize
a Kerberos session. Ideally, you should be able to enter your username and password just once,
when you log into the computer. This ideal is achievable using any of several tools; however, some of
them require additional configuration to use. Even at their best, though, these tools aren't complete
replacements for your local Linux accounts; you must still maintain some information locally or via
some other tool, such as LDAP.

9.4.4.1 Kerberized login tools

Linux requires authentication for many different tools. In terms of local login, two broad classes of
tools are most notable: text-mode login, which is handled by the login program, and GUI login, which
is handled by an X Display Manager (XDM) program. In addition to these login tools, though, other
local authentication tools exist, such as screen-locking programs, which lock the console after a
period of activity, much like screen savers, but require a password to unlock the screen.

The stock Heimdal and MIT Kerberos packages ship with a replacement for the standard login tool.
This replacement is called login in Heimdal and login.krb5 in MIT Kerberos. It's installed in an out-of-

http://lib.ommolketab.ir

the-way directory or under an unusual name to prevent interference with the standard login
program. To use the new tool, you must copy it over the original, which is typically located in /bin,
but I recommend you first back up the original in case you run into problems:

mv /bin/login /bin/login-original
cp /usr/sbin/login.krb5 /bin/login

Adjusting your system's login tools is potentially risky. You should ensure that
you have some alternate way to log in that doesn't use login (such as via an
XDM program or an SSH session) when adjusting login. You may also want to
leave a root login running in one virtual terminal while you make changes.

Once you make this change, your system should begin using Kerberos for all text-mode console
logins, with the caveat that any currently running login processes may need to be restarted first.
(Typically, logging in and then logging out should do the job.) The login program is used by some
other tools, too, such as non-Kerberized Telnet servers. Using a Kerberized login program, though,
doesn't provide you with any extra security; the client still sends the username and password to the
server unencrypted, and the resulting session will also be unencrypted.

One good way to test whether you're using the Kerberized login tool is to use
klist. If you destroy your tickets, log out, log in, and then find you have a new
TGT after logging in, you can be sure you're using the Kerberized login.

After making these changes, you should test all your user accounts, or at least all of those you can
test. Be sure to test your root account, too, and if it doesn't work, create an appropriate Kerberos
principal for root.

Using PAM for Kerberized logins, as described next, enables you to use a local
root account along with Kerberos for other users. This can make the PAM
solution a bit safer because you won't be denied root access if a Kerberos
problem develops. This solution also lets you set different root passwords for
each computer.

Unfortunately, the standard Kerberos packages don't ship with an equivalent to the Kerberized login
for GUI logins. To implement Kerberized GUI logins, you must either track down a Kerberized XDM
(they're rare) or implement Kerberos via PAM. The latter is a more flexible approach, and it can also
be used in place of the explicitly Kerberized login program, but PAM takes more effort to set up.

9.4.4.2 Kerberos and PAM

Several third-party Kerberos PAM modules exist, but the most popular is the pam_krb5 package,
which is available under that name with most distributions. (Debian calls its version libpam-krb5,
though.) Its main web site is http://sourceforge.net/projects/pam-krb5/, should you need to install it

http://sourceforge.net/projects/pam-krb5/
http://lib.ommolketab.ir

from source code.

The Kerberos PAM package installs very few files; aside from documentation files, the only important
file is /lib/security/pam_krb5.so. Some versions also install a variant known as pam_krb5afs.so,
which also supports logins via Andrew File System (AFS) authentication.

You can configure the Kerberos PAM modules by adding references to pam_krb5.so for the auth and
account items in the files in /etc/pam.d corresponding to the services you want to use Kerberos

authentication. This topic is described in more detail in Appendix A, so consult it for details.

The primary advantage of using PAM for local Kerberos authentication is that you can use Kerberos
for just about any service that requires authentication. The list of likely services includes login, XDM
(or its GNOME or KDE variants, GDM or KDM), su, sudo, passwd, vlock (a text-mode, console-locking
program), xlock (an X-based console-locking program), and xscreensaver (another X-based, console
locking program). Using the Kerberized PAM modules for these services (and particularly for the login
and XDM, GDM, or XDM services) means that users will have TGTs the moment they log in; they
won't need to use kinit to obtain them.

In theory, you can use the Kerberized PAM module to support network-accessible login servers, such
as POP, IMAP, FTP, and SSH. In practice, though, the advantages to doing so are slim, because the
communication between the client and server is still done in whatever way it would be done if you
used the normal PAM configuration. In particular, a protocol that delivers the password in
unencrypted form will continue to do so. If possible, you should instead replace the client and server
programs with explicitly Kerberized versions. This configuration bypasses PAM and uses Kerberos
directly, giving you more Kerberos benefits. Alternatively, you can set up an encrypted tunnel to
encrypt all data, including passwords. This protects your passwords and enables you to use the
Kerberos database, but won't extend the single-sign-on advantages of Kerberos to non-Kerberized
clients.

9.4.4.3 Kerberized account maintenance

If you've read Chapters Chapter 7 or Chapter 8, you may have noticed an omission in the preceding
description of Kerberos and PAM: no mention has been made of the Name Service Switch. This Linux
component provides account information, such as UID-to-username mapping, to programs that need
it. Unfortunately, no Kerberos NSS modules are available, which means that you can't rely on
Kerberos to maintain the sort of information NSS normally handles. The practical upshot of this
limitation is that you must either maintain local accounts (in /etc/passwd) for your Kerberos-
authenticated users, or you must rely on another tool (such as LDAP) to handle this job.

This limitation can be a serious one for many potential uses of Kerberos; if you want to maintain full
user account information in a central database, so that you needn't modify desktop systems'
configurations when adding or deleting users on your network, Kerberos by itself isn't a complete
solution, at least not when you're using Linux desktop systems. Some possible solutions to this
problem include:

You can maintain a central Kerberos database and deal with conventional Linux /etc/passwd
files manually. This approach may be acceptable if users seldom or never use anything but their
own desktop systems; you need to update only a user's own desktop system and the
Kerberized servers when adding or deleting network users. For instance, when adding the user
bbode, you don't need to modify fluffy's desktop system.

http://lib.ommolketab.ir

You can abandon Kerberos entirely, at least as a login tool, and switch to another protocol, or
relegate Kerberos to secondary duty (say, for use by just a few users). You can still use
Kerberos as a tool for managing server accesses subsequent to desktop logins, but the servers
will still need local accounts to match the Kerberos principals.

You can use another protocol, such as LDAP, as a supplement to Kerberos. You'd use Kerberos
for authentication via PAM but configure NSS to use the other protocol. This approach can be an
effective one and can be a useful way to take advantage of Kerberos's single-sign-on
capabilities while minimizing account maintenance. Unfortunately, configuring both systems is
likely to be tedious in the short term, and this approach also seems to require that you maintain
two account databases, at least at first glanceone for Kerberos and one for the secondary
system. In practice, you can link LDAP and Kerberos more tightly (much as AD under Windows
does), but this topic is well beyond the scope of this chapter.

If your network hosts a Windows 200x AD controller, you can use it as the KDC
and configure Linux systems as Kerberos application servers. If you also
configure Winbind's NSS features and use the AD controller as a domain
controller, as described in Chapter 7, the Linux system will maintain Linux user
accounts automatically.

Ultimately, you'll have to decide for yourself just how to balance your priorities: Kerberos's unique
features, such as single-sign-on, versus simplified local account information. If the former isn't very
important but the latter is, LDAP or NT domains will probably be a better solution than Kerberos; if
the former is very important, Kerberos is the better tool in addition to or instead of another one.

http://lib.ommolketab.ir

9.5. Windows Kerberos Tools

Up to now, this chapter has presented Kerberos largely from a Linux perspective. Kerberos, though,
is a cross-platform tool, and you can use it to help integrate Linux and Windows systems. You can
use Windows in any of the main Kerberos roles (KDC, application server, or client).

9.5.1. Windows Kerberos Implementations

Broadly speaking, three approaches to Kerberos are possible under Windows:

Microsoft's Kerberos implementation

Microsoft provides a Kerberos implementation as part of Windows 200x/XP (but not Windows
XP Home). As described in Section 9.1.4, Microsoft's Kerberos implementation deviates from
others, which can make using it with a non-Microsoft KDC tricky. In the Section 9.5.3, some
pointers for using Microsoft's Kerberos clients with non-Microsoft KDCs are presented.

Conventional non-Microsoft Kerberos implementations

You can obtain non-Microsoft Kerberos implementations for Windows. For instance, a Windows
binary version of MIT Kerberos (http://web.mit.edu/kerberos/) is available for all versions of
Windows since Windows 98. (Windows 95 and earlier are not supported.) This tool can be
configured and used much like Linux versions of Kerberos. The main difference is that
configuration file locations differ. Most importantly, instead of editing /etc/krb5.conf, you edit
C:\WINDOWS\krb5.ini. (This file may reside in another directory if you installed Windows to a
directory other than C:\WINDOWS.) This package also includes a GUI tool called Leash, which
manages Kerberos tickets.

Limited non-Microsoft Kerberos implementations

Some tools provide limited Kerberos supporttypically, Kerberos-enabled versions of a handful of
protocols, with their own Kerberos libraries. One of the more popular of these is Kerberos
Telnet (http://www.stacken.kth.se/~thn/ktelnet/), which provides Kerberized Telnet, FTP, and
POP implementations for Windows. Tools like this don't work in conjunction with either
Microsoft's Kerberos or broader non-Microsoft Kerberos tools on the same system, although, of
course, they can interact with such systems as KDCs and application servers.

Each tool type has its advantages and disadvantages. Broadly speaking, you're most likely to find
Kerberized Windows clients and application servers that work with the Windows implementation of

http://web.mit.edu/kerberos/
http://www.stacken.kth.se/~thn/ktelnet/
http://lib.ommolketab.ir

Kerberos; however, this implementation is limited to just a few recent versions of Windows, and it
doesn't always interoperate well with non-Microsoft KDCs. Kerberized Windows clients and servers
can also be very difficult to locate, aside from those provided with Windows. Microsoft's Kerberos
implementation can function well as a KDC for non-Microsoft application servers and clients. Full non-
Microsoft Kerberos implementations work best with Unix tools ported to Windows (say, running in
conjunction with Cygwin) or with Kerberized Windows clients and application servers. These tools
interoperate well with Kerberized Linux programs, but the implementation is awkward when it comes
to providing single-login authentication for Windows desktop systems. Limited non-Microsoft Kerberos
implementations can be handy on desktop systems when you want to use Kerberos authentication for
security reasons or to provide single-login authentication but when you're not concerned about
Kerberizing the initial logon to Windows.

9.5.2. Windows Kerberized Servers

Windows 200x/XP systems that are members of an AD domain automatically use the AD controller's
Kerberos features to authenticate file and printer sharing access. Thus, configuring this aspect of
Kerberized server use is relatively straightforward.

By treating the AD controller as an NT domain controller, Linux systems
running Samba and older Windows NT servers can authenticate against the AD
controller even if these domain member servers don't use Kerberos. Thus,
many of the benefits of Kerberos extend even to some non-Kerberos systems.

As with Linux servers, Kerberos support in most third-party servers is a hit-or-miss proposition.
Windows doesn't ship with Kerberized Telnet, FTP, or other servers, and these servers are lacking
even in some third-party Kerberos packages.

9.5.3. Windows Kerberized Clients

In principle, Windows Kerberos clients can be as varied as Linux Kerberos clients. If you have specific
needs, you may need to consult the documentation for the Kerberized clients you've selected. It's
even possible that your choice of client programs will dictate your choice of overall Windows Kerberos
implementation (Microsoft's, a third party's, or Kerberos integrated into a server). As a couple of
examples, I present information on using Microsoft's Kerberos to authenticate against a non-Windows
KDC and using the Kerberos Telnet package.

9.5.3.1 Using Windows' Kerberos

Microsoft supports Kerberos as part of its Active Directory domain authentication. If you're using an
AD domain controller, Windows clients automatically use the AD controller's KDC features when
they're configured as members of the domain. This support also extends to use of Windows file and
printer shares offered by domain members.

You can use a non-Windows Kerberos KDC as a way to authenticate Windows 200x/XP users' initial
sign-ons, but the process is awkward. One way to do it is to establish a cross-realm trust relationship

http://lib.ommolketab.ir

between a Windows AD controller and the non-Windows KDC. This procedure is quite advanced,
though, and is beyond the scope of this book. A somewhat simpler, but more limited, approach is to
configure local user accounts on the Windows desktop system and tell it to use the KDC, thus
centralizing the password database. The following list shows you how:

Create a host key for the Windows client using kadmin on the KDC. This key must use DES
encryption. In MIT Kerberos, you can do this with the -e option to addprinc, as in addprinc -e
des:normal host/mimbulus.example.com@EXAMPLE.COM to add a principal for the Windows

system mimbulus.example.com. Don't randomize the password when you create this principal,
as you do when creating a principal for a Linux application server.

1.

Run the ksetup program on the Windows client, and tell it how to locate the KDC. In the last
step, you'll need to enter the password you used when you created the host key for the
Windows system:

C:\>ksetup /setdomain EXAMPLE.COM
C:\>ksetup /addkdc EXAMPLE.COM kdc.example.com
C:\>ksetup /addkpasswd EXAMPLE.COM kdc.example.com
C:\>ksetup /setmachpasswd
password

2.

Use the Windows ksetup tool to map a Kerberos principal name to a local username. For
instance, typing ksetup /mapuser fluffy@EXAMPLE.COM Cerberus maps the Kerberos

principal name fluffy@EXAMPLE.COM to the local account Cerberus. As a shortcut, you can type
ksetup /mapuser * *. This command maps local users to like-named Kerberos principals; for

instance, the local user fluffy maps to the fluffy@EXAMPLE.COM principal.

3.

Once this is done, you should be able to log on and have the Windows desktop system use the KDC
for authentication. You will, however, have to maintain local accounts corresponding to those on the
KDC, or at least mapped to it using ksetup /mapuser.

9.5.3.2 Using Kerberos Telnet

If you want to use Kerberos only for Telnet, FTP, or POP access, Kerberos Telnet
(http://www.stacken.kth.se/~thn/ktelnet/) may be just what you need. This program, shown in
Figure 9-1, is a Kerberized POP proxy, FTP, and Telnet implementation for Windows that doesn't rely
on any other local Kerberos tools.

Figure 9-1. Kerberos Telnet provides an all-in-one Kerberos client tool for
Windows

http://www.stacken.kth.se/~thn/ktelnet/
http://lib.ommolketab.ir

When you install Kerberos Telnet, you'll be asked for basic information, such as your realm name.
The tool then uses that information when you request a connection to a server. The first time you do
this, you'll be asked for principal information (in the "User data" dialog box shown in Figure 9-1.
Thereafter, you won't have to type your password again. Kerberos Telnet provides integrated ticket
management tools (also shown in Figure 9-1), so you can check on tickets' expiration dates, destroy
them, and so on.

http://lib.ommolketab.ir

9.6. Summary

Compared to other remote authentication tools, Kerberos is unusual; it's designed to manage entire
network logins, rather than desktop computer logins. As such, it's best suited for environments in
which users frequently use multiple servers, with protocols such as Telnet or FTP. Kerberos
configuration requires configuring three computer classes: the KDC, the application servers, and the
clients. All have certain commonalities, such as the krb5.conf file, but each has its unique features, as
well. Considered as a cross-platform tool, Kerberos can be an integrative tool, but Microsoft's non-
standard Kerberos implementation throws a monkey wrench into the equation. Cross-platform
Kerberos use works best with a Microsoft KDC (in the form of an AD controller) and non-Microsoft
application servers or clients; using Microsoft application servers or clients with a non-Microsoft KDC
is trickier, although it's still possible, and sometimes worthwhile, for some purposes.

http://lib.ommolketab.ir

Part IV: Remote Login Tools
One of Linux's features that differentiates it from Windows is that Linux has long supported
remote logins. By using a remote login protocol, you can log into a Linux computer and run
almost any program you could run if you were sitting at the Linux machine's console. The
computer you use to access Linux could itself be running Linux, or it could be running Windows,
Mac OS, or just about any other OS. This feature can be a tremendous boon in many
environments, because it enables you to devote a small number of Linux systems to running
important but seldom-used or resource non-intensive software that's not available for Windows.
Users can then log into Linux from their Windows systems. As a system administrator, you can
use this same feature to remotely administer a Linux system from a nearby office or from the
other side of the world. Although Linux leads Windows in the area of remote logins, remote
access servers are also available for Windows, so you can use these tools to access a Windows
system from another computer, too.

Chapter 10 and Chapter 11 describe two broad classes of remote login protocols: those that
work only in text mode and those that handle GUI accesses. The emphasis in these chapters is
on accessing Linux systems, but both also describe some Windows remote-access tools. The
third chapter of this part, Chapter 12, describes a way to stretch your hardware dollars or
extend the life of old computers, by turning them into dedicated remote login clients, or thin
clients as they've come to be known. Linux can function as a thin client OS or as a remote
server accessed by thin clients.

http://lib.ommolketab.ir

Chapter 10. Remote Text-Mode
Administration and Use
The simplest form of remote login access is text-mode access, in which only textual data and a few
simple control codes are exchanged between computers. Text-mode access is ideal for running text-
mode programs, and it has the added advantage of consuming little in the way of network
bandwidth, which makes it suitable to use across slow network links, such as dial-up Internet
connections. This type of access can be very handy for administering a Linux system; Linux can be
configured entirely using text-mode tools, so text-mode login methods can be a good way to do the
job remotely. Perhaps your servers are scattered about the building (say, print servers located near
the printers they manage) and you need to make changes without running around. Perhaps you need
to log in over a dial-up line or even from a PDA while on the road. In such cases, remote
administration is critical, and the ability to do the job without a lot of flashy (and bandwidth-
intensive) GUI overhead can help you get the job done quickly. Remote text-mode access can also be
useful for running many nonadministrative programs, although most ordinary users are more
comfortable with GUI tools.

This chapter begins with a look at the principles behind text-mode loginstools for implementing it and
why you might want to use it. This chapter then looks at two common protocols for implementing
remote text-mode access, Telnet and the SSH, with a focus on Linux configuration. This chapter
concludes with information on Windows tools for handling remote text-mode access, including both
clients and servers.

http://lib.ommolketab.ir

10.1. What Can Text-Mode Logins Do?

In today's world of POP email, the World Wide Web, file shares that are virtually indistinguishable
from hard drives (from a user's perspective), and so on, text-mode login protocols may seem quaint
at first. Nonetheless, these tools still have life left in them, at least in some environments. Text-mode
user access can still be a useful way to enable users to get work done, and such access is particularly
helpful for remote administration of Linux systems, which can typically be administered entirely using
text-mode tools. Assuming you've decided that text-mode logins are worth implementing, you should
know a bit about the most common protocols so that you can pick the one that's right for your needs.

10.1.1. Remote Text-Mode User Access

Most Linux users today run GUI programs using the X Window System (or X for short). This wasn't
always the case, though. In Linux's early years, most programs were text mode. Some of these
programs were quite powerful, having been inherited from earlier Unix systems. Many of these
programs have been maintained over the years and can still be useful tools for remote text-mode
users. Indeed, even users who run X often make heavy use of text-mode tools, running them in
xterm or similar command-line windows under X.

Many text-mode user programs are also useful, or even required, for
administrative functions.

What, then, are these programs? Examples of some of the more notable programs and classes of
programs include:

Text editors

Text-only text editors for Linux are plentiful and include such stripped-down tools as vi, jed,
and nano, as well as much more powerful programs such as Emacs.

Document processing

Word processing as we know it today is usually implemented in GUI programs, but you can
create, edit, and print documents using a text editor and a text-mode document processing
system such as LaTeX. Indeed, some people prefer using such tools to using the more popular
word processors. Even for word-processor fans, a few are available in text mode, although they
tend to be old. The commercial WordPerfect for Linux, although best-known as a GUI program,
had a text-mode variant, for instance.

http://lib.ommolketab.ir

Office tools

In addition to word processing, other traditional office tools are available in text-only versions.
For instance, the SC and SS spreadsheets run entirely in text mode. Even some graphics
programs run in text mode, but typically just to convert between file formats and the like.

Development tools

Most Linux compilers are, first and foremost, text-mode tools. Although GUI frontends are
available, the GNU Compiler Collection (GCC) and many other development tools run just fine
from text-mode logins.

Network tools

Most network protocols have text-mode clients available. A Linux system can function as a
limited door onto the Internet for a network that's otherwise restricted in access; users can log
into a Linux system and run mail clients such as Pine and Mutt, FTP clients such as ftp, and
even web browsers such as lynx.

Overall, most tasks that Linux can accomplish using GUI tools can also be accomplished in text mode.
The main exception is graphics-intensive tasks like bitmap graphics editing.

Why, though, would users want to restrict themselves to text mode? Sometimes the text-based tools
simply are the best available, at least for particular users. For instance, a user who's accustomed to
creating documents in LaTeX and who doesn't need or want the GUI add-ons might be quite happy to
do so from a remote system using a text-mode login protocol. In many cases, though, the question
boils down to one of available bandwidth, and hence speed. Text-mode access tools are quite zippy
on modern networks, and they're even tolerable on 56-Kbps dial-up connections. GUI access tools,
by contrast, are bandwidth hogs. They may work reasonably well on fast and unsaturated local
network connections, but over slow links or when the local network is under heavy load, GUI tools
can become intolerably slow. Thus, one common reason to use text-mode tools is to make remote
use of a Linux system tolerable over slow or heavily loaded network links. For instance, you might
give users who travel frequently remote login access to a Linux box, from which they can access your
network's files, read email, and so on. To be sure, using other protocols directly from the remote
systems might be an equally good or even superior solution in many cases, but using the remote
login protocol can help simplify matters and may help security, particularly if you use a protocol that
incorporates encryption.

Another reason to implement text-mode login tools is to provide a necessary "foot in the door" for
running GUI login tools. In particular, some methods of running X remotely or starting a VNC session
require that users have text-mode access to the Linux system. This issue is covered in more detail in
Chapter 11.

10.1.2. Remote Text-Mode Administration

http://lib.ommolketab.ir

A second broad class of reasons to use text-mode login tools is to enable remote administration of a
Linux computer. All major Linux distributions are built around configuration files that you can edit
with a text editor, so administering them via a text-mode login is almost always an option. Even
when distributions provide GUI administrative tools, they also often supply text-based equivalents.
For instance, SuSE's YaST2 GUI tool has a text-based counterpart in YaST, and most of Red Hat's
and Fedora's small administrative applications come in both GUI and text-based versions. Remote
administration has many more specific types of application:

Headless servers

You can run a server computer without a monitor, and sometimes even without a keyboard, as
a way to save space and money. Such systems must be administered remotely, although you
may have a choice of text-based, GUI, web-based, or perhaps other methods of remote
administration.

Side-by-side comparisons

Sometimes it's helpful to have access to two systems' configurations on one screen. You can
open a pair of xterm windows in a GUI window, use a text-mode access protocol to log into one
system from another, and compare the systems' configurations in the two windows. This can
be a handy approach even if the two computers are just a few feet apart.

Administering desktop systems or widely separated servers

If your site uses Linux desktop systems, remote administration of those systems can be a real
time-saver. Rather than run around your site to investigate problems, you can log into
computers remotely and run text-based diagnostic commands. The same approach is helpful if
you've got multiple server computers in different locations.

Inaccessible servers

Sometimes a computer must be located in a physically inaccessible location. A common
example is a colocated web server, which is housed at an Internet Service Provider's (ISP)
office to gain access to that ISP's high-speed Internet connection. Systems housed at branch
offices, used for automated remote data collection, and so on also qualify in this category.

Emergency situations

If you're at home or on vacation when a dire problem occurs on a Linux system at work, you
may be able to use a remote text-mode protocol to quickly fix the problem. Of course, chances
are you won't like getting the call during your off hours, but being able to fix the problem
remotely beats having to go in to work on your day off!

http://lib.ommolketab.ir

Telecommuting

Just as ordinary users can telecommute with the help of remote access tools, you may be able
to do the same with your system administration duties.

Text-mode access protocols are arguably more appealing for remote system administration than for
ordinary work. Because of Linux's text-based heritage, administrative tools are exceptionally well
represented in text-based versions. Also, many Linux system administrators are as or more
comfortable with text-based tools than with GUI tools. The same bandwidth and speed issues apply
to remote system administration as apply to remote end user access.

10.1.3. Tools for Remote Text-Mode Access

If you've decided you want to implement remote text-mode access, your next decision is how to do
it. Two protocols, Telnet and SSH, dominate remote access today. Other tools are available to do the
job, though, and in some cases they're appropriate. Overall, the most common tools are:

Telnet

This is one of the oldest protocols in common use, and also one of the simplest. It basically sets
up a two-way text link, in which the characters you type are passed over the network to the
remote system, and remote program responses are relayed to your screen. Basic Telnet
supports very little in the way of encryption or other complications to this simple model. This
simplicity is Telnet's major flaw; without encryption, data passed over a Telnet session can
easily be sniffed by computer miscreants on your network or on intervening networks if the
client and server aren't on a single network.

Kerberized Telnet

The Telnet clients and servers that ship with Kerberos implementations support data
encryption, although the encryption features aren't always implemented automatically. If your
network already uses Kerberos, switching to Kerberized Telnet makes sense and can provide
much-needed encryption to these sessions. Chapter 9 covers Kerberos and its version of
Telnet.

rlogin

The rlogin protocol, named after its client command, is an extremely simple remote access
tool. It provides no-password access from an account on one system to a like-named account
on another system. This security model is, by modern standards, appallingly lax, so rlogin is
almost never used today. (A Kerberized variant is much better in this respect, though.)

http://lib.ommolketab.ir

rsh

A variant of rlogin, this command enables you to run a single program from a remote computer
on your local computer. Like rlogin, its security is poor, so it should almost never be used.

SSH

SSH may be the most popular remote text-mode access tool in use, having displaced Telnet as
the tool of choice. SSH's most important advantage over Telnet is that it supports encryption,
making the protocol a much safer choice than Telnet. SSH also supports tunneling non-SSH
protocols (including X sessions), file copying (via the scp command), and the ability to replace
rsh's functionality.

RS-232 serial connections

This tool isn't a network protocol; instead, it's a method of physically connecting two
computers. In days of old, mainframe computers served a collection of potentially dozens of
dumb terminals, which were connected to the mainframe via RS-232 serial connections, or
something similar. Linux can work in the same way, which can give two users access to one
computer if you've got an old dumb terminal or if you run a terminal emulator on another
computer (even an extremely old one). RS-232 connections are usually fairly secure because
they're direct physical connections without intervening networks. They're inflexible, though;
you can't easily use them to connect to a server from other arbitrary systems.

This chapter emphasizes the Telnet and SSH servers because they're very popular. Kerberized Telnet
is described briefly in Chapter 9.

You should never use Telnet or any other unencrypted remote access tool to
transfer sensitive data. (Remember that data travels both ways; for instance,
your password is retrievable from a Telnet login session even though it's not
echoed back to your screen.) Although this chapter describes Telnet for the
sake of completeness, I don't recommend using it unless you absolutely can't
use SSH for some reason. This caution applies even more strongly to use of
Telnet for remote system administration, which necessarily involves
transferring the highly sensitive root password.

http://lib.ommolketab.ir

10.2. SSH Server Configuration

In most cases, SSH is the preferred remote text-mode access method; this protocol implements
security at its core, and it's become almost as widely available as Telnet. SSH is, though, a much
more complex protocol, and its server program implementations reflect this fact. Configuring and
running an SSH server is therefore a more complex task than configuring and running a Telnet
server, although the default SSH server configurations for most Linux distributions require little work
to get running.

10.2.1. SSH Server Options for Linux

If you want to use SSH, you must first decide which of several SSH server packages to use:

SSH Tectia

SSH was developed by a company called SSH Communications Security (http://www.ssh.com),
which sells its commercial SSH server under the name SSH Tectia. (Versions prior to 4.0 used
the name SSH alone.)

OpenSSH

This may be the most popular SSH server in Linux. It was originally developed in association
with OpenBSD, but most Linux distributions include it under the package name openssh or
something similar. Its official web site is http://www.openssh.org, and it's distributed under the
BSD license.

FreSSH

This server, headquartered at http://www.fressh.org, is an independent SSH implementation
that's distributed under the BSD license.

lsh

For GPL fans, lsh is an SSH implementation under that license. You can learn more at
http://www.lysator.liu.se/~nisse/lsh/.

Any of these servers should work well and interoperate with common SSH client programs, but their
configuration details differ. This chapter describes OpenSSH configuration, which is similar to SSH

http://www.ssh.com
http://www.openssh.org
http://www.fressh.org
http://www.lysator.liu.se/~nisse/lsh/
http://lib.ommolketab.ir

Tectia in its configuration file locations and formats. If you elect to use FreSSH or lsh, you need to
consult your server's documentation. If you need more information on SSH than is in this chapter,
consult the package's manpages or a book on the subject, such as SSH, The Secure Shell: The
Definitive Guide (O'Reilly).

SSH has seen protocol version changes over time. As I write, SSH Version 2 is
the latest major protocol release in widespread use. Older systems may require
use of SSH Version 1, but its use isn't recommended. Major SSH servers should
support both protocols, but configuration options are available to disable one or
the other version.

10.2.2. Configuring an SSH Server

Once you've installed your SSH server package, you should look for its configuration file:
/etc/ssh/sshd_config. Do not confuse this file with the configuration file for your SSH client program,
/etc/ssh/ssh_config. This one-character difference in filenames can lead to a great deal of confusion if
you don't notice it.

The OpenSSH configuration file format is fairly straightforward: non-comment lines begin with a
keyword and end with an argument. Comment lines are denoted by a leading hash mark (#). For the

most part, the default SSH configuration should work reasonably well for most installations; however,
you might want to look through the file to be sure everything's set reasonably. Pay particular
attention to these options:

AllowTcpForwarding

This option defaults to yes, which tells the server it may forward connections to ports specified

by the client. This is a useful feature if you want to use SSH to tunnel other protocols. Disabling
it might seem to be one way to improve security, but if users have shell access, they can install
their own port forwarders, so disabling this feature isn't likely to provide any significant security
benefit.

AllowUsers

You can provide a list of users who are given access by using this option. This may be a handy
security tool if only some users should have remote access. (A similar option for groups is
called AllowGroups.)

Banner

If you pass a filename to this option, OpenSSH displays its contents to the client before
authenticating the user.

http://lib.ommolketab.ir

Compression

This option takes a yes or no argument, which tells the server whether to accept a client
request to compress data transfers. The default value is yes, which is usually desirable;
however, if your server has a weak CPU, you might want to set this value to no.

DenyUsers

This option is the opposite of AllowUsers; you can blacklist specific users by listing them as
arguments. A similar option for groups is DenyGroups.

GatewayPorts

This option defaults to no, which causes remote port forwardings to bind only to the loopback

address (127.0.0.1). For some tunneling applications, though, these forwards should bind to all
local network addresses, which requires this option to be set to yes.

KerberosAuthentication

If set to yes, this option tells SSH to try to validate a user's password with the help of a
Kerberos server. The default value is no.

ListenAddress

This option takes a hostname or IP address, optionally followed by a colon and a port number
(as in 192.168.1.7 or 192.168.1.7:22) to specify the network hardware to which the server
should bind. If this option is not specified, SSH binds to all network interfaces. To bind to
multiple interfaces but not to all of them, you can provide multiple ListenAddress lines.

LogLevel

This option determines how much information the server logs. Possible values, in increasing log
level, are QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG, DEBUG1, DEBUG2, and DEBUG3, with the
default being INFO.

PasswordAuthentication

This option, which defaults to yes, determines whether the system should accept passwords for

authentication.

http://lib.ommolketab.ir

PermitRootLogin

This option tells SSH whether and under what circumstances to accept direct root logins. The
default value is yes, but you may want to set this option to no to reduce the risk of abuse.

(You can still log in as a normal user and run su, sudo, or other tools to administer a Linux
system.) Intermediate values are without-password, which disables password-based
authentication in favor of public key authentication, and forced-commands-only, which

disables root logins but permits public key authentication only for running specific commands.
That can be handy for enabling remote backups or other tasks that require running specific
programs as root.

Protocol

You can tell SSH which protocol levels to support by passing their numbers. If you want to
support both Versions 1 and 2, you must separate the numbers with a comma, as in 2,1.

Order is unimportant; protocol preference is set by the client.

PubkeyAuthentication

This option takes a yes or no value and defaults to yes. It determines whether the server

accepts public key authentication. This option affects SSH Version 2 only.

RSAAuthentication

This option is similar to PubkeyAuthentication, but if affects protocol Version 1 only. (SSH

protocol Versions 1 and 2 require different public key file formats.)

UseDNS

If set to yes (the default), this option causes the server to look up a client's hostname using its

IP address and then look up the IP address from that hostname and check that it matches the
IP address the client uses. This improves security because it makes it harder for an attacker to
pretend to be an authorized client, however, this option can also cause problems if your DNS
configuration is broken or slow.

UsePAM

This option defaults to no, but you may need to change it to yes if you want to use an NT

domain controller, LDAP server, or other advanced authentication tools, as described in
Appendix A. If you do this, the documentation recommends also setting
PasswordAuthentication to no.

http://lib.ommolketab.ir

X11Forwarding

This option, which defaults to no, tells SSH not to forward X traffic. This configuration helps

protect the client's X server from attack; however, to use SSH as part of a remote X access
method, as described in Chapter 11, you must change this option to yes.

SSH in general, and the OpenSSH server implementation in particular, is complex enough that this
list is incomplete. If you need to perform more advanced tasks, you may need to consult the relevant
documentation.

10.2.3. Launching an SSH Server

You can launch an SSH server using a super server, much as you launch a Telnet server; however,
SSH is slower to start up than is Telnet, so the more common approach is to start SSH using a SysV
or local startup script. Most Linux SSH packages include such a script, typically called ssh or sshd and
stored in /etc/init.d or /etc/rc.d/init.d. To start or stop the SSH server on a one-time basis, pass the
start or stop option to the SysV startup script, and most distributions respond with some sort of

status report:

/etc/init.d/sshd start
 * Starting sshd... [ok]

Most distributions provide a tool called chkconfig to manage which servers start in common runlevels;
to tell your system to start the SSH server, type a command such as chkconfig --add sshd. Consult

distribution-specific documentation if this command doesn't work or if you need to perform other
special tasks. Instead of chkconfig, Gentoo Linux uses rc-update; you'd type rc-update add sshd
default to add the SSH server to the default runlevel.

Once the server is running, you should be able to access it from another computer:

$ ssh linnaeus@mandragora.pangaea.edu
Password:
Last login: Mon Dec 27 11:24:40 2004 from pointer.example.com
Have a lot of fun...
linnaeus@mandragora:~>

This example uses the username@hostname form of address to specify both the username and the

server's hostname. In many cases, you can omit the username@ part, though; Linux's ssh clients use

your current username if you don't specify one. To execute a single command rather than log into
the remote system, specify the command after the other options, as in ssh
root@mandragora.pangaea.edu shutdown now -r to shut down and reboot the remote computer.

(Note that this particular example requires that direct root access be enabled.)

http://lib.ommolketab.ir

10.3. Telnet Server Configuration

As one of the oldest and most popular remote text-mode login tools available, Telnet is an excellent
choice for compatibilityjust about every OS with a TCP/IP stack comes with a Telnet client, so using a
Telnet server under Linux makes your system accessible from just about everywhere. Telnet's
unencrypted nature, though, is a major drawback. Thus, you should use Telnet only when you have
no other choice (say, because of limited client OS software options) or on highly protected local
networks.

Telnet servers are simple and easy to configure in Linux; the worst complication is knowing whether
you're using the inetd or xinetd super server. Although Telnet's security features are severely lacking,
you may be able to improve matters using a Kerberized Telnet or by implementing limited access
controls in your super server.

10.3.1. Launching a Telnet Server

All major Linux distributions ship with a Telnet server, although many don't install it by default. Likely
package names include telnetd, telnet-server, netkit-telnetd, telnet-bsd, and utelnetd, among others.
(Kerberized or other encrypting variants are also available.) The server program itself is usually
called telnetd or in.telnetd, and is usually stored in /sbin or /usr/sbin. Although Telnet servers come
from several different sources, basic configuration and use is fairly consistent.

Typically, Telnet servers are launched from super serversusually inetd or xinetd. If you're not sure
which super server your system runs, type ps ax | grep inetd and examine the output for a process

called inetd or xinetd. If neither is present, you may need to install, or at least launch, your
distribution's super server package.

The inetd super server is controlled through the /etc/inetd.conf file, which devotes one line to each
server it manages. A typical Telnet server configuration looks something like this:

telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

This example calls the server via the TCP Wrappers (tcpd) program, which provides added security
options. An equivalent configuration for a system that uses xinetd doesn't use TCP Wrappers because
xinetd incorporates features similar to those provided by TCP Wrappers. Linux distributions that use
xinetd typically place configurations for individual servers in files located in /etc/xinetd.d; the Telnet
server's file (typically called telnet or telnetd) looks like this:

service telnet
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no

http://lib.ommolketab.ir

 user = root
 group = root
 server = /usr/sbin/in.telnetd
 server_args =
}

Many systems disable Telnet by default in the super server configuration files.
In the case of inetd, the line defining the Telnet server is commented out by
placing a hash mark (#) at the start of the line. To use Telnet, you must
remove that character. In xinetd, the disable = yes option disables the server;
this line must be changed to read disable = no to activate the server.

Whether you launch the server via inetd or xinetd, you can add a few options that modify the server's
behavior. In the case of inetd, you place these options at the end of the Telnet server's configuration
line; for xinetd, you place them on the server_args line, which you may need to add to the

configuration file. Some of the more common and useful Telnet server options include:

-h

Telnet normally sends a banner to clients, announcing some basic information about the
system, which is likely to include your distribution and kernel version number. The -h option

disables the display of this banner.

-U

This option causes the server to block connections from computers whose IP addresses can't be
resolved to hostnames. This can slightly improve your security if you're certain that all
legitimate clients should have hostnames that can be obtained from their IP addresses.

-L program-file

Ordinarily, Telnet calls the standard Linux login program to authenticate users. This option
enables you to substitute another program, which might be handy if you have special
authentication needs or want to use Telnet for some specialized non-login purpose. For
example, you can have the server launch a specialized network diagnostic tool rather than give
users conventional login access.

This list of options isn't complete, and, in fact, the options may vary from one Telnet server to
another, so you may want to consult your local documentation for details on other options. Many
installations work well with no Telnet server options, but to improve security slightly, you might want
to use -h and, if it won't cause problems for legitimate users, -U.

Once you've finished configuring your super server, you must restart the super server or force it to

http://lib.ommolketab.ir

reload its configuration. In most cases, passing the restart or reload option to your super server's

SysV startup script will do the trick:

/etc/init.d/xinetd reload

Thereafter, the system should be accessible via Telnet. If you have problems logging in, consult the
server's log files; chances are the super server or the Telnet server will log error messages
concerning login failures or an inability to launch the Telnet server.

10.3.2. Telnet Server Security Concerns

As you may be tired of hearing by now, Telnet's main flaw is its lack of security featuresin particular,
its lack of encryption. This limitation has implications you should understand, but there are also ways
to add encryption. Another security concern with any remote-access protocol is controlling the
computers that can connect to the server. Because Telnet is typically run from a super server, you
can use its features, or those of tools that the super server calls, to control remote access.

10.3.2.1 Encryption

The basic Telnet provides no encryption features. This means that all data transferred between the
client and the server (in both directions) is unencrypted. This flaw is most important for
passwordsalthough you don't see your password echoed on the screen, it can be easily retrieved
should your Telnet session be intercepted. This risk is very serious for ordinary user accounts and
completely unacceptable for root logins.

Because of the risks of password interception, most Linux distributions
configure themselves to forbid direct root logins via Telnet.

Even if login password interception isn't an issue, Telnet's unencrypted nature can be a problem
during login sessions. If you read a sensitive email in a Telnet session, use su to acquire root
privileges, or use SSH from your Telnet session to another computer, you'll be sending sensitive data
in the clear.

Various methods of adding encryption to Telnet have been developed. Typically, the Telnet protocol is
extended with an encryption layer. The Kerberized version of Telnet, described in Chapter 9, is one
somewhat common example. Another approach is to encrypt Telnet traffic with the Secure Sockets
Layer (SSL) library. The result is packaged with some distributions as telnet-ssl or a similar variant. A
third approach is to tunnel Telnet through an encrypting protocol, such as SSH. The disadvantage to
all of these approaches is that it requires extra software on both the client and the server, and this
software is not as common as is Telnet. In fact, with the SSH tunneling approach, chances are you
wouldn't need to use Telnet at all, because SSH is a perfectly good text-mode login tool in its own
right.

http://lib.ommolketab.ir

10.3.2.2 Controlling access by IP address

Because of Telnet's poor security, if you use it you should employ your super server's or firewall's
access control tools to limit who may access the server. For instance, you might want to restrict
access to the server to computers on your own local subnet, or perhaps even to just those computers
that absolutely need to use Telnet.

In xinetd, which is fast becoming the most common Linux super server, you can limit remote access
by adding options to a server's control file in /etc/xinetd.d:

only_from

This option sets a list of hostnames, IP addresses, or address/netmask pairs that are permitted
to access the server. All other computers are denied access.

no_access

This option takes addresses much like only_from, but it specifies systems that should not be
given access. For Telnet, only_from is likely to be the more useful tool, but you might use
no_access to create exceptions to a range of addresses granted access with only_from.

bind

This option tells the server to bind to one interface only. This feature is most useful on routers
and other computers with multiple network interfaces; you can bind Telnet to a secure local
interface but not to the Interface that's accessible from the Internet. You might also use it to
bind exclusively to the localhost (127.0.0.1) interface or to an interface that's used by an
emulator, to enable the emulated OS to contact Linux. This parameter takes the IP address of
the interface to which you want to bind as an option.

access_times

This option controls access by time rather than by IP address; you specify a time range in the
form hh:mm-hh:mm, where each hh is an hour in 24-hour format (between 00 and 23) and mm is

the minute.

As an example, you might use the bind and only_from parameters to restrict access to computers

on the 192.168.7.0/24 network, if the computer in question has the address 192.168.7.27:

bind = 192.168.7.27
only_from = 192.168.7.0/24

http://lib.ommolketab.ir

Depending on the network settings, the bind and only_from settings may

seem redundant; however, they actually perform slightly different tasks. The
bind option binds to a physical network card, so if a computer's traffic is being
routed in an unusual way or if it's spoofing an address, bind won't be fooled. In
this context, only_from might be redundant, or it might not, if traffic from

other networks should be arriving on that port. In any event, layered security,
in which multiple checks of the same basic restriction are performed, can help
improve a system's overall security.

http://lib.ommolketab.ir

10.4. Windows Remote-Login Tools

If Windows systems are to interact with Linux systems via text-mode tools, you must locate matching
Windows clients to Linux servers or locate Windows servers for Linux clients. The first task is
considerably easier and likely to be more productive than the second; although text-mode Windows
login servers do exist, they aren't nearly as useful as Linux remote text-mode login servers because
Windows was never designed with this sort of operation in mind.

10.4.1. Locating Client Software

Windows client software for both Telnet and SSH protocols is fairly easy to find. In fact, all versions of
Windows that support TCP/IP networking ship with a Telnet client. Type TELNET in a DOS prompt

window or select the Telnet item from the Start menu to launch this client.

If you're not satisfied with the features of the standard Windows Telnet server or if you want to use
SSH to access your Linux system, you'll need to look elsewhere. One excellent resource is the Free
SSH web site's Windows page, http://freessh.org/windows.html, which lists Windows SSH clients and
servers, of both the free and the pay variety. Many of these SSH clients can also handle Telnet and
other protocols, so they're well worth investigating.

As an example of a Windows text-mode login client, consider PuTTY
(http://www.chiark.greenend.org.uk/~sgtatham/putty/). This program can handle rlogin, Telnet, and
SSH protocols. When you first launch it, you'll see a PuTTY Configuration dialog box, as shown in
Figure 10-1. To open a basic SSH session, type the hostname or IP address of the server in the Host
Name (or IP Address) field, check that the Protocol item is set to SSH, and then click Open. The first
time you connect, the system will notify you that the server's host key is not cached. This is normal
for an initial connection, so click Yes to accept the key. The system will then prompt you for a
username and password in the access window and, if you enter them correctly, you'll be in and able
to use the remote system.

Figure 10-1. PuTTY enables you to specify many options for your remote
login sessions

http://freessh.org/windows.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://lib.ommolketab.ir

For more advanced uses, you can adjust various options by clicking their categories in the list in the
Category field of the PuTTY Configuration dialog box. If you regularly use particular settings
(including connections to specific servers), you can make the adjustments you want, type a session
name in the Saved Sessions field, and click Save to save your settings. Thereafter, double-clicking on
the session name launches a session with those settings.

10.4.2. Windows Telnet and SSH Servers

Windows, unlike Linux, was not designed with remote text-mode use in mind. Although Windows has
DOSa text-mode OSin its history, Windows simply never embraced the notion of remote text-mode
access in the way Linux has. Furthermore, Windows is tied more tightly to its GUI for both common
user programs and system administration than is Linux, so using it from a text-mode login will tie
your hands in terms of the tasks you can accomplish.

These caveats aside, remote text-mode access tools for Windows are available. Because these tools
are of limited utility, I don't describe them in great detail, but they do deserve a few pointers. A few
of the available servers include:

Cygwin OpenSSH

The Cygwin package includes an OpenSSH server, whose setup and basic operation is
documented at http://tech.erdelynet.com/cygwin-sshd.html. This configuration provides access
to a Windows system using the Cygwin environment, which resembles a Unix environment but
enables you to run many text-mode DOS and Windows programs.

http://tech.erdelynet.com/cygwin-sshd.html
http://lib.ommolketab.ir

OpenSSH for Windows

This package borrows from Cygwin but doesn't install a full Cygwin environment. As a result,
when you log into the server, you'll see a DOS-style C:\> prompt. You can learn more at
http://sshwindows.sourceforge.net/.

Georgia Softworks Telnet and SSH

Georgia Softworks (http://www.georgiasoftworks.com) sells a commercial Telnet server for
Windows and a commercial SSH server for Windows. These packages provide unusually good
terminal emulation; that is, they do a better job than most at enabling you to run text-mode
programs that require extensive cursor control, such as text-mode editors.

As noted earlier, the Free SSH site's Windows page (http://freessh.org/windows.html) provides
pointers to Windows SSH servers as well as SSH clients, so you can consult it for links to more
servers. As a general rule, the free offerings are scarce, but several commercial products are
available.

One of the difficulties in using a text-mode Windows remote-access tool manifests itself when you try
to run programs that move the cursor around the screen in an arbitrary way, such as text editors.
Under Linux, a set of libraries between programs and the screen display handle the translation for
any number of display typesa text-mode console, an xterm window, a remote Telnet session, and so
on. (In fact, some Windows Telnet and SSH clients provide options that influence how they interact
with these libraries by changing their terminal emulation mode, which can improve their ability to
handle features such as colored text.) Windows lacks these libraries, so the remote-access server
must either implement these translations themselves or ignore the issue. The former is a difficult
task, so many servers ignore the issue. The result is an inability to run text-mode programs that do
more than display text in a simple linear fashion. For instance, typing EDIT in an OpenSSH for

Windows session effectively hangs the session.

Despite these limitations, text-mode login tools for Windows can be handy in some situations; you
can run simple tools and scripts that don't rely on GUI components or the more advanced text-mode
features. If you have a specific use in mind for the access, you might be able to track down or write a
program to do a job, thus saving considerable bandwidth (and, hence, time) that might otherwise be
required to use a GUI login tool. You can also use an SSH server as a way to establish encrypted
connections to other servers running on the Windows machine, by using SSH's port-forwarding
capabilities.

http://sshwindows.sourceforge.net/
http://www.georgiasoftworks.com
http://freessh.org/windows.html
http://lib.ommolketab.ir

10.5. Summary

Remote text-mode logins have been around for a long time, and they remain useful tools, particularly
for accessing Linux systems. Ordinary users can use text-mode logins to perform various tasks, but
they may be more important as remote administrative tools, enabling you to handle tasks at a
distance that would otherwise be tedious or require your physical presence. Telnet has long been a
popular remote login protocol, but SSH has eclipsed it, at least in security-conscious circles, because
of SSH's support for encryption. Although Telnet variants with encryption are available, they're
harder to find than SSH. For the most part, remote text-mode access tools are best used to access
Linux from clients that can run just about any OS, but text-mode login servers for Windows are also
available. These tools are much more limited in their utility, however, because of the more GUI-
centric nature of Windows user programs and system administration tools.

http://lib.ommolketab.ir

Chapter 11. Running GUI Programs
Remotely
Text-mode logins, as described in Chapter 10, can be handy tools for using or administering a Linux
system remotely; however, they're rather limited. Many programsparticularly user-friendly tools to
perform common tasks such as word processingrequire the use of a graphical user interface (GUI).
Such tools can't be used via a text-mode login alone, although as this chapter describes, using such a
tool can be part of an overall remote GUI access plan. If you want to run GUI word processors, web
browsers, graphics editors, and other programs remotely, you must use remote GUI access tools.
These tools are most important as user access tools because most users today expect GUI
environments. They can help provide relatively seamless access to multiple systems from a single
keyboard and screen, or they can be part of a thin client configuration, as described in Chapter 12.
Remote GUI access can also be used for system administration, either to run GUI administration
frontends or to run text-mode programs in xterm or similar windows. (In the latter case, though, a
simpler solution is usually to access the system via a text-mode login protocol.)

The features, requirements, and potential uses of GUI login tools are somewhat different from those
of text-mode login tools, so these factors require some explanation, and this chapter begins with this
topic. This chapter then moves on to the traditional Linux remote access tool, the X Window System
(or X for short), which Linux also uses to manage its local GUI display. Next up is information on a
popular alternative, Virtual Network Computing (VNC), which can be used to access either Linux or
Windows systems remotely.

http://lib.ommolketab.ir

11.1. What Can GUI Logins Do?

GUI logins can be used for the same broad classes of purposes as text-mode logins, as described in
Chapter 10to run user programs remotely or to administer the computer. Because GUI logins are,
well, GUI, you can run a wider range of programs using them than you can with a text-mode
program. This includes GUI word processors, graphics editors, web browsers, and more. Programs
that work best when they can display arbitrary fonts and graphics will work best with (or even
require) GUI login tools. Because Windows programs are more likely to require GUI access than are
Linux programs, GUI login tools are particularly important if you want to run Windows remotely.

GUI login tools' advantages come at a price, though: increased network bandwidth consumption,
which translates into lower speed. You can use a text-mode login tool quite comfortably over a dialup
link or an overloaded local network, but a GUI tool used in the same environment might be painfully
slow. Details do differ, though, depending on the tool and the programs you use.

Several GUI access protocols are available today. In the Linux world, X and the Remote Frame Buffer
protocol (most commonly implemented by VNC) are the most popular remote-access tools, and these
are the two tools that are described in this chapter. An interesting variant is the NoMachine
(http://www.nomachine.com) NX Server and NX Client. The NX Server is built around X, while the NX
client can connect to other systems using the NX, X, or RFB protocols, as well as protocols that are
more common in the Windows world.

Remote X access involves a lot of back-and-forth transfers, but X delivers some
types of data using few bytes. VNC, by contrast, requires more bandwidth but
fewer transactions. Thus, X is likely to perform best on low-latency connections,
whereas VNC performs best on high-bandwidth connections. Tunneling,
encryption, compression, and other options can influence both protocols'
performance, though. If speed is a problem, you may need to experiment with
both protocols.

Both X and VNC are a bit odd as network protocols go, but in different ways. X reverses the usual
client/server relationship, as described in the next section. VNC is frequently run as a user process
rather than as a conventional all-users server, as described in Section 11.4.2. Both oddities have
implications for how you use the protocols. At their simplest, they require users to log in using a text-
mode protocol before a direct GUI connection can be made. Ways to eliminate this requirement exist
for both protocols, but these require extra configuration, which can be intimidating to those
unfamiliar with the tasks at hand.

Unfortunately, neither X nor VNC encrypts data by default, so both protocols, by themselves, are
risky ways to access a computer. (VNC does encrypt initial password exchanges, though.) One
common solution to this problem is to use the SSH protocol to tunnel the GUI protocolthat is, to use
an SSH connection as a carrier for the GUI connection, thus encrypting the GUI traffic. Alternatively,
you can use a full-fledged virtual private network (VPN) to encrypt traffic. Precisely how to handle
such encryption schemes is different for X and VNC, though.

http://www.nomachine.com
http://lib.ommolketab.ir

http://lib.ommolketab.ir

11.2. Using Remote X Access

X is Linux's native GUI system, but unlike the Windows or Mac OS GUIs, X was designed with
network access in mind; user programs communicate with the X server using network protocols,
even when the computer isn't connected to a network. This feature makes remote X access easyat
least, in theory. In practice, you must still select an X server (if you're using a non-Linux/Unix system
to access your Linux computer) and know enough about X to initiate the connection. In fact, several
methods of initiating that connection exist, and some require special configuration. Most notably, you
may want to configure a remote X login server, which is separate from the X server itself, to accept
logins. Finally, using X in a Windows/Linux environment presents its own unique challenges.

11.2.1. The X Client/Server Model

One unusual detail about using X is the way the client and server roles are assigned. Many people
think of servers as powerful computers (or the programs they run) that sit in machine rooms away
from users, and clients as being computers (or the programs they run) at which individual users sit.
Although this description is often true, it's not actually a definition of what makes a client a client or a
server a server; rather, clients initiate network transfers and servers respond to those requests. In
the case of X, the client is the computer or program that does data processing (a word processor, for
instance), and the server is the computer or program that provides human input/output for the
client. In other words, X reverses the usual configuration; users sit at X server computers and use
them to run programs on X client computers. To make sense of this arrangement, think of it from the
application program's point of view. To an X-based word processor, the keyboard and screen are just
I/O devices, like a network file share or a network printer. The application program initiates contact
with the keyboard and screen (via the X server) in order to do its work. The fact that a human sits at
the X server computer is unimportant.

Because application programs are the X clients, X can't, by itself, be used as a
tool for accessing Windows systems remotely. Most Windows programs aren't
written as X clients but instead use calls to the Windows GUI environment.
Some exceptions to this rule do exist, but they're mostly ports of Unix
programs to Windows. Overall, X is a useful tool for running Unix or Linux
programs from another computer, which can run Unix, Linux, Mac OS,
Windows, or various other operating systems.

When using a single Linux computer, this unusual relationship seldom causes a problem; after all, the
client and server computers in this case are one and the same. In network arrangements, though,
the odd relationship can become confusing. For instance, to use a Linux computer from a Windows
computer, you must obtain an X server for Windows. More importantly, the fact that the client (on
the remote computer) initiates the connection with the server (on the user's local computer)
complicates matters. Specifically, the user on the server computer needs a way to signal the client
program to begin running and to contact the X server. You can accomplish this task several ways; for
example, you can use a remote text-mode login tool or a protocol designed specifically for this

http://lib.ommolketab.ir

purpose. These options are described later in this chapter.

The reversal of client/server roles can have implications on your overall network design. Specifically,
many networks use firewalls or Network Address Translation (NAT) tools to isolate desktop systems
from the outside world. Users of such systems can often use Telnet, SSH, or other text-mode
protocols to reach outside servers, but these tools may need to be reconfigured to permit incoming
connections to the X servers running on users' desktop computers. Precisely how to accomplish this
task varies greatly from one firewall or router to another, so you'll have to consult its documentation
(or your network administrator) for advice. X servers typically run on TCP/IP port 6000, though, so
that's the one you'll have to unblock or forward appropriately.

11.2.2. X Server Options

If you want to use Linux as an X server for another Linux or Unix system, you'll probably use the
standard X server that ships with your Linux distribution. Until 2004, this server was almost always
XFree86 (http://www.xfree86.org), which as I write is at Version 4.4.0. The release of this version of
the server also saw some subtle changes in the server's license, and many open source advocates
became alarmed because they believed the changes would make distribution of XFree86 in typical
Linux distributions difficult. For this reason, 2004 saw a mad rush of Linux distributions to locate
another X server, and the easy winner in this contest has been X.org's X11 (http://www.x.org/). Its
first real release, numbered 6.7.0, is a fork of the XFree86 3.3.99 code (the last version released
under a license that Linux distribution maintainers found acceptable).

XFree86 and X.org-X11 aren't the only X servers for Linux. Xi Graphics' commercial Accelerated-X
(http://www.xig.com) is also available. For the most part, there's little reason to use this server;
however, you might find that it supports an exotic feature not supported by XFree86 or X.org-X11, or
you might have a video card for which Accelerated-X provides superior support. Thus, if you have
unusual needs or if your distribution's X server just doesn't seem to work very well, you might want
to investigate Accelerated-X.

A trickier decision involves locating an X server for Windows. Quite a few exist, ranging from open
source products to extremely expensive commercial offerings. A company that produces one of the
lower-cost X servers maintains a list of options at http://www.microimages.com/mix/prices.htm but
without direct links to its competitors. Here are some highlights:

XFree86

This package, although primarily intended for Unix-like systems, has been ported to Windows.
Check http://x.cygwin.com for details. This package, like many ports of Unix-like tools to
Windows, is associated with the Cygwin project. One of XFree86's big advantages is that it's
free.

MI/X

MicroImage's MI/X (http://www.microimages.com/mix/) are the lowest-cost of the commercial
X servers, at $25 per user, or less for site licenses. This server used to be quite spartan, but

http://www.xfree86.org
http://www.x.org/
http://www.xig.com
http://www.microimages.com/mix/prices.htm
http://x.cygwin.com
http://www.microimages.com/mix/
http://lib.ommolketab.ir

it's improved substantially over the past few versions.

Xmanager

Netsarang's Xmanager (http://www.netsarang.com/products/xmanager.html) is a bit pricier
than MI/X, but at $69 for a single-user license, it's still fairly inexpensive. In my experience, it
works well with most Linux software.

X-Win32 and X-Win64

Starnet produces a server called X-Win32 (http://www.starnet.com/products/), which sells for
$225 in single-user quantities. A 64-bit version for 64-bit versions of Windows is also available,
but at a higher price ($325). This server works well, in my experience.

Exceed

Hummingbird's Exceed (http://www.hcl.com/products/nc/exceed/) is marketed for large
enterprises; I've seen it used in universities and other large installations. No single-user price is
available on the company's web site.

Generally speaking, as you move up the price scale, the number of features provided by the X server
software also goes up. For instance, X-Win32 provides OpenGL support, which is missing from many
lower-cost packages. XFree86 is an exception to this rule; it provides features comparable to or
better than those of many of the lower-priced commercial X servers. In any event, if you plan to
deploy Windows X servers widely or in any critical roles, you should probably evaluate at least two or
three of them. Many publishers make evaluation versions of their X servers available at no cost,
typically with a time-limited license, so you should be able to test several without making a huge
monetary investment.

11.2.3. Initiating a Connection from a Text-Mode Login

As noted earlier, one of the challenges in using X is initiating the initial connection between the X
client and the X server. One approach for doing this is to use a text-mode login protocol, such as
Telnet or SSH, to initiate a connection from the user's desktop computer to a remote system, then
use that text-mode connection to launch X programs. For instance, suppose you're sitting at the
computer called earth and you want to run programs on pluto. If both systems run Linux or Unix, you
can do so as follows:

Start an X server on earth. One may already be running, but if not, and if the X server is
properly configured, typing startx from a text-mode login should accomplish this task.

1.

Open an xterm or other command-prompt window on earth.2.

Configure the earth's X server to accept connections from pluto. You can do this by typing xhost3.

4.

http://www.netsarang.com/products/xmanager.html
http://www.starnet.com/products/
http://www.hcl.com/products/nc/exceed/
http://lib.ommolketab.ir

2.

+pluto. This command tells the local X server to accept all connections from pluto.
3.

Using Telnet, SSH, or some other remote-access protocol, log into pluto. For instance, you
might type ssh pluto. Answer any login prompts you receive.

4.

Using your remote login session, set the DISPLAY environment variable to point to your X

server. This variable includes both the hostname and the X session number, which is the same
as the X server's TCP/IP port number minus 6000that is, it's usually 0. If you use bash, type
export DISPLAY=earth:0.

5.

Run X programs by typing their names; for instance, type kmail to launch the KMail program.6.

When you're done using remote programs, shut them all down and, in an xterm window that's
not linked to pluto, type xhost -pluto. This command removes pluto's right to access your local

X server, reducing the odds that another user of pluto can wreak havoc with your display.

7.

This procedure works well but is a bit tedious. You can take some steps to simplify matters, such as
creating a script with a simple name or a command shell alias to simplify typing the awkward xhost
commands and setting the DISPLAY variable. If you use SSH for the text-mode connection, you may

also be able to simplify things by omitting Steps 3 and 5, and the xhost command in step 7. This
process is described in more detail later, in Section 11.3.

Do not set the DISPLAY variable in a startup script unless you always use the
computer from the same X server. The DISPLAY variable is used even if you're

accessing Linux locally, so setting it in a script that always executes may make
it impossible for you to use X locally.

11.2.4. Windows X Server Concerns

The preceding procedure will work with Windows X servers; however, most of these servers have few
or no access restrictions by default. Therefore, there's no need to type the xhost commands in Steps
3 and 7. Many Windows X servers also provide ways to combine several steps automatically, which
enables you to click a link to log into a remote server and launch a program you specify (such as an
xterm) automatically. For instance, Figure 11-1 shows the dialog box Xmanager displays when you
launch it via its Xstart program. Enter the relevant login information, including the command you
want to run, and click Run. Xmanager then executes a series of steps that have an effect similar to
those described earlier. The default command for Xmanager is to launch an xterm window, using the
-display option to have the xterm window, and all the programs you launch from it, run on your

Windows X server.

Figure 11-1. Windows X servers provide a way to log in to a remote
system and start an X session

http://lib.ommolketab.ir

X servers can run in one of two basic modes: rooted or rootless. A rooted X server displays
everything in its own window, as illustrated by Figure 11-2, which shows a rooted display on a Linux
system running the XFce desktop environment with an xterm window and the KDE Control Panel
running. This approach is useful if you want to run an entire Linux desktop environment remotely but
don't want that environment to take over your local computer's desktop.

Figure 11-2. A rooted X server display contains an entire Linux desktop
environment

http://lib.ommolketab.ir

A rootless X server displays individual windows from remote applications side-by-side with local
windows, as illustrated by Figure 11-3, which shows the same Linux and Windows programs as in
Figure 11-2, with the exception of the XFce desktop environment programs. This approach may be
easier to manage because you can place local and remote windows more flexibly. Note, for instance,
that the KDE Control Panel is sized more comfortably in the rooted display, and local and remote
programs can be layered any way you like. On the other hand, a rootless display requires you to
launch programs via an xterm window or some other tool that doesn't take over the whole screen,
because your Linux desktop environment can't run without interfering with your Windows desktop.
Many Windows X servers let you choose to run in rooted or rootless mode, so check your
documentation to learn how to select the one you want. Sometimes the programs use other terms,
such as single window for rooted and multiple window for rootless displays.

Figure 11-3. A rootless display lets you freely intermix Linux and
Windows programs but makes it awkward to run a Linux desktop

environment

http://lib.ommolketab.ir

If you use a rooted X server, you'll have to start a window manager or desktop environment as soon
as you log in. You can start GNOME or KDE by typing startgnome or startkde in your initial xterm

window. Slimmer window managers, such as IceWM or Blackbox, can also be started by typing their
names. In fact, you might be able to launch your preferred window manager or desktop environment
by providing its name to your X server's startup tool. Remember, however, to also set the DISPLAY

environment variable or pass options to the desktop environment or window manager to have it
access the correct display! (Consult your preferred environment's documentation to learn how to do
this.)

11.2.5. Simplifying Remote X Logins with XDMCP

One way to simplify the remote X login process is to use a program that implements the X Display
Manager Control Protocol (XDMCP). This protocol is essentially a way for an X server to initiate a
login connection with a remote computer, enabling an X server user to launch programs on a remote
system. Three XDMCP programs are common in Linux: the original X Display Manager (XDM), the
KDE Display Manager (KDM), and the GNOME Display Manager (GDM). Of these, XDM provides the
fewest features, but all should work for remote logins.

11.2.5.1 XDMCP basics

One peculiarity of XDMCP is that it's used by default for local X logins as well as remote logins. All
major Linux distributions run an XDMCP program whenever they're configured to boot directly into X.
The default configuration, though, is to block external access requests. Thus, your task in configuring
an XDMCP server is to figure out which one your system uses and reconfigure it to accept remote

http://lib.ommolketab.ir

access, rather than install, configure, and start an entirely new server. (Of course, you can change
which server you use by default, if you don't like your standard one.)

Tracking down the XDMCP server your distribution uses can be tricky. One way to start is to type ps
ax | grep [xkg]dm after you've configured your system to boot into a GUI login mode. This command

should return information on running xdm, kdm, or gdm processes, which will help you locate the
correct configuration files.

Most Linux distributions start the XDMCP server when configured to run in a particular
runleveltypically runlevel 5. Thus, you can tell the system whether to run this server by changing
your runlevel, as in telinit 5. A few distributions, such as Debian and Gentoo, don't use the

runlevel to set the XDMCP server's running status; they use a SysV startup script that's active (or not
active) in all runlevels, at least by default. You can locate this script and use normal SysV script
handling tools to enable or disable your XDMCP server.

You also need to tell your system which XDMCP server to run. Unfortunately, there's no
standardization on this point, although most distributions use a variable that's set in a configuration
file. For instance, Red Hat, Fedora, and Mandrake use the /etc/sysconfig/desktop file; Gentoo uses
/etc/rc.conf; and SuSE uses the /etc/sysconfig/displaymanager file. In all these cases, you can
change the default XDMCP server by setting the DISPLAYMANAGER variable. Depending on the
distribution, you may need to set this variable to the name of the XDMCP server, as in KDM, or to the
associated desktop environment name, as in KDE. Most distributions work with either notation; be

sure to read any applicable comments in the configuration files.

Some distributions use another approach to setting the XDMCP server: they call the server directly in
a startup script. Debian uses the /etc/X11/default-display-manager file, and Slackware uses
/etc/rc.d/rc.4. In Debian, this file contains the complete path to your preferred XDMCP server
program. The default Slackware script checks for the presence of several XDMCP servers in sequence
and launches the first one it finds. To change the server your system launches, you must change the
order of these checks or uninstall the servers you don't want to use.

11.2.5.2 Configuring XDM

XDM is the oldest and least feature-laden of the common XDMCP servers. It provides a simple login
prompt for a username and password, with no other user-accessible options. Because most desktop
users expect to be able to easily shut down their computers, most distributions have moved away
from XDM to KDM or GDM, both of which provide options to display buttons to shut down or restart a
computer as part of the XDMCP login display. Nonetheless, XDM configuration is important because
KDM borrows some XDM configuration file features.

The primary XDM configuration file is /etc/X11/xdm/xdm-config. Most lines in this file set options you
shouldn't need to adjust. To configure an XDM server to accept remote accesses, though, look for a
line like the following, which is usually near the end of the file:

DisplayManager.requestPort: 0

This line tells XDM not to listen on a regular port. The result is that your local X server can use the
XDM server for login authentication, but remote systems can't. To enable remote servers to connect
to the XDM server, either change the port number from 0 to 177, which is the default XDMCP port, or

comment the line out entirely, which has the same effect.

http://lib.ommolketab.ir

This isn't the only change you need to make, though. You must also tell XDM what types of services
it's to offer. To do this, you need to edit another file: /etc/X11/xdm/Xaccess. This file controls what
clients can use the server and in what ways. A typical configuration should have lines like this:

*
* CHOOSER BROADCAST

The default configurations often have these lines, but they're likely to be commented out by hash
marks (#) at the start of the line, and they may be separated by intervening comment lines

explaining their purpose. In brief, the first line tells the system to accept logins from any computer,
and the second line tells the system to provide a list of available local computers to any computer
that asks for one. To improve security, you can specify computers or groups of computers rather
than use asterisks (*) on these lines. For instance, the following configuration restricts access to

computers in the pangaea.edu domain:

*.pangaea.edu
*.pangaea.edu CHOOSER BROADCAST

Finally, recall that the XDMCP server provides local login access by default. In fact, launching this
server typically forces X to start, and this is how most distributions start X: they start the XDMCP
server. What if you want to provide remote X login service but not run X locally, though? You can do
this by editing the /etc/X11/xdm/Xservers file, which typically contains a line like this:

:0 local /usr/X11R6/bin/X -nolisten tcp -br vt7

Details vary from one system to another, but the line is almost certain to begin with :0 local.

Whatever the precise form of this line, you can comment it out by placing a hash mark at the start of
the line. This action forces XDM to accept remote accesses without starting X whenever it starts.

The -nolisten tcp option causes X to not accept connections from other

systems. This configuration improves security for a desktop system that
shouldn't be accessed remotely, but it's detrimental for systems that should be
remotely accessible. If you want to leave X running by default but enable
remote logins, you should ensure that this option is not present in your
/etc/X11/xdm/Xservers file.

Once you've made your changes, you have to restart the XDM server to implement your changes.
Precisely how you do this varies from one distribution to another, but typically, you can change to a
text-only runlevel and then back to your GUI login runlevel. For instance, typing telinit 3; telinit
5 accomplishes the job on many distributions. Some distributions, such as Debian and Gentoo, use

the SysV startup scripts to shut down the XDM server and then restart it.

11.2.5.3 Configuring KDM

KDM's configuration is modeled after that of XDM, so if you want to configure KDM, you should begin

http://lib.ommolketab.ir

by reading the previous section on XDM configuration. Most KDM installations, however, change the
names and locations of some configuration files. In particular, many use kde-config rather than xdm-
config. KDE configuration files may also reside in odd places, such as /opt/kde3/bin or /usr/bin. The
Xaccess and Xservers files may also reside in an out-of-the-way place, such as
/opt/kde3/share/config/kdm or /etc/kde/kdm.

You can use your distribution's package management tools to help locate the
KDM configuration files. For instance, on an RPM system, you can type whereis
kdm to locate the kdm binary, then use rpm's -qlf option set rpm -qlf
/opt/kde3/bin/kdm | grep Xaccess to query the location of that file and find

the Xaccess file, making the necessary change to the path to kdm on your
system, of course.

To support KDM's additional features compared to XDM, extra configuration files are required. The
most important of these is kdmrc, which is likely to be stored in the same location as the Xaccess file.
Use your package management system or the find or locate command if you can't find it. This file is
broken into sections with labels in square brackets, such as [Xdmcp]. It's this section you may need
to edit; look for the Enable and Port lines. These tell the system whether to enable externally

accessible XDMCP functions and on what port to offer them. In effect, these lines duplicate the
purpose of the line in xdm-config for XDM. (For safety, make changes to both files.) You should edit
these lines so that they look like this:

Enable=true
Port=177

Once you've reconfigured KDM in this way, you must restart it, much as you'd restart XDM if you
were using it.

11.2.5.4 Configuring GDM

GDM uses its own unique configuration file, gdm.conf, which usually appears in /etc/X11/gdm. This
file is similar in format to KDM's kdmrc, but GDM doesn't use the XDM-style configuration files, so you
can ignore the XDM configuration information presented earlier; gdm.conf handles everything. To
enable GDM to accept remote logins, activate its server features in its [xmdcp] section, much as you

do in KDM's kdmrc:

Enable=true
Port=177

These lines may be separated by other lines containing comments and even other configuration
options. If you want to use GDM for remote logins only and not have it start a local X server, locate
the [servers] section, which should have a line such as:

0=Standard

This line tells GDM to manage the first X display. If you comment out this option by placing a hash

http://lib.ommolketab.ir

mark at the start of the line, GDM won't start an X server when it's run.

Unfortunately, GDM doesn't provide an easy way to restrict access to the server akin to XDM's
Xaccess file; it's open either to everybody or to nobody. For this reason, GDM is best used only on
well-secured local networks. If you want to use GDM on a system that's exposed to the Internet at
large, you may want to use a firewall to block access to the server's UDP port 177 from unauthorized
systems.

GDM provides a GUI configuration tool that enables you to set many of its options, including enabling
XDMCP. To use this tool, type gdmsetup in an xterm or similar command prompt window or select the

GDM configuration tool (often called Login Screen) from your desktop environment's menu system.
The result should resemble Figure 11-4. The XDMCP tab contains the options for XDMCP. Be sure the
Enable XDMCP box is checked.

Figure 11-4. GDM provides a GUI setup utility that helps you configure a
GDM server

11.2.5.5 Configuring an XDMCP client

XDMCP server configuration is, naturally, only half the story. Once your XDMCP server is running, you
must configure a client. These clients are actually X servers. The X server contacts the XDMCP client
to start an X session. When it's successful, the remote system then sets its DISPLAY environment

variable and runs its X login scripts. The result is typically an X session running on your local
computer.

Precisely how you configure an XDMCP client depends on the X server. Windows X servers typically
provide a configuration utility that lets you point the X server to an XDMCP server. For instance,
Figure 11-5 shows the Xconfig program for Xmanager.

http://lib.ommolketab.ir

Figure 11-5. Windows X servers typically provide ways to perform
XDMCP queries on startup

The XDM Connection tab in Xconfig provides the means to handle XDMCP queries. In addition to the
option not to use XDMCP, three modes of operation are typically available:

Query

This option connects directly to a single XDMCP server, which you must specify. If you use an X
server to connect to a single system, this can be a good option.

Broadcast

An XDM broadcast should locate all the appropriately configured XDMCP servers on your local
network. You can also usually add off-network systems (by clicking "Register Hosts to
Search..." in Figure 11-5), in which case your X server queries them, as well. The result, when
you launch your X server, is an XDMCP chooser display similar to the one shown in Figure 11-
6. You pick one of the systems, and click Connect to log in to it.

Indirect

An indirect use of XDMCP works much like a broadcast, but the task of performing the
broadcast is handed off to a remote XDMCP server. This feature can be handy if you want to
access a remote network; rather than enter each potential hostname or IP address in a

http://lib.ommolketab.ir

broadcast list, you enter a single remote XDMCP server name in the indirect field and let it do
the work.

Figure 11-6. An XDMCP chooser enables you to pick which system to use

You can use a Linux system and its X server as a GUI terminal for another computer. To do so,
however, you must pass options to the X program when you start it. These options are -query

host.name, -broadcast, and -indirect host.name, to perform queries, broadcasts, or indirect

broadcasts, respectively. For instance, with X not running, the following command performs an
indirect connection, presenting a list of available systems:

$ /usr/X11R6/bin/X -indirect mars.pangaea.edu

One notable difference between Linux and Windows X servers is that Linux X servers (XFree86 and
X.org-X11) don't present a chooser if you perform a broadcast query; instead, Linux X servers
connect directly to the first XDMCP server that responds. This feature makes indirect connections
more desirable under Linux, at least most of the time.

Chapter 12 describes how to use old computers running Linux as dedicated X
servers for more powerful Linux systems. This approach can be a useful way to
squeeze extra life out of elderly computers.

Because an XDMCP-mediated login runs the user's normal startup scripts, it usually starts a full
desktop environment. This desktop environment is likely to overlay a Windows desktop if a Windows
X server is configured to use a rootless configuration. Alternatively, you can alter the X login scripts
to provide an option to not start a full desktop environment.

http://lib.ommolketab.ir

11.3. Encrypting X by SSH Tunneling

One of the big drawbacks to X is that it provides no way to encrypt your data. Thus, raw X sessions
are risky choices for performing tasks with sensitive data, including system administration tasks. One
way around this problem is to tunnel the X connection through SSH. Fortunately, this task is fairly
easy to do, and it provides an excellent level of encryption. It does require specific configuration
options on both the client and the server, however.

11.3.1. Advantages and Disadvantages of X SSH Tunneling

By and large, SSH tunneling is a great boon for using X. Its main advantage is its encryption, but it
has other pluses, as well:

Compression

SSH supports data compression as well as encryption. Using these features can improve the
speed of X sessions, depending on the speed of the two computers' CPUs and their CPU loads.
(See the upcoming list of drawbacks for more on this issue.) This feature is most likely to be
important on slow network links.

Simplified sign-ons

The procedure for initiating the connection using the remote text-mode login protocol,
described earlier, is awkward. Using SSH tunneling actually simplifies this procedure, although
the underlying connection model is actually more complex.

Simplified firewall requirements

Because a tunneled X connection is carried over an SSH link, you don't need to be concerned
with working around firewall limitations for X alone. If you can establish an SSH connection
between a user's desktop computer and a remote server, the X connection can be tunneled
through any intervening firewalls. (Firewalls on the X client and server might still remain
obstacles if they're extremely tight.)

Tunneling X through SSH isn't without its drawbacks:

CPU time and speed

http://lib.ommolketab.ir

The encryption and decryption processes take a certain amount of CPU time on both systems.
This fact can slow down connections, particularly if one or both systems has a weak CPU. This
factor can sometimes be mitigated by use of SSH's compression features, which can improve
data throughput, but the compression itself will consume CPU time. Ultimately, the speed
consequences of using SSH tunneling are uncertain; you'll have to test it on your own network
to know.

Support

Using SSH for tunneling means that you'll need to run an SSH server on your X client computer
and an SSH client on your X server system. This may complicate your software installation,
particularly if you wouldn't ordinarily be installing SSH clients on your X server (that is,
desktop) systems. Furthermore, not all SSH clients support tunneling X connections, although
most do.

Extra configuration and debugging

Even when you'd ordinarily install the necessary SSH software for purposes other than
tunneling X, you must configure both the client and server to handle the job. This task
shouldn't be a difficult one, but doing it on dozens or hundreds of systems could be tedious. If
something doesn't work, tracking down the source of the problem will become more tedious
than it would be without SSH in the picture.

Lack of XDMCP support

Tunneling X connections over a standard text-mode login session is fairly easy, but adding
XDMCP to the mix is not. If you want to provide remote system selection akin to that provided
by an XDMCP chooser (Figure 11-6), your best bet is to write a simple program or to use an X
server that can do the job via an integrated SSH client.

Overall, tunneling X over SSH is worth doing; these disadvantages are minor compared to the
advantages, particularly in encryption. In fact, if you want to use X between computers on the
Internet at large, I wouldn't recommend doing it in any way that doesn't provide encryption, and SSH
is one of the simpler ways of providing encryption to X connections.

11.3.2. SSH Server Options

Chapter 10 provides information on configuring SSH to accept remote text-mode logins. If you've not
already read that chapter and don't know how to configure SSH, you should read up on the topic. The
assumption hereafter is that you have a working SSH server and can log into it from the system you
intend to use as an X server.

On the SSH server computer, you should examine the /etc/ssh/sshd_config file. (Be sure to examine
the correct file and not the similarly named ssh_config file, which configures the SSH client.) This file
contains an option that's critical for tunneling X:

http://lib.ommolketab.ir

X11Forwarding yes

The default setting for this option is no, so unless you explicitly set it to yes, your SSH server will

refuse to forward X connections. If this option needs to be altered, you should do so and then restart
or reload your SSH server.

11.3.3. SSH Client Options and Use

In the Linux OpenSSH client, the /etc/ssh/ssh_config file controls the client options. This file contains
an option that's analogous to the SSH server's X forwarding option:

ForwardX11 yes

This option defaults to no, which blocks X tunneling. To enable this feature by default, you must

change the setting in the main SSH client configuration file. Unlike the server option, individual users
can override this default with command-line options to the ssh command: the -x option disables X
forwarding, and -X enables it. (Note that these options differ only in case.)

Using X forwarding is fairly straightforward: from an X session, a user can employ SSH to log in to a
remote system and then immediately launch X programs, without typing extra commands:

$ ssh -X linnaeus@pluto
Password:
Last login: Mon Dec 27 11:24:49 2004 from venus.pangaea.edu
Have a lot of fun...
linnaeus@pluto:~> xeyes

The elaborate procedure of setting the DISPLAY environment variable and setting permissions on the

local X server becomes unnecessary; more precisely, the X client and server handle these tasks
transparently to the user. Programs run on the remote system are displayed on the local X server
just as if a more traditional unencrypted X connection had been established. Of course, if X isn't
already running locally, it must be started first.

This particular example uses the -X option, which means that it will work

whether or not the local SSH client is configured to tunnel X. This option may
be omitted if you've configured your local X client to do so. The remote SSH
server must be configured to tunnel X in either case, though.

What about Windows, though? The procedure is basically the same for it, but configuration details
may differ. In particular, you should check your preferred SSH client's configuration options for one
that enables X forwarding. For instance, Figure 11-7 shows the relevant option for the PuTTY SSH
client in Windows. You must check the "Enable X11 forwarding" option and, if necessary, adjust the
"X display location" field (the default is fine in most cases).

http://lib.ommolketab.ir

Figure 11-7. Windows SSH clients typically provide a GUI menu option to
enable X forwarding

Some Windows X servers include integrated SSH clients. These systems can be used to establish
encrypted SSH sessions that tunnel X automatically, much as they can establish links using Telnet or
other unencrypted login protocols. Thus, you may want to check your Windows X server for SSH
support before using a separate SSH client.

If you're not sure whether your encryption is encrypted, one quick check is to
type echo $DISPLAY in an xterm window that uses the connection. If the result
reads localhost:10.0, you're almost certainly using a tunneled SSH

connection. This response indicates that programs are connecting to their local
computer on the tenth X port, which is the one that the SSH server sets up for
its tunneling. If the result of typing this command is your.host.name:0.0, and

your.host.name is your X server's hostname, it means that your connection

isn't encrypted.

http://lib.ommolketab.ir

11.4. VNC Configuration and Use

X enables remote users to access a Linux system, but it's not the only tool for doing so. VNC can also
function as a remote login tool, with a different set of advantages and disadvantages compared to X.
One big plus of VNC is that it can provide remote access to Windows, as well, so you can log into
Windows from Linux, Windows, or other OSs. Of course, configuring the server is just part of the job;
you must know how to handle VNC clients. Fortunately, this task is fairly straightforward.

VNC runs a client on the computer at which the user sits and a server on the
remote computer. Thus, VNC's client/server terminology is more familiar to
most people than is the X terminology.

11.4.1. VNC Versions

One of the earliest versions of VNC was released by AT&T. That version is no longer maintained or
hosted by AT&T, but it's available under the name RealVNC from http://www.realvnc.com. Binary
versions of RealVNC are available for Windows, Linux, Solaris, and HP-UX, with source code available
that will compile for other Unix-like OSs. Many Linux distributions ship with RealVNC.

Another VNC variant is available under the name TightVNC, from http://www.tightvnc.com. This VNC
implementation is notable because it includes some improved compression algorithms, which can
improve VNC's speed. TightVNC is available in binary form for Windows and Linux, with source code
for other Unix-like systems also available. Many Linux distributions ship with TightVNC in addition to
or instead of RealVNC.

If your network houses more unusual operating systems (including some that aren't particularly
exotic, such as Mac OS X), you may want to consult
http://www.uk.research.att.com/archive/vnc/platforms.html. This page contains links to VNC
implementations for a variety of operating systems.

One other VNC implementation deserves mention: KDE. This Linux desktop environment provides
support for VNC's RFB protocol independent of a separate VNC server. This implementation is
described later in this chapter.

11.4.2. Configuring a Linux VNC Server

VNC servers for Linux are plentiful, and some can be configured in diverse ways. Before delving into
server details, though, you should understand something of how X and VNC interact because using
VNC doesn't mean that you're not using X. Linux GUI programs still expect to connect to an X server,
so VNC provides one. Beyond that, several options for running VNC (or other RFB server software)
exist, including traditional VNC server launches, linking VNC to an XDMCP login server, and KDE's
built-in tools.

http://www.realvnc.com
http://www.tightvnc.com
http://www.uk.research.att.com/archive/vnc/platforms.html
http://lib.ommolketab.ir

11.4.2.1 X and VNC interactions

From a user's perspective, using VNC can seem simpler than at least some methods of using X for
remote access; however, VNC actually complicates the internal workings of the system. Figure 11-8
illustrates the relationship between VNC and X. The VNC server is actually two servers in one: it's a
server for the RFB protocol and a server for X. The X client program connects to the VNC server as if
it were a local X server. The VNC server then creates a bitmap for display, much as a local X server
would, but instead of sending that bitmap to a local screen, it's sent to the VNC client. This VNC client
does double client duty because it's also a client for the local X server. The VNC client delivers the
bitmap to the X server, which displays it on the screen. Similar interactions occur, but in the opposite
direction, for delivering keypresses and mouse movements from the user to the target X program on
the remote system.

Figure 11-8. On a Linux-to-Linux connection, VNC serves as a double
translator between the X client and server

Because Windows doesn't use a client/server model for its windowing system,
Figure 11-8 is not entirely accurate when a Windows system is involved. In the
case of a Windows VNC client, the VNC client delivers data to the Windows
display subsystem, but it's not a client/server relationship in quite the way it is
under Linux. A Windows VNC server must intercept display output using various
programming tricks, rather than interface in an approved and clean way as an
X server allows.

VNC was designed to provide whole-screen displays to its clients. For this reason, it delivers an entire
remote desktop, much like to an X server that runs in rooted mode (as in Figure 11-2). VNC has no
equivalent to X's rootless display.

VNC delivers entire bitmaps from the server to the client. By contrast, an X client can and often does
deliver shorthand descriptions of operations, which the X server interprets locally. This difference
means that VNC must frequently deliver more data across the network than does X, but X's
transactions involve more back-and-forth exchanges. These characteristics give rise to the differing
performance limitations of the two protocols, with VNC degrading on low-bandwidth networks and X
degrading on high-latency networks.

11.4.2.2 Traditional user VNC server sessions

To use a regular VNC server, such as RealVNC or TightVNC, you must first install it. You may want to
check your distribution's package list to see if it includes a VNC server (probably under a name like
tightvnc or vnc-server). If you can't find a VNC package for your distribution, check the RealVNC and
TightVNC web sites. These have source code and binaries in various formats, such as tarballs and
RPMs. Note that some VNC packages split off the VNC client from the VNC server, whereas others

http://lib.ommolketab.ir

include everything in a single package.

Once you've installed the VNC server, it's time to configure it. You must do this as an ordinary
userspecifically, the one who will be using the server:

Create a ~/.vnc directory in your home directory to hold VNC configuration files.1.

Create a new VNC password by typing vncpasswd. By default, VNC doesn't use the Linux

password database, so each user must set a VNC-specific password.

2.

Run the server by typing vncserver. The system should respond with a message like this:

New 'pluto:0 (linnaeus)' desktop is pluto:0

Creating default startup script /home/linnaeus/.vnc/xstartup
Starting applications specified in /home/linnaeus/.vnc/xstartup
Log file is /home/linnaeus/.vnc/nessus:6.log

3.

At this point, the VNC server is running on VNC port 0 (indicated by the :0 trailing the machine
namepluto in the preceding example). Be sure to remember this port number because it's necessary

for connecting to the VNC server! The VNC port number, like an X port number, is relative to a larger
number5900, in the case of VNCso VNC port 0 is TCP port 5900. You should be able to connect to the
server using the VNC port number in a client, as described in Section 11.4.4.

When you first start the VNC server, it creates a default startup script in ~/.vnc/xstartup. This script
is equivalent to a normal X startup script; it launches applications when the VNC X server starts. The
basic configuration, though, is to launch an extremely primitive window manager called twm. If
you're used to another desktop environment or window manager, you should edit this file to change
the reference to twm to something else, such as startkde to start KDE or icewm to launch IceWM.

The vncserver command is actually a script that calls the real VNC server program, Xvnc. If you want
to make systemwide changes to VNC's defaults, you must edit the vncserver script. Ordinarily, you'll
do this as root, although you can copy the script to your home directory as an ordinary user and edit
it yourself, if you prefer. Options you may want to adjust include:

The new user startup script

The startup script written by vncserver is contained within it, typically identified as
defaultXStartup or something similar. You can edit this script as you see fit; however, this

change will affect only new VNC users, not existing ones.

The font path

Unfortunately, VNC is very sensitive to the font paththe list of directories in which it searches
for fonts. This is identified by the -fp parameter to Xvnc, so if you want to change the font

path, you should search for that string and make changes to any variables or Xvnc calls that

http://lib.ommolketab.ir

specify it. The -fp parameter takes a comma-separated list of directories as its option. You

may want to try using the font path specified in your /etc/X11/XF86Config or
/etc/X11/xorg.conf file, although these files specify the font path in a multiline format rather
than as a comma-separated list. Including empty or invalid directories on your font path is
likely to cause the VNC server to crash, so if in doubt, start with a shortened font path and add
entries to make it work as you like.

Virtual screen size

VNC presents a virtual screen in which it creates your Linux desktop. You can adjust the size of
this virtual screen with the -geometry option to Xvnc, so look for the line in the vncserver
script that sets this option. This is usually set in a variable called geometry near the start of the

script.

Color depth

If you want to have VNC deliver more or fewer colors, you can set the color depth option,
which is passed to Xvnc via the -geometry parameter. Most vncserver scripts set this value
with the depth variable near the start of the script.

Once you as an ordinary user are finished with VNC, you can shut it down by passing the -kill

:session-number option to vncserver. For instance, vncserver -kill :0 kills VNC session number 0.

11.4.2.3 Linking VNC to an XDMCP server

The usual mode of VNC's operation is peculiar by Linux server standards. Instead of connecting to the
server using a fixed port and entering a username and password to gain entry, you must log in using
a text-mode tool or run the server while you're at the console, then connect using a port number that
you must remember and enter a password (but no username). This approach certainly works, but it
can be a bit awkward if arbitrary users should have access to the VNC server. To work around this
problem and create a more typical Linux-style login experience, you can tie VNC to an XDMCP server.
The result is that, when users connect to the VNC server, they'll be greeted by a GUI login screen
that's similar to the one they see when logging in at the console or via an XDMCP-enabled remote X
server.

Before proceeding, check the earlier Section 11.2.5. You should configure your XDMCP server to
accept remote connections, with one possible exception: you can use Xaccess rules or firewall rules to
restrict XDMCP access to the local computer itself. Both the XDMCP server and the VNC server will be
running on the same computer, and the XDMCP server only needs to accept connections from the
VNC server. You can configure the XDMCP server to be more promiscuous in the connections it
accepts, but if this isn't necessary, it can be a bit of a security risk, particularly if the computer is
accessible to the world at large, and you use firewall rules or super server security settings to restrict
access to the VNC server.

Once you've configured the XDMCP server, you should edit your /etc/services file. This file gives
names to various TCP and UDP ports. You should add entries for any ports you want to assign to
VNC. The names you use are arbitrary, but vnc or something related to it is a logical choice. Note

http://lib.ommolketab.ir

that you can use just one port or many ports. Using many ports lets you run multiple VNC servers
with different optionsfor instance, to run servers with different virtual screen resolutions for the
benefit of clients with different screen resolutions. For example, suppose you intend to run VNC with
760 530 and 950 700 resolutions. First, create two entries in /etc/services:

vnc-760x530 5900/tcp
vnc-950x700 5901/tcp

This configuration assigns TCP ports 5900 and 5901 to VNC, using names that describe the intended
uses for these ports as supporting different resolutions.

Once this is done, edit your super server configuration to call the Xvnc server. This call must include
several parameters that are normally handled by the vncserver script, such as -geometry, -depth,
and -fp. Other options that may be necessary include:

:session-num

This option specifies the X session number; each unique X session needs its own session
number. Note that this is an X session number, not a VNC session number. If your system
normally runs a local X server, begin with :1. You can also begin with :0 if no conventional

local X server ever runs on the system. Some systems work best if you omit the X session
number, enabling VNC to pick one dynamically.

-ac

This option disables access controls in TightVNCthat is, the initial password request. Because
XDMCP handles this task, disabling the initial VNC password request is desirable. Some VNC
versions don't need or support this option, though; they use the -SecurityTypes option

instead or disable access controls as a side effect of other settings necessary for this
configuration.

-SecurityTypes=none

This option is RealVNC's equivalent of TightVNC's -ac option.

-once

Ordinarily, a VNC server runs until killed; even if you disconnect from the server, it continues
to run. This option causes the server to terminate after a connection is lost. Its behavior is
desirable when VNC is used with XDMCP because it better implements the traditional Linux
login/logoff procedures.

http://lib.ommolketab.ir

-inetd

This option tells Xvnc that it's running from a super server.

-query localhost

This option speaks to the VNC server's X server side; it tells the server to contact a specific
computer for an XDMCP login. In this case, the server contacted is localhost, which should
work well. You can use 127.0.0.1 or your computer's external IP address or hostname if you
prefer. (Using localhost or 127.0.0.1 may result in slightly better performance, though.)

To produce a xinetd configuration incorporating these elements, create the file /etc/xinetd.d/vnc. This
file should have one or more entries like this:

service vnc-760x530
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = nobody
 server = /usr/bin/Xvnc
 server_args = :1 -inetd -query localhost -geometry 760x530 \
 -depth 24 -ac -once \
 -fp /usr/share/fonts/misc/,/usr/share/fonts/100dpi/
}

The large number of arguments passed to Xvnc dictates splitting them across
three lines in this book; however, they should all be entered on a single line in
reality. Backslash characters (\) denote continued lines here but should not be

entered in your real configuration files.

You may need to experiment with the -ac and -SecurityType parameters to get this to work. Your

font path is also likely to be longer than the one shown here. Some distributions, such as Fedora,
provide a font server for local use, which can greatly shorten the font path entry, but the entry is
likely to read unix/:7100.

After restarting your super server, the VNC server should become available to VNC clients, as
described in Section 11.4.4. You'll notice several differences in how VNC behaves, though:

Multiple users can log into a single VNC port.

Users don't need to explicitly configure their VNC sessions.

Users' VNC logins produce their standard desktop environments, as set by X system defaults
and users' own options.

http://lib.ommolketab.ir

Sessions are destroyed when users log out; they must save open files or their unsaved work will
be lost.

Users don't enter VNC passwords, but they have to enter a password at the XDMCP login
prompt.

If you set up multiple VNC ports to accept logins with different parameters, the VNC session
number controls access to the options you set. For instance, connecting to pluto:0 could yield a
760 530 display, whereas connecting to pluto:1 can produce a 950 700 display.

Overall, linking VNC to an XDMCP server can be an excellent way to provide remote GUI logins to a
Linux system. This approach follows typical expectations for GUI logins and works much like
accessing Linux via a rooted X server using XDMCP. VNC client software is inexpensive and easier to
configure than X servers, though, which can simplify your overall configuration and education efforts,
even if linking VNC with XDMCP is a bit more work.

One downside to this approach is that usernames and passwords sent to the
XDMCP server are unencrypted. (Ordinary VNC passwords are encrypted,
although the rest of the session data is not.) Given that most VNC data isn't
encrypted, this isn't a huge difference, but it is worth noting and may make a
difference in your plans, particularly if you want to use VNC across the
Internet.

11.4.2.4 KDE's VNC features

KDE is unusual in that it supports the VNC protocol, RFB. You can access KDE's options from the KDE
Control Center (type kcontrol in an xterm window or locate the Control Center option in the KDE

menu system). The options in question are visible in the Desktop Sharing area within the Internet &
Network option set, as shown in Figure 11-9. (Specific KDE implementations vary somewhat in their
names for these options; for instance, some use Network rather than Internet & Network.) KDE's
Desktop Sharing system works more like VNC under Windows than under Linux: it shares an existing
login session, rather than create a new session. The intent is that it be used as a collaborative tool, to
enable users to create demonstrations and presentations for other users at remote locations. For this
reason, it emphasizes use by invitation: click Create & Manage Invitations to create a time-limited
password, which you can give to another user in some appropriate way, such as over the phone.
(You can also email invitations directly, but this makes them susceptible to network sniffing.)

Figure 11-9. KDE's VNC support enables you to share an existing KDE
login session

http://lib.ommolketab.ir

KDE also supports "uninvited" connections, which are essentially time-unlimited invitations. This tool
isn't likely to be useful for providing yourself with remote access, though, because KDE displays a
dialog box on its local display whenever a connection attempt is made. If you don't accept the
connection, the remote system is refused access. Thus, remotely accessing the system via KDE's VNC
features requires that somebody be present at the console when a connection attempt is made.

11.4.3. Configuring a Windows VNC Server

One of VNC's advantages over X is that you can use VNC to remotely control a Windows computer.
Windows wasn't designed with multiuser access in mind, however, so instead of running a server that
creates a virtual session unrelated to anything displayed on the console screen, VNC under Windows
copies what's shown on the computer's main display to the client. This is similar to the approach
taken by KDE with its integrated VNC support, although some details differ. This can be a good way
to control your own single-user machine when you're away from it, but it obviously won't do if two
users want to share a single computer; each user's actions would battle the other's.

You can obtain VNC for Windows from the RealVNC and TightVNC web sites. This chapter uses
TightVNC for Windows 1.2.9 as a reference. The program comes as a Windows self-installing archive,
so you can double-click it to launch an installer, which is typical of this class of program in Windows.
You'll be asked if you want to install the client, the server, or both (the default is to install both). If
you install the server on a Windows NT/200x/XP system, at the end of the process, you're asked if
you want to register TightVNC as a Windows service. Doing so launches TightVNC when Windows
starts, so you can access it remotely before any user has logged in. This can be a handy way to
provide multiple users access to the computer, but only one at a time. If you don't want to provide
this sort of access, TightVNC will launch only after you explicitly run it. (You can also place a link to
the TightVNC server in a user's Startup folder, in which case it runs as soon as the user logs in.)

When you first launch the VNC server, it presents the WinVNC: Current User Properties dialog box
shown in Figure 11-10. This dialog box enables you to set various options, some of which are
equivalent to Linux VNC options and some of which are Windows-specific. The most important of
these options is to set the password for VNC access, so enter that immediately. When you've set the

http://lib.ommolketab.ir

options you want to use, click OK to launch the server. You should notice a small VNC icon appear in
the task bar on the bottom of your screen; double-click it to change your VNC server's options.

Figure 11-10. The Windows VNC server uses a GUI tool to set options
that are set via command-line switches in Linux

11.4.4. Using a VNC Client

VNC client operation is fairly straightforward. In Linux, you use the vncviewer program. If you type
the command name alone, it presents a GUI prompt for the VNC server. Alternatively, you can pass
the server name on the command line. In either case, you can include the VNC session number, as in
vncviewer pluto:0. If you don't include the session number, the default is 0. This default works well

for most Windows VNC servers and for the first VNC server launched on a Linux system.

Under Windows, you can launch the VNC client by selecting it from the Windows Start menu. The
result is a GUI prompt for the VNC server, similar to the one the Linux VNC client presents. As with
that prompt, you may need to enter a session number if the server runs more than one VNC server.

With either OS client, after you enter the server's name, the client tries to connect. If it succeeds, the
client immediately prompts for a password if the session is password-protected; however, if you've
configured a Linux VNC server to interface to an XDMCP server as described earlier, you'll see no
VNC-specific password prompt. Instead, you'll see a Linux XDMCP login screen, as shown in Figure
11-11, which shows a Windows VNC client connected to an XDMCP-enabled Linux VNC server. You
can then log in as if you were at the console. Thereafter, no matter the type of the server, you can
use the system more or less as if you were sitting at the remote computer.

Figure 11-11. VNC can present a close replica of the remote computer's
display, potentially including a GUI login screen

http://lib.ommolketab.ir

Some Windows configurations require you to press Ctrl-Alt-Del to log in. To do
so from a Linux VNC client, press F8 to obtain a menu of special keystrokes and
options. Windows VNC clients provide similar options from their windows'
menus.

VNC isn't without its flaws. Here are some problems and quirks you may notice when using the
server:

Overall system responsiveness may seem sluggish, particularly if you're using a slow or
overburdened network or if your display is quite dynamic.

When connecting to Windows servers, parts of the display may not update in a timely fashion.
This is a consequence of VNC's imperfect interfacing to the Windows display system. Linux
servers tend to be better about displaying screen updates as they should appear.

Keyboard mapping may be imperfect, particularly when connecting to or from systems with odd
keyboards. Some Macintosh keys may not map sensibly, for instance, if you connect to or from
a Mac OS system.

Colors may appear strange. Unfortunately, VNC clients and servers don't always handle colors
in a perfect manner. Changing the server's color depth can often improve matters.

http://lib.ommolketab.ir

11.4.5. Encrypting VNC Connections

VNC's lack of encryption can be a serious drawback. Fortunately, it's one that can be corrected with
the help of additional softwarenamely, SSH. Using SSH to encrypt VNC can be more complex than
using SSH to encrypt X, though. Configuration begins on the VNC server computer, which must run
an SSH server in addition to the SSH server. The SSH server must be configured to accept tunneled
TCP connections:

AllowTcpForwarding yes

This option, which should appear in the /etc/ssh/sshd_config file, is the default, so chances are you
won't need to change it. Once it's set, SSH is configured to accept forwarded connections, and the
server-side configuration is done.

The simplest way to use a tunneled connection is to employ the -via option to TightVNC's vncviewer

command in Linux. This option takes the name of an SSH server that forwards the traffic to the
ultimate target system. For full point-to-point encryption, this system would be the same as the VNC
server:

$ vncviewer -via pluto.pangaea.edu pluto.pangaea.edu:0

The result will be a prompt for your SSH password on the remote system followed by an ordinary
VNC login. Unfortunately, this approach isn't available in the Windows version of TightVNC or in either
version of RealVNC. For these systems, you must set up an explicit SSH tunnel using the SSH client
package on the client computer. You do this by using several options to the ssh:

$ ssh -N -f -L 5902:pluto.pangaea.edu:5900 proxy.pangaea.edu

This command tells the SSH client to set up a mapping from the localhost port 5902 to
pluto.pangaea.edu's port 5900, using proxy.pangaea.edu as the system that passes on the data.
(Ordinarily, you'd want to use a single hostname for both the proxy and the target system; I've
specified two names here just to make it easier to identify what's doing what. Likewise for the port
numbers; chances are you'd use the same one on both systems, although you might use different
numbers if your local port 5900 is occupied.) Once you type this command, you're prompted for a
password and then the link is established. To use this link, you can run any VNC client, but you must
link to your localhost address on the VNC port specified in the ssh, minus 5900:

$ vncviewer localhost:2

When combined with the preceding ssh, this command links to pluto.pangaea.edu's port 5900 (VNC
port 0), using proxy.pangaea.edu as the SSH proxy. This might be useful if your main concern is with
snooping on intermediate systems, and you trust the security of the connection between
proxy.pangaea.edu and pluto.pangaea.edu. You can also specify the same computer as both
systems, though, provided you can run both an SSH and a VNC server on that computer.

This approach works with Windows clients and servers as well, although of course some details do
differ. In the case of a Windows VNC server, you need to install and configure an SSH server, as
described in Chapter 10. Precisely where you'll find the option to enable TCP forwarding varies from

http://lib.ommolketab.ir

one server to another, so consult your documentation. Likewise, Windows SSH client configuration for
this task varies from one client to another. Typically, you must enter the source and destination ports
in a special configuration screen, such as the one shown in Figure 11-12 for PuTTY. In PuTTY, after
entering the information in the Source Port and Destination fields as shown, you click the Add button
to add forwarding, then initiate an ordinary SSH session to the VNC server or the SSH server you
intend to use as a proxy. Thereafter, connecting to the localhost address on the specified port with
your VNC client forwards the connection.

Figure 11-12. Windows SSH clients typically enable you to enter port
forwarding instructions in a special configuration menu

http://lib.ommolketab.ir

11.5. Running Windows Programs from Linux

If you are willing to make a monetary investment that will enable your Linux clients to run Windows
applications, there are two popular and related methods to consider. Both methods run a Windows
desktop session on a server that you connect to and control from a Linux desktop running the
appropriate client software. This is similar to VNC on Windows as described in the previous section,
but one of the major differences is that multiple Linux desktops, possibly several hundred, can
connect to a single Windows server at a time. This is a perfect setup when you want to deploy Linux
desktops but still need the ability to run one or more Windows programs in their native form. Nearly
all programs should run flawlessly because they really are running on a Windows computer; it's
simply their display output that's shown on the Linux machine. However, processor or memory-
intensive applications should not be run in this fashion because a single program consuming most of
the system's resources may ruin the experience for the users.

The minimum requirement for this kind of setup is a Windows server, preferably Windows Server
2003, that has Terminal Services enabled. Windows 2000 also has this ability built-in, but Windows
NT requires the special Terminal Server version. On the Linux side, you can use a program called
rdesktop, which speaks Microsoft's Remote Desktop Protocol (RDP), to connect to the Windows
server and run a desktop session. Just like VNC, these sessions can run at full screen or inside a
program window. It is possible to cut, copy, or paste text between the remote Window desktop and
the local Linux desktop, but you can't drag and drop files. Beyond the cost for a Windows server and
server license, you have to purchase a Terminal Services Client Access License for each user or
machine that will connect to the Windows server. The rdesktop program isn't supported by anyone
other than the open source community, so if you have problems using it, Microsoft won't help you.
This is one reason you might want to consider the second method.

The second most popular way to run Windows applications on Linux uses a third-party application
called Citrix Metaframe that runs on top of Windows Terminal Services. This program provides
additional features not found in regular Terminal Services, such as concurrent licensing, server
pooling, and a native Linux client that uses Citrix's thin client protocol known as ICA. Citrix licensing
fees are on top of the ones that already exist for the first solution, but if the extra features are
needed, the price is easily justified.

Setting up either server is beyond the scope of this book. However, if you want a quick test to see
how well this works, you can use rdesktop to connect to a Windows XP Professional computer.
Microsoft includes support for one remote desktop connection in Windows XP Professional to enable
administrators to make a remote GUI connection for troubleshooting purposes. In most cases, this
service is already running on the computer, and you simply need to install rdesktop on your Linux
client and run a command, such as: rdesktop -g 800x600 IP address (where IP address is replaced

with the actual address of the Windows computer) to connect to the Windows computer.

http://lib.ommolketab.ir

11.6. Summary

Remote GUI logins can be a useful tool for enabling users to run complex GUI programs remotely and
even for system administration. Windows benefits the most from remote GUI system administration,
because text-mode Linux tools are usually sufficient. Two tools are particularly important in cross-
platform remote GUI logins: X and VNC. X is Linux's native GUI tool and is a very useful way to
access a Linux system from another Linux system or from a Windows system. VNC is a cross-
platform tool that can enable Linux or Windows clients to access either Linux or Windows servers.
(Other operating systems are also supported.) One problem with both X and VNC is that they don't
encrypt data by default, with the exception of VNC passwords. One way around this limitation is to
employ SSH as a tunneling protocol. This process works most easily with X, but, with a bit of effort, it
can also be used with VNC.

http://lib.ommolketab.ir

Chapter 12. Linux Thin Client
Configurations
Chapter 11 presented information on using GUI remote login protocolsnamely, the X Window System
and Virtual Network Computingto control one computer from another one. This technique can be
handy in many situations, as described in Chapter 11. One specific application of this technique
deserves elaboration, though: thin client computing. In a thin client environment, one computer (the
thin client) is configured with a minimal OS installation and is dependent on another computer (the
server) to handle most computing tasks, aside from input/output. This approach to computing can
greatly simplify system administration by centralizing most administration tasks on a single larger
server. It also enables you to extend the life of aging computers; even a 486 system might make an
acceptable thin client! It does require a server that's powerful enough to handle multiple
simultaneous logins, though. Thin clients are best used by workers who need to run a handful of low-
resource applications. You don't need to use thin clients for everybody; you can mix thin clients with
more conventional desktop systems.

You can use Linux as a thin client OS, on the server side, or both. Windows
systems can function as servers, although Windows needs special software to
handle multiple simultaneous users.

This chapter begins with an overview of thin client computingwhat it is and when you might want to
use it. Next up is a look at the hardware you'll need to deploy a thin-client network, including the thin
clients themselves, their servers, and the network infrastructure requirements. The next topic is
configuring Linux as a thin client, which builds on the VNC client and X server topics in Chapter 11.
Finally, this chapter looks at how to configure a Linux system as a server for Linux or non-Linux thin
client workstations.

http://lib.ommolketab.ir

12.1. The Role of Thin Client Computing

Thin client computing can be a great way to stretch limited computing budgets and simplify system
administration headaches. It's not the best solution to all problems, though. Deciding when to use
thin client computing requires understanding the different forms it can take and the advantages and
disadvantages of these forms.

12.1.1. Types of Thin Client Computing

In practice, the term thin client computing covers a range of configurations, from extremely simple
thin clients that use powerful remote login servers to much more capable thin clients with substantial
onboard software that uses remote login servers for file storage and software not provided on the
thin client. In fact, it can sometimes be difficult to draw the line between thin client configurations
and traditional desktop systems that use remote login servers for occasional uses or specialized
tasks. Different people can draw this line in different places or by using different definitions. For
instance, one common definition uses the presence or absence of a hard disk on the client as a
deciding feature: if a system has no hard disk, it's a thin client. Not all thin client definitions include
this feature, though.

In practice, thin client computing is essentially a return to an older model of computing that was
common in the 1960s through the 1980s, in which dumb terminals were the primary means of
accessing the mainframes and minicomputers of the day. Typically, employees, students, or other
users would use the dumb terminals (which provided text-only displays) from their desks or from
public computing environments. After the advent of X for Unix, some dumb terminals were replaced
by X terminals, which were essentially dumb terminals capable of running an X server. In fact, X
terminals are still available today and can make excellent thin clients for Linux systems.

An X terminal runs an X server, but in the language of the thin client world, the
X terminal is a thin client. This is yet more confusing fallout from the peculiar
client/server relationship in X, as described in Chapter 11.

Although you can use old-style dumb terminals (or computers that run terminal emulators to stand in
for dumb terminals) with Linux, modern thin client computing relies on GUI remote login tools to run
GUI programs. Chapter 11 describes two protocols that are commonly used in thin client computing,
but the range of possible protocols is actually wider than that:

The X Window System

X can make an excellent thin client protocol when accessing Linux (or other Unix-like OSs). You
can run Linux and X on older or stripped-down systems or use dedicated X terminals as thin

http://lib.ommolketab.ir

clients. You can't easily use X to access Windows servers, though, except in limited ways.

VNC

VNC, or the Remote Frame Buffer (RFB), as the protocol is more properly known, is a useful
thin client tool. Linux can function as a VNC server or client, enabling you to reuse old
computers. You can also run a VNC server on Windows systems to provide remote access,
although VNC doesn't provide multi-user access to Windows. (Using VNC to access Linux isn't
so limited.) Some dedicated thin client appliances support VNC, so it can provide remote access
to Linux from such thin clients.

RDP

The Remote Desktop Protocol is Microsoft's favored thin client protocol and is supported by
Microsoft's Terminal Server software package. Linux RDP client packages are available, such as
rdesktop (http://www.rdesktop.org) that lets you configure a Linux system as a thin client for a
Microsoft server.

ICA

The Independent Computing Architecture protocol is favored by Citrix, which provides tools to
access Microsoft Windows servers using thin clients that support the ICA protocol. Citrix
(http://www.citrix.com) provides a free ICA client for Linux, so Linux can function as a good
ICA thin client OS.

Typically, to provide remote access to Linux systems, you'll use X or VNC. To access Windows
systems, VNC, RDP, or ICA will work, although only the latter two protocols support multiuser access.
(Technically, changes to the underlying OS enable multiuser access; the protocols simply connect to
that new feature.) Thus, RDP and ICA are the protocols of choice for thin clients accessing Windows
servers.

12.1.2. When to Use Thin Client Computing

This chapter has already alluded to some of the advantages of thin client computing, namely
hardware cost savings. This isn't the only reason to use this approach, though. Here are some
common advantages of thin client computing:

Hardware cost

By recycling old computers as thin clients or buying new stripped-down computers or dedicated
thin clients, you can reduce your expenditures on new desktop systems and upgrades to
desktop computers.

http://www.rdesktop.org
http://www.citrix.com
http://lib.ommolketab.ir

Reliability

Thin clients, being much simpler than conventional desktop systems, are less likely to break
down, all other things being equal. This can reduce the need for tedious hardware
troubleshooting sessions.

Reduced noise and power consumption

Particularly if you use dedicated thin client hardware or old computers without hard disks, thin
clients are likely to be quieter and consume less power than full desktop computers. This also
results in less heat, which can help lower air conditioning bills. One partial exception to this rule
is if you reuse old CRT monitors rather than buy new LCD monitors. CRT monitors consume a
lot of power compared to new LCD monitors, replacing CRTs with LCDs can further reduce your
power consumption.

Decoupling users from hardware

In a thin client environment, any user can use any thin client computer. Users see their own
desktop environments and their own files, no matter which thin client is used. This feature can
be great in public computing centers or when you want to upgrade hardware or move users
between offices.

Administrative effort

Administering a single login server computer and dozens of thin clients is typically simpler than
administering dozens of desktop computers.

Security

In some sense, this advantage is a corollary of the last one. Simple thin client computers are
less likely to become infected by worms or otherwise compromised than are typical desktop
systems. This advantage is particularly great if the thin clients are simple dedicated units with
their OSs in ROMs or if they can boot from files stored on a network server. If you use Linux
systems with their own hard disks as thin clients, an intruder might be more likely to gain
access to and modify the clients. Thin clients can also benefit by the fact that it's seldom
necessary to give them public IP addresses; they can reside on entirely private subnets that
link only to your local servers and to each other. This can be even more secure than a
conventional desktop behind a network address translation (NAT) router, because the thin
clients can't initiate outside connections (say, because of a viral infection).

Ultimately, most of these advantages boil down to cost, either for hardware or for labor in
maintaining all of a site's computers. These advantages are offset by disadvantages, though, some of
which are in the same areas as the advantages:

http://lib.ommolketab.ir

Hardware cost

The cost benefit on the client is at least partially offset by the fact that you'll need to invest
more in the server or servers that users will access. The login server must typically be
substantially more powerful than individual workstations, although precisely how much more
powerful depends on your site's computing needs. Light uses, such as word processing, may
need a server scaled to the needs of a typical user plus a small increment in RAM and CPU
speed for each additional user. CPU- or RAM-intensive tasks such as running scientific
simulations may not work well at all with a centralized approach unless you invest in a very
powerful server. As a general rule of thumb, a high-end IA-32 system (say, one that sells for
about $3,000) can usually support about 30 users.

Reliability

Although thin clients are likely to be more reliable than individual desktop systems, this
approach is essentially one of putting all your eggs in one basket. If the login server computer
or your main network infrastructure fails, no user will be able to do any work. For this reason,
you should be particularly careful in buying or building a login server for a thin client
environment; buy the most reliable hardware possible, and whenever possible, employ
reliability-improving tools, such as a Redundant Array of Independent Disks (RAID) array. Keep
backups of your data and have backup hardware on hand so that if a critical server hardware
component fails, you can quickly replace it. Using server clusters or having redundant servers
can also be useful techniques to improve reliability. Also, if you use old PCs as thin clients, their
reliability advantage over new desktop systems may evaporate, but the thin clients are cheap
and easy to replace should they break.

Local devices

Using some types of local hardware devices, such as sound cards, scanners, and CD-ROM
drives, can become tricky in a thin client environment. Solutions to these problems do exist,
but they often require extra configuration to work well. For instance, you might need to
configure a thin client computer as a file server to give users access to a local CD-ROM drive.

Thin clients can be deployed in any number of environments, from two-user small offices to academic
or corporate sites with thousands of users. Depending on the type of work being done and the
server's speed, a single server can support anywhere from a handful of concurrent users to several
dozen; thus, large sites are likely to have multiple servers.

The thin client approach tends to work best with applications that are relatively undemanding in
terms of the CPU and display. CPU-heavy tasks such as raytracing or scientific simulations work best
when all users have their own CPUs, and graphics-intensive tasks, such as watching real-time video,
make huge demands on network infrastructure when deployed on thin clients. Tasks that are better
suited for thin client environments include word processing, light spreadsheet use (so long as
spreadsheets aren't doing extremely lengthy computations), reading email, web browsing, using a
corporate database, and other basically textual tasks. These jobs require users to read for long
periods of time, and much of the interaction involves typing, which changes the onscreen display

http://lib.ommolketab.ir

slowly.

http://lib.ommolketab.ir

12.2. Hardware Requirements

One of the advantages of thin client computing is that it minimizes the hardware requirements, at
least for the computers at which users actually sit. The server hardware, though, must be heavy
duty, at least if it's to support more than a few users. Thus, you must evaluate your hardware
requirements very differently for the two sides of the thin client/server coin. You must also consider
the hardware that connects these two sides of the coin, because a deficiency in your network
infrastructure will severely degrade a thin client network.

12.2.1. Server Requirements

The trickiest part of determining your thin client network's hardware needs is in deciding what sort of
hardware to use on the server. This task is made extremely difficult by the fact that it varies so much
depending on the type of work done at your site. Different programs make different demands on
memory and CPU time, and these demands scale differently to multiuser loads.

The scaling question is an important one. For instance, suppose you've determined, through
experimentation, that a desktop system needs a 2-GHz Pentium 4 CPU, 512 MB of RAM, and a 60-GB
hard disk to operate comfortably for a typical user. An obvious, but probably wrong, extrapolation
would be that a 10-user server would need a 20-GHz Pentium 4 CPU, 5 GB of RAM, and a 600-GB
hard disk10 times the single desktop system's values. (Of course, some of these specifications, such
as a 20-GHz Pentium 4 CPU, can't be met!) Most desktop computer CPUs are idle most of the time;
processing user keystrokes and mouse clicks as they use a word processor, web browser, or most
other user applications takes little CPU time. Likewise, a great deal of RAM is consumed by the OS
kernel and other overhead items that's not duplicated in a multiuser environment. In addition, shared
libraries can greatly reduce the memory footprint of adding new users when they all run more or less
the same programs. Similar comments apply to disk space. Depending on the applications used, a
10-user system might need only a 3-GHz CPU, 1 GB of RAM, and 120 GB of disk space to provide
performance comparable to a 2-GHz CPU/512-MB RAM/60-GB disk single-user desktop system, or it
might need something more powerful.

http://lib.ommolketab.ir

Determining Hardware Requirements

To evaluate your hardware needs, try judging a desktop system's performance with just
one user running typical programs. Note the subjective performance level, and also use
tools such as Linux's uptime or top to measure CPU load and free to measure memory
use. (Be sure to read from the -/+ buffers/cache: line in free's output; the Mem: line

includes buffers and caches, and so normally shows very little free memory.) You can
then use a remote access protocol (ideally the one you intend to use) to add users and
have them use the system normally. Repeat your measurements, and note how system
resource requirements go up and performance goes down. In this way, you should be
able to estimate the amount of CPU power and RAM you need for a multiuser system.
Disk space is likely to be easier to estimate: the multiuser disk space needs are isolated
to users' own data files, so you can use tools such as Linux's du to see how large existing
users' home directories are.

Beyond a certain point (typically about two or three dozen users), scaling a single server becomes
impractical. Thus, if you need to serve several dozen to thousands of users, you should look into
multiserver configurations. In this configuration, load balancing can become an important issue, but
this topic is beyond the scope of this book.

In early 2005, desktop users can still usually work quite well with single-CPU Intel Architecture 32
(IA-32) systems. In any but the smallest thin client configurations, though, your server should have
more CPU power, and is likely to benefit from a shift to a multi-CPU or 64-bit system. Of these two
features, multiple CPUs are likely to be more important than 64-bit CPUs. The latter are most likely to
be necessary if the total memory exceeds 4 GB; unless they use special tricks, IA-32 systems are
limited to 4 GB of RAM. Although 64-bit multi-CPU systems tend to be expensive, each one can serve
quite a few users, which greatly reduces the per-user cost.

The login server systems for thin clients also need fast and robust disk subsystems. In the past, this
has usually meant RAID arrays based on SCSI drives, and indeed SCSI RAID systems are still a good,
if expensive, choice for this role. Recently, though, SATA RAID hardware has become common, and
such systems often at least approach the performance of SCSI RAID systems, although they tend to
produce higher CPU loads, so SCSI still beats out SATA.

Many motherboards include SATA controllers that claim to be RAID-enabled;
however, most or all of these are actually fairly ordinary non-RAID controllers
with minimal BIOS hooks and drivers that enable RAID functionality in
software. Linux also provides software RAID drivers, but for the best possible
performance, particularly at RAID levels 4 and 5, which provide error correction
features for improved reliability, you need a true hardware RAID driver with
support for the server's OS.

Of course, the login server needs the best available network hardware. Most systems sold today
include gigabit Ethernet. To do any good, though, the gigabit Ethernet or other high-speed network
connector must either be matched with equivalent hardware on the clients or fed via a switch or
router that can combine slower client feeds into a faster link to the server.

http://lib.ommolketab.ir

12.2.2. Client Requirements

The requirements of the thin client depend to some extent on your site's needs. For instance, you
might need extra-large displays, clients that can handle multiple protocols, or clients with their own
built-in web browsers. Much of the appeal of thin client computing, though, is that the thin clients
themselves are commodities; you can reuse old PCs as thin clients, buy dedicated thin client
hardware, or both. You can replace one thin client with another one (even a very different one) with
little impact on its user's ability to work.

If you intend to recycle old PCs as thin clients, the basic needs are fairly minimal: the computer must
be functional and have some form of network connection. In theory, even an RS-232 serial port for
using the Point-to-Point Protocol (PPP) will do, but in practice, Ethernet or some other network
protocol is needed. The computer must have a working monitor, keyboard, and mouse. If you intend
to run Linux on the system, it must have an 80386 or better CPU and sufficient RAM for your
distribution. In practice, a fast 80486 or slow Pentium-class CPU and 16 MB or even 32 MB of RAM is
likely to be desirable. Older computers are unlikely to have speedy video hardware by today's
standards, but most should suffice for simple GUI programs. The biggest problem with old video
hardware is the amount of RAM they hold, which influences the maximum display sizes (in pixels) and
color depths they support, as summarized in Table 12-1. You can use older Macintoshes or other
computers with CPUs other than those in the IA-32 line, but some of the Linux distributions that work
best as thin clients are designed exclusively for IA-32, so your configuration task is likely to be harder
with these computers.

Table 12-1. Video RAM and supported video modes

Resolution
8-bit (256

colors)
16-bit (65,536

colors)
24-bit (16,777,216

colors
32-bit (4 billion

colors)

640 480 300 KB 600 KB 900 KB 1.2 MB

600 800 469 KB 938 KB 1.4 MB 1.8 MB

1024 768 768 KB 1.5 MB 2.3 MB 3.0 MB

1280 1024 1.3 MB 2.5 MB 3.8 MB 5.0 MB

1600 1200 1.8 MB 3.7 MB 5.5 MB 7.3 MB

Both dedicated thin clients and those built from old computers may require some hardware
replacements, such as upgraded monitors, video cards, and mice. Mice are particularly worthwhile
upgrades because many GUI Linux programs assume the user has a three-button mouse. They can
work with two-button mice using a chord (pressing both buttons simultaneously) as a stand-in for the
middle (third) button, but this is a bit awkward.

If you intend to purchase dedicated thin clients, you should study their specifications very closely.
Many thin clients are intended for use solely with Windows, using RDP or ICA. Such clients won't work
with Linux servers; for that, the thin client should support either X or VNC. If the client will be used
with both Linux and Windows servers, be sure it supports all the necessary protocols.

http://lib.ommolketab.ir

To operate as fully diskless systems, many thin clients must have network cards with ROMs that
support booting from the network. Such configurations also require you to configure a system to
respond to the boot requests and deliver appropriate files to the thin client. (This topic is described in
more detail later, in Section 12.3.) If you're trying to recycle older PCs, you may therefore need to
use a local boot disk (a floppy disk, CD-ROM drive, or even a hard disk) or replace network cards that
don't enable you to boot from the network.

12.2.3. Network Hardware Requirements

Because thin client computing requires transferring large amounts of data, you must pay careful
attention to your network infrastructure. An outdated network will likely perform so poorly as to
make a thin client configuration impractical, even if everything else is done right.

Generally speaking, on a network of up to a dozen or so users, you must have a 100-Mbps local
network that uses switches. Up to a few dozen, a similar configuration will work, but you should
upgrade the server's network card to support gigabit Ethernet and use a switch that can handle the
gigabit/100-Mbps interface.

If your network hosts more than a few dozen users, you may need to upgrade it further or segment
it in some way. (Such a network will also probably require multiple servers.)

No matter the details of your network hardware, you should attend to its reliability and monitor its
performance. Flaky old network cables, overheated switches, and other problems can cause degraded
performance or complete loss of connectivity. If you're considering switching an existing network to a
thin client model, you might need to look into replacing some or all of your network infrastructure to
deal with the increased demand. On the other hand, a fairly recent network may be up to the
requirements just fine. You'll have to evaluate your network hardware yourself.

http://lib.ommolketab.ir

12.3. Linux as a Server for Thin Clients

Thin clients rely on servers to do any good. Most obviously, this reliance is on the login servers
themselves. Chapter 11 describes two such servers, XDMCP (for use with X) and VNC. For the most
part, the configurations described in that chapter work well with thin clients, although there are a few
caveats. Thin clients booted from the network also rely on DHCP and TFTP, so knowing how to
configure these two servers is important.

12.3.1. Linux Distribution Selection and Configuration

In principle, you can use any mainstream Linux distribution as a login server for thin clients.
Distributions that are geared toward desktop use, such as Mandrake and Xandros, can provide lots of
eye candy and be very friendly to users, but these features may generate more in the way of video
(and hence network) activity than you'd like, because they might use lots of animation and demand
large or color-intensive displays. Thus, you might prefer starting with a distribution that provides less
fluff, such as Debian, Gentoo, or Slackware, and build it up to the point that you want and no further.
This can help you control network and server load.

For the most part, you can configure a Linux login server for thin clients just as you'd configure any
other desktop system. Appendix B describes some of the issues involved in such a configuration.
When planning this configuration, remember that the video display involves a network access, so
features such as animated icons will consume network bandwidth. Because thin clients may be
running on small or low-bit-depth displays, you may also need to test your applications on such
systems, and perhaps adjust their default configurations.

12.3.2. XDMCP and VNC Options

Fortunately, very little needs to be done to XDMCP and VNC configurations to support thin clients.
The configurations described in Chapter 11 should work fine with X terminals and thin clients that
support VNC.

For XDMCP, though, one feature you may want to be sure you support is indirect accesses. Some X
terminal thin clients can't present a list of available servers by themselves; they need the help of an
XDMCP server that's configured to provide this list. This can be accomplished on the XDM and KDM
servers by editing the Xaccess file to include an appropriate line:

* CHOOSER BROADCAST

You can also specify a pattern of hostnames for the asterisk (*), which lets only specified computers

receive the server list. In GDM, the equivalent configuration can be found in the gdm.conf file, which
is usually in /etc/X11/gdm:

HonorIndirect=true

http://lib.ommolketab.ir

This line should appear in the [xdmcp] section of the file. In either case, you must then configure

your thin client to make an indirect query of the XDMCP server that supports indirect lookups.

Of course, all this is necessary only if you want your users to be able to use more than one computer
from their thin clients. If each thin client should connect to precisely one system, you can configure it
to make a direct connection to the remote system and be done with it.

If you're running VNC on the Linux system to enable remote logins via thin clients, chances are you'll
want to link VNC to an XDMCP server. This configuration enables users to type their usernames and
passwords when logging in, rather than logging in via a text-mode protocol, running a VNC server,
and then connecting to a specified port. Linking VNC to XDMCP is described in Chapter 11, so consult
it for details.

12.3.3. DHCP Configuration

Thin clients are generally much simpler to configure if you use DHCP to help configure them,
particularly if you want the thin client to download its OS from a TFTP server. DHCP configuration is
described in more detail in Chapter 15, so if you're not already familiar with DHCP configuration,
consult that chapter.

Many thin clients actually use a protocol known as BootP for automatic
configuration via a BootP server. DHCP provides a superset of BootP
functionality, though, and common DHCP servers can configure BootP clients.
Thus, I describe DHCP configuration using the common Linux DHCP server. This
configuration should work with clients that use BootP.

In addition to the common options described in Chapter 15, you may want to add more options for
the benefit of thin clients:

allow booting

This global option enables support for clients that boot remotely.

allow bootp

This global option adds support for BootP, which is necessary for some thin clients.

option x-display-manager server.name

This option delivers the name of the XDMCP server for the network. Some X terminals use this
information to locate an XDMCP server, but not all do so. This option is important only if you're

http://lib.ommolketab.ir

using X as a remote GUI access tool.

option tftp-server-name "server.name"

You can tell thin clients where to go to find their boot files with this option, which takes the
hostname of the Trivial File Transfer Protocol (TFTP) server as an option.

next-server server.name

This option normally appears within a parameter block for a group of servers. It has an effect
similar to that of the tftp-server-name option, and you should normally give it the same

hostname or IP address as a value.

filename "/path/to/file"

This option also typically appears in a group with other options. It specifies the filename that a
server is to download from the TFTP server. For Preboot Execution Environment (PXE)-enabled
PXES clients, this should often be /pxes/pxelinux.0, which is essentially a PXE boot loader. For
EtherBoot clients, it should be the filename of the network bootable image you specified when
you enabled this support when configuring PXES. In either case, this filename is specified
relative to any chroot environment used by the TFTP server, if the TFTP server is run that way.
For dedicated thin clients, consult their documentation; they may come with a floppy disk or
CD-ROM with files that the TFTP server should deliver, and this parameter will do the job.

Consider Example 12-1, which shows a short but typical configuration for enabling network booting.
Many of these options are described in Chapter 15, so consult it for details. This listing points to an
XDMCP server and a TFTP server in the opening lines. It also creates a group with options for PXE-
bootable hosts, including an additional pointer to the TFTP server and a reference to the file that's to
be delivered to the clients. (To use EtherBoot rather than PXE, change the filename to point to an
appropriate .nbi file.) Two specific clients are defined in this group; you can create other groups with
other options. This might be handy if your thin clients have different needs, in terms of features such
as default resolutions or even the OSs they run. You can mix Linux-based PXES clients with dedicated
X terminals, for instance, by creating separate groups for each set of systems and identifying
individual clients by their hardware Ethernet addresses.

Example 12-1. Sample /etc/dhcpd.conf file to support booting thin
clients

allow booting;
allow bootp;

Standard configuration directives...
option domain-name "example.com";
option domain-name-servers ns1.example.com, ns2.example.com;
option routers 172.24.21.1;

http://lib.ommolketab.ir

#option resource-location-servers server.your.domain;
#option font-servers server.your.domain;
option x-display-manager xdmcp.example.com;
option tftp-server-name "tftp.example.com";

max-lease-time 120;
default-lease-time 120;

subnet 172.24.21.0 netmask 255.255.255.0 {
}

Options for PXE-bootable hosts
group {
 next-server tftp.example.com;
 server-name "dhcp.example.com";
 filename "/pxes/pxelinux.0";
 get-lease-hostnames true;
 use-host-decl-names on;

 host thin1 {
 hardware ethernet 00:0C:76:96:A3:73;
 fixed-address 172.24.21.101;
 }

 host thin2 {
 hardware ethernet 00:80:C6:F9:3B:BA;
 fixed-address 172.24.21.102;
 }
}

12.3.4. TFTP Configuration

Configuring your DHCP server to deliver information to clients is only part of the job. To do any good,
clients must be able to download Linux files from a server. The TFTP protocol was designed for this
task; it's a very simple file transfer protocol that's useful for clients with minimal software, such as
systems that haven't yet fully booted.

Despite the similarity in names, TFTP is not closely related to FTP. Most
importantly, an FTP server can't handle requests from TFTP clients; you must
install a TFTP server.

Most Linux distributions ship with a TFTP server, typically in a package called tftp. This server is
usually launched through a super server such as inetd or xinetd. A typical xinetd configuration, stored
in /etc/xinetd.d/tftp, looks like this:

service tftp
{
 socket_type = dgram

http://lib.ommolketab.ir

 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = -s /tftpboot
 disable = no
}

This configuration is fairly typical of xinetd-launched servers that use UDP. If your distribution uses
xinetd, chances are it ships with such a configuration file, but it may be disabled by default; you must
change disable = yes to disable = no.

This example also passes an argument to the TFTP server: -s /tftpboot. This option tells the TFTP

server to use the chroot() system call, which "locks" the running program in the specified directory,
making the server treat that directory as if it were the root directory for the system. This is a useful
security feature, and it has implications for file access and naming; all files served by the TFTP server
must reside in the specified directory tree, and references to files omit the name of the chroot
directory. For instance, the file /tftpboot/pxes/pxelinux.0 is referred to as /pxes/pxelinux.0 in client
configurations. Because boot clients receive their filenames from a DHCP server, this means you
must use these truncated filenames in DHCP server configurations.

In theory, you should be able to install and run the TFTP server on any
computer on your network. Unfortunately, some thin clients seem to assume
that the DHCP and TFTP servers are one and the same. Thus, if you have
problems getting some thin clients to boot, you may want to consolidate both
functions on a single computer.

http://lib.ommolketab.ir

12.4. Linux as a Thin Client

Because of its low cost and flexibility, Linux can make an excellent thin client OS. You can load Linux
on computers that aren't powerful enough to run the latest software, configure Linux to run
appropriate thin client software, and the computer can then access more powerful Linux, Windows, or
other computers.

In many respects, the simplest thin client configuration is to use a traditional Linux distribution or a
dedicated thin client package to run Linux as a thin client, using a basically traditional hardware
configuration, including a local hard disk or at least a CD-ROM drive. Perhaps the most appealing way
of doing the job is to use a dedicated thin client distribution, which provides you with precisely the
tools you needno more and no lessto use Linux as a thin client. However you do it, you can run Linux
without a hard disk using a bootable Ethernet card and configuring a system to deliver Linux OS files
to computers that boot with such a card.

12.4.1. Distribution Selection and Installation

Your first choice is what distribution to use on the thin client computers. The needs of a thin client are
such that a good desktop or server distribution may not be the best choice for a thin client. Many
popular distributions, such as Fedora, Mandrake, and SuSE, install many unnecessary desktop or
server applications that, in fact, may be undesirable on a dedicated thin client. These distributions
also often require a lot of disk space or memoryfeatures that may be lacking on the older computers
you want to convert to thin client status.

Among mainstream Linux distributions, those that install small standard package sets by default are
likely to be the best choices for thin client use. For instance, Debian, Gentoo, and Slackware can all
be installed in well under 1 GB of disk space, omitting such large packages as GNOME, KDE, Mozilla,
and OpenOffice.org. Even if users will ultimately run these packages, they'll probably be run from the
server, not on the thin client. Slimmer Linux installations are likely to lack a few components you
need, at least in their minimal installations. Most notably, you'll probably have to install an X server
(XFree86 or X.org-X11). Depending on the protocols used by your server, you may also need to
install a thin client package, such as a VNC client.

Another option, and one that's arguably superior even to the slimmed-down mainstream distribution
option, is to use a distribution that's dedicated to thin client use. Notable in this regard are the PXES
(http://pxes.sourceforge.net), LTSP (http://www.ltsp.org), and ThinStation
(http://thinstation.sourceforge.net) distributions. These are distributions that support the PXE
system, which is a way for computers to boot over a network from a remote server. These
distributions are useful tools if you want to divest yourself of a local hard disk, as described in Section
12.4.4, but you can also install these thin client distributions directly on a local hard disk or on a CD-
ROM to use on computers with network cards that don't support direct network boots.

12.4.2. Configuring PXES

http://pxes.sourceforge.net
http://www.ltsp.org
http://thinstation.sourceforge.net
http://lib.ommolketab.ir

Because PXES is designed explicitly for thin client use, this section describes it in more detail. You can
download PXES in several forms from its web site. The CD-R image (.iso) file is a quick way to get
started, particularly for testing its operation. This image file, though, is very generic; it runs in 800
600 mode by default and may not take proper advantage of your network's resources. To best use
PXES, you should download the pxes-base and pxesconfig packages, both of which are available in
RPM and tarball forms. You can then create a PXES image that's customized for your needs and can
be booted from a hard disk, from a CD-R, or from the network. This section uses PXES Version 0.8-9
as an example; if you use another version, it may differ slightly from what's described here.

Before you can use PXES (or any other thin client), you need to have a remote
login server configured. Chapter 11 describes this topic for Linux systems.
Some configurations also require you to run a TFTP server to deliver OS files to
the PXES thin clients. (The TFTP server can run on the same computer as the
remote login server, or it can be on another system.) The basics of TFTP
configuration are described in the earlier Section 12.3.4.

Once you've downloaded the base and configuration packages, install them on an existing Linux
distribution. (This system doesn't need to be the same as your ultimate login server; it's just a
platform for customizing the PXES client files.) You can then use the configuration utility to enter
details of your network's configuration and create a custom PXES image, which you can then burn to
a CD-R, place on a hard disk, or deliver to thin clients via TFTP. The configuration tool uses a wizard
to guide you through the configuration steps:

Create an entry in your /etc/fstab file for a special loopback device the configuration tool can
use to create a small RAM disk that will hold the PXES distribution:

/tmp/pxes.initrd /tmp/pxes ext2 loop,noauto,user,owner 0 0

1.

As root, type pxesconfig to launch the utility. The first screen of the PXES configuration wizard

should appear.

2.

Click Next in the wizard's window. The result should resemble Figure 12-1.

Figure 12-1. pxesconfig uses a wizard to guide you through the PXES
configuration tools

3.

http://lib.ommolketab.ir

Select the "Initialize ram disk contents" item in the "Initial ram disk" area of the window. The
program will warn you that the current RAM disk's contents will be destroyed. However,
because the package doesn't ship with a default RAM disk, nothing is destroyed unless you've
already run the program. This action makes a few more options available.

4.

If you want to use a kernel other than the default provided with the package, specify it on the
Kernel File Name line. Chances are the default kernel will work fine. Be sure to note the location
of the kernel and the other files specified on this page of the wizard.

5.

Check one or both of the "Enable network bootable image generation" or "Enable ISO 9660
bootable image generation" options if you want to use EtherBoot for network booting or a CD-R
disc for booting thin clients using local CD-R drives. I recommend you check both options,
simply so you'll have both in case you ever want them. The ISO-9660 image is particularly
handy for testing PXES without having to rely on your TFTP server, the client's ability to boot
from the network, and so on.

6.

Click Next. The result is a screen for specifying various hardware characteristics, as shown in
Figure 12-2. Chances are you can leave all these options alone, and PXES will autodetect the
hardware, but if you know what hardware your clients use, you can enter appropriate values.

Figure 12-2. PXES can autodetect most hardware types

7.

http://lib.ommolketab.ir

Click Next to configure local hardware, as shown in Figure 12-3. For initial testing, you may
want to leave these options disabled; however, if you want to give your users access to their
local hardware, enabling these options will be necessary in the long run.

Figure 12-3. PXES can grant login servers access to the thin client's
devices

8.

Click Next. The PXES configuration wizard gives you a choice of types of protocols to support.
You can specify multiple options, such as an X session using an XDMCP server as well as ICA.
One of the selected protocols must be the default. The local X session option provides a minimal
local X session, from which you can launch additional sessions. This can be handy if users need
to access multiple remote systems simultaneously.

9.

http://lib.ommolketab.ir

Some features are grayed out by default. These require the installation of
extra software, some of which is commercial. Consult the PXES
documentation for information on these protocols.

Click Next to configure assorted X options, as shown in Figure 12-4. The default options usually
work, but the defaults also support only 800 600 displays. If your thin clients can do better than
this, you may want to change this option. When connecting to modern Linux systems, XFree86
4.x often works better than XFree86 3.3.6, as well. If you know the capabilities of your thin
client's monitor (in terms of horizontal and vertical refresh rates), enter the correct values. If
you don't do this, you may not be able to use the monitor in your preferred resolution.

Figure 12-4. PXES lets you specify Linux-like options for your thin
client's video card and monitor

10.

Click Next, and the wizard displays a brief summary of your configuration.11.

Click Next. At this point, the configuration options diverge depending on the protocol options
you selected earlier. For instance, if you chose to support XDMCP, the tool asks you to enter
XDMCP options, as described for XDMCP clients in Chapter 11. You may run through several
such screens, one for each protocol.

12.

After entering information on your protocols, the configuration tool presents general
configuration options. You can have it delay starting X or connecting to remote servers, run a
local Telnet server for administrative purposes, and enable the use of per-client configuration
files (which can be handy if your thin clients vary substantially in their hardware or other
features).

13.

Click Next, and the system informs you that configuration is complete and is about to be saved.14.

15.

http://lib.ommolketab.ir

14.

Click Finish to finalize the configuration. The system presents a status dialog box as it prepares
an initial RAM disk image and performs various other tasks. When this dialog box reports that
configuration is complete, dismiss it, and pxesconfig terminates.

15.

The result of all this processing is one or more files you can use to boot a Linux-based thin client:

The kernel file

Although it's delivered with PXES rather than generated by it, you should note the location of
the kernel file, particularly if you want to perform a direct network boot of the thin client.

pxes-0.8.initrd

This file, located in /tftpboot/pxes by default, holds the initial RAM disk image, which is a tiny
but complete bootable Linux filesystem that's passed to thin clients in one way or another.

pxes-0.8.squash

This file is a compressed read-only filesystem image that's equivalent to the initrd image. Its
advantage is that it's usually smaller than an initrd image. It's usually stored in /tftpboot/pxes
by default.

pxes-0.8.nbi

This file is generated only if you select the network bootable image option. It's stored in
/tftpboot/pxes by default and is necessary for some types of network boots.

pxes-0.8.iso

This file, stored in /tmp by default, is a CD-R image file and is created only if you chose the ISO
image option when configuring PXES. You should burn it to CD-R if you intend to boot your thin
client using a CD-ROM drive.

12.4.3. Testing Your PXES Image

Now that you've created a PXES system, it's time to use it. One good way to test it is to use the CD-R
image file. Using a Linux program such as cdrecord or a GUI front-end such as X-CD-Roast, burn the
image file to a CD-R disc. (Alternatively, you can transfer the image file to a Windows, Mac OS, or
other computer and use its CD-R drive.) You can then place the CD-R you've created in the CD-ROM
drive of a computer that's configured to boot from its CD-ROM drive and boot the computer. Testing
in this way eliminates the possibility of errors in certain network-specific servers and configurations,

http://lib.ommolketab.ir

such as TFTP. If the CD-R boot works, you can move on to a network configuration and be sure that
any problems you encounter there are network-related, rather than problems with the basic PXES
configuration.

When booting a PXES image, you're greeted by a boot prompt that asks you what protocol you want
to use. Type the number associated with the protocol (such as 2 for XDMCP), followed by the Enter

key. If you just press the Enter key, PXES boots and runs the default protocol you selected when
configuring the system. Once you select the protocol, you'll see typical Linux kernel boot messages
scroll by.

After a few seconds of kernel messages, the system will be booted. Depending on your configuration
options for the protocol you selected, you may now be asked for certain details, such as the
hostname of the remote system you want to use. After you enter this information, or if you entered
this information in the configuration phase, the screen will clear and you'll see either a system-
selection screen (similar to the XDMCP chooser shown earlier in Figure 11-6) or a GUI login screen
for the computer you've contacted. You should now be able to log in and use the computer as if you
were sitting at its console.

If you pick the screen option when booting PXES or if you chose Local X Windows Session as your

default option and run this default, PXES boots into a simple Linux desktop with a handful of icons
along the left edge of the screen for initiating various types of connections. When launched, these
tools can open connections to other computers in their own windows, as shown in Figure 12-5. This
figure shows an indirect XDMCP login session and, in front of that, a VNC session open to a Linux
system that's configured to interface to its own local XDMCP server.

Figure 12-5. PXES can display separate windows on different remote
systems

When you're done with a PXES session, log out of the remote system as you normally would. Usually,
PXES will then redisplay your login or system-selection menu, enabling you to begin again. If you
want to shut off the computer, simply flip its power switch. Unlike normal disk-based Linux systems,
a PXES thin client doesn't need to be shut down with a special command. Although it's got a local
filesystem, it's a temporary one in a RAM disk, and it will be recreated from the boot medium the
next time PXES boots. Thus, you needn't be concerned about corrupting the local PXES computer's

http://lib.ommolketab.ir

filesystem.

12.4.4. Booting a Thin Client from the Network

PXES is a great tool; however, using it by booting off of a CD-R isn't optimal. After all, much of the
appeal of PXES is being able to use it with diskless workstations that can boot automatically from the
network, and relying on CD-Rswhich can be lost or damaged, as well as the CD-ROM drives to read
themreduces the appeal of PXES.

As already noted, the PXE part of the PXES name refers to a network boot protocol. This protocol is
promoted by Intel as a way to boot diskless workstations; however, PXES uses it to enable network
boots of a Linux-based thin client. You should consult the documentation for your thin client's
motherboard to determine if it's PXE-enabled. If it is, enable the PXE boot option in the BIOS to boot
the system from the network. This option also requires a supported Ethernet card; consult your
motherboard's documentation to learn what works.

Some motherboards' PXE support requires you to press a key, such as F12, at
a specific point in the boot process. This can be tricky to do because it's easy to
miss this point. You might even prefer using a floppy-assisted boot rather than
rely on such an unintuitive network boot feature.

If your computer isn't PXE-enabled, you may still be able to boot from the network, but you'll need a
network card that supports network boots in its own BIOS. Many low-cost cards sold today lack this
support, so you may need to replace the card. Sometimes you can add an EPROM chip to the card to
add this support; check the EtherBoot project (http://www.etherboot.org) for information on doing
this. If your system supports EtherBoot, you need to enable that support when you configure PXES,
as described earlier, and specify the EtherBoot files when you configure your DHCP server, as
described in the earlier Section 12.3.3.

As a last resort, you may be able to boot partially from the network, by employing a boot floppy that
contains the minimal code necessary to have the network card continue the boot process from the
network. One way to accomplish this goal is to use the universal boot floppy that's distributed as part
of Thinstation (http://thinstation.sourceforge.net). This floppy disk includes boot code that's
compatible with EtherBoot; when you boot from the floppy, it continues the boot process as if your
network had an EtherBoot-compatible network card.

However it's done on the client side, the client relies on two servers to obtain information and an OS:
a DHCP server and a TFTP server. These servers may be your remote login server, but they need not
be; you can use some other computer to fill these roles.

http://www.etherboot.org
http://thinstation.sourceforge.net
http://lib.ommolketab.ir

12.5. Summary

By keeping the computers most people use simple and placing most programs on remote GUI login
servers, you can reduce your overall computing costs and reduce your total administrative effort.
Using such thin clients does impose certain needs, though; although the thin client computers
themselves can be simple, they require more powerful login servers and better network infrastructure
than you'd otherwise need. Linux can play a role in thin client computing as an operating system with
which you can turn outdated desktop systems into thin clients, as the server the end users log into,
or both.

http://lib.ommolketab.ir

Part V: Additional Server Programs
Previous parts of this book have focused on coherent collections of topics, such as file sharing
servers or login servers. This section, though, examines a few networking "stragglers"servers
that aren't easily grouped together with similar tools. Chapter 13 covers mail servers, using the
Simple Mail Transfer Protocol (SMTP), the Post Office Protocol (POP), and the Internet Message
Access Protocol (IMAP). Chapter 14 describes using Linux as a backup servera system that's
used to back up other computers on a network. Finally, Chapter 15 describes several
miscellaneous serversspecifically, a Dynamic Host Configuration Protocol (DHCP) server,
Domain Name System (DNS) servers, and Network Time Protocol (NTP) servers.

Many of the servers and protocols described in this part of the book are themselves quite
complex, and entire books have been written about most of them. Thus, these servers and
protocols are in no way trivial or unimportant. The intent of this part of the book is to introduce
the basics of configuring the servers described and to illustrate where such servers can fit in a
network. You should be able to get any of these servers working in a basic way after reading
the relevant chapter, but for more advanced configurations, you may need to consult server-
specific documentation.

http://lib.ommolketab.ir

Chapter 13. Configuring Mail Servers
Email is a particularly important part of most networks' functioning. Many businesses rely on email
for both internal and external communications. Naturally, then, Linux can function as an email
servera computer that receives, stores, and forwards email for end users. As part of this function, a
Linux mail server can filter out spam and worms from email, thus reducing both nuisance factors and
security threats. Linux's advantages as a mail server over Windows include the low costs of the
server and of add-on filters for spam and worms, as well as Linux's reliability and immunity to the
Windows-based worms that are such a problem today. Even if you already run a Microsoft Exchange
email server, Linux can be an excellent supplement to this server, providing filtering features that
might require paying extra to obtain in Windows.

This chapter begins with a look at common email protocols and some common server software to
implement them on Linux. Most of the chapter is devoted to basic configuration of the sendmail and
Postfix servers, as well as to additional servers that can be used to deliver mail to clients. Filtering
mail for spam, worms, and viruses requires its own coverage, as does a tool that can help users
integrate mail delivered to outside ISPs into their own local mail systems.

http://lib.ommolketab.ir

13.1. Linux Mail Server Options

Before delving into the process of configuring mail servers, you should understand the role of mail
servers on a network. The most basic issue is the distinction between push and pull protocols, which
differ in whether the sender or the recipient initiates the transfer. Depending on your needs, you
might want to configure a push server or a server that runs both push and pull protocols. You should
also know what options are available for both push and pull server programs. On a Windows-
dominated network, you may already have a Microsoft Exchange server, so knowing how to fit a
Linux server into this existing configuration is important. Finally, running a mail server is not risk-
free; they can be abused in various ways, and understanding a bit about the threats will enable you
to plan your installation to minimize the risks.

13.1.1. Push Mail Versus Pull Mail Protocols

The most common email protocol today is SMTP, which is an example of a push mail protocolthe
sender initiates the data transfer. Typically, a user runs a mail client (also known as a mail user
agent, or MUA) to send the mail to the SMTP server (which is also referred to as a mail transfer
agent, or MTA). The SMTP server then delivers the message to other servers, which then send it on
until it reaches its destination. This chain can run for an arbitrary length.

Traditionally, users have had login accounts on the mail server computer and have used mail readers
on the computer itself. This configuration, though, requires either mail delivery using SMTP to users'
desktop computers or login accounts for all users on a central mail server. Both options are a bit
awkward, so a second class of mail server protocols exists: pull mail protocols. These protocols
enable the client to retrieve (pull) the mail from the server. If an SMTP server that's the ultimate
destination for a message runs a pull mail server, a user on a desktop computer can run a mail
reader that supports the pull mail protocol to read mail directly from the desktop computer, as
illustrated in Figure 13-1. Two pull mail protocols are common today: POP and IMAP. (The differences
are described in more detail shortly.)

Figure 13-1. A pull mail server enables users to read mail using mail
clients on their local computers

Of these two pull mail protocols POP is the simpler one. It provides a single storage area for each
user's messages; users then download the messages and immediately delete them from the server.
(Mail readers typically delete the messages automatically.) Users can then create local folders on
their desktop computers using the email clients and store their messages that way. IMAP, on the
other hand, supports mail folders on the mail server computer, as well as more sophisticated options
for retrieving parts of messages. IMAP, isn't quite as well supported as POP, but its ability to store
messages in folders on the server helps when users frequently use multiple computers.

http://lib.ommolketab.ir

As a practical matter, most networks now use POP, IMAP, or a similar protocol (such as Microsoft's
MAPI) for the final leg of email delivery. If you want to use Linux as a pull mail server, you certainly
can; several POP and IMAP servers are available for Linux and are described in a later section. These
servers can work with Linux, Windows, and other clients. If you're not sure whether to use POP or
IMAP, you can install and use servers for both protocols; however, each user should probably use
just one protocol. Mixing them can cause confusion; for example, messages disappear from an IMAP
inbox after a POP client has been used.

13.1.2. Linux SMTP Server Options

Quite a few SMTP servers are available for Linux; however, four servers are the most popular and
readily available. These servers differ in their design philosophies, mail storage formats (mbox or
maildir, described in more detail shortly), ease of configuration, popularity, and other features:

Exim

This server, headquartered at http://www.exim.org, uses a monolithic design: one program
does most of the work. It supports both mbox and maildir storage formats, with mbox being
the default. This is the default server on Debian GNU/Linux and some of its derivatives.

Postfix

This server is a modular mail server, meaning that various subtasks of mail delivery are
handled by separate programs. In theory, this makes it easier to write a server that's free of
security-related bugs. Postfix supports mbox and maildir formats, with mbox being the default.
Some distributions, including Mandrake and SuSE, now use Postfix as the default mail server.
You can learn more at http://www.postfix.org.

qmail

This server uses an unusual license that's not quite open source: binary redistribution is
prohibited unless certain conditions are met. Thus, qmail isn't the default mail server for any
major Linux distribution. This server supports both mbox and maildir email storage formats,
with maildir being the default. Like Postfix, qmail uses a modular design. Overall, it's the least
compatible with sendmail, which makes it harder to replace sendmail with qmail than to
replace sendmail with Postfix or Exim; but qmail has a devoted band of followers.

Sendmail

The most popular mail server for years has been sendmail (http://www.sendmail.org), which
uses a monolithic design and supports the mbox mail storage format. In the 1990s, sendmail
acquired a bad reputation for security problems, but such problems have become much rarer
since the late 1990s. The main sendmail configuration file format is confusing at best, so most

http://www.exim.org
http://www.postfix.org
http://www.sendmail.org
http://lib.ommolketab.ir

administrators use a metalanguage, known as m4, to create configuration files, but even the
m4 configuration files aren't as easy to handle as the files for most other Linux mail servers.

Throughout the 1990s, sendmail ran on a majority of the mail servers in existence, according to most
studies of the issue. More recently, though, sendmail has declined in popularity, while others (Exim,
Postfix, qmail, and others, including Windows mail servers) have risen in popularity. Despite this
decline, sendmail remains a very popular (perhaps still the single most popular) mail server program
on large mail server computers. For this reason, sendmail configuration is described later in this
chapter. Because it's becoming popular as the default server on many Linux distributions, this
chapter also describes Postfix configuration. Although Exim and qmail are both perfectly good mail
servers, they aren't described in this chapter, in order to keep the chapter's size manageable. If your
Linux system is already running one of these servers, you can either try to find equivalent options to
those described here or you can replace your current server with Postfix or sendmail. Most Linux
distributions ship with at least two or three SMTP servers, or at least make them available in an
online file repository. You can also check the mail servers' web sites for links to versions for your
distribution.

The preceding descriptions referred to the local mail storage formats supported by each server. The
mbox format uses a single file, to which email messages are appended. Each user has a mailbox,
typically somewhere in the /var directory tree, to which the server adds messages as they arrive. The
maildir format, on the other hand, stores messages as individual files in a directory. Users' incoming
messages may be stored in subdirectories of users' home directories. Each format has its adherents,
but your primary consideration should be compatibility. Local mail clients and pull mail servers must
be able to read messages in the appropriate format. Some programs are limited in their capabilities,
which can dictate your choice of options for the SMTP server, or even completely rule out an SMTP
server. If you're building a mail system from scratch, you might want to assemble a list of software
you want to use, based on features and recommendations from others, then pick the file format
based on what your collection of software supports. If you wish to replace an existing SMTP server
program, the simplest approach is to pick one that supports whatever format you're currently using.

13.1.3. Linux POP and IMAP Server Options

Just as with SMTP, several POP and IMAP servers are available for Linux. Some packages support
only one protocol, but many support both. Many of the servers are limited to just one mailbox
format, though, and some of the IMAP servers use their own format for folders other than the inbox.
On the whole, you may need to hunt a bit to find the server that best suits your needs.

Courier

This server, located at http://www.courier-mta.org, is a complete mail server package,
including support for SMTP, POP, IMAP, and other protocols. Although the full Courier package
isn't one of the "big four" SMTP servers, the POP/IMAP component (available separately from
http://www.courier-mta.org/imap/) is moderately popular. It provides access to mail stored in
maildir format but not mbox.

Cyrus IMAP

http://www.courier-mta.org
http://www.courier-mta.org/imap/
http://lib.ommolketab.ir

Although IMAP is part of this popular server's name, it supports both POP and IMAP. Cyrus
IMAP stores POP mail in mbox format but uses its own format for IMAP folders. This server
provides more options than some and emphasizes encrypted authentication protocols using its
own password database. You can learn more at http://asg.web.cmu.edu/cyrus/imapd/.

Dovecot

This server, headquartered at http://dovecot.org, is a fairly recent entry to the POP and IMAP
server field, but it's rapidly becoming a popular server. It supports both protocols, as well as
both mbox and maildir file formats. The Dovecot documentation indicates that it was written
with security as a primary focus. This server provides more options than many POP and IMAP
servers, so it's worth investigating if you have unusual needs.

nupop

This server was designed for environments hosting a large number of users; it aims to operate
as efficiently as possible. It supports POP but not IMAP and maildir but not mbox. Check
http://nupop.nuvox.net for more information.

popa3d

Security, reliability, standards compliance, and performance are the primary goals of popa3d,
which is a POP server headquartered at http://www.openwall.com/popa3d/. It's designed to
support mbox mail files, but a patch that provides maildir support is available on its web site.

qmail-pop3d

This program is part of the qmail package (http://www.qmail.org). As such, it's most often
used with qmail and employs the maildir format that's the default for qmail. This is a POP-only
server.

QPopper

Despite the Q in their name, this server is unrelated to qmail. Versions prior to 4.0 were
commercial servers, but as of Version 4.0, the server is open source. It's a POP-only server
that works with the mbox mail format. Check http://www.eudora.com/qpopper/ for more
information.

UW IMAP

The University of Washington IMAP server (http://www.washington.edu/imap/) has long been
the default POP and IMAP server in Linux. This server, which uses the mbox format, is easy to

http://asg.web.cmu.edu/cyrus/imapd/
http://dovecot.org
http://nupop.nuvox.net
http://www.openwall.com/popa3d/
http://www.qmail.org
http://www.eudora.com/qpopper/
http://www.washington.edu/imap/
http://lib.ommolketab.ir

get running but provides few options to fine-tune its operation.

Most of these servers use normal Linux authentication mechanisms, such as Linux's PAM (described
in more detail in Appendix A), although some provide options for using or must use some other
authentication mechanism. Broadly speaking, UW IMAP is usually the simplest server to configure,
and it's usually adequate for small sites, particularly if you want to use POP rather than IMAP. (IMAP
use with UW IMAP may be complicated if users also have shell access, because the server hardcodes
the location of IMAP folders in the user's home directory, which can be awkward. This isn't a problem
if users don't have shell access to the server, though.) Dovecot has recently been gaining in
popularity and is worth investigating if you find UW IMAP too limiting. Any of the other servers may
also be good choices for particular usesfor example, if you only want to use POP or if you want to
provide access to maildir-format mailboxes. This chapter describes running UW IMAP later, in Section
13.4.

13.1.4. Mail Security Concerns

Mail servers, like all servers, are potential security risks. In fact, mail serversand particularly SMTP
serverscan be more vulnerable than you might at first think, because they must perform some
operations as root. For instance, when storing mail, the server needs to be able to write to arbitrary
users' mail queues, which are owned by their respective users. This means that mail servers must
run as root, and the complexity of modern SMTP servers means that bugs in the code can give clever
intruders access. This is why modular mail servers are, theoretically and all other things being equal,
potentially safer than monolithic servers. By isolating tasks that must be run as root to separate
programs, other mail server programs can run as non-root users, reducing the risk that a bug will
lead to a system compromise.

That said, recent versions of the monolithic Exim and sendmail servers don't have bad security
reputations. I can't promise that you won't encounter problems if you use one of them, but the risk
isn't unmanageable for most sites.

In recent years, another email security concern has come to dominate the news: worms and viruses.
(Most of these are technically worms by most definitions, but the term virus is frequently applied to
them all.) An email worm is a piece of code sent via email that, when run, replicates and sends copies
of itself to others, usually via email. Typically, such worms are sent as attachments that appear
innocuous. They also might rummage through victims' address books to locate new addresses, so
recipients may trust the worms because they know the apparent senders.

Worms have become a serious threat; outbreaks have become fairly frequent, and the sheer number
of worms being sent requires extra storage capacity, faster CPUs, and better network connections on
mail servers than would otherwise be required. When a new worm is released and spreads rapidly,
the demands placed on all these resources spike, often beyond the capacity of the hardware to cope
with the problem.

Another security issue with email is that SMTP servers send their mail without encryption. This
doesn't pose a direct security threat to the mail server computer, but it does mean that email can be
intercepted and read if any system between the source and the destination is compromised. For this
reason, sensitive data such as passwords and credit-card numbers shouldn't be sent via email. One
approach to fixing this problem is to equip mail clients with encryption tools such as the GNU Privacy
Guard (GPG; http://www.gnupg.org). Two GPG-equipped systems can send encrypted messages to
each other, although the SMTP protocol itself remains unencrypted.

http://www.gnupg.org
http://lib.ommolketab.ir

http://lib.ommolketab.ir

13.2. Configuring Sendmail

Sendmail has long been the most common SMTP server. Although its popularity has dropped
somewhat in recent years, it remains the dominant mail server on the Internet at large and is the
standard mail server installed in many Linux distributions, including Fedora, Red Hat, and Slackware.

To configure sendmail, you must first know where to find its configuration files, understand their
formats, and know how to create and modify these files. These tasks are trickier in sendmail than in
most other mail servers, which is one of sendmail's big drawbacks compared to other popular Linux
mail servers, especially for new mail administrators. This chapter looks at three particularly important
areas of sendmail configuration: address options, relay options, and antispam options.

Sendmail is an extremely complex server, so this chapter can only begin to
scratch its surface. If you need to do more with sendmail than is described
here, you should consult its own documentation or a book on sendmail, such as
O'Reilly's sendmail or sendmail Cookbook.

13.2.1. Sendmail Configuration Files

The main sendmail configuration file is called sendmail.cf, and it's usually located in /etc, /etc/mail,
or some other subdirectory of /etc. Unfortunately, this file is very difficult to edit directly because the
configuration options are numerous and have formats that are fairly obtuse. For this reason, few
people even attempt to edit this file directly. Instead, they use the m4 utility to create a sendmail.cf
file from a file with a simpler format.

In order to use the m4 utility, though, it must be installed on your system. What's more, the utility
relies on a series of support files, which may be installed from yet another package. In Fedora and
Red Hat, for instance, you must install the sendmail-cf package. Look for the m4 package on your
distribution medium, and also look for any likely sendmail m4 configuration packages. (They're likely
to include sendmail in the package names.)

The m4 tool converts a file with a name that typically ends in .mc into sendmail's sendmail.cf.
Unfortunately, the precise name used varies from one distribution to another. For instance, in Fedora
and Red Hat, it's /etc/mail/sendmail.mc, whereas in Slackware it's
/usr/share/sendmail/cf/cf/sendmail-slackware.mc. To perform the conversion, you use the m4
command, piping the .mc file into this command and redirecting output to the desired file:

m4 < /etc/mail/sendmail.mc > /etc/mail/sendmail.cf

This command overwrites the existing /etc/mail/sendmail.cf file. For safety, you
should back up this file by copying it to another location before running this
command.

http://lib.ommolketab.ir

Once you've rebuilt the configuration file, you must restart sendmail. In most cases, this can by done
by passing a restart or reload argument to the sendmail SysV startup script:

/etc/rc.d/init.d/sendmail restart

Alternatively, you can use kill to send a SIGHUP signal to the sendmail process. This procedure can be

less disruptive than completely restarting sendmail, and so it may be preferable.

Before you do this, however, you must make changes to your sendmail .mc file. Compared to the .cf
file, the .mc file is simple and comprehensible. Most options are set in parentheses using a define or
FEATURE keyword:

define(`SMART_HOST',`smtp.pangaea.edu')
FEATURE(always_add_domain)

Additional option names exist, but these two account for many of the sendmail features. The
parameters passed to these options are sometimes enclosed in single quotes, but unlike most
configuration files, the opening and closing quote characters are different: The opening quote is
actually a backtick (`), located to the left of the 1 key on most keyboards. The closing quote is an
ordinary single quote character ('), located to the right of the semicolon (;) key on most keyboards.

The sendmail .mc file uses the string dnl to denote a comment. Many sample configurations include

quite a few options that are commented out by placing this string at the start of the line. Sometimes
a hash mark (#) also appears on the line, but this character isn't an actual comment character; it's

just there for the benefit of users who are accustomed to seeing a hash mark used as a comment
marker.

In addition to the main sendmail .cf and .mc files, other files serve to hold ancillary data:

access.db

This binary file is created by the makemap utility from a plaintext file that often has the same
name with a different or no filename extension. This file controls which computers may interact
with the sendmail server and in what ways. This information is particularly critical for sendmail
relay configurations, as described shortly.

aliases.db

This file is a binary file created by makemap or newaliases. (Passing the -bi option to sendmail

also does the job.) This file defines aliasesthat is, mappings of email addresses onto other
email addresses. For instance, most distributions set up an alias of postmaster to root, so that
root receives mail addressed to postmaster.

These files usually appear in /etc/mail or sometimes in /etc. If you examine the .mc configuration file,

http://lib.ommolketab.ir

you'll probably find references to these files. Chances are you shouldn't modify these references,
although you may want to adjust the files' contents, particularly if you need to adjust your relay
configurations.

13.2.2. Sendmail Address Options

In a basic sendmail configuration, the most important settings relate to ports and addressing. Some
distributions ship sendmail configured to bind only to the localhost (127.0.0.1) address. The result is
that the server can be accessed only from the local computer. This can be a good configuration if
you're running a desktop system that shouldn't accept outside SMTP connections, but for a mail
server, you probably don't want this restriction. Check the sendmail .mc file for a line like this:

DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')dnl

If this line is present, and you want the server to accept outside connections, add dnl to the start of

the line to comment out this option. If you don't see a line like this, you don't need to make any
changes.

Another address-related option is to set the server's hostname. Frequently, the server has a specific
hostname, such as smtp.pangaea.edu, but you want mail from your users to use your domain name
only, such as linnaeus@pangaea.edu, rather than linnaeus@smtp.pangaea.edu. Frequently, mail
clients can set this address; however, if you find that some of your outgoing mail sets an incorrect
domain or includes a hostname in the address, you can have sendmail change this by including the
following lines in the .mc file:

MASQUERADE_AS(`pangaea.edu')
FEATURE(masquerade_envelope)

Of course, you'd change pangaea.edu in the first line to your own domain name. The first line tells
sendmail what should appear to the right of the at sign (@) in email addresses if users' mail clients
don't specify an address. The FEATURE(masquerade_envelope) line takes this a step further, by

masquerading the address provided in email headers, which are normally invisible to users. If you
don't use these options, sendmail assumes that its hostname is as set on the computer (as
determined by the gethostbyname() system call), but sendmail won't adjust the address in outgoing
email.

An important part of the email addressing scheme is setting the mail exchanger
(MX) entry in your domain's DNS record. This record tells sending mail servers
the name of your domain's mail server computer, so that mail addressed to
linnaeus@pangaea.edu is sent to smtp.pangaea.edu. Chapter 15 describes DNS
configuration, including setting the MX record.

13.2.3. Sendmail Relay Options

An important part of any SMTP server configuration is setting mail relay options. A mail server can
function as a relay (that is, accept mail that's destined for another location) or use a relay (that is,

http://lib.ommolketab.ir

send outgoing mail by way of a server other than the ultimate destination). Setting these options so
that sendmail does what you need it to do without doing too much can be tricky sometimes.

If a mail server accepts relays from systems or users who shouldn't be able to
use it for this purpose, the server is known as an open relay. Such mail servers
are easily abused by spammers, so open relay configurations should be avoided
at all costs.

13.2.3.1 Configuring sendmail to relay mail

Sendmail is frequently employed as a mail relay server for a network. That is, you configure mail
clients to send all outgoing mail via the Linux sendmail server. Out of the box, though, recent
versions of sendmail refuse such relay attempts as an antispam precaution. You can loosen this
configuration using any of several options, specified within a FEATURE specification:

relay_entire_domain

This option tells sendmail to perform a DNS lookup on a sending computer's IP address and to
accept relay attempts if the resulting hostname is within your domain. This is a quick and easy
way to enable relaying, but it can be abused; spammers can modify their own networks' DNS
servers to provide a reverse lookup in your domain, thus tricking your system into accepting
undesirable relays.

relay_local_from

If you use this option, sendmail accepts any mail for relay so long as the From: address in the

message is in sendmail's local domain. This address is very easily forged, though, and so is a
poor option in most cases.

relay_based_on_MX

This option is another DNS-based rule. It tells sendmail to accept mail for relaying if the mail is
destined for a domain that lists the sendmail server in its MX record.

relay_hosts_only

With this option, sendmail looks up the sending system in a database (described shortly); if the
specific computer that's attempting to relay mail is listed in the database, the mail is accepted.

access_db

http://lib.ommolketab.ir

This option is similar to relay_hosts_only, but it employs a more flexible interpretation of

data in the database, enabling you to list entire domains. Many default sendmail configurations
use this option by default, albeit with an empty initial database.

Another relay option is promiscuous_relay, but this option should never be

used. It tells sendmail to accept all relay attempts. This configuration is
effectively an invitation to spammers to abuse your system.

As an example, suppose you want to use the access_db method. You might then include a line like

the following in your sendmail .mc file:

FEATURE(`access_db')

Some configurations add more options within the parenthesessay, to specify the method of encoding
data and the access database filename (normally /etc/mail/access.db). The access_db and
relay_hosts_only options are the safest ways to configure mail relays, and they both use the same

access.db configuration file. This file is a binary database file that's built from a text-mode file,
typically called access. This text-mode file consists of lines that take the following format:

host.specification CODE

In addition to these lines, the file may contain additional modifiers, as well as comments that begin
with hash marks (#). The host.specification takes the form of IP addresses, IP address groups
(specified by incomplete IP addresses, as in 192.168.24 for the 192.168.24.0/24 network),
hostnames, domain names, or email addresses. If you use relay_hosts_only, though, specifications

must match individual computers, not groups of computers. The CODE tells sendmail what to do with

mail from the specified computers:

OK

Sendmail should accept mail for local delivery from the specified host.

RELAY

Sendmail relays mail that originates from or is addressed to the specified host.

REJECT

The server should refuse any message from the specified host using a 5xx code. Many senders

generate a bounce message in response to such a code.

http://lib.ommolketab.ir

DISCARD

The server should accept and then discard any message from the specified host; no bounce
message is generated.

As an example of an access file, consider the following:

localhost.localdomain RELAY
localhost RELAY
127.0.0.1 RELAY
spammer@abigisp.net DISCARD
iamspam.biz REJECT
192.168.24 RELAY

The first three lines tell sendmail to relay mail that's generated locally (on the localhost address,
using any of three common names for that system). Such lines are common in default sendmail
configurations. The next line tells the system to quietly discard mail from spammer@abigisp.net; but
this rule has no effect on mail from other users of abigisp.net. The fifth line rejects (refuses with a
bounce message) mail from the iamspam.biz domain. The last line authorizes sendmail to relay mail
that originates from the 192.168.24.0/24 address range, which is presumably the server's own local
network.

Once you've created an access file, you must convert that file to binary form using the makemap
command:

makemap hash /etc/mail/access.db < /etc/mail/access

Many distributions include an appropriate command as part of their sendmail startup scripts, so you
may not need to explicitly enter this command.

13.2.3.2 Configuring sendmail to use a relay

Mail relaying involves at least three systems: the source, the destination, and the relay. The
destination requires no special configuration, and the last section described the relay itself. On the
source side, though, sendmail can require special configuration. Sometimes, the source computer
doesn't run sendmail at all; a source might be a desktop system running a mail client. You can,
though, use sendmail as a mail source. For instance, the source system might be a Linux computer
that runs programs that assume the local computer is running sendmail and that therefore try to
send mail using the server. Another configuration is to have a Linux computer serve as both a relay
and a source for another relay. For instance, you might want a Linux server to handle mail for your
local network but to relay it through an ISP's mail server. In either case, you must configure
sendmail to use another computer as a relay.

By default, sendmail looks up the recipient's address via DNS and attempts to
deliver the mail directly. If you configure sendmail to use a relay, as described
here, it bypasses this attempt, and instead delivers the mail to the specified
relay system.

http://lib.ommolketab.ir

Most distributions' default sendmail configurations don't use a relay. You can add one to the mix by
adding one or more lines to your .mc configuration file:

define(`LOCAL_RELAY', `outgoing.mail.relay')

define(`MAIL_HUB', `outgoing.mail.relay')

define(`SMART_HOST', `outgoing.mail.relay')

The first line applies to outgoing mail that lacks a domain or machine name (for instance, mail
addressed to ben); the second applies to mail addressed to users on the computer on which sendmail
is running (for instance, ben@armonica.pangaea.edu, where sendmail is running on
armonica.pangaea.edu); and the third applies to mail addressed to all other systems.

A somewhat simpler way to implement relaying is to use another line:

FEATURE(`nullclient', `outgoing.mail.relay')

This line, however, is intended for use in otherwise nearly empty configuration files. Only the
FEATURE(`nocanonify') option should be used with it.

In all these cases, you must adjust the outgoing.mail.relay to point to the server you want to use

as a relay.

13.2.3.3 Configuring sendmail to forward mail

Particularly when your domain has multiple mail servers or is connected to multiple networks, you
may need to configure the system to forward mail in different ways depending on its source or
destination. For instance, consider the "gatekeeper" Linux mail server in Figure 13-2. The intent of a
configuration like this is to use Linux to provide useful preliminary processing on incoming mail, such
as spam filtering and directing email to the correct internal mail server. This server can also pass mail
between the two internal servers and filter outgoing mail.

Figure 13-2. Linux can serve as a gatekeeper for one or more other mail
servers

Typically, the Linux SMTP server is listed as the domain's MX server, so external systems will deliver
mail to it. Likewise, the internal mail servers, and perhaps individual client systems, can deliver
outgoing mail to the Linux server. The trick is to configure the Linux server to deliver mail correctly,
without getting into an infinite loop. For instance, you don't want the server to attempt to deliver mail
for your domain back to itself, because this creates an infinite loop. One solution is to use a feature
known as a mailer table. This can be activated with a line like this in the sendmail .mc file:

FEATURE(`mailertable')

http://lib.ommolketab.ir

This entry may include additional options, such as a pointer to the mailer table database file (typically
/etc/mail/mailertable.db). Check your .mc file for the default entry, if it exists. As with many other
sendmail files, this one relies on a text-mode file that's converted into a binary database file. The
text-mode mailertable file contains entries like this:

.subnet1.pangaea.edu smtp:exchange1.pangaea.edu

.subnet2.pangaea.edu procmail:/etc/procmailrcs/exchange2

This configuration tells the server to deliver mail addressed to any computer in the
subnet1.pangaea.edu subdomain to exchange1.pangaea.edu using SMTP and to deliver mail
addressed to any computer in the subnet2.pangaea.edu subdomain using Procmail and the
/etc/procmailrcs/exchange2 Procmail rule set. The first line results in a simple forwarding and so may
not be extremely useful; you can just set up your DNS MX record to point directly to that computer.
The second line, though, enables you to employ Procmail, which can be used as an interface to spam
filters and other tools, on mail passed through the server. Procmail is described in more detail later in
this chapter, in Section 13.5.4.

http://lib.ommolketab.ir

13.3. Configuring Postfix

Postfix is an alternative to sendmail that ships with most major Linux distributions, although many of
them don't install it by default. If your distribution doesn't ship with Postfix but you want to try it,
check the Postfix home page (http://www.postfix.org) for source code download links. You might be
able to install a binary package intended for another distribution, but chances are you'll need to
modify or replace the SysV startup scripts.

As with sendmail, configuring Postfix for your network requires understanding the main Postfix
configuration files. You can then set the main Postfix options, including those relating to addressing,
relaying, and spam control.

Postfix is a very complex server, so this chapter can present only the basics of
its configuration. For more information, consult the documentation at the
Postfix web site or a book on the subject, such as Postfix: The Definitive Guide
(O'Reilly).

13.3.1. Postfix Configuration Files

Linux Postfix binary packages typically store configuration files in /etc/postfix. The main configuration
file in this directory is main.cf, which controls the overall Postfix configuration. This file consists of
comments, which are denoted by lines beginning with hash marks (#) and option lines of the form:

variable = value

The variable is typically a descriptive name, such as relayhost to set the hostname of another

SMTP server that's to act as a mail relay. The value can be a hostname, IP address, filename, or

other string. Sometimes a value can have multiple components, separated by commas. A value can

also refer to an earlier variable by name: precede the earlier variable name by a dollar sign ($),
as in myorigin = $mydomain to set the myorigin variable to be identical to mydomain.

The default main.cf file is extremely well commented, so you can learn a great deal about the
configuration and how you can change it by reading the comments. Further information, including
information on obscure options not mentioned in the default comments, can be found in the online
Postfix documentation.

After making changes to main.cf, you should tell Postfix about those changes.
The simplest way to do this is to type postfix reload.

In addition to the main.cf file, Postfix relies on several other configuration files. Most of these are

http://www.postfix.org
http://lib.ommolketab.ir

binary database file with filenames ending in .db. These files are similar in purpose to sendmail's
database files; they control username aliases, relay host mapping, and so on. Like the sendmail files,
the Postfix database files are generated from plain-text files that typically take the same name as the
database file but without the .db extension. Some of these files are described in upcoming sections.

13.3.2. Postfix Address Options

The Postfix address options begin with setting the server's name. As with sendmail, Postfix uses
gethostbyname() to determine the computer's hostname and sets the hostname it reports to other
systems appropriately. You can override this feature by setting myhostname:

myhostname = smtp.pangaea.edu

Two related options are mydomain and myorigin. The first of these sets the server's Internet
domain; it defaults to the value of $myhostname minus its first component, as in pangaea.edu if
$myhostname is smtp.pangaea.edu. The myorigin variable sets the hostname that Postfix appends
to email addresses that don't specify a hostname. The default value is $mydomain, but you can
change this to $myhostname or any other value, as appropriate.

If you want to force outgoing mail to have a particular return hostname, you can use the
masquerade_domains option. You pass a domain name to this option, and hostnames within that
domain are stripped down to the domain portion. For instance, if you set this option to pangaea.edu,

and a user sends mail that has a return address of linnaeus@gingko.pangaea.edu, Postfix changes
the outgoing address to linnaeus@pangaea.edu. This can be a handy option for coping with clients
that insist on adding their own hostnames to outgoing mail. Mail with return addresses outside of the
pangaea.edu domain are unaffected by this line, though. The masquerade_classes option affects the
precise parts of the mail that are affected. You can set this to one or more of envelope_sender (the
sender in the mail envelope), header_sender (the sender in the mail header), and
header_recipient (the recipient in the mail header, typically used to strip hostnames from incoming

mail). Typically, one or both of the first two options is used.

Still more complete address rewriting can be accomplished with the help of a file called
sender_canonical. You specify the use of this file with the sender_canonical_maps option in main.cf:

sender_canonical_maps = hash:/etc/postfix/sender_canonical

You then edit the sender_canonical file so that each line holds an original email address or address
fragment followed by the address or matching fragment you want substituted:

FETCHMAIL-DAEMON@localhost postmaster@pangaea.edu
@mandragora.example.com @pangaea.edu

These lines tell Postfix to replace FETCHMAIL-DAEMON@localhost with postmaster@pangaea.edu and
to change any address at mandragora.example.com with the matching address at pangaea.edu.
Once you've edited this file, type postmap sender_canonical. This command creates a

sender_canonical.db file from the text-mode sender_canonical file.

When receiving mail, Postfix uses the mydestination variable to determine what addresses it's to

http://lib.ommolketab.ir

treat as local. Mail addressed to any user at any of the $mydestination addresses is passed to local

users; mail addressed to other addresses is relayed to that address, assuming relaying is authorized.
You can set multiple hostnames for mydestination by separating them with commas, as in:

mydestination = $myhostname, localhost.$mydomain, mail.pangaea.edu

13.3.3. Postfix Relay Options

Most default Postfix configurations relay mail from the local network and deliver mail directly to the
destination server without using an outgoing relay. Thus, if you want to fine-tune your relay
configuration or use an outgoing mail relay system, you must adjust your Postfix configuration. You
may also want to make changes if you want Postfix to deliver incoming mail to other servers, such as
to Microsoft Exchange servers, using Postfix as a spam filter, mail sorter, or in some role other than
the final destination system.

13.3.3.1 Configuring Postfix to relay mail

The default Postfix configuration relays mail under certain limited circumstances:

The sender is on one of the $mynetworks networks. This defaults to the IP subnet on which the
computer resides, but you can change it by setting mynetworks to a list of IP address ranges or

by pointing to a file that holds this information. Alternatively, you can change
mynetworks_style. This variable defaults to subnet, which sets the default behavior; however,
you can set it to host, which causes Postfix to trust only the local machine. Setting
mynetworks_style to class causes Postfix to trust the computers on the same class A, B, or C

subnet on which it resides, which often (but not always) results in the same behavior as setting
it to subnet.

The sender is in one of the domains specified by relay_domains. This variable defaults to
$mydestination.

The sender is attempting to relay mail to a computer in $relay_domains or to a computer on
the $mynetworks networks.

Overall, these defaults are laxer than those of sendmail. If you don't want your computer to relay
mail at all, you should restrict these settings:

mynetworks = 127.0.0.0/8

relay_domains = smtp.pangaea.edu

The first line tells Postfix to relay only mail from the localhost address. The second sets the relay
domain to the server's hostname (you should adjust it for your system, of course). A configuration
that relays for some computers and networks, but not quite the default set, is also possible; for
instance:

mynetworks = 127.0.0.0/8, 172.24.0.0/16, 192.168.24.0/24
relay_domains = $mydestination, pangaea.edu

http://lib.ommolketab.ir

This configuration tells Postfix to relay mail for two subnets by IP address, for the local domain
($mydestination), and for the pangaea.edu domain.

13.3.3.2 Configuring Postfix to use a relay

If Postfix should send mail through another computer as a relay, you should use the relayhost

option to do the job. This option accepts a hostname as an option; Postfix sends mail through that
system. Alternatively, you can provide a domain name if that domain's MX record points to an
appropriate server. For instance, suppose you want to relay mail through relay.pangaea.edu:

relayhost = relay.pangaea.edu

If you're in the same domain as the outgoing mail relay and if your domain's
MX record points to the server you want to use, you can use $mydomain as the

value of this option. Doing so has the advantage of adjusting automatically
should you change your mail relay; Postfix can track the change using the MX
record in your DNS server.

If your local DNS server is unreliable or if you use non-DNS methods of local name resolution, you
may want to include the disable_dns_lookups = yes option. Ordinarily, Postfix uses DNS in

preference to other name resolution methods; disabling this causes Postfix to use whatever name
resolution methods are defined locally, such as your /etc/hosts file.

13.3.3.3 Configuring Postfix to forward mail

Postfix, like sendmail, can serve as a system that forwards incoming mail to its final destination.
(Figure 13-2 illustrates this configuration.) The most basic method of configuring such a system is to
use what Postfix refers to as a transport map. You point to a file containing this map with the
transport_maps option:

transport_maps = hash:/etc/postfix/transport

Such a line may already be present in your default configuration, so check for it before adding it. As
with other Postfix references to outside databases, this one uses a text-mode file
(/etc/postfix/transport) that's used to create a binary database with a similar name
(/etc/postfix/transport.db). The plaintext file has a format that's similar to sendmail's mailertable. For
instance, you can have Postfix deliver messages addressed to users in the subnet1.pangaea.edu
subdomain to exchange1.pangaea.edu and use Procmail with the /etc/procmailrcs/exchange2
configuration file for addresses in the subnet2.pangaea.edu subdomain with a configuration like the
following:

.subnet1.pangaea.edu smtp:exchange1.pangaea.edu
subnet1.pangaea.edu smtp:exchange1.pangaea.edu

http://lib.ommolketab.ir

.subnet2.pangaea.edu procmail:/etc/procmailrcs/exchange2
subnet2.pangaea.edu procmail:/etc/procmailrcs/exchange2

This configuration actually includes two lines for each subdomain. The lines with names that begin
with dots (.subnet1.pangaea.edu and .subnet2.pangaea.edu) handle mail explicitly addressed to
systems within the subdomain. The lines with names that lack leading dots handle mail addressed to
the subdomain itself (such as ben@subnet1.pangaea.edu).

http://lib.ommolketab.ir

13.4. Configuring POP and IMAP Servers

SMTP servers tend to attract a lot of attention; after all, Internet mail delivery runs mostly over
SMTP. Still, pull mail protocolsPOP and IMAPare just as important in many situations. Typically, users
configure their desktop computers' email clients to contact POP or IMAP servers in order to read their
incoming mail. Knowing how to handle these servers' configurations is therefore quite important. In
the simplest cases, this requires launching the servers and setting authentication options. Most
sophisticated servers provide additional options, though.

13.4.1. Launching POP and IMAP Servers

POP and IMAP servers vary in how they're launched. For the popular and simple UW IMAP, the typical
method of launching and controlling the server is via a super server. (This method doesn't scale up
very well, though, so for a busy server system, you might want to look into launching the server via
a SysV startup script, or even running a server that uses this configuration by default.) On
distributions that use xinetd as the super server, the UW IMAP package typically ships with one or
more files in /etc/xinetd.d. Typically, each file starts the server to handle a single protocol (POP or
IMAP, sometimes with variants for different protocol versions or to add encryption). A typical entry
looks like this:

service imap
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /usr/sbin/imapd
 disable = yes
}

Most distributions disable most or all of the servers by default, by setting the disable = yes option.
To enable the server, you must delete this line or change it to read disable = no. You must then
restart xinetd, typically by typing /etc/init.d/xinetd restart or something similar. Thereafter,

xinetd responds to incoming requests for the protocols you've enabled. If you want the server to
respond to multiple protocols, you must be sure to enable them all.

If your distribution uses inetd as a super server, you may need to add one line to /etc/inetd.conf for
each protocol you want to use. These lines set the same options that you'd set in the xinetd
configuration:

imap stream tcp nowait root /usr/sbin/tcpd imapd

This example uses tcpd (that is, TCP Wrappers) to manage the server. You can therefore use the TCP

http://lib.ommolketab.ir

Wrappers configuration files, /etc/hosts.allow and /etc/hosts.deny, to provide access restrictions
based on IP addresses. (You can enable similar restrictions using xinetd's built-in features if you use
it as your super server.)

Some POP and IMAP servers, such as Dovecot, are more commonly launched via their own SysV
startup scripts. To launch such servers on a one-time basis, you typically pass the start option to

their startup scripts:

/etc/init.d/dovecot start

To configure the server to start automatically when you boot the computer, you must set up your
SysV links appropriately. Many distributions provide tools to help with this task, such as chkconfig
(used by Fedora, Mandrake, and SuSE, among others) or rc-update (used by Gentoo). Consult
distribution-specific documentation for more information on these tools.

13.4.2. Setting Authentication Options

The UW IMAP server provides no authentication options, in the sense of command-line arguments or
configuration file entries, that affect authentication. (In fact, UW IMAP has no main configuration file.)
UW IMAP, though, does use the Linux PAM system for authentication. As such, you can edit the IMAP
PAM configuration files to change how IMAP authenticates users. Typical UW IMAP installations
actually provide two PAM files, one for POP and one for IMAP: /etc/pam.d/pop and /etc/pam.d/imap.
Thus, you can use different authentication options for POP as for IMAP. Some POP and IMAP servers
call their PAM configuration files something else; for instance, Dovecot uses /etc/pam.d/dovecot,
which controls both POP and IMAP access.

If your server uses the local Linux password database for POP and IMAP authentication, the default
UW IMAP PAM configuration files should work fine. If you want to use another authentication tool,
though, such as an NT domain controller or a Kerberos server, you need to modify the PAM
configuration files. This topic is described in detail in Appendix A.

Using Kerberos, or any other encrypted network authentication tool, via a PAM
configuration encrypts the authentication between the POP or IMAP server and
the authentication database, but not between the POP or IMAP server and its
client. If you want to encrypt the authentication between the POP or IMAP
server and its client, you must either tunnel the protocol in some way (say, via
SSH) or use a server and client that support an encrypted exchange natively.
The encrypted versions of POP and IMAP are commonly referred to as POPS
and IMAPS, respectively.

More sophisticated POP and IMAP servers, including Cyrus IMAP and Dovecot, support their own
authentication tools instead of or in addition to PAM. These servers often include configuration
options to enable the authentication methods you want to use, so consult their documentation for
details.

13.4.3. Additional Options on Advanced Servers

http://lib.ommolketab.ir

UW IMAP is easy to set up and configure, but it's inflexible; you can't change features such as where
it looks for IMAP folders except by editing the source code and recompiling it. Using more
sophisticated servers is, of course, an option; however, doing so opens up many additional options,
some of which can be tricky to configure. As an example, consider Dovecot
(http://www.dovecot.org), which is rising rapidly in popularity. This server uses the /etc/dovecot.conf
configuration file to hold options, which take the form:

option = value

For the most part, the default options work well; however, you might want to peruse the file or the
Dovecot documentation to learn about its configurable features. As with many Linux configuration
files, dovecot.conf uses hash marks (#) as comment characters, and the default file is well

commented.

Dovecot provides options relating to protocol support (protocols, which takes one or more values
such as imap and pop), SSL options, an option to disable cleartext authentication
(disable_plaintext_auth), the default mailbox format to use (default_mail_env), options to

enable special authentication methods, and so on.

http://www.dovecot.org
http://lib.ommolketab.ir

13.5. Scanning for Spam, Worms, and Viruses

Unwanted email is arguably the worst problem facing email administration today. Two types of
unwanted email are common: spam and worms/viruses. Spam is unsolicited bulk email, usually
commercial in nature. Most spam markets worthless body-enhancement products, questionable
financial advice, and so on but is more of a nuisance than a threatat least, if you ignore the
substantial network bandwidth that spam consumes. Worms and viruses, on the other hand, are
malicious computer code that, if executed on an unprotected computer, can spread and cause
damage. Despite the fact that spam is quite different from worms or viruses in their intent, the two
classes of junk email can be combated in similar ways.

The distinction between worms and viruses is a tricky one to define and
depends on who you ask. Thus, I don't try to distinguish the two types of
menaces in this chapter, and hereafter I use the word worm to refer to both
types of program. Sometimes I refer to "spam-fighting tools" or the like. Such
tools can often be used to fight worms, as well, but such phrases omit this
detail for brevity's sake.

Dealing with spam and worms requires first knowing a bit about the types of approaches to dealing
with the problem. One of the tools that can be used to directly combat spam and worms is Procmail,
so I describe it shortly. Procmail can also be used to invoke other spam-fighting tools. SpamAssassin
and Bogofilter are two such antispam tools. Finally, as a site policy issue, you may want to place
suspicious attachments in a special holding area until you can examine them.

13.5.1. An Antispam and Antivirus Tool Rundown

Spam and viruses are difficult to detect. This is particularly true of spam, because spam identification
is somewhat subjective: one person's spam may be another person's desirable commercial
communication. The line between worms and non-worms is clearer, but worms can also be difficult to
distinguish between legitimate email attachments, particularly in some environments (for instance, if
you have a legitimate business reason to send or receive executable files). For this reason, the
number of spam-fighting tools available is quite large. Indeed, the number of approaches to fighting
spam and worms is large. Here are some general methods:

Blackhole lists

This approach, described in the earlier sections on sendmail and Postfix, relies on central
authorities maintaining databases of IP addresses from which messages shouldn't be accepted
or should be accepted only with caution. Typically, these databases are updated frequently,
based on spam reports from their users. This method is best implemented in receiving SMTP
servers because they receive direct connections from the sending systems and therefore aren't

http://lib.ommolketab.ir

easily tricked into believing the message originated from a false IP address. (Headers are easily
forged, so the originating IP address can be obfuscated by clever spammers if another system
does this check.) Note that this approach doesn't test the message's content; it's based solely
on the IP address and so is susceptible to false alarms should an address send both spam and
nonspam messages.

Distributed hashes

Some network databases work on more than the originating IP address; they store hashes of
entire spam messages. When your server receives a message, it can hash the message (minus
its headers) and query a network server for the presence of this hash. If it's present, it means
that somebody else has received an identical message and entered it as spam in the hash
database. This approach is a potentially powerful one, but it can be easily "poisoned" with
respect to legitimate mailing lists; that is, individuals can classify mailing list messages as
spam, which can then cause these legitimate messages to be misclassified as spam. You can
work around this problem by creating a "white list" (see entry later in this list) of addresses
that aren't tested against a distributed hash system.

Simple pattern matches

Examining the message's content is the most reliable way to identify spam. The simplest type
of examination relies on simple pattern matches. For instance, you might decide that any
message containing the word Viagra is spam, and discard it. This approach can be
implemented in either the SMTP server or in add-on software, such as Procmail. It has the
disadvantage of great potential for false alarms, particularly if your rules are too broad. For
instance, if you discard all messages containing the word Viagra, you may catch a lot of spam,
but you'll also discard legitimate email to people who are actually corresponding with others
(perhaps their doctors) about this drug. Maintaining a good set of pattern match rules can also
be quite time-consuming, although some packages, such as SpamAssassin, aim to minimize
this problem by providing frequent updates to a general rule set.

White lists

A white list is a list of addresses or keywords that trigger automatic acceptance of a message.
They're frequently used with simple pattern matches or other spam-catching tools in order to
minimize the risk of discarding important messages. Typically, you add your regular
correspondents to your white list, and their messages get through even if another rule would
reject them. They're usually implemented using the same tools that can perform simple pattern
match rejections.

Challenge-response tests

A challenge-response system is a variant on white lists. When a message arrives from a source
other than one that's on the white list, the recipient automatically sends a challenge to the
message source. This challenge is a message asking the sender to perform some action to

http://lib.ommolketab.ir

prove that the message isn't spam, such as to respond with a keyword. Automated spamming
systems can't cope with this request, but humans can. Once a response is received, the original
message is delivered, and the sender is usually added to the white list. This method of spam
fighting can be quite effective, but it can generate more traffic and, because they must respond
to challenges, places an extra burden on those who send mail. A poor implementation can also
result in a continuous loop of challenges to challenges, should two systems use similar systems
that don't exempt challenges to their own challenges.

Statistical tests

A spam-catching tool that emerged on the scene in 2002 involves statistical tests (often called
Bayesian tests, after Bayes' Rule, a statistical principle they employ). These tests use a
database of words, word pairs, and other message features. Typically, you feed the software a
sample of spam and another sample of nonspam, and the software adds up the number of
times a word appears in each category. For instance, Viagra might appear 50 times in spam
and once in nonspam, whereas Linux might appear 50 times in nonspam and once in spam. If
a message with the word Viagra is analyzed, then, a statistical filter will give it a high
probability of being spam. The analysis is typically based on many words, though, so a single
word isn't likely to "poison" an analysis, as can happen with simple pattern matches. One
statistical spam filter, Bogofilter, is described in more detail later. Some tools, such as
SpamAssassin, employ statistical tests as part of their overall operation.

These same tools can detect worms, although some worm-detection tools rely on an analysis of the
binary file that's attached to the message rather than English words in the message body. (Some
worms can also be reliably identified by their message texts.)

Some tools are hard to classify in just one way. For instance, Procmail directly implements pattern-
matching tests but can call other tools that use other methods. The upcoming sections describe
Procmail, SpamAssassin, and Bogofilter in more detail.

13.5.2. Sendmail Antispam Options

One way to deal with spam and worms is to use SMTP server features. One of these features in
sendmail has already been described: the access.db file, in conjunction with the
FEATURE(`access_db') option in your sendmail .mc file. You can block mail from sites known to

send nothing but spam using this technique. Unfortunately, the world of spam is a fast-changing one,
so by the time you add a hostname or address to this list, chances are the spammer will have started
using another. The sheer quantity of spam also makes this approach an awkward one. Nonetheless,
you can use this method for some particularly persistent offenders.

Another spam-fighting approach is to use a blackhole list, which is a frequently updated list of sites
that are known or suspected spam sources or that shouldn't be sending email directly. Blackhole lists
work as services, much like DNS: your mail server queries the blackhole list with the IP address of a
connecting server that's trying to initiate a connection, and the blackhole list server returns a value
that indicates the sender's status. To use a blackhole list, you enter a line like the following in your
sendmail .mc file:

FEATURE(`dnsbl', `relays.ordb.org', `"550 Email rejected due to sending
server misconfiguration - see http://www.ordb.org/faq/\#why_rejected"')

http://lib.ommolketab.ir

This line tells sendmail to use the blackhole list at relays.ordb.org and to include a message with a
URL in bounced emails. (This enables senders to check the messages, should nonspam messages be
bounced.) Of course, this raises a question: how do you know which blackhole list to use? Many are
available. You may want to peruse http://www.declude.com/Articles.asp?ID=97 or
http://www.moensted.dk/spam/ for pointers to more than 100 blackhole databases with varying
criteria for inclusion and other features. Some are free; others require you to pay for the privilege of
using them. If you like, you can include multiple blackhole list definitions, each on its own line.

More sophisticated spam-fighting techniques require additional software. In particular, you can add
Procmail to the mix to filter on keywords or to call other programs to check your incoming email in
various ways. This topic is covered in a later section. If the sendmail server is an intermediary
system, you may want to call Procmail as part of the forwarding configuration, as described earlier, in
Section 13.2.3.3.

13.5.3. Postfix Antispam Options

Postfix provides a number of antispam options, some of them are quite sophisticated. In addition,
you can use Procmail as a delivery agent to call external programs or perform checks Postfix alone
can't handle.

One of the simpler Postfix antispam configurations is to use a blackhole list. One main.cf option
enables this feature:

smtpd_client_restrictions = reject_rbl_client relays.ordb.org

The smtpd_client_restrictions option tells Postfix when to reject mail. The reject_rbl_client

value corresponds to a positive lookup in the blackhole list database specified after this value
(relays.ordb.org in this example). Postfix can use the same blackhole lists as sendmail; consult

http://www.declude.com/Articles.asp?ID=97 or http://www.moensted.dk/spam/ for pointers to more
than 100 blackhole databases. Other values can be added to this line, separated by commas, to
reject mail from systems that don't have matching DNS A records for their PTR records
(reject_unknown_client), to check an external database for rejection rules (check_client_access

type:table), and so on. Consult the Postfix documentation for details.

Prior to Version 2.0, Postfix used a pair of options to achieve the effect
described here. Specifically, maps_rbl_domains contained a comma-separated
list of blackhole list servers; these were used only if the reject_maps_rbl
option was passed to smtpd_client_restrictions.

Spam and worms can often be identified by the presence of strings in message headers or bodies.
For instance, you might know from experience that any message with a subject of earn $$$ is spam

and can be discarded. Postfix includes several options that check message headers and bodies for
such content:

http://www.declude.com/Articles.asp?ID=97
http://www.moensted.dk/spam/
http://www.declude.com/Articles.asp?ID=97
http://www.moensted.dk/spam/
http://lib.ommolketab.ir

header_checks

This option points to a file that contains checks that are applied to message headersthe parts of
a message that contain the subject, the return address, etc. Typically, you'll check headers for
suspicious email subjects, senders, and perhaps recipients.

mime_header_checks

Increasingly, email messages use Multipurpose Internet Mail Extension (MIME) to encode
special formatting and nontextual data. MIME extensions are also loved by spammers and
worm authors because they can deliver text that's harder to identify as spam or malicious
computer code. You can use this option to point to a file that matches suspicious MIME
headers. This option is available in Postfix 2.0 and later, and defaults to $header_checks.

nested_header_checks

Users and programs sometimes attach one email message to another. To search such attached
messages' headers, you can use this option, which is available only in Postfix 2.0 and later, and
defaults to $header_checks.

body_checks

This option searches email messages' bodiesthe parts of the message that users read, as
opposed to the headers. Scanning message bodies can be a good way to identify worms and
spam. This option is available only in Postfix 2.0 and later.

All of these options take an external filename, along with a code for the file's format, as an option.
This file is typically a plain-text file or a database file that's derived from a plain-text file. The
resulting entry in main.cf looks something like this:

header_checks = pcre:/etc/postfix/header_checks

The pcre code stands for Perl compatible regular expression. Alternatively, you can employ regexp

to use non-Perl regular expressions. In either case, lines in the original text file take the specified
form followed by one of the following action codes:

DISCARD optional text

Accepts the message for delivery but quietly rejects it. If optional text is present, enter it in

the mail logs; otherwise, log a generic message.

http://lib.ommolketab.ir

DUNNO

Moves on to the next input line. This option is synonymous with OK.

FILTER transport:destination

Passes the message through the external content filter, as specified by the transport method

(smtp, procmail, and so on) and destination (a hostname or filename, typically). The filter

receives the message only after Postfix has examined all the message's lines, so the message
can be rejected before the filter is called.

HOLD

Places the message in the hold queue, which is a sort of limbo in which the message is neither
delivered nor discarded. A system administrator can examine the hold queue using the postcat
command and release messages from the queue or destroy them using postsuper.

IGNORE

Ignores the current line of input and moves to the next one.

PREPEND text

Places the specified text at the start of the input line. This can flag lines for further spam

processing.

REDIRECT user@domain

Sends the message to the specified user rather than the recipient specified by the mail's
envelope. This feature can be used to forward mail for users who have moved elsewhere, as an
alternative method of forwarding mail to internal servers, and in other ways. However, many
potential uses of this action are better achieved through other means.

REJECT optional text

Rejects delivery of the message. If you specify optional text, it's passed to the sender; if not,

a generic error message is delivered to the sender.

WARN optional text

http://lib.ommolketab.ir

Logs a warning with the specified optional text in the mail log file. This action is intended

primarily for testing new rules before implementing them.

Many of these action codes are available only in Postfix 2.0, 2.1, or later. As an example of their use,
consider the following entries:

Subject headers indicative of spam
/^Subject: ADV:/ REJECT
/^Subject: Accept Credit Cards/ DISCARD
Additional header checks
/^(From|Received):.*iamspam\.biz/ REJECT
/^From: spammer@abigisp\.net/ FILTER procmail:/etc/procmailrcs/maybespam

This set of rules rejects mail with a subject header of ADV: or with from or received headers that
include the string iamspam.biz. It also discards mail with a subject header of Accept Credit Cards

and passes mail from spammer@abigisp.net through a Procmail filter, /etc/procmailrcs/maybespam.
This filter presumably performs additional checks that are too complex for Postfix to handle by itself.

In addition to its own checks, Postfix can send mail through Procmail for processing. In fact, using
Procmail is usually the default. If in doubt, check your main.cf file for a line like the following:

mailbox_command = /usr/bin/procmail

When called in this way, Procmail is used for final message delivery. You can call it in other ways,
such as in a FILTER action in a header check. Broadly speaking, Procmail is a more powerful way of

looking for suspicious patterns in email than Postfix's own rules. Procmail can also be customized on
a user-by-user basis, which is harder with Postfix's rules. Thus, you may prefer to use Procmail
alone, rather than use Postfix's pattern matching tools. The main advantage of Postfix's rules is that
they can be used to reject messages before they're fully received. In particular, if a header check
causes a message to be rejected, Postfix refuses delivery before many bytes are transferred. This
feature can help conserve bandwidth, at least if you can devise rules that correctly identify large
spams or worms from their headers alone. Procmail delivery rules, by contrast, operate only after the
mail server has accepted the mail for delivery. Unfortunately, spammers and worm writers have
become very good at disguising their unwanted emails' headers, so you may have no choice but to
accept the entire email in order to properly identify it. The topic of spam and worm control is covered
in more detail later in this chapter.

13.5.4. Using Procmail

Procmail is a very powerful mail processing tool. It does far more than spam filtering; it can redirect
mail based on nonspam criteria, sort mail into folders, copy messages for archival purposes, pass
mail through arbitrary external programs, and more. Still, one of Procmail's main applications is as a
spam-fighting tool; you can use its native pattern-matching features to discard mail or shunt it into a
suspected spam folder. You can also pass messages to external programs for tests that Procmail
can't handle by itself.

Using Procmail requires calling it in some way. Typically, you do so by configuring your SMTP server
to call Procmail as part of its mail delivery process. You can then move on to Procmail configuration.
To configure Procmail you need to understand the Procmail configuration file format and be able to

http://lib.ommolketab.ir

create Procmail recipes, which are the rules used to direct mail in Procmail.

13.5.4.1 Calling Procmail

The first step in Procmail use is to ensure that your mail system uses it. Most Linux SMTP server
configurations use Procmail by default, so you may not need to change anything about your basic
SMTP configuration to use Procmail. If you're in doubt, though, or if you want to fine-tune the
configuration, you can check some settings:

Sendmail

You should set three options in the sendmail .mc file to use Procmail. The first of these is:

define(`PROCMAIL_MAILER_PATH', `/usr/bin/procmail')

This tells sendmail where to find the Procmail binary. (Some configurations put this option in another
configuration file, but you can override it in your sendmail .mc file if you need to do so.) The
remaining options are FEATURE(`local_procmail') and MAILER(procmail), which collectively tell

sendmail to use Procmail for local deliveries. As described in the earlier Section 13.3.3.3, you can
also call Procmail in other ways, such as in a forwarding configuration.

Postfix

To call Procmail as part of the Postfix delivery rules, you must tell Postfix to use the Procmail
binary as part of its delivery system: mailbox_command = /usr/bin/procmail. As described in

an earlier section, you can also tell Postfix to use Procmail in mail forwarding configurations.

13.5.4.2 The Procmail configuration file

Procmail can use one or more of several configuration files:

/etc/procmailrc

This file is the global Procmail configuration file. It's called as root to process all the mail that
the SMTP server handles. For spam-control purposes, you use this file to apply rules you want
to use on all the email that's delivered to your local users. Typically, this means you use it to
apply rules that are very unlikely to result in false alarms.

~/.procmailrc

http://lib.ommolketab.ir

Individual users can create .procmailrc files in their home directories. These files have the
same format as /etc/procmailrc, but they're applied only to email directed to specific users.
This enables users to apply their own customized Procmail rules. Alternatively, you can provide
some standard configuration files in specific locations and allow users to create symbolic links
to those files to achieve preset effects.

Other configuration files

Some methods of calling Procmail, such as those that use Procmail as part of mail forwarding
schemes, enable you to pass the name of a configuration file to Procmail. Sometimes these
reside in a directory such as /etc/procmailrcs, but that location is arbitrary.

Procmail runs as the user who calls it, although when it's called as root, it can
drop its privileges under some circumstances. A rule that works well in
~/.procmailrc (when Procmail is called as the end user) may not work well
when placed in /etc/procmailrc (when Procmail is called as root), or vice versa.
Typically, you must be more careful about file permissions when calling
Procmail as root, because writing to or creating a file (such as a mail folder) as
root can make that file inaccessible to ordinary users, such as the mail's
intended recipient.

Whatever its name, a Procmail configuration file consists of three parts: comments (denoted by hash
marks), environment variable assignments (similar to those in bash, such as MAILDIR = $HOME/Mail),

and recipes (described next). The bulk of most Procmail configuration files consists of its recipes.

13.5.4.3 Creating Procmail recipes

Procmail recipes consist of three parts: the identification line, the conditions, and the action. The idea
is that the action is initiated when the conditions are met. For instance, a condition might be that the
string Viagra appear in the message body, and the action might be that the message is sent to

/dev/nullthat is, that the message be discarded. The form of the recipe is as follows:

:0 [flags] [:[lockfile]]

[conditions]

action

The identification line always begins with :0; that's just the convention. The flags are described

shortly; they specify where Procmail looks for condition matches, how it matches, and so on. The
lockfile is a file that controls access to a mail file. If a file is locked, Procmail defers operating on it.

Normally, a single colon (:) is sufficient, but you can specify the filename, if necessary. The
conditions are technically optional, but in practice, most recipes have at least one condition line. (A

recipe with no conditions lines matches all mail messages.) Including multiple conditions causes

Procmail to require all of them to match before an action line is implemented. Precisely one action

is required for each recipe.

http://lib.ommolketab.ir

Procmail's default behavior is to match conditions against message headers in a case-insensitive

way. Several flags are available to change how Procmail handles these matches, though. Here are

the more common:

H

This value does matches on message headers, which is the default.

B

This value does matches on message bodies.

D

This value does a case-sensitive pattern match, as opposed to the normal case-insensitive
match.

c

Ordinarily, if a recipe matches, it's passed to the action, which may discard it, alter it, or

otherwise make the original inaccessible. This option causes the action to act on a "carbon

copy" of the original message, which is useful if you want to, for example, send a duplicate
copy of a message to another account or mail folder.

w

This value causes Procmail to wait for the action to complete. If the action fails, Procmail

leaves the message in the queue for other recipes.

W

This option is similar to w, but it suppresses error messages.

f

This option pipes a message through another program, treating that program as a filter.

The Procmail recipe conditions can look like Greek to the uninitiated. Each begins with an asterisk
(*), followed by a regular expression. At its simplest, a regular expression is simply a string that

http://lib.ommolketab.ir

must match exactly. For instance, the regular expression Viagra matches the word Viagra in the

input. Many characters have special meanings, though, such as:

^

A caret symbol indicates the start of a line; for instance, ̂ Viagra denotes the string Viagra,

but only at the start of a line. Many conditions begin with a caret.

$

This character signifies the end of a line.

.

A period matches any single character except for an end-of-line character. For instance, h.t

matches hat, hut, hot, or any other similar string.

x*

This string (where x is any single character) matches any number of x characters, including
none. This is often combined with a dot (.), as in .*, to match any arbitrary group of

characters.

x+

This expression works much like x*, but matches any occurrence of one or more x characters,

rather than 0 or more.

x?

This string matches zero or one x characters.

(string1|string2)

This expression matches one of two strings by separating them by a vertical bar within
parentheses. This principle can be extended to more than two strings, as well.

http://lib.ommolketab.ir

(string)*

This expression matches zero or more instances of the specified string.

[chars]

Placing characters within square brackets causes Procmail to match any one of the enclosed
characters. For instance, [abcz] matches any one of the characters a, b, c, or z. You can
specify a range of characters by using a dash, as in [c-j] to indicate any letter between c and
j.

\

The backslash character removes the special meaning from the subsequent character. For
instance, to match a dot, you enter \. in the conditions.

!

This character appears only at the start of a conditions line and reverses its meaning; that is,

if the regular expression matches, the recipe does not match.

?

Like !, this character appears only at the start of a conditions line. It tells Procmail to use the

exit code of the specified program.

Regular expressions can be extremely complex, so you may need to consult the Procmail manpage or
another source of information on regular expressions to learn more. The next section provides some
examples.

Finally, each Procmail recipe ends with an action. Each action can take any of several forms:

A filename

An action that takes the form of a filename indicates that the message is to be stored in the

specified file, which is treated as an mbox mail folder.

A subdirectory name

A filename that ends in a slash (/) is interpreted as a subdirectory name, in which case

Procmail stores the message in this subdirectory in maildir format.

http://lib.ommolketab.ir

!

An exclamation mark denotes a list of email addresses to which the message should be
forwarded. This can be useful for setting up individual mail forwarding to another system.

|

Procmail treats a vertical bar as a pipe character, much like bash. Its presence at the start of
an action tells Procmail to pass the message to an external program for further processing.

{

You can nest multiple tests by using a left curly brace as the action line; subsequent lines,
until a right curly brace (}), constitute one or more additional recipes that are used only if the

initial recipe matches. You can use this feature to control whether or not to perform certain
tests; for instance, to perform spam checks only if mail doesn't come from certain addresses
(that is, to implement a white list).

Because Procmail supports just one action per recipe, you may need to create an external script if

you want to perform some complex action. Be sure your external script reads the entire message. If
it doesn't, Procmail may send the message through additional recipes, which can result in duplicate
deliveries.

13.5.4.4 Examples of Procmail recipes

Example 13-1 shows a sample Procmail recipe file intended for use by individuals. (When used by the
system, some file ownership issues can arise. This problem can be avoided by adding a DROPPRIVS =
yes line to the start of the file.) This example illustrates several useful techniques:

Nesting

The first rule contains two nested subrules, the intent being to exclude mail from two regular
correspondents from spam checks, which are nested. The nested rules are indented to set
them off, but this indentation isn't required.

Spam checks

The two spam-check rules look for strings that are indicative of spam. The first searches
message bodies for the string 301 followed by 0 or more characters, followed by S, 0 or more
characters, and 1618. This string is found in some spams that reference a failed piece of U.S.

legislation, S.1618, which dealt with spam. The legislation failed years ago, but spam still

http://lib.ommolketab.ir

references it, as if to legitimize itself. The second spam check looks for a string in subject
headers that identifies messages encoded using a system that's common for certain Asian
languages. Most non-Asian users seldom or never receive nonspam mail with such subject
headers, but a lot of spam uses them.

Flags

Several rules use flags to search the text of messages or to create carbon copies.

Mail sorting

The spam messages are "sorted" to /dev/null, which effectively discards the messages. The
last rule saves mail from a mailing list (identified by a unique "to" header) into the genetics-list
mbox mail folder in the $MAILDIR subdirectory, which is identified on the first line of the recipe

file.

Example 13-1. Sample Procmail recipe file

MAILDIR = $HOME/Mail

Do some spam checks, but exclude anything from good addresses
:0
! ^From:.(goodguy@pangaea\.edu|linnaeus@example\.com)
{
 :0 B
 * ^.*301.*S.*1618
 /dev/null

 :0
 * ^Subject:.*=\?big5\?*
 /dev/null
}

Forward mail from goodguy@pangaea.edu with "peas" in the
subject line to mendel@luna.edu
:0 c
* ^From:.*goodguy@pangaea\.edu
* ^Subject:.*peas
! mendel@luna.edu

Shunt mail from a genetics mailing list into its own folder
:0:
* ^To:.*genetics@mailer\.example\.org
$MAILDIR/genetics-list

One of the major problems with using Procmail alone as a spam-control tool is that creating and

http://lib.ommolketab.ir

maintaining a set of Procmail rules can be quite labor-intensive. This is particularly true because
spam and worms are constantly changing, so a good set of rules for today may be inadequate
tomorrow. You may want to search for a ready-made set of Procmail recipes, such as SpamBouncer
(http://www.spambouncer.org) or the Sample Procmail Recipes with Comments
(http://handsonhowto.com/pmail102.html). The first of these is specifically intended as an antispam
tool, whereas the second is a practical teaching tool. If you periodically check back with such pages
and update your filters, you can keep a reasonably up-to-date Procmail antispam configuration. On
the other hand, rules created by somebody else are more likely to miss spam or, worse, falsely
identify nonspam as spam.

Before deploying a new Procmail recipe, or especially an extensive set of recipe
changes, try testing it on a small scale. You can create a test account, place
your new recipe in its .procmailrc file, and send test messagesboth spam and
nonspamto that account.

13.5.5. Using SpamAssassin

SpamAssassin (http://spamassassin.apache.org) is an antispam tool based on a large number of
tests. Each test changes the score of the message. SpamAssassin doesn't actually delete messages;
instead, it adds headers identifying likely spam as such. The idea is that you'll call SpamAssassin
from Procmail, a mail server, or a mail reader and use it to detect the SpamAssassin spam report and
delete or redirect messages based on that report.

SpamAssassin has grown into quite a large tool. In fact, it's complex enough
that it's spawned its very own book: SpamAssassin (O'Reilly). If you need to
perform complex tasks or configure SpamAssassin as part of a mail server for a
large site, it's worthwhile to read this or other SpamAssassin-specific
documentation.

13.5.5.1 SpamAssassin basics

The SpamAssassin software comes with most major distributions, so installing it from your
distribution medium is usually the simplest course of action. If you can't find SpamAssassin with your
distribution, go to the main SpamAssassin site, and download it. SpamAssassin is actually a Perl
script and relies on several Perl modules, so you may need to install additional packages that hold
these modules.

Once SpamAssassin is installed, you should test its operation by manually feeding it a few spam and
nonspam messages. You do this by redirecting a message in a file into the spamassassin command.
Adding the -t option adds an extra report to the end of the output, which appears on the screen:

$ spamassassin -t <
message.txt

The message.txt file should contain a complete message, including full headers. Most mail readers

have an option to save messages to disk with full headers so use that option to get your samples.

http://www.spambouncer.org
http://handsonhowto.com/pmail102.html
http://spamassassin.apache.org
http://lib.ommolketab.ir

The SpamAssassin output includes two additions to the message. The first addition appears at the
end of the message headers, and constitutes SpamAssassin's report, as intended for subsequent mail
processing tools, such as Procmail or an email reader. For a nonspam message, this addition is likely
to resemble the following:

X-Spam-Checker-Version: SpamAssassin 3.0.0-g3.0.0 (2004-09-13) on
mail.example.com
X-Spam-Level:
X-Spam-Status: No, score=0.1 required=5.0 tests=RCVD_IN_SORBS
autolearn=unavailable version=3.0.0-g3.0.0

The first line simply identifies the version of SpamAssassin and the computer on which it's running.
The second line holds the spam level, which is expressed as a number of asterisks (*). Because this is

an innocuous nonspam message, no asterisks are displayed; however, some nonspam messages will
have a small number of asterisks (five is the typical cutoff point for spam, although you can use
something else if you like). The third line, which typically extends across multiple lines, summarizes
the tests that raised alarms. In this case, the total spam score is 0.1 (hits=0.1). That 0.1 value
came from the RCVD_IN_SORBS test, which isn't explained at this point. The -t option to

spamassassin, though, adds extra lines at the end of the message:

Content analysis details: (0.1 points, 5.0 required)

 pts rule name description
---- ---------------------- --
 0.1 RCVD_IN_SORBS RBL: SORBS: sender is listed in SORBS
 [172.24.98.102 listed in dnsbl.sorbs.net]

This text identifies the RCVD_IN_SORBS flag as meaning that the sender address is listed in the SORBS

blackhole list. This information can help you understand what SpamAssassin is doing right (or
wrong), but it's not provided in normal operation. You can, of course, consult the SpamAssassin
documentation to learn more about specific tests.

When you test a spam message, the spam headers added to the message are likely to report more
serious problems:

X-Spam-Flag: YES
X-Spam-Checker-Version: SpamAssassin 3.0.0-g3.0.0 (2004-09-13) on
mail.example.com
X-Spam-Level: ******
X-Spam-Status: Yes, hits=6.8 required=5.0 tests=FORGED_MUA_OUTLOOK,
 FORGED_OUTLOOK_TAGS,HTML_40_50,HTML_FONTCOLOR_UNSAFE,HTML_MESSAGE,
 HTML_TAG_EXISTS_TBODY,RCVD_IN_BL_SPAMCOP_NET,RCVD_IN_DSBL,
 RCVD_IN_SORBS autolearn=spam version=3.0.0-g3.0.0

This output includes one header line that's not present in the nonspam output: X-Spam-Flag: YES.

You can search for this line using a Procmail recipe, as described shortly, to detect spam after
messages have been processed with SpamAssassin. The X-Spam-Level header shows six stars,
corresponding to the 6.8 hit rating reported in the X-Spam-Status line. This line also shows quite a

few hits on individual spam tests. These are reported in greater detail at the end of the message if

http://lib.ommolketab.ir

you use the -t option to spamassassin.

You should run several spam and several nonspam messages through SpamAssassin. You should
verify that none of the nonspam messages are rejected and that a significant number of spams are
rejected. SpamAssassin might not detect all of your spams, though. You can take the time to fine-
tune its operation by changing the points assigned to individual rules or by enabling its auto-learning
feature, which enables it to update its rules on the fly. You can also combine SpamAssassin with
other tools, such as your own custom Procmail filters.

13.5.5.2 Calling SpamAssassin from Procmail

You can call SpamAssassin in various ways. One is to use Procmail for local mail delivery. (Calling
SpamAssassin as part of a mail gateway system is described next.) Add the following recipes to the
start of your Procmail configuration file to call SpamAssassin and sort suspected spam into two
folders, almost-certainly-spam and probably-spam:

:0fw
* < 256000
| spamassassin

:0:
* ^X-Spam-Level: ***************
almost-certainly-spam

:0:
* ^X-Spam-Status: Yes
probably-spam

:0
* ^^rom[]
{
 LOG="*** Dropped F off From_ header! Fixing up. "

 :0 fhw
 | sed -e '1s/^/F/'
}

These rules are taken from the procmail.example file that ships with SpamAssassin. That file also
includes several comments that describe its rules. In short, the first recipe passes messages that are
smaller than 256,000 bytes through SpamAssassin, which adds its headers to the messages. (Larger
messages are almost certainly not spam, although they can contain worms. SpamAssassin doesn't
cope well with very large messages, hence this size limitation.) The second recipe dumps messages
with a spam score of 15 or higher into the almost-certainly-spam folder, while the third recipe places
messages that are flagged as spam but that weren't caught by the second recipe into the probably-
spam folder. The final recipe fixes a Procmail bug that can cause the leading F in the From: to be

dropped. (This bug has been fixed, but it's included in case you're running an old version of
Procmail.)

Of course, you can change these rules if you like. For instance, you can send suspected spam to
/dev/null, but doing so means that if any such messages really aren't spam, you won't be able to

http://lib.ommolketab.ir

retrieve them. Placing suspected spam in folders means that you can open those folders and recover
any misclassified messages.

13.5.5.3 Calling SpamAssassin from sendmail

Calling SpamAssassin from Procmail is fine for local mail delivery, but it doesn't work well for a mail
server that should operate as a spam filter for another server, such as a Microsoft Exchange server.
For this configuration, you need a way to call SpamAssassin more directly as part of the mail relay
process; the MIMEDefang tool (http://www.mimedefang.org) can do so. Although a complete
description of MIMEDefang and the sendmail features it uses is beyond the scope of this book, a brief
description should get you started.

The key to the process is to use the sendmail INPUT_MAIL_FILTER configuration line to call

MIMEDefang, which in turn is configured to pass incoming messages through SpamAssassin and take
actions accordingly. A full sendmail .mc file that implements these features appears in Example 13-2.

Example 13-2. Sample sendmail configuration with SpamAssassin

divert(-1)
#
Spam-checking gateway configuration
#
divert(0)dnl
VERSIONID(`Spam-checking gateway')
OSTYPE(linux)dnl
DOMAIN(generic)dnl
FEATURE(virtusertable)dnl
FEATURE(mailertable)dnl
FEATURE(access_db)dnl
FEATURE(always_add_domain)dnl
FEATURE(nouucp,`reject')dnl
FEATURE(`relay_based_on_MX')dnl
define(`confDEF_USER_ID',``8:12'')dnl
define(`confPRIVACY_FLAGS', \
 `goaway,noreceipts,restrictmailq,restrictqrun,noetrn')dnl
define(`confTO_QUEUERETURN',`7d')dnl
define(`confTO_QUEUEWARN_NORMAL',`1h')dnl
define(`confMAX_DAEMON_CHILDREN',`60')dnl
define(`confMAX_MESSAGE_SIZE',`10000000')dnl
define(`confMAX_CONNECTION_RATE_THROTTLE',`10')dnl
define(`confMAX_RCPTS_PER_MESSAGE',`500')dnl
INPUT_MAIL_FILTER(`mimedefang',`S=unix:/var/spool/MIMEDefang/mimedefang.sock, \
 F=T, T=S:60s;R:60s;E:5m')dnl
MAILER(smtp)dnl
MAILER(local)dnl
MAILER(procmail)dnl

http://www.mimedefang.org
http://lib.ommolketab.ir

A couple of lines in Example 13-2 are very long; they're denoted by trailing
backslashes (\) at the end of the first line, but should be entered on single lines

without the backslashes.

This configuration also requires you to set up the sendmail mailer table file (typically
/etc/mail/mailertable) that was described earlier. It must include a line that points the system to an
internal server that will receive the spam-filtered messages:

pangaea.edu esmtp:internal.pangaea.edu

In addition to the sendmail configuration, you must configure MIMEDefang. This tool requires three
directories, /var/spool/MIMEDefang, /var/spool/MD-Quarantine, and /var/spool/MD-Bayes. Assign
ownership of these directories to the account used to run MIMEDefang (typically defang). Once this is
done, edit mimedefang-filter (usually stored in /usr/local/etc/mimedefang). Set the $AdminAddress,
$AdminName, and $DaemonAddress lines to point to your local postmaster's email address, the
postmaster's name (often your domain's name and Postmaster), and the email address used in
messages MIMEDefang generates. You should also set the $SALocalTestsOnly item to 0 or 1 to

forbid or allow SpamAssassin to use network-based tests.

Configure the internal server computer (internal.pangaea.edu in this example) to accept mail only
from the spam-filtering gateway or from this system and any local systems that should be able to
relay outgoing mail. This server shouldn't accept mail directly from the outside. Certainly it shouldn't
be listed as an MX server in your domain's DNS configuration; only the spam-filtering mail gateway
should be listed in this capacity.

13.5.6. Using Bogofilter

Unlike SpamAssassin, which combines many different spam-fighting tools in one system, Bogofilter
(http://bogofilter.sourceforge.net) takes a single approach to spam fighting. It's an implementation
of a statistical spam filter. As such, it requires training on a corpus of both spam and nonspam
messages before it can work. Thus, you may need to save your spam for a few days before you can
effectively use Bogofilter.

SpamAssassin can use a statistical filter as part of its rule set. To do so, you
must give it sample messages to train it, using its sa-learn command. Consult
this command's manpage for details; the training process is similar to that for
Bogofilter, although the command details differ.

Bogofilter can be installed like most other packages; check your distribution to see if a version is
available with it. If not, go to the project's home page, and download a binary or source code version
from there. Like SpamAssassin, Bogofilter is called from Procmail or a mail reader program. Before
you do that, though, you must train Bogofilter.

The training procedure requires examples of both spam and nonspam messagesthe more, the better.
(A collection of several thousand messages is not excessive, but Bogofilter can do some good with

http://bogofilter.sourceforge.net
http://lib.ommolketab.ir

just a few dozen.) Ideally, these messages should be typical of spam and nonspam messages that
you receive; you want Bogofilter to learn to differentiate your spam from your nonspam. Although
you can find spam collections on the Internet, using them for Bogofilter training can cause problems,
because other people may receive different types of spam, or because you might not classify
everything in such collections as spam. The simplest way to train Bogofilter is to place all your spam
messages in one file and all your nonspam messages in another file, both of which should be in mbox
format. In subsequent examples, I refer to these as spam.mbox and nonspam.mbox, respectively.

Conceptually, the simplest way to train Bogofilter is to pass the spam and nonspam messages
through the bogofilter command using the -s and -n options, respectively:

$ bogofilter -s < spam.mbox
$ bogofilter -n < nonspam.mbox

These commands create a database file, ~/.bogofilter/wordlist.db, which contains all the words
contained in all the messages, along with counts of how often they appear in spam and nonspam
messages. When Bogofilter later encounters a spam, it can then use these classifications to estimate
the probability that a message is spam or nonspam.

Because the Bogofilter database file is stored in the user's home directory, you
should create the Bogofilter database file by running the program as that user.
This user can conceivably be root, but for security reasons, it's best if you find a
way to run Bogofilter as a non-root user. If necessary, you can create an initial
database, place the mail classification call to bogofilter in users' individual
~/.procmailrc files, and modify the global configuration to use the global word
files in addition to individual users' word lists.

Another approach to Bogofilter training is to use a training script, such as bogominitrain.pl or
randomtrain. These scripts might or might not be shipped with a distribution-provided Bogofilter
package. If they're not on your system, consult the main Bogofilter site. These scripts perform more
sophisticated training; namely, they use the bogofilter command to classify each message and
perform training only if the message isn't classified correctly by Bogofilter. If necessary, this process
is repeated until Bogofilter classifies every message correctly. The result tends to be smaller
databases, and often more accurate results, but initial training takes longer. Consult the
documentation that comes with the training script for details. Typically, you pass the script the
names of both the spam and the nonspam files, and perhaps additional parameters:

$ bogominitrain.pl -fnv ~/.bogofilter nonspam.mbox spam.mbox '-o 0.9,0.3'

This example passes the location of the word list, the nonspam and spam files, and classification
parameters (described in more detail shortly).

Whatever training method you use, you should also examine, and perhaps modify, the Bogofilter
configuration file. By default, /etc/bogofilter.cf provides systemwide defaults, but individual users can
override these by creating a configuration file called ~/.bogofilter.cf (this filename can be set in
/etc/bogofilter.cf). Options in this file are well commented, so perusing it will give you some idea of
what you can change. Some options you may want to modify include:

http://lib.ommolketab.ir

bogofilter_dir

This option points to the word list directory. Changing it is one way ordinary users can access a
global word list; however, doing so may make it impossible for individuals to change that word
list.

ignore_case

Ordinarily, Bogofilter pays attention to case; Viagra is distinct from viagra. You can set
ignore_case=yes to have Bogofilter convert all words to lowercase, though. This can help

overcome attempts to confuse antispam tools by mixing up case in words, but it can also
reduce Bogofilter's sensitivity to strings for which case can be important.

algorithm

Bogofilter can use several different algorithms for determining the spamicity of a message
(that is, the probability that a message is spam). These algorithms are graham, robinson, and
fisher. The default is fisher, which generates a three-way classification: spam, nonspam, or

unsure.

ham_cutoff

This option sets the maximum spamicity score (between 0.0 and 1.0) that's needed to classify
a message as nonspam. A value of 0.10 is typical and usually works well.

spam_cutoff

This option sets the minimum spamicity score (between 0.0 and 1.0) that's required for a spam
classification. A value of 0.95 is typical and usually works well.

Once you've set these values and trained Bogofilter, you should test its operation by passing spam
and nonspam messages through the bogofilter command. Ideally, you should use messages that you
held back from the training so that you can judge how Bogofilter handles messages it's never seen.
Use the -v option to have the program generate a verbose report of the input messages, which you

redirect as input:

$ bogofilter <
message.txt

X-Bogosity: Yes, tests=bogofilter, spamicity=1.000000, version=0.16.4

This result shows a classification of the message as spam (X-Bogosity: Yes), with a very high

spamicity score (1.000000). A nonspam message is likely to generate a much lower score:

http://lib.ommolketab.ir

$ bogofilter <
message.txt

X-Bogosity: No, tests=bogofilter, spamicity=0.000000, version=0.16.4

Because of its three-way output, Bogofilter can also tell you that it's unsure of the status of the
message:

$ bogofilter <
message.txt

X-Bogosity: Unsure, tests=bogofilter, spamicity=0.500008, version=0.16.4

If you find that Bogofilter isn't classifying your messages correctly, you should revisit your training
procedures. Perhaps you didn't classify enough messages or delivered them with the wrong
parameters (confusing spam and nonspam messages, for instance). Note that a classification of
"unsure" works like a nonspam classification in most respects, so you shouldn't be too concerned if
some of your nonspam messages are classified in this way, unless the spamicity ratings are very
close to the spam cutoff point. If you have classification problems, you might also consider fine-
tuning the Bogofilter cutoff criteria (ham_cutoff and spam_cutoff). You can increase or decrease

these values, but with certain risks; if you make either the nonspam or spam category too large,
you'll risk misclassifying messages.

Numerically, the largest range of spamicity values is above the ham_cutoff
value but below the spam_cutoff value. Thus, you might expect that most

messages will end up classified as "unsure." In practice, though, most
messages achieve very high (close to 1.0) or very low (close to 0.0) spamicity
ratings.

With Bogofilter now correctly classifying at least most of your messages, it's time to integrate it into
your mail delivery system. One way to do this is by calling Bogofilter in Procmail. The following
Procmail recipe will do this:

:0HB:
* ? bogofilter -u -l
probably-spam

This recipe passes the message through the bogofilter command. The -u option tells Bogofilter to

automatically add messages that it classifies as spam or nonspam to the appropriate word lists. This
option is both potentially useful and potentially dangerous; it's useful because it can help keep your
spam database updated, but it's dangerous because if Bogofilter misclassifies a message, that
misclassification can lead to more misclassifications. (If a message is classified as "unsure," it won't
be added to the database.) The -l option logs Bogofilter activity. This recipe stores spam messages

in the probably-spam folder; nonspam messages go on for normal delivery.

If you use the -u option, and Bogofilter misclassifies a message, you should correct the problem. You
can do this with the -N and -S options, which undo previous registrations of a message as nonspam

http://lib.ommolketab.ir

and spam, respectively. You can combine these options with -s and -n to reregister the messages

correctly. For instance, if Bogofilter has registered a message as nonspam but in fact it's spam, you
can extract the message to a file (complete with its headers) and type the following command:

$ bogofilter -Ns <
message.spam

To test that it's worked correctly, pass the message through bogofilter again, using -v rather than -
Ns; Bogofilter should now classify the message as spam, or at least give it a much higher spamicity
score. (Register it again with bogofilter -s to strengthen Bogofilter's tendency to classify the
message as spam, if desired.) Use -Sn rather than -Ns to undo an incorrect classification of a

nonspam message as spam.

13.5.7. Discarding or Quarantining Suspicious Attachments

The vast majority of email worms released over the years have been written for Windows systems.
Any of the antispam tools described here can be used to locate and deal with worms. Using a Linux
system for this task ensures that the mail server itself can't become infected, even through gross
negligence. (At least, assuming Windows worms are in play; theoretically, Linux worms could be
written to take advantage of flaws in Linux software.)

The threat of Windows worms is such that many sites have taken drastic measures to protect
themselves: they reject all mail carrying certain types of attachments, or even all email attachments.
The reasoning is that nobody has a valid reason to email, say, Windows .exe executables, so any
such executable must be a worm. The validity of such reasoning is uncertain, but it may be so close
to the truth for certain sites that discarding or quarantining messages with such attachments may be
worthwhile. Example 13-3 shows a couple of Procmail recipes that discard certain suspicious
messages.

Example 13-3. Procmail recipes to discard suspicious attachments

:0 B
* ^Content-Type: audio/x-(wav|midi);
/dev/null

:0
* ^Content-Type: multipart/(mixed|alternate|alternative|related)
{
 :0 B
 * ^.*name=.*\.(bat|com|exe|pif|scr|vbs|zip)
 /dev/null
}

The first of these rules discards everything with a Content-Type line of audio/x-wav or audio/x-
midi. Theoretically, these lines identify certain types of audio files, which might be legitimate

attachments in some environments; however, in practice, worms often try to masquerade as these
file types. The second rule looks for any of several content types in the header and, if found, searches

http://lib.ommolketab.ir

for a line that includes name= followed by any of several filename extensions. Some of these, such as

.bat, .com, and .exe, identify Windows executables. Others don't, but again, Windows worms
frequently try to masquerade as files of these types.

Unfortunately, rules such as these are likely to produce false alarms. The second rule is particularly
overzealous because it discards messages with attached Zip files. You can, of course, eliminate some
of these filename extensions, but that reduces the effectiveness of the tests. Alternatively, you can
enclose the test in a white-list test to enable trusted senders to deliver mail containing these
attachments. Another option is to rename attachments rather than discard them; for instance,
rename a .zip file to .zip.txt. This enables users to access the files, but makes it harder for worms
that are named in this way to do harm automatically.

These rules, as shown in Example 13-3, are also potentially deleterious because they discard the
messages by sending them to /dev/null. Placing the messages in a folder to hold suspected worms
might be a good alternative. Users can then open the messages only with extreme caution. If you
place these rules in a systemwide Procmail configuration file, you can even send the suspect
messages to a mail folder that only root can read.

http://lib.ommolketab.ir

13.6. Supplementing a Microsoft Exchange Server

Linux can fit into a network's email picture in any of several ways. One obvious way is to function as
your domain's primary mail server, handling SMTP and, if you desire, POP or IMAP. Used in this way,
the Linux mail server will most likely communicate with Windows desktop systems as POP or IMAP
clients. This configuration can work quite well, but many Windows networks already have a Microsoft
Exchange mail server. At first glance, there seems to be little reason to deploy a Linux mail server if
you already have a working Microsoft Exchange server. Sometimes, though, a Linux server can be
used to help an Exchange server.

Microsoft Exchange provides features that are most readily used by Microsoft
email clients, and that aren't fully replicated by non-Microsoft servers. Thus,
depending on your needs, a Linux server might not be an adequate
replacement for an Exchange server. Some projects are underway to change
this. Specifically, the SuSE Linux Openexchange Server (SLOX;
http://www.suse.de/en/business/products/openexchange/), Kroupware
(http://kroupware.org), and the Open Source Exchange Replacement (OSER;
http://www.thewybles.com/oser/) are projects intended to replace the
Exchange server, while otlkon (http://otlkcon.sourceforge.net) aims to provide
Linux client features. Note that these projects aren't quite drop-in replacements
or aren't yet finished. Thus, Linux can't yet replace an Exchange server, but
Linux can supplement one.

A Linux mail server is commonly used as an additional link in the email chain, appearing just before
the Microsoft Exchange server, as shown in Figure 13-3. Placed in this way, the Linux mail server
functions as a filter, similar to a firewall. Using tools designed to detect and remove spam and worms
(as described in the Section 13.5), the Linux system can keep these unwanted messages from ever
reaching the Exchange server. This can be preferable to filtering them out on the Exchange server
because it reduces the load on the Exchange server, improving performance, particularly for entirely
local actions. Another advantage of this configuration is that you can use strong packet-filter firewall
rules on the Exchange server, protecting it from all outside access attempts. You can also use a Linux
system to determine which of several internal servers should receive any given email; for instance,
you can direct email according to the username to either of two or three servers, each of which
handles only some of your site's local users.

Figure 13-3. A Linux mail server can fit into an existing Exchange
network as an email filter system

Configuring a Linux mail server this way isn't greatly different from configuring it as a domain's only
mail server. The main difference is that the system forwards all the mail it receives; it treats few or

http://www.suse.de/en/business/products/openexchange/
http://kroupware.org
http://www.thewybles.com/oser/
http://otlkcon.sourceforge.net
http://lib.ommolketab.ir

no messages as local. This is done by setting the server's mail relay options, as described in an
earlier section.

A Linux mail server configured this way can protect you from spam and worms
that originate outside your network. If you send your outgoing mail through the
Linux mail server, it can also protect outside systems from worms that might
get loose on your local network. Local mail that's handled exclusively by the
Exchange server won't be examined, however, unless you configure Exchange
to send even local mail via the Linux server, which increases the network load
between those two systems. Thus, if a worm breaks loose on your local
network, it can still spread quickly to other computers.

http://lib.ommolketab.ir

13.7. Using Fetchmail

A prototypical chain of mail delivery uses SMTP from the sender through to the recipient's mail
server, and optionally uses POP or IMAP from the final mail server to the user's desktop system.
Sometimes, though, it's desirable to use POP or IMAP earlier in the chain. For such situations, a
program called Fetchmail comes to the rescue; this program enables you to pull mail from a POP or
IMAP server and inject it into your local mail queue; from there it can be delivered to the same or
another computer.

Before installing and using Fetchmail, you should understand precisely why it exists and how it can be
used. Although it's a popular and useful tool, it's not for everybody, so attempting to use it
unnecessarily can be a waste of time. If you're sure you want to use it, you must understand
Fetchmail's configuration file format. Once it's configured, you can use it, which involves running it as
a daemon, running it at scheduled times, or running it as part of a larger task.

13.7.1. The Role of Fetchmail

If you own or work for a small business, you might contract with an outside company to host your
domain. This domain hosting ISP runs a server that houses your web pages and probably provides
another server that can receive your domain's email. Typically, domain hosting ISPs allow you to
connect to their email servers with POP or IMAP to retrieve your mail. You might be content to read
your mail more or less directly like this, in which case you don't need to run any email server at all.
On the other hand, you might want to perform additional processing, such as handling your own
spam filtering, sorting mail for multiple users into different accounts, supporting IMAP when your
domain hosting ISP provides only POP, integrating mail from multiple ISPs, or integrating mail from
the Internet with your local network's mail. Individuals with small home networks often have similar
needs, even if they don't have their own domains. In all these cases, what you need is a way to pull
mail from the ISP's server using POP or IMAP and make it available via your own POP or IMAP server.
You might even send the mail from one server to another via SMTP. This configuration is outlined in
Figure 13-4. In the figure, your (example.com's) mail server uses Fetchmail to retrieve mail from the
abigisp.net mail server using POP. Local computers can then retrieve the mail using IMAP.

Figure 13-4. Fetchmail enables you to use a pull mail protocol earlier in
the chain than normal

Because pull mail protocols are initiated by the receiving end, Fetchmail has no way to know when
mail is waiting for it to pick up. For this reason, Fetchmail typically polls the remote server; that is,
Fetchmail checks for new mail at a regular interval. This can be done either by running Fetchmail as a
daemon with a built-in polling interval or by calling Fetchmail in a regular process, such as in a cron
job. Alternatively, you can call Fetchmail as part of a regular or irregular process. For instance, if you
use a dial-up Internet connection, you can call Fetchmail as part of a connection script. This gives you

http://lib.ommolketab.ir

access to all your accumulated mail as soon as you connect.

13.7.2. Configuring Fetchmail

The Fetchmail configuration file is located in the user's home directory and is called .fetchmailrc by
default (there is no global Fetchmail configuration file). As with many files, this one uses hash marks
(#) to denote comments. Aside from comments, the file begins with a number of set directives,

which set various global options. Some of the more important of these options are summarized in
Table 13-1.

Table 13-1. Common Fetchmail global directives

Directive
name

Possible
options

Description

postmaster
Local
username

Username to which error messages are sent. This user may also
receive failed deliveries as a last resort.

bouncemail -

Tells Fetchmail to send bounce messages to the apparent sender of the
message. This practice can be risky because spammers and worms
usually forge the return addresses, sometimes to the addresses of
legitimate but innocent individuals.

no
bouncemail

-
Tells Fetchmail to send bounce messages to the address set with
postmaster, rather than to the apparent sender.

syslog - Logs Fetchmail activities through the local syslog daemon.

logfile Filename Logs Fetchmail activities to the specified file.

daemon
Time in
seconds

Causes Fetchmail to run in daemon mode, in which it loads but doesn't
exit. Fetchmail then checks for new mail at the specified interval.

The global options are just the start of Fetchmail configuration, though. The heart of the
configuration lies in the account specifications. Each begins with the keyword poll and defines

everything Fetchmail needs to know about an account in order to retrieve mail from it and direct it to
an appropriate local or remote address. Broadly speaking, the poll lines take the following form:

poll server.hostname server-options user-options

The server.hostname is, of course, the server's hostname. The server-options and user-options

both consist of multiple options, which tell Fetchmail how to interact with the server and give
Fetchmail information on the accounts (both the remote server's account and how Fetchmail is to
deliver the mail locally). Tables Table 13-2 and Table 13-3 summarize the most common options for
these two parts of the poll specifications.

http://lib.ommolketab.ir

Table 13-2. Common Fetchmail server options

Option
name

Possible values Description

proto or
protocol

Protocol name
The name of the protocol Fetchmail should use to communicate
with the server. Common values are POP3 and IMAP, but

Fetchmail supports several other protocols, as well.

interface
Interface name/IP
address/netmask
triplet

An interface that must be active before Fetchmail attempts to
connect to a server. For instance, ppp0/192.168.99.0/24

means that the system must have a PPP connection on the
192.168.99.0/24 network before it attempts a connection. This
is most useful for dial-up users.

monitor Interface name

Fetchmail monitors the specified interface (such as ppp0 or
etH1) and attempts a connection only if there's been activity on

that interface since the last polling interval. This option works
only in daemon mode. It's most useful to prevent activity that
might unnecessarily activate a dial-on-demand connection.

interval Integer

Causes checks to occur only at some polling intervals. For
instance, setting interval 4 causes Fetchmail to check the site
only every fourth polling period (as set by the global daemon

value). This is useful if you want to poll multiple remote
servers, but with different frequencies.

Table 13-3. Common Fetchmail user options

Option
name

Possible
values

Description

user or
username

Username
A username on the remote server, unless the username is followed by
here, in which case it's the local username to which fetched mail is

delivered.

pass or
password

Password The password used to access the remote server.

ssl -
Enables an SSL connection to the remote server. This option isn't
universally supported, but if your server supports it, using SSL can
improve security.

sslcert Filename The file in which an SSL certificate is stored.

sslkey Filename The file in which an SSL key is stored.

is or to Username
Links the remote account information with the local account
information.

here - This keyword follows a local username to identify it as local.

http://lib.ommolketab.ir

Option
name

Possible
values

Description

smtphost Hostname
The hostname of the server to which Fetchmail sends mail it receives.
The default is localhost, which is usually fine if you want to read mail

or run your own pull mail server on the same computer.

keep -
Tells Fetchmail to leave mail on the remote server after fetching it. The
default is to delete fetched mail. This option is mostly useful when
testing or debugging or new or changed configuration.

fetchall -
Retrieves all messages on the remote server, even if Fetchmail has
already fetched them. Used with keep, this can result in duplicate

messages.

forcecr -

Technically, email messages should have lines that end in carriage
return/line feed (CR/LF) pairs; however, in practice, many messages
have only the LF. Some mail servers, such as qmail, react badly to this
deviation from the norm, and this option corrects this problem.

preconnect
Local
command

A program that's run before each connection. This can bring up a
network connection, run a program to delete spam from the remote
server, or perform any other task you want done just before retrieving
mail.

The poll specification can be quite long. Typically, it's split across two or more

lines, with the second and subsequent lines indented. No line-continuation
characters are required.

In addition to the options shown in Tables Table 13-2 and Table 13-3, Fetchmail accepts some more
exotic options; consult its manpage for details. Certain keywords, such as and, has, options, wants,
and with, are ignored by Fetchmail. These keywords can help you parse the meaning of a poll

statement. Most option values can be enclosed in quote marks, but this isn't usually required unless
the value contains an embedded space. Overall, although the Fetchmail poll options may seem

confusing when listed in tables, in practice they're designed to be easy to parse. When strung
together, they read almost like an English sentence, as shown in Example 13-4.

Example 13-4. Sample .fetchmailrc file

set postmaster "linnaeus"
set no bouncemail
set syslog

poll pop.abigisp.net with proto POP3
 user "mendel" there with password "p7Tu$ioP" is gregor here
 options fetchall forcecr preconnect "mailfilter"

poll mail.asmallisp.org with proto IMAP

smtphost Hostname
The hostname of the server to which Fetchmail sends mail it receives.
The default is localhost, which is usually fine if you want to read mail

or run your own pull mail server on the same computer.

keep -
Tells Fetchmail to leave mail on the remote server after fetching it. The
default is to delete fetched mail. This option is mostly useful when
testing or debugging or new or changed configuration.

fetchall -
Retrieves all messages on the remote server, even if Fetchmail has
already fetched them. Used with keep, this can result in duplicate

messages.

forcecr -

Technically, email messages should have lines that end in carriage
return/line feed (CR/LF) pairs; however, in practice, many messages
have only the LF. Some mail servers, such as qmail, react badly to this
deviation from the norm, and this option corrects this problem.

preconnect
Local
command

A program that's run before each connection. This can bring up a
network connection, run a program to delete spam from the remote
server, or perform any other task you want done just before retrieving
mail.

The poll specification can be quite long. Typically, it's split across two or more

lines, with the second and subsequent lines indented. No line-continuation
characters are required.

In addition to the options shown in Tables Table 13-2 and Table 13-3, Fetchmail accepts some more
exotic options; consult its manpage for details. Certain keywords, such as and, has, options, wants,
and with, are ignored by Fetchmail. These keywords can help you parse the meaning of a poll

statement. Most option values can be enclosed in quote marks, but this isn't usually required unless
the value contains an embedded space. Overall, although the Fetchmail poll options may seem

confusing when listed in tables, in practice they're designed to be easy to parse. When strung
together, they read almost like an English sentence, as shown in Example 13-4.

Example 13-4. Sample .fetchmailrc file

set postmaster "linnaeus"
set no bouncemail
set syslog

poll pop.abigisp.net with proto POP3
 user "mendel" there with password "p7Tu$ioP" is gregor here
 options fetchall forcecr preconnect "mailfilter"

poll mail.asmallisp.org with proto IMAP

http://lib.ommolketab.ir

 user "karl" there with password "QhI04a-23Ybz" is linnaeus here
 options forcecr smtphost mail.example.com

One of Fetchmail's weaknesses is that it requires you to store your remote
email passwords in plain text in its configuration file. Be sure the configuration
file has 0600 or 0400 (rw------- or r--------) permissions. If the file is

readable to other users, Fetchmail refuses to act on the configuration file.

This configuration shown in Example 13-4 retrieves mail from two sources: the mendel account on
pop.abigisp.net and the karl account on mail.asmallisp.org. Mail from each account is directed to a
different user. The second poll statement also directs mail to a specific server (mail.example.com),

which might or might not be the same server on which Fetchmail is running.

If you want to fetch mail from multiple remote accounts or for multiple users, you can use a single
Fetchmail configuration, as shown in Example 13-4; by calling Fetchmail from multiple accounts, with
one configuration per account; or by creating separate configurations and calling them from a single
account by passing special options to Fetchmail to have it consult a nonstandard configuration file for
all but one account. The account used to run Fetchmail doesn't need to be related to those that
receive the local mail; for instance, linnaeus can run Fetchmail, which might deliver mail to the
gregor account.

Although Fetchmail relies on a text-mode configuration file, you can use a GUI tool to help you
configure Fetchmail. Type fetchmailconf in an xterm or other command-line window to run this

program, which guides you through setting the Fetchmail options. This configuration tool is often
installed separately from Fetchmail, though, so you may need to locate it on your distribution's
installation media.

13.7.3. Running Fetchmail

The simplest way to run Fetchmail is to call it by name from the command line:

$ fetchmail -k

If all goes well, Fetchmail retrieves mail and inserts it into your local mail queue (or delivers it to
another system, if you've so configured it). For testing purposes, you may want to add the -k option,
which has the same effect as the keep user option. This way, if your configuration is incorrect, and

Fetchmail loses your mail, you can recover it from the remote server.

For ordinary use, you should probably run Fetchmail constantly (in daemon mode) or run it
periodically. To run the server in daemon mode, ensure that your .fetchmailrc file has a set daemon

interval line. You can then run Fetchmail at system startup via a SysV or local startup script.

Typically, you'll want to run the program as a non-root user, which you can do via the su command in
your startup script:

su -c '/usr/bin/fetchmail -f /home/karl/.fetchmailrc' karl

http://lib.ommolketab.ir

This command runs Fetchmail as karl, when typed as root or entered into a startup script that's run
as root. This command also illustrates the use of -f, which enables you to specify a configuration file.

If you want to run Fetchmail as part of a network connection procedure, such as that used to initiate
a PPP connection, you can place a similar command in your network connection script. If you initiate
the connection as an ordinary user, though, you might not need to use su; just call fetchmail as an
ordinary user.

Another way to run Fetchmail is via a cron job. On most Linux systems, the cron process is a daemon
that launches programs that should be run on a periodic basis. These cron jobs are controlled via a
crontab, which is a file that's registered with the cron daemon as a way to run programs on a regular
basis. Example 13-5 shows a sample crontab that runs Fetchmail on a regular basis.

Example 13-5. Sample crontab file for running Fetchmail

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=karl
HOME=/home/karl

16,36,56 7-20 * * * /usr/bin/fetchmail > /dev/null

The first few lines of the crontab file set environment variables, much as they're set in bash scripts.
The final line in Example 13-5 tells cron to run the /usr/bin/fetchmail > /dev/null command at a
specific time. The time format is five space-separated fields: the minute, the hour, the day of the
month, the month, and the day of the week. An asterisk (*) sets a field to match any value. You can
separate multiple values with commas or use a dash (-) to specify a range of values. Thus, Example

13-5 tells cron to run Fetchmail the 16th, 36th, and 56th minute of every hour between 7:16 A.M.
and 20:56 (that is, 8:56 P.M.) on every day of every month. The program's output is redirected to
/dev/null; if it weren't, the user who registers this cron job would receive an email with Fetchmail's
output every time it runs.

Be sure that the .fetchmailrc file doesn't contain a set daemon line if you call

Fetchmail via a cron job. If it does, the first time Fetchmail is run, it
daemonizes and prevents subsequent runs from succeeding.

To register the crontab file, you must use the crontab. In the simplest case, you can log in as the
user who you want to run Fetchmail and issue the following command:

$ crontab crontab

This assumes you've called the crontab file crontab; if you've called it something else, you'll need to
change the filename passed to the crontab command.

http://lib.ommolketab.ir

If the user who's to run Fetchmail already has a crontab file, you should modify
it to add the call to fetchmail. If you type crontab crontab, the new crontab

file replaces the old one.

If you create a new non-login account to run Fetchmail, you can use the root account to enter a
crontab file for this user. Call the crontab file something distinctive, and use the -u option to crontab

to tell the program what user's crontab you're entering:

crontab -u fmail crontab-fmail

This command enters the crontab-fmail file as the crontab for the fmail user. The result is that
Fetchmail will run as this user, which can be a very low-privilege user. Be sure the user exists and
has a home directory, or at least can read a configuration file you specify with the -f option to

fetchmail in the crontab-fmail file.

http://lib.ommolketab.ir

13.8. Summary

Email is extremely important for most individuals and businesses today, and Linux can function as
part of your network's email system. You can use a Linux SMTP server, such as sendmail or Postfix,
to handle incoming mail instead of or in addition to a Microsoft Exchange server, and you can use a
Linux POP or IMAP server to deliver mail to Windows, Mac OS, Linux, and other clients. One of the
ways you can employ a Linux mail server is as a screening system for spam and worms. You can do
this whether Linux is your sole mail server or it's just part of a larger mail solution. Finally, a tool
called Fetchmail enables you to retrieve mail from a remote pull mail server and deliver it using your
own pull mail server or deliver it via SMTP to another server.

http://lib.ommolketab.ir

Chapter 14. Network Backups
Data storage technologies are imperfect. For this reason, it's wise to invest a small amount of time,
effort, and expense in backing up your data, rather than risk spending crippling amounts of time,
effort, and expense on recreating your data from scratch. If your primary data storage device dies,
you'll have your backup, which can greatly reduce the recovery time. In a small office, backups may
be performed without using the networksay, by using a portable tape backup unit and backing up
each system directly. On a larger network, though, network backup tools can prove beneficial, and
Linux can play a role in such systems. Linux can fit into the backup picture by providing an
inexpensive platform to handle this task, along with tools of varying sophistication that can back up
Linux, Unix, and Windows systems. Of course, backing up Linux itself (and other nonbackup Linux
servers) is also important. Some Windows tools can do this, or you can use a Linux backup server to
help out.

To begin this chapter, you should understand something of network backup strategies, such as what
hardware is available, what types of backups are best suited to which situations, and so on. You must
also understand how to back up a Linux system without using any network connections. This task is
helpful in protecting the backup computer itself, and the skills involved transfer to some types of
network backups. This chapter then looks at two specific network backup tools: Samba and the
Advanced Maryland Automatic Network Disk Archiver (AMANDA).

http://lib.ommolketab.ir

14.1. Backup Strategies

To the uninitiated, computer backup can be an intimidating topic, filled with its own list of things that
must be learned. These include backup hardware, complete and incremental backups, local and
network backups, and client- versus server-initiated network backups. These topics all require at
least minimal description before you can make an informed decision about how to set up a network
backup system.

14.1.1. Backup Hardware

The first choice you must make when putting together a network backup solution is what type of
hardware to use. The choices can be baffling because there are so many. If you want to use Linux
with an existing backup device, you must consider Linux's compatibility with your hardware. In any
event, backup hardware falls into several broad classes, each of which has many specific models and
subtypes:

Tapes

Tape backup has historically been the most common form of backup medium, due largely to
the low cost per gigabyte of tapes, their high capacities, and the fact that they're highly
portable, which is a boon for storing some of your backups off-site. Tape, though, is an
inconvenient backup medium because of its sequential-access nature, meaning that data must
be read or written sequentially; you can't randomly seek to and read a particular file, as you
can with disks and other random-access media. The price advantage of tapes is less
advantageous in recent years, as hard disk prices have plummeted. Tape is less reliable than
many other media; finding that a tape has lost some or all of its data is a sadly common
occurrence. Tape is unusual because most mid-range and high-end tape drives provide built-in
data compression features. In fact, manufacturers often advertise their typical capacities when
using compression. Be sure to remember this fact when comparing tapes to other backup
media.

Optical media

Optical media include CD-R, CD-RW, and various recordable DVD formats. These media have
the advantages of being extremely common and inexpensive, but their capacities (even of
DVDs) are low, at least for full network backups. Nonetheless, optical media can be important
for backing up individual projects or for creating basic desktop system recovery disks.

Removable disks

http://lib.ommolketab.ir

This category includes floppy disks, magneto-optical (MO) disks, Zip disks, Jaz disks, and
similar devices. These devices use technologies similar to those of hard disks (MO disks are a
cross between magnetic disk and optical technologies, though), but individual disks can be
removed from their drives for storage or transport to other computers with compatible drives.
As computer backup tools, however, they're poor choices because the media are expensive and
usually low in capacity. These disks work well for backing up individual users' files or specific
projects.

Removable hard disks

A variant on the removable disk idea is to place a hard disk in a special housing that enables it
to be easily removed. This can be either an external disk that connects to the computer using
SCSI, IEEE-1394, or USB-2.0 connectors, or an internal disk with a special mounting bay.
Removable hard disks have the advantage of fast random access and, increasingly, low cost.
Hard disks are fairly delicate, though, so they aren't good for routine transport between sites;
the risk of a shock causing damage is too great.

Of these broad classes, tape is still the medium of choice for backing up entire networks, but the
initial cost can be high. A high-capacity single-tape drive can cost over $1,000, and a tape changer,
which automatically changes several tapes, enabling you to treat several as one, is even more
expensive. However, high-end tape formats, use tape media that are relatively inexpensivetypically
about $1 per gigabyte, uncompressed. Individual tape capacities range from 4 GB to 160 GB
uncompressed, for current models.

Removable hard disks have fallen in price enough that they're now competitive with tape, particularly
for small sites. A typical removable disk system costs about $100, with extra trays going for another
$50 or so. You'll need one tray for each hard disk you use, which is likely to raise the price for the
media (tray plus disk) to $1 per gigabyte or thereabouts, at least in early 2005. Hard disk capacities,
of course, compete with those of tapes.

Removable disks (other than hard disks) and optical media simply lack the capacity to be used for full
network backups, or even for full backups of individual servers or desktop systems. You might still
want to use them as part of your backup plan, however. For instance, if your desktop systems hold
an OS but little or no user data (that is, if you store user data on a server), you can create CD-R or
recordable DVD backups of your OS installations when you first set the systems up or when you
perform major OS upgrades, then omit these computers from your normal backup schedules. If your
OS installations are small enough, they might fit (with compression) on a single CD-R, and almost
certainly on a recordable DVD. Because most desktop systems have CD-ROM drives, and many now
have DVD-ROM drives, you can restore these backups without using the network, which greatly
simplifies the restore process. You could also use this approach in conjunction with selective network
backups of user data directories (such as /home on a Linux desktop system) to protect data stored
on users' desktop systems.

If you elect to use tapes for some or all of your backup needs, you must choose a tape format. Quite
a few exist, with varying capacities, prices, and speed. Table 14-1 summarizes some of the more
common tape formats. Prices in this table were taken from Internet retailers in late summer 2004;
they may change by the time you read this. Also, existing tape formats are often extended to support
higher capacities, and new formats are periodically introduced. Thus, you may find something better
suited to your needs than anything described here. Table 14-1 summarizes drives that are currently
on the market and tapes for these drives; tapes for lower-capacity variants of these units are still

http://lib.ommolketab.ir

available and may cost less than indicated here. This table also shows prices for single-tape units;
changers for many of these formats are also available, but cost more.

Table 14-1. Common tape formats

Drive type Drive price Media price Uncompressed capacity Speed

Travan $250-550 $30-50 10-20 GB 0.6-2 MB/s

DAT/DDS $400-1,200 $5-30 4-20 GB 1.5-5 MB/s

8mm $800-4,000 $8-90 7-60 GB 3-12 MB/s

VXA $600-1,300 $30-100 33-80 GB 3-6 MB/s

AIT $800-3,800 $75-120 35-100 GB 3-12 MB/s

DLT and SuperDLT $800-4,700 $50-170 80-160 GB 3-16 MB/s

One more consideration in your choice of backup hardware is how the hardware interacts with
software. Removable disks and removable hard disks can be accessed like internal hard disks, by
creating a filesystem on the disk and copying files to the disk. You can also compress files and store
them in carrier archives, such as tarballs. Tapes must be accessed using special tape device files,
which provide sequential access to the drive. Typically, files are backed up using a carrier archive file.
Optical media are usually written using a special program, such as cdrecord, which writes the entire
disc's contents at once. The disc usually holds a filesystem, though, so that it can be read as if it were
an ordinary magnetic disk. Some software enables more direct read/write access to the drive, but it
is still relatively new in Linux and may not be suitable for backup purposes. In all cases, using a
carrier archive file can help preserve file permissions, time stamps, and so on, even if the carrier file
isn't a strict requirement.

14.1.2. Complete Versus Incremental Backups

One of the difficult questions you must answer when designing a backup solution is how much to
back up. Most computers hold gigabytes of data, but only some of that data changes frequently. For
instance, most executable program files change infrequently. Even many user data files can go
unchanged for extended periods of time. Thus, if you can identify the changed files and update them
without updating unchanged files, you can save considerable time (and backup media space) on your
backups. Doing this is called an incremental backup, which contrasts with a complete backup or full
backup, in which every file is backed up.

Incremental backups sound like a great idea, but they do have a drawback: they complicate restores.
Suppose for the sake of argument that you perform a complete backup on Monday and an
incremental backup every day thereafter. If the hard disk dies on Friday, you need to restore
Monday's full backup followed by either every intervening incremental backup or the last one,
depending on whether the incremental backups copy files that have changed since the last backup of
any type or just the last full backup. What's more, your restored system will have files that might
have been intentionally deleted during the week. This can cause serious problems if the system sees

http://lib.ommolketab.ir

heavy turnover in large files, such as if users routinely create and then quickly destroy large
multimedia files. (Some backup packages can spot such deletions and handle them automatically, but
not all backup software can do this.) These problems become more severe the longer you go
between full backups.

Generally speaking, using a small number of incremental backups between full backups can be a
great time-saver. For instance, on critical systems that see lots of activity, you might perform a
weekly full backup and a daily incremental backup. A less busy or less critical system might manage
with monthly full backups and weekly incremental backups.

Given these examples, you may be wondering just how often you need to perform backups. There's
no easy answer to this question because it depends on your own needs. You should ask yourself how
much trouble a complete system failure would cause and design a backup schedule from there. For
instance, if losing a single day's work would be a major hassle, that system should be backed up
daily; however, if losing even a week's worth of data would not be a major inconvenience, weekly or
even less frequent backups might suffice. The answer to this question, of course, can vary from one
system to another; a major file server might need daily backups, whereas desktop computers might
need much less frequent backups, or even none at all if they just hold stock OS installations.

14.1.3. Local Versus Network Backups

Much of the preceding description has assumed that individual computers are being backed up. You
can certainly back up computers one by one, equipping each one with its own backup hardware or
using portable backup hardware that you can move between computers. This is likely to be tedious
and expensive, though. When it comes to users' desktop systems, getting them to perform backups
can be difficult. One solution to these problems is to perform network backups. These use network
protocols to transfer data from the system being backed up (the backup client) to the computer that
holds the backup hardware (the backup server).

The main advantages of performing network backups are reduced hardware cost and the potential for
simplified backup administration. This second advantage has a corollary: because backups are likely
to be less tedious, they're more likely to be done. On the other hand, network backups have certain
disadvantages: they can consume a great deal of network bandwidth, they require larger backup
storage devices than do individual backups, they require careful planning so as to operate smoothly,
and they may require overcoming cross-platform differences (such as Linux versus Windows filename
conventions).

Overall, network backups are worth doing on all but the smallest networksor at least, on any network
with more than a tiny number of computers that are worth backing up. Typically, your first priority
will be your servers, followed by workstations on which users store their data files. You may want to
create your own priority list, though; knowing what's most important on your own network will help
you plan what hardware to buy and what software will best back up the data.

The backup server computer itself can be fairly unassuming, aside from its backup device and a
decent network connection. The computer most likely won't be running any RAM-intensive programs.
(Some high-end backup software uses large RAM buffers, however.) If you compress your backups,
the CPU might need to be adequate to back up the data, but this task won't strain a CPU unless
you've paired it with much more modern network and data storage systems. You might be tempted
to equip a major file server with the backup hardware and make it your backup server, and this does
have the advantage of simplifying the backup of this important server. On the other hand, it also
imposes an extra load on the file server, both in terms of CPU (particularly if you use it to compress

http://lib.ommolketab.ir

data) and network bandwidth. This might be acceptable if you expect to be able to fully complete
backups in off hours, but if you expect your backups to occur partly when the network is in use, you
might want to use a dedicated backup server. Also, a backup server may have increased vulnerability
to certain types of attack, so placing it on its own computer can have security implications compared
to having a file server do double duty.

14.1.4. Client- Versus Server-Initiated Backups

When doing network backups, one critical detail is which system controls the backup process: the
backup server or the backup client. Both approaches have several consequences:

Scheduling

When the backup server initiates the backup process, it can do so in a way that makes
scheduling sense for the network as a whole, and you can specify this schedule from a single
computer (namely, the backup server). When the backup client initiates the process, by
contrast, scheduling can become difficult, because the possibility of conflicts increases
dramatically. This is particularly true if backups are performed on an as-needed basis rather
than being strictly scheduled.

Computer availability

When the backup server initiates the backup process, the backup clients must be turned on
and available for backup whenever the server does its job. This might be a hassle when
backing up desktop computers, which are often powered down at night or over the weekend.
When the backup clients initiate the process, though, the server must be available at all times,
or at least at scheduled backup times. Because this requirement is placed on just one
computer, it's usually less onerous.

Security

When the backup server initiates the backup, the backup client computers must all run a server
to respond to backup requests. This server is a potential security risk, making the backup
clients vulnerable to outside intrusion. When the backup client initiates the backup, by contrast,
it means that the backup server must run a server program. Again, this is a potential security
risk, but it applies to just one computer. (The client's files must typically be accessed using a
program running as root or its equivalent, but this program need not respond to outside
accesses, and therefore needn't be as much of a security risk.) Thus, server-initiated backups
can be more of a risk to your network as a whole, particularly if the server software used for
backups isn't something you'd otherwise run. (Some backup methods, however, use protocols,
such as SMB/CIFS, that you might use even if you didn't perform network backups.)

http://lib.ommolketab.ir

Network backups use the terms client and server in an unusual way. Typically,
the backup server is the computer that houses the backup hardware, and the
backup client is the computer that holds data to be backed up. When the
backup client initiates the backup, the client/server relationship is as you'd
expect; however, when the backup server initiates the backup, the backup
client runs network server software, and the backup server runs network client
software. This relationship can be confusing if you're unfamiliar with the
terminology.

Both client- and server-initiated backups have their uses. Broadly speaking, client-initiated backups
work best on small networks with few users and irregular backup schedules, such as in a business
with half a dozen employees. As the number of computers grows, though, the scheduling hassles of
client-initiated backups become virtually impossible to manage, so server-initiated backups become
preferable. You might also prefer server-initiated backups even on a small network because of
software features of specific packages or for other reasons; don't feel compelled to use a client-
initiated backup strategy on a small network.

14.1.5. Backup Pitfalls

Backups don't always proceed as planned. Worse, restores don't always work the way you expect,
and a backup is useless if you can't restore it. Some common problems, particularly in cross-platform
network backups, include:

Network bandwidth consumption

Backing up over the network necessarily consumes a certain amount of bandwidth. Ideally, you
should schedule backups during off hours to minimize the impact of this activity on day-to-day
work.

Metadata support

Every filesystem supports its own types of metadata (data about files, such as file creation
times and permissions), and not all backup tools support all the metadata you need. This issue
comes up again later in this chapter.

In-use files

Sometimes it's not possible to read a file that's in use by another program, or a file's backup
may be corrupted if it was being modified at the moment of the backup. This can cause
problems with such Windows files as the Registry, the Outlook mail file, and files used by
Microsoft Exchange. One radical solution is to shut down the system and boot it into a
secondary OS installation (of the same OS or of another one) for backup, but this is a

http://lib.ommolketab.ir

disruptive process. Some program-specific solutions exist, such as creating backups of the
affected files from the programs that create them. These backups should then be handled by
the backup software and can be restored to the main files if it becomes necessary.

Restore glitches

No matter what backup solution you choose, you should perform periodic tests of your ability
to restore data, simply to ensure that it can be done. Unused and untested procedures have a
tendency to "rot" as you upgrade software, rendering a formerly working procedure inoperable.

Unfortunately, backup pitfalls can be very site-specific because they often involve details of your own
network, the systems you're backing up, your backup hardware, and the programs you use (both for
backup and on the systems being backed up). You may need to rely on testing and experience to
discover these problems, then try to find a solution on the Web or in some other way. This is why
testing your backups is so critically important; it's far better to discover problems before you need to
restore data than after such a restore is needed!

http://lib.ommolketab.ir

14.2. Backing Up the Linux System

The backup server itself should be backed up, which constitutes a local backup procedure. Certain
Linux network backup tools also resemble the local backup procedures. For these reasons, you should
understand how to perform a local backup. This involves knowing what backup packages are
available and how to use at least one. (I describe the tar command, which is often used when
backing up to disk and tape media.) Because optical media are particularly complex, I also describe
them in more detail. Finally, no backup is complete unless you can restore data from it, so I describe
how to do this.

14.2.1. A Rundown of Linux Backup Packages

Backing up a computer is essentially a matter of copying files. Backup, though, presents certain
unique challenges that aren't present in many other file-copying operations. One of these is the
preservation of file metadata. Some file copying techniques lose some types of metadata, but backup
tools tend to preserve more metadata. Another unique backup challenge is use of tapes, CD-R drives,
and other unusual media used for backups. Most Linux backup packages are either designed for use
with tapes as well as or instead of disk files, or they use additional programs to help store the data
on the backup media. Finally, backup media are often of limited capacity, so a method of
compression is desirable. Some Linux backup tools include compression algorithms, but others rely
on additional programs, such as gzip or bzip2, to compress a backup archive file before sending it to
the backup medium.

Numerous programs can be used for backing up a Linux system. Some of the more popular of these
include:

tar

This program, which is a standard part of all major Linux distributions, is a simple but popular
backup tool. It's described in more detail in the next section. This program performs backups
and restores on a file-by-file basis, placing all files in a carrier file. It's also frequently used to
create tarballs, which are disk-based archives of files that can be moved across a network,
placed on removable media, and so on. Tarballs are commonly used to distribute program
source and executable files.

cpio

The cpio program is conceptually similar to tar, in that it's a file-by-file backup tool that creates
an archive file. This file can be compressed or copied to a backup medium.

http://lib.ommolketab.ir

dump

The dump program is another file-by-file copying program; however, dump is tied to a specific
filesystem, such as ext2fs or XFS. It reads filesystem data structures at a lower level than tar
or cpio, and can therefore back up files in a slightly less intrusive way. Unfortunately, versions
of dump are not available for all filesystems; in 2004, only ext2fs/ext3fs and XFS have dump
programs, of common Linux filesystems. Worse, with 2.4.x and later kernels, dump may not
work reliably, so it shouldn't be used. (See http://lwn.net/2001/0503/a/lt-dump.php3 for a
mailing list message from Linus Torvalds on this subject.) To restore data backed up using
dump, you must use a separate restore program.

Partition Image

This program works at a still lower level than dump; instead of backing up individual files, it
backs up disk sectors that are marked as being used. This method of operation means that
Partition Image is tied to the filesystem you use. As of Version 0.6.4, stable filesystems are
ext2fs/ext3fs, ReiserFS, JFS, XFS, FAT, and HPFS. UFS and HFS are considered beta, while
NTFS support is marked as experimental. This package can only back up and restore an entire
partition, which makes it most useful for creating images of just-installed desktop systems and
the like, rather than backups from which individual files might need to be retrieved in the
future. You can learn more at http://www.partimage.org.

cp

Although the Linux file copy command, cp, is seldom considered a backup tool, it can be used
in this capacity, particularly with removable disk and removable hard disk media. Using the -a

parameter performs a recursive copy that preserves most file metadata. Because cp performs
a file-by-file copy without using a carrier file, it's most useful for backing up relatively limited
numbers of files to removable disks.

BRU

The Backup and Recovery Utility is a commercial backup tool for Linux and other Unix-like
systems. It includes compression and provides easier file restore operations than are available
from most open source backup programs. It also ships with a GUI, although you can use
command-line tools, as well. Check http://www.bru.com for details.

Veritas

Veritas (http://www.veritas.com) offers a line of commercial network-enabled backup products
for Linux, Windows, and other platforms.

Legato

http://lwn.net/2001/0503/a/lt-dump.php3
http://www.partimage.org
http://www.bru.com
http://www.veritas.com
http://lib.ommolketab.ir

Legato (http://www.legato.com), like Veritas, offers commercial network backup products for
Linux, Windows, and other platforms.

Most of these programs store data in archive files. In Linux, tape drives are accessed as files, so you
can use these programs to back up data directly to tape. You can also apply compression by using
gzip, bzip2, or a similar tool to the archive file. Most of these programs provide a means to do so
automatically by adding a special command-line parameter.

These programs can all be used to back up a single computer, although with certain additions, they
can be used for network backups. (The upcoming sections describe some of these capabilities.) In
addition, some network-centric backup programs are available. One of these is described in Section
14.4.

14.2.2. Using tar for Tape and Disk Backups

All major Linux distributions ship with a version of tar that's part of the GNU's Not Unix (GNU)
project. This version of tar is similar to commercial versions of tar that ship with commercial versions
of Unix, but a few commands differ slightly. GNU tar can read most other tar archives, but the
reverse isn't usually true.

GNU tar takes precisely one function and any number of options as arguments, along with a list of
files or directories. The available functions are described in Table 14-2, while Table 14-3 shows the
most common tar options. Some options also take their own arguments, as detailed in Table 14-3.

Table 14-2. Available tar functions

Function Abbreviation Description

--create c Creates an archive.

--concatenate A Links together two tarballs.

--append r Adds files to the end of an existing archive.

--diff or --
compare

d
Finds differences between files on disk and those in an
archive.

--list t Displays the contents of an archive.

--extract or --
get

x Extracts files from an archive.

--delete -
Deletes files from an archive (can't be used on archives stored
on tape).

Table 14-3. Common tar options

http://www.legato.com
http://lib.ommolketab.ir

Option Abbreviation Description

--directory dir C
Performs operations in the specified directory (dir) rather

than in the current directory.

--file

[host:]file
f

Creates or uses the specified archive file. If the host is

specified, tar uses the file on that system.

--listed-

incremental file
g

Causes tar to perform an incremental backup, using file as a

list of files from the last backup.

--one-file-
system

l
Restricts the backup to a single filesystem (disk partition or
other device).

--multi-volume M Performs a backup across multiple media.

--tape-length

length
L

Used with --multi-volume; specifies the length of each

individual tape, in kilobytes.

--same-
permissions

p Preserves all possible file metadata.

--absolute-paths P
Stores filenames with their leading slashes (/) or other

directory indicators.

--verbose v
Lists filenames as they're stored or extracted. When used with
the function --list, adds ownership, time stamp, and file size

information.

--verify W
Verifies newly created archives (similar to running --diff on

a second pass).

--exclude file - Prevents file from being backed up or restored.

--exclude-from

file
X Prevents files listed in file from being backed up or restored.

--gzip or --
gunzip

z Uses gzip to process the archive.

--bzip2 j Uses bzip2 to process the archive.

In use, you specify the function, one or more options, and any required arguments, including a
pointer to the directories or files you want to back up:

tar --create --verbose --one-file-system --file /dev/st0 /home / /usr

You can state the same command more succinctly using abbreviations:

tar cvlf /dev/st0 / /home /usr

http://lib.ommolketab.ir

Some non-GNU versions of tar require a dash (-) before the abbreviated
functions and options, as in tar -cvlf. GNU tar can work with or without the

dash.

For system backup purposes, tar is ordinarily run as root, because only root is
guaranteed read access to all ordinary files. You may also need root privileges
to write to your backup device. Non-root users can run tar to create tarballs in
their own directories or to back up files to a backup medium if they have write
privileges to the device.

This command looks simple enough, even if it's fairly long in the nonabbreviated form. It does
deserve some explanations, though:

Archive filename

This command uses /dev/st0 as the archive's filename. This filename corresponds to a
rewinding SCSI tape device, which automatically rewinds after every operation. A nonrewinding
SCSI tape device, which might be used when packing multiple archives on a single tape in an
incremental backup scheme, is /dev/nst0. ATA tape devices use the device filenames /dev/ht0
and /dev/nht0 for rewinding and nonrewinding devices, respectively. If you back up to a
removable hard disk, you can use a similar command, but you specify a partition on the disk
(such as /dev/hde5) or a filename on a mounted disk filesystem (such as /mnt/backup/05-05-
backup.tar).

Compression

This example command didn't include the --gzip or --bzip2 options. The idea is that the tape

device probably provides its own compression. When backing up to a disk backup device,
chances are you'd enable compression.

Because tape backups are less reliable than some other media, using
compression with tape can be risky. This is particularly true of tar's --gzip and
--bzip2 options, which compress an entire archive in such a way that a read

error can make all subsequent data unrecoverable. Tape drives' built-in
compression usually causes fewer problems when recovering subsequent data
from a corrupt archive.

Limiting backups

The --one-file-system option prevents backup of data from partitions that aren't explicitly

listed as backup targets. This option is often used as a means of preventing backup of mounted
removable media and the /proc filesystem, which holds pseudo-files that could cause real

http://lib.ommolketab.ir

problems when restored. Alternatively, you could use --exclude or --exclude-from to

explicitly exclude such directories from being backed up.

Backup order

The order of the directories in the backup command is potentially important. This example
backs up the /home directory first, followed by root (/) and /usr. Because tape is a sequential-
access medium, restores must read all preceding data, which means that you want the
directories with files that are most likely to need recovery to appear first. In this example, the
idea is that users might accidentally delete files and request their recovery, so you want those
files to be first in the archive. You might have other priorities depending on your needs,
though.

The preceding tar command creates a full backupor at least, a full backup of the specified
directories. Each backup uses the --listed-incremental option to point to a log file. On the first

backup, this file is empty or nonexistent, which results in a full backup. For subsequent backups, you
have two choices:

After the full backup, you can copy the log file to a backup location. After each backup except
for the first, you then copy the copied file over the log file. The end result is that each
incremental backup will be done relative to the original full backup. These backups will grow in
size as time goes on and changes accumulate, but they'll be relatively simple to restore because
you'll only need to deal with the full backup and the latest incremental backup.

You can issue precisely the same command every time without changing the log file. The result
is that every backup will be an incremental backup relative to the last incremental backup. This
backup style is sometimes called a differential backup. On average, each differential backup will
be the same size as the others, but restoring data may require accessing multiple backups.

A backup solution that uses tar is likely to rely on scripts you write yourself for your specific need. A
simple backup script might contain nothing more than a single call to tar with appropriate parameters
to perform a full backup of your system. A more complete script might include housekeeping
commands, such as commands to copy log files for incremental backups or to use mt to skip over
intervening backups on a tape, as described in the sidebar Controlling the Tape Device. A still more
complete script can accept parameters to specify a full or incremental backup or to set other site-
specific options. Backup scripts like this may be called from cron jobs in order to perform backups on
a regular basis. Of course, you must be sure that the correct tape is in the drive!

http://lib.ommolketab.ir

Controlling the Tape Device

Because incremental backups are typically much smaller than full backups, these
backups often consume only a small fraction of the available space on your backup
media. Thus, you might want to store more than one incremental backup on each
medium. This task is simple with disk backup devices, because you can store each
backup as a single tarball in a filesystem. With tapes, though, the task is more complex,
because tapes lack filesystems. Tapes do, though, store data in discrete chunks, called
files. Think of a tape as a thin vial into which you can insert beads. Each bead is a file,
but they can't be broken up or rearranged. Furthermore, to access a single file (bead),
you must first access intervening ones.

The key to accessing tape files is a utility called mt, which provides low-level access to a
tape device. This program accepts several commands, such as rewind (to rewind a tape),
offline (to rewind a tape and bring it offline, which ejects the tape on some drives), and
fsf (which skips forward one file). You use this utility with a non-rewinding tape device by
specifying its filename via the -f option. For instance, suppose you've created one

backup on a tape, and you want to store a second one on the same tape. You might do
so as follows:

mt -f /dev/nst0 rewind
mt -f /dev/nst0 fsf 1
tar cvplf /dev/nst0 --listed-incremental /var/log/incr.dat /home
mt -f /dev/nst0 offline

This sequence rewinds the tape (this step is precautionary, to ensure that it's not wound
to some location without your knowledge), skips over the first file, creates an
incremental backup, and rewinds and unloads the tape. If you intend to create multiple
backups on a single tape, you should experiment with these commands to be sure you
understand them. The mt manpage provides much more information; mt provides many
features not described here.

14.2.3. Backing Up to Optical Media

Optical media pose certain special challenges. Where you can use tar, cpio, or most other backup
programs to create archive files on disk partitions or to store archives on tape, direct read/write
access to optical media requires the use of special programs, such as cdrecord or cdrdao. These
programs ship with all major Linux distributions, but integrating them into your backup plans requires
extra effort.

http://lib.ommolketab.ir

Tools to provide disk-like direct read/write access to optical media have been
making slow inroads in the Linux world. GUI desktop environments often
provide such access via their file managers, for instance. Such tools are still
difficult or impossible to use as full backup solutions, although of course you
can drag-and-drop individual files and directories to the media in this way. This
can be a good way to back up individual project files or the like, but not an
entire computer.

Several approaches to optical media backups exist:

Backup archive direct to media

The first approach to using optical media is to treat these media much like a tape: store a
tarball (or other archive file) directly to the optical medium. Typically, you'll create a tarball on
disk and then use cdrecord to copy it to the optical disc, or you can pipe the output of tar
directly to cdrecord. This approach has the drawback that non-Unix OSs may have a hard time
reading the backup. On the other hand, instructions for doing tape backups and restores need
relatively few changes. Restores work precisely as they do for tapes, except that you specify a
CD-ROM device's filename rather than a tape device's filename, and mt isn't used.

Backup archive on carrier filesystem

A variant on the preceding approach is to store tarballs (or other archive files) on a filesystem,
which is recorded to the optical disc. To do this, you create a tarball on disk, create an ISO-
9660 filesystem containing that tarball using mkisofs, and then record the ISO-9660 filesystem
to the optical disc using cdrecord. (You can pipe some of these operations together or use GUI
tools, such as X-CD-Roast, to help with some parts of the job.) This approach is more complex
initially, but it makes the archive easier to access from non-Linux systems. You can also include
text files (perhaps including an index of files in the tarball) or other explanatory materials in
the disc's filesystem, which can make access easier. Because most people and OSs expect
optical discs to have ISO-9660 or other filesystems, this approach is less likely to cause
confusion when accessing the media in the future.

Backup files on optical filesystem

The final backup method is to store files directly on an optical disc's ISO-9660 filesystem. To do
this, you use normal CD-R creation tools, such as mkisofs and cdrecord, or GUI frontends to
these tools, such as X-CD-Roast. This approach makes recovery of arbitrary files relatively
easy; you can mount the disc and access the files just as you would the original files on the
hard disk. The drawback is that you'll lose some file metadata. (Precisely how much you lose
depends on the options you choose.)

http://lib.ommolketab.ir

If you back up files directly to an optical disc's filesystem, use the -R option to
mkisofs, rather than -r. Using the uppercase version of this option preserves

more file metadata, including write permission bits. This is most important for
performing system backups; for backing up smaller sets of data, using -r may
be preferable, particularly if you don't know who'll be reading the data. Using -
J or -hfs to generate Joliet or HFS filesystems won't hurt, but they won't

provide any real benefit, either, at least not if Linux is to read the backup. If
non-Linux systems will read the data, using one or both of these options may
be helpful.

Generally speaking, storing backups in a carrier archive on an optical disc's own filesystem is the best
way to perform system backups to these media. For backing up project files or the like, though,
storing them directly on the optical disc's filesystem, without a carrier file, is often the best way to
proceed; this enables the quickest access to the individual files.

To perform a backup using a carrier archive inside a filesystem, you must run tar, mkisofs, and
cdrecord in sequence:

tar cvzlf /tmp/bu/backup.tgz / /home /usr
mkisofs -r -o /tmp/backup.iso /tmp/bu
cdrecord dev=0,6,0 speed=8 /tmp/backup.iso

These commands presuppose that the temporary backup directory (/tmp/bu) exists and holds no
extraneous files. (You could store files there that describe the backup, if you like.) You might also
want to make adjustments for your specific needs, such as changing the SCSI device ID (dev=0,6,0)
or speed (speed=8) passed to cdrecord to suit your hardware.

The optical recorder specification passed to cdrecord is peculiar. The form
shown in the preceding example is used for SCSI devices and takes the form
bus,target,LUN, where bus is the SCSI bus (typically, the SCSI adapter

number), target is the SCSI ID number of the drive, and LUN is the logical unit
number (LUN), which is typically 0. Through the 2.4.x Linux kernel, even ATAPI

optical drives were accessed as SCSI devices, using the kernel's ATA SCSI
emulation layer. With the 2.6.x and later kernels, though, you can access
ATAPI drives directly, using a Linux device file as the device specification, as in
dev=/dev/hdc.

After running these commands, you'll have two temporary files on your hard disk: the tarball and the
ISO-9660 image file. Remember to delete them both. If you like, you can pipe the last two
commands together to bypass the creation of the ISO-9660 image file:

mkisofs -r /tmp/bu | cdrecord dev=0,6,0 speed=8 -

Be sure to include that trailing dash (-) because it tells cdrecord to accept the previous command's

output as its input.

http://lib.ommolketab.ir

14.2.4. Restoring Data Locally

No backup will do you any good unless you can restore the data. Broadly speaking, data restores fall
into two categories:

Partial restores

In a partial restore, you need to restore only a few files to a system that's basically functional.
The files could be user datafiles or system files, but they're not critical to the basic functioning
of the computer or its backup and restore software. To perform a partial restore, you can
basically run the backup process in reverse, although specifying the precise files can be tricky,
as described shortly.

Full restores

In a full restore, you need to restore all of a computer's files. These are typically necessary
when a hard disk fails completely, when a computer is stolen, or when you intentionally replace
one computer with a new one. Full restores are much trickier than partial restores because you
need some way to run the restore software on a computer that holds no OS. Thus, you must
carefully plan how to perform your full restore before the need arises. Attempting to plan the
restore when a server has crashed, and your boss is demanding it be restored immediately, is
stress-inducing and will result in wasted time as you try to work out a solution.

To begin planning a restore, start with some deliberate partial restores. Try backing up a test
directory and then restoring it using the backup software's restore feature (such as tar's --extract

function). A trickier variant is restoring just some of the files. In the case of tar, you must specify the
files or directories to be restored, much as you specify the files or directories you want to back up:

tar xvlf /dev/st0 home/linnaeus/gingko/biloba.txt

This command extracts the file home/linnaeus/gingko/biloba.txt from the backup archive to its
original location. You can as easily specify a directory or a set of individual files. A couple of details of
this command require elaboration, though:

The leading slash (/) in the file specification is missing. This is because tar normally omits this

feature of the filename. If you provide a leading slash but they aren't recorded in the archive,
tar will fail to restore the file. This can be a time-consuming mistake to make because tar can
take minutes or hours to scan the entire archive before finishing, with no file restored.

Because tar restores files using the filenames recorded in the archive, and because the leading
slash is normally missing, files are restored relative to the current directory. Thus, in most
cases, you must execute the restore command from the root (/) directory to restore them to

their correct locations. Alternatively, you can restore the files to a temporary location and then
move them elsewhere.

http://lib.ommolketab.ir

A tricky part about partial restores, particularly with simple programs such as tar, is in specifying the
file that's to be restored. If you mistype the filename, tar won't restore it and won't provide any
helpful error messages. This can be particularly frustrating if you don't know the exact filename.

If you perform incremental backups, you can use the incremental backup log to
scan files for a precise match to a given filename. Even if you don't perform
incremental backups, you can pipe the output of tar using the --verbose

option to a file and use it to help locate files. If you have only a vague notion of
what the correct filename is and have no record of it, you can use the --list

function to tar to create a file list similar to what might be produced at backup.
This can, however, take as long to complete as a full backup.

In principle, full restores work just like partial restores, except that you don't provide a file
specification, which lead tar to restore everything in its backup. (You can exclude some individual
files or directories if you like, though.) The tricky part is in running Linux on a computer whose OS
has been wiped out in some way. Several ways of handling this chicken-and-egg problem exist:

Emergency disk

You can create an emergency disk that enables you to boot a minimal Linux system and direct
the restore process much as if you were running a partial restore. You can either prepare your
own emergency disk system or locate one on the Internet. Several options for the latter exist,
ranging from floppy-based systems to Linux systems that boot from CD-ROM. Examples
include Tom's Root/Boot (a.k.a. tomsrtbt, http://www.toms.net/rb/), a floppy-based system;

ZipSlack (http://www.slackware.com/zipslack/), a variant of Slackware designed to fit on a
100-MB Zip disk; and Knoppix (http://www.knoppix.org/), a Debian variant that boots from a
CD-R. Many other variants exist, as well; a web search on keywords that are important to you
may turn up helpful pointers. If you have specific needs, such as an ability to restore using
particular software, be sure that your needs are met by the option you pick, or create your own
custom variant that includes the software you need.

Emergency OS installation

Some administrators like to create a minimal emergency OS installation alongside the regular
OS installation. This practice enables you to boot the emergency installation in case of a serious
problem with the main installation. This practice requires extra planning beforehand, though,
and it won't help in case of a complete hard disk failure, system theft, or other catastrophic
problems. It can, however, be a helpful approach in case of massive filesystem corruption or
other problems that don't damage the emergency system.

Partial OS bootstrap

You can reinstall the core OS files and use this system to restore your main system. When
doing a truly full restore, this practice works best if you reinstall your OS as a secondary OS,

http://www.toms.net/rb/
http://www.slackware.com/zipslack/
http://www.knoppix.org/
http://lib.ommolketab.ir

much like an emergency OS installation; trying to restore a backup over a working OS is an iffy
proposition because you might be left with a bizarre mish-mash of files. Alternatively, you can
reinstall the OS and all its files, and then perform a partial restore of user files alone. This
approach works well if you want to upgrade to a newer version of your distribution or to
another distribution, but it's likely to entail additional effort in reconfiguring your new OS
installation.

Second computer assist

You can enlist the aid of another computer in your restore procedures. Place a new hard disk
and a backup device in an existing Linux system and use that system to restore your failed
system's files to the new hard disk. You can then move the new hard disk to the target
computer and reboot it into the restored OS. This approach is conceptually similar to using an
emergency OS or an emergency disk, but it uses an entirely separate computer as a key
component. Juggling the physical disks can be tedious, though, and you may run into problems
related to the way the two computers handle the disk's cylinder/head/sector (CHS) geometry;
if they don't match, some disk utilities will complain.

In all these cases, one particular challenge is in restoring the system to a bootable state. The safest
way to proceed is usually to place a copy of the restored system's kernel on a floppy disk or a small
FAT partition and use a utility such as LOADLIN.EXE (a DOS program to boot Linux) to boot the
kernel. This should get you into a working Linux system, from where you can reinstall the Linux
Loader (LILO) or the Grand Unified Boot Loader (GRUB) to boot Linux normally. Most Linux
distributions provide GUI utilities to help with these tasks, or you can reinstall the boot loader by
using command-line tools. LILO can be reinstalled by typing lilo, although if you've changed your
partition layout, you may need to edit /etc/lilo.conf first. Similarly, typing grub-install often installs

GRUB, although in some cases you may need to edit /boot/grub/grub.conf or /boot/grub/boot.lst or
use the grub utility to install it with special options. Consult the LILO or GRUB documentation if you
have problems.

http://lib.ommolketab.ir

14.3. Backing Up with Samba

One of the conceptually simplest network backup tools is Samba, the network file and printer sharing
program described in Part II. Using Samba enables you to back up Windows computers using either
client- or server-initiated backup procedures. You can also perform client-initiated backups of Linux
and other non-Windows computers using Samba, although server-initiated backups of Linux systems
are tedious when done with Samba.

Before proceeding further, you should understand the basic features and uses of Samba backups.
These determine the advantages and disadvantages of using Samba as part of the backup picture.
This chapter also presents two basic Samba backup scenarios: using a backup share for client-
initiated backups and using smbtar for server-initiated backups.

The following pages presuppose at least some familiarity with Samba basics. If
you know little about Samba, you should read Part II or at least Chapter 3 and
Chapter 4.

14.3.1. Pluses and Minuses of Samba Backups

Samba is a Linux implementation of the SMB/CIFS protocolthe default file-sharing protocol for
Windows. Although Samba is frequently considered a server package, it includes client tools. Thus,
Samba can be used as part of either a client-initiated (using Samba server tools) or a server-initiated
(using Samba client tools) network backup design.

SMB/CIFS supports common Windows filesystem metadata, but it provides limited support for Unix-
style ownership, permissions, and other metadata. Thus, SMB/CIFS can be a good way to back up
files from Windows systems while preserving metadata, but SMB/CIFS is a poor way to back up Linux
or Unix systems. If you transfer data in a carrier file, though, such as creating a tarball on a Linux
system and then using SMB/CIFS to copy the tarball across the network and onto a backup device,
SMB/CIFS provides no inherent problems relating to preservation of file metadata; that information is
stored within the tarball. Such a backup approach is best handled in a client-initiated backup
procedure, though, which is why Samba and SMB/CIFS make a poor choice for backing up Linux
systems using server-initiated backup methods.

Although SMB/CIFS supports Windows filesystem metadata, Linux doesn't. Samba provides ways to
map most important Windows filesystem metadata onto Linux filesystem metadata that Windows
can't use. Thus, if you use Samba with identical configurations on backup and restore, chances are
you won't lose any important filesystem metadata when restoring data. One exception to this rule is
certain advanced NTFS features, such as multiple data streams and (depending on your Samba
server's options) support for ownership and ACLs. Thus, you may lose some metadata when backing
up a Windows system that uses NTFS in a server-initiated backup or even in some types of client-
initiated backup. However, client-initiated backups that use Windows-specific backup software can
preserve these metadata.

http://lib.ommolketab.ir

Another problem with SMB/CIFS backups is that restoring data to the backup client can be tricky,
particularly in the case of a complete restore. This topic is covered in more detail later, in the section
Section 14.3.4.

On the plus side, support for SMB/CIFS is free in both Windows and Linux. Thus, implementing a
Samba-based backup solution can be inexpensive, particularly if you're willing to invest some time in
creating appropriate backup scripts. In fact, Samba ships with a tool that's specifically designed with
backup in mind: smbtar, which is described shortly.

Because of Samba's support for FAT-style metadata, Samba can be a good way to back up all the
data from systems that continue to use FAT. Even some Windows NT/200x/XP systems use FAT, and
many of those that use NTFS don't rely heavily on NTFS-specific metadata. Thus, you may be able to
back up such systems, or at least their user data, without risking undue loss of file metadata on
restore.

14.3.2. Using a Samba Backup Share

The first approach to backup using Samba is to create a special Samba share for the purpose. This
Samba share is then accessed from the backup client in a client-initiated backup scenario. Typically,
the share accepts files (either directly or in a carrier archive, such as a tarball) and then copies them
to a backup device.

14.3.2.1 Creating a backup share

Broadly speaking, you can design a backup share in any of three ways:

The share may point directly to the backup device. This approach works only with removable
disk or removable hard disk media; you can't point a Samba share directly at an optical disc or
tape device. Typically, users then copy their files, either raw or in a compressed carrier archive,
to the backup device. The share often includes mechanisms to automatically mount and
unmount the backup device, as described shortly.

The share points to a holding area in which users copy their files. When the connection is
terminated, Samba runs a script that backs up the share using tar, cpio, cdrecord, or other
Linux backup tools.

The share accepts a prepared carrier archive from the backup client and copies it to a backup
medium. This approach handles any metadata the client's backup tools can handle, so Samba's
metadata limitations aren't an issue.

From a Samba perspective, the simplest type of backup share is the first: create an ordinary file
share that points to your removable disk's mount point. The removable disk can use any common
Linux filesystem. You can even use FAT if you think the disk might be read directly by Windows or
some other OS in the future, but ironically, using FAT will cause some Windows metadatasuch as
archive, hidden, and system bitsto be lost. The tricky part of this type of backup share is mounting
and unmounting it. One approach is to use Samba's preexec and postexec configuration

parameters. These reside in the smb.conf file's share definition and point to commands that Samba
executes when the user connects to or disconnects from, respectively, the share. For instance, a
complete backup share might look like this:

http://lib.ommolketab.ir

[backup]
 comment = Direct-Access Backup Share
 directory = /home/samba/backup
 max connections = 1
 read only = No
 preexec = mount /home/samba/backup
 postexec = umount /home/samba/backup

The preexec parameter mounts a removable medium to /home/samba/backup. This mount point
must be properly defined in /etc/fstab, though. The postexec parameter reverses this process. The
max connections = 1 option limits the connections to a single user, which can help avoid problems

that might be caused should two users try to use the backup share simultaneously. To the user, the
share looks just like any other; it's accessed from Network Neighborhood or My Network Places on a
Windows system just like any other share, and it accepts files that are copied there in the Windows
file manager or in any other way. Users will presumably insert and remove disks themselves, though,
or perhaps ask somebody in physical proximity to the server to do so for them.

One problem with this approach is that Windows systems frequently don't
terminate their connections to the server in a timely manner. Thus, the
postexec command may not execute until several minutes, or even hours,

after activity ceases. Logging out of the Windows session usually terminates it
on Windows NT/200x/XP clients, but Windows 9x/Me clients may need to be
rebooted. Another approach is to use the global Samba deadtime parameter,

which tells Samba how many minutes of inactivity to accept before
disconnecting a client. For instance, deadtime = 5 ensures that inactive

connections are terminated in five minutes.

A similar approach can be used to back up to tape or to optical media, except that the preexec and
postexec options are likely to do more:

preexec = rm -r /home/samba/backup/*
postexec = tar cvlC /home/samba/backup --file /dev/st0 ./

These options, used in place of those shown earlier, cause Samba to back up the contents of the
backup directory when the user disconnects. (As with a mounted share, Samba may wait a while
before doing this, because Windows clients often don't disconnect immediately.) The preexec option

tells Samba to delete all the files in the backup directory. This ensures that two consecutive users'
backups don't collide.

Perhaps the most flexible type of client-initiated Samba backup, though, uses a printer share, odd as
that may sound. The idea is to use a Samba printer share option, print command, to have Samba

execute a command that can operate on a single file sent by the client. Typically, this single file is a
tarball, Zip file, or other archive file. The print command copies the file to the backup device. For

instance, consider this share definition:

[print-bu]
 comment = Pseudo-Printer Backup Share

http://lib.ommolketab.ir

 directory = /var/spool/samba
 max connections = 1
 printable = Yes
 print command = dd if=%s of=/dev/st0; rm %s

This share uses dd to copy the received file, whatever it is (the %s Samba variable refers to the
received print file) to /dev/st0. A more complex command stores the received file on an optical disc

using mkisofs and cdrecord, or even uncompresses a tarball and creates a CD-R from its contents.
One important point to note about this share is that its print command ends in rm %s. Removing the

received print file is vitally important; Samba printer shares don't do so automatically, so if you fail to
remove the print file, your backup server's disk will soon overflow with old backup jobs.

If you want to create a very complex print command, try writing a script to do

the job and then call the script. This enables you to perform arbitrarily complex
actions, while keeping your smb.conf file's share definitions readable.

14.3.2.2 Using a backup share

The tricky part to using a pseudo-printer backup share comes on the client. You must create a
backup archive using local tools and then copy them to the server. For instance, you can use tar for
Windows (see http://unxutils.sourceforge.net or http://www.cygwin.com for a couple of sources) to
do the job:

C:\> TAR -cvf D:\BACKUP.TAR C:\
C:\> COPY D:\BACKUP.TAR \\BUSERVER\PRINT-BU
C:\> DEL D:\BACKUP.TAR

This series of commands, typed at a DOS prompt, backs up the client's C: drive to the PRINT-BU
share on the BUSERVER server. This specific set of commands uses D: as a temporary storage area;
you may need to change this detail for your own system. Of course, many variants on this approach
are possible. For instance, you can use a Zip utility or a dedicated Windows backup tool to create the
archive that's copied to the backup server. You can also perform more-or-less the same task using
Linux tools, in order to back up a Linux server; however, you'll use the Linux smbclient program to
copy a file, rather than the Windows COPY command. If you send a file in tarball form and if Samba
dumps it directly to tape, the result will be indistinguishable from creating a backup using a tape
drive that's directly connected to the backup client.

You can enter commands to back up a Windows system into a Windows batch
file. Thereafter, running that batch file backs up the client. To make the process
even more user-friendly, you can create a desktop object that points to the
batch file. Call it Backup or something similar, and users should have no trouble
double-clicking it to back up their computers.

All of these client-initiated Samba backup methods do have certain limitations, in addition to those
described earlier for client-initiated backups. Most notably, they all require that the Samba server

http://unxutils.sourceforge.net
http://www.cygwin.com
http://lib.ommolketab.ir

have enough disk space to temporarily hold a complete backup. This disk space must be available in
the directory used for the backup share. For removable disk backups, this isn't a very special
requirement; the disk space needed must reside on the backup medium itself. For other methods,
though, the server must be able to temporarily hold the entire archive before copying it to an
external medium. If your backup plan involves manipulating files, such as storing a set of backup files
on an optical disc, you may need more space for the temporary files you create in this process.

14.3.3. Using smbtar for Backups

The smbtar program is a script that comes with Samba. It combines the Samba smbclient program
and the standard tar utility to read files from an SMB/CIFS server and store them in a tarball or on a
tape. As such, it can be a good way to perform a server-initiated backup using SMB/CIFS. To do so,
you must first configure your backup clients to share files (that is, to be file servers). Once this is
done, you can actually employ smbtar to do the backup.

Because SMB/CIFS provides limited support for Linux file metadata, server-
initiated SMB/CIFS backups of Linux systems are unlikely to work well, except
perhaps for partial backups of user data files, particularly on a Samba server.
For this reason, this chapter assumes that such backups use Windows backup
clients.

14.3.3.1 Configuring Windows clients to share files

To perform a server-initiated backup via SMB/CIFS, you must configure the backup client as a file
server. On Windows systems, this task requires installing and activating the SMB/CIFS software,
although it's not called that in the Windows network tools. A typical procedure, for Windows XP, is as
follows:

Open the Windows Control Panel.1.

Double-click the Network Connections icon. This displays a window of the same name. (This icon
is called Network and Dial-Up Connections in Windows 200x.)

2.

In the new window, right-click the Local Area Connection icon. This produces a pop-up menu;
select Properties in this menu. The result is the Local Area Connection Properties dialog box
shown in Figure 14-1.

3.

If the protocol list includes an item called File and Printer Sharing for Microsoft Networks, skip
ahead to Step #8.

4.

Click the Install button to bring up a dialog box called Select Network Component Type.5.

Pick the Service item and click Add in the Select Network Component Type dialog box. This
should produce the Select Network Service dialog box.

6.

In the Select Network Service dialog box, pick the File and Printer Sharing for Microsoft
Networks item, and then click OK. This action will install SMB/CIFS server support on the

7.

8.

http://lib.ommolketab.ir

computer.

7.

In the Local Area Connection Properties dialog box, verify that the File and Printer Sharing for
Microsoft Networks item is checked. Click OK in this dialog box to dismiss it.

8.

Figure 14-1. Windows displays the protocols it supports in the Local Area
Connection Properties dialog box

Adding SMB/CIFS server support is only part of the job; you must also define shares that the backup
server will access. To do so, follow these steps.

Open the My Computer folder on the desktop.1.

Locate the icon for the drive you want to back up, and right-click it to produce a context menu.
Select the Sharing and Security item from this menu. (This item may be called Sharing or
something else on some versions of Windows.) This action brings up a Properties dialog box
with a Sharing tab selected.

2.

In Windows XP, the Sharing tab displays a warning that sharing an entire drive can be a
security risk. Click this notice to view the real configuration tab, as shown in Figure 14-2.

3.

Check the "Share this folder on the network" button and enter a name for the share in the
"Share name" field. This interface is somewhat different in Windows 200x and Windows 9x/Me.
In Windows 200x, you must click the New Share button to enter a share name.

4.

Windows XP allows you to enable or disable write access to the share via the "Allow network
users to change my files" button. Windows 9x/Me provides two fields for passwords for read-
only and read/write access. A backup share can ordinarily be read-only, although you will have

5.

6.

http://lib.ommolketab.ir

to enable read/write access when you want to restore data.

5.

To start sharing the drive, click OK.6.

Figure 14-2. The Properties dialog box for a disk or directory enables
sharing via SMB/CIFS

Unfortunately, every major release of Windows has changed these user interfaces slightly. The
preceding description is based largely on Windows XP. Windows 9x/Me is different. Most importantly,
the Network icon in the Control Panel brings up a Network dialog box that's similar to the Local Area
Connection Properties dialog box (see Figure 14-1).

For Windows XP Professional and Windows 200x systems, you use a local username and password to
access the share. For improved security, you might want to create a special backup account that
provides read access to all the files you want to back up, but that's not used for ordinary local access.
Windows 9x/Me systems use share-level security; i.e., a password without a username provides
access to the shares. You enter the password when creating the share, as just noted. From the Linux
backup server, you can enter a dummy username; it's ignored by the Windows 9x/Me file server.

Windows XP Home, which ships on many new computers, provides no password
to protect its shares. This configuration makes Windows XP Home a very risky
version of Windows to back up using server-initiated backups. If possible,
upgrade such computers to Windows XP Professional or Windows 200x to
obtain password-based share protections. If this isn't possible, you should at
least use a strong firewall to limit access to TCP ports 139 and 445, so that
only the backup server and other authorized systems can access the SMB/CIFS
file servers on Windows XP Home systems.

Some versions of Windows require you to reboot at some point during this procedure, typically after

http://lib.ommolketab.ir

installing the SMB/CIFS server software but before configuring shares.

14.3.3.2 Backing up with smbtar

Once you've configured a Windows system as a backup client (that is, a file server), you can try using
smbtar on the backup server to perform backups. This command's basic syntax is:

smbtar [options] [filenames]

The smbtar command accepts quite a few options, but the most important are:

-s server

You pass the name of the file server (that is, the backup client) with this option.

-x share

You must tell smbclient what share to back up with this option. If you omit it, the program
looks for a share called BACKUP.

-v

You can have smbtar provide more verbose information about its actions with this option.

-u username

When connecting with Windows NT/200x/XP servers, smbtar must pass a username to the file
server with this parameter.

-p password

Unless the backup share requires no password (a risky configuration), you must deliver one
with the -p parameter.

-a

Microsoft filesystems provide an archive bit, which is cleared when files have been backed up
and set when they're modified. This can be helpful in performing incremental backups. If you

http://lib.ommolketab.ir

use this option, smbtar clears the archive bit when backing up files.

-i

This option performs an incremental backup by backing up only those files on which the archive
bit is set.

-N filename

This option implements a different type of incremental backup system, in which smbtar backs
up only files that are newer than the specified filename, which is ordinarily a backup log file

from the previous backup.

-t tape

You should pass a filename to smbtar with this option. The filename can be a tape device, such
as /dev/st0, or a regular file.

-r

By default, smbtar backs up files from the remote share. This option reverses the process and
causes the program to restore files.

As an example, consider this command:

$ smbtar -s GINGKO -x CDRIVE -u redwood -p Y#iWT7td -t /dev/st0

This command backs up the CDRIVE share on the GINGKO server, using the redwood account and
the password Y#iWT7td, and storing the backup on /dev/st0 (a SCSI tape device). You may also add
filenames to the end of the smbtar command line. Doing so backs up the specified files or directories
without backing up other files.

Server-initiated backups using smbtar can certainly be convenient, particularly when you want to
back up an entire network of computers from a central location. Typically, you'll write a script to back
up one computer per night on a small network, or perhaps do several each night on a larger network.
Of course, you'll need to ensure that the backup clients are turned on at the scheduled backup times.
This backup method is also limited in the types of metadata it can handle. Because smbtar doesn't
understand some of the more sophisticated NTFS features, such as ownership and multiple data
streams, it might not be a suitable tool for performing complete backups of Windows NT/200x/XP
systems. Nonetheless, smbtar may be adequate for backing up user datafiles on Windows
workstations, and it can even perform full backups of Windows computers that run off of FAT
filesystems.

http://lib.ommolketab.ir

14.3.4. Restoring Data with Samba

Restoring data over the network introduces an extra component in the equation: the backup client
must be able to accept the data transfer. Precisely how this happens depends on how you backed up
the data:

Client-initiated removable disk backups

When using removable disks as if they were ordinary file shares, files can be restored by
inserting the original backup medium and using drag-and-drop operations to restore files. This
practice requires no special extra configuration on the client or the server, except for full
restores (as described shortly).

Client-initiated two-stage backups

When the backup server processes data in some way, such as bundling data into a tarball and
storing it on tape, a restore operation can be tricky. You may need to extract the data to a
special data-restore share on the backup server and then copy it to the client. Alternatively,
you may be able to configure the backup client as for a server-initiated backup and use smbtar
or similar tools to perform the restore.

Server-initiated backups

In a server-initiated backup scenario, restores can be done very much like the initial backups,
but you must specify the restore option (-r) to smbtar to do the work. You must also ensure

that the backup client's file server accepts full read/write access to the share, at least when the
restore operation is in progress. (If you like, you can disable read/write access once the restore
is done.)

With some backup methods, you can restore data without using of a network. For instance, if you
back up to an optical disc, and if the backup client has an optical reader that can read the backup,
you can restore the data locally. In some cases, you can even move the backup drive to the backup
client to perform a local restore without involving the network. This is most likely to be helpful when
performing full restores.

With the exception of two-stage backups, partial network restores usually aren't much more work
than similar restores would be on a local backup. The real trouble occurs when a full restore is
necessary. With these, many of the same problems described earlier with reference to full local
restores apply (see the section Section 14.2.4). The difference is that instead of having access to
local backup software on the emergency system, you must have access to network toolsyour
SMB/CIFS client or server software.

http://lib.ommolketab.ir

When restoring a Windows system to a FAT disk, you can use a Linux
emergency disk if your backup archive can be read by Linux. This usually works
well, although there may be some minor changes to filename case. Also, short
filenames are occasionally restored differently by Linux than by Windows, which
can sometimes cause problems if configuration files refer to files by their short
filenames.

Once you've restored data to a Windows system, you may need to take special steps to ensure that
it's bootable. For Windows 9x/Me, you can do this from an emergency boot floppy created from the
same version of the OS. Boot from the floppy, and use the FDISK program to mark the boot partition
as bootable. You should then type SYS C: to restore a boot loader to the partition's boot sector. With

Windows NT/200x/XP, boot from an emergency disk or the Windows installation CD, and select the
system repair options. These should detect the lack of boot sectors and correct the problem.

http://lib.ommolketab.ir

14.4. Backing Up with AMANDA

Samba can be an effective part of a network backup solution, but it's got its limitations. Most
importantly, it can be difficult to schedule backups, particularly on larger networks; you must add
each machine individually to a network backup schedule. One solution to this problem is AMANDA,
which was designed to automate the tape backup process as much as possible, while also providing
tools to simplify the restore process. AMANDA serves as a "wrapper" around several other tools, and
as such requires extra configuration. Once it's configured, though, AMANDA simplifies the day-to-day
administration of a backup plan.

To begin using AMANDA, you should first understand its principles of operation: what can it do and
how does it do it? Three types of configuration are then relevant: the AMANDA backup server, Linux
backup clients, and Windows backup clients. Once you've configured all your systems, you can
proceed to using AMANDA for both backups and restores.

14.4.1. AMANDA Principles

AMANDA was designed as a network-centric backup solution, in the sense that it's designed to treat a
network as a single entity that's to be backed up. This contrasts with tar or even smbtar, which treat
backups on a computer-by-computer basis. Of course, you must still tell AMANDA about the
individual computers that are to be backed up, but you needn't be concerned with details such as
scheduling when each system is backed up. Instead, let AMANDA work out those details, based on
information you provide it concerning how often you want to complete a backup and what your
network bandwidth is. Of course, you must ensure that backup clients are accessible to the backup
server at the scheduled times. Because you may not know what those times are, it's best to make
the backup clients accessible at all times.

AMANDA performs backups using two types of network protocols: its own unique tools and
SMB/CIFS. AMANDA uses its own protocols to back up other Linux or Unix systems; these systems
run tar or dump locally and transfer data to the AMANDA server. For Windows systems, AMANDA
uses smbclient to transfer data using SMB/CIFS. In both cases, the backup clients must run server
software and respond as servers. The AMANDA backup server, though, also runs server software, for
the benefit of client-initiated restores. This configuration means that AMANDA can be trickier to
configure than most backup server systems. Once configured, though, the backup procedure can be
highly automated, and partial restores can be simpler, as well.

http://lib.ommolketab.ir

AMANDA hardcodes some values in its executables. Thus, mixing AMANDA
client and server packages for different Linux distributions may not work very
well. If your site has multiple Linux distributions, or Linux and other Unix-like
systems, you may need to compile AMANDA locally to get these systems to
interoperate. Pay particular attention to the --with-user and --with-group

options, which set the AMANDA user and group. In theory, a low-priority
backup user should work, but in practice, you may need to run it as root to
back up all files on the backup clients. This isn't a concern for networks with a
Linux AMANDA backup server and Windows backup clients; because the
Windows backup clients run SMB/CIFS servers rather than AMANDA servers, no
special coordination is necessary.

AMANDA's normal mode of operation is to first copy data from the backup client to a holding area on
the backup server's hard disk and then copy this data to the backup tape. (AMANDA was designed
with tape backups in mind and can't be used with other backup media.) AMANDA therefore works
best with a large local hard disk, or at least something that's large enough to hold a substantial
chunk of a day's backup. If your local hard disk is smaller than this, AMANDA will perform the backup
in bursts, pulling as much data as it can from the client, backing it up to tape, pulling more from the
client, and so on. This process is likely to be less efficient than retrieving a full backup and then
spooling it all to tape.

14.4.2. Configuring an AMANDA Server

The bulk of the effort in AMANDA configuration is on the backup server side. Tasks include running
the server programs for client-initiated restores, setting general AMANDA options, preparing tapes,
and defining backup sets.

14.4.2.1 AMANDA server programs

The AMANDA backup server computer doesn't need to run any server programs for ordinary backup
operations, but it does need to run two server programs to handle client-initiated restores:
amandaidx and amidxtape. These programs are typically run from a super server (inetd or xinetd). If
your distribution uses xinetd, and you install AMANDA from a package provided by your distribution,
it may include one to three files in /etc/xinetd.d to handle the serversboth the servers for the backup
server system and the server for the backup clients. (This third server is described in the Section
14.4.3.) If these files aren't present, you can create one or two files to do the job. These files should
contain entries like these:

service amandaidx
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = amanda
 group = disk
 server = /usr/lib/amanda/amindexd
 disable = no

http://lib.ommolketab.ir

}

service amidxtape
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = amanda
 group = disk
 server = /usr/lib/amanda/amidxtaped
 disable = no
}

These entries tell xinetd to handle the servers. You may need to adjust some items for your system;
pay particular attention to the user and group entries, which should match the values used when the

servers were compiled. (Consult your binary package's distribution if you installed a binary package.)
You might also need to adjust the path to the server. If your package includes xinetd configuration
files, you shouldn't need to adjust these features, but you may need to change the disable lines, as
these usually ship set to yes, which disables the servers.

The user who runs AMANDA on the backup server must have read/write access
to the backup device files.

If your distribution uses inetd rather than xinetd, you must create entries in /etc/inetd.conf to handle
these two servers:

amandaidx stream tcp nowait amanda.disk amindexd amindexd
amidxtape stream tcp nowait amanda.disk amidxtaped amidxtaped

In addition to the inetd or xinetd configuration files themselves, you should check your /etc/services
file to be sure that port numbers are registered under the names used in your super server
registration:

amandaidx 10082/tcp
amidxtape 10083/tcp

Once you've made these changes, restart or reload your super server. You can typically do this using
a SysV startup script by typing /etc/init.d/xinetd restart or something similar. Consult your

distribution's documentation if you have problems.

14.4.2.2 Setting AMANDA options

AMANDA uses two main configuration files, each stored under /etc/amanda or subdirectories of that
directory:

http://lib.ommolketab.ir

amanda.conf

This file holds the main AMANDA configuration options. This file sets site-wide options.

disklist

This file specifies the computers that are to be backed up and the partitions on those
computers that you want to back up. It's covered in more detail in Section 14.4.2.4.

In theory, these files can reside in /etc/amanda, or sometimes in /etc, /usr/local/etc, or a similar
location. In practice, it's common to define multiple sets of configuration files, each of which resides
in a subdirectory named after its purpose. For instance, you might use a directory called
/etc/amanda/daily for daily backups and /etc/amanda/archive for long-term archival backups. You
can then perform radically different types of backups by running AMANDA with appropriate options to
use the configuration files you specify. Many AMANDA configurations provide a sample amanda.conf
file in the /etc/amanda/example directory. You can copy this file to a new directory you create and
modify it to suit your purpose.

Most amanda.conf options consist of a keyword followed by one or more options, such as netusage
800 Kbps to tell AMANDA that it may use up to 800 Kbps of network bandwidth. Some configuration
options, though, require multiple lines. These use an opening curly brace ({) to mark the beginning of
the block of lines that apply to an option and a closing curly brace (}) to mark the end of the block.

You can leave most of the options alone in a typical example configuration file. Here are some of the
options you might need to adjust:

org

This option sets a name that appears in reports, so it's not critical for basic functioning, but you
might as well set it.

mailto

Specify usernames or email addresses using this option, and AMANDA will send reports on its
activities to those addresses.

dumpuser

AMANDA runs backups as the user you specify with this option. If it's unspecified, it uses a
compile-time option that's specified via the --with-user option when building the program.

http://lib.ommolketab.ir

netusage

This option specifies the maximum amount of network bandwidth that AMANDA can expect to
have available to it.

dumpcycle

You tell AMANDA how long you want a full network backup to take with this option. Typically,
you specify a value in days or weeks, such as 5 days or 2 weeks.

runspercycle

This option sets the number of times that AMANDA expects its amdump program, which does
most of the real work, to run in each dump cycle. Setting this value equal to the number of
days in dumpcycle results in an expectation of one run per day, while setting it to a higher or

lower value results in multiple runs per day or less than one run per day. (The amdump
program is actually run by cron; this option just tells AMANDA what to expect for planning
purposes.)

tapecycle

This option specifies the number of tapes used in a dump cycle. Ordinarily, it's the same as
runspercycle plus a few for error handling; in case a tape goes bad and can't be used, you

want AMANDA to be able to recover relatively gracefully.

runtapes

You can tell AMANDA to use multiple tapes per run by specifying the number with this option.
The default value is 1, which is usually desirable.

tapedev

You tell AMANDA what tape device to use with this option. AMANDA expects to use
nonrewinding tape devices, so be sure to point to one.

tapetype

To plan its backups, AMANDA must know several key things about your tape backup device.
You therefore specify the tape type with this option, which refers to definitions that appear
later in the amanda.conf file. (Search for define tapetype to find this list.) If you don't see

your tape device in the list, you'll need to either locate one on the Internet (check the AMANDA
home page, and click the TapeType link) or generate one yourself. To do the latter, you'll need

http://lib.ommolketab.ir

the tapetype utility, which comes with the AMANDA source code but isn't built by default. Type
make tapetype in the source code directory to build it. You should then insert a tape that holds

no important data and type ./tapetype -f /dev/device to test the tape accessible from

/dev/device. This operation erases all data on the tape and will probably take several hours.

If your tape device supports hardware compression, you may be able to increase the reported
tape length by the compression ratio (typically about 2), but if you then try to back up data
that's not easily compressed, AMANDA may run out of space on the tape, which will cause
problems.

labelstr

When preparing tapes, as described in the next section, you give each tape a name. You must
provide a regular expression describing the form of this label; AMANDA will use only tapes that
match this label. This helps prevent accidental erasure of tapes if you insert the wrong one in
the tape drive.

Another important option is the description of holding disks. You can define one or more holding
areas, and each definition spans multiple lines, as in:

holdingdisk hd1 {
 comment "primary holding area"
 directory "/var/spool/amanda"
 use -500 MB
 chunksize 2000 MB
}

The comment is a comment for human use, and the directory specifies the location of the holding
area. The use line is optional; when it's present, it specifies how much space may be used in this
area. A negative use value tells AMANDA how much disk space to leave free; this example causes
AMANDA to leave at least 500 MB available. The chunksize line is also optional, and it specifies the

maximum size of individual files that are temporarily stored in the holding area. This feature can be
useful on some older filesystems or 2.2.x kernels, which have file size limits of about 2 GB. A
negative chunksize value tells AMANDA to attempt to pass files larger than the absolute value of the

specified size directly to the tape device, which saves disk space but may result in slower operation,
depending on your hardware.

14.4.2.3 Preparing tapes

AMANDA labels every tape that it uses, then keeps track of the tapes during the backup process. This
arrangement enables AMANDA to tell you precisely what tape to insert in the drive when performing
restores. To do any good, though, you must first label all the tapes you'll use for a backup set. To do
this, use the amlabel command:

$ amlabel daily DailySet107

You must run this command as the user who will perform the backup. It takes the name of the
backup configuration (that is, a subdirectory name within /etc/amanda) and a label as options. In

http://lib.ommolketab.ir

this example, the label is DailySet107. This label must match the regular expression specified on the
labelstr line in amanda.conf, or AMANDA won't be able to use the tape.

14.4.2.4 Defining dump types and backup sets

In order to accommodate different computers' backup needs, AMANDA provides a number of dump
types near the end of the amanda.conf file. These dump types are specified with the define
dumptype option, as in:

define dumptype comp-user {
 global
 comment "Non-root partitions on reasonably fast machines"
 compress client fast
 program "GNUTAR"
 priority medium
}

Each named dump type is referenced in the disklist file to set assorted backup options, each of which
appears on its own line within the dump type definition. Some of the options you might want to set
include:

compress

This option sets two options: whether compression occurs on the client or the server and the
compression's speed/quality tradeoff (best, fast, or none).

exclude

You can exclude individual files from backup using this option. Alternatively, exclude list

enables you to pass a list of filenames that AMANDA will exclude from backup. AMANDA
excludes no files by default.

holdingdisk

Pass yes or no to this option to tell AMANDA whether to use a holding disk. The default value is
yes.

index

Pass yes or no to this option to tell AMANDA whether to store an index of files that are backed

up. You might want to omit the index on disks that are likely to be restored only in a full
restore as a measure for saving disk space. The default value is yes.

http://lib.ommolketab.ir

kencrypt

This option takes yes and no values, and controls whether AMANDA uses Kerberos encryption.
Setting it to yes requires that your network use Kerberos, as described in Chapter 9. The
default value is no.

program

Pass "DUMP" (including the quote marks) as this option's parameter to have it use dump for
backups on the remote system; pass "GNUTAR" to have it use tar. Given the limitations of
dump, routinely using program "GNUTAR" is often wise. The default is "DUMP" for AMANDA
backup clients, but only "GNUTAR" is valid for Samba clients, so that's the default.

skip-incr

If this option is yes (the default is no), disks that use this dump type are skipped when

performing incremental backups.

priority

This option accepts values of low, medium, and high, which describe the importance of the disk

for the backup. In case of errors or insufficient disk space, disks with higher priorities are
saved, at least in the holding area, in preference to disks with lower priorities. The default
value is medium.

These and more options are described in comments in the amanda.conf file, so if you'd like to achieve
some effect not described here, check that file's comments. The example configuration file includes
many dump types, so chances are you can use those that are provided. Peruse them to learn more.
You can then create a disklist file, which specifies the backup client computers, the directories you
want to back up, and the dump types you want to use for each directory:

Be sure to back up the backup server
buserver.example.org / root-tar
buserver.example.org /var root-tar
buserver.example.org /hold holding-disk

Back up a Linux client
buclient.example.org / root-tar
buclient.example.org /home user-tar

Back up a Windows client
buserver.example.org //GINGKO/DRIVEC user-tar

http://lib.ommolketab.ir

The first set of entries in this example configuration backs up the backup server
system. This means that the backup server must be configured as a backup
client (as described in the next section), as well as being configured as a
backup server.

For Linux or other Unix-like systems that run AMANDA software, you specify the hostname, a
directory name, and a dump type. For Windows backup clients, you specify the backup server as the
hostname and provide a hostname and share name in //HOST/SHARE format instead of a directory

specification. AMANDA then uses Samba's smbclient to transfer the files. You must also create a
password file, /etc/amandapass, which holds share names along with usernames and passwords:

//GINGKO/DRIVEC mypassword
//MAIZE/DRIVED buuser%bupassword

This example sets a password alone for the DRIVEC share on GINGKO, and a username and
password for the DRIVED share on MAIZE. Because this file contains unencrypted passwords, you
should ensure that it's readable only to the backup user (and root, if the two aren't the same).

At this point, AMANDA is configured on the backup server; however, you must still configure it on any
Linux clients and prepare Windows systems. Once this is done, you can actually begin using AMANDA
for backups and restores.

14.4.3. Linux AMANDA Client Configuration

Linux AMANDA backup clients run a server program called amandad, which responds to commands
from the backup server system. The amandad program is normally run from a super server. If you
installed AMANDA from a distribution's package on a distribution that uses xinetd, it may have
installed a file called /etc/xinetd.d/amanda to handle this server. If you use xinetd, and this file isn't
present, you'll have to create it:

service amanda
{
 socket_type = dgram
 protocol = udp
 wait = yes
 user = amanda
 group = disk
 server = /usr/lib/amanda/amandad
 disable = no
}

As with the servers that are run on the AMANDA backup server computer, this one may need
modification for your system. In particular, the user and group items may need adjustment. Be sure

the specified user and group exist and have the necessary permissions to access the files you want
backed up on the system. In practice, it's sometimes necessary to run the server as root, particularly
if you want to back up files that only root may read. Even if your distribution provides a file to handle

http://lib.ommolketab.ir

this server, you should check it and set disable = no; the default usually sets this value at yes,

disabling the server.

If you use inetd as your super server, you must create an /etc/inetd.conf entry for amandad:

amanda dgram udp wait amanda.disk amandad amandad

The server run on the AMANDA backup client, like all servers, is a potential
security risk, particularly if it's run as root. A miscreant who manages to access
the server can read files from the computer, potentially including sensitive files
such as password databases. Be sure the port used by the server (UDP port
10080) is well protected by firewall rules.

You must also ensure that the server's port is defined in /etc/services:

amanda 10080/udp

As a security measure, amandad uses an authorization file, .amandahosts, which is located in the
home directory of the user who runs the server. This file contains the hostname of the backup server
and the username of the user who runs the backup software on that system:

buserver.example.org amanda

The amandad server refuses to interact with amandad clients (that is, backup server systems) other
than the one specified in this file. AMANDA doesn't use passwords for authentication, though.

Once all these features are set up, you should restart your super server. On most distributions, this
can be done using SysV startup scripts, as in /etc/init.d/xinetd restart. Consult distribution-

specific documentation for details.

14.4.4. Windows AMANDA Client Configuration

Because AMANDA uses SMB/CIFS to back up Windows systems, you needn't install or configure any
special AMANDA software on these systems. Instead, configure them as you would for an SMB/CIFS
backup using smbclient, as described earlier. Be sure to set the password for the backup user or
share to the value you've set in the AMANDA backup server's /etc/amandapass file.

14.4.5. Backing Up and Restoring Data with AMANDA

To run a backup via AMANDA, use the amdump command. This command has the following syntax:

amdump config [host [disk]]

http://lib.ommolketab.ir

Normally, you just pass it a config name, which should match one of the subdirectory names in

/etc/amanda. The amdump program then performs part of a network backup. The tool scans your
configuration files to determine how many systems and disks it should back up over the course of a
dump cycle. It can then perform an appropriate fraction of the full backup, the assumption being that
the run you perform with this command is a regularly scheduled one. Of course, you must insert one
of the tapes you prepared for this backup configuration in the tape drive before you issue this backup
command.

Normally, you call amdump from cron. For instance, you might use a crontab entry like this to run
amdump once every weeknight:

00 21 * * 1-5 /usr/sbin/amdump

You enter this line in the ~/crontab file for the user who you want to perform the backup, then type
crontab -u user /home/user/crontab as root, where user is the username in question. The result is
that cron will run amdump at 21:00 (9:00 P.M.) every weekday (1-5 in the final date field

corresponds to Monday through Friday). Depending on your network bandwidth, tape capacity, and
so on, each run can take anywhere from a few minutes to several hours to complete. After each run,
AMANDA will email a report of its activities to the address specified with the mailto option in

amanda.conf, so you can use that information to verify AMANDA's correct operation.

Restoring from an AMANDA backup requires special tools on the backup client. (For Windows backup
clients, though, you perform these steps on the backup server system.) In particular, the amrecover
tool enables you to browse the backup database maintained by the backup server. This tool presents
its own amrecover> prompt and accepts commands you type. You can select files to recover and

then extract them all from the backup with a single command. Specific commands you're likely to use
include:

sethost hostname

Sets the name of the computer whose files you want to restore. The default is the localhost.

setdisk diskname

Sets the name of the disk on which the files you want to restore were originally held. It must
match a name set in disklist.

listdisk diskname

Lists the contents of a disk.

setmode mode

http://lib.ommolketab.ir

Tells amrecover how to extract files for SMB/CIFS operations. Setting mode to smb causes

shares to be extracted directly to the SMB/CIFS backup client computer; setting mode to tar

causes files to be extracted to the local system.

mode

Displays the mode for extracting SMB/CIFS shares.

add items

Adds the specified items (files or directories) to a restore set.

extract

Begins the extraction process. To do any good, you must have added files to the restore set
first. The tool prompts you to insert particular backup tapes, then recovers the data from those
tapes.

In addition to these commands, amrecover accepts several more. Some of these, such as cd and ls,

are similar to commands in bash or other common Linux shells; they enable you to move around the
directories in the backup set and view files. Consult the amrecover manpage for more information.

As with local restores using tar or other tools, restores using amrecover are simplest if the systems
involved are in more-or-less functional condition. To perform a full restore, you must have an
emergency system working, as described in Section 14.2.4. This system must have a working version
of the AMANDA backup client software running.

http://lib.ommolketab.ir

14.5. Summary

Backups are extremely useful insurance in case of hardware failure, major filesystem problems,
system intrusion, or even user error. When these problems crop up, a backup can speed recovery of
a working system. Unfortunately, backing up an entire network can be a tedious proposition.
Fortunately, tools such as Samba and AMANDA can help simplify this process. Although they can take
some time to set up, once they're configured, their day-to-day use is relatively straightforward, and
they can pay off quite handsomely when problems occur that require data recovery from the backup.

http://lib.ommolketab.ir

Chapter 15. Managing a Network with Linux
Linux can run several protocols that can provide important background functionality on networks.
These protocols seldom make themselves obvious to usersexcept if the servers that manage them
malfunction. Although most of them are major protocols in the sense that they provide many
features and have even spawned entire books, they aren't tricky enough to configure to deserve
entire chapters in this book. Therefore, I cover all of them in this chapter. These protocols are the
Dynamic Host Configuration Protocol, which delivers IP addresses and other basic network
configuration information to clients; the Domain Name System, which converts hostnames to IP
addresses and vice versa; and the Network Time Protocol, which helps keep clocks synchronized on
multiple computers.

Although all these protocols can be handled by Windows, doing so with Linux gives you all of Linux's
advantages. The servers that handle these protocols are all small enough and require little enough in
the way of CPU time, memory, and other resources that they can be run on a very modest Linux
systemperhaps an old 80486 or Pentium system that's been retired. You can move one or more of
these services onto such a Linux system, obviating the need to upgrade your software and hardware
to enable the latest version of Windows to do the job.

http://lib.ommolketab.ir

15.1. Delivering IP Addresses with DHCP

Networks of all sizes use DHCP to simplify configuration of most computers on the network. A
computer configured to use DHCP for basic network configuration tries to locate a DHCP server at
startup and, if one is found, sets its basic network options to those specified by the DHCP server. This
task may sound impossible because basic network configuration information is delivered via the
network before the DHCP client is configured, but it is possible, and understanding the basics of how
it's possible is the first order of business. Next up is an overview of DHCP configuration files. You can
use DHCP to assign addresses either so that the same computer is or isn't guaranteed the same
address on each boot, and understanding how to do both is important. Finally, knowing how to tell
clients to use DHCP is critically important to this protocol's successful deployment.

15.1.1. The Role of DHCP

DHCP is an unusual protocol because it uses very low-level network protocols to help a computer
"bootstrap" a more sophisticated configuration. When a DHCP client boots or starts its TCP/IP
network stack, the client has no IP address, but it does have working hardware, and it can send data
over the network wire. The DHCP client therefore sends a network broadcast with a query directed at
any DHCP server that might be listening. Although the DHCP client has no IP address, it does have a
working low-level hardware address, and the DHCP server is able to direct its reply to this address.
The DHCP server's reply includes information on basic network settingsmost importantly, the client's
IP address and network mask, as well as the IP addresses of the subnet's router and the DNS servers
the client should use. Additional information can be delivered, as well, such as the IP addresses of
NBNS computers, but this information isn't delivered by all DHCP servers or used by all clients.

DHCP works by issuing leases on IP addresses. The idea is that, should the client crash or otherwise
become inaccessible, the IP address will revert back to the pool of available addresses after a limited
time. In this way, a DHCP server can continue delivering addresses from a fixed set of addresses.
Clients can also give up their leases voluntarilysay, when they're shut down. Not all clients do this,
though. Leases have fixed terms, and when a lease expires, a client must renew that lease.
(Typically, clients attempt to renew their leases halfway through their terms. If the initial renewal
attempt fails, subsequent attempts are made.)

Considered on the network as a whole, DHCP simplifies configuration. Instead of entering several IP
addresses on each client (for the client itself, including its netmask, the router, DNS servers, and
perhaps more), DHCP enables you to set a single option to use DHCP on each client. The details of IP
address assignment can then be handled by the server, either automatically or by assigning one
address to each computer. This centralized control has a certain appeal by itself, but it's also helpful
because it reduces the risk of a typo causing problems, and it makes it easier to change your
network's configuration. For instance, if you need to change your network's DNS server address for
some reason, you can do so by implementing a change in the DHCP server configuration.

http://lib.ommolketab.ir

Because DHCP works by providing leases of fixed length, changes to network
features such as DNS and router IP addresses won't immediately propagate to
all DHCP clients. Most clients should update their settings by half the DHCP
lease time, though. You can adjust the lease time from the DHCP server.

Because DHCP can assign IP addresses arbitrarily to any computer that asks for one, it can be
particularly handy on networks on which computers are frequently added and removed. For instance,
if your office hosts a number of notebook computers that are frequently removed and taken on
business trips, these computers might not have permanent IP address assignments. A DHCP server
can assign addresses to them as they're used. Furthermore, if a notebook computer is used on two
networks, and if both networks use DHCP, the notebook computer can adjust itself automatically to
the settings needed by both networks.

Although enabling DHCP to deliver IP addresses to any new computer it sees,
and using notebook computers with any network's DHCP server are both useful
procedures, they're also both potentially risky. If a new computer on your
network is infected with a worm or virus, it might be able to spread locally,
bypassing any firewall controls you have on your router. Likewise, a notebook
computer can come under attack from worms or viruses if connected to a
foreign network. To reduce risk in a security-conscious environment, you might
configure DHCP to deliver IP addresses only to known computers. You can do
so by referencing specific hardware addresses, as described in the Section
15.1.4.2.

In the Linux world, the Internet Software Consortium's (ISC; http://www.isc.org) DHCP server is the
standard one. Most Linux distributions ship with this server under the package name dhcpd or dhcp-
server. ISC also produces a DHCP client, which is frequently installed as dhcpcd. Other DHCP clients,
such as pump and dhcp-client, are also available.

15.1.2. Kernel and Routing Requirements for DHCP

Because the DHCP server must communicate with clients that are not yet fully configured for TCP/IP,
the server needs support for packet sockets. This is a way for programs to communicate over the
network without using an intervening network protocol, such as TCP/IP. It's usually enabled by
default, but if you've rebuilt your kernel yourself, you might want to check for it. In 2.6.x kernels,
check Networking Support Networking Options Packet Socket. If this option isn't enabled,
enable it and recompile your kernel. This option is also needed by some DHCP clients.

DHCP servers send their responses to clients using a broadcast address. This can be either a global
broadcast (255.255.255.255) or a broadcast that reaches all the computers on a particular subnet
(such as 172.24.255.255 to reach all the computers on the 172.24.0.0/16 subnet). Unfortunately,
some DHCP clients (such as some versions of Windows) expect DHCP servers to deliver global
broadcasts, but some Linux configurations convert global broadcasts into local broadcasts. The usual
symptom of this problem is that some Windows clients (particularly Windows 9x/Me systems) can't
obtain IP addresses via DHCP, but others (such as Linux clients) can. If this happens, try typing this
command on the Linux DHCP server:

http://www.isc.org
http://lib.ommolketab.ir

route add -host 255.255.255.255 dev eth0

If the DHCP server is delivering addresses on a device other than eth0, change that part of the

command appropriately. After making this change, try restarting an affected Windows system; it
should now work. If so, add this line to a local Linux startup script or to the SysV startup script for
your DHCP server.

This route command adds an explicit route for traffic destined to
255.255.255.255; without it, Linux changes the IP address to conform to
existing routes. You can check your existing routing table by typing route -n.

After adding the route as just described, it should appear as the first entry in
the routing table.

15.1.3. DHCP Configuration Files

The DHCP server's configuration file is /etc/dhcpd.conf. Some package distributions include this file in
this location, but some packages instead provide a sample file in another location. For instance,
SuSE's dhcp-server package stores a sample file in /usr/share/doc/packages/dhcp-server/. The ISC
DHCP server also creates a file to track its leases, often called /var/lib/dhcp/dhcpd.leases. You
shouldn't need to adjust this file, although examining it can sometimes be a good way to check the
server's operation.

Don't confuse the DHCP server's dhcpd.conf file with dhcpcd.conf, which some
DHCP client packages use as a configuration file!

Aside from comments, which are denoted by hash marks (#), dhcpd.conf contains two broad types of

statements:

Parameters

These are relatively simple statements that provide information for clients (such as a router's
IP address) or that tell the server whether or how to do something (such as how long leases
should be). Many parameters begin with the keyword option.

Declarations

These statements describe the network topology, assign IP addresses to clients, or create a
grouping of related parameters. Declarations often span multiple lines, in which case the
grouped lines are denoted by curly braces ({ }).

Most dhcpd.conf files begin with a set of parameters and then move on to declarations. A simple
network may contain just one declaration, which in turn contains multiple parameters. A more

http://lib.ommolketab.ir

complex network might contain multiple declarations.

15.1.4. Assigning Addresses

The bulk of DHCP server configuration is in assigning IP addresses. A full configuration file, though,
sets assorted other parameters, and it's best to consider them together. I therefore describe two
complete configurations as examples: assigning dynamic IP addresses and assigning fixed IP
addresses.

15.1.4.1 Dynamic address assignment

In a dynamic IP address assignment configuration, the DHCP server hands out IP addresses to any
computer that asks for them but doesn't go to any great lengths to track computers and match them
with the same IP address every time they boot. Thus, a single computer might receive four different
IP addresses over the course of a week, depending on factors such as the lease time, the number of
addresses available, the number of computers on the network, and how often the computer reboots
or is shut down for an extended period.

Even when a network uses dynamic IP addresses, a computer's IP address is
unlikely to change unless the computer is shut down for an extended period of
time, such that its lease expires and another computer grabs the address. Even
when a computer reboots, it typically asks for its old address back, and will
probably receive that address if the lease hasn't expired yet. When the
computer stays up continuously, it renews its lease before the lease expires and
so keeps the same IP address continuously.

Example 15-1 shows a typical dhcpd.conf file for assigning dynamic IP addresses. Although this
example is simple, something like it should be adequate for many small networks or even simple
large networks. Most lines in this file end in semicolons (;), and omitting that character is an easy

way to create a nonfunctional configuration file, so be sure to check that detail. Multiline declarations,
however, don't use a semicolon on lines that end in either an open or a close curly brace.

Example 15-1. Sample dynamic DHCP server configuration

allow bootp;
default-lease-time 86400;
max-lease-time 172800;
option subnet-mask 255.255.255.0;
option domain-name-servers 192.168.1.7, 172.24.21.7;
option domain-name "example.com";
option netbios-node-type 8;
option netbios-name-servers 192.168.1.7
option ntp-servers 192.168.1.7;
option x-display-manager 192.168.1.3;
option tftp-server-name "mango.example.com";

http://lib.ommolketab.ir

subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;
 range 192.168.1.50 192.168.1.254;
}

This example begins with several lines that set assorted parameters. Most of these have fairly
descriptive names, such as default-lease-time or option subnet-mask. However, some options

require some elaboration:

allow bootp

This option tells DHCP to respond to BootP requests, which are similar to DHCP requests but
designed to be used by computers that boot off the network. Such configurations are often
used with thin clients, as described in Chapter 12.

default-lease-time

You set the default lease time, in seconds, with this option. The lease time is actually
determined by negotiation between the client and the server, so you may end up delivering
longer leases than you specify with this file, depending on the client's options.

max-lease-time

This parameter sets the maximum lease time the server delivers. Even if the client requests a
longer time, the server won't comply.

When testing a DHCP configuration, or sometime before making important
changes such as altering a router or NTP server IP address, you may want to
reduce the default-lease-time and max-lease-time values to something
shortpossibly as short as a few minutes (say, 300five minutes). This action

reduces the amount of time that clients have invalid information, which can
speed up DHCP testing. Using lease times in the range of several minutes to a
few hours can be good on networks that see lots of coming and going, such as
a network to which users frequently attach laptops for a few minutes at a time.
Note that using short lease times will increase network traffic and load on the
DHCP server. Setting lease times in the range of many hours or days (such as
the 86400, or one day, default lease time in Example 15-1), is a better policy

for a stable and working DHCP server on a network that sees few changes to its
clients.

option subnet-mask

http://lib.ommolketab.ir

As you might guess, this option sets the subnet mask (a.k.a. the network mask or netmask).

option domain-name-servers

Point to your network's DNS servers with this option. You can specify multiple servers by
separating their values with commas. Most clients accept up to three DNS server addresses,
but you can deliver fewer than this number if you like. Example 15-1 specifies DNS servers by
IP address, but you can specify hostnames for the DHCP server to resolve when it starts up.
(The DHCP server delivers IP addresses to clients in both cases.)

option domain-name

You can tell clients what domain name to use with this option. Not all clients use this
information, but for those that do, it can be a handy feature.

option netbios-node-type

This option tells Windows clients how they should attempt to resolve nameswhether to use a
NBNS system, broadcast resolution, or both. A value of 8 tells the system to use an NBNS

system if possible but to fall back on broadcast name resolution. Chapter 5 describes NBNS
configuration in more detail.

option netbios-name-servers

This option is the NetBIOS equivalent of option domain-name-servers and works in a similar

way. Linux clients ignore this information, though; it's useful only for Windows clients.

option ntp-servers

You can point clients at an NTP server with this option; however, many clients ignore this
information. Section 15.3, describes NTP in more detail.

option x-display-manager

This option can point certain X terminal thin clients at an XDMCP server, as described in
Chapter 12. Some thin clients ignore this information, however.

option tftp-server-name

A TFTP server delivers files to computers, such as some thin clients, that boot off of the

http://lib.ommolketab.ir

network. This option points such clients to the TFTP server.

option routers

Although Example 15-1 shows this option within a declaration block, it can appear outside such
a block. It points the clients at the network's router (a.k.a. the gateway).

DHCP supports many additional parameters, but most of them are quite obscure. Consult the
dhcpd.conf manpage or a book on DHCP for more information.

The core of the DHCP configuration, and the part that sets the dynamic addresses it can deliver, is
the subnet declaration in Example 15-1. This declaration begins with a specification of the numeric
subnet it serves192.168.1.0 netmask 255.255.255.0. The curly braces then set off several lines

that define features unique to this declaration. In Example 15-1, the declaration contains just two
parameter lines, but you can add more. These lines override parameters set outside the declaration
body or set new options. The key to defining a dynamic DHCP definition is the range parameter:

range 192.168.1.50 192.168.1.254;

This line tells dhcpd what IP addresses it may deliver. In this case, the range includes 205 addresses,
from 192.168.1.50 through 192.168.1.254. The server won't deliver addresses outside of this range,
even within the 192.168.1.0/255 subnet. Thus, you can assign IP addresses for some systems
without using DHCP. For instance, the DHCP server itself typically has a static IP address. You might
also want to give a router or other important server a static IP address outside the DHCP server's
control.

Once you make changes to the DHCP server's configuration, you must restart the server. Typically,
you do this using the server's SysV startup script, as in /etc/init.d/dhcpd restart. If the server

isn't already running, you can start it the same way. Consult distribution-specific documentation if
you need help with SysV startup scripts.

15.1.4.2 Fixed address assignment

The leap from dynamic IP address assignment to fixed address assignment is a matter of adding new
declarations, one for each computer to which you want to assign a fixed address. These host

declarations appear within the declaration for the dynamic subnet:

subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;
 range 192.168.1.50 192.168.1.254;

 host gingko {
 hardware ethernet 00:0C:76:96:A3:73;
 fixed-address 192.168.1.20;
 }
}

http://lib.ommolketab.ir

Each host declaration begins with a hostname (gingko in this case). This hostname may be passed
to the client if you set the use-host-decl-names true parameter, but most clients ignore the name.
The declaration then contains two lines. The first sets the client's media type (ethernet in this case,
although token-ring is appropriate for Token Ring networks) and media access control (MAC)
address, a.k.a. the hardware address. The DHCP server then knows to assign the specified fixed-
address as the IP address whenever the computer with the specified MAC address requests an

address.

The IP address you specify with fixed-address must be outside the range
specified with range but within the range determined by the subnet IP address
and netmask declaration.

Of course, on a large network, managing all the computers' MAC and IP addresses can be tedious.
For this reason, assigning fixed IP addresses in this way is best reserved for small networks or for a
limited number of computers (say, important servers) on large networks. This type of configuration is
also often used when configuring thin clients, which may need to be told on a client-by-client basis
what files to use as a boot OS. This topic is described in Chapter 12.

One critical detail about this configuration is locating the target computer's MAC address. Several
approaches to doing so exist:

Examining board markings

Some network card manufacturers mark the MAC address on their boards, usually by affixing a
sticker. This can be a good way to get a MAC address if you're installing a card, but it can be
inconvenient if the computer's already assembled and has the network card in it. Also, not all
manufacturers label their cards this way.

Client configuration tools

Most clients enable you to view the MAC address in one way or another. On Linux and most
other Unix-like clients, you can find the address using ifconfig, as in ifconfig eth0. The MAC
address is called the HWaddr in the output. Typing IPCONFIG /ALL at a DOS prompt on Windows
NT/200x/XP systems also displays this information, on a line labelled Physical Address.

Windows 9x/Me systems provide a GUI tool, WINIPCFG, which delivers this information.

Using arp

You can give the client an IP address, either by configuring it statically or by using DHCP
without a static IP address defined for the system. You can then use the Linux arp command to
find the MAC address. For instance, arp 192.168.1.78 finds the MAC address (and some other

information) for 192.168.1.78. You may need to direct some other traffic at the computer first,
though; using ping should do the job.

http://lib.ommolketab.ir

Examining DHCP logs

If you have the client obtain an IP address from the DHCP server's pool of dynamic addresses,
you can then examine the /var/lib/dhcp/dhcpd.leases file to locate the MAC address. This
appears in a block named after the IP address given to the client. Similarly, the
/var/log/messages or other system logfile on the DHCP server usually records the MAC address
of clients and the assigned IP address. These techniques are both simplest to use on a network
with little DHCP activity, such as a small network. Locating the correct entry on a larger
network can be trickier.

In all these cases, the exact form of the MAC address can vary. For inclusion in the dhcpd.conf file's
host declaration, the address appears as a series of hexadecimal (base 16) numbers separated by

colons (:). Some utilities may show the address in another form, such as separated by dashes. If
necessary, make the change. For hexadecimal values between A and F, the DHCP server doesn't care
about case. For instance, 5a is exactly equivalent to 5A.

15.1.5. Telling Clients to Use DHCP

Like any server, the ISC DHCP server is useful only if it has clients. These clients can be Windows,
Linux, Mac OS, or just about any other system. The DHCP client sets its own basic TCP/IP features by
consulting the DHCP server, so the DHCP client program must run before most other network-related
programs on the client.

A DHCP client can be a server for other protocols. For instance, you might use
DHCP to assign an IP address to an SMB/CIFS file or printer server. Some
servers work best with fixed IP addresses simply because this makes it easier
to enter a name-to-IP-address mapping in your DNS server. For them, you can
assign a fixed IP address to the server via DHCP, as just described.

To tell a computer to use a DHCP server, you must typically run the computer's basic network
configuration tools. For instance, you can do this job on a Windows XP system that's already
configured with a static IP address:

Open the Windows Control Panel.1.

Double-click the Network Connections icon in the Control Panel. This action opens a Network
Connections window.

2.

In the Network Connections window, right-click the Local Area Connection icon and select
Properties from the resulting context menu. This action opens a Local Area Connection
Properties dialog box.

3.

In the Local Area Connection Properties dialog box, select the Internet Protocol (TCP/IP) item
and click Properties. This action yields a dialog box called Internet Protocol (TCP/IP) Properties,
as shown in Figure 15-1.

4.

http://lib.ommolketab.ir

Figure 15-1. The TCP/IP Properties dialog box lets you set basic
network features

In the Internet Protocol (TCP/IP) Properties dialog box, click "Obtain an IP address
automatically". If any are set, the values in the "Use the following IP address" fields should
disappear.

5.

If your DHCP server delivers DNS server addresses, click "Obtain DNS server address
automatically". Any addresses you've set manually should disappear. (You can continue to set
DNS server addresses manually, though, which can be handy if you want to use a nonstandard
DNS server for some reason.)

6.

Click OK. This should activate your changes. You then need to close the remaining open dialog
boxes and network option windows.

7.

In many cases, you'll configure the DHCP client when you first set up its networking features. For
instance, you might double-click the Network Setup Wizard in Windows XP. This setup procedure will
guide you through various network settings, but in all cases, you should be presented with a choice
to use DHCP or to set the IP address manually, as in Figure 15-1. (Windows often doesn't use the
term DHCP, though, instead referring to this option as "obtain IP address automatically," as in Figure
15-1, or something similar.)

Precise details vary from one operating system to another, as well. Most versions of Windows, Mac
OS, and other GUI-oriented OSs provide a procedure similar to that just described for Windows XP,
but many details differ. Consult the OS's documentation, or browse the system configuration options
for ones relating to network configuration. Linux distributions with GUI system administration tools
can usually be configured to use DHCP in much this way, as well. You can also do so using text-mode
tools: install a DHCP client (usually in a package called dhcpcd, dhcp-client, or pump), and use
chkconfig or other tools to enable this package in your default runlevel. Consult distribution-specific
documentation if you need help with this task.

http://lib.ommolketab.ir

http://lib.ommolketab.ir

15.2. Delivering Names with DNS

A second key network management tool is DNS. DNS servers fill two roles: enabling your local clients
to convert names to IP addresses for local and remote computers, and enabling remote systems to
find local computers that you choose (such as web or mail servers). One important question is
whether you should even run a local DNS server; for many purposes, relying on outside servers
makes a lot of sense. Sometimes, though, running a DNS server locally is very helpful. If you decide
you want to run your own DNS server, you must be able to configure it. The basic DNS server
configuration varies with the server software you select. BIND is the most popular Linux DNS server,
and so it's described in this chapter. Once the basic configuration is set, you must create files that
describe the computers on your networktheir hostnames, IP addresses, and related characteristics.
Finally, you must be able to tell clients to use the DNS servers you've configured.

15.2.1. Principles of DNS

DNS is, essentially, a global database of computer names. The huge size of the DNS database
presents many challenges, including maintenance of the database and providing storage space for it.
Both challenges are overcome by the fact that DNS is a distributed database; no one computer holds
all the data in the DNS database. Instead, the DNS namespace is arranged hierarchically. At the top
of the hierarchy are the top-level domains (TLDs), which appear at the end of a DNS hostname.
Common examples include .com, .edu, and .net. These three TLDs are all examples of generic TLDs
(gTLDs), which are (theoretically) not tied to specific nations. Another type of TLD is the country code
TLD (ccTLD), which uses a two-digit country code as the TLD, such as .us for the United States or .ru
for Russia.

Below the TLDs are the domain names that are so common, such as oreilly.com for O'Reilly Media or
upenn.edu for the University of Pennsylvania. These domains can be further subdivided, such as
cis.upenn.edu for the Computer and Information Science department at the University of
Pennsylvania. At some point, individual computers can be specified, as in www.oreilly.com for the
O'Reilly web server.

The beauty of DNS's distributed nature is that it ties into this hierarchy. At each level of the
hierarchy, a single DNS server can reasonably hold data on all the domains or subdomains at that
level. At the very top of this hierarchy, a set of computers known as the root servers maintain
information on the TLDs. Each root server can field queries concerning TLDs; most importantly, the
root servers can tell a client where to find DNS servers for the .com, .ru, and other TLDs. The client
can then contact a TLD's DNS server for information on a specific domain, such as oreilly.com; the
result is the address of the oreilly.com DNS servers. With this information in hand, the client can ask
about a specific computer, such as www.oreilly.com.

The distributed DNS system therefore enables lookups in a huge address space relatively quickly.
Although multiple queries may be needed, each one finishes rather rapidly. DNS also includes certain
time-saving features. For instance, rather than have users' workstations perform the full recursive
lookup, in which a name is queried starting with the root servers, a network can host a DNS server
that does this job and caches the results. Thus, if two users on a network look up www.oreilly.com in

http://lib.ommolketab.ir

quick succession, the local DNS server needn't perform a full recursive lookup for the second query;
it simply retrieves the result of the original lookup from its cache and delivers that result. This
characteristic is also a key to understanding the two main roles that a DNS server can play on your
network:

The DNS server can perform full recursive lookups for the benefit of your local computers, and
also deliver information on local computers to other local computers. Running a DNS server this
way doesn't require modifying your domain's registration with the outside world.

The DNS server can hold information on your local network and deliver that information when
queried by remote systems. This capability is extremely important for delivering the IP address
of your externally accessible servers, such as your mail server. Although this chapter can help
get you started running your own DNS server, you must consult your domain registrar to link
your server to the global DNS system.

This chapter focuses on the first type of DNS configurationthat which is most useful to local
computers. The principles described here also form the foundation for making changes that are
accessible to the outside world, though.

You can assign one DNS server to be used by local computers and another for
use by outside systems. In fact, you don't need to run both servers yourself.
For instance, you might run your own local DNS server to help your computers
perform DNS lookups, but rely on a domain registrar or a domain hosting
provider to run DNS servers that hold information on your domain for the
outside world.

Running a DNS server for the benefit of your local computers is most useful if your ISP doesn't
provide one or if you want to deliver information that's unique to your private network. For instance,
you might have a subnet behind a firewall that holds file servers, print servers, and pull mail servers
to be used by other computers behind the firewall. Entering information on these systems in a
globally accessible DNS server is unnecessary and can even give potential attackers information
about your network, so running a DNS server behind the firewall can be a good way to provide local
name resolution. This server can also handle full recursive lookups for the benefit of other local
computers.

An alternative to DNS for local name resolution is to configure an NBNS system.
Windows clients often use an NBNS system automatically if the DHCP server is
configured to deliver the NBNS address, as described earlier in Section
15.1.4.1. You can also configure Linux systems to use NBNS, as described in
Chapter 6. NBNS has certain advantages, such as simpler adaptation to
dynamic IP addresses, but it's also got limitations, such as a lack of support for
DNS domain information.

15.2.2. Basic Name Server Configuration

Running a name server involves two basic configuration tasks: setting up the name server itself (that
is, the options it uses to control where it stores additional configuration files, how it should respond,

http://lib.ommolketab.ir

and so on) and setting up the domains it handles. This section describes the first of these tasks, using
the BIND software as an example. (If you use another server, such as djbdns, you need to read its
documentation.) The second task is described in the next section.

The Berkeley Internet Name Domain (BIND) is distributed by the ISC (http://www.isc.org), which
also distributes the most common Linux DHCP server. As with ISC's DHCP server, BIND is available
with all major distributions, except for some very desktop-oriented ones; thus, you shouldn't need to
download it from the ISC web site unless you have a specific reason to avoid your distribution's BIND
package. Typically, the package name is bind.

Although the official name for this server package is BIND, the executable filename is named, and
BIND configuration files are named after thisnamely, the main configuration file is /etc/named.conf.
For a simple configuration, this file contains two broad classes of entries:

Global options appear in a section called options. These include features such as a directory in

which domain definitions exist, on what network interfaces the server should listen, and so on.

Each domain or subdomain (that is, a zone) is briefly described in a zone section. This section

sets only the broad outlines for a zone; the description of the zone's computers appears in zone
configuration files, as described in the next section.

Example 15-2 shows a simple but usable /etc/named.conf file. This file defines the basic settings for
a BIND server handling the example.com domain. It includes an options section and four zone

sections, which are described in more detail shortly. A DNS server for a network with multiple
subnets or domains is likely to have additional zone sections.

Example 15-2. Sample /etc/named.conf file

options {
 directory "/var/named";
 listen-on{
 192.168.1.1;
 172.24.21.1;
 };
 forwarders {
 10.29.102.7;
 10.65.201.7;
 };
 forward first;
};
zone "." {
 type hint;
 file "named.ca";
};
zone "example.com" {
 type master;
 file "named.example.com";
};
zone "1.168.192.in-addr.arpa"{
 type master;

http://www.isc.org
http://lib.ommolketab.ir

 file "named.192.168.1";
};
zone "0.0.127.in-addr.arpa"{
 type master;
 file "named.local";
};

The general format of the /etc/named.conf file is similar to that of the ISC DHCP server. Most lines
set individual options and end in semicolons (;). Other lines, though, begin or end blocks of options.
The line that begins such a block ends in an open curly brace ({), and the line ending such a block
ends in a close curly brace and a semicolon (};).

The options section in Example 15-2 sets several important global features of the server:

directory

This may be the most important line in the options section; it sets the name of the directory in

which BIND looks for zone definition filesthat is, the files that define the mappings of
hostnames to IP addresses and related domain features.

listen-on

This optional subsection specifies one or more IP addresses on which BIND listens for queries.
This feature can be handy if you run the server on a computer with multiple network interfaces
but want to make the server available on only some of them.

forwarders

This subsection is optional. If you use it, you can specify the IP addresses of one or more DNS
servers that you want to handle DNS queries other than those for which your own server is the
ultimate authority. Typically, you use this feature if your ISP offers DNS servers of its own. You
can point BIND to your ISP's servers using this directive and, rather than perform a full
recursive lookup itself, your server queries your ISP's servers and lets them perform the full
recursive lookup. This can result in faster responses if your ISP's servers are working correctly,
because they probably have better Internet connections than your own server. This option has
no effect on lookups within your own domains (such as example.com in this example).

forward

The forward option tells BIND when to use the DNS servers specified with the forwarders
directive. The forward option takes either of two values: only or first. The forward only
directive tells BIND to use the servers listed in the forwarders section and its own zone files
exclusively; BIND doesn't perform its own recursive lookup. The forward first directive, by
contrast, tells BIND to attempt to use the servers specified by forwarders but to perform a full

http://lib.ommolketab.ir

recursive lookup if those servers are unavailable. This option can improve reliability, but it can
also slow the return of a failure code.

Many other directives can be placed within the options section, but the ones described here should

be enough for many small configurations. Consult the documentation that came with BIND, or a book
on the server, such as O'Reilly's DNS and BIND, for more information on these options.

If you want BIND to deliver information on your local network, the zone definitions are just as
important as the options section. Each zone definition begins with the zone keyword followed by the

name of the zone. Chances are your named.conf file will have three broad classes of zone definitions:

The root zone

The zone "." entry in Example 15-2 defines the root zone, which ultimately points BIND to the
root DNS servers. This definition uses a type hint line, which is unique to the root zone

definition.

Forward lookup zones

The only forward lookup zone in Example 15-2 is for the example.com domain. This type of
entry specifies the domain or subdomain name as the zone name, and enables clients to pass a
hostname to get an IP address. On the domain's primary DNS server, this zone will have a
type master line in the zone definition. (Slave DNS servers can copy zone files from another
DNS server and use a type slave definition; however, slave DNS server configuration is

beyond the scope of this book.)

Reverse lookup zones

Frequently, DNS servers include zone definitions for reverse lookups, in which a client enters an
IP address and receives back a hostname. Reverse lookups work much like forward lookups,
but they require an unusual notation for the zone type. Specifically, reverse lookups use
hostnames of the form backwards-IP-address.in-addr.arpa, where backwards-IP-address

is an IP address fragment in reverse. For instance, Example 15-2 has two reverse lookup
zones, named 1.168.192.in-addr.arpa and 0.0.127.in-addr.arpa. These correspond to

the 192.168.1.0/24 and 127.0.0.0/24 network blocks, respectivelynote that the order of the
four bytes of the IP addresses are reversed. In both cases, the first byte of the reversed
address (the final byte of the original) is omitted, which denotes the fact that these zones apply
to networks with 255.255.255.0 netmasks. The reverse ordering of these names is confusing
at first, but the reason is that the most- and least-significant portions of IP addresses and
hostnames are reversed. A reverse lookup converts an IP address to a hostname in the special
in-addr.arpa domain. However, to define the individual hosts in this domain, the machine
identifier portion (that is, the final byte of the address in a /24 netblock) must be the first part
of the name in the in-addr.arpa domain, so the order of the IP address elements must be
reversed. Example 15-2 defines two reverse lookup zones, one for the loopback address
(127.0.0.0/24) and the other for the local network address (192.168.1.0/24).

http://lib.ommolketab.ir

It's possible to omit a reverse lookup zone. In fact, if your DNS server will be
serving names for IP addresses on the Internet as a whole and you don't
control the entire netblock, you should omit the reverse lookup zone. You're
responsible for handling forward lookups on your domain, but whoever controls
the netblock (usually an ISP for small networks) is responsible for the reverse
lookup. If you're configuring a DNS server for a small private network, though,
you might want to include both forward and reverse lookups.

Once you've configured the basics in /etc/named.conf, you might be tempted to restart the named
server. You can do so in the usual way, such as by using a SysV startup script, however, you should
probably wait until you've created appropriate domain configuration files, as described next.

15.2.3. Setting Up a Domain

Configuring the basics of the server's options is just the start of the process. In day-to-day operation,
you're more likely to need to modify your zone definitions, which are stored in files in the directory
specified with the directory keyword in the options section of the /etc/named.conf file. Each zone

has its own configuration file, which defines features of the zone as a whole and creates mappings of
hostnames to IP addresses for each member of the zone.

Each type of zone definition in named.conf has its own variant style of zone definition file. The most
fundamental of these is the root zone definition. Chances are your BIND configuration includes a
default configuration that will work. Typically, the filename is named.ca or db.cache. If this file isn't
present, or if it's very old, you should try to obtain a more up-to-date version. You can find the latest
copy from ftp://ftp.rs.internic.net/domain/db.cache. Copy this file to the directory specified in your
named.conf file, and name it as specified by the file option in that file's root zone definition (zone
"."). Additional zone files are the forward and reverse zone files.

15.2.3.1 Configuring forward zone files

The second type of zone definition is for forward lookupsthose that use an ordinary domain name in
the zone line of named.conf. Use whatever filename you specify in named.conf for the file. Typically,

this name is related to your domain's name, such as named.example.com for the example.com
domain. Example 15-3 shows a sample forward lookup zone configuration file.

Example 15-3. A sample forward zone definition file

$ORIGIN .
$TTL 604800 ; 1 week
example.com IN SOA maize.example.com. linnaeus.example.com. (
 2004102609 ; serial
 28800 ; refresh (8 hours)
 14400 ; retry (4 hours)
 3600000 ; expire (5 weeks 6 days 16 hours)
 86400 ; minimum TTL (1 day)

http://lib.ommolketab.ir

)
$ORIGIN example.com.
maize IN A 192.168.1.1
gingko IN A 192.168.1.2
mandragora IN A 192.168.1.3
mandrake IN CNAME mandragora

mail IN A 10.23.186.78
www IN A 172.24.217.102

@ IN NS maize.example.com.
@ IN MX 10 mail.example.com.

The zone file begins with two lines that set some global parameters. The $ORIGIN . line should be
present in your zone files unchanged. The $TTL 604800 line sets a default time-to-live (TTL) value,

which tells other servers how long, in seconds, they may cache entries obtained from your server.
You may increase or decrease this value as you see fit.

The lines beginning with example.com and ending with a single close parenthesis ")" define the start

of authority (SOA) record for this zone. This entry sets several important overall features for the
zone:

Zone name

The zone name (example.com in this example) begins the SOA line. You should change it to

match your own domain or subdomain name.

Entry class

The IN code defines the class of the entry. IN stands for Internet, and it's the most common

SOA entry class and the only one described in this chapter.

Record type

The SOA code identifies this entry as creating an SOA record.

Master name server

The maize.example.com. entry in the SOA record identifies the zone's primary name server.

Note that this hostname ends in a dot (.). Technically, all DNS hostnames end in a dot. Most
user programs enable you to omit this dot, but you must include it when specifying a full
hostname in the DNS configuration files.

http://lib.ommolketab.ir

Administrative email account

The linnaeus.example.com. entry, although it doesn't look like one, represents an email

address for the person responsible for administering the domain. Replace the first dot with an
at sign (@; to create linnaeus@example.com.) to generate an email address. As with other

addresses, this one must end in a dot.

Timing information

The remaining information, beginning with the open parenthesis on the main SOA line and
ending with the close parenthesis line, represents timing information for the data retrieved
from this zone. This information is used mainly by other DNS servers. Values are a serial
number (often set to the date followed by a code for the change number on the day), the
interval for slaves to use between checks for updated information, the interval at which slaves
should attempt transfers if the first one failed, the time after which a slave should expire and
discard an entire zone if it's not been updated, and a minimum TTL value for remote DNS
servers to cache information. The values shown in Example 15-3 are reasonable starting
points. Note that most of these values are important only if you run multiple DNS servers, with
one configured as a master and the rest as slaves.

Following the SOA record is a line that explicitly sets the $ORIGIN to your domain, including its
trailing dotexample.com. in this case. Subsequent lines are similar in form to the SOA line, but

they're simpler; most take the following form:

hostname IN code address

The hostname is the hostname in question, without a domain component. Some entries enable you to

specify an at sign (@) as the hostname. This symbol stands in for the domain name and is used by

certain code types, as described shortly. The IN component is invariant in these entries, at least as

far as described in this chapter. The code is a code that stands for the entry type and is described in

more detail shortly. Finally, the address is the address to associate with the hostname. In many

cases, this is an IP address; but for some code types, it can be a hostnameeither a hostname without

a domain, which is interpreted as a hostname in the current domain or a hostname with domain
component and trailing dot. The MX code is unique in that it includes a number before the address, as

described shortly.

In defining a domain, you're likely to include several different types of code:

A

An A record defines an individual host in the domain. Use this to associate an IP address with a
hostname.

CNAME

http://lib.ommolketab.ir

A CNAME record sets up an aliasa linkage of one name with another. CNAME records are often
used when a single computer goes by multiple names, such as a single system that functions
as both a web server and an FTP server, and that you want to be accessible by the names
www and ftp for this reason. Alternatively, you can create multiple A records, but doing so
requires you to change all the A records if you ever change the server's IP address; using
CNAMEs for most records makes subsequent changes easier and less prone to error.

NS

A name server record identifies a DNS server for the domain. Normally, one NS record points
to the computer you're configuring. Others may point to other DNS servers, such as slaves of a
master server. The hostname on this line is either the domain name alone or an @ sign, and the

address is the name of an A recordwith or without the domain component.

MX

A mail exchanger record points to a domain's mail server. This record requires a priority
number for each server listed; sending mail servers attempt to contact your mail servers in
sequence, starting with the one with the lowest number and moving up from there. As with NS
records, the hostname is either the domain name alone or an @ sign, and the address is the

name of an A record.

PTR

Example 15-3 shows no pointer (PTR) records because they're unique to reverse lookup zone
files. They use a pseudo-hostname based on an IP address as a hostname, and they list a

regular hostname as the address. PTRs are described in more detail shortly.

15.2.3.2 Configuring reverse zone files

In some cases, you need to configure only forward lookups. For instance, your ISP might own your
network block and so handle the reverse lookups, or you might simply not care about reverse
lookups. (Some programs, though, perform reverse lookups and compare them to the forward
lookups. If the two don't match, the programs terminate the connection or otherwise cause
headaches. Thus, working reverse lookups can be more than just a convenience.) If you're in control
of your network block, including if you're running in a private reserved address space, you can
configure a reverse lookup zone. To do so, you must first specify a reverse lookup zone in the
/etc/named.conf file, as described earlier, in Section 15.2.2. You can then create a reverse lookup file
in your zone file directory. This file is likely to be named after the zone, e.g., named.192.168.1.
Example 15-4 shows an example of such a file.

Example 15-4. A sample reverse zone definition file

http://lib.ommolketab.ir

$TTL 1W
1.168.192.in-addr.arpa. IN SOA maize.example.com. linnaeus.example.com. (
 2004102609 ; serial
 28800 ; refresh
 14400 ; retry
 3600000 ; expire
 86400 ; default_ttl
)
1 IN PTR maize.example.com.
2.1.168.192.in-addr.arpa. IN PTR gingko.example.com.
3.1.168.192.in-addr.arpa. IN PTR mandragora.example.com.

1.168.192.in-addr.arpa. IN NS maize.example.com.

The reverse lookup file is very similar to the forward lookup file. Like the forward lookup file, it
includes a $TTL directive. (Example 15-4 shows an alternative way of specifying the time, though, by
including a one-letter abbreviation for the time unit1W meaning one week.) This file also contains an

SOA record, which takes the same form as the equivalent record in the forward zone definition file;
the main difference is in the name of the domain. (You can use different specifics, such as refresh
times or network administrator email address if you like, though.)

The bulk of the post-SOA entries in a reverse lookup file are PTR records, which tie an IP address (in
the form of its reversed in-addr.arpa pseudo-hostname) to conventional hostnames. As with forward
lookup files, you can abbreviate hostnames by omitting the domain portion of the name. In the case
of reverse lookup files, though, the domain portion of the name is the reversed network portion of
the address and in-addr.arpa. Thus, the reverse lookup for the 192.168.1.1 address in Example 15-4
is 1, referring to the final byte of the IP address. Example 15-4 doesn't use this convention for the
remaining addresses. The looked-up names (maize.example.com., gingko.example.com., and so on

in Example 15-4) may not be abbreviated by omitting their domain portions. You must also include
the trailing dot after each of these names.

In addition to SOA and PTR records, reverse lookup zone files typically include one or more NS
records, which point to the DNS servers that handle the network block. These might or might not be
the same servers that handle forward lookups for the computers in that network block. Other record
types, such as A, CNAME, and MX, are uncommon in reverse lookup files.

15.2.3.3 Running the server

Once you've set up your domain, you can start the server. Typically, this is done via a SysV startup
script; typing /etc/init.d/named start or something similar usually does the job. To run the server

permanently, you can use chkconfig or a similar tool to add the server to your default runlevel, or do
the job manually by creating appropriate symbolic links yourself. Consult distribution-specific
documentation if you need help with this job. Once the server has started, you may want to check
the last few lines of your log files to see if the server has reported any problems. Typing tail
/var/log/messages can do this.

http://lib.ommolketab.ir

If you restart the server, you may get an error message in your logs about the
journal forward failed, and you might not be able to resolve names in a

domain. This often happens if you change your BIND configuration while the
server is running; it doesn't like that. The solution is to shut down named,
delete the file whose name starts with the name of the zone configuration file
but ends in .jnl in the directory that holds your zone configuration files, and
restart named. A better practice is to make changes to your zone files only
when named isn't running.

You can test your server's operation using the host command on the server or any other computer
that has this tool. Type host name server to look up name using the specified server. If the
computer pauses for several seconds and responds connection timed out, chances are the server

has crashed on startup or you've specified the wrong server. (You may need to specify server as an

IP address if the computer isn't configured to use that system for name resolution by default.) Other
error messages typically denote problems with your DNS configuration; check your logfiles for clues.
Be sure to test both forward and reverse DNS lookups.

15.2.4. Pointing Clients at the Name Server

Client configuration is, of course, critically important to DNS operation. If you want local workstations
and servers to use your DNS server for name resolution, you must tell them to do so. If you use
DHCP to assign IP addresses to these computers, the simplest way to configure them to use your
DNS server is to adjust your DHCP configuration using the option domain-name-servers line in your

DHCP configuration file, as described earlier, in the section Section 15.1.4.1. Once configured in this
way, a DHCP server can deliver DNS server information to Windows, Linux, Mac OS, and other clients
that use DHCP.

If you want to configure some or all of your computers using static IP addresses without using DHCP,
you must configure these computers to use your DNS servers manually. Precisely how you do so
varies from one OS to another, but most provide GUI tools that enable you to enter the DNS server
addresses manually. Earlier, the Section 15.1.5 described how to configure Windows XP to use DHCP.
Part of this process provided an opportunity to tell Windows to use the DNS servers provided by the
DHCP server or to use servers you specify. In particular, Figure 15-1 shows the relevant dialog box.
Click "Use the following DNS server addresses," and enter up to two DNS server addresses to have
Windows use them instead of those provided via DHCP or if you don't use DHCP at all. Similar tools
exist in other versions of Windows and in other OSs.

Although you can enter DNS server addresses using GUI tools in most Linux distributions, Linux
supports another method: the /etc/resolv.conf file specifies DNS servers and the domains that Linux
should attempt to search. This file is likely to be quite short:

domain example.com
search example.com,pangaea.edu
nameserver 192.168.1.1
nameserver 10.29.102.7

Each line has a specific purpose:

http://lib.ommolketab.ir

domain

This line tells the computer the domain to which it belongs. The main practical upshot is that
names are searched for in this domain before they're searched in other domains or without the
domain name.

search

This line enables you to tell the system to search domains instead of the one specified by
domain. You can list up to six domains, separated by commas or spaces.

nameserver

You list DNS servers, one per line, using nameserver keywords. Linux supports up to three

DNS servers; it tries each one in sequence until a lookup returns a definitive success code (a
certain success or failure, as opposed to a failure of the server).

Whether the DNS client runs Linux, Windows, or some other OS, a DNS lookup normally uses a
domain search list, even if the user specified a hostname with a domain. For instance, if you do a
lookup on mandragora.example.com from within the example.com domain, the computer first tries a
lookup on mandragora.example.com.example.com. If additional domains are in the search paths,
similar lookups are performed on them, as in mandragora.example.com.pangaea.edu. When these
lookups fail, the name resolver tries the lookup without appending any item from the search path.
The assumption is that the user has entered a relative hostname without a domain component. You
can block this initial, and probably erroneous, lookup by appending a dot, e.g., typing
mandragora.example.com. rather than mandragora.example.com when entering the hostname. This

trick works with most programs and protocols, but it might confuse some. In most cases, it's
unnecessary; the extra lookup that fails is unlikely to take very long at all, so it does no real harm.

http://lib.ommolketab.ir

15.3. Keeping Clocks Synchronized with NTP

One of the frustrations of using a computer network is that the individual computer clocks can report
different times. This fact can be a minor annoyance when, say, you seem to have jumped back in
time by two minutes when switching computers. It can become more serious when programs that
rely on time stamps see inconsistent times on files. A make utility, for instance, might fail to compile
a file if it believes that file changed before the last compilation, when in fact it changed after the last
compilation but the time stamps are off. Even more serious temporal problems result with tools such
as Kerberos, which embed timestamps in some of their packets as a security measure. Depending on
your Kerberos settings, logins can fail completely if two computers' clocks are inconsistent.

These problems can all be overcome using a protocol designed to keep computers' clocks
synchronized. The most popular protocol to do this job is known as the Network Time Protocol, which
is headquartered at http://www.ntp.org. Before proceeding with the details of NTP configuration, you
should understand its basic operating principles; this will help you decide how to implement NTP. As
with most protocols, you must then configure both servers and clients. The Linux NTP server, though,
does double duty as both a server and a client. On the Windows side, you can use either a full NTP
implementation or a built-in Windows command.

15.3.1. Principles of NTP

NTP can do more than simply keep your clocks synchronized on your local network: it's designed to
help you keep all your computers' clocks set to an accurate time source. It does so by creating a
hierarchy of NTP servers, most of which also function as clients to NTP servers that are closer to the
ultimate time sourceusually an atomic clock or a device that reads its time from one, such as a radio
that receives signals from an atomic clock. This arrangement is illustrated in Figure 15-2.

Figure 15-2. NTP links multiple layers of NTP servers to a highly accurate
time source

The atomic clock or other time source is referred to as a stratum 0 time source. The servers that
communicate with this device are known as stratum 1 servers; those that communicate with the
stratum 1 servers are stratum 2 servers, and so on. This arrangement provides a powerful
exponential effect on the number of computers a single time source can serve. For instance, if each
server has just 100 clients, a single stratum 1 server can have 10,000 stratum 3 and 1,000,000
stratum 4 clients. As the stratum level increases, the accuracy of the clocks decreases, but not by
much; times are typically accurate to well under a second up to several stratums. (The exact values
depend on factors such as the variability of transit times and how evenly divided the transit times are
on each leg of the journey.)

At each step of the way, NTP works by measuring the time it takes for packets to traverse the

http://www.ntp.org
http://lib.ommolketab.ir

network. For instance, if you send a packet to a computer, and it replies, you can measure the
round-trip transit time. (You can use ping to do this in a crude way.) If the return packet includes a
time stamp, you can use the time stamp and round-trip transit time to set your own clock to that of
the remote server; you use the time stamp in the packet and half the transit time. NTP uses this
principle at its core, although it's more sophisticated. For instance, a full NTP implementation runs as
a daemon and checks its upstream time source on a periodic basis. It can use the data gleaned from
these checks to adjust the rate at which its own clock "ticks," thus maintaining a more accurate time
even between time checks. NTP can also refer to multiple upstream time sources, thus providing
redundancy and enabling it to select the best time source.

In practice, you'll set up one computer as a master NTP server for your network. (You might set up
more than one if your network is very large or is geographically diverse.) Your master NTP server
refers to an upstream server to set its own clock; the rest of your computers set their clocks based
on their own master NTP server. This configuration minimizes network traffic; you can set potentially
thousands of computers' clocks using the external bandwidth required to set just one system's clock.

What computer should you use as your master NTP server? In practice, requirements are fairly
minor. Compared to most other network protocols, NTP generates little network traffic and requires
practically no disk space, aside from that needed for the OS itself. Therefore, it's common to
piggyback NTP duties onto another server. On the other hand, you don't want to add master NTP
duties to a server that's already overloaded, because delays in handling the NTP packets will be quite
detrimental to the NTP server functions. In any event, the server should have ready network access
to the Internet and to all the computers on your local network. Of course, like all servers, NTP is a
potential security risk, although it's a minor one compared to servers that provide login or file access.

15.3.2. NTP Server Configuration

In Linux, an NTP server acts as both a client and a server. In fact, to maintain the most accurate
time in Linux, you may want to install a full NTP server, even if it has no clients of its own; your NTP
server will act only as a client.

All major Linux distributions ship with NTP servers, typically in packages called ntp, xntp, or a variant
with a major version number appended, such as ntp4. The major NTP configuration file is
/etc/ntp.conf. Most distributions ship ntp.conf files that should require few changes; you may only
need to set an appropriate server. A few other options may need attention as well, though:

server

This line sets the hostname or IP address of an NTP server, as in server tick.pangaea.edu to

tell NTP to refer to the NTP server on tick.pangaea.edu. You can also add various options to
support authentication and other features, but, in most cases, these aren't needed. Picking a
server is described in more detail shortly. One special case that deserves attention is setting
server 127.127.1.0. This line tells NTP to use the local system clock. It may be included as a

fallback position in case all other servers become unavailable.

fudge

http://lib.ommolketab.ir

Ordinarily, NTP automatically detects the stratum of the servers to which it communicates; it
can then set its own stratum automatically. The fudge line enables you to force NTP to treat a

server as belonging to another stratum. It's most often used in conjunction with the
127.127.1.0 address to force NTP to give the local NTP server a very high stratum number so
that it's not used in preference to more accurate sources. For instance, fudge 127.127.1.0
stratum 10 tells NTP to treat the local clock as a stratum 10 server.

driftfile

You can specify a file in which NTP stores information on the hardware clock's drift. This
information can help when you first start the server after it's been down for a while or in case
your network access goes out. Using the drift file, NTP should be able to maintain your clock's
accuracy much better than is possible using the computer's unmodified clock. You shouldn't
need to adjust this entry unless you rearrange your directory structure in some unusual way.

broadcast

If your network hosts many systems that also run the full version of NTP, you can minimize
local NTP-related network traffic by telling your main NTP server to periodically broadcast its
time information, which then reaches all the clients, obviating the need for them to contact the
server individually. To use this feature, specify the broadcast keyword followed by the

computer's own IP address; it then broadcasts to the local network.

broadcastclient

The flip side of the broadcast feature is the configuration of the NTP broadcast clients. On
these systems, you set broadcastclient yes to have NTP listen for broadcasts from other
NTP servers, or broadcastclient no to have the server ignore such broadcasts.

One of the trickiest aspects of NTP configuration is in selecting an upstream NTP server. NTP server
lists are maintained at http://www.eecis.udel.edu/~mills/ntp/servers.html; this list has links to both
stratum 1 and stratum 2 servers, and it describes rules of etiquette for using the servers. You may
be able to find other sources, as well. For instance, your ISP might operate an NTP server that you
can use, or if you're setting up NTP for a single department in a much larger organization, your
organization might run an NTP server. In most cases, you should contact the server's operator before
connecting your own server, although some server operators provide blanket permission for certain
people to use their NTP servers. (Lists of NTP servers often contain information on what types of
permission should be obtained before using any given server.) You should try to pick a server that's
close to you in network topology. For rough estimates of this measure, use ping to determine the
round-trip transit time to potential servers, and use traceroute to measure the number of intervening
systems. The lower the transit time and the fewer the intervening systems the better.

The higher you go in the NTP stratum hierarchy, the more accurate the times; however, NTP servers
with low stratum numbers are few in number and shouldn't be used except by clients that themselves
serve many clients. As a general rule of thumb, you shouldn't use a stratum 1 server unless your
own server is itself delivering time to at least 100 clients. For smaller networks, use a stratum 2 or
lower server; the accuracy of your time won't suffer much, and the variability within your network

http://www.eecis.udel.edu/~mills/ntp/servers.html
http://lib.ommolketab.ir

won't suffer at all, but you'll be helping to distribute the load on the NTP network as a whole.

You can specify multiple upstream NTP servers, but you can get by with just one. Using multiple
servers provides redundancy and enables the NTP software to pick the best server from the lot
automatically. On the other hand, using few servers reduces network load. Generally speaking, small
networks can get by just fine with just one server, although you might want to try several at first to
determine which works best. Large networks, or networks on which precision timekeeping is
particularly important, may do well to use multiple upstream serverstypically, at least three to make
it easier to pick the bad time keeper, if there is one.

Once you've entered one or more server lines in ntp.conf and made any other changes you like, you

should start NTP. On most distributions, this can be done using a SysV startup script, e.g., by typing
/etc/init.d/ntpd start. (The exact name of the SysV startup script varies; some omit the d from

the end of the script name or add x to the start.) To run NTP regularly, use tools such as chkconfig to
add the NTP startup script to your default runlevel. Consult distribution-specific documentation for
help on this topic.

Once the NTP server is running, you can use the ntpq tool to monitor its operation. Type ntpq to run
the program, and it replies with a ntpq> prompt. Type peers to obtain a list of upstream NTP servers
and assorted statistics on them. In particular, note the value of the st column, which shows the

upstream server's stratum. Initially, NTP polls the upstream servers frequently to determine which
one is the most accurate. After a few minutes, it settles on one as its primary source and marks it
with an asterisk (*) to the left of the server's hostname. Other servers that generate reasonable
results receive a plus (+) mark in this position. Be wary of a server that's marked with an x to the left

of its name; this is a false ticker, which is providing times that are inaccurate compared to the other
servers.

To configure Linux NTP clients (which may run other servers, such as Samba), configure them just as
you do your primary NTP server, but instead of pointing them at one or more external NTP servers,
point them to your primary NTP server alone. Because these servers are all on the same network,
the time for NTP packets to make their round trip will be tiny, and the NTP clients you configure will
have times that are virtually identical to the time on your primary NTP server.

15.3.3. Configuring Windows Clients

In principle, Windows computers are no different from Linux computers when it comes to NTP. In
practice, though, it may be easier to use a standard Windows command, NET, to set their clocks than
to install a full NTP package. You can take the full approach if you prefer, though. This is most likely
to be helpful on important servers or if you want the Windows system to function as an NTP server to
other clients.

15.3.3.1 Using NET SET

The Windows NET command lets you set the Windows computer's clock. In Windows NT/200x/XP,
you can use this command to set the clock using NTP with the /SETSNTP:server option, where

server is the NTP server's name. For instance, to set the Windows system's clock to the time

maintained by the harrison.example.com server, use this command:

C:\> NET TIME /SETSNTP:harrison.example.com

http://lib.ommolketab.ir

This command actually uses a simplified variant of the full NTP protocol, known as SNTP. This
procedure should be good enough for most purposes. If the computer restarts on a regular basis, you
can include a command like this in a batch file that runs when the computer starts. Placing it in the
Windows StartUp folder can be a good choice, particularly on desktop computers; this ensures that
the script is run on a regular basis. Another option is to place this call in a domain's network logon
script.

Unfortunately, Windows 9x/Me doesn't accept the /SETSNTP option, so you can't set a Windows

9x/Me computer's clock using an NTP server in this way. You can, though, use a similar command to
set the clock using part of the SMB/CIFS protocol suite:

C:\> NET TIME \\HARRISON /SET /YES

This command sets the computer's time to that maintained on HARRISON. If your main NTP server
also runs Samba, this can be a good way to deliver the time to Windows 9x/Me clients. If your
primary NTP server doesn't run Samba, but you do run Samba on another computer, you can use
this procedure to set the clock from the Samba server, which can use NTP to synchronize its clock to
your main NTP server's clock. As with the /SETSNTP variant, you can include this command in a batch

file you run from a StartUp folder or network logon script. Windows NT/200x/XP responds to this
command as well, so if you want to simplify your configuration task, you can use this SMB/CIFS
variant on all your Windows computers.

15.3.3.2 Windows NTP clients

Sometimes, only the "real thing" will do. Perhaps you want a Windows computer to function as an
NTP server, or you want it to maintain highly accurate time without having to run NET TIME on a
periodic basis. In such cases, running a full NTP package on Windows is an option. Even if you don't
need a full NTP client/server package, you might want to track down an NTP client for Windows
9x/Mesay, if you don't use SMB/CIFS at all on your network but do want to set Windows 9x/Me
systems' clocks.

The official NTP software package is available only for Unix and Unix-like systems. However, the NTP
protocol has been implemented on many other OSs, either by porting the official package or by
writing a new implementation. Microsoft's NET TIME /SETSNTP command is one implementation.
Here are some others:

Automachron

This is an SNTP client only, but it runs on all versions of Windows, making it a good choice for
Windows 9x/Me clients. This program is free in the sense of no-cost, but it's not open source.
Check its home page at http://www.oneguycoding.com/automachron/ for more details.

NetTime

http://www.oneguycoding.com/automachron/
http://lib.ommolketab.ir

This program, headquartered at http://sourceforge.net/projects/nettime/, is an open source
SNTP client and server for all versions of Windows. This program can run as a service on
Windows NT/200x/XP, meaning that it runs at all times, much like the NTP daemon in Linux.
Development has officially been abandoned because of Microsoft's inclusion of SNTP support in
recent versions of Windows, but NetTime can still be useful if you're running old versions of
Windows.

NTP for Windows

The Unix NTP code has been ported to Windows NT/200x/XP and is available, in both source
and binary forms, from http://www.eecis.udel.edu/~ntp/ntp_spool/html/hints/winnt.html. If
nothing but a full NTP implementation for Windows will do, this package is well worth
investigating. However, it doesn't run on Windows 9x/Me.

http://sourceforge.net/projects/nettime/
http://www.eecis.udel.edu/~ntp/ntp_spool/html/hints/winnt.html
http://lib.ommolketab.ir

15.4. Summary

Linux can fill many unglamorous server roles on a networkroles that go largely unnoticed by users
but that are vital to a network's normal functioning. A Linux DHCP server can help you automatically
configure basic networking features of other computers; a Linux DNS server can convert between
hostnames and IP addresses; and a Linux NTP server can help you keep your computers' clocks
synchronized. Employing Linux in these roles can simplify your overall network administrative
workload or improve your network's functionality.

http://lib.ommolketab.ir

Part VI: Appendixes
What Chapters 7, 8, and 9 of this book have in common is that they deal with various ways to
authenticate users on your network. All three also use Pluggable Authentication Modules (PAM).
Rather than spread my PAM instructions throughout these three chapters, I felt it best to give
you comprehensive instructions about PAM in a separate appendix. If you already know PAM,
and can use the earlier chapters, you probably don't need to read this section.

I also briefly described using Linux as a desktop operating system in several places. Though this
book isn't meant to give you thorough instruction in the deployment, maintenance, and use of a
Linux desktop, I felt it prudent to include further information on this subject in Appendix B. This
material is especially complementary to Chapters 11 and 12.

http://lib.ommolketab.ir

Appendix A. Configuring PAM
Modern Linux distributions rely on the Pluggable Authentication Modules system for authentication.
Part III of this book describes three network authentication tools, all of which can be used in
conjunction with PAM to provide authentication for arbitrary servers and other programs that require
authentication. In order to avoid duplicating content, therefore, this appendix describes PAM in detail;
Part III provides a much briefer description of how PAM interacts with the relevant servers.

In order to get the most out of PAM, it helps to begin with some backgroundwhat PAM is, what it can
do, why it's used, and so on. You must also understand the PAM configuration file format; PAM
configuration involves editing one or more of these files. From there, knowing something about
individual PAM modules, including both the standard ones and those described elsewhere in this book,
will help you create an appropriate configuration. Finally, some examples of working PAM
configurations will help you understand PAM and provide models you can adapt for your own use.

http://lib.ommolketab.ir

A.1. PAM Principles

In Linux's early days, every server or other tool that had to authenticate users did so by reading
/etc/password, the traditional Unix account file. This approach was easy to implement, but it had
several problems. One of these was that the file, and hence the encrypted password, had to be
readable by all users, making it vulnerable to cracking. Another problem is that changes to
authentication methods, such as new password-encryption systems, required changes to all the
programs that could authenticate users. This problem would result in a nightmarish tangle of
upgrades should an administrator ever want to change the authentication system.

PAM is designed to solve these problems. PAM solves the problem of world readability of /etc/passwd
by implementing a system known as shadow passwords, in which passwords are moved out of
/etc/passwd and into a file that can be read only by roottypically /etc/shadow on Linux systems.
(Shadow passwords can be implemented without PAM, but today PAM is the tool that does it on all
major Linux distributions.) PAM helps minimize the pain of changing authentication systems by
working as a layer between the tools that authenticate users and the account database. Instead of
accessing /etc/passwd directly, programs consult PAM, which accesses /etc/passwd. Thus, if the
format of data in /etc/passwd changes, individual servers don't need to be rewritten or even
recompiled; only PAM must change. Indeed, PAM can be changed to support authentication systems
that don't even consult /etc/passwd. It's this feature of PAM that Winbind, LDAP authentication, and
some Kerberos tools use. Rather than consult /etc/passwd, PAM consults the appropriate network
authentication tool.

In addition to PAM, Linux relies on another software component, the Name
Service Switch, for account information. Rather than authentication
information, though, NSS provides more mundane information, such as a
mapping of UIDs to usernames and the account's default shell. Like PAM, NSS
is designed in a modular way and sits between applications that ask for this
information and the actual account databases. Although you may think in terms
of authentication, which is what PAM provides, this ancillary information is just
as important, so you must configure NSS to link to your authentication system.
The chapters on Winbind and LDAP describe configuring NSS to work with these
tools, but Kerberos provides no NSS interface, which is a limitation of Kerberos
if you want a network authentication system to handle all your account
information.

In practice, PAM is a modular tool: it consults libraries to handle various parts of the authentication
procedure. You tell PAM which libraries to consult with the help of the PAM configuration files, which
are described in the next section. Thus, the overall authentication system, and its equivalent in pre-
PAM days, are depicted in Figure A-1. PAM's modular nature is manifested in this figure by the fact
that PAM is shown accessing three independent authentication toolsthe /etc/passwd file, an NT
domain controller, and an LDAP server. A default configuration is likely to be simpler than this, but if
you want to use a network authentication tool, chances are you'll leave the old-style /etc/passwd
authentication intact as a backup and to provide information for accounts you might not want to
define using a centralized system, such as the root account.

http://lib.ommolketab.ir

Figure A-1. PAM distances servers and other programs that require
authentication from authentication implementations, increasing

flexibilityand complexity

In practice, PAM configuration is even more complex than Figure A-1 suggests, for three reasons:

PAM provides management features beyond those related to account authentication. In
particular, it supports authentication (verifying that users are who they claim to be), account
management (checking for expired accounts, the right to use a particular server, and so on),
session management (login and logout housekeeping), and password changes. Each
management system must be configured individually; for instance, the modules called in service
of authentication may be different than those required for session management.

A single act, such as logging in, may require multiple PAM modules. For instance, many PAM
login configurations call a module called pam_deny.so, which explicitly denies access to the
system if no earlier module has explicitly granted access. You can even tack on modules that
aren't directly related to authentication, such as modules that display login notices.

Each program that requires PAM's services may be configured individually. For instance, you
might want to use one set of options for authenticating users for console logins and another for
authenticating users to use the su command to change their effective UID numbers.

http://lib.ommolketab.ir

A.2. The PAM Configuration File Format

Configuring PAM means editing its configuration files. The format of these files is fairly simple, but
these files use a number of options that aren't immediately obvious to the uninitiated. You must also
know something about how the PAM configuration file works with multiple modules. These modules
can also interact in unintuitive ways.

A.2.1. PAM Configuration Files and Fields

In order to implement its design goals, PAM uses one or more configuration files: either a file called
/etc/pam.conf or files in the /etc/pam.d directory named after the particular systems they control.
The /etc/pam.d directory is more common in Linux; this approach enables packages to add files to
the directory for their services, without having to modify /etc/pam.conf.

When reconfiguring PAM, you can easily render your system unable to support
logins. Thus, I recommend experimenting with one login server at a time,
leaving yourself some way to log in should you create an inoperable system.
For instance, experiment with the login service and leave the gdm or xdm

service alone. Some distributions use the pam_stack.so module (described
shortly) to control many login servers. With such a system, you may need to
back up its original configuration file and leave a root session running to be
sure you can undo any disastrous mistake without logging in anew.

The /etc/pam.conf file entries are similar to the contents of files in /etc/pam.d. The principle
difference is that the /etc/pam.conf entries begin with a service name field, which is missing from
individual service files. The overall format for the lines in /etc/pam.d files is:

management_group control_flag module [options]

Each field has a specific meaning:

management_group

This field holds one of four keywords specifying the type of service it defines: auth for
authentication, account for account management, session for session management, or
password for password management. Most PAM configuration files have at least one line of

each type.

http://lib.ommolketab.ir

control_flag

This field describes how PAM should react to the success or failure of a module. Possible values
are requisite, required, sufficient, and optional. The meanings of these values are

described in the next section. A more advanced syntax involves matching specific actions to the
module's exact return value. This is flexible but tedious to configure (it involves 30 return
codes and six possible actions), and so it isn't described in this book.

module

This field is a pointer to the module file itself, sometimes with its complete path. (If the path is
missing, PAM checks its modules directory, which is usually /lib/security.)

options

You can pass parameters to the module via the options field on the module definition line.

Some options are highly module-specific, but others are recognized by many modules. Some of
these options are described in the Section A.3.1.

This first field in the lines of pam.conf, which is missing from the /etc/pam.d
files in most Linux distributions, holds the name of the tool it configures, such
as login for the login service, or gdm for the GDM GUI login tool. If your

system uses files in /etc/pam.d, the names of these files are typically the
names that appear in this first column in a system that uses /etc/pam.conf.

In addition to configuration lines, PAM configuration files can contain comments. These begin with a
hash mark (#). Entire lines can be comments, or comments can come at the end of a line that serves

some other purpose.

A.2.2. Module Stacks

A configuration for a single authentication tool can combine several PAM modules. This happens in
two ways. First, each of the four management groups (auth, account, session, and password)

requires its own configuration. Second, with each management group, multiple modules can be
called. When multiple modules are called, the result is referred to as a module stack. For instance, a
login service might have separate auth and account stacks. These stacks are likely to have some

modules in common (they perform different actions depending upon the calling stack), but each may
also have some unique modules.

Individual modules in a stack deliver return values that can be classified as failures or successes. In
this context, these terms don't refer to program bugs or the lack thereof, but to failures or successes
in authentication or other actions. For instance, if a user enters the wrong password, an
authentication module will fail.

Modules in a stack are called in the order in which they're specified. This order is unimportant if all of

http://lib.ommolketab.ir

the modules are of the required variety, but if you use other control flagsparticularly requisite or
sufficientorder can become important, as described shortly.

Understanding the operation of module stacks can be tricky, because the different control flags can
have confusing implications. Table A-1 summarizes the consequences of successes and failures of
modules called with particular control flags.

Table A-1. Consequences of control flags

Control
flag

Module success result Module failure result

requisite
Stack execution continues; stack may
succeed or fail, depending on outcome of
other modules

Stack execution terminates immediately;
stack fails

required
Stack execution continues; stack may
succeed or fail, depending on outcome of
other modules

Stack execution continues, but stack fails

sufficient

Stack execution terminates immediately,
provided no prior required module has

failed; stack succeeds (failure of a prior
required module may cause stack failure,

though)

Stack execution continues; stack may
succeed or fail, depending on outcome of
other modules

optional

Stack execution continues; stack may
succeed or fail, depending on outcome of
other modules, unless other modules are
missing or give inconclusive results, in
which case the stack succeeds

Stack execution continues; stack may
succeed or fail, depending on outcome of
other modules, unless other modules are
missing or give inconclusive results, in
which case the stack fails

These rules can become quite confusing in the event of conflicting outcomes. For instance, consider
the following stack:

auth required pam_unix.so try_first_pass
auth sufficient pam_krb5.so try_first_pass
auth required pam_env.so

For now, you need only know that the pam_unix.so and pam_krb5.so modules authenticate users,
while pam_env.so sets environment variables but never returns a failure code. Because this stack
provides two login modules, each with two possible outcomes, you must consider four
possibilitiesboth succeed, both fail, pam_unix.so succeeds while pam_krb5.so fails, or pam_unix.so
fails while pam_krb5.so succeeds. In practice, this stack as a whole succeeds if and only if
pam_unix.so succeeds; if it fails, its required status overrides the sufficient status of
pam_krb5.so, and if it succeeds, that success won't be overridden by a failure of the sufficient

pam_krb5.so. What happens if the two authentication modules' order is reversed, though?

auth sufficient pam_krb5.so try_first_pass

http://lib.ommolketab.ir

auth required pam_unix.so try_first_pass
auth required pam_env.so

In this case, because the sufficient pam_krb5.so module comes first, its success bypasses the
later required pam_unix.so module, so this stack succeeds if either module succeeds. A success of

pam_krb5.so, though, bypasses the pam_env.so module, which may not be desirable.

http://lib.ommolketab.ir

A.3. PAM Modules

Creating or modifying a PAM configuration requires at least a basic understanding of the available
PAM modules. If you check your existing PAM configuration files, you're likely to see quite a range of
module calls, and modifying them to get the results you expect can be tricky if you don't understand
what the existing modules do.

Some PAM modules can be called for only some management groups. Others
can be called as part of a stack for any management group.

A.3.1. Standard PAM Modules

PAM ships with quite a few different modules. Table A-2 summarizes those that you're most likely to
encounter in your existing configuration files. Note that, although some modules directly relate to
password handling, others don't; they're used to display information to users, set environment
variables, and so on. For these modules, PAM is simply a convenient tool for accomplishing their
goals. Such modules may not affect the login process at all.

Table A-2. Common standard PAM modules

Module filename
Management

groups
Common arguments Description

pam_unix.so

auth,
account,
session, and
password

nullok, likeauth,
shadow,
try_first_pass,
use_first_pass,
use_authtok

Implements the traditional Unix
(and Linux) authentication, based
on /etc/passwd and /etc/shadow
files.

pam_unix2.so

auth,
account,
session, and
password

nullok, likeauth,
shadow,
try_first_pass,
use_first_pass,
use_authtok

A variant on pam_unix.so that
implements additional features,
such as an ability to authenticate
against a Network Information
Service (NIS) server.

pam_smb_auth.so auth
use_first_pass,
nolocal

This module is an alternative way
to authenticate against NT domain
controllers to that described in
Chapter 7. It uses the
/etc/pam_smb.conf configuration
file.

http://lib.ommolketab.ir

Module filename
Management

groups
Common arguments Description

pam_securetty.so auth -

Blocks root access to the login
service unless the environment
variable PAM_TTY is set to a string

listed in the /etc/securetty file.

pam_time.so account -
Reads /etc/security/time.conf,
which specifies time-based access
restriction rules.

pam_nologin.so
auth and
account

successok

If /etc/nologin exists, only root is
permitted to log in, and all users
are shown the contents of that file.
If the file doesn't exist, the module
has no effect, unless the
successok parameter is used, in

which case the login succeeds (as if
the module were called with a
sufficient control flag).

pam_homecheck.so
auth and
session

abort

Prints a warning if the user's home
directory or certain other files are
world-writable or if they're owned
by another user. If the abort

option is used, the login fails under
these circumstances.

pam_env.so auth
conffile=filename,

envfile=filename

Sets environment variables for the
login session, based on the
contents of the configuration file
(/etc/security/pam_env.conf by
default).

pam_mail.so
auth and
session

dir=directory, empty

Checks for mail in the specified
directory and notifies the user if
any is present. If empty is used,

also informs the user when no mail
is present.

pam_lastlog.so auth
nodate, noterm,
nohost, silent, never

Displays information on the user's
last login. The module's options tell
it what information to omit from
this display. It maintains last login
information in the /var/log/lastlog
file.

pam_motd.so session motd=filename

Displays the contents of the
message of the day (MOTD) file,
which is /etc/motd by default, upon
a successful login.

pam_securetty.so auth -

Blocks root access to the login
service unless the environment
variable PAM_TTY is set to a string

listed in the /etc/securetty file.

pam_time.so account -
Reads /etc/security/time.conf,
which specifies time-based access
restriction rules.

pam_nologin.so
auth and
account

successok

If /etc/nologin exists, only root is
permitted to log in, and all users
are shown the contents of that file.
If the file doesn't exist, the module
has no effect, unless the
successok parameter is used, in

which case the login succeeds (as if
the module were called with a
sufficient control flag).

pam_homecheck.so
auth and
session

abort

Prints a warning if the user's home
directory or certain other files are
world-writable or if they're owned
by another user. If the abort

option is used, the login fails under
these circumstances.

pam_env.so auth
conffile=filename,

envfile=filename

Sets environment variables for the
login session, based on the
contents of the configuration file
(/etc/security/pam_env.conf by
default).

pam_mail.so
auth and
session

dir=directory, empty

Checks for mail in the specified
directory and notifies the user if
any is present. If empty is used,

also informs the user when no mail
is present.

pam_lastlog.so auth
nodate, noterm,
nohost, silent, never

Displays information on the user's
last login. The module's options tell
it what information to omit from
this display. It maintains last login
information in the /var/log/lastlog
file.

pam_motd.so session motd=filename

Displays the contents of the
message of the day (MOTD) file,
which is /etc/motd by default, upon
a successful login.

http://lib.ommolketab.ir

Module filename
Management

groups
Common arguments Description

pam_deny.so

auth,
account,
session, and
password

-

Always indicates a failure; useful at
the end of certain stacks or as part
of a default service to eliminate the
risk of an unauthorized login due to
misconfiguration.

pam_limits.so session conf=filename

Places limits, described in the
/etc/security/limits.conf or specified
configuration file, on users'
resource uses (memory, CPU time,
etc.). Requires kernel support for
resource limits.

pam_mkhomedir.so session
skel=directory,

umask=octal-umask

Creates a home directory for users
if one doesn't already exist, using
the specified skeleton (skel)

directory to populate the home
directory with default configuration
files and setting the directory's
permissions based on the specified
umask.

pam_access.so account accessfile=filename

Uses /etc/security/access.conf or
the specified access file to
determine username/machine
name pairs that are or aren't
granted accesse.g., to deny root
the right to log in from particular
machines.

pam_pwcheck.so password
nullok,
use_first_pass,
use_authtok

Performs extra checks on password
changes, as defined in
/etc/login.defs, to improve security
on user-selected passwords.

pam_cracklib.so password
use_authtok and

others to set specific
checks

Adds checks for various features,
such as passwords that have been
used in the past or passwords that
are too simple, to password-change
interactions. Uses the libcrack
library and a system dictionary
(/usr/lib/cracklib_dict).

pam_stack.so

auth,
account,
session, and
password

service=name

Calls a stack for the specified
service. Provides easier

configuration; you need to modify
only one PAM configuration file to
implement PAM changes across all
the services that call
pam_stack.so.

pam_deny.so

auth,
account,
session, and
password

-

Always indicates a failure; useful at
the end of certain stacks or as part
of a default service to eliminate the
risk of an unauthorized login due to
misconfiguration.

pam_limits.so session conf=filename

Places limits, described in the
/etc/security/limits.conf or specified
configuration file, on users'
resource uses (memory, CPU time,
etc.). Requires kernel support for
resource limits.

pam_mkhomedir.so session
skel=directory,

umask=octal-umask

Creates a home directory for users
if one doesn't already exist, using
the specified skeleton (skel)

directory to populate the home
directory with default configuration
files and setting the directory's
permissions based on the specified
umask.

pam_access.so account accessfile=filename

Uses /etc/security/access.conf or
the specified access file to
determine username/machine
name pairs that are or aren't
granted accesse.g., to deny root
the right to log in from particular
machines.

pam_pwcheck.so password
nullok,
use_first_pass,
use_authtok

Performs extra checks on password
changes, as defined in
/etc/login.defs, to improve security
on user-selected passwords.

pam_cracklib.so password
use_authtok and

others to set specific
checks

Adds checks for various features,
such as passwords that have been
used in the past or passwords that
are too simple, to password-change
interactions. Uses the libcrack
library and a system dictionary
(/usr/lib/cracklib_dict).

pam_stack.so

auth,
account,
session, and
password

service=name

Calls a stack for the specified
service. Provides easier

configuration; you need to modify
only one PAM configuration file to
implement PAM changes across all
the services that call
pam_stack.so.

http://lib.ommolketab.ir

Not all the modules mentioned in Table A-2 ship with all Linux distributions.
These modules are all present and used in the default installations of at least
one major distribution, though, with the exception of pam_mkhomedir.so. This
module ships with all the major distributions but isn't used by default. It is,
however, extremely useful with NT domain and LDAP add-on PAM modules.

Some modules accept parameters that are common to other modules. These common parameters
include:

debug

Although it's not mentioned in Table A-2, this parameter causes most modules to dump extra
debugging information to your system logfiles.

try_first_pass

Used in auth stacks, this option causes a module to try to use a password collected by a

previous module for authentication. If this password fails, the module prompts the user again.
Using this option on the second and subsequent password-checking modules can eliminate
multiple password requests when you try to log in.

use_first_pass

This parameter works much like TRy_first_pass, but it causes the module that uses it to not

request a password if the one it's given from a prior module fails.

nullok

Most modules that handle passwords refuse null passwords (that is, passwords of zero length).
This option tells these modules that null passwords are acceptable. (For authentication, of
course, the authentication database must contain a null password; this option doesn't bypass
the password check.)

likeauth

This parameter causes the module to return the same value when called as a credential-setting
module as an authentication module. This practice helps PAM navigate the module stack most
efficiently.

http://lib.ommolketab.ir

shadow

If this option is present, the module takes extra care to maintain a system with shadow
passwords. In particular, it better handles password aging, expiration, and similar information.

use_authtok

This option causes a module in a password stack to use the password given to a previous

module in a stack.

Linux distributions vary substantially in how they build PAM stacks from these modules. If you check
two distributions' files, you'll probably find they call modules using different options, and they may
call different sets of modules. Even within a distribution, different services may call different modules,
even when the services are similar in function. Ultimately, though, most PAM stacks call pam_unix.so
or pam_unix2.so, either directly for each service or indirectly via pam_stack.so. This is the most
important PAM module, especially for logins.

A.3.2. Additional PAM Modules

Chapters Chapter 7, Chapter 8, and Chapter 9 present information on PAM modules that can be used
in addition to or instead of the standard modules. In particular, these modules can replace or
supplement pam_unix.so or pam_unix2.so. If you check the Internet, you can find still more PAM
modules.

As described in the relevant chapters, there's more to adding support for most
network authentication modules than simply configuring PAM. These modules
typically rely on external configuration files to point them to their authentication
servers. Sometimes you must configure the server to accept authentication
requests from your Linux system or take other special steps to get the system
to work.

When you add new PAM modules for authentication, you should first decide where to add them. If
your distribution uses the pam_stack.so module, you should modify the stack that it
referencestypically /etc/pam.d/system-auth. If your distribution doesn't use this module, however,
you may need to modify the configuration files for all the services that should use the new PAM
module. For login services (login, xdm, sshd, and so on), you need to add auth and account lines:

auth sufficient /lib/security/pam_winbind.so try_first_pass
account sufficient /lib/security/pam_winbind.so

Of course, the name of the module you call depends on what you're adding. Add the auth line to the
existing auth stack just after the line that references pam_unix.so, and add the account line just
after the existing account line. This placement causes PAM to check the new service after checking
the local account database. The sufficient control flag tells PAM that if this authentication

succeeds, it doesn't need to perform additional authentication checks; however, if it fails, PAM falls
back on the local account database. The TRy_first_pass option prevents PAM from prompting for a

http://lib.ommolketab.ir

password again should this happen; it delivers the password the user entered first into the next
authentication tool.

Some servers and login tools must be restarted before they'll read the new PAM
configuration files, so, if you forget to restart a server, you may think your
change hasn't worked, when in fact it simply hasn't yet taken effect. Try to be
methodical in your tests if you run into problems. Create some test accounts
and take notes on the effects.

Be sure to test the effect of incorrect loginsboth nonexistent usernames and valid usernames with
invalid passwords. Some PAM configurations result in successful logins even when invalid passwords,
and sometimes even invalid usernames, are entered. If you run into this problem, try adding a
required call to pam_deny.so and make the actual authentication modules sufficient.

For password-changing services, such as passwd, your concerns are a bit different from those for
login services. Depending on your needs, you might consider doing any of several things:

Adding a new entry to the password stack causes the passwd program to prompt for two

password changes: one for the local Unix password database and again for the new service
you've added.

Adding a new entry to the password stack and using the options use_authtok or
use_first_pass with the second call causes both systems to use the password you enter the
first time. You may need to make both these entries sufficient rather than required.

Replacing the existing call to pam_unix.so or pam_unix2.so causes a single prompt for a
password change using the new service, leaving the local password (if it exists) untouched.

Not changing the password stack causes only the local account to change, if it exists. Users
need to use tools specific to their new authentication system, such as smbpasswd for an NT
domain controller, to change their network passwords.

As if these concerns weren't enough, a further complication is root's power to change normal users'
passwords. Network authentication tools typically provide strong protections against anybody but the
user or the password server's administrator from changing passwords. A local root account is unlikely
to have this power, so chances are you'll need to use the administrative database's tools to make
these changes.

http://lib.ommolketab.ir

A.4. Sample PAM Configurations

The preceding presentation is fairly abstract and may be hard to digest without some examples.
Here, then, are some concrete examples, taken from working Linux distributions. These include a
login service, a password service, and a system that uses an authentication stack.

A.4.1. Typical Login Services

Login services include the login program (used by the console and the Telnet server); the X Display
Manager (XDM) and its KDE and GNOME counterparts, KDM and GDM; the SSH server; POP and
IMAP mail servers; and the FTP server. Other tools that are similar, but that deviate a bit more,
include the su and sudo commands and password-protected screensavers.

Example A-1 shows the /etc/pam.d/login file from a Debian Linux system. (The original file has many
comment lines, though, which Example A-1 has omitted for brevity.) Because this is a login
configuration, the most important sections of this filefrom the perspective of an administrator
wanting to change the system to use a network password databaseare the auth and account stacks.

These stacks both contain calls to pam_unix.so, as well as a few others that can restrict access in
various ways or display information.

Example A-1. Sample PAM login service configuration

auth requisite pam_securetty.so
auth requisite pam_nologin.so
auth required pam_env.so
auth required pam_unix.so nullok

account requisite pam_time.so
account required pam_unix.so

session required pam_unix.so
session optional pam_lastlog.so
session optional pam_motd.so
session optional pam_mail.so standard noenv

password required pam_unix.so nullok min=6 max=255 md5

To modify Example A-1 to use an LDAP server (just as an example), you would add sufficient
references to the pam_ldap.so module to the auth and account stacks just before the existing

pam_unix.so calls. You may also want to add a call to the pam_mkhomedir.so module to the
session stack, in order to create users' home directories if they don't already exist. Example A-2

presents all of these changes, with the changed and added material shown in bold.

http://lib.ommolketab.ir

Example A-2. Sample PAM login service configuration with LDAP support

auth requisite pam_securetty.so
auth requisite pam_nologin.so
auth required pam_env.so
auth sufficient pam_ldap.so
auth required pam_unix.so nullok try_first_pass

account requisite pam_time.so
account sufficient pam_ldap.so
account required pam_unix.so

session required pam_unix.so
session optional pam_lastlog.so
session optional pam_motd.so
session optional pam_mail.so standard noenv
session required pam_mkhomedir.so skel=/etc/skel umask=0027

password required pam_unix.so nullok min=6 max=255 md5

Several variants on these changes are possible. For instance, instead of adding pam_ldap.so before
pam_unix.so, you can add a required call to pam_ldap.so after pam_unix.so, but this requires
changing the status of pam_unix.so from required to sufficient and also associating the
try_first_pass option with pam_ldap.so. This order reversal can reduce network traffic if significant

numbers of users have locally defined accounts. Debian's configuration doesn't call any modules in
the auth or account stacks after the pam_unix.so call, but some distributions do make such calls.
For them, the specification of which module is called as sufficient has implications for the

conditions under which these subsequent modules are called.

Yet another option is to set the calls to both pam_unix.so and pam_ldap.so to sufficient and add

calls to pam_deny.so to the ends of these stacks. This approach may be less confusing to configure
because the order of modules becomes a bit less important; however, a successful login using any of
the sufficient modules then bypasses all subsequent modules in the stack, which may be

undesirable.

If you want modules that must be placed after the actual password-checking
modules to be called in all cases, you may want to look into using the
pam_stack.so module. You can then place your actual password-checking calls
in a substack that returns a single value, call pam_stack.so as a required

module, and have modules that appear after this call in your individual service
definitions execute no matter what tool actually authenticated your users.

Unless your system uses the pam_stack.so module, you should make changes similar to these on all
of the PAM modules corresponding to the login and other authentication services you use. Of course,
your files aren't likely to be identical to this one unless you use Debianand even then, other Debian
PAM files aren't identical to this one. You therefore need to adjust your changes to suit your own
files.

http://lib.ommolketab.ir

One login server requires a bit of extra attention: SSH. This server sometimes doesn't work well with
PAM authentication. If you can't seem to get your SSH server to use your new authentication tool,
you may need to set one of two options in the /etc/ssh/sshd_config file on the SSH server system:

UsePAM yes
UsePrivilegeSeparation no

I recommend trying UsePAM yes first. If that fails, try the second option. One of the two should get

SSH to play nicely with PAM.

A.4.2. Password Services

The /etc/pam.d/passwd file on most systems controls the passwd program's interactions with PAM.
Example A-3 shows a sample file from a SuSE system. This file is a bit simpler than a typical login
service definition.

Example A-3. Sample PAM password service configuration

auth required pam_unix2.so nullok

account required pam_unix2.so

password required pam_pwcheck.so nullok
password required pam_unix2.so nullok use_first_pass use_authtok

session required pam_unix2.so

Suppose that you want to enable users to change passwords on their local accounts if they exist or
on their LDAP accounts if they exist. PAM can be rather picky about such arrangements; the passwd
command requires use of several PAM stacks to do its work, from authentication through to the
actual password change. Thus, you must add references to pam_ldap.so to three stacks. Example A-
4 shows the result, with changed or added parts highlighted in bold.

Example A-4. Sample PAM password service configuration with LDAP
support

auth sufficient pam_ldap.so
auth required pam_unix2.so nullok use_first_pass

account sufficient pam_ldap.so
account required pam_unix2.so

password required pam_pwcheck.so nullok
password optional pam_ldap.so use_first_pass use_authtok
password required pam_unix2.so nullok use_first_pass use_authtok

http://lib.ommolketab.ir

session required pam_unix2.so

This configuration enables users to change their passwords much as they ordinarily do, by typing
passwd and answering the usual password-changing prompts. Making the actual password call to
pam_ldap.so optional changes the LDAP password if it exists but doesn't cause the operation to fail

if the LDAP password doesn't exist. Thus, this configuration works for users who are defined locally,
defined on the LDAP server, or both. (The required nature of the password stack call to

pam_unix2.so would seem likely to cause a failure if the account isn't defined locally, but in practice,
this isn't a problem.)

This configuration does have one drawback: the root user is prompted for the LDAP password of
users, if they have LDAP accounts, before being allowed to change them. As a practical matter, this
means that system administrators must use LDAP tools, rather than the passwd command, to change
users' forgotten passwords or to set passwords on new accounts.

Of course, you can try variants on these changes. For instance, you can require users to have LDAP
accounts; however, this might be undesirable if you want to maintain some local accounts (such as
root) independent of the LDAP server. Alternatively, if you make the pam_ldap.so call in the
password stack sufficient, users with both LDAP and local accounts can change only their LDAP

passwords.

A.4.3. An Authentication Stack

Some distributions, such as Red Hat, Fedora, and Gentoo, now use the pam_stack.so module to
place common authentication options in a single file. This approach can greatly simplify PAM
configuration because you need to change only one file. Example A-5 shows the /etc/pam.d/system-
auth file from a Gentoo system. (The original includes the complete paths to the library modules;
Example A-5 omits these paths to keep line lengths manageable.) In principle, this file is a
combination of other PAM configuration files, defining basic features used by all of them. This file
shouldn't get too specific, though; options that should apply only to a few authentication tools should
go in those tools' configuration files.

Example A-5. Sample PAM stack service configuration

auth required pam_env.so
auth sufficient pam_unix.so likeauth nullok
auth required pam_deny.so

account required pam_unix.so

password required pam_cracklib.so retry=3
password sufficient pam_unix.so nullok md5 shadow use_authtok
password required pam_deny.so

session required pam_limits.so
session required pam_unix.so

http://lib.ommolketab.ir

To modify Example A-5 to use LDAP in addition to the local account database, you must add
references to the pam_ldap.so module in the auth and account stacks. For the latter, you may also
want to change the existing call to pam_unix.so to sufficient and add a required call to

pam_deny.so to prevent too-easy bypassing of account-maintenance requirements, should you
implement any. You may also want to add a call to the pam_mkhomedir.so module in the session

stack; however, you might prefer putting this call in the individual server PAM modules to better
control home directory creation. Once all the changes are made, the result looks like Example A-6,
which shows changed or added material in bold.

Example A-6. Sample PAM stack service configuration with LDAP support

auth required pam_env.so
auth sufficient pam_ldap.so
auth sufficient pam_unix.so likeauth nullok use_first_pass
auth required pam_deny.so

account sufficient pam_ldap.so
account sufficient pam_unix.so
account required pam_deny.so

password required pam_cracklib.so retry=3
password sufficient pam_unix.so nullok md5 shadow use_authtok
password required pam_deny.so

session required pam_limits.so
session required pam_unix.so
session required pam_mkhomedir.so skel=/etc/skel/ umask=0022

Fedora and Red Hat autogenerate their /etc/pam.d/system-auth files using a
tool called authconfig or its GUI equivalent, system-config-authentication. If
you make changes to the raw PAM file, they may be wiped out if you run this
tool. Thus, you might want to modify the file by using the configuration tool,
rather than editing it directly. This tool also enables you to set configuration
options for specific network authentication tools, such as locating your NT
domain controller or LDAP server.

As always, many variants on this set of changes are possible. For instance, you can make changes to
the password stack analogous with those described in the earlier Section A.4.2; however, I find that

implementing these changes directly in the passwd file often produces better results.

This example configuration uses sufficient calls to several modules along with pam_deny.so to

block accesses that fail all of these calls. This approach works well when you have no calls
subsequent to the sufficient calls in a stack. In the case of a stacked configuration like this, its

calling stack can then place additional module calls after the call to pam_stack.so, no matter how the
stack module exits, if the calling stack calls pam_stack.so as a required or requisite module.

Changing a stack module's configuration doesn't mean you can't change individual servers'
configurations. You can make general changes to /etc/pam.d/system-auth and then add other calls to

http://lib.ommolketab.ir

the configuration files for login, KDM, su, and other tools, as you see fit.

http://lib.ommolketab.ir

A.5. Summary

PAM is a powerful tool for managing authentication options in Linux. As a modular tool, PAM is easily
expandedat least, easily when compared to recompiling all of your servers and other programs that
require authentication. PAM is a very flexible tool, and some of this flexibility manifests itself in a
plethora of options, some of which interact in peculiar ways. Understanding at least the more
common of these options will help you adapt your PAM configuration to suit your needs, including
adding network authentication tools such as NT domain controllers, LDAP servers, and Kerberos
realms to your system. Actually creating a working configuration is likely to take some trial and error,
but the examples presented here should set you on the right path.

http://lib.ommolketab.ir

Appendix B. Linux on the Desktop
Although most of this book focuses on using Linux servers to help Windows desktop systems, Linux is
beginning to find a home as a desktop OS. As a multipurpose OS, Linux can handle many desktop
functions, and you may want to consider Linux in this role for many of the same reasons you'd
consider Linux as a server OSlow cost, high reliability, remote administration capabilities, and so on.
You might also want to use thin clients to access Linux, in which case this chapter applies to the
system the thin clients access. Before deploying Linux as a desktop OS, though, you'll have to know a
bit about its capabilities in this role; that's where this appendix comes in.

I begin with a look at Linux desktop applications, including a list of some common application
categories and their Windows and Linux instantiations. Next is the issue of application configuration.
This task is unusual in Linux because many applications, including the desktop environments that run
when users log in, have both global and user configurations, so you may need to modify either type.
Sometimes, you may find yourself unable to do what you want using native Linux applications, in
which case Linux's ability to run Windows applications is critical, so this issue is covered. Whether or
not you can use Linux applications, your ability to access data can be important. This includes both
filesystem access and file compatibility across applications. Next up is a common problem area for
Linux desktop systems: font handling.

http://lib.ommolketab.ir

B.1. Linux Desktop Applications for All Occasions

Any attempt to use Linux as a desktop OS ultimately requires Linux desktop applications that are
acceptable for your intended purpose. Although tools to run Windows applications are available in
Linux (as described later in the Section B.3), these solutions are imperfect. If all you do is run
Windows programs, you might as well use Windows as your OS.

Fortunately, an array of desktop applications are available for Linux, as summarized in Table B-1. Of
course, not all these components are exactly equivalent. For instance, some of the Linux applications,
such as mutt and cdrecord, are command-line tools, whereas the Windows applications are
overwhelmingly GUI in nature. Exact features also differ, of course, and, in some cases, the basic
purpose of tools aren't equivalent. For instance, mkisofs and cdrecord work together to create a CD-
R, while X-CD-Roast and Eroaster provide GUI frontends to these tools. In Windows, CD-R creation
tools are usually all-in-one packages that do everything. To learn more about any of these programs,
perform a web search or check your Linux installation medium to see if the program comes with your
distribution.

Table B-1. Application categories and exemplars

Application
category

Windows examples Linux examples

Office Suite
Microsoft Office, WordPerfect Office,
StarOffice, OpenOffice.org

OpenOffice.org, StarOffice, KOffice,
GNOME Office

Bitmap Graphics
Editing

Adobe Photoshop, the GIMP The GIMP

Scanning Software TWAIN, VueScan SANE, Kooka, VueScan

CD-R Creation Easy Media Creator Deluxe, Nero
mkisofs, cdrecord, X-CD-Roast,
Eroaster, K3b

Multimedia
Playback

Windows Media Player, Winamp, Real
XMMS, ALSA Player, mpg123, Real,
xine

PDF Creation and
Viewing

Acrobat and Acrobat Reader Ghostscript, Acrobat Reader, XPDF

Web Browsing
Internet Explorer, Mozilla, Firefox,
Opera

Mozilla, Firefox, Opera, Konqueror

E-Mail Client
Outlook and Outlook Express, Eudora,
Netscape Mail

Evolution, Netscape Mail,
Thunderbird, KMail, pine, mutt

Instant Messenging
AIM, ICQ, MSN Messenger, Jabber, X-
Chat

GAIM, KAIM, talk, Kopete, X-Chat

http://lib.ommolketab.ir

Application
category

Windows examples Linux examples

Web Site Creation FrontPage, Dreamweaver Quanta, Nvu

If you don't see an application category that you need in Table B-1, don't panic! This table is
intended to provide only a few quick pointers for some of the most common desktop tools. Try
performing a web search on the category name and Linux. You might also check your distribution,
particularly if it provides a GUI installation tool with categorized sets of software. Many Linux sites,
such as http://www.linux.org, http://www.sourceforge.net, and http://www.freshmeat.net, also
provide pointers to Linux software by category.

One critically important Linux desktop software component doesn't appear in Table B-1: the desktop
environment. This is a collection of toolsmost are fairly small by themselvesthat together create the
familiar set of desktop icons, program-launch tools, and so on that users see when they log in to the
computer. Windows provides only one common desktop environment, which is bundled into the OS.
In Linux, you have a choice between GNOME, KDE, XFce, XPde, and others. This choice is covered in
more detail in Section B.2.3.

Web Site Creation FrontPage, Dreamweaver Quanta, Nvu

If you don't see an application category that you need in Table B-1, don't panic! This table is
intended to provide only a few quick pointers for some of the most common desktop tools. Try
performing a web search on the category name and Linux. You might also check your distribution,
particularly if it provides a GUI installation tool with categorized sets of software. Many Linux sites,
such as http://www.linux.org, http://www.sourceforge.net, and http://www.freshmeat.net, also
provide pointers to Linux software by category.

One critically important Linux desktop software component doesn't appear in Table B-1: the desktop
environment. This is a collection of toolsmost are fairly small by themselvesthat together create the
familiar set of desktop icons, program-launch tools, and so on that users see when they log in to the
computer. Windows provides only one common desktop environment, which is bundled into the OS.
In Linux, you have a choice between GNOME, KDE, XFce, XPde, and others. This choice is covered in
more detail in Section B.2.3.

http://www.linux.org
http://www.sourceforge.net
http://www.freshmeat.net
http://www.linux.org
http://www.sourceforge.net
http://www.freshmeat.net
http://lib.ommolketab.ir

B.2. Configuring Applications and Environments

If you're familiar with administering Windows desktop systems, many of the issues involved in
administering Linux desktop systems will be similar, but others are unique. Likewise, if you're already
familiar with Linux system administration in other contexts (such as servers), desktop environments
present some unique challenges. Some of the issues in Linux desktop configuration include
understanding the difference between global and user configuration files, locating configuration files,
creating default desktop configurations, and making desktop environments accessible as options at
login time.

B.2.1. Global Versus User Configuration Files

Linux has long supported multiple users. Part of this support includes mechanisms to help keep users'
configurations separateenabling two users to use the same computer but set different defaults for
assorted application and desktop environment options. Even if a computer has a single user, Linux
uses these features, maintaining nominally separate global and user configuration files. You can take
advantage of this distinction to set global defaults, which users can then modify without impacting
other users' settings. On a system with a single user, you can use this distinction to easily restore a
user's settings to the default if the user's settings become corrupt.

Typically, global configuration files are stored in a system area. These files can be used in one or both
of two ways:

User programs can access the global configuration files directly, using them to direct program
operation in a way that's invariant from user to user. If a program supports only this mode of
operation, users can't change their default.

Users or user programs can copy the global configuration files to a subdirectory in the user's
home directory and then access the copied files for normal operation. This approach enables
users to change their personal defaults without impacting other users.

Most user programs support use of local configuration files, at least as an option. Some programs
automatically copy global configuration files the first time they're run. Others use the global files
directly unless users copy the global files to their home directories or create their own configuration
files from scratch. Sometimes a global file serves as a template that can be modified by a local file.

Ultimately, you'll have to consult a program's documentation to learn how it treats these two types of
configuration files. This knowledge can be important when setting defaults. For instance, if a program
always consults a global file, you can change defaults even for users who've already begun using a
program, so long as they've not explicitly changed a default; however, if a program copies global
configuration files to the user's home directory the first time it's run, changing the global
configuration files affects only users who begin using the program after you make changes.

The precise methods used to modify configuration files differ from one program to another.
Traditionally, Unix and Linux programs have used text-mode configuration files that can be edited in

http://lib.ommolketab.ir

a text editor. This remains true, but many of the more sophisticated GUI programs now create very
complex configuration files, often using the Extensible Markup Language (XML). Such files can be
difficult to modify by hand, particularly if you're not familiar with XML or the specific XML conventions
used by the program in question. Thus, one approach to making changes is to create a dummy
account, change the defaults using that account, and copy the dummy account's local configuration
files back to the global configuration file's location.

Don't blindly overwrite existing global configuration files. If you make a
mistake, doing this can render a program unusable, at least to new users of the
program. Before replacing a global configuration file, back it up someplace safe.
If you don't, you may need to reinstall the program should you make a mistake
in creating the new configuration file.

B.2.2. Locating Configuration Files

One location for global configuration files is /etc/skel. This directory holds template configuration files
that may be copied to a new user's home directory when an account is created, depending on the
options to useradd or other account-creation tools. Once files are copied from /etc/skel, user
applications don't normally access this directory. Thus, making changes to files in /etc/skel won't
normally affect how existing users' applications work.

Typically, /etc/skel contains a rather small set of filesperhaps just for your system's default shells, for
instance. These files are normally all dot files, meaning that their filenames begin with dots (.), which
means that they don't show up in file listings unless you include special options, such as the -a option

to ls.

Other directories in /etc hold many other application-specific global configuration files, often named
after the programs they control. For instance, /etc/gimp holds global configuration files for GIMP,
/etc/xfce4 holds global configuration files for Version 4 of XFce, and /etc/xcdroast.conf is the global
configuration file for X-CD-Roast. Most configuration files in /etc, though, belong to system utilities
and servers rather than user applications.

Many desktop programs store their global configuration files somewhere in their own directory tree.
One good way to locate these files is to use your package management system to list all the files that
belong to a package. For many packages, though, this action produces a large list of
filesdocumentation files in multiple languages, graphics files used to display icons in the program, and
so on. You might get lucky by piping the result through grep to search for a string like conf, but this

procedure isn't guaranteed to work.

Programs associated with the major desktop environments (particularly GNOME and KDE) often store
their global configuration files in a directory along with the desktop environment. This location can
vary from one distribution to another, as described shortly.

Some programs don't ship with global configuration files per se; they store their defaults in their
executables and rely exclusively on user configuration files to override these defaults. If you want to
change your systemwide default for such programs, you may need to generate user configuration
files in a dummy account and then copy those files to /etc/skel. This approach won't change the
defaults for existing users, though.

http://lib.ommolketab.ir

B.2.3. Creating Default Desktop Configurations

Perhaps the most important type of configuration file you might want to modify is that for your
desktop environmentKDE, GNOME, XFce, or what have you. Users see their desktop environments
when they first log in; making frequently used programs, file shares, and so on easy to access on
your network's standard desktop will go a long way to helping your users make the transition to
Linux and be productive in that environment. Typically, the way you manage this task is to create a
desirable template configuration in a dummy account and then to copy that template configuration to
the desktop environment's global configuration file area.

B.2.3.1 Creating a template configuration

To begin the task, create a new "dummy" userone who exists only to enable you to create a new
desktop configuration. Log into this account using the desktop environment you want to modify. (If
this environment isn't an option when you log in, consult the later Section B.2.4.) You can then tweak
the desktop environment as you see fit. Features you might want to adjust include:

Desktop icons

Most desktop environments, including KDE and GNOME, enable you to create desktop icons
that launch programs or open file browsers on particular directories. Creating such icons for
important programs and directories can help users navigate the system. Don't go overboard,
though; too many icons can clutter the desktop and be confusing, particularly for users who've
never used a system before.

Program launching menus

Most desktop environments include a tool, often called the Panel, which houses program-
launching icons. Some icons appear directly on the Panel, but more can be referenced in
menus. Most distributions attempt to provide ready access to most common programs from
their Panel menus, and many will automatically add programs when you install them using the
distributions' package-management tools. Nonetheless, you might want to rearrange the
menus, delete programs to reduce clutter, or add programs that aren't added by default. Some
desktop environments, such as KDE, maintain separate global and user program launch
menus. To make global changes, the best approach is to change the global file, which for KDE
is called applnk and is usually located in /usr/share, /usr/kde/version/share or a similar

location.

General desktop defaults

Desktop environments all present numerous defaults that influence the overall look and feel of
the system. These include default program fonts, desktop background images, keyboard repeat
rate, window border decorations, and so on. Technically, these defaults may apply to dozens of
different programs; however, most desktop environments provide a centralized control panel

http://lib.ommolketab.ir

through which most or all of these options may be set. Although all major Linux distributions
ship with defaults that are at least somewhat reasonable, you might want to change some,
either because you think the default is not the best or to customize the system for your
environment (say, using a background image with your company's logo).

You can set certain font defaults in a desktop environment; however, these
defaults apply only to the desktop environment and to affiliated programs. You
may need to change default fonts in many programs individually to make such
a change truly universal. Actually installing new fonts that don't ship with the
distribution is another matter, too; the Section B.5 later covers this issue in
more detail.

When you're done making these changes, log out and then log back in again to be sure they're
working as you intended. Some programs (particularly older ones or those that aren't officially part of
a desktop environment) require you to explicitly save a configuration before its changes are saved,
so it's easy to make changes and then lose them when you log out.

You may want to consult with your end users when designing a default desktop
environment. Try creating two or three possible defaults and ask a few typical
users to comment on them.

B.2.3.2 Copying the template to be a global configuration

Your template user's configuration is now saved in the template user's home directory. You can look
for it using the -a option to ls (the -F option can also be helpful because it distinguishes directories

from files).

ls -aF /home/genie
./ .bashrc .gnome/ .metacity/ Desktop/
../ .dmrc .gnome2/ .nautilus/
.ICEauthority .gconf/ .gnome2_private/ .recently-used
.bash_profile .gconfd/ .gtkrc-1.2-gnome2 .xsession-errors

This example shows the files created by the desktop environment (GNOME in this case), as well as
those copied from /etc/skel during account creation and any others created during the login process.
The .ICEauthority, .bash_profile, .bashrc, .dmrc, and .xsession-errors files aren't part of the desktop
environment configuration. The .recently-used file, although used by GNOME, can be safely ignored
because it holds information on recently accessed files; chances are you don't need or even want to
copy that information into new accounts.

To copy the template you've created so that all new users can access it, you must copy the files and
directories to an area in which they'll be used by new accounts. One way to do this is to copy
everything into the /etc/skel directory. When you do this, the files will be copied whenever a new
account is created and its initial files set from the /etc/skel template.

http://lib.ommolketab.ir

B.2.4. Adding an Environment as a Login Option

If you want your users to be able to log into a specific GUI environment, you must be able to tell the
computer to make that environment the default, or at least to present the environment you want as
a default. To do this, you must first understand how to get a GUI login tool running. Once this is
done, you need to know how to change defaults and present options with your tool of choice.

B.2.4.1 Running a GUI login tool

Many Linux distributions today come configured to boot directly into GUI mode by default. Most
distributions, including Fedora, Mandrake, Red Hat, and SuSE, enable you to control this feature by
editing a single line in /etc/inittab:

id:3:initdefault:

The number in the second colon-delimited field (3) in this example sets the default runlevel. Typically,

runlevel 3 corresponds to a text-mode boot, whereas runlevel 5 corresponds to a full GUI boot.
(Some distributions, such as older versions of SuSE, used runlevels other than 3 and 5 for these
functions.) The latter is very much like the former, except that in a GUI boot, an XDMCP server is
launched, as described in Chapter 11. The purpose in a default configuration isn't to provide remote
access, though; the default XDMCP configuration locks down the XDMCP server so that it provides
only local GUI login access.

A few distributions, such as Debian and Gentoo, do things differently: rather than use the runlevel to
signal whether a GUI login should be enabled, they set a SysV startup script to do the job. You can
enable or disable this startup script to change the distribution's GUI login status. Debian uses scripts
called xdm, gmd, or kdm for the X Display Manager (XDM), GNOME Display Manager (GDM), or KDE
Display Manager (KDM) tools, respectively. Gentoo has a single script called xdm that starts
whichever tool you've chosen to use.

All distributions provide some method of selecting which XDMCP server to run. Most distributions do
this by setting a variable in a configuration file. Fedora, Red Hat, and Mandrake use
/etc/sysconfig/desktop; Gentoo uses /etc/rc.conf; and SuSE uses /etc/sysconfig/displaymanager. In
all these distributions, you set the DISPLAYMANAGER variable. Most distributions accept either the
name of the XDMCP server, such as KDM, or the name of an associated desktop environment, such as
KDE. Debian works a bit differently; it sets the path to the default XDMCP program in the

/etc/X11/default-display-manager file.

B.2.4.2 Presenting desktop environment options

Different XDMCP servers require different configurations to present login options to users. The
simplest of these tools, and the least convenient from a user's point of view, is XDM. This server
presents no login-time options; instead, it relies on a configuration file to set the default desktop
environment. The global version of this file is /etc/X11/xdm/Xsession, which is often a link to
/etc/X11/Xsession. Users can override this default by providing a file called .xsession in their home
directories. In either case, this file is a script, so you can configure it to run a particular desktop
environment by providing appropriate commands, such as gnome-session to run GNOME, startkde to
start KDE, or startxfce4 to start XFce. A simple script can contain nothing but a reference to the

http://lib.ommolketab.ir

environment startup script:

#!/bin/bash
/usr/bin/startxfce4

More complex scripts are possible, of course. The default XDM Xsession script typically tests for the
existence of several desktop environments and, from among those that are available, starts the one
that's most preferred by the distribution maintainer.

KDM and GDM are both more complex. They provide the user with a set of options, typically accessed
by clicking a button in the GUI display. In most cases, when you add a new desktop environment,
your KDM and GDM configurations will be modified to present the new desktop environment as an
option to users. Sometimes, though, you need to take extra steps to see that this happens.

KDM and GDM both look in a directory for a list of sessions. This is often the /usr/share/xsessions
directory, although it could have another nametry typing find /usr -name "*.desktop" to locate the

directory if you can't seem to find it. Both KDM and GDM look for files whose names end in .desktop.
These files provide information on how to launch a desktop environment. If you need to add such a
file, you should probably begin by copying an existing one and modifying it. Existing files are likely to
be rather long because they often contain options to set the name in multiple languages. A short
example looks like this:

[Desktop Entry]
Encoding=UTF-8
Name=KDE
Comment=This session logs you into KDE
Exec=startkde
TryExec=startkde
Type=Application

To modify the system, edit the Exec and tryExec lines to point to the desktop startup command.
Modifying the Name and Comment lines will also enable your users to correctly identify the

environment.

Many distributions install a large number of .desktop files in some other
location, such as /usr/share/apps/kdm/sessions/. These files might not be used
by default, but you should be able to copy them to the appropriate directory
rather than create new files. If your distribution does this, you can locate it with
the find command mentioned earlier.

Once you've added a new environment to the configuration, you'll have to restart the XDMCP server.
In most distributions, you can do this by typing telinit 3 followed by telinit 5 at a command

prompt. This action brings the system to runlevel 3, then back to runlevel 5. In the process, it shuts
down the XDMCP server and restarts it. With Debian and Gentoo, you can use the SysV startup
scripts to shut down and then restart the XDMCP server.

http://lib.ommolketab.ir

Restarting the XDMCP server also shuts down the console's X session. Thus,
you should save any unsaved work before attempting this procedure.

http://lib.ommolketab.ir

B.3. Running Windows Programs in Linux

Linux is a mature OS that provides programs in all common, and many uncommon, desktop software
categories. Nonetheless, sometimes native Linux programs just aren't adequate. Perhaps you need a
specific program to read existing data files or to exchange data with colleagues, customers, or clients
off-site. Perhaps you need a program with specific features that aren't available in Linux; or perhaps
you need to run an exotic program for which no Linux counterpart is available. Sometimes, you can
work around the limitation by running Windows programs from Linux. This approach has advantages
and disadvantages compared to running the programs on a computer that runs Windows, so
understanding why you might want to run Windows programs in Linux is critical. You should also
know a bit about some of the options for doing the job; several tools are available, each of which has
its own advantages and disadvantages.

B.3.1. Why Run Windows Programs in Linux?

Ordinarily, the best way to run a program is to run it on the OS for which it was designed. Any other
OS will, at best, be emulating the target OS or placing an additional layer of software or protocols
between you and the program you want to run. Such procedures are inevitably imperfect and often
slow down operation. However, these drawbacks can be overwhelmed by certain advantages of
running Windows programs in Linux:

Reduced hardware costs

Running Linux and Windows programs on one computer can reduce hardware costs compared
to running these programs on multiple computers. Related to this advantage is the fact that a
single computer consumes less power and desk space than multiple computers.

Using non-x86 hardware

Some methods of running Windows programs from Linux work even with non-x86 hardware.
Thus, you can run Windows programs from a Linux system running on PowerPC, Alpha, or
other CPUs. This may be a big plus if you already have an office filled with such computers, and
you don't want to replace them or buy more.

Easy access to Linux resources

Perhaps you want to use resources available to Linux that aren't easily accessible from
Windows. For instance, you might have large numbers of data files on a Linux desktop
computer's hard disk, stored on a Linux-native filesystem. Although you can often gain access

http://lib.ommolketab.ir

to such filesystems from Windows (either through special Windows filesystem drivers or by
using another Windows system and setting up a file server such as Samba on the Linux
system), doing so is sometimes inconvenient.

Linux stability

Linux is a very stable OSmore stable than most versions of Windows. Thus, using Linux can
mean less downtime due to system crashes. This advantage is most dramatic when comparing
Linux to rather old versions of Windowsparticularly Windows 9x/Me. Windows 200x has a much
better reputation for reliability.

Improved productivity

Running Windows programs alongside Linux programs can improve productivity. Many methods
of doing this enable you to cut-and-paste data between programs, and it's usually easier to
switch between programs on a single computer than to switch between computers. If the
alternative is dual booting a single computer, running Windows programs in Linux can save a
great deal of time that would otherwise be wasted rebooting the computer.

These advantages all assume that you want or need to run Linux as your primary desktop OS, either
site-wide or for just a few users. They tend to evaporate if you have more compelling reasons to run
Windows programs than to run Linux programs.

B.3.2. Options for Running Windows Programs from Linux

Broadly speaking, methods of running Windows programs in Linux fall into two categories: remote
access tools and emulators. Chapter 10 and Chapter 11 describe remote access tools. For accessing
Windows systems from Linux, the GUI tools are almost certainly the better choice; text-mode tools
are simply too limiting for most purposes.

Of course, using remote-access tools requires you to have at least one Windows system running on
your network, and that system must be running an appropriate remote-access protocol server. You
can then use the corresponding Linux client to log into that Windows computer remotely. One
advantage of this approach is that you can use any Linux system, provided the appropriate software
is installed; you don't need to be concerned with CPU architectures or even the speed of the
computer you use for access, within broad limits. Because this approach doesn't rely on any sort of
emulation, software compatibility is usually quite good. After all, the software is running on a real
Windows computer, meaning that the only significant source of compatibility problems is in the
protocol used to communicate between systems. Games and multimedia tools sometimes have
problems running over these protocols, but most productivity tools work just fine.

Another approach is to use an emulator, which is a tool that can run one operating system's
programs from another. Actually, several different types of emulators exist:

CPU emulators

http://lib.ommolketab.ir

CPU emulators enable one CPU to execute instructions meant for another CPU. Using a CPU
emulator, you can run x86 code on a PowerPC, SPARC, or other CPU. (Emulators for other
CPUs are also available but are irrelevant for Windows emulation.) You can even run x86 code
on an x86 CPU using this approach. The downside is that CPU emulators can't run software
nearly as quickly as it can run on native hardware of otherwise comparable speed. The most
common CPU emulator for Linux is Bochs (http://bochs.sourceforge.net), which is both a CPU
emulator and a machine emulator (described next). The result is that you can run Windows
within Bochs. In practice, this works best with older versions of Windows on new (hence fast)
CPUs. Another CPU emulator is QEMU (http://fabrice.bellard.free.fr/qemu/), which includes a
full machine emulator similar to Bochs but can also be used to launch Linux applications for one
architecture on another CPU. This feature can be handy for running WINE (described shortly)
on non-x86 platforms.

Machine emulators

Another type of emulation is machine emulation, in which the non-CPU components of a
computer are emulated. That is, software running in a machine emulator "sees" a hard disk,
display hardware, and so on that are emulated. The emulated disk might correspond to a file
on the hard disk and an emulated display might tie in to a single window, for instance. Machine
emulators typically run emulated programs directly using the host CPU, although some tools
(such as Bochs) include both CPU and machine emulator components. The commercial VMware
(http://www.vmware.com) is a popular machine emulator, which supports running several
versions of Windows and other OSs from Linux. Win4Lin (http://www.netraverse.com) is
another commercial machine emulator, but it only supports Windows 9x/Me.

OS emulators

An OS emulator makes minimal or no attempts to emulate the CPU and hardware; instead, it
attempts to emulate the OS itself. In Linux, the most popular Windows OS emulator is the open
source Wine Is Not an Emulator (WINE; http://www.winehq.org). This package duplicates the
functionality of the Windows application program interface (API)that is, the system calls used
by programs. WINE can be used like a Linux GUI API to compile Windows programs as native
programs, or it can be used in conjunction with a program loader to run programs compiled for
Windows. Ordinarily, WINE is useful only on x86 or AMD64 systems; however, used with the
QEMU CPU emulator, you can run x86 Windows programs on non-x86 CPUs. WINE runs
Windows programs quickly (at least, when used on x86 hardware), but its compatibility is far
from complete. Small programs and popular ones are likely to run well, but many large
programs don't run or run only after extensive tweaking. Several offshoots of the WINE project
exist. Most notable of these are the commercial Crossover Office
(http://www.codeweavers.com) and the commercial Cedega (formerly known as WineX;
http://www.transgaming.com). Crossover Office is optimized to run Microsoft Office and a few
other common productivity tools, whereas Cedega is intended to run Windows games in Linux.
The open source WINE can run Microsoft Office and many games; the commercial products
provide easier installation and relatively minor improvements over the original.

http://bochs.sourceforge.net
http://fabrice.bellard.free.fr/qemu/
http://www.vmware.com
http://www.netraverse.com
http://www.winehq.org
http://www.codeweavers.com
http://www.transgaming.com
http://lib.ommolketab.ir

The expansion of WINE's name deserves elaboration, given that I'm calling it an
emulator. The precise meaning of the word emulator varies depending on who
you ask about it. This appendix uses the word fairly broadly, to apply to any of
the three types of activities just described. Some people, though, including the
WINE developers, prefer to confine this term to CPU emulation, hence the
expansion of the WINE name.

Generally speaking, among emulators, WINE is a very good approach, particularly on x86 systems, if
you can get the program you want to run working under it. Check http://appdb.winehq.org for
application compatibility information before you invest a lot of time in trying to get a program
working. WINE provides the best cross-OS cut-and-paste support and enables you to run an
application without actually installing Windows on your computer. (Some configurations do require
you to copy some Windows .DLL files, however.) Note that WINE's list of supported applications is
much shorter than that of machine emulators. These emulators run a real copy of Windows inside
their virtual environments, so they can run almost any program that doesn't require access to real
low-level hardware. (Some of these programs will work but compatibility is a bit hit-or-miss.)
Generally speaking, you should resort to CPU emulators only if you must run Windows programs on
non-x86 hardware. Although you can run Windows on an x86 Linux system in a program like Bochs,
the experience is likely to be painfully slow, particularly if your computer is very old or if you try to
run a recent version of Windows.

http://appdb.winehq.org
http://lib.ommolketab.ir

B.4. File and Filesystem Compatibility

Linux desktop systems must frequently access files created by Windows computers, or store files in a
way that Windows computers can handle. This task has two components. First, Linux must be able to
read and write the filesystems used by Windows, at least when files are transferred on disks. Second,
Linux applications must be able to process the file formats that are most commonly used on
Windows. This second task can be broken down into many categories depending on the programs in
question, and in this chapter I describe office file formats, PDF files, and archive files. I also provide
some tips for transitioning a network from using Windows to one that uses Linux desktop systems.

B.4.1. Accessing Windows Disks and Filesystems

Before you can deal with file format issues, you must be able to access the files in question. In many
networked environments, the easiest way to deal with this issue is to use the network. Tools like FTP
and email can be a good way to transfer files, particularly over the Internet at large. The SMB/CIFS is
a common file-sharing protocol among Windows systems, and using Linux as an SMB/CIFS client is
described in detail in Chapter 6.

Sometimes, though, network protocols aren't the best solution. Network bandwidth may be
inadequate for delivering very large files, network firewalls might prevent data exchange, or one or
both of the systems might not even be on a network. Such situations are particularly common when
users want to move files between home and work. Another situation in which network access may be
inadequate is when moving data across time rather than spacethat is, when archiving data for long-
term storage or when reading files that have been so archived in the past. In all these situations, you
must be able to share data on a common disk filesystem. Several filesystems are likely to be used for
such data transfers:

FAT

The File Allocation Table filesystem is named after one of its key data structures. FAT is a very
old filesystem, dating back to the earliest days of DOSand earlier (FAT variants were used on
DOS's predecessor OSs). FAT is actually a family of filesystems, which vary on two dimensions:
the size of FAT entries, in bits (12-, 16-, or 32-bit) and filename length limits (short or 8.3
filenames, which can be no longer than eight characters with a three-character extension;
VFAT long filenames; or a Linux-specific long filename extension). FAT size varies with disk
size: floppies and very small hard disks generally use FAT-12; FAT-16 tops out at 2-GB
partitions (4 GB for Windows NT/200x/XP); and FAT-32 is often used for disks larger than a
few hundred megabytes, and must be used for disks larger than the FAT-16 limit. Linux auto-
detects the FAT size, but you specify the nature of the filename support using one of three
filesystem type codes: msdos stands for the original FAT with 8.3 filenames; vfat adds VFAT
long filenames; and umsdos adds the Linux-specific long filename support to the original FAT.

Note that VFAT and UMSDOS are mutually exclusive; UMSDOS and VFAT both build on the
original FAT in different ways. All these drivers support both read and write access, and all are

http://lib.ommolketab.ir

very stable and reliable. FAT (in all its variants) is most commonly found on hard disks used by
Windows 9x/Me, floppy disks, Zip disks, and other removable magnetic disks.

NTFS

The New Technology File System was created for Windows NT and is the preferred filesystem
for use on hard disks with all computers in the Windows NT/200x/XP family. It's seldom found
on removable media, so the main reasons to access NTFS from Linux are for a dual boot
configuration or if you need to recover data from an existing Windows hard disk (say, after
replacing Windows with Linux). Linux provides reasonably reliable read-only support for NTFS,
but read/write support is much less stable. In 2.4.x and earlier kernels, Linux's NTFS
read/write support was almost certain to corrupt the NTFS partition. In the 2.6.x kernel, the
NTFS read/write support is more limited in capabilities (it can modify only existing files, not
create new ones), but it's less likely to damage the existing filesystem. Linux's NTFS support
uses the ntfs filesystem type code.

ISO-9660 and Rock Ridge

This filesystem is the most common one of CD-ROM, CD-R, and CD-RW discs. It's also
sometimes used on recordable DVD media. ISO-9660 comes in three levels. ISO-9660 Level 1
is limited to 8.3 filenames similar to those of FAT; Level 2 adds support for 32-character
filenames; and Level 3 also supports 32-character filenames, but changes some internal data
structures to make it easier to update an existing filesystem. Linux supports reading all three
levels via its iso9660 filesystem type code. An extension to ISO-9660, known as Rock Ridge,

supports long filenames and Unix-style ownership and permissions. Windows systems can't
handle Rock Ridge extensions, but they don't interfere with Windows' ability to read the
underlying ISO-9660 filesystem. Linux's iso9660 driver auto-detects Rock Ridge and uses

these extensions if they're available. You can create an ISO-9660 filesystem using the Linux
mkisofs command, which takes a wide range of options (consult its manpage for details), and
burn it to a recordable disc with cdrecord. Windows systems have no problems reading optical
discs created in this way. Various GUI frontends to these tools are also available, such as X-
CD-Roast (http://www.xcdroast.org) and K3b (http://www.k3b.org).

Joliet

Microsoft created the Joliet filesystem as a way to add long filenames, Unicode filenames, and
other features to CD-ROMs. Joliet typically exists side by side with an ISO-9660 filesystem, and
it can be ignored by OSs that don't understand it, so, in practice, Joliet works much like the
Rock Ridge ISO-9660 extensions. Linux's iso9660 driver automatically detects Joliet and will

use the Joliet filesystem if it's present. When both Joliet and Rock Ridge are present, though,
Linux favors the Rock Ridge extensions. The Linux mkisofs tool can create an image with Joliet
extensions enabled.

UDF

http://www.xcdroast.org
http://www.k3b.org
http://lib.ommolketab.ir

The Universal Disk Format is a next-generation optical disc filesystem. Commercial DVDs
usually employ this filesystem, and it's also used on some CD-R and CD-RW discs, particularly
those created by Windows packet writing driverstools that make the CD-RW drive behave more
like a conventional removable magnetic disk than a traditional write-once optical disc. Linux
can mount such discs using the udf filesystem type code, but discs so mounted can't be

written. The Linux mkisofs utility can create a UDF filesystem alongside an ISO-9660
filesystem, but this feature is considered experimental, at least as of Version 2.0.1.

Any of these filesystems may be used for data exchange between Linux and Windows systems. You
can mount them just as you would Linux-native filesystems, but for most, some extra options may
be helpful. In particular, most of these filesystems lack Linux ownership and permissions information,
so the filesystem driver must fake this information. By default, ownership is given to the user who
mounted the disk. This might or might not be appropriate. You can override the setting using various
options:

uid= value

This option sets the UID number for all the files on the disk.

gid= value

This option is similar to the uid option, but it sets the GID number rather than the UID.

umask= value

You can set the permission bits that should be removed from all files on a FAT or UDF
filesystem with this option.

dmask= value

This option works much like umask, but it applies only to directories on FAT filesystems.

fmask= value

This option works much like umask, but it applies only to nondirectory files on FAT filesystems.

mode= value

This is the ISO-9660 and UDF equivalent to umask, but it accepts a mode to set, rather than

permission bits to be removed from the mode.

http://lib.ommolketab.ir

norock

This option disables use of Rock Ridge extensions on ISO-9660 filesystems.

nojoliet

This option disables use of a Joliet filesystem, if one is found.

exec or noexec

These options tell the kernel to permit (exec) or not permit (noexec) users to run programs
that are marked as executable on a partition. Setting noexec can be a useful security feature

to block users running unauthorized code, but it's most useful only if you take other rather
extreme measures to prevent users from setting up unauthorized executable programs in other
ways.

Frequently, you use these options in /etc/fstab to specify how a filesystem should be mounted:

/dev/hdc /mnt/cdrom auto users,noauto,gid=121,mode=0440 0 0
/dev/fd0 /mnt/floppy auto users,noauto,uid=567,gid=121,umask=0113 0 0

All these entries use the auto filesystem type code, which tells the kernel to auto-detect the
filesystem type. All the entries also use the users and noauto filesystem mount options, which let

ordinary users mount and unmount disks and tell the system not to attempt to mount the filesystems
at boot time, respectively. The first entry uses mod=0440 to set those permissions on mounted CD-

ROMs, effectively granting read access to the user who mounts the disc and to everybody in GID
121. The second line sets a specific owner and group for floppies, removes everybody's execute
access, and also removes write access for users who aren't UID 567 or GID 121.

B.4.2. Office File Format Compatibility

Office suites are extremely popular tools. Many sites rely on them as their primary workhorse
programs. Furthermore, many organizations need to exchange office files with others, in order to
collaborate on projects, submit bids for new work, and so on. Thus, file compatibility of office tools is
extremely important. Even if you don't need such compatibility for collaboration or other purposes
outside of your site, you may need at least minimal compatibility to read old files after migrating a
computer or network from Windows to Linux.

Table B-1 summarizes some of the important office suites. In some cases, you may luck out because
you might only need a suite that's available across platforms. For instance, if you use StarOffice or
OpenOffice.org on Windows, migrating to Linux should be relatively painless, because the Linux
versions of these programs use the same file formats. (In fact, OpenOffice.org is the open source
variant of the commercial StarOffice, and both use the same file formats.)

One obstacle to Linux migration is the fact that the most ubiquitous office suite today is Microsoft

http://lib.ommolketab.ir

Office, and it's not available for Linux (although it can be run in WINE, Crossover Office, and other
emulators). Fortunately, most Linux office suites offer the ability to read Microsoft Office files,
although that ability is never perfect. Of these file types, Microsoft Word files are the most difficult to
handle. OpenOffice.org and StarOffice provide the best Microsoft Word import ability, although
AbiWord is also reasonably good. Others tend to drop a lot of the more advanced formatting features.
File exports from native Linux formats to Microsoft Word formats suffer from similar problems. For
any of these file types, you should definitely test the import and export abilities. For simple
documents, most any program's import/export filters should work adequately. For very complex
documents that rely on advanced features, even OpenOffice.org or StarOffice might be inadequate.

B.4.3. Creating and Reading PDF Files

PDF files are extremely important today. Many web sites provide white papers, specification sheets,
and other data in PDF form. If you expect to be able to read such files, you must have a PDF-reading
program. Likewise, if you want to place such documents on your own web site, you must be able to
create these files. Fortunately, Linux has good PDF support, for both creating and reading.

Many Linux PDF-creation tools revolve around Ghostscript (http://www.cs.wisc.edu/~ghost/). This
program accepts PostScript input and creates outputs in any of several formats. Most of these
formats are bitmap graphics files, but Ghostscript can also create PDF files. Because most Linux
programs that can print do so by creating PostScript files and sending them to a print queue, you can
usually create a PDF file from a Linux program that can print. One way to do this is to start from a
PostScript file on disk (presumably created using an application's "print to disk" feature). The ps2pdf
script can pass a PostScript file through Ghostscript with all the correct options to generate a PDF file
as output:

$ ps2pdf sample.ps

The result of typing this command is an output file called sample.pdf; ps2pdf generates the output
filename based on the input filename. If you like, you can use ps2pdf12, ps2pdf13, or ps2pdf14
instead of ps2pdf. These variants generate output using the Version 1.2, 1.3, or 1.4 PDF
specifications, respectively. Most modern readers can handle any of these formats, but if you know
the reader used to access the file handles one format or another better, you can force the issue. As
of Ghostscript 7.07, the default output of ps2pdf is equivalent to ps2pdf12, but this might change in
later versions.

Some programs include explicit PDF-generation support, usually in whatever area handles printing.
For instance, Figure B-1 shows KWord's Print dialog box. Rather than select a printer in the Name
area, you can select Print to File (PDF), which generates a PDF file. (You must also enter an output
filename in a field that's hidden in Figure B-1. Most programs that provide such support rely on
Ghostscript; these features merely pass PostScript output through Ghostscript to generate the file
you specify.

Figure B-1. Many programs provide a way to directly generate PDF files

http://www.cs.wisc.edu/~ghost/
http://lib.ommolketab.ir

Another approach to generating PDF files is to link the feature to a printer share. Chapter 4 described
this approach with respect to Samba printer shares; you can set up a Samba printer share to pass its
input through a custom print command to generate PDF output. You can then call this share from

any Samba client, including a Linux system configured to print through the Samba server.

As for reading PDF files, Ghostscript can handle PDF inputs as well as PostScript inputs, so
Ghostscript can do the job. Ghostscript by itself isn't exactly a convenient viewer, though. Typically,
you'll use a GUI frontend, such as gv (http://wwwthep.physik.uni-mainz.de/~plass/gv/) or
KGhostview (a part of KDE). Another alternative is to use Xpdf (http://www.foolabs.com/xpdf/),
which is a dedicated PDF viewer that's independent of Ghostview. Another such tool is Adobe's own
Acrobat Reader (http://www.adobe.com/products/acrobat/). This program is not open source, but it
is freely available. Because Adobe originated the PDF format, Acrobat Reader may be considered the
"official" PDF viewer, and it occasionally does a better job with some PDF files, particularly if the
creator used was very recent. Unfortunately, Adobe's Linux version is available in binary form only,
so you might not be able to run it if you're using an unusual CPU platform.

B.4.4. Managing Cross-Platform Archive Files

Sometimes you must bundle files together, or unbundle files that others have bundled into a carrier
archive file. Several classes of files are commonly used for this purpose:

Tarballs

These files are archives with tar and compressed using compress, gzip, or bzip2. These files
most commonly have .tar.Z, .tar.gz, .tar.bz2, .tgz, or .tbz filename extensions. They're most
frequently created on Linux or Unix systems, and Linux can handle them just fine. Common
Windows archiving programs can usually uncompress these files, but if you know a file will be
going to a Windows user, a Zip archive is usually better.

Zip files

Zip files are denoted by .zip filename extensions. This file format is most popular on Windows

http://wwwthep.physik.uni-mainz.de/~plass/gv/
http://www.foolabs.com/xpdf/
http://www.adobe.com/products/acrobat/
http://lib.ommolketab.ir

systems, which use tools such as PKZIP (http://www.pkware.com) or InfoZip
(http://www.info-zip.org/pub/infozip/) to create them. Both utilities are available in Linux,
although only InfoZip is open source. It's usually in a package called zip. This package includes
programs called zip and unzip to compress and uncompress files, respectively. Zip files are
usually the safest format when sending archive files to Windows users, and they're the format
you're most likely to encounter from Windows users.

CAB files

Microsoft uses its Cabinet (CAB) file format to distribute software. Chances are you won't need
to create a CAB file in Linux, but if you run across a CAB file you want to extract, you can do
the job with cabextract (http://www.kyz.uklinux.net/cabextract.php). This might be helpful if
you run across some fonts or want to view the instructions that come with a CAB file holding a
Windows program before extracting it on a Windows system.

StuffIt files

The StuffIt format originated on the Mac OS platform and is usually denoted by a .sit filename
extension. You're unlikely to run into StuffIt archives from Windows users, but you might run
into such files from Macintosh users. The best way to handle these files in Linux is to use the
commercial Stuffit Expander (http://www.stuffit.com). A demo version that can extract files is
available for free, but the full version requires payment.

In addition to these major formats, quite a few minor ones exist. Most are supported by Linux
programs, so try doing a web search on the filename extension of an unknown archive file and the
keyword Linux to locate information on the Linux program. You might also check your Linux
distribution's package management system; some have a readily viewed category for archiving
utilities.

Some Windows archives are distributed as self-extracting archives. These files
have .EXE or .COM extensions, but they really consist of another file format
along with a short program to extract the data, all in a single file. These
formats are often used for program installers. Self-extracting archives can
usually be extracted in Linux using an appropriate Linux program, such as
unzip for a self-extracting Zip file archive. The trick is finding the right archiving
tool. In theory, the identify might help, but in practice it often fails to be
helpful. You may need to simply try one format after another. Most Windows
self-extracting archives are either Zip or CAB files, but other formats do crop up
from time to time.

B.4.5. Tips for a Smooth Migration

Migrating desktop users from Windows to Linux can be a trying experience. Users are likely to have
large numbers of datafiles they rely on. Ensuring that these files aren't lost or damaged can be a
tricky proposition. Users must also be trained in the new OS and its applications, and of course the
transition period is likely to be chaotic simply because of the number of ongoing changes.

http://www.pkware.com
http://www.info-zip.org/pub/infozip/
http://www.kyz.uklinux.net/cabextract.php
http://www.stuffit.com
http://lib.ommolketab.ir

How can you make matters run more smoothly? You can employ several tricks to help minimize the
risk of disaster and smooth the transition from Windows to Linux:

Use backups

Before doing anything destructive to users' desktop systems, back them upor at least back up
critical user datafiles. (Locating such files may be very challenging; if you can possibly afford it,
perform a full backup.) The network backup procedures described in Chapter 14 can be very
helpful in performing this backup. When something else goes wrong (and in a big transition, it
will), a backup can be a life-saver.

Use file servers

You can set up a Samba file server (or a Windows file server) and instruct your users to copy
or move all their important files to this server. (You may need to keep an eye on the server to
be sure they don't copy their Windows system files and program files, though!) When users are
transitioned over to Linux, you can configure the new desktop systems to access the same
files, thus minimizing your need to copy user files during the transition process. This can be a
useful strategy even if you don't want to use the file server on a long-term basis; create a
transition schedule and cycle users' files on and off the temporary file server.

Use IMAP servers

Ahead of the transition, you can set up an IMAP server, as described in Chapter 13, to handle
mail. Instruct your users to store their mail on the IMAP server, using their Windows mail
clients. When users transition to Linux, they'll find all their email files present on the IMAP
server, thus minimizing email disruption and obviating the need to copy mailbox files or convert
their format. The risk, of course, is that if users don't move their mail files to the IMAP server,
those files might be lost.

Consider personal files and conversions

Some types of files may need to be converted, copied to new locations, or abandoned. For
instance, web browser bookmark files and email address books are likely to require conversion.
(You can use Mozilla or Firefox on Windows to convert Internet Explorer bookmarks, then move
the bookmarks.html file to Linux.) If you can find command-line utilities to handle such files,
you may be able to write a script to handle the most important of these files, or at least create
a checklist to help you convert them manually.

Rotate upgrades

Rather than try to upgrade the system at a user's desk, install Linux on a computer, swap it

http://lib.ommolketab.ir

with a user's existing machine, install Linux on that machine, and then repeat the process. You
should be able to perform the physical machine swap in just a few minutes, minimizing the
user's downtime. Of course, you'll have to carefully plan this operation so that users don't
receive machines with radically different capabilities than their existing onesunless of course
you want to provide upgrades (or downgrades) to some users. Another problem is in managing
users' local datafiles, which may change until the last minute. Using a file server to store such
files, as just described, can help with this problem.

Use Linux emergency systems

If you plan to migrate existing hardware, use an emergency or demo Linux system, such as
Knoppix (http://www.knoppix.org), to test the hardware before wiping the hard disk and
installing Linux. Such tools are likely to turn up problems with unsupported video cards or other
hardware problems before you get too far into the installation process. If a potential problem
looks too tough, you can delay the upgrade on that computer rather than spend time on it in a
time-critical period.

Provide adequate training

You can't expect the average user to pick up Linux with no trouble. Training is therefore
imperative and should be done before users are faced with their new OS.

Perform test conversions

Try converting a small number of users in a nondestructive waysay, by setting them up with
new computers while leaving their old Windows computers in place, at least temporarily. This
practice will enable you to locate potential trouble spots in the conversion, and if this goes
badly enough, you can back out.

New-hire conversions

You can introduce Linux initially for new users and keep their systems upgraded, but upgrade
existing Windows systems less frequently. This practice tends to create a user-driven demand
for conversion, particularly among users of older Windows systems. Having users asking to be
switched to Linux can be very helpful because you won't be fighting your users on this point.

Generally speaking, you should think through the upgrade process. What tasks are likely to require a
lot of time, either on your part or on the part of the users? Can anything be done to minimize this
time investment? A little thought and experimentation before you begin can prevent a lot of chaos
down the road.

http://www.knoppix.org
http://lib.ommolketab.ir

B.5. Font Handling

A perennial thorn in the side of Linux desktop use is font handling. In the past, X programs relied
exclusively on X's font features (the X core fonts, as they're now known), which were primitive
compared to those of Windows or Mac OS. Since 2000, new font tools have appeared (namely, Xft
fonts), and they are now used by many of the most popular X-based Linux programs. Although the
new systems are easier to use and present fonts that most users find more visually appealing, they
add complexity to the overall Linux font-handling system. Thus, you must understand both these font
systems. Many programs also provide their own font-handling tools, although most are converging on
Xft. Of those that have not yet adopted Xft, OpenOffice.org (and its commercial twin, StarOffice) is
the most important.

B.5.1. Linux Font-Handling Systems

Linux provides two major GUI font-handling systems: X core fonts and Xft fonts. In addition,
individual X-based programs sometimes employ their own font-handling systems. This profusion of
font-rendering tools can lead to some confusion if you're not aware of the differences between these
systems, each of which has its own unique quirks.

The oldest X font-handling system is the X core fonts system. X core fonts are server-side fonts,
meaning that the X server (the system at which the user sits, in most cases) handles the fonts. X
clients (that is, X programs) tell the X server what font to display and at what size, and the X server
does the rest.

X core fonts were originally designed with bitmap fonts in mind, meaning that individual characters
were designed for display at a specific size in pixels. To support scaleable fonts, which can be resized,
multiple bitmap font files are required, one for each size. X servers, including the XFree86 and Xorg-
X11 X servers for Linux, ship with several bitmap fonts in a variety of sizes, designed for both 72 dots
per inch (dpi) and 100-dpi displays. Most modern fonts, though, use scaleable font (a.k.a. outline
font) technologies, in which the font is described in terms of mathematical descriptions of lines and
curves. These descriptions provide an outline of a character, which the font renderer can scale to any
desired resolution and fill in. The two most common scaleable font formats today are PostScript Type
1 (a.k.a. Adobe Type Manager or ATM) fonts and TrueType fonts. XFree86 has supported both
formats since Version 4.0 (before that, it didn't support TrueType fonts), and Xorg-X11 also supports
both formats.

Because X core fonts are server-side, relatively little data needs to be transferred between the client
and server to display text. This feature can be helpful for remote logins but isn't very important for
typical desktop operations.

Some Linux distributions implement X core fonts via a font server, which is a server designed to
deliver bitmap font data to X servers. X ships with a font server, xfs, which can deliver bitmap font
data from bitmap font files or generated from Type 1 or TrueType fonts. This topic is described in
more detail shortly, in Section B.5.2.3.

The X core font system was designed years ago, and in the intervening years, font technology has

http://lib.ommolketab.ir

progressed. X core fonts were readily adapted to some new technologies, such as scaleable fonts, but
basic limitations in X core fonts have presented more of a challenge. One of these problems has been
the fact that X core fonts can't readily handle more than two colors per font (such as black for the
foreground and white for the background). This limitation means that a new font technology known
as font smoothing or anti-aliasing was slow to come to Linux. Font smoothing uses shades of gray to
deliberately blur fonts. Counter-intuitively, this has the subjective effect of improving the appearance
of fonts, because it tends to hide the jagged edges along diagonal lines and curves. Not everybody
cares for this effect, but many people do, and font smoothing is a standard part of Windows and Mac
OS. Another problem with the X core fonts system has been that installing fonts can be tricky, as
described in the next section. Finally, X core fonts were not designed with printing in mind, and
coordinating the display and print fonts can be a challenge when using these fonts.

The solution to these problems with X core fonts is the Xft font system. Unlike the X core fonts, Xft
fonts are client-side, meaning that they're installed on the same computer as the programs that call
them. This fact means that more data may need to be transferred over the network when they're
used, but if a program relies on particular fonts, it's easier to guarantee that they'll be available
because the user's server configuration is irrelevant. Xft was designed around the FreeType library,
which was originally a tool for rendering TrueType fonts. Today, though, Xft supports both TrueType
and Type 1 fonts. Xft fonts also support font smoothing, although this feature can be shut off. Xft
fonts provide a few more hooks to help with printing, although screen/printer font coordination in
Linux has improved more because of extra libraries than because of Xft. Installing Xft fonts is easier
than installing X core fonts, as well. However, configuring these fonts requires changing yet another
system. In the short term, this has caused increased problems because administrators must manage
both X core fonts and Xft fonts. In the long term, Xft fonts are likely to increase in importance, and X
core fonts may become so unimportant that their configuration will be trivial. In fact, this may have
already happened for some environments. The GNOME and KDE projects have both embraced Xft
fonts, as have many other programs, so it's possible you'll see very few or no X core fonts in use on
some systems.

In addition to X core fonts and Xft fonts, some individual programs handle their own fonts.
Traditionally, word processing programs have done this; however, many Linux word processors have
now switched to Xft. A few, though, such as OpenOffice.org and its commercial twin StarOffice,
continue to require their own font configuration.

B.5.2. Installing X Core Fonts

Installing X core fonts requires placing font files in directories of your choosing, creating or modifying
files in that directory to describe the fonts, and pointing the X server to the fonts. These tasks must
be done on the X server computer, so if you use X terminals (as described in Chapter 12), you may
need to make these changes on many systems. One way to simplify this task, particularly for a large
network, is to use a font server, which places most of the administrative burden on one computer.
Some Linux distributions, such as Fedora, Mandrake, and Red Hat, use font servers locally, so you
may need to deal with font server configuration even for standalone desktop systems.

B.5.2.1 Preparing font directories

The first task in X core font configuration is to install the fonts. Part of this task is fairly obvious: you
copy font files from some source, such as a commercial font CD-ROM or an Internet font download
site, to a directory of your choice. For locally installed fonts, /usr/local/fonts or a subdirectory of that

http://lib.ommolketab.ir

directory is a logical choice. Linux systems usually install their default fonts in /usr/share/fonts,
although older distributions used /usr/X11R6/lib/X11/fonts or other locations.

Once the font files are installed, you must create a configuration file that describes the fonts. This file
is called fonts.dir and resides in the same directory as the fonts themselves. Its first line contains
nothing but a number that denotes the number of fonts described in the configuration file.
Subsequent lines have a format that looks deceptively simple:

filename.ext XLFD

The filename.ext is the font filename. For TrueType fonts, this ends in .ttf; for Type 1 fonts, it's

either .pfa or .pfb. Various bitmap font formats exist, each with its own extension.

The tricky part of the fonts.dir file is the XLFD field, which describes an X Logical Font Descriptor
(XLFD). The XLFD consists of multiple fields of its own, separated by dashes (-). These fields contain

the name of the font creator, the name of the font, the weight of the font, a code for its slant,
numbers relating to its size, and so on. Even if you understand every field, XLFDs can be difficult to
read because the fields tend to blur together in the eye. An example of a complete fonts.dir entry
looks like this:

couri.pfa -ibm-courier-medium-i-normal--0-0-0-0-m-0-iso8859-1

As a practical matter, it's usually best to create the fonts.dir file with a helper program. Several such
programs exist, each with its own unique qualities:

type1inst

This program may not be installed in your distribution, although most distributions do provide it
under the package name type1inst or font-tools. Once it's installed, type type1inst in the

directory that holds Type 1 fonts. You should see a fonts.dir file appear, along with fonts.scale
(which is similar to fonts.dir, but describes only scaleable fonts). This program isn't useful for
handling TrueType fonts.

ttmkfdir

This program is essentially a TrueType counterpart to type1inst. It's usually delivered in a
package called ttmkfdir or freetype-tools. It sends its output to stdout by default, so you must
redirect it, as in ttmkfdir > fonts.dir.

mkfontscale

This program ships with Xorg-X11 and XFree86 4.3 and later. It creates a fonts.scale file that
describes both TrueType and Type 1 fonts. To create a fonts.dir file, you must type
mkfontscale and then either copy this file to fonts.dir or type mkfontdir. This program

http://lib.ommolketab.ir

creates a fonts.dir file from the contents of fonts.scale and information on any bitmap fonts in
the directory.

As a general rule, I recommend creating separate directories for each font type you useType 1,
TrueType, and bitmap or more exotic font formats you install. This practice gives you greater
flexibility in the use of programs that generate fonts.dir files.

B.5.2.2 Setting the X font path

Once you've installed font files, you can move on to editing the X server's configuration file:
/etc/X11/XF86Config or /etc/X11/xorg.conf. (This file sometimes appears in /etc rather than
/etc/X11.) The XF86Config file controls the XFree86 server, which most distributions abandoned in
2004 because of a licensing change with Version 4.4.0. The xorg.conf file controls Xorg-X11, which is
based on the last version of XFree86 prior to the license change, so the two servers are nearly
identical, at least as of XFree86 4.4.0 and Xorg-X11 6.7.0 (the first formal release version). Likewise,
their configuration files are virtually identical. One important difference, though, is that their default
font directories are different.

X looks for fonts in directories in the Files section of XF86Config or xorg.conf. Specifically, the
configuration file holds a series of lines that begin with the keyword FontPath, and each line contains

a path or other reference in quotes:

FontPath "/usr/share/fonts/75dpi/:unscaled"
FontPath "/usr/share/fonts/misc/"
FontPath "/usr/share/fonts/Type1/"
FontPath "/usr/share/fonts/TTF/"
FontPath "/usr/share/fonts/75dpi/"
FontPath "tcp/gutenberg:7100"
FontPath "unix/:-1"

Most of the entries in this example point to subdirectories of /usr/share/fonts, which is the default
location for fonts in Xorg-X11. In an XF86Config file, this location is more likely
/usr/X11R6/lib/X11/fonts. In any event, two broad classes of entries may be present:

Local font directories

Entries that look like font directory names are just that. X looks in these directories for font
configuration files (described shortly) and displays the fonts they contain when programs ask
for them. The first entry in the preceding example deserves elaboration, though: the
:unscaled code tells X to deliver bitmap fonts from this directory only if they can be delivered

at precisely the requested size. For instance, if a program asks for Times at 10 points, and if
the directory holds Times at 9 points and 12 points but not at 10 points, X doesn't display
Times from this directory. The idea is that a subsequent directory is likely to hold the font at
the precisely requested size or in a scaleable form. Later in this list, the same directory appears
without the :unscaled qualifier, so if all the other possibilities don't match the font, X delivers

a font bitmap that's been scaled from another bitmap. The result is likely to look quite ugly, but
it's better than not delivering a font at all.

http://lib.ommolketab.ir

Font servers

The last two examples from the preceding example are font servers. The first of these
specifications (tcp/gutenberg:7100) tells X to use a remote computer (gutenberg) via TCP/IP
on port 7100. The second entry (unix/:-1) tells the system to use Unix domain sockets to
connect to a local font server on port -1. Distributions that use local fonts servers are likely to

have XF86Config or xorg.conf files that refer exclusively to such a local font server; they may
not refer directly to any font directories.

If your X configuration file refers only to a local font server, you can either add your new font
directories directly to the X configuration file or modify your X font server configuration. The latter is
likely to be less confusing in the long run because your true font path will be accessible from a single
location.

B.5.2.3 Configuring a font server

If your distribution uses a font server, you might want to modify its configuration rather than the
main X configuration file. The standard location for an xfs configuration file is /etc/X11/fs/config. This
file contains several lines that set various options, such as whether to bind to TCP ports (which is
required for access by other computers). The lines that adjust the font path, though, begin with the
keyword catalogue:

catalogue = /usr/share/fonts/75dpi/:unscaled,
 /usr/share/fonts/misc/,
 /usr/share/fonts/Type1/,
 /usr/share/fonts/TTF/,
 /usr/share/fonts/75dpi/

This example sets the font path identically to the one described earlier, except that it refers to no
other font servers. (You should point X servers directly at font servers; don't try to point font servers
at other font servers.) The rules for :unscaled references are identical, but the format of the font

path is different. In the /etc/X11/fs/config file, the font path is a comma-delimited list that may span
multiple lines; the last entry does not end in a comma. Although the entries are often split across
lines, they need not be; you can present a single very long font path on one line. Quotes are not
placed around individual entries.

Both the main X server and font servers require the same configuration in the font directoriesnamely
a fonts.dir file that describes the font files.

Once you change this configuration, you must restart your X font server. Typically, you can do this by
using a SysV startup script:

/etc/init.d/xfs restart

The system should shut down and restart the font server, but the fonts won't yet be accessible. To
use them, you must tell X to reexamine its font path.

http://lib.ommolketab.ir

B.5.2.4 Using the fonts

After you change your X font configuration (either via the X server's main configuration file or a font
server), you must tell X to use the new fonts. If you've edited your X configuration file, the safest
way to do this and to be sure you've made no errors is to shut down X and restart it. On most
distributions, logging out of a GUI login will do this job. If you don't want to completely restart X,
though, you can type the following commands:

$ xset fp+
/new/font/path

$ xset fp rehash

The first of these commands adds a directory to your font path. Be sure to type this directory exactly
as you entered it on the FontPath line in your X configuration file. One problem with this approach is

that it adds the new font directory to the end of the font path, which may not be where you added it.
Thus, results might not exactly match what you'll get when you restart X, particularly if there's
overlap in font names.

The second line tells X to reexamine the fonts in its font path, effectively adding the new fonts to the
list of available fonts. You should type this command without the previous one if you've modified your
X font server configuration and want to use the new fonts that it's now offering.

Modifying the font path while X is running is potentially risky. If you make a
mistake, critical fonts might disappear. This can cause programs to hang. In
extreme cases, X might crash. Save your work before making such changes
and be prepared to log in using some other means (a text-mode console login,
SSH from another system, or what have you) to correct any problems that
might develop.

B.5.3. Installing Xft Fonts

Compared to installing X core fonts, installing Xft fonts is relatively straightforward. Xft 2.0 and later
use a configuration file called /etc/fonts/fonts.conf to control themselves. You shouldn't directly edit
this file, however; it can be overwritten in a package upgrade. Instead, Xft sets aside
/etc/fonts/local.conf for local changes. To add a font directory to the Xft font path, place this line just
above the </fontconfig> line:

<dir>/usr/local/fonts</dir>

Versions of Xft prior to 2.0 used another configuration file, /etc/X11/XftConfig,
to control their overall operation. This configuration file is very different from
the Xft 2.0 configuration file described here.

http://lib.ommolketab.ir

This line tells Xft to look in the /usr/local/fonts directory and all its subdirectories for font files. In
fact, because Xft looks in subdirectories of the specified font directories means that you may not even
need to modify the Xft configuration file at all: simply place your font files in a subdirectory of a
directory that's specified in /etc/fonts/fonts.conf. Most Xft configurations list /usr/share/fonts as a
directory, so placing new fonts in a subdirectory of that directory should work. Furthermore, most Xft
configurations list ~/.fonts as a font directory, meaning that individual users can install fonts
themselves by placing them in this directory.

Once the font directories are set, and fonts are placed in them, users can begin using fonts
immediately; there's no need to restart X or issue any special commands. There is a modest benefit
to using one command, though: fc-cache. If you've installed new fonts in a particular directory, type
this command:

fc-cache /path/to/fonts

The fc-cache command is the main interface to FontConfig, which is responsible for configuring Xft
fonts. This command creates a font index file (fonts.cache-1) that's conceptually similar to the X core
fonts' fonts.dir. Unlike X core fonts, though, Xft enables users to maintain their own font index files,
and if Xft detects that directories on the font path have been updated more recently than their
matching index files, FontConfig runs fc-cache in a way that updates users' individual font
configuration files (~/.fonts.cache-1). Thus, if you fail to perform this step, users can still access new
fonts; however, they may experience slight delays when starting new applications soon after you add
fonts, as fc-cache does its job.

B.5.4. Installing Fonts in OpenOffice.org

OpenOffice.org supports its own font-rendering system. As a result, fonts you install as X core fonts
or Xft fonts won't appear as options in the OpenOffice.org menus, at least as of OpenOffice.org 1.1.2.
(Future versions might switch to supporting Xft.)

OpenOffice.org is the open source twin of StarOffice. These two programs are
virtually identical, and both work the same way in terms of font configuration.

OpenOffice.org provides a printer and font administration tool in which you can adjust the program's
printer list and install or remove fonts. To do the latter, follow these steps:

In a command-prompt window, type oopadmin to launch the program. A window entitled Printer

Administration should appear.

1.

Click the Fonts button. A Fonts dialog box should appear, as shown in Figure B-2.

Figure B-2. OpenOffice.org provides a GUI tool that adds or deletes

2.

http://lib.ommolketab.ir

fonts

Click Add in the Fonts dialog box to add new fonts. A dialog box entitled Add Fonts should
appear, as shown in Figure B-3.

Figure B-3. OpenOffice.org's Add Fonts dialog box lets you locate and
select fonts

3.

Type a path to your fonts in the "Source directory" field or click the "..." button to select a
directory using a file selector. If you type the path, wait a few seconds after you finish the path.
The system should then populate the top field in the Add Fonts dialog box with font names and
filenames.

4.

Select any and all fonts you want to add by clicking their names in the Add Fonts dialog box.5.

Click Add in the Add Fonts dialog box. The system should respond with a report on the number6.

7.

http://lib.ommolketab.ir

5.

of fonts it added.
6.

Click Close in the Fonts dialog box, followed by Close in the Printer Administration dialog box.7.

You can perform these steps as either root or as an ordinary user. If the former, the fonts are
installed in the main OpenOffice.org directory; if the latter, they're installed in the user's home
directory.

http://lib.ommolketab.ir

B.6. Summary

Linux's credentials as a desktop OS are growing. Traditionally deployed as a server, Linux's GUI tools
and application programs are improving rapidly, to the point that increasing numbers of organizations
are deploying the OS on the desktop as well as in the server room. Doing this requires that you know
a bit about Linux desktop applications, starting with the desktop environments available for Linux.
Sometimes Linux's ability to run Windows programs (either by itself or with the help of a remote
server) is important for Linux desktop deployment. Accessing data from Windows desktop systems
and managing fonts are a couple more areas that are important for Linux desktop use.

http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The image on the cover of Linux in a Windows World depicts members of the Native American Nez
Perce tribe playing cards. In the mid-1850s, a treaty with the U.S. government made most of the
Nez Perce lands (parts of Idaho, Washington, and Oregon) into a reservation. However, with the
discovery of gold on the reservation, the government tried to push through a new treaty reducing the
land to a quarter of its size. The tribe refused to accept it, and war broke out. After a long campaign,
with his warriors facing starvation, Chief Joseph surrendered. The captured warriors were housed in a
temporary village near Fort Leavenworth, Kansas, before being assigned to a reservation (not,
however, with their people in the Northwest, as had been promised).

Mary Anne Weeks Mayo was the production editor and copyeditor, and Marlowe Shaeffer was the
proofreader for Linux in a Windows World. Sarah Sherman and Claire Cloutier provided quality
control. Keith Fahlgren and Lydia Onofrei provided production assistance. John Bickelhaupt wrote the
index.

Emma Colby designed the cover of this book, based on a series design by Hanna Dyer and Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma
Colby produced the cover layout with Adobe InDesign CS using Adobe's ITC Garamond font.

David Futato designed the interior layout. The chapter opening images are from the Dover Pictorial
Archive; Marvels of the New West: A Vivid Portrayal of the Stupendous Marvels in the Vast
Wonderland West of the Missouri River, by William Thayer (The Henry Bill Publishing Co., 1888); and
The Pioneer History of America: A Popular Account of the Heroes and Adventures, by Augustus Lynch
Mason, A.M. (The Jones Brothers Publishing Company, 1884).

This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format conversion tool created
by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by
Robert Romano, Jessamyn Read, and Leslie Borash using Macromedia FreeHand 9 and Adobe
Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon was written
by Mary Anne Weeks Mayo.

The online edition of this book was created by the Safari production group (John Chodacki, Ken
Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Accelerated-X

access control by IP address

access.db

ACLs (access control lists) 2nd

ACLs (Access Control Lists)

 Kerberos, usage in

AD (Active Directory) 2nd

 Kerberos and

addprinc

administration

 CUPS, web-based tool for

 desktop systems

 Kerberos realms

 remote text-mode tools, used for 2nd [See also text-mode logins]

 remote via text-mode logins

aliases.db

AMANDA (Advanced Maryland Automatic Network Disk Archiver) 2nd

 data backup and restoration

 dump type and backup set definition

 Linux client configuration

 network protocols used by

 options

 server configuration

 server programs

 tape preparation

 Windows client configuration

anti-aliasing

antispam and antivirus tools

 Bogofilter [See Bogofilter]

 Postfix

 Procmail [See Procmail]

 SpamAssassin [See SpamAssassin]

AppleShare

AppleTalk

ATA (Advanced Technology Attachment)

authentication

 domain configuration, advantages

 Kerberos [See Kerberos]

 LDAP [See LDAP]

 Linux authentication of NT domains [See Winbind]

 NetLogon authentication

 pass-through authentication

 NetLogon authentication and

http://lib.ommolketab.ir

 Samba [See domain controllers]

authentication servers

Automachron

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

backup clients

backup servers 2nd

backups [See network backups]

Bayesian tests

BIND (Berkeley Internet Name Domain) 2nd

bitmap fonts

blackhole lists

Bogofilter

 database file

 spamicity classification

 training

 training scripts

Boolean values

broadcast name resolution

browsers

 domain master browsers 2nd

 GUI workgroup browsers (SMB/CIFS)

 local master browsers 2nd

 elections

 master browsers [See master browsers]

 network browsers (SMB/CIFS)

BRU (Backup and Recovery Utility)

BSD LPD, defining SMB/CIFS printers using

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

CAP (Columbia AppleTalk Package)

CAs (Certificate Authorities)

case-sensitive and case-retentive filesystems

cdrecord and optical recorder specifications

CentOS

certificates

challenge-response tests

cifs driver

cifs filesystem type code

Citrix Metaframe

client software

clients

code examples

code pages

 Samba and

collisions

country code TLDs

Courier IMAP

Courier mail server

cp command and backups

cpio

crackers

cron

CUPS (Common Unix Printing System)

 adding printers

 browsing and security settings

 installing

 SMB/CIFS printers, defining

 web-based administration tool

cupsaddsmb

cupsd.conf

Cygwin OpenSSH

Cyrus IMAP 2nd

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Debian

deployment strategies

desktop environments

desktop systems

 administration

 configuring

 CPUs

 disks

 migration to Linux

 peripherals

 RAM

 thin clients, versus

 user interfaces

DHCP (Dynamic Host Configuration Protocol) 2nd

 address assignment

 dynamic assignment

 fixed assignment

 address broadcast and Windows clients

 client program

 configuration files

 parameters and declarations

 servers

 dhcpd server versus dhcpcd client

 kernel and routing requirements

 leases

 lease times, testing versus use

 Linux servers, configuration for thin clients

 MAC (media access control) addresses and

 NBNS information delivery

 Windows client configuration

 network addressing and

 advantages

 security concerns

 packet sockets, enabling

 server configuration

 Windows client configuration

dhcpd.conf

 example file

dhcpd.conf versus dhcpcd.conf

directories

DISPLAY environment variable

distributed hashes

distributions

http://lib.ommolketab.ir

 desktop use

 licensing

djbdns

DNs (Distinguished Names) and their types

DNS (Domain Name System) 2nd 3rd

 BIND (Berkeley Internet Name Domain)

 client configuration

 djbdns

 domain hierarchy

 domain name caching

 domains, setting up

 forward zone files, configuration

 reverse zone files, configuration

 hostnames

 local DNS servers, advantages

 name server configuration

 options

 zone definitions

 name server operation

domain controllers

 as file and print servers

 authentication, advantages for

 domain member configuration

 Windows 9x/ME

 Windows NT/200x/XP

 domain member servers 2nd

 file shares

 domain logon shares, configuring

 roaming profiles, configuring

 machine trust accounts

 NT domain controllers

 password database maintenance

 Samba controller parameters

 Samba versus NT

 Windows versions, Linux authentication of [See Winbind]

domain master browsers 2nd

domain member servers 2nd

DOS-style filesystem flags and file permissions

Dovecot 2nd 3rd

dovecot.conf

dumb terminal

dump

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

eBones

eDirectory

elections 2nd

email attachments, security risks

ESP Print Pro

Ethernet

Exceed

Exim 2nd

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

fc-cache command

Fedora Core

Fetchmail

 configuration file

 cron job operation

 global directives

 polling

 purpose of

 remote password file permissions

 running and testing

 sample .fetchmailrc file

 server options

 user options

file compatibility, Windows and Linux

file ownership

file permissions

 ACLs (Access Control Lists) 2nd

 DOS-style filesystem flags and

 file-exchange shares and

 Unix extensions

file servers

file sharing 2nd

 access control

 domain controllers and

 domain logon shares, configuring

 roaming profiles, configuring

 examples

 [homes] share

 file-exchange shares

 Windows program shares

 Linux clients over SMB/CIFS systems

 printer sharing, compared to

 write access

filename mangling

filenames

 case-sensitivity versus case-retentivity

 character sets and

firewalls and the X client-server model

font servers

fonts

 anti-aliasing

 bitmap fonts

 font smoothing

http://lib.ommolketab.ir

 OpenOffice.org

 scaleable fonts

 TrueType fonts

 X core fonts 2nd

 Xft 2nd

Foomatic

forward lookups

Free SSH

FreSSH

full backups

full restores

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

GDM (GNOME Display Manager)

generic TLDs

Gentoo

Georgia Softworks Telnet and SSH

getent

Ghostscript 2nd

GIMP Print

GINA (Graphical Identification and Authentication) 2nd [See also pGina]

Gnomba

GNOME (GNU Network Object Model Environment)

GNU Privacy Guard

GNU tar [See tar]

GPL (GNU General Public License)

GUI login tools

 VNC [See VNC]

 X [See X]

GUI workgroup browsers

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

hackers

hashes

 distributed hashes

headless servers

Heimdal

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

ICA (Independent Computing Architecture)

IMAP (Internet Message Access Protocol)

IMAP servers 2nd

 authentication

 launching

incremental backups

inetd super server

init command

Internet Software Consortium

IPP (Internet Printing Protocol)

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

kadmin

kadmin.local

kdc.conf

KDCs (key distribution centers)

 startup and operation

KDE (K Desktop Environment)

KDM (KDE Display Manager)

Kerberized Telnet

Kerberos 2nd

 account maintenance

 ACLs (access control lists)

 application servers 2nd

 configuration

 keytabs 2nd

 options

 principals

 startup and operation

 available versions

 centralized single-authentication logins

 clients

 installing

 operation

 preparation

 Windows

 dependency on clock synchronization

 KDCs (key distribution centers)

 startup and operation

 Windows and Linux KDCs, comparison

 Linux packages

 Linux servers

 login tools

 master keys

 permissions

 network logins using

 PAM and

 principals 2nd

 realms 2nd

 administration

 configuration

 stash files

 permissions

 TGTs (ticket-granting tickets)

 tickets

http://lib.ommolketab.ir

 network time and

 Windows and 2nd

 application servers and Active Directory

 compatibility issues 2nd

 Kerberos Telnet

 operation

 Windows and Linux KDCs, compared

keys

Konqueror 2nd

krb5.conf

kstash

ktadd command

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

LANs

 NetBIOS LANs

 Windows and NetBIOS names

LDAP (Lightweight Directory Access Protocol)

 client configuration

 configuring Linux for login authentication

 database backends

 DNs (Distinguished Names) and their types

 LDIF

 NSS configuration

 OpenLDAP [See OpenLDAP]

 PAM configuration

 pGina

 client configuration

 software packages

 terminology

 testing user authentication

 Windows, configuring for login authentication

 certificates, registering

LDIF

leases

Legato 2nd

libnss_winbind.so

libnss_wins.so

licensing

 GPL (GNU General Public License)

LinNeighborhood 2nd

Linux

 advantages

 desktop systems [See Linux desktop systems]

 distributions [See distributions]

 Ethernet support

 file permissions, setting

 filesystem filenames

 hardware flexibility

 installation

 integration, planning [See deployment strategies]

 Kerberos [See Kerberos]

 licensing

 login authentication and LDAP

 mail servers [See mail servers]

 mascot

 networks and

http://lib.ommolketab.ir

 NT domains, authentication [See Winbind]

 resource use

 security

 servers [See servers]

 thin client computing [See thin clients]

 Windows applications, running on 2nd

 Windows file and filesystem compatibility

 Windows, compared to

 Windows, integration with

Linux desktop systems

 applications

 as clients on Windows networks [See SMB/CIFS, Linux clients]

 configuration files

 default configurations, creating

 environment login option

 fonts

 OpenOffice.org

 X core fonts 2nd

 Xft 2nd

 GUI login tools

 Windows file and filesystem compatibility

 Windows programs, running in

Linux Printing web site

listed parameter values

lmhosts file

local master browsers 2nd

 elections

login.krb5

logins

 centralized single-authentication logins via Kerberos

 GUI login tools [See GUI login tools]

 Kerberos login tools

 Linux configuration for LDAP login authentication

 Linux desktops, environment login option

 Linux Desktops, GUI login tools

 Linux login authentication via LDAP

 network logins using Kerberos

 PXES and remote login servers

 remote login servers

 remote logins 2nd

 text-mode logins [See text-mode logins]

 remote X login servers

 rlogin 2nd

 Winbind

 Windows remote login tools

 Windows, configuration for LDAP authentication

LPD (Line Printer Daemon)

LPRng, defining SMB/CIFS printers using

lsh

LTSP

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

MAC (media access control) addresses

machine trust accounts 2nd

mail servers 2nd

 Dovecot 2nd

 Fetchmail [See Fetchmail]

 Microsoft Exchange servers, supplementing with Linux servers

 options

 POP and IMAP servers 2nd

 authentication

 launching

 push and pull protocols

 security

 SMTP servers

 Postfix [See Postfix]

 Procmail and

 sendmail [See sendmail]

 spam, worm, and virus scanning

 antispam and antivirus tools

 attachments, discard or quarantine of

 Bogofilter

 in Postfix

 in sendmail

 Procmail [See Procmail]

 SpamAssassin [See SpamAssassin]

 UW IMAP [See UW IMAP]

main.cf

master browsers 2nd

 local master browser elections

 potential conflicts

 services

MI/X

MIMEDefang tool

MIT Kerberos

mount

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

name resolution 2nd [See also DNS]

 NetBIOS Name Servers [See NBNS systems]

name resolve order parameters

named

named.conf

Nautilus

NBNS (NetBIOS Name Server) systems 2nd 3rd

 DHCP and

 information delivery via DHCP

 Windows client configuration

 Samba, configuration in

NCP (NetWare Core Protocol)

Netatalk

NetBIOS LANs

 domain controllers [See domain controllers]

NetBIOS name resolution

 non-Samba programs

 smb.conf options, setting

NetBIOS names

 non-SMB/CIFS tools and

 workgroup name options

NetLogon authentication

NETLOGON share

NetTime

network backups

 advantages

 AMANDA [See AMANDA]

 backup servers

 common problems

 hardware

 backup media

 hardware and software interaction

 Linux and

 Linux backup packages

 Samba, using for

 advantages and disadvantages

 backup shares, creating

 backup shares, using

 data restoration

 NTFS filesystem and

 smbtar [See smbtar]

 security issues

 strategies

http://lib.ommolketab.ir

 client- versus server-initiated backups

 complete versus incremental backups

 local versus network backups

 tape, incremental backups on

 tar 2nd

 available functions

 backups to optical media

 common options

 local restores

network protocols on Linux

NFS (Network File Server)

nmbd

NoMachine

non-Unix printing systems

NSS (Name Service Switch) 2nd 3rd

 configuring

 LDAP configuration

 Winbind options

NT domain controllers

 authentication of Linux clients 2nd [See also Winbind]

 versus Samba

NT domains

 PAM and NSS, linking to

NTP (Network Time Protocol) 2nd 3rd

 Linux NTP client configuration

 server configuration

 options

 upstream NTP servers, selecting

 Windows client configuration

 NET SET command

 Windows NTP clients

NTP for Windows

nupop

NX Server and NX Client

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

open relays

OpenLDAP

 database backends

 dependencies

 encryption

 included programs

 installing

 LDIF

 server configuration

 options

 server startup

 slapd.conf

 testing

 user directory, creating

OpenSSH

OpenSSH for Windows

OpenSSL

 configuration

optical media and backups

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

PAC (Privilege Access Certificate)

packages

 samba

packet sockets

page swapping

PAM (Pluggable Authentication Modules) 2nd 3rd

 configuration files

 Kerberos and

 LDAP configuration

 management features

 module stacks

 modules

 nonstandard

 standard

 sample configurations

 UW IMAP, usage of

 Winbind options

 Winbind, configuring for

pam_winbind.so

parameters

partial restores

Partition Image

pass-through authentication

password servers

passwords

 domain controllers, database maintenance

 Samba and [See Samba, password options]

 sniffing

PDF files, generating via printer share

pGina

 client configuration

POP (Post Office Protocol)

POP servers 2nd

 authentication

 launching

popa3d

Postfix 2nd 3rd

 address options

 antispam options

 configuration files

 mail relay configuration

 to forward mail

 to relay mail

http://lib.ommolketab.ir

 to use a relay

 postfix reload command

 Procmail and

PostScript and PDF file generation

PostScript Type 1 font format

principals

printer sharing 2nd 3rd

 creating shares

 CUPS

 adding printers to

 installing

 drivers, distributing to Windows clients

 examples

 [printers] share

 PDF-generation printer share

 file sharing, compared to

 Linux clients over SMB/CIFS networks

 non-PostScript printers 2nd

 PostScript printers 2nd

 printer compatibility, determining

 printer drivers

 clients, installing on

 defining shares

 Linux, installing from

 servers, installing on

 Windows NT/200x/XP, installing from

 uninstalling printer software

printers.conf

Procmail

 calling

 calling as root

 configuration files

 recipes

 actions

 conditions

 examples

 flags 2nd

 lockfiles

 regular expressions

 techniques

 SpamAssassin, calling from

procmailrc

promiscuous_relay

push and pull mail protocols 2nd 3rd

PuTTY 2nd

PXES

 boot files

 configuration

 network booting

 remote login servers and

 testing

http://lib.ommolketab.ir

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

qmail 2nd

qmail-pop3d

QPopper

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

rdesktop

RDNs (Relative Distinguished Names)

RDP (Remote Desktop Protocol) 2nd

realms

 Linux, configuration on

RealVNC

recursive lookups

Red Hat

regular expressions

Remote Desktop Protocol (RDP)

Remote Frame Buffer protocol

remote login servers

remote logins 2nd [See also logins]

 text-mode logins [See text-mode logins]

remote X login servers

removable disks and backups

removable hard disks

RFB (Remote Frame Buffer) 2nd 3rd [See also VNC]

rlogin 2nd

RS-232 serial connections

rsh

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Samba 2nd

 access control

 authentication services [See domain controllers]

 backups, using for

 advantages and disadvantages

 backup methods

 backup shares, creating

 backup shares, using

 data restoration

 NTFS filesystem and

 smbtar [See smbtar]

 components

 configuration file format

 global- and share-level parameters

 delimited parameter values

 file permissions

 file sharing [See file sharing]

 filename parameters

 global-level parameters

 installing

 master browser configuration

 master browser options

 NBNS configuration

 NetBIOS LANs

 password options

 cleartext passwords

 encrypted passwords

 password servers

 printer sharing [See printer sharing]

 server identification options

 name resolve order parameters

 NetBIOS names

 workgroup name options

 UID and GID mapping

 Winbind [See Winbind]

Sample Procmail Recipes with Comments

SASL (Simple Authentication and Security Layer)

SATA (Serial ATA) disks

SATA RAID systems

scaleable fonts

SCSI (Small Computer Systems Interface)

 RAID systems

security

http://lib.ommolketab.ir

 email attachments and

sendmail 2nd

 address options

 antispam options

 configuration files

 mail relay configuration

 promiscuous_relay

 to forward mail

 to relay mail

 to use a relay

 Procmail and

 restarting after configuration

 SpamAssassin, calling from

sendmail.cf

server programs

servers 2nd

 authentication servers

 backup servers

 choosing programs

 definition of

 disk space requirements

 DNS servers

 file servers

 hardware

 mail servers

 remote login servers

 time servers

services

share-level parameters

Slackware

slapd-cert.crt 2nd

slapd-key.pem

slapd.conf

smb.conf

 domain controller parameters

 file ownership parameters

 file permission parameters

 name resolution options, setting

 Winbind options

SMB/CIFS (Server Message Block/Common Internet File System) 2nd 3rd [See also Samba]

 AMANDA and

 backups using 2nd

 Linux clients

 CUPS, defining printers with

 file share access limitations

 file shares, accessing

 GUI workgroup browsers, configuring

 LPRng or BSD LPD, defining printers

 NetBIOS name resolution

 printer sharing

 network browsers

 password encoding

http://lib.ommolketab.ir

SMB2WWW

smbclient 2nd

 commands

 parameters

 printing with

smbd

smbfs driver

smbfs filesystem type codes

smbmount 2nd

 parameters

smbpasswd command

smbpasswd file

smbtar

 important options

 performing backups

 Windows client file share configuration

smbumount

SMTP (Simple Mail Transfer Protocol)

 servers 2nd

sniffing

spam

SpamAssassin

 calling from Procmail

 calling from sendmail

 Perl dependencies

 testing and message scoring

SpamBouncer

SSH (Secure Shell) 2nd 3rd 4th

 client options

 server configuration

 server options

 server startup and operation

 tunneling

 advantages and disadvantages

 Windows clients

 VNC connection encryption

SSH Tectia

ssh_config

sshd_config

SSL (Secure Sockets Layer)

stash files

stratum servers

string parameter values

SunOne

super servers, identifying type

SuSE

SWAT (Samba Web Administration Tool)

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

tape backups

 AMANDA, automation using [See AMANDA]

 tape formats

tar 2nd

 - (dash) in non-GNU versions

 available functions

 backups to optical media

 archive direct to media

 archive on carrier filesystem

 archive on optical filesystem

 common options

 local restores from

 restores from

 emergency boot disks and

 emergency OS installations and

 partial OS bootstraps

 second computer assist

 tape backups and the compression options

tcpd

Telnet 2nd 3rd

 drawbacks

 enabling and disabling

 encryption, adding to

 security concerns

Terminal Services (Windows)

text-mode logins

 access speed

 GUI programs, compared to

 remote administration

 SSH [See SSH]

 Telnet [See Telnet]

 text-mode programs

 tools for remote access

 unencrypted remote access

 Windows and

TGTs (ticket-granting tickets)

thin clients 2nd

 advantages

 available protocols

 client hardware

 dedicated clients

 diskless systems

 old PCs

http://lib.ommolketab.ir

 video RAM

 disadvantages

 hardware

 determining requirements

 ICA

 Linux clients

 distribution selection

 PXES [See PXES]

 specialty distributions

 Linux servers

 DHCP configuration

 distribution, selecting

 TFTP configuration

 XDMCP and VNC options

 network equipment

 remote GUI access using

 SATA RAID compared to SCSI RAID systems

 server hardware

 suitable applications

ThinStation

tickets

TightVNC

time servers

TLDs (top-level domains)

TLS (Transport Layer Security)

transport maps

TrueType fonts

tunneling 2nd

tunnelling

Tux

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Unicode

Unix extensions 2nd 3rd

UW IMAP 2nd

 PAM authentication

 xinetd and

UW-IMAP (University of Washington IMAP)

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Veritas

Veritas Netbackup

viruses 2nd

VNC

 clients, using

 Windows

 KDE support

 Linux VNC server configuration

 server options

 servers, installation and configuration

 SSH encryption, using

 thin client computing and

 versions

 vncserver command

 Windows VNC server configuration

 XDMCP servers, linking to

VNC (Virtual Network Computing)

vncviewer

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

white lists

Winbind 2nd

 logins

 NSS (Name Service Switch) 2nd

 configuring

 options

 PAM (Pluggable Authentication Modules) 2nd

 configuring

 options

 Samba, configuration using

 testing

 winbindd 2nd

Windows

 Active Directory [See AD]

 clients

 configuring shares on

 filenames

 printer drivers, distributing to

 SSH tunneling and 2nd

 GINA (Graphical Identification and Authentication)

 Kerberos 2nd

 compatibility issues 2nd

 Kerberos Telnet

 Linux and Windows KDCs, compared

 servers and AD (Active Directory)

 LDAP login authentication, configuring

 Linux file and filesystem compatibility

 Linux, compared to

 Linux, integration with

 Linux, running Windows applications on 2nd

 Microsoft Exchange servers and Linux mail servers

 networking under Linux

 NT domain controllers [See NT domain controllers]

 NT domains [See NT domains]

 remote-login tools

 client software

 roaming profiles and

 Terminal Services

 text-mode logins and

 VNC clients, using on

 Windows networks

 Linux clients on [See SMB/CIFS, Linux clients]

 master browsers

http://lib.ommolketab.ir

 Windows X servers

 X servers for

wins server and NBNS systems

workgroup name options

workstations

worms 2nd

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

X (X Window System)

 SSH tunneling

 text-mode logins, connection via

 thin client computing and

 Windows X servers

 X client-server model 2nd

 firewalls

 X server options

 rooted or rootless modes

 XDMCP [See XDMCP]

X core fonts 2nd

X terminals 2nd

X Window System

X-Win32 and X-Win64

X11

XDM (X Display Manager)

XDMCP (X Display Manager Control Protocol) 2nd

 client configuration

 configuration for VNC connections

 server configuration

 GDM (GNOME Display Manager)

 KDM (KDE Display Manager)

 XDM

XFree86 2nd

Xft fonts 2nd

xinetd super server

Xmanager 2nd

xSMBrowser

http://lib.ommolketab.ir

	Linux in a Windows World
	Table of Contents
	Copyright
	Dedication
	Preface
	Audience
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Safari Enabled
	Acknowledgments

	Part I: Linux's Place in a Windows Network
	Chapter 1. Linux's Features
	Section 1.1. Where Linux Fits in a Network
	Section 1.2. Linux as a Server
	Section 1.3. Linux on the Desktop
	Section 1.4. Comparing Linux and Windows Features
	Section 1.5. Summary

	Chapter 2. Linux Deployment Strategies
	Section 2.1. Linux Server Options
	Section 2.2. Linux Desktop Migration
	Section 2.3. Linux and Thin Clients
	Section 2.4. Summary

	Part II: Sharing Files and Printers
	Chapter 3. Basic Samba Configuration
	Section 3.1. Installing Samba
	Section 3.2. The Samba Configuration File Format
	Section 3.3. Identifying the Server
	Section 3.4. Setting Master Browser Options
	Section 3.5. Setting Password Options
	Section 3.6. Summary

	Chapter 4. File and Printer Shares
	Section 4.1. Common File Share Options
	Section 4.2. Printing with CUPS
	Section 4.3. Creating a Printer Share
	Section 4.4. Delivering Printer Drivers to Windows Clients
	Section 4.5. Example Shares
	Section 4.6. Summary

	Chapter 5. Managing a NetBIOS Network with Samba
	Section 5.1. Enabling Domain Controller Functions
	Section 5.2. Enabling NBNS Functions
	Section 5.3. Assuming Master Browser Duties
	Section 5.4. Summary

	Chapter 6. Linux as an SMB/CIFS Client
	Section 6.1. Using NetBIOS Name Resolution
	Section 6.2. Accessing File Shares
	Section 6.3. Printing to Printer Shares
	Section 6.4. Configuring GUI Workgroup Browsers
	Section 6.5. Summary

	Part III: Centralized Authentication Tools
	Chapter 7. Using NT Domains for Linux Authentication
	Section 7.1. The Principles Behind Winbind
	Section 7.2. Samba Winbind Configuration
	Section 7.3. PAM and NSS Winbind Options
	Section 7.4. Winbind in Action
	Section 7.5. Summary

	Chapter 8. Using LDAP
	Section 8.1. The Principles Behind LDAP
	Section 8.2. Configuring an OpenLDAP Server
	Section 8.3. Creating a User Directory
	Section 8.4. Configuring Linux to Use LDAP for Login Authentication
	Section 8.5. Configuring Windows to Use LDAPfor Login Authentication
	Section 8.6. Summary

	Chapter 9. Kerberos Configuration and Use
	Section 9.1. Kerberos Fundamentals
	Section 9.2. Linux Kerberos Server Configuration
	Section 9.3. Kerberos Application Server Configuration
	Section 9.4. Linux Kerberos Client Configuration
	Section 9.5. Windows Kerberos Tools
	Section 9.6. Summary

	Part IV: Remote Login Tools
	Chapter 10. Remote Text-Mode Administration and Use
	Section 10.1. What Can Text-Mode Logins Do?
	Section 10.2. SSH Server Configuration
	Section 10.3. Telnet Server Configuration
	Section 10.4. Windows Remote-Login Tools
	Section 10.5. Summary

	Chapter 11. Running GUI Programs Remotely
	Section 11.1. What Can GUI Logins Do?
	Section 11.2. Using Remote X Access
	Section 11.3. Encrypting X by SSH Tunneling
	Section 11.4. VNC Configuration and Use
	Section 11.5. Running Windows Programs from Linux
	Section 11.6. Summary

	Chapter 12. Linux Thin Client Configurations
	Section 12.1. The Role of Thin Client Computing
	Section 12.2. Hardware Requirements
	Section 12.3. Linux as a Server for Thin Clients
	Section 12.4. Linux as a Thin Client
	Section 12.5. Summary

	Part V: Additional Server Programs
	Chapter 13. Configuring Mail Servers
	Section 13.1. Linux Mail Server Options
	Section 13.2. Configuring Sendmail
	Section 13.3. Configuring Postfix
	Section 13.4. Configuring POP and IMAP Servers
	Section 13.5. Scanning for Spam, Worms, and Viruses
	Section 13.6. Supplementing a Microsoft Exchange Server
	Section 13.7. Using Fetchmail
	Section 13.8. Summary

	Chapter 14. Network Backups
	Section 14.1. Backup Strategies
	Section 14.2. Backing Up the Linux System
	Section 14.3. Backing Up with Samba
	Section 14.4. Backing Up with AMANDA
	Section 14.5. Summary

	Chapter 15. Managing a Network with Linux
	Section 15.1. Delivering IP Addresses with DHCP
	Section 15.2. Delivering Names with DNS
	Section 15.3. Keeping Clocks Synchronized with NTP
	Section 15.4. Summary

	Part VI: Appendixes
	Appendix A. Configuring PAM
	Section A.1. PAM Principles
	Section A.2. The PAM Configuration File Format
	Section A.3. PAM Modules
	Section A.4. Sample PAM Configurations
	Section A.5. Summary

	Appendix B. Linux on the Desktop
	Section B.1. Linux Desktop Applications for All Occasions
	Section B.2. Configuring Applications and Environments
	Section B.3. Running Windows Programs in Linux
	Section B.4. File and Filesystem Compatibility
	Section B.5. Font Handling
	Section B.6. Summary

	Colophon
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

