
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Programming ASP.NET, 2nd Edition

By Dan Hurwitz, Jesse Liberty

Publisher: O'Reilly

Pub Date: September 2003

ISBN: 0-596-00487-7

Pages: 1004

In Programming ASP.NET, Second Edition authors Jesse Liberty and Dan Hurwitz cover everything
you need to know to be effective with ASP.NET. The book includes a comprehensive tutorial on Web
Forms, which, in conjunction with Visual Studio .NET 2003, allow you to apply Rapid Application
Development techniques (including drag-and-drop control placement) to web development.
Programming ASP.NET includes extensive coverage of each type of server control, including Web
server controls, HTML server controls, and custom controls. New material covers creating ASP.NET
pages for mobile devices.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Programming ASP.NET, 2nd Edition

By Dan Hurwitz, Jesse Liberty

Publisher: O'Reilly

Pub Date: September 2003

ISBN: 0-596-00487-7

Pages: 1004

 Copyright

 Preface

 About This Book

 How This Book Is Organized

 Who This Book Is For

 Conventions Used in This Book

 Support: A Note from Jesse Liberty

 We'd Like to Hear from You

 Acknowledgments

 Chapter 1. ASP.NET and the .NET Framework

 Section 1.1. The .NET Framework

 Section 1.2. ASP.NET

 Section 1.3. Hello World

 Chapter 2. Visual Studio .NET

 Section 2.1. Start Page

 Section 2.2. Projects and Solutions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 2.3. The Integrated Development Environment (IDE)

 Section 2.4. Building and Running

 Chapter 3. Events

 Section 3.1. Event Model

 Section 3.2. ASP Versus ASP.NET Events

 Section 3.3. Event Arguments

 Section 3.4. Application and Session Events

 Section 3.5. Page and Control Events

 Section 3.6. IsPostBack

 Section 3.7. Postback Versus Non-Postback Events

 Section 3.8. Comparing ASP.NET to ASP

 Section 3.9. Events in Visual Studio .NET

 Chapter 4. Controls

 Section 4.1. HTML Server Controls

 Section 4.2. ASP (Web Server) Controls

 Chapter 5. ASP Control Details

 Section 5.1. The Basics

 Section 5.2. Label Control

 Section 5.3. TextBox Control

 Section 5.4. Button Controls

 Section 5.5. HyperLink Control

 Section 5.6. Selecting Values

 Section 5.7. Selecting from a List

 Section 5.8. Tables

 Section 5.9. Panel Control

 Section 5.10. Images

 Section 5.11. Calendar

 Chapter 6. Programming Web Forms

 Section 6.1. Code-Behind

 Section 6.2. State

 Section 6.3. Lifecycle

 Section 6.4. Directives

 Chapter 7. Tracing, Debugging, and Error Handling

 Section 7.1. Creating the Sample Application

 Section 7.2. Tracing

 Section 7.3. Debugging

 Section 7.4. Error Handling

 Chapter 8. Validation

 Section 8.1. The RequiredFieldValidator

 Section 8.2. The Summary Validator

 Section 8.3. The Compare Validator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 8.4. Range Checking

 Section 8.5. Regular Expressions

 Section 8.6. Custom Validation

 Chapter 9. Data Binding

 Section 9.1. ArrayList

 Section 9.2. Data Binding and Postback

 Section 9.3. Binding to a Class

 Section 9.4. Binding to Other Simple Controls

 Section 9.5. Binding Radio Buttons and Checkboxes

 Chapter 10. List-Bound Controls, Part I

 Section 10.1. Shared Properties and Collections

 Section 10.2. The DataGrid Control

 Section 10.3. Next Steps

 Chapter 11. Accessing Data with ADO.NET

 Section 11.1. Bug Database Design

 Section 11.2. The ADO.NET Object Model

 Section 11.3. Getting Started with ADO.NET

 Section 11.4. Managed Providers

 Section 11.5. Creating a Data Grid

 Section 11.6. Creating Data Objects by Hand

 Section 11.7. Stored Procedures

 Chapter 12. ADO Data Updates

 Section 12.1. Updating with SQL

 Section 12.2. Updating Data with Transactions

 Section 12.3. Updating Data Using Datasets

 Section 12.4. Multiuser Updates

 Section 12.5. Command Builder

 Chapter 13. List-Bound Controls, Part II

 Section 13.1. Binding to the DataList and Repeater Controls

 Section 13.2. The Repeater Control

 Section 13.3. The DataList Control

 Section 13.4. In-Place Editing

 Section 13.5. DataList Editing

 Chapter 14. Custom and User Controls

 Section 14.1. User Controls

 Section 14.2. Custom Controls

 Chapter 15. Web Services Overview

 Section 15.1. How Web Services Work

 Section 15.2. Protocols and Standards

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 16. Creating Web Services

 Section 16.1. A Simple StockTicker

 Section 16.2. Creating a Discovery File

 Section 16.3. Deployment

 Chapter 17. Consuming Web Services

 Section 17.1. Discovery

 Section 17.2. Creating the Proxy

 Section 17.3. Creating the Consuming Application

 Chapter 18. Caching and Performance

 Section 18.1. Types of Caching

 Section 18.2. Output Caching

 Section 18.3. Object Caching

 Section 18.4. The HttpCachePolicy Class

 Section 18.5. Performance

 Section 18.6. Benchmarking and Profiling

 Chapter 19. Security

 Section 19.1. Authentication

 Section 19.2. Authorization

 Section 19.3. Impersonation

 Chapter 20. Controlling, Configuring,and Deploying Applications

 Section 20.1. What Is an Application?

 Section 20.2. Controlling the Application

 Section 20.3. Configuring the Application

 Section 20.4. Deploying the Application

 Appendix A. Relational Database Technology: A Crash Course

 Section A.1. Tables, Records, and Columns

 Section A.2. Table Design

 Section A.3. SQL

 Appendix B. Bug Database Architecture

 Section B.1. Table Relationships

 Colophon

 Index

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Copyright

Copyright © 2003, 2002 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of stingray and the topic of TOPIC is a trademark of
O'Reilly & Associates, Inc.

IntelliSense, JScript, Microsoft, Visual Basic, Visual C++, Visual Studio, Windows, and Windows NT
are registered trademarks, and Visual C# is a trademark of Microsoft Corporation.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Preface
ASP.NET is the successor to Microsoft's "classic" ASP technology, the world's leading web
development tool. ASP.NET solves many of the problems associated with ASP and provides an
integrated and consistent approach to software development that builds on the libraries and
languages of the .NET platform.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

About This Book

This book will teach you all you need to know to be effective with ASP.NET. We assume you have
some background with either C# or Visual Basic .NET (VB.NET), or sufficient programming
experience to pick up what you need to know from the examples shown. Experience with "classic"
ASP will help, but it is not required.

ASP.NET is not difficult. All of the concepts are straightforward, and the Visual Studio .NET
environment greatly simplifies the process of building powerful web applications. The difficulty in
ASP.NET is only that it is so complete and flexible that there are many pieces that must be woven
together to build a robust, scalable, and efficient application.

Since there are two authors' names on this book, you might be concerned that the tone will be
uneven. Every possible measure has been taken to avoid this. Although each chapter was initially
written by one author, all chapters were edited by both. Then every chapter was extensively edited
and rewritten by Jesse Liberty to give the book a single voice. And if that weren't enough, the
chapters were subsequently edited by the O'Reilly editors, and then again by the authors. The bottom
line is that while two authors wrote this book, you should find that it reads as if written by a single
author.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

How This Book Is Organized

Chapter 1, is an introduction to ASP.NET and the .NET platform and also demonstrates the simplest
possible application you might build with ASP.NET. Chapter 2, introduces the Visual Studio .NET
Integrated Development Environment and shows how you can use it to create ASP.NET applications.

The next three chapters (Chapter 3, Chapter 4, and Chapter 5) provide complete coverage of HTML
Server Controls and ASP Controls. (Note that Chapter 10, Chapter 13, and Chapter 14 round out the
extensive discussion of controls in ASP.NET.)

Chapter 6 covers several fundamental concepts crucial to building powerful web applications,
including code segregation, state management, and the control life cycle.

Chapter 7 examines Tracing, Debugging, and Error Handling in ASP.NET.

Chapter 8 looks at Validation. ASP.NET provides extensive support for data validation, including
range checking, ensuring that a choice has been made, checking that values are within a range, and
matching regular expressions. The ASP.NET Framework will automatically and invisibly take
advantage of the capabilities of up-level browsers (e.g., IE6) to do the data validation at the client,
while still providing server-based validation for down-level browsers.

Chapter 9 looks at Data Binding, the powerful ability to bind complex user interface controls to
database tables and other data structures.

Chapter 10 examines the List-Bound Controls, Part I, including the incredibly powerful data grid. This
chapter also looks at the event-driven nature of ASP.NET controls.

Chapter 11 focuses on Accessing Data with ADO.NET and the new technology for interacting with
back-end databases. ADO.NET is built on a disconnected data set that provides a subset of the
database, complete with multiple tables and full encapsulation of the relationships among the tables.
ADO.NET is, essentially, an object-oriented model of your data.

Chapter 12 looks at the support provided in ADO.NET for updating your data and ensuring data
integrity in the presence of concurrency issues. This chapter also explains a variety of techniques for
supporting transactions

Chapter 13 explores advanced techniques integrating these powerful tools with the ADO.NET
technology.

Chapter 14 covers the powerful yet easy to use technology that allows you to extend ASP.NET to
create controls customized for your specific problem domain.

Chapter 15 is a Web Services Overview. Web services are essentially web applications without a user
interface. Web services allow you to provide services, potentially for a fee, to other web sites or
applications. Chapter 16 and Chapter 17 complete the comprehensive discussion of this subject.

Chapter 18 looks at Caching and Performance, focusing on issues related to building fast, scalable
applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 19 examines Security and the tremendous support provided by the .NET Framework for
building secure applications.

Chapter 20 covers Controlling, Configuring, and Deploying Applications. The .NET platform greatly
simplifies building ASP.NET applications, with text file configuration and XCOPY deployment.

Appendix A provides a crash course in Relational Database Technology, and Appendix B is a
reference to Bug Database Architecture.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Who This Book Is For

This book was written for programmers and web developers who want to build web applications using
Microsoft's powerful new ASP.NET platform. Many readers will have experience with "classic" ASP or
other web development platforms, though that is not required. Many developers will have read a
primer on C# or Visual Basic .NET. (If you haven't, see either of the following O'Reilly books by Jesse
Liberty: Programming C#, Third Edition or Programming Visual Basic .NET, Second Edition. Or, if you
have no previous programming experience at all, start with either of the following O'Reilly books by
Jesse Liberty: Learning C# or Learning VB.NET.) Other experienced VB, Java, or C++ developers
may decide they can pick up what they need to know about the languages just by working through
the exercises in this book.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Conventions Used in This Book

The following font conventions are used in this book:

Italic

Used for pathnames, filenames, program names, Internet addresses, such as domain names
and URLs, and new terms where they are defined.

Constant Width

Used for command lines and options that should be typed verbatim, and names and keywords
in program examples. Also used for parameters, attributes, expressions, statements, and
values.

Constant Width Italic

Used for replaceable items, such as variables or optional elements, within syntax lines or code.
Constant Width Bold

Used for emphasis within program code examples.

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the topic at
hand.

This is a warning. It helps you solve and avoid annoying problems.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Support: A Note from Jesse Liberty

As part of my responsibilities as author, I provide ongoing support for my books through my web
site. You can also obtain the source code for all of the examples in Programming ASP.NET at my site:

www.LibertyAssociates.com

On this web site, you'll also find access to a book-support discussion group and a section set aside for
questions about Programming ASP.NET. Before you post a question, however, please check my web
site to see if there is an FAQ (Frequently Asked Questions) list or an errata file. If you check these
files and still have a question, then please go ahead and post to the discussion center. The most
effective way to get help is to ask a very precise question or even to create a very small program
that illustrates your area of concern or confusion. You may also want to check the various
newsgroups and discussion centers on the Internet. Microsoft offers a wide array of newsgroups, and
DevelopMentor (http://www.develop.com) has a wonderful .NET email discussion list.

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any
errors you find, as well as your suggestions for future editions, by sending email to
jliberty@libertyassociates.com.

[Team LiB]

http://www.develop.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

We'd Like to Hear from You

If you would like to provide feedback or suggestions to the editors, please write to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com

To comment on the book, send email to:

bookquestions@oreilly.com

For more information about this book and others, as well as additional technical articles and
discussion on ASP.NET and the .NET Framework, see the O'Reilly & Associates web site:

http://www.oreilly.com/

and the O'Reilly .NET DevCenter:

http://www.oreillynet.com/dotnet

[Team LiB]

http://www.oreilly.com/
http://www.oreillynet.com/dotnet
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Acknowledgments

From Jesse Liberty:

John Osborn signed me to O'Reilly, for which I will forever be in his debt. Kevin Shafer, Ron Petrusha,
Claire Cloutier, and Tatiana Diaz helped make this book better than what we'd written. Rob Romano
created a number of the illustrations and improved the others. Kevin Shafer of Kevin Shafer and
Associates coordinated our preproduction work. Matthew MacDonald and Daniel Creeron did an
excellent technical review of the manuscript.

A special note of thanks to Valerie Quercia, who has done so much and received so little recognition.
She is a wonderful person, and I will miss working with her.

From Dan Hurwitz:

In addition to the people mentioned by Jesse, I especially want to thank my wife and family for being
so supportive of this project and making it possible.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 1. ASP.NET and the .NET
Framework
Microsoft first announced ASP.NET (then called ASP+) and the .NET platform in July, 2000. In
essence, .NET is a new development framework that provides a fresh application programming
interface to the services and APIs of classic Windows operating systems, especially Windows 2000,
Windows XP, and the recently released Windows Server 2003, while bringing together a number of
disparate technologies that emerged from Microsoft during the late 1990s. Among the latter are
COM+ component services, a commitment to XML and object-oriented design, support for new web
services protocols such as SOAP, WSDL, and UDDI, and a focus on the Internet.

ASP.NET is significant enhancement to and extension of classic Microsoft ASP. ASP programmers will
be very pleased by how easy the transition to ASP.NET is, yet there is tremendous power and
flexibility in the new development platform. ASP and ASP.NET applications can run side by side,
allowing for easy migration of legacy applications.

This chapter introduces both ASP.NET and the .NET platform, notably the .NET Framework.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.1 The .NET Framework

The .NET Framework sits on top of the operating system, which can be any flavor of Windows,[1] and
consists of a number of components. Currently, the .NET Framework consists of:

[1] Because the Common Language Runtime translates all code to a common interactive language that is later
complied to native code, .NET can, in principle, be implemented on Unix, Linux, Mac OS X, or any other
operating system.

Five official languages (C#, Visual Basic .NET, Managed C++, and J#, as well as the JScript
.NET scripting language)

A number of related class libraries, collectively known as the Framework Class Library (FCL)

The Common Language Runtime (CLR), an object-oriented platform for Windows and web
development that all these languages share

The .NET Framework is an integral part of Windows Server 2003 but must be downloaded and
installed to run on Windows 2000 or Windows XP. Earlier versions of Windows are not
supported.

Figure 1-1 breaks down the .NET Framework into its architectural components.

Figure 1-1. NET Framework architecture

The Common Language Runtime (CLR) executes your program on your web server. The CLR
activates objects, performs security checks on them, lays them out in memory, executes them, and
handles garbage collection.

In Figure 1-1, the layer on top of the CLR is a set of framework base classes, followed by an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

additional layer of data and XML classes, plus another layer of classes intended for web services and
Web Forms, and Windows forms. Collectively, these classes are known as the Framework Class
Library (FCL). With more than 5,000 classes, the FCL facilitates rapid development of ASP.NET
applications. This same class library is used for desktop applications as well.

Microsoft .NET supports a Common Language Specification (CLS) that allows you to choose the
syntax with which you are most comfortable. You can write classes in C# and derive from them in
VB.NET. You can throw an exception in VB.NET and catch it in a C# class. Suddenly the choice of
language is a personal preference rather than a limiting factor in your application's development.

The set of framework base classes supports rudimentary input and output, string manipulation,
security management, network communication, thread management, text manipulation, reflection,
and collections functionality, and so on.

Above the base class level are classes that support data management and XML manipulation. The
data classes support persistent management of data that is maintained on backend databases. These
classes include the Structured Query Language (SQL) classes to let you manipulate persistent data
stores through a standard SQL interface. Additionally, a set of classes called ADO.NET allows you to
manipulate persistent data. There are classes optimized for the Microsoft SQL Server relational
database, and there are generic classes for interacting with OLE DB compliant databases. The .NET
Framework also supports a number of classes to let you manipulate XML data and perform XML
searching and translations. Chapters Chapter 8 through Chapter 13 discuss the data-handling aspects
of the .NET Framework.

Extending the framework base classes and the data and XML classes, is yet another tier of
classes-an applications level. This tier of classes is geared toward three different technologies:

Windows Forms

Facilitates the development of Windows desktop applications with rich and flexible user
interfaces. These "traditional" desktop applications can interact with other computers on the
local network or over the Internet through the use of web services.

Web Forms

Supports the development of robust, scalable web pages and web sites, especially ASP.NET
applications. Server controls enable many new features, such as validation, event-driven
programmatic manipulation of the web pages, state maintenance, and more. Chapter 6
discusses web forms in detail.

Web Services

Supports the development of applications that can process RPC-style method calls or XML
messages over the Internet. Web services include a number of classes that support the
development of lightweight distributed components, which will work even in the face of firewalls
and network address translation (NAT) software. Because web services employ standard
Hypertext Transfer Protocol (HTTP) and Simple Object Address Protocol (SOAP) as underlying
communications protocols, these components support plug-and-play across cyberspace.
Chapter 15, Chapter 16, and Chapter 17 discuss web services specifically.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.2 ASP.NET

ASP.NET is the name Microsoft has given to the combination of its two web development
technologies: Web Forms and web services. Using ASP.NET, it is easier than ever to create web
applications that are dynamic and data-driven, that scale well, and that work well across a broad
range of browsers without any custom coding by the developer.

Used in conjunction with Visual Studio .NET, Web Forms allow you to apply Rapid Application
Development techniques to building web applications. Simply drag and drop controls onto your form,
double-click on a control, and write the code to respond to the associated event.

Generally speaking, web services are web applications without a user interface that allow you to
provide services to other web sites or applications. As you'll see in later chapters, ASP.NET allows you
to create web services using a simple text editor or facilitate the process by using Visual Studio .NET.

1.2.1 ASP.NET Versus ASP

The key differences between ASP.NET and ASP are:

ASP.NET is much more event-driven, with the event handlers running on the server.

ASP.NET separates code from HTML.

The code in ASP.NET is compiled, not interpreted.

Configuration and deployment are greatly simplified.

There are many other minor differences, but these four are the key changes, and they change
everything. The event-driven model in ASP.NET is very powerful and is explored in detail in Chapter
3. The separation of HTML from code, and the fact that the code is compiled rather than interpreted,
allows for the creation of larger, easier-to-scale, easier-to-maintain web sites. The configuration and
deployment simplifications make working with ASP.NET web sites, both large and small, much easier.

1.2.2 Languages: C# and VB.NET

You can program ASP.NET in any language that supports the .NET CLS. This book provides examples
in both C# and VB.NET. It is a theme of this book that C# and VB.NET are sufficiently similar, at
least as used in ASP.NET, so if you know one you will have no problem with examples shown in the
other. That said, we do offer the examples in both languages to simplify the process of learning the
technology.

1.2.3 Visual Studio .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since all the ASP.NET source files are plain text, you can develop all your web applications using your
favorite text editor. In fact, many of the examples in this book are presented just that way. However,
Visual Studio .NET, the integrated development environment released in conjunction with the .NET
Framework, offers many advantages and productivity gains. These include:

Visual development of web pages

Drag-and-drop web form design

IntelliSense and automatic code completion

Integrated debugging

Automated build and compile

Integration with the Visual SourceSafe source control program

Fully-integrated, dynamic help

Chapter 2 discusses Visual Studio .NET fully.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.3 Hello World

It is a long-standing tradition among programmers to begin the study of a new language by writing a
program that prints "Hello World" to the screen. In deference to tradition, our first web page will do
just that.

The tool you are most likely to use when developing ASP.NET applications is an integrated
development environment (IDE), such as Visual Studio .NET. However, you may use any editor you
like-even the venerable text editor Notepad.

There are a number of advantages to using an IDE such as Visual Studio .NET. The Visual Studio
.NET editor provides indentation and color coding of your source code, the IntelliSense feature helps
you choose the right commands and attributes, and the integrated debugger helps you find and fix
errors in your code.

The disadvantage of using an IDE, however, is that it may do so much work for you that you don't
get a good feel for what is going on in your application. It is like bringing your car in to the mechanic.
He does all the work for you, but you never really learn how your engine works.

As a beginner, you may be better off doing more of the work yourself, giving up the support of the
IDE in exchange for the opportunity to see how things really work. In this chapter, you will use a
simple text editor to create the source code for the first several iterations. At the end of the chapter,
you will use Visual Studio .NET to create the same web page. (For the remainder of the book, you will
find both examples that are created using a text editor and examples that are developed in Visual
Studio .NET.)

Back in the old days, before ASP and ASP.NET, web pages were created with simple HTML. To better
appreciate the features of ASP.NET, you will first create the Hello World web page in HTML, then
convert it to ASP, and finally convert it to ASP.NET.

A Word About the Samples in This Book

In real life, web sites run from a web server, which is typically a separate machine (or
machines) running a web server program, such as Microsoft Internet Information Server
(IIS). In that case, a browser makes a request to the server, which processes the request
and sends HTML back to the browser.

If you have a web server available, you could certainly put the samples from this book on
the server and run them that way. Suppose the server domain name is MyServer.com and
the web page you want to test is HelloWorld.htm, which is located in the virtual root
directory of the web server. The URL to be entered in your browser would be:

www.MyServer.com/HellowWorld.htm

It's easier to do your development and testing on a single machine, then deploy to a web
server for final testing and production. You must have IIS set up on your local machine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IIS (the name has evolved to Internet Information Services) is included with Windows
2000 Professional and Windows XP Professional. It is not installed by default, although it
can be installed if a custom Win2K/WinXP installation is performed. It can also be installed
at any time by going to Control Panel, selecting Add/Remove Programs, and clicking on
the Add/Remove Windows Components button.

To access the virtual root of a local copy of IIS, the URL should refer to localhost. By
default, localhost points to the physical directory c:\inetpub\wwwroot.

Typically, you will define other virtual directories using Internet Services Manager (found
in Control Panel Administrative Tools). These virtual directories can be subdirectories
anywhere on the local machine. If you have a directory defined on your C drive named
c:\myProjects, you can define a virtual directory named projects that you "point" to that
directory. If your HelloWorld.htm file is located in c:\myProjects, then the URL to enter in
your browser would be:

localhost/projects/HelloWorld.htm

For now, you will create a subdirectory called c:\projects\Programming ASP.NET. Then
you will use Internet Services Manager to define a virtual directory, called ProgAspNet,
pointing to that location. If the HTML file you want to run, HelloWorld.htm, is in that
directory, then the URL to enter in your browser will be:

localhost/ProgAspNet/HelloWorld.htm

1.3.1 The HTML Version

Straight HTML provides a means of creating and presenting static web pages. This book is not a
tutorial on how to write HTML, and we assume you know enough HTML to follow the simple examples
provided. For background reading, see HTML: The Definitive Guide, by Chuck Musciano and Bill
Kennedy (O'Reilly). To get started, create a very simple Hello World HTML file, as shown in Example
1-1, and call it HelloWorld1.htm. The output is shown in Figure 1-2.

Example 1-1. Code listing for HelloWorld1.htm

<html>
 <body>

 <h1>Hello World</h1>

 </body>
</html>

Figure 1-2. Output from Example 1-1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The HTML page displays the static text, using the HTML heading1 format. If you want to include
dynamic content, such as the results of a query against a database or even the current time, then a
static HTML page is not the thing to use. For that you need some sort of server processing. There are
a number of alternatives; we will focus on ASP and then on ASP.NET.

1.3.2 The ASP Version

ASP allows the programmer to intersperse scripting code snippets within the HTML code. This
scripting code can be written in a scripting language such as JavaScript or VBScript. Adding
embedded script to your sample web page allows you to insert dynamic content. Modify the previous
code listing, converting it to ASP, by changing the filename extension to .asp and adding VBScript to
display the current time, as shown in Example 1-2. The output is shown in Figure 1-3.

Example 1-2. Code listing for HelloWorld1.asp

<html>
 <body>

 <h1>Hello World</h1>

 <h2>The date and time is <% =Now%>.</h2>

 </body>
</html>

Figure 1-3. Output from Example 1-2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It may not look like much, but this represents a vast improvement over static HTML. ASP allows you
to create web sites full of rich and dynamic content. The scripting allows for queries, reads and writes
against databases, implementation of programming logic, control of the appearance of web pages in
response to user actions or returned data, and a host of other features.

1.3.3 Hello World the ASP.NET Way

You will complete this evolutionary journey by changing your Hello World web page from ASP to
ASP.NET. A key difference in ASP.NET is that you no longer use interpreted languages, but instead
use compiled languages. Typically, ASP.NET applications are built using either C# or VB.NET. In
either case, the performance will be a great improvement over script.

A significant theme of this book is that the choice between C# and VB.NET is
purely syntactic. You can express any ASP.NET programming idea in either
language. We suggest you write in whichever language you're more
comfortable with. The transition from VBScript to VB.NET may be slightly easier
than to C#, but much of the Microsoft and third-party documentation is in C#.
In this book we will show most examples in both languages, though we confess
to a slight preference for C# because it is a bit more terse.

For a full exploration of VB.NET, see Programming Visual Basic .NET, Second
Edition, by Jesse Liberty (O'Reilly), and for C#, see Programming C#, Third
Edition by Jesse Liberty (O'Reilly).

Example 1-3 shows vbHelloWorld1.aspx in VB.NET, and Example 1-4 shows the same program in C#.

Example 1-3. Code listing for vbHelloWorld1.aspx

<%@ Page Language="VB" %>
<html>
 <body>

 <h1>Hello World</h1>
 <h1>ASP.NET Style</h1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <h2>Using VB .NET</h2>

 <h2>The date and time is <% =DateTime.Now() %>.</h2>

 </body>
</html>

Example 1-4. Code listing for csHelloWorld1.aspx

<%@ Page Language="C#" %>
<html>
 <body>

 <h1>Hello World</h1>
 <h1>ASP.NET Style</h1>
 <h2>Using C#</h2>

 <h2>The date and time is <% =DateTime.Now.ToString() %>.</h2>

 </body>
</html>

Note that the changes required to convert the ASP page to ASP.NET are minimal:

Rename the file, changing the extension from .asp to .aspx.1.

Add a first line to the code, called a page directive, which tells the compiler which language to
use for all in-line code. Page directives can also be used to pass a variety of configuration
settings to the compiler and will be discussed in more detail later.

2.

Change the script code to code written in the desired language.3.

The output from these changes is shown in Figure 1-4.

Figure 1-4. Output from Example 1-3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ASP.NET version uses compiled code (either C# or VB.NET), which gives it a performance
advantage. That advantage is meaningless in this simple example but can be very significant with
larger and more complex programs.

1.3.4 Hello World Using Visual Studio .NET

Visual Studio .NET is a full-featured IDE that provides all sorts of productivity tools for developing
.NET applications, both for the Windows desktop and for the Web. These features include:

A Start page, which allows you to set user preferences for IDE behavior and provides easy
access to new and existing projects.

Dynamic, context-sensitive help, which allows you to view topics and samples relevant to your
current selection. You can also search the MSDN library from within the IDE.

IntelliSense technology and code completion, which allow you to enter code with fewer errors
and much less typing. Syntax errors are flagged immediately, allowing you to fix problems as
they are entered.

The tabbed document interface, which provides convenient access to multiple design and code
windows.

All the languages use the same code editor for a shortened learning curve. Each language can
have specialized features, but all benefit from features such as incremental search, code
outlining, collapsing text, line numbering, and color-coded keywords.

The HTML editor, which provides both Design and HTML views that update each other in real
time.

The Solution Explorer, which displays all the files comprising your solution (which is a collection
of projects) in a hierarchical, visual manner.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The integrated Debugger, which allows you to set breakpoints and step through code, even
across multiple languages.

All of these features, and more, will be covered in subsequent chapters. For now, you will use the IDE
to create a simple Hello World web page.

Open Visual Studio .NET. You should see a window similar to Figure 1-5.

Figure 1-5. Start page in Visual Studio .NET

Click on the New Project button in the middle of the screen. This brings up the New Project dialog box
shown in Figure 1-6.

Figure 1-6. New Project dialog box in Visual Studio .NET

The left side of this dialog box allows you to choose the type of project. In Figure 1-6, Visual Basic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Projects is selected. You could click on Visual C# Projects or Visual C++ Projects if you would rather
work in either of those languages. The example will be shown in C# and VB.NET; as you will see, it is
virtually identical in both languages.

The right side of the dialog box lists the various project templates to choose from. Select ASP.NET
Web Application.

The Name and Location edit fields will contain default values. Change the Name, by editing the
Location field, from WebApplication1 to HelloWorld. As you do so, you will see the label below the
Location edit field change to:

Project will be created at HTTP://localhost/HelloWorld.

By default, localhost corresponds to the physical directory c:\inetpub\wwwroot. This line tells you
that it will create this new web application in the physical directory c:\inetpub\wwwroot\HelloWorld.
Click OK.

Visual Studio .NET will now present a design surface in the middle of the screen. Before proceeding
any further, change the pageLayout mode from GridLayout to FlowLayout. This will make the
resulting HTML simpler and more in line with our previous examples. To do so, click anywhere on the
design surface. The Properties Window, visible in the lower right of the screen, should be visible with
the word DOCUMENT showing in the edit field at the top of the Properties Window. If the Properties
Window is not visible, choose Properties Window from the View menu, or press F4.

In the Properties Window, slide down until the pageLayout property is visible. Click on the displayed
value, GridLayout. A drop-down arrow will appear. Click on it and select FlowLayout. Immediately,

the design surface changes appearance. The results will look something like Figure 1-7.

Figure 1-7. Setting FlowLayout in Visual Studio .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now you want to add some labels. Notice that the Toolbox on the left edge of the screen currently
displays Web Forms controls. You will use those in a moment. For now, you want to place some HTML
controls, so click on the HTML button near the bottom of the Toolbox.

Click on the Label control and drag it to the design surface. It will automatically go to the upper-left
corner of the design surface and contain the word Label. Click on the control, backspace over the
word Label, and type the words Hello World. It will look something like Figure 1-8.

Figure 1-8. Placing an HTML label in Visual Studio .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice the drop-down lists in the toolbar just above the design surface, one of which displays the
word Normal. These are part of the Formatting menu. If they are not visible, choose Toolbars from
the View menu and click on Formatting.

The drop-down containing the word Normal displays the available block formats. Click on the down
arrow and select Heading 1. Then click and drag on the resizing handles to stretch the control so that
the phrase does not wrap. The screen should look something like Figure 1-9.

Figure 1-9. Resizing an HTML label in Visual Studio .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you want to see or edit the HTML directly, click on the HTML tab at the
bottom of the design surface. The Design and HTML tabs allow you to toggle
between graphical design and code-editing modes.

Now add two more HTML labels. To get to the next line on the design surface, click on the design
surface outside the Hello World label and press the Enter key. The cursor will move to the next line.

Drag another HTML Label control onto the design surface, change its text to ASP.NET Style, change

its block format to Heading 1, and then resize it.

Move to the next line and create one more HTML label with the words Using Visual Studio.NET.

Set its block format to Heading 2 and resize it. When you are done, the screen should look something
like Figure 1-10.

Figure 1-10. HTML labels in Visual Studio .NET

Now it's time to place a control that will display the date and time. To do this, move to the next line
on the design surface by clicking on the design surface at the end of the last control and pressing
Enter. Then click on the Web Forms button on the Toolbox.

You are probably wondering about the differentiation between HTML controls
and Web Forms controls. The reasons and de tails for this will fill the next
several chapters. For now, suffice it to say that "classic" HTML controls are
more resource-efficient, but the controls contained in the Web Forms toolbox
allow for server-side processing.

Drag a Label control onto the design surface. It will contain the text Label. If you look at the
Properties Window, the object will have an ID of Label1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Look at the Solution Explorer on the right side of the screen. If the Solution Explorer is not visible,
choose Solution Explorer from the View menu, or press Ctrl+Alt+L.

Right-click on WebForm1.aspx and select View Code. A code window will appear where the design
surface was. The tab at the top of the code window will be labeled WebForm1.aspx.cs*.

If you are working in Visual Basic .NET, the tab will be labeled
WebForm1.aspx.vb*. In either case, the asterisk indicates that the file has not

yet been saved.

Slide down the code window until you see the Page_Load method. In C#, this will look like:

private void Page_Load(object sender, System.EventArgs e)
{
 // Put user code to initialize the page here
}

In VB.NET, it will look like this:

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
End Sub

Put your cursor at the end of the comment line (after the word here) and press the Enter key. This

will move the cursor to the beginning of the next line, properly indented, ready to type. If you are
working in C#, enter the following lines of code:

Label1.Text = "The date and time is " +
 DateTime.Now.ToString();

If you are working in VB.NET, enter these lines of code:

Label1.Text = "The date and time is " & _
 DateTime.Now.ToString()

When you type the period after Label1, you see a drop-down of all the possible methods and

properties that are valid in this context. (If you don't see the drop-down list, verify that the label
name is spelled properly and, if using C#, that the casing is correct.) This is the IntelliSense
technology at work.

You can either scroll down and select the proper method or function by pressing Tab or any other
key, or start typing the desired method or function to narrow the search. When you get to the
desired selection, press Tab or any other key. The Tab key enters that selection into your code
without your having to type the entire word; pressing any other key enters the selection into your
code followed by the key you pressed.

The completed Page_Load method in the code window should look like the following in C#:

private void Page_Load(object sender, System.EventArgs e)
{
 // Put user code to initialize the page here

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Label1.Text = "The date and time is " +
 DateTime.Now.ToString();
}

It will look like this in VB.NET:

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 Label1.Text = "The date and time is " & _
 DateTime.Now.ToString()
End Sub

Press F5 to run the web application. When either the C# or VB.NET version is run it will look like the
browser shown in Figure 1-11.

Figure 1-11. Hello World in Visual Studio .NET

Although the code is nearly identical between the two languages, there are
some differences worth noting:

C# code is case-sensitive while VB.NET is not.

All C# statements must end with a semicolon.

While both languages mostly ignore whitespace outside of quotes, VB.NET statements cannot
span multiple lines without using a line-continuation character (the underscore preceded by a
space). C# statements can span multiple lines.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You have now learned how to write an extremely simple ASP.NET web application. The remaining
chapters will show you, in greater detail, how to develop rich, robust web applications using many of
the controls and tools available from ASP.NET.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 2. Visual Studio .NET
If your goal is to produce significant, robust, and elegant applications with few bugs, in a minimum
amount of time, then a modern IDE, such as Microsoft Visual Studio .NET, is an invaluable tool. Visual
Studio .NET offers many advantages to the .NET developer, including:

A modern interface, using a tabbed document metaphor for code and layout screens, and
dockable toolbars and information windows.

Convenient access to multiple design and code windows.

WYSIWYG (What You See Is What You Get) visual design of Windows and Web Forms.

Code completion, which allows you to enter code with fewer errors and less typing.

Intellisense, which pops up help on every method and function call as you type, providing the
types of all parameters and the return type.

Dynamic, context-sensitive help, which allows you to view topics and samples relevant to the
code you are writing at the moment. You can also search the complete SDK library from within
the IDE.

Immediate flagging of syntax errors, which allows you to fix problems as they are entered.

A Start Page, which provides easy access to new and existing projects.

The same code editor for all .NET languages, which shortens the learning curve. Each language
can have specialized aspects, but all languages benefit from shared features, such as
incremental search, code outlining, collapsing text, line numbering, color-coded keywords, etc.

An HTML editor, which provides both Design and HTML views that update each other in real
time.

A Solution Explorer, which displays all the files comprising your solution (which is a collection of
projects) in an outline.

A Server Explorer, which allows you to log on to servers to which you have network access,
access the data and services on those servers, and perform a variety of other chores.

An integrated Debugger, which allows you to step through code, observe program runtime
behavior, and set breakpoints, even across multiple languages and multiple processes.

Customization capability, which allows you to set user preferences for IDE appearance and
behavior.

Integrated build and compile support.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Integrated support for source control software.

A built-in task list.

However, while Visual Studio .NET can save you a lot of grunt typing, the automatically generated
code can obscure what is really necessary to create good working programs. VS.NET can seem like a
black box; it is sometimes difficult to know how the IDE accomplishes its legerdemain. For instance,
the proliferation of mysteriously named files across your filesystem can be disconcerting when all you
want to do is a simple housekeeping chore, such as renaming a minor part of the project. Worst of
all, VS.NET occasionally decides to reformat all your carefully constructed code, mashing indents and
line breaks like some malevolent typist drunk on too much coffee.

All of these caveats notwithstanding, Visual Studio .NET is a highly useful tool that can save you
hours of repetitive tasks. It is also a large and complex program, so it is impossible in this chapter to
explore its many nooks and crannies. Instead this chapter will lay the foundation for understanding
and using Visual Studio .NET and point out traps along the way.

For a thorough coverage of Visual Studio .NET, please see Mastering Visual
Studio .NET, by Jon Flanders, Ian Griffiths, and Chris Sells (O'Reilly).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.1 Start Page

When you open Visual Studio .NET for the first time (unless you configure it otherwise), you'll find
yourself looking at the Visual Studio .NET application window, as shown in Figure 2-1.

Figure 2-1. Visual Studio .NET Start Page with Online Resource tab
displayed

Along the top of the application window is a fairly typical collection of Windows menu items and
buttons, plus several that are specific to the Visual Studio .NET integrated development environment.
Specialized tabs that provide access to tools and controls, and to other servers and databases in the
development environment, appear to the left of the application window, labeled Toolbox and Server
Explorer, respectively. Additional windows for exploring the files and classes associated with a
particular project and for accessing help, appear on the righthand side. More windows are available
through the Visual Studio .NET menu bar (see Section 2.3).

At the center of the application window is the Start Page, which contain three tabs, one for creating
new projects or opening existing ones (the Projects tab), another for locating online resources, such
as code samples, community sites or available web services (the Online Resources tab), and a third
for creating a profile to personalize your development environment (the My Profile tab).

As shown in Figure 2-1, the lefthand side of the Online Resource tab contains links to a variety of
MSDN and other resources available over the Internet. These include:

Get Started

Allows you to search for code samples related to your project.
What's New

Links to new developments in the .NET world, training and events, and tips.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Online Community

Links to the .NET community, including web sites, newsgroups, tech support resources, code
examples, and component sources.

Headlines

Links to news stories about .NET in general, and specific topics such as XML Web Services.
Search Online

Provides a form for searching the MSDN online library.
Downloads

Links to free and subscriber downloads, including sample applications.
XML Web Services

Provides forms to search for or register web services.
Web Hosting

Links to hosting providers.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.2 Projects and Solutions

A typical .NET application is comprised of many items: source files, assembly information files,
references, icons, as well as miscellaneous other files and folders. Visual Studio .NET organizes these
items into a container called a project. One or more projects are contained within a solution. When
you create a new project, Visual Studio .NET automatically creates the containing solution.

2.2.1 Solutions

Solutions typically contain one or more projects. They may contain other, independent items as well.
These independent solution items are not specific to any particular project, but apply, or scope, to
the entire solution. The solution items are not an integral part of the application, because they can be
removed without changing the compiled output. They can be managed with source control.

Miscellaneous files are independent of the solution or project, but they may be useful to have handy.
They are not included in any build or compile, but will display in the Solution Explorer (described in
the section "View Menu," later in this chapter), and may be edited there. Typical miscellaneous files
include project notes, database schemas, or sample code files.

It is also possible to have a solution that does not contain any projects-just solution or
miscellaneous files, which can be edited using Visual Studio .NET.

Solutions are defined within a file named for the solution with a .sln extension. The .sln file contains a
list of the projects that comprise the solution, the location of any solution-scoped items, and any
solution-scoped build configurations. Visual Studio .NET also creates a .suo file with the same name
as the .sln file (e.g., mySolution.sln and mySolution.suo). The .suo file contains data used to
customize the IDE on a per-user and per-solution basis.

You can open a solution by double-clicking the .sln file in Windows Explorer. If the .sln file is missing,
then that solution must be created again from scratch by adding projects into the solution. On the
other hand, if the .suo file is missing, it will automatically be recreated the next time the solution is
opened.

2.2.2 Projects

A project contains source files and other content. Typically, the contents of a project are compiled
into an assembly, e.g., an executable file (.exe) or a dynamic link library file (DLL), which can be
identified by its .dll extension.

The data describing the project is contained in a project file named after the project name with a
language-specific extension. For VB .NET and C#, the extensions are .vbproj and .csproj,
respectively. The project file contains version information, build settings, references to other
assemblies (typically members of the CLR, but also custom developed and third-party components),
and source files to include as part of the project.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2.3 Templates

When you create a new project by clicking the New Project button on the Project tab of the Start
Page (shown in Figure 1-5), you get the New Project dialog box, as shown in Figure 2-2.

Figure 2-2. New Project dialog box

To create a new project, you select a project type and a template. There are a variety of templates
for each project type. For example, the templates for Visual C# Projects, shown in Figure 2-2 are
different from the templates available to Setup and Deployment Projects. By selecting a Visual
Studio Solutions project type, you can create an empty solution, ready to receive whatever items

you want to add.

The template controls what items will be created automatically and included in the project, as well as
default project settings. For example, if your project is a C# Web application, such as the Hello World
programs created in Chapter 1, then language-specific .csproj, .csproj.webinfo, .aspx, and .cs files
will be created as part of the project. If the project is a VB .NET project, then the corresponding
.vbproj, .vbproj.webinfo, and .vb files will be created instead. If a different template is selected, then
an entirely different set of files would be created.

2.2.4 Project Names

Project names may consist of any standard ASCII characters except for the following:

Pound (#)

Percent (%)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ampersand (&)

Asterisk (*)

Vertical bar (|)

Backslash (\)

Colon (:)

Double quotation mark (")

Less than (<)

Greater than (>)

Question mark (?)

Forward slash (/)

Leading or trailing spaces ()

Windows or DOS keywords, such as "nul," "aux," "con," "com1," and "lpt1"

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.3 The Integrated Development Environment (IDE)

The Visual Studio .NET integrated development environment (IDE) consists of windows for visual design of forms,
code-editing windows, menus and toolbars providing access to commands and features, toolboxes containing controls
for use on the forms, and windows providing properties and information about forms, controls, projects, and the
solution.

2.3.1 Layout

Visual Studio .NET is a multiple document interface (MDI) application. It consists of a single parent window, which
contains multiple windows. All the menus, toolbars, design and editing windows, and miscellaneous other windows are
associated with the single parent window.

A typical layout of the IDE is shown in Figure 2-3 . This section discusses the overall layout and many of the features
that make working with the IDE so productive.

Figure 2-3. Typical IDE layout

The Visual Studio .NET window has a title bar across the top with menus below. Under the menus are toolbars with
buttons that duplicate many of the common menu commands. Nearly everything that can be done through menus
can also be done with context-sensitive pop-up menus, as described in the discussion that follows. The menu and
toolbars are easily customized by clicking on Tools Customize.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The toolbars are docked along the top of the window by default. As with many Windows applications, they can be
undocked and moved to other locations, either free-floating or docked along other window edges. You move the
toolbars by grabbing them with the mouse and dragging them where you want.

Figure 2-3 shows a design view of a web form, with the design window occupying the main area in the center of the
screen. This allows for visual design by dragging and dropping components from the Toolbox along the left side of the
screen.

Along the right side of the screen are two windows, both of which will be covered in more detail later in this chapter.
The upper window is the Solution Explorer. Below that is the Properties window. There are many other similar
windows available to you, as will be described.

All of these windows, plus the Toolbox, are resizable and dockable. They can be resized by placing the mouse cursor
over the edge you want to move. The cursor will change to a double-arrow resizing cursor, at which point you can
drag the window edge one way or the other.

Right-clicking on the title bar of a dockable window pops up a menu with four mutually exclusive check items:

Dockable

The window can be dragged and docked along any side of the Visual Studio .NET window.
Hide

The window disappears. To see the window again (i.e., to unhide it), use the View main menu item.
Floating

The window will not dock when dragged against the edge of the Visual Studio .NET window. The floating
window can be placed anywhere on the desktop, even outside the Visual Studio .NET window.

You can also double-click on either the title bar or the tab to dock and undock the window. Double-clicking on
the title while docked undocks the entire group. Double-clicking on the tab just undocks the one window,
leaving the rest of the group docked.

Auto Hide

The window will disappear, indicated only by a tab, when the cursor is not over the window. It will reappear
when the cursor is over the tab. A pushpin in the upper right corner of the window will be pointing down when
Auto Hide is turned off and pointing sideways when it is turned on.

In the upper-right corner of the window are two icons:

Pushpin

This icon toggles the AutoHide property of the window.

When the pushpin is pointing down, the window is pinned in place; AutoHide is turned off. Moving the cursor off
the window will not affect its visibility.

When the pushpin is pointing sideways, AutoHide is turned on. Moving the cursor off the window hides the
window. To see the window again, click on the tab, which is now visible along the edge where the window had
been docked.

X

Standard close window icon.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The main design window uses a tabbed metaphor (i.e., the tabs along the top edge of that window indicate there are
other windows below it). You can change to an MDI style, if you prefer, in Tools Options. Clicking on the tab
labeled WebForm1.aspx.cs in Figure 2-3 , for example, will bring up the screen shown in Figure 2-4 , which contains a
code window.

Figure 2-4. Code window in IDE

When you switch from a design window to a code window, the menu items, toolbars, and toolbox change in a
context-sensitive manner.

The code window has drop-down lists at the top of the screen for navigating around the application. The left drop-
down contains a list of all the classes in the code and the right drop-down has a list of all the objects in the current
class. In VB.NET you can also use these drop-downs to select event sources (from the lefthand drop-down) and add
event handlers (from the righthand drop-down). This also works in the HTML editor.

Along the bottom edge of the IDE window is a status bar, which shows such information as the current cursor position
(when a code window is visible), the status of the Insert key, and any pending shortcut key combinations.

2.3.2 Menus and Toolbars

The menus provide access to many of the commands and capabilities of Visual Studio .NET. The more commonly
used menu commands are duplicated with toolbar buttons for ease of use.

The menus and toolbars are context-sensitive (i.e., the available selection is dependent on what part of the IDE is
currently selected, and what activities are expected or allowed). For example, if the current active window is a code-
editing window, the top-level menu commands are:

File

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Edit
View
Project
Build
Debug
Tools
Window
Help

If the current window is a design window, then the Data, Format, Table, Insert, and Frames menu commands also
become available, for example.

The following sections describe some of the menu items and their submenus, focusing on those aspects that are
interesting and different from common Windows commands.

2.3.3 File Menu

The File menu provides access to a number of file, project, and solution-related commands. Many of these commands
are content sensitive. Below are descriptions of those commands that are not self-explanatory.

2.3.3.1 New

As in most Windows applications, the New menu item creates new items to be worked on by the application. In Visual
Studio .NET, the New menu item has three submenu items, to handle the different possibilities. They are:

Project . . . (Ctrl+Shift+N)

The Project command brings up the New Project dialog, which is context-sensitive. If there is no project
currently open, as is sometimes the case when Visual Studio .NET is just opened, you will see the dialog box
shown in Figure 2-2 .

If there is already a project open, then you will get the New Project dialog box shown in Figure 2-5 . This dialog
box adds radio buttons to give you the choice of adding the new project to the solution, or closing the existing
solution and creating a new one to hold the new project.

Figure 2-5. New Project dialog box from menu

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice the two image buttons at the top right of the dialog box: these allow you to display the templates in either
large or small icons.

File . . . (Ctrl+N)

The File command brings up a New File dialog box, as shown in Figure 2-6 . It offers three different categories
of files and many different types of files (templates) within each category. Files created this way are located by
default in the project directory (although you can browse for a different location). They are displayed in the
Solution Explorer if the Show All button is toggled, but they are not actually part of the solution unless explicitly
added by using one of the Add menu items described later in this chapter. In other words, they are the
miscellaneous files described previously in the section, "Projects and Solutions."

Figure 2-6. New File dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Blank Solution . . .

The Blank Solution command also brings up a New Project dialog similar to that shown in Figure 2-5 , with the
Add to Solution radio button grayed out, the default Project Type set to Visual Studio Solutions , and the
Template set to Blank Solution . When a blank solution is created, it contains no items. Items can be added

using one of the Add menu items described later in this section.

The New command has an equivalent button in the Standard toolbar, which exposes the New Project and Blank
Solution commands.

2.3.3.2 Open

The Open menu item is used to open preexisting items. It has four submenu items:

Project . . . (Ctrl+Shift+O)

Opens a previously existing project. The currently opened solution is closed before the new project is opened.
Project From Web . . .

An Open Project From Web dialog box is presented, which accepts a URL pointing to the project to open. As
with Open Project, the currently opened solution is closed before the new project is opened.

File . . . (Ctrl+O)

Presents a standard Open File dialog box, allowing you to browse to and open any file accessible on your
network. Files opened are visible and editable in Visual Studio .NET, but are not part of the project. To make a
file part of the project, use one of the Add menu commands described later in this chapter. The Open File
command has an equivalent button on the Standard toolbar.

File From Web . . .

An Open File From Web dialog box is presented which accepts a URL pointing to the file to open. As with Open
File, the file selected is not made part of the project.

2.3.3.3 Add New Item . . . (Ctrl+Shift+A)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Add New Item allows you to add a new item to the current project. It presents the Add New Item dialog box shown in
Figure 2-7 . Expanding the nodes in the Categories pane on the left side of the dialog box narrows the list of
Templates shown on the right side.

Figure 2-7. Add New Item dialog box

This is the menu item to use if you want to add new files to your project, including new source code files. For source
code, you would typically add a new Class file, which will automatically have the language-specific filename extension.

This command has an equivalent button in the Standard toolbar. It is also accessible from the context menu in the
Solution Explorer.

2.3.3.4 Add Existing Item . . . (Shift+Alt+A)

Add Existing Item is very similar to the Add New Item menu item just described, except that it adds already existing
items to the current project. If the item added resides outside the project directory, a copy is made and placed in the
project directory.

This menu option is also available from the context menus in the Solution Explorer.

2.3.3.5 Add Project

Add Project has three submenus. The first two, New Project and Existing Project, allows you to add either a new or
preexisting project to the solution. The third, Existing Project From Web, presents a dialog box that accepts the URL
of the project to be added.

2.3.3.6 Ope n Solution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clicking on this menu item brings up the Open Solution dialog box, which allows you to browse for the solution to
open. The currently open solution will be closed before the new solution is opened.

2.3.3.7 Close Solution

This menu item is only available if there a solution is currently open. If this menu item is selected, the currently open
solution will be closed.

2.3.3.8 Advanced Save Options . . .

Advanced Save Options is a context-sensitive submenu that is only visible when editing in a code window. It presents
a dialog box, which allows you to set the encoding option and line ending character(s) for the file.

2.3.3.9 Source Control

The Source Control submenu item allows you to interact with your source control program.

2.3.4 Edit Menu

The Edit menu contains the text editing and searching commands that one would expect, but also includes commands
useful in editing code. The most useful are:

2.3.4.1 Cycle Clipboard Ring (Ctrl+Shift+V)

The Clipboard Ring is like copy-and-paste on steroids. Copy a number of different selections to the Windows
clipboard, using the Edit Cut (Ctrl X) or Edit Copy (Ctrl+C) commands. Then use Ctrl+Shift+V to cycle
through all the selections, allowing you to paste the correct one when it comes around. You can also see the whole
clipboard ring in the Toolbox (it's one of the panes that is visible when you're editing a text file).

This submenu item is context-sensitive and is visible only when editing a code window.

2.3.4.2 Find and Replace/ Find in Files (Ctrl+Shift+F)

Find in Files is a very powerful search utility that finds text strings anywhere in a directory or in subdirectories
(subfolders). It presents the dialog box shown in Figure 2-8 . Checkboxes present several self-explanatory options,
including the ability to search using either wildcards or regular expressions.

Figure 2-8. Find in Files dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you click on the Replace button in the Find in Files dialog box, you will get the Replace in Files dialog box shown in
Figure 2-9 and described next.

Figure 2-9. Replace in Files dialog box

Regular Expressions

Regular expressions are a language unto themselves, expressly designed for incredibly powerful and
sophisticated searches. A full explanation of regular expressions is beyond the scope of this book. For a
complete discussion of regular expressions, see the SDK documentation or Mastering Regular
Expressions , Second Edition, by Jeffrey E. F. Friedl (O'Reilly).

2.3.4.3 Find and Replace/Replace in Files (Ctrl+Shift+H)

Replace in Files is identical to the Find in Files command, described in the previous section, except that it also allows
you to replace the target text string with a replacement text string.

This command is extremely useful for renaming forms, classes, namespaces, projects and so on. Renaming objects is
a very common requirement, often because you don't want to be saddled with the default names assigned by Visual
Studio .NET.

Renaming should not be difficult, but it can be. Object names are spread throughout a project, often hidden in
obscure locations such as solution files, project files, and throughout source code files. Although all of these files are
text files and so can be searched and edited, it can be a tedious and error-prone task. The Replace in Files command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

makes it simple, thorough, and reasonably safe.

2.3.4.4 Find and Replace/Find Symbol (Alt+F12)

Clicking on this command will bring up the Find Symbol dialog box shown in Figure 2-10 . This allows you to search
for symbols (such as namespaces, classes, and interfaces) and their members (such as properties, methods, events,
and variables).

Figure 2-10. Find Symbol dialog box

The search results will be displayed in a window labeled Find Symbol Results. From there, you can move to each
location in the code by double-clicking on each result.

2.3.4.5 Go To...

This command brings up the Go To Line dialog box, which allows you to enter a line number and immediately go to
that line. It is context-sensitive and is visible only when editing a text window.

2.3.4.6 Insert File As Text...

This command allows you to insert the contents of any file into your source code, as though you had typed it in. It is
context-sensitive and is visible only when editing a text window.

A standard file browsing dialog box is presented for searching for the file to be inserted. The default file extension will
correspond to the project language, but you can search for any file with any extension.

2.3.4.7 Advanced

The Advanced command is context-sensitive and is visible only when editing a code window. It has many submenu
items. These include commands for:

Creating or removing tabs in a selection (converting spaces to tabs and vice versa)

Forcing selected text to uppercase or lowercase

Deleting horizontal white space

Viewing white space (making tabs and space characters visible on the screen)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Toggling word wrap

Commenting and uncommenting blocks of text

Increasing and decreasing line indenting

Incremental searching (see Section 2.3.4.8)

2.3.4.8 Incremental search (Ctrl+I)

Incremental search allows you to search an editing window by entering the search string character by character. As
each character is entered, the cursor moves to the first occurrence of matching text.

To use incremental search in a window, select the command on the Advanced submenu, or press Ctrl+I. The cursor
icon will change to a binocular with an arrow indicating the direction of search. Begin typing the text string to search
for.

The case sensitivity of an incremental search will come from the previous Find, Replace, Find in Files, or Replace in
Files search (described earlier).

The search will proceed downward and left to right from the current location. To search backward, use Ctrl+Shift+I.

The key combinations listed in Table 2-1 apply to incremental searching.

Table 2-1. Incremental searching

Key combination Description

Esc Stop the search

Backspace Remove a character from the search text

Ctrl+Shift+I Change the direction of the search

Ctrl+I Move to the next occurrence in the file for the current search text

2.3.4.9 Bookmarks

Bookmarks are useful for marking spots in your code and easily navigating from marked spot to marked spot. There
are four commands on the Bookmarks submenu (listed in Table 2-2 , along with their shortcut key combinations).
Note that, unless you add the item to the task list, bookmarks are lost when you close the file, although they are
saved when you close the solution (so long as the file was still open).

Table 2-2. Bookmark commands

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command
Key

combination
Description

Toggle
Bookmark

Ctrl+K, Ctrl+K
Place or remove a bookmark at the current line. When a bookmark is set, a blue
rectangular icon will appear in the column along the left edge of the code window.

Next
Bookmark

Ctrl+K, Ctrl+N Move to the next bookmark.

Previous
Bookmark

Ctrl+K, Ctrl+P Move to the previous bookmark.

Clear
Bookmark

Ctrl+K, Ctrl+L Clear all the bookmarks.

Add Task List
Shortcut

Ctrl+K, Ctrl+H

Add an entry to the Task List (described later in the Section 2.3.5 section) for the

current line. When a task list entry is set, a curved arrow icon () appears in the
column along the left edge of the code window.

This menu item only appears when a code window is the current window.

2.3.4.10 Outlining

Visual Studio .NET allows you to outline , or collapse and expand, sections of your code to make it easier to view the
overall structure. When a section is collapsed, it appears with a plus sign in a box along the left edge of the code

window (). Clicking on the plus sign expands the region.

You can nest the outlined regions, so that one section can contain one or more other collapsed sections. There are
several commands to facilitate outlining, shown in Table 2-3 .

Table 2-3. Outlining commands

Command
Key

combination
Description

Hide Selection Ctrl+M, Ctrl+H
Collapses currently selected text. In C# only, this command is visible only when
automatic outlining is turned off or the Stop Outlining command is selected.

Toggle Outlining
Expansion

Ctrl+M, Ctrl+M
Reverses the current outlining state of the innermost section in which the
cursor lies.

Toggle All
Outlining

Ctrl+M, Ctrl+L
Sets all sections to the same outlining state. If some sections are expanded and
some collapsed, then all become collapsed.

Stop Outlining Ctrl+M, Ctrl+P Expands all sections. Removes the outlining symbols from view.

Stop Hiding
Current

Ctrl+M, Ctrl+U
Removes outlining information for currently selected section. In C# only, this
command is visible only when automatic outlining is turned off or the Stop
Outlining command is selected.

Collapse to
Definitions

Ctrl+M, Ctrl+O
Automatically creates sections for each procedure in the code window and
collapses them all.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command
Key

combination
Description

Start Automatic
Outlining

n.a. Restarts automatic outlining after it has been stopped.

Collapse Block n.a.
In C++ only, similar to Collapse to Definitions , except applies only to the

region of code containing the cursor.

Collapse All In n.a.
In C++ only, same as Collapse Block , except recursively collapses all logical

structures in a function in a single step.

The default behavior of outlining can be set using the Tools Options menu item. Go to Text Editor, then the
specific language for which you want to set the options. The outlining options can be set for VB .NET under Basic
VB Specific, for C# under C# Formatting, and for C++ under C/C++ Formatting.

2.3.4.11 IntelliSense

Microsoft Intellisense technology makes the lives of programmers much easier. It has real-time, context-sensitive
help available, which appears right under your cursor. Code completion automatically completes your thoughts for
you, drastically reducing your typing. Drop-down-lists provide all methods and properties possible in the current
context, available at a keystroke or mouse click.

What's not to love? Intellisense does make up for a lot of Visual Studio .NET's more, shall we say, exasperating traits.

The default Intellisense features can be configured by going to Tools Options and then the language-specific
pages under Text Editor.

Most of the Intellisense features appear as you type inside a code window, or allow the mouse to hover over a portion
of the code. In addition, the Edit Intellisense menu item offers the commands shown in Table 2-4 .

Table 2-4. Intellisense commands

Command Key combination Description

List
Members

Ctrl+J

Displays a list of all possible members available for the current context.
Keystrokes incrementally search the list. Press any key to insert the highlighted
selection into your code; that key becomes the next character after the inserted
name. Use the Tab key to select without entering any additional characters.

This can also be accessed by right-clicking and selecting List Member from the
context-sensitive menu.

Parameter
Info

Ctrl+Shift+Space
Displays a list of number, names, and types of parameters required for a
method, sub, function, or attribute.

Quick Info Ctrl+K, Ctrl+I
Displays the complete declaration for any identifier (e.g., variable name or class
name) in your code. This is also enabled by hovering the mouse cursor over any
identifier.

The member list presents itself when you type the dot following any class or member name.

Start Automatic
Outlining

n.a. Restarts automatic outlining after it has been stopped.

Collapse Block n.a.
In C++ only, similar to Collapse to Definitions , except applies only to the

region of code containing the cursor.

Collapse All In n.a.
In C++ only, same as Collapse Block , except recursively collapses all logical

structures in a function in a single step.

The default behavior of outlining can be set using the Tools Options menu item. Go to Text Editor, then the
specific language for which you want to set the options. The outlining options can be set for VB .NET under Basic
VB Specific, for C# under C# Formatting, and for C++ under C/C++ Formatting.

2.3.4.11 IntelliSense

Microsoft Intellisense technology makes the lives of programmers much easier. It has real-time, context-sensitive
help available, which appears right under your cursor. Code completion automatically completes your thoughts for
you, drastically reducing your typing. Drop-down-lists provide all methods and properties possible in the current
context, available at a keystroke or mouse click.

What's not to love? Intellisense does make up for a lot of Visual Studio .NET's more, shall we say, exasperating traits.

The default Intellisense features can be configured by going to Tools Options and then the language-specific
pages under Text Editor.

Most of the Intellisense features appear as you type inside a code window, or allow the mouse to hover over a portion
of the code. In addition, the Edit Intellisense menu item offers the commands shown in Table 2-4 .

Table 2-4. Intellisense commands

Command Key combination Description

List
Members

Ctrl+J

Displays a list of all possible members available for the current context.
Keystrokes incrementally search the list. Press any key to insert the highlighted
selection into your code; that key becomes the next character after the inserted
name. Use the Tab key to select without entering any additional characters.

This can also be accessed by right-clicking and selecting List Member from the
context-sensitive menu.

Parameter
Info

Ctrl+Shift+Space
Displays a list of number, names, and types of parameters required for a
method, sub, function, or attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command Key combination Description

Quick Info Ctrl+K, Ctrl+I
Displays the complete declaration for any identifier (e.g., variable name or class
name) in your code. This is also enabled by hovering the mouse cursor over any
identifier.

Complete
Word

Alt+Right Arrow or
Ctrl+Space

Automatically completes the typing of any identifier once you type in enough
characters to uniquely identify it. This only works if the identifier is being
entered in a valid location in the code.

The member list presents itself when you type the dot following any class or member name.

Every member of the class is listed, and each member's type is indicated by an icon. There are icons for methods,
fields, properties, events and so forth. In addition, each icon may have a second icon overlaid to indicate the
accessibility of the member: public, private, protected, and so on. If there is no accessibility icon, then the member is
public.

If the member list does not appear, you will want to ensure that you have added all the
necessary using (or imports) statements. You'll also want to remember that Intellisense is
case-sensitive in C#. Also, occasionally C# needs a rebuild before it will reflect the most
recent changes.

Table 2-5 lists all the different icons used in the member lists and other windows throughout the IDE. The
accessibility icons are listed in Table 2-6 .

Table 2-5. Object icons

Icon Member type

Class

Constant

Delegate

Enum

Enum item

Event

Exception

Global

Interface

Intrinsic

Macro

Map

Map item

Quick Info Ctrl+K, Ctrl+I
Displays the complete declaration for any identifier (e.g., variable name or class
name) in your code. This is also enabled by hovering the mouse cursor over any
identifier.

Complete
Word

Alt+Right Arrow or
Ctrl+Space

Automatically completes the typing of any identifier once you type in enough
characters to uniquely identify it. This only works if the identifier is being
entered in a valid location in the code.

The member list presents itself when you type the dot following any class or member name.

Every member of the class is listed, and each member's type is indicated by an icon. There are icons for methods,
fields, properties, events and so forth. In addition, each icon may have a second icon overlaid to indicate the
accessibility of the member: public, private, protected, and so on. If there is no accessibility icon, then the member is
public.

If the member list does not appear, you will want to ensure that you have added all the
necessary using (or imports) statements. You'll also want to remember that Intellisense is
case-sensitive in C#. Also, occasionally C# needs a rebuild before it will reflect the most
recent changes.

Table 2-5 lists all the different icons used in the member lists and other windows throughout the IDE. The
accessibility icons are listed in Table 2-6 .

Table 2-5. Object icons

Icon Member type

Class

Constant

Delegate

Enum

Enum item

Event

Exception

Global

Interface

Intrinsic

Macro

Map

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Icon Member type

Map item

Method or Function

Module

Namespace

Operator

Property

Structure

Template

Typedef

Union

Unknown or Error

Variable or Field

Table 2-6. Object accessibility icons

Icon Accessibility type

Shortcut

Friend

Internal

Private

Protected

2.3.5 View Menu

The View menu is a context-sensitive menu that provides access to the myriad of windows available in the Visual
Studio .NET IDE. You will probably keep many of these windows open all the time, others you will use rarely, if at all.

The View menu is context-sensitive. For example if your form has no controls on it the Tab Order submenu will be
grayed out.

When the application is running, a number of other windows become visible or available. These windows are accessed
via the Debug Windows menu item, not from the View menu item.

Visual Studio .NET can store several different window layouts. In particular, it remembers a completely different set
of open windows during debug sessions than it does during normal editing. These layouts are stored per-user, not
per-project or per-solution.

Map item

Method or Function

Module

Namespace

Operator

Property

Structure

Template

Typedef

Union

Unknown or Error

Variable or Field

Table 2-6. Object accessibility icons

Icon Accessibility type

Shortcut

Friend

Internal

Private

Protected

2.3.5 View Menu

The View menu is a context-sensitive menu that provides access to the myriad of windows available in the Visual
Studio .NET IDE. You will probably keep many of these windows open all the time, others you will use rarely, if at all.

The View menu is context-sensitive. For example if your form has no controls on it the Tab Order submenu will be
grayed out.

When the application is running, a number of other windows become visible or available. These windows are accessed
via the Debug Windows menu item, not from the View menu item.

Visual Studio .NET can store several different window layouts. In particular, it remembers a completely different set
of open windows during debug sessions than it does during normal editing. These layouts are stored per-user, not
per-project or per-solution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This section discusses those areas that may not be self explanatory.

2.3.5.1 Open and Open With . . .

These commands allow you to open the current item, i.e., the item currently selected in the Solution Explorer
(described later in this section), in the program of your choice. Open uses the default editor, and Open With allows
you to pick from a list of programs. You can add other programs to the list.

The Open With command also lets you open an item with the editor of your choice in Visual Studio .NET. For
example, you can open a file in the binary viewer when you might normally get the resource viewer. Perhaps most
usefully, you can also specify the default editor for an item. For example, you can make a web form open in code
view rather than design view by default.

2.3.5.2 Solution Explorer (Ctrl+Alt+L)

Projects and solutions are managed using the Solution Explorer, which presents the solution and projects, and all the
files, folders, and items contained within them, in a hierarchical, visual manner. The Solution Explorer is typically
visible in a window along the upper right side of the Visual Studio .NET screen, although the Solution Explorer window
can be closed or undocked and moved to other locations.

To view the Solution Explorer if it is not already visible, select View Solution Explorer from the Visual Studio .NET
menu. Alternatively, press the Ctrl+Alt+L keys simultaneously. A typical Solution Explorer is shown in Figure 2-11 .

Figure 2-11. Solution Explorer

There are several menu buttons along the top of the Solution Explorer window. These buttons are context-sensitive
(i.e., they may appear or may not appear, depending on what is the currently selected item in the Solution Explorer).
Table 2-7 details the purpose of each button.

Table 2-7. Solution Explorer buttons

Button Name
Shortcut

keys
Description

View Code F7 Displays code in main window. Only visible for source files.

View
Designer

Shift +F7
Displays visual designer in main window. Only visible for items with visual
components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Button Name
Shortcut

keys
Description

Refresh none Refreshes the Solution Explorer display.

Copy
Project

None
Presents dialog box for copying a project, with options for copying only the files
necessary to run or all the files required for further development work.

Show All
Files

none
Toggles display of all files in the Solution Explorer. By default, many files are not
shown. If Show All Files is clicked, the solution shown in Figure 2-11 will look like
Figure 2-12 after all of the nodes have been expanded.

Properties Alt+Enter
If the currently highlighted item is a solution or a project, it displays the
Properties page for that item. Otherwise, moves the cursor to the Properties
window for that item.

Figure 2-12. Solution Explorer (expanded)

It is also possible to display miscellaneous files in the Solution Explorer. To do so, go to Tools Options..., then go
to Environment Documents. Check the checkbox labeled Show Miscellaneous files in Solution Explorer.

Most of the functionality of the Solution Explorer is redundant with the Visual Studio .NET menu items, although it is
often easier and more intuitive to perform a given chore in Solution Explorer rather than in the menus. Right-clicking
on any item in the Solution Explorer will pop up a context-sensitive menu. Three different pop-up menus from
Solution Explorer are shown in Figure 2-13 . From left to right, they are for a solution, a project, and a source code
file.

Refresh none Refreshes the Solution Explorer display.

Copy
Project

None
Presents dialog box for copying a project, with options for copying only the files
necessary to run or all the files required for further development work.

Show All
Files

none
Toggles display of all files in the Solution Explorer. By default, many files are not
shown. If Show All Files is clicked, the solution shown in Figure 2-11 will look like
Figure 2-12 after all of the nodes have been expanded.

Properties Alt+Enter
If the currently highlighted item is a solution or a project, it displays the
Properties page for that item. Otherwise, moves the cursor to the Properties
window for that item.

Figure 2-12. Solution Explorer (expanded)

It is also possible to display miscellaneous files in the Solution Explorer. To do so, go to Tools Options..., then go
to Environment Documents. Check the checkbox labeled Show Miscellaneous files in Solution Explorer.

Most of the functionality of the Solution Explorer is redundant with the Visual Studio .NET menu items, although it is
often easier and more intuitive to perform a given chore in Solution Explorer rather than in the menus. Right-clicking
on any item in the Solution Explorer will pop up a context-sensitive menu. Three different pop-up menus from
Solution Explorer are shown in Figure 2-13 . From left to right, they are for a solution, a project, and a source code
file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-13. Solution Explorer context-sensitive menus for solutions, projects, and
source files

Several points concerning the commands on these pop-up menus deserve mention:

The Add command for solutions and projects offers submenus that allow new or existing items to be added.
These commands are also found on the main Project menu.

Set Startup Projects and Exclude From Project commands can also be found on the main Project menu.

The Build and Rebuild commands duplicate commands found on the main Build menu.

The Debug command submenus include two commands found on the main Debug menu.

If the Properties item is clicked for a source file, the cursor moves to the Properties window. If the Properties
item is clicked for a solution or project, the Property Pages for that item are opened.

2.3.5.3 Properties Windows (F4)

The Properties window displays all the properties for the currently selected item. Some of the properties (such as
Font and Location) have subproperties, indicated by a plus sign next to their entries in the window. The property
values on the right side of the window are editable.

One thing that can be confusing is that certain items have more than one set of properties. For example, a Form
source file can show two different sets of properties, depending on whether you select the source file in the Solution
Explorer or the form as shown in the Design view.

A typical Properties window, with the Font subproperty expanded out, is shown in Figure 2-14 .

Figure 2-14. Properties window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name and type of the current object is displayed in the field at the top of the window. In Figure 2-14 , it is an
object named Label1 of type Label, contained in the System.Web.UI.WebControls namespace.

The Font property has subproperties that may be set either directly in the window or either by clicking on the drop-
down or the button with three dots on it.

The Properties window has several buttons just below the name and type of the object. The first two buttons on the
left toggle the list by category or alphabetically. The next button from the left displays properties for an object. The
rightmost button displays property pages for the object, if there are any.

Some objects have both a Properties window and Property Pages. The Property Pages display
additional properties from those shown in the Properties window.

If the project is in C#, then there will be an additional lightening bolt button () that is used to create event
handlers for an item. Events are covered in Chapter 3 .

For some controls, such as the Calendar, there is an additional panel as part of the Properties window with verbs,
such as AutoFormat.

The box below the list has a brief description of the selected property.

2.3.5.4 Server Explorer (Ctrl+Alt+S)

The Server Explorer allows you to access any server to which you have network access. If you have sufficient
permissions, you can log on, access system services, open data connections, access and edit database information,
access message queues and performance counters, and more. You can also drag nodes from the Server Explorer
onto Visual Studio .NET projects, creating components which reference the data source.

A typical Server Explorer is shown in Figure 2-15 . It is a hierarchical view of the available servers. In this figure,
there is only one server available, ATH13T. The figure shows a drill-down into SQL Server, showing the tables in the
Northwind database. These tables, and all other objects in this tree view, are directly accessible and editable from the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

window.

Figure 2-15. Server Explorer

2.3.5.5 Class View (Ctrl+Shift+C)

The Class View shows all the classes in the solution in a hierarchical manner. A typical Class View, somewhat
expanded, is shown in Figure 2-16 . The icons used in this window are listed in Table 2-5 and Table 2-6 .

Figure 2-16. Class View

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As with the Solution Explorer, any item in the class view can be right clicked, which exposes a pop-up menu with a
number of context-sensitive menu items. This can provide a convenient way to sort the display of classes in a project
or solution, or to add a method, property or field to a class.

The button on the left above the class list allows for sorting the classes listed, either alphabetically, by type, by
access, or grouped by type. Clicking on the button itself sorts by the current sort mode, while clicking on the down
arrow next to it presents the other sort buttons and changes the sort mode.

The button on the right above the class list allows you to create virtual folders for organizing the classes listed. These
folders are saved as part of the solution in the .suo file.

These folders are virtual (i.e., they are illusory). They are only used for viewing the list. As such, they have no effect
on the actual items. Items copied to the folder are not physically moved, and if the folders are deleted, the items in
them are not lost. Note that if you rename or delete an object from the code that is in a folder, you may need to
manually drag the item into the folder again to clear the error node.

2.3.5.6 Object Browser (Ctrl+Alt+J)

The Object Browser is a tool for examining objects (such as namespaces, classes, and interfaces), and their members
(such as methods, properties, variables, and events). A typical Object Browser window is shown in Figure 2-17 .

The objects are listed in the pane on the left side of the window, and members of the object, if any, are listed in the
right pane. The objects are listed hierarchically, with the ability to drill down through the tree structure. The icons
used in this window are listed in Table 2-5 and Table 2-6 .

Right clicking on either an object or a member brings up a context-sensitive pop-up menu with a variety of menu
options.

Figure 2-17. Object Browser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3.5.7 Other Windows

There are several other windows which have been relegated to a submenu called Other Windows. These include:

Macro Explorer (Alt+F8)

Visual Studio .NET offers the ability to automate repetitive chores with macros. A macro is a set of instructions
written in VB .NET, either created manually or recorded by the IDE, saved in a file. The Macro Explorer is the
one of the main tools for viewing, managing, and executing macros. It provides access into the Macro IDE.

Macros are described further in Section 3-11.
Document Outline (Ctrl+Alt+T)

The Document Outline window is used when designing web forms to provide an outline view of the HTML
document.

Task List (Ctrl+Alt+K)

In large applications, keeping a to-do list can be quite helpful. Visual Studio .NET provides this functionality with
the Task List window. You can also provide shortcuts to comments in the Task List along with token strings,
such as TODO, HACK, or UNDONE. Also, the compiler populates the Task List with any compile errors.

Command window (Ctrl+Alt+A)

The Command window has two modes: Command and Immediate.

Command mode is used to enter commands directly, either bypassing the menu system or executing
commands that are not contained in the menu system. (You can add any command to the menu or a toolbar
button using Tools Customize.)

Immediate mode is used when debugging to evaluate expressions, view and modify variables, and other
debugging tasks. The Immediate window and debugging will be covered further in Chapter 7 .

For a complete discussion of command window usage, consult the SDK documentation.
Output (Ctrl+Alt+O)

The Output window is used to display status messages from the IDE to the developer, including debugger
messages, compiler messages, output from stored procedures, and others.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3.6 Project Menu

The Project menu provides functionality related to project management. All of the functionality exposed by the
Project menu is also available in the Solution Explorer. It is often easier and more intuitive to accomplish your goals
in Solution Explorer, but the menus lend themselves to keyboard use.

Each of the commands under this menu pertain to the object currently highlighted in the Solution Explorer.

2.3.6.1 Add . . .

The Add menu includes several commands that allow you to add either an existing or a new item to a project. They
are self-explanatory, offering the same functionality as the equivalent items described previously under the File
command.

These include:

Add Windows Form

Add Inherited Form

Add User Control

Add Inherited Control

Add Component

Add Class

Add New Item (Ctrl+Shift+A)

Add Existing Item (Shift+Alt+A)

Other commands of particular interest include:

2.3.6.2 Exclude From Project

Exclude From Project will remove the file from the project but leave the file intact on the hard drive. This is in
contrast with the Delete command found on pop-up menus in the Solution Explorer, which will remove the file from
the project and delete it from the hard drive (actually into the Recycle Bin). If there is a resource file associated with
the file, it will also be excluded or deleted, respectively.

The Exclude From Project command is also available in the Solution Explorer by right-clicking on a file.

2.3.6.3 Add Reference...

The Add Reference command is available in the Solution Explorer by right-clicking on a project. In either case, you
will get the Add Reference dialog box shown in Figure 2-18 . This allows you to reference assemblies or DLL's external
to your application, making the public classes, methods, and members contained in the referenced resource available
to your application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-18. Add Reference dialog box

2.3.6.4 Add Web Reference...

The Add Web Reference command, also available in the Solution Explorer by right-clicking a project, allows you to
add a web reference to your project, thereby becoming a consuming application of a web service.

Web services and distributed applications are covered in Chapter 1 5.

2.3.6.5 Set as StartUp Project

If there is more than one project in a solution, then you must specify which is the startup project. This command,
also available in the Solution Explorer by right-clicking a project, allows you to make that specification. The project
highlighted in Solution Explorer when this command is executed will become the startup project.

2.3.6.6 Project Dependencies... / Project Build Order...

These commands, visible only when a solution contains multiple projects, also available in the Solution Explorer by
right-clicking a project, present a dialog box that allows you to control the build order of the projects in a solution. It
presents a dialog box with two tabs, one for Dependencies and one for Build Order.

The Project Dependencies command allows you to specify, for each project in the solution, which projects it depends
upon. The dependent projects will be built first.

The Project Build Order command presents a list of all the projects in the order in which they will be built.

Note that if you are using Project References (as added with the Add Reference dialog mentioned previously) you
won't be able to edit either of these. Project Dependencies are inferred when there are references between projects
in the same solution. Also you can't change the Build Order in any case. It is always inferred from the dependencies,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

whether those dependencies were automatically inferred or not.

2.3.7 Build Menu

The Build menu offers menu items for building the current project (highlighted in Solution Explorer) or the solution. It
also exposes the Configuration Manager for configuring the build process. The Build menu will be covered in detail in
Chapter 20 .

2.3.8 Debug Menu

The Debug menu allows you to start an application with or without debugging, set breakpoints in the code, and
control the debugging session. The Debug menu item will be covered along with the topic of debugging in Chapter 7 .

2.3.9 Data Menu

This context-sensitive menu is visible only when in design mode. It is not available when editing code pages. The
commands under it are only available when there are appropriate data controls on the form. Data controls and data
binding will be covered in Chapter 11 through Chapter 13 .

2.3.10 Format Menu

The Format menu is visible only when in design mode, and further, the commands under it are available only when
one or more controls on the form are selected.

This menu offers the ability to control the size and layout of controls, although many of the menu options are grayed
out for web form controls. You can:

Align controls with a grid or with other controls six different ways

Change the size of one or more controls to be bigger or smaller or all be the same

Control the spacing both horizontally and vertically

Move controls forwards or back in the vertical plane (Z order) of the form

Lock a control so that its size or position cannot be changed

To operate on more than one control, select the controls in one of several ways:

Hold down the Shift or Ctrl key while clicking on controls to be selected.

Use the mouse to click and drag a selection box around all the controls to be selected. If any part of a control
falls within the selection box, then that control will be included.

To unselect one control, hold down the Shift or Ctrl key while clicking that control.

To unselect all the controls, select a different control or press the Esc key.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When operating on more than one control, the last control selected will be the baseline. In other words, if you are
making all the controls the same size, they will all become the same size as the last control selected. Likewise, if
aligning a group of controls, they will all align with the last control selected.

As controls are selected, they will display eight resizing handles. These resizing handles will be black for all the
selected controls except the baseline, or last control, which will have white handles.

With that in mind, all of the commands under the Format menu are fairly self-explanatory.

2.3.11 Tools Menu

The Tools menu presents commands accessing a wide range of functionality, ranging from connecting to databases to
accessing external tools to setting IDE options. Some of the more useful commands are described in the following
sections.

2.3.11.1 Connect to Device . . .

Brings up a dialog box that allows you to connect to either a phyiscal mobile device or an emulator.

2.3.11.2 Connect to Database...

The Connect To Database command default brings up the dialog box that allows you to select a server, log in to that
server, and connect to the database on the server. Microsoft SQL Server is the database (surprise!), but the Provider
tab allows you to connect to any number of other databases, including any for which there are Oracle, ODBC, or OLE
DB providers.

2.3.11.3 Connect to Server...

The Connect to Server command brings up the dialog box that lets you specify a server to connect to, either by name
or by IP address. It also lets you connect using a different username and password.

This same dialog box can be exposed by right clicking on Servers in the Server Explorer, and selecting Add Server...
from the pop-up menu.

2.3.11.4 Add/Remove Toolbox Items . . .

This command brings up the Customize Toolbox dialog box shown in Figure 2-19 . The dialog box has two tabs: one
for adding (legacy) COM components and one for adding .NET CLR-compliant components. All the components
available on your machine (which include registered COM components and .NET components in specific
directories-you can browse for .NET components if they are not listed) are listed in one or the other. In either case,
check or uncheck the box in front of the component to include or not include the desired component.

Figure 2-19. Customize Toolbox dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For adding .NET components to the toolbox, it is generally easier to just drag it from Windows
Explorer onto the toolbox.

It is also possible to add other tabbed lists to this dialog box, although the details for doing so are beyond the scope
of this book.

You can sort the components listed in the dialog box by clicking on the column head that you wish to sort by.

2.3.11.5 Build Comment Web Pages...

This menu command brings up a dialog box that allows you to document your application via HTML pages. These
HTML pages automatically display the code structure of your application. Projects are listed as hyperlinks. Clicking on
a project brings up a page that shows all the classes as hyperlinks on the left side of the page. Clicking on any class
lists all the class members, with descriptions, on the right side of the page.

If your language supports XML code comments (as does C#, but VB .NET does not), then you can add your own
comments to your source code and those comments will display in these web pages.

Comment web pages are created by default in a subdirectory of the project called CodeCommentReport.

2.3.11.6 Macros

Macros are a wonderful feature that allows you to automate tasks in the IDE. Macros can either be coded by hand or
recorded as you perform the desired task. If you allow the IDE to record the macro for you, then you can
subsequently examine and edit the macro code it creates. This is very similar to the macro functionality provided as
part of Microsoft Word or Microsoft Excel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Be aware that macro recording doesn't work for anything inside a dialog box. For example, if
you record the changing of some property in a project's Property Pages, the recorded macro
will open the Property Pages but won't do anything in there!

You can easily record a temporary macro by using the Macros Rec ord TemporaryMacro command, or by
pressing Ctrl+Shift+R. This temporary macro can then be played back using the Macros Run TemporaryMacro
command, or by pressing Ctrl+Shift+P. It can be saved using the Macros Save TemporaryMacro command,
which will automatically bring up the Macro Explorer, described next.

Macros are managed using the Macro Explorer window, accessed via a submenu of the Macros command, or by
pressing Alt+F8, shown in Figure 2-20 after recording a temporary macro.

Figure 2-20. Macro Explorer

Right-clicking on a macro in the Macro Explorer pops up a menu with four items:

Run

Runs the highlighted macro. The macro can also be run by double clicking on the macro name.
Edit

Brings up the macro editing IDE, where all the macros for the user can be edited. The macro language is VB
.NET, irrespective of the language used for the project. The macro editing IDE can also be invoked using the
Macros Macro I DE command, or by pressing Alt+F11.

Rename

Allows the macro to be renamed.
Delete

Deletes the macro from the macro file.

All the macros are contained in a macro project called, by default, MyMacros . This project is comprised of a binary

file called MyMacros.vsmacros (unless you have elected to convert it to the multiple files format), which is physically
located in the Documents and Settings directory for each user. You can create a new macro project by using the
Macros New Macro Project command or by right clicking on the root object in the Macro Explorer and selecting
New Macro Project. In either case, you will get the New Macro Project dialog box, which will allow you to specify the
name and location of the new macro project file.

Macro projects contain modules, which are units of code. Each module contains subroutines, which correspond to the
macros. So for example, the macro called TemporaryMacro shown in Figure 2-20 is the TemporaryMacro subroutine
contained in the module named RecordingModule , which is part of the MyMacros project.

2.3.11.7 External Tools...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Depending on the options selected at the time Visual Studio .NET was installed on your machine, you may have one
or more external tools available on the Tools menu. These might include tools such as Create GUID, ATL/MFC Trace
Tool, or Spy++. (Use of these tools is beyond the scope of this book.)

The Tools External Tools... command allows you to add additional external tools to the Tools menu. When
selected, you are presented with the External Tools dialog box. This dialog box has fields for the tool title, the
command to execute the tool, any arguments and the initial directory, as well as several checkboxes for different
behaviors.

2.3.11.8 Customize...

The Customize... command allows you to customize many aspects of the IDE user interface. (The Options...
command, described in the following section, allows you to set a variety of other program options.) It brings up the
Customize dialog box, which has three different tabs plus one additional button, allowing customization in four
different areas.

Toolbars

This tab, shown in Figure 2-21 , presents a checkbox list of all the available toolbars, with checkmarks
indicating those toolbars currently visible. You can control the visibility of specific toolbars by checking or
unchecking them in this list, or alternatively, use the View Toolbars command.

You can also create new toolbars, rename or delete existing toolbars, or reset all the toolbars back to the
original installation version on this tab.

Figure 2-21. Customize dialog-Toolbars tab

Commands

The Commands tab, shown in Figure 2-22 , allows you to add or remove commands from a toolbar or modify
buttons already on the toolbar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To add a command to a toolbar, select the category and command from the lists in the dialog box, then use the
mouse to drag the command to the desired toolbar.

To remove a command from a toolbar, drag it from the toolbar to anywhere in the IDE while the Customize
Commands dialog is showing.

The Modify Selection button is only active when a button on an existing toolbar is selected. It allows you to
perform such chores as renaming or deleting the button, changing the image displayed on the button, changing
the display style of the button (image only, text only, etc.), and organizing buttons into groups.

Figure 2-22. Customize dialog-Commands tab

Options

The Options tab, shown in Figure 2-23 , allows you to change the appearance of toolbars.

The personalized Menus and Toolbars checkboxes are always unavailable and grayed out.

The Other checkboxes allow selection of icon size on buttons, control of tool tips, and the way the menus come
in to view (Menu animations).

Figure 2-23. Customize dialog-Options tab

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Keyboard ...

The Keyboard... button brings up the Environment Keyboard page, shown in Figure 2-24 , also accessible
under the Tools Options command described below. This page allows you to define and change keyboard
shortcuts for commands.

Figure 2-24. Customize dialog-Keyboard button

2.3.11.9 Options...

The Options... command also brings up the Options dialog box, shown in Figure 2-24 . This dialog box allows setting a
wide range of options, ranging from the number of items to display in lists of recently used items to XML Designer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

options.

The dialog box displays a hierarchical list of categories on the left side. Selecting any category allows you to drill down
through the tree structure. Clicking on a detail item brings up the available properties on the right side of the dialog
box.

Most of the available options are fairly self-explanatory. If you have any questions about specific settings, clicking on
the Help button at the bottom of the Options dialog box will bring up context-sensitive help about all the properties
relevant to the current detail item.

2.3.12 Window Menu

The Window menu is a standard Windows application Window command. It displays a list of all the currently open
windows, allowing you to bring any window to the foreground by clicking on it. Note that all the file windows currently
displayed in the IDE also have tabs along the top edge of the design window, below the toolbars (unless you have
selected MDI mode in Tools Options Environment General), and windows can be selected by clicking on
a tab.

This is a context-sensitive menu. The menu items available for different circumstances are listed in Table 2-8 .

Table 2-8. Window menu item commands

Current
window

Description of available commands

Design

Auto Hide All hides all dockable windows. Clicking on window's pushpin icon turns AutoHide off for that
window.

New Horizontal/Vertical Tab Group creates another set of windows with it own set of tabs.

Close All Documents is self-explanatory.

Window list.

Code

Same as for a design window plus the following: New Window creates a new window containing the
same file as the current window (use this to open two windows to the same source file); Split creates a
second window in the current window for two different views of the same file; and Remove Split
removes a split window.

Dockable

This category of window includes the Solution Explorer, the Properties window, the Class View window,
the toolboxes, etc. These windows are dockable, as indicated by the pushpin icon in the upper right
corner of each.

Available menu items are the same as for a design window, with the addition of commands to dock,
hide or float a window.

2.3.13 Help Menu

The Help menu provides access to a number of submenus. Those that are not self-explanatory are described here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3.13.1 Dynamic Help (Ctrl+F1)

If you are developing on a machine with enough horsepower, Dynamic Help is a wonderful thing. Otherwise, it is quite
a performance hog. (It can be disabled by unchecking all the checkboxes under Tools Options Environment

 Dynamic Help) Alternatively, just closing the window is sufficient to prevent the performance hit, and that way it
is still available when you need it.

That said, using Dynamic Help is very simple. Open a Dynamic Help window by clicking on this menu item or pressing
Ctrl+F1. Then wherever the focus is, whether in a design, code or dockable window, context-sensitive hyperlinks will
appear in the Dynamic Help window. Click on any of these links to bring up the relevant help topic in a separate
window.

2.3.13.2 Contents... (Ctrl+Alt+F1) / Index... (Ctrl+Alt+F2) / Search... (Ctrl+Alt+F3)

These three commands provide different views into the SDK help system, allowing you to search by a (pseudo) table
of contents, an incremental index, or a search phrase, respectively. The first type of search is an indexed search,
while the latter two are full text searches, so you may get different results using the different search types using the
same phrase.

The Help system exposed by these commands is the exact same Help system exposed in two other places
by the Start button:

Programs -> Microsoft Visual Studio .NET -> Microsoft Visual Studio .NET Documentation
Programs -> Microsoft .NET Framework SDK -> Documentation

This Help tool uses a browser-type interface, with Forward and Back navigation and Favorites. The list of topics is
displayed in the left hand pane, and the help topic itself, including hyperlinks, is displayed on the right.

2.3.13.3 Index Results... (Shift+Alt+F2)

When searching for Help topics by Index, there are often many topics for a given index entry. In these cases, the
multiple topics are listed in an Index Results window. This window will display automatically if this is the case. This
command allows you to view the Index Results window if it has been closed.

2.3.13.4 Search Results... (Shift+Alt+F3)

The Search Results window is exactly analogous to the Index Results window described previously, except it pertains
to searching for Help topics by search phrase.

2.3.13.5 Edit Filters...

The SDK Help system is voluminous, with information on the full array of topics which might be found in any .NET
installation, as well as a ton of non-.NET stuff. The Edit Filters command allows you to restrict which Help topics will
be searched. For example, if you are working exclusively in C#, you might set the filter to either Visual C# or
Visual C# and Related . (The references of several O'Reilly .NET Nutshell titles are available as installable Dynamic

Help files. For further information, see http://www.oreilly.net/ .)

2.3.13.6 Check for Updates

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This command will check for service releases for your currently installed version of Visual Studio .NET. In order for
this command to work, your machine must be connected to the Internet. If there is an update available, you will be
prompted to close the IDE before the service release is installed.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.4 Building and Running

You can run your application at any time by selecting either Start or Start Without Debugging from
the Debug menu, or you can accomplish the same results by pressing either F5 or Ctrl+F5,

respectively. In addition, you can start the program by clicking the Start icon () on the Standard
toolbar.

The program can be built (i.e., .exe and .dll files generated) by selecting a command under the Build
menu. You have the option of building the entire solution or only the currently selected project. For a
full discussion of application deployment, please see Chapter 20.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 3. Events
Chapter 1 provided just a glimpse of ASP.NET. Now you might be asking yourself (especially if you're
a developer experienced in classic ASP), "What's the big deal?" One of the significant differences
between ASP.NET and classic ASP is that ASP.NET is event-driven.

To talk about events, you must understand controls. To talk about controls, you must first know
about events. We'll solve this classic chicken-and-the-egg problem by providing just enough
information in this chapter about controls to understand events. The next two chapters will discuss
controls in depth.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.1 Event Model

The two models of program execution (which are not necessarily mutually exclusive) are linear and
event-driven.

Linear programs move in a linear fashion, from step 1 to step 2 and so on, to the end of all the steps.
Flow control structures within the code (such as loops, if statements, or function or subroutine calls)

may redirect the flow of the program, but essentially, once program execution begins, it runs its
course unaffected by anything the user or system may do. Prior to the advent of GUI environments,
most computer programs were linear.

In contrast, event-driven programming responds to events. An event is generated (or raised) when
"something happens," such as the user pressing a button. Often, events are generated by user
action, but events can also be generated by the system starting or finishing work. For example, the
system might raise an event when a file that you open for reading has been read into memory or
when your battery's power is running low.

Windows is an event-driven program. The operating system is relatively quiescent until it detects an
event such as the user clicking the mouse on a button. The click raises an event, which must be
handled. The method that responds to the event is called the event handler. When the event is
raised, the event handler, if one exists, is automatically executed by Windows.

In ASP.NET, objects may raise events and may have assigned event handlers. For example, a button
may raise the Click event and may have an OnClick method that handles the event.

The event handler name is formed by prepending the word "On" to the event name, so in the case of
a Click event, the event handler is called OnClick. Table 3-1 lists some of the more commonly used
events and the names of their event handlers.

Table 3-1. Common events and their event handler names

Event name Event handler name Applies to

BubbleEvent OnBubbleEvent All controls

CheckedChanged OnCheckedChanged CheckBox

Click OnClick Button, LinkButton, ImageButton

DataBinding OnDataBinding All controls

Init OnInit All controls

ItemCreated OnItemCreated Repeater

ItemDataBound OnItemDataBound Repeater

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Event name Event handler name Applies to

Load OnLoad All controls

PreRender OnPreRender All controls

SelectedIndexChanged OnSelectedIndexChanged
DataGrid, DataList, CheckBoxList,
DropDownList, ListBox, RadioButtonList

TextChanged OnTextChanged TextBox

Unload OnUnload All controls

[Team LiB]

Load OnLoad All controls

PreRender OnPreRender All controls

SelectedIndexChanged OnSelectedIndexChanged
DataGrid, DataList, CheckBoxList,
DropDownList, ListBox, RadioButtonList

TextChanged OnTextChanged TextBox

Unload OnUnload All controls

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.2 ASP Versus ASP.NET Events

ASP was primarily a linear programming model. It had six events, of which only four were commonly
used. These were:

Application_OnStart, which was fired when the application started

Application_OnEnd, which was fired when the application terminated

Session_OnStart, which was fired at the beginning of each session

Session_OnEnd, which was raised when the session ended

ASP.NET, on the other hand, is primarily an event-driven programming model. The application has
events, each session has events, and the page and most of the server controls can also raise events.
All ASP.NET events are handled on the server. Some events cause an immediate posting to the
server, while other events are simply stored until the next time the page is posted back to the server.

Because they are handled on the server, ASP.NET events are somewhat different from events in
traditional client applications, in which both the event itself and the event handler occur on the client.
In ASP.NET applications, however, an event is typically raised on the client, but handled on the
server.

Consider a classic ASP web page with a button control on it. A Click event is raised when the button is
clicked. This event is handled by the client (that is, the browser), which responds by posting the form
to the server. No event handling occurs server-side.

Now consider an ASP.NET web page with a similar button control. The difference between an ASP.NET
button control and a classic HTML button control is primarily that the ASP.NET button has an
attribute, runat=server, that adds server-side processing to all the normal functionality of an HTML

button.

When the Click event is raised, once again, the browser handles the client-side event by posting the
page to the server. This time, however, an event message is also transmitted to the server. The
server determines if the Click event has an event handler associated with it, and, if so, the event
handler is executed on the server.

An event message is transmitted to the server via an HTTP POST. ASP.NET automagically (that's a
technical term) handles all the mechanics of capturing the event, transmitting it to the server, and
processing the event. As the programmer, all you have to do is create your event handlers.

Many events, such as MouseOver, are not eligible for server-side processing because they kill
performance. All server-side processing requires a postback, and you do not want to post the page
every time there is a MouseOver event. If these events are handled at all, it is on the client side.

One of the broad categories of controls available in ASP.NET applications is HTML server controls
(described in Chapter 4). These are identical to the classic HTML controls, except that they enable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

server-side processing. In addition, they are still used for implementing client-side event handling.

If you want a client-side event handler to perform scripted functions, you must
supply your own scripting in either JavaScript or VBScript called from the
appropriate event handler. For this to work properly, the client browser must
support scripting. (Client-side scripting is outside the scope of this book.)

As far as ASP.NET is concerned, events are handled on the server, and the result of an event that
posts back to the server is that the page is modified and redelivered to the browser.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.3 Event Arguments

Events are handled by delegates. Essentially, a delegate is an object that encapsulates the
description of a method to which you may delegate responsibility for handling the event.

For a complete discussion of delegates, see Programming C#, Third Edition, by
Jesse Liberty (O'Reilly).

Event handlers must always take two parameters and return nothing (in VB.NET, use a Sub, in C#
return void). The first parameter represents the object raising the event. The second, called the

event argument, contains information specific to the event, if any. For most events, the event
argument is of type EventArgs, which does not expose any properties. So, the general prototype for
an event in Visual Basic is:

Private Sub EventName(ByVal sender As Object, _
 ByVal e As EventArgs)

The general prototype for an event in C# is:

private void EventName (object sender, EventArgs e)

For some controls, the event argument may be of a type derived from EventArgs and may expose
properties specific to that event type. For example, the AdRotator control's AdCreated event handler
receives an argument of type AdCreatedEventArgs, which has the properties AdProperties,
AlternateText, ImageUrl, and NavigateUrl. Chapter 5 details the specifics of the event argument for
each control.

Note that when using Visual Studio .NET, the IDE often inserts qualifying namespaces in front of
parameter types in event handler declarations. These are redundant, as long as the relevant
namespace is already referenced in the project using a using statement in C# or an Imports

statement in VB.NET. For example, the default Page_Load event handler in VB.NET inserted by Visual
Studio .NET looks like:

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

The following declaration works equally as well, since the System namespace is automatically
imported into ASP.NET applications:

Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load

The default Page_Load event handler in C# inserted by Visual Studio .NET looks like:

private void Page_Load(object sender, System.EventArgs e)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, all that is strictly necessary is:

private void Page_Load(object sender, EventArgs e)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.4 Application and Session Events

ASP.NET supports the Application and Session events familiar to ASP programmers. An
Application_Start event is raised when the application first starts. This is a good time to initialize
resources that will be used throughout the application, such as database connection strings (but not
the database connection itself). An Application_End event is raised when the application ends. This is
the time to close resources and do any other housekeeping that may be necessary. Note that
garbage collection will automatically take care of freeing up memory, but if you allocated unmanaged
resources, such as components created with languages that are not compliant with the .NET
Framework, you must clean them up yourself.

Likewise there are session events. A session starts when a user first requests a page from your
application and ends when the application closes the session or the session times out. A
Session_Start event is raised when the session starts, at which time you can initialize resources that
will be specific to the session, such as opening a database connection. When the session ends, there
will be a Session_End event.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.5 Page and Control Events

The page and controls all have a number of events that are derived from the Control class (or the
TemplateControl class, in the case of the Error event). All pass an event argument of type EventArgs
that exposes no properties. Some of these events are listed in Table 3-2.

Table 3-2. Some common page and control events

Event name Description

DataBinding Occurs when control binds to a data source

Disposed Occurs when control is released from memory

Error For the page only, occurs when an unhandled exception is thrown

Init Occurs when the control is initialized

Load Occurs when the control is loaded to the Page object

PreRender Occurs when the control is about to be rendered

Unload Occurs when the control is unloaded from memory

Binding a control to a data source means that the control and the data source
are tied together so that the control knows to use that data source for
populating itself. Chapter 9 provides a complete description of controls and data
binding.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.6 IsPostBack

The page exposes the IsPostBack property. This is a read-only Boolean property that indicates if the
page or control is being loaded for the first time, or if it is being loaded in response to a client
postback. Many expensive operations (such as getting data from a database or populating ListItems)
must be performed only the first time the page or control is loaded. If the page is posted to the
server and then reloaded, there is no need to repeat the operation. By testing the value of
IsPostBack, you can skip the expensive operation, as in the code snippets in Example 3-1 and
Example 3-2.

Example 3-1. Testing for IsPostBack in VB.NET

sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 ' Do the expensive operations only the
 ' first time the page is loaded.
 end if
end sub

Example 3-2. Testing for IsPostBack in C#

void Page_Load(Object sender, EventArgs e)
{
 if (! IsPostBack)
 {
 // Do the expensive operations only the
 // first time the page is loaded.
 }
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.7 Postback Versus Non-Postback Events

Postback events cause the form to be posted back to the server immediately. These include click-
type events, such as Button.Click. In contrast, many events (typically change events) are considered
non-postback because the event is not posted back to the server immediately. Instead, these events
are cached by the control until the next time a post occurs. Controls with non-postback events can be
forced to behave in a postback manner by setting their AutoPostBack property to true.

Table 3-3 summarizes the controls with postback and non-postback events.

Table 3-3. Controls with postback and non-postback events

Postback Non-postback

Button CheckBox

Calendar CheckBoxList

DataGrid DropDownList

DataList ListBox

ImageButton RadioButtonList

LinkButton RadioButton

Repeater TextBox

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.8 Comparing ASP.NET to ASP

Classic ASP is not event driven in the way that ASP.NET is. To see the difference, consider the
following application: you want to open the NorthWind database, supplied with both Microsoft SQL
Server and Microsoft Access, and read through the Customers table. For each customer, you want to
display the company name, customer ID, the name and title of the contact person, and the phone
number. If the contact person is the owner, you want to display the title in red so that it is easy to
see.

This example contains a great deal of complexity that will be covered in future chapters, including all
the issues surrounding database access, but the fundamentals are straightforward. In classic ASP you
would open a connection to the database, perform a query, and get back a RecordSet. You then
iterate over the RecordSet, adding each record to an HTML table. If the current record's ContactTitle
column is "Owner," you set the display to red. The code to accomplish this in classic ASP is shown in
Example 3-3.

Example 3-3. Populating a table in classic ASP

<% Response.Expires=0 %>
<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft FrontPage 4.0">
<META HTTP-EQUIV="Content-Type" content="text/html; charset=iso-8859-1">
<TITLE>List Log</TITLE>
<STYLE>
BODY,TD, TH {font-family:Verdana;font-size:8pt}
.controls {font-family:Verdana;font-size:8pt}
#owner {color:red}
</STYLE>
</HEAD>
<BODY>
<%

 dim DBConn, rs
 set DBConn = Server.CreateObject("ADODB.Connection")

 DBConn.open "Driver={SQL Server};server=YourServer; uid=sa; pwd=YourPw;
 database=northwind;"

 set rs = DBConn.Execute("select * from Customers")

%>
 <table bgcolor = "lavender">
 <tr>
 <th>Company Name</th>
 <th>Customer ID</th>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <th>Contact</th>
 <th>Title</th>
 <th>Phone</th>
 </tr>
 <% while not rs.eof %>
 <tr bgColor="lightsteelblue">
 <td><% =rs("CompanyName") %></td>
 <td><% =rs("CustomerID") %> </td>
 <td><%=rs("ContactName") %></td>
 <td
 <% if rs("ContactTitle") = "Owner" then %>
 id = owner
 <% end if %>
 > <% = rs("ContactTitle") %> </td>
 <td><%=rs("Phone") %></td>
 </tr>

 <%
 rs.moveNext
 wend
 %>
 </Table>

In Example 3-3, as with all classic ASP applications, the HTML is intermingled with the script code.
You add all the records in a while loop:

<% while not rs.eof %>

When it is time to create the <td> tag for the title, place the if statement, which tests if the

ContactTitle is an Owner, inside the code for writing the tag:

<td
 <% if rs("ContactTitle") = "Owner" then %>
 id = owner
 <% end if %>
 >

The logic here is to open the <td> tag, then switch to script that tests the value of the ContactTitle
field for the current row. If it matches Owner, you then set the id attribute; otherwise you do not.
You then close the <td> tag.

The code is a bit tangled, but it certainly works, as shown in Figure 3-1.

Figure 3-1. ASP version of event-driven data table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To write this same application in ASP.NET, you would take a very different approach. First, to make
this demonstration easier, you'll use a DataGrid rather than a table. Here are the steps:

Open Visual Studio .NET and create a new ASP.NET web application project using either VB.NET
or C#. Name it EventDrivenGrid.

1.

Right-click on the page and choose Properties. Set the Page Layout to FlowLayout and click OK.2.

Drag a DataGrid onto the form from the Toolbar and widen it. Set the grid's ID to dgCustomers.3.

Right-click on the page and choose View Code.4.

If you are using C#, at the top of the code page add:5.

using System.Data.SqlClient;

or, if you are using VB.NET, at the top of the code page add:

imports System.Data.SqlClient

Modify the Page_Load event by adding the code shown in Example 3-4 for a VB.NET project or
the code shown in Example 3-5 for a C# project.

There are many details to the code in Example 3-4 and Example 3-5 that
will be explained in future chapters. The essence is that you are retrieving
the data you need from the database into a DataSet and then binding the
appropriate table from the DataSet to the DataGrid.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 3-4. Populating a table in ASP.NET using VB.NET

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load
 'Put user code to initialize the page here
 if not IsPostBack then
 ' create the connection string
 dim strConnection as String = _
 "server=YourServer; uid=sa; pwd=YourPw; database=northwind"

 ' create the command string
 dim strCommand as String = _
 "select * from customers"

 ' create the dataset command object and dataset
 dim dataAdapter as new SqlDataAdapter(strCommand, strConnection)
 dim ds as New DataSet()

 ' fill the dataset
 dataAdapter.Fill(ds, "Customers")
 dim bldr as New SqlCommandBuilder(dataAdapter)

 ' get the table
 dim dt as DataTable = ds.Tables(0)
 dgCustomers.DataSource = dt
 dgCustomers.DataBind()
 End If
End Sub

Example 3-5. Populating a table in ASP.NET using C#

private void Page_Load(Object sender, System.EventArgs e)
{
if (!IsPostBack)
 {
 // create the connection string
 string strConnection =
 "server=YourServer; uid=sa; pwd=YourPW; database=northwind";

 // create the command string
 string strCommand = "Select * from Customers";

 // create the data set command object and dataset
 SqlDataAdapter dataAdapter =
 new SqlDataAdapter(strCommand, strConnection);
 DataSet dataSet = new DataSet();

 // fill the dataset
 dataAdapter.Fill(dataSet,"Customers");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SqlCommandBuilder bldr = new SqlCommandBuilder(dataAdapter);

 // get the table
 DataTable dataTable = dataSet.Tables[0];
 dgCustomers.DataSource = dataTable;
 dgCustomers.DataBind();
 }
}

Return to the Designer and click on the HTML tab. Add these attributes to the DataGrid:7.

HeaderStyle-BackColor="Yellow"
BorderWidth ="5"
BorderColor ="#000099"
AlternatingItemStyle-BackColor="LightGray"
HeaderStyle-Font-Bold="True"
AutoGenerateColumns="False"

Add Columns and BoundColumn elements to the DataGrid:8.

<Columns>
 <asp:BoundColumn DataField ="CompanyName" HeaderText="Company Name" />
 <asp:BoundColumn DataField ="ContactName" HeaderText="Contact" />
 <asp:BoundColumn DataField ="ContactTitle" HeaderText="Title" />
 <asp:BoundColumn DataField ="Phone" HeaderText="Phone" />
</Columns>

The complete DataGrid declaration should look something like Example 3-6.

Example 3-6. DataGrid HTML

<asp:DataGrid
 id="dgCustomers"
 runat="server"
 Width="466px"
 Height="278px"
 HeaderStyle-BackColor="Yellow"
 BorderWidth="5"
 BorderColor="#000099"
 AlternatingItemStyle-BackColor="LightGray"
 HeaderStyle-Font-Bold="True"
 AutoGenerateColumns="False" >
 <Columns>
 <asp:BoundColumn HeaderText="Company Name"
 DataField="CompanyName"></asp:BoundColumn>
 <asp:BoundColumn HeaderText="Contact"
 DataField="ContactName"></asp:BoundColumn>
 <asp:BoundColumn HeaderText="Title"
 DataField="ContactTitle"></asp:BoundColumn>
 <asp:BoundColumn HeaderText="Phone"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataField="Phone"></asp:BoundColumn>
 </Columns>
</asp:DataGrid>

Run the application. You have a DataGrid populated by the data in the Customer's table, as shown in
Figure 3-2.

Figure 3-2. DataGrid populated without events

You've populated the table very nicely, but you have not set the Owner to be red. How can you, if
you are not iterating over the data at any time? You are simply handing the table to the grid and
telling the grid to bind to the data.

The DataGrid publishes a number of useful events that you can choose to handle. In this case, the
event you care about is the ItemDataBound event that is raised every time an item is bound to the
grid. You should write a handler for this event that will give you the opportunity to examine the data
and decide if you need to change the way it is displayed.

To do this, add an attribute to the DataGrid. Return to the Designer and click on the HTML tab. Add
the following attribute to the DataGrid:

OnItemDataBound="OnItemDataBoundEventHandler"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You are now ready to implement the handler for that event. This is done using code you will add to
the code page. You can get back to the code page by clicking on the tab labeled WebForm1.aspx.vb
or WebForm1.aspx.cs, depending on the language you are using.

There is extensive support in the IDE for managing events. This will be shown
shortly.

The event handler takes two parameters. One is an object that represents the object raising the
event. The other is an object of type EventArgs (or a class derived from EventArgs) that provides
useful objects to the event handler. In VB.NET, the event handler declaration looks like:

public sub OnItemDataBoundEventHandler(ByVal sender as System.Object, _
 ByVal e as System.Web.UI.WebControls.DataGridItemEventArgs)

In C#, it looks like:

public void OnItemDataBoundEventHandler(object sender,
 System.Web.UI.WebControls.DataGridItemEventArgs e)
{

In this case, the first thing to do is test whether the item that raised the event is a Header,
Separator, or Footer. The DataGridItemEventArgs object has a property Item that returns the
data item. You can ask that Item for its ItemType, which will be one of the enumerated
ListItemType constants. You can check whether it is a Header, Separator, or Footer. If it is any of

these types, you can return, since you don't want to process those items. In VB.NET, this is done
with the following lines of code:

dim itemType as ListItemType = CType(e.Item.ItemType,ListItemType)
if (itemType = ListItemType.Header) or _
 (itemType = ListItemType.Separator) or _
 (itemType = ListItemType.Footer) then
 exit Sub
End If

In C#, this is done with this code snippet:

ListItemType itemType = (ListItemType) e.Item.ItemType;
if (itemType == ListItemType.Header ||
 itemType == ListItemType.Separator ||
 itemType == ListItemType.Footer)
 return;

Assuming you do not have a Header, Separator, or Footer, you are ready to get the DataItem as a
DataRowView. You can then index into that DataRowView using the name of the column (ContactTitle)

to get the particular column you want. If you call ToString on that column, you get back the value of
the column, which you can assign to a string variable. In VB.NET, the code is:

dim drv as DataRowView = CType(e.Item.DataItem,DataRowView)
dim title as String = drv("ContactTitle").ToString()

In C#, the code is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DataRowView dataRowView = (DataRowView)e.Item.DataItem;
string title = dataRowView["contactTitle"].ToString();

You can combine these two lines into a single statement, if you like terser but harder to debug code,
as in this C# code snippet:

string title = ((DataRowView)e.Item.DataItem)["ContactTitle"].ToString();

In any case, with the title in hand, you can compare it to the string "Owner." In VB.NET, this is done
using:

if title = "Owner" then

In C#, this is done using:

if (title == "Owner")
{

If you get a match, you can extract the cell you want to color by asking the DataGridItemEventArgs

object passed in as a parameter for the current Item. You can then index into the Controls collection
of the Item to get the particular cell you care about. In VB.NET:

dim ownerCell as TableCell=CType(e.Item.Controls(2), TableCell)

In C#, the code is:

TableCell ownerCell = (TableCell)e.Item.Controls[2];

You can now set the foreground color of that cell to red by calling the static (or shared) FromName
method on the Color class, passing in the string "Red." In VB.NET, the code is:

ownerCell.ForeColor = Color.FromName("Red")

In C#, the code is:

ownerCell.ForeColor = Color.FromName("Red");

The complete OnItemDataBoundEventHandler is shown in Example 3-7 using VB.NET and in Example
3-8 using C#.

Example 3-7. OnItemDataBoundEventHandler in VB.NET

public sub OnItemDataBoundEventHandler(ByVal sender as System.Object, _
 ByVal e as System.Web.UI.WebControls.DataGridItemEventArgs)
 dim itemType as ListItemType = CType(e.Item.ItemType,ListItemType)
 if (itemType = ListItemType.Header) or _
 (itemType = ListItemType.Separator) or _
 (itemType = ListItemType.Footer) then
 exit Sub
 End If

 dim drv as DataRowView = CType(e.Item.DataItem,DataRowView)
 dim title as String = drv("ContactTitle").ToString()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if title = "Owner" then
 dim ownerCell as TableCell=CType(e.Item.Controls(2), TableCell)
 ownerCell.ForeColor = Color.FromName("Red")
 End If
End Sub

Example 3-8. OnItemDataBoundEventHandler in C#

public void OnItemDataBoundEventHandler(object sender,
 System.Web.UI.WebControls.DataGridItemEventArgs e)
{
 ListItemType itemType = (ListItemType) e.Item.ItemType;
 if (itemType == ListItemType.Header ||
 itemType == ListItemType.Separator ||
 itemType == ListItemType.Footer)
 return;

 DataRowView dataRowView = (DataRowView)e.Item.DataItem;
 string title = dataRowView["contactTitle"].ToString();
 if (title == "Owner")
 {
 TableCell ownerCell = (TableCell)e.Item.Controls[2];
 ownerCell.ForeColor = Color.FromName("Red");
 }
}

When the web page utilizing the event handler shown in either Example 3-7 or 3-8 is run, you get a
web page similar to Figure 3-3. It is the same as the web page in Figure 3-2, except that all
instances in which the Title is Owner are displayed in red. (Since your book is printed in black and

white, you will have to actually run the project to see this.)

Figure 3-3. DataGrid populated with events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The event-driven model as shown in this simple example isn't easier than the non-event driven model
in ASP, but it does scale well. As programs become more complex, having a more object-oriented
event-driven model makes for code that is easier to maintain.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.9 Events in Visual Studio .NET

The Visual Studio .NET IDE can automatically handle much of the work required to implement events
in ASP.NET. For example, it offers a list of all the possible events for each control and if you choose to
implement an event, you can type in a name for the event handler. The IDE will create the boilerplate
code necessary and will wire up the associated delegate. You have already seen some of these
capabilities in this chapter, as well as the "manual" way of implementing events. In this section, you
will see even easier ways to create event handlers in Visual Studio .NET.

Although events are handled in essentially the same way in C# and VB.NET under the hood, the
syntax used by the two languages is very different. You can see this in the boilerplate created by
Visual Studio .NET.

When a new web application is created in Visual Studio .NET, it automatically includes a code skeleton
for the Page_Load event handler. A completed event handler was shown in Example 3-4 using VB
.NET and in Example 3-5 using C#.

The event handler declaration in VB .NET has the form:

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load

The Handles keyword indicates that this event handler method will handle the Load event of the base

class.

In C#, the event handler declaration has the following syntax:

private void Page_Load(Object sender, System.EventArgs e)
{

Notice that there is no indication as to which event this method will handle. That connection is made
in the block of code inside the region labeled Web Form Designer generated code. Expanding that

region reveals a method called InitializeComponent, which is called from within the OnInit event
handler. Inside the InitializeComponent method is the following line of code:

this.Load += new System.EventHandler(this.Page_Load);

This line adds the Page_Load method to the Load delegate, causing the method to be invoked every
time that event is raised.

Earlier, you saw how an attribute for the OnItemDataBound event was declaratively added to the
DataGrid shown in Figure 3-2.

OnItemDataBound="OnItemDataBoundEventHandler"

The OnItemDataBoundEventHandler method was implemented in Example 3-7 in VB .NET and in
Example 3-8 in C#.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To have Visual Studio .NET do more of the work for you, do not declare the event attribute in the
.aspx file, as was done previously. Instead, you'll let the designer help you implement the event. The
easiest event to implement in Visual Studio.NET is the designated "default" event, designated by the
designer of the control.

To create an event handler for the default event, simply double-click on the control from within the
design window. The boilerplate code for that event handler will automatically be created in the code-
behind page and the cursor will be placed inside the event handler method, ready for you to enter
your implementing code. The default event for the web controls are listed in Table 3-4.

Table 3-4. Default events for ASP.NET Controls

Control Default Event

AdRotator AdCreated

Button Click

Calendar SelectionChanged

CheckBox CheckedChanged

CheckBoxList SelectedIndexChanged

DataGrid SelectedIndexChanged

DataList SelectedIndexChanged

DropDownList SelectedIndexChanged

HyperLink Click

ImageButton Click

Label none

LinkButton Click

ListBox SelectedIndexChanged

RadioButton CheckedChanged

RadioButtonList SelectedIndexChanged

Repeater ItemCommand

Creating event handlers for non-default events is different in Visual Studio.NET for C# than it is for
VB.NET.

In C#, select the control in Design view, then click on the yellow lighting bolt at the top of the
Properties window. All the possible events for that control will be listed and the default event will be
highlighted. There are then several ways to create an event handler:

Double-clicking on the cell next to any event name will automatically create an event handler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

skeleton for that event with a default name, add that event handler to the event delegate, and
open the code window with the cursor in the code skeleton, ready to type.

Alternatively, you can enter any event handler name you choose in the cell next to the event,
and a code skeleton with that name will be created and hooked up, just like for a default name.

Finally, you can click in the cell next to an event name. An arrow will appear, and when you click
on the arrow a list of all existing event handler methods will appear, from which you can choose
a handler for the event.

It is possible for a single event handler to handle events from several different controls. For example,
you may have a generic button click event handler that handles all the buttons on your form. The
button that raised the event can be determined by testing the value of the sender parameter. In the
following code snippet, a button click event handler casts the sender object (that is, the control which
raised the event) to a Button type, then assigns the ID property of that button to a string variable
that you can use in an if or switch statement.

private void BtnClick(object sender, System.EventArgs e)
{
 Button b = (Button)sender;
 String buttonID = b.ID;
}

In VB .NET, all the event handlers are listed using the two drop-down controls at the top of the code-
behind page. The control whose event you wish to handle is selected from the left drop-down, then
the desired event is selected from the right drop-down. Click on an event to create an event handler
with a default name. To use a non-default name, simply change the name of the method after it is
created for you.

Since VB .NET uses the Handles keyword to wire up the event handler with the control's event, you
can create generic event handlers by adding additional events to the Handles keyword, comma-

separated. For example, the following VB .NET code snippet handles the click event for three buttons,
displaying the Text property of the clicked button in a label control.

Private Sub btn1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btn1.Click, btn2.Click, btn3.Click
 dim btn as Button = CType(sender,Button)
 lblMsg.Text = btn.Text
End Sub

Again, as with the C#, you must cast the sender object to a Button type, in this language using the
CType method.

It is also possible to wire up event handlers in VB .NET using the AddHandler
method rather than the Handles keyword. However, since that technique is not

used by Visual Studio .NET, it will not be discussed further.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 4. Controls
Controls are the building blocks of a graphical user interface (GUI). Familiar controls include buttons,
checkboxes, list boxes, and so forth. Controls can provide a means for a user to indicate a
preference, enter data, or make selections.

There are five types of web controls (each but the first will be covered in detail in this and coming
chapters). They are:

HTML controls

The original controls available to any HTML page. These all work in ASP.NET exactly as they
work in other web pages. HTML controls will be used where appropriate in this book, but will
not be discussed in detail. For a good resource on HTML controls, see HTML: The Definitive
Guide, Second Edition, by Chuck Musciano and Bill Kennedy (O'Reilly).

HTML server controls

Based on original HTML controls, but enhanced to enable server-side processing.
Web (ASP) server controls

Server-side controls providing the same functionality as HTML server controls but integrated
into the ASP.NET programming model.

Validation controls

Provide a full range of built-in form validation capability. Chapter 8 discusses validation
controls.

User controls and custom controls

Controls created by the developer. Chapter 14 discusses user and custom controls.

HTML server controls and ASP controls both offer significant improvements over the old-style HTML
controls. These include:

The ability to automatically maintain state, discussed in detail in Chapter 6.

ASP.NET detects the level of the target browser. Uplevel DHTML browsers are sent script for
client-side processing. On downlevel standard browsers, all processing is done on the server.
The appropriate HTML is generated for each browser.

Use of a compiled language instead of interpreted script, resulting in better performance.

The ability to bind HTML server controls and ASP controls to a data source (as discussed in
Chapter 9).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.1 HTML Server Controls

Normal HTML controls such as <h1>, <a>, and <input> are not processed by the server, but are sent

directly to the browser for display. Standard HTML controls can be exposed to the server and made
available for server-side processing by turning them into HTML server controls. Server-side
processing allows for data binding, programmatic response to events, and the ability to use a fully
featured and compiled coding language rather than a scripting language.

To convert an HTML control to an HTML server control, simply add the attribute runat="server". In
addition, you will probably want to add an id attribute, so that contents of the control can be

accessed and controlled programmatically. For example, start with a simple input control:

<input type="text" size="40">

You can convert it to an HTML server control by adding the id and runat attributes, as follows:

<input type="text" id="BookTitle" size="40" runat="server">

There are several benefits to converting an HTML control to an HTML server control:

Once a control is converted to a server control, it can be referred to in code. For example, in
Example 4-1 and Example 4-2 you can read or set the value of the text box by referring to
lblBookName.Value or txtBookName.Value.

Server controls retain state during round trips to the server (more on this in Chapter 6).

Server controls generate events, which your code can then handle.

Server controls are aware of the client browser level and generate HTML appropriate to the
target browser.

Example 4-1 and Example 4-2 demonstrate the use of HTML server controls in C# and VB.NET,
respectively. In these listings, a text box is used to prompt the user to enter a book name. When the
Button control is clicked, it fires an event that fills a second text box with the contents of the first text
box and also changes its size.

Example 4-1. Code listing for csHTMLServerControls.aspx

<%@ Page Language="C#" %>
<html>

<script runat="server">
 void btnBookName_Click(Object Source, EventArgs E)
 {
 lblBookName.Value = txtBookName.Value;
 lblBookName.Size = 80;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</script>

 <body>
 <form runat=server>

 <h1>HTML Server Controls</h1>

 <h2>The date and time is <% =DateTime.Now.ToString() %>.</h2>

 <h2>HTML Server Control</h2>
 Book Name:
 <input type="text"
 id="txtBookName"
 size="40"
 value="Enter book name."
 runat="server" />

 <input type="submit"
 id="btnBookName"
 value="Book Name"
 onServerClick="btnBookName_Click"
 runat="server" />

 <input type="text" id="lblBookName" size="40" runat="server" />

 </form>
 </body>
</html>

Example 4-2. Code listing for vbHTMLServerControls.aspx

<%@ Page Language="VB" %>
<html>

<script runat="server">
 Sub btnBookName_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)

 lblBookName.Value = txtBookName.Value
 lblBookName.Size = 80
 End Sub
</script>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <body>
 <form runat=server>

 <h1>HTML Server Controls</h1>

 <h2>The date and time is <% =DateTime.Now() %>.</h2>

 <h2>HTML Server Control</h2>
 Book Name:
 <input type=text
 id="txtBookName"
 size="40"
 value="Enter book name."
 runat="server" />

 <input type="submit"
 id="btnBookName"
 value="Book Name"
 onServerClick="btnBookName_Click"
 runat="server" />

 <input type="text" id="lblBookName" size="40" runat="server"/>

 </form>
 </body>
</html>

Consider the very first line of code in both listings:

<%@ Page Language="C#" %>
<%@ Page Language="VB" %>

This is a page directive, which tells the compiler that any script found in this page is written using the
C# or VB language, respectively. Immediately following the opening <HTML> tag in Example 4-1 and

Example 4-2 is a script block, written in C# or VB.NET, respectively, as indicated by the page
directive. It contains a routine called btnBookName_Click, which is the event handler for the Click
event of the btnBookName button. This method takes two parameters and returns nothing (as
indicated by the void keyword in C# and the Sub keyword in VB.NET). These parameters are typical

for all event handler methods in ASP.NET, as discussed in Chapter 3. In C#, the parameter list is of
the form:

(Object Source, EventArgs E)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB.NET, the parameter list is of the form:

(ByVal Sender as Object, ByVal e as EventArgs)

Note that within the body of the routine, the HTML server controls are referred to by their id
attribute, for example lblBookName and txtBookName.

The Submit button is shown here:

<input type="submit"

This is prototypical of converting HTML controls to server controls. It has an id attribute and the
runat attribute:

id="btnBookName"
runat="server"

Rather than the traditional onClick attribute used in conventional HTML or ASP pages, the Submit
button has an onServerClick attribute, telling the server what function to call when the Click event

occurs:

onServerClick="btnBookName_Click"

If you want the control to handle the event on the client side, you should use
the onClick attribute. In this case, you must provide client-side scripting to
handle the event. You cannot have both an onClick and onServerClick

attribute for the same control.

Figure 4-1 shows the page that results from running the code in either Example 4-1 or Example 4-2,
filling in a book name, and clicking the Book Name button.

Figure 4-1. Output from Example 4-1 or Example 4-2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-3 and Example 4-4 show both input controls and HTML server container controls in C#
and VB.NET, respectively, and demonstrate the use of the InnerHtml property.

Example 4-3. Input and container HTML server controls using C#,
csHTMLServerControls2.aspx

<%@ Page Language="C#" %>

<script runat="server">
 void Page_Load(Object Source, EventArgs E)
 {
 string strHtml = "";
 strHtml += txtName.Value + "
";
 strHtml += txtStreet.Value + "
";
 strHtml += txtCity.Value + ", " + txtState.Value;
 tdInnerHtml.InnerHtml = strHtml;
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>HTML Server Controls</h1>
 <h2>InnerHTML</h2>

 <table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tr>
 <td>Name:</td>
 <td>
 <input type="text"
 id="txtName"
 runat="server"/>
 </td>
 </tr>
 <tr>
 <td>Street:</td>
 <td>
 <input type="text"
 id="txtStreet"
 runat="server"/>
 </td>
 </tr>
 <tr>
 <td>City:</td>
 <td>
 <input type="text"
 id="txtCity"
 runat="server"/>
 </td>
 </tr>
 <tr>
 <td>State:</td>
 <td>
 <input type="text"
 id="txtState"
 runat="server"/>
 </td>
 </tr>
 <tr>
 <td></td>
 <td id="tdInnerHtml" runat="server" />
 </tr>
 </table>

 <input type="submit" value="Do It!">

 </form>
 </body>
</html>

Example 4-4. Input and container HTML server controls using VB.NET,
vbHTMLServerControls2.aspx

<%@ Page Language="VB" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ByVal e as EventArgs)
 dim strHtml as string
 strHtml = txtName.Value & "
"
 strHtml = strHtml & txtStreet.Value & "
"
 strHtml = strHtml & txtCity.Value & ", " & txtState.Value
 tdInnerHtml.InnerHtml = strHtml
 end sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>HTML Server Controls</h1>
 <h2>InnerHTML</h2>

 <table>
 <tr>
 <td>Name:</td>
 <td>
 <input type="text"
 id="txtName"
 runat="server"/>
 </td>
 </tr>
 <tr>
 <td>Street:</td>
 <td>
 <input type="text"
 id="txtStreet"
 runat="server"/>
 </td>
 </tr>
 <tr>
 <td>City:</td>
 <td>
 <input type="text"
 id="txtCity"
 runat="server"/>
 </td>
 </tr>
 <tr>
 <td>State:</td>
 <td>
 <input type="text"
 id="txtState"
 runat="server"/>
 </td>
 </tr>
 <tr>
 <td></td>
 <td id="tdInnerHtml" runat="server" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </tr>
 </table>

 <input type="submit" value="Do It!">

 </form>
 </body>
</html>

In Example 4-3 and Example 4-4, the two types of input controls are text fields and a button. Both
happen to use the <input> HTML tag, although as you can see in Table 4-1, there are other input

controls that do not use those tags.

Table 4-1. HTML tags and their categories

HTML tag Category HTML server control name Description

<input> Input

HtmlInputButton
HtmlInputCheckBox HtmlInputFile
HtmlInputHidden HtmlInputImage
HtmlInputRadioButton
HtmlInputText

<input type=button | submit | reset>
<input type=checkbox> <input
type=file> <input type=hidden>
<input type=image> <input
type=radio> <input type=text |
password>

 Input HtmlImage Image

<textarea> Input HtmlTextArea Multiline text entry

<a> Container HtmlAnchor Anchor

<button> Container HtmlButton
Customizable output format, usable
with IE 4.0 and above browsers

<form> Container HtmlForm
Maximum of one HtmlForm control
per page; default method is POST

<table> Container HtmlTable
Table, which can contain rows, which
can contain cells

<td> <th> Container HtmlTableCell Table cell Table header cell

<tr> Container HtmlTableRow Table row

<select> Container HtmlSelect Pull-down menu of choices

 Container HtmlGenericControl Any HTML control not listed here

The table, which is a container control, is used in these examples primarily as a means of controlling
the layout of the other controls on the page. It has not been converted to an HTML server control,
since it does not have the runat="server" attribute. One of the cells, however, has been converted
for server-side processing by the inclusion of that attribute. In addition, that cell has an id attribute

so that it can be referred to programmatically in the Page_Load routine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Looking at the Page_Load routine, which is executed every time the page is posted, (that is, every
time the Do It! button is clicked), an HTML string is constructed containing the values of the input
text fields, interspersed with some HTML to control line breaks. This string is then assigned to the
InnerHtml property of the table cell with the tdInnerHtml id attribute:

tdInnerHtml.InnerHtml = strHtml

If the InnerText property is used instead of the InnerHtml property, then the resulting page would
display the actual < and > symbols. As written, however, the resulting page will look something like

Figure 4-2, after values are entered in the text fields and the button is clicked.

Figure 4-2. Output from Example 4-3 or 4-4

Table 4-1 lists HTML tags and the category to which they belong.

You never actually use the name of HTML server control shown in Table 4-1 in
any of your code. What goes in your HTML code is the HTML tag with the
addition of the runat="server" attribute and usually with the addition of an id

attribute.

Actually, any HTML control can be converted to server-side processing with the addition of the
runat="server" attribute. If the control is not listed in Table 4-1, then it will be treated as an

HtmlGenericControl. As with any other container control, this allows programmatic access to the
control's inner HTML.

All the HTML server controls derive from the System.Web.UI.Control class and are contained in the
System.Web.UI.HTMLControls namespace. Figure 4-3 shows the HTML server control hierarchy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-3. The HTML server control object hierarchy

Well-Formed HTML

Well-formed HTML (sometimes called XHTML) conforms to the rules for XML. Many web
browsers are very forgiving, and ill-formed HTML will work fine, but the world is moving
toward a stricter syntax in order to increase the robustness of the Web. Well-formed code
has a huge benefit for authoring tools and is worthwhile when hand coding as well, since it
decreases confusion and ambiguity.

Among the rules of well-formed HTML are these:

Close all tags

Several HTML tags, such as <p>, <tr>, and <td>, are routinely left unclosed. In
well-formed HTML, there will always be a closing tag, such as </td>. Many tags,
such as
, <hr>, <input>, and , can be made self-closing by putting the

closing forward slash within the tag itself. This makes it well-formed. For example:
<input type="submit"
id="btnBookName"
value="Book Name"
onServerClick="btnBookName_Click"
runat="server" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No overlapping tags

Some browsers are tolerant of overlapping tags, but well-formed HTML requires that
tags do not overlap. For example, consider the overlapping tags in the following line
of HTML:

This is <i>the yearfor the Red Sox.</i>

This can instead be expressed as:

This is <i>the yearfor the Red Sox.</i>

Case-sensitivity

Like all HTML and ASP pages, ASP.NET is generally not case-sensitive. The one
glaring exception is that C#, when it is used, is always case-sensitive. That said, it
should be noted that script components are actually XML files, and as such should
follow XML Version 1.0 conventions. According to these conventions, element types
and attributes are case-sensitive. This will usually only matter if you use an XML
editing tool to work with the script components or if you are creating an XML file
(such as an advertisement file for use with the AdRotator control, described in
Chapter 5). However, it is good practice to follow the XML guidelines. Element types
and attributes are usually lowercase, except multipart names (such as
onServerClick), which use camel notation, with initial lowercase. For other HTML
tags, being well-formed requires that start and end tags have matching case. This
book will generally use lowercase for all HTML tags.

Quotation marks

In well-formed HTML, all attributes are enclosed in quotation marks.
Single root

The top-level element in a page must be <html>. Remember to close it at the end
with </html>.

Reserved characters

There are only five built-in character entities in XML. They are:
< <
> >
& &
" "
' '

If any of these characters is used in script, then it must be "escaped" by using the above
character entity, or by enclosing the entire script block in a CDATA section. (CDATA is an
XML type.)

HTML controls are divided into two categories: input and container. HTML input controls do
not require a closing tag (although to be well-formed, they should be made self-closing
with a trailing /) and have Name, Value, and Type attributes, which may be accessed and

controlled programmatically.

HTML container controls are required to have either a trailing / or a closing tag. They do
not have Name, Value, or Type attributes. Instead, the content found between opening and

closing tags may be accessed programmatically using the InnerHtml or InnerText
property. The difference between these two properties is that InnerText provides

http://lib.ommolketab.ir
http://lib.ommolketab.ir

automatic HTML encoding and decoding of special characters, such as < or >. If the

InnerHtml property is used, these characters are interpreted as being part of the HTML
and will not display in the final output.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.2 ASP (Web Server) Controls

The third type of control is the ASP control , also known as the ASP server control or the web server control .
In this book, we will refer to it as an ASP control, since the syntax used to implement it is of the form:

<asp:controlType
 id="ControlID"
 runat="server" />

Here, the control tag always begins with asp :. ASP controls offer a more consistent programming model
than the analogous HTML server control. For example, in HTML, the input tag (<input>) is used for buttons,

single-line text fields, checkboxes, hidden fields, and passwords. For multiline text fields, you must use the
<textarea> tag. With ASP controls, each different type of functionality corresponds to a specific control. For

example, all text is entered using the TextBox control; the number of lines is specified using a property. In
fact, for ASP controls in general, all the attributes correspond to properties of the control.

The ASP controls also include additional, rich controls, such as the Calendar and AdRotator.

Example 4-5 and Example 4-6 demonstrate the use of ASP controls in a web page analogous to the HTML
server controls of Example 4-1 and Example 4-2 . They show the use of the TextBox and Button ASP
controls, rather than of the HTML controls.

Example 4-5. Code listing for csASPServerControls1.aspx

<%@ Page Language="C#" %>
<html>

<script runat="server">
 void btnBookName_Click(Object Source, EventArgs E)
 {
 lblBookName.Text = txtBookName.Text;
 }
</script>

 <body>
 <form runat="server">

 <h1>ASP Controls</h1>

 <h2>The date and time is <% =DateTime.Now.ToString() %>.</h2>

 <h2>ASP Control</h2>
 Book Name:
 <asp:TextBox

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 id="txtBookName"
 text="Enter book name."
 runat="server"
 width="250px" />

 <asp:Button
 id="btnBookName"
 text="Book Name"
 onClick="btnBookName_Click"
 runat="server" />

 <asp:Label id="lblBookName" text="" runat="server"/>

 </form>
 </body>
</html>

Example 4-6. Code listing for vbASPServerControls1.aspx

<%@ Page Language="VB" %>
<html>

<script runat="server">
 sub btnBookName_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblBookName.Text = txtBookName.Text
 end sub
</script>

 <body>
 <form runat="server">

 <h1>ASP Controls</h1>

 <h2>The date and time is <% =DateTime.Now.ToString() %>.</h2>

 <h2>ASP Control</h2>
 Book Name:
 <asp:TextBox
 id="txtBookName"
 text="Enter book name."
 runat="server"
 width="250px" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:Button
 id="btnBookName"
 text="Book Name"
 onClick="btnBookName_Click"
 runat="server" />

 <asp:Label id="lblBookName" text="" runat="server"/>

 </form>
 </body>
</html>

The immediate difference between HTML server controls and ASP controls is how the control is referenced in
code. In addition to the obvious fact that the controls have different names, the ASP controls are preceded
by the ASP namespace. This is indicated by the asp : in front of each control name. For example:

<asp:TextBox

Another difference between the HTML server controls and the ASP controls is the slightly different attribute
name used for the displayed text. In many HTML controls (including <input> tags), value is used to specify
the text that will be displayed by the control. In ASP controls, text is always the attribute name used to

specify the text that will be displayed.

In Example 4-5 and Example 4-6 , this difference is seen in all three ASP controls used in the page, as well
as in the btnBookName method, which makes reference to the text attribute for two of the controls.

As you will see later in this chapter and in Chapter 5 , ASP controls offer a set of attributes for each control
that is more consistent than the attributes available to HTML server controls. In actuality, the attributes are
not really attributes, but rather properties of the ASP control, and they are programmatically accessible.

Just as with the HTML server controls, ASP controls have an attribute called onClick , which defines the

event handler for the Click event. In the examples, it points to the method btnBookName_Click, defined in
the script block at the top of the code.

Figure 4-4 shows the page that results from Example 4-5 and Example 4-6 .

Figure 4-4. Output from Example 4-5 or Example 4-6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2.1 ASP.NET and Browsers

The browser never sees the ASP control. The server processes the ASP control and sends standard HTML to
the browser.

ASP.NET considers browsers to be either uplevel or downlevel . Uplevel browsers support script Versions 1.2
(ECMA Script, JavaScript, JScript) and HTML 4.0; typical uplevel browsers would include Internet Explorer 4.0
and later releases. Downlevel browsers, on the other hand, support only HTML 3.2.

ASP.NET can tell you which browser is being used to display the page. This information is made available via
the HttpRequest.Browser property. HttpRequest.Browser returns a HttpBrowserCapabilities object whose
many properties include a number of Booleans, such as whether the browser supports cookies, frames, and
so forth.

You will find that you don't often need to check the HttpBrowserCapabilities object because the server will
automatically convert your HTML to reflect the capabilities of the client browser. For example, validation
controls (considered in Chapter 8) can be used to validate customer data entry. If the user's browser
supports client-side JavaScript, the validation will happen on the client. However, if the browser does not
support client-side scripting, then the validation is done server-side.

Custom programming to support various browsers has been incorporated into the ASP.NET framework,
freeing you to focus on the larger task at hand. From within your browser, view the source for the web page
displayed in Figure 4-4 , and originally coded in Example 4-5 . This source is shown in Example 4-7 . (The
HTML output produced by Example 4-6 is comparable.) Notice that there are no ASP controls, but that all the
controls have been converted to traditional HTML tags. Also, note that a hidden field with the name "_
_VIEWSTATE" has been inserted into the output. This is how ASP.NET maintains the state of the controls.
When a page is submitted to the server and then redisplayed, the controls are not reset to their default
values. Chapter 6 discusses state .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-7. Output HTML from csASPServerControls.asx

<html>

 <body>
 <form name="ctrl2" method="post" action="aspservercontrols.aspx" id="ctrl2">
<input type="hidden" name="_ _VIEWSTATE"
value="dDwtMTA4MDU5NDMzODt0PDtsPDE8Mj47PjtsPHQ8O2w8MTwwPjsxPDI+Oz47bDx0PHA8cDxsPFRleHQ7Pj
tsPFByb2dyYW1taW5nIEFTUC5ORVQ7Pj47Pjs7Pjt0PHA8cDxsPFRleHQ7PjtsPFByb2dyYW1taW5nIEFTUC5ORVQ
7Pj47Pjs7Pjs+Pjs+Pjs+yvuEznOtPM0uYYSNQ+dcGDUzI3M=" />

 <h1>ASP Controls</h1>

 <h2>The date and time is 11/19/2001 1:58:16 PM.</h2>

 <h2>ASP Control</h2>
 Book Name:
 <input name="txtBookName" type="text" value="Programming ASP.NET" id="txtBookName"
size="40" />

 <input type="submit" name="btnBookName" value="Book Name" id="btnBookName" />

 Programming ASP.NET

 </form>
 </body>
</html>

4.2.2 ASP Control Hierarchy

All the ASP controls except for the Repeater (discussed in Chapter 1 3) derive from the WebControl class.
The WebControl class and the Repeater class both derive from System.Web.UI.Control, which itself derives
from System.Object. The Repeater class, the WebControl class, and all the controls that derive from
WebControl are in the System.Web.UI.WebControls namespace. These relationships are shown in Figure 4-5
.

All of the properties, events, and methods of WebControl and System.Web.UI.Control are inherited by the
ASP controls. Table 4-2 lists many of the commonly used properties inherited by all the ASP controls. Where
applicable, default values are indicated.

Table 4-2. Properties inherited by all ASP controls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name BCL Type Get Set Values Description

AccessKey String x x
Single-
character
string.

Pressing the Alt key in combination with this
value moves focus to the control.

BackColor Color x x

Azure , Green
, Blue , and

so on
Background color.

BorderColor Color x x

Fuchsia ,
Aqua , Coral ,

and so on
Border color.

BorderStyle BorderStyle x x

Dashed ,
Dotted ,
Double ,
NotSet , and

so on

Border style. Default is NotSet .

BorderWidth Unit x x nn nnpt

Width of the border. If of the form nn , where nn

is an integer, then in units of pixels. If of the
form nnpt , where nn is an integer, then in units

of points.

CausesValidation Boolean x x true , false
Indicates if entering control causes validation for
controls that require validation. Default is true .

CssClass String x x CSS class.

Enabled Boolean x x true , false
If disabled, control is visible but grayed out and
not operative. Contents are still selectable for
copy and paste. Default is true .

Font FontInfo x x See Table 5-1 in Chapter 5 .

ForeColor Color x x

Lavender ,
LightBlue
,Blue , and so

on

Foreground color.

Height Unit x x nn nn %

If of the form nn , where nn is an integer, then

in units of pixels. If of the form nn % , then it is a

percentage of the height of the container. For
downlevel browsers, will not render for Label,
HyperLink, LinkButton, any validator controls, or
for CheckBoxList, RadioButtonList, or DataList
when their RepeatLayout property is Flow.

ID String x x Programmatic identifier for the control.

ToolTip String x x
Text string displayed when the mouse hovers
over the control; not rendered in downlevel
browsers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name BCL Type Get Set Values Description

Visible Boolean x x true , false
If false , then control is not rendered; the
default is true .

Width Unit x x nn nn %

If of the form nn , where nn is an integer, then

in units of pixels. If of the form nn % , where nn

is an integer, then it is a percentage of the width
of the container. For downlevel browsers, will not
render for Label, HyperLink, LinkButton, any
validator controls, or for CheckBoxList,
RadioButtonList, or DataList when their
RepeatLayout property is Flow.

4.2.3 Comparing HTML and ASP Server Controls

The two types of server controls (HTML server controls and ASP controls) have nearly the same functionality.
The advantages of each type are summarized in Table 4-3 .

Figure 4-5. Relationships of controls in the System.Web.UI.WebControls
namespace

Visible Boolean x x true , false
If false , then control is not rendered; the
default is true .

Width Unit x x nn nn %

If of the form nn , where nn is an integer, then

in units of pixels. If of the form nn % , where nn

is an integer, then it is a percentage of the width
of the container. For downlevel browsers, will not
render for Label, HyperLink, LinkButton, any
validator controls, or for CheckBoxList,
RadioButtonList, or DataList when their
RepeatLayout property is Flow.

4.2.3 Comparing HTML and ASP Server Controls

The two types of server controls (HTML server controls and ASP controls) have nearly the same functionality.
The advantages of each type are summarized in Table 4-3 .

Figure 4-5. Relationships of controls in the System.Web.UI.WebControls
namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 4-3. Advantages of HTML server controls and ASP controls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type of control Advantages

Web server controls
(ASP controls)

Offer an event-driven programming model

Provide richer controls, such as calendar and ad rotator

Support event bubbling in nested controls

Automatically detect client browser level and generate correct HTML for both
uplevel (HTML 4.0) and downlevel (HTML 3.2) browsers

Typed object model provides type safety and reduces programming errors

HTML server controls

Provide transition from existing HTML pages

Offer a familiar HTML-like object model

Can be supported by any HTML design environment, since they map to HTML
elements

Allow controls that will also interact with client script

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 5. ASP Control Details
Chapter 4 briefly discussed the different types of controls available in ASP.NET. It went into some
detail on HTML server controls and gave an introductory example of ASP server controls. While the
latter are sometimes also referred to as web server controls, in the context of this book we call them,
simply, ASP controls to reflect the syntax used to implement them:

<asp:controlType
 id="ControlID"
 runat="server" />

Notice that the control tag always begins with asp:.

This chapter provides a wealth of detail about ASP controls. It discusses the features and properties
common to many of these controls and surveys the specific details of all the ASP controls included
with the .NET Framework.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.1 The Basics

In this section, you will create a simple web page, in either C# or VB.NET, in which you will explore
many of the properties, events, and methods common to all ASP controls. Example 5-1 shows
csASPServerControlBasics1.aspx, the first iteration in C#, and Example 5-2 shows
vbASPServerControlBasics1.aspx, the equivalent file in VB.NET. These two examples demonstrate a
Label control, an event handler, and properties being set for a control.

Example 5-1. Basic web page in C#, csASPServerControlBasics1.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void lblTime_Init(Object Source, EventArgs E)
 {
 lblTime.Font.Name = "Verdana";
 lblTime.Font.Size = 20;
 lblTime.Font.Underline = true;
 lblTime.Font.Bold = true;
 lblTime.Font.Italic = true;
 lblTime.Font.Overline = true;
 lblTime.Font.Strikeout = true;
 lblTime.Text = DateTime.Now.ToString()
 + ". Font Name: "
 + lblTime.Font.Name;
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Basics 1</h2>

 <asp:label
 id="lblTime"
 onInit="lblTime_Init"
 runat="server" />
 </form>
 </body>
</html>

Example 5-2. Basic web page in VB.NET,
vbASPServerControlBasics1.aspx

<%@ Page Language="VB" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<script runat="server">
 Sub lblTime_Init(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblTime.Font.Name = "Verdana"
 lblTime.Font.Size = new FontUnit(20)
 lblTime.Font.Underline = true
 lblTime.Font.Bold = true
 lblTime.Font.Italic = true
 lblTime.Font.Overline = true
 lblTime.Font.Strikeout = true
 lblTime.Text = DateTime.Now() _
 & ". Font Name: " _
 & lblTime.Font.Name
 End Sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Basics 1</h2>

 <asp:label
 id="lblTime"
 onInit="lblTime_Init"
 runat="server" />
 </form>
 </body>
</html>

This is a very simple web page with static text and an ASP Label control. The Label control has been
assigned an id of lblTime, which allows the control to be referred to elsewhere in the code.

Of more interest is the onInit attribute, which defines an event handler for the Init event. The Init

event, a member of the Control class, is called when a control is initialized. It is the first step in each
control's lifecycle. All WebControls, since they are derived from Control, have an Init event.

The Init event in Example 5-1 and Example 5-2 is handled by a method called lblTime_Init, defined in
the code block at the top of the .aspx file. The lblTime_Init method sets several properties of the
label's font (Name, Size, and so on) and sets the value of the Text property. Notice that the Text
property value is a concatenation of the current date and time, a literal string, and the name of the
font used. Because the DateTime is a DateTime object, it must be converted to a string in the C#
code. In VB.NET, the conversion is implicit (and occurs regardless of the VB Option Strict setting).
Also notice the syntax required for setting the font size in VB.NET versus the syntax in C#. (Fonts
and their properties will be covered in detail shortly.)

The results, shown in Figure 5-1, are not very pretty but are instructive. The figure shows how
several text attributes-bold, italic, overline, underline, and strikeout-can be applied to a label.

Figure 5-1. Output from Example 5-1 or Example 5-2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fonts deserve special mention. Fonts contain subproperties , which are listed in Table 5-1. When
used in HTML, subproperties are accessed declaratively in code in the form:

Font-Italic

When used in code blocks, subproperties are accessed programmatically in the form:

Font.Italic

Table 5-1. Subproperties of the Font object

SubProperty Type Values Description

Bold Boolean true, false
Makes the text bold; the default
is false.

Italic Boolean true, false
Italicizes the text; the default is
false.

Name String Verdana, Courier, and so on.

Primary font name.

Automatically updates first item
in Names property.

Font must be installed and
available to the client browser.

Names String Times, and so on.

Ordered array of font names.
Stores list of available font
names.

Name property automatically
updated with first item in array.

Strikeout Boolean true, false
Puts a line through the text; the
default is false.

Underline Boolean true, false
Puts a line under the text; the
default is false.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SubProperty Type Values Description

Overline Boolean true, false

Puts a line over the text; the
default is false.

Will not render on downlevel
browsers.

Size
FontUnit or
String

Small, Smaller, Large, Larger, or

an integer representing point size

Uses named sizes or integer point
size.

Named sizes only work
declaratively as control
attributes.

If you use points rather than named sizes for the font size, then it is worth noting that C# and
VB.NET have somewhat different syntax. VB.NET requires the explicit instantiation of a FontUnit
object, as in:

lblTime.Font.Size = New FontUnit(20)

The C# version of FontUnit provides an implicit conversion operator that takes an int and creates a
FontUnit. Thus you can write:

lblTime.Font.Size = 20;

Now create a new .aspx file. To this web page, add a TextBox, a Label, and a Button, along with an
event handler for the Button.Click event. Example 5-3 and Example 5-4 show the code in C# and
VB.NET, respectively. (Note that the C# code and the VB.NET code are very similar; there are
differences in the Page directive and the syntax for defining methods.) When you enter something in

the TextBox and click the Button, the contents of the TextBox are assigned to the Label.

Example 5-3. Another basic web page in C#,
csASPServerControlBasics2.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void btnBookName_Click(Object Source, EventArgs E)
 {
 lblBookName.Text = txtBookName.Text;
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Basics 2</h2>

 Book Name:
 <asp:textBox

Overline Boolean true, false

Puts a line over the text; the
default is false.

Will not render on downlevel
browsers.

Size
FontUnit or
String

Small, Smaller, Large, Larger, or

an integer representing point size

Uses named sizes or integer point
size.

Named sizes only work
declaratively as control
attributes.

If you use points rather than named sizes for the font size, then it is worth noting that C# and
VB.NET have somewhat different syntax. VB.NET requires the explicit instantiation of a FontUnit
object, as in:

lblTime.Font.Size = New FontUnit(20)

The C# version of FontUnit provides an implicit conversion operator that takes an int and creates a
FontUnit. Thus you can write:

lblTime.Font.Size = 20;

Now create a new .aspx file. To this web page, add a TextBox, a Label, and a Button, along with an
event handler for the Button.Click event. Example 5-3 and Example 5-4 show the code in C# and
VB.NET, respectively. (Note that the C# code and the VB.NET code are very similar; there are
differences in the Page directive and the syntax for defining methods.) When you enter something in

the TextBox and click the Button, the contents of the TextBox are assigned to the Label.

Example 5-3. Another basic web page in C#,
csASPServerControlBasics2.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void btnBookName_Click(Object Source, EventArgs E)
 {
 lblBookName.Text = txtBookName.Text;
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Basics 2</h2>

 Book Name:
 <asp:textBox

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 id="txtBookName"
 width="50%"
 maxlength="50"
 text="Enter book name."
 enabled= "true"
 readonly="false"
 toolTip="Enter book name here."
 runat="server" />

 <asp:button
 id="btnBookName"
 text="Book Name"
 onClick="btnBookName_Click"
 enabled= "true"
 visible="true"
 toolTip="Click here to post the book name."
 runat="server" />

 You entered:
 <asp:label
 id="lblBookName"
 Font-Name="Courier"
 Font-Bold= "true"
 Font-Size="Large"
 runat="server"/>
 </form>
 </body>
</html>

Example 5-4. Another basic web page in VB.NET,
vbASPServerControlBasics2.aspx

<%@ Page Language="VB" %>
<script runat="server">
 sub btnBookName_Click(Sender as Object, _
 e as EventArgs)
 lblBookName.Text = txtBookName.Text
 End Sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Basics 2</h2>

 Book Name:
 <asp:textBox
 id="txtBookName"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 width="50%"
 maxlength="50"
 text="Enter book name."
 enabled= "true"
 readonly="false"
 toolTip="Enter book name here."
 runat="server" />

 <asp:button
 id="btnBookName"
 text="Book Name"
 onClick="btnBookName_Click"
 enabled= "true"
 visible="true"
 toolTip="Click here to post the book name."
 runat="server" />

 You entered:
 <asp:label
 id="lblBookName"
 Font-Name="Courier"
 Font-Bold= "true"
 Font-Size="Large"
 runat="server"/>
 </form>
 </body>
</html>

Three controls (a TextBox, a Button, and a Label control) and an additional event handler method
have been added. Both the TextBox and the Button have several properties set in addition to their id
and runat attributes.

Figure 5-2 shows the results of running the code contained in Example 5-3 or Example 5-4.

Figure 5-2. Output from Example 5-3 or Example 5-4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.2 Label Control

A Label control is used to display text. The Label control's Text property contains the text string to be
displayed. Note that Text is the only Label control property that is not inherited from the WebControl
class. The Label control has no events or methods that are not derived from WebControl.

You have already seen the Label control used in the previous code examples in this chapter. The Text
and Font properties of the Label control can be set programmatically (as shown in Example 5-1 and
Example 5-2) or declaratively (as demonstrated in Example 5-3 and Example 5-4).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.3 TextBox Control

The TextBox control can be used for both user input and read-only text display. It can be configured
to be any one of the following: single-line, multiline, or to accept passwords. If multiline, it
automatically wraps, unless the Wrap property is set to false. The text it contains can exceed the

length of the control displayed on the page.

Table 5-2 lists many of the common properties specific to the TextBox control. If any of these
attributes are omitted from the control, then the default value will apply.

Table 5-2. Some properties specific to the TextBox control

Name Type Get Set Values Description

AutoPostBack Boolean x x true, false

Determines if automatic postback to
server will occur if user changes contents
of control. If false, postback to server will

not occur until the page is posted, either
by a button or another control with
AutoPostBack set to true. Default is
false.

Columns Int32 x x
0, 1, 2, and

so on
Width of the text box in characters.
Default is 0.

MaxLength Int32 x x
0, 1, 2, and

so on

Maximum number of characters allowed.

If MaxLength is greater than Columns,
then only a portion of the string will
display without using the home, end, or
arrow keys.

Its default value is 0, which does not

impose a limit on the number of
characters entered into the text box.

ReadOnly Boolean x x true, false
If true, content cannot be changed by
user. Default is false, meaning content

can still be changed programmatically.

Rows Int32 x x
0, 1, 2, and

so on

Number of lines of text in a multiline text
box. The default is 0, which imposes no

limit on the number of lines.

Text String x x Content of the TextBox.

SingleLine, the default value, displays a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Type Get Set Values Description

TextMode TextBoxMode x x

SingleLine,
MultiLine,
Password

SingleLine, the default value, displays a

single line of text.

MultiLine allows multiple lines of text

and displays a vertical scroll bar, even for
Rows = 1. The text wraps automatically to
fit the width of the box. The Enter key
enters a CR/LF. The mouse or tab key
causes focus to leave the box and initiates
postback if AutoPostBack is true.

Password displays content in asterisks,

then clears the text box on posting.

The value is not case-sensitive.

Wrap Boolean x x true, false

Indicates if text within a multiline text box
should wrap. If false, then the text box

will have a horizontal scrollbar. Default is
true.

The TextBox control raises the TextChanged event, which is handled by the OnTextChanged event
handler. This event handler is passed a standard EventArgs argument.

[Team LiB]

TextMode TextBoxMode x x

SingleLine,
MultiLine,
Password

SingleLine, the default value, displays a

single line of text.

MultiLine allows multiple lines of text

and displays a vertical scroll bar, even for
Rows = 1. The text wraps automatically to
fit the width of the box. The Enter key
enters a CR/LF. The mouse or tab key
causes focus to leave the box and initiates
postback if AutoPostBack is true.

Password displays content in asterisks,

then clears the text box on posting.

The value is not case-sensitive.

Wrap Boolean x x true, false

Indicates if text within a multiline text box
should wrap. If false, then the text box

will have a horizontal scrollbar. Default is
true.

The TextBox control raises the TextChanged event, which is handled by the OnTextChanged event
handler. This event handler is passed a standard EventArgs argument.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.4 Button Controls

Buttons are controls that post the form back to the server, enabling server-side processing to commence.
There are three types of button controls:

Button
LinkButton
ImageButton

In addition to the properties, methods, and events inherited along with all the other ASP controls, all three
button types have the following two events:

Click

Raised when control is clicked and no command name is associated with the button (that is, no value
has been assigned to the Button control's CommandName property). The method is passed an
argument of type EventArgs.

Command

Raised when the control is clicked and a command name is associated with the button (that is, a
command name has been assigned to the Button control's CommandName property). The event is
passed an argument of type CommandEventArgs, which has the following two members:

CommandName

The name of the command
CommandArgument

An optional argument for the command

The code in Example 5-5 and Example 5-6 creates a web page containing three buttons, one of each type.
Each button performs the same task: transferring control to another web page. Example 5-5 shows the C#
code, and Example 5-6 shows the same code in VB.NET.

In order for the code in Example 5-5 and Example 5-6 to work correctly, you must
have a target web page to link to. This can be any valid .htm , .asp or .aspx file. In
these examples, the target page is hard-coded as TargetPage.aspx , located in the
ProgAspNet virtual directory. In addition, you will need an image file for the
ImageButton. These examples use a file called "Dan at vernal pool.jpg," also located
in the ProgAspNet virtual directory, but you can use any .jpg file you want.

Example 5-5. Buttons in C#, csASPButtons.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void btnLink_Click(Object Source, EventArgs E)
 {
 Response.Redirect("//localhost/progaspnet/TargetPage.aspx");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 void imgLink_Click(Object Source, ImageClickEventArgs E)
 {
 Response.Redirect("//localhost/progaspnet/TargetPage.aspx");
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Buttons</h2>

 <asp:button
 id="btnLink"
 text="Link to Target Page"
 onClick="btnLink_Click"
 toolTip="Click here to go to Target Page."
 runat="server" />

 <asp:imageButton
 id="imgLink"
 imageURL="Dan at vernal pool.jpg "
 alternateText="Link to Target Page"
 onClick="imgLink_Click"
 toolTip="Click here to go to Target Page."
 runat="server" />

 <asp:linkButton
 id="lnkLink"
 text="LinkButton to Target Page"
 onClick="btnLink_Click"
 Font-Name="Comic Sans MS Bold"
 Font-Size="16pt"
 toolTip="Click here to go to Target Page."
 runat="server" />
 </form>
 </body>
</html>

Example 5-6. Buttons in VB.NET, vbASPButtons.aspx code

<%@ Page Language="VB" %>
<script runat="server">
 Sub btnLink_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Redirect("//localhost/progaspnet/TargetPage.aspx")
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Sub imgLink_Click(ByVal Sender as Object, _
 ByVal e as ImageClickEventArgs)
 Response.Redirect("//localhost/progaspnet/TargetPage.aspx")
 End Sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Buttons</h2>

 <asp:button
 id="btnLink"
 text="Link to Target Page"
 onClick="btnLink_Click"
 toolTip="Click here to go to Target Page."
 runat="server" />

 <asp:imageButton
 id="imgLink"
 imageURL=" Dan at vernal pool.jpg "
 alternateText="Link to Target Page"
 onClick="imgLink_Click"
 toolTip="Click here to go to Target Page."
 runat="server" />

 <asp:linkButton
 id="lnkLink"
 text="LinkButton to Target Page"
 onClick="btnLink_Click"
 Font-Name="Comic Sans MS Bold"
 Font-Size="16pt"
 toolTip="Click here to go to Target Page."
 runat="server" />
 </form>
 </body>
 </html>

Figure 5-3. Button controls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-3 shows the web page that results from running the example code. The
System.Web.UI.WebControls namespace offers three kinds of button-like ASP controls:

Button

This is the standard button that we discussed previously. The interesting thing about the Button
control in Example 5-5 and Example 5-6 is that the onClick event handler calls the btnLink_Click
method, which navigates to a new web page using:

Response.Redirect("//localhost/progaspnet/TargetPage.aspx");

The string in quotes can be any valid URL.

ImageButton

The ImageButton control performs the same function as the standard button, except that an image
bitmap takes the place of the button on the browser UI. For the ImageButton control, there is no Text
attribute, but there is an AlternateText attribute, which specifies what text to display on non-graphical
browsers.

In addition, note that the event handler uses an ImageClickEventArgs event argument, which is slightly
different than the event handlers for the Button and LinkButton controls.

LinkButton

The LinkButton control is sort of a cross between a standard button and a HyperLink control
(described in the next section). A LinkButton appears to the user as a hyperlink (that is, the text is
colored and underlined). The big difference between a LinkButton control and a standard Button
control is that the LinkButton's functionality is implemented using client-side scripting.

This is readily apparent if you look at the source code from your browser resulting from Example 5-5 or
Example 5-6 , an excerpt of which is shown in Example 5-7 . Remember, this source code is output by
ASP.NET, not written by you.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-7. Browser source segment from csASPButtons.aspx

<input type="submit" name="btnLink" value="Link to Target Page" id="btnLink" title="Click
here to go to Target Page." />

<input type="image" name="imgLink" id="imgLink" title="Click here to go to Target Page."
src="/progaspnet/Dan at vernal pool.jpg" alt="Link to Target Page" border="0" />

<a id="lnkLink" title="Click here to go to Target Page." href="javascript:_ _
doPostBack('lnkLink','')" style="font-family:Comic Sans MS Bold;font-size:16pt;">Link to
Target Page

<script language="javascript">
<!--
 function _ _doPostBack(eventTarget, eventArgument) {
 var theform = document.ctrl0
 theform._ _EVENTTARGET.value = eventTarget
 theform._ _EVENTARGUMENT.value = eventArgument
 theform.submit()
 }
// -->
</script>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.5 HyperLink Control

A HyperLink control looks similar to a LinkButton control. However, there is a fundamental difference:
the HyperLink control only navigates to the target URL, while the LinkButton control posts the form
and, if the event handler chooses, navigates to the target URL.

The HyperLink control has four specific attributes:

ImageUrl

The path to an image (rather than text) to display. If this attribute is used, the control appears
to the user as identical to an ImageButton control, although the ImageButton control still posts
the form and the HyperLink control only navigates.

NavigateUrl

The target URL to navigate to.
Text

The text string that will be displayed on the browser as the link. If both the Text and ImageUrl
properties are set, the ImageUrl takes precedence. The text is displayed if the image is
unavailable.

If the browser supports tool tips and the ToolTip property has not been set, then the Text value will
display as a tool tip. If the ToolTip property has been set, then the ToolTip text string will display as a
tool tip.

Target

Defines the target window or frame that will load the linked page. The value is case insensitive
and must begin with a character in the range of a to z, except for the special values shown in
Table 5-3, all of which begin with an underscore.

Table 5-3. Special values of the Target attribute

Value Description

_blank Renders the content in a new unnamed window without frames.

_new Not documented, but behaves the same as _blank.

_parent
Renders the content in the parent window or frameset of the window or frame with the
hyperlink. If the child container is a window or top-level frame, it behaves the same as
_self.

_self Renders the content in the current frame or window with focus. This is the default value.

_top Renders the content in the current full window without frames.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-8 and Example 5-9 demonstrate a hyperlink in C# and VB.NET, respectively.

Example 5-8. HyperLink in C#, csASPHyperLink.aspx

<%@ Page Language="C#" %>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>HyperLink</h2>

 <asp:hyperLink
 id="hypLink"
 NavigateUrl="//localhost/progaspnet/TargetPage.aspx"
 Text="HyperLink to Target Page"
 target="_self"
 Font-Name="Impact"
 Font-Size="16pt"
 toolTip="Click here to go to Target Page."
 runat="server" />
 </form>
 </body>
</html>

Example 5-9. HyperLink in VB.NET, vbASPHyperLink.aspx

<%@ Page Language="VB" %>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>HyperLink</h2>

 <asp:hyperLink
 id="hypLink"
 NavigateUrl="//localhost/progaspnet/TargetPage.aspx"
 Text="HyperLink to Target Page"
 target="_self"
 Font-Name="Impact"
 Font-Size="16pt"
 toolTip="Click here to go to Target Page."
 runat="server" />
 </form>
 </body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The result of running Example 5-8 or Example 5-9 is shown in Figure 5-4.

Figure 5-4. HyperLink control

The HyperLink control is rendered on the client browser as an HTML anchor tag (that is, <a>). You

can verify this by examining the source code for the web page on your browser.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.6 Selecting Values

Several ASP controls allow the user to select a value or values:

CheckBox

Allows selection of Boolean data
RadioButton

Allows only a single option to be selected
CheckBoxList

Group of CheckBox controls that can be dynamically created and bound to a data source
RadioButtonList

Group of RadioButton controls that can be dynamically created and bound to a data source
ListBox

Allows selection of one or more items from a predefined list
DropDownList

Similar to a ListBox, but allows only a single selection

All of these controls derive from the WebControl class. The RadioButton derives further from the
CheckBox class, and the last four controls, the List controls, all derive from the abstract ListControl
class. Each of these controls is considered in detail in the upcoming sections.

5.6.1 CheckBox Control

A CheckBox control provides a means for a user to select Boolean data (that is, Yes/No or
True/False). If you have several checkboxes arranged together (not to be confused with a
CheckBoxList), then you can select multiple options. No option is mutually exclusive of another.

The C# code in Example 5-10 shows the use of three independent CheckBoxes to control the
appearance of a Label. (The equivalent VB.NET code, which is nearly identical to the C# code, is
shown in Example 5-11.) Clicking on any of the checkboxes in these examples-Underline, Overline,
or Strikeout-imposes that attribute on the text string in the Label control. The results of the C# code
are shown in Figure 5-5.

Figure 5-5. Checkboxes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-10. CheckBoxes in C#, csASPCheckboxes.aspx

<%@ Page Language="C#" %>

<script runat="server">
 void lblTime_Init(Object Source, EventArgs E)
 {
 lblTime.Font.Name = "Verdana";
 lblTime.Font.Size = 20;
 lblTime.Font.Bold = true;
 lblTime.Font.Italic = true;
 lblTime.Text = DateTime.Now.ToString();
 }

 void chkUnderLine_CheckedChanged(Object Source, EventArgs E)
 {
 if (chkUnderLine.Checked)
 lblTime.Font.Underline = true;
 else
 lblTime.Font.Underline = false;
 }

 void chkOverLine_CheckedChanged(Object Source, EventArgs E)
 {
 if (chkOverLine.Checked)
 lblTime.Font.Overline = true;
 else
 lblTime.Font.Overline = false;
 }

 void chkStrikeout_CheckedChanged(Object Source, EventArgs E)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 if (chkStrikeout.Checked)
 lblTime.Font.Strikeout = true;
 else
 lblTime.Font.Strikeout = false;
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Checkboxes</h2>

 <asp:label
 id="lblTime"
 runat="server"
 onInit="lblTime_Init"/>

 <asp:checkBox
 id="chkUnderLine"
 autoPostBack="true"
 checked="false"
 text="Underline?"
 textAlign="left"
 onCheckedChanged="chkUnderLine_CheckedChanged"
 runat="server" />

 <asp:checkBox
 id="chkOverLine"
 autoPostBack="true"
 checked="false"
 text="Overline?"
 textAlign="right"
 onCheckedChanged="chkOverLine_CheckedChanged"
 runat="server" />

 <asp:checkBox
 id="chkStrikeout"
 autoPostBack="true"
 checked="false"
 text="Strikeout?"
 onCheckedChanged="chkStrikeout_CheckedChanged"
 runat="server" />
 </form>
 </body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-11. CheckBoxes in VB.NET, vbASPCheckboxes.aspx

<%@ Page Language="VB" %>
<script runat="server">
 Sub lblTime_Init(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblTime.Font.Name = "Verdana"
 lblTime.Font.Size = new FontUnit(20)
 lblTime.Font.Bold = true
 lblTime.Font.Italic = true
 lblTime.Text = DateTime.Now()
 End Sub

 Sub chkUnderLine_CheckedChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if chkUnderLine.Checked then
 lblTime.Font.Underline = true
 else
 lblTime.Font.Underline = false
 end if
 End Sub

 Sub chkOverLine_CheckedChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if chkOverLine.Checked then
 lblTime.Font.Overline = true
 else
 lblTime.Font.Overline = false
 end if
 End Sub

 Sub chkStrikeout_CheckedChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if chkStrikeout.Checked then
 lblTime.Font.Strikeout = true
 else
 lblTime.Font.Strikeout = false
 end if
 End Sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Checkboxes</h2>

 <asp:label
 id="lblTime"
 runat="server"
 onInit="lblTime_Init"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:checkBox
 id="chkUnderLine"
 autoPostBack="true"
 checked="false"
 text="Underline?"
 textAlign="left"
 onCheckedChanged="chkUnderLine_CheckedChanged"
 runat="server" />

 <asp:checkBox
 id="chkOverLine"
 autoPostBack="true"
 checked="false"
 text="Overline?"
 textAlign="right"
 onCheckedChanged="chkOverLine_CheckedChanged"
 runat="server" />

 <asp:checkBox
 id="chkStrikeout"
 autoPostBack="true"
 checked="false"
 text="Strikeout?"
 onCheckedChanged="chkStrikeout_CheckedChanged"
 runat="server" />
 </form>
 </body>
</html>

Like all controls derived from WebControl, CheckBoxes have an ID property. But as the sample code
in Example 5-10 and Example 5-11 shows, there are several other properties and methods that are
not inherited from WebControl. These members are listed in Table 5-4. Note, however, that some of
these properties, such as AutoPostBack and Text, are common to several other controls.

Table 5-4. Members of the CheckBox class not inherited from WebControl
control class

Name Type Get Set Values Description

AutoPostBack Boolean x x
true,
false

Determines if automatic postback to the server
will occur if the user changes the contents of
the control. If false (the default), postback to

the server will not occur until the page is
posted, either by a button or another control
with AutoPostBack set to true.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Type Get Set Values Description

Checked Boolean x x
true,
false

Indicates if the CheckBox is checked. Default is
false.

Text String x x The text label associated with the CheckBox.

TextAlign TextAlign x x
Left,
Right

Dictates if the text label is on the left or right
of the CheckBox. Default is Right.

CheckedChanged Event EventArgs

This event is raised when the Checked
property is changed. Note that this event will
not immediately post back to the server unless
AutoPostBack is set to true.

The CheckBox control can raise the CheckedChanged event, which is handled by the
OnCheckedChanged event handler. This event passes a standard EventArgs argument, which does
not expose any properties.

5.6.2 RadioButton Control

A RadioButton control is very similar to, and in fact is derived from, a CheckBox control. The only
difference between the two classes is that RadioButtons are typically grouped using the GroupName
property, and only one RadioButton in the group can be checked (that is, its Checked property is
true) at one time. Changing the Checked property of one RadioButton control in the group to true
changes the Checked property of all other controls in the group to false.

Example 5-12 is a C# version of a web page that contains three RadioButton controls to set the font
size of a label. Example 5-13 provides the equivalent VB.NET version. Each of the radio buttons in
Example 5-12 and Example 5-13 is part of the group grpSize. The result of running either Example 5-
12 or Example 5-13 is shown in Figure 5-6.

Example 5-12. RadioButtons in C#, csASPRadioButtons.aspx

<%@ Page Language="C#" %>

<script runat="server">
 void lblTime_Init(Object Source, EventArgs E)
 {
 lblTime.Font.Name = "Verdana";
 lblTime.Font.Size = 20;
 lblTime.Font.Bold = true;
 lblTime.Font.Italic = true;
 lblTime.Text = DateTime.Now.ToString();
 }

 void grpSize_CheckedChanged(Object Source, EventArgs E)
 {
 if (rdoSize10.Checked)
 lblTime.Font.Size = 10;
 else if (rdoSize14.Checked)

Checked Boolean x x
true,
false

Indicates if the CheckBox is checked. Default is
false.

Text String x x The text label associated with the CheckBox.

TextAlign TextAlign x x
Left,
Right

Dictates if the text label is on the left or right
of the CheckBox. Default is Right.

CheckedChanged Event EventArgs

This event is raised when the Checked
property is changed. Note that this event will
not immediately post back to the server unless
AutoPostBack is set to true.

The CheckBox control can raise the CheckedChanged event, which is handled by the
OnCheckedChanged event handler. This event passes a standard EventArgs argument, which does
not expose any properties.

5.6.2 RadioButton Control

A RadioButton control is very similar to, and in fact is derived from, a CheckBox control. The only
difference between the two classes is that RadioButtons are typically grouped using the GroupName
property, and only one RadioButton in the group can be checked (that is, its Checked property is
true) at one time. Changing the Checked property of one RadioButton control in the group to true
changes the Checked property of all other controls in the group to false.

Example 5-12 is a C# version of a web page that contains three RadioButton controls to set the font
size of a label. Example 5-13 provides the equivalent VB.NET version. Each of the radio buttons in
Example 5-12 and Example 5-13 is part of the group grpSize. The result of running either Example 5-
12 or Example 5-13 is shown in Figure 5-6.

Example 5-12. RadioButtons in C#, csASPRadioButtons.aspx

<%@ Page Language="C#" %>

<script runat="server">
 void lblTime_Init(Object Source, EventArgs E)
 {
 lblTime.Font.Name = "Verdana";
 lblTime.Font.Size = 20;
 lblTime.Font.Bold = true;
 lblTime.Font.Italic = true;
 lblTime.Text = DateTime.Now.ToString();
 }

 void grpSize_CheckedChanged(Object Source, EventArgs E)
 {
 if (rdoSize10.Checked)
 lblTime.Font.Size = 10;
 else if (rdoSize14.Checked)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lblTime.Font.Size = 14;
 else lblTime.Font.Size = 16;
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Radio Buttons</h2>

 <asp:label
 id="lblTime"
 runat="server"
 onInit="lblTime_Init"/>

 <asp:radioButton
 groupName="grpSize"
 id="rdoSize10"
 autoPostBack="true"
 checked="false"
 text="10pt"
 onCheckedChanged="grpSize_CheckedChanged"
 runat="server" />
 <asp:radioButton
 groupName="grpSize"
 id="rdoSize14"
 autoPostBack="true"
 checked="false"
 text="14pt"
 onCheckedChanged="grpSize_CheckedChanged"
 runat="server" />
 <asp:radioButton
 groupName="grpSize"
 id="rdoSize16"
 autoPostBack="true"
 checked="false"
 text="16pt"
 onCheckedChanged="grpSize_CheckedChanged"
 runat="server" />
 </form>
 </body>
</html>

Example 5-13. RadioButtons in VB.NET, vbASPRadioButtons.aspx

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@ Page Language="VB" %>

<script runat="server">
 Sub lblTime_Init(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblTime.Font.Name = "Verdana"
 lblTime.Font.Size = new FontUnit(20)
 lblTime.Font.Bold = true
 lblTime.Font.Italic = true
 lblTime.Text = DateTime.Now()
 End Sub

 Sub grpSize_CheckedChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if (rdoSize10.Checked)
 lblTime.Font.Size = new FontUnit(10)
 else if (rdoSize14.Checked)
 lblTime.Font.Size = new FontUnit(14)
 else
 lblTime.Font.Size = new FontUnit(16)
 End If
 End Sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Radio Buttons</h2>

 <asp:label
 id="lblTime"
 runat="server"
 onInit="lblTime_Init"/>

 <asp:radioButton
 groupName="grpSize"
 id="rdoSize10"
 autoPostBack="true"
 checked="false"
 text="10pt"
 onCheckedChanged="grpSize_CheckedChanged"
 runat="server" />
 <asp:radioButton

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 groupName="grpSize"
 id="rdoSize14"
 autoPostBack="true"
 checked="false"
 text="14pt"
 onCheckedChanged="grpSize_CheckedChanged"
 runat="server" />
 <asp:radioButton
 groupName="grpSize"
 id="rdoSize16"
 autoPostBack="true"
 checked="false"
 text="16pt"
 onCheckedChanged="grpSize_CheckedChanged"
 runat="server" />
 </form>
 </body>
</html>

Figure 5-6. Radio buttons

The CheckedChanged event, which is derived from CheckBox, is handled by the onCheckedChanged
event handler, which points to the grpSize_CheckedChanged method. That method is a simple
if..else block that changes the text size depending on which button is selected. In practice, it
would probably be better to use a C# switch statement or a VB.NET Select Case statement to

make it easier to add additional radio buttons in the future.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.7 Selecting from a List

ASP.NET provides four ASP controls for selecting either single or multiple items from a list:

CheckBoxList
RadioButtonList
ListBox
DropDownList

All of these controls are derived from ListControl and have much in common:

ListItem (the information displayed by the list) works exactly the same way for all the ListControls,
with a Value property and a Text property.

Items can be added either statically, programmatically through the Add method, or from a data
source.

The SelectedIndex and SelectedItem properties point to the selected item with the lowest index.

The Selected property is true for any item that is selected.

All four controls raise and respond to the SelectedIndexChanged event.

The ListBox and DropDownList controls differ from the other two list controls (CheckBoxList and
RadionButtonList) in that they appear to the user to be a single control (a list box or a drop-down list)
rather than a collection of buttons or checkboxes. The ListBox and DropDownList controls lend
themselves to longer lists because they scroll.

Table 5-5 summarizes the differences among the four list controls.

Table 5-5. Differences among the four list controls

Characteristic CheckBoxList RadioButtonList DropDownList ListBox

Single selection only x x

Able to select one or more items x x

Displays the entire list x x

Displays single item at a time, along
with a button for seeing the entire list,
using vertical scroll bar if necessary

 x

Displays multiple items, using vertical
scroll bar if necessary

 x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Characteristic CheckBoxList RadioButtonList DropDownList ListBox

Best for short lists x x

Best for long lists x x

The following sections describe the controls and objects related to selecting items from a list.

5.7.1 ListItem Object

There are four ASP controls that allow you to select from a list, all derived from the ListControl class. A
ListControl control consists of a collection of ListItem objects. Each ListItem object has two properties,
as Table 5-6 shows.

Table 5-6. Properties of the ListItem object

Name Type Get Set Description

Text String x x The text string displayed for a ListItem.

Value String x x
A value associated with a ListItem. The value is not displayed, but is
available programmatically.

When dealing with lists, it is very common to display one thing to the user, but to pass the selection to
your code as something different. For example, if presenting your users with a list of states, the list
might display state names, such as Massachusetts . But when they select an item, the program will
pass the selected item as ma. Massachusetts would be the ListItem object's Text property, and ma

would be the Value property.

The Text property can be specified in one of two ways:

Inner HTML content

Text contained between the opening and closing tags of any control
Text attribute

An attribute within the opening tag of the ListItem control

There can be either a closing tag with no inner HTML, or the opening tag can be self-closing. All three of
the following lines are equivalent:

<asp:ListItem >Item 7</asp:ListItem>
<asp:ListItem text="Item 7"></asp:ListItem>
<asp:ListItem text="Item 7"/>

If both a Text property and inner HTML content are specified, the inner HTML content will be displayed.
For example, consider the following line:

<asp:ListItem text="Item 7">Item 8</asp:ListItem>

If that line were used, then "Item 8" is what would be displayed on the web page.

Best for short lists x x

Best for long lists x x

The following sections describe the controls and objects related to selecting items from a list.

5.7.1 ListItem Object

There are four ASP controls that allow you to select from a list, all derived from the ListControl class. A
ListControl control consists of a collection of ListItem objects. Each ListItem object has two properties,
as Table 5-6 shows.

Table 5-6. Properties of the ListItem object

Name Type Get Set Description

Text String x x The text string displayed for a ListItem.

Value String x x
A value associated with a ListItem. The value is not displayed, but is
available programmatically.

When dealing with lists, it is very common to display one thing to the user, but to pass the selection to
your code as something different. For example, if presenting your users with a list of states, the list
might display state names, such as Massachusetts . But when they select an item, the program will
pass the selected item as ma. Massachusetts would be the ListItem object's Text property, and ma

would be the Value property.

The Text property can be specified in one of two ways:

Inner HTML content

Text contained between the opening and closing tags of any control
Text attribute

An attribute within the opening tag of the ListItem control

There can be either a closing tag with no inner HTML, or the opening tag can be self-closing. All three of
the following lines are equivalent:

<asp:ListItem >Item 7</asp:ListItem>
<asp:ListItem text="Item 7"></asp:ListItem>
<asp:ListItem text="Item 7"/>

If both a Text property and inner HTML content are specified, the inner HTML content will be displayed.
For example, consider the following line:

<asp:ListItem text="Item 7">Item 8</asp:ListItem>

If that line were used, then "Item 8" is what would be displayed on the web page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Value property can be set similarly to the Text property. So, for example, the lines of code
presented previously could be modified to also set the value, as follows:

<asp:ListItem value="7">Item 7</asp:ListItem>
<asp:ListItem text="Item 7" value="7"></asp:ListItem>
<asp:ListItem text="Item 7" value="7"/>

5.7.2 CheckBoxList Control

The CheckBoxList is a parent control containing a collection of CheckBox items. It is very similar to the
group of CheckBox controls shown previously in Example 5-10 and Example 5-11 , except that all the
child checkboxes are handled as a group. The CheckBoxList control derives from ListControl rather than
directly from WebControl.

The CheckBoxList control is better suited than individual checkboxes for creating a series of checkboxes
out of data in a database, although either type of control can be bound to data. Chapter 9 discusses
data binding to a database.

There are three ways to add items to a CheckBoxList:

Statically, using the ASP ListItem control tag

Programmatically from an array

Dynamically from a data source such as a database

5.7.2.1 Adding items statically

The web page shown in Example 5-14 demonstrates many of the properties of CheckBoxLists. The list
items are added statically in the HTML code. The CheckBoxList control attributes specify the appearance
and behavior of the control. (This code is the same for both C# and VB.) Figure 5-7 shows the resulting
web page.

Example 5-14. CheckBoxLists, ASPCheckBoxList.aspx

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>CheckBoxLists</h2>

 <asp:CheckBoxList
 id="cblGenre"
 autoPostBack="true"
 cellPadding="5"
 cellSpacing="10"
 repeatColumns="3"
 repeatDirection="vertical"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RepeatLayout="table"
 textAlign="right"
 runat="server">

 <asp:ListItem> Item 1 </asp:ListItem>
 <asp:ListItem> Item 2 </asp:ListItem>
 <asp:ListItem> Item 3 </asp:ListItem>
 <asp:ListItem> Item 4 </asp:ListItem>
 <asp:ListItem> Item 5 </asp:ListItem>
 <asp:ListItem> Item 6 </asp:ListItem>
 </asp:CheckBoxList>
 </form>
 </body>
</html>

Figure 5-7. CheckBoxList statically added items

In the code in Example 5-14 , default values were used for those properties that have defaults, as
indicated in Table 5-7 . By changing the RepeatDirection, RepeatLayout, and TextAlign properties to
Horizontal , Flow , and Left , respectively, you get the results shown in Figure 5-8 .

Figure 5-8. Static CheckBox list modified to use non-default values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 5-7. Properties of CheckBoxList control

Name Type Get Set Values Description

AutoPostBack Boolean x x true , false

Determines if automatic postback to the
server will occur if the user changes the
contents of the control. If false ,

postback to the server will not occur until
the page is posted, either by a button or
another control with AutoPostBack set to
true . Its default value is false .

CellPadding Int32 x x Integers
Distance in pixels between the border and
contents of a cell. The default is -1 , which

indicates the property is not set.

CellSpacing Int32 x x Integers
Distance in pixels between cells. The
default is -1 , which indicates the property

is not set.

DataSource Object x x Source that populates the control.

RepeatColumns Integer x x Integers Number of columns to display.

RepeatDirection RepeatDirection x x
Horizontal ,
Vertical

Horizontal specifies that items are

loaded from left to right, then top to
bottom.

Vertical specifies that items are loaded

top to bottom, then left to right. The
default value is Vertical .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Type Get Set Values Description

RepeatLayout RepeatLayout x x Flow , Table

Flow specifies that items are displayed

without a table structure.

Table specifies that items are displayed in
a table structure. Default is Table .

Selected Boolean x x true , false
Indicates an item has been selected.
Default is false .

TextAlign TextAlign x x Left , Right
Dictates if the text label is on the left or
right of the checkboxes. Default is Right .

5.7.2.2 Adding items programmatically from an array

There are times when you do not know at compile time what checkboxes you want to create. For
example, you may want to draw the choices from a database. In these cases, you need to be able to
add items programmatically.

In Example 5-15 (in C#) and Example 5-16 (in VB.NET), ListItem objects are added both
programmatically and also are hard-coded within the CheckBoxList tags, for purposes of illustration.

Example 5-15. Adding items from an array in C#,
csASPCheckBoxListArray.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void cblGenre_Init(Object Source, EventArgs E)
 {
 // create an array of items to add
 string[] Genre = {"SciFi","Novels", "Computers", "History", "Religion"};

 int i;
 for (i = 0; i < Genre.GetLength(0); i++)
 {
 this.cblGenre.Items.Add(new ListItem(Genre[i]));
 }
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>CheckBoxList</h2>
 <h3>Adding Items From An Array</h3>

 <asp:CheckBoxList
 id="cblGenre"

RepeatLayout RepeatLayout x x Flow , Table

Flow specifies that items are displayed

without a table structure.

Table specifies that items are displayed in
a table structure. Default is Table .

Selected Boolean x x true , false
Indicates an item has been selected.
Default is false .

TextAlign TextAlign x x Left , Right
Dictates if the text label is on the left or
right of the checkboxes. Default is Right .

5.7.2.2 Adding items programmatically from an array

There are times when you do not know at compile time what checkboxes you want to create. For
example, you may want to draw the choices from a database. In these cases, you need to be able to
add items programmatically.

In Example 5-15 (in C#) and Example 5-16 (in VB.NET), ListItem objects are added both
programmatically and also are hard-coded within the CheckBoxList tags, for purposes of illustration.

Example 5-15. Adding items from an array in C#,
csASPCheckBoxListArray.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void cblGenre_Init(Object Source, EventArgs E)
 {
 // create an array of items to add
 string[] Genre = {"SciFi","Novels", "Computers", "History", "Religion"};

 int i;
 for (i = 0; i < Genre.GetLength(0); i++)
 {
 this.cblGenre.Items.Add(new ListItem(Genre[i]));
 }
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>CheckBoxList</h2>
 <h3>Adding Items From An Array</h3>

 <asp:CheckBoxList
 id="cblGenre"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 autoPostBack="true"
 cellPadding="5"
 cellSpacing="10"
 repeatColumns="3"
 repeatDirection="vertical"
 RepeatLayout="table"
 textAlign="right"
 onInit="cblGenre_Init"
 runat="server">

 <asp:ListItem> Item 1 </asp:ListItem>
 <asp:ListItem> Item 2 </asp:ListItem>
 <asp:ListItem> Item 3 </asp:ListItem>
 <asp:ListItem> Item 4 </asp:ListItem>
 <asp:ListItem> Item 5 </asp:ListItem>
 <asp:ListItem> Item 6 </asp:ListItem>
 </asp:CheckBoxList>
 </form>
 </body>
</html>

Example 5-16. Adding items from an array in VB.NET,
vbASPCheckBoxListArray.aspx

<%@ Page Language="VB" %>
<script runat="server">
 Sub cblGenre_Init(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' create an array of items to add
 dim Genre() as string = {"SciFi", "Novels", "Computers", "History", "Religion"}

 dim i as integer
 For i = 0 To Genre.GetLength(0) - 1
 cblGenre.Items.Add(new ListItem(Genre(i)))
 Next
 End Sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>CheckBoxList</h2>
 <h3>Adding Items From An Array</h3>

 <asp:CheckBoxList
 id="cblGenre"
 autoPostBack="true"
 cellPadding="5"
 cellSpacing="10"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 repeatColumns="3"
 repeatDirection="vertical"
 RepeatLayout="table"
 textAlign="right"
 onInit="cblGenre_Init"
 runat="server">

 <asp:ListItem> Item 1 </asp:ListItem>
 <asp:ListItem> Item 2 </asp:ListItem>
 <asp:ListItem> Item 3 </asp:ListItem>
 <asp:ListItem> Item 4 </asp:ListItem>
 <asp:ListItem> Item 5 </asp:ListItem>
 <asp:ListItem> Item 6 </asp:ListItem>
 </asp:CheckBoxList>
 </form>
 </body>
</html>

You add an attribute to the control tag that implements an event handler for control initialization:

onInit="cblGenre_Init"

Then you add the cblGenre_Init method, called by onInit , to the script block at the beginning of the
page. This method creates a string array of genres to add to the list of checkboxes. Then a for loop is

used to iterate through the array, calling the Add method on each item to add a new ListItem object to
the CheckBoxList control.

Notice the slight difference in the logic used in the for loops between the C# code and the VB.NET code.
This is because the C# loop repeats while the second parameter is true , while the VB.NET loop repeats

until the end value is exceeded. Therefore, in the VB.NET loop you have to subtract 1 from the end
value.

When you run the web pages in Example 5-15 or Example 5-16 , you get the results shown in Figure 5-
9 .

You can modify the code in Example 5-15 and Example 5-16 to add Value properties for some of the
ListItems created in the CheckBoxList tag, as well as in all the ListItem objects created in the

cblGenre_Init event procedure. Example 5-17 shows the code to do so in C#, and Example 5-18 shows
the same code in VB.NET. Code lines that have been added or modified are shown in boldface.

Example 5-17. Adding items with values to CheckBoxList from array using
C#, csASPCheckBoxListArrayValue.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void cblGenre_Init(Object Source, EventArgs E)
 {
 // create arrays of items to add
 string[] Genre = {"SciFi","Novels", "Computers", "History", "Religion"};
 string[] Code = {"sf","nvl", "cmp", "his", "rel"};

 int i;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for (i = 0; i < Genre.GetLength(0); i++)
 {
 // Add both Text and Value
 this.cblGenre.Items.Add(new ListItem(Genre[i],Code[i]));
 }
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>CheckBoxList</h2>
 <h3>Adding Items From An Array With a Value</h3>

 <asp:CheckBoxList
 id="cblGenre"
 autoPostBack="true"
 cellPadding="5"
 cellSpacing="10"
 repeatColumns="3"
 repeatDirection="vertical"
 RepeatLayout="table"
 textAlign="right"
 onInit="cblGenre_Init"
 runat="server">

 <asp:ListItem value="1"> Item 1 </asp:ListItem>
 <asp:ListItem text="Item 2" value="2"></asp:ListItem>
 <asp:ListItem text="Item 3"/>
 <asp:ListItem text="Item 4"> Inner Item 4 </asp:ListItem>
 <asp:ListItem value="5"></asp:ListItem>
 <asp:ListItem> Item 6 </asp:ListItem>
 </asp:CheckBoxList>
 </form>
 </body>
</html>

Example 5-18. Adding items with values to CheckBoxList from array using
VB.NET, vbASPCheckBoxListArrayValue.aspx

<%@ Page Language="VB" %>
<script runat="server">
 Sub cblGenre_Init(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' create arrays of items to add
 dim Genre() as string = {"SciFi", "Novels", "Computers", "History", "Religion"}
 dim Code() as string = {"sf","nvl", "cmp", "his", "rel"}

 dim i as integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 For i = 0 To Genre.GetLength(0) - 1
 ' Add both Text and Value
 cblGenre.Items.Add(new ListItem(Genre(i),Code(i)))
 Next
 End Sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>CheckBoxList</h2>
 <h3>Adding Items From An Array With a Value</h3>

 <asp:CheckBoxList
 id="cblGenre"
 autoPostBack="true"
 cellPadding="5"
 cellSpacing="10"
 repeatColumns="3"
 repeatDirection="vertical"
 RepeatLayout="table"
 textAlign="right"
 onInit="cblGenre_Init"
 runat="server">

 <asp:ListItem value="1"> Item 1 </asp:ListItem>
 <asp:ListItem text="Item 2" value="2"></asp:ListItem>
 <asp:ListItem text="Item 3"/>
 <asp:ListItem text="Item 4"> Inner Item 4 </asp:ListItem>
 <asp:ListItem value="5"></asp:ListItem>
 <asp:ListItem> Item 6 </asp:ListItem>
 </asp:CheckBoxList>
 </form>
 </body>
</html>

If the code in Example 5-17 or Example 5-18 is run, it will look as shown in Figure 5-10 .

Figure 5-9. CheckBoxList with items added from an array

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-10. CheckBoxList with items and values added from an array

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In cblGenre_Init, where you previously created a single string array to hold the Text properties, there
are now two string arrays: one for the Text properties and one for the Value properties. You now use
the overloaded Add method that takes two arguments. The first argument is the Text property, and the
second argument is the Value property. In C#, this looks like:

this.cblGenre.Items.Add(new ListItem(Genre[i],Code[i]));

In VB.NET, it looks like:

cblGenre.Items.Add(new ListItem(Genre(i),Code(i)))

An object may overload its methods, which means it may declare two or more
methods with the same name. The compiler differentiates among these methods
based on the number and type of parameters provided.

For example, the ListItemCollection class overloads the Add method. One version
takes a string, and the second version takes a ListItem object.

Finally, in creating the static ListItems, you used several different methods of creating Values and Text,
including instances of missing Text (Item 5), missing Value (Item 3, Item 4, Item 6), and divergent Text
property from inner HTML content (Item 4). The differences between Figure 5-9 and Figure 5-11 can be
seen in Items 4 and 5.

You can see that if the Value is missing, then the Text is displayed. If the Text is missing, then the Value
is displayed. If the Text is different from the inner HTML content, then the inner HTML content is
displayed.

5.7.2.3 Adding items from a data source

The real power of adding items programmatically comes when you can use a data source to populate
the items in a CheckBoxList control. The ultimate data source, obviously, is a database. This will be
covered in Chapter 9 . However, you can use the array just created to demonstrate binding to a data
source.

By replacing the for loop in cblGenre_Init in Example 5-15 and Example 5-16 with two lines (which

specify the data source and then bind to it), the method now appears as shown in Example 5-19 for C#
and Example 5-20 for VB .NET. (Note that the lines of code that have been added to the two event
procedures-shown in bold-are identical in the C# and VB .NET versions of the program, except for the
trailing semicolon in C#.)

Example 5-19. Adding items to a CheckBoxList from a data source using
C#, csASPCheckBoxListDataBind.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void cblGenre_Init(Object Source, EventArgs E)
 {
 // create an array of items to add
 string[] Genre = {"SciFi","Novels", "Computers", "History", "Religion"};

 cblGenre.DataSource = Genre;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cblGenre.DataBind();
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>CheckBoxList</h2>
 <h3>Adding Items From An Array Using DataBinding</h3>

 <asp:CheckBoxList
 id="cblGenre"
 autoPostBack="true"
 cellPadding="5"
 cellSpacing="10"
 repeatColumns="3"
 repeatDirection="vertical"
 RepeatLayout="table"
 textAlign="right"
 onInit="cblGenre_Init"
 runat="server">

 <asp:ListItem> Item 1 </asp:ListItem>
 <asp:ListItem> Item 2 </asp:ListItem>
 <asp:ListItem> Item 3 </asp:ListItem>
 <asp:ListItem> Item 4 </asp:ListItem>
 <asp:ListItem> Item 5 </asp:ListItem>
 <asp:ListItem> Item 6 </asp:ListItem>
 </asp:CheckBoxList>
 </form>
 </body>
</html>

Example 5-20. Adding items to a CheckBoxList from a data source using
VB.NET, vbASPCheckBoxListDataBind.aspx

<%@ Page Language="VB" %>
<script runat="server">
 Sub cblGenre_Init(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' create an array of items to add
 dim Genre() as string = {"SciFi", "Novels", "Computers", "History", "Religion"}

 cblGenre.DataSource = Genre
 cblGenre.DataBind()
 End Sub
</script>

<html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>CheckBoxList</h2>
 <h3>Adding Items From An Array Using DataBinding</h3>

 <asp:CheckBoxList
 id="cblGenre"
 autoPostBack="true"
 cellPadding="5"
 cellSpacing="10"
 repeatColumns="3"
 repeatDirection="vertical"
 RepeatLayout="table"
 textAlign="right"
 onInit="cblGenre_Init"
 runat="server">

 <asp:ListItem> Item 1 </asp:ListItem>
 <asp:ListItem> Item 2 </asp:ListItem>
 <asp:ListItem> Item 3 </asp:ListItem>
 <asp:ListItem> Item 4 </asp:ListItem>
 <asp:ListItem> Item 5 </asp:ListItem>
 <asp:ListItem> Item 6 </asp:ListItem>
 </asp:CheckBoxList>
 </form>
 </body>
</html>

You might expect the results to be unchanged from Figure 5-10 , but that is not the case. Instead you
get the results shown in Figure 5-11 .

Figure 5-11. CheckBoxList with items added using DataBinding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the previous example, using the for loop, ListItems were added by the Init method after the control

was created. In this example, the pre-existing ListItem objects were replaced by the new data source.
This is because the ListControl.Items collection is initialized by the data source, so any ListItem objects
previously defined are lost.

5.7.2.4 Responding to user selections

When a user checks or unchecks one of the checkboxes in a CheckBoxList, the SelectedIndexChanged
event is raised. This event passes an argument of type EventArgs, which does not expose any
properties. By setting an attribute for handling this event and putting code in the event handler method,
you can respond to the user clicking on one of the checkboxes. If AutoPostBack is set to true , the

response occurs immediately. Otherwise, the response occurs the next time the form is posted to the
server.

The additional code added to the previous examples, shown highlighted in Example 5-21 for C# and
Example 5-22 for VB.NET, demonstrates responding to SelectedIndexChanged .

Example 5-21. Responding to CheckBoxList User Action using C#,
csASPCheckBoxListEvents.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void cblGenre_Init(Object Source, EventArgs E)
 {
 // create arrays of items to add
 string[] Genre = {"SciFi","Novels", "Computers", "History", "Religion"};
 string[] Code = {"sf","nvl", "cmp", "his", "rel"};

 int i;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for (i = 0; i < Genre.GetLength(0); i++)
 {
 // Add both Text and Value
 this.cblGenre.Items.Add(new ListItem(Genre[i],Code[i]));
 }
 }

 void cblGenre_SelectedIndexChanged(Object Source, EventArgs E)
 {
 StringBuilder sb = new StringBuilder();
 foreach(ListItem li in cblGenre.Items)
 {
 if (li.Selected == true)
 {
 sb.Append("
" + li.Value + " - " + li.Text);
 }
 }

 if (sb.Length == 0)
 lblGenre.Text = "No genres selected.";
 else
 lblGenre.Text = sb.ToString();
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>CheckBoxList</h2>
 <h3>Responding to Events</h3>

 <asp:CheckBoxList
 id="cblGenre"
 autoPostBack="true"
 cellPadding="5"
 cellSpacing="10"
 repeatColumns="3"
 repeatDirection="vertical"
 RepeatLayout="table"
 textAlign="right"
 onInit="cblGenre_Init"
 onSelectedIndexChanged="cblGenre_SelectedIndexChanged"
 runat="server">

 <asp:ListItem value="1"> Item 1 </asp:ListItem>
 <asp:ListItem text="Item 2" value="2"></asp:ListItem>
 <asp:ListItem text="Item 3"/>
 <asp:ListItem text="Item 4"> Inner Item 4 </asp:ListItem>
 <asp:ListItem value="5"></asp:ListItem>
 <asp:ListItem> Item 6 </asp:ListItem>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </asp:CheckBoxList>
 <asp:label id="lblGenre" runat="server" />
 </form>
 </body>
</html>

Example 5-22. Responding to CheckBoxList User Action using VB.NET-
vbASPCheckBoxListEvents.aspx

<%@ Page Language="VB" %>
<script runat="server">
 Sub cblGenre_Init(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' create arrays of items to add
 dim Genre() as string = {"SciFi", "Novels", "Computers", "History", "Religion"}
 dim Code() as string = {"sf","nvl", "cmp", "his", "rel"}

 dim i as integer
 For i = 0 To Genre.GetLength(0) - 1
 ' Add both Text and Value
 cblGenre.Items.Add(new ListItem(Genre(i),Code(i)))
 Next
 End Sub

 Sub cblGenre_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim sb as new StringBuilder()
 dim li as ListItem
 for each li in cblGenre.Items
 if li.Selected then
 sb.Append("
" & li.Value & " - " & li.Text)
 end if
 next li

 if sb.Length = 0 then
 lblGenre.Text = "No genres selected."
 else
 lblGenre.Text = sb.ToString()
 end if
 End Sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>CheckBoxList</h2>
 <h3>Adding Items From An Array With a Value</h3>

 <asp:CheckBoxList

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 id="cblGenre"
 autoPostBack="true"
 cellPadding="5"
 cellSpacing="10"
 repeatColumns="3"
 repeatDirection="vertical"
 RepeatLayout="table"
 textAlign="right"
 onInit="cblGenre_Init"
 onSelectedIndexChanged="cblGenre_SelectedIndexChanged"
 runat="server">

 <asp:ListItem value="1"> Item 1 </asp:ListItem>
 <asp:ListItem text="Item 2" value="2"></asp:ListItem>
 <asp:ListItem text="Item 3"/>
 <asp:ListItem text="Item 4"> Inner Item 4 </asp:ListItem>
 <asp:ListItem value="5"></asp:ListItem>
 <asp:ListItem> Item 6 </asp:ListItem>
 </asp:CheckBoxList>
 <asp:label id="lblGenre" runat="server" />
 </form>
 </body>
</html>

Notice how the StringBuilder class is used in the method
cblGenre_SelectedIndexChanged to create the string, rather than just
concatenating each string value onto the previous value, as in this line of (C#)
code:

str += "
" + li.Value + " - " + li.Text;

The StringBuilder class provides a much more efficient way of constructing strings,
since it does not require that a new string be implicitly created with every change
to the string.

In the code in Example 5-21 and Example 5-22 , you add an attribute named OnSelectedIndexChanged

to identify the event handler for the SelectedIndexChanged event. Like all event handlers, the name
comes from prepending the word "On" to the event name. You also add a Label control to the form,
lblGenre , to display the selected items.

The event handler points to a method in the script block at the top of the page called
cblGenre_SelectedIndexChanged . In this event handler, you iterate through the collection of
ListItems in the CheckBoxList. For each ListItem, you check to see if the Selected property is true . If it

is, then you add the Value property of that item to the HTML string you are constructing, using the
StringBuilder class. Finally, the length of the StringBuilder string is tested. If it is zero length, then an
appropriate message is displayed, otherwise the StringBuilder string containing the selected values is
displayed.

The results of Example 5-21 and Example 5-22 are shown in Figure 5-12 , where several items have
been selected.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-12. Responding to CheckBoxList user selections

5.7.3 RadioButtonList Control

The RadioButtonList control is very similar to the CheckBoxList control. They are both derived from the
ListControl class and share all of the same properties, events, and methods. The only difference
between the two is that the RadioButtonList control can have only one item selected at a time. When an
item is selected, any other selected item is deselected.

The RadioButtonList and the CheckBoxList controls share the two properties inherited from ListControl
that are shown in Table 5-8 .

Table 5-8. Selection properties inherited from the ListControl class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Type Get Set Description

SelectedIndex Integer x x If equal to -1, then nothing has been selected.

SelectedItem ListItem x

To demonstrate how these are used, modify the code in Example 5-12 and Example 5-13 , replacing the
three radio buttons controlling the font size in grpSize with a single RadioButtonList, calling it rblSize.
Example 5-23 shows the resulting C# ASP.NET page, while Example 5-24 shows the ASP.NET page with
VB.NET code.

Example 5-23. RadioButtonList control using C#,
csASPRadioButtonList.aspx

<%@ Page Language="C#" %>

<script runat="server">
 void lblTime_Init(Object Source, EventArgs E)
 {
 lblTime.Font.Name = "Verdana";
 lblTime.Font.Size = 20;
 lblTime.Font.Bold = true;
 lblTime.Font.Italic = true;
 lblTime.Text = DateTime.Now.ToString();
 }

 void rblSize_SelectedIndexChanged(Object Source, EventArgs E)
 {
 // Check to verify that something has been selected.
 if (rblSize.SelectedIndex != -1)
 {
 int size = Convert.ToInt32(rblSize.SelectedItem.Value);
 lblTime.Font.Size = size;
 }
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>RadioButtonList</h2>

 <asp:label
 id="lblTime"
 runat="server"
 onInit="lblTime_Init"/>

 <asp:radioButtonList
 id="rblSize"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 autoPostBack="true"
 cellSpacing="20"
 repeatColumns="3"
 repeatDirection="horizontal"
 RepeatLayout="table"
 textAlign="right"
 onSelectedIndexChanged="rblSize_SelectedIndexChanged"
 runat="server">

 <asp:ListItem text="10pt" value="10"/>
 <asp:ListItem text="14pt" value="14"/>
 <asp:ListItem text="16pt" value="16"/>
 </asp:radioButtonList>
 </form>
 </body>
</html>

Example 5-24. RadioButtonList control using VB.NET,
vbASPRadioButtonList.aspx

<%@ Page Language="VB" %>

<script runat="server">
 Sub lblTime_Init(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblTime.Font.Name = "Verdana"
 lblTime.Font.Size = new FontUnit(20)
 lblTime.Font.Bold = true
 lblTime.Font.Italic = true
 lblTime.Text = DateTime.Now()
 End Sub

 Sub rblSize_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' Check to verify that something has been selected.
 if (rblSize.SelectedIndex <> -1) then
 dim size as integer = Convert.ToInt32(rblSize.SelectedItem.Value)
 lblTime.Font.Size = new FontUnit(size)
 end if
 End Sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>RadioButtonList</h2>

 <asp:label
 id="lblTime"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 runat="server"
 onInit="lblTime_Init"/>

 <asp:radioButtonList
 id="rblSize"
 autoPostBack="true"
 cellSpacing="20"
 repeatColumns="3"
 repeatDirection="horizontal"
 RepeatLayout="table"
 textAlign="right"
 onSelectedIndexChanged="rblSize_SelectedIndexChanged"
 runat="server">

 <asp:ListItem text="10pt" value="10"/>
 <asp:ListItem text="14pt" value="14"/>
 <asp:ListItem text="16pt" value="16"/>
 </asp:radioButtonList>
 </form>
 </body>
</html>

The results of Example 5-23 or Example 5-24 are shown in Figure 5-13 . It doesn't look much different
than the individual radio buttons, but it is much easier to populate from a data source.

Figure 5-13. Using the RadioButtonList control

In Example 5-23 and Example 5-24 , the original separate radio buttons are replaced by a
RadioButtonList control. Note that each ListItem object has both a Text property and a Value property.
The event handler, rblSize_SelectedIndexChanged, takes an integer value for the Font.Size property in
the C# code:

int size = Convert.ToInt32(rblSize.SelectedItem.Value);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lblTime.Font.Size = size;

but requires a FontUnit type in VB.NET:

dim size as integer = Convert.ToInt32(rblSize.SelectedItem.Value)
lblTime.Font.Size = new FontUnit(size)

As described previously, in conjunction with Table 5-1 , this is because C# provides an implicit
conversion operator, but VB.NET does not.

The event handler method makes use of the SelectedIndex and SelectedItem properties mentioned
previously. The SelectedIndex property represents the lowest integer value index of all the selected
items. The SelectedItem property returns the Text property of the item pointed to by SelectedIndex.
Since a RadioButtonList, by definition, can have at most a single selected item, then SelectedIndex and
SelectedItem will tell us which item is selected. These properties of a CheckBoxList control or other
ListControl control (which allow multi-selection) are more ambiguous.

Example 5-23 and Example 5-24 verify that at least one of the values has been selected. If no item has
been selected, then the SelectedIndex property is equal to -1. If an item has been selected, you set the
Font.Size property by converting the SelectedItem.Value property to an integer in C# and by passing
the SelectedItem.Value as an argument to the FontUnit class constructor in VB.NET.

Note that the following two lines of C# code in Example 5-23 :

int size = Convert.ToInt32(rblSize.SelectedItem.Value);
lblTime.Font.Size = size;

could just as easily have been written as a single line:

lblTime.Font.Size = Convert.ToInt32(rblSize.SelectedItem.Value);

(However, I often use the more verbose version to enhance readability and make the code easier to
debug.)

5.7.4 DropDownList Control

DropDownList controls display a single item at a time with a button for dropping the list to display more
selections. Only a single item can be selected. The code in Example 5-25 demonstrates a DropDownList
control in C#, while the code in Example 5-26 shows the same in VB.NET. A two-dimensional string
array is used to hold both the Text and Value properties. The array is then used to add the ListItem
objects.

Example 5-25. DropDownList control using C#, csASPDropDownList.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void Page_Load(Object sender, EventArgs e)
 {
 if (! IsPostBack)
 {
 // Build 2 dimensional array for the lists
 // First dimension contains bookname

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // 2nd dimension contains ISBN number
 string[,] books = {
 {"Programming C#","0596001177"},
 {"Programming ASP.NET","0596001711"},
 {"WebClasses From Scratch","0789721260"},
 {"Teach Yourself C++ in 21 Days","067232072X"},
 {"Teach Yourself C++ in 10 Minutes","067231603X"},
 {"XML & Java From Scratch","0789724766"},
 {"Complete Idiot's Guide to a Career in Computer Programming",
 {"XML Web Documents From Scratch","0789723166"},
 {"Clouds To Code","1861000952"},
 {"C++: An Introduction to Programming","1575760614"},
 {"C++ Unleashed","0672312395"}
 };

 // Now populate the list.
 int i;
 for (i = 0; i < books.GetLength(0); i++)
 {
 // Add both Text and Value
 ddl.Items.Add(new ListItem(books[i,0],books[i,1]));
 }
 }
 }

 void ddl_SelectedIndexChanged(Object Source, EventArgs E)
 {
 // Check to verify that something has been selected.
 if (ddl.SelectedIndex != -1)
 {
 lblDdl.Text=ddl.SelectedItem.Text + " ---> ISBN: " +
 ddl.SelectedItem.Value;
 }
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>DropDownList</h2>

 <asp:dropDownList
 id="ddl"
 autoPostBack="true"
 onSelectedIndexChanged="ddl_SelectedIndexChanged"
 runat="server"/>

 <asp:label id="lblDdl" runat="server" />
 </form>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </body>
</html>

Example 5-26. DropDownList control using VB.NET,
vbASPDropDownList.aspx

<%@ Page Language="VB" %>
<script runat="server">

 Sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 ' Build 2 dimensional array for the lists
 ' First dimension contains bookname
 ' 2nd dimension contains ISBN number
 dim books(,) as string = { _
 {"Programming C#","0596001177"}, _
 {"Programming ASP.NET","1234567890"}, _
 {"WebClasses From Scratch","0789721260"}, _
 {"Teach Yourself C++ in 21 Days","067232072X"}, _
 {"Teach Yourself C++ in 10 Minutes","067231603X"}, _
 {"XML & Java From Scratch","0789724766"}, _
 {"Complete Idiot's Guide to a Career in Computer Programming", _
 "0789719959"}, _
 {"XML Web Documents From Scratch","0789723166"}, _
 {"Clouds To Code","1861000952"}, _
 {"C++: An Introduction to Programming","1575760614"}, _
 {"C++ Unleashed","0672312395"} _
 }

 ' Now populate the list.
 dim i as integer

 for i = 0 to books.GetLength(0) - 1
 ' Add both Text and Value
 ddl.Items.Add(new ListItem(books(i,0),books(i,1)))
 next
 end if
 End Sub

 Sub ddl_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' Check to verify that something has been selected.
 if ddl.SelectedIndex <> -1 then
 lblDdl.Text=ddl.SelectedItem.Text & " ---> ISBN: " & _
 ddl.SelectedItem.Value
 end if
 End Sub
</script>

<html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>DropDownList</h2>

 <asp:dropDownList
 id="ddl"
 autoPostBack="true"
 onSelectedIndexChanged="ddl_SelectedIndexChanged"
 runat="server"/>

 <asp:label id="lblDdl" runat="server" />
 </form>
 </body>
</html>

The results of Example 5-25 or Example 5-26 are shown in Figure 5-14 .

Figure 5-14. DropDownList control

In Example 5-25 and Example 5-26 , a DropDownList with the id of ddl is added. This control is

populated when the page is first loaded, in the Page_Load event handler method.

To prevent this code running every time the page is reloaded, you test to see if the IsPostBack property
is true . The IsPostBack property is false when the page is first loaded, but is set to true whenever

the form is posted back to the server as a result of user action on one of the controls. In many
applications, the contents of controls are filled from a database, which is a relatively expensive
operation. Only hitting the database when necessary makes the implementation more efficient. In
Example 5-23 and Example 5-24 , you used two arrays to populate a CheckBoxList with both the Text
and Value properties. In Example 5-25 and Example 5-26 , you use a single two-dimensional array to
accomplish the same thing. As before, you call the Items.Add method to add the ListItems to the
control. In Chapter 9 , you will see how to populate a ListControl from a database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As with the other ListControls, the OnSelectedIndexChanged attribute points to the event handler

method, ddl_SelectedIndexChanged. In that method, just as with the RadioButtonList control, you first
check to see if something is selected by testing if the SelectedIndex property is not equal to -1. If an
item has been selected, you display a concatenation of SelectedItem.Text and SelectedItem.Value in the
Label called lblDdl.

5.7.5 ListBox Control

ListBox controls are very similar to DropDownList controls. Example 5-27 and Example 5-28
demonstrate two different ListBoxes: one using single selection and one allowing multiple selection. As
you will see, they are almost identical in implementation, with the only significant difference being the
method used to identify the selected item(s).

The code in Example 5-27 and Example 5-28 for implementing ListBox controls is nearly identical to that
in Example 5-25 and Example 5-26 for implementing DropDownLists. The differences, highlighted in
Example 5-27 and Example 5-28 , include the addition of the two DropDownList controls, modification to
the Page_Load method to populate those controls, and the addition of event handlers for those two
controls.

Example 5-27. ListBox control using C#, csASPListBox.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void Page_Load(Object sender, EventArgs e)
 {
 if (! IsPostBack)
 {
 // Build 2 dimensional array for the lists
 // First dimension contains bookname
 // 2nd dimension contains ISBN number
 string[,] books = {
 {"Programming C#","0596001177"},
 {"Programming ASP.NET","0596001711"},
 {"WebClasses From Scratch","0789721260"},
 {"Teach Yourself C++ in 21 Days","067232072X"},
 {"Teach Yourself C++ in 10 Minutes","067231603X"},
 {"XML & Java From Scratch","0789724766"},
 {"Complete Idiot's Guide to a Career in Computer Programming",
 {"XML Web Documents From Scratch","0789723166"},
 {"Clouds To Code","1861000952"},
 {"C++: An Introduction to Programming","1575760614"},
 {"C++ Unleashed","0672312395"}
 };
 // Now populate the lists.
 int i;
 for (i = 0; i < books.GetLength(0); i++)
 {
 // Add both Text and Value
 lbSingle.Items.Add(new ListItem(books[i,0],books[i,1]));
 lbMulti.Items.Add(new ListItem(books[i,0],books[i,1]));
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }

 void lbSingle_SelectedIndexChanged(Object Source, EventArgs E)
 {
 // Check to verify that something has been selected.
 if (lbSingle.SelectedIndex != -1)
 {
 lblLbSingle.Text=lbSingle.SelectedItem.Text + " ---> ISBN: " +
 lbSingle.SelectedItem.Value;
 }
 }

 void lbMulti_SelectedIndexChanged(Object Source, EventArgs E)
 {
 string str = "";
 foreach(ListItem li in lbMulti.Items)
 {
 if (li.Selected == true)
 {
 str += "
" + li.Text + " ---> ISBN: " +li.Value;
 }
 }

 if (str.Length == 0)
 lblLbMulti.Text = "No books selected.";
 else
 lblLbMulti.Text = str;
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>ListBox</h2>

 <h3>ListBox - single selection</h3>
 <asp:ListBox
 id="lbSingle"
 autoPostBack="true"
 rows="6"
 selectionMode="single"
 onSelectedIndexChanged="lbSingle_SelectedIndexChanged"
 runat="server"/>

 <asp:label id="lblLbSingle" runat="server" />

 <h3>ListBox - multiple selection</h3>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:ListBox
 id="lbMulti"
 autoPostBack="true"
 selectionMode="multiple"
 onSelectedIndexChanged="lbMulti_SelectedIndexChanged"
 runat="server"/>

 <asp:label id="lblLbMulti" runat="server" />
 </form>
 </body>
</html>

Example 5-28. ListBox control using VB.NET, vbASPListBox.aspx

<%@ Page Language="VB" %>
<script runat="server">
 Sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 ' Build 2 dimensional array for the lists
 ' First dimension contains bookname
 ' 2nd dimension contains ISBN number
 dim books(,) as string = { _
 {"Programming C#","0596001177"}, _
 {"Programming ASP.NET","1234567890"}, _
 {"WebClasses From Scratch","0789721260"}, _
 {"Teach Yourself C++ in 21 Days","067232072X"}, _
 {"Teach Yourself C++ in 10 Minutes","067231603X"}, _
 {"XML & Java From Scratch","0789724766"}, _
 {"Complete Idiot's Guide to a Career in Computer Programming", _
 "0789719959"}, _
 {"XML Web Documents From Scratch","0789723166"}, _
 {"Clouds To Code","1861000952"}, _
 {"C++: An Introduction to Programming","1575760614"}, _
 {"C++ Unleashed","0672312395"} _
 }
 ' Now populate the lists.
 dim i as integer

 for i = 0 to books.GetLength(0) - 1
 ' Add both Text and Value
 lbSingle.Items.Add(new ListItem(books(i,0),books(i,1)))
 lbMulti.Items.Add(new ListItem(books(i,0),books(i,1)))
 next
 end if
 End Sub

 Sub lbSingle_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' Check to verify that something has been selected.
 if lbSingle.SelectedIndex <> -1 then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lblLbSingle.Text=lbSingle.SelectedItem.Text & " ---> ISBN: " & _
 lbSingle.SelectedItem.Value
 end if
 End Sub

 Sub lbMulti_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim sb as new StringBuilder()
 dim li as ListItem
 for each li in lbMulti.Items
 if li.Selected then
 sb.Append("
" & li.Text & " ---> ISBN: " & li.Value)
 end if
 next li

 if sb.Length = 0 then
 lblLbMulti.Text = "No books selected."
 else
 lblLbMulti.Text = sb.ToString()
 end if
 End Sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>ListBox</h2>

 <h3>ListBox - single selection</h3>
 <asp:ListBox
 id="lbSingle"
 autoPostBack="true"
 rows="6"
 selectionMode="single"
 onSelectedIndexChanged="lbSingle_SelectedIndexChanged"
 runat="server"/>

 <asp:label id="lblLbSingle" runat="server" />

 <h3>ListBox - multiple selection</h3>
 <asp:ListBox
 id="lbMulti"
 autoPostBack="true"
 selectionMode="multiple"
 onSelectedIndexChanged="lbMulti_SelectedIndexChanged"
 runat="server"/>

 <asp:label id="lblLbMulti" runat="server" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </form>
 </body>
</html>

ListBox controls have two properties in addition to those inherited from ListControl. These properties are
shown in Table 5-9 .

Table 5-9. Properties of ListBox controls not inherited from the ListControl
control

Name Type Get Set Values Description

SelectionMode ListSelectionMode x x
Single ,
Multiple

Determines if a ListBox is in single
selection mode or multiple selection
mode. Default is Single .

Rows Integer x x Number of rows displayed. Default is 4 .

The first ListBox added in Example 5-27 and Example 5-28 , with an id of lbSingle , is a single

selection list box. The Rows property has been set to 6, and 6 items are displayed. Since the control has
been populated with more than 6 items, a vertical scrollbar automatically appears. If a second item is
selected, the first item is deselected. As with most of the examples in this chapter, AutoPostBack has
been set to true so that the effects of the change are visible immediately.

The second ListBox control, with an id of lbMulti , is a multiple selection list box. The Rows property

has not been set, so the default 4 rows are visible. Since it is multiselect, the standard Windows
techniques of multiselection can be used.

Windows MultiSelection Techniques

Most Windows applications use the same techniques for selecting multiple items.

To add a range of items to the selected list, click on the first item to be selected, then hold
down the Shift key while clicking on the last item to be selected. All the items between the
two are highlighted for selection.

To add non-contiguous items to the selection, hold down the Ctrl key while clicking on items.

To deselect single items that have already been selected, hold down the Ctrl key while
clicking on each item to toggle its selection status.

The event handlers for processing the selections of the two list boxes are very different. The event
handler for the single selection list box is very similar to the one for the DropDownList control or any
other single select ListControl, such as the RadioButtonList control.

The event handler for the multiselect list box, on the other hand, is more like that used for the
CheckBoxList control. It iterates through the collection of ListItem objects, checking each to see if the
Selected property is true . If it is true , then the Text and Value properties are added to the string for

output to a label.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The result of running the web page in Example 5-27 or Example 5-28 is shown in Figure 5-15 .

Figure 5-15. ListBox controls

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.8 Tables

Tables are very important in web page design, as they are one of the primary means of controlling
the layout on the page. In pure HTML, there are several tags for creating and formatting tables, and
many of those have analogs in ASP controls. If you don't need server-side capabilities, then you are
just as well off using the static HTML tags. But when you need to control the table at runtime, then
ASP controls are the way to go. (You could also use HTML Server controls, described earlier in this
chapter, but they don't offer the consistency of implementation and object model that ASP controls
offer.)

Table 5-10 summarizes the ASP controls used to create tables in web pages.

Table 5-10. ASP controls used to create tables in web pages

ASP control
HTML
analog

Description

Table <table>
Parent control for TableRow controls. The Rows property of the Table
object is a collection of TableRow objects.

TableRow <tr>
Parent control for TableCell controls. The Cells property of the
TableRow object contains a collection of TableCell objects.

TableCell <td>
Contains content to be displayed. The Text property contains HTML
text. The Controls collection can contain other controls.

TableHeaderCell <th>
Derived from the TableCell class. Controls the display of heading
cell(s).

There is some overlap in the functionality of Table controls and the DataList controls, such as the
Repeater, DataList, and DataGrid, covered in detail in Chapter 9. All can be used to display data in a
table or list formatted layout. In fact, all of these controls render to the browser (or have the option
to render) as HTML tables. (You can verify this by going to your browser and viewing the source of
the page displayed.) Table 5-11 summarizes the differences between these four controls.

Table 5-11. Differences between the Table control and DataList controls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Control Usage Description

Table General layout

Can contain any combination of text, HTML, and other controls,
including other tables

Uses TableCell rather than templates to control appearance

Not data bound, but can contain data bound controls

Repeater Read-only data

Read-only

Uses templates for the look

Data bound

No paging

DataList
List output with
editing

Default layout is a table

Can be extensively customized using templates and styles

Editable

Data bound

No paging

DataGrid
List output with
editing

Default look is a grid (that is, a customizable table)

Must use templates

Editable

Data bound

Supports paging and sorting

Example 5-29 demonstrates most of the basic table functionality using C#. Example 5-30 does the
same in VB.NET. In these examples, you will use a CheckBoxList control and a RadioButtonList
control to set attributes of the font samples displayed in the table. Then a table that contains a
sample of every font installed on your system is created. The finished product is shown in Figure 5-
16.

Example 5-29. Table control using C#, csASPTable.aspx

<%@ Page Language="C#" %>
<%@import namespace="System.Drawing" %>
<%@import namespace="System.Drawing.Text" %>

<script runat="server">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 void Page_Load(Object Source, EventArgs E)
 {
 string str = "The quick brown fox jumped over the lazy dogs.";
 int i = 0;

 // Get the style checkboxes.
 bool boolUnder = false;
 bool boolOver = false;
 bool boolStrike = false;

 foreach(ListItem li in cblFontStyle.Items)
 {
 if (li.Selected == true)
 {
 switch (li.Value)
 {
 case "u":
 boolUnder = true;
 break;
 case "o":
 boolOver = true;
 break;
 case "s":
 boolStrike = true;
 break;
 }
 }
 }

 // Get the font size.
 int size = Convert.ToInt32(rblSize.SelectedItem.Value);

 // Get a list of all the fonts installed on the system
 // Populate the table with the fonts and sample text.
 InstalledFontCollection ifc = new InstalledFontCollection();
 foreach(FontFamily ff in ifc.Families)
 {
 TableRow r = new TableRow();

 TableCell cFont = new TableCell();
 cFont.Controls.Add(new LiteralControl(ff.Name));
 r.Cells.Add(cFont);

 TableCell cText = new TableCell();
 Label lbl = new Label();
 lbl.Text = str;

 // ID not necessary here. This just to show it can be set.
 i++;
 lbl.ID = "lbl" + i.ToString();

 // Set the font name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lbl.Font.Name = ff.Name;

 // Set the font style
 if (boolUnder)
 lbl.Font.Underline = true;
 if (boolOver)
 lbl.Font.Overline = true;
 if (boolStrike)
 lbl.Font.Strikeout = true;

 // Set the font size.
 lbl.Font.Size = size;

 cText.Controls.Add(lbl);
 r.Cells.Add(cText);

 tbl.Rows.Add(r);
 }
 }

 void cblFontStyle_Init(Object Source, EventArgs E)
 {
 // create arrays of items to add
 string[] FontStyle = {"Underline","OverLine", "Strikeout"};
 string[] Code = {"u","o","s"};

 int i;
 for (i = 0; i < FontStyle.GetLength(0); i++)
 {
 // Add both Text and Value
 this.cblFontStyle.Items.Add(new ListItem(FontStyle[i],Code[i]));
 }
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Table Control</h2>

 <table>
 <tr>
 <td>
 Select a Font Style:
 </td>
 <td>
 <asp:CheckBoxList
 id="cblFontStyle"
 autoPostBack="true"
 cellPadding="5"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cellSpacing="10"
 repeatColumns="3"
 textAlign="right"
 onInit="cblFontStyle_Init"
 runat="server">
 </asp:CheckBoxList>
 </td>
 </tr>
 <tr>
 <td>
 Select a Font Size:
 </td>
 <td>
 <asp:radioButtonList
 id="rblSize"
 autoPostBack="true"
 cellSpacing="20"
 repeatColumns="3"
 textAlign="right"
 repeatDirection="Horizontal"
 runat="server">
 <asp:ListItem text="10pt" value="10"/>
 <asp:ListItem text="12pt" value="12" selected = "true"/>
 <asp:ListItem text="14pt" value="14"/>
 <asp:ListItem text="16pt" value="16"/>
 <asp:ListItem text="18pt" value="18"/>
 <asp:ListItem text="24pt" value="24"/>
 </asp:radioButtonList>
 </td>
 </tr>
 </table>

 <asp:table
 id="tbl"
 backImageUrl="Sunflower Bkgrd.jpg"
 font-Name="Times New Roman"
 Font-Size="12"
 GridLines="Both"
 CellPadding="10"
 CellSpacing="5"
 HorizontalAlign="Left"
 Width="100%"
 runat="server">

 <asp:TableRow
 horizontalAlign="Left">
 <asp:TableHeaderCell>
 Font Family
 </asp:TableHeaderCell>
 <asp:TableHeaderCell Width="80%">
 Sample text
 </asp:TableHeaderCell>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </asp:TableRow>
 </asp:table>
 </form>
 </body>
</html>

Figure 5-16. Table control

In Example 5-30, you can see the event handler methods in VB.NET. I have not included the HTML,
since it is identical with that in Example 5-29.

Example 5-30. Event handlers for Table control using VB.NET,
vbASPTable.aspx

<%@ Page Language="VB" %>
<%@import namespace="System.Drawing" %>
<%@import namespace="System.Drawing.Text" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim str as string = "The quick brown fox jumped over the lazy dogs."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dim i as integer = 0

 ' Get the style checkboxes.
 dim boolUnder as Boolean = false
 dim boolOver as Boolean = false
 dim boolStrike as Boolean = false

 dim li as ListItem
 for each li in cblFontStyle.Items
 if li.Selected then
 select case li.Value
 case "u"
 boolUnder = true
 case "o":
 boolOver = true
 case "s":
 boolStrike = true
 end select
 end if
 next li

 ' Get the font size.
 dim size as integer = Convert.ToInt32(rblSize.SelectedItem.Value)

 ' Get a list of all the fonts installed on the system
 ' Populate the table with the fonts and sample text.
 dim ifc as InstalledFontCollection = new InstalledFontCollection()
 dim ff as FontFamily
 for each ff in ifc.Families
 dim r as TableRow = new TableRow()
 dim cFont as TableCell = new TableCell()
 cFont.Controls.Add(new LiteralControl(ff.Name))
 r.Cells.Add(cFont)

 dim cText as TableCell = new TableCell()
 dim lbl as Label = new Label()
 lbl.Text = str

 ' ID not necessary here. This just to show how it can be set.
 i = i + 1
 lbl.ID = "lbl" & i.ToString()

 ' Set the font name
 lbl.Font.Name = ff.Name

 ' Set the font style
 if boolUnder then
 lbl.Font.Underline = true
 end if
 if boolOver then
 lbl.Font.Overline = true
 end if

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if boolStrike then
 lbl.Font.Strikeout = true
 end if

 ' Set the font size.
 lbl.Font.Size = new FontUnit(size)

 cText.Controls.Add(lbl)
 r.Cells.Add(cText)

 tbl.Rows.Add(r)
 next ff
 end sub

 sub cblFontStyle_Init(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' create arrays of items to add
 dim FontStyle() as string = {"Underline","OverLine", "Strikeout"}
 dim Code() as string= {"u","o","s"}
 dim i as integer
 for i = 0 to FontStyle.GetLength(0) -1
 ' Add both Text and Value
 cblFontStyle.Items.Add(new ListItem(FontStyle(i),Code(i)))
 next
 end sub
</script>

Example 5-29 and Example 5-30 begin with a few directives:

Commenting Your Code

Commenting ASP.NET is particularly difficult. As an ASP.NET developer, you may be
working with HTML, C#, VB.NET, JavaScript, VBScript, TransactSQL, among others. Each
language has its own unique syntax for comments, and it is even possible for one
language to overlap another.

Here is a summary of the different ways to comment:

HTML:

<!-- text to be commented goes in here -->

JavaScipt:

// commented text follows
/* multiline
comment */

C#:

// commented text follows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/* multiline
comment */

VB.NET and VBScript:

"|" commented text follows

ASP controls: There is no comment within an ASP control. However, since any
unrecognized attributes are ignored, some developers prepend any attributes they wish to
comment out with XX.

Transact SQL:

-- commented text follows two dashes

<%@ Page Language="C#" %>
<%@import namespace="System.Drawing" %>
<%@import namespace="System.Drawing.Text" %>

The first is a Page directive, one we have seen before-it tells the compiler that the language used is
C# (or VB in the case of Example 5-30). The next two are Import directives, which import
namespaces. These import directives perform the same function as the using statement in C# or the
Imports statement in VB.NET. Directives are described in detail in Chapter 6.

Before delving into the script block in detail, hop down to the <body> of the page. After some opening
headers, there is a standard, plain vanilla HTML table. This uses the familiar <table> tags enclosing
table rows (<tr>), which enclose table cells (<td>). There is nothing dynamic going on here, just the

common technique of using a table to control the layout of the page.

The second cell of the first row contains an ASP CheckBoxList control, and the second cell of the
second row contains an ASP RadioButtonList control, both of which have been discussed earlier in this
chapter. Both of these controls have several things in common: an id attribute, the all-important
runat attribute, and AutoPostBack set to true, so that any changes will take effect immediately.

Both controls also have various other attributes to give the layout I wanted.

Notice that the CheckBoxList control has an event handler defined for initialization, onInit , which

points to a method called cblFontStyle_Init. This method is in the script block at the top of the page.
Here is the C# version:

void cblFontStyle_Init(Object Source, EventArgs E)
{
 string[] FontStyle = {"Underline","OverLine", "Strikeout"};
 string[] Code = {"u","o","s"};

 int i;
 for (i = 0; i < FontStyle.GetLength(0); i++)
 {
 this.cblFontStyle.Items.Add(new ListItem(FontStyle[i],Code[i]));
 }
}

Here is the VB.NET version:

sub cblFontStyle_Init(ByVal Sender as Object, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ByVal e as EventArgs)
 ' create arrays of items to add
 dim FontStyle() as string = {"Underline","OverLine", "Strikeout"}
 dim Code() as string= {"u","o","s"}

 dim i as integer
 for i = 0 to FontStyle.GetLength(0) -1
 ' Add both Text and Value
 cblFontStyle.Items.Add(new ListItem(FontStyle(i),Code(i)))
 next
end sub

This code is very similar to Example 5-17 and Example 5-18. Here you create two string arrays,
FontStyle and Code, to fill the ListItem properties Text and Value, respectively.

The RadioButtonList control, on the other hand, does not have an onInit event handler, but rather
the ListItems it contains are defined right within the control itself. This example uses self-closing
ListItem tags with attributes specifying both the Text property and the Value property. In the case of
the 12pt radio button, the Selected property is set to true, which makes this the default value on

initialization.

Notice that neither of these controls has any other event handler. Specifically, there is no event
handler for OnSelectedIndexChanged, as there are in previous examples in this chapter. Yet,
AutoPostBack is true. As you will see, the ASP Table control is rebuilt every time the page is loaded,

which occurs every time either the CheckBoxList or the RadioButtonList control is changed. The
current value for the font style is obtained from the CheckBoxList control, and the current font size is
obtained from the RadioButtonList control.

The ASP Table control is the heart of this page:

<asp:Table
 id="tbl"
 backImageUrl="Sunflower Bkgrd.jpg"
 font-Name="Times New Roman"
 Font-Size="12"
 GridLines="Both"
 CellPadding="10"
 CellSpacing="5"
 HorizontalAlign="Left"
 Width="100%"
 runat="server">

 <asp:TableRow>
 horizontalAlign="Left">
 <asp:TableHeaderCell>
 Font Family
 </asp:TableHeaderCell>
 <asp:TableHeaderCell Width="80%">
 Sample text
 </asp:TableHeaderCell>
 </asp:TableRow>
</asp:Table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Like all ASP controls, the Table control inherits from WebControl and therefore has the standard set
of properties, methods, and events from that class and the classes above it in the hierarchy. In
addition, the Table control has properties of its own, which are listed in Table 5-12. Most of these
properties are demonstrated in Example 5-29 and Example 5-30.

Table 5-12. Properties of the Table control not derived from other
controls

Name Type Get Set Values Description

BackImageUrl String x x

The URL of an image to display
behind the table. If the image is
smaller than the table, it will be
tiled.

CellPadding Integer x x
Distance, in pixels, between the
border and the contents of a table
cell.

CellSpacing Integer x x
Distance, in pixels, between
adjacent table cells.

GridLines GridLines x x
Both, Horizontal,
None, Vertical

Determines which, if any, gridlines
will be drawn in the table. Default
is None.

HorizontalAlign HorizontalAlign x x

Center, Justify,
Left, NotSet,
Right

Specifies the horizontal alignment
of the table within the page.
Default is NotSet.

Note the following information about the ASP Table control in Example 5-29 and Example 5-30:

The BackImageUrl attribute in the ASP Table control points to an image file located in the same

directory as the .aspx file itself, so the URL does not need to be fully qualified. In these code
examples, I used SunflowerBkgrd.jpg, which was copied from my
c:\ProgramFiles\CommonFiles\MicrosoftShared\Stationery directory. You can use any .jpg file
you want or simply omit the BackImageUrl attribute.

The syntax for font name and size attributes is Font-Name and Font-Size when declared as
part of the ASP control using its HTML syntax, but Font.Name and Font.Size when declared in

the script block.

The Width attribute in the ASP Table control is set to 100%. This causes the table to dynamically

size to the full width of the browser window. The percentage value can be any integer, including
values greater than 100, in which case the table will be wider than the browser window.

If the Width attribute is set as an integer with no units, it causes the table to be the specified

number of pixels in width, irrespective of the width of the browser window. Again, the table can
be made wider than the browser window.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the Width attribute is not specified, then the table will automatically be as wide as necessary

to display the contents of the cells. If the browser window is not wide enough, the cell contents
will wrap. Once the browser window is made wide enough that all the cells can display without
wrapping, the table will not get any wider.

Nested inside the ASP Table control is a single ASP TableRow control. This row contains the header
cells, as indicated by the fact that the ASP controls nested inside the TableRow control are ASP
TableHeaderCell controls.

5.8.1 Table Rows

The ASP TableRow control is used to represent a single row in a Table control. It is derived from the
WebControl class, just like the Table control. As Table 5-13 shows, it has only two properties that are
not shared with all its other sibling controls.

Table 5-13. Properties of the TableRow control not shared by other ASP
table controls

Name Type Get Set Values Description

HorizontalAlign HorizontalAlign x x

Center, Justify,
Left, NotSet,
Right

Specifies the horizontal alignment of
the contents of all the cells in the
row. Default is NotSet.

VerticalAlign VerticalAlign x x
Bottom, Middle,
NotSet, Top

Specifies the vertical alignment of
the contents of all the cells in the
row. Default is NotSet.

5.8.2 Table Cells

There are two types of table cell ASP controls: a TableCell control for the body of the table and a
TableHeaderCell for header cells. Both are used in Example 5-29 and Example 5-30.

The ASP TableHeaderCell control represents a heading cell in a Table control. It is derived from the
ASP TableCell control class. In fact, all of its properties, events, and methods are exactly the same as
for the ASP TableCell control. The single difference between the TableCell and TableHeaderCell
controls is that the TableHeaderCell control renders with a bold font, as can be seen in Figure 5-17.

Notice that none of these nested TableHeaderCell controls in this example have either an id or a
runat attribute. These attributes are not necessary here, since these controls are not accessed

programmatically elsewhere in the code.

Only a single row is defined statically. The rest of the rows are defined dynamically in the Page_Load
method in the script block.

In Example 5-29 and Example 5-30, the content of the header cells is the literal text strings between
the opening and closing control tags. Alternatively, you may use self-closing tags and specify the
content as a Text property:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<asp:TableHeaderCell text="Font Family"/>

The ASP TableCell control is used to contain the actual content of the table. Like the Table and
TableRow controls, it is derived from the WebControl class. The TableCell and the TableHeaderCell
controls have the properties shown in Table 5-14, which are not shared with its siblings.

Table 5-14. Properties of the TableCell and TableHeaderCell controls not
shared with other table controls

Name Type Get Set Values Description

ColumnSpan Integer x x
Number of columns in the Table that
the cell spans.

HorizontalAlign HorizontalAlign x x

Center,
Justify,
Left, NotSet,
Right

Specifies the horizontal alignment of the
content of the cell. Default is NotSet.

RowSpan Integer x x
Number of rows in the Table that the
cell spans.

Text String x x The text content of the cell.

VerticalAlign VerticalAlign x x

Bottom,
Middle,
NotSet, Top

Specifies the vertical alignment of the
contents of the cell. Default is NotSet.

Wrap Boolean x x true, false

If true (the default), the contents of
the cell wraps. If false, contents do

not wrap. Note that there is an
interaction between the Wrap property
and cell width.

You now have an ASP Table control containing a single TableRow object that contains a pair of
TableHeaderCell objects. The script block's Page_Load method, which is run every time the page is
loaded, creates the table dynamically.

Often times, the Page_Load method will examine the IsPostBack property to test if the page is being
loaded for the first time. If the load is the result of a postback, you may not want certain code to
execute, either because it is both unnecessary and expensive, or because you will lose or change
state information.

In this example, however, you want the code to run every time the page loads. In fact, both the
CheckBoxList and the RadioButtonList controls have their AutoPostBack properties set to true to

force the page to post. This forces the table to be regenerated. Each time the table is regenerated,
the font styles are obtained from the CheckBoxList control, and the font size is obtained from the
RadioButtonList control.

The Page_Load method begins by initializing a couple of variables. In C#, the code is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

string str = "The quick brown fox jumped over the lazy dogs.";
int i = 0;

In VB.NET, the code is:

dim str as string = "The quick brown fox jumped over the lazy dogs."
dim i as integer = 0

str is the text displayed in the table, and i is a counter used later on.

You get the style or styles from the CheckBoxList control. To do so, you initialize three Boolean
variables to use as flags, one for each style. In C#, the code looks like:

bool boolUnder = false;
bool boolOver = false;
bool boolStrike = false;

In VB.NET, it looks like:

dim boolUnder as Boolean = false
dim boolOver as Boolean = false
dim boolStrike as Boolean = false

Then, using a for each loop to test each of the ListItem objects in the cblFontStyle CheckBoxList in
turn, you set the variable for each font style to true if that checkbox has been selected. That is done
by testing to see if the Selected property of the ListItem object is true. In C#, you might write:

foreach(ListItem li in cblFontStyle.Items)
{
 if (li.Selected == true)
 {
 switch (li.Value)
 {
 case "u":
 boolUnder = true;
 break;
 case "o":
 boolOver = true;
 break;
 case "s":
 boolStrike = true;
 break;
 }
 }
}

In VB.NET, you'd use:

dim li as ListItem
for each li in cblFontStyle.Items
 if li.Selected then
 select case li.Value
 case "u"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 boolUnder = true
 case "o":
 boolOver = true
 case "s":
 boolStrike = true
 end select
 end if
next li

Getting the font size selected in the RadioButtonList rblSize is much simpler, since all you have to do
is get the Value property of the ListItem object returned by the SelectedItem property. You put that
integer into the size variable. In C#, the code is:

int size = Convert.ToInt32(rblSize.SelectedItem.Value);

In VB.NET, it is:

dim size as integer = Convert.ToInt32(rblSize.SelectedItem.Value)

Now comes the meat of the method. You need to get a list of all the fonts installed on the machine.
To do this, instantiate a new InstalledFontCollection object. In C#, the code is:

InstalledFontCollection ifc = new InstalledFontCollection();

In VB.NET, it is:

dim ifc as InstalledFontCollection = new InstalledFontCollection()

Iterate over that collection, using a for each loop, looking at each of the FontFamily objects in turn.

In C#, you'd use:

foreach(FontFamily ff in ifc.Families)

In VB.NET, the code is:

dim ff as FontFamily
for each ff in ifc.Families

For each font family in the collection of FontFamilies, you create a new TableRow object. In C#, this
looks like:

TableRow r = new TableRow();

In VB.NET, you'd have:

dim r as TableRow = new TableRow()

Within that TableRow object, you create two TableCell objects-one called cFont to hold the font
name, and a second called cText to hold the sample text string defined earlier. In C#, the following
code would suffice for the cFont cell:

TableCell cFont = new TableCell();
cFont.Controls.Add(new LiteralControl(ff.Name));
r.Cells.Add(cFont);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB.NET, you'd use:

dim cFont as TableCell = new TableCell()
cFont.Controls.Add(new LiteralControl(ff.Name))
r.Cells.Add(cFont)

The cFont TableCell object makes use of an ASP control called the LiteralControl. This control is used
to insert text and HTML elements into the page. The only property of the LiteralControl, other than
those inherited from Control, is the Text property.

For the cell containing the sample text, you will use a slightly different technique, because you want
to be able to manipulate the font and size properties of the text string. After instantiating a new
TableCell object named cText, you also instantiate a Label control and assign the variable str, defined
earlier, to its Text property. In C#, the code would be:

TableCell cText = new TableCell();
Label lbl = new Label();
lbl.Text = str;

In VB.NET, you'd use:

dim cText as TableCell = new TableCell()
dim lbl as Label = new Label()
lbl.Text = str

You increment the counter defined earlier and use it by assigning an ID property to the Label control.
In C#, the following lines would work:

i++;
lbl.ID = "lbl" + i.ToString();

In VB.NET, you'd use:

i = i + 1
lbl.ID = "lbl" & i.ToString()

Actually, this step is not necessary, because nowhere in this example do you actually need to refer
back to any specific cell, but this was added to demonstrate how it can be done.

You now assign the font name. In C#, this would look like:

lbl.Font.Name = ff.Name;

In VB.NET, it would look like:

lbl.Font.Name = ff.Name

Notice the syntax used here is different from the syntax for setting the font name within the tags of
an ASP control (Font.Name versus Font-Name).

Use the flags set earlier to set the font styles. In C#, the code is:

if (boolUnder)
 lbl.Font.Underline = true;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if (boolOver)
 lbl.Font.Overline = true;
if (boolStrike)
 lbl.Font.Strikeout = true;

In VB.NET, it is:

if boolUnder then
 lbl.Font.Underline = true
end if
if boolOver then
 lbl.Font.Overline = true
end if
if boolStrike then
 lbl.Font.Strikeout = true
end if

Since the table is being re-created from scratch each time the page is loaded, and the defaults for
each of these styles is no style (that is, false), there is no need to set the properties explicitly to
false.

Set the font size, add the TableCell object to the TableRow object, and add the TableRow object to
the Table object. In C#, you'd use:

lbl.Font.Size = size;
cText.Controls.Add(lbl);
r.Cells.Add(cText);
tbl.Rows.Add(r);

In VB.NET, you'd use:

lbl.Font.Size = new FontUnit(size)
cText.Controls.Add(lbl)
r.Cells.Add(cText)
tbl.Rows.Add(r)

There you have it.

5.8.3 Cell Width

Controlling the width of the cells merits special mention. It is similar to controlling table width, but
different enough to cause some confusion. Looking at the HTML portion of Example 5-29, you can see
that the second cell in the header row has a Width attribute set to 80%:

<asp:TableHeaderCell Width="80%">
 Sample text
</asp:TableHeaderCell>

Browsers make all the cells in a column the same width. If none of the cells have any width
specification, then the column will automatically size to best accommodate all the cells, taking into
account any width specifications for the table and the size of the browser window.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If multiple cells in a column have a width specification, then the widest cell specification is used. For
easiest readability, it is usually best to include a width specification in only one row, generally the first
row of the table. Hence, the Width attribute appears in the header row of this example.

When the width is specified declaratively as part of an ASP control tag, it can be given either as a
percentage of the entire table, as was done in this example, or it can be given as a fixed number of
pixels, as in the following:

Width="400">

Cell width can also be specified programmatically, in which case the syntax is somewhat different.
Furthermore, the syntax differs between C# and VB.NET. Consider the lines of code from Example 5-
29 and Example 5-30 that instantiate the cells containing the sample text, reproduced here for
convenience. In C#, the code is:

TableCell cText = new TableCell();

In VB.NET, it is:

Dim cText as TableCell = new TableCell()

In either language, the variable cText, of type TableCell, is assigned to the cell instance. The Width
property can be applied to this TableCell instance, either as pixels or a percentage of the table width.
To specify the Width property as 80% of the table width, use the following line of code in C#:

cText.Width = Unit.Percentage(80);

Use this line of code in VB.NET:

cText.Width = Unit.Percentage(80)

To specify a fixed number of pixels, use either of the following lines of code in C#:

cText.Width = Unit.Pixel(400);
cText.Width = 400;

In VB.NET, only this line of code will set the cell width to a fixed number of pixels:

cText.Width = Unit.Pixel(400)

There is an interaction between the cell Width property and the Wrap property. The default value for
the Wrap property is true. If the Wrap property is set to false, one of the following situations will

occur:

If there is no Width property specified, then the contents of the cell does not wrap and the
column width expands to accommodate the largest cell.

If the Width property is set to a pixel value, the Wrap property is overridden and the cell
contents wrap to honor the Width property.

If the Width property is set to a percentage value, it is overridden and the column is made wide
enough to preclude any wrapping.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.9 Panel Control

The Panel control is used as a container for other controls. It serves several functions:

To control the visibility of the controls it contains

To control the appearance of the controls it contains

To make it easier to generate controls programmatically

The Panel control is derived from WebControl and adds the properties shown in Table 5-15.

Table 5-15. Properties of the Panel control properties not inherited from
WebControl

Name Type Get Set Values Description

BackImageUrl String x x
The URL of an image to display behind
the table. If the image is smaller than
the table, it is tiled.

HorizontalAlign HorizontalAlign x x

Center,
Justify, Left,
NotSet, Right

Specifies the horizontal alignment of
the contents of all the cells in the row.
Default is NotSet. Note there is no

VerticalAlign property.

Wrap Boolean x x true, false
If true (the default), the contents of
the cell wraps. If false, contents do

not wrap.

Example 5-31 demonstrates how to control the appearance and visibility of child controls and add
controls programmatically using C#. Example 5-32 shows the script block of the same program in
VB.NET. The HTML section of the code is the same for both the VB.NET and C# versions;
consequently, the HTML is shown only in the C# version.

Example 5-31. Panel control using C#, csASPPanel.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void Page_Load(Object sender, EventArgs e)
 {
 // Show/Hide Panel Contents
 if (chkHide.Checked)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pnl.Visible=false;
 }
 else
 {
 pnl.Visible=true;
 }

 // Generate label controls
 int numlabels = Int32.Parse(ddlLabels.SelectedItem.Value);
 for (int i=1; i<=numlabels; i++)
 {
 Label lbl = new Label();
 lbl.Text = "Label" + (i).ToString();
 lbl.ID = "Label" + (i).ToString();
 pnl.Controls.Add(lbl);
 pnl.Controls.Add(new LiteralControl("
"));
 }

 // Generate textbox controls
 int numBoxes = Int32.Parse(ddlBoxes.SelectedItem.Value);
 for (int i=1; i<=numBoxes; i++)
 {
 TextBox txt = new TextBox();
 txt.Text = "TextBox" + (i).ToString();
 txt.ID = "TextBox" + (i).ToString();
 pnl.Controls.Add(txt);
 pnl.Controls.Add(new LiteralControl("
"));
 }
 }
</script>

<html>
<body>

 <form runat=server>
 <h1>ASP Controls</h1>
 <h2>Panel Control</h2>

 <asp:Panel
 id="pnl"
 BackColor="DeepPink"
 Height="250px"
 Width="80%"
 Font-Name="Impact"
 HorizontalAlign="Center"
 runat="server" >

 This is static content in the Panel.
 <p/>
 </asp:Panel>

 <table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tr>
 <td>
 Number of Labels:
 </td>
 <td>
 <asp:DropDownList
 id=ddlLabels
 runat="server">
 <asp:ListItem text="0" value="0" />
 <asp:ListItem text="1" value="1" />
 <asp:ListItem text="2" value="2" />
 <asp:ListItem text="3" value="3" />
 <asp:ListItem text="4" value="4" />
 </asp:DropDownList>
 </td>
 </tr>
 <tr>
 <td>
 Number of TextBoxes:
 </td>
 <td>
 <asp:DropDownList
 id=ddlBoxes
 runat="server">
 <asp:ListItem text="0" value="0" />
 <asp:ListItem text="1" value="1" />
 <asp:ListItem text="2" value="2" />
 <asp:ListItem text="3" value="3" />
 <asp:ListItem text="4" value="4" />
 </asp:DropDownList>
 </td>
 </tr>
 <tr>
 <td colspan=2> </td>
 </tr>
 <tr>
 <td>
 <asp:CheckBox
 id="chkHide"
 text="Hide Panel"
 runat="server"/>
 </td>
 <td>
 <asp:Button
 text="Refresh Panel"
 runat="server"/>
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This sample is very straightforward. Skipping over the script block at the beginning for the moment,
look just past the start of the HTML form, where an ASP Panel control is defined:

 <asp:Panel
 id="pnl"
 BackColor="DeepPink"
 Height="250px"
 Width="80%"
 Font-Name="Impact"
 HorizontalAlign="Center"
 runat="server" >

 This is static content in the Panel.
 <p/>
 </asp:Panel>

To access the Panel control programmatically, like all ASP controls, it has the id and runat attributes
set. You also define several attributes for the Panel, including BackColor, Height (in pixels), Width
(in percentage of the browser window), the font name (Font-Name), and the horizontal alignment
(HorizontalAlign). Note that this control does not have a property for vertical alignment.

The only acceptable value for the Height attribute is an integer representing the number of pixels.
The px as part of the value is optional, but does serve to self-document. For example, the following

two lines are equivalent:

Height="250px"
Height="250"

The Height attribute does not cause a browser or compiler error if a percentage sign (%) is used, but
the Height attribute is ignored in that case. If the Height attribute is either ignored or missing, then

the Panel control automatically sizes itself vertically to contain all of its children controls.

The Width attribute can be either an integer number of pixels or a percentage of the browser
window. The latter is shown in this example. If the Width attribute is missing, then the Panel control

will default to a width of 100%.

The Panel control in the example also contains static text and HTML before the closing tag.

A static HTML table is defined in the example to lay out the controls that will control the contents and
visibility of the panel. This table contains two DropDownList controls, a CheckBox control, and a
Button control.

Note that none of these controls has its AutoPostBack property set. Therefore, in order to see any of
the changes take effect, you need to click the button, which posts the form. When the form is posted,
the Page_Load method is run. In C# (reproduced here from Example 5-31), this code is:

void Page_Load(Object sender, EventArgs e)
{
 // Show/Hide Panel Contents
 if (chkHide.Checked)
 {
 pnl.Visible=false;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else
 {
 pnl.Visible=true;
 }

 // Generate label controls
 int numlabels = Int32.Parse(ddlLabels.SelectedItem.Value);
 for (int i=1; i<=numlabels; i++)
 {
 Label lbl = new Label();
 lbl.Text = "Label" + (i).ToString();
 lbl.ID = "Label" + (i).ToString();
 pnl.Controls.Add(lbl);
 pnl.Controls.Add(new LiteralControl("
"));
 }

 // Generate textbox controls
 int numBoxes = Int32.Parse(ddlBoxes.SelectedItem.Value);
 for (int i=1; i<=numBoxes; i++)
 {
 TextBox txt = new TextBox();
 txt.Text = "TextBox" + (i).ToString();
 txt.ID = "TextBox" + (i).ToString();
 pnl.Controls.Add(txt);
 pnl.Controls.Add(new LiteralControl("
"));
 }
}

Example 5-32 shows the code in VB.NET.

Example 5-32. Panel control script block using VB.NET, vbASPPanel.aspx

<%@ Page Language="VB" %>
<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' Show/Hide Panel Contents
 if chkHide.Checked then
 pnl.Visible=false
 else
 pnl.Visible=true
 end if

 ' Generate label controls
 dim numlabels as integer = Int32.Parse(ddlLabels.SelectedItem.Value)
 dim i as integer
 for i=1 to numlabels
 dim lbl as Label = new Label()
 lbl.Text = "Label" & (i).ToString()
 lbl.ID = "Label" & (i).ToString()
 pnl.Controls.Add(lbl)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pnl.Controls.Add(new LiteralControl("
"))
 next

 ' Generate textbox controls
 dim numBoxes as integer = Int32.Parse(ddlBoxes.SelectedItem.Value)
 for i=1 to numBoxes
 dim txt as TextBox = new TextBox()
 txt.Text = "TextBox" & (i).ToString()
 txt.ID = "TextBox" & (i).ToString()
 pnl.Controls.Add(txt)
 pnl.Controls.Add(new LiteralControl("
"))
 next
 end sub
</script>

First an if-else statement turns on or off the visibility of the panel. Note that when the panel is not
visible, its contents are not visible either. Likewise, when the panel is visible, all of its contents are
visible.

The two for loops, one each for labels and text boxes, generate the contained controls. After
converting the entry in the appropriate DropDownList control to an integer, the for loop iterates

through the procedure the specified number of times.

The procedure is very similar in each of the two cases. A new control is instantiated, then the Text
and ID properties assigned. The control is added to the Controls collection of the panel, and finally a
LiteralControl containing some HTML is added to the collection as well.

The results are shown in Figure 5-17.

Note that the font name specified inside the Panel tags affected the static text and labels in the

panel, but not the contents of the text boxes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.10 Images

There are two ASP controls for displaying images: the Image control and the AdRotator control.

5.10.1 Image Control

The Image control has very limited functionality-it is used for displaying an image on a web page or,
alternatively, displaying some text if the image is not available. If you need to have button
functionality (that is, to capture mouse clicks), then you should use the ImageButton control,
described earlier in this chapter.

In addition to the properties inherited from WebControl, the Image control has the properties shown
in Table 5-16.

Table 5-16. Properties of the Image control

Name Type Get Set Values Description

AlternateText String x x
The text displayed in the control if the image is
unavailable. In browsers that support the ToolTips
feature, this text is also displayed as a ToolTip.

ImageAlign ImageAlign x x
See Table
5-17.

Alignment options relative to the text of the web
page. See Table 5-17.

ImageUrl String x x
The URL pointing to the location of an image to
display.

The ImageUrl property can be either relative or absolute. A relative URL is the location relative to the
location of the web page, without specifying a fully qualified path on the server. Using relative URLs
makes it easier to move an entire site without modifying any of the code, as long as the image is in a
subdirectory relative to the virtual root and the same directory structure is maintained. An
absoluteURL provides a fully qualified path. If the site is moved, then the code containing the
absolute URL may need to be modified.

Figure 5-17. Panel control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are ten possible values for the ImageAlign property, as shown in Table 5-17. If you need better
control of image and text placement, you will probably want to put the Image control in an HTML
table.

Table 5-17. Members of the ImageAlign enumeration

Values Description

NotSet Not set. This is the default value.

AbsBottom
Aligns the lower edge of the image with the lower edge of the largest element on the
same line.

AbsMiddle Aligns the middle of the image with the middle of the largest element on the same line.

Top
Aligns the upper edge of the image with the upper edge of the highest element on the
same line.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values Description

Bottom
Aligns the lower edge of the image with the lower edge of the first line of text. Same as
Baseline.

Baseline
Aligns the lower edge of the image with the lower edge of the first line of text. Same as
Bottom.

Middle Aligns the middle of the image with the lower edge of the first line of text.

TextTop
Aligns the upper edge of the image with the upper edge of the highest text on the
same line.

Left Aligns the image on the left edge of the page with text wrapping on the right.

Right Aligns the image on the right edge of the page with the text wrapping on the left.

In Example 5-33, you will see how the various ImageAlign values affect the appearance of a web
page, using C#. Example 5-34 shows the script block using VB.NET. The web page produced by
either example is shown in Figure 5-18.

For the code in Example 5-33 and Example 5-34 to work correctly, you will
need an image file for the ImageUrl. These examples use "Dan at vernal
pool.jpg," located in the ProgAspNet virtual directory. You can use any .jpg file
you want.

Example 5-33. Image alignment using C#, csAspImageAlign.aspx

<%@ Page Language="C#" %>

<script runat="server">
 void Page_Load(Object sender, EventArgs e)
 {
 switch(ddl.SelectedIndex)
 {
 case 0:
 img1.ImageAlign = ImageAlign.NotSet;
 img2.ImageAlign = ImageAlign.NotSet;
 break;
 case 1:
 img1.ImageAlign = ImageAlign.AbsBottom;
 img2.ImageAlign = ImageAlign.AbsBottom;
 break;
 case 2:
 img1.ImageAlign = ImageAlign.AbsMiddle;
 img2.ImageAlign = ImageAlign.AbsMiddle;
 break;
 case 3:
 img1.ImageAlign = ImageAlign.Top;
 img2.ImageAlign = ImageAlign.Top;
 break;
 case 4:

Bottom
Aligns the lower edge of the image with the lower edge of the first line of text. Same as
Baseline.

Baseline
Aligns the lower edge of the image with the lower edge of the first line of text. Same as
Bottom.

Middle Aligns the middle of the image with the lower edge of the first line of text.

TextTop
Aligns the upper edge of the image with the upper edge of the highest text on the
same line.

Left Aligns the image on the left edge of the page with text wrapping on the right.

Right Aligns the image on the right edge of the page with the text wrapping on the left.

In Example 5-33, you will see how the various ImageAlign values affect the appearance of a web
page, using C#. Example 5-34 shows the script block using VB.NET. The web page produced by
either example is shown in Figure 5-18.

For the code in Example 5-33 and Example 5-34 to work correctly, you will
need an image file for the ImageUrl. These examples use "Dan at vernal
pool.jpg," located in the ProgAspNet virtual directory. You can use any .jpg file
you want.

Example 5-33. Image alignment using C#, csAspImageAlign.aspx

<%@ Page Language="C#" %>

<script runat="server">
 void Page_Load(Object sender, EventArgs e)
 {
 switch(ddl.SelectedIndex)
 {
 case 0:
 img1.ImageAlign = ImageAlign.NotSet;
 img2.ImageAlign = ImageAlign.NotSet;
 break;
 case 1:
 img1.ImageAlign = ImageAlign.AbsBottom;
 img2.ImageAlign = ImageAlign.AbsBottom;
 break;
 case 2:
 img1.ImageAlign = ImageAlign.AbsMiddle;
 img2.ImageAlign = ImageAlign.AbsMiddle;
 break;
 case 3:
 img1.ImageAlign = ImageAlign.Top;
 img2.ImageAlign = ImageAlign.Top;
 break;
 case 4:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 img1.ImageAlign = ImageAlign.Bottom;
 img2.ImageAlign = ImageAlign.Bottom;
 break;
 case 5:
 img1.ImageAlign = ImageAlign.Baseline;
 img2.ImageAlign = ImageAlign.Baseline;
 break;
 case 6:
 img1.ImageAlign = ImageAlign.Middle;
 img2.ImageAlign = ImageAlign.Middle;
 break;
 case 7:
 img1.ImageAlign = ImageAlign.TextTop;
 img2.ImageAlign = ImageAlign.TextTop;
 break;
 case 8:
 img1.ImageAlign = ImageAlign.Left;
 img2.ImageAlign = ImageAlign.Left;
 break;
 case 9:
 img1.ImageAlign = ImageAlign.Right;
 img2.ImageAlign = ImageAlign.Right;
 break;
 default:
 img1.ImageAlign = ImageAlign.NotSet;
 img2.ImageAlign = ImageAlign.NotSet;
 break;
 }
 }
</script>

<html>
<body>

 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Panel Control</h2>
 <h3>Image Alignment</h3>

 This is a sample paragraph which is being used
 to demonstrate the effects that various values
 of ImageAlign has. As you will see, the effects
 are sometimes difficult to pin down, and vary
 depending on the width of the browser window.

 <asp:Image id="img1"
 AlternateText="Dan"
 ImageAlign="NotSet"
 ImageUrl="Dan at Vernal Pool.jpg"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 runat="server" />

 <hr/>
 <hr/>

 <asp:button
 Text="Sample Button"
 runat="server"/>

 <asp:Image id="img2"
 AlternateText="Dan"
 ImageAlign="NotSet"
 ImageUrl="Dan at Vernal Pool.jpg"
 runat="server" />

 <hr/>
 <hr/>

 Select Image Align:

 <asp:DropDownList
 id="ddl"
 AutoPostBack="true"
 runat="server">
 <asp:ListItem text="NotSet" />
 <asp:ListItem text="AbsBottom" />
 <asp:ListItem text="AbsMiddle" />
 <asp:ListItem text="Top" />
 <asp:ListItem text="Bottom" />
 <asp:ListItem text="BaseLine" />
 <asp:ListItem text="Middle" />
 <asp:ListItem text="TextTop" />
 <asp:ListItem text="Left" />
 <asp:ListItem text="Right" />
 </asp:DropDownList>
 </form>
</body>
</html>

Example 5-34. Image alignment script block using VB.NET,
vbAspImageAlign.aspx

<%@ Page Language="VB" %>
<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 select case ddl.SelectedIndex
 case 0
 img1.ImageAlign = ImageAlign.NotSet
 img2.ImageAlign = ImageAlign.NotSet
 case 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 img1.ImageAlign = ImageAlign.AbsBottom
 img2.ImageAlign = ImageAlign.AbsBottom
 case 2
 img1.ImageAlign = ImageAlign.AbsMiddle
 img2.ImageAlign = ImageAlign.AbsMiddle
 case 3
 img1.ImageAlign = ImageAlign.Top
 img2.ImageAlign = ImageAlign.Top
 case 4
 img1.ImageAlign = ImageAlign.Bottom
 img2.ImageAlign = ImageAlign.Bottom
 case 5
 img1.ImageAlign = ImageAlign.Baseline
 img2.ImageAlign = ImageAlign.Baseline
 case 6
 img1.ImageAlign = ImageAlign.Middle
 img2.ImageAlign = ImageAlign.Middle
 case 7
 img1.ImageAlign = ImageAlign.TextTop
 img2.ImageAlign = ImageAlign.TextTop
 case 8
 img1.ImageAlign = ImageAlign.Left
 img2.ImageAlign = ImageAlign.Left
 case 9
 img1.ImageAlign = ImageAlign.Right
 img2.ImageAlign = ImageAlign.Right
 case else
 img1.ImageAlign = ImageAlign.NotSet
 img2.ImageAlign = ImageAlign.NotSet
 end select
 end sub
</script>

Figure 5-18. Image alignment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.10.2 AdRotator Control

This control is called an AdRotator because it is most often used to display advertisements on web
pages. It displays an image randomly selected from a list stored in a separate XML file. The XML file
contains image attributes, including the path to the image and a URL to link to when the image is
clicked. The image changes every time the page is loaded.

In addition to the properties inherited from WebControl, the AdRotator control has the properties and
events listed in Table 5-18.

Table 5-18. Properties and events of the AdRotator control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Type Get Set Description

AdvertisementFile String x x
The path to an XML file that contains the list of
advertisements and their attributes. This file is described in
detail below.

KeywordFilter String x x
Filters ads displayed to include only those with the specified
keyword in the AdvertisementFile.

Target String x x
The browser window or frame that displays the contents of
the page linked to when the AdRotator is clicked. See Table 5-
19.

AdCreated Event
Occurs once per round trip to the server after creation of the
control, but before the page is rendered.

5.10.2.1 Target

The Target property is used to specify which browser window or frame is used to display the results
of clicking on the AdRotator control. It dictates whether the resulting page displaces the current
contents in the current browser window or frame, opens a new browser window, and so on. The
values of the Target property must begin with any letter in the range of a to z, case insensitive,
except for the special values shown in Table 5-19, which begin with an underscore.

Table 5-19. Special values of the Target property

Value Description

_blank Renders the content in a new, unnamed window without frames.

_new
Not documented. Behaves the same as _blank the first time the control is clicked, but

subsequent clicks will render to that same window, rather than open another blank
window.

_parent
Renders the content in the parent window or frameset of the window or frame with the
hyperlink. If the child container is a window or top-level frame, it behaves the same as
_self.

_self
Renders the content in the current frame or window with focus. This is the default
behavior.

_top Renders the content in the current full window without frames.

5.10.2.2 Advertisement file

The advertisement file is an XML file that contains information about the advertisements to be
displayed by the AdRotator control. Its location and filename is specified by the AdvertisementFile
property of the control.

The advertisement file and the AdvertisementFile property are optional. If you want to create an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

advertisement programmatically, without the use of an advertisement file, put the code to display the
desired elements in the AdCreated event.

As an XML file, the advertisement file is a structured text file with well-defined tags delineating the
data. Table 5-20 lists the standard tags, which are enclosed in angle brackets (< >) and require

matching closing tags.

Since this is XML and not HTML, it is much less forgiving of files that are not
well-formed. These tags are case-sensitive: ImageUrl will work; ImageURL will
not.

Table 5-20. XML tags used in the advertisement file

Tag Description

Advertisements Encloses the entire advertisement file.

Ad Delineates each separate ad.

ImageUrl The URL of the image to display. Required.

NavigateUrl The URL of the page to navigate to when the control is clicked.

AlternateText
The text displayed in the control if the image is unavailable. In browsers that
support the ToolTips feature, this text is also displayed as a ToolTip.

Keyword
The advertisement category. The keyword can be used to filter the
advertisements displayed by the control by setting the AdRotator KeywordFilter
property.

Impressions
A value indicating how often the ad is displayed relative to the other ads in the
file.

In addition to the tags listed in Table 5-20, you can include your own custom tags in order to have
custom attributes. In the sample advertisement file in Example 5-35, you create a custom attribute
called Symbol, which will hold the stock symbol of each firm.

All the attribute tags in the advertisement file are parsed and placed in the adProperties dictionary.

This dictionary can be used programmatically to access attributes, either standard or custom, by
placing code in the onAdCreated event handler.

Example 5-35 shows a sample advertisement file that contains references to logos and web sites for
several well-known companies.

Example 5-35. ads.XML, sample advertisement file

<Advertisements>

 <Ad>
 <ImageUrl>ms-banner.gif</ImageUrl>
 <NavigateUrl>http://www.microsoft.com</NavigateUrl>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <AlternateText>Microsoft - Where do you want to go today?</AlternateText>
 <Keyword>Software</Keyword>
 <Impressions>50</Impressions>
 <Symbol>msft</Symbol>
 </Ad>

 <Ad>
 <ImageUrl>yahoo.gif</ImageUrl>
 <NavigateUrl>http://www.yahoo.com</NavigateUrl>
 <AlternateText>Do you Yahoo?</AlternateText>
 <Keyword>Portal</Keyword>
 <Impressions>50</Impressions>
 <Symbol>yhoo </Symbol>
 </Ad>

 <Ad>
 <ImageUrl>hpLogo.gif</ImageUrl>
 <NavigateUrl>http://www.hp.com</NavigateUrl>
 <AlternateText>HP - Invent</AlternateText>
 <Keyword>Hardware</Keyword>
 <Impressions>40</Impressions>
 <Symbol>hwp</Symbol>
 </Ad>

 <Ad>
 <ImageUrl>dellLogo.jpg</ImageUrl>
 <NavigateUrl>http://www.dell.com</NavigateUrl>
 <AlternateText>Easy as Dell.</AlternateText>
 <Keyword>Hardware</Keyword>
 <Impressions>40</Impressions>
 <Symbol></Symbol>
 </Ad>

</Advertisements>

Now all you need is a web page with an AdRotator control to utilize this advertisement file, as shown
in Example 5-36 in C# and in Example 5-37 in VB.NET.

Example 5-36. AdRotator control using C#, csASPAdRotator.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void AdCreated(Object sender, AdCreatedEventArgs e)
 {
 if ((string)e.AdProperties["Symbol"] != "")
 lblSymbol.Text = (string)e.AdProperties["Symbol"];
 else
 lblSymbol.Text = "n.a.";
 }
</script>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>AdRotator Control</h2>

 <asp:AdRotator
 id="ad"
 target="_blank"
 AdvertisementFile="ads.xml"
 onAdCreated="AdCreated"
 runat="server" />

 <table>
 <tr>
 <td>
 Stock Symbol:
 </td>
 <td>
 <asp:Label
 id="lblSymbol"
 runat="server"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

Example 5-37. AdRotator control using VB.NET, vbASPAdRotator.aspx

<%@ Page Language="VB" %>
<script runat="server">
 sub AdCreated(ByVal Sender as Object, _
 ByVal e as AdCreatedEventArgs)
 if CStr(e.AdProperties("Symbol")) <> "" then
 lblSymbol.Text = CStr(e.AdProperties("Symbol"))
 else
 lblSymbol.Text = "n.a."
 end if

 end sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>AdRotator Control</h2>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:AdRotator
 id="ad"
 target="_blank"
 AdvertisementFile="ads.xml"
 onAdCreated="AdCreated"
 runat="server" />

 <table>
 <tr>
 <td>
 Stock Symbol:
 </td>
 <td>
 <asp:Label
 id="lblSymbol"
 runat="server"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

The results of the code in Example 5-36 and Example 5-37 are shown in Figure 5-19. In order to see
the images cycle through, simply refresh the view on your browser.

Figure 5-19. AdRotator control

In Example 5-36 and Example 5-37, an AdRotator control is created with an id of ad. The Target
attribute is _blank, which has the effect of opening a new browser window when the user clicks on
the image. You can play with the other values of the Target attribute. The AdvertisementFile

attribute points to the advertisement file shown in Example 5-35.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This control raises an AdCreated event, which occurs on every round trip to the server after the
control is created but before the page is rendered. There is an event handler called onAdCreated that
defines the event procedure to execute whenever the event fires. The event handler is passed an
argument of type AdCreatedEventArgs, which has the properties listed in Table 5-21.

Table 5-21. Properties of the AdCreateEventArgs class

Property Description

AdProperties
Gets a dictionary object that contains all the advertisement properties contained in
the advertisement file.

AlternateText
The alternate text displayed by the browser when the advertisement image is not
available. If the browser supports ToolTips, then this text is displayed as a ToolTip.

ImageUrl The URL of an image to display.

NavigateUrl URL of the web page to display when the control is clicked.

The AdRotator tag in Example 5-36 and Example 5-37 includes an onAdCreated attribute that

defines the AdCreated method as the handler for the AdCreated event. Every time the ad is changed
(that is, every time the page is reloaded), this event fires and updates the Label control contained in
the static HTML table. Note that AdCreated first tests to be certain there is a value in the Symbol
attribute. If not, then n.a. (for "not available") is displayed.

AdProperties returns a Dictionary object. When the AdProperties property is invoked, it implicitly calls
the Item method of the Dictionary object, which returns the value corresponding to the dictionary
entry whose key is Symbol. This value is then cast, or converted, to a string. In C#, this is done with

the following syntax:

(string)e.AdProperties["Symbol"]

while in VB.NET the syntax is:

CStr(e.AdProperties("Symbol"))

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.11 Calendar

The ASP Calendar control is a rich web control that provides several capabilities:

Displays a calendar showing a single month

Allows the user to select a day, week, or month

Allows the user to select a range of days

Allows the user to move to the next or previous month

Allows all aspects of the appearance of the calendar to be customized either at design time or
under program control

Programmatically controls the display of specific days

The Calendar control is extremely customizable, with a large variety of properties and events. Before
digging into all the detail, look at a bare bones .aspx file showing a simple Calendar control, along
with the resulting web page. Example 5-38 contains the code, and Figure 5-20 shows the results.
Since there is no script block in this code, there is no need for equivalent C# and VB.NET versions.

Example 5-38. Simple Calendar control, Calendar-Simple.aspx

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Calendar Demonstration</h2>

 <asp:Calendar
 id="cal"
 runat="server" >
 </asp:Calendar>
 </form>
 </body>
</html>

Figure 5-20. A simple Calendar control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pretty spiffy. Very few lines of code yield a web page with a working calendar that displays the current
month. The user can select a single day (although at this point nothing happens when a day is
selected, other than it being highlighted) and move through the months by clicking on the = and =
navigation symbols on either side of the month name.

In addition to the properties inherited by all the ASP controls that derive from WebControl, the
Calendar has many properties of its own, which are listed in Table 5-22 .

Table 5-22. Properties of the Calendar control

Name Type Get Set Values Description

CellPadding Integer x x
0 , 1 , 2 , and so

on

Distance in pixels
between the border
and contents of a cell.
Applies to all the cells
in the calendar and to
all four sides of each
cell. Default is 2 .

CellSpacing Integer x x
0 , 1 , 2 , and so

on

Distance in pixels
between cells. Applies
to all the cells in the
calendar. Default is 0 .

Format of days of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Type Get Set Values Description

DayNameFormat DayNameFormat x x

Full , Short ,
FirstLetter ,
FirstTwoLetters

Format of days of the
week. Values are self-
explanatory, except
Short, which is first
three letters. Default
is Short .

FirstDayOfWeek FirstDayOfWeek x x

Default , Sunday
, Monday , . . .
Saturday

Day of week to display
in first column.
Default (the default)

specifies system
setting.

NextMonthText String x x

Text for next month
navigation control.
The default is > ,

which renders as the
greater than sign (>).
Only applies if
ShowNextPrevMonth
property is true.

NextPrevFormat NextPrevFormat x x

CustomText ,
FullMonth ,
ShortMonth

To use CustomText ,

set this property and
specify the actual text
to use in
NextMonthText and
PrevMonthText.

PrevMonthText String x x

Text for previous
month navigation
control. Default is

"<, which renders
as less than sign (<).
Only applies if
ShowNextPrevMonth
property is true .

SelectedDate DateTime x x

A single selected date.
Only the Date is
stored; the time is set
to null (nothing in
VB.NET).

SelectedDates DateTime x x DateTime

Collection of DateTime
objects when multiple
dates selected. Only
the Date is stored; the
time is set to null
(Nothing in VB.NET).

SelectionMode CalendarSelectionMode x x
Described later in this
section.

DayNameFormat DayNameFormat x x

Full , Short ,
FirstLetter ,
FirstTwoLetters

Format of days of the
week. Values are self-
explanatory, except
Short, which is first
three letters. Default
is Short .

FirstDayOfWeek FirstDayOfWeek x x

Default , Sunday
, Monday , . . .
Saturday

Day of week to display
in first column.
Default (the default)

specifies system
setting.

NextMonthText String x x

Text for next month
navigation control.
The default is > ,

which renders as the
greater than sign (>).
Only applies if
ShowNextPrevMonth
property is true.

NextPrevFormat NextPrevFormat x x

CustomText ,
FullMonth ,
ShortMonth

To use CustomText ,

set this property and
specify the actual text
to use in
NextMonthText and
PrevMonthText.

PrevMonthText String x x

Text for previous
month navigation
control. Default is

"<, which renders
as less than sign (<).
Only applies if
ShowNextPrevMonth
property is true .

SelectedDate DateTime x x

A single selected date.
Only the Date is
stored; the time is set
to null (nothing in
VB.NET).

SelectedDates DateTime x x DateTime

Collection of DateTime
objects when multiple
dates selected. Only
the Date is stored; the
time is set to null
(Nothing in VB.NET).

SelectionMode CalendarSelectionMode x x
Described later in this
section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Type Get Set Values Description

SelectMonthText String x x

Text for month
selection element in
the selector column.
Default is ">>,
which renders as two
greater than signs
(>). Only applies if
SelectionMode set to
DayWeekMonth.

ShowDayHeader Boolean x x true , false
Indicates if days of
week heading shown.
Default is true .

ShowGridLines Boolean x x true , false
Indicates if grid lines
between cells shown.
Default is false .

ShowNextPrevMonth Boolean x x true , false

Indicates if next and
previous month
navigation elements
are shown. Default is
true

ShowTitle Boolean x x true , false

Indicates if title is
shown. If false, then
next and previous
month navigation
elements also hidden.
Default is true

TitleFormat TitleFormat x x
Month ,
MonthYear

Indicates whether title
is month only or
month and year.
Default is MonthYear .

TodaysDate DateTime x x Today's date.

VisibleDate DateTime x x
Any date in the month
to display.

If you want to give the user the ability to select either a single day, an entire week, or an entire
month, then you must set the SelectionMode property. Table 5-23 lists the legal values for the
SelectionMode property.

Table 5-23. Members of the CalndarSelectionMode property enumeration

SelectionMode Description

Day Allows the user to select a single day. This is the default value.

SelectMonthText String x x

Text for month
selection element in
the selector column.
Default is ">>,
which renders as two
greater than signs
(>). Only applies if
SelectionMode set to
DayWeekMonth.

ShowDayHeader Boolean x x true , false
Indicates if days of
week heading shown.
Default is true .

ShowGridLines Boolean x x true , false
Indicates if grid lines
between cells shown.
Default is false .

ShowNextPrevMonth Boolean x x true , false

Indicates if next and
previous month
navigation elements
are shown. Default is
true

ShowTitle Boolean x x true , false

Indicates if title is
shown. If false, then
next and previous
month navigation
elements also hidden.
Default is true

TitleFormat TitleFormat x x
Month ,
MonthYear

Indicates whether title
is month only or
month and year.
Default is MonthYear .

TodaysDate DateTime x x Today's date.

VisibleDate DateTime x x
Any date in the month
to display.

If you want to give the user the ability to select either a single day, an entire week, or an entire
month, then you must set the SelectionMode property. Table 5-23 lists the legal values for the
SelectionMode property.

Table 5-23. Members of the CalndarSelectionMode property enumeration

SelectionMode Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SelectionMode Description

Day Allows the user to select a single day. This is the default value.

DayWeek Allows user to select either a single day or an entire week.

DayWeekMonth Allows user to select either a single day, an entire week, or an entire month.

None Nothing on the Calendar can be selected.

Example 5-39 modifies the code in Example 5-38 to add the SelectionMode property. The resulting
Calendar, with the entire month selected, looks like Figure 5-21 .

Example 5-39. Simple Calendar control with SelectionMode property,
Calendar-Simple2.aspx

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Calendar Demonstration</h2>
 <h3>Selection Property</h3>

 <asp:Calendar
 id="cal"
 SelectionMode="DayWeekMonth"
 runat="server" />
 </form>
 </body>
</html>

When the SelectionMode property is set to DayWeek , an extra column containing the = symbol is

added to the left side of the calendar. Clicking on one of those symbols selects that entire week.

Figure 5-21. Calendar with month selected

Day Allows the user to select a single day. This is the default value.

DayWeek Allows user to select either a single day or an entire week.

DayWeekMonth Allows user to select either a single day, an entire week, or an entire month.

None Nothing on the Calendar can be selected.

Example 5-39 modifies the code in Example 5-38 to add the SelectionMode property. The resulting
Calendar, with the entire month selected, looks like Figure 5-21 .

Example 5-39. Simple Calendar control with SelectionMode property,
Calendar-Simple2.aspx

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Calendar Demonstration</h2>
 <h3>Selection Property</h3>

 <asp:Calendar
 id="cal"
 SelectionMode="DayWeekMonth"
 runat="server" />
 </form>
 </body>
</html>

When the SelectionMode property is set to DayWeek , an extra column containing the = symbol is

added to the left side of the calendar. Clicking on one of those symbols selects that entire week.

Figure 5-21. Calendar with month selected

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Similarly, when the SelectionMode property is set to DayWeekMonth , in addition to the week selection

column, a = = symbol is added to the left of the day names row. Clicking on that symbol selects the
entire month, as is shown in Figure 5-21 .

There are a number of properties that control the style for each part of the calendar. These properties
are listed in Table 5-24 and demonstrated in Example 5-40 .

Table 5-24. Calendar control style properties

Name Description

DayHeaderStyle Specifies the style for the days of the week

DayStyle Specifies the style for the dates

NextPrevStyle Specifies the style for the month navigation controls

OtherMonthDayStyle Specifies the style for the dates not in the currently displayed month

SelectedDayStyle Specifies the style for the selected dates

SelectorStyle Specifies the style for the week and month selection column

TitleStyle Specifies the style for the title section

TodayDayStyle Specifies the style for today's date

Note that there are two different syntaxes for using these style properties. The first puts the style
attribute inside the Calendar control tags, using the convention of hyphenating the style name and
property, as in the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Description

WeekendDayStyle Specifies the style for the weekend dates

Note that there are two different syntaxes for using these style properties. The first puts the style
attribute inside the Calendar control tags, using the convention of hyphenating the style name and
property, as in the following:

DayHeaderStyle-BackColor="Black"

The second syntax, used for most of the style examples here, encloses each style within its own HTML
tag, rather than including it with other properties within the asp:Calendar tag:

<DayStyle
 BackColor="White"
 ForeColor="Black"
 Font-Name="Arial" />

The properties listed in Table 5-24 derive many of their subproperties from the Style class. Those
properties have all been described elsewhere in this chapter and are mostly self-explanatory. These
include:

BackColor

BorderColor

BorderStyle

BorderWidth

CssClass

Font

ForeColor

Height

HorizontalAlign

VerticalAlign

Width

Wrap

In addition, there are four Boolean properties that control various aspects of the calendar. They are
shown in Table 5-25 .

Table 5-25. Boolean properties controlling various aspects of the
Calendar control's appearance

WeekendDayStyle Specifies the style for the weekend dates

Note that there are two different syntaxes for using these style properties. The first puts the style
attribute inside the Calendar control tags, using the convention of hyphenating the style name and
property, as in the following:

DayHeaderStyle-BackColor="Black"

The second syntax, used for most of the style examples here, encloses each style within its own HTML
tag, rather than including it with other properties within the asp:Calendar tag:

<DayStyle
 BackColor="White"
 ForeColor="Black"
 Font-Name="Arial" />

The properties listed in Table 5-24 derive many of their subproperties from the Style class. Those
properties have all been described elsewhere in this chapter and are mostly self-explanatory. These
include:

BackColor

BorderColor

BorderStyle

BorderWidth

CssClass

Font

ForeColor

Height

HorizontalAlign

VerticalAlign

Width

Wrap

In addition, there are four Boolean properties that control various aspects of the calendar. They are
shown in Table 5-25 .

Table 5-25. Boolean properties controlling various aspects of the
Calendar control's appearance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Default Description

ShowDayHeader true Controls visibility of the names of the days of the week

ShowGridLines false Controls visibility of the grid lines between the days of the month

ShowNextPrevMonth true Controls visibility of the month navigation controls

ShowTitle true Controls visibility of the title section

Example 5-40 shows a basic calendar control with many of the Style properties set. The resulting
calendar is shown in Figure 5-22 .

Example 5-40. Calendar control with Styles, Calendar-Simple3.aspx

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Calendar Demonstration</h2>
 <h3>Styles</h3>

 <asp:Calendar
 id="cal"
 SelectionMode="DayWeekMonth"
 ShowGridLines="true"
 ShowNextprevMonth="true"
 CellPadding="7"
 CellSpacing="5"
 DayNameFormat="FirstTwoLetters"
 FirstDayOfWeek="Monday"
 NextPrevFormat="CustomText"
 NextMonthText="Next >"
 PrevMonthText="< Prev"
 DayHeaderStyle-BackColor="Black"
 DayHeaderStyle-ForeColor="White"
 DayHeaderStyle-Font-Name="Arial Black"
 runat="server" >

 <DayStyle
 BackColor="White"
 ForeColor="Black"
 Font-Name="Arial" />
 <NextPrevStyle
 BackColor="DarkGray"
 ForeColor="Yellow"
 Font-Name="Arial" />
 <OtherMonthDayStyle
 BackColor="LightGray"
 ForeColor="White"
 Font-Name="Arial" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <SelectedDayStyle
 BackColor="CornSilk"
 ForeColor="Blue"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="true"/>
 <SelectorStyle
 BackColor="CornSilk"
 ForeColor="Red"
 Font-Name="Arial" />
 <TitleStyle
 BackColor="Gray"
 ForeColor="White"
 HorizontalAlign="Left"
 Font-Name="Arial Black" />
 <TodayDayStyle
 BackColor="CornSilk"
 ForeColor="Green"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="false">
 </TodayDayStyle>
 <WeekendDayStyle
 BackColor="LavenderBlush"
 ForeColor="Purple"
 Font-Name="Arial"
 Font-Bold="false"
 Font-Italic="false"/>
 </asp:Calendar>
 </form>
 </body>
</html>

Figure 5-22. Calendar with Styles

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the code in Example 5-40 , notice that the DayHeaderStyles are contained within the Calendar tag,
while all the other styles use their own tag. This is strictly a matter of personal preference. Notice also
that the TodayDayStyle uses a separate closing tag, while all the other styles are self-closing. This too
is a matter of personal preference.

5.11.1 Programming the Calendar Control

The ASP Calendar control provides three events and one method that are not inherited from other
control classes and are of particular interest. By providing event handlers for the events, you can
exercise considerable control over how the calendar behaves. These are:

SelectionChanged event
DayRender event
VisibleMonthChanged event
SelectRange method

The following sections describe each of these in detail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.11.1.1 SelectionChanged event

The SelectionChanged event fires when the user makes a selection-either a day, a week, or an entire
month-in the Calendar control. The event is not fired if the selection is changed programmatically.
The event handler is passed an argument of type EventArgs.

Example 5-41 demonstrates handling the SelectionChanged event in C#, and Example 5-42
demonstrates the same thing in VB.NET. (The VB.NET example, however, includes only the script
block, since its HTML is identical to that in Example 5-41 .) Whenever you select a new date, it
displays text strings with today's date, the selected date, and number of days selected.

Example 5-41. Calendar control with SelectionChanged event in C#,
csASPCalendarSelectionChanged.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void SelectionChanged(Object sender, EventArgs e)
 {
 lblTodaysDate.Text = "Today's Date is " +
 cal.TodaysDate.ToShortDateString();

 if (cal.SelectedDate != DateTime.MinValue)
 lblSelected.Text = "The date selected is " +
 cal.SelectedDate.ToShortDateString();
 lblCountUpdate();
 }

 void lblCountUpdate()
 {
 lblCount.Text = "Count of Days Selected: " +
 cal.SelectedDates.Count.ToString();
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Calendar Control</h2>
 <h2>SelectionChanged Event</h2>

 <asp:Calendar
 id="cal"
 SelectionMode="DayWeekMonth"
 ShowGridLines="true"
 ShowNextprevMonth="true"
 CellPadding="7"
 CellSpacing="5"
 DayNameFormat="FirstTwoLetters"
 FirstDayOfWeek="Monday"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NextPrevFormat="CustomText"
 NextMonthText="Next >"
 PrevMonthText="< Prev"
 onSelectionChanged="SelectionChanged"
 DayHeaderStyle-BackColor="Black"
 DayHeaderStyle-ForeColor="White"
 DayHeaderStyle-Font-Name="Arial Black"
 runat="server" >

 <DayStyle
 BackColor="White"
 ForeColor="Black"
 Font-Name="Arial" />
 <NextPrevStyle
 BackColor="DarkGray"
 ForeColor="Yellow"
 Font-Name="Arial" />
 <OtherMonthDayStyle
 BackColor="LightGray"
 ForeColor="White"
 Font-Name="Arial" />
 <SelectedDayStyle
 BackColor="CornSilk"
 ForeColor="Blue"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="true"/>
 <SelectorStyle
 BackColor="CornSilk"
 ForeColor="Red"
 Font-Name="Arial" />
 <TitleStyle
 BackColor="Gray"
 ForeColor="White"
 HorizontalAlign="Left"
 Font-Name="Arial Black" />
 <TodayDayStyle
 BackColor="CornSilk"
 ForeColor="Green"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="false"/>
 <WeekendDayStyle
 BackColor="LavenderBlush"
 ForeColor="Purple"
 Font-Name="Arial"
 Font-Bold="false"
 Font-Italic="false"/>
 </asp:Calendar>

 <asp:Label id="lblCount" runat="server" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:Label id="lblTodaysDate" runat="server" />

 <asp:Label id="lblSelected" runat="server" />
 </form>
 </body>
</html>

Example 5-42. Calendar control with SelectionChanged event script block
in VB.NET, vbASPCalendarSelectionChanged.aspx

<%@ Page Language="VB"%>
<script runat="server">
 sub SelectionChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblTodaysDate.Text = "Today's Date is " & _
 cal.TodaysDate.ToShortDateString()

 if (cal.SelectedDate <> DateTime.MinValue) then
 lblSelected.Text = "The date selected is " & _
 cal.SelectedDate.ToShortDateString()
 end if

 lblCountUpdate()
 end sub

 sub lblCountUpdate()
 lblCount.Text = "Count of Days Selected: " & _
 cal.SelectedDates.Count.ToString()
 end sub
</script>

Skipping over the script block at the beginning of Example 5-41 for a moment, you can see that this
example adds the onSelectionChanged event handler to the Calendar control. This event handler
points to the SelectionChanged method in the script block. Three ASP Label controls are also added
after the Calendar control. The first of these labels, named lblCount, is used to display the number of
days selected. The other two labels, named lblTodaysDate and lblSelected, are used to display today's
date and the currently selected date, respectively.

All three of these labels have their Text property set in the SelectionChanged event handler method.
Looking at that method in either Example 5-41 or Example 5-42 , you can see that the label
containing today's date is filled by getting the Calendar control's TodaysDate property. In C#, this is
done using code similar to:

lblTodaysDate.Text = "Today's Date is " +
 cal.TodaysDate.ToShortDateString();

In VB.NET, the code looks like:

lblTodaysDate.Text = "Today's Date is " & _
 cal.TodaysDate.ToShortDateString()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The id of the Calendar control is cal . TodaysDate is a property of the Calendar control that returns

an object of type System.DateTime. To assign this to a Text property (which is an object of type
String), you must convert the DateTime to a String. This is done with the ToShortDateString method.
The DateTime object has a variety of methods for converting a DateTime object to other formats,
including those shown in Table 5-26 .

Table 5-26. Methods for converting a DateTime object to a string

Method name Description

ToFileTime Converts to the format of the local filesystem

ToLongDateString Converts to a long date string

ToLongTimeString Converts to a long time string

ToShortTimeString Converts to a short time string

ToString Converts to a string

Although not specific to ASP.NET, the DateTime class is very useful for obtaining all sorts of date and
time information. Some of the read-only properties available from this class include those listed in
Table 5-27 .

Table 5-27. DateTime read-only properties

Property name Description

Date Returns the date component

Day Returns the day of the month

DayOfWeek Returns the day of the week

DayOfYear Returns the day of the year

Hour Returns the hour component

Millisecond Returns the millisecond component

Minute Returns the minute component

Month Returns the month component

Second Returns the second component

Ticks Returns the number of 100 nanosecond ticks representing the date and time

TimeOfDay Returns the time of day

Year Returns the year component

To detect if any date has been selected, you test to see if the currently selected date,
cal.SelectedDate, is equal to DateTime.MinValue. DateTime.MinValue is a constant representing the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

smallest possible value of DateTime and is the default value for the SelectedDate property if nothing
has been selected yet. MinValue has the literal value of 12:00:00 AM, 1/1/0001 CE. There is also a
MaxValue that has the literal value of 11:59:59 PM, 12/31/9999 CE.

CE, which stands for the Common Era, is the scientific notation for the span of years referred to as AD
(Anno Domini) on the Gregorian calendar. BCE (Before Common Era) is the scientific equivalent to BC
(Before Christ).

If a date has been selected by the user, the Text property of the Label control is set to the string
value of the SelectedDate property. In both C# and VB.NET, the code that accomplishes this is the
same (except for the semicolon in C#):

cal.SelectedDate.ToShortDateString()

The lblCount label displays the number of days selected. The SelectionChanged event procedure calls
the lblCountUpdate method, which sets the Text property of the lblCount Label control. To set that
control, you must determine how many dates were selected. The Calendar control has a
SelectedDates property that returns a SelectedDates collection. SelectedDates is a collection of
DateTime objects representing all the dates selected in the Calendar control. Count is a property of
the SelectedDatesCollection object that returns an integer containing the number of dates in the
collection. Since the Count property is an integer, you must use the ToString method to convert it to
a string so that it can be assigned to the Text property. Once again, the code to do this in C# and in
VB.NET is identical (although in VB.NET the call to the ToString method is optional):

cal.SelectedDates.Count.ToString()

Although SelectedDates (the collection of selected dates) and SelectedDate (the single selected date)
both contain DateTime objects, only the Date value is stored. The time value for these objects is set
to a null reference in C# and to Nothing in VB.NET.

The range of dates in the SelectedDates collection is sorted in ascending order by date. When the
SelectedDates collection is updated, the SelectedDate property is automatically updated to contain
the first object in the SelectedDates collection.

The result of the ASP.NET pages in Example 5-41 and Example 5-42 is shown in Figure 5-23 .

Figure 5-23. Calendar with a SelectedDate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The user can navigate from month to month by clicking on the month navigation controls to either
side of the month title. The user can also select a single day by clicking on that day, or an entire week
by clicking on the week selector control, or the entire month by clicking on the month selector control.
However, you can give the user much more flexibility than this. To demonstrate, you will add several
controls and methods.

To enable the user to navigate directly to any month in the current year, add a DropDownList
containing all the months of the year. You also add a button, labeled TGIF, which selects all the
Fridays in the currently viewed month. The code for these two additions is shown in Example 5-43 in
C# and Example 5-44 in VB.NET. The VB.NET version shows code only; its HTML content is the same
as in Example 5-43 . Lines that have been added are shown in boldface.

Example 5-43. Calendar control with additional selection functionality in
C#, csASPCalendarMoreSelections.aspx

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@ Page Language="C#" %>
<script runat="server">
 // This Page_Load makes the selected days visible first time
 // the TGIF button is clicked by initializing the VisibleDate
 // property.
 void Page_Load(Object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 cal.VisibleDate = cal.TodaysDate;
 ddl.SelectedIndex = cal.VisibleDate.Month - 1;
 }
 lblTodaysDate.Text = "Today's Date is " +
 cal.TodaysDate.ToShortDateString();
 }

 void SelectionChanged(Object sender, EventArgs e)
 {
 lblSelectedUpdate();
 lblCountUpdate();
 }

 void ddl_SelectedIndexChanged(Object sender, EventArgs e)
 {
 cal.SelectedDates.Clear();
 lblSelectedUpdate();
 lblCountUpdate();
 cal.VisibleDate = new DateTime(cal.VisibleDate.Year,
 Int32.Parse(ddl.SelectedItem.Value), 1);
 }

 void btnTgif_Click(Object sender, EventArgs e)
 {
 int currentMonth = cal.VisibleDate.Month;
 int currentYear = cal.VisibleDate.Year;

 cal.SelectedDates.Clear();

 for (int i = 1;
 i <= System.DateTime.DaysInMonth(currentYear,
 currentMonth);
 i++)
 {
 DateTime date = new DateTime(currentYear, currentMonth, i);
 if (date.DayOfWeek == DayOfWeek.Friday)
 cal.SelectedDates.Add(date);
 }

 lblSelectedUpdate();
 lblCountUpdate();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 void lblCountUpdate()
 {
 lblCount.Text = "Count of Days Selected: " +
 cal.SelectedDates.Count.ToString();
 }

 void lblSelectedUpdate()
 {
 if (cal.SelectedDate != DateTime.MinValue)
 lblSelected.Text = "The date selected is " +
 cal.SelectedDate.ToShortDateString();
 else
 lblSelected.Text = "";
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Calendar Control</h2>
 <h2>More Selections</h2>

 <asp:Calendar
 id="cal"
 SelectionMode="DayWeekMonth"
 ShowGridLines="true"
 ShowNextprevMonth="true"
 CellPadding="7"
 CellSpacing="5"
 DayNameFormat="FirstTwoLetters"
 FirstDayOfWeek="Monday"
 NextPrevFormat="CustomText"
 NextMonthText="Next >"
 PrevMonthText="< Prev"
 onSelectionChanged="SelectionChanged"
 DayHeaderStyle-BackColor="Black"
 DayHeaderStyle-ForeColor="White"
 DayHeaderStyle-Font-Name="Arial Black"
 runat="server" >

 <DayStyle
 BackColor="White"
 ForeColor="Black"
 Font-Name="Arial" />
 <NextPrevStyle
 BackColor="DarkGray"
 ForeColor="Yellow"
 Font-Name="Arial" />
 <OtherMonthDayStyle
 BackColor="LightGray"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ForeColor="White"
 Font-Name="Arial" />
 <SelectedDayStyle
 BackColor="CornSilk"
 ForeColor="Blue"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="true"/>
 <SelectorStyle
 BackColor="CornSilk"
 ForeColor="Red"
 Font-Name="Arial" />
 <TitleStyle
 BackColor="Gray"
 ForeColor="White"
 HorizontalAlign="Left"
 Font-Name="Arial Black" />
 <TodayDayStyle
 BackColor="CornSilk"
 ForeColor="Green"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="false"/>
 <WeekendDayStyle
 BackColor="LavenderBlush"
 ForeColor="Purple"
 Font-Name="Arial"
 Font-Bold="false"
 Font-Italic="false"/>
 </asp:Calendar>

 <asp:Label id="lblCount" runat="server" />

 <asp:Label id="lblTodaysDate" runat="server" />

 <asp:Label id="lblSelected" runat="server" />

 <table>
 <tr>
 <td>
 Select a month:
 </td>
 <td>
 <asp:DropDownList
 id= "ddl"
 AutoPostBack="true"
 onSelectedIndexChanged = "ddl_SelectedIndexChanged"
 runat="server">

 <asp:ListItem text="January" value="1" />
 <asp:ListItem text="February" value="2" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:ListItem text="March" value="3" />
 <asp:ListItem text="April" value="4" />
 <asp:ListItem text="May" value="5" />
 <asp:ListItem text="June" value="6" />
 <asp:ListItem text="July" value="7" />
 <asp:ListItem text="August" value="8" />
 <asp:ListItem text="September" value="9" />
 <asp:ListItem text="October" value="10" />
 <asp:ListItem text="November" value="11" />
 <asp:ListItem text="December" value="12" />

 </asp:DropDownList>
 </td>
 <td>
 <asp:Button
 id="btnTgif"
 text="TGIF"
 onClick="btnTgif_Click"
 runat="server" />
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

Example 5-44. Calendar control with additional selection functionality in
VB.NET (script block only), vbASPCalendarMoreSelections.aspx

<%@ Page Language="VB"%>
<script runat="server">
 ' This Page_Load makes the selected days visible first time
 ' the TGIF button is clicked by initializing the VisibleDate
 ' property.
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 cal.VisibleDate = cal.TodaysDate
 ddl.SelectedIndex = cal.VisibleDate.Month - 1
 end if

 lblTodaysDate.Text = "Today's Date is " & _
 cal.TodaysDate.ToShortDateString()
 end sub

 sub SelectionChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblSelectedUpdate()
 lblCountUpdate()
 end sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sub ddl_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 cal.SelectedDates.Clear()
 lblSelectedUpdate()
 lblCountUpdate()
 cal.VisibleDate = new DateTime(cal.VisibleDate.Year, _
 Int32.Parse(ddl.SelectedItem.Value), 1)
 end sub

 sub btnTgif_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim currentMonth as integer = cal.VisibleDate.Month
 dim currentYear as integer = cal.VisibleDate.Year

 cal.SelectedDates.Clear()

 dim i as integer
 for i = 1 to System.DateTime.DaysInMonth(currentYear, currentMonth)
 dim dt as DateTime = new DateTime(currentYear, currentMonth, i)
 if dt.DayOfWeek = DayOfWeek.Friday then
 cal.SelectedDates.Add(dt)
 end if
 next

 lblSelectedUpdate()
 lblCountUpdate()
 end sub

 sub lblCountUpdate()
 lblCount.Text = "Count of Days Selected: " & _
 cal.SelectedDates.Count.ToString()
 end sub

 sub lblSelectedUpdate()
 if (cal.SelectedDate <> DateTime.MinValue) then
 lblSelected.Text = "The date selected is " & _
 cal.SelectedDate.ToShortDateString()
 else
 lblSelected.Text = ""
 end if
 end sub
</script>

The DropDownList control and the TGIF button are in a static HTML table so that you can easily
control the layout of the page.

The ListItem objects in the drop-down list contain the names of the months for the Text properties
and the number of the month for the Value properties.

The SelectionChanged method has been modified by having the bulk of its code moved into a
separate method named lblSelectedUpdate, which updates the Text property of the lblSelected label.
This method is then called from SelectionChanged, as well as several other places throughout the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

code.

The ddl_SelectedIndexChanged event handler method begins by clearing the SelectedDates collection.
This is the same in C# and VB.NET except for the closing semicolon in C#:

cal.SelectedDates.Clear();

A call is made to the lblSelectedUpdate method to clear the Label control containing the first selected
date and to the lblCountUpdate method to clear the Label control containing the count of selected
dates. Then the VisibleDate property of the Calendar control is set to the first day of the newly
selected month. This is the same in C# and VB.NET except for the closing semicolon in C#:

cal.VisibleDate = new DateTime(cal.VisibleDate.Year,
 Int32.Parse(ddl.SelectedItem.Value), 1);

The VisibleDate property is of type DateTime; a new DateTime is instantiated. The DateTime object,
like many objects in the .NET Framework, uses an overloaded constructor . An object may have more
than one constructor; each must be differentiated by having different types of arguments or a
different number of arguments.

In this case, you want to instantiate a DateTime object that contains only the date. To do so requires
three integer parameters-year, month, and day. The first parameter, cal.VisibleDate.Year , and
the last parameter, 1 , are both inherently integers. However, the month parameter comes from the

Value property of the selected item in the DropDownList control. Recall that the Value property is a
string, not an integer, even though the characters it contains look like an integer. Therefore it must
be converted to an integer using the statement (the same for C# and VB.NET):

Int32.Parse(ddl.SelectedItem.Value)

The TGIF button is named btnTgif and has an event handler for the Click event, btnTgif_Click. This
method iterates over all the days of the currently visible month and tests to see if it is Friday. If so,
then it will add that date to the collection of SelectedDates.

First the btnTgif_Click method gets the month and year of the currently visible month, using the
VisibleDate property of the Calendar control, which is a DateTime object, and the Month and Year
properties of the DateTime object. This is the same in C# and VB.NET except for the closing
semicolon in C#:

int currentMonth = cal.VisibleDate.Month;
int currentYear = cal.VisibleDate.Year;

Then it clears all the currently selected dates:

cal.SelectedDates.Clear();

Now it does the iteration. The limit part of the for loop is the number of days in the month, as

determined by the DaysInMonth property of the DateTime object. The month in question is specified
by the currentYear and currentMonth variables:

System.DateTime.DaysInMonth(currentYear, currentMonth)

Once inside the for loop, a DateTime variable called date (in the C# code) or dt (in the VB.NET

code) is assigned to each day. Again, the DateTime object is instantiated with parameters for year,
month, and day. Then the crucial question becomes, "Is the day of the week for this day a Friday?" If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

so, then TGIF and add it to the collection of SelectedDates. In C#, this would be done:

DateTime date = new DateTime(currentYear, currentMonth, i);
if (date.DayOfWeek == DayOfWeek.Friday)
 cal.SelectedDates.Add(date);

In VB.NET, you'd use:

dim dt as DateTime = new DateTime(currentYear, currentMonth, i)
if dt.DayOfWeek = DayOfWeek.Friday then
 cal.SelectedDates.Add(dt)
end if

The reason that the two languages use a different variable name in this
instance is a consequence of the fact that C# is case-sensitive, while VB.NET is
not. In VB.NET, date is equivalent to Date , either of which is a keyword and so

cannot be used as a variable name, unless it is enclosed in brackets every time
it is used. However, in C#, while Date is a keyword, date is not, so the latter

can be used as a variable name.

Finally, after iterating over all the days of the month, call the lblSelectedUpdate method to update the
label showing the first selected date and call the lblCountUpdate method to update the label showing
the number of days selected.

You will notice that there is now a Page_Load method in the script block. As the comment in the code
explains, this makes the page behave correctly the first time the TGIF button is clicked, even before
the month is changed. Without this Page_Load event procedure, the page behaves correctly for the
TGIF button only after the month has been changed at least once. The btnTgif_Click method uses the
VisibleDate property to set the current month and year variables. If that property is not initialized
during the initial page load, then the values assigned to those variables will not correspond to the
visible month.

In addition, the code to update the label displaying today's data has been moved from the
SelectionChanged method to the Page_Load method, because it makes more sense to have it there.

The results of these changes and additions are shown in Figure 5-24 .

Figure 5-24. Calendar with month and Friday selection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Calendar control also allows the user to select a range of dates. You might expect to be able to
use the standard Windows techniques of holding down the Ctrl or Shift keys while clicking on dates,
but this does not work. However, you can put controls on the page to select a starting day and ending
day. In Example 5-45 (in C#) and Example 5-46 (in VB.NET, script block only since the HTML is
identical to that in Example 5-45), add a pair of TextBox controls to accept a starting day and an
ending day for a range of dates. There is also a Button control to force the selection of the range of
dates.

Example 5-45. Calendar control with date range selection in C#,
csASPCalendarRangeSelection.aspx

<%@ Page Language="C#" %>
<script runat="server">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // This Page_Load makes the selected days visible first time
 // the TGIF button is clicked by initializing the VisibleDate
 // property.
 void Page_Load(Object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 cal.VisibleDate = cal.TodaysDate;
 ddl.SelectedIndex = cal.VisibleDate.Month - 1;
 }
 lblTodaysDate.Text = "Today's Date is " +
 cal.TodaysDate.ToShortDateString();
 }

 void SelectionChanged(Object sender, EventArgs e)
 {
 lblSelectedUpdate();
 lblCountUpdate();
 txtClear();
 }

 void ddl_SelectedIndexChanged(Object sender, EventArgs e)
 {
 cal.SelectedDates.Clear();
 lblSelectedUpdate();
 lblCountUpdate();
 txtClear();
 cal.VisibleDate = new DateTime(cal.TodaysDate.Year,
 Int32.Parse(ddl.SelectedItem.Value), 1);
 }

 void btnTgif_Click(Object sender, EventArgs e)
 {
 int currentMonth = cal.VisibleDate.Month;
 int currentYear = cal.VisibleDate.Year;

 cal.SelectedDates.Clear();

 for (int i = 1;
 i <= System.DateTime.DaysInMonth(currentYear,
 currentMonth);
 i++)
 {
 DateTime date = new DateTime(currentYear, currentMonth, i);
 if (date.DayOfWeek == DayOfWeek.Friday)
 cal.SelectedDates.Add(date);
 }

 lblSelectedUpdate();
 lblCountUpdate();
 txtClear();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 void btnRange_Click(Object sender, EventArgs e)
 {
 int currentMonth = cal.VisibleDate.Month;
 int currentYear = cal.VisibleDate.Year;
 DateTime StartDate = new DateTime(currentYear, currentMonth,
 Int32.Parse(txtStart.Text));
 DateTime EndDate = new DateTime(currentYear, currentMonth,
 Int32.Parse(txtEnd.Text));

 cal.SelectedDates.Clear();
 cal.SelectedDates.SelectRange(StartDate, EndDate);

 lblSelectedUpdate();
 lblCountUpdate();
 }

 void lblCountUpdate()
 {
 lblCount.Text = "Count of Days Selected: " +
 cal.SelectedDates.Count.ToString();
 }

 void lblSelectedUpdate()
 {
 if (cal.SelectedDate != DateTime.MinValue)
 lblSelected.Text = "The date selected is " +
 cal.SelectedDate.ToShortDateString();
 else
 lblSelected.Text = "";
 }

 void txtClear()
 {
 txtStart.Text = "";
 txtEnd.Text = "";
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Calendar Control</h2>
 <h2>Range Selection</h2>

 <asp:Calendar
 id="cal"
 SelectionMode="DayWeekMonth"
 ShowGridLines="true"
 ShowNextprevMonth="true"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CellPadding="7"
 CellSpacing="5"
 DayNameFormat="FirstTwoLetters"
 FirstDayOfWeek="Monday"
 NextPrevFormat="CustomText"
 NextMonthText="Next >"
 PrevMonthText="< Prev"
 onSelectionChanged="SelectionChanged"
 DayHeaderStyle-BackColor="Black"
 DayHeaderStyle-ForeColor="White"
 DayHeaderStyle-Font-Name="Arial Black"
 runat="server" >

 <DayStyle
 BackColor="White"
 ForeColor="Black"
 Font-Name="Arial" />
 <NextPrevStyle
 BackColor="DarkGray"
 ForeColor="Yellow"
 Font-Name="Arial" />
 <OtherMonthDayStyle
 BackColor="LightGray"
 ForeColor="White"
 Font-Name="Arial" />
 <SelectedDayStyle
 BackColor="CornSilk"
 ForeColor="Blue"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="true"/>
 <SelectorStyle
 BackColor="CornSilk"
 ForeColor="Red"
 Font-Name="Arial" />
 <TitleStyle
 BackColor="Gray"
 ForeColor="White"
 HorizontalAlign="Left"
 Font-Name="Arial Black" />
 <TodayDayStyle
 BackColor="CornSilk"
 ForeColor="Green"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="false"/>
 <WeekendDayStyle
 BackColor="LavenderBlush"
 ForeColor="Purple"
 Font-Name="Arial"
 Font-Bold="false"
 Font-Italic="false"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </asp:Calendar>

 <asp:Label id="lblCount" runat="server" />

 <asp:Label id="lblTodaysDate" runat="server" />

 <asp:Label id="lblSelected" runat="server" />

 <table>
 <tr>
 <td>
 Select a month:
 </td>
 <td>
 <asp:DropDownList
 id= "ddl"
 AutoPostBack="true"
 onSelectedIndexChanged = "ddl_SelectedIndexChanged"
 runat="server">

 <asp:ListItem text="January" value="1" />
 <asp:ListItem text="February" value="2" />
 <asp:ListItem text="March" value="3" />
 <asp:ListItem text="April" value="4" />
 <asp:ListItem text="May" value="5" />
 <asp:ListItem text="June" value="6" />
 <asp:ListItem text="July" value="7" />
 <asp:ListItem text="August" value="8" />
 <asp:ListItem text="September" value="9" />
 <asp:ListItem text="October" value="10" />
 <asp:ListItem text="November" value="11" />
 <asp:ListItem text="December" value="12" />

 </asp:DropDownList>
 </td>
 <td>
 <asp:Button
 id="btnTgif"
 text="TGIF"
 onClick="btnTgif_Click"
 runat="server" />
 </td>
 </tr>
 <tr>
 <td colspan="2"> </td>
 </tr>
 <tr>
 <td colspan="2">Day Range</td>
 </tr>
 <tr>
 <td>Starting Day</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>Ending Day</td>
 </tr>
 <tr>
 <td>
 <asp:TextBox
 id= "txtStart"
 Size="2"
 MaxLength="2"
 runat="server" />
 </td>
 <td>
 <asp:TextBox
 id= "txtEnd"
 Size="2"
 MaxLength="2"
 runat="server" />
 </td>
 <td>
 <asp:Button
 id="btnRange"
 text="Apply"
 onClick="btnRange_Click"
 runat="server" />
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

Example 5-46. Calendar control with date range selection in VB.NET
(script block only), vbASPCalendarRangeSelection.aspx

<%@ Page Language="VB"%>
<script runat="server">
 ' This Page_Load makes the selected days visible first time
 ' the TGIF button is clicked by initializing the VisibleDate
 ' property.
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 cal.VisibleDate = cal.TodaysDate
 ddl.SelectedIndex = cal.VisibleDate.Month - 1
 end if

 lblTodaysDate.Text = "Today's Date is " & _
 cal.TodaysDate.ToShortDateString()
 end sub

 sub SelectionChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lblSelectedUpdate()
 lblCountUpdate()
 txtClear()
 end sub

 sub ddl_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 cal.SelectedDates.Clear()
 lblSelectedUpdate()
 lblCountUpdate()
 txtClear()
 cal.VisibleDate = new DateTime(cal.TodaysDate.Year, _
 Int32.Parse(ddl.SelectedItem.Value), 1)
 end sub

 sub btnTgif_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim currentMonth as integer = cal.VisibleDate.Month
 dim currentYear as integer = cal.VisibleDate.Year

 cal.SelectedDates.Clear()

 dim i as integer
 for i = 1 to System.DateTime.DaysInMonth(currentYear, _
 currentMonth)
 dim dt as DateTime = new DateTime(currentYear, _
 currentMonth, _
 i)
 if dt.DayOfWeek = DayOfWeek.Friday then
 cal.SelectedDates.Add(dt)
 end if
 next

 lblSelectedUpdate()
 lblCountUpdate()
 txtClear()
 end sub

 sub btnRange_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim currentMonth as integer = cal.VisibleDate.Month
 dim currentYear as integer = cal.VisibleDate.Year
 dim StartDate as DateTime = new DateTime(currentYear, _
 currentMonth, _
 Int32.Parse(txtStart.Text))
 dim EndDate as DateTime = new DateTime(currentYear, _
 currentMonth, _
 Int32.Parse(txtEnd.Text))
 cal.SelectedDates.Clear()
 cal.SelectedDates.SelectRange(StartDate, EndDate)

 lblCountUpdate()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end sub

 sub lblCountUpdate()
 lblCount.Text = "Count of Days Selected: " & _
 cal.SelectedDates.Count.ToString()
 end sub

 sub lblSelectedUpdate()
 if (cal.SelectedDate <> DateTime.MinValue) then
 lblSelected.Text = "The date selected is " & _
 cal.SelectedDate.ToShortDateString()
 else
 lblSelected.Text = ""
 end if
 end sub

 sub txtClear()
 txtStart.Text = ""
 txtEnd.Text = ""
 end sub
</script>

This UI is admittedly somewhat limiting because you cannot span multiple months. You could almost
as easily provide three independent Calendar controls-one for the start date, one for the end date,
and one for the range. Also, the day range does not apply after the month changes without
reapplying the selection because the VisibleMonthChanged event is not trapped. (See
"VisibleMonthChanged event" later in this chapter.)

The controls for selecting the range are in the same static HTML table as the controls described
previously for selecting the month and all the Fridays. There are two text boxes, one named txtStart
for the start day and one named txtEnd for the end day. In this example, the TextBox controls' Size
and MaxLength attributes provide limited control over the user input. In a production application you

will want to add validation controls as described in Chapter 8 .

A new method, txtClear, is provided to clear out the day range selection boxes. This method is called
at appropriate points in the other methods.

The Apply button is named btnRange, with the Click event handled by the method btnRange_Click. In
btnRange_Click, you set integer variables to hold the current month and year. In C#, the code is:

int currentMonth = cal.VisibleDate.Month;
int currentYear = cal.VisibleDate.Year;

In VB.NET, it is:

dim currentMonth as integer = cal.VisibleDate.Month
dim currentYear as integer = cal.VisibleDate.Year

Set two DateTime variables to hold the start date and the end date. In C#, you would write:

DateTime StartDate = new DateTime(currentYear, currentMonth,
 Int32.Parse(txtStart.Text));
DateTime EndDate = new DateTime(currentYear, currentMonth, Int32.Parse(txtEnd.Text));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB.NET, the code is:

dim StartDate as DateTime = new DateTime(currentYear, _
 currentMonth, _
 Int32.Parse(txtStart.Text))
dim EndDate as DateTime = new DateTime(currentYear, _
 currentMonth, _
 Int32.Parse(txtEnd.Text))

Similarly to the month DropDownList described previously, the DateTime object requires the year,
month, and day. You already have the year and month as integers; all you need is the day. You get
the day by converting the text entered in the appropriate text box to an integer.

This is not very robust code. If the user enters non-numeric data in one of the
text boxes, or a value greater than the number of days in the month, an ugly
error will result. If the start date is later than the end date, no error message
will result, but neither will anything be selected. In a real application, you will
want to use validation controls as described in Chapter 8 .

Once the method has the start and end dates as DateTime objects, it clears any currently selected
dates and uses the SelectRange method to add the range of dates to the SelectedDates collection.
This is the same in both C# and VB.NET, except for the trailing semicolon in C#:

cal.SelectedDates.Clear();
cal.SelectedDates.SelectRange(StartDate, EndDate);

The SelectRange method requires two parameters: the start date and the end date.

The result of adding the selection tools to the page is shown in Figure 5-25 .

Figure 5-25. Calendar with range selection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.11.1.2 DayRender event

Data binding is not supported directly for the Calendar control. However, you can modify the content
and formatting of individual date cells. This allows you to retrieve values from a database, process
those values in some manner, and place them in specific cells.

Before the Calendar control is actually rendered to the client browser, all of the components that
comprise the control are created. As each date cell is created, it raises the DayRender event. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

event can be handled.

The DayRender event handler receives an argument of type DayRenderEventArgs. This object has two
properties that may be programmatically read:

Cell

TableCell object that represents the cell being rendered
Day

CalendarDay object that represents the day being rendered in that cell.

The code in Example 5-47 and Example 5-48 demonstrates how this event can be used. All the
weekend days will have their background color changed and a New Year's greeting will be displayed
for January 1.

Example 5-47 shows the complete .aspx page with script written in C# while Example 5-48 shows
only the VB code, since its HTML content is the same as Example 5-47 The examples are modified
versions of Example 5-45 and Example 5-46 , with added lines shown in boldface.

Example 5-47. DayRender event in C#, csASPCalendarDayRender.aspx

<%@ Page Language="C#" %>
<script runat="server">
 // This Page_Load makes the selected days visible first time
 // the TGIF button is clicked by initializing the VisibleDate
 // property.
 void Page_Load(Object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 cal.VisibleDate = cal.TodaysDate;
 ddl.SelectedIndex = cal.VisibleDate.Month - 1;
 }
 lblTodaysDate.Text = "Today's Date is " +
 cal.TodaysDate.ToShortDateString();
 }

 void SelectionChanged(Object sender, EventArgs e)
 {
 lblSelectedUpdate();
 lblCountUpdate();
 txtClear();
 }
void ddl_SelectedIndexChanged(Object sender, EventArgs e)
 {
 cal.SelectedDates.Clear();
 lblSelectedUpdate();
 lblCountUpdate();
 txtClear();
 cal.VisibleDate = new DateTime(cal.TodaysDate.Year,
 Int32.Parse(ddl.SelectedItem.Value), 1);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 void btnTgif_Click(Object sender, EventArgs e)
 {
 int currentMonth = cal.VisibleDate.Month;
 int currentYear = cal.VisibleDate.Year;

 cal.SelectedDates.Clear();

 for (int i = 1;
 i <= System.DateTime.DaysInMonth(currentYear,
 currentMonth);
 i++)
 {
 DateTime date = new DateTime(currentYear, currentMonth, i);
 if (date.DayOfWeek == DayOfWeek.Friday)
 cal.SelectedDates.Add(date);
 }

 lblSelectedUpdate();
 lblCountUpdate();
 txtClear();
 }

 void btnRange_Click(Object sender, EventArgs e)
 {
 int currentMonth = cal.VisibleDate.Month;
 int currentYear = cal.VisibleDate.Year;
 DateTime StartDate = new DateTime(currentYear, currentMonth,
 Int32.Parse(txtStart.Text));
 DateTime EndDate = new DateTime(currentYear, currentMonth,
 Int32.Parse(txtEnd.Text));

 cal.SelectedDates.Clear();
 cal.SelectedDates.SelectRange(StartDate, EndDate);

 lblSelectedUpdate();
 lblCountUpdate();
 }

 void DayRender(Object sender, DayRenderEventArgs e)
 {
 // Notice that this overrides the WeekendDayStyle.
 if (!e.Day.IsOtherMonth && e.Day.IsWeekend)
 e.Cell.BackColor=System.Drawing.Color.LightGreen;

 // Happy New Year!
 if (e.Day.Date.Month == 1 && e.Day.Date.Day == 1)
 e.Cell.Controls.Add(new LiteralControl("
Happy New Year!"));
 }

 void lblCountUpdate()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 lblCount.Text = "Count of Days Selected: " +
 cal.SelectedDates.Count.ToString();
 }

 void lblSelectedUpdate()
 {
 if (cal.SelectedDate != DateTime.MinValue)
 lblSelected.Text = "The date selected is " +
 cal.SelectedDate.ToShortDateString();
 else
 lblSelected.Text = "";
 }

 void txtClear()
 {
 txtStart.Text = "";
 txtEnd.Text = "";
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Calendar Control</h2>
 <h2>DayRender</h2>

 <asp:Calendar
 id="cal"
 SelectionMode="DayWeekMonth"
 ShowGridLines="true"
 ShowNextprevMonth="true"
 CellPadding="7"
 CellSpacing="5"
 DayNameFormat="FirstTwoLetters"
 FirstDayOfWeek="Monday"
 NextPrevFormat="CustomText"
 NextMonthText="Next >"
 PrevMonthText="< Prev"
 onSelectionChanged="SelectionChanged"
 onDayRender="DayRender"
 DayHeaderStyle-BackColor="Black"
 DayHeaderStyle-ForeColor="White"
 DayHeaderStyle-Font-Name="Arial Black"
 runat="server" >

 <DayStyle
 BackColor="White"
 ForeColor="Black"
 Font-Name="Arial" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <NextPrevStyle
 BackColor="DarkGray"
 ForeColor="Yellow"
 Font-Name="Arial" />
 <OtherMonthDayStyle
 BackColor="LightGray"
 ForeColor="White"
 Font-Name="Arial" />
 <SelectedDayStyle
 BackColor="CornSilk"
 ForeColor="Blue"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="true"/>
 <SelectorStyle
 BackColor="CornSilk"
 ForeColor="Red"
 Font-Name="Arial" />
 <TitleStyle
 BackColor="Gray"
 ForeColor="White"
 HorizontalAlign="Left"
 Font-Name="Arial Black" />
 <TodayDayStyle
 BackColor="CornSilk"
 ForeColor="Green"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="false"/>
 <WeekendDayStyle
 BackColor="LavenderBlush"
 ForeColor="Purple"
 Font-Name="Arial"
 Font-Bold="false"
 Font-Italic="false"/>
 </asp:Calendar>

 <asp:Label id="lblCount" runat="server" />

 <asp:Label id="lblTodaysDate" runat="server" />

 <asp:Label id="lblSelected" runat="server" />

 <table>
 <tr>
 <td>
 Select a month:
 </td>
 <td>
 <asp:DropDownList
 id= "ddl"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 AutoPostBack="true"
 onSelectedIndexChanged = "ddl_SelectedIndexChanged"
 runat="server">

 <asp:ListItem text="January" value="1" />
 <asp:ListItem text="February" value="2" />
 <asp:ListItem text="March" value="3" />
 <asp:ListItem text="April" value="4" />
 <asp:ListItem text="May" value="5" />
 <asp:ListItem text="June" value="6" />
 <asp:ListItem text="July" value="7" />
 <asp:ListItem text="August" value="8" />
 <asp:ListItem text="September" value="9" />
 <asp:ListItem text="October" value="10" />
 <asp:ListItem text="November" value="11" />
 <asp:ListItem text="December" value="12" />

 </asp:DropDownList>
 </td>
 <td>
 <asp:Button
 id="btnTgif"
 text="TGIF"
 onClick="btnTgif_Click"
 runat="server" />
 </td>
 </tr>
 <tr>
 <td colspan="2"> </td>
 </tr>
 <tr>
 <td colspan="2">Day Range</td>
 </tr>
 <tr>
 <td>Starting Day</td>
 <td>Ending Day</td>
 </tr>
 <tr>
 <td>
 <asp:TextBox
 id= "txtStart"
 Size="2"
 MaxLength="2"
 runat="server" />
 </td>
 <td>
 <asp:TextBox
 id= "txtEnd"
 Size="2"
 MaxLength="2"
 runat="server" />
 </td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>
 <asp:Button
 id="btnRange"
 text="Apply"
 onClick="btnRange_Click"
 runat="server" />
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

Example 5-48. DayRender event in VB.NET,
vbASPCalendarDayRender.aspx

<%@ Page Language="VB"%>
<script runat="server">
 ' This Page_Load makes the selected days visible first time
 ' the TGIF button is clicked by initializing the VisibleDate
 ' property.
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 cal.VisibleDate = cal.TodaysDate
 ddl.SelectedIndex = cal.VisibleDate.Month - 1
 end if

 lblTodaysDate.Text = "Today's Date is " & _
 cal.TodaysDate.ToShortDateString()
 end sub

 sub SelectionChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblSelectedUpdate()
 lblCountUpdate()
 txtClear()
 end sub

 sub ddl_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 cal.SelectedDates.Clear()
 lblSelectedUpdate()
 lblCountUpdate()
 txtClear()
 cal.VisibleDate = new DateTime(cal.TodaysDate.Year, _
 Int32.Parse(ddl.SelectedItem.Value), 1)
 end sub

 sub btnTgif_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dim currentMonth as integer = cal.VisibleDate.Month
 dim currentYear as integer = cal.VisibleDate.Year

 cal.SelectedDates.Clear()

 dim i as integer
 for i = 1 to System.DateTime.DaysInMonth(currentYear, _
 currentMonth)
 dim dt as DateTime = new DateTime(currentYear, _
 currentMonth, _
 i)
 if dt.DayOfWeek = DayOfWeek.Friday then
 cal.SelectedDates.Add(dt)
 end if
 next

 lblSelectedUpdate()
 lblCountUpdate()
 txtClear()
 end sub

 sub btnRange_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim currentMonth as integer = cal.VisibleDate.Month
 dim currentYear as integer = cal.VisibleDate.Year
 dim StartDate as DateTime = new DateTime(currentYear, _
 currentMonth, _
 Int32.Parse(txtStart.Text))
 dim EndDate as DateTime = new DateTime(currentYear, _
 currentMonth, _
 Int32.Parse(txtEnd.Text))
 cal.SelectedDates.Clear()
 cal.SelectedDates.SelectRange(StartDate, EndDate)

 lblCountUpdate()
 end sub

 sub DayRender(ByVal Sender as Object, _
 ByVal e as DayRenderEventArgs)
 ' Notice that this overrides the WeekendDayStyle.
 if (not e.Day.IsOtherMonth and e.Day.IsWeekend) then
 e.Cell.BackColor=System.Drawing.Color.LightGreen
 end if

 ' Happy New Year!
 if (e.Day.Date.Month = 1 and e.Day.Date.Day = 1) then
 e.Cell.Controls.Add(new LiteralControl("
Happy New Year!"))
 end if
 end sub

 sub lblCountUpdate()
 lblCount.Text = "Count of Days Selected: " & _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cal.SelectedDates.Count.ToString()
 end sub

 sub lblSelectedUpdate()
 if (cal.SelectedDate <> DateTime.MinValue) then
 lblSelected.Text = "The date selected is " & _
 cal.SelectedDate.ToShortDateString()
 else
 lblSelected.Text = ""
 end if
 end sub

 sub txtClear()
 txtStart.Text = ""
 txtEnd.Text = ""
 end sub
</script>

In Example 5-47 and Example 5-48 , an event handler, onDayRender, was added to the Calendar
control. This event handler points to the DayRender method, contained in the script block.

The first thing the DayRender method does is color the weekends LightGreen. Recall that there is a
WeekendDayStyle property set for this control that colors the weekends LavenderBlush. The
DayRender method overrides the WeekendDayStyle. (The distinction may not be readily apparent in
the printed book, but you will see the colors when the web page is run.)

The event handler method is passed two parameters. In C#, this is accomplished with:

void DayRender(Object sender, DayRenderEventArgs e)

In VB.NET, the code is:

sub DayRender(ByVal Sender as Object, _
 ByVal e as DayRenderEventArgs)

DayRenderEventArgs contains properties for the Day and the Cell. The Day is tested to see if it is both
the current month and also a weekend day. In C#, the code is:

(!e.Day.IsOtherMonth && e.Day.IsWeekend)

In VB.NET, the code is:

(not e.Day.IsOtherMonth and e.Day.IsWeekend)

The Day property is a member of the CalendarDay class, which has the properties shown in Table 5-
28 (all of which are read-only except IsSelectable).

Table 5-28. Properties of the CalendarDay class

Property Type Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Type Description

Date DateTime Date represented by this Day. Read-only.

DayNumberText String String representation of the day number of this Day. Read-only.

IsOtherMonth Boolean
Indicates this Day is in a different month than the month currently
displayed by the Calendar. Read-only.

IsSelectable Boolean Indicates if Day can be selected. Not read-only.

IsSelected Boolean Indicates if Day is selected.

IsToday Boolean Indicates if Day is today's date.

IsWeekend Boolean Indicates if Day is a weekend date.

If the date is both in the current month and is also a weekend day, then the Cell.BackColor property
is assigned a color. This is the same in C# and VB.NET except for the trailing semicolon in C#:

e.Cell.BackColor=System.Drawing.Color.LightGreen;

and Example 5-48 then test to see if the selected date is New Year's day. Again, the Day property of
the DayRenderEventArgs object is tested to see if the month of the Date is 1 and the Day of the Date
is 1. In C#, this is done using the code:

if (e.Day.Date.Month == 1 && e.Day.Date.Day == 1)

In VB.NET, the code is:

if (e.Day.Date.Month = 1 and e.Day.Date.Day = 1) then

If so, a LiteralControl is added to the cell that adds an HTML break tag and a greeting. This is the
same in C# and VB.NET except for the trailing semicolon in C#:

e.Cell.Controls.Add(new LiteralControl("
Happy New Year!"));

The thing to remember here is that, like all ASP controls, what is actually sent to the browser is HTML.
Thus, a Calendar is rendered on the browser as an HTML table. Each of the selectable components of
the calendar has an anchor tag associated with it, along with some JavaScript that accomplishes the
postback. (This is evident when you hover the cursor over any clickable element of the calendar-the
status line of the browser will display the name of the JavaScript function that will be executed if the
link is clicked.) Using a LiteralControl inserts the text in its argument as a control into the HTML cell
as-is. A look at a snippet from the source code visible on the browser confirms this:

<td align="Center" style="color:Black;background-color:White;
 font-family:Arial;width:12%;">

 1

Happy New Year!
</td>

When the code from Example 5-47 or Example 5-48 is run, you get the results shown in Figure 5-26 .

Date DateTime Date represented by this Day. Read-only.

DayNumberText String String representation of the day number of this Day. Read-only.

IsOtherMonth Boolean
Indicates this Day is in a different month than the month currently
displayed by the Calendar. Read-only.

IsSelectable Boolean Indicates if Day can be selected. Not read-only.

IsSelected Boolean Indicates if Day is selected.

IsToday Boolean Indicates if Day is today's date.

IsWeekend Boolean Indicates if Day is a weekend date.

If the date is both in the current month and is also a weekend day, then the Cell.BackColor property
is assigned a color. This is the same in C# and VB.NET except for the trailing semicolon in C#:

e.Cell.BackColor=System.Drawing.Color.LightGreen;

and Example 5-48 then test to see if the selected date is New Year's day. Again, the Day property of
the DayRenderEventArgs object is tested to see if the month of the Date is 1 and the Day of the Date
is 1. In C#, this is done using the code:

if (e.Day.Date.Month == 1 && e.Day.Date.Day == 1)

In VB.NET, the code is:

if (e.Day.Date.Month = 1 and e.Day.Date.Day = 1) then

If so, a LiteralControl is added to the cell that adds an HTML break tag and a greeting. This is the
same in C# and VB.NET except for the trailing semicolon in C#:

e.Cell.Controls.Add(new LiteralControl("
Happy New Year!"));

The thing to remember here is that, like all ASP controls, what is actually sent to the browser is HTML.
Thus, a Calendar is rendered on the browser as an HTML table. Each of the selectable components of
the calendar has an anchor tag associated with it, along with some JavaScript that accomplishes the
postback. (This is evident when you hover the cursor over any clickable element of the calendar-the
status line of the browser will display the name of the JavaScript function that will be executed if the
link is clicked.) Using a LiteralControl inserts the text in its argument as a control into the HTML cell
as-is. A look at a snippet from the source code visible on the browser confirms this:

<td align="Center" style="color:Black;background-color:White;
 font-family:Arial;width:12%;">

 1

Happy New Year!
</td>

When the code from Example 5-47 or Example 5-48 is run, you get the results shown in Figure 5-26 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-26. Calendar with DayRender event

5.11.1.3 VisibleMonthChanged event

The Calendar control also provides an event to indicate that the user has changed months. In
Example 5-49 , you add an event handler in C# for the VisibleMonthChanged event. Example 5-50
shows the same event handler in VB.NET.

Example 5-49. VisibleMonthChanged event in C#,
csASPCalendarVisibleMonth.aspx

<%@ Page Language="C#" %>
<script runat="server">
 // This Page_Load makes the selected days visible first time
 // the TGIF button is clicked by initializing the VisibleDate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // property.
 void Page_Load(Object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 cal.VisibleDate = cal.TodaysDate;
 ddl.SelectedIndex = cal.VisibleDate.Month - 1;
 }
 lblTodaysDate.Text = "Today's Date is " +
 cal.TodaysDate.ToShortDateString();
 }

 void SelectionChanged(Object sender, EventArgs e)
 {
 lblSelectedUpdate();
 lblCountUpdate();
 txtClear();
 }

 void ddl_SelectedIndexChanged(Object sender, EventArgs e)
 {
 cal.SelectedDates.Clear();
 lblSelectedUpdate();
 lblCountUpdate();
 txtClear();
 cal.VisibleDate = new DateTime(cal.TodaysDate.Year,
 Int32.Parse(ddl.SelectedItem.Value), 1);
 }

 void btnTgif_Click(Object sender, EventArgs e)
 {
 int currentMonth = cal.VisibleDate.Month;
 int currentYear = cal.VisibleDate.Year;

 cal.SelectedDates.Clear();

 for (int i = 1;
 i <= System.DateTime.DaysInMonth(currentYear,
 currentMonth);
 i++)
 {
 DateTime date = new DateTime(currentYear, currentMonth, i);
 if (date.DayOfWeek == DayOfWeek.Friday)
 cal.SelectedDates.Add(date);
 }

 lblSelectedUpdate();
 lblCountUpdate();
 txtClear();
 }

 void btnRange_Click(Object sender, EventArgs e)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 int currentMonth = cal.VisibleDate.Month;
 int currentYear = cal.VisibleDate.Year;
 DateTime StartDate = new DateTime(currentYear, currentMonth,
 Int32.Parse(txtStart.Text));
 DateTime EndDate = new DateTime(currentYear, currentMonth,
 Int32.Parse(txtEnd.Text));

 cal.SelectedDates.Clear();
 cal.SelectedDates.SelectRange(StartDate, EndDate);

 lblSelectedUpdate();
 lblCountUpdate();
 }

 void DayRender(Object sender, DayRenderEventArgs e)
 {
 // Notice that this overrides the WeekendDayStyle.
 if (!e.Day.IsOtherMonth && e.Day.IsWeekend)
 e.Cell.BackColor=System.Drawing.Color.LightGreen;

 // Happy New Year!
 if (e.Day.Date.Month == 1 && e.Day.Date.Day == 1)
 e.Cell.Controls.Add(new LiteralControl("
Happy New Year!"));
 }

 void VisibleMonthChanged(Object sender, MonthChangedEventArgs e)
 {
 if ((e.NewDate.Year > e.PreviousDate.Year) ||
 ((e.NewDate.Year == e.PreviousDate.Year) &&
 (e.NewDate.Month > e.PreviousDate.Month)))
 lblMonthChanged.Text = "My future's so bright...";
 else
 lblMonthChanged.Text = "Back to the future!";

 cal.SelectedDates.Clear();
 lblSelectedUpdate();
 lblCountUpdate();
 txtClear();
 }

 void lblCountUpdate()
 {
 lblCount.Text = "Count of Days Selected: " +
 cal.SelectedDates.Count.ToString();
 }

 void lblSelectedUpdate()
 {
 if (cal.SelectedDate != DateTime.MinValue)
 lblSelected.Text = "The date selected is " +
 cal.SelectedDate.ToShortDateString();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else
 lblSelected.Text = "";
 }

 void txtClear()
 {
 txtStart.Text = "";
 txtEnd.Text = "";
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Calendar Control</h2>
 <h2>VisibleMonthChanged Event</h2>

 <asp:Label id="lblMonthChanged" runat="server" />

 <asp:Calendar
 id="cal"
 SelectionMode="DayWeekMonth"
 ShowGridLines="true"
 ShowNextprevMonth="true"
 CellPadding="7"
 CellSpacing="5"
 DayNameFormat="FirstTwoLetters"
 FirstDayOfWeek="Monday"
 NextPrevFormat="CustomText"
 NextMonthText="Next >"
 PrevMonthText="< Prev"
 onSelectionChanged="SelectionChanged"
 onDayRender="DayRender"
 onVisibleMonthChanged="VisibleMonthChanged"
 DayHeaderStyle-BackColor="Black"
 DayHeaderStyle-ForeColor="White"
 DayHeaderStyle-Font-Name="Arial Black"
 runat="server" >

 <DayStyle
 BackColor="White"
 ForeColor="Black"
 Font-Name="Arial" />
 <NextPrevStyle
 BackColor="DarkGray"
 ForeColor="Yellow"
 Font-Name="Arial" />
 <OtherMonthDayStyle
 BackColor="LightGray"
 ForeColor="White"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Font-Name="Arial" />
 <SelectedDayStyle
 BackColor="CornSilk"
 ForeColor="Blue"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="true"/>
 <SelectorStyle
 BackColor="CornSilk"
 ForeColor="Red"
 Font-Name="Arial" />
 <TitleStyle
 BackColor="Gray"
 ForeColor="White"
 HorizontalAlign="Left"
 Font-Name="Arial Black" />
 <TodayDayStyle
 BackColor="CornSilk"
 ForeColor="Green"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="false"/>
 <WeekendDayStyle
 BackColor="LavenderBlush"
 ForeColor="Purple"
 Font-Name="Arial"
 Font-Bold="false"
 Font-Italic="false"/>
 </asp:Calendar>

 <asp:Label id="lblCount" runat="server" />

 <asp:Label id="lblTodaysDate" runat="server" />

 <asp:Label id="lblSelected" runat="server" />

 <table>
 <tr>
 <td>
 Select a month:
 </td>
 <td>
 <asp:DropDownList
 id= "ddl"
 AutoPostBack="true"
 onSelectedIndexChanged = "ddl_SelectedIndexChanged"
 runat="server">

 <asp:ListItem text="January" value="1" />
 <asp:ListItem text="February" value="2" />
 <asp:ListItem text="March" value="3" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:ListItem text="April" value="4" />
 <asp:ListItem text="May" value="5" />
 <asp:ListItem text="June" value="6" />
 <asp:ListItem text="July" value="7" />
 <asp:ListItem text="August" value="8" />
 <asp:ListItem text="September" value="9" />
 <asp:ListItem text="October" value="10" />
 <asp:ListItem text="November" value="11" />
 <asp:ListItem text="December" value="12" />

 </asp:DropDownList>
 </td>
 <td>
 <asp:Button
 id="btnTgif"
 text="TGIF"
 onClick="btnTgif_Click"
 runat="server" />
 </td>
 </tr>
 <tr>
 <td colspan="2"> </td>
 </tr>
 <tr>
 <td colspan="2">Day Range</td>
 </tr>
 <tr>
 <td>Starting Day</td>
 <td>Ending Day</td>
 </tr>
 <tr>
 <td>
 <asp:TextBox
 id= "txtStart"
 Size="2"
 MaxLength="2"
 runat="server" />
 </td>
 <td>
 <asp:TextBox
 id= "txtEnd"
 Size="2"
 MaxLength="2"
 runat="server" />
 </td>
 <td>
 <asp:Button
 id="btnRange"
 text="Apply"
 onClick="btnRange_Click"
 runat="server" />
 </td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </tr>
 </table>
 </form>
 </body>
</html>

Example 5-50. VisibleMonthChanged event in VB.NET (script block only),
vbASPCalendarVisibleMonth.aspx

<%@ Page Language="VB"%>
<script runat="server">
 ' This Page_Load makes the selected days visible first time
 ' the TGIF button is clicked by initializing the VisibleDate
 ' property.
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 cal.VisibleDate = cal.TodaysDate
 ddl.SelectedIndex = cal.VisibleDate.Month - 1
 end if

 lblTodaysDate.Text = "Today's Date is " & _
 cal.TodaysDate.ToShortDateString()
 end sub

 sub SelectionChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblSelectedUpdate()
 lblCountUpdate()
 txtClear()
 end sub

 sub ddl_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 cal.SelectedDates.Clear()
 lblSelectedUpdate()
 lblCountUpdate()
 txtClear()
 cal.VisibleDate = new DateTime(cal.TodaysDate.Year, _
 Int32.Parse(ddl.SelectedItem.Value), 1)
 end sub

 sub btnTgif_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim currentMonth as integer = cal.VisibleDate.Month
 dim currentYear as integer = cal.VisibleDate.Year

 cal.SelectedDates.Clear()

 dim i as integer
 for i = 1 to System.DateTime.DaysInMonth(currentYear, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 currentMonth)
 dim dt as DateTime = new DateTime(currentYear, _
 currentMonth, _
 i)
 if dt.DayOfWeek = DayOfWeek.Friday then
 cal.SelectedDates.Add(dt)
 end if
 next

 lblSelectedUpdate()
 lblCountUpdate()
 txtClear()
 end sub

 sub btnRange_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim currentMonth as integer = cal.VisibleDate.Month
 dim currentYear as integer = cal.VisibleDate.Year
 dim StartDate as DateTime = new DateTime(currentYear, _
 currentMonth, _
 Int32.Parse(txtStart.Text))
 dim EndDate as DateTime = new DateTime(currentYear, _
 currentMonth, _
 Int32.Parse(txtEnd.Text))
 cal.SelectedDates.Clear()
 cal.SelectedDates.SelectRange(StartDate, EndDate)

 lblCountUpdate()
 end sub

 sub DayRender(ByVal Sender as Object, _
 ByVal e as DayRenderEventArgs)
 ' Notice that this overrides the WeekendDayStyle.
 if (not e.Day.IsOtherMonth and e.Day.IsWeekend) then
 e.Cell.BackColor=System.Drawing.Color.LightGreen
 end if

 ' Happy New Year!
 if (e.Day.Date.Month = 1 and e.Day.Date.Day = 1) then
 e.Cell.Controls.Add(new LiteralControl("
Happy New Year!"))
 end if
 end sub

 sub VisibleMonthChanged(ByVal Sender as Object, _
 ByVal e as MonthChangedEventArgs)
 if e.NewDate.Year > e.PreviousDate.Year Or _
 ((e.NewDate.Year = e.PreviousDate.Year) And _
 (e.NewDate.Month > e.PreviousDate.Month)) Then
 lblMonthChanged.Text = "My future's so bright..."
 else
 lblMonthChanged.Text = "Back to the future!"
 end if

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cal.SelectedDates.Clear()
 lblSelectedUpdate()
 lblCountUpdate()
 txtClear()
 end sub

 sub lblCountUpdate()
 lblCount.Text = "Count of Days Selected: " & _
 cal.SelectedDates.Count.ToString()
 end sub

 sub lblSelectedUpdate()
 if (cal.SelectedDate <> DateTime.MinValue) then
 lblSelected.Text = "The date selected is " & _
 cal.SelectedDate.ToShortDateString()
 else
 lblSelected.Text = ""
 end if
 end sub

 sub txtClear()
 txtStart.Text = ""
 txtEnd.Text = ""
 end sub
</script>

The onVisibleMonthChanged event handler calls the VisibleMonthChanged method, which is in the
script block. A Label control named lblMonthChanged was added just before the Calendar control.

The VisibleMonthChanged event handler method receives an argument of type
MonthChangedEventArgs. This argument contains two properties that may be read programmatically:

NewDate

Represents the month currently displayed by the Calendar
PreviousDate

Represents the month previously displayed by the Calendar

These values are tested in the VisibleMonthChanged method to see which came first. Depending on
the results, one of two text strings is assigned to the Text property of lblMonthChanged.

Finally, the selected dates are cleared from the calendar, the text strings below the calendar are
updated, and the day range edit boxes are cleared with the following lines of code (which are the
same in C# and VB.NET, except for the trailing semicolons in C#):

cal.SelectedDates.Clear()
lblSelectedUpdate()
lblCountUpdate()
txtClear()

The results of running the pages in Example 5-49 and Example 5-50 can be seen in Figure 5-2 7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-27. Calendar with VisibleMonthChanged event

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 6. Programming Web Forms
In Chapter 5, you learned many of the details about using ASP server controls in Web Forms. In this
chapter, you will learn techniques to help you utilize the full power of ASP.NET in creating Web
Forms, including:

Using code-behind to segregate the presentation code from the logic

Understanding the control lifecycle of a web page

Managing state in ASP.NET

Using Visual Studio .NET as a development tool

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.1 Code-Behind

In traditional ASP, the interweaving of script with HTML can produce source control nightmares and
difficult-to-maintain ASP pages. ASP.NET addresses this problem by giving programmers the ability to
separate the executable code from the presentation code. You write the HTML in a page file (with a
.aspx extension), and you write the C# or VB.NET code in the code-behind file (with a .cs or .vb
extension, depending on its language), which is another way of saying the "code file behind the
form."

In the code-behind file, you create a class (which can be any class derived from the Page class) that
serves as the base class for the web page you create in the .aspx file. This relationship between your
class and the web page is established by a Page directive at the top of the .aspx file:

<%@ Page inherits="CodeBehindDemo" %>

The inherits attribute identifies the class created in the code-behind file from which this .aspx file

will derive.

When a web form is compiled, its page is parsed and a new class is generated and compiled. This
new class derives from the class identified in the inherits keyword, which in turn derives from

System.Web.UI.Page.

Now the only question is, "How does the compiler know where to find this code-behind file class to
derive from?" The answer depends on whether or not you are working in the Visual Studio .NET
(VS.NET) IDE or using a text editor to work directly with the source files.

If you're working in the VS.NET IDE, then the development environment will automatically pre-
compile the class in the code-behind file and use the inherits attribute to point to that class. The

.dll file that is created is placed in the \bin subdirectory in the application virtual directory.

You will notice that VS.NET also puts a codebehind attribute in the Page directive, which points to the
code-behind file. The codebehind attribute is used to keep track of the code-behind file so that as

you make changes to the page, VS.NET can make the appropriate changes to the code-behind file.
Using VS.NET will be covered in more detail later in this chapter.

If you are not using a development environment such as VS.NET, but rather editing the files directly
in a text editor, then you need to include the src attribute in the Page directive to identify the file
containing the class specified in the inherits attribute for the JIT compiler:

<%@ Page inherits="CodeBehindDemo" src="CodeBehind.cs" %>

If the src string does not include a fully qualified path, then the compiler assumes that the file is in
the same directory as the .aspx file. If the src attribute is missing, then the compiler will look in the

\bin subdirectory of the application virtual directory for a .dll that contains the class marked with the
inherits attribute.

In order to convert an .aspx file from in-line code to code-behind, you need to make modifications
both to the .aspx file as well as to the code-behind file, as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modifications to the .aspx file

The .aspx file needs to have its Page directive modified to include the inherits attribute.

Optionally, the Page directive must be modified to include the src attribute.

Modifications to the code-behind file

The code-behind file does not automatically inherit the common namespaces used in web
forms. The code-behind file itself must tell the compiler which namespaces it needs with the
using keyword in C# and the Imports keyword in VB.NET.

The class you create must inherit from the System.Web.UI.Page class.

Every control in the .aspx file referred to by name (id) in the code-behind file must have an
accessible variable (declared using either the public or protected access modifier) defined in

the code-behind class. The variable type must be the same as the control type, and the
variable name must match the control name.

All methods in the code-behind class that are called directly from the .aspx file must be
declared as either public or protected methods (that is, using the public or protected access

modifiers).

Access Modifiers

The keywords public, protected, private, and internal (in C#) or friend (in

VB) are access modifiers. An access modifier determines which class methods can
see and use a member variable or method. Table 6-1 summarizes the access
modifiers.

The default accessibility of members of a class is private. Thus, if there is no access

modifier provided for a class member, then it will be a private member. Regardless
of this circumstance, it is always a good idea to explicitly specify the access modifier
in order to enhance the readability of the code.

Table 6-1. Access modifiers

Access modifier Restrictions

public
No restrictions. Members marked public are visible to any method of any

class.

private
The members in class A that are marked private are accessible only to

methods of class A.

protected
The members in class A that are marked protected are accessible to

methods of class A and also to methods of classes derived from class A.

internal (C#)
Friend (VB)

The members in class A that are marked internal or friend are accessible

to methods of any class in A's assembly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Access modifier Restrictions

protected internal
(C#) Protected
friend (VB)

The members in class A that are marked protected internal or protected
friend are accessible only to methods of class A and also to methods of

classes derived from class A, and also to any class in A's assembly. This is
effectively protected or internal.

To better understand code-behind, modify one of the Calendar examples from Chapter 5 (Example 5-
43 in C# or Example 5-44 in VB.NET) to use code-behind. These modifications will entail removing
the entire script block and changing the Page directive in the .aspx file, and creating a code-behind

file that essentially contains the excised script block.

The easiest way to accomplish this is to copy the .aspx file twice: once to the file to use for the new
.aspx file and once to the file to use for the code-behind file. Then edit each of those new files. In this
example, the original Calendar example .aspx files will be copied and renamed as shown in Table 6-2.

Table 6-2. Example filenames

Original filename New filename Purpose

csASPCalendarMoreSelections.aspx csCodeBehind.aspx Contains the HTML for the C# version

" CodeBehind.cs
Contains the C# version of the code-
behind class

vbASPCalendarMoreSelections.aspx vbCodeBehind.aspx
Contains the HTML for the VB.NET
version

" CodeBehind.vb
Contains the VB.NET version of the code-
behind class

It is important that the code-behind file have the correct file extension. This tells the framework
which compiler to use to compile the code-behind file. Valid file extensions are:

.cs for C#

.vb for VB.NET

.js for JavaScript

Example 6-1 shows the .aspx file modified to use code-behind for C#. Since the HTML is exactly the
same in both C# and VB.NET, Example 6-2 shows only the Page directive for the VB.NET version.

Example 6-1. Code-behind page using C#, csCodeBehind.aspx

<%@ Page inherits="CodeBehindDemo" src="CodeBehind.cs" %>

<html>
 <body>

protected internal
(C#) Protected
friend (VB)

The members in class A that are marked protected internal or protected
friend are accessible only to methods of class A and also to methods of

classes derived from class A, and also to any class in A's assembly. This is
effectively protected or internal.

To better understand code-behind, modify one of the Calendar examples from Chapter 5 (Example 5-
43 in C# or Example 5-44 in VB.NET) to use code-behind. These modifications will entail removing
the entire script block and changing the Page directive in the .aspx file, and creating a code-behind

file that essentially contains the excised script block.

The easiest way to accomplish this is to copy the .aspx file twice: once to the file to use for the new
.aspx file and once to the file to use for the code-behind file. Then edit each of those new files. In this
example, the original Calendar example .aspx files will be copied and renamed as shown in Table 6-2.

Table 6-2. Example filenames

Original filename New filename Purpose

csASPCalendarMoreSelections.aspx csCodeBehind.aspx Contains the HTML for the C# version

" CodeBehind.cs
Contains the C# version of the code-
behind class

vbASPCalendarMoreSelections.aspx vbCodeBehind.aspx
Contains the HTML for the VB.NET
version

" CodeBehind.vb
Contains the VB.NET version of the code-
behind class

It is important that the code-behind file have the correct file extension. This tells the framework
which compiler to use to compile the code-behind file. Valid file extensions are:

.cs for C#

.vb for VB.NET

.js for JavaScript

Example 6-1 shows the .aspx file modified to use code-behind for C#. Since the HTML is exactly the
same in both C# and VB.NET, Example 6-2 shows only the Page directive for the VB.NET version.

Example 6-1. Code-behind page using C#, csCodeBehind.aspx

<%@ Page inherits="CodeBehindDemo" src="CodeBehind.cs" %>

<html>
 <body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <form runat="server">

 <h1>ASP Controls</h1>
 <h2>Calendar Control</h2>
 <h2>More Selections</h2>

 <asp:Calendar
 id="cal"
 SelectionMode="DayWeekMonth"
 ShowGridLines="true"
 ShowNextprevMonth="true"
 CellPadding="7"
 CellSpacing="5"
 DayNameFormat="FirstTwoLetters"
 FirstDayOfWeek="Monday"
 NextPrevFormat="CustomText"
 NextMonthText="Next >"
 PrevMonthText="< Prev"
 onSelectionChanged="SelectionChanged"
 DayHeaderStyle-BackColor="Black"
 DayHeaderStyle-ForeColor="White"
 DayHeaderStyle-Font-Name="Arial Black"
 runat="server" >

 <DayStyle
 BackColor="White"
 ForeColor="Black"
 Font-Name="Arial" />
 <NextPrevStyle
 BackColor="DarkGray"
 ForeColor="Yellow"
 Font-Name="Arial" />
 <OtherMonthDayStyle
 BackColor="LightGray"
 ForeColor="White"
 Font-Name="Arial" />
 <SelectedDayStyle
 BackColor="CornSilk"
 ForeColor="Blue"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="true"/>
 <SelectorStyle
 BackColor="CornSilk"
 ForeColor="Red"
 Font-Name="Arial" />
 <TitleStyle
 BackColor="Gray"
 ForeColor="White"
 HorizontalAlign="Left"
 Font-Name="Arial Black" />
 <TodayDayStyle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BackColor="CornSilk"
 ForeColor="Green"
 Font-Name="Arial"
 Font-Bold="true"
 Font-Italic="false"/>
 <WeekendDayStyle
 BackColor="LavenderBlush"
 ForeColor="Purple"
 Font-Name="Arial"
 Font-Bold="false"
 Font-Italic="false"/>
 </asp:Calendar>

 <asp:Label id="lblCount" runat="server" />

 <asp:Label id="lblTodaysDate" runat="server" />

 <asp:Label id="lblSelected" runat="server" />

 <table>
 <tr>
 <td>
 Select a month:
 </td>
 <td>
 <asp:DropDownList
 id= "ddl"
 AutoPostBack="true"
 onSelectedIndexChanged = "ddl_SelectedIndexChanged"
 runat="server">

 <asp:ListItem text="January" value="1" />
 <asp:ListItem text="February" value="2" />
 <asp:ListItem text="March" value="3" />
 <asp:ListItem text="April" value="4" />
 <asp:ListItem text="May" value="5" />
 <asp:ListItem text="June" value="6" />
 <asp:ListItem text="July" value="7" />
 <asp:ListItem text="August" value="8" />
 <asp:ListItem text="September" value="9" />
 <asp:ListItem text="October" value="10" />
 <asp:ListItem text="November" value="11" />
 <asp:ListItem text="December" value="12" />

 </asp:DropDownList>
 </td>
 <td>
 <asp:Button
 id="btnTgif"
 text="TGIF"
 onClick="btnTgif_Click"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 runat="server" />
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

Example 6-2. Code-behind page directive using VB.NET,
vbCodeBehind.aspx

<%@ Page inherits="CodeBehindDemo" src="CodeBehind.vb" %>

In Example 6-1 and Example 6-2, the only changes necessary from the original .aspx file are to
remove the script block entirely and modify the Page directive. The Page directive modifications are

intended to:

Remove the Language attribute.1.

Add an inherits attribute for the code-behind class.2.

Add the appropriate value to the src attribute that points to the correct code-behind file.

You remove the Language attribute because there is no longer any code

other than HTML in the page file. If you keep script in the page file, the
Language attribute would have to remain.

3.

Example 6-3 shows the code-behind file for C#.

Example 6-3. CodeBehind.cs

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public class CodeBehindDemo : Page
{
 protected Calendar cal;
 protected Label lblCount;
 protected Label lblTodaysDate;
 protected Label lblSelected;
 protected DropDownList ddl;

 // This Page_Load makes the selected days visible first time
 // the TGIF button is clicked by initializing the VisibleDate
 // property.
 protected void Page_Load(Object sender, EventArgs e)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (!IsPostBack)
 {
 cal.VisibleDate = cal.TodaysDate;
 ddl.SelectedIndex = cal.VisibleDate.Month - 1;
 }
 lblTodaysDate.Text = "Today's Date is " +
 cal.TodaysDate.ToShortDateString();
 }

 protected void SelectionChanged(Object sender, EventArgs e)
 {
 lblSelectedUpdate();
 lblCountUpdate();
 }

 protected void ddl_SelectedIndexChanged(Object sender, EventArgs e)
 {
 cal.SelectedDates.Clear();
 lblSelectedUpdate();
 lblCountUpdate();
 cal.VisibleDate = new DateTime(cal.TodaysDate.Year,
 Int32.Parse(ddl.SelectedItem.Value), 1);
 }

 protected void btnTgif_Click(Object sender, EventArgs e)
 {
 int currentMonth = cal.VisibleDate.Month;
 int currentYear = cal.VisibleDate.Year;

 cal.SelectedDates.Clear();

 for (int i = 1;
 i <= System.DateTime.DaysInMonth(currentYear,
 currentMonth);
 i++)
 {
 DateTime date = new DateTime(currentYear, currentMonth, i);
 if (date.DayOfWeek == DayOfWeek.Friday)
 cal.SelectedDates.Add(date);
 }

 lblSelectedUpdate();
 lblCountUpdate();
 }

 private void lblCountUpdate()
 {
 lblCount.Text = "Count of Days Selected: " +
 cal.SelectedDates.Count.ToString();
 }

 private void lblSelectedUpdate()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 if (cal.SelectedDate != DateTime.MinValue)
 lblSelected.Text = "The date selected is " +
 cal.SelectedDate.ToShortDateString();
 else
 lblSelected.Text = "";
 }
}

Example 6-3 shows several changes from the original code in the inline script block:

There are several using statements at the beginning of the C# code-behind file to reference the

needed namespaces. These were not required in the inline code because they were
automatically included by the compiler when it compiled the .aspx file.

The class declaration for the CodeBehindDemo class inherits from the base class
System.Web.UI.Page. (It is not actually necessary to fully qualify the Page object because you
have included the System.Web.UI namespace in a using statement.)

Variables are declared for each of the controls referred to in the code-behind file. Note that
there is no declaration for the btnTgif control, since that control is not referenced anywhere in
the code-behind file, although there is an event handler for the Click event.

Remember that the .aspx file is compiled into a class that derives from the code-behind class,
CodeBehindDemo. Because these variables must be visible to the .aspx file, they have to be
declared as either public or protected. Good object-oriented programming practice
recommends using protected to hide data as much as possible.

All of the methods that are called directly from the .aspx file have the protected keyword

added to their declaration. (These are all the methods except lblCountUpdate and
lblSelectedUpdate, which are declared private.)

As with the variables, the program will work if the methods use the keyword public, but
protected gives better encapsulation.

Example 6-4 shows the code-behind file for VB.NET. It makes the same functional changes as for the
C# file, with only syntactic changes.

Example 6-4. CodeBehind.vb

Imports System
Imports System.Web
Imports System.Web.UI
Imports System.Web.UI.WebControls

public class CodeBehindDemo
Inherits Page

 protected cal as Calendar
 protected lblCount as Label

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 protected lblTodaysDate as Label
 protected lblSelected as Label
 protected ddl as DropDownList

 ' This Page_Load makes the selected days visible first time
 ' the TGIF button is clicked by initializing the VisibleDate
 ' property.
 protected sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 cal.VisibleDate = cal.TodaysDate
 ddl.SelectedIndex = cal.VisibleDate.Month - 1
 end if

 lblTodaysDate.Text = "Today's Date is " & _
 cal.TodaysDate.ToShortDateString()
 end sub

 protected sub SelectionChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblSelectedUpdate()
 lblCountUpdate()
 end sub

 protected sub ddl_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 cal.SelectedDates.Clear()
 lblSelectedUpdate()
 lblCountUpdate()
 cal.VisibleDate = new DateTime(cal.TodaysDate.Year, _
 Int32.Parse(ddl.SelectedItem.Value), 1)
 end sub

 protected sub btnTgif_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim currentMonth as integer = cal.VisibleDate.Month
 dim currentYear as integer = cal.VisibleDate.Year

 cal.SelectedDates.Clear()

 dim i as integer
 for i = 1 to System.DateTime.DaysInMonth(currentYear, currentMonth)
 dim dt as DateTime = new DateTime(currentYear, currentMonth, i)
 if dt.DayOfWeek = DayOfWeek.Friday then
 cal.SelectedDates.Add(dt)
 end if
 next

 lblSelectedUpdate()
 lblCountUpdate()
 end sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private sub lblCountUpdate()
 lblCount.Text = "Count of Days Selected: " & _
 cal.SelectedDates.Count.ToString()
 end sub

 private sub lblSelectedUpdate()
 if (cal.SelectedDate <> DateTime.MinValue) then
 lblSelected.Text = "The date selected is " & _
 cal.SelectedDate.ToShortDateString()
 else
 lblSelected.Text = ""
 end if
 end sub
end class

When either Example 6-1 or Example 6-2 is run, the relevant using the code-behind pages from
Example 6-3 or Example 6-4, the result shown in Figure 6-1 is identical to the result produced by the
inline code of Example 5-43 and Example 5-44 and shown in Figure 5-24.

Figure 6-1. Code-behind from Example 6-1 or Example 6-2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.2 State

State is the current value of all the controls and variables for the current user in the current session.
The web is inherently a stateless environment, which means that every time a page is posted to the
server and then sent back to the browser, the page is recreated from scratch. Unless you explicitly
preserve the state of all the controls before the page is posted, the state is lost and all the controls
are created with default values. One of the great strengths of ASP.NET is that it automatically
maintains state for server controls-both HTML and ASP. This section will explore how that is done
and how you can use the ASP.NET state management capabilities.

ASP.NET manages three types of state:

View state (which is saved in the state bag)

Application state

Session state

Table 6-3 compares the different kinds of state.

Table 6-3. Comparison of types of state

 View state Application state Session state

Uses server resources No Yes Yes

Uses bandwidth Yes No Depends

Times out No No Yes

Security exposure Yes No Depends

Optimized for non-primitive types No Yes Yes

Available for arbitrary data Yes Yes Yes

Programmatically accessible Yes Yes Yes

Scope Page Application Session

Survives restart Yes No Depends

The following sections will examine each type of state in turn.

6.2.1 View State

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The view state is the state of the page and all its controls. The view state is automatically maintained
across posts by the ASP.NET Framework. When a page is posted to the server, the view state is read.
Just before the page is sent back to the browser the view state is restored.

The view state is saved in the state bag (described in the next section) via hidden fields on the page
that contain the state encoded in a string variable. Since the view state is maintained via form fields,
it works with all browsers.

If there is no need to maintain the view state for a page, you can boost performance by disabling
view state for that page. For example, if the page does not post back to itself or if the only control on
a page that might need to have its state maintained is populated from a database with every round
trip to the server, then there is no need to maintain the view state for that page. To disable view
state for a page, add the EnableViewState attribute with a value of false to the Page directive:

<%@ Page Language="C#" EnableViewState="false" %>

The default value for EnableViewState is true. Alternatively, omit the server-side form tag (<form
runat="server">), although this will also disable all server-side processing and controls.

The view state can be disabled for an entire application by setting the EnableViewState property to
false in the <pages> section of the machine.config or web.config configuration file (described in

Chapter 20).

It is also possible to maintain or disable view state for specific controls. This is done with the
Control.EnableViewState property, which is a Boolean value with a default of true. Disabling view

state for a control, just as for the page, will improve performance. This would be appropriate, for
example, in a situation where a DataGrid is populated from a database every time the page is loaded.
In this case, the contents of the control would simply be overridden by the database query, so there
is no point in maintaining view state for that control. If the DataGrid in question were named dg, the

following line of code (identical in C# and VB.NET except for the trailing semicolon in C#) would
disable its view state:

dg.EnableViewState = false

There are some situations where view state is not the best place to store data. If there is a large
amount of data to be stored, then view state is not an efficient mechanism, since the data is
transferred back and forth to the server with every page post. If there are security concerns about
the data and it is not otherwise being displayed on the page, then including the data in view state
increases the security exposure. Finally, view state is optimized only for strings, integers, Booleans,
arrays, ArrayLists, and hashtables. Other .NET types may be serialized and persisted in view state,
but will result in degraded performance and a larger view state footprint.

In some of these instances, session state might be a better alternative; on the other hand, view state
does not consume any server resources and does not time out, as does session state.

6.2.2 State Bag

If there are values that are not associated with any control and you wish to preserve these values
across round trips, you can store these values in the page's state bag. The state bag is a data
structure containing attribute/value pairs, stored as strings associated with objects. The valid objects
are the primitive data types-integers, bytes, strings, Booleans, and so on. The state bag is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implemented using the StateBag class, which is a dictionary object. You add or remove items from
the state bag as with any dictionary object. For a complete discussion of dictionary objects in C#, see
Programming C#, Third Edition, by Jesse Liberty (O'Reilly), and in VB.NET see VB.NET Language in a
Nutshell by Steven Roman, Ron Petrusha, and Paul Lomax, (O'Reilly).

The state bag is maintained using the same hidden fields as the view state. You can set and retrieve
values of things in the state bag using the ViewState keyword, as shown in Example 6-5 in C# and

in Example 6-6 in VB.NET. These examples set up a counter that is maintained as long as the session
is active. Every time the Increment Counter button is clicked, the page is reloaded, which causes the
counter to increment.

Example 6-5. Using the StateBag using C#, csStateBagDemo.aspx

<%@ Page Language="C#" %>
<html>

<script runat="server">

 void Page_Load(Object sender, EventArgs e)
 {
 lblCounter.Text = Counter.ToString();
 Counter++;
 }

 public int Counter
 {
 get
 {
 if (ViewState["intCounter"] != null)
 {
 return ((int)ViewState["intCounter"]);
 }
 return 0;
 }

 set
 {
 ViewState["intCounter"] = value;
 }
 }
</script>

 <body>
 <form runat="server">

 <h1>ASP.NET State</h1>

 <h2>csStateBagDemo.aspx</h2>

 Counter:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:Label
 id="lblCounter"
 runat="server" />

 <asp:Button
 id="btn"
 text = "Increment Counter"
 runat="server" />

 </form>
 </body>
</html>

Example 6-6. Using the StateBag using VB.NET, vbStateBagDemo.aspx

<%@ Page Language="VB" Strict="true" %>
<html>

<script runat="server">

 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblCounter.Text = Counter.ToString()
 Counter += 1
 end sub

 public property Counter() as integer
 get
 if not (ViewState("intCounter") is Nothing) then
 return CInt(ViewState("intCounter"))
 else
 return 0
 end if
 end get

 set
 ViewState("intCounter") = value
 end set
 end property
</script>

 <body>
 <form runat="server">

 <h1>ASP.NET State</h1>

 <h2>vbStateBagDemo.aspx</h2>

 Counter:
 <asp:Label

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 id="lblCounter"
 runat="server" />

 <asp:Button
 id="btn"
 text = "Increment Counter"
 runat="server" />

 </form>
 </body>
</html>

In both Example 6-5 and Example 6-6, a Counter property is created that returns an integer. In C#,
shown in Example 6-5, this is implicit in the class constructor by the use of the get and set
keywords. In VB.NET, shown in Example 6-6, the Property keyword makes this explicit.

In the get block, the contents of the state bag named intCounter are tested to see if anything is

there. In C#, this is accomplished with the line:

if (ViewState["intCounter"] != null)

In VB.NET, this is accomplished with the line:

if not (ViewState("intCounter") is Nothing) then

If the intCounter state bag is empty, then zero is returned. Otherwise, the value is retrieved and
returned. The state bag returns an object that is not implicitly recognized as an integer so it must be
cast as an integer before the method returns the value. In C# the syntax is:

return ((int)ViewState["intCounter"]);

In VB.NET, the code is:

return CInt(ViewState("intCounter"))

In the VB.NET code examples, the Page directive includes the Strict attribute:

<%@ Page Language="VB" Strict="true" %>

This attribute tells the compiler to disallow any implicit narrowing data
conversion, which could possibly result in data loss. In these cases, you must
explicitly cast (that is, convert, from one data type to another).

If the Strict attribute were omitted or set to false (its default value), then

your code would not be forced to use type-safe behavior, allowing late binding
of variable types. While on the one hand this would be a convenience, it would
also represent a significant performance hit. If the Strict attribute were set to
false, you would not have to cast your objects explicitly. You could replace the

following lines:

if not ViewState("intCounter") is Nothing then
 return CInt(ViewState("intCounter"))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with these lines:

if (ViewState("intCounter") <> Nothing) then
 return ViewState("intCounter")

In the set block, the intCounter value is set. In C#, the code is:

ViewState["intCounter"] = value;

In VB.NET, it is:

ViewState("intCounter") = value

In this code, value is a keyword used in the property set block to represent the implicit variable

containing the value being passed in.

Then in the Page_Load, Counter is called twice-once to retrieve the counter value in order to set the

value of the Label control's Text property and once to increment itself. In C# this is done with:

lblCounter.Text = Counter.ToString();
Counter++;

In VB.NET, this is done with:

lblCounter.Text = Counter.ToString()
Counter += 1

6.2.3 Application State

A web application consists of all the web pages, files, components, code, and images that reside in a
virtual directory or its subdirectories.

The file global.asax contains global code for the web application. The global.asax file resides in the
virtual root directory of the application. Chapter 20 discusses this file in detail. For now, only the
aspects relating to application state and session state will be covered.

Among other things, the global.asax file contains event handlers for the Application_Start,
Application_End, Session_Start, and Session_End events. When the application receives the first user
request, the Application_Start event is fired. If the global.asax file is edited and the changes are
saved, then all current pending requests are completed, the Application_End event is fired, and the
application is restarted. This sequence effectively reboots the application, flushing all state
information. The rebooting of the application is transparent to any users, however, since it occurs
only after satisfying any pending requests and before any new requests are accepted. When the next
request is received, the application starts over again raising another Application_Start event.

Information can be shared globally across your application via a dictionary of objects, each object
associated with a key value. This is implemented using the intrinsic Application property of the
HttpApplication class. The Application property allows access to the Contents collection, whose
contents have been added to the Application state directly through code.

Example 6-7 and Example 6-8 each show a global.asax file, using C# and VB.NET, respectively.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-7. A global.asax file using C#

<%@ Application Language="C#"%>
<script runat="server">

 protected void Application_Start(Object sender, EventArgs e)
 {
 Application["strStartMsg"] = "The application has started.";
 Application["strDSN"] =
 "SERVER=Zeus;DATABASE=Pubs;UID=sa;PWD=secret;";

 string[] Books = {"SciFi","Novels", "Computers",
 "History", "Religion"};
 Application["arBooks"] = Books;

 WriteFile("Application Starting");
 }

 protected void Application_End(Object sender, EventArgs e)
 {
 Application["strEndMsg"] = "The application is ending.";
 WriteFile("Application Ending");
 }

 void WriteFile(string strText)
 {
 System.IO.StreamWriter writer = new
 System.IO.StreamWriter(@"C:\test.txt",true);
 string str;
 str = DateTime.Now.ToString() + " " + strText;
 writer.WriteLine(str);
 writer.Close();
 }
</script>

Example 6-8. A global.asax file using VB.NET

<%@ Application Language="VB"%>
<script runat="server">

 protected sub Application_Start(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Application("strStartMsg") = "The application has started."
 Application("strDSN") = _
 "SERVER=Zeus;DATABASE=Pubs;UID=sa;PWD=secret;"

 dim Books() as string = {"SciFi","Novels", "Computers", _
 "History", "Religion"}
 Application("arBooks") = Books

 WriteFile("Application Starting")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end sub

 protected sub Application_End(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Application("strEndMsg") = "The application is ending."
 WriteFile("Application Ending")
 end sub

 sub WriteFile(strText as string)
 dim writer as System.IO.StreamWriter = new _
 System.IO.StreamWriter("C:\\test.txt",true)
 dim str as string
 str = DateTime.Now.ToString() & " " & strText
 writer.WriteLine(str)
 writer.Close()
 end sub

</script>

A global.asax file is very similar to a normal .aspx file in that there is a directive on the first line
followed by a script block in the language specified in the directive. In these cases, the directive is not
the Page directive of a normal page, but an Application directive. In C#, these two lines look like this:

<%@ Application Language="C#"%>
<script runat="server">

In VB.NET, the lines are:

<%@ Application Language="VB"%>
<script runat="server">

You can see that the file has two event handlers-one each for Application_Start and
Application_End. To see how this works, create a file called global.asax in your application virtual
directory. (This book has been using the physical directory e:\Projects\Programming ASP.NET
assigned to the virtual directory ProgAspNet for all the examples so far.) Depending on your language
preference, edit the file so that it contains the code of either Example 6-7 or Example 6-8.

There can only be a single global.asax file in any application virtual directory.
Each global.asax file must utilize a single language.

As mentioned previously, every time the global.asax file is modified, the .NET Framework detects this
and automatically stops and restarts the application.

Now, run any of the web pages in that virtual directory, such as one of the examples from earlier in
this chapter. At the instant the server receives and begins to process the page request, the
application starts and the Application_Start event handler is called.

If you now open another browser and call some other .aspx file located in the same virtual directory,
the application doesn't start again; it is already running. In fact, closing all your browsers and then
opening a page will still not fire the Application_Start event. The application must first be ended, as
described later in the explanation for Example 6-11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here is the Application_Start method in C#, reproduced from Example 6-7:

protected void Application_Start(Object sender, EventArgs e)
{
 Application["strStartMsg"] = "The application has started.";
 Application["strDSN"] =
 "SERVER=Zeus;DATABASE=Pubs;UID=sa;PWD=secret;";

 string[] Books = {"SciFi","Novels", "Computers",
 "History", "Religion"};
 Application["arBooks"] = Books;

 WriteFile("Application Starting");
}

The Application property exposes a dictionary of objects linked to keys. In the Application_Start event
handler in Example 6-7 and Example 6-8, three objects are entered in the Application dictionary: two
strings and one string array. Then a call is made to the WriteFile method, which is coded further
down in the script block. WriteFile writes a simple text log to the root of Drive C. If the file does not
exist, it is created, and, if it does exist, the strings are appended to the end of the file.

Finally, the Application_End event handler of global.asax puts another string object in the Application
dictionary, then makes a log entry.

The web pages in Example 6-9 and Example 6-10 show how these Application dictionary entries are
used as global variables. Although the global.asax file is an excellent place to initialize global
Application objects, it is not the only place. Application objects can be set from anywhere in the
application, including any web page or code-behind file. The benefit of using the global.asax file is
that you can be certain the global application objects will be set when the application first starts,
regardless of which component of the application is accessed first. On the other hand, if the
application design is such that a specific web page is always accessed first, then it would be perfectly
reasonable to have that web page, or its associated code-behind file, perform any initialization.

Example 6-9. Application state example using C#,
csApplicationState.aspx

<%@ Page Language="C#" %>
<html>

<script runat="server">

 void Page_Load(Object Source, EventArgs E)
 {
 Response.Write((string)Application["strStartMsg"] + "
");
 Response.Write((string)Application["strDSN"] + "
");
 Response.Write((string)Application["strEndMsg"]);

 string[] arTest = (string[])Application["arBooks"];
 Response.Write(arTest[1].ToString()); }

</script>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <body>
 <form runat="server">

 <h1>Application State Demo</h1>

 </form>
 </body>
</html>

Example 6-10. Application state example using VB.NET,
vbApplicationState.aspx

<%@ Page Language="VB" Strict="true" %>
<html>

<script runat="server">

 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write(Cstr(Application("strStartMsg")) & "
")
 Response.Write(Cstr(Application("strDSN")) & "
")
 Response.Write(Cstr(Application("strEndMsg")))

 dim arTest() as string = CType(Application("arBooks"), String())
 Response.Write(arTest(1))

 end sub

</script>

 <body>
 <form runat="server">

 <h1>Application State Demo</h1>

 </form>
 </body>
</html>

The Application dictionary objects are retrieved as any other property would be, then cast to the
appropriate type for use in the Response.Write method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As mentioned previously in Section 6.2.2, the VB.NET Page directive in Example 6-10
has set Strict equal to true, which enforces Option Strict. If this were omitted or
set to false, then it would not be necessary to explicitly cast the type:

dim arTest() as string = _ CType(Application("arBooks"), string())

Instead you could use this line:

dim arTest() as string = _ Application("arBooks")

(The CType function is used in VB.NET to generically convert any expression to any
type.)

Note that for backward compatibility with traditional ASP, you can refer to the Contents subproperty
of the Application object. Thus, the following two lines of C# code are equivalent:

Response.Write((string)Application["strDSN"] + "
");
Response.Write((string)Application.Contents["strDSN"] + "
");

The following two lines of VB.NET code are also equivalent:

Response.Write(Cstr(Application("strDSN")) & "
")
Response.Write(Cstr(Application.Contents("strDSN")) & "
")

The results of running csApplicationState.aspx are shown in Figure 6-2.

Figure 6-2. Application state demo

The application ends whenever global.asax is edited. (It also ends when IIS or the physical server is
restarted, or when one of the application configuration files, such as web.config, is edited. Chapter 20
discusses the use of these configuration files.) Furthermore, the results of this effective rebooting of
the application is invisible to the end users, since all pending requests are filled before the application
shuts down. This can be seen if you force the application to end by making a minor change to
global.asax and saving the file, then looking at the resulting log file, c:\test.txt, in Notepad, as shown
in Example 6-11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-11. Test.txt

5/25/2001 11:09:59 AM Application Starting
5/25/2001 11:10:41 AM Application Starting
5/25/2001 11:10:57 AM Application Ending
5/25/2001 11:11:22 AM Application Starting
5/25/2001 11:13:32 AM Application Ending
5/25/2001 11:13:47 AM Application Starting
5/25/2001 2:37:18 PM Application Ending
5/25/2001 2:53:23 PM Application Starting
5/25/2001 2:55:51 PM Application Ending
5/25/2001 2:55:54 PM Application Starting
5/25/2001 3:27:13 PM Application Ending
5/25/2001 3:35:14 PM Application Starting
5/25/2001 3:37:05 PM Application Ending

As soon as any page in the virtual directory is accessed by a browser, another line appends itself to
the log, containing the words Application Starting. However, you will never see the contents of

the strEndMsg Application property (which was set in the Application_End event handler of
global.asax as shown in Example 6-7 or Example 6-8) displayed in your browser because the
application always ends between browser requests.

When using the application state, keep in mind the following considerations:

Concurrency and application locking

Concurrency refers to two or more pages accessing the same Application dictionary object
simultaneously. As long as an Application dictionary object is read-only, this is not a problem.
However, if you are going to allow clients to modify objects held in application state, then great
care must be exercised (you'll see why in a moment). You must use the Lock and Unlock
methods of the HttpApplicationState class to control access to the application state objects. If
you fail to lock the application state object, one client may corrupt the data used by a second
client. For example, consider the following code snippet in VB.NET, which increments an
Application dictionary object called Counter:

Dim iCtr As Integer = CInt(Application("Counter"()
iCtr += 1
Application("Counter") = iCtr

It is possible for this code to be called by two clients at just about the same time. This code works by
reading the Application ("Counter") variable, adding 1 to it, and writing it back. Suppose that client A
and B both read the counter when its value is 5. Client A increments and writes back 6. Client B

increments and also writes back 6, which is not what you want-you've lost track of Client A's
increment. If you are keeping track of inventory, that would be a serious bug. You can solve this
problem by locking and unlocking the critical code:

Application.Lock
Dim iCtr As Integer = CInt(Application("Counter"()
iCtr += 1
Application("Counter") = iCtr
Application.Unlock

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now when Application A reads the counter, it locks it. When Application B comes along, it is blocked
by the lock until A unlocks. Thus, the value is properly incremented at the cost of a potential
performance bottleneck.

You should always call the Unlock method as soon as possible to prevent blocking other users. If you
forget to call Unlock, the lock will be automatically removed by .NET when the request completes or
times out, or when an unhandled error occurs that causes the request to fail, thus minimizing
prolonged deadlocks.

Simple locks like this are fraught with danger. For example, suppose that you have two resources
controlled by locks: Counter and ItemsOnHand. Application A locks Counter and then tries to lock
ItemsOnHand. Unfortunately, ItemsOnHand is locked, so A must wait, holding its lock on Counter. It
turns out that Application B is holding the lock on ItemsOnHand waiting to get the lock on Counter.
Application B must block waiting for A to let go of Counter, while A waits for B to let go of
ItemsOnHand. This is called a deadlock or a deadly embrace. It is deadly to your application, which
grinds to a halt.

Locks are particularly dangerous with web applications that have to scale up quickly. Use application
locking with extreme caution. By extension, you should also use read-write application state with
extreme caution.

Scalability

The issue of concurrency has a direct effect on scalability. Unless all the Application dictionary
objects are read-only, you are liable to run into severe performance issues as the number of
simultaneous requests increases, due to locks blocking other processes from proceeding.

Memory

This is a consideration for scalability also, since every Application dictionary object takes up
memory. Whether you have a million short string objects or a single DataSet that takes up 50
MB, you must be cognizant of the potential memory usage of Application state.

Persistence and survivability

Application state objects will not survive if the application is halted-whether intentionally
because of updates to global.asax or a planned shutdown, or because of unanticipated system
crashes (when is a crash ever anticipated?). If it is important to persist a global application
state, then you must take some measure to save it, perhaps to a database or other permanent
file on disk.

Expandability to web farms and web gardens

The Application state is specific to a single process on a single processor. Therefore, if you are
running a web farm (multiple servers) or a web garden (multiple processors in a single server),
then any global values in the Application state will not be global across all the servers or
processors, and so will not be truly global. As with persistence and survivability, if this is an
issue, then you should get and set the value(s) from a central store accessible to all the
processes, such as a database or data file.

One additional way of providing information globally across the application is through the use of static
objects. These objects are declared in the global.asax file, described more fully in Chapter 20. Once
declared with the Scope attribute set to Application, the objects are accessible by name anywhere

within the application code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2.4 Session State

While an application is running, there will be many sessions. A session is a series of requests coming
from a single browser client in a more or less continuous manner. If there are no requests from that
client within a specified period of time (the timeout period), then the session ends. The default
timeout period is 20 minutes.

As has been stated before, the Web is an inherently stateless environment. The HTTP protocol has no
means of identifying which requests should be grouped together as belonging to the same session. A
session must be imposed on top of HTTP. ASP.NET provides session-state with the following features:

Works with browsers that have had cookies disabled.

Identifies if a request is part of an existing session.

Stores session-scoped data for use across multiple requests. This data persists across IIS
restarts and works in multi-processor (web garden) and multi-machine (web farm)
environments, as well as in single-processor, single-server situations.

Raises session events such as Session_Start and Session_End, which can be handled either in
the global.asax file or in other application code.

Automatically releases session resources if the session ends or times out.

Session state is stored in server memory separately from the ASP.NET process. This means that if
the ASP.NET process crashes or is restarted, the session state is not lost.

Sessions are identified and tracked with a 120-bit SessionID that is passed from client to server and
back using either an HTTP cookie or a modified URL, depending on how the application is configured.
The SessionID is handled automatically by the .NET Framework; there is no need to manipulate it
programmatically. The SessionID consists of URL-legal ASCII characters that have two important
characteristics:

They are unique, so that there is no chance of two different sessions having the same
SessionID.

They are random, so that it is difficult to guess the value of another session's SessionID after
learning the value of an existing session's SessionID.

Session state is implemented using the Contents collection of the HttpSessionState class. This
collection is a key-value dictionary containing all the session state dictionary objects that have been
directly added using code. The dictionary objects are set and retrieved using the Session keyword,

as shown in Example 6-12 (using C#) and Example 6-13 (using VB.NET). These examples present a
set of radio buttons. Selecting one of the radio buttons and clicking on the Submit button sets three
session dictionary objects-two strings and a string array. These session dictionary objects are then
used to populate a label control and a drop-down list control.

Example 6-12. Session state using C#, csSessionState.aspx

<%@ Page Language="C#" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<script runat="server">
 void btn_Click(Object Source, EventArgs E)
 {
 if (rbl.SelectedIndex == -1)
 {
 lblMsg.Text = "You must select a book category.";
 }
 else
 {
 StringBuilder sb = new StringBuilder();
 sb.Append("You have selected the category ");
 sb.Append((string)Session["cattext"]);
 sb.Append(" with code \"");
 sb.Append((string)Session["catcode"]);
 sb.Append("\".");

 lblMsg.Text = sb.ToString();

 ddl.Visible = true;

 string[] CatBooks = (string[])Session["books"];

 // Populate the DropDownList.
 int i;
 ddl.Items.Clear();
 for (i = 0; i < CatBooks.GetLength(0); i++)
 {
 ddl.Items.Add(new ListItem(CatBooks[i]));
 }
 }
 }

 void rbl_SelectedIndexChanged(Object Source, EventArgs E)
 {
 if (rbl.SelectedIndex != -1)
 {
 string[] Books = new string[3];

 Session["cattext"] = rbl.SelectedItem.Text;
 Session["catcode"] = rbl.SelectedItem.Value;

 switch (rbl.SelectedItem.Value)
 {
 case "n":
 Books[0] = "Programming C#";
 Books[1] = "Programming ASP.NET";
 Books[2] = "C# Essentials";

 break;

 case "d":
 Books[0] = "Oracle & Open Source";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Books[1] = "SQL in a Nutshell";
 Books[2] = "Transact-SQL Programming";

 break;

 case "h":
 Books[0] = "PC Hardware in a Nutshell";
 Books[1] = "Dictionary of PC Hardware and Data Communications Terms";
 Books[2] = "Linux Device Drivers";

 break;
 }

 Session["books"] = Books;
 }
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>Session State Demo</h1>

 <h3>Select a Book Category</h3>
 <asp:radioButtonList
 id="rbl"
 autoPostBack="false"
 cellSpacing="20"
 repeatColumns="3"
 repeatDirection="horizontal"
 RepeatLayout="table"
 textAlign="right"
 onSelectedIndexChanged="rbl_SelectedIndexChanged"
 runat="server">

 <asp:listItem text=".NET" value="n"/>
 <asp:listItem text="Databases" value="d"/>
 <asp:listItem text="Hardware" value="h"/>

 </asp:radioButtonList>

 <asp:button
 id="btn"
 text="Submit"
 onClick="btn_Click"
 runat="server"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <hr/>

 <asp:label
 id="lblMsg"
 runat="server"/>

 <asp:dropDownList
 id="ddl"
 autoPostBack="false"
 visible= "false"
 runat="server"/>

 </form>
 </body>
</html>

Example 6-13 shows only the Visual Basic script block, since the HTML portion of the .aspx file is
identical to that in Example 6-12.

Example 6-13. Session state example using VB.NET, vbSessionState.aspx

<%@ Page Language="VB" Strict="true"%>
<script runat="server">

 sub btn_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if (rbl.SelectedIndex = -1) then
 lblMsg.Text = "You must select a book category."
 else
 dim sb as StringBuilder = new StringBuilder()
 sb.Append("You have selected the category ")
 sb.Append(Cstr(Session("cattext")))
 sb.Append(" with code """)
 sb.Append(Cstr(Session("catcode")))
 sb.Append(""".")

 lblMsg.Text = sb.ToString()

 ddl.Visible = true

 dim CatBooks() as string= CType(Session("books"), string())

 ' Populate the DropDownList.
 dim i as integer
 ddl.Items.Clear()
 for i = 0 to CatBooks.GetLength(0) - 1
 ddl.Items.Add(new ListItem(CatBooks(i)))
 next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end if
 end sub

 sub rbl_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if (rbl.SelectedIndex <> -1) then

 dim Books(3) as string

 Session("cattext") = rbl.SelectedItem.Text
 Session("catcode") = rbl.SelectedItem.Value

 Select Case (rbl.SelectedItem.Value)
 Case "n"
 Books(0) = "Programming C#"
 Books(1) = "Programming ASP.NET"
 Books(2) = "C# Essentials"

 Case "d":
 Books(0) = "Oracle & Open Source"
 Books(1) = "SQL in a Nutshell"
 Books(2) = "Transact-SQL Programming"

 Case "h":
 Books(0) = "PC Hardware in a Nutshell"
 Books(1) = "Dictionary of PC Hardware and Data Communications Terms"
 Books(2) = "Linux Device Drivers"

 end select
 Session("books") = Books
 end if
 end sub
</script>

As usual, the first line of either the C# or the VB.NET .aspx file consists of a Page directive. In C#,

this looks like:

<%@ Page Language="C#" %>

In VB.NET, it looks like this:

<%@ Page Language="VB" Strict="true"%>

Jumping over the script block for a moment, the HTML contains a RadioButtonList and a Submit
button on the top portion of the code, and a Label and an invisible DropDownList on the bottom
portion of the code.

In the script block are two event handlers-one for trapping a change in value to the RadioButtonList,
and one for catching the button click.

Look first at rbl_SelectedIndexChanged, the RadioButtonList event handler. This method populates
the Session dictionary objects whenever the user selects a different radio button.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After testing to ensure that something is selected, rbl_SelectedIndexChanged defines a string array
to hold the lists of books in each category. Then it assigns the selected item Text and Value
properties to two Session dictionary objects. In C#, this is done as follows:

Session["cattext"] = rbl.SelectedItem.Text;
Session["catcode"] = rbl.SelectedItem.Value;

In VB.NET, the code is:

Session("cattext") = rbl.SelectedItem.Text
Session("catcode") = rbl.SelectedItem.Value

rblSelectedIndexChanged next uses a switch statement in C# or a Select Case statement in VB.NET

to fill the previously declared string array with a list of books, depending on the book category
selected.

Finally, the method assigns the string array to a Session dictionary object. In C#, this is done using:

Session["books"] = Books;

In VB.NET, the line is:

Session("books") = Books

This example stores only strings and an array in the session dictionary objects. However, you can
store any object that inherits from ISerializable. These include all the primitive data types and

arrays comprised of primitive data types, as well as the DataSet, DataTable, HashTable, and Image
objects. This would allow you to store query results, for example, or a collection of items in a user's
shopping cart.

The other event handler method, btn_Click, is called whenever the user clicks on the Submit button.
It first tests to verify that a radio button has been selected. If not, then the Label is filled with a
warning message. In C#, the code that does this is:

if (rbl.SelectedIndex == -1)
{
 lblMsg.Text = "You must select a book category.";
}

In VB.NET, the code is:

if (rbl.SelectedIndex = -1) then
 lblMsg.Text = "You must select a book category."

The else clause of the if statement is the meat of this page. It retrieves the session dictionary

objects and uses the StringBuilder class to concatenate the strings together to make a single string
for display in the Label control. In C#, this is done as follows:

StringBuilder sb = new StringBuilder();
sb.Append("You have selected the category ");
sb.Append((string)Session["cattext"]);
sb.Append(" with code \"");
sb.Append((string)Session["catcode"]);
sb.Append("\".");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lblMsg.Text = sb.ToString();

In VB.NET, this is done as follows:

dim sb as StringBuilder = new StringBuilder()
sb.Append("You have selected the category ")
sb.Append(Cstr(Session("cattext")))
sb.Append(" with code """)
sb.Append(Cstr(Session("catcode")))
sb.Append(""".")

lblMsg.Text = sb.ToString()

The btn_Click method also unhides the DropDownList that was created and made invisible in the
HTML portion of the page. The method then retrieves the string array from the session dictionary
object and populates the DropDownList. In C#, the code is:

ddl.Visible = true;

string[] CatBooks = (string[])Session["books"];

// Populate the DropDownList.
int i;
ddl.Items.Clear();
for (i = 0; i < CatBooks.GetLength(0); i++)
{
 ddl.Items.Add(new ListItem(CatBooks[i]));
}

In VB.NET the code is:

ddl.Visible = true

dim CatBooks() as string= CType(Session("books"), string())

' Populate the DropDownList.
dim i as integer
ddl.Items.Clear()
for i = 0 to CatBooks.GetLength(0) - 1
 ddl.Items.Add(new ListItem(CatBooks(i)))
next

Because the Page directive in the VB.NET example sets Strict="true", it is necessary to explicitly
cast the session dictionary object containing the string array back to a string array using the CType

function. The results of both the C# and VB.NET examples look the same, as shown in Figure 6-3.

Figure 6-3. Session state demo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you examine this example, you might wonder what advantage is gained here by using session
state, rather than just using the programmatically accessible control values. The answer in this case
is that since this particular example is fairly trivial, no advantage is gained. However, in a real life
application with many different pages, session state provides an easy method for values and objects
to be passed from one page to the next, with all the advantages listed at the beginning of this
section.

6.2.4.1 Session state configuration

The configuration of session state is controlled on a page by page basis by entries in the Page

directive at the top of the page. On an application-wide basis, it is controlled by a file called
web.config, typically located in the virtual root directory of the application. (Page directives will be

covered in detail later in this chapter, and configuration files will be covered in detail in Chapter 20.)

Session state is enabled by default. You can enable session state for a specific page by adding the
EnableSessionState attribute to the Page directive, as in the following VB Page directive:

<%@ Page Language="VB" Strict="true" EnableSessionState="true"%>

To disable session state for the page you would use:

<%@ Page Language="VB" Strict="true" EnableSessionState="false"%>

To enable session state in a read-only mode-that is, values can be read but not changed-use the
ReadOnly value of EnableSessionState, as in:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@ Page Language="VB" Strict="true" EnableSessionState="ReadOnly"%>

(All of the values for EnableSessionState are case-insensitive.) The reason for either disabling

session state or making it read-only is performance. If you know that you will not be using session
state on a page, you can gain a performance boost by disabling it.

Session state is stored in server memory separately from the ASP.NET process. This means that if
the ASP.NET process crashes or is restarted, the session state is not lost. In addition to unplanned
outages, ASP.NET can be configured to periodically perform a preventative restart of each process
after a specified number of requests or after a specified length of time, improving availability and
stability (this is configurable in machine.config and/or web.config. See Chapter 20 for a complete
discussion of configuration.). Session state is preserved even across these restarts.

Keep in mind that web.config is an XML file and as such it must be well-formed. (Well-formed XML
files are described in the sidebar Well-Formed HTML in Chapter 4.) The values are case-sensitive, and
the file consists of sections delimited by tags. The session state configuration information is contained
within the <system.web> section, which is contained within the <configuration> section. Thus, a

typical session state configuration snippet will look something like Example 6-14.

Example 6-14. Code snippet from web.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <system.web>
.
.
.
 <sessionState
 mode="InProc"
 cookieless="false"
 timeout="20"
 stateConnectionString="tcpip=127.0.0.1:42424"
 sqlConnectionString="data source=127.0.0.1;userid=sa;password="
 />

There are five possible attributes for the sessionState section:

mode

Specifies whether the session state is disabled for all the pages controlled by this copy of
web.config, and, if enabled, where the session state is stored. Table 6-4 lists the permissible

values.

Table 6-4. Possible values for the mode attribute

Values Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values Description

Off Session state is disabled.

Inproc Session state is stored in process on the local server. This is the default value.

StateServer
Session state is stored on a remote server. If this attribute is used, then there must
also be an entry for stateConnectionString, which specifies which server to use to

store the session state.

SqlServer
Session state is stored on a SQL Server. If this attribute is used, then there must
also be an entry for sqlConnectionString, which specifies how to connect to the

SQL Server. The SQL Server used can either be on the local or a remote machine.

Storing the session state Inproc is the fastest and is well-suited to small amounts of volatile data.

However, it is susceptible to crashes and is not suitable for web farms (multiple servers) or web
gardens (multiple processors on a single machine). For these cases, you should use either
StateServer or SqlServer. SqlServer is the most robust for surviving crashes and restarts.

cookieless

Cookies are used with session state to store the SessionID so that the server knows which
session it is connected to. The permissible values of cookieless are true and false, with
false being the default. In other words, the default behavior is to use cookies. However, if the

client browser either does not support cookies or has had cookie support turned off by the
user, then any attempt at saving and retrieving session state will be lost. To prevent this, set
cookieless to true.

If cookieless is set to true, then the SessionID is persisted by adding a value to the URL, as

shown in the address bar in Figure 6-4.

Figure 6-4. Session state demo in cookieless mode

Off Session state is disabled.

Inproc Session state is stored in process on the local server. This is the default value.

StateServer
Session state is stored on a remote server. If this attribute is used, then there must
also be an entry for stateConnectionString, which specifies which server to use to

store the session state.

SqlServer
Session state is stored on a SQL Server. If this attribute is used, then there must
also be an entry for sqlConnectionString, which specifies how to connect to the

SQL Server. The SQL Server used can either be on the local or a remote machine.

Storing the session state Inproc is the fastest and is well-suited to small amounts of volatile data.

However, it is susceptible to crashes and is not suitable for web farms (multiple servers) or web
gardens (multiple processors on a single machine). For these cases, you should use either
StateServer or SqlServer. SqlServer is the most robust for surviving crashes and restarts.

cookieless

Cookies are used with session state to store the SessionID so that the server knows which
session it is connected to. The permissible values of cookieless are true and false, with
false being the default. In other words, the default behavior is to use cookies. However, if the

client browser either does not support cookies or has had cookie support turned off by the
user, then any attempt at saving and retrieving session state will be lost. To prevent this, set
cookieless to true.

If cookieless is set to true, then the SessionID is persisted by adding a value to the URL, as

shown in the address bar in Figure 6-4.

Figure 6-4. Session state demo in cookieless mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

timeout

Specifies the number of minutes of inactivity before a session times out and is abandoned by
the server. The default value is 20.

stateConnectionString

Specifies the server and port used to save the session state. It is required if mode is set to
StateServer. Use of a specific server for saving state enables easy and effective session state
management in web farm or web garden scenarios. An example of a stateConnectionString

is:
stateConnectionString="tcpip=127.0.0.1:42424"

In this example, a server with an IP address of 127.0.0.1 would be used. This happens to be
localhost, or the local machine. The port is 42424. In order for this to work, the server being

specified must have the ASP.NET State service started (accessible via Control Panel/Administrative
Tools/Services) and must have the specified port available for communications (that is, not disabled
or blocked by a firewall or other security measure).

sqlConnectionString

Specifies a connection string to a running instance of SQL Server. It must be set if mode is set
to SqlServer. Similar to stateConnectionString in that it lends itself to use with web farms

and gardens, it also will persist despite crashes and shutdowns. The session state is saved in
SQL tables indexed by SessionID.

6.2.4.2 Session scoped application objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One additional way of providing information across the session is through the use of static objects,
which are declared in the global.asax file (described in Chapter 20). Once declared with the Scope
attribute set to Session, the objects are accessible by name to the session anywhere within the

application code.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.3 Lifecycle

A user sits at her browser and types in a URL. A web page appears, with text and images and buttons
and so forth. She fills in a text box and clicks on a button. What is going on behind the scenes?

Every request made of the web server initiates a sequence of steps. These steps, from beginning to
end, constitute the lifecycle of the page.

When a page is requested, it is loaded, processed, sent to the user, and unloaded. From one end of
the lifecycle to the other, the goal of the page is to render appropriate HTML and other output back to
the requesting browser. At each step, there are methods and events available to let you override the
default behavior or add your own programmatic enhancements.

To fully understand the lifecycle of the page and its controls, it is necessary to recognize that the
Page class creates a hierarchical tree of all the controls on the page. All the components on the page,
except for any Page directives (described shortly), are part of this control tree. You can see the
control tree for any page by adding trace="true" to the Page directive. (Page directives are

described in the next section of this chapter. Chapter 7 discusses tracing in detail.)

The Page itself is at the root of the tree. All the named controls are included in the tree, referenced
by control ID. Static text, including whitespace, NewLines, and HTML tags, are represented in the
tree as LiteralControls. The order of controls in the tree is strictly hierarchical. Within a given
hierarchy level, the controls are ordered in the tree using the same sequence in which they appear in
the page file.

Web components, including the Page, go through the entire lifecycle every time the page is loaded.
(This involves a fair amount of performance overhead, which you can reduce by caching; this is
covered in Chapter 18.) Events fire first on the Page, then recursively on every object in the control
tree.

The following is a detailed description of each of the phases of the component lifecycle in a web form.
There are two slightly different sequences of events in the lifecycle: on the first loading of the page
and on subsequent postbacks. This lifecycle is shown schematically in Figure 6-5.

Figure 6-5. Web Form lifecycle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

During the first page load, the lifecycle is composed of the following steps:

Initialization

The initialization phase is the first phase in the lifecycle for any page or control. The control tree
is built during the initialization phase. In this phase, you can initialize any values needed for the
duration of the request.

The initialize phase is modified by handling the Init event with the OnInit method.

1.

Load

User code runs and the form controls show client-side data.

The load phase can be modified by handling the Load event with the OnLoad method.

2.

PreRender3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the phase just before the output is rendered. CreateChildControls is called, if necessary,
to create and initialize server controls in the control tree. Modifications are made via the
PreRender event, using the OnPreRender method.

3.

Save ViewState

The view state is saved to a hidden variable on the page, persisting as a string object that will
complete the round trip to the client. This can be overridden using the SaveViewState method.

4.

Render

The page and its controls are rendered as HTML. You can override using the Render method.
Within Render, CreateChildControls is called, if necessary, to create and initialize server controls
in the control tree.

5.

Dispose

This is the last phase of the lifecycle. It gives you an opportunity to do any final cleanup and
release references to any expensive resources, such as database connections. This is important
for scalability. It can be modified using the Dispose method.

6.

During postback, the lifecycle is:

Initialization

Same as on first load.

1.

Load ViewState

The ViewState property of the control is loaded from a hidden variable on the page, as
described in "View State" earlier in this chapter. You can modify this behavior by overriding the
LoadViewState method.

2.

Postback Data is loaded

During this phase, the data sent to the server via the POST method is processed. Any updates
to the view state necessitated by the postback are performed via the LoadPostData method.

3.

Load

Same as on first load.

4.

Change events are raised

If there are any state changes between the current state and the previous state, change events
are raised via the RaisePostDataChangedEvent method. Again, the events are raised for the
controls in the order in which the controls appear in the control tree.

5.

Handle postback events

Exactly one user action caused the postback. That user action is handled now, after all the
change events have been handled. The original client-side event that instigated the postback is
handled in the RaisePostBackEvent method.

6.

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PreRender

Same as on first load.

7.

Save ViewState

Same as on first load.

8.

Render

Same as on first load.

9.

Dispose

Same as on first load.

10.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.4 Directives

Directives are used to pass optional settings to the ASP.NET pages and compilers. They typically have
the following syntax:

<%@ directive attribute=value [attribute=value] %>

There are many valid types of directives, which will be described in detail in the following sections.
Each directive can have one or more attribute/value pairs, unless otherwise noted. Attribute/value
pairs are separated by a space character. Be careful not to have any space characters surrounding
the equal sign (=) between the attribute and its value.

Directives are typically located at the top of the appropriate file, although that is not a strict
requirement. For example, Application directives are at the top of the global.asax file, and Page

directives are at the top of the .aspx files.

6.4.1 Application Directive

The Application directive is used to define application-specific attributes. It is typically the first line

in the global.asax file, which is described fully in Chapter 20.

Here is a sample Application directive:

<%@ Application Language="C#" Codebehind="Global.asax.cs"\
 Inherits="WebApplication1.Global" %>

There are four possible attributes for use in the Application directive, which are outlined in Table 6-

5.

Table 6-5. Possible attributes for the Application directive

Attribute Description

CodeBehind Used by Visual Studio .NET to identify a code-behind file.

Inherits The name of the class to inherit from.

Description Text description of the application. This is ignored by the parser and compiler.

Language
Identifies the language used in any code blocks. Valid values are "C#", "VB", and
"JS". As other languages adopt support for the .NET Framework, this list will be

expanded.

6.4.2 Assembly Directive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Assembly directive links an assembly to the application or page at parse-time. It is analogous to
the /reference: command-line switch used by the C# and VB.NET command-line compilers.

The Assembly directive is contained in either the global.asax file, for application-wide linking, or in a

page (.aspx) or user control (.ascx) file, for linking to a specific page or user control. There can be
multiple Assembly directives in any file. Each Assembly directive can have multiple attribute/value

pairs.

Assemblies located in the \bin subdirectory under the application's virtual root are automatically
linked to the application and do not need to be included in an Assembly directive. There are two

permissible attributes, listed in Table 6-6.

Table 6-6. Attributes for the Assembly directive

Attribute Description

Name
The name of the assembly to link to the application or page. Does not include a
filename extension. Assemblies usually have a dll extension.

Src Path to a source file to dynamically compile and link.

For example, the following Assembly directives link to the assembly or assemblies contained in the
MyAssembly.dll file, and compile and link to a C# source code file named SomeSource.cs:

<%@ Assembly Name="MyAssembly" %>
<%@ Assembly Src="SomeSource.cs" %>

This directive is often used in conjunction with the Import directive, described later in this chapter.

6.4.3 Control Directive

The Control directive is used only with user controls and is contained in user control files (.ascx).
There can only be a single Control directive per .ascx file. Here is an example:

<%@ Control Language="VB" EnableViewState="false" %>

The Control directive has many possible attributes. Some of the more common attributes appear in

Table 6-7.

Table 6-7. Attributes for the Control directive

Attribute Values Description

AutoEventWireup true, false Enables or disables event auto wiring. Default is true.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Values Description

ClassName
any valid
class name

The class name for the page that will be compiled dynamically.

Debug true, false
Enables or disables compiling with debug symbols. Default is
false.

Description string Text description of the page, ignored by the parser.

EnableViewState true, false
Indicates if view state is maintained across page requests.
Default is true.

Explicit true, false
If language is VB, tells compiler to use Option Explicit mode.
Default is false.

Inherits class name Name of code-behind or other class for the page to inherit.

Language VB, C#, JS
Programming language used for in-line code and script blocks. As
other languages adopt support for the .NET Framework this list
will be expanded.

Src filename Relative or fully qualified filename containing code-behind class.

Strict true, false
If language is VB, tells compiler to use Option Strict mode.
Default is false.

6.4.4 Implements Directive

The Implements directive is used in page (.aspx) and user control (.ascx) files or associated code-

behind files. It specifies a COM+ interface that the current page implements. This allows a page or
user control to declare the interface's events, methods, and properties.

For example, the following Implements directive allows access to a custom IDataAccess interface

contained in a custom ProgrammingASPNET namespace:

<%@ Implements Interface="ProgrammingASPNET.IDataAccess" %>

6.4.5 Import Directive

The Import directive imports a namespace into a page, user control, or application, making all the
classes and namespaces of the imported namespace available. It is analogous to the using
statement in C# and the Imports statement in VB.NET. Imported namespaces can either be part of

the .NET Framework Class Library or custom.

If the Import directive is contained in global.asax , then it applies to the entire application. If it is in

a page (.aspx) or user control (.ascx) file, then it only applies to that page or user control.

Each Import directive can have only a single namespace attribute. If you need to import multiple
namespaces, use multiple Import directives.

The following namespaces are automatically imported into all pages and user controls and do not
need to be included in Import directives:

ClassName
any valid
class name

The class name for the page that will be compiled dynamically.

Debug true, false
Enables or disables compiling with debug symbols. Default is
false.

Description string Text description of the page, ignored by the parser.

EnableViewState true, false
Indicates if view state is maintained across page requests.
Default is true.

Explicit true, false
If language is VB, tells compiler to use Option Explicit mode.
Default is false.

Inherits class name Name of code-behind or other class for the page to inherit.

Language VB, C#, JS
Programming language used for in-line code and script blocks. As
other languages adopt support for the .NET Framework this list
will be expanded.

Src filename Relative or fully qualified filename containing code-behind class.

Strict true, false
If language is VB, tells compiler to use Option Strict mode.
Default is false.

6.4.4 Implements Directive

The Implements directive is used in page (.aspx) and user control (.ascx) files or associated code-

behind files. It specifies a COM+ interface that the current page implements. This allows a page or
user control to declare the interface's events, methods, and properties.

For example, the following Implements directive allows access to a custom IDataAccess interface

contained in a custom ProgrammingASPNET namespace:

<%@ Implements Interface="ProgrammingASPNET.IDataAccess" %>

6.4.5 Import Directive

The Import directive imports a namespace into a page, user control, or application, making all the
classes and namespaces of the imported namespace available. It is analogous to the using
statement in C# and the Imports statement in VB.NET. Imported namespaces can either be part of

the .NET Framework Class Library or custom.

If the Import directive is contained in global.asax , then it applies to the entire application. If it is in

a page (.aspx) or user control (.ascx) file, then it only applies to that page or user control.

Each Import directive can have only a single namespace attribute. If you need to import multiple
namespaces, use multiple Import directives.

The following namespaces are automatically imported into all pages and user controls and do not
need to be included in Import directives:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System
System.Collections
System.Collections.Specialized
System.Configuration
System.IO
System.Text
System.Text.RegularExpressions
System.Web
System.Web.Caching
System.Web.Security
System.Web.SessionState
System.Web.UI
System.Web.UI.HtmlControls
System.Web.UI.WebControls

The following two lines import the System.Drawing namespace from the .NET Base Class Library and
a custom namespace:

<%@import namespace="System.Drawing" %>
<%@import namespace="ProgrammingASPNET" %>

6.4.6 OutputCache Directive

The OutputCache directive controls output caching for a page or user control. Chapter 18 discusses
caching and the use of the OutputCache directive.

6.4.7 Page Directive

The Page directive is used to define attributes for the page parser and compiler specific to the page
(.aspx) file. There can be no more than one Page directive for each page file. Each Page directive can

have multiple attributes.

The Page directive has many possible attributes. Some of the more common attributes of the Page

directive are listed in Table 6-8.

Table 6-8. Attributes for the Page directive

Attribute Values Description

AutoEventWireup true, false
Enables or disables event auto wiring.
Default is true.

Buffer true, false
Enables or disables HTTP response
buffering. Default is true.

ClassName Any valid class name
The class name for the page that will be
compiled dynamically.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Values Description

ClientTarget
Any valid user-agent value or
alias

Targets user agent that server controls
should render content for.

CodeBehind filename
Used by Visual Studio .NET to indicate the
name of the code-behind file.

Debug true, false
Enables or disables compiling with debug
symbols. Default is false.

Description string
Text description of the page, ignored by the
parser.

EnableSessionState true, false, ReadOnly.
Enables, disables, or makes SessionState
read-only. Default is true.

EnableViewState true, false
Enables or disables maintenance of view
state across page requests. Default is true.

ErrorPage
Targets URL for redirection if an unhandled
page exception occurs.

Explicit true, false
If language is VB, tells compiler to use
Option Explicit mode. Default is false.

Inherits class name Name of code-behind or other class

Language VB, C#, JS
Programming language used for in-line
code.

Src filename
Relative or fully qualified filename
containing code behind class.

Strict true, false
If language is VB, tells compiler to use
Option Strict mode. Default is false.

Trace true, false
Enables or disables tracing. Default is
false.

TraceMode SortByTime, SortByCategory
Indicates how trace messages are to be
displayed. Default is SortByTime.

Transaction
NotSupported, Supported,
Required, RequiresNew

Indicates if transactions supported on this
page. Default is NotSupported.

The following code snippet is a Page directive specifying the language, a class to inherit, and a code-

behind source file:

<%@ Page Language="C#" inherits="CodeBehindDemo" src="codebehind.cs" %>

6.4.8 Reference Directive

The Reference directive can be included in a page file (.aspx). It indicates that another page or user

control should be compiled and linked to the current page, giving you access to the controls on the
linked page or user control as part of the ControlCollection object.

ClientTarget
Any valid user-agent value or
alias

Targets user agent that server controls
should render content for.

CodeBehind filename
Used by Visual Studio .NET to indicate the
name of the code-behind file.

Debug true, false
Enables or disables compiling with debug
symbols. Default is false.

Description string
Text description of the page, ignored by the
parser.

EnableSessionState true, false, ReadOnly.
Enables, disables, or makes SessionState
read-only. Default is true.

EnableViewState true, false
Enables or disables maintenance of view
state across page requests. Default is true.

ErrorPage
Targets URL for redirection if an unhandled
page exception occurs.

Explicit true, false
If language is VB, tells compiler to use
Option Explicit mode. Default is false.

Inherits class name Name of code-behind or other class

Language VB, C#, JS
Programming language used for in-line
code.

Src filename
Relative or fully qualified filename
containing code behind class.

Strict true, false
If language is VB, tells compiler to use
Option Strict mode. Default is false.

Trace true, false
Enables or disables tracing. Default is
false.

TraceMode SortByTime, SortByCategory
Indicates how trace messages are to be
displayed. Default is SortByTime.

Transaction
NotSupported, Supported,
Required, RequiresNew

Indicates if transactions supported on this
page. Default is NotSupported.

The following code snippet is a Page directive specifying the language, a class to inherit, and a code-

behind source file:

<%@ Page Language="C#" inherits="CodeBehindDemo" src="codebehind.cs" %>

6.4.8 Reference Directive

The Reference directive can be included in a page file (.aspx). It indicates that another page or user

control should be compiled and linked to the current page, giving you access to the controls on the
linked page or user control as part of the ControlCollection object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are two permissible attributes: Page and Control. For either, the allowable value is a relative

or fully qualified filename. For example:

<%@ Reference page="AnotherPage.aspx" %>

6.4.9 Register Directive

The Register directive is used in custom server controls and user controls to associate aliases with

namespaces. Chapter 14 discusses custom server controls and user controls.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 7. Tracing, Debugging, and Error
Handling
Every computer programmer has run into bugs. It comes with the territory. Many bugs are found
during the coding process. Others pop up only when an end user performs a specific and unusual
sequence of steps or the program receives unexpected data. It is highly desirable to find bugs early
in the development process, and very important to avoid having end users find your bugs for you.
Countless studies have shown that the earlier you find a bug, the easier and less expensive it is to
fix.

In the event that your program does run into a problem, you will want to recover quickly and
invisibly, or, at worst, fail gracefully. ASP.NET provides tools and features to help reach these goals,
including:

Tracing

You can easily trace program execution at either the page or application level. ASP.NET
provides an extensible trace log with program lifecycle information.

Symbolic debugging

You can step through your program, set breakpoints, examine and modify variables and
expressions, and step into and out of classes, even those written in other languages.

Error handling

You may handle standard or custom errors at either the application or page level. You can also
show different error pages for different errors.

To get started exploring the ASP.NET debugging tools, you should first create a simple project to
which you will add tracing code. You will then introduce bugs into the program and use the debugger
to find and fix the bugs.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.1 Creating the Sample Application

To start, create a new C# or VB.NET web application project in Visual Studio .NET and name it
DebuggingApp. This project will consist of a single web page containing a header label, a DropDownList
with a label below it to display the selected item, and a hyperlink.

Change the pageLayout property of the document from the default GridLayout to FlowLayout. Put a Label
control on the top of the page and set the text (its Text property) to:

Tracing, Debugging & Error Handling Demo

Change its Font.Name property to Arial Black, its Font.Size property to Large, and its Font.Bold property
to true .

Place a DropDownList control on the form. Name it ddlBooks. Change its AutoPostBack property to true .

The drop-down list's event handling code needs to be added. The exact steps for doing so are different in
C# than in VB.NET.

In C#, click on the Events icon at the top of the Properties box, click on the field next to
SelectedIndexChanged, and type in the event handler name ddlBooks_SelectedIndexChanged.

In VB.NET, display the code-behind source code window by clicking on the code-behind file tab at the top
of the source code window. At the top of the window are two drop-down lists. The list on the left contains
all the objects on the page. Select ddlBooks from that list. The drop-down on the right will contain all the
available events. Select SelectedIndexChanged. Alternatively, double-click on the control in the Design
view of the .aspx file. In either case, this will immediately open the code-behind page with the cursor
inside the event handler method with that name, ready for you to add the event handling code.

Type or paste in the code in Example 7-1 , if you're programming in C#, or Example 7-2 , if you're
programming in VB.NET. These examples are excerpted from Example 5-25 and Example 5-26 ,
respectively.

Example 7-1. SelectedIndexChanged event handler in C#

private void ddlBooks_SelectedIndexChanged(object sender,
 System.EventArgs e)
{
 // Check to verify that something has been selected.
 if (ddlBooks.SelectedIndex != -1)
 {
 lblDdl.Text=ddlBooks.SelectedItem.Text + " ---> ISBN: " +
 ddlBooks.SelectedItem.Value;
 }
}

Example 7-2. SelectedIndexChanged event handler in VB.NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sub ddlBooks_SelectedIndexChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' Check to verify that something has been selected.
 if ddlBooks.SelectedIndex <> -1 then
 lblDdl.Text=ddlBooks.SelectedItem.Text & " ---> ISBN: " & _
 ddlBooks.SelectedItem.Value
 end if
End Sub

Add the code shown in Example 7-3 , if you're using C#, or Example 7-4 , if you're programming in VB,
to replace the Page_Load event. (Again, these examples are excerpted from Example 5-25 and Example
5-26 , respectively.)

Example 7-3. Page_Load event handler in C#

private void Page_Load(object sender, System.EventArgs e)
{
 // Put user code to initialize the page here
 if (! IsPostBack)
 {
 // Build 2 dimensional array for the lists
 // First dimension contains bookname
 // 2nd dimension contains ISBN number
 string[,] books = {
 {"Programming C#","0596001177"},
 {"Programming ASP.NET","1234567890"},
 {"WebClasses From Scratch","0789721260"},
 {"Teach Yourself C++ in 21 Days","067232072X"},
 {"Teach Yourself C++ in 10 Minutes","067231603X"},
 {"XML & Java From Scratch","0789724766"},
 {"Complete Idiot's Guide to a Career in Computer Programming","0789719959"},
 {"XML Web Documents From Scratch","0789723166"},
 {"Clouds To Code","1861000952"},
 {"C++: An Introduction to Programming","1575760614"},
 {"C++ Unleashed","0672312395"}
 };

 // Now populate the lists.
 int i;
 for (i = 0; i < books.GetLength(0); i++)
 {
 // Add both Text and Value
 ddlBooks.Items.Add(new ListItem(books[i,0],books[i,1]));
 }
 }
}

Example 7-4. Page_Load event handler in VB.NET

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'Put user code to initialize the page here
 if not IsPostBack then
 ' Build 2 dimensional array for the lists
 ' First dimension contains bookname
 ' 2nd dimension contains ISBN number
 dim books(,) as string = { _
 {"Programming C#","0596001177"}, _
 {"Programming ASP.NET","1234567890"}, _
 {"WebClasses From Scratch","0789721260"}, _
 {"Teach Yourself C++ in 21 Days","067232072X"}, _
 {"Teach Yourself C++ in 10 Minutes","067231603X"}, _
 {"XML & Java From Scratch","0789724766"}, _
 {"Complete Idiot's Guide to a Career in Computer Programming", _
 "0789719959"}, _
 {"XML Web Documents From Scratch","0789723166"}, _
 {"Clouds To Code","1861000952"}, _
 {"C++: An Introduction to Programming","1575760614"}, _
 {"C++ Unleashed","0672312395"} _
 }

 ' Now populate the lists.
 dim i as integer

 for i = 0 to books.GetLength(0) - 1
 ' Add both Text and Value
 ddlBooks.Items.Add(new ListItem(books(i,0),books(i,1)))
 next

 end if
 End Sub

Add a label below the DropDownList called lblDdl. Set the Text property so that it is empty.

Finally, add a HyperLink control below lblDdl. Name it hplTest. Change the Text property to Link To and
change the NavigateUrl property to TestLink.aspx . Note that no page with this name actually exists. This
is an intentional error to demonstrate error handling later in the chapter.

Run the web page and select one of the items in the drop-down list; you should see something like Figure
7-1 .

Figure 7-1. Sample page for tracing, debugging, and error handling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.2 Tracing

Tracing is an easy way to find out what is going on in your program. Back in the days of classic ASP,
the only way to trace what was happening in your code was to insert Response.Write statements in

strategic places. This allowed you to see that you had reached a known point in the code, and
perhaps to display the value of some variables. The big problem with this hand-tracing technique,
aside from the amount of work involved, was that you had to laboriously remove or comment out all
those statements before the program went into production.

ASP.NET provides better ways of gathering the trace information. You can add tracing at the
application level or at the page level. With application-level tracing, every page is traced, while with
page-level tracing, you choose the pages to which to add tracing.

7.2.1 Page-Level Tracing

To add page-level tracing, modify the Page directive at the top of the .aspx page, by adding a Trace
attribute and setting its value to true, as follows:

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
 Inherits="DebuggingApp.WebForm1" Trace="true" %>

When you view this page, there will now be tables at the bottom that contain a wealth of information
about your web application. Select a book from the drop-down list and you will see something like
Figure 7-2.

Figure 7-2. Trace results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The top section, labeled Request Details, shows basic information, including the SessionID, the Time
of Request, Request Type, and Status Code (Table 7-1). Every time the page is posted to the server,
this information is updated. If you change the selection (remember that AutoPostBack is set to true),

you will see that the Time of Request is updated, but the SessionID remains constant.

The next section, labeled Trace Information, is the trace log, which provides lifecycle information.
This includes elapsed times, in seconds, since the page was initialized (the From First(s) column) and
since the previous event in the lifecycle (the From Last(s) column). You can add custom trace
information to the trace log, as explained later in this chapter.

Table 7-1. Status codes

Category Number Description

Informational (100-199) 100 Continue

 101 Switching protocols

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Category Number Description

Successful (200-299) 200 OK

 204 No Content

Redirection (300-399) 301 Moved permanently

 305 Use proxy

 307 Temporary redirect

Client Errors (400-499) 400 Bad request

 402 Payment required

 404 Not found

 408 Request timeout

 417 Expectation failed

Server Errors (500-599) 500 Internal server error

 503 Service unavailable

 505 HTTP version not supported

The next section in the trace lists all the controls on the page in a hierarchical manner, including the
name of the control, its type, and its size in bytes, both on the page and in the ViewState state bag.

This is followed by itemizations of the Cookies and Headers collections. Finally there is a list of all the
server variables.

7.2.2 Inserting into the Trace Log

You can add custom information to the trace output by writing to the Trace object. This object
exposes two methods for putting your own statements into the trace log, Write and Warn. The only
difference between the two methods is that Warn writes to the log in red. The Warn and Write

methods are overloaded to take either a single string, two strings, or two strings and an exception
object. The following cases illustrate:

Trace.Warn("Warning Message")

Inserts a record into the trace log with the message passed in as a string.
Trace.Warn("Category","Warning Message")

Inserts a record into the trace log with the category and message you pass in.
Trace.Warn("Category","Warning Message", excp)

Inserts a record into the trace log with a category, warning message, and exception.

Example 7-5 contains the C# source code, and Example 7-6 contains the VB.NET source code for the
Page_Load and ddlBooks_SelectedIndexChanged event procedures; this adds three messages to the

Successful (200-299) 200 OK

 204 No Content

Redirection (300-399) 301 Moved permanently

 305 Use proxy

 307 Temporary redirect

Client Errors (400-499) 400 Bad request

 402 Payment required

 404 Not found

 408 Request timeout

 417 Expectation failed

Server Errors (500-599) 500 Internal server error

 503 Service unavailable

 505 HTTP version not supported

The next section in the trace lists all the controls on the page in a hierarchical manner, including the
name of the control, its type, and its size in bytes, both on the page and in the ViewState state bag.

This is followed by itemizations of the Cookies and Headers collections. Finally there is a list of all the
server variables.

7.2.2 Inserting into the Trace Log

You can add custom information to the trace output by writing to the Trace object. This object
exposes two methods for putting your own statements into the trace log, Write and Warn. The only
difference between the two methods is that Warn writes to the log in red. The Warn and Write

methods are overloaded to take either a single string, two strings, or two strings and an exception
object. The following cases illustrate:

Trace.Warn("Warning Message")

Inserts a record into the trace log with the message passed in as a string.
Trace.Warn("Category","Warning Message")

Inserts a record into the trace log with the category and message you pass in.
Trace.Warn("Category","Warning Message", excp)

Inserts a record into the trace log with a category, warning message, and exception.

Example 7-5 contains the C# source code, and Example 7-6 contains the VB.NET source code for the
Page_Load and ddlBooks_SelectedIndexChanged event procedures; this adds three messages to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

trace. Changed lines of code are indicated in boldface.

Example 7-5. Writing to the Trace object in C#

private void Page_Load(object sender, System.EventArgs e)
{
 // Put user code to initialize the page here
 Trace.Write("In Page_Load");
 if (! IsPostBack)
 {
 Trace.Write("Page_Load", "Not Postback.");
 // Build 2 dimensional array for the lists
 // First dimension contains bookname
 // 2nd dimension contains ISBN number
 string[,] books = {
 {"Programming C#","0596001177"},
 {"Programming ASP.NET","1234567890"},
 {"WebClasses From Scratch","0789721260"},
 {"Teach Yourself C++ in 21 Days","067232072X"},
 {"Teach Yourself C++ in 10 Minutes","067231603X"},
 {"XML & Java From Scratch","0789724766"},
 {"Complete Idiot's Guide to a Career in Computer Programming","0789719959"},
 {"XML Web Documents From Scratch","0789723166"},
 {"Clouds To Code","1861000952"},
 {"C++: An Introduction to Programming","1575760614"},
 {"C++ Unleashed","0672312395"}
 };

 // Now populate the lists.
 int i;
 for (i = 0; i < books.GetLength(0); i++)
 {
 // Add both Text and Value
 ddlBooks.Items.Add(new ListItem(books[i,0],books[i,1]));
 }
 }
}

private void ddlBooks_SelectedIndexChanged(object sender, System.EventArgs e)
{
 // Force an exception
 try
 {
 int a = 0;
 int b = 5/a;
 }
 catch (System.Exception ex)
 {
 Trace.Warn("UserAction","Calling b=5/a",ex);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Check to verify that something has been selected.
 if (ddlBooks.SelectedIndex != -1)
 {
 lblDdl.Text=ddlBooks.SelectedItem.Text + " ---> ISBN: " +
 ddlBooks.SelectedItem.Value;
 }
}

Example 7-6. Writing to the Trace object in VB.NET

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 Trace.Write("In Page_Load")
 If Not IsPostBack Then
 ' Build 2 dimensional array for the lists
 ' First dimension contains bookname
 ' 2nd dimension contains ISBN number
 Trace.Write("Page_Load", "Not Postback.")
 Dim books(,) As String = { _
 {"Programming C#", "0596001177"}, _
 {"Programming ASP.NET", "1234567890"}, _
 {"WebClasses From Scratch", "0789721260"}, _
 {"Teach Yourself C++ in 21 Days", "067232072X"}, _
 {"Teach Yourself C++ in 10 Minutes", "067231603X"}, _
 {"XML & Java From Scratch", "0789724766"}, _
 {"Complete Idiot's Guide to a Career in Computer Programming", _
 "0789719959"}, _
 {"XML Web Documents From Scratch", "0789723166"}, _
 {"Clouds To Code", "1861000952"}, _
 {"C++: An Introduction to Programming", "1575760614"}, _
 {"C++ Unleashed", "0672312395"} _
 }

 ' Now populate the lists.
 Dim i As Integer

 For i = 0 To books.GetLength(0) - 1
 ' Add both Text and Value
 ddlBooks.Items.Add(New ListItem(books(i, 0), books(i, 1)))
 Next

 End If
End Sub

Private Sub ddlBooks_SelectedIndexChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ddlBooks.SelectedIndexChanged
 ' Force an exception
 Try
 Dim a As Integer = 0
 Dim b As Integer = 5 / a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Catch ex As System.Exception
 Trace.Warn("UserAction", "Calling b=5/a", ex)
 End Try

 ' Check to verify that something has been selected.
 If ddlBooks.SelectedIndex <> -1 Then
 lblDdl.Text = ddlBooks.SelectedItem.Text & " ---> ISBN: " & _
 ddlBooks.SelectedItem.Value
 End If
End Sub

The first message is added in the Page_Load method to signal that you've entered that method:

Trace.Write("In Page_Load");

The second message is added if the page is not a postback:

if (! IsPostBack)
{
 Trace.Write("Page_Load", "Not Postback.");

This second message is categorized as Page_Load; using a category can help you organize the trace
output. The effect of these two Write statements is shown in Figure 7-3. Shading was added to make

it easy to see these two statements.

Figure 7-3. Two Trace.Write statements

The third message is added to demonstrate the process of inserting an exception into the error log.
The ddlBooks_SelectedIndexChanged event handler also contains code to force an exception by
dividing by zero. The code catches that exception and logs the exception with a trace statement, as

shown by the following code fragment:

try
{
 int a = 0;
 int b = 5/a;
}
catch (System.Exception ex)
{
 Trace.Warn("UserAction","Calling b=5/a",ex);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exceptions are an advanced error handling technique that allows you to try
potentially dangerous code and catch any exception objects thrown by the
operating system or by other parts of your own code. You might use exceptions
when reading a file; if the file cannot be opened, the system will throw an
exception. Exception handling is beyond the scope of this book, but is covered
in Jesse Liberty's book Programming C#, Third Edition (O'Reilly).

The output from this trace statement is shown in Figure 7-4.

Figure 7-4. Trace statement output

Because this trace statement was written calling the Warn method rather than the Write method,

the trace output appears in red onscreen (though not in your copy of this book). Notice that string
you passed in, Calling b=5/a, is displayed, followed by an error message extracted automatically

from the exception object.

Not only is it easy to implement trace statements, but when it is time to put your page into

production, all these statements can remain in place. The only modification you need to make is to
change the Trace attribute in the Page directive from true to false.

7.2.3 Application-Level Tracing

Application-level tracing applies to all the pages in a given application. It is configured through the
web.config file, which will be described more fully in Chapter 20.

The web.config file is typically located in the virtual root directory of the application. If there is a
web.config file in a subdirectory of the virtual root, then that copy will apply only to the pages in that
subdirectory and in the subdirectories under it. If tracing is enabled application-wide from the root
directory, tracing will be applied across the application uniformly. The exception is when a specific
page has a contradictory page directive, which supersedes the application directive.

Web.config is an XML file that consists of sections delimited by tags. The trace configuration
information is contained in the <trace> section within the <system.web> section, which is contained
within the <configuration> section.

Web.config, like all XML documents, must consist of well-formed XML. The
elements of a well-formed XML file are discussed in a sidebar in Chapter 4. Note
that XML is case-sensitive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A typical trace configuration snippet will look something like Example 7-7.

Example 7-7. Trace code snippet from web.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <system.web>
.
.
.
 <trace
 enabled="true"
 requestLimit="10"
 pageOutput="false"
 traceMode="SortByTime"
 localOnly="true"
 />

You can easily edit the web.config file in VS.NET by double-clicking on the file in the Solution
Explorer. (If the Solution Explorer is not visible, click on the View/Solution Explorer menu item.)
Alternatively, this file can be edited in any text editor.

There are five possible properties in the <trace> section. These properties appear in Table 7-2.

Several of these properties affect the trace viewer, which will be described in the following section.

Table 7-2. Trace section properties

Property Values Description

enabled true, false

Enables or disables application-level tracing. Default is false.

If enabled, then all pages in the application will display trace
information unless a specific page has "Trace = false" in the
Page directive.

requestLimit Integer
Number of trace requests that will be stored on the server and
visible in the trace viewer. Default is 10.

pageOutput true, false

Dictates if trace information is displayed on both the
application pages and in the trace viewer. Default is false.

Pages with tracing enabled are not affected by this setting.

traceMode
SortByTime,
SortByCategory

Dictates whether the trace log is sorted by Time or Category.
Default is TraceMode.SortByTime.

localOnly true, false
Indicates if the trace viewer is available only on the host web
server. Default is true.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2.4 Trace Viewer

If application-level tracing is enabled, the trace log can be viewed directly from your browser for any
application, even across multiple page requests. The trace facility provides a trace viewer, called
trace.axd. Aim your browser toward trace.axd as though it were a page in the application, with the
following URL, for example:

http://localhost/DebuggingApp/trace.axd

You will see a summary of all the entries in the trace log, as shown in Figure 7-5.

Figure 7-5. Trace viewer

Clicking on any of the View Details links will bring you to the same page as would be seen in page-
level tracing for that page.

[Team LiB]

http://localhost/DebuggingApp/trace.axd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.3 Debugging

Tracing provides you with a snapshot of the steps your code has taken after the code has run. At
times, however, you'd probably like to monitor your code while it is running. What you want is more
of a CAT scan than an autopsy. The code equivalent of a CAT scan is a symbolic debugger.

When you run your code in the debugger, you can literally watch your code work, step by step. As
you walk through the code, you can see the variables change values, and you can watch as objects
are created and destroyed.

This section will provide a brief introduction to the most important parts of the debugger that
accompanies the Visual Studio .NET IDE. For complete coverage of how to use the Visual Studio .NET
debugger, we urge you to spend time with the documentation and to experiment freely. The
debugger is one of the most powerful tools at your disposal for learning ASP.NET.

7.3.1 The Debug Toolbar

There is a Debug toolbar available in the IDE. To make it visible, click on the View/Toolbars menu
commands, then click on Debug, if it is not already checked. Table 7-3 shows the icons that appear
on the Debug toolbar.

Table 7-3. Debug toolbar icons

Icon
Debug menu
equivalent

Keyboard
shortcut

Description

Toolbar handle. Click and drag to move the toolbar
to a new location.

Start /
Continue

F5 Starts or continues executing the program.

Break All Ctrl+Alt+Break
Stops program execution at the currently executing
line.

Stop
Debugging

Shift+F5 Stops debugging.

Restart Ctrl+Shift+F5
Stops the run currently being debugged and
immediately begins a new run.

 Shows next statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Icon
Debug menu
equivalent

Keyboard
shortcut

Description

Step Into F11
If the current line contains a call to a method or
function, this icon will single-step the debugger into
that method or function.

Step Over F10
If the current line contains a call to a method or
function, this icon will not step into that method or
function, but will go to the next line after the call.

Step Out Shift+F11

If the current line is in a method or function, that
method or function will complete and the debugger
will stop on the line after the method or function
call.

Unit of debugger stepping. Possible values are
Line, Statement, and Instruction.

 Hexadecimal display toggle.

Windows Debug window selector.

Toolbar options. Offers options for adding and
removing buttons from all toolbars (Debug, Text
Editor, and so on).

7.3.2 Breakpoints

"The crux of the biscuit is the apostrophe."

-- Frank Zappa, Apostrophe(')

Breakpoints are at the heart of debugging. A breakpoint is an instruction to .NET to run to a specific
line in your code and then to stop and wait for you to examine the current state of the application.
While the execution is paused, you can:

Examine and modify values of variables and expressions

Single-step through the code

Move into and out of methods and functions, even stepping into classes written in other CLR-
compliant languages

Perform any number of other debugging and analysis tasks

7.3.2.1 Setting a breakpoint

A breakpoint is set in the Source window (any Source window, such as page file, control file, or code-
behind) by single-clicking on the gray vertical bar along the left margin of the window. A red dot will
appear in the left margin and the line of code will be highlighted, as shown in Figure 7-6.

Step Into F11
If the current line contains a call to a method or
function, this icon will single-step the debugger into
that method or function.

Step Over F10
If the current line contains a call to a method or
function, this icon will not step into that method or
function, but will go to the next line after the call.

Step Out Shift+F11

If the current line is in a method or function, that
method or function will complete and the debugger
will stop on the line after the method or function
call.

Unit of debugger stepping. Possible values are
Line, Statement, and Instruction.

 Hexadecimal display toggle.

Windows Debug window selector.

Toolbar options. Offers options for adding and
removing buttons from all toolbars (Debug, Text
Editor, and so on).

7.3.2 Breakpoints

"The crux of the biscuit is the apostrophe."

-- Frank Zappa, Apostrophe(')

Breakpoints are at the heart of debugging. A breakpoint is an instruction to .NET to run to a specific
line in your code and then to stop and wait for you to examine the current state of the application.
While the execution is paused, you can:

Examine and modify values of variables and expressions

Single-step through the code

Move into and out of methods and functions, even stepping into classes written in other CLR-
compliant languages

Perform any number of other debugging and analysis tasks

7.3.2.1 Setting a breakpoint

A breakpoint is set in the Source window (any Source window, such as page file, control file, or code-
behind) by single-clicking on the gray vertical bar along the left margin of the window. A red dot will
appear in the left margin and the line of code will be highlighted, as shown in Figure 7-6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 7-6. Breakpoint

An alternative to clicking in the left margin is to select the Debug/New Breakpoint... menu command.
Clicking on the File tab will bring up the dialog shown in Figure 7-7. The text boxes will already be
filled in with the current location of the cursor.

Figure 7-7. New breakpoint dialog box

The four tabs in the dialog box in Figure 7-7 correspond to the four types of breakpoints, which are
described in Table 7-4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 7-4. Four types of breakpoints

Type Description

Function
Allows you to specify where, in which language, and in which method or function the
break will occur.

File
Sets a breakpoint at a specific point in a source file. When you set a breakpoint by
clicking in the left margin, a file breakpoint is being set.

Address Sets a breakpoint at a specified memory address.

Data Sets a breakpoint when the value of a variable changes.

7.3.2.2 Breakpoint window

You can see all the breakpoints currently set by looking at the Breakpoint window. To display the
Breakpoint window, perform any one of the following actions:

Press Ctrl+Alt+B.

Select Breakpoints from the Debug/Windows menu command.

Click on the Windows icon of the Debug toolbar and select Breakpoints.

A Breakpoint window is shown in Figure 7-8.

Figure 7-8. Breakpoint window

You can toggle a breakpoint between Enabled and Disabled by clicking on the corresponding
checkbox in the Breakpoint window.

7.3.2.3 Breakpoint properties

Sometimes you don't want a breakpoint to stop execution every time the line is reached. VS.NET
offers two properties that can be set to modify the behavior of a breakpoint. These properties can be
set in either of two ways:

Right-click on the breakpoint glyph in the left margin and select Breakpoint properties.

Open the Breakpoint window, right-click on the desired breakpoint, and select Breakpoint

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Properties.

In either case, you will see the dialog box shown in Figure 7-9.

Figure 7-9. Breakpoint properties dialog box

The fields at the top of the Breakpoint Properties dialog box will default to the location of the current
breakpoint. The two buttons allow access to the Condition and Hit Count properties.

7.3.2.3.1 Condition

The Condition button brings up the dialog shown in Figure 7-10.

Figure 7-10. Breakpoint Condition dialog box

You can enter any valid expression in the edit field. This expression is evaluated when program
execution reaches the breakpoint. Depending on which radio button is selected and how the Condition
expression evaluates, the program execution will either pause or move on. The two radio buttons are
labeled:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is true

If the Condition entered evaluates to a Boolean true, then the program will pause.

has changed

If the Condition entered has changed, then the program will pause. Note that on the first pass
through the piece of code being debugged, the breakpoint will never pause execution because
there is nothing to compare against. On the second and subsequent passes, the expression will
have been initialized and the comparison will take place.

7.3.2.3.2 Hit count

Hit count is the number of times that spot in the code has been executed since either the run began
or the Reset Hit Count button was pressed. The Hit Count button brings up the dialog shown in

Figure 7-11.

Figure 7-11. Breakpoint Hit Count dialog box

Clicking on the drop-down list presents the following options:

Break always.

Break always when the hit count is equal to . . .

Break always when the hit count is a multiple of . . .

Break always when the hit count is greater than or equal to . . .

If you click on any option other than "break always" (the default), the dialog box will add an edit field
for you to enter a target hit count.

Suppose this is a breakpoint set in a loop of some sort. You selected "break when the hit count is a
multiple of" and entered 5 in the edit field. Then the program will pause execution every fifth time it

runs.

7.3.2.4 Breakpoint icons

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are several different breakpoint symbols, or glyphs, each conveying a different type of
breakpoint. These glyphs appear in Table 7-5.

Table 7-5. Breakpoint icons

Icon Type Description

Enabled
A normal, active breakpoint. If breakpoint conditions or hit count settings are met,
execution will pause at this line.

Disabled Execution will not pause at this line until the breakpoint is re-enabled.

Error The location or condition is not valid.

Warning
The code at this line is not yet loaded, so a breakpoint can't be set. If the code is
subsequently loaded, then the breakpoint will become enabled.

7.3.2.5 Stepping through code

Go to the code-behind file in the example (either WebForm1.aspx.cs or WebForm1.aspx.vb,
depending on your language). Place a breakpoint on the call to the Add method of the DropDownList
control's Items collection, the line in the Page_Load method where the items are added to the
DropDownList. Set the Hit Count to be a multiple of 5 (break always when hit count is a multiple of
5). Then run the program.

The breakpoint will be hit, and the program will stop execution at the line of code containing the
breakpoint, which will turn yellow. The glyph in the left margin will have a yellow arrow on top of it.
The VS.NET screen should look like Figure 7-12.

Figure 7-12. Breakpoint hit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can now move forward a single statement or line at a time, stepping into any methods or
functions as you go, by using one of the following techniques:

Select the Debug/Step Into menu command.

Click on the Step Into icon (see Table 7-3, earlier in this chapter, for a picture of the icon).

Press F11.

You can step through the code without going through called functions or methods. That is, you can
step over the calls rather than into the calls, using one of the following techniques:

Select the Debug/Step Over menu item.

Click on the Step Over icon (see Table 7-3 for a picture of the icon).

Press F10.

Finally, if you are debugging in a called method or function, you can step out of that method or
function call, using one of the following techniques:

Select the Debug/Step Out menu command.

Click on the Step Out icon (see Table 7-3 for a picture of the icon).

Press Shift+F11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To change the granularity of the stepping (that is, step by Line, Statement, or Function), select a
different value for Step By, either in the Debug Toolbar or at the Debug/Step By menu command.

7.3.2.6 Examining variables and objects

Once the program is stopped, you can examine the value of objects and variables currently in scope.
This is incredibly intuitive and easy. Just place the mouse cursor over the top of any variable or
object in the code, wait a moment, and a little pop-up window will appear with its current value

If the cursor is hovering over a variable, the pop-up will contain the type of variable, its value (if
relevant), and any other properties it may have.

If the cursor is hovering over some other object, the pop-up window will contain information relevant
to its type, including its full namespace and syntax, and a descriptive line of help.

7.3.2.7 Immediate window

The Immediate window allows you to type almost any variable, property, or expression and
immediately see its value. To open the Immediate window, do any of the following:

Press Ctrl+Alt+I.

Select Immediate from the Debug/Windows menu commands.

Click on the Windows icon of the Debug toolbar and select Immediate.

You can enter expressions for immediate execution in the Immediate window. If you want to see the
value of an expression, prepend it with a question mark. For instance, if the breakpoint is on the line
shown in Figure 7-12, you can see the value of the integer i by entering:

?i

in the Immediate window and pressing Enter. Figure 7-13 shows the result of that exercise;
additionally, this figure shows the process of assigning a new value to the variable i and then viewing

its value again.

Figure 7-13. Immediate window

You can clear the contents of the Immediate window by right-clicking anywhere in the window and
selecting Clear All. Close the window by clicking on the X in the upper-right corner. If you close the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

window and subsequently bring it back up in the same session, it will still have all the previous
contents.

7.3.2.8 Autos window

The Autos window shows all the variables used in the current statement and the previous statement,
displayed in a hierarchical table. To open the Autos window, do any of the following:

Press Ctrl+Alt+V followed by A.

Select Autos from the Debug/Windows menu commands.

Click on the Windows icon of the Debug toolbar and select Autos.

A typical Autos window is shown in Figure 7-14.

Figure 7-14. Autos window

There are columns for the name of the object, its value, and its type. A plus sign next to an object
indicates that it has child objects that are not displayed while a minus sign indicates that its child
objects are visible. Clicking on a plus symbol expands out the tree and shows any children, while
clicking on a minus symbol contracts the tree and displays only the parent.

You can select and edit the value of any variable. The value will then display as red in the Autos
window. Any changes to values take effect immediately.

7.3.2.9 Locals window

The Locals window is exactly the same as the Autos window, except that it shows variables local to
the current context. By default, the current context is the method or function containing the current
execution location.

To open a Locals window, do any of the following:

Press Ctrl+Alt+V,L. (Press and hold Ctrl+Alt+V; release all three keys; then press L.)

Select Locals from the Debug/Windows menu commands.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Click on the Windows icon of the Debug toolbar and select Locals.

7.3.2.10 This/Me window

The C# This window and the VB.NET Me window are exactly the same as the Autos window, except
that they show all objects pointed to by this in C# and Managed C++ and by Me in VB.NET.

To open a This/Me window, do any of the following:

Press Ctrl+Alt+V,T/M. (Press and hold Ctrl+Alt+V; release all three keys; then press T for This
or M for Me.)

Select This or Me from the Debug/Windows menu commands.

Click on the Windows icon of the Debug toolbar; select This or Me.

7.3.2.11 Watch window

The Watch window is exactly the same as the Autos window, except that it shows only variables,
properties, or expressions that you enter into the Name field in the window or drag from another
window. The advantage of using a Watch window is that it allows you to watch objects from several
different source windows simultaneously. This overcomes the inability to add object types other than
the specified type to any of the other debug windows.

To open a Watch window, do any of the following:

Press Ctrl+Alt+W, followed by n, where n is either 1, 2, 3, or 4.

Select Watch from the Debug/Windows menu commands.

Click on the Windows icon of the Debug toolbar and select Watch.

In addition to typing in the name of the object you want to watch, you can also drag and drop
variables, properties, or expressions from a Code window. Select the object in the code that you want
to put in the Watch window, then drag it to the Name field in the open Watch window.

You can also drag and drop objects from any of the following windows into the Watch window:

Locals

Autos

This/Me

Disassembly

In order to drag something from one of these windows to the Watch window, both the source window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and the Watch window must be open. Highlight a line in the source window, then drag it down over
the Watch tab. The Watch window will come to the foreground. Continue dragging the object to an
empty line in the Watch window.

7.3.2.12 Call Stack window

The Call Stack window displays the names of the methods and functions on the call stack, as well as
their parameter types and values. You can control which information is displayed in the Call Stack
window by right-clicking anywhere in the window and toggling field names that appear in the lower
portion of the pop-up menu. To open a Call Stack window, do any of the following:

Press Ctrl+Alt+C.

Select Call Stack from the Debug/Windows menu commands.

Click on the Windows icon of the Debug toolbar and select Call Stack.

7.3.2.13 Threads window

The Threads window allows you to examine and control threads in the program you are debugging.
Threads are sequences of executable instructions. Programs can be either single-threaded or
multithreaded. The whole topic of threading and multiprocess programming is beyond the scope of
this book.

To open a Threads window, do any of the following:

Press Ctrl+Alt+H.

Select Threads from the Debug/Windows menu commands.

Click on the Windows icon of the Debug toolbar and select Threads.

7.3.2.14 Modules window

The Modules window allows you to examine the .exe and .dll files that are being used by the program
being debugged. To open a Modules window, do any of the following:

Press Ctrl+Alt+U.

Select Modules from the Debug/Windows menu commands.

Click on the Windows icon of the Debug toolbar and select Modules.

A Modules window is shown in Figure 7-15.

Figure 7-15. Modules window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, the modules are shown in the order in which they were loaded. You can re-sort the table
by clicking on any of the column headers.

7.3.2.15 Disassembly window

The Disassembly window shows the current program in assembly code. If you are debugging
managed code, such as that which comes from VB.NET, C#, or Managed C++, this will correspond to
Microsoft Intermediate Language (MSIL) code.

A Disassembly window is shown in Figure 7-16.

Figure 7-16. Disassembly window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unlike the previous windows discussed in this chapter, the Disassembly window displays as a tabbed
item, as part of the main Source code window. You can set breakpoints anywhere in the window, just
as for any other Source code window. To open a Disassembly window, do any of the following:

Press Ctrl+Alt+D.

Select Disassembly from the Debug/Windows menu commands.

Click on the Windows icon of the Debug toolbar and select Disassembly.

7.3.2.16 Registers window

The Registers window allows you to examine the contents of the microprocessor's registers. Values
that have changed recently are displayed in red. To open a Registers window, do any of the
following:

Press Ctrl+Alt+G.

Select Registers from the Debug/Windows menu commands.

Click on the Windows icon of the Debug toolbar and select Registers.

You can select which pieces of information to view by right-clicking anywhere in the Registers window
and clicking on the information you would like displayed.

7.3.2.17 Memory windows

There are four Memory windows available for viewing memory dumps of large buffers, strings, and
other data that will not display well in any other window. To open a Memory window, do any of the
following:

Press Ctrl+Alt+M followed by n, where n is either 1, 2, 3, or 4.

Select Memory from the Debug/Windows menu commands.

Click on the Windows icon of the Debug toolbar and select Memory.

7.3.3 Configuration

An application can be configured to either enable or disable debugging. This is done through the
web.config file, which is described more fully in Chapter 200.

Web.config is an XML file, and as such it must be well-formed. The file consists of sections delimited
by tags. The debugging configuration information is contained within the <compilation> section,
within the <system.web> section, which in turn is contained within the <configuration> section. So

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a typical compilation configuration snippet will look something like Example 7-8.

Example 7-8. Debug configuration code snippet from web.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <system.web>
.
.
.
 <compilation
 debug="true"
 />

Note that setting debug to false improves the runtime performance of the application.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.4 Error Handling

You can and should avoid bugs, but there are runtime errors that cannot be avoided and must be
handled. The simplest bugs to find and fix are syntax errors: violations of the rules of the language.
For example, suppose you had the following line of code in your C# program:

intt i;

or this line in your VB.NET program:

dim i as intgr

In either case, when you try to compile the program, you will get a compiler error, because in each
case, the keyword for integer is misspelled.

Syntax errors are reduced dramatically when using Visual Studio .NET. Depending on how VS.NET is
configured, any code element that isn't recognized is underlined. If Auto List Members is turned on,
the incidence of syntax errors is further reduced. Finally, because VB.NET doesn't necessarily require
explicit variable declaration, you can turn Option Explicit on to eliminate typos as a source of syntax
errors.

Should any syntax errors remain, or if you are using a different editor, then any syntax errors will be
caught by the compiler every time you try to build the project. It is nearly impossible for a syntax
error to slip by into production code.

When the compiler finds a syntax error, an error message containing the
location of the error and a terse explanation will be displayed in the Output
window of VS.NET. If the error is caused by something such as an unbalanced
parenthesis or bracket (or a missing semicolon in C#), then the actual error
may not be on the exact line reported.

More problematic, and often more difficult to catch, are errors in logic. The program successfully
compiles and may run perfectly well most of the time, yet still contain errors in logic. The very
hardest bugs to find are those that occur least often. If you can't reproduce the problem, it is terribly
difficult to find it.

While you will try to eliminate all the bugs from your code, you do want your program to react
gracefully when a subtle bug or unexpected problem rears its ugly head.

7.4.1 Unhandled Errors

To demonstrate what happens if there is no error handling in place, modify the sample project from
this chapter to force some errors.

Go to the code-behind window. Find the for loop that populates the DropDownList in the Page_Load

method. Change the test expression to intentionally cause an error at runtime. For example, in C#,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

change the line:

for (i = 0; i < books.GetLength(0); i++)

to:

for (i = 0; i < books.GetLength(0) + 2; i++)

In VB.NET, change the line:

for i = 0 to books.GetLength(0) - 1

to:

for i = 0 to books.GetLength(0) + 2

In either language, when this code runs it will try to add more items than have been defined in the
books array, thus causing a runtime error. While this is not a subtle bug, it will serve to demonstrate
how the system reacts to runtime errors.

Now run the program. As expected, an error is generated immediately, and the generic ASP.NET
error page is displayed, as shown in Figure 7-17.

Figure 7-17. Generic error page

This error page is actually fairly useful to the developer or technical support person who will be trying
to track down and fix any bugs. It tells you the type of error, the line in the code that is the
approximate location of the error, and a stack trace to help in tracking down how that line of code
was reached.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4.2 Application-wide Error Pages

The previous section showed the default error pages presented for unhandled errors. This is fine for a
developer, but if the application is in production, it would be much more aesthetically pleasing if the
user were presented with an error page that did not look so intimidating.

The goal is to intercept the error before it has a chance to send the generic error page to the client.
This is done on an application-wide basis by modifying the web.config file, which will be described
more fully in Chapter 20.

The error-handling configuration information in web.config is contained within the <customErrors>
section within the <system.web> section, which is contained within the <configuration> section. A
typical <customErrors> section will look like Example 7-9.

Example 7-9. Custom error code snippet from web.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <system.web>
.
.
.
 <customErrors
 defaultRedirect="CustomErrorPage.htm"
 mode="On"
 />

There are two possible attributes for the <customErrors> section: defaultRedirect and mode.

defaultRedirect is a text string that contains the URL of the page to display in the case of any error

not otherwise handled. In Example 7-9, the defaultRedirect page is CustomErrorPage.htm. This

example is a very simple HTML page contained in the same application virtual root directory. The
contents of this page are shown in Example 7-10.

Example 7-10. CustomErrorPage.htm

<html>
 <body>
 <h1>Sorry - you've got an error.</h1>
 </body>
</html>

If the custom error page to be displayed is not in the application virtual root, then you need to
include either a relative or a fully qualified URL in the defaultRedirect attribute.

mode is an attribute that enables or disables custom error pages for the application. It can have three

possible values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On

Enables custom errors for the entire application.
Off

Disables custom errors for the entire application.
RemoteOnly

Enables custom errors only for remote clients. Local clients will see the generic error page. In
this way, developers can see all the possible error information, but end users will see the
custom error page.

If you edit your web.config file to look like Example 7-9, then put CustomErrorPage.htm in your
application virtual root and run the program. Instead of Figure 7-17, you will see something like
Figure 7-18.

Figure 7-18. Custom error page

Obviously, you'll want to put more information on your custom error page, such as instructions or
contact information, but you get the idea. It is also possible to show dynamic information about the
error on the custom error page.

You can even use a different custom error page for different errors. To do this, you need to include
one or more <error> subtags in the <customErrors> section of web.config. You might, for example,

modify web.config to look like the code snippet in Example 7-11.

Example 7-11. Custom error code snippet with <error> subtags from
web.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <system.web>
.
.
.
 <customErrors
 defaultRedirect="CustomErrorPage.htm"
 mode="On" >

 <error statusCode="400" redirect="CustomErrorPage400.htm"/>
 <error statusCode="404" redirect="CustomErrorPage404.htm"/>
 <error statusCode="500" redirect="CustomErrorPage500.htm"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </customErrors>

Copy CustomErrorPage.htm three times and rename the copies to the filenames in the <error>

subtags in Example 7-11. Edit the files so that each displays a unique message.

Run the program again with the intentional error in the for loop still in place. You should see

something like Figure 7-19.

Figure 7-19. Custom error page for error 500

Fix the error in the for loop so that the program will at least load correctly. Then run the program

and click on the hyperlink you put on the test page. Remember that that control is configured to link
to a nonexistent .aspx file. You should see something like Figure 7-20.

Figure 7-20. Custom error page for error 404

Be aware that you can only display custom error pages for errors generated on your server. So, for
example, if the hyperlink had been set to a nonexistent page, say, http://TestPage.comx (note the
intentional misspelling of the extension), you will not see your custom error page for error 404.
Instead you'll see whatever error page for which the remote server or your browser is configured.
Also, you can only trap the 404 error if the page you are trying to link to has an extension of .aspx.

7.4.3 Page-Specific Error Pages

http://TestPage.comx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can override the application-level error pages for any specific page by modifying the Page
directive. (Chapter 6 fully discusses page directives.)

Modify the Page directive in the WebForm1.aspx page so that it appears as follows (note the
highlighted ErrorPage attribute, which has been added):

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
 Inherits="DebuggingApp.WebForm1" Trace="false"
 ErrorPage="PageSpecificErrorPage.aspx" %>

If there is an error on this page, the PageSpecificErrorPage.aspx page will be displayed. If there is

an application-level custom error page defined in web.config, it will be overridden by the Page
directive.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 8. Validation
As we saw in Chapter 3, many web applications involve user input. The sad fact is, however, that
users make mistakes: they skip required fields, they put in six-digit phone numbers, and they return
all manner of incorrectly formatted data to your application. Your database routines can choke on
corrupted data, and orders can be lost if, for example, a credit card number is entered incorrectly or
an address is omitted, so it is imperative that user input be validated.

Traditionally, it has taken a great deal of time and effort to validate user input. Each field must be
checked and routines must be created for ensuring data integrity. In the event that bad data is
found, error messages must be displayed so that the user knows how to correct the problem.

In a given application, you may choose to validate that certain fields have a value, that the values fall
within a given range, or that the data is formatted correctly. For example, when processing an order,
you may need to ensure that the user has input an address and phone number, that the phone
number has the right number of digits (and no letters), and that the social security number entered
is in the appropriate form of nine digits separated by hyphens.

Some applications require more complex validation, in which one field is validated to be within a
range established by two other fields. For example, you might ask in one field what date the
customer wishes to arrive at your hotel, and in a second field you might ask for the departure date.
When the user books dinner, you'll want to ensure that the date is between the arrival and departure
dates.

There is no limit to the complexity of the validation routines you may need to write. Credit cards have
checksums built into their values, as do ISBN numbers. ZIP and postal codes follow complex
patterns, as do international phone numbers. You may need to validate passwords, membership
numbers, dollar amounts, dates, runway choices, and launch codes.

In addition, it is very desirable for all of this validation to happen client-side so that you avoid the
delay of repeated round trips to the server while the user tinkers with his input. In the past, this was
solved by writing client-side JavaScript to validate the input, and then server-side script to handle
input from browsers that don't support client-side programming. In addition, as a security check, you
may want to do server-side validation even when you already have client-side validation, since it is
extremely easy for users to circumvent validation code deliberately. Traditionally, this involved
writing your validation code twice.

As you can see, in traditional Internet programming, validation requires extensive custom
programming. The ASP.NET framework greatly simplifies this process by providing rich controls for
validating user input that provide precise control over the validation routine while requiring far less
custom coding. They also allow you to specify exactly how and where the error messages will be
displayed; either inline with the input controls, aggregated together in a summary report, or both.
These controls can be used to validate input for both HTML and ASP controls.

You add validation controls to your ASP document just as you would add any other control. Within
the declaration of the validation control, you specify which other control is being validated. You may
freely combine the various validation controls, and you may write your own, as you'll see later in this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

chapter.

With uplevel browsers that support DHTML, such as Internet Explorer 4 or better, .NET validation is
done client-side, avoiding the necessity of a round trip to the server. With downlevel browsers your
code is unchanged, but the code sent to the client ensures validation at the server. Even when client-
side validation is done, the values are validated server-side as well.

Because client-side validation will prevent your server-side event handlers from ever running if the
control is not valid, you may want to force server-side validation. In that case, set a page attribute:

<%@ Page language="c#"
ClientTarget="downlevel
"
Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false"
Inherits="Validation04.WebForm1" %>

This directive will cause the validation to happen on the server even if your browser would have
supported DHTML and client-side validation.

ASP.NET supports the following validation controls:

RequiredFieldValidator control

The simplest validation control, it ensures that the user does not skip over your input control. A
RequiredFieldValidator can be tied to a text box to force input into the text box. With selection
controls, such as a drop-down or radio buttons, the RequiredFieldValidator ensures that the
user makes a selection other than the default. The RequiredFieldValidator does not examine
the validity of the data, but only makes sure that some data is entered or chosen.

RangeValidator control

Ensures that the value entered is within a specified lower and upper boundary. You can check
the range within a pair of numbers (e.g., greater than 10 and less than 100), a pair of
characters (e.g., greater than D and less than K) and a pair of dates (e.g., after 1/1/01 and
before 2/28/01). The values you check can be constants that you create at design-time, or
they can be derived from other controls on your page (greater than the value in textBox1 and
less than the value in textBox2).

CompareValidator control

Compares the user's entry against another value. It can compare against a constant that you
specify at design time, or against a property value of another control. It can also compare
against a database value.

RegularExpressionValidator control

One of the most powerful validators, it compares the user's entry with a regular expression
that you provide. You can use this validator to check for valid social security numbers, phone
numbers, passwords, and so forth.

CustomValidator control

If none of these controls meets your needs, you can use the CustomValidator. This checks the
user's entry against whatever algorithm you provide in a custom method.

In the remainder of this chapter, we'll examine how to use each of these controls to validate data in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ASP.NET applications.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.1 The RequiredFieldValidator

Let's start with one of the simpler validators: the RequiredFieldValidator, which ensures that the user
provides a valid value for your control. You'll create the simple bug reporting form shown in Figure 8-
1.

Figure 8-1. The bug report

When the user presses the Submit Bug button, the form is validated to ensure that each field has
been modified. If not, the offending field is marked with a red asterisk, as shown in Figure 8-2. If you
prefer more meaningful data reports, you can specify a prompt for each error message, as shown in
Figure 8-3. The choice of whether to use an asterisk or a meaningful error message is entirely up to
you.

Figure 8-2. Indicating errors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-3. With error messages

To create this form, you'll put the controls inside a simple table, building the drop-down list and
button list with items added in the .aspx file.

You start by creating a form. Write the title (which will hold your updated message when the form is
validated), and then create the table to hold the controls:

<body>
 <h3>
 Bug Report
 </h3>
 <form runat="server" ID="frmBugs">
 <table bgcolor=gainsboro cellpadding=10>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, create the drop-down list in the first cell of the table to hold the book titles:

<td>
<!-- Drop down list with the books (must pick one) -->
 <ASP:DropDownList id=ddlBooks runat=server>
 <asp:ListItem>-- Please Pick A Book --</asp:ListItem>
 <asp:ListItem>Programming ASP.NET</asp:ListItem>

Each title is added and the list is ended:

 <asp:ListItem>Programming C#</asp:ListItem>
 <asp:ListItem>
 Teach Yourself C++ In 21 Days
 </asp:ListItem>
 <asp:ListItem>
 Teach Yourself C++ In 24 Hours
 </asp:ListItem>
 <asp:ListItem>TY C++ In 10 Minutes</asp:ListItem>
 <asp:ListItem>TY More C++ In 21 Days</asp:ListItem>
 <asp:ListItem>C++ Unleashed</asp:ListItem>
 <asp:ListItem>C++ From Scratch</asp:ListItem>
 <asp:ListItem>XML From Scratch</asp:ListItem>
 <asp:ListItem>Web Classes FS</asp:ListItem>
 <asp:ListItem>Beg. OO Analysis & Design</asp:ListItem>
 <asp:ListItem>Clouds To Code</asp:ListItem>
 <asp:ListItem>
 CIG Career Computer Programming
 </asp:ListItem>
 </ASP:DropDownList>
</td>

You then add, in the very next cell, the validator to ensure that a value is selected from the drop-
down list:

<!-- Validator for the drop down -->
<td align=middle rowspan=1>
 <asp:RequiredFieldValidator
 id="reqFieldBooks"
 ControlToValidate="ddlBooks"
 Display="Static"
 InitialValue="-- Please Pick A Book --"
 Width="100%" runat=server>
 Please choose a book
 </asp:RequiredFieldValidator>
</td>

Notice that the RequiredFieldValidator has an id (reqFieldBooks), and that the value of the next
attribute, ControlToValidate, is set to ddlBooks, which is the id of the book drop-down. The
Display attribute is set to Static, which tells ASP.NET to allocate room for the validator whether or
not there is a message to display. If this is set to Dynamic, space will not be allocated until (and

unless) an error message is displayed. Dynamic allocation is very powerful, but it can cause your
controls to bounce around on the page when the message is displayed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the example, if you set all the validation controls to dynamic no space will be allocated for them,
and the browser will decide that your table is only two columns wide rather than three. That is, the
table will not allocate any space for the validation messages, and will recognize only one column for
the prompt, and the other for the controls. As Figure 8-4 and Figure 8-5 illustrate, when you validate
the controls (by pressing the Submit button) the table will widen, which can either be disconcerting or
attractive, depending on how you manage the display.

Figure 8-4. Before pressing Submit

Figure 8-5. After pressing Submit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The RequiredFieldValidator has an additional attribute, InitialValue, which is set to the initial value

of the drop-down box. If the user presses Submit, this initial value will be compared with the value of
the drop-down, and if they are the same, the error message will be displayed. This effectively forces
the user to change the initial value, picking a particular book to report about.

The form continues with the radio buttons for the edition (1st, 2nd, etc.). These are added in a
RadioButtonList, which allows you to programmatically add buttons just like you add items to a drop-
down list:

<tr>
 <td align=right>
 Edition:
 </td>
 <td>
 <ASP:RadioButtonList id=rblEdition
 RepeatLayout="Flow" runat=server>
 <asp:ListItem>1st</asp:ListItem>
 <asp:ListItem>2nd</asp:ListItem>
 <asp:ListItem>3rd</asp:ListItem>
 <asp:ListItem>4th</asp:ListItem>
 </ASP:RadioButtonList>
 </td>

With the buttons in place, you can add the RequiredFieldValidator, which ensures that a button is
selected:

<!-- Validator for editions -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<td align=middle rowspan=1>
 <asp:RequiredFieldValidator
 id="reqFieldEdition"
 ControlToValidate="rblEdition"
 Display="Static"
 InitialValue=""
 Width="100%" runat=server>
 Please pick an edition
 </asp:RequiredFieldValidator>
</td>

No need to indicate an initial value this time. Since the control is a radio button list, the validator
knows that the user is simply required to pick one of the buttons; if any button is chosen, then the
validation is satisfied.

You could vary this example by setting the first button to selected

<asp:ListItem Selected="True">1st</asp:ListItem>

and setting the InitialValue to the text of the first radio button:

<td align=middle rowspan=1>
 <asp: RequiredFieldValidator
 id="reqFieldEdition"
 ControlToValidate="rblEdition"
 Display="Static"
 InitialValue="1st"
 Width="100%" runat=server>
 Please pick an edition
 </asp: RequiredFieldValidator>

In this case the form would open with the 1st edition chosen, and the user
would be required to pick a different edition.

Finally, to complete the example, add a text box and require that the user enter some text into it.
Start by adding the text box itself. The ASP text box control can handle single line (HTML text) or
multi-line text boxes (HTML text areas). You'll ask for a multi-line text area:

<tr>
 <td align=right style="HEIGHT: 97px">
 Bug:
 </td>
 <!-- Multi-line text for the bug entry -->
 <td style="HEIGHT: 97px">
 <ASP:TextBox id=txtBug runat=server width="183px"
 textmode="MultiLine" height="68px"/>
 </td>

The validator is straightforward; set the text box as the ControlToValidate and enter the error

message to display if the box is left empty:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- Validator for the text box-->
 <td style="HEIGHT: 97px">
 <asp:RequiredFieldValidator
 id="reqFieldBug"
 ControlToValidate="txtBug"
 Display="Static"
 Width="100%" runat=server>
 Please provide bug details
 </asp:RequiredFieldValidator>
 </td>
</tr>

The complete source code is shown in Example 8-1.

Example 8-1. HTML source for the RequiredFieldValidator control
example

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false" Inherits="Validation04.WebForm1" %>

<HTML>
 <HEAD>

<!-- Demonstrate simple required field validation -->
 <meta name=vs_targetSchema content="Internet Explorer 5.0">
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 </HEAD>
 <body>
 <h3>
 Bug Report
 </h3>
 <form runat="server" ID="frmBugs">
 <table bgcolor=gainsboro cellpadding=10>
 <tr valign="top">
 <td colspan=3>
 <!-- Display error messages -->
 <asp:Label ID="lblMsg"
 Text="Please report your bug here"
 ForeColor="red" Font-Name="Verdana"
 Font-Size="10" runat=server />

 </td>
 </tr>
 <tr>
 <td align=right>
 Book
 </td>
 <td>
 <!-- Drop down list with the books (must pick one) -->
 <ASP:DropDownList id=ddlBooks runat=server>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:ListItem>-- Please Pick A Book --</asp:ListItem>
 <asp:ListItem>Programming ASP.NET</asp:ListItem>
 <asp:ListItem>Programming C#</asp:ListItem>
 <asp:ListItem>
 Teach Yourself C++ In 21 Days
 </asp:ListItem>
 <asp:ListItem>
 Teach Yourself C++ In 24 Hours
 </asp:ListItem>
 <asp:ListItem>TY C++ In 10 Minutes</asp:ListItem>
 <asp:ListItem>TY More C++ In 21 Days</asp:ListItem>
 <asp:ListItem>C++ Unleashed</asp:ListItem>
 <asp:ListItem>C++ From Scratch</asp:ListItem>
 <asp:ListItem>XML From Scratch</asp:ListItem>
 <asp:ListItem>Web Classes FS</asp:ListItem>
 <asp:ListItem>Beg. OO Analysis & Design</asp:ListItem>
 <asp:ListItem>Clouds To Code</asp:ListItem>
 <asp:ListItem>
 CIG Career Computer Programming
 </asp:ListItem>
 </ASP:DropDownList>
 </td>
 <!-- Validator for the drop down -->
 <td align=middle rowspan=1>
 <asp:RequiredFieldValidator
 id="reqFieldBooks"
 ControlToValidate="ddlBooks"
 Display="Static"
 InitialValue="-- Please Pick A Book --"
 Width="100%" runat=server>
 Please choose a book
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td align=right>
 <!-- Radio buttons for the edition -->
 Edition:
 </td>
 <td>
 <ASP:RadioButtonList id=rblEdition
 RepeatLayout="Flow" runat=server>
 <asp:ListItem>1st</asp:ListItem>
 <asp:ListItem>2nd</asp:ListItem>
 <asp:ListItem>3rd</asp:ListItem>
 <asp:ListItem>4th</asp:ListItem>
 </ASP:RadioButtonList>
 </td>
 <!-- Validator for editions -->
 <td align=middle rowspan=1>
 <asp:RequiredFieldValidator
 id="reqFieldEdition"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ControlToValidate="rblEdition"
 Display="Static"
 InitialValue=""
 Width="100%" runat=server>
 Please pick an edition
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td align=right style="HEIGHT: 97px">
 Bug:
 </td>
 <!-- Multi-line text for the bug entry -->
 <td style="HEIGHT: 97px">
 <ASP:TextBox id=txtBug runat=server width="183px"
 textmode="MultiLine" height="68px"/>
 </td>
 <!-- Validator for the text box-->
 <td style="HEIGHT: 97px">
 <asp:RequiredFieldValidator
 id="reqFieldBug"
 ControlToValidate="txtBug"
 Display="Static"
 Width="100%" runat=server>
 Please provide bug details
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td>
 </td>
 <td>
 <ASP:Button id=btnSubmit
 text="Submit Bug" runat=server />
 </td>
 <td>
 </td>
 </tr>
 </table>
 </form>
 </body>
</HTML>

If you are using VB.NET then your page directive would look like this:

<%@ Page language="vb" Codebehind="WebForm1.aspx.vb"
AutoEventWireup="false" Inherits="Validation04.WebForm1" %>

The page in Example 8-1 uses a code-behind C# page. The only non-boiler-plate code on that page is
the handler for the Submit button, which is shown in Example 8-2.

Example 8-2. -2. C# Code-behind for handling the Submit button

http://lib.ommolketab.ir
http://lib.ommolketab.ir

protected void btnSubmit_Click(object sender, System.EventArgs e)
{
 if (Page.IsValid)
 {
 lblMsg.Text = "Page is Valid!";
 }
 else
 {
 lblMsg.Text = "Some of the required fields are empty";
 }
}

The VB.NET version of the code is shown in Example 8-3.

Example 8-3. -3. VB.NET Code-behind page for handling the Submit
button

protected sub btnSubmit_Click(sender As Object, e As System.EventArgs)_

 if Page.IsValid then
 lblMsg.Text = "Page is Valid!"
 else
 lblMsg.Text = "Some of the required fields are empty"
 end if

end sub

To get this code to work on your machine, follow these steps:

Open a new web form application.1.

Copy the HTML code in Example 8-1 to a new web form in Visual Studio .NET, starting at the
opening <body> tag. Do not copy the page directive portion, because your file, class, and

namespace names will probably differ.

2.

Switch to design view and look at the form. Double click on the Submit button and paste the C#
code from Example 8-2, or the VB.NET code from Example 8-3 over your event handler.

3.

Run the application.4.

You can see that btnSubmit_Click is a very simple routine that checks to see if the IsValid flag for the
page was set to true, in which case a validating message is displayed in the lblMsg label; otherwise,
a warning message is displayed. The IsValid flag is set to true if all the validators report that they

are valid.

Notice that if client-side validation is performed, the warning message will
never display. This method only runs on the server, and the page will not be
posted to the server if the data is not valid.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.2 The Summary Validator

You have great control over how validation errors are reported. For example, rather than putting
error messages alongside the control, you can summarize all the validation failures with a
ValidationSummary control. This control can place a summary of the errors in a bulleted list, a simple
list, or a paragraph that appears on the web page or in a popup message box.

Let's rewrite Example 8-1 to add a ValidationSummary control at the bottom of the page. This simply
requires that you add the code shown in boldface after the </table> tag as shown in the code

snippet from Example 8-1:

</table>
<asp:ValidationSummary ID="ValSum" DisplayMode="BulletList "
runat="server" HeaderText="The following errors were found: "
ShowMessageBox="True" ShowSummary="True"></asp:ValidationSummary>

Here you've named the ValidationSummary control ValSum and set its DisplayMode property to
BulletList. The HeaderText attribute holds the header that will be displayed only if there are errors
to report. You can mix the ShowMessageBox and ShowSummary attributes to display the errors in the
body of the HTML document (ShowSummary="true") or in a pop-up message box
(ShowMessageBox="true") or both.

To make this work, you'll need to add an ErrorMessage attribute to the other validation controls. For

example, you might modify the first validation control as follows:

<td align=middle rowspan=1>
 <asp: RequiredFieldValidator
 id="reqFieldBooks"
 ControlToValidate="ddlBooks"
 Display="static"
 InitialValue="-- Please Pick A Book --"
 ErrorMessage ="You did not choose a book from the drop-down."
 Width="100%" runat="server"
 NAME="reqFieldBooks">*</asp: RequiredFieldValidator>
</td>

The text in the ErrorMessage attribute will be displayed in the summary if this control reports a

validation error. You've also modified the validator itself to display an asterisk, rather than the more
complete error message; now that you have a summary, you need only flag the error. Similar
changes can be made for each of the other RequiredFieldValidator controls.

Rather than choose which of the three types of summary reports (bulleted list, list, or summary
paragraph) to provide, you'll let the user choose from a drop-down. You do this by inserting the
following boldfaced code before the definition of the Submit button:

<tr>
 <td align="right">
 Display Report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </td>
 <td>
 <asp:DropDownList id="lstFormat"
 AutoPostBack=true
 OnSelectedIndexChanged="lstFormat_SelectedIndexChanged"
 runat=server >
 <asp:ListItem >List</asp:ListItem>
 <asp:ListItem Selected>Bulleted List</asp:ListItem>
 <asp:ListItem>Single Paragraph</asp:ListItem>
 </asp:DropDownList>
 </td>
</tr>
<tr>
<td>
</td>
<td>
<ASP:Button id=btnSubmit

This drop-down posts back the page so that you can update the display. You have assigned an event
handler, lstFormat_SelectedIndexChanged, to handle the event when the user changes the current
selection. The event handler code is very simple. Here it is in C#:

protected void lstFormat_SelectedIndexChanged(
 object sender, System.EventArgs e)
{
 ValSum.DisplayMode =
 (ValidationSummaryDisplayMode)
 lstFormat.SelectedIndex;
}

Here is the same code in VB.NET:

Protected Sub lstFormat_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs)

 ValSum.DisplayMode = _
 CType(lstFormat.SelectedIndex, _
 ValidationSummaryDisplayMode)

End Sub

The validation summary object (ValSum) has its DisplayMode set to the index of the selected item.
This is a bit of a cheat. The ValidationSummary Display Mode is controlled by the
ValidationSummaryDisplayMode enumeration, in which BulletList = 0, List = 1, and
SingleParagraph = 2. You take advantage of this and order your list so that the index of the

selected item will equal the choice you want.

Similarly, you'll add a drop-down to allow the user to control whether the error report appears in the
page or in a popup menu. To do this, insert the following code before the code that allows the user to
choose the type of summary report:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<tr>
 <td align=right>
 <!-- Radio buttons for the error display -->
 Display Errors
 </td>
 <td>
 <asp:DropDownList id="lstDisplay"
 AutoPostBack=true
 OnSelectedIndexChanged="lstDisplay_SelectedIndexChanged"
 runat=server >
 <asp:ListItem Selected>Summary</asp:ListItem>
 <asp:ListItem>Msg. Box</asp:ListItem>
 </asp:DropDownList>
 </td>
 <td>
 </td>
</tr>

Once again, this control posts back the page, and the changed selection event is handled in an event
handler. The C# version is:

protected void lstDisplay_SelectedIndexChanged(
 object sender, System.EventArgs e)
{
 ValSum.ShowSummary = lstDisplay.SelectedIndex == 0;
 ValSum.ShowMessageBox = lstDisplay.SelectedIndex == 1;
}

In VB.NET, this is:

Protected Sub lstDisplay_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs)

 ValSum.ShowMessageBox = lstDisplay.SelectedIndex = 1
 ValSum.ShowSummary = lstDisplay.SelectedIndex = 0

End Sub

To keep the example simple, we've allowed the order of the items in the drop-
down to be tightly coupled with the event handling code. In a real application,
these would be decoupled to make maintenance easier.

Figure 8-6 illustrates how the form looks to the user. Changing the first drop-down to Msg. Box and
the second to List causes the message box shown in Figure 8-7 to appear on the user's screen.

Figure 8-6. The summary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-7. Message box

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.3 The Compare Validator

While ensuring that the user has made an entry is very useful, you will often want to validate that the
content of the entry is within certain guidelines. One of the most common requirements for validation
is to compare the user's input to a constant, the value of another control, or a database value.

For instance, to continue the example web page, you can add a new control to your bug reporting
dialog that will ask the user how many copies of the book he purchased. The following code should be
inserted immediately before the HTML source for the Display Errors drop-down:

<tr>
 <td>Number purchased:</td>
 <td><ASP:TextBox id="txtNumPurch" runat=server width="50px" /></td>

You can then add a required field validator to ensure that some number is entered:

<td>
<asp:RequiredFieldValidator
id="RequiredFieldValidatorNumPurch"
ControlToValidate="txtNumPurch"
ErrorMessage ="You did not enter the number purchased"
Width="100%" runat="server" >*
</asp:RequiredFieldValidator>

And finally you can add a compare validator to ensure that the number of books purchased is greater
than zero:

<asp:CompareValidator
runat="server"
id="CompareValidatorNumPurch"
ControlToValidate="txtNumPurch"
ErrorMessage ="Invalid number purchased"
Type="Integer"
Operator="GreaterThan"
ValueToCompare=0>*</asp:CompareValidator>
</td></tr>

The Compare validator takes the name of the control to validate (in this case, your text field) as well
as an error message to display in the summary if the validation fails. In addition, the
ValueToCompare attribute takes a constant, in this case zero. The Operator attribute determines

how the comparison will be made (that is, how the input value must be related to the
ValueToCompare).

The possible values for the Operator attribute are: Equal, NotEqual, GreaterThan,
GreaterThanEqual, LessThan, LessThanEqual, and DataTypeCheck. In this example case, to be
valid, the input value must be greater than the ValueToCompare constant.

You must use the Type attribute to tell the control what type of value it is working with. The Type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attribute takes one of the ValidationDataType enumerated values: Currency, Date, Double,
Integer, or String. In the example case, the values are compared as integers.

8.3.1 Checking the Input Type

Rather than checking that the number of books purchased is greater than zero, you might simply
want to check that it is a number (rather than a letter or date). To do this, you make a minor change
to the CompareValidator.

To accomplish this change, remove the ValueToCompare attribute and change the Operator attribute
from GreaterThan to DataTypeCheck. Since the Type attribute is Integer, the control will report any

integer value as valid. The following code should replace the code for the CompareValidator that you
added in the last section:

<asp:CompareValidator
runat="server"
id="CompareValidatorNumPurch"
ControlToValidate="txtNumPurch"
ErrorMessage ="Invalid number purchased"
Type="Integer"
Operator="DataTypeCheck">*</asp:CompareValidator>

8.3.2 Comparing to Another Control

It is possible to compare a value in one control to the value in another control rather than to a
constant. A classic use of this might be to ask the user to enter his password twice and then to
validate that both entries are identical.

The common scenario is that you've asked the user to pick a new password. For security, when the
password is entered, the text is disguised with asterisks, as shown in Figure 8-8. Because this will be
the password the user will need for logging in, it is imperative you validate that the user entered the
password as intended. The usual solution is to ask the user to reenter the password, and then you
validate that the same password was entered each time. The CompareValidator is perfect for this.

Figure 8-8. Entering a password

Start by asking for the password, setting the text field to TextMode="Password" so that the entry will

be hidden. The following code can be inserted directly in front of the HTML source that defines the
row containing the Display Errors drop-down list:

<tr>
 <td>Enter your password:</td>
 <td>
 <asp:TextBox id="txtPasswd1"
 runat=server
 TextMode="Password"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Width="80"></asp:TextBox>
 </td>
</tr>

Next, add the second password field:

<tr>
 <td>Re-enter your password:</td>
 <td>
 <asp:TextBox id="txtPasswd2"
 runat=server
 TextMode="Password"
 Width="80"></asp:TextBox>
 </td>

All validators other than the RequiredFieldValidator consider a blank field to be valid. In fact, if one
field has a value and the other field is blank, the comparison validator will return valid! To avoid this
problem, add RequiredFieldValidators for both passwords:

<!-- Text fields for passwords -->
 <tr>
 <td>Enter your password:</td>
 <td>
 <asp:TextBox id="txtPasswd1"
 runat=server
 TextMode="Password"
 Width="80"></asp:TextBox>
 </td>
 <td>
 <!-- required to enter the password -->
 <asp:RequiredFieldValidator
 id="ReqFieldTxtPassword1"
 ControlToValidate="txtPasswd1"
 ErrorMessage ="Please enter your password"
 Width="100%" runat=server>*</asp:RequiredFieldValidator>
 </td>
 </tr>

 <!-- Second password for comparison -->
 <tr>
 <td>Re-enter your password:</td>
 <td>
 <asp:TextBox id="txtPasswd2"
 runat=server
 TextMode="Password"
 Width="80"></asp:TextBox>
 </td>

 <td>
 <!-- Second password is required -->
 <asp:RequiredFieldValidator
 id="ReqFieldTxtPassword2"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ControlToValidate="txtPasswd2"
 runat=server
 ErrorMessage ="Please re-enter your password"
 Width="100%" runat=server>*</asp:RequiredFieldValidator>

 <!-- Second password must match the first -->
 <asp:CompareValidator
 runat=server
 id="CompValPasswords"
 ControlToValidate="txtPasswd2"
 ErrorMessage ="Passwords do not match"
 Type="String"
 Operator="Equal"
 ControlToCompare="txtPasswd1">*</asp:CompareValidator>
 </td>
 </tr>

If the controls you are comparing have a missing or invalid value, the values
will be considered valid. The CompareValidator requires that values be present
and valid.

You are now ready to validate that the entries in both text fields are identical. Add the comparison
validator and its attributes to compare the first password field with the second, as shown in the
following code fragment:

<asp:CompareValidator
runat=server
id="CompValPasswords"
ControlToValidate="txtPasswd2"
ErrorMessage ="Passwords do not match"
Type="String"
Operator="Equal"
ControlToCompare="txtPasswd1">*</asp:CompareValidator>

In this case you do not have a ValueToCompare attribute, but instead you have a ControlToCompare

attribute, which takes the ID of the control against which you'll compare this value.

You've changed the Operator attribute to Equal, which indicates that the new value must be equal
to the value in the control with which you're comparing it, and you've set the Type of the comparison
to String. If you enter two different passwords, the error is reported, as shown in Figure 8-9.

Figure 8-9. Comparing against a control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the two passwords are identical, the ComparisonValidator is satisfied and the second password field
is marked as valid. The complete .aspx source is shown in Example 8-4, with a C# page directive.

Example 8-4. Compare validation

<%@ Page language="c#"
Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false"
Inherits="WebApp0403.WebForm1" %>

<HTML>
 <HEAD>

 <!-- Demonstrate comparison validation -->
 <meta name=vs_targetSchema content="Internet Explorer 5.0">
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 </HEAD>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <body>

 <H3>Bug Report </H3>
 <form runat="server" ID="frmBugs">
 <table bgcolor=gainsboro cellpadding=10>
 <tr valign="top">
 <td colspan=3>
 <!-- Display error messages -->
 <asp:Label ID="lblMsg"
 Text="Please report your bug here"
 ForeColor="Red" Font-Name="Verdana"
 Font-Size="10px" runat=server
 font-names="Verdana">
 Please report your bug here</asp:Label>

 </td>
 </tr>
 <tr>
 <td align=right>
 Book
 </td>

 <td>
 <!-- Drop down list with the books (must pick one) -->
 <ASP:DropDownList id=ddlBooks runat=server>
<asp:ListItem Value="-- Please Pick A Book --">-- Please Pick A Book -
 </asp:ListItem>
<asp:ListItem Value="Programming ASP.NET">Programming
 ASP.NET</asp:ListItem>
<asp:ListItem Value="Programming C#">Programming C#</asp:ListItem>
<asp:ListItem Value="Teach Yourself C++ In 21 Days">Teach Yourself C++ In
 21 Days</asp:ListItem>
<asp:ListItem Value="Teach Yourself C++ In 24 Hours">Teach Yourself C++ In
 24 Hours</asp:ListItem>
<asp:ListItem Value="TY C++ In 10 Minutes">TY C++ In 10
 Minutes</asp:ListItem>
<asp:ListItem Value="TY More C++ In 21 Days">TY More C++ In 21
 Days</asp:ListItem>
<asp:ListItem Value="C++ Unleashed">C++ Unleashed</asp:ListItem>
<asp:ListItem Value="C++ From Scratch">C++ From Scratch</asp:ListItem>
<asp:ListItem Value="XML From Scratch">XML From Scratch</asp:ListItem>
<asp:ListItem Value="Web Classes FS">Web Classes FS</asp:ListItem>
<asp:ListItem Value="Beg. OO Analysis & Design">Beg. OO Analysis &
 Design</asp:ListItem>
<asp:ListItem Value="Clouds To Code">Clouds To Code</asp:ListItem>
<asp:ListItem Value="CIG Career Computer Programming">CIG Career Computer
 Programming</asp:ListItem>
 </ASP:DropDownList>
 </td>

 <!-- Validator for the drop down -->
 <td align=center rowspan=1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:RequiredFieldValidator
 id="reqFieldBooks"
 ControlToValidate="ddlBooks"
 InitialValue="-- Please Pick A Book --"
 ErrorMessage ="You did not choose a book from the

 drop-down"
 Width="100%" runat=server >*</asp:RequiredFieldValidator>
 </td>
 </tr>

 <!-- Radio buttons for the edition -->
 <tr>
 <td align=right>
 Edition:
 </td>
 <td>
 <ASP:RadioButtonList id=rblEdition
 RepeatLayout="Flow" runat=server>
<asp:ListItem Value="1st">1st</asp:ListItem>
<asp:ListItem Value="2nd">2nd</asp:ListItem>
<asp:ListItem Value="3rd">3rd</asp:ListItem>
<asp:ListItem Value="4th">4th</asp:ListItem>
 </ASP:RadioButtonList>
 </td>

 <!-- Validator for editions -->
 <td align=center rowspan=1>
 <asp:RequiredFieldValidator
 id="reqFieldEdition"
 ControlToValidate="rblEdition"
 ErrorMessage ="You did not choose an edition"
 Width="100%" runat="server" >*
 </asp:RequiredFieldValidator>
 </td>
 </tr>

 <!-- Multi-line text for the bug entry -->
 <tr>
 <td align=right style="HEIGHT: 97px">
 Bug:
 </td>
 <td style="HEIGHT: 97px">
 <ASP:TextBox id=txtBug runat=server width="183px"
 textmode="MultiLine" height="68px"/>
 </td>

 <!-- Validator for the text box-->
 <td style="HEIGHT: 97px">
 <asp:RequiredFieldValidator
 id="reqFieldBug"
 ControlToValidate="txtBug"
 ErrorMessage ="You did not enter the bug text"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Width="100%" runat=server>*</asp:RequiredFieldValidator>
 </td>
 </tr>

 <!-- Text box for number purchased -->
 <tr>
 <td>Number purchased:</td>
 <td><ASP:TextBox id="txtNumPurch" runat=server
 width="50px" /></td>
 <td>

 <!-- Required field validator for number purchased -->
 <asp:RequiredFieldValidator
 id="RequiredFieldValidatorNumPurch"
 ControlToValidate="txtNumPurch"
 ErrorMessage ="You did not enter the number purchased"
 Width="100%" runat=server>*</asp:RequiredFieldValidator>

 <!-- Validate at least one book purchased -->
 <asp:CompareValidator
 runat=server
 id="CompareValidatorNumPurch"
 ControlToValidate="txtNumPurch"
 ErrorMessage ="Invalid number purchased"
 Type="Integer"
 Operator="DataTypeCheck"
 ValueToCompare=0>*</asp:CompareValidator>
 </td>
 </tr>

 <!- Text fields for passwords ->
 <tr>
 <td>Enter your password:</td>
 <td>
 <asp:TextBox id="txtPasswd1"
 runat=server
 TextMode="Password"
 Width="80"></asp:TextBox>
 </td>
 <td>
 <!- required to enter the password ->
 <asp:RequiredFieldValidator
 id="ReqFieldTxtPassword1"
 ControlToValidate="txtPasswd1"
 ErrorMessage ="Please enter your password"
 Width="100%" runat=server>*</asp:RequiredFieldValidator>
 </td>
 </tr>

 <!- Second password for comparison ->
 <tr>
 <td>Re-enter your password:</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>
 <asp:TextBox id="txtPasswd2"
 runat=server
 TextMode="Password"
 Width="80"></asp:TextBox>
 </td>

 <td>
 <!- Second password is required ->
 <asp:RequiredFieldValidator
 id="ReqFieldTxtPassword2"
 ControlToValidate="txtPasswd2"
 runat=server
 ErrorMessage ="Please re-enter your password"
 Width="100%" runat=server>*</asp:RequiredFieldValidator>

 <!- Second password must match the first ->
 <asp:CompareValidator
 runat=server
 id="CompValPasswords"
 ControlToValidate="txtPasswd2"
 ErrorMessage ="Passwords do not match"
 Type="String"
 Operator="Equal"
 ControlToCompare="txtPasswd1">*</asp:CompareValidator>
 </td>
 </tr>

 <!-- Drop down for the error display -->
 <tr>
 <td align=right>
 Display Errors
 </td>
 <td>
 <asp:DropDownList id="lstDisplay"
 AutoPostBack=true
 OnSelectedIndexChanged="lstDisplay_SelectedIndexChanged"
 runat=server >
 <asp:ListItem Selected>Summary</asp:ListItem>
 <asp:ListItem>Msg. Box</asp:ListItem>
 </asp:DropDownList>
 </td>
 <td>
 </td>
 </tr>

 <!-- Drop down for display report choice -->
 <tr>
 <td align="right">
 Display Report
 </td>
 <td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:DropDownList id="lstFormat"
 AutoPostBack=true
 OnSelectedIndexChanged="lstFormat_SelectedIndexChanged"
 runat=server NAME="lstFormat">
 <asp:ListItem >List</asp:ListItem>
 <asp:ListItem Selected>Bulleted List</asp:ListItem>
 <asp:ListItem>Single Paragraph</asp:ListItem>
 </asp:DropDownList>
 </td>
 </tr>

 <!-- Submit button -->
 <tr>
 <td>
 </td>
 <td>
 <ASP:Button id=btnSubmit
 text="Submit Bug" runat=server />
 </td>
 <td>
 </td>
 </tr>
 </table>

 <!-- Validation Summary Report -->
 <asp:ValidationSummary ID="ValSum" runat="server"
 HeaderText="The following errors were found">
 </asp:ValidationSummary>
 </form>
 </body>
</HTML>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.4 Range Checking

At times you'll want to validate that a user's entry falls within a range. That range can be within a
pair of numbers, characters, or dates. In addition, you can express the boundaries for the range by
using constants or by comparing its value with values found in other controls.

In this simple example, you'll prompt the user for a number between 10 and 20 and then validate his
answer to ensure that it was entered properly. To do so, create a form with a prompt, a text box,
and of course a RangeValidator control. The RangeValidator takes a number of attributes to designate
the object to validate and the range within which its values must lie, as shown in the following HTML
source:

<asp:RangeValidator ID="rangeValid"
runat="server"
type="Integer"
ControlToValidate="txtValue"
MinimumValue="10"
MaximumValue="20">Between 10 and 20 please</asp:RangeValidator>

The text Between 10 and 20 please will be displayed if the value is not within the range of values
specified by the MinimumValue and MaximumValue attributes. The type attribute designates how the
value should be evaluated, and may be any of the following types: Currency, Date, Double,
Integer, String.

If there are no validation errors, the form can be submitted; otherwise, the range checking error
message is displayed.

The complete .aspx source is shown in Example 8-5.

Example 8-5. Range validation

<%@
Page language="c#"
Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false"
Inherits="RangeValidation.WebForm1" %>
<HTML>
 <HEAD>
 <meta name=vs_targetSchema content="Internet Explorer 5.0">
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form method="post" runat="server">
 <table>
 <tr>
 <td colspan="2">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <h5>Enter a number between 10 and 20:</h5>
 </td>
 </tr>
 <tr>
 <td>
 <asp:TextBox Width="30" ID="txtValue" Runat="server"/>
 </td>
 <td>
 <asp:RangeValidator ID="rangeValid"
 runat="server"
 type= "Integer"
 ControlToValidate="txtValue"
 MinimumValue="10"
 MaximumValue="20">Between 10 and 20 please</asp:RangeValidator>
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button Runat="server" Text="Validate"
 id=Button1></asp:Button>
 </td>
 </tr>
 <tr>
 <td>
 <asp:Label ID="lblMsg" Text="" runat="server"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</HTML>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.5 Regular Expressions

Often a simple value or range check is insufficient; you must check that the form of the data entered is
correct. For example, you may need to ensure that a ZIP code is five digits, an email address is in the
form name@place.com , a credit card matches the right format, and so forth.

A regular expression validator allows you to validate that a text field matches a regular expression .
Regular expressions are a language for describing and manipulating text. For more complete coverage of
this topic, please see Mastering Regular Mastering Regular Expressions, Second Edition , by Jeffrey Friedl
(O'Reilly).

A regular expression consists of two types of characters: literals and metacharacters . A literal is just a
character you wish to match in the target string. A metacharacter is a special symbol that acts as a
command to the regular expression parser. The parser is the engine responsible for understanding the
regular expression. Consider this regular expression:

^\d{5}$

This will match any string that has exactly five numerals. The initial metacharacter, ̂ , indicates the
beginning of the string. The second metacharacter, \d , indicates a digit. The third metacharacter, {5} ,
indicates exactly 5 of the digits, and the final metacharacter, $, indicates the end of the string. Thus, this

regular expression matches five digits between the beginning and end of the line, and nothing else.

A slightly more sophisticated algorithm might accept either a 5-digit ZIP code or a
9 digit (plus 4) ZIP code in the format of 12345-1234. Rather than using the \d

metacharacter, you could simply designate the range of acceptable values:

ValidationExpression="[0-9]{5}|[0-9]{5}-[0-9]{4}"

You create a RegularExpressionValidator much as you did the previous validators. The only new attribute
is ValidationExpression , which takes a valid regular expression within quotation marks. For example,

the following code fragment defines a regular expression validator to ensure that the value entered into a
text box is a five-digit numeric ZIP code:

<asp:RegularExpressionValidator ID="regExVal"
 ControlToValidate="txtZip" Runat="server"
 ValidationExpression="^\d{5}$"
 display="Static">Please enter a valid 5 digit Zip code</asp:RegularExpressionValidator>

If the control pointed to by ControlToValidate has a string that matches the regular expression,

validation succeeds. The complete .aspx source is shown in Example 8-6 .

Example 8-6. Regular expression validator

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="RegularExpressionValidation.WebForm1" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<HTML>
 <HEAD>
<meta content="Internet Explorer 5.0" name=vs_targetSchema>
<meta content="Microsoft Visual Studio 7.0" name=GENERATOR>
<meta content=C# name=CODE_LANGUAGE>
 </HEAD>
<body MS_POSITIONING="GridLayout">
<form method=post runat="server">
 <table>
 <tr>
 <td colspan="2">
 <h5>Please enter your Zip Code</h5>
 </td>
 </tr>
 <tr>
 <td>
 <asp:TextBox width="60" ID="txtZip" runat="server" />
 </td>
 <td>
 <asp:RegularExpressionValidator ID="regExVal"
 ControlToValidate="txtZip" Runat="server"
 ValidationExpression="^\d{5}$"
 display="Static">Please enter a valid 5 digit Zip
 code</asp:RegularExpressionValidator>
 </td>
 </tr>
 <tr>
 <td>
 <asp:Button ID="btnValidate" Text="Validate"
 Runat="server"></asp:Button>
 </td>
 <td>
 <asp:Label ID="lblMsg" Runat="server" Text=""/>
 </td>
 </tr>
 </table></FORM>
 </body>
</HTML>

When you use a RegularExpressionValidator control with client-side validation, the
regular expressions are matched using JScript. This may differ in small details from
the regular expression checking done on the server.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.6 Custom Validation

There are times when the validation of your data is so specific to your application that you will need
to write your own validation method. The CustomValidator is designed to provide all the
infrastructure support you need. You simply point to your validation method and have it return a
Boolean value: true or false. The CustomValidator control takes care of all the rest of the work.

Because validation can be done on the client or on the server, depending on the browser, the
CustomValidator has attributes for specifying both a server-side and a client-side method for
validation. The server-side method can be written in any .NET language, such as C# or VB.NET, while
the client-side method must be written in a scripting language understood by the browser, such as
VBScript or JavaScript.

You'll create a simple form that will request an even number from the user, and report the error if
the number is not evenly divisible by 2. You can imagine, however, that you could perform a
checksum on a credit card or ISBN or otherwise perform complex data checking.

The heart of this example is the CustomValidator control:

<asp:CustomValidator
id="cvEven"
controlToValidate="txtEven"
Display="Static"
runat="server"
ClientValidationFunction="ClientValidator"
OnServerValidate="ServerValidator">
Well, that's odd...
</asp:CustomValidator>

The CustomValidator takes many of the usual attributes, such as an ID, runat, ControlToValidate,
and Display. In addition, this validator has an attribute that identifies the script method to run for
client-side validation (ClientValidationFunction) and one that defines the method to run for
server-side validation (OnServerValidate).

You'll provide JavaScript for the client-side validation:

<script language="javascript">
 function ClientValidator(source, args)
 {
 if (args.Value % 2 == 0)
 args.IsValid=true;
 else
 args.IsValid=false;
 return;
 }
</script>

This simple function examines the value passed to the script by the validator, and if it is an even

http://lib.ommolketab.ir
http://lib.ommolketab.ir

number, it returns true; otherwise, it returns false. You also need a server-side method:

Protected Sub ServerValidator(ByVal source As Object, _
 ByVal e As ServerValidateEventArgs)
 Dim evenNumber As Int32 = Int32.Parse(e.Value)

 If evenNumber Mod 2 = 0 Then
 e.IsValid = True
 Else
 e.IsValid = False
 End If

End Function

In C#, it looks like this:

protected void ServerValidator (object source, ServerValidateEventArgs e)
{
 try
 {
 int evenNumber = Int32.Parse(e.Value);
 if (evenNumber % 2 == 0)
 e.IsValid = true;
 }
 catch (Exception)
 {
 // error handler here
 }
}

This method does the same thing as the client-side validator, only in VB.NET or C# rather than in
JavaScript. There are a few things to notice about these methods. First, the value that the
CustomValidator is examining is passed to your routine as the Value property of the
ServerValidateEventHandler event argument. You can convert that string to an int in C# or an

Integer in VB.NET using the Base Class Library Int32 object's static Parse method, as shown. The C#
example wraps the conversion in a try/catch block to handle any exception that might be thrown.

The complete .aspx file is provided in Example 8-7, with the code-behind file in Example 8-8 for C#,
and Example 8-9 for VB .NET syntax.

Example 8-7. Custom validator page

<%@ Page Language="C#" AutoEventWireup="false" Codebehind="WebForm1.aspx.cs"
Inherits="CustomValidator.WebForm1" EnableSessionState="True"%>

<HTML>
 <HEAD>
 <meta name=vs_targetSchema content="Internet Explorer 5.0">
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 </HEAD>
 <body MS_POSITIONING="GridLayout">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <form method="post" runat="server" ID="Form1">
 <table>
 <tr>
 <td colspan="2">
 <h5>Please enter an even number</h5>
 </td>
 </tr>
 <tr>
 <td>
 <asp:TextBox Width="50" ID="txtEven"
 Runat="server" NAME="txtEven"/>
 </td>
 <td>
 <asp:CustomValidator
 id="cvEven"
 controlToValidate="txtEven"
 Display="Static"
 runat="server"
 ClientValidationFunction="ClientValidator"
 OnServerValidate="ServerValidator">
 Well, that's odd...
 </asp:CustomValidator>
 </td>
 </tr>
 <tr>
 <td>
 <asp:Button ID="btnValidate" Text="Validate"
 Runat="server"></asp:Button>
 </td>
 <td>
 <asp:Label ID="lblMsg" Text="" Runat="server"></asp:Label>
 </td>
 </tr>
 </table>
 <script language="javascript">
 function ClientValidator(source, args)
 {
 if (args.Value % 2 == 0)
 args.IsValid=true;
 else
 args.IsValid=false;
 return;
 }
 </script>
 </form>
 </body>
</HTML>

Example 8-8. C# code-behind file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespace CustomValidator
{
 using System;
 using System.Collections;
 using System.ComponentModel;
 using System.Data;
 using System.Drawing;
 using System.Web;
 using System.Web.SessionState;
 using System.Web.UI;
 using System.Web.UI.WebControls;
 using System.Web.UI.HtmlControls;

 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.TextBox txtEven;
 protected System.Web.UI.WebControls.Button btnValidate;
 protected System.Web.UI.WebControls.Label lblMsg;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 protected void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.btnValidate.Click += new
 System.EventHandler(this.btnValidate_Click);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 public void ServerValidator (object source,
 ServerValidateEventArgs e)
 {
 try
 {
 int evenNumber = Int32.Parse(e.Value);
 if (evenNumber % 2 == 0)
 e.IsValid = true;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 catch (Exception)
 {
 // error handler here
 }
 }

 protected void btnValidate_Click(object sender, System.EventArgs e)
 {
 if (Page.IsValid)
 lblMsg.Text = "Valid.";
 else
 lblMsg.Text = "Not Valid.";
 }
 }
}

Example 8-9. VB.NET code-behind file

Public Class WebForm1
 Inherits System.Web.UI.Page

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 Private Sub InitializeComponent()

 End Sub
 Protected WithEvents txtEven As System.Web.UI.WebControls.TextBox
 Protected WithEvents cvEven As System.Web.UI.WebControls.CustomValidator
 Protected WithEvents btnValidate As System.Web.UI.WebControls.Button
 Protected WithEvents lblMsg As System.Web.UI.WebControls.Label

 Private designerPlaceholderDeclaration As System.Object

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Protected Sub ServerValidator(ByVal source As Object, _
 ByVal e As ServerValidateEventArgs)
 Try
 Dim evenNumber As Integer = Int32.Parse(e.Value)
 If (evenNumber Mod 2 = 0) Then
 e.IsValid = True
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Catch
 ' error handler here
 End Try
 End Sub

 Private Sub btnValidate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnValidate.Click
 If (Page.IsValid) Then
 lblMsg.Text = "Valid."
 Else
 lblMsg.Text = "Not Valid."
 End If
 End Sub
End Class

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 9. Data Binding
Nearly every ASP.NET application displays data of some sort, either from a database or from other
data sources. Data binding allows you to create a relationship between a control (such as a list box or
data grid) and a source of data (such as SQL Server). ASP.NET takes care of the details of displaying
the data in your control.

You can bind to any data source, including such simple sources as properties, expressions, or the
result of a method call, and such complex sources as arrays, collections, and databases. For controls
that display a collection, such as a list box or data grid, you must bind to a source which implements
the ICollection interface. This allows ASP.NET to iterate the collection and display each member in

turn.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.1 ArrayList

Later chapters will focus on binding to databases, since that is the common case for serious ASP.NET
development. To focus on the mechanics of data-binding, however, this chapter starts simple, by
binding controls to an ArrayList rather than to data from a database. Visual Basic .NET, C#, and most
other programming languages support the array, an ordered collection of objects, all of the same
type. An ArrayList is a .NET Framework collection that acts as an expandable array.

In Chapter 8, you created a drop-down list box that contained the titles of some of my books on
programming. The relevant portion of the HTML source appeared as follows:

<ASP:DropDownList id=ddlBooks runat=server>
 <asp:ListItem Value="-- Please Pick A Book --">
 -- Please Pick A Book -
 </asp:ListItem>
 <asp:ListItem Value="Programming ASP.NET">
 Programming ASP.NET
 </asp:ListItem>
 <asp:ListItem Value="Programming C#">Programming C#</asp:ListItem>
 <asp:ListItem Value="Teach Yourself C++ In 21 Days">
 Teach Yourself C++ In 21 Days
 </asp:ListItem>
 <asp:ListItem Value="Teach Yourself C++ In 24 Hours">
 Teach Yourself C++ In 24 Hours
 </asp:ListItem>
 <asp:ListItem Value="TY C++ In 10 Minutes">
 TY C++ In 10 Minutes
 </asp:ListItem>
 <asp:ListItem Value="TY More C++ In 21 Days">
 TY More C++ In 21 Days
 </asp:ListItem>
 <asp:ListItem Value="C++ Unleashed">C++ Unleashed</asp:ListItem>
 <asp:ListItem Value="C++ From Scratch">C++ From Scratch</asp:ListItem>
 <asp:ListItem Value="XML From Scratch">XML From Scratch</asp:ListItem>
 <asp:ListItem Value="Web Classes FS">Web Classes FS</asp:ListItem>
 <asp:ListItem Value="Beg. OO Analysis & Design">
 Beg. OO Analysis & Design
 </asp:ListItem>
 <asp:ListItem Value="Clouds To Code">Clouds To Code</asp:ListItem>
 <asp:ListItem Value="CIG Career Computer Programming">
 CIG Career Computer Programming
 </asp:ListItem>
</ASP:DropDownList>

The HTML source declares the DropDownList object and then declares a ListItem for each book title.
Notice that the data here is hard-coded, which is not always optimal, particularly if you are displaying
dynamic data. An alternative to declaring each book is to add the books programmatically.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To do so, create the DropDownList in the WebForm, but do not add the items:

<tr>
 <td>
 Book
 </td>
 <td>
 <asp:DropDownList ID="ddlBooks" Runat="server">
 </asp:DropDownList>
 </td>
</tr>

Instead of adding ListItem objects, you'll fill the drop-down from a collection, in this case an ArrayList
object.

The first step is to create the ArrayList in the Page_Load event handler in the code-behind page
(shown here in VB .NET):

Private Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles MyBase.Load

 ' declare the list
 Dim bookList As New ArrayList()

 ' add the titles
 bookList.Add("Programming ASP.NET")
 bookList.Add("Programming C#")
 bookList.Add("Teach Yourself C++ In 21 Days")
 bookList.Add("Teach Yourself C++ In 24 Hours")
 bookList.Add("TY C++ In 10 Minutes")
 bookList.Add("TY More C++ In 21 Days")
 bookList.Add("C++ Unleashed")
 bookList.Add("C++ From Scratch")
 bookList.Add("XML From Scratch")
 bookList.Add("Web Classes FS")
 bookList.Add("Beg. OO Analysis & Design")
 bookList.Add("Clouds To Code")
 bookList.Add("CIG Career Computer Programming")

This ArrayList object is now ready to use. You can retrieve the titles using normal array syntax, but in
this case you want to bind bookList to ddlbooks, the drop-down you created in the WebForm. You
start by setting the DataSource property of ddlBooks to your new ArrayList:

ddlBooks.DataSource = bookList

When you set a data source, the data is not bound. You must explicitly bind the data, which you do
by calling the DataBind method:

ddlBooks.DataBind()

The advantage of requiring explicit binding is that you have complete control over when this action
takes place. Since data binding can be an expensive operation (that is, it can take a lot of time and
resources), having explicit control over the process can make your program more efficient.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here is the same code in C#:

protected void Page_Load(object sender, System.EventArgs e)
{
 // create the array list
 ArrayList bookList = new ArrayList();

 // add all the books
 bookList.Add("Programming ASP.NET");
 bookList.Add("Programming C#");
 bookList.Add("Teach Yourself C++ In 21 Days");
 bookList.Add("Teach Yourself C++ In 24 Hours");
 bookList.Add("TY C++ In 10 Minutes");
 bookList.Add("TY More C++ In 21 Days");
 bookList.Add("C++ Unleashed");
 bookList.Add("C++ From Scratch");
 bookList.Add("XML From Scratch");
 bookList.Add("Web Classes FS");
 bookList.Add("Beg. OO Analysis & Design");
 bookList.Add("Clouds To Code");
 bookList.Add("CIG Career Computer Programming");

 // set the data source
 ddlBooks.DataSource=bookList;

 // bind to the data
 ddlBooks.DataBind();
}

You will typically bind your data at two points while your program is running:

When the Page.Load event procedure has fired, to initialize the values

Again any time the data is changed

Once the data is bound, the drop-down list is filled with the contents of the array, as shown in Figure
9-1.

Figure 9-1. ArrayList bound to a list box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.2 Data Binding and Postback

Extend the form to add a label that will display the selected book. Set the autopostback attribute of
the drop-down control to true, so that when a selection is made, the page is posted back to the

server and the label can be filled with the selected title.

<asp:DropDownList
ID="ddlBooks"
autopostback="True"

The problem you'll encounter is that when the page is reloaded the data will be reloaded as well, and
your selection will be lost. You must protect against that by checking the page's IsPostBack property,
which is set to true when the page is posted back, as shown in Example 9-1 (VB.NET) and Example

9-2 (C#).

It is a recurring theme throughout this book that the differences between C#
and VB.NET are syntactic sugar, and not terribly important. Even more
interesting, if you know one language, the other is quite understandable. This
example shows that quite clearly.

Example 9-1. Checking IsPostBack in VB.NET

Private Sub Form_Load(ByVal sender As object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 If Not IsPostBack() Then

 ' create the array list
 Dim bookList As New ArrayList()

 ' add all the books
 bookList.Add("Programming ASP.NET")
 bookList.Add("Programming C#")
 bookList.Add("Teach Yourself C++ In 21 Days")
 bookList.Add("Teach Yourself C++ In 24 Hours")
 bookList.Add("TY C++ In 10 Minutes")
 bookList.Add("TY More C++ In 21 Days")
 bookList.Add("C++ Unleashed")
 bookList.Add("C++ From Scratch")
 bookList.Add("XML From Scratch")
 bookList.Add("Web Classes FS")
 bookList.Add("Beg. OO Analysis & Design")
 bookList.Add("Clouds To Code")
 bookList.Add("CIG Career Computer Programming")

 ' set the data source

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ddlBooks.DataSource = bookList

 ' bind to the data
 ddlBooks.DataBind()
 Else
 lblMsg.Text = "Selected book: " & ddlBooks.SelectedItem.Text
 End If

End Sub

Example 9-2. Checking IsPostBack in C#

private void Page_Load(object sender, System.EventArgs e)
{
 if (! Page.IsPostBack)
 {
 // create the array list
 ArrayList bookList = new ArrayList();

 // add all the books
 bookList.Add("Programming ASP.NET");
 bookList.Add("Programming C#");
 bookList.Add("Teach Yourself C++ In 21 Days");
 bookList.Add("Teach Yourself C++ In 24 Hours");
 bookList.Add("TY C++ In 10 Minutes");
 bookList.Add("TY More C++ In 21 Days");
 bookList.Add("C++ Unleashed");
 bookList.Add("C++ From Scratch");
 bookList.Add("XML From Scratch");
 bookList.Add("Web Classes FS");
 bookList.Add("Beg. OO Analysis & Design");
 bookList.Add("Clouds To Code");
 bookList.Add("CIG Career Computer Programming");

 // set the data source
 ddlBooks.DataSource=bookList;

 // bind to the data
 ddlBooks.DataBind();
 }
 else
 {
 lblMsg.Text = "Selected book: " + ddlBooks.SelectedItem.Text;
 }
}

In Example 9-1 and Example 9-2, the IsPostBack property is tested. If it returns true, then the page

has been posted back to itself by a user taking an action, and the selected item is displayed. If the
IsPostBack property returns false, then the book list is populated with data from the ArrayList.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.3 Binding to a Class

In the previous example, you bound an ArrayList of strings to the list box. Often, you will want to
bind objects more complex than strings. For example, you might imagine a Book class that has
properties such as title, ISBN, and price, as shown in Example 9-3 (VB.NET) and Example 9-4 (C#).

Example 9-3. The Book class in VB.NET

Public Class Book

 Private _Price As Double
 Private _Title As String
 Private _ISBN As String

 Public Sub New(_
 ByVal price As Double, _
 ByVal title As String, _
 ByVal ISBN as string)
 _Price = price
 _Title = title
 _ISBN = ISBN
 End Sub

 Public ReadOnly Property Price() As Double
 Get
 Return _Price
 End Get
 End Property

 Public ReadOnly Property Title() As String
 Get
 Return _Title
 End Get
 End Property

 Public ReadOnly Property ISBN() As String
 Get
 Return _ISBN
 End Get
 End Property

End Class

Example 9-4. The Book class in C#

public class Book

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{
 private float price;
 private string title;
 private string isbn;

 public Book(float price, string title, string ISBN)
 {
 this.price = price;
 this.title = title;
 this.isbn = ISBN;
 }

 public float Price { get {return price;} }
 public string Title { get {return title;} }
 public string ISBN { get {return isbn;} }
}

You add the new book objects to the ArrayList, just as you assigned the strings, shown here in C#.
(The VB.NET code is the same except without the semicolons.)

bookList.Add(new Book(49.95f, "Programming ASP.NET","100000000"));
bookList.Add(new Book(49.95f,"Programming C#","0596001177"));
bookList.Add(new Book(34.99f,"Teach Yourself C++ In 21
 Days","067232072x"));
bookList.Add(new Book(24.95f,"Teach Yourself C++ In 24
 Hours","0672315165"));
bookList.Add(new Book(12.99f,"TY C++ In 10 Minutes","067231603X"));

If you are going to bind a collection of Book objects to the list box, you must tell the list box which
property to bind to, so that it will know which property to display. You do this by adding the following
lines indicated in boldface to the page's HTML source:

<asp:DropDownList
ID="ddlBooks"
autopostback="True"
DataTextField="Title"
DataValueField="ISBN"
Runat="server"></asp:DropDownList>

The DataTextField attribute assigns the property that will be displayed in the list box, while the
DataValueField attribute assigns the property that will be held in the value attribute of the list box

item. When you run this and examine the source through the browser, you find that ASP.NET has
translated the ASP controls to the appropriate HTML as follows:

<option value="100000000">Programming ASP.NET</option>
<option value="0596001177">Programming C#</option>
<option value="067232072x">Teach Yourself C++ In 21 Days</option>

Change the label to display the ISBN along with the title:

lblMsg.Text = "Selected book: " & ddlBooks().SelectedItem.Text _
& " (" & ddlBooks().SelectedItem.Value & ")"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In C#, it looks like this:

lblMsg.Text = "Selected: " + ddlBooks.SelectedItem.Text +
 "(" + ddlBooks.SelectedItem.Value + ")";

The result is that the user selects a book and the book title and ISBN are displayed, as shown in
Figure 9-2.

Figure 9-2. Binding an array of objects

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.4 Binding to Other Simple Controls

The simplest binding is to bind one control (for example, a label) to another control (e.g., a list box).
As a demonstration of data-binding one control to a second, add a new label to the form, and bind its
contents to the drop-down selection:

<tr>
 <td>
 Chosen Book Title
 </td>
 <td>
 <asp:Label
 Text="<%# ddlBooks.SelectedItem.Text %>"
 Runat="server" />
 </td>
</tr>

This new label control is bound to the text value of the selected item in ddlBooks. The <%# %> tags

accomplish the data binding. The only additional change to the code is in WebForm1_Load, where you
bind the entire page, rather than a single control:

Page.DataBind()

You could, of course, bind each of the controls individually rather than binding the entire page. In any
case, the result, shown in Figure 9-3 is that the control is bound to the text of the control.

Figure 9-3. Data binding to a control

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.5 Binding Radio Buttons and Checkboxes

It is not uncommon to build your form dynamically; adding checkboxes, radio buttons, and other
controls based on data extracted from a database. For example, you might like to add shipping
methods (e.g., "first class," "next day," etc.) to the form. Typically you'd add these as radio buttons.
To make the form flexible, you'd like to make it data-driven; getting the exact text for the radio
buttons from a table in the database. That way, if you change from one delivery service to another,
you do not need to change the web form; you just update the database and the form works.

As you saw in Chapter 3, ASP.NET offers a dynamic radio button control, RadioButtonList, which you
can add to the form, deferring the content of the radio buttons (and even the number of buttons to
create) until runtime. Begin the example with the following HTML source, which defines a
RadioButtonList control named rbList:

<tr>
 <td>
 How should we ship?
 </td>
 <td>
 <asp:RadioButtonList
 RepeatDirection="Horizontal"
 id=rbList runat="server">
 </asp:RadioButtonList>
 </td>
</tr>

You'll look at how to fill the radio buttons with data in just a moment, but while you're building the
form, add checkboxes to allow the customer to choose extras to go with his choice of books:

<tr>
 <td colspan="2">
 Please choose any "extras" you'd like:
 <asp:CheckBoxList
 RepeatDirection="Horizontal"
 id="cbList"
 runat="server"></asp:CheckBoxList>
 </td>
</tr>

Normally, you'd fill the radio buttons and the checkboxes with data from the database. Database
access is covered in the next chapter; for now, you'll keep things simple by extracting the data from
array lists.

Create a new ArrayList, shippingMethods, in the Page_Load function in the code-behind page. Add
the various shipping alternatives that you would otherwise extract from the database (shown here in
C# syntax):

ArrayList shippingMethods = new ArrayList();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shippingMethods.Add("3rd Class");
shippingMethods.Add("1st Class");
shippingMethods.Add("Ground");
shippingMethods.Add("2nd Day");
shippingMethods.Add("Next Day");

With this ArrayList in hand, you can bind to the radio button list created in the HTML page. This is
done in two steps: first you set the data source for the radio button list to the Array List:

rbList.DataSource=shippingMethods;

Second, and as a separate step, call the radio buttons list object's DataBind method:

rbList.DataBind();

This separation is done for the reason explained earlier: by making the binding step explicit, you
make the program more efficient, binding only when you invoke the DataBind method.

You'll do the same thing with the checkboxes, creating an ArrayList, setting the DataSource and
calling DataBind:

ArrayList extras = new ArrayList();
extras.Add("Gift Wrap");
extras.Add("Gift Card");
extras.Add("Book Mark");
extras.Add("Autographed copy");
extras.Add("Source Code");
cbList.DataSource=extras;
cbList.DataBind();

That's all it takes; when the page is loaded, the checkboxes and radio buttons are created, based on
the data in their data sources, as shown in Figure 9-4.

Figure 9-4. Binding to radio buttons and checkboxes

The user interface design is crude at best, and making this look nice is left as an exercise for the
reader. While you are at it, you'll want to add a required field validator (see Chapter 8) to ensure that
the user does select at least one shipping method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, a button has been added to the form, and the autopostback attribute has been

removed from the drop-down; these additions are shown in boldface in the HTML source in Example
9-5. The user selects a shipping method and zero or more of the "extras," and the user's choice is
reflected in a label placed below the Submit button, as shown in Figure 9-5. The code to support this
is in the Page_Load method in the code-behind page and is shown in boldface in the code-behind for
both examples.

Figure 9-5. Displaying choices from data bound controls

If the IsPostBack property is true, then the page has been submitted and you need to pick up the

values from the radio buttons and checkboxes. This is accomplished by iterating the Items collection
of the CheckBoxList and RadioButtonList controls. For example, to see which extras were chosen, you
iterate the Items collection of cbList (the checkbox list on the form) as follows:

int chosen = 0;
StringBuilder extrasChosen = new StringBuilder(" with these extras:");

for (int i = 0; i < cbList.Items.Count; i++)
{
 if (cbList.Items[i].Selected)
 {
 chosen++;
 if (chosen > 1)
 extrasChosen.Append(", ");
 extrasChosen.Append(cbList.Items[i].Text);

 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The for loop iterates the items collection. Inside the for loop, each item is
tested to see if its Selected property evaluates to true. The line:

if (cbList.Items[i].Selected)

can just as easily be written:

if (cbList.Items[i].Selected == true)

In C# these two lines are identical. Similarly, in VB.NET the line:

If cbList.Items(i).Selected Then

is identical to:

If cbList.Items(i).Selected = True Then

Each time a selected item is found, the local counter variable chosen is incremented, so that a

comma can be placed after the first item. The extrasChosen StringBuilder object adds all the selected
items so that they may be displayed in the lblMsg label.

Similar logic is applied to the radio buttons; however, you know in advance that only a single radio
button can be selected:

for (int i = 0; i < rbList.Items.Count; i++)
 if (rbList.Items[i].Selected)
 shippingMethod.Append(rbList.Items[i].Text);

In C#, if a for or if statement is followed by a single statement, there is no
need to use braces. As far as the for statement is concerned, the if statement

is a single statement.

Example 9-5 is the complete .aspx file. Example 9-6 is the complete code-behind source file in VB
.NET, and Example 9-7 is the code-behind in C#.

Example 9-5. aspx file for radio button and checkbox dynamic controls
(with C# page directive)

<%@ Page language="c#"
Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false"
Inherits="BindRadioButtons.WebForm1" %>

<HTML>
 <HEAD>
<meta content="Internet Explorer 5.0" name=vs_targetSchema>
<meta content="Microsoft Visual Studio 7.0" name=GENERATOR>
<meta content=C# name=CODE_LANGUAGE>
 </HEAD>
<body MS_POSITIONING="GridLayout">
<form id=Form1 method=post runat="server">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<table>
 <tr>
 <td>Book </td>
 <td>
 <!-- the drop-down -->
 <asp:dropdownlist
 id=ddlBooks
 Runat="server"
 DataValueField="ISBN"
 DataTextField="Title">
 </asp:dropdownlist>
 </td>
 </tr>
 <! -- shipping method, radio buttons built dynamically -->
 <tr>
 <td>
 How should we ship?
 </td>
 <td>
 <asp:radiobuttonlist
 id=rbList runat="server"
 RepeatDirection="Horizontal">
 </asp:radiobuttonlist>
 </td>
 </tr>
 <! -- extra features. checkboxes built dynamically -->
 <tr>
 <td colspan="2">
 Please choose any "extras" you'd like:
 <asp:CheckBoxList
 RepeatDirection="Horizontal"
 id="cbList"
 runat="server"></asp:CheckBoxList>
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button id="Submit" runat="server" Text="Submit">
 </asp:Button>
 </td>
 </tr>
 <tr>
 <!-- the label to display the selection -->
 <td colspan="2">
 <asp:Label ID="lblMsg" Runat="server" Text="" />
 </td>
 </tr>
 </TABLE></FORM>
 </body>
</HTML>

Example 9-6. VB .NET code-behind for dynamic radio buttons and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

checkboxes

Imports System.Collections
Imports System.Text

Public Class Example_9_7
 Inherits System.Web.UI.Page

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Protected WithEvents ddlBooks As System.Web.UI.WebControls.DropDownList
 Protected WithEvents rbList As System.Web.UI.WebControls.RadioButtonList
 Protected WithEvents cbList As System.Web.UI.WebControls.CheckBoxList
 Protected WithEvents Submit As System.Web.UI.WebControls.Button
 Protected WithEvents lblMsg As System.Web.UI.WebControls.Label

 Private designerPlaceholderDeclaration As System.Object

 Private Sub Page_Init(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Public Class Book

 Private _Price As Double
 Private _Title As String
 Private _ISBN As String

 Public Sub New(ByVal thePrice As Double, _
 ByVal theTitle As String, ByVal theISBN As String)
 _Price = thePrice
 _Title = theTitle
 _ISBN = theISBN
 End Sub

 Public ReadOnly Property Price() As Double
 Get
 Return _Price
 End Get
 End Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public ReadOnly Property Title() As String
 Get
 Return _Title
 End Get
 End Property

 Public ReadOnly Property ISBN() As String
 Get
 Return _ISBN
 End Get
 End Property

 End Class

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 If Not IsPostBack() Then

 ' create the array list
 Dim bookList As New ArrayList

 ' add all the books
 ' (formatted to fit in margins)
 bookList.Add(New Book(49.95F, "Programming ASP.NET", "100000000"))
 bookList.Add(New Book(49.95F, "Programming C#", "100000001"))
 bookList.Add(New Book(34.99F, "Teach Yourself C++ In 21 Days", _
 "067232072x"))
 bookList.Add(New Book(24.95F, "Teach Yourself C++ In 24 Hours", _
 "0672315165"))
 bookList.Add(New Book(12.99F, "TY C++ In 10 Minutes", "067231603X"))
 bookList.Add(New Book(24.95F, "C++ Unleashed", "1199000663"))
 bookList.Add(New Book(29.99F, "C++ From Scratch", "0789720795"))
 bookList.Add(New Book(39.99F, "XML From Scratch", "0789723166"))

 ' set the data source
 ddlBooks.DataSource = bookList

 ' bind to the data
 ddlBooks.DataBind()

 ' shippingMethods array list stands in for
 ' data retrieved from database
 Dim shippingMethods As New ArrayList
 shippingMethods.Add("3rd Class")
 shippingMethods.Add("1st Class")
 shippingMethods.Add("Ground")
 shippingMethods.Add("2nd Day")
 shippingMethods.Add("Next Day")

 ' set the data source for the dynamic
 ' radio button list

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rbList.DataSource = shippingMethods

 ' bind the data
 rbList.DataBind()

 ' extras array list stands in for
 ' data retrieved from database
 Dim extras As New ArrayList
 extras.Add("Gift Wrap")
 extras.Add("Gift Card")
 extras.Add("Book Mark")
 extras.Add("Autographed copy")
 extras.Add("Source Code")

 ' set the data source for the
 ' dynamic checkbox list
 cbList.DataSource = extras

 ' bind the data
 cbList.DataBind()

 Else

 ' string builders to hold text from controls
 Dim extrasChosen As New StringBuilder(" with these extras: ")
 Dim shippingMethod As New StringBuilder(" We will ship ")

 ' build up string of choices. if more than one choice
 ' make them comma delmited
 Dim chosen As Integer = 0
 Dim i As Integer = 0
 For i = 0 To cbList.Items.Count - 1

 ' if the item was selected
 If (cbList.Items(i).Selected = True) Then

 ' if this is not the first item
 ' add a comma after the previous
 ' before adding this one
 chosen += 1
 If (chosen > 1) Then extrasChosen.Append(", ")

 ' add the item to the string builder
 extrasChosen.Append(cbList.Items(i).Text)

 End If

 Next i

 ' find the selected shipping method and add it
 ' to the string builder
 For i = 0 To rbList.Items.Count - 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If (rbList.Items(i).Selected) Then
 shippingMethod.Append(rbList.Items(i).Text)
 End If
 Next i

 ' create the output text by concatenating the book title
 ' isbn, the selected items and the shipping method
 lblMsg.Text = "Selected: " & ddlBooks.SelectedItem.Text & _
 "(" & ddlBooks.SelectedItem.Value & ")" & _
 extrasChosen.ToString() & _
 ". " & shippingMethod.ToString() & "."

 End If

 End Sub

End Class

Example 9-7. 7 C# code-behind for dynamic radio buttons and
checkboxes

namespace BindRadioButtons
{
 using System;
 using System.Collections;
 using System.ComponentModel;
 using System.Data;
 using System.Drawing;
 using System.Text; // for string builder
 using System.Web;
 using System.Web.SessionState;
 using System.Web.UI;
 using System.Web.UI.WebControls;
 using System.Web.UI.HtmlControls;

 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.DropDownList ddlBooks;
 protected System.Web.UI.WebControls.RadioButtonList rbList;
 protected System.Web.UI.WebControls.CheckBoxList cbList;
 protected System.Web.UI.WebControls.Button Submit;
 protected System.Web.UI.WebControls.Label lblMsg;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 protected void Page_Init(object sender, EventArgs e)
 {
 //

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // CODEGEN: This call is required by the
 // ASP.NET Windows Form Designer.
 //
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load +=
 new System.EventHandler(this.Page_Load);

 }
 #endregion

 public class Book
 {
 private float price;
 private string title;
 private string isbn;

 public Book(float price, string title, string ISBN)
 {
 this.price = price;
 this.title = title;
 this.isbn = ISBN;
 }

 public float Price { get {return price;} }
 public string Title { get {return title;} }
 public string ISBN { get {return isbn;} }
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (! Page.IsPostBack)
 {
 // create the array list
 ArrayList bookList = new ArrayList();

 // add all the books
 // (formatted to fit in margins)
 bookList.Add(
 new Book(49.95f, "Programming ASP.NET",
 "100000000"));
 bookList.Add(
 new Book(49.95f,"Programming C#",
 "100000001"));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bookList.Add(
 new Book(34.99f,"Teach Yourself C++ In 21 Days",
 "067232072x"));
 bookList.Add(
 new Book(24.95f,"Teach Yourself C++ In 24 Hours",
 "0672315165"));
 bookList.Add(
 new Book(12.99f,"TY C++ In 10 Minutes",
 "067231603X"));
 bookList.Add(
 new Book(24.95f,"C++ Unleashed",
 "1199000663"));
 bookList.Add(
 new Book(29.99f,"C++ From Scratch",
 "0789720795"));
 bookList.Add(
 new Book(39.99f,"XML From Scratch",
 "0789723166"));

 // set the data source
 ddlBooks.DataSource=bookList;

 // bind to the data
 ddlBooks.DataBind();

 // shippingMethods array list stands in for
 // data retrieved from database
 ArrayList shippingMethods = new ArrayList();
 shippingMethods.Add("3rd Class");
 shippingMethods.Add("1st Class");
 shippingMethods.Add("Ground");
 shippingMethods.Add("2nd Day");
 shippingMethods.Add("Next Day");

 // set the data source for the dynamic
 // radio button list
 rbList.DataSource=shippingMethods;

 // bind the data
 rbList.DataBind();

 // extras array list stands in for
 // data retrieved from database
 ArrayList extras = new ArrayList();
 extras.Add("Gift Wrap");
 extras.Add("Gift Card");
 extras.Add("Book Mark");
 extras.Add("Autographed copy");
 extras.Add("Source Code");

 // set the data source for the
 // dynamic checkbox list

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cbList.DataSource=extras;

 // bind the data
 cbList.DataBind();
 }
 else // is post-back, form was submitted
 {
 // string builders to hold text from controls
 StringBuilder extrasChosen =
 new StringBuilder(" with these extras: ");
 StringBuilder shippingMethod =
 new StringBuilder(" We will ship ");

 // build up string of choices. if more than one choice
 // make them comma delmited
 int chosen = 0;
 for (int i = 0; i < cbList.Items.Count; i++)
 {
 // if the item was selected
 if (cbList.Items[i].Selected == true)
 {
 // if this is not the first item
 // add a comma after the previous
 // before adding this one
 chosen++;
 if (chosen > 1)
 extrasChosen.Append(", ");

 // add the item to the string builder
 extrasChosen.Append(cbList.Items[i].Text);

 }
 }

 // find the selected shipping method and add it
 // to the string builder
 for (int i = 0; i < rbList.Items.Count; i++)
 if (rbList.Items[i].Selected)
 shippingMethod.Append(rbList.Items[i].Text);

 // create the output text by concatenating the book title
 // isbn, the selected items and the shipping method
 lblMsg.Text = "Selected: " + ddlBooks.SelectedItem.Text +
 "(" + ddlBooks.SelectedItem.Value + ")" + extrasChosen +
 ". " + shippingMethod + ".";

 } // end else
 } // end page load
 } // end class
} // end namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is complexity in the details here, but the essential idea remains quite simple: you bind a data
source to a control. In this case, the data source was an ArrayList, but typically the data source will
be created with data from a database (see Chapter 11). In this example, you bound the data to a
radio button list and to a checkbox list so that you could dynamically create the controls based on the
data in the data source.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 10. List-Bound Controls, Part I
ASP.NET offers three related list-bound controls: Repeater, DataList, and DataGrid. These controls
support the display of repeating data such as database reports, shopping carts, menus, and query
results. These are among the most powerful controls in ASP.NET and mastering them is key to
creating viable commercial applications.

The Repeater is a lightweight control that derives directly from the base Control class. It is lookless,
which means that there is no predefined user interface or style; the developer is free to provide
virtually any look to the Repeater through the use of templates. Repeaters are ideal when the
developer must maintain complete control over the look and feel of the control.

Templates are HTML elements that define the content and rendering of a
Repeater or other control. You create a template as you would any HTML
element, for example:

<template name="myTemplate">
 Programming C#
</template>

Within the template you may nest other HTML elements such as labels and
text. Chapter 13 discusses templates in detail.

The DataList control derives from the BaseDataList class, as does the DataGrid. The BaseDataList
class derives in turn from the WebControl class, which derives from the Control class (see Figure 4-5
in Chapter 4, which depicts the relationship of controls in the System.Web.UI.WebControls
namespace). The DataList displays either a columnar or a normal HTML flow layout. It also provides
support for selection, editing, and deleting of items.

Flow layout describes how the text on an HTML page will be displayed. In
normal HTML the text is written across the page, in columnar layout the text is
arranged in columns.

The DataGrid displays its data in a table of columns and rows. Like the DataList, the DataGrid
provides style and appearance properties as well as selection and editing. The DataGrid also supports
sorting of columns and paging through the data. Unlike the DataList, the DataGrid does not support
template properties; the rows of the control cannot be controlled by templates. It is possible to add a
TemplateColumn object to the DataGrid, however, which allows the use of templates within that
column. We'll return to templates later in this chapter.

Table 10-1 illustrates the principal differences among the three list-bound controls.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 10-1. Features of the list-bound controls

Feature Repeater DataList DataGrid

Column layout No Yes No

Flow layout Yes Yes No

Paging No No Yes

Select/ Edit/Delete No Yes Yes

Sort No No Yes

Style properties No Yes Yes

Table layout No No Yes

Templates Yes Yes Columns/ optional

If you examine this table closely, you find that Repeaters have no look to them and offer only a flow
layout. They are entirely controlled by templates. DataLists offer either flow or column layout, and
their look is controlled by style properties and templates. DataLists also support selection, editing,
and deletion, but not sorting and paging. DataGrids, finally, support table layout only; their look is
controlled with style properties and optionally with column templates. They support not only
selection, editing, and deletion, but also sorting and paging.

This chapter introduces and discusses the DataGrid control using an ArrayList as the data source. In
Chapter 11, we'll explain how to access data in the database. Chapter 12 will discuss updating data
using ADO.NET. Then, in Chapter 13, we'll return to the DataGrid control to bind to a database and
continue the discussion of list-bound controls by examining the DataList and Repeater controls.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.1 Shared Properties and Collections

Before delving into the specifics of each list-bound control, this chapter will examine the features all
three controls share in common.

10.1.1 DataSource

All the list-bound controls have a DataSource property. This property defines the source for data
binding, as you've seen earlier with other controls. A DataSource can be any object that implements
the System.Collections.ICollection interface: an array, a dataset, or some other homogeneous
collection of objects. Often, the data source will be a System.Data.Dataview object, as discussed in
Chapter 11. For simplicity, in this chapter you will continue to use an ArrayList object, though you
can use any object that implements System.Collections.ICollection, such as a HashTable or an Array
object.

10.1.2 Items

The three list-bound controls also contain an Items property that returns a collection of objects
representing an item (row) in the data source collection. You use the Items collection to manipulate
the items in the list control programmatically.

The Repeater control's Items property returns a collection of RepeaterItem
objects, the DataList control's Items property returns a collection of
DataListItem objects, and the DataGrid control's Items property returns
DataGridItem objects.

The Items collection has an ItemType property that returns an enumerated ListItemType. The
members of the ListItemType enumeration are shown in Table 10-2.

Table 10-2. Members of the ListItemType enumeration

List item type Purpose

AlternatingItem Every other item

EditItem Used for in-place editing; see Chapter 13

Footer Display footer for control

Header Display header information for control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

List item type Purpose

Item Displays information about data item

Pager Display paging information

SelectedItem The item the user has selected

Separator Appears between items

Manipulation of the various types of members of the Items collection will be demonstrated
throughout the rest of this chapter.

All of the list-bound controls follow the explicit binding method. When its DataBind method is called,
the list-bound control enumerates its data source, creating DataListItems and initializing them from
the DataSource items. The DataListItem objects are then added to the list-bound control's Items
collection. Because this happens only on demand, there are fewer round trips to the server than
might otherwise be expected.

[Team LiB]

Item Displays information about data item

Pager Display paging information

SelectedItem The item the user has selected

Separator Appears between items

Manipulation of the various types of members of the Items collection will be demonstrated
throughout the rest of this chapter.

All of the list-bound controls follow the explicit binding method. When its DataBind method is called,
the list-bound control enumerates its data source, creating DataListItems and initializing them from
the DataSource items. The DataListItem objects are then added to the list-bound control's Items
collection. Because this happens only on demand, there are fewer round trips to the server than
might otherwise be expected.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.2 The DataGrid Control

The problem with predesigned user controls is typically that they are either simple and therefore too
limited to do what you want, or they are powerful and therefore so complex that they are very difficult to
learn. The DataGrid control attempts to overcome both of these constraints. Creating a simple DataGrid
control couldn't be much easier, yet there is enough power and complexity to keep you quite busy
tweaking and modifying the control to do exactly what you want.

To explore both the simplicity and the power of the DataGrid control, we'll use the process of successive
approximation to get something working quickly and then to keep it working while we enhance it.

10.2.1 Version 1: Displaying Data

In the first iteration, you'll create a DataGrid object and display some simple data. To get started, you
need a data source, in this case an ArrayList that you'll populate with Bug objects. You will define the Bug
class, and each Bug object will represent a single bug report. For now to keep it simple, you'll give the Bug
class a few fields to hold representative information about a given code bug. Example 10-1 is the definition
of the Bug class in C#; Example 10-2 is the same definition in VB.NET.

Example 10-1. The Bug class in C#

using System;

public class Bug
{
 // private instance variables
 private int bugID;
 private string title;
 private string reporter;
 private string product;
 private string version;
 private string description;
 private DateTime dateCreated;
 private string severity;

 // constructor
 public Bug(int id,
 string title, // for display
 string reporter, // who filed bug
 string product,
 string version,
 string description, // bug report
 DateTime dateCreated,
 string severity)
 {
 bugID = id;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.title = title;
 this.reporter = reporter;
 this.product = product;
 this.version = version;
 this.description = description;
 this.dateCreated = dateCreated;
 this.severity = severity;
 }

 // public read only properties
 public int BugID { get { return bugID; }}
 public string Title { get { return title; }}
 public string Reporter { get { return reporter; }}
 public string Product { get { return product; }}
 public string Version { get { return version; }}
 public string Description { get { return description; }}
 public DateTime DateCreated { get { return dateCreated; }}
 public string Severity { get { return severity; }}
}

Example 10-2. The Bug class in VB.NET

Public Class Bug
 Private _bugID As Int32
 Private _title As String
 Private _reporter As String
 Private _product As String
 Private _version As String
 Private _description As String
 Private _dateCreated As DateTime
 Private _severity As String

 Sub New(ByVal theID As Int32, _
 ByVal theTitle As String, _
 ByVal theReporter As String, _
 ByVal theProduct As String, _
 ByVal theVersion As String, _
 ByVal theDescription As String, _
 ByVal theDateCreated As DateTime, _
 ByVal theSeverity As String)

 _bugID = theID
 _title = theTitle
 _reporter = theReporter
 _product = theProduct
 _version = theVersion
 _description = theDescription
 _dateCreated = theDateCreated
 _severity = theSeverity
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public ReadOnly Property BugID() As Int32
 Get
 BugID = _bugID
 End Get
 End Property

 Public ReadOnly Property Title() As String
 Get
 Title = _title
 End Get
 End Property

 Public ReadOnly Property Reporter() As String
 Get
 Reporter = _reporter
 End Get
 End Property

 Public ReadOnly Property Product() As String
 Get
 Product = _product
 End Get
 End Property

 Public ReadOnly Property Version() As String
 Get
 Version = _version
 End Get
 End Property

 Public ReadOnly Property Description() As String
 Get
 Description = _description
 End Get
 End Property

 Public ReadOnly Property DateCreated() As String
 Get
 DateCreated = _dateCreated
 End Get
 End Property

 Public ReadOnly Property Severity() As String
 Get
 Severity = _severity
 End Get
 End Property

End Class

The Bug class consists of nothing except a number of private members and read-only properties to
retrieve these values. In addition, there is a constructor to initialize the values. The reporter member

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variable (_reporter) stores the name of the person reporting the bug, the product and version (_product
and _version) are strings that represent the specific product that has the bug. The description field holds
the full description of the bug, while title is a short summary to be displayed in the data grid.

The .aspx file simply creates a DataGrid within a form. The only attribute is the ID and, of course,
runat="server ", as you would expect in any ASP web control. The complete .aspx file is shown in

Example 10-3 .

Example 10-3. The .aspx file

<%@ Page language="c#"
Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false"
Inherits="WebApplication1.WebForm1" %>

<html>
 <head>
 <meta name=vs_targetSchema content="Internet Explorer 5.0">
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 </head>
 <body>
 <form runat="server" ID="Form1">
 <asp:DataGrid id="dataGrid1" runat="server" />
 </form>
 </body>
</html>

All that is left is to bind the data. This is accomplished in the Page_Load method in the code-behind file. If
the page is not being posted back, you call a helper method, BindGrid.

BindGrid creates a new ArrayList named bugs and populates it with a couple of instances of the Bug class.
It then sets dataGrid1's DataSource property to the bugs ArrayList object and calls BindGrid. The complete
C# code-behind file is shown in Example 10-4 , with the complete VB.NET code shown in Example 10-5

Example 10-4. The code-behind file in C#

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace DataGridBindAllColumnsBugs
{
 public class WebForm1 : System.Web.UI.Page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 // declare the controls on the web page
 protected System.Web.UI.WebControls.DataGrid
 dataGrid1;

 public WebForm1()
 {
 Page.Init +=
 new System.EventHandler(Page_Init);
 }

 private void Page_Load(
 object sender, System.EventArgs e)
 {
 // if this is the first time
 // the page is to be displayed
 // bind the data
 if (!IsPostBack)
 {
 BindGrid();
 }
 }

 private void Page_Init(
 object sender, EventArgs e)
 {
 InitializeComponent();
 }
 void BindGrid()
 {
 // create the data source
 // add a couple bug objects
 ArrayList bugs = new ArrayList();
 bugs.Add(
 new Bug(
 101,
 "Bad Property Value",
 "Jesse Liberty",
 "XBugs",
 "0.01",
 "Property values incorrect",
 DateTime.Now,
 "High"
) // end new bug
); // end add

 bugs.Add(
 new Bug(
 102,
 "Doesn't load properly",
 "Dan Hurwitz",
 "XBugs",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "0.01",
 "The system fails with error x2397",
 DateTime.Now,
 "Medium"
) // end new bug
); // end add

 // assign the data source
 dataGrid1.DataSource=bugs;

 // bind the grid
 dataGrid1.DataBind();

 }
 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load +=
 new System.EventHandler(this.Page_Load);

 }
 #endregion
 }

 // the Bug class
 public class Bug
 {
 // private instance variables
 private int bugID;
 private string title;
 private string reporter;
 private string product;
 private string version;
 private string description;
 private DateTime dateCreated;
 private string severity;

 // constructor
 public Bug(int id,
 string title, // for display
 string reporter, // who filed bug
 string product,
 string version,
 string description, // bug report
 DateTime dateCreated,
 string severity)
 {
 bugID = id;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.title = title;
 this.reporter = reporter;
 this.product = product;
 this.version = version;
 this.description = description;
 this.dateCreated = dateCreated;
 this.severity = severity;
 }

 // public read only properties
 public int BugID
 { get { return bugID; }}
 public string Title
 { get { return title; }}
 public string Reporter
 { get { return reporter; }}
 public string Product
 { get { return product; }}
 public string Version
 { get { return version; }}
 public string Description
 { get { return description; }}
 public DateTime DateCreated
 { get { return dateCreated; }}
 public string Severity
 { get { return severity; }}

 }
}

Example 10-5. The complete code-behind file in VB.NET

Public Class WebForm1
 Inherits System.Web.UI.Page
 Protected WithEvents dataGrid1 As System.Web.UI.WebControls.DataGrid

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object)
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 If Not IsPostBack Then
 BindGrid()
 End If
 End Sub

 Private Sub BindGrid()
 Dim bugs As New ArrayList()
 bugs.Add(New Bug(101, _
 "BadProperty Value", _
 "Jesse Liberty", _
 "XBugs", _
 "0.01", _
 "Property values incorrect", _
 DateTime.Now, _
 "High") _
)
 bugs.Add(_
 New Bug(_
 102, _
 "Doesn't load properly", _
 "Dan Hurwitz", _
 "XBugs", _
 "0.01", _
 "The system fails with error x2397", _
 DateTime.Now, _
 "Medium") _
)

 dataGrid1.DataSource = bugs
 dataGrid1.DataBind()

 End Sub

End Class

Public Class Bug
 Private _bugID As Int32
 Private _title As String
 Private _reporter As String
 Private _product As String
 Private _version As String
 Private _description As String
 Private _dateCreated As DateTime
 Private _severity As String

 Sub New(ByVal theID As Int32, _
 ByVal theTitle As String, _
 ByVal theReporter As String, _
 ByVal theProduct As String, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ByVal theVersion As String, _
 ByVal theDescription As String, _
 ByVal theDateCreated As DateTime, _
 ByVal theSeverity As String)

 _bugID = theID
 _title = theTitle
 _reporter = theReporter
 _product = theProduct
 _version = theVersion
 _description = theDescription
 _dateCreated = theDateCreated
 _severity = theSeverity
 End Sub

 Public ReadOnly Property BugID() As Int32
 Get
 BugID = _bugID
 End Get
 End Property

 Public ReadOnly Property Title() As String
 Get
 Title = _title
 End Get
 End Property

 Public ReadOnly Property Reporter() As String
 Get
 Reporter = _reporter
 End Get
 End Property

 Public ReadOnly Property Product() As String
 Get
 Product = _product
 End Get
 End Property

 Public ReadOnly Property Version() As String
 Get
 Version = _version
 End Get
 End Property

 Public ReadOnly Property Description() As String
 Get
 Description = _description
 End Get
 End Property

 Public ReadOnly Property DateCreated() As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Get
 DateCreated = _dateCreated
 End Get
 End Property

 Public ReadOnly Property Severity() As String
 Get
 Severity = _severity
 End Get
 End Property

End Class

When the page is loaded, Page_Load is called, which in turn calls BindGrid. In BindGrid, the bugs ArrayList
object is created, and two instances of Bug are added, each representing a bug. The DataSource property
of DataGrid1 is set, and DataBind is called. The data grid binds each of the properties in Bug to a column in
the data grid. The result is shown in Figure 10-1 .

Figure 10-1. Displaying the bugs

This result is both spectacular and unacceptable. It is spectacular because you've done so little work to
display this data from your data source. You did nothing more than bind the collection to the data grid, and
ASP.NET took care of the rest. It is unacceptable because this is not how you want the grid to look: the
columns are in the wrong order, there is data you don't want to display, there is no link to a detail record,
and so forth.

Before you improve on this version of the Bug display page, however, take a close look at Figure 10-1 .
Notice that there is a header on each column! The data grid picked up the title for each column from the
Bug object. The default column header is the name of the property.

10.2.2 Version 2: Controlling the Columns

In the next iteration of this program, you'll eliminate the Description column, add a link to a details page
(where you can display the description), change the order of the columns, and color the Severity red if it is
marked "high." Piece of cake. The result is shown in Figure 10-2 .

Figure 10-2. Taking control of Data Grid columns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The complete .aspx page is shown in Example 10-6 and is analyzed in detail in the pages that follow.

Example 10-6. Completed .aspx file

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="DataGridMasterDetailNew.WebForm1" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<html>
 <head>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name=vs_defaultClientScript content="JavaScript (ECMAScript)">
 <meta name=vs_targetSchema content="http://schemas.microsoft.com/intellisense/ie5">
 </head>
 <body MS_POSITIONING="GridLayout">

 <form runat="server" ID="Form1">
 <asp:DataGrid id="dataGrid1"
 OnItemDataBound="OnItemDataBoundEventHandler"
 AutoGenerateColumns="False"
 CellPadding="5"
 HeaderStyle-BackColor="PapayaWhip"
 BorderWidth="5px"
 BorderColor="#000099"
 AlternatingItemStyle-BackColor="LightGrey"
 HeaderStyle-Font-Bold="True"
 runat="server">
 <Columns>
 <asp:HyperLinkColumn HeaderText="Bug ID"
 DataTextField="BugID" DataNavigateUrlField="BugID"
 DataNavigateUrlFormatString="details.aspx?bugID={0}" />
 <asp:BoundColumn DataField="Title" HeaderText="Bug Title" />
 <asp:BoundColumn DataField="Reporter" HeaderText="Reported by" />
 <asp:BoundColumn DataField="Product" HeaderText="Product" />
 <asp:BoundColumn DataField="Version" HeaderText="Version" />
 <asp:BoundColumn DataField="DateCreated"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HeaderText="Date Created" />
 <asp:BoundColumn DataField="Severity" HeaderText="Severity" />
 </Columns>
 </asp:DataGrid>
 </form>
 </body>
</html>

In the VB.NET version, besides the page directive difference, we do not include this
line in the HTML:

OnItemDataBound="OnItemDataBoundEventHandler"

The complete code-behind file in C# is shown in Example 10-7 , and in VB.NET in Example 10-8 .

Example 10-7. Implementing events with data grids in C#

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace DataGridMasterDetail
{
 public class WebForm1 : System.Web.UI.Page
 {

 protected System.Web.UI.WebControls.DataGrid dataGrid1;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!IsPostBack)
 {
 BindGrid();
 }
 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 // Handle the ItemDataBound event
 protected void OnItemDataBoundEventHandler(Object sender, DataGridItemEventArgs e)
 {

 // Don't bother for header, footer and separator items
 ListItemType itemType = (ListItemType)e.Item.ItemType;
 if (itemType == ListItemType.Header ||
 itemType == ListItemType.Footer ||
 itemType == ListItemType.Separator)
 return;

 // e.Item.DataItem is the data for the item
 Bug bug = (Bug)e.Item.DataItem;

 // check the severity for this item
 // if it is high, set the cell to red
 if (bug.Severity == "High")
 {
 // this would make the entire entry red
 // e.Item.ForeColor = Color.FromName("red");

 // get just the cell we want
 TableCell severityCell = (TableCell)e.Item.Controls[6];

 // set that cell's forecolor to red
 severityCell.ForeColor = Color.FromName("Red");
 }
 }
 void BindGrid()
 {
 ArrayList bugs = new ArrayList();
 bugs.Add(
 new Bug(
 101,
 "Bad Property Value",
 "Jesse Liberty",
 "XBugs",
 "0.01",
 "Property values incorrect when you enter a new type",
 DateTime.Now,
 "High"
)
);

 bugs.Add(
 new Bug(
 102,
 "Doesn't load properly",
 "Dan Hurwitz",
 "XBugs",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "0.01",
 "The system fails on load with error x2397",
 DateTime.Now,
 "High"
)
);

 bugs.Add(
 new Bug(
 103,
 "Hangs on exit",
 "Jack Ryan",
 "XBugs",
 "0.01",
 "When you press close, it hangs",
 DateTime.Now,
 "High"
)
);

 bugs.Add(
 new Bug(
 104,
 "Wrong data",
 "Demetri Karamazov",
 "XBugs",
 "0.01",
 "The data does not match the DB",
 DateTime.Now,
 "Medium"
)
);

 dataGrid1.DataSource=bugs;
 dataGrid1.DataBind();

 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }
 public class Bug
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private int bugID;
 private string title;
 private string reporter;
 private string product;
 private string version;
 private string description;
 private DateTime dateCreated;
 private string severity;

 public Bug(int id, string title, string reporter,
 string product, string version,
 string description, DateTime dateCreated,
 string severity)
 {
 bugID = id;
 this.title = title;
 this.reporter = reporter;
 this.product = product;
 this.version = version;
 this.description = description;
 this.dateCreated = dateCreated;
 this.severity = severity;
 }
 public int BugID { get { return bugID; }}
 public string Title { get { return title; }}
 public string Reporter { get { return reporter; }}
 public string Product { get { return product; }}
 public string Version { get { return version; }}
 public string Description { get { return description;}}
 public DateTime DateCreated { get { return dateCreated;}}
 public string Severity { get { return severity; }}
 }
}

Example 10-8. Implementing events with data grids in VB.NET

Public Class WebForm1
 Inherits System.Web.UI.Page
 Protected WithEvents dataGrid1 As System.Web.UI.WebControls.DataGrid

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object)
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 If Not IsPostBack Then
 BindGrid()
 End If
 End Sub

 Private Sub BindGrid()
 Dim bugs As New ArrayList()
 bugs.Add(New Bug(101, _
 "BadProperty Value", _
 "Jesse Liberty", _
 "XBugs", _
 "0.01", _
 "Property values incorrect", _
 DateTime.Now, _
 "High") _
)
 bugs.Add(_
 New Bug(_
 102, _
 "Doesn't load properly", _
 "Dan Hurwitz", _
 "XBugs", _
 "0.01", _
 "The system fails with error x2397", _
 DateTime.Now, _
 "High") _
)

 bugs.Add(_
 New Bug(_
 103, _
 "Hangs on exit", _
 "Jack Ryan", _
 "XBugs", _
 "0.01", _
 "When you press close, it hangs", _
 DateTime.Now, _
 "High") _
)

 bugs.Add(_
 New Bug(_
 104, _
 "Wrong data", _
 "Demetri Karamazov", _
 "XBugs", _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "0.01", _
 "The data does not match the DB", _
 DateTime.Now, _
 "Medium") _
)

 dataGrid1.DataSource = bugs
 dataGrid1.DataBind()

 End Sub

 ' handle the item data bound event
 Protected Sub OnItemDataBoundEventHandler(_
 ByVal sender As System.Object, _
 ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs)

 ' Don't bother for the header, footer or separator type
 Dim itemType As ListItemType
 itemType = e.Item.ItemType
 If itemType = ListItemType.Header Or _
 itemType = ListItemType.Footer Or _
 itemType = ListItemType.Separator Then
 Exit Sub
 End If

 ' e.item.dataItem is the data for the item
 Dim theBug As Bug
 theBug = e.Item.DataItem

 ' check the severity of this item
 ' if it is high, set the cell to red
 If theBug.Severity = "High" Then
 Dim severityCell As TableCell

 ' just get the cell you want
 severityCell = e.Item.Controls(6)

 ' set the cell's foreground color to red
 severityCell.ForeColor = Color.FromName("Red")
 End If

 Dim linkCell As TableCell
 linkCell = e.Item.Controls(0)
 Dim h As HyperLink
 h = linkCell.Controls(0)
 h.NavigateUrl = "details.aspx?bugID=" & theBug.BugID

 End Sub
End Class

Public Class Bug

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private _bugID As Int32
 Private _title As String
 Private _reporter As String
 Private _product As String
 Private _version As String
 Private _description As String
 Private _dateCreated As DateTime
 Private _severity As String

 Sub New(ByVal theID As Int32, _
 ByVal theTitle As String, _
 ByVal theReporter As String, _
 ByVal theProduct As String, _
 ByVal theVersion As String, _
 ByVal theDescription As String, _
 ByVal theDateCreated As DateTime, _
 ByVal theSeverity As String)

 _bugID = theID
 _title = theTitle
 _reporter = theReporter
 _product = theProduct
 _version = theVersion
 _description = theDescription
 _dateCreated = theDateCreated
 _severity = theSeverity
 End Sub

 Public ReadOnly Property BugID() As Int32
 Get
 BugID = _bugID
 End Get
 End Property

 Public ReadOnly Property Title() As String
 Get
 Title = _title
 End Get
 End Property

 Public ReadOnly Property Reporter() As String
 Get
 Reporter = _reporter
 End Get
 End Property

 Public ReadOnly Property Product() As String
 Get
 Product = _product
 End Get
 End Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public ReadOnly Property Version() As String
 Get
 Version = _version
 End Get
 End Property

 Public ReadOnly Property Description() As String
 Get
 Description = _description
 End Get
 End Property

 Public ReadOnly Property DateCreated() As String
 Get
 DateCreated = _dateCreated
 End Get
 End Property

 Public ReadOnly Property Severity() As String
 Get
 Severity = _severity
 End Get
 End Property
End Class

10.2.2.1 Data-bound columns

The key changes to the DataGrid declaration are to add two attributes: AutoGenerateColumns and (for the
C# example) OnItemDataBound . In addition, a number of style attributes are set to make the DataGrid
look a bit nicer. The following is the replacement DataGrid tag for the one shown in Example 10-2 .

<asp:DataGrid id="dataGrid1"
AutoGenerateColumns="False"
OnItemDataBound="OnItemDataBoundEventHandler"
CellPadding="5"
HeaderStyle-BackColor="PapayaWhip"
BorderWidth ="5px"
BorderColor = "#000099"
AlternatingItemStyle-BackColor ="LightGrey"
HeaderStyle-Font-Bold
runat="server" >

AutoGenerateColumns is set to false , so that the data grid will not automatically add a column for every

property it finds for the Bug object. You are now free to add bound columns for the data you do want to
display, in whatever order you choose.

Bound columns are added within a Columns tag that acts as a subcontrol for the DataGrid object, as

follows:

<Columns>

</Columns>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Between the opening and the closing tags, you'll add the various bound columns:

<Columns>
 <asp:HyperLinkColumn HeaderText="Bug ID"
 DataTextField="BugID" DataNavigateUrlField="BugID"
 DataNavigateUrlFormatString="details.aspx?bugID={0}" />
 <asp:BoundColumn DataField="Title" HeaderText="Bug Title"/>
 <asp:BoundColumn DataField="Reporter" HeaderText="Reported by"/>
 <asp:BoundColumn DataField="Product" HeaderText="Product"/>
 <asp:BoundColumn DataField="Version" HeaderText="Version"/>
 <asp:BoundColumn DataField="DateCreated" HeaderText="Date Created"/>
 <asp:BoundColumn DataField="Severity" HeaderText="Severity"/>
</Columns>

Skip over the first column for now and look at the remaining ones, which are all simple BoundColumn
elements. Each is given a DataField attribute to identify which property of the Bug object holds the data
for that field, and a HeaderText attribute that defines a caption for that column's header.

Go back and look at the very first column that you skipped over previously.

<asp:HyperLinkColumn HeaderText="Bug ID"
 DataTextField="BugID" DataNavigateUrlField="BugID"
 DataNavigateUrlFormatString="details.aspx?bugID={0}" />

The job of the first column is not just to display the bug ID, but also to provide a link to the detail page for
that bug. This is accomplished by creating an anchor tag using the HyperLinkColumn element.

The text to be displayed is taken from the data as defined by the DataTextField attribute. In this case,

the text will be the value of the BugID property of the Bug object in the data grid's data source collection.
The header to display for this column is set by the HeaderText attribute (in this case "Bug ID").

The link is created by the combination of the DataNavigateUrlField and DataNavigateUrlFormatString
attributes. The {0} symbol is a substitution parameter . ASP.NET knows to substitute the value in the
DataNavigateUrlField (the bug ID) for the parameter {0} in DataNavigateUrlFormatString If, for
example, the current record's BugID is 101, the link created will be details.aspx?bugID=101 .

10.2.2.2 Handling the ItemDataBound event

The ItemDataBound event is fired every time a data item is bound to a control. The OnItemDataBound

attribute of the DataGrid control sets the method that will be called when the ItemDataBound event is
fired, as the following fragment from the DataGrid tag shows:

OnItemDataBound="OnItemDataBoundEventHandler"

When the event fires, the event handler method is called. At that time, you can fix up the item in the data
grid based on the contents of the data item. In this example, you'll set the value to display in red if the
severity is High.

Remember, the item is the element in the data grid and the data item is the data
associated with that item from the collection that is the data grid's data source .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Your OnItemDataBoundEventHandler must take two parameters: an object and a DataGridItemEventArgs
type. You may of course name these arguments whatever you like. Visual Studio .NET will name them
sender and e , respectively, when you declare the event handler.

The DataGridItemEventArgs object (e) has an Item property (e.Item) which returns the referenced item

from the DataGrid control. That is, e.Item returns the item in the DataGrid that raised the event.

This item returned by e.Item is an object of type DataGridItem. As mentioned earlier, the DataGridItem
class has an ItemType property (e.Item.ItemType) which returns a member of the ListItemType

enumeration. You examine that value to see if it is equal to one of the enumerated types you want to
ignore (Header , Footer , Separator), and if so, you return immediately, taking no further action on this

item. In C#, this looks like:

ListItemType itemType = (ListItemType) e.Item.ItemType;
if (itemType == ListItemType.Header ||
 itemType == ListItemType.Footer ||
 itemType == ListItemType.Separator)
 return;

In VB.NET, the code is:

Dim itemType As ListItemType
itemType = CType(e.Item.ItemType, ListItemType)
If itemType = ListItemType.Header Or _
 itemType = ListItemType.Footer Or _
 itemType = ListItemType.Separator Then
 Return
End If

Assuming you do have an item of a type you care about, you want to extract the actual data item that this
row in the grid will represent. You go back to the object returned by the Item property, which you will
remember is a DataGridItem object. The DataGridItem object has another property, DataItem, which gets
us the actual Bug object from the collection that is this data grid's data source, as the following C# code
fragment illustrates:

Bug bug = (Bug)e.Item.DataItem;

In VB.NET, the equivalent is:

Dim theBug As Bug
theBug = CType(e.Item.DataItem, Bug)

Bug is a class, and thus a reference object; therefore bug is a reference to the actual Bug object rather

than a copy.

The relationships among the data grid objects can be a bit confusing and are worth a quick review. There
are five objects involved in the previous scenario:

The data grid (DataGrid1)

The ArrayList (bugList), which acts as the data source to the data grid

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The DataGridItemEventArgs object, which is passed as the second parameter (e) to your designated

event handler (OnItemDataBoundEventHandler) each time an item is added to the grid

The DataGridItem object that raised the event and a reference to which you can get from the Item
property of the DataGridItemEventArgs object (e.Item)

The Bug that is being added to the data grid, which you can get to through the DataItem property of
the DataGridItemEventArgs object (e.Item.DataItem)

10.2.2.3 Conditionally setting the severity color

Each time a data item is bound, the OnItemDataBoundEventHandler event handler is called, and you have
an opportunity to examine the data and take action based on the specific data item being added. In this
example, you'll check the severity of the bug, and if it is high, you'll set the color of that column to red.

To do so, you start with the Bug object, which in C# would be written:

Bug bug = (Bug)e.Item.DataItem;

The equivalent in VB.NET is:

Dim theBug As Bug
theBug = CType(e.Item.DataItem, Bug)

Severity is a property of the Bug object, illustrated here in C#:

if (bug.Severity == "High")
{

In VB.NET, it is:

If theBug.Severity = "High" Then

To set the entire row to red, just set the ForeColor property for the item:

e.Item.ForeColor = Color.FromName("red");

FromName is a static method of the Color class, which in turn is a class provided by the System.Drawing
namespace in the .NET Framework.

You've set the row red, but in this example you want to set only a single cell. The DataGridItem object has
a Controls collection that represents all the child controls for that DataGrid item. Controls is of type
ControlCollection and supplies a zero-based indexer that you can use like an array. The cell you want for
the bugID is the seventh in the Controls collection, which in C# you specify using:

TableCell severityCell = (TableCell)e.Item.Controls[6];

Once you have that cell, you can set the properties of that TableCell object:

severityCell.ForeColor = Color.FromName("Red");

In VB.NET, these lines of code are:

Dim severityCell As TableCell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

severityCell = e.Item.Controls(6)
severityCell.ForeColor = Color.FromName("Red")

10.2.2.4 Creating the hyperlink

In this example you have set the URL through the DataNavigateUrlField and the
DataNavigateUrlFormatString attributes. It is possible, however, that you want to set the URL based

not on a single attribute of the data item, but on a computation you'd like to make when the item is added
to the grid. In that case, you can remove these two attributes from the declaration, and update the URL
when you process the ItemDataBound event.

To set the anchor tag, you need the Hyperlink object within the first cell of the table. You start by getting
the TableCell object, in this case the first cell in the row, which in C# looks like:

TableCell linkCell = (TableCell)e.Item.Controls[0];

In VB.NET, this is done using:

Dim linkCell As TableCell
linkCell = CType(e.Item.Controls(0), TableCell)

The table cell itself has child controls. The first child control is the hyperlink. The hyperlink was placed in
that cell when the HyperLinkColumn was created in the .aspx file:

<asp:HyperlinkColumn HeaderText="BugID" DataTextField="BugID" />

You extract the HyperLink object from the TableCell by casting the first element in the collection to type
HyperLink:

HyperLink h = (HyperLink) linkCell.Controls[0];

In VB.NET, this is done using:

Dim h As HyperLink
h = CType(linkCell.Controls(0), HyperLink)

The HyperLink object has a NavigateUrl property. You can now set that to whatever string you like. For
example, to accomplish the same work you did with the DataNavigateUrlField and the
DataNavigateUrlFormatString attributes, you can set the NavigateUrl property in C# as follows:

h.NavigateUrl = "details.aspx?bugID=" + bug.BugID;

In VB.NET, use:

h.NavigateUrl = "details.aspx?bugID=" & theBug.BugID

10.2.3 Version 3: The Details Page

In the next version, you'll create the details page that the data grid links to. In addition, you'll add a footer
to the data grid that summarizes how many bugs were found.

Example 10-9 is the modified C# code for the code-behind page, and Example 10-10 is the modified

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB.NET code for the code-behind page. Detailed analysis follows the listings.

Example 10-9. Modified to handle footer and details page (C#)

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace DataGridMasterDetailNew
{
 public class WebForm1 : System.Web.UI.Page
 {

 protected System.Web.UI.WebControls.DataGrid dataGrid1;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!IsPostBack)
 {
 BindGrid();
 }
 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }
 protected void OnItemCreatedEventHandler(
 Object sender, DataGridItemEventArgs e)
 {
 ListItemType itemType = (ListItemType)e.Item.ItemType;
 if (itemType == ListItemType.Footer)
 {
 // get the number of cells
 int numberOfCells = e.Item.Cells.Count;

 // remove all the cells except the last
 for (int i = 0; i < numberOfCells - 1; i++)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 e.Item.Cells.RemoveAt(0);
 }

 // create string to report number
 // of bugs found
 int numberOfBugs = dataGrid1.Items.Count;
 string msg;
 if (numberOfBugs > 0)
 {
 msg = "" + numberOfBugs.ToString() + " bugs.";
 }
 else
 {
 msg = "No bugs found.";
 }

 // get the one remaining cell
 TableCell msgCell = e.Item.Cells[0];
 msgCell.Text = msg;
 msgCell.ColumnSpan=numberOfCells;
 msgCell.HorizontalAlign = HorizontalAlign.Right;
 }
 }
 protected void OnItemDataBoundEventHandler(
 Object sender, DataGridItemEventArgs e)
 {

 // Don't bother for header, footer and separator items
 ListItemType itemType = (ListItemType)e.Item.ItemType;
 if (itemType == ListItemType.Header ||
 itemType == ListItemType.Footer ||
 itemType == ListItemType.Separator)
 return;

 // e.Item.DataItem is the data for the item
 Bug bug = (Bug)e.Item.DataItem;

 // check the severity for this item
 // if it is high, set the cell to red
 if (bug.Severity == "High")
 {
 // this would make the entire entry red
 // e.Item.ForeColor = Color.FromName("red");

 // get just the cell we want
 TableCell severityCell = (TableCell)e.Item.Controls[6];

 // set that cell's forecolor to red
 severityCell.ForeColor = Color.FromName("Red");
 }

 // get a reference to the HyperLink control in the first column

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TableCell linkCell = (TableCell)e.Item.Controls[0];

 // Controls[0] the hyperlink
 HyperLink h = (HyperLink) linkCell.Controls[0];

 // create the link to the detail page
 h.NavigateUrl = "details.aspx?bugID=" + bug.BugID;
 }
 void BindGrid()
 {
 ArrayList bugs = new ArrayList();
 bugs.Add(
 new Bug(
 101,
 "Bad Property Value",
 "Jesse Liberty",
 "XBugs",
 "0.01",
 "Property values incorrect when you enter a new type",
 DateTime.Now,
 "High"
)
);

 bugs.Add(
 new Bug(
 102,
 "Doesn't load properly",
 "Dan Hurwitz",
 "XBugs",
 "0.01",
 "The system fails on load with error x2397",
 DateTime.Now,
 "High"
)
);

 bugs.Add(
 new Bug(
 103,
 "Hangs on exit",
 "Jack Ryan",
 "XBugs",
 "0.01",
 "When you press close, it hangs",
 DateTime.Now,
 "High"
)
);

 bugs.Add(
 new Bug(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 104,
 "Wrong data",
 "Demetri Karamazov",
 "XBugs",
 "0.01",
 "The data does not match the DB",
 DateTime.Now,
 "Medium"
)
);

 dataGrid1.DataSource=bugs;
 dataGrid1.DataBind();
 Session["bugList"] = bugs;

 }

 #region Web Form Designer generated code
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }

 public class Bug
 {
 private int bugID;
 private string title;
 private string reporter;
 private string product;
 private string version;
 private string description;
 private DateTime dateCreated;
 private string severity;

 public Bug(int id, string title, string reporter,
 string product, string version,
 string description, DateTime dateCreated,
 string severity)
 {
 bugID = id;
 this.title = title;
 this.reporter = reporter;
 this.product = product;
 this.version = version;
 this.description = description;
 this.dateCreated = dateCreated;
 this.severity = severity;
 }
 public int BugID { get { return bugID; }}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public string Title { get { return title; }}
 public string Reporter { get { return reporter;}}
 public string Product { get { return product; }}
 public string Version { get { return version; }}
 public string Description { get { return description; }}
 public DateTime DateCreated { get { return dateCreated; }}
 public string Severity { get { return severity; }}
 }
}

Example 10-10. Modified to handle footer and details page (VB.NET)

Public Class WebForm1
 Inherits System.Web.UI.Page
 Protected WithEvents dataGrid1 As System.Web.UI.WebControls.DataGrid

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object)
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 If Not IsPostBack Then
 BindGrid()
 End If
 End Sub

 Private Sub BindGrid()
 Dim bugs As New ArrayList()
 bugs.Add(New Bug(101, _
 "BadProperty Value", _
 "Jesse Liberty", _
 "XBugs", _
 "0.01", _
 "Property values incorrect", _
 DateTime.Now, _
 "High") _
)
 bugs.Add(_
 New Bug(_

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 102, _
 "Doesn't load properly", _
 "Dan Hurwitz", _
 "XBugs", _
 "0.01", _
 "The system fails with error x2397", _
 DateTime.Now, _
 "High") _
)

 bugs.Add(_
 New Bug(_
 103, _
 "Hangs on exit", _
 "Jack Ryan", _
 "XBugs", _
 "0.01", _
 "When you press close, it hangs", _
 DateTime.Now, _
 "High") _
)

 bugs.Add(_
 New Bug(_
 104, _
 "Wrong data", _
 "Demetri Karamazov", _
 "XBugs", _
 "0.01", _
 "The data does not match the DB", _
 DateTime.Now, _
 "Medium") _
)

 dataGrid1.DataSource = bugs
 dataGrid1.DataBind()
 Session("BugList") = bugs

 End Sub

 ' Event handler for when items are created
 Protected Sub OnItemCreatedEventHandler(_
 ByVal sender As System.Object, _
 ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs)
 Dim itemType As ListItemType
 itemType = e.Item.ItemType
 If itemType = ListItemType.Footer Then

 ' get the number of cells
 Dim numberOfCells As Int32
 numberOfCells = e.Item.Cells.Count

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' remove all cells except the last
 Dim i As Integer
 For i = 0 To numberOfCells - 2
 e.Item.Cells.RemoveAt(0)
 Next

 ' create string to report number
 ' of bugs found
 Dim numberOfBugs As Int32
 numberOfBugs = dataGrid1.Items.Count
 Dim msg As String
 If numberOfBugs > 0 Then
 msg = "" & numberOfBugs.ToString & " bugs."
 Else
 msg = "No bugs found"
 End If

 ' get the one remaining cell
 ' fill it with number bugs found
 Dim msgCell As TableCell
 msgCell = e.Item.Cells(0)
 msgCell.Text = msg
 msgCell.ColumnSpan = numberOfCells
 msgCell.HorizontalAlign = HorizontalAlign.Right

 End If
 End Sub

 ' handle item data bound event
 Protected Sub OnItemDataBoundEventHandler(_
 ByVal sender As System.Object, _
 ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs)

 Dim itemType As ListItemType
 itemType = e.Item.ItemType

 ' don't bother for header footer or separator
 If itemType = ListItemType.Header Or _
 itemType = ListItemType.Footer Or _
 itemType = ListItemType.Separator Then
 Exit Sub
 End If

 'e.item.dataitem is the data for the item
 Dim theBug As Bug
 theBug = e.Item.DataItem

 ' if the severity is high, color it red
 If theBug.Severity = "High" Then
 Dim severityCell As TableCell
 severityCell = e.Item.Controls(6)
 severityCell.ForeColor = Color.FromName("Red")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

 ' get a reference to the hyperlink control in the first oclumn
 Dim linkCell As TableCell
 linkCell = e.Item.Controls(0)

 ' get the hyperlink
 Dim h As HyperLink
 h = linkCell.Controls(0)

 ' create a link to the detail page
 h.NavigateUrl = "details.aspx?bugID=" & theBug.BugID

 End Sub
End Class

Public Class Bug
 Private _bugID As Int32
 Private _title As String
 Private _reporter As String
 Private _product As String
 Private _version As String
 Private _description As String
 Private _dateCreated As DateTime
 Private _severity As String

 Sub New(ByVal theID As Int32, _
 ByVal theTitle As String, _
 ByVal theReporter As String, _
 ByVal theProduct As String, _
 ByVal theVersion As String, _
 ByVal theDescription As String, _
 ByVal theDateCreated As DateTime, _
 ByVal theSeverity As String)

 _bugID = theID
 _title = theTitle
 _reporter = theReporter
 _product = theProduct
 _version = theVersion
 _description = theDescription
 _dateCreated = theDateCreated
 _severity = theSeverity
 End Sub

 Public ReadOnly Property BugID() As Int32
 Get
 BugID = _bugID
 End Get
 End Property

 Public ReadOnly Property Title() As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Get
 Title = _title
 End Get
 End Property

 Public ReadOnly Property Reporter() As String
 Get
 Reporter = _reporter
 End Get
 End Property

 Public ReadOnly Property Product() As String
 Get
 Product = _product
 End Get
 End Property

 Public ReadOnly Property Version() As String
 Get
 Version = _version
 End Get
 End Property

 Public ReadOnly Property Description() As String
 Get
 Description = _description
 End Get
 End Property

 Public ReadOnly Property DateCreated() As String
 Get
 DateCreated = _dateCreated
 End Get
 End Property

 Public ReadOnly Property Severity() As String
 Get
 Severity = _severity
 End Get
 End Property
End Class

10.2.3.1 Summary footer

To add the summary, you must tell the data grid to show its footer. This is set declaratively, as an
attribute in the data grid declaration, as follows:

<form runat="server" ID="Form1">
 <asp:DataGrid id="dataGrid1"
 ShowFooter="True"
 FooterStyle-BackColor="Yellow"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To populate the footer you'll want to handle the ItemCreated event. This event is raised when an item in
the data grid is created. You are particularly interested in the event that will be raised when the footer
item is created, because you want to manipulate this item. For C#, you'll add an attribute to the DataGrid

declaration for this event, just as you did for the ItemDataBound event. Here is the complete declaration
of the data grid:

<asp:DataGrid id="dataGrid1"
OnItemDataBound="OnItemDataBoundEventHandler"
OnItemCreated="OnItemCreatedEventHandler"
AutoGenerateColumns="False"
CellPadding="5"
HeaderStyle-BackColor="Yellow"
BorderWidth="5px"
BorderColor="#000099"
AlternatingItemStyle-BackColor="LightGrey"
HeaderStyle-Font-Bold="True"
ShowFooter="True"
FooterStyle-BackColor="Yellow"
runat="server">

In VB.NET, you do not add this attribute, but you do add the event handler, as you do in C#. The first step
is to check that the item is of type ListItemFooter . If so, then you want to remove all the cells in the

footer except one, and set that cell's span to encompass the entire row. You'll then get the count of items
in the grid and write a right-aligned message into the cell such as 4 bugs , thus displaying the message in

the lower right-hand corner of the grid.

ASP.NET has provided a programmatic interface to the attributes of the table cell in the DataGrid. This is
just as if you had access to the <td> element and set its attributes accordingly, but you can do so

dynamically at runtime, rather than statically at design time.

The event handler signature is just like the OnItemDataBoundEventHandler signature: it takes two
parameters and returns void (or in VB.NET it is a Sub procedure). The parameters must be an Object and

a DataGridItemEventArgs object, as shown in the following prototype in C#:

public void OnItemCreatedEventHandler(
 Object sender, DataGridItemEventArgs e)
{

In VB.NET, you implement the event handler with code that indicates that you are handling the
ItemCreated event:

Public Sub dataGrid1_OnItemCreatedEventHandler(_
 ByVal sender As System.Object, _
 ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs) _
 Handles dataGrid1.ItemCreated

You'll test the item type of the current item so that you take action only on the footer item, which in C#
looks like this:

ListItemType itemType = (ListItemType)e.Item.ItemType;
if (itemType == ListItemType.Footer)
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB.NET, it is:

Dim itemType As ListItemType
itemType = e.Item.ItemType
If itemType = ListItemType.Footer Then

You can determine the number of cells in the grid dynamically by asking the item for its Cells collection,
which has a Count property. Once you know how many cells you have, you can remove all but one by
calling the Cells collection's RemoveAt method, repeatedly removing the first cell until every one but the
last has been removed. In C#, this looks like:

int numberOfCells = e.Item.Cells.Count;

// remove all the cells except the last
for (int i = 0; i < numberOfCells - 1; i++)
{
 e.Item.Cells.RemoveAt(0);
}

And in VB.NET:

Dim numberOfCells As Integer
numberOfCells = e.Item.Cells.Count

Dim i As Integer
For i = 0 To numberOfCells - 2
 e.Item.Cells.RemoveAt(0)
Next

You next ask the data grid for its Items collection, which you will remember is a collection of all the items
in the grid. You can use the Count property of that collection to determine how many items there are in
the entire grid, and formulate your output message accordingly:

int numberOfBugs = dataGrid1.Items.Count;
string msg;
if (numberOfBugs > 0)
{
 msg = "" + numberOfBugs.ToString()
 + " bugs.";
}
else
{
 msg = "No bugs found.";
}

In VB.NET, the code is:

Dim numberOfBugs As Integer = dataGrid1.Items.Count
Dim msg As String
If numberOfBugs > 0 Then
 msg = "" & numberOfBugs.ToString & " bugs."
Else
 msg = "No bugs found"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End If

You are now ready to display the message in the cell. You obtain the TableCell object as you did in the
previous example. The only remaining cell is the very first cell in the collection. You set that cell's Text
property to the message you've created, and set its ColumnSpan property to the total number of cells that
were in the row before you removed all the others. You then set the HorizontalAlign property to the
enumerated value Right :

TableCell msgCell = e.Item.Cells[0];
msgCell.Text = msg;
msgCell.ColumnSpan=numberOfCells;
msgCell.HorizontalAlign = HorizontalAlign.Right;

The VB.NET code is:

Dim msgCell As TableCell
msgCell = e.Item.Cells(0)
msgCell.Text = msg
msgCell.ColumnSpan = numberOfCells
msgCell.HorizontalAlign = HorizontalAlign.Right

The result is to display the number of rows in the grid in the lower right-hand side of the footer row, as
shown in Figure 10-3 .

Figure 10-3. Summary in footer row

10.2.3.2 Creating the details page

In the previous example you created a link to the details page, but you did not implement that page. To do
so, you'll create a new .aspx page, details.aspx, which will have a fairly simple table to display the details
of the bug, as shown in Figure 10-4 .

Figure 10-4. The details page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each row will have two cells, one with a label in boldface, and the second with the data from the Bug
object. The following code in the .aspx page creates a row:

<TR>
 <TD width="30%">
 BugID
 </TD>
 <TD align=left>
 <%# DataBinder.Eval(CurrentBug, "BugID") %>
 </TD>
</TR>

The DataBinder class provides a static method, Eval, that uses reflection to parse and evaluate a data
binding expression against an object at runtime. In this case, we are passing in a Bug object and a
property to retrieve from that object; Eval returns the value. The <%# syntax in the ASP.NET page binds
the text to display in the cell to the string value returned by Eval . The complete details.aspx is shown in

Example 10-11 . The subsequent rows have been collapsed to save space.

Example 10-11. details.aspx

<%@ Page language="c#"
Codebehind="details.aspx.cs"
AutoEventWireup="false"
Inherits="DataGridMasterDetailNew.details" %>

<HTML>
<HEAD>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name=vs_defaultClientScript content="JScript">
 <meta name=vs_targetSchema content="Internet Explorer 5.0">
</HEAD>
<body MS_POSITIONING="GridLayout">
<form id="details" method="post" runat="server">
<asp:Panel ID="BugDetailsPanel" Runat="server">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <TABLE style="FONT-SIZE: 8pt; COLOR: black;
 FONT-FAMILY: Arial" cellSpacing=0
 cellPadding=2 width="100%" border=0>
 <TR>
 <TD width="30%">
 BugID
 </TD>
 <TD align=left>
 <%# DataBinder.Eval(CurrentBug, "BugID") %>
 </TD>
 </TR>
 <tr><td>Title</td>
 <td><%# DataBinder.Eval(CurrentBug,"Title") %></td>
 </tr>
 <tr><td>Reported by</td>
 <td><%# DataBinder.Eval(CurrentBug,"Reporter") %></td>
 </tr><tr><td>Product</td>
 <td><%# DataBinder.Eval(CurrentBug,"Product") %></td>
 </tr>
 <tr><td>Version</td>
 <td><%# DataBinder.Eval(CurrentBug,"Version") %></td>
 </tr>
 <tr><td>Description</td>
 <td><%# DataBinder.Eval(CurrentBug,"Description") %></td>
 </tr>
 <tr><td>Date Created</td>
 <td><%# DataBinder.Eval(CurrentBug,"DateCreated") %></td>
 </tr>
 <tr><td>Severity</td>
 <td><%# DataBinder.Eval(CurrentBug,"Severity") %></td>
 </tr>
 </TABLE>
</asp:Panel>
</form>
</body>
</HTML>

The page works only if the CurrentBug value is set properly. This is done in the code-behind page,

specifically in the Page_Load method. Page_Load retrieves the Request.QueryString collection, which
contains all the query strings passed in with the URL.

When you write a URL and append a question mark (?), the string elements that follow the question mark

are considered to be query strings. Consider what would happen if you wrote the URL as follows:

details.aspx?bugID=101

The first part, details.aspx , will be treated as the URL and the second part, bugID=101 , will be considered

the query string.

The complete C# source for the code-behind page for details.aspx is shown in C# in Example 10-12 and in
VB.NET in Example 10-13 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-12. Code behind for details.aspx in C#

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace DataGridMasterDetailNew
{
 public class details : System.Web.UI.Page
 {
 private object currentBug;
 protected System.Web.UI.WebControls.Panel BugDetailsPanel;

 public object CurrentBug { get { return currentBug; } }

 public details()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 string bugID = Request.QueryString["BugID"];
 if (bugID != null)
 {
 SetCurrentBug(Convert.ToInt32(bugID));
 BugDetailsPanel.DataBind();
 }
 }

 private void SetCurrentBug(int bugID)
 {
 ArrayList bugs = (ArrayList) Session["bugList"];
 foreach (Bug theBug in bugs)
 {
 if(theBug.BugID == bugID)
 currentBug = theBug;
 }

 }
 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }
}

Example 10-13. Code behind for details.aspx in VB.NET

Public Class details
 Inherits System.Web.UI.Page
 Protected BugDetailsPanel As System.Web.UI.WebControls.Panel

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles MyBase.Init
 InitializeComponent()
 End Sub

#End Region

 Private Sub Page_Load(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load

 Dim bugID As String
 bugID = Request.QueryString("BugID")
 If bugID <> "" Then
 SetCurrentBug(CInt(bugID))
 BugDetailsPanel.DataBind()
 End If
 End Sub

 Private Sub SetCurrentBug(ByVal bugID As Int32)
 Dim bugs As ArrayList
 bugs = Session("bugList")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim theBug As Bug
 For Each theBug In bugs
 If theBug.BugID = bugID Then
 _currentBug = theBug
 End If
 Next
 End Sub

 Private _currentBug As Object

 Public ReadOnly Property CurrentBug() As Object
 Get
 CurrentBug = _currentBug
 End Get
 End Property

End Class

ASP.NET wraps the HTTP request in a Request object (familiar to ASP programmers) and makes this object
available to your methods. The Request object has a QueryString property to retrieve the query strings.
The QueryString property returns a NameValueCollection that can be treated like an array indexed on
strings. Thus, you can retrieve the bugID queryString value (101) with this line of code:

string bugID = Request.QueryString["BugID"];

Or, in VB.NET, use this code:

Dim bugID As String
bugID = Request.QueryString("BugID")

If the bugID is not null, you will set a private variable, CurrentBug, to the value extracted (e.g., 101) and
bind the data for display in the details page. In C#, the private variable CurrentBug is an int . In VB.NET,

the private variable is an Integer named _currentBug. The value retrieved from Request.QueryString is a
string, and so must be converted to an int , an operation performed by the following C# code fragment:

if (bugID != null)
 {
 SetCurrentBug(Convert.ToInt32(bugID));
 BugDetailsPanel.DataBind();
}

In VB.NET, the equivalent is:

If bugID <> "" Then
 SetCurrentBug(CInt(bugID))
 BugDetailsPanel.DataBind()
End If

The private method SetCurrentBug is responsible for setting the private variable currentBug (_curentBug).
In the example, it does so by iterating over the Bug objects in the ArrayList and finding the matching bug:

private void SetCurrentBug(int bugID)
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ArrayList bugs = (ArrayList) Session["bugList"];
 foreach (Bug theBug in bugs)
 {
 if(theBug.BugID == bugID)
 currentBug = theBug;
 }
}

In VB.NET, it looks like this:

Private Sub SetCurrentBug(ByVal bugID As Integer)
 Dim bugs As ArrayList
 bugs = Session("bugList")
 Dim theBug As Bug
 For Each theBug In bugs
 If theBug.BugID = bugID Then
 _currentBug = theBug
 End If
 Next
End Sub

Because currentBug is a private variable, it is not available to the dataGrid. You will therefore create a
CurrentBug property that returns the value of currentBug:

public object CurrentBug {get {return currentBug;}}

In VB.NET, it looks like this:

Public ReadOnly Property CurrentBug() As Object
 Get
 CurrentBug = _currentBug
 End Get
End Property

C# is case-sensitive, and so the name for the variable (currentBug) and the
property (CurrentBug) are not considered to be the same. The property is in Pascal
Notation (initial cap), and the name for the variable is in camel Notation (initial not
capitalized).

VB.NET is not case-sensitive, so you use an underscore in front of the variable
name.

10.2.4 Version 4: Sorting and Paging

In the next version of this program, you'll integrate the details panel into the page with the DataGrid, and
you'll add the ability to sort the columns, as well as to page through the results.

10.2.4.1 Results on one page

In the previous version, you created a panel to hold the details and displayed that panel in a second .aspx
page. In this version, you will paste that entire panel, and all the code created within the panel, into the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

same .aspx page as the data grid.

You will remember that the data grid page ends with this HTML:

 </form>
 </body>
</html>

Just after the close form tag, </form> , and before the close body tag, </body> , insert the panel from the

details page. Hey! Presto! When you click on the details, they'll show in the panel (once you modify the
code a bit). The complete C# .aspx page is shown in Example 10-14 .

Example 10-14. .aspx page for sorting and paging

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="DataGridDetailsInPage.WebForm1" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<html>
 <head>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name=vs_defaultClientScript content="JavaScript (ECMAScript)">
 <meta name=vs_targetSchema content="http://schemas.microsoft.com/intellisense/ie5">
 </head>
 <body MS_POSITIONING="GridLayout">

 <form runat="server" ID="Form1">
 <asp:DataGrid id="dataGrid1"
 OnItemDataBound="OnItemDataBoundEventHandler"
 OnItemCreated ="OnItemCreatedEventHandler"
 OnSelectedIndexChanged="OnSelectedIndexChangedHandler"
 OnSortCommand="OnSortCommandHandler"
 OnPageIndexChanged ="OnPageIndexChangedHandler"
 AllowPaging="True"
 PageSize ="2"
 AllowSorting="True"
 AutoGenerateColumns="False"
 CellPadding="5"
 HeaderStyle-BackColor="Yellow"
 BorderWidth="5px"
 BorderColor="#000099"
 AlternatingItemStyle-BackColor="LightGrey"
 HeaderStyle-Font-Bold="True"
 ShowFooter="True"
 FooterStyle-BackColor="Yellow"
 DataKeyField="BugID"
 runat="server">

 <PagerStyle
 HorizontalAlign="Right"
 Mode="NextPrev">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </PagerStyle>

 <Columns>
 <asp:ButtonColumn Text="Details" CommandName="Select" />

 <asp:BoundColumn
 HeaderText="Title"
 DataField="Title"
 SortExpression="Title"
 />

 <asp:BoundColumn
 HeaderText="Reported by"
 Datafield="Reporter"
 SortExpression="Reporter"
 />

 <asp:BoundColumn DataField="Product" HeaderText="Product" />
 <asp:BoundColumn DataField="Version" HeaderText="Version" />

 <asp:BoundColumn
 HeaderText="Date Created"
 DataField="DateCreated"
 SortExpression="DateCreated"
 />

 <asp:BoundColumn DataField="Severity" HeaderText="Severity" />
 </Columns>
 </asp:DataGrid>
 </form>
<asp:Panel ID="BugDetailsPanel" Runat="server">
<TABLE style="FONT-SIZE: 8pt; COLOR: black; FONT-FAMILY: Arial" cellSpacing=0
cellPadding=2 width="100%" border=0>
 <TR>
 <TD width="15%">BugID </TD>
 <TD align=left><%# DataBinder.Eval(currentBug, "BugID") %></TD></TR>
 <TR>
 <TD>Title</TD>
 <TD><%# DataBinder.Eval(currentBug,"Title") %></TD></TR>
 <TR>
 <TD>Reported by</TD>
 <TD><%# DataBinder.Eval(currentBug,"Reporter") %></TD></TR>
 <TR>
 <TD>Product</TD>
 <TD><%# DataBinder.Eval(currentBug,"Product") %></TD></TR>
 <TR>
 <TD>Version</TD>
 <TD><%# DataBinder.Eval(currentBug,"Version") %></TD></TR>
 <TR>
 <TD>Description</TD>
 <TD><%# DataBinder.Eval(currentBug,"Description") %></TD></TR>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <TR>
 <TD>Date Created</TD>
 <TD><%# DataBinder.Eval(currentBug,"DateCreated") %></TD></TR>
 <TR>
 <TD>Severity</TD>
 <TD><%# DataBinder.Eval(currentBug,"Severity") %></TD></TR></TABLE>
</asp:Panel>

 </body>

</html>

The complete source code for the C# version is shown in Example 10-15 , and the VB.NET version is in
Example 10-16 .

Example 10-15. C# code-behind file for paging and sorting

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace DataGridDetailsInPage
{
 public class WebForm1 : System.Web.UI.Page
 {
 protected object currentBug;

 protected System.Web.UI.WebControls.DataGrid
 dataGrid1;
 protected System.Web.UI.WebControls.Panel
 BugDetailsPanel;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(
 object sender, System.EventArgs e)
 {
 if (!IsPostBack)
 {
 BindGrid();
 UpdateBugDetails();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 // Property: which column is sorted
 protected string SortColumn
 {
 get
 {
 object o = ViewState["SortColumn"];
 if (o != null)
 {
 return (string) o;
 }
 return "Title"; // default
 }
 set
 {
 ViewState["SortColumn"] = value;
 }
 }

 // Property: are we sorting ascending (true)
 // or descending (false)
 protected bool SortAscend
 {
 get
 {
 object o = ViewState["SortAscend"];
 if (o != null)
 return (bool)o;
 return true; // default
 }
 set
 {
 ViewState["SortAscend"] = value;
 }
 }

 // handle new page request
 protected void OnPageIndexChangedHandler(
 Object sender,
 DataGridPageChangedEventArgs e)
 {
 // set the new index
 dataGrid1.CurrentPageIndex = e.NewPageIndex;

 // rebind the data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BindGrid();
 UpdateBugDetails();
 }

 // when a sort field title is clicked
 protected void OnSortCommandHandler(
 Object sender,
 DataGridSortCommandEventArgs e)
 {
 // find out the current column being sorted
 string currentSortColumn = SortColumn;

 // set the property to the requested column
 SortColumn = e.SortExpression;

 // if the same column is clicked
 // reverse the sort
 if (currentSortColumn == SortColumn)
 {
 SortAscend = !SortAscend;
 }
 else // otherwise sort ascending
 {
 SortAscend = true;
 }

 // rebind the data (sorted)
 BindGrid();
 UpdateBugDetails();
 }

 protected void OnItemCreatedEventHandler(
 Object sender,
 DataGridItemEventArgs e)
 {
 ListItemType itemType =
 (ListItemType)e.Item.ItemType;

 if (itemType == ListItemType.Header)
 {
 Label sortSymbol = new Label();
 sortSymbol.Text = SortAscend ? "5" : "6";
 sortSymbol.Font.Name = "Webdings";

 TableCell theCell = null;
 switch (SortColumn)
 {
 case "Title":
 theCell = e.Item.Cells[1];
 break;
 case "Reporter":
 theCell = e.Item.Cells[2];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 break;
 case "DateCreated":
 theCell = e.Item.Cells[5];
 break;
 }
 if (theCell != null)
 theCell.Controls.Add(sortSymbol);
 }

 }

 // the user has selected a row
 protected void OnSelectedIndexChangedHandler(
 Object sender, EventArgs e)
 {
 UpdateBugDetails();
 }

 // If the user has selected a row
 // display the details panel
 private void UpdateBugDetails()
 {
 // find out which bug selected
 UpdateSelectedBug();

 // if there is a selected bug
 // display the details
 if (currentBug != null)
 {
 BugDetailsPanel.Visible=true;
 BugDetailsPanel.DataBind();
 }
 else
 {
 BugDetailsPanel.Visible=false;
 }
 }

 // compare the selected row with
 // the array list of bugs
 // return the selected bug
 private void UpdateSelectedBug()
 {
 int index = dataGrid1.SelectedIndex;
 currentBug = null;
 if (index != -1)
 {

 // get the bug id from the data grid
 int bugID = (int) dataGrid1.DataKeys[index];

 // recreate the arraylist from the session state

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ArrayList bugs = (ArrayList) Session["bugList"];

 // find the bug with the selected bug id
 foreach (Bug theBug in bugs)
 {
 if(theBug.BugID == bugID)
 currentBug = theBug;
 }

 }
 }

 // when items are bound to the grid
 // examine them and set high status to red
 protected void OnItemDataBoundEventHandler(
 Object sender, DataGridItemEventArgs e)
 {

 // Don't bother for header, footer and separator items
 ListItemType itemType = (ListItemType)e.Item.ItemType;
 if (itemType == ListItemType.Header ||
 itemType == ListItemType.Footer ||
 itemType == ListItemType.Separator)
 return;

 // e.Item.DataItem is the data for the item
 Bug bug = (Bug)e.Item.DataItem;

 // check the severity for this item
 // if it is high, set the cell to red
 if (bug.Severity == "High")
 {
 // this would make the entire entry red
 // e.Item.ForeColor = Color.FromName("red");

 // get just the cell we want
 TableCell severityCell = (TableCell)e.Item.Controls[6];

 // set that cell's forecolor to red
 severityCell.ForeColor = Color.FromName("Red");
 }

 }

 // create the bugs
 // add them to the array list
 // bind the data grid to the array list
 void BindGrid()
 {

 DateTime d1 = new DateTime(2002,7,10,13,14,15);
 DateTime d2 = new DateTime(2002,7,4,12,55,03);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DateTime d3 = new DateTime(2002,8,5,13,12,07);
 DateTime d4 = new DateTime(2002,12,16,12,33,05);
 ArrayList bugs = new ArrayList();

 bugs.Add(
 new Bug(
 101,
 "Bad Property Value",
 "Jesse Liberty",
 "XBugs",
 "0.01",
 "Property values incorrect when you enter a new type",
 d1,
 "High")
);

 bugs.Add(
 new Bug(
 102,
 "Doesn't load properly",
 "Dan Hurwitz",
 "XBugs",
 "0.01",
 "The system fails on load with error x2397",
 d2,
 "High")
);

 bugs.Add(
 new Bug(
 103,
 "Hangs on exit",
 "Jack Ryan",
 "XBugs",
 "0.01",
 "When you press close, it hangs",
 d3,
 "High")
);

 bugs.Add(
 new Bug(
 104,
 "Wrong data",
 "Demetri Karamazov",
 "XBugs",
 "0.01",
 "The data does not match the DB",
 d4,
 "Medium")
);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Bug.BugComparer c = Bug.GetComparer();
 c.WhichField = SortColumn;
 c.Ascending = SortAscend;
 bugs.Sort(c);

 dataGrid1.DataSource=bugs;
 dataGrid1.DataBind();
 Session["bugList"] = bugs;

 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }

 // The bug class.
 // Implements IComparable for sorting
 // Has nested IComparer class
 public class Bug : IComparable
 {
 private int bugID;
 private string title;
 private string reporter;
 private string product;
 private string version;
 private string description;
 private DateTime dateCreated;
 private string severity;

 public Bug(int id, string title, string reporter,
 string product, string version,
 string description, DateTime dateCreated,
 string severity)
 {
 bugID = id;
 this.title = title;
 this.reporter = reporter;
 this.product = product;
 this.version = version;
 this.description = description;
 this.dateCreated = dateCreated;
 this.severity = severity;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 // static method returns dedicated IComparer
 public static BugComparer GetComparer()
 {
 return new Bug.BugComparer();
 }

 // implementing IComparable
 public int CompareTo(Object rhs)
 {
 Bug r = (Bug) rhs;
 return this.title.CompareTo(r.title);
 }

 // dedicated method for BugComparer to use
 public int CompareTo(
 Bug rhs, string field, bool ascending)
 {
 switch (field)
 {
 case "Title":
 if (ascending)
 return this.title.CompareTo(rhs.title);
 else
 {
 int retVal =
 this.title.CompareTo(rhs.title);
 switch (retVal)
 {
 case 1:
 return -1;
 case -1:
 return 1;
 default:
 return 0;
 }
 }
 case "Reporter":
 if (ascending)
 return this.Reporter.CompareTo(
 rhs.Reporter);
 else
 {
 int retVal = this.Reporter.CompareTo(
 rhs.Reporter);
 switch (retVal)
 {
 case 1:
 return -1;
 case -1:
 return 1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 default:
 return 0;
 }
 }

 case "BugID":
 if (this.bugID < rhs.BugID)
 return ascending ? -1 : 1;
 if (this.bugID > rhs.BugID)
 return ascending ? 1 : -1;
 return 0;
 case "DateCreated":
 if (this.dateCreated < rhs.dateCreated)
 return ascending ? -1 : 1;
 if (this.dateCreated > rhs.dateCreated)
 return ascending ? 1 : -1;
 return 0;
 }
 return 0;
 }

 // nested specialized IComparer
 public class BugComparer : IComparer
 {
 public int Compare(object lhs, object rhs)
 {
 Bug l = (Bug) lhs;
 Bug r = (Bug) rhs;
 return l.CompareTo(r,whichField, ascending);
 }

 // Property: which field are we sorting
 public string WhichField
 {
 get
 {
 return whichField;
 }
 set
 {
 whichField=value;
 }
 }

 // Property: Ascending (true) or descending
 public bool Ascending
 {
 get
 {
 return ascending;
 }
 set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 ascending = value;
 }

 }
 private string whichField;
 private bool ascending;
 } // end nested class

 // Properties for Bugs
 public int BugID { get { return bugID; }}
 public string Title { get { return title; }}
 public string Reporter { get { return reporter; }}
 public string Product { get { return product; }}
 public string Version { get { return version; }}
 public string Description { get { return description; }}
 public DateTime DateCreated { get { return dateCreated; }}
 public string Severity { get { return severity; }}

 }

}

Example 10-16. VB.NET code-behind file for paging and sorting

Public Class WebForm1
 Inherits System.Web.UI.Page
 Protected WithEvents dataGrid1 As System.Web.UI.WebControls.DataGrid
 Protected BugDetailsPanel As System.Web.UI.WebControls.Panel

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Init
 InitializeComponent()
 End Sub

#End Region
 Private _currentBug As Object

 Private Sub Page_Load(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If Not IsPostBack Then
 BindGrid()
 UpdateBugDetails()
 End If
 End Sub

 Private Sub UpdateBugDetails()
 UpdateSelectedBug()
 If Not _currentBug Is Nothing Then
 BugDetailsPanel.Visible = True
 BugDetailsPanel.DataBind()
 Else
 BugDetailsPanel.Visible = False
 End If
 End Sub

 Protected Property SortColumn() As String
 Get
 Dim o As Object
 o = ViewState("SortColumn")
 If Not o Is Nothing Then
 SortColumn = CStr(o)
 End If
 End Get
 Set(ByVal Value As String)
 ViewState("SortColumn") = Value
 End Set
 End Property

 Protected Property SortAscend() As Boolean
 Get
 Dim o As Object
 o = ViewState("SortAscend")
 If Not o Is Nothing Then
 SortAscend = CBool(o)
 End If

 End Get
 Set(ByVal Value As Boolean)
 ViewState("SortAscend") = Value
 End Set
 End Property

 Public ReadOnly Property CurrentBug() As Object
 Get
 CurrentBug = _currentBug
 End Get
 End Property

 Private Sub UpdateSelectedBug()
 Dim index As Int32
 index = dataGrid1.SelectedIndex

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 _currentBug = Nothing
 If index <> -1 Then
 Dim bugID As Int32
 bugID = dataGrid1.DataKeys(index)
 Dim bugs As ArrayList
 bugs = Session("bugList")
 Dim theBug As Bug
 For Each theBug In bugs
 If theBug.BugID = bugID Then
 _currentBug = theBug
 End If
 Next
 End If
 End Sub

 Public Sub BindGrid()
 Dim bugs As New ArrayList()
 bugs.Add(New Bug(101, _
 "BadProperty Value", _
 "Jesse Liberty", _
 "XBugs", _
 "0.01", _
 "Property values incorrect", _
 DateTime.Now, _
 "High") _
)
 bugs.Add(_
 New Bug(_
 102, _
 "Doesn't load properly", _
 "Dan Hurwitz", _
 "XBugs", _
 "0.01", _
 "The system fails with error x2397", _
 DateTime.Now, _
 "Medium") _
)

 bugs.Add(_
 New Bug(_
 103, _
 "Hangs on exit", _
 "Jack Ryan", _
 "XBugs", _
 "0.01", _
 "When you press close, it hangs", _
 DateTime.Now, _
 "High") _
)

 bugs.Add(_
 New Bug(_

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 104, _
 "Wrong data", _
 "Demetri Karamazov", _
 "XBugs", _
 "0.01", _
 "The data does not match the DB", _
 DateTime.Now, _
 "Medium") _
)

 Dim c As Bug.BugComparer = Bug.GetComparer()
 c.WhichField = SortColumn
 c.Ascending = SortAscend
 bugs.Sort(c)

 dataGrid1.DataSource = bugs
 dataGrid1.DataBind()
 Session("BugList") = bugs

 End Sub

 Protected Sub OnItemCreatedEventHandler(_
 ByVal sender As System.Object, _
 ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs)
 Dim itemType As ListItemType
 itemType = e.Item.ItemType

 If itemType = ListItemType.Header Then
 Dim sortSymbol As New Label()
 If SortAscend = True Then
 sortSymbol.Text = "5"
 Else
 sortSymbol.Text = "6"
 End If
 sortSymbol.Font.Name = "Webdings"

 Dim theCell As TableCell
 theCell = Nothing
 Select Case SortColumn
 Case "Title"
 theCell = e.Item.Cells(1)
 Case "Reporter"
 theCell = e.Item.Cells(2)
 Case "DateCreated"
 theCell = e.Item.Cells(5)
 End Select
 'If SortColumn = "Title" Then
 ' theCell = e.Item.Cells(1)
 'End If
 'If SortColumn = "Reporter" Then
 ' theCell = e.Item.Cells(2)
 'End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'If SortColumn = "DateCreated" Then
 ' theCell = e.Item.Cells(5)
 'End If
 If Not theCell Is Nothing Then
 theCell.Controls.Add(sortSymbol)
 End If

 End If
 End Sub

 Protected Sub OnItemDataBoundEventHandler(_
 ByVal sender As System.Object, _
 ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs)

 Dim itemType As ListItemType
 itemType = e.Item.ItemType

 If itemType = ListItemType.Header Or _
 itemType = ListItemType.Footer Or _
 itemType = ListItemType.Separator Then
 Exit Sub
 End If

 Dim theBug As Bug
 theBug = e.Item.DataItem
 If theBug.Severity = "High" Then
 Dim severityCell As TableCell
 severityCell = e.Item.Controls(6)
 severityCell.ForeColor = Color.FromName("Red")
 End If

 'Dim linkCell As TableCell
 'linkCell = e.Item.Controls(0)
 'Dim h As HyperLink
 'h = linkCell.Controls(0)
 'h.NavigateUrl = "details.aspx?bugID=" & theBug.BugID

 End Sub

 Protected Sub OnPageIndexChangedHandler(_
 ByVal source As Object, _
 ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs)
 dataGrid1.CurrentPageIndex = e.NewPageIndex
 BindGrid()
 UpdateBugDetails()
 End Sub

 Protected Sub OnSortCommandHandler(_
 ByVal source As Object, _
 ByVal e As System.Web.UI.WebControls.DataGridSortCommandEventArgs) _
 Dim currentSortColumn As String = SortColumn
 SortColumn = e.SortExpression

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If currentSortColumn = SortColumn Then
 If SortAscend = True Then
 SortAscend = False
 Else
 SortAscend = True
 End If
 Else
 SortAscend = True
 End If
 BindGrid()
 UpdateBugDetails()
 End Sub

 Protected Sub OnSelectedIndexChangedHandler(_
 ByVal sender As Object, e As EventArgs)
 UpdateBugDetails()
 End Sub
End Class

Public Class Bug : Implements IComparable

 Private _bugID As Int32
 Private _title As String
 Private _reporter As String
 Private _product As String
 Private _version As String
 Private _description As String
 Private _dateCreated As DateTime
 Private _severity As String

 Sub New(ByVal theID As Int32, _
 ByVal theTitle As String, _
 ByVal theReporter As String, _
 ByVal theProduct As String, _
 ByVal theVersion As String, _
 ByVal theDescription As String, _
 ByVal theDateCreated As DateTime, _
 ByVal theSeverity As String)

 _bugID = theID
 _title = theTitle
 _reporter = theReporter
 _product = theProduct
 _version = theVersion
 _description = theDescription
 _dateCreated = theDateCreated
 _severity = theSeverity
 End Sub

 ' nested class
 Public Class BugComparer
 Implements IComparer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim _whichField As String
 Dim _ascending As Boolean

 Public Function Compare(_
 ByVal lhs As Object, ByVal rhs As Object) _
 As Integer _
 Implements IComparer.Compare
 Dim l As Bug
 Dim r As Bug
 l = lhs
 r = rhs
 Compare = l.CompareTo(r, _whichField, _ascending)
 End Function

 Public Property WhichField() As String
 Get
 WhichField = _whichField
 End Get
 Set(ByVal Value As String)
 _whichField = Value
 End Set
 End Property

 Public Property Ascending() As Boolean
 Get
 Ascending = _ascending
 End Get
 Set(ByVal Value As Boolean)
 _ascending = Value
 End Set
 End Property
 End Class ' end nested class

 Public Shared Function GetComparer() As BugComparer
 GetComparer = New Bug.BugComparer()
 End Function

 Public Function CompareTo(ByVal rhs As Object) As Integer _
 Implements IComparable.CompareTo
 Dim r As Bug = rhs
 CompareTo = Me.Title.CompareTo(r.Title)
 End Function

 Public Function CompareTo(_
 ByVal rhs As Bug, _
 ByVal field As String, _
 ByVal ascending As Boolean) As Int32
 CompareTo = 0
 Select Case field
 Case "Title"
 If ascending = True Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CompareTo = Me.Title.CompareTo(rhs.Title)
 Else
 Dim retVal As Int32
 retVal = Me.Title.CompareTo(rhs.Title)
 If retVal = 1 Then CompareTo = -1
 If retVal = -1 Then CompareTo = 1
 End If
 Case "Reporter"
 If ascending = True Then
 CompareTo = Me.Reporter.CompareTo(rhs.Reporter)
 Else
 Dim retVal As Int32
 retVal = Me.Title.CompareTo(rhs.Reporter)
 If retVal = 1 Then CompareTo = -1
 If retVal = -1 Then CompareTo = 1
 End If
 Case "BugID"
 If Me.BugID < rhs.BugID Then
 If ascending = True Then
 CompareTo = -1
 Else
 CompareTo = 1
 End If
 End If
 If Me.BugID > rhs.BugID Then
 If ascending = True Then
 CompareTo = 1
 Else
 CompareTo = -1
 End If
 End If
 Case "DateCreated"
 If Me.DateCreated < rhs.DateCreated Then
 If ascending = True Then
 CompareTo = -1
 Else
 CompareTo = 1
 End If
 End If
 If Me.DateCreated > rhs.DateCreated Then
 If ascending = True Then
 CompareTo = 1
 Else
 CompareTo = -1
 End If
 End If
 End Select
 End Function

 Public ReadOnly Property BugID() As Int32
 Get
 BugID = _bugID

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Get
 End Property

 Public ReadOnly Property Title() As String
 Get
 Title = _title
 End Get
 End Property

 Public ReadOnly Property Reporter() As String
 Get
 Reporter = _reporter
 End Get
 End Property

 Public ReadOnly Property Product() As String
 Get
 Product = _product
 End Get
 End Property

 Public ReadOnly Property Version() As String
 Get
 Version = _version
 End Get
 End Property

 Public ReadOnly Property Description() As String
 Get
 Description = _description
 End Get
 End Property

 Public ReadOnly Property DateCreated() As String
 Get
 DateCreated = _dateCreated
 End Get
 End Property

 Public ReadOnly Property Severity() As String
 Get
 Severity = _severity
 End Get
 End Property

End Class

You don't want the panel to be displayed if the user has not requested details on any particular bug. You'll
create a method, UpdateBugDetails, that will set the panel's Visible property to false until the user selects
a bug. When a bug is selected, UpdateBugDetails will set the panel's Visible property to true , and the

panel will appear below the DataGrid. The following code shows the source code for the UpdateBugDetails
method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

private void UpdateBugDetails()
{
 UpdateSelectedBug();

 if (currentBug != null)
 {
 BugDetailsPanel.Visible=true;
 BugDetailsPanel.DataBind();
 }
 else
 {
 BugDetailsPanel.Visible=false;
 }
}

In VB.NET, the code is:

Private Sub UpdateBugDetails()
 UpdateSelectedBug()
 If Not _currentBug Is Nothing Then
 BugDetailsPanel.Visible = True
 BugDetailsPanel.DataBind()
 Else
 BugDetailsPanel.Visible = False
 End If
End Sub

UpdateBugDetails starts by calling UpdateSelectedBug, whose job is to set the currentBug member
variable to the Bug object the user has chosen, or to null if no bug has been chosen.

UpdateBugDetails tests the currentBug and, if it is not null, it displays the details panel and binds the data.
The call to the panel's DataBind method causes the panel to evaluate the currentBug properties and
display them, as seen earlier.

To set the current bug, UpdateSelectedBug gets the SelectedIndex property from the DataGrid control.
This value will be -1 if the user has not selected an item, or it will be the item ID of the selected item. You
use that item ID as an index into the DataKeys collection of the DataGrid to extract the BugID of the bug
represented by the selected row in the grid.

The DataKeys collection is created by adding a DataKeyField attribute to the DataGrid declaration in your

.aspx file:

DataKeyField="BugID"

When the data grid is created and Bug objects are added, the DataGrid creates a DataKeys collection,
populating it with the bugID for each bug for each row.

With the bugID, you can iterate over the ArrayList that represents your data and find the matching bug.

The following is the C# source code for the UpdateSelectedBug function:

private void UpdateSelectedBug()
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int index = dataGrid1.SelectedIndex;
 currentBug = null;
 if (index != -1)
 {
 // get the bug id from the data grid
 int bugID = (int) dataGrid1.DataKeys[index];

 // recreate the arraylist from the session state
 ArrayList bugs = (ArrayList) Session["bugList"];

 // find the bug with the selected bug id
 foreach (Bug theBug in bugs)
 {
 if(theBug.BugID == bugID)
 currentBug = theBug;
 }
 }
}

In VB.NET, the code is:

Private Sub UpdateSelectedBug()
 Dim index As Int32
 index = dataGrid1.SelectedIndex
 _currentBug = Nothing
 If index <> -1 Then
 Dim bugID As Int32
 bugID = dataGrid1.DataKeys(index)
 Dim bugs As ArrayList
 bugs = Session("bugList")
 Dim theBug As Bug
 For Each theBug In bugs
 If theBug.BugID = bugID Then
 _currentBug = theBug
 End If
 Next
 End If
End Sub

You also need to add the currentBug field to your class, along with its property:

private object currentBug;
public object CurrentBug { get { return currentBug;}}

In VB.NET, the equivalent is:

Private _currentBug As Object
Public ReadOnly Property CurrentBug() As Object
 Get
 CurrentBug = _currentBug
 End Get
End Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now that you can display the details of the bug on the same page as the data grid, let's take a look at how
you sort the columns in the grid. To start, you must add a couple of attributes to the data grid itself:

AllowSorting="True"
OnSortCommand="OnSortCommandHandler"

The first tells the DataGrid to allow columns to be sorted; the second creates an event handler for the Sort
command event. The Sort command event is fired by the user clicking on the header of a sortable column.
You mark a column as sortable by adding a few attributes to the BoundColumn tag:

<asp:BoundColumn DataField="Title"
HeaderText="Title"
SortExpression="Title"
/>

HeaderText sets (or gets) the text displayed in the column header. DataField , as seen earlier, gets or

sets the field in the data item to which this column will be bound.

SortExpression sets (or gets) the field to pass to the OnSortCommand method when a column is
selected. By setting the SortExpression , the DataGrid knows to display the header as a link. Clicking on

the link fires the SortCommand event, passing in the designated field.

10.2.4.2 Implementing the OnSortCommand event handler

The OnSortCommand event handler must evaluate whether the user has clicked on the currently selected
column or another column. When a user clicks on a column, the items in that column are sorted. If the
user clicks on the currently selected column, however, then the column is sorted in reverse order. That is,
if you click on Title, the titles are sorted alphabetically in ascending order, but if you click on Title again,
then the titles are sorted in descending order.

To manage this, you will create a property of the form named SortColumn, which will be responsible for
knowing the currently selected column. This property will need to store the selection in view state so that
the current selection will survive a round trip to the server. The C# code for the SortColumn property is
this:

protected string SortColumn
{
 get
 {
 object o = ViewState["SortColumn"];
 if (o != null)
 {
 return (string) o;
 }
 return "Title"; // default
 }
 set
 {
 ViewState["SortColumn"] = value;
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The VB.NET version is this:

Protected Property SortColumn() As String
 Get
 Dim o As Object
 o = ViewState("SortColumn")
 If Not o Is Nothing Then
 SortColumn = CStr(o)
 End If
 End Get
 Set(ByVal Value As String)
 ViewState("SortColumn") = Value
 End Set
 End Property

The logic of this property's Get method is to retrieve the value from view state. View state returns an
object, as explained in Chapter 4 . If that object is not null, you cast it to a string and return the string as
the property; otherwise, you return Title as a default value for the property. The Set method adds the

value to view state.

While you are at it, you'll create a second property, SortAscend, which will mark whether the current sort
is in ascending order (SortAscend == true) or in descending order (SortAscend == false). The C#

code for the SortAscent property is as follows:

protected bool SortAscend
{
 get
 {
 object o = ViewState["SortAscend"];
 if (o != null)
 return (bool)o;
 return true; // default
 }
 set
 {
 ViewState["SortAscend"] = value;
 }
}

In VB.NET, the code is as follows:

Protected Property SortAscend() As Boolean
 Get
 Dim o As Object
 o = ViewState("SortAscend")
 If Not o Is Nothing Then
 SortAscend = CBool(o)
 End If

 End Get
 Set(ByVal Value As Boolean)
 ViewState("SortAscend") = Value
 End Set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Property

The logic is nearly identical: you attempt to get the current value from the ViewState. If no value is in view
state, the object will be null and you return true ; otherwise, you return the current value. The set logic is

just to stash away the value assigned in the view state.

In the OnSortCommand event handler (dataGrid1_SortCommand in VB.NET), you first set a temporary
string variable to the SortColumn property. You then set the SortColumn property to the value passed in
via the DataGridSortCommandEventArgs object, which in C# is done as follows:

string currentSortColumn = SortColumn;
SortColumn = e.SortExpression;

In VB.NET, you write:

Dim currentSortColumn As String = SortColumn
SortColumn = e.SortExpression

You can now compare the current sort column value with the new sort column value, and if they are the
same, you set the SortAscend property to the reverse of its current value; otherwise, you will sort the new
column in ascending order. This is shown in the following C# code fragment:

if (currentSortColumn == SortColumn)
{
 SortAscend = !SortAscend;
}
else // otherwise sort ascending
{
 SortAscend = true;
}

In VB.NET, the code is:

If currentSortColumn = SortColumn Then
 SortAscend = Not SortAscend
Else
 SortAscend = True
End If

You are now ready to bind the DataGrid and update the details panel, as the following code shows:

BindGrid();
UpdateBugDetails();

Clearly something else must be going on. You've marked a couple of properties, but where did you actually
sort the grid? You haven't yet; that work is delegated to the BindGrid method.

Inside BindGrid, just before you set the data source, you'll want to sort the array list. ArrayList implements
the Sort method, but it wants you to pass in an object implementing IComparer. You will extend your Bug
class to implement IComparable, and also to nest a class, BugComparer, which implements the IComparer
class, as explained in the sidebar. You can then instantiate the BugComparer class, set its properties to
sort on the appropriate field, and invoke Sort on the ArrayList object, passing in the BugComparer object:

Bug.BugComparer c = Bug.GetComparer();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

c.WhichField = SortColumn;
c.Ascending = SortAscend;
bugs.Sort(c);

In VB.NET, you'd write:

Dim c As Bug.BugComparer = Bug.GetComparer()
c.WhichField = SortColumn
c.Ascending = SortAscend
bugs.Sort(c)

With the ArrayList object sorted, you are ready to set the DataSource for the DataGrid and to
calltheDataBind method.

10.2.4.3 Adding a sort symbol

You may want to add a visible indication of the direction of the sort, as shown in Figure 10-5 and Figure
10-6 . Clicking on the column not only reverses the sort, it changes the symbol, as shown in Figure 10-6 .

Figure 10-5. The Title column when sorted in ascending order

Figure 10-6. The Title column when sorted in descending order

To accomplish this, you will implement the OnItemCreatedEventHandler, as you have in the past. This
time, you will check to see if you are creating the header. If so, you will put this widget into the correct
column, determined by checking the value of the SortColumn property.

You start by creating the label to add to the cell:

if (itemType == ListItemType.Header)
{
 Label sortSymbol = new Label();

The VB.NET equivalent is:

If itemType = ListItemType.Header Then
 Dim sortSymbol As New Label()

The text to add to this label is the symbol itself, which is a Webding text symbol with the value of either 5
or 6 for ascending and descending, respectively:

sortSymbol.Text = SortAscend ? "5" : "6";
sortSymbol.Font.Name = "Webdings";

In VB.NET, the code is:

If SortAscend = True Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sortSymbol.Text = "5"
Else
 sortSymbol.Text = "6"
End If
sortSymbol.Font.Name = "Webdings"

You will add the label to the appropriate cell. To do so, you create an instance of a TableCell object:

TableCell theCell = null;

In VB.NET, the equivalent is:

Dim theCell As TableCell
theCell = Nothing

You will assign the correct cell to that variable, based on the value of the SortColumn property:

switch (SortColumn)
{
 case "Title":
 theCell = e.Item.Cells[1];
 break;
 case "Reporter":
 theCell = e.Item.Cells[2];
 break;
 case "DateCreated":
 theCell = e.Item.Cells[5];
 break;
}

In VB.NET, use:

Select Case SortColumn
 Case "Title"
 theCell = e.Item.Cells(1)
 Case "Reporter"
 theCell = e.Item.Cells(2)
 Case "DateCreated"
 theCell = e.Item.Cells(5)
End Select

You must then test that you have a valid cell, and if so, add the label to that cell:

if (theCell != null)
 theCell.Controls.Add(sortSymbol);

In VB.NET, the code is:

If Not theCell Is Nothing Then
 theCell.Controls.Add(sortSymbol)
End If

As you will remember, each cell has a Controls collection. You don't care what is already in that collection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(presumably, it contains the label for the header). You will simply add your label to the collection. When
the cell is displayed the current contents are displayed and then your label is displayed.

10.2.4.4 Implementing paging

While the current version of this program uses an array list of Bug objects, a typical program will draw the
objects from a database. It is possible that you may have a large number of Bug reports. (You, of course,
will never have a large number of bugs, but other, lowly, careless programmers may have a large number
of bugs, and we explain this for their sake.)

Rather than filling the data grid with tens of thousands of bug reports (can you think of anything more
depressing?), you'll want to add paging so that you are only forced to confront a limited number of bugs at
any one time. To accomplish this, you add yet a few more attributes to your DataGrid declaration:

OnPageIndexChanged ="OnPageIndexChangedHandler"
AllowPaging="True"
PageSize ="2"

The OnPageIndexChanged attribute assigns the event handler to be called when the user clicks on the page
navigation links. The AllowPaging attribute turns paging on, and the PageSize attribute sets the

maximum number of items to be displayed in any single page. Because we have very few items in the
array list, you'll set this to "2," although "10" is a more realistic real-world number.

You will add a new element to the DataGrid control: the PagerStyle element, which determines the style
of paging the DataGrid will provide. Attributes to the PagerStyle element determine the alignment of the
page navigation links and the mode . Two modes are supported: NextPrev , which provides two links, < to
navigate backwards, and > to navigate forward; and NumericPages , which provides numeric values for
each page. If you choose NumericPages , you'll want to add another attribute, PageButtonCount , which

determines the maximum number of paging buttons to appear on the grid at one time.

You will remember that we were previously filling the footer with the number of bugs
found. You'll need to remove that code so that you can now fill the footer with the
page navigation features.

10.2.4.5 Handling the event for page navigation

Each time the user clicks on the page navigation links, a PageIndexChanged event is raised, which is
caught by your handler. The event handler is passed two arguments. The second is a
DataGridPageChangedEventArgs object, which contains a NewPageIndex property that is the index of the
selected page. You assign that value to the DataGrid object's CurrentPageIndex property and then redraw
the page. The data grid takes care of the work of finding the right objects to display. The code for the
OnPageIndexChangedHandler is the following:

public void OnPageIndexChangedHandler(
 Object sender, DataGridPageChangedEventArgs e)
{
 // set the new index
 dataGrid1.CurrentPageIndex = e.NewPageIndex;

 // rebind the data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BindGrid();
 UpdateBugDetails();
}

In VB.NET, you'd write:

Protected Sub OnPageIndexChangedHandler(_
 ByVal source As Object, _
 ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs) _
 dataGrid1.CurrentPageIndex = e.NewPageIndex
 BindGrid()
 UpdateBugDetails()
 End Sub

The data grid uses the index value as an index into your complete set of data items (bugs, in the case of
our example). For this to work, your data source must provide all the items, even though you will only
display one page worth.

To avoid this, you can take explicit control over the page display by setting the DataGrid object's
AllowCustomPaging property to true (the default is false). With this set, you are responsible for telling

the data grid the total number of values in your data source, which you do by setting the VirtualItemCount
property. The advantage of custom paging is that you can minimize the number of values you retrieve in
each query; you can get just the values for a single page.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.3 Next Steps

The next steps with the Bug list are to provide in-place editing so that the user can click on a row and
edit the record, and to add templates to control the display of the data. We'll defer this discussion
until after Chapter 11, in which we will look at how to get data to and from a database, and how to
update that data (Chapter 12). Once we have a database as a data source for the data grid, it will be
easy to see how in-place editing is accomplished (Chapter 13).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 11. Accessing Data with ADO.NET
So far in this book, we've used an ArrayList as the data source for data-bound controls. In most real-
world applications, of course, the data source will be a database. ADO.NET provides a rich set of
objects to manage database interaction.

ADO.NET looks, at first glance, very similar to ADO, its predecessor technology. The key difference,
however, is that ADO.NET is modeled around a disconnected data architecture. Database connections
are "expensive" (that is, they use a lot of resources), and it is difficult to have thousands (or tens of
thousands) of simultaneous continuous connections. A disconnected architecture, on the other hand,
is resource-frugal. Connections are used only briefly. Of course, ADO.NET does connect to the
database to retrieve data, and connects again to update data when you've made changes. When not
updating data to or from the database, the connection is broken. Most web applications spend most
of their time simply reading through data and displaying it, and ADO.NET provides a disconnected
subset of the data for your use while reading and displaying.

As you might imagine, disconnected datasets can have scale and performance problems of their own.
There is overhead in creating and tearing down connections, and if you drop the connection each
time you fill the database, and then must reestablish it each time you update the data, you will find
that performance begins to degrade quickly. This problem is mitigated by the use of connection
pooling. While it looks to your application like you are creating and destroying connections, you are
actually borrowing and returning connections from a pool that ADO.NET manages on your behalf.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.1 Bug Database Design

Imagine that you have been asked to create a tool to manage bugs for a large development effort.
You will be supporting three developers who will work in C# and VB.NET, along with a user interface
designer and a few quality control engineers. You would like your design to be reasonably flexible so
that you can reapply your bug tracking application to future projects.

Your first decision is that you will create a web application. This has the great advantage that all the
participants will be able to access the application from their home computers. Since the developers
work off-site, this is almost a necessity. You will, of course, develop your web application in ASP.NET.

You imagine that there will be a web page for entering bugs, as well as a page for reviewing and
editing bugs. To support this, you will need to design a relational database, and for a number of
reasons beyond the scope of this book, you decide to create that database using SQL Server.

You begin by thinking about the kinds of information you want to capture in the database, and how
that information will be used. You will want to allow any user of the system to create a bug report.
You'll also want certain users (e.g., developers and QA) to update the bug reports. Developers will
want to be able to record progress in fixing a bug, or to mark a bug fixed. QA will want to check the
fix and either close the bug or reopen it for further investigation. The original reporter of the bug will
want to find out who is working on the bug, and track progress.

One requirement imposed early in the design process is that the bug database ought to provide an
"audit trail." If the bug is modified you'll want to be able to say who modified it and when they did so.
In fact, you'll want to be able to track all the changes to the bug, so that you can generate a report
like the excerpt shown in Example 11-1.

Example 11-1. Excerpt from a bug report

Bug 101 - System crashes on login
101.1 - Reporter: Osborn
Date: 1/1/2002 Original bug filed
Description: When I login I crash.
Status: Open
Owner: QA

101.2 - Modified by: Smith
Date: 1/2/2002 Changed Status, Owner
Action: Confirmed bug.
Status: Assigned
Owner: Hurwitz

101.3 - Modified by Hurwitz
Date 1/2/2002 Changed Status
Action: I'll look into this but I don't think it is my code.
Status: Accepted
Owner: Hurwitz

http://lib.ommolketab.ir
http://lib.ommolketab.ir

101.4 - Modified by Hurwitz
Date 1/3/2002 Changed Status, Owner
Action: Fault lies in login code. Reassigned to Liberty
Status: Assigned
Owner: Liberty

101.5 - Modified by Liberty
Date: 1/3/2002 Changed Status
Action: Yup, this is mine.
Status: Accepted
Owner: Liberty

101.6 - Modified by Liberty
Date 1/4/2002 Changed Status, Owner
Action: Added test for null loginID in DoLogin()
Status: Fixed
Owner: QA

101.7 - Modified by Smith
Date: 1/4/2002 Changed Status
Action: Tested and confirmed
Status: Closed
Owner: QA

To track this information you'll need to know the date and time of each modification, as well as who
made the modification and what they did. There will probably be other information you'll want to
capture as well, though this may become more obvious as you build the application (and as you use
it!).

One way to meet these requirements is to create two tables to represent each Bug. Each record in
the Bugs table will represent a single bug, but you'll need an additional table to keep track of the
revisions. Call this second table BugHistory.

A Bug record will have a BugID and will include the information that is constant for the bug
throughout its history. A BugHistory record will have the information specific to each revision.

The bug database design described in this chapter includes three significant tables: Bugs,
BugHistory, and People. Bugs and BugHistory work together to track the progress of a bug. For
any given bug, a single record is created in the Bugs table, and a record is created in BugHistory
each time the bug is revised in any way. The People table tracks the developers, QA, and other

personnel who might be referred to in a Bug report.

This is a simplified design that meets the detailed specifications but which
focuses on the key technologies; a robust professional design would necessarily
be more complex. The complete database design as used in this book is shown
in Appendix B. Script files and a backup to re-create the database are included
with the downloadable sample code. A crash course on relational database
design is provided in Appendix A.

Figure 11-1 shows a snapshot of the Bugs table, while Figure 11-2 shows a snapshot of the
BugHistory table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11-1. The Bugs table

Figure 11-2. The BugHistory table

When a bug is first entered, a record is created in each of the Bugs and BugHistory tables. Each time
the bug is updated a record is added to BugHistory. During the evolution of a bug, the status,
severity, and owner of a bug may change, but the initial description and reporter will not. Those
items that are consistent for the entire bug are in the Bugs table; those that are updated as the bug
is corrected are in the BugHistory table.

The reporter, for example, is the ID of the person who reported the bug. This is unchanged for the
life of the bug and so is recorded in the Bugs table. The owner may be adjusted from time to time,
and so is recorded in the BugHistory table. In both cases, however, what is actually recorded is just a
PersonID, which acts as a foreign key into the People table. An excerpt from the People table is
shown in Figure 11-3.

Figure 11-3. The People table

In addition to these three primary tables, there are a number of secondary tables that serve as look-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

up tables. For example, lkStatus, serves as a look-up table for the possible values of the status

column in BugHistory.

The format for all of the look-up tables (lkStatus, lkProduct, lkRoles and lkSeverity) is the same: the
ID followed by a text field. Each table will hold one row for each possible value. As an example, Figure
11-4 shows the various look-up tables.

Figure 11-4. The look-up tables

Figure 11-5 illustrates the tables in their various relationships graphically.

Figure 11-5. The relationship among the tables diagrammed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.2 The ADO.NET Object Model

The goal of ADO.NET is to provide a bridge between your objects in ASP.NET and your back-end
database. ADO.NET provides an object-oriented view into the database, encapsulating many of the
database properties and relationships within ADO.NET objects. Further, and in many ways most
important, the ADO.NET objects encapsulate and hide the details of database access; your objects
can interact with ADO.NET objects without knowing or worrying about the details of how the data is
moved to and from the database.

11.2.1 The DataSet Class

The ADO.NET object model is rich, but at its heart, is a fairly straightforward set of classes. The key
class is the DataSet, which is located in the System.Data namespace.

The dataset represents a rich subset of the entire database, cached on your machine without a
continuous connection to the database. Periodically, you'll reconnect the dataset to its parent
database, and update the database with changes to the dataset that you've made, and update the
dataset with changes in the database made by other processes.

The dataset captures not just a few rows from a single table, but represents a set of tables with all
the metadata necessary to represent the relationships and constraints among the tables recorded in
the original database.

The dataset is comprised of DataTable objects as well as DataRelation objects. These are accessed as
the Tables and Relations properties, respectively, of the DataSet object. The most important methods
and properties of the DataSet class are shown in Table 11-1.

Table 11-1. Important DataSet properties and methods

Class member Description

DefaultViewManager
property

Gets a view of the data in the dataSet that allows filtering, searching
and navigation

HasErrors property
Gets a value indicating if there are any errors in any of the rows of any
of the tables

Relations property Gets the relations collection

Tables property Gets the tables collection

AcceptChanges method
Accepts all the changes made since loaded or since last time
AcceptChanges was called (see GetChanges)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class member Description

Clear method Clears the dataset of any data

GetChanges method
Returns a copy of the dataset containing all the changes made since
loaded or since AcceptChanges was called

GetXML method Gets the XML representation of the data in the dataset

GetXMLSchema method
Gets the XSD schema for the XML representation of the data in the
dataset

Merge method Merges the data in this dataset with another dataset

ReadXML method Reads an XML schema and data into the dataset

ReadXMLSchema method Reads an XML schema into the dataset

RejectChanges method Rolls back to the state since last AcceptChanges (see AcceptChanges)

WriteXML method Writes out the XML schema and data from the dataset

WriteXMLSchema method Writes the structure of the dataset as an XML schema

The DataRelation class contains DataRelationCollection object, which contains DataRelation objects.
Each DataRelation object represents a relationship between two tables, through DataColumn objects.
For example, in the Bugs database, the Bugs table is in a relationship with the People table through
the PersonID column. The nature of this relationship is parent/child - for any given Bug, there will be
exactly one owner, but any given person may be represented in any number of Bugs. DataTables,
DataColumns, and DataRelations are explored in more detail later in this chapter.

11.2.1.1 The DataTable class

The DataSet object's Tables property returns a DataTableCollection collection, which in turn contains
all the DataTable objects in the dataset. For example, the following line of code creates a reference to
the first DataTable in the Tables collection of a DataSet object named myDataSet.

DataTable dataTable = myDataSet.Tables[0];

The DataTable has a number of public properties, including the Columns property, which returns the
ColumnsCollection object, which in turn consists of DataColumn objects. Each DataColumn object
represents a column in a table.

The most important methods and properties of the DataTable class are shown in Table 11-2.

Table 11-2. Important DataTable properties and methods

Class member Description

ChildRelations
property

Gets the collection of child relations (see Relations object)

Clear method Clears the dataset of any data

GetChanges method
Returns a copy of the dataset containing all the changes made since
loaded or since AcceptChanges was called

GetXML method Gets the XML representation of the data in the dataset

GetXMLSchema method
Gets the XSD schema for the XML representation of the data in the
dataset

Merge method Merges the data in this dataset with another dataset

ReadXML method Reads an XML schema and data into the dataset

ReadXMLSchema method Reads an XML schema into the dataset

RejectChanges method Rolls back to the state since last AcceptChanges (see AcceptChanges)

WriteXML method Writes out the XML schema and data from the dataset

WriteXMLSchema method Writes the structure of the dataset as an XML schema

The DataRelation class contains DataRelationCollection object, which contains DataRelation objects.
Each DataRelation object represents a relationship between two tables, through DataColumn objects.
For example, in the Bugs database, the Bugs table is in a relationship with the People table through
the PersonID column. The nature of this relationship is parent/child - for any given Bug, there will be
exactly one owner, but any given person may be represented in any number of Bugs. DataTables,
DataColumns, and DataRelations are explored in more detail later in this chapter.

11.2.1.1 The DataTable class

The DataSet object's Tables property returns a DataTableCollection collection, which in turn contains
all the DataTable objects in the dataset. For example, the following line of code creates a reference to
the first DataTable in the Tables collection of a DataSet object named myDataSet.

DataTable dataTable = myDataSet.Tables[0];

The DataTable has a number of public properties, including the Columns property, which returns the
ColumnsCollection object, which in turn consists of DataColumn objects. Each DataColumn object
represents a column in a table.

The most important methods and properties of the DataTable class are shown in Table 11-2.

Table 11-2. Important DataTable properties and methods

Class member Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class member Description

ChildRelations
property

Gets the collection of child relations (see Relations object)

Columns property Gets the columns collection

Constraints property Gets the constraints collection

DataSet property Gets the dataset this table belongs to

DefaultView property Gets a view of the table for filtering

ParentRelations
property

Gets the Parent Relations collection

PrimaryKey property Gets or sets an array of columns as primary key for this table

Rows property Gets the rows collection

AcceptChanges
method

Commits all the changes since last AcceptChanges

Clear method Clears the table of all data

GetChanges method
Gets a copy of the DataTable with all the changes since last AcceptChanges
(see AcceptChanges)

NewRow method Creates a new DataRow with the same schema as the table

RejectChanges
method

Rolls back changes since last AcceptChanges (see AcceptChanges)

Select method Gets an array of DataRow objects

11.2.1.2 The DataRow class

The Rows collection returns a set of rows for any given table. You use this collection to examine the

results of queries against the database, iterating through the rows to examine each record in turn.
Programmers experienced with classic ADO may be confused by the absence of the RecordSet, with
its moveNext and movePrevious commands. With ADO.NET you do not iterate through the dataset;
instead you access the table you need, and then you can iterate through the rows collection, typically
with a foreach loop. You'll see this in the first example in this chapter.

The most important methods and properties of the DataRow class are shown in Table 11-3.

Table 11-3. Important DataRow properties and methods

Class member Description

Item Gets or sets the data stored in a specific column (in C# this is the indexer)

ItemArray Gets or sets all the values for the row using an array

ChildRelations
property

Gets the collection of child relations (see Relations object)

Columns property Gets the columns collection

Constraints property Gets the constraints collection

DataSet property Gets the dataset this table belongs to

DefaultView property Gets a view of the table for filtering

ParentRelations
property

Gets the Parent Relations collection

PrimaryKey property Gets or sets an array of columns as primary key for this table

Rows property Gets the rows collection

AcceptChanges
method

Commits all the changes since last AcceptChanges

Clear method Clears the table of all data

GetChanges method
Gets a copy of the DataTable with all the changes since last AcceptChanges
(see AcceptChanges)

NewRow method Creates a new DataRow with the same schema as the table

RejectChanges
method

Rolls back changes since last AcceptChanges (see AcceptChanges)

Select method Gets an array of DataRow objects

11.2.1.2 The DataRow class

The Rows collection returns a set of rows for any given table. You use this collection to examine the

results of queries against the database, iterating through the rows to examine each record in turn.
Programmers experienced with classic ADO may be confused by the absence of the RecordSet, with
its moveNext and movePrevious commands. With ADO.NET you do not iterate through the dataset;
instead you access the table you need, and then you can iterate through the rows collection, typically
with a foreach loop. You'll see this in the first example in this chapter.

The most important methods and properties of the DataRow class are shown in Table 11-3.

Table 11-3. Important DataRow properties and methods

Class member Description

Item Gets or sets the data stored in a specific column (in C# this is the indexer)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class member Description

ItemArray Gets or sets all the values for the row using an array

Table Gets the table this row is owned by

AcceptChanges Accepts all the changes since the last time AcceptChanges was called

GetChildRows Gets the child rows for this row

GetParentRow Gets the parent row of this row

RejectChanges
Rejects all the changes since the last time AcceptChanges was called (see
AcceptChanges)

11.2.2 DBCommand and DBConnection

The DBConnection object represents a connection to a data source. This connection may be shared
among different command objects.

The DBCommand object allows you to send a command (typically an SQL statement or the name of a
stored procedure) to the database. Often DBCommand objects are implicitly created when you create
your dataset, but you can explicitly access these objects, as you'll see in a subsequent example.

11.2.3 The DataAdapter Object

Rather than tie the DataSet object too closely to your database architecture, ADO.NET uses a
DataAdapter object to mediate between the DataSet object and the database. This decouples the
dataset from the database, and allows a single dataset to represent more than one database or other
data source.

As of this writing, ASP.NET provides two different versions of the DataAdapter object; one for use
with SQL Server, and the other for use with other OLE DB providers. If you are connecting to an SQL
Server database, you will increase the performance of your application by using SqlDataAdapter
(from System.Data.SqlClient) along with SqlCommand and SqlConnection. If you are using another
database, you will use OleDbDataAdapter (from System.Data.OleDb) along with OleDbCommand and
OleDbConnection. The most important methods and properties of the DataAdapter class are shown in
Table 11-4.

Table 11-4. Important DataAdapter properties and methods

Class member Description

AcceptChangesDuringFill
property

Indicates whether or not to call AcceptChanges on a DataRow after
adding it to a DataTable.

Fill method Fills a DataTable by adding or updating rows in the dataset.

ItemArray Gets or sets all the values for the row using an array

Table Gets the table this row is owned by

AcceptChanges Accepts all the changes since the last time AcceptChanges was called

GetChildRows Gets the child rows for this row

GetParentRow Gets the parent row of this row

RejectChanges
Rejects all the changes since the last time AcceptChanges was called (see
AcceptChanges)

11.2.2 DBCommand and DBConnection

The DBConnection object represents a connection to a data source. This connection may be shared
among different command objects.

The DBCommand object allows you to send a command (typically an SQL statement or the name of a
stored procedure) to the database. Often DBCommand objects are implicitly created when you create
your dataset, but you can explicitly access these objects, as you'll see in a subsequent example.

11.2.3 The DataAdapter Object

Rather than tie the DataSet object too closely to your database architecture, ADO.NET uses a
DataAdapter object to mediate between the DataSet object and the database. This decouples the
dataset from the database, and allows a single dataset to represent more than one database or other
data source.

As of this writing, ASP.NET provides two different versions of the DataAdapter object; one for use
with SQL Server, and the other for use with other OLE DB providers. If you are connecting to an SQL
Server database, you will increase the performance of your application by using SqlDataAdapter
(from System.Data.SqlClient) along with SqlCommand and SqlConnection. If you are using another
database, you will use OleDbDataAdapter (from System.Data.OleDb) along with OleDbCommand and
OleDbConnection. The most important methods and properties of the DataAdapter class are shown in
Table 11-4.

Table 11-4. Important DataAdapter properties and methods

Class member Description

AcceptChangesDuringFill
property

Indicates whether or not to call AcceptChanges on a DataRow after
adding it to a DataTable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class member Description

Fill method Fills a DataTable by adding or updating rows in the dataset.

FillSchema method
Adds a DataTable object to the specified dataset. Configures the
schema to the specified SchemaType.

Update method Updates all the modified rows in the specified table of the DataSet.

11.2.4 The Data Reader

An alternative to the dataset is the DataReader object. The DataReader provides connected forward-
only access to a recordset returned by executing an SQL statement or a stored procedure.
DataReaders are light-weight objects ideally suited for filling a web page with data and then breaking
the connection to the back-end database.

Like DataAdapter, the DataReader class comes in two flavors: SqlDataReader
for use with SQL Server and OleDbDataReader for use with other databases.

The most important methods and properties of the DataReader class are shown in Table 11-5.

Table 11-5. Important DataReader properties and methods

Class
member

Description

Close Closes the data reader

NextResult
When reading the results of a batch SQL statement, advances to the next result
set (set of records)

The DataReader is a very powerful object, but you don't often use many of its methods or properties.
Most of the time, you simply use the DataReader to retrieve and iterate through the records that
represent the result of your query.

Note to ADO programmers: you do not issue a MoveNext command to the
DataReader; by reading a record, you automatically move to the next record.
This eliminates one of the most common bugs with recordsets: forgetting to
move to the next record.

[Team LiB]

Fill method Fills a DataTable by adding or updating rows in the dataset.

FillSchema method
Adds a DataTable object to the specified dataset. Configures the
schema to the specified SchemaType.

Update method Updates all the modified rows in the specified table of the DataSet.

11.2.4 The Data Reader

An alternative to the dataset is the DataReader object. The DataReader provides connected forward-
only access to a recordset returned by executing an SQL statement or a stored procedure.
DataReaders are light-weight objects ideally suited for filling a web page with data and then breaking
the connection to the back-end database.

Like DataAdapter, the DataReader class comes in two flavors: SqlDataReader
for use with SQL Server and OleDbDataReader for use with other databases.

The most important methods and properties of the DataReader class are shown in Table 11-5.

Table 11-5. Important DataReader properties and methods

Class
member

Description

Close Closes the data reader

NextResult
When reading the results of a batch SQL statement, advances to the next result
set (set of records)

The DataReader is a very powerful object, but you don't often use many of its methods or properties.
Most of the time, you simply use the DataReader to retrieve and iterate through the records that
represent the result of your query.

Note to ADO programmers: you do not issue a MoveNext command to the
DataReader; by reading a record, you automatically move to the next record.
This eliminates one of the most common bugs with recordsets: forgetting to
move to the next record.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.3 Getting Started with ADO.NET

In the coming examples, you'll create a more complex display with a DataGrid, and you'll display data
from multiple tables, but to get started, you'll keep it as simple as possible. In this first example,
you'll create a simple Web Form with a single list box called lbBugs. You'll populate this list box with
bits of information from the Bugs table in the ProgASPDotNetBugs database.

Create a new C# ASP.NET web application project named SimpleBugListBox. Drag a list box onto

the form and name it lbBugs (that is, change the value of its ID property to lbBugs). The list box will
size itself to fit the data, so you can leave its default size for now.

Example 11-2 is the complete C# source for the code-behind page; code lines that are not generated
by Visual Studio automatically are shown in boldface. Analysis follows the listing.

Example 11-2. A simple ADO.NET example

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace SimpleBugsListBox
{
 /// <summary>
 /// Summary description for WebForm1.
 /// </summary>
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.ListBox lbBugs;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pwd=YourPassword; database=ProgASPDotNetBugs";

 // get records from the Bugs table
 string commandString =
 "Select BugID, Description from Bugs";

 // create the DataAdapter
 // and the DataSet
 SqlDataAdapter dataAdapter =
 new SqlDataAdapter(
 commandString, connectionString);

 DataSet dataSet = new DataSet();

 // fill the dataset object
 dataAdapter.Fill(dataSet,"Bugs");

 // Get the one table from the DataSet
 DataTable dataTable = dataSet.Tables[0];

 // for each row in the table, display the info
 foreach (DataRow dataRow in dataTable.Rows)
 {
 lbBugs.Items.Add(
 dataRow["BugID"].ToString() +
 ": " + dataRow["Description"].ToString());
 }
 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 #region Web Form Designer generated code
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);
 }
 #endregion
 }
}

With just about eight lines of code in the Page.Load event handler, you have extracted a set of data
from the database and displayed it in the list box, as shown in Figure 11-6.

Figure 11-6. Displaying the list of bugs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The eight lines accomplished the following tasks:

Created the string for the connection. The connection string is whatever string is needed to
connect to the database, in the case of our example:

1.

string connectionString =
 "server=YourServer; uid=sa; " +
 "pwd=YourPassword; database=ProgASPDotNetBugs";

Created the string for the select statement, which generates a table containing bug IDs and

their descriptions:

2.

string commandString =
 "Select BugID, Description from Bugs";

Created the DataAdapter to extract the data from the SQL Server database and pass in the
selection and connection strings:

3.

SqlDataAdapter dataAdapter =
new SqlDataAdapter(
commandString, connectionString);

Created a new DataSet object:4.

DataSet dataSet = new DataSet();

Filled the dataset with the data obtained from the SQL select statement using the

DataAdapter:

5.

dataAdapter.Fill(dataSet,"Bugs");

Extracted the data table from the DataTableCollection object:6.

DataTable dataTable = dataSet.Tables[0];

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Iterated the rows in the data table to fill the list box:7.

foreach (DataRow dataRow in dataTable.Rows)
{
 lbBugs.Items.Add(
 dataRow["BugID"] +
 ": " + dataRow["Description"]);
}

The Visual Basic .NET Page_Load equivalent is shown in Example 11-3.

Example 11-3. Page_Load in VB.NET

Private Sub Page_Load(ByVal sender As System.Object, _
 Dim connectionString As String
 connectionString = _
 "Server=YourServer; uid=sa; pwd=YourPassword; " + _
 "database=ProgASPDotNetBugs"

 Dim commandString As String
 commandString = "Select BugID, Description from Bugs"

 Dim myDataAdapter As New System.Data.SqlClient.SqlDataAdapter(_
 commandString, connectionString)

 Dim myDataSet As New DataSet()

 myDataAdapter.Fill(myDataSet, "Bugs")

 Dim myDataTable As DataTable
 myDataTable = myDataSet.Tables(0)

 Dim theRow As DataRow
 For Each theRow In myDataTable.Rows
 lbBugs.Items.Add(theRow("BugID") & ": " & theRow("Description"))
 Next
End Sub

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.4 Managed Providers

The previous example used one of the four managed providers currently available with ADO.NET: the
SQL Managed provider. The SQL Managed provider is optimized for SQL Server, but it is restricted to
working with SQL Server databases. The more general solution is the OLE DB managed provider, which
will connect to any OLE DB provider, including Access. There is also a managed provider for Oracle and
on for ODBC-compliant databases.

You can rewrite Example 11-3 to work with the Bugs database using Access rather than SQL Server
with just a few small changes. First, of course, you need to create a new Access database. Name the
new database SimpleBugListBoxAccessDB. Example 11-4 assumes you will save your database to the
root directory on your C drive, but you may save it anywhere else that is convenient for you as long as
you adjust the connection string.

Use the File Import menu option in Access to import the data from the SQL database. This will create
tables in Access that reflect the structure and content of the data in the SQL database. Notice that the
Bugs database is now named dbo_Bugs in Access.

Create a new ASP web application project named SimpleBugListBoxAccess and once again drag a list

box onto the form and name it lbBugs. Copy the code from Example 11-3 , but make the following
changes:

Change the connection string to:1.

string connectionString =
 "provider=Microsoft.JET.OLEDB.4.0; " +
 "data source = c:\\SimpleBugListAccessDB.mdb";

This will connect to the database you just created.

Change the DataAdapter object to be an OleDbDataAdapter rather than a SqlDataAdapter:2.

OleDbDataAdapter DataAdapter =
 new OleDbDataAdapter (commandString, connectionString);

Replace the System.Data.SqlClient with the using statement for the OleDb namespace:3.

using System.Data.OleDb;

This design pattern continues throughout working with the two managed providers; for every object
whose class name begins with Sql , there is a corresponding class beginning with OleDb . Example 11-

4 is the complete C# OLE DB version of Example 11-3 .

Example 11-4. Using ADO.NET with Access in C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.OleDb;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace SimpleBugListBoxAccess
{
 /// <summary>
 /// Summary description for WebForm1.
 /// </summary>
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.ListBox lbBugs;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 // connect to the Bugs database
 string connectionString =
 "provider=Microsoft.JET.OLEDB.4.0; " +
 "data source = c:\\SimpleBugListAccessDB.mdb";

 // get records from the Bugs table
 string commandString =
 "Select BugID, Description from dbo_Bugs";

 // create the dataset command object
 // and the DataSet
 OleDbDataAdapter dataAdapter =
 new OleDbDataAdapter (
 commandString, connectionString);

 DataSet dataSet = new DataSet();

 // fill the dataset object
 dataAdapter.Fill(dataSet,"Bugs");

 // Get the one table from the DataSet
 DataTable dataTable = dataSet.Tables[0];

 // for each row in the table, display the info

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 foreach (DataRow dataRow in dataTable.Rows)
 {
 lbBugs.Items.Add(
 dataRow["BugID"] +
 ": " + dataRow["Description"]);
 }
 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 #region Web Form Designer generated code
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }
}

Example 11-5 is the OLE DB VB.NET version of the Page_Load routine.

Example 11-5. Page_Load in OLE DB VB.NET

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 Dim connectionString As String
 connectionString = "provider=Microsoft.JET.OLEDB.4.0; " & _
 "data source = c:\SimpleBugListAccessDB.mdb"

 Dim commandString As String
 commandString = "Select BugID, Description from dbo_Bugs"

 Dim myDataAdapter As New System.Data.OleDb.OleDbDataAdapter(_
 commandString, connectionString)

 Dim myDataSet As New DataSet

 myDataAdapter.Fill(myDataSet, "Bugs")

 Dim myDataTable As DataTable
 myDataTable = myDataSet.Tables(0)

 Dim theRow As DataRow
 For Each theRow In myDataTable.Rows
 lbBugs.Items.Add(theRow("BugID") & ": " & theRow("Description"))
 Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Sub

Before you run this program, edit the description of the first bug to include the word Access; this will
help you ensure that you are looking at the correct data. The output, which is shown in Figure 11-7 , is
identical to that from the previous example (except for the change you've made to the description of
the first bug).

Figure 11-7. Using the ADO provider

The OLE DB managed provider is more general than the SQL managed provider and can, in fact, be
used to connect to SQL Server as well as to any other OLE DB object. Because the SQL Server provider
is optimized for SQL Server, it will be more efficient to use the SQL Server-specific provider when
working with SQL Server. In time, there will be any number of specialized managed providers
available.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.5 Creating a Data Grid

You are now ready to return to the data grid examples from Chapter 10 and recode them by
accessing the database. You will remember that in Example 10-7 and Example 10-8, you created a
simple data grid, and then populated it with data from an ArrayList object. You can re-create that
now using ADO.NET to get bug data from the database.

To start, create a new C# project, SimpleADODataGrid. Drag a DataGrid control onto the form,

Visual Studio will name it DataGrid1. Accept all the default attributes as offered.

In the code-behind page's Page_Load method, you get the Bugs table from the database, just as you
did in Example 11-3:

string connectionString =
 "server=YourServer; uid=sa; " +
 "pwd=YourPassword; database=ProgASPDotNetBugs";

// get records from the Bugs table
string commandString =
 "Select BugID, Description from Bugs";

// create the dataset command object
// and the DataSet
SqlDataAdapter dataAdapter =
 new SqlDataAdapter(
 commandString, connectionString);

DataSet dataSet = new DataSet();

// fill the dataset object
dataAdapter.Fill(dataSet,"Bugs");

// Get the one table from the DataSet
DataTable dataTable = dataSet.Tables[0];

This time, however, you'll bind to the data grid rather than to a list box. To do so, you set the
DataGrid control's DataSource property to dataTable, the DataTable object you get from the dataset,
and then call DataBind on the data grid:

DataGrid1.DataSource=dataTable;
DataGrid1.DataBind();

When you run the page, hey! presto! the data grid is connected, as shown in Figure 11-8.

Figure 11-8. A simple data grid

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the columns in the data grid have titles. These are the names of the columns from the
Bugs table. Unless you tell it otherwise, the data grid picks up the titles from the columns in the
database. You'll see how to modify this in a later example.

11.5.1 Displaying Relational Data

If you change the commandString in Example 11-2 from:

string commandString =
 "Select BugID, Description from Bugs";

to:

string commandString =
 "Select * from Bugs";

to get all the fields in the table, the output (shown in Figure 11-9) reflects the fact that some of the
fields have numeric IDs that do not convey a lot of information to the user.

Figure 11-9. Showing the ID fields

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The information you would like to show is the name of the product and the name of the person filing
the report. You accomplish this by using a more sophisticated SQL select statement in the command

string:

string commandString =
"Select b.BugID, b.Description, p.ProductDescription,
peo.FullName from Bugs b join lkProduct p on b.Product = p.ProductID
join People peo on b.Reporter = peo.PersonID ";

In this select statement, you are drawing fields from three tables: Bugs, lkProduct, and People. You

join the lkProduct table to the Bugs table on the ProductID in the Bugs record, and you join the
People table to the PersonID of the Reporter field in Bugs.

The results are shown in Figure 11-10.

Figure 11-10. Using the join statement

This is better, but the headers are not what we might hope, and the grid is a bit ugly. The best way
to solve these problems is with attributes for the DataGrid, as you saw in Chapter 10. Adding just a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

few attributes to the data grid, you can control which columns are displayed and how the headers are
written, and you can provide a nicer background color for the header row. The following code does
this:

<asp:DataGrid id="DataGrid1" runat="server" CellPadding="5"
HeaderStyle-BackColor="PapayaWhip" BorderWidth="5px"
BorderColor="#000099" AlternatingItemStyle-BackColor="LightGrey"
HeaderStyle-Font-Bold="True" AutoGenerateColumns="False">
 <Columns>
 <asp:BoundColumn DataField="BugID" HeaderText="ID" />
 <asp:BoundColumn DataField="Description"
 HeaderText="Description" />
 <asp:BoundColumn DataField="ProductDescription"
 HeaderText="Product" />
 <asp:BoundColumn DataField="FullName"
 HeaderText="Reported By" />
 </Columns>
</asp:DataGrid>

You will remember from Chapter 10 that the AutoGenerateColumns attribute tells the grid whether
to pick up all the columns from the data source; by setting it to false, you tell the grid that you will
specify which columns to display in the Columns attribute.

Nested within the Columns attribute are BoundColumn attributes, which delineate which field will

supply the data (e.g., BugID, ProductDescription, FullName) and the header to display in the
DataGrid (e.g., BugID, Product, Reported By). The result is shown in Figure 11-11.

Figure 11-11. Using attributes to control the display

11.5.2 Displaying Parent/Child Relationships

You would like to offer the user the ability to see the complete history for a given Bug. To do this,
you'll add a column with a button marked "History." When the user clicks on the button, you'll display
a second grid with the Bug History.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The BugHistory records act as child records to the Bug records. For each Bug there will be a set of
one or more BugHistory records. For each BugHistory record there will be exactly one Bug parent
record. This section will explore the first of a number of ways to display these related records.
Alternative ways to display this relationship will be shown later in this chapter.

To start, add the ButtonColumn to the Data Grid and add an attribute for the
OnSelectedIndexChanged event. Set the DataKeyField attribute to BugID; this is the primary key

for the Bugs table and will serve as the foreign key for the BugHistory grid:

<asp:DataGrid id="DataGrid1" runat="server"
DataKeyField="BugID"

CellPadding="5" HeaderStyle-BackColor="PapayaWhip" BorderWidth="5px"
BorderColor="#000099" OnItemDataBound="OnItemDataBoundEventHandler"
OnSelectedIndexChanged="OnSelectedIndexChangedHandler "
AlternatingItemStyle-BackColor="LightGrey" HeaderStyle-Font-Bold="True"
AutoGenerateColumns="False" EnableViewState="true">
 <Columns>
 <asp:ButtonColumn Text="History" CommandName="Select" />
 <asp:BoundColumn DataField="BugID" HeaderText="Bug ID" />
 <asp:BoundColumn DataField="Description"
 HeaderText="Description" />
 <asp:BoundColumn DataField="Reporter"
 HeaderText="Reported By" />
 <asp:BoundColumn DataField="Response"
 HeaderText="Most Recent Action" />
 <asp:BoundColumn DataField="Owner"
 HeaderText="Owned By" />
 <asp:BoundColumn DataField="StatusDescription"
 HeaderText="Status" />
 <asp:BoundColumn DataField="SeverityDescription"
 HeaderText="Severity" />
 <asp:BoundColumn DataField="DateStamp"
 HeaderText="LastUpdated" />
 </Columns>
</asp:DataGrid>

Add a Panel control to hold the history grid. This serves the same purpose as the details panel in
Example 10-11; you'll make this panel visible or invisible depending on whether or not you are
showing the history of a bug. Add the following code to the HTML page:

<asp:Panel ID="BugHistoryPanel" Runat="server">
 <asp:DataGrid id="HistoryGrid" AutoGenerateColumns="False"
 HeaderStyle-Font-Bold="True" AlternatingItemStyle-BackColor="LightGrey"
 BorderColor="#000099" BorderWidth="5px"
 HeaderStyle-BackColor="PapayaWhip"
 CellPadding="5" Runat="server">
 <Columns>
 <asp:BoundColumn DataField="Response"
 HeaderText="Most Recent Action" />
 <asp:BoundColumn DataField="Owner"
 HeaderText="Owned By" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:BoundColumn DataField="StatusDescription"
 HeaderText="Status" />
 <asp:BoundColumn DataField="SeverityDescription"
 HeaderText="Severity" />
 <asp:BoundColumn DataField="DateStamp"
 HeaderText="LastUpdated" />
 </Columns>
 </asp:DataGrid>
</asp:Panel>

The supporting code-behind page is shown in Example 11-6 for C# and Example 11-7 for VB.NET.
Complete analysis follows the listings.

Example 11-6. C# code-behind page

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Text;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace BugHistoryDynamic
{
 /// <summary>
 /// Summary description for WebForm1.
 /// </summary>
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.DataGrid DataGrid1;
 protected System.Web.UI.WebControls.DataGrid HistoryGrid;
 protected System.Web.UI.WebControls.Panel BugHistoryPanel;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 // When the item is added to the bug grid,
 // if the status is high write it in red
 public void OnItemDataBoundEventHandler(
 Object sender, DataGridItemEventArgs e)
 {
 ListItemType itemType = (ListItemType)e.Item.ItemType;
 if (itemType == ListItemType.Header ||

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 itemType == ListItemType.Footer ||
 itemType == ListItemType.Separator)
 return;

 if (((DataRowView)e.Item.DataItem).
 Row.ItemArray[8].ToString() == "High")
 {
 TableCell severityCell =
 (TableCell) e.Item.Controls[6];
 severityCell.ForeColor = Color.FromName("Red");
 }
 }

 // the user has selected a row
 // display the history for that bug
 public void OnSelectedIndexChangedHandler(
 Object sender, EventArgs e)
 {
 UpdateBugHistory();
 }

 // If the user has selected a row
 // display the history panel
 private void UpdateBugHistory()
 {
 int index = DataGrid1.SelectedIndex;
 if (index != -1)
 {
 // get the bug id from the data grid
 int bugID =
 (int) DataGrid1.DataKeys[index];

 // Get a dataset based on that BugID
 DataSet dataSet =
 CreateBugHistoryDataSet(bugID);

 // bind to the table returned and make
 // the panel visible
 HistoryGrid.DataSource=dataSet.Tables[0];
 HistoryGrid.DataBind();
 BugHistoryPanel.Visible=true;
 }
 else
 {
 // no history to display, hide the panel
 BugHistoryPanel.Visible=false;
 }
 }

 // The first time you load the page, populate the
 // bug grid and hide the history grid
 private void Page_Load(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 object sender, System.EventArgs e)
 {
 if (!IsPostBack)
 {
 // hide the history panel
 UpdateBugHistory();

 // set the data source for the
 // grid to the first table
 DataSet ds = CreateBugDataSet();
 DataGrid1.DataSource=ds.Tables[0];
 DataGrid1.DataBind();
 }
 }

 // create a dataset for the bug history records
 private DataSet CreateBugHistoryDataSet(int bugID)
 {
 // connection string to connect to the Bugs Database
 string connectionString =
 "server=YourServer; uid=sa; " +
 "pwd=YourPassword; database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // create a second command object for the bugs history table
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection = connection;

 StringBuilder s =
 new StringBuilder("Select BugID, StatusDescription, ");
 s.Append("SeverityDescription, Response, ");
 s.Append("FullName as Owner, DateStamp ");
 s.Append("from BugHistory h ");
 s.Append("join People o on h.Owner = o.PersonID ");
 s.Append("join lkStatus s on s.statusid = h.status ");
 s.Append(
 "join lkSeverity sev on sev.SeverityID = h.severity ");
 s.Append("where BugID = " + bugID);
 command.CommandText= s.ToString();

 // create a second data adapter and add the command
 // and map the table
 // then fill the dataset from this second adapter
 SqlDataAdapter dataAdapter = new SqlDataAdapter();
 dataAdapter.SelectCommand = command;
 dataAdapter.TableMappings.Add("Table", "BugHistory");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataSet dataSet = new DataSet();
 dataAdapter.Fill(dataSet);
 return dataSet;
 }

 // create a dataset for the bug table
 private DataSet CreateBugDataSet()
 {
 // connection string to connect to the Bugs Database
 string connectionString =
 "server=YourServer; uid=sa; " +
 "pwd=YourPassword; database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // Create a SqlCommand object and assign the connection
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection=connection;

 // build the selection statement
 StringBuilder s =
 new StringBuilder(
 "Select b.BugID, h.BugHistoryID, b.Description,h.Response, ");
 s.Append("o.FullName as owner, ");
 s.Append("p.ProductDescription, ");
 s.Append("r.FullName as reporter, ");
 s.Append("s.StatusDescription, ");
 s.Append("sev.SeverityDescription, ");
 s.Append("h.DateStamp ");
 s.Append("from ");
 s.Append(
 "(select bugID, max(bugHistoryID) as maxHistoryID ");
 s.Append("from BugHistory group by bugID) t ");
 s.Append("join bugs b on b.bugid = t.bugid ");
 s.Append(
 "join BugHistory h on h.bugHistoryID = t.maxHistoryID ");
 s.Append("join lkProduct p on b.Product = p.ProductID ");
 s.Append("join People r on b.Reporter = r.PersonID ");
 s.Append("join People o on h.Owner = o.PersonID ");
 s.Append("join lkStatus s on s.statusid = h.status ");
 s.Append(
 "join lkSeverity sev on sev.SeverityID = h.severity ");

 // set the command text to the select statement
 command.CommandText=s.ToString();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // create a data adapter and assign the command object
 // and add the table mapping for bugs
 SqlDataAdapter dataAdapter = new SqlDataAdapter();
 dataAdapter.SelectCommand=command;
 dataAdapter.TableMappings.Add("Table","Bugs");

 // Create the dataset and use the data adapter to fill it
 DataSet dataSet = new DataSet();
 dataAdapter.Fill(dataSet);
 return dataSet;
 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }
}

Example 11-7. B.NET code-behind page

Imports System
Imports System.Web
Imports System.Web.UI
Imports System.Web.UI.WebControls
Imports System.Data

Public Class WebForm1
 Inherits System.Web.UI.Page

 Protected WithEvents DataGrid1 As _
 System.Web.UI.WebControls.DataGrid
 Protected WithEvents HistoryGrid As _
 System.Web.UI.WebControls.DataGrid
 Protected WithEvents BugHistoryPanel As _
 System.Web.UI.WebControls.Panel

#Region " Web Form Designer Generated Code "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Private Sub Page_Load(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 If Not IsPostBack Then
 UpdateBugHistory()
 Dim ds As DataSet = CreateBugDataSet()
 DataGrid1.DataSource = ds.Tables(0)
 DataGrid1.DataBind()
 End If

 End Sub

 Public Sub DataGrid1_ItemDataBound(_
 ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs) _
 Handles DataGrid1.ItemDataBound

 Dim myItemtype As ListItemType

 myItemtype = CType(e.Item.ItemType, ListItemType)
 If (myItemtype = ListItemType.Header) _
 Or (myItemtype = ListItemType.Footer) _
 Or (myItemtype = ListItemType.Separator) Then
 Return
 End If

 Dim obj As Object = _
 CType(e.Item.DataItem, DataRowView).Row.ItemArray(8)

 If CType(e.Item.DataItem, DataRowView).Row.ItemArray(8).ToString()_
 = "High" Then
 Dim severityCell As TableCell = _
 CType(e.Item.Controls(6), TableCell)
 severityCell.ForeColor = Color.FromName("Red")
 End If
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private Function CreateBugHistoryDataSet(ByVal bugID As Integer) _
 As DataSet
 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPassword; " + _
 "database=ProgASPDotNetBugs"
 Dim connection As _
 New System.Data.SqlClient.SqlConnection(connectionString)
 connection.Open()

 Dim command As New System.Data.SqlClient.SqlCommand()
 command.Connection = connection

 Dim s As New String(_
 "Select BugID, StatusDescription, severityDescription, ")
 s = s & "Response, FullName as owner, DateStamp from BugHistory h "
 s = s & "join People p on h.owner = p.personID "
 s = s & "join lkStatus s on s.statusid = h.status "
 s = s & "join lkSeverity sev on sev.severityID = h.severity "
 s = s & "where bugid = " & bugID
 command.CommandText = s

 Dim myDataAdapter As New SqlClient.SqlDataAdapter()
 myDataAdapter.SelectCommand = command
 myDataAdapter.TableMappings.Add("Table", "BugHistory")
 Dim ds As New DataSet()
 myDataAdapter.Fill(ds)
 Return ds
 End Function

 Private Function CreateBugDataSet() As DataSet
 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPassword; " + _
 "database=ProgASPDotNetBugs"
 Dim connection As _
 New System.Data.SqlClient.SqlConnection(connectionString)
 connection.Open()

 Dim command As New System.Data.SqlClient.SqlCommand()
 command.Connection = connection

 Dim s As New String(_
 "Select b.bugID, h.bugHistoryID, b.description, h.response, ")
 s = s & "o.Fullname as owner, p.ProductDescription, "
 s = s & "r.FullName as reporter, "
 s = s & "s.statusDescription, sev.SeverityDescription, h.DateStamp "
 s = s & "from (select bugID, max(bugHistoryID) as maxHistoryID "
 s = s & "from BugHistory group by bugID) t "
 s = s & "join bugs b on b.bugid = t.bugID "
 s = s & "join BugHistory h on h.bugHistoryID = t.maxHistoryID "
 s = s & "join lkProduct p on b.Product = p.ProductID "
 s = s & "join People r on b.Reporter = r.PersonID "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 s = s & "join People o on h.Owner = o.PersonID "
 s = s & "join lkStatus s on s.statusid = h.status "
 s = s & "join lkSeverity sev on sev.SeverityID = h.severity "

 command.CommandText = s

 Dim myDataAdapter As New SqlClient.SqlDataAdapter()
 myDataAdapter.SelectCommand = command
 myDataAdapter.TableMappings.Add("Table", "Bugs")
 Dim ds As New DataSet()
 myDataAdapter.Fill(ds)
 Return ds
 End Function

 Public Sub DataGrid1_SelectedIndexChanged(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles DataGrid1.SelectedIndexChanged
 UpdateBugHistory()
 End Sub

 Private Sub UpdateBugHistory()
 Dim index As Integer = DataGrid1.SelectedIndex
 If index <> -1 Then
 Dim bugID As Integer = _
 CType(DataGrid1.DataKeys(index), Integer)
 Dim myDataSet As DataSet = CreateBugHistoryDataSet(bugID)
 HistoryGrid.DataSource = myDataSet.Tables(0)
 HistoryGrid.DataBind()
 BugHistoryPanel.Visible = True
 Else
 BugHistoryPanel.Visible = False
 End If
 End Sub

End Class

The Page_Load event handler creates the dataset for the bug grid the first time the page is viewed
(that is, the IsPostBack property is false).

When the user clicks on the History button, the OnSelectedIndexChangedHandler event fires. You call
a private method, UpdateBugHistory, that determines if the Panel control should be shown or not.

UpdateBugHistory checks the SelectedIndex property from the DataGrid. If the value of
SelectedIndex is not -1 (that is, if a selection has been made), the index is used as an offset into the

DataGrid's DataKeys collection.

The dataset itself is created by the CreateBugHistoryDataSet method into which you pass the bugID
as a parameter. This method formulates an SQL select statement and fills a dataset with the

resulting records.

When you first display the page, only the Bug data grid is displayed, as shown in Figure 11-12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11-12. Displaying the Bug DataGrid

If the user clicks on the History button, you retrieve the index of the item clicked on and use that as
an offset into the Datakeys collection to get the BugID. With the BugID, you can create a dataset of
the matching history records, which is displayed in the HistoryDataGrid in the BugHistoryPanel that
you now make visible, as shown in Figure 11-13.

Figure 11-13. Displaying the bug history

11.5.3 Using a DataReader

In the previous example, the BugHistory grid was filled from a table in a dataset. While datasets are
very powerful disconnected data sources, they may require more overhead than is needed in this
example.

If what you want to do is to retrieve a set of records and then immediately display them, an
SqlDataReader or an OleDbDataReader object may be more efficient.

DataReaders are very limited compared to datasets. They offer only a "firehose" cursor for forward-
only iteration through a set of results. You can also use DataReaders to execute a simple insert,
update, or delete SQL statement.

Because datasets have greater overhead than DataReaders, you should choose a DataReader as your
data source whenever possible. DataReaders are not disconnected, however, and so you lose the
specific advantages of disconnected datasets. You will certainly need a dataset to meet any of the
following requirements:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To pass a disconnected set of data to another tier in your application or to a client application.

To persist your results either to a file or to a Session object.

To provide access to more than one table and to relationships among the tables.

To bind the same data to multiple controls. Remember, a DataReader object provides forward-
only access to the data; you can not reiterate through the data for a second control.

To jump to a particular record or to go backwards through a set of data.

To update a number of records in the back-end database using a batch operation.

When you have simpler requirements, however, the DataReader object is a great lightweight
alternative to the more complicated dataset. Rewriting the previous example to use a DataReader is
almost trivial. You'll modify the CreateBugHistoryDataSet method to return an SqlDataReader object
rather than a dataset.

To get started, set up the connection string, SqlConnection object, and SqlCommand object exactly
as you did previously. Once your Command object is established, create the DataReader. You cannot
call the DataReader's constructor directly; instead you call ExecuteReader on the SqlCommand
object; what you get back is an instance of SqlDataReader, as the following code fragment shows:

SqlDataReader reader =
 command.ExecuteReader(CommandBehavior.CloseConnection);

The optional CommandBehavior.CloseConnection argument is an enumerated value that tells the

SqlDataReader object that when it is closed, it should close the connection to the database.

You can then assign that SqlDataReader object as the DataSource for your DataGrid:

HistoryGrid.DataSource=reader;

After you bind the DataGrid, you must call Close on the SqlDataReader to tell it to break the
connection to the database:

HistoryGrid.DataBind();
reader.Close();

That's all there is to it. To modify Example 11-6 to use SqlDataReader, make the following three
changes:

Modify the return value and name of the CreateBugHistoryDataSet as follows:1.

private SqlDataReader CreateBugHistoryDataReader(int bugID)

Replace the following lines from what was CreateBugHistoryDataSet:2.

SqlDataAdapter dataAdapter = new SqlDataAdapter();
dataAdapter.SelectCommand = command;
dataAdapter.TableMappings.Add("Table", "BugHistory");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DataSet dataSet = new DataSet();
dataAdapter.Fill(dataSet);
return dataSet;

with these lines:

SqlDataReader reader =
 command.ExecuteReader(CommandBehavior.CloseConnection);
return reader;

Modify these three lines from UpdateBugHistory:3.

DataSet dataSet =
 CreateBugHistoryDataSet(bugID);
 HistoryGrid.DataSource=dataSet.Tables[0];
 HistoryGrid.DataBind();

with this replacement:

SqlDataReader reader = CreateBugHistoryDataReader(bugID);
HistoryGrid.DataSource=reader;
HistoryGrid.DataBind();
reader.Close();

Recompile and the program will now use a (connected forward-only firehose) SqlDataReader rather
than a (disconnected) SqlDataSet to bind the Bug History data grid.

11.5.4 DataView

In Example 11-6, you query the database for the history records each time you redraw the history
grid. An alternative is to retrieve all of the history records once, and then to filter the results to
retrieve the history records you want to display. In a larger database, this might become unwieldy,
but, for example, you might fill the Bugs table with just the 50 most recent bugs, and you would then
fill the history table with the history records for just those 50 bugs. In this way you can reduce the
number of calls to the database, in exchange for holding many more records in memory.

To make this work, you'll assign the historyGrid's data source to a DataView object, rather than to a
table. The DataView object will represent a "view" of the table, typically filtered by the particular bug
of interest.

You can revise the previous example by getting all the BugHistory records at the same time that you
get all the bug records. You'll put the Bug records into one table in the dataset, and the BugHistory
records into a second table in the dataset.

When the page is first created, you'll create a DataView object based on the second table
(BugHistory), and you'll make that view be the DataSource for the HistoryGrid:

DataView historyView = new DataView(ds.Tables[1]);
HistoryGrid.DataSource = historyView;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the user clicks on a record you will once again get the BugID by using the selected row as an
index into the DataGrid object's DataKeys collection. This time, however, you will use that bugID to
filter the view you've created:

historyView.RowFilter = "BugID = " + bugID;

The RowFilter property of the DataView object allows you to filter the view for those records you
want. The view will only present records which match the filter. RowFilters use the SQL syntax of a
where clause. The RowFilter above equates to the clause "where BugID = 2".

Unfortunately, your class is destroyed and re-created each time the page is posted. Your historyView
object will not persist, even if you were to make it an instance variable of the WebForm1 class. You
could, of course, re-create the view by reissuing the query, but this would undermine the point of
getting the entire set of history records in the first place.

In a production system, you might get the view from outside your application. For example, you
might be interacting with a web service that provides the DataView. In this example, since you don't
have such a web service, you'll stash the DataView into the session state.

Saving your view in session state works fine as long as your server is on a
single machine. Once your server grows to multiple machines, you'll probably
save session state to a database, in which case it is silly to keep the DataView
in session state. At that point, you might as well issue smaller queries directly
to the database for each update, rather than retrieving the entire set of history
records from the database into session state and then back into your program
and then filtering the results.

To save the DataView in session state, you just create a "key"-506a string which will be used to
identify your session state variable:

Session["historyView"] = historyView;

Here the DataView object historyView is saved to session state with the string "historyView" as its

key. Session variables act like properties; you can simply assign them to an object, remembering to
cast to the appropriate type:

DataView historyView = (DataView) Session["historyView"];

11.5.5 Creating Data Relations

Because the DataSet acts as a disconnected model of the database, it must be able to represent not
only the tables within the database, but the relations among the tables as well.

The DataSet captures these relationships in a DataRelationCollection that you access through the
read-only Relations property. The DataRelationCollection is a collection of DataRelation objects,

each of which represents a relationship between two tables.

Each DataRelation object relates a pair of DataTable objects to each other through DataColumn

objects. The relationship is established by matching columns in the two tables.

The DataRelation objects retrieved through the Relations property of the DataSet provides you with
meta-data: data about the relationship among the tables in the database. You can use this meta-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

data in a number of ways. For example, you can generate a schema for your database from the
information contained in the dataset.

In the next example, you will create DataRelation objects to model two relationships within the Bugs
database. The first DataRelation object you create will represent the relationship between the Bugs
table and the BugHistory table through the BugID. The second relationship you will model is between
the BugHistory table and the lkSeverity table through the SeverityID.

You will remember that the BugHistory table uses the BugID from the Bugs table as a foreign key.
You thus need a column object for the BugID column in each of the tables:

System.Data.DataColumn dataColumn1;
System.Data.DataColumn dataColumn2;
dataColumn1 =
 dataSet.Tables["Bugs"].Columns["BugID"];
dataColumn2 =
 dataSet.Tables["BugHistory"].Columns["BugID"];

With these two columns in hand, you are ready to initialize the DataRelation object that you will use
to model the relationship between the Bugs and BugHistory tables. You pass in the two data columns
along with a name for the relationship, in this case BugsToHistory:

dataRelation = new System.Data.DataRelation(
 "BugsToHistory",
 dataColumn1,
 dataColumn2);

You can of course combine the declaration and initialization of the DataRelation
object:

System.Data.DataRelation dataRelation =
 new System.Data.DataRelation(
 "BugsToHistory",
 dataColumn1,
 dataColumn2);

You now add the Relation to the DataRelationCollection collection in the dataset:

dataSet.Relations.Add(dataRelation);

To create the second DataRelation, between the BugHistory and lkSeverity tables, you first create a
"lkSeverity" table within the dataset:

StringBuilder s3 =
 new StringBuilder(
 "Select SeverityID, SeverityDescription from lkSeverity");
command3.CommandText= s3.ToString();

SqlDataAdapter dataAdapter3 = new SqlDataAdapter();
dataAdapter3.SelectCommand = command3;
dataAdapter3.TableMappings.Add("Table", "lkSeverity");
dataAdapter3.Fill(dataSet);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You are now ready to create the data relation between the History table and the Severity table:

dataColumn1 = dataSet.Tables["lkSeverity"].Columns["SeverityID"];
dataColumn2 = dataSet.Tables["BugHistory"].Columns["Severity"];

dataRelation =
 new System.Data.DataRelation(
 "HistoryToSeverity",
 dataColumn1,
 dataColumn2);

dataSet.Relations.Add(dataRelation);

In the previous example, you did not need to get the Severity value in the
select statement that builds the BugHistory table. You joined on the lkSeverity

table and got the SeverityDescription, but not the ID. To create the relation,
however, you now do need that value. Be sure to modify the select statement:

StringBuilder s2 =
 new StringBuilder("Select BugID, BugHistoryID,
 StatusDescription, ");
s2.Append(

"Severity, SeverityDescription, Response,
 FullName as
 Owner, DateStamp ");
s2.Append("from BugHistory h ");
s2.Append("join People o on h.Owner = o.PersonID ");
s2.Append("join lkStatus s on s.statusid = h.status ");
s2.Append(
 "join lkSeverity sev on sev.SeverityID = h.severity ");
command2.CommandText= s2.ToString();

If you neglect to select the SeverityID (History.Severity) and you try to
establish a relation between History.Severity and lkSeverity.SeverityID you will
get an error at run time that the column is null. This can make you a bit crazy
until you figure out that there is no Severity column in the BugHistory table
within the dataset even though that column certainly does exist in the
database.

You can now display these relations by creating a data grid and setting its dataSource to the
Relations table of the dataSet. In the .aspx file add this code:

<asp:DataGrid ID="BugRelations" Runat="server"
 HeaderStyle-Font-Bold AlternatingItemStyle-BackColor="LightGrey"
 BorderColor="#000099" BorderWidth="5px"
 HeaderStyle-BackColor="PapayaWhip"
 CellPadding="5" Runat="server"/>

In the Page_Load method of the code-behind file, add these two lines:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BugRelations.DataSource=ds.Relations;
BugRelations.DataBind();

In a real product, you might create a nested grid structure in which you would show first a Bug and
then all its history elements. Rather than focusing on the user interface, in this example you'll just
build a string output of these relationships, printing these to an HTML page using an ASP Label
control.

Figure 11-14 shows the result of displaying both the collection of DataRelation objects and a hand-
built string produced by iterating through the Bugs table and the related BugHistory records.

Figure 11-14. Showing the Bug and BugHistory relations

Figure 11-14 shows three grids. The first is created from the Bugs table, as seen in previous
examples. The second is created from the lkSeverity table added in this example. The final grid's data
source is the Relations table from the dataset. It shows that you've created two relation objects:
BugsToHistory and HistoryToSeverity.

Below the three grids is the text output produced by walking through the relationships between Bugs
and BugHistory. For each Bug (e.g., BugID 1) you see the BugHistory records with that same BugID
(e.g, the eight bug History records for BugID 1).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Normally, as here, the parent/child relationship between two tables is managed
by the DataRelation object; the two tables are otherwise independent of one
another.

With XML however, parent/child relationships are represented by nesting
attributes one within the other. To facilitate synchronizing with an XML
document or writing out the dataset as XML (using the DataSet object's
WriteXml method), the DataRelation object has a Nested property. When
Nested is set to true, the child rows of the relation are nested within the parent

column when written as XML or when synchronized with an XML data
document.

The .aspx file is very similar to the previous examples, you have only to add the new grids and the
label for output:

<asp:DataGrid ID="SeverityGrid" Runat="server"
 HeaderStyle-Font-Bold="True" AlternatingItemStyle-BackColor="LightGrey"
 BorderColor="#000099" BorderWidth="5px" HeaderStyle-BackColor="PapayaWhip"
 CellPadding="5" Runat="server"/>

<asp:DataGrid ID="BugRelations" Runat="server"
 HeaderStyle-Font-Bold="True" AlternatingItemStyle-BackColor="LightGrey"
 BorderColor="#000099" BorderWidth="5px" HeaderStyle-BackColor="PapayaWhip"
 CellPadding="5" Runat="server"/>

<asp:Label ID="showRelations" Runat="server"></asp:Label>

To create the label showing the relationships, you'll work your way through the Bugs table by hand,
finding all the related BugHistory items for each of the Bug objects.

You iterate through the rows in the Bugs data table. For each row, you create an output string with
the BugID, and then you get a collection of the child rows defined by the BugsToHistory relation:

DataTable tblBugs = ds.Tables["Bugs"];
foreach (DataRow currentRow in tblBugs.Rows)
{
 outputString += "BugID: " + currentRow["BugID"] + "
";
 DataRow[] childRows = currentRow.GetChildRows("BugsToHistory");

The childRows DataRow collection contains all the child rows for the current row in the Bugs table.
The childRow relationship is established by the DataRelation named BugsToHistory, which

established a relationship between the BugID foreign key in BugHistory and the BugID key in Bugs.

You can now iterate through that childRows collection, printing whatever information you want to
display for each BugHistory record for the current bug:

foreach (DataRow historyRow in childRows)
{
 outputString += historyRow["BugHistoryID"] + ": " +
 historyRow["Response"] + "
";
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you've iterated through all the rows, you can assign the resulting string to the Text property of
the label you've added to your .aspx page:

showRelations.Text=outputString;

The complete annotated C# source code for the code-behind page is shown in Example 11-8.

Example 11-8. Code-behind page

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Text;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace BugHistoryDataGridRelations
{
 /// <summary>
 /// Summary description for WebForm1.
 /// </summary>
 public class WebForm1 : System.Web.UI.Page
 {
 // the Bugs Data Grid
 protected System.Web.UI.WebControls.DataGrid DataGrid1;

 // the Data Grid for the history items displayed using
 // a filtered view
 protected System.Web.UI.WebControls.DataGrid HistoryGrid;

 // the Data Grid to show the lkSeverity table
 protected System.Web.UI.WebControls.DataGrid SeverityGrid;

 // the Data Grid to show the DataRelations you've created
 protected System.Web.UI.WebControls.DataGrid BugRelations;

 // The panel to hold the history grid
 protected System.Web.UI.WebControls.Panel BugHistoryPanel;

 // The label for the hand-crafted string showing the
 // relation between a Bug and its child History records
 protected System.Web.UI.WebControls.Label showRelations;

 // unchanged from previous example
 public WebForm1()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 // unchanged from previous example
 public void OnItemDataBoundEventHandler(
 Object sender, DataGridItemEventArgs e)
 {
 ListItemType itemType = (ListItemType)e.Item.ItemType;
 if (itemType == ListItemType.Header ||
 itemType == ListItemType.Footer ||
 itemType == ListItemType.Separator)
 return;

 if (((DataRowView)e.Item.DataItem).Row.ItemArray[8].ToString()
 == "High")
 {
 TableCell severityCell = (TableCell) e.Item.Controls[6];
 severityCell.ForeColor = Color.FromName("Red");
 }
 }

 // unchanged from previous example
 public void OnSelectedIndexChangedHandler(
 Object sender, EventArgs e)
 {
 UpdateBugHistory();
 }

 // unchanged from previous example
 private void UpdateBugHistory()
 {

 int index = DataGrid1.SelectedIndex;
 if (index != -1)
 {
 // get the bug id from the data grid
 int bugID = (int) DataGrid1.DataKeys[index];
 DataView historyView = (DataView) Session["historyView"];
 historyView.RowFilter = "BugID = " + bugID;
 HistoryGrid.DataSource = historyView;
 HistoryGrid.DataBind();
 BugHistoryPanel.Visible=true;
 }
 else
 {
 BugHistoryPanel.Visible=false;
 }
 }

 // build the various tables, views, dataSets and data relations
 private void Page_Load(object sender, System.EventArgs e)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 if (!IsPostBack)
 {
 // hide the history panel
 UpdateBugHistory();

 // call the method which creates the tables and the relations
 DataSet ds = CreateDataSet();

 // set the data source for the grid to the first table
 DataGrid1.DataSource=ds.Tables[0];
 DataGrid1.DataBind();

 // create the DataView and bind to the History grid
 DataView historyView = new DataView(ds.Tables[1]);
 HistoryGrid.DataSource = historyView;
 Session["historyView"] = historyView;
 HistoryGrid.DataBind();

 // bind the severity grid to the
 SeverityGrid.DataSource=ds.Tables["lkSeverity"];
 SeverityGrid.DataBind();

 // bind the BugRelations grid to the Relations collection
 BugRelations.DataSource=ds.Relations;
 BugRelations.DataBind();

 // create the output string to show the relationship
 // between each bug and its related BugHistory records
 String outputString = "";
 DataTable tblBugs = ds.Tables["Bugs"];

 // for each Bug show its bugID and get all the
 // related history records
 foreach (DataRow currentRow in tblBugs.Rows)
 {
 outputString += "BugID: " + currentRow["BugID"] + "
";

 // the child relationship is created by the BugsToHistory
 // data relationship created in CreateDataSet()
 DataRow[] childRows =
 currentRow.GetChildRows("BugsToHistory");

 // for each historyRow in the child collection
 // display the response (current status) field
 foreach (DataRow historyRow in childRows)
 {
 outputString += historyRow["BugHistoryID"] + ": " +
 historyRow["Response"] + "
";
 }
 outputString += "
";
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // update the label
 showRelations.Text=outputString;
 }
 }

 // updated to get the lkSeverity table and to create
 // two DataRelation objects - one for Bug to BugHistory
 // and a second for BugHistory to lkSeverity
 private DataSet CreateDataSet()
 {

 // connection string to connect to the Bugs Database
 string connectionString =
 "server=YourServer; uid=sa; pwd=YourPassword; " +
 "database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string and open the connection
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // Create a SqlCommand object and assign the connection
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection=connection;

 // build the selection statement
 StringBuilder s = new StringBuilder(
 "Select b.BugID, h.BugHistoryID, b.Description,h.Response, ");
 s.Append("o.FullName as owner, ");
 s.Append("p.ProductDescription, ");
 s.Append("r.FullName as reporter, ");
 s.Append("s.StatusDescription, ");
 s.Append("sev.SeverityDescription, ");
 s.Append("h.DateStamp ");
 s.Append("from ");
 s.Append(
 "(select bugID, max(bugHistoryID) as maxHistoryID ");
 s.Append("from BugHistory group by bugID) t ");
 s.Append("join bugs b on b.bugid = t.bugid ");
 s.Append(
 "join BugHistory h on h.bugHistoryID = t.maxHistoryID ");
 s.Append("join lkProduct p on b.Product = p.ProductID ");
 s.Append("join People r on b.Reporter = r.PersonID ");
 s.Append("join People o on h.Owner = o.PersonID ");
 s.Append("join lkStatus s on s.statusid = h.status ");
 s.Append(
 "join lkSeverity sev on sev.SeverityID = h.severity ");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // set the command text to the select statement
 command.CommandText=s.ToString();

 // create a data adapter and assign the command object
 // and add the table mapping for bugs
 SqlDataAdapter dataAdapter = new SqlDataAdapter();
 dataAdapter.SelectCommand=command;
 dataAdapter.TableMappings.Add("Table","Bugs");

 // Create the dataset and use the data adapter to fill it
 DataSet dataSet = new DataSet();
 dataAdapter.Fill(dataSet);

 // create a second command object for the bugs history table
 System.Data.SqlClient.SqlCommand command2 =
 new System.Data.SqlClient.SqlCommand();
 command2.Connection = connection;

 // This time be sure to add a column for Severity so that you can
 // create a relation to lkSeverity
 StringBuilder s2 =
 new StringBuilder(
 "Select BugID, BugHistoryID, StatusDescription, ");
 s2.Append(
 "Severity, SeverityDescription, Response,
 FullName as Owner, DateStamp ");
 s2.Append("from BugHistory h ");
 s2.Append("join People o on h.Owner = o.PersonID ");
 s2.Append("join lkStatus s on s.statusid = h.status ");
 s2.Append(
 "join lkSeverity sev on sev.SeverityID = h.severity ");
 command2.CommandText= s2.ToString();

 // create a second data adapter and
 // add the command and map the table
 // then fill the dataset from this second adapter
 SqlDataAdapter dataAdapter2 = new SqlDataAdapter();
 dataAdapter2.SelectCommand = command2;
 dataAdapter2.TableMappings.Add("Table", "BugHistory");
 dataAdapter2.Fill(dataSet);

 // create a third command object for the lkSeverity table
 System.Data.SqlClient.SqlCommand command3 =
 new System.Data.SqlClient.SqlCommand();
 command3.Connection = connection;

 StringBuilder s3 =
 new StringBuilder(
 "Select SeverityID, SeverityDescription from lkSeverity");
 command3.CommandText= s3.ToString();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // create a third data adapter
 // and add the command and map the table
 // then fill the dataset from this second adapter
 SqlDataAdapter dataAdapter3 = new SqlDataAdapter();
 dataAdapter3.SelectCommand = command3;
 dataAdapter3.TableMappings.Add("Table", "lkSeverity");
 dataAdapter3.Fill(dataSet);

 // declare the DataRelation and DataColumn objects
 System.Data.DataRelation dataRelation;
 System.Data.DataColumn dataColumn1;
 System.Data.DataColumn dataColumn2;

 // set the dataColumns to create the relationship
 // between Bug and BugHistory on the BugID key
 dataColumn1 =
 dataSet.Tables["Bugs"].Columns["BugID"];
 dataColumn2 =
 dataSet.Tables["BugHistory"].Columns["BugID"];

 dataRelation =
 new System.Data.DataRelation(
 "BugsToHistory",
 dataColumn1,
 dataColumn2);

 // add the new DataRelation to the dataset
 dataSet.Relations.Add(dataRelation);

 // reuse the DataColumns and DataRelation objects
 // to create the relation between BugHistory and lkSeverity
 dataColumn1 = dataSet.Tables["lkSeverity"].Columns["SeverityID"];
 dataColumn2 = dataSet.Tables["BugHistory"].Columns["Severity"];

 dataRelation =
 new System.Data.DataRelation(
 "HistoryToSeverity",
 dataColumn1,
 dataColumn2);

 // add the HistoryToSeverity relationship to the dataset
 dataSet.Relations.Add(dataRelation);

 return dataSet;
 }

 // unchanged from previous example
 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);
 }
 #endregion
 }
}

The VB.NET version of the source code is shown in Example 11-9.

Example 11-9. Code-behind page

Imports System
Imports System.Web
Imports System.Web.UI
Imports System.Web.UI.WebControls
Imports System.Data
Imports System.Data.SqlClient
Imports System.Text

Public Class Example_11_9
 Inherits System.Web.UI.Page

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub
 Protected WithEvents DataGrid1 As System.Web.UI.WebControls.DataGrid
 Protected WithEvents HistoryGrid As System.Web.UI.WebControls.DataGrid
 Protected WithEvents BugHistoryPanel As System.Web.UI.WebControls.Panel
 Protected WithEvents SeverityGrid As System.Web.UI.WebControls.DataGrid
 Protected WithEvents BugRelations As System.Web.UI.WebControls.DataGrid
 Protected WithEvents showRelations As System.Web.UI.WebControls.Label

 'NOTE: The following placeholder declaration is required by the Web Form Designer.
 'Do not delete or move it.
 Private designerPlaceholderDeclaration As System.Object

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 InitializeComponent()
 End Sub

#End Region

 ' build the various tables, views, dataSets and data relations
 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 If Not IsPostBack Then

 ' hide the history panel
 UpdateBugHistory()

 ' call the method which creates the tables and the relations
 Dim ds As DataSet = CreateDataSet()

 ' set the data source for the grid to the first table
 DataGrid1.DataSource = ds.Tables(0)
 DataGrid1.DataBind()

 ' create the DataView and bind to the History grid
 Dim historyView As New DataView(ds.Tables(1))
 HistoryGrid.DataSource = historyView
 Session("historyView") = historyView
 HistoryGrid.DataBind()

 ' bind the severity grid to the
 SeverityGrid.DataSource = ds.Tables("lkSeverity")
 SeverityGrid.DataBind()

 ' bind the BugRelations grid to the Relations collection
 BugRelations.DataSource = ds.Relations
 BugRelations.DataBind()

 ' create the output string to show the relationship
 ' between each bug and its related BugHistory records
 Dim outputString As String = ""
 Dim tblBugs As DataTable = ds.Tables("Bugs")

 ' for each Bug show its bugID and get all the
 ' related history records
 Dim currentRow As DataRow
 For Each currentRow In tblBugs.Rows

 outputString += "BugID: " & currentRow("BugID") & "
"

 ' the child relationship is created by the BugsToHistory
 ' data relationship created in CreateDataSet()
 Dim childRows As DataRow() = _
 currentRow.GetChildRows("BugsToHistory")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' for each historyRow in the child collection
 ' display the response (current status) field
 Dim historyRow As DataRow
 For Each historyRow In childRows
 outputString += historyRow("BugHistoryID") & ": " & _
 historyRow("Response") & "
"
 Next
 outputString += "
"

 Next

 ' update the label
 showRelations.Text = outputString

 End If

 End Sub

 ' unchanged from previous example
 Public Sub DataGrid1_ItemDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs) _
 Handles DataGrid1.ItemDataBound

 Dim myItemtype As ListItemType

 myItemtype = CType(e.Item.ItemType, ListItemType)
 If (myItemtype = ListItemType.Header) Or _
 (myItemtype = ListItemType.Footer) Or _
 (myItemtype = ListItemType.Separator) Then
 Return
 End If

 Dim obj As Object = _
 CType(e.Item.DataItem, DataRowView).Row.ItemArray(8)

 If CType(e.Item.DataItem, DataRowView).Row.ItemArray(8).ToString() _
 = "High" Then

 Dim severityCell As TableCell = CType(e.Item.Controls(6), TableCell)
 severityCell.ForeColor = Color.FromName("Red")
 End If
 End Sub

 ' updated to get the lkSeverity table and to create
 ' two DataRelation objects - one for Bug to BugHistory
 ' and a second for BugHistory to lkSeverity
 Private Function CreateDataSet() As DataSet

 ' connection string to connect to the Bugs Database
 Dim connectionString As String = "server=YourServer; uid=sa; " + _
 "pwd=YourPassword; database=ProgASPDotNetBugs"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Create connection object, initialize with
 ' connection string and open the connection
 Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)
 connection.Open()

 ' Create a SqlCommand object and assign the connection
 Dim command As New System.Data.SqlClient.SqlCommand
 command.Connection = connection

 ' build the selection statement
 Dim s As New StringBuilder("Select b.BugID, h.BugHistoryID, _
 b.Description,h.Response, ")
 s.Append("o.FullName as owner, ")
 s.Append("p.ProductDescription, ")
 s.Append("r.FullName as reporter, ")
 s.Append("s.StatusDescription, ")
 s.Append("sev.SeverityDescription, ")
 s.Append("h.DateStamp ")
 s.Append("from ")
 s.Append("(select bugID, max(bugHistoryID) as maxHistoryID ")
 s.Append("from BugHistory group by bugID) t ")
 s.Append("join bugs b on b.bugid = t.bugid ")
 s.Append("join BugHistory h on h.bugHistoryID = t.maxHistoryID ")
 s.Append("join lkProduct p on b.Product = p.ProductID ")
 s.Append("join People r on b.Reporter = r.PersonID ")
 s.Append("join People o on h.Owner = o.PersonID ")
 s.Append("join lkStatus s on s.statusid = h.status ")
 s.Append("join lkSeverity sev on sev.SeverityID = h.severity ")

 ' set the command text to the select statement
 command.CommandText = s.ToString()

 ' create a data adapter and assign the command object
 ' and add the table mapping for bugs
 Dim dataAdapter As New SqlDataAdapter
 dataAdapter.SelectCommand = command
 dataAdapter.TableMappings.Add("Table", "Bugs")

 ' Create the dataset and use the data adapter to fill it
 Dim DataSet As New DataSet
 dataAdapter.Fill(DataSet)

 ' create a second command object for the bugs history table
 Dim command2 As New System.Data.SqlClient.SqlCommand
 command2.Connection = connection

 ' This time be sure to add a column for Severity so that you can
 ' create a relation to lkSeverity
 Dim s2 As New _
 StringBuilder("Select BugID, BugHistoryID, StatusDescription, ")
 s2.Append("Severity, SeverityDescription, Response, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FullName as Owner, DateStamp ")
 s2.Append("from BugHistory h ")
 s2.Append("join People o on h.Owner = o.PersonID ")
 s2.Append("join lkStatus s on s.statusid = h.status ")
 s2.Append("join lkSeverity sev on sev.SeverityID = h.severity ")
 command2.CommandText = s2.ToString()

 ' create a second data adapter and
 ' add the command and map the table
 ' then fill the dataset from this second adapter
 Dim dataAdapter2 As New SqlDataAdapter
 dataAdapter2.SelectCommand = command2
 dataAdapter2.TableMappings.Add("Table", "BugHistory")
 dataAdapter2.Fill(DataSet)

 ' create a third command object for the lkSeverity table
 Dim command3 As New System.Data.SqlClient.SqlCommand
 command3.Connection = connection

 Dim s3 As New StringBuilder(_
 "Select SeverityID, SeverityDescription from lkSeverity")
 command3.CommandText = s3.ToString()

 ' create a third data adapter
 ' and add the command and map the table
 ' then fill the dataset from this second adapter
 Dim dataAdapter3 As New SqlDataAdapter
 dataAdapter3.SelectCommand = command3
 dataAdapter3.TableMappings.Add("Table", "lkSeverity")
 dataAdapter3.Fill(DataSet)

 ' declare the DataRelation and DataColumn objects
 Dim dataRelation As System.Data.DataRelation
 Dim dataColumn1 As System.Data.DataColumn
 Dim dataColumn2 As System.Data.DataColumn

 ' set the dataColumns to create the relationship
 ' between Bug and BugHistory on the BugID key
 dataColumn1 = DataSet.Tables("Bugs").Columns("BugID")
 dataColumn2 = DataSet.Tables("BugHistory").Columns("BugID")

 dataRelation = New System.Data.DataRelation("BugsToHistory", _
 dataColumn1, dataColumn2)

 ' add the new DataRelation to the dataset
 DataSet.Relations.Add(dataRelation)

 ' reuse the DataColumns and DataRelation objects
 ' to create the relation between BugHistory and lkSeverity
 dataColumn1 = DataSet.Tables("lkSeverity").Columns("SeverityID")
 dataColumn2 = DataSet.Tables("BugHistory").Columns("Severity")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dataRelation = New System.Data.DataRelation("HistoryToSeverity", _
 dataColumn1, dataColumn2)

 ' add the HistoryToSeverity relationship to the dataset
 DataSet.Relations.Add(dataRelation)

 Return DataSet

 End Function

 ' unchanged from previous example
 Public Sub DataGrid1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles DataGrid1.SelectedIndexChanged
 UpdateBugHistory()
 End Sub

 ' unchanged from previous example
 Private Sub UpdateBugHistory()

 Dim index As Integer = DataGrid1.SelectedIndex

 If index <> -1 Then
 Dim bugID As Integer = CType(DataGrid1.DataKeys(index), Integer)
 Dim historyView As DataView = _
 CType(Session("historyView"), DataView)
 historyView.RowFilter = "BugID = " & bugID
 HistoryGrid.DataSource = historyView
 HistoryGrid.DataBind()
 BugHistoryPanel.Visible = True
 Else
 BugHistoryPanel.Visible = False
 End If

 End Sub

End Class

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.6 Creating Data Objects by Hand

In all of the examples so far, you have created the DataSet object and its DataTable and DataRow
objects by selecting data from the database. There are, however, occasions when you will want to fill
a dataset or a table by hand.

For example, you may want to gather data from a user and then push that data into the database. It
can be convenient to add records to a table manually, and then update the database from that table.

The dataset is also an excellent transport mechanism for data. You may even want to create a
dataset by hand only to pass it to another tier in your application where it will be used as a data
source.

In the next example you will create a dataset and populate three tables by hand. You'll start by
creating theBugs table and specifying its data structure. You'll then fill that table with records. You'll
do the same for the lkProduct table and the People table.

Once the tables are created, you'll set constraints on a number of columns, set default values,
establish identity columns, and create keys. In addition, you'll establish a foreign key relationship
between two tables, and you'll create a data relation tying two tables together. It sounds like more
work than it really is.

11.6.1 Creating the DataTable by Hand

Start by creating a method named CreateDataSet. The job of this method is to create a DataSet and

to populate it by hand, and then to return that resulting DataSet to the calling method, in this case
Page_Load.

CreateDataSet begins by instantiating a new DataTable object, passing in the name of the table as a
parameter to the constructor:

DataTable tblBugs = new DataTable("Bugs");

The table you are creating should mimic the data structure of the Bugs table in SQL Server. Figure
11-15 shows that structure.

Figure 11-15. The structure of the Bugs table in SQL server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To add a column to this DataTable object, you do not call a constructor. Instead you call the Add
method of the DataTable object's Columns collection. The Add method takes two parameters, the
name of the column and its data type:

DataColumn newColumn;
newColumn =
 tblBugs.Columns.Add("BugID", Type.GetType("System.Int32"));

In Visual Basic .NET, this is:

dim newColumn as DataColumn
newColumn = _
 tblBugs.Columns.Add("BugID", Type.GetType("System.Int32"));

11.6.1.1 Setting column properties

The Add method creates the new column and returns a reference to it, which you may now
manipulate. Since this is to be an identity column (see the highlighted field in Figure 11-15), you'll
want to set its AutoIncrement property to true, and you'll set the AutoIncrementSeed and

AutoIncrementStep properties to set the seed and step values of the identity, respectively. The
following code fragment does this:

newColumn.AutoIncrement = true;
newColumn.AutoIncrementSeed=1;
newColumn.AutoIncrementStep=1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The AutoIncrementSeed property sets the initial value for the identity column,
and the AutoIncrementStep property sets the increment for each new record.
Thus, if the seed were 5 and the step were 3, the first five records would have
IDs of 5, 8, 11, 14, and 17. In the case shown, where both the seed and step
are 1, the first four records have IDs of 1,2,3,4.

11.6.1.2 Setting constraints

Identity columns must not be null, so you'll set the AllowDBNull property of the new column to
false:

newColumn.AllowDBNull=false;

You can set the Unique property to true to ensure that each entry in this column must be unique:

newColumn.Unique=true;

This creates an unnamed constraint in the Bugs table's Constraints collection. You can, if you prefer,
add a named constraint. To do so, you create an instance of the UniqueConstraint class and pass a
name for it into the constructor, along with a reference to the column:

UniqueConstraint constraint =
 new UniqueConstraint("Unique_BugID",newColumn);

You then manually add that constraint to the table's Constraints collection:

tblBugs.Constraints.Add(constraint);

If you do add a named constraint, be sure to comment out the Unique
property.

This completes the first column in the table. The second column is the Product column, as you can
see in Figure 11-16. Notice that this column is of type integer, with no nulls and a default value of 1

(see the highlighted property in Figure 11-16). You create the Product column by calling the Add
method of the Columns collection of the tblBugs table, this time passing in the type for an integer.
You then set the AllowDBNull property as you did with the earlier column, and you set the
DefaultValue property to set the default value for the column. This is illustrated in the following code
fragment:

Figure 11-16. The Products column

http://lib.ommolketab.ir
http://lib.ommolketab.ir

newColumn = tblBugs.Columns.Add(
 "Product", Type.GetType("System.Int32"));
newColumn.AllowDBNull=false;
newColumn.DefaultValue = 1;

Looking at Figure 11-16 again, you can see that the third column is Version, with a type of varChar.

A varChar is a variable length character string. A varChar can be declared to be

any length between 1 and 8000 bytes. Typically you will limit the length of the
string as a form of documentation indicating the largest string you expect in the
field.

You declare the column type to be string for a varchar, and you can set the length of the string with

the MaxLength property, as shown in the following code fragment:

newColumn = tblBugs.Columns.Add(
 "Version", Type.GetType("System.String"));
newColumn.AllowDBNull=false;
newColumn.MaxLength=50;
newColumn.DefaultValue = "0.1";

You declare the Description and Reporter columns in a like manner:

newColumn = tblBugs.Columns.Add("Description", Type.GetType("System.String"));
newColumn.AllowDBNull=false;
newColumn.MaxLength=8000;
newColumn.DefaultValue = "";

newColumn = tblBugs.Columns.Add(
 "Reporter", Type.GetType("System.Int32"));
newColumn.AllowDBNull=false;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.6.1.3 Adding data to the table

With all the columns declared, you're ready to add rows of data to the table. You do so by calling the
DataTable object's NewRow method, which returns an empty DataRow object with the right
structure:

newRow = tblBugs.NewRow();

You can use the column name as an index into the row's collection of DataColumns, assigning the
appropriate value for each column, one by one:

newRow["Product"] = 1;
newRow["Version"] = "0.1";
newRow["Description"] = "Crashes on load";
newRow["Reporter"] = 5;

The authors of the DataRows class have implemented the indexer for their class
to access the contained Columns collection invisibly. Thus, when you write
newRow["Product"], you actually access the Product column within the Columns
collection of the DataRow object.

When the columns are complete, you add the row to the table's Rows collection by calling the Add
method, passing in the row you just created:

tblBugs.Rows.Add(newRow);

You are now ready to create a new row:

newRow = tblBugs.NewRow();
newRow["Product"] = 1;
newRow["Version"] = "0.1";
newRow["Description"] = "Does not report correct owner of bug";
newRow["Reporter"] = 5;
tblBugs.Rows.Add(newRow);

When all the rows have been created, you can create an instance of a DataSet object and add the
table:

DataSet dataSet = new DataSet();
dataSet.Tables.Add(tblBugs);

11.6.1.4 Adding additional tables to the DataSet

With the Bugs table added to the new dataset, you are ready to create a new table for lkProduct:

DataTable tblProduct = new DataTable("lkProduct")

Once again you'll define the columns and then add data. You'll then go on to add a new table for
People. In theory, you could also add all the other tables from the previous example, but to keep
things simpler, you'll stop with these three.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.6.1.5 Adding rows with an array of objects

The DataRowCollection object's Add method is overloaded. In the code shown above, you created a
new DataRow object, populated its columns, and added the row. You are also free to create an array
of Objects, fill the array, and pass the array to the Add method. For example, rather than writing:

newRow = tblPeople.NewRow();
newRow["FullName"] = "Jesse Liberty";
newRow["email"] = "jliberty@libertyassociates.com";
newRow["Phone"] = "617-555-7301";
newRow["Role"] = 1;
tblPeople.Rows.Add(newRow);

you can instead create an array of five objects and fill that array with the values you would have
added to the columns of the row:

Object[] PersonArray = new Object[5];
PersonArray[0] = 1;
PersonArray[1] = "Jesse Liberty";
PersonArray[2] = "jliberty@libertyassociates.com";
PersonArray[3] = "617-555-7301";
PersonArray[4] = 1;
tblPeople.Rows.Add(PersonArray);

Note that in this case, you must manually add a value for the identity column, BugID. When you
created the row object, the identity column value was automatically created for you with the right
increment from the previous row, but since you are now just creating an array of objects, you must
do this by hand.

While this technique works, it is generally not very desirable. The overloaded
version of the Add method that takes a DataRow object is typesafe. Each
column must match the definition of the column you've created. With an array
of objects, just about anything goes; remember that in .NET, everything
derives from Object and thus you can pass in any type of data to an array of
objects.

11.6.2 Creating Primary Keys

The Bugs table uses the PersonID as a foreign key into the People table. To re-create this, you'll first
need to create a primary key in the People table.

You start by declaring the PersonID column as a unique non-null identity column, just as you did
earlier for the BugID column in Bugs:

newColumn = tblPeople.Columns.Add("PersonID", Type.GetType("System.Int32"));
newColumn.AutoIncrement = true; // autoincrementing
newColumn.AutoIncrementSeed=1; // starts at 1
newColumn.AutoIncrementStep=1; // increments by 1
newColumn.AllowDBNull=false; // nulls not allowed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// add the unique constraint
UniqueConstraint uniqueConstraint =
 new UniqueConstraint("Unique_PersonID",newColumn);
tblPeople.Constraints.Add(uniqueConstraint);

To create the primary key you must set the PrimaryKey property of the table. This property takes an
array of DataColumn objects.

In many tables, the primary key is not a single column but rather two or more
columns. For example, you might keep track of orders for a customer. A given
order might be order number 17. Your database may have many orders whose
order number is 17. What uniquely identifies a given order is the order number
combined with the customer number. Thus, that table would use a compound
key of the order number and the customer number.

The primary key for the People table is a single column: PersonID. To set the primary key, you create
an array (in this case with one member), and assign to that member the column(s) you want to
make the primary key:

columnArray = new DataColumn[1];
columnArray[0] = newColumn;

The newColumn object contains a reference to the PersonID column returned from calling Add. You
assign the array to the PrimaryKey property of the table:

tblPeople.PrimaryKey=columnArray;

11.6.3 Creating Foreign Keys

The PersonID acts as a primary key in People and as a foreign key in Bugs. To create the foreign key
relationship, you'll instantiate a new object of type ForeignKeyConstraint, passing in the name of the
constraint ("FK_BugToPeople") as well as a reference to the two columns.

To facilitate passing references to the key fields to the ForeignKeyConstraint constructor, you'll want
to squirrel away a reference to the PersonID column in People and the Reporter column in Bugs.
Immediately after you create the columns, save a reference:

newColumn =
 tblBugs.Columns.Add("Reporter", Type.GetType("System.Int32"));
newColumn.AllowDBNull=false;
DataColumn bugReporterColumn =
 newColumn; // save for foreign key creation

Assuming you've saved the Reporter column in bugReporterColumn and the PersonID column from
People in PersonIDColumn, you are ready to create the ForeignKeyConstraint object:

ForeignKeyConstraint fk =
 New ForeignKeyConstraint(
 "FK_BugToPeople",PersonIDColumn,bugReporterColumn);

This creates the Foreign Key Constraint named fk. Before you add it to the Bugs table, you must set

two properties:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fk.DeleteRule=Rule.Cascade;
fk.UpdateRule=Rule.Cascade;

The DeleteRule determines the action that will occur when a row is deleted from the parent table.
Similarly, the UpdateRule determines what will happen when a row is updated in the parent column.
The potential values are enumerated by the Rule enumeration, as shown in Table 11-6.

Table 11-6. Rule enumeration

Member
name

Description

Cascade Delete or update related rows (this is the default)

None Take no action on related rows

SetDefault
Set the values in the related rows to the value contained in the DefaultValue
property

SetNull Set the related rows to null

In the case shown, the value is set to Rule.Cascade; if a record is deleted from the parent table, all

the child records will be deleted as well. You are now ready to add the foreign key constraint to the
Bugs table:

tblBugs.Constraints.Add(fk);

11.6.4 Creating Data Relations

As you saw earlier in the chapter, you can encapsulate the relationship among tables in a
DataRelation object. The code for building relationships among hand-crafted DataTables is just like
the code you saw earlier when you pulled the data structure from the database itself:

System.Data.DataRelation dataRelation;
System.Data.DataColumn dataColumn1;
System.Data.DataColumn dataColumn2;

// set the dataColumns to create the relationship
// between Bug and BugHistory on the BugID key
dataColumn1 =
 dataSet.Tables["People"].Columns["PersonID"];
dataColumn2 =
 dataSet.Tables["Bugs"].Columns["Reporter"];

dataRelation =
 new System.Data.DataRelation(
 "BugsToReporter",
 dataColumn1,
 dataColumn2);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// add the new DataRelation to the dat
dataSet.Relations.Add(dataRelation);

To display this output, you'll use two DataGrids: one to show the Bugs table, and another to show the
Constraints you've added to that table:

<body>
 <form id="Form1" method="post" runat="server">
 <asp:DataGrid id="DataGrid1" runat="server" DataKeyField="BugID"
 CellPadding="5" HeaderStyle-BackColor="PapayaWhip" BorderWidth="5px"
 BorderColor="#000099" AlternatingItemStyle-BackColor="LightGrey"
 HeaderStyle-Font-Bold="True" AutoGenerateColumns="False"
 EnableViewState="true">
 <Columns>
 <asp:BoundColumn DataField="BugID"
 HeaderText="Bug ID" />
 <asp:BoundColumn DataField="Description"
 HeaderText="Description" />
 <asp:BoundColumn DataField="Reporter"
 HeaderText="Reported By" />
 </Columns>
 </asp:DataGrid>

 <asp:DataGrid ID="BugConstraints" Runat="server"
 HeaderStyle-Font-Bold="True" AlternatingItemStyle-BackColor="LightGrey"
 BorderColor="#000099" BorderWidth="5px"
 HeaderStyle-BackColor="PapayaWhip" CellPadding="5" Runat="server" />
 </form>
</body>

The output is shown in Figure 11-17. The complete C# source code for this version of the application
is shown in Example 11-10.

Figure 11-17. The hand-coded table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 11-10. Creating a DataSet by hand

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Text;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace BugHistoryByHand
{
 /// <summary>
 /// Summary description for WebForm1.
 /// </summary>
 public class WebForm1 : System.Web.UI.Page
 {
 // the Bugs Data Grid
 protected System.Web.UI.WebControls.DataGrid DataGrid1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // display the constraints added to the bug table
 protected System.Web.UI.WebControls.DataGrid BugConstraints;

 // unchanged from previous example
 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 // bind to the bug grid and the constraints grid
 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!IsPostBack)
 {
 // call the method which creates the tables and the relations
 DataSet ds = CreateDataSet();

 // set the data source for the grid to the first table
 DataGrid1.DataSource=ds.Tables[0];
 DataGrid1.DataBind();

 BugConstraints.DataSource = ds.Tables["Bugs"].Constraints;
 BugConstraints.DataBind();

 }
 }

 //hand carved
 private DataSet CreateDataSet()
 {
 // instantiate a new DataSet object that
 // you will fill with tables and relations
 DataSet dataSet = new DataSet();

 // make the bug table and its columns
 // mimic the attributes from the SQL database
 DataTable tblBugs = new DataTable("Bugs");

 DataColumn newColumn; // hold the new columns as you create them

 newColumn =
 tblBugs.Columns.Add(
 "BugID", Type.GetType("System.Int32"));
 newColumn.AutoIncrement = true; // autoincrementing
 newColumn.AutoIncrementSeed=1; // starts at 1
 newColumn.AutoIncrementStep=1; // increments by 1
 newColumn.AllowDBNull=false; // nulls not allowed

 // or you can provide a named constraint
 UniqueConstraint constraint =
 new UniqueConstraint("Unique_BugID",newColumn);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 tblBugs.Constraints.Add(constraint);

 // create an array of columns for the primary key
 DataColumn[] columnArray = new DataColumn[1];
 columnArray[0] = newColumn;

 // add the array to the Primary key property
 tblBugs.PrimaryKey=columnArray;

 // The Product column
 newColumn = tblBugs.Columns.Add(
 "Product", Type.GetType("System.Int32"));
 newColumn.AllowDBNull=false;
 newColumn.DefaultValue = 1;

 // save for foreign key creation
 DataColumn bugProductColumn = newColumn;

 // The Version column
 newColumn = tblBugs.Columns.Add(
 "Version", Type.GetType("System.String"));
 newColumn.AllowDBNull=false;
 newColumn.MaxLength=50;
 newColumn.DefaultValue = "0.1";

 // The Description column
 newColumn = tblBugs.Columns.Add(
 "Description", Type.GetType("System.String"));
 newColumn.AllowDBNull=false;
 newColumn.MaxLength=8000;
 newColumn.DefaultValue = "";

 // The Reporter column
 newColumn = tblBugs.Columns.Add(
 "Reporter", Type.GetType("System.Int32"));
 newColumn.AllowDBNull=false;

 // save for foreign key creation
 DataColumn bugReporterColumn = newColumn;

 // Add rows based on the db schema you just created
 DataRow newRow; // holds the new row

 newRow = tblBugs.NewRow();
 newRow["Product"] = 1;
 newRow["Version"] = "0.1";
 newRow["Description"] = "Crashes on load";
 newRow["Reporter"] = 5;
 tblBugs.Rows.Add(newRow);

 newRow = tblBugs.NewRow();
 newRow["Product"] = 1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 newRow["Version"] = "0.1";
 newRow["Description"] =
 "Does not report correct owner of bug";
 newRow["Reporter"] = 5;
 tblBugs.Rows.Add(newRow);

 newRow = tblBugs.NewRow();
 newRow["Product"] = 1;
 newRow["Version"] = "0.1";
 newRow["Description"] =
 "Does not show history of previous action";
 newRow["Reporter"] = 6;
 tblBugs.Rows.Add(newRow);

 newRow = tblBugs.NewRow();
 newRow["Product"] = 1;
 newRow["Version"] = "0.1";
 newRow["Description"] =
 "Fails to reload properly";
 newRow["Reporter"] = 5;
 tblBugs.Rows.Add(newRow);

 newRow = tblBugs.NewRow();
 newRow["Product"] = 2;
 newRow["Version"] = "0.1";
 newRow["Description"] = "Loses data overnight";
 newRow["Reporter"] = 5;
 tblBugs.Rows.Add(newRow);

 newRow = tblBugs.NewRow();
 newRow["Product"] = 2;
 newRow["Version"] = "0.1";
 newRow["Description"] = "HTML is not shown properly";
 newRow["Reporter"] = 6;
 tblBugs.Rows.Add(newRow);

 // add the table to the dataset
 dataSet.Tables.Add(tblBugs);

 // Product Table

 // make the Products table and add the columns
 DataTable tblProduct = new DataTable("lkProduct");
 newColumn = tblProduct.Columns.Add(
 "ProductID", Type.GetType("System.Int32"));
 newColumn.AutoIncrement = true; // autoincrementing
 newColumn.AutoIncrementSeed=1; // starts at 1
 newColumn.AutoIncrementStep=1; // increments by 1
 newColumn.AllowDBNull=false; // nulls not allowed
 newColumn.Unique=true; // each value must be unique

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 newColumn = tblProduct.Columns.Add(
 "ProductDescription", Type.GetType("System.String"));
 newColumn.AllowDBNull=false;
 newColumn.MaxLength=8000;
 newColumn.DefaultValue = "";

 newRow = tblProduct.NewRow();
 newRow["ProductDescription"] = "BugX Bug Tracking";
 tblProduct.Rows.Add(newRow);

 newRow = tblProduct.NewRow();
 newRow["ProductDescription"] =
 "PIM - My Personal Information Manager";
 tblProduct.Rows.Add(newRow);

 // add the products table to the dataset
 dataSet.Tables.Add(tblProduct);

 // People

 // make the People table and add the columns
 DataTable tblPeople = new DataTable("People");
 newColumn = tblPeople.Columns.Add(
 "PersonID", Type.GetType("System.Int32"));
 newColumn.AutoIncrement = true; // autoincrementing
 newColumn.AutoIncrementSeed=1; // starts at 1
 newColumn.AutoIncrementStep=1; // increments by 1
 newColumn.AllowDBNull=false; // nulls not allowed

 UniqueConstraint uniqueConstraint =
 new UniqueConstraint(
 "Unique_PersonID",newColumn);
 tblPeople.Constraints.Add(uniqueConstraint);

 // stash away the PersonID column for the foreign
 // key constraint
 DataColumn PersonIDColumn = newColumn;

 columnArray = new DataColumn[1];
 columnArray[0] = newColumn;
 tblPeople.PrimaryKey=columnArray;

 newColumn = tblPeople.Columns.Add(
 "FullName", Type.GetType("System.String"));
 newColumn.AllowDBNull=false;
 newColumn.MaxLength=8000;
 newColumn.DefaultValue = "";

 newColumn = tblPeople.Columns.Add(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "eMail", Type.GetType("System.String"));
 newColumn.AllowDBNull=false;
 newColumn.MaxLength=100;
 newColumn.DefaultValue = "";

 newColumn = tblPeople.Columns.Add(
 "Phone", Type.GetType("System.String"));
 newColumn.AllowDBNull=false;
 newColumn.MaxLength=20;
 newColumn.DefaultValue = "";

 newColumn = tblPeople.Columns.Add(
 "Role", Type.GetType("System.Int32"));
 newColumn.DefaultValue = 0;
 newColumn.AllowDBNull=false;

 newRow = tblPeople.NewRow();
 newRow["FullName"] = "Jesse Liberty";
 newRow["email"] = "jliberty@libertyassociates.com";
 newRow["Phone"] = "617-555-7301";
 newRow["Role"] = 1;
 tblPeople.Rows.Add(newRow);

 newRow = tblPeople.NewRow();
 newRow["FullName"] = "Dan Hurwitz";
 newRow["email"] = "dhurwitz@stersol.com";
 newRow["Phone"] = "781-555-3375";
 newRow["Role"] = 1;
 tblPeople.Rows.Add(newRow);

 newRow = tblPeople.NewRow();
 newRow["FullName"] = "John Galt";
 newRow["email"] = "jGalt@franconia.com";
 newRow["Phone"] = "617-555-9876";
 newRow["Role"] = 1;
 tblPeople.Rows.Add(newRow);

 newRow = tblPeople.NewRow();
 newRow["FullName"] = "John Osborn";
 newRow["email"] = "jOsborn@oreilly.com";
 newRow["Phone"] = "617-555-3232";
 newRow["Role"] = 3;
 tblPeople.Rows.Add(newRow);

 newRow = tblPeople.NewRow();
 newRow["FullName"] = "Ron Petrusha";
 newRow["email"] = "ron@oreilly.com";
 newRow["Phone"] = "707-555-0515";
 newRow["Role"] = 2;
 tblPeople.Rows.Add(newRow);

 newRow = tblPeople.NewRow();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 newRow["FullName"] = "Tatiana Diaz";
 newRow["email"] = "tatiana@oreilly.com";
 newRow["Phone"] = "617-555-1234";
 newRow["Role"] = 2;
 tblPeople.Rows.Add(newRow);

 // add the People table to the dataset
 dataSet.Tables.Add(tblPeople);

 // create the Foreign Key constraint
 // pass in the parent column from people
 // and the child column from Bugs
 ForeignKeyConstraint fk =
 new ForeignKeyConstraint(
 "FK_BugToPeople",PersonIDColumn,bugReporterColumn);
 fk.DeleteRule=Rule.Cascade; // like father like son
 fk.UpdateRule=Rule.Cascade;
 tblBugs.Constraints.Add(fk); // add the new constraint

 // declare the DataRelation and DataColumn objects
 System.Data.DataRelation dataRelation;
 System.Data.DataColumn dataColumn1;
 System.Data.DataColumn dataColumn2;

 // set the dataColumns to create the relationship
 // between Bug and BugHistory on the BugID key
 dataColumn1 =
 dataSet.Tables["People"].Columns["PersonID"];
 dataColumn2 =
 dataSet.Tables["Bugs"].Columns["Reporter"];

 dataRelation =
 new System.Data.DataRelation(
 "BugsToReporter",
 dataColumn1,
 dataColumn2);

 // add the new DataRelation to the dataset
 dataSet.Relations.Add(dataRelation);

 return dataSet;
 }

 // unchanged from previous example
 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }
}

The complete VB.NET source code for this version of the application is shown in Example 11-11.

Example 11-11. Creating a DataSet by hand

Imports System
Imports System.Collections
Imports System.ComponentModel
Imports System.Data
Imports System.Data.SqlClient
Imports System.Drawing
Imports System.Text
Imports System.Web
Imports System.Web.SessionState
Imports System.Web.UI
Imports System.Web.UI.WebControls
Imports System.Web.UI.HtmlControls

Public Class Example_11_11
 Inherits System.Web.UI.Page

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub
 Protected WithEvents DataGrid1 As System.Web.UI.WebControls.DataGrid
 Protected WithEvents BugConstraints As System.Web.UI.WebControls.DataGrid

 'NOTE: The following placeholder declaration is required by the Web Form Designer.
 'Do not delete or move it.
 Private designerPlaceholderDeclaration As System.Object

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 If Not IsPostBack Then

 ' call the method which creates the tables and the relations
 Dim ds As DataSet = CreateDataSet()

 ' set the data source for the grid to the first table
 DataGrid1.DataSource = ds.Tables(0)
 DataGrid1.DataBind()

 BugConstraints.DataSource = ds.Tables("Bugs").Constraints
 BugConstraints.DataBind()

 End If

 End Sub

 'hand carved
 Private Function CreateDataSet() As DataSet

 ' instantiate a new DataSet object that
 ' you will fill with tables and relations
 Dim dataSet As New DataSet

 ' make the bug table and its columns
 ' mimic the attributes from the SQL database
 Dim tblBugs As New DataTable("Bugs")

 Dim newColumn As New DataColumn ' hold the new columns as you create them

 newColumn = tblBugs.Columns.Add("BugID", Type.GetType("System.Int32"))
 newColumn.AutoIncrement = True ' autoincrementing
 newColumn.AutoIncrementSeed = 1 ' starts at 1
 newColumn.AutoIncrementStep = 1 ' increments by 1
 newColumn.AllowDBNull = False ' nulls not allowed

 ' or you can provide a named constraint
 Dim constraint As New UniqueConstraint("Unique_BugID", newColumn)
 tblBugs.Constraints.Add(constraint)

 ' create an array of columns for the primary key
 Dim columnArray() As DataColumn = {New DataColumn}
 columnArray(0) = newColumn

 ' add the array to the Primary key property
 tblBugs.PrimaryKey = columnArray

 ' The Product column

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 newColumn = tblBugs.Columns.Add("Product", Type.GetType("System.Int32"))
 newColumn.AllowDBNull = False
 newColumn.DefaultValue = 1

 ' save for foreign key creation
 Dim bugProductColumn As DataColumn = newColumn

 ' The Version column
 newColumn = tblBugs.Columns.Add("Version", Type.GetType("System.String"))
 newColumn.AllowDBNull = False
 newColumn.MaxLength = 50
 newColumn.DefaultValue = "0.1"

 ' The Description column
 newColumn = tblBugs.Columns.Add("Description", Type.GetType("System.String"))
 newColumn.AllowDBNull = False
 newColumn.MaxLength = 8000
 newColumn.DefaultValue = ""

 ' The Reporter column
 newColumn = tblBugs.Columns.Add("Reporter", Type.GetType("System.Int32"))
 newColumn.AllowDBNull = False

 ' save for foreign key creation
 Dim bugReporterColumn As DataColumn = newColumn

 ' Add rows based on the db schema you just created
 Dim newRow As DataRow ' holds the new row

 newRow = tblBugs.NewRow()
 newRow("Product") = 1
 newRow("Version") = "0.1"
 newRow("Description") = "Crashes on load"
 newRow("Reporter") = 5
 tblBugs.Rows.Add(newRow)

 newRow = tblBugs.NewRow()
 newRow("Product") = 1
 newRow("Version") = "0.1"
 newRow("Description") = "Does not report correct owner of bug"
 newRow("Reporter") = 5
 tblBugs.Rows.Add(newRow)

 newRow = tblBugs.NewRow()
 newRow("Product") = 1
 newRow("Version") = "0.1"
 newRow("Description") = "Does not show history of previous action"
 newRow("Reporter") = 6
 tblBugs.Rows.Add(newRow)

 newRow = tblBugs.NewRow()
 newRow("Product") = 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 newRow("Version") = "0.1"
 newRow("Description") = "Fails to reload properly"
 newRow("Reporter") = 5

 tblBugs.Rows.Add(newRow)
 newRow = tblBugs.NewRow()
 newRow("Product") = 2
 newRow("Version") = "0.1"
 newRow("Description") = "Loses data overnight"
 newRow("Reporter") = 5
 tblBugs.Rows.Add(newRow)

 newRow = tblBugs.NewRow()
 newRow("Product") = 2
 newRow("Version") = "0.1"
 newRow("Description") = "HTML is not shown properly"
 newRow("Reporter") = 6
 tblBugs.Rows.Add(newRow)

 ' add the table to the dataset
 dataSet.Tables.Add(tblBugs)

 ' Product Table

 ' make the Products table and add the columns
 Dim tblProduct As New DataTable("lkProduct")
 newColumn = tblProduct.Columns.Add("ProductID", Type.GetType("System.Int32"))
 newColumn.AutoIncrement = True ' autoincrementing
 newColumn.AutoIncrementSeed = 1 ' starts at 1
 newColumn.AutoIncrementStep = 1 ' increments by 1
 newColumn.AllowDBNull = False ' nulls not allowed
 newColumn.Unique = True ' each value must be unique

 newColumn = tblProduct.Columns.Add("ProductDescription", _
 Type.GetType("System.String"))
 newColumn.AllowDBNull = False
 newColumn.MaxLength = 8000
 newColumn.DefaultValue = ""

 newRow = tblProduct.NewRow()
 newRow("ProductDescription") = "BugX Bug Tracking"
 tblProduct.Rows.Add(newRow)

 newRow = tblProduct.NewRow()
 newRow("ProductDescription") = "PIM - My Personal Information Manager"
 tblProduct.Rows.Add(newRow)

 ' add the products table to the dataset
 dataSet.Tables.Add(tblProduct)

 ' People

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' make the People table and add the columns
 Dim tblPeople As New DataTable("People")
 newColumn = tblPeople.Columns.Add("PersonID", Type.GetType("System.Int32"))
 newColumn.AutoIncrement = True ' autoincrementing
 newColumn.AutoIncrementSeed = 1 ' starts at 1
 newColumn.AutoIncrementStep = 1 ' increments by 1
 newColumn.AllowDBNull = False ' nulls not allowed

 Dim uniqueConstraint As New UniqueConstraint("Unique_PersonID", newColumn)
 tblPeople.Constraints.Add(uniqueConstraint)

 ' stash away the PersonID column for the foreign
 ' key constraint
 Dim PersonIDColumn As DataColumn = newColumn

 columnArray(0) = newColumn
 tblPeople.PrimaryKey = columnArray

 newColumn = tblPeople.Columns.Add("FullName", Type.GetType("System.String"))
 newColumn.AllowDBNull = False
 newColumn.MaxLength = 8000
 newColumn.DefaultValue = ""

 newColumn = tblPeople.Columns.Add("eMail", Type.GetType("System.String"))
 newColumn.AllowDBNull = False
 newColumn.MaxLength = 100
 newColumn.DefaultValue = ""

 newColumn = tblPeople.Columns.Add("Phone", Type.GetType("System.String"))
 newColumn.AllowDBNull = False
 newColumn.MaxLength = 20
 newColumn.DefaultValue = ""

 newColumn = tblPeople.Columns.Add("Role", Type.GetType("System.Int32"))
 newColumn.DefaultValue = 0
 newColumn.AllowDBNull = False

 newRow = tblPeople.NewRow()
 newRow("FullName") = "Jesse Liberty"
 newRow("email") = "jliberty@libertyassociates.com"
 newRow("Phone") = "617-555-7301"
 newRow("Role") = 1
 tblPeople.Rows.Add(newRow)

 newRow = tblPeople.NewRow()
 newRow("FullName") = "Dan Hurwitz"
 newRow("email") = "dhurwitz@stersol.com"
 newRow("Phone") = "781-555-3375"
 newRow("Role") = 1
 tblPeople.Rows.Add(newRow)

 newRow = tblPeople.NewRow()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 newRow("FullName") = "John Galt"
 newRow("email") = "jGalt@franconia.com"
 newRow("Phone") = "617-555-9876"
 newRow("Role") = 1
 tblPeople.Rows.Add(newRow)

 newRow = tblPeople.NewRow()
 newRow("FullName") = "John Osborn"
 newRow("email") = "jOsborn@oreilly.com"
 newRow("Phone") = "617-555-3232"
 newRow("Role") = 3
 tblPeople.Rows.Add(newRow)

 newRow = tblPeople.NewRow()
 newRow("FullName") = "Ron Petrusha"
 newRow("email") = "ron@oreilly.com"
 newRow("Phone") = "707-555-0515"
 newRow("Role") = 2
 tblPeople.Rows.Add(newRow)

 newRow = tblPeople.NewRow()
 newRow("FullName") = "Tatiana Diaz"
 newRow("email") = "tatiana@oreilly.com"
 newRow("Phone") = "617-555-1234"
 newRow("Role") = 2
 tblPeople.Rows.Add(newRow)

 ' add the People table to the dataset
 dataSet.Tables.Add(tblPeople)

 ' create the Foreign Key constraint
 ' pass in the parent column from people
 ' and the child column from Bugs
 Dim fk As New ForeignKeyConstraint("FK_BugToPeople", PersonIDColumn, _
 bugReporterColumn)
 fk.DeleteRule = Rule.Cascade ' like father like son
 fk.UpdateRule = Rule.Cascade
 tblBugs.Constraints.Add(fk) ' add the new constraint

 ' declare the DataRelation and DataColumn objects
 Dim dataRelation As System.Data.DataRelation
 Dim dataColumn1 As System.Data.DataColumn
 Dim dataColumn2 As System.Data.DataColumn

 ' set the dataColumns to create the relationship
 ' between Bug and BugHistory on the BugID key
 dataColumn1 = dataSet.Tables("People").Columns("PersonID")
 dataColumn2 = dataSet.Tables("Bugs").Columns("Reporter")

 dataRelation = New System.Data.DataRelation("BugsToReporter", _
 dataColumn1, dataColumn2)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' add the new DataRelation to the dataset
 dataSet.Relations.Add(dataRelation)

 Return dataSet

 End Function

End Class

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.7 Stored Procedures

Until now, you've interacted with the database using nothing but SQL statements. Many real-world
applications interacting with SQL Server or other large databases will use stored procedures. Stored
procedures can be compiled by the database, and, thus, offer better performance.

The easiest way to create a stored procedure (often referred to as a sproc) is to begin with a working
SQL statement. If you return to Example 11-6, you will find two SQL Select statements. The first is

in the CreateBugDataSet method:

StringBuilder s = new StringBuilder(
 "Select b.BugID, h.BugHistoryID, b.Description,h.Response, ");
s.Append("o.FullName as owner, ");
s.Append("p.ProductDescription, ");
s.Append("r.FullName as reporter, ");
s.Append("s.StatusDescription, ");
s.Append("sev.SeverityDescription, ");
s.Append("h.DateStamp ");
s.Append("from ");
s.Append("(select bugID, max(bugHistoryID) as maxHistoryID ");
s.Append("from BugHistory group by bugID) t ");
s.Append("join bugs b on b.bugid = t.bugid ");
s.Append("join BugHistory h on h.bugHistoryID = t.maxHistoryID ");
s.Append("join lkProduct p on b.Product = p.ProductID ");
s.Append("join People r on b.Reporter = r.PersonID ");
s.Append("join People o on h.Owner = o.PersonID ");
s.Append("join lkStatus s on s.statusid = h.status ");
s.Append("join lkSeverity sev on sev.SeverityID = h.severity ");

If you extract the SQL from this statement and insert it into the SQL Server Query analyzer, you can
run that statement and get back the Bug records, as shown in Figure 11-18.

Figure 11-18. Executing the query in Query Analyzer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You are now ready to drop this into a new stored procedure, which you will name spBugs. In SQL
Server the easiest way to do this is to right-click on the Stored Procedures listing in SQL Enterprise
Manager, as shown in Figure 11-19.

Figure 11-19. Creating a new stored procedure

This opens the New Stored Procedure window. Preface the select statement with the string "CREATE
PROCEDURE spBugs AS" to create a new sproc named spBugs, as shown in Figure 11-20.

Figure 11-20. Saving the new sproc

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The second SQL select statement in Example 11-6 is slightly more complicated:

Select BugID, StatusDescription, SeverityDescription,
Response, FullName as Owner, DateStamp
from BugHistory h
join People o on h.Owner = o.PersonID
join lkStatus s on s.statusid = h.status
join lkSeverity sev on sev.SeverityID = h.severity
where BugID = BugID

The problem here is that each time you run this procedure, you must supply the BugID. To make this
work, your new sproc (spBugHistory) will need a parameter: @BugID. Here's the sproc:

CREATE PROCEDURE spBugHistory
@BugID integer
 AS
Select BugID, StatusDescription, SeverityDescription, Response, FullName as Owner,
DateStamp
from BugHistory h
join People o on h.Owner = o.PersonID
join lkStatus s on s.statusid = h.status
join lkSeverity sev on sev.SeverityID = h.severity
where BugID = @BugID

You might invoke this sproc from within the Query Analyzer like this:

spBugHistory 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A value of 2 would be passed in as the @BugIDargument.

11.7.1 Invoking the Stored Procedure Programmatically

To use stored procedures rather than a simple SQL select statement, you need modify only the
CreateBugDataSet and CreateBugHistoryDataSet methods. CreateBugDataSet will invoke spBugs
with no parameters. CreateBugHistoryDataSet will invoke spBugHistory, passing in the chosen

BugID as a parameter.

11.7.1.1 Invoking a sproc with no parameters

The rewrite to CreateBugDataSet is very straightforward. You'll remember from Example 11-6 that
your steps were as follows:

First you created the connection string:1.

string connectionString = "server=YourServer; uid=sa; " +
 "pwd=YourPassword; database=ProgASPDotNetBugs";

Then you created the new connection object and opened it:2.

System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
connection.Open();

You hand-built the SQL statement and you set the CommandText to the string you built:3.

StringBuilder s = new StringBuilder(
 "Select b.BugID, h.BugHistoryID, b.Description,h.Response, ");
s.Append("o.FullName as owner, ");
s.Append("p.ProductDescription, ");
s.Append("r.FullName as reporter, ");
s.Append("s.StatusDescription, ");
s.Append("sev.SeverityDescription, ");
s.Append("h.DateStamp ");
s.Append("from ");
s.Append("(select bugID, max(bugHistoryID) as maxHistoryID ");
s.Append("from BugHistory group by bugID) t ");
s.Append("join bugs b on b.bugid = t.bugid ");
s.Append("join BugHistory h on h.bugHistoryID = t.maxHistoryID ");
s.Append("join lkProduct p on b.Product = p.ProductID ");
s.Append("join People r on b.Reporter = r.PersonID ");
s.Append("join People o on h.Owner = o.PersonID ");
s.Append("join lkStatus s on s.statusid = h.status ");
s.Append("join lkSeverity sev on sev.SeverityID = h.severity ");

// set the command text to the select statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

command.CommandText=s.ToString();

Finally, you created a data adapter and you set its Command object to the Command object
you just built. You added the table mappings, created a dataset, filled the dataset, and returned
the dataset.

4.

The steps with a stored procedure are identical except for step 3. Rather than building an SQL
statement, you'll instead set the command text to the name of the sproc, and you'll set the
Command object's CommandType property to CommandType.StoredProcedure:

command.CommandText="spBugs";
command.CommandType=CommandType.StoredProcedure;

When you set the CommandType property to StoredProcedure, the sproc can
be run more efficiently then when you use the default value of Text.

That's it; the method is otherwise unchanged. The complete C# replacement for CreateBugDataSet is
shown in Example 11-12.

Example 11-12. C# Replacement CreateBugDataSet using a stored
procedure

private DataSet CreateBugDataSet()
{
 // connection string to connect to the Bugs Database
 string connectionString =
 "server=YourServer; uid=sa; pwd=YourPassword; " +
 "database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // Create a SqlCommand object and assign the connection
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection=connection;
 command.CommandText="spBugs";
 command.CommandType=CommandType.StoredProcedure;

 // create a data adapter and assign the command object
 // and add the table mapping for bugs
 SqlDataAdapter dataAdapter = new SqlDataAdapter();
 dataAdapter.SelectCommand=command;
 dataAdapter.TableMappings.Add("Table","Bugs");

 // Create the dataset and use the data adapter to fill it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataSet dataSet = new DataSet();
 dataAdapter.Fill(dataSet);
 return dataSet;
}

The complete VB.NET replacement for CreateBugDataSet is shown in Example 11-13.

Example 11-13. VB.NET Replacement CreateBugDataSet using a stored
procedure

 Private Function CreateBugDataSet() As DataSet

 ' connection string to connect to the Bugs Database
 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPassword; " + _
 "database=ProgASPDotNetBugs"

 ' Create connection object, initialize with connection string.
 ' Open it.
 Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)
 connection.Open()

 ' Create a SqlCommand object and assign the connection
 Dim command As New System.Data.SqlClient.SqlCommand
 command.Connection = connection
 command.CommandText = "spBugs"
 command.CommandType = CommandType.StoredProcedure

 ' create a data adapter and assign the command object
 ' and add the table mapping for bugs
 Dim dataAdapter As New SqlDataAdapter
 dataAdapter.SelectCommand = command
 dataAdapter.TableMappings.Add("Table", "Bugs")

 ' Create the dataset and use the data adapter to fill it
 Dim DataSet As New DataSet
 dataAdapter.Fill(DataSet)
 Return DataSet

 End Function

11.7.2 Invoking a Stored Procedure with Parameters

To invoke the sproc spBugHistory, you will need to pass in the BugID. There are two ways to do

this. The first option is simply to invoke the sproc name and its argument in the CommandText
property:

command.CommandText= "spBugHistory " + bugID;

The second option is to create explicit Parameter objects. You'll explore each of these options in turn.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.7.2.1 Inline arguments

To see the first option at work, modify the CreateBugHistoryDataSet method, changing only step 3 as
described above for CreateDataSet. Rather than building the SQL Select statement, you'll invoke the

sproc directly:

command.CommandText= "spBugHistory " + bugID;

When the user clicks on the bug whose ID is 2, this will set the command text equal to spBugHistory
2. You would like to set the CommandType property to CommandType.StoredProcedure but you may

not do so with an "in line" parameter. If you do, the compiler will look for a sproc named
spBugHistory 2, and since no such sproc exists, an error will be generated. You must instead set
the CommandType property to Command.CommandText, which is somewhat less efficient.

The complete C# replacement for CreateBugHistoryDataSet is shown in Example 11-14.

Example 11-14. C# Replacement CreateBugHistoryDataSet using a stored
procedure

private DataSet CreateBugHistoryDataSet(int bugID)
{
 // connection string to connect to the Bugs Database
 string connectionString =
 "server=YourServer; uid=sa; pwd=YourPassword; " +
 "database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // create a second command object for the bugs history table
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection = connection;

 command.CommandText= "spBugHistory " + bugID;
 command.CommandType = CommandType.Text;

 // create a second data adapter and add the command
 // and map the table
 // then fill the dataset from this second adapter
 SqlDataAdapter dataAdapter = new SqlDataAdapter();
 dataAdapter.SelectCommand = command;
 dataAdapter.TableMappings.Add("Table", "BugHistory");

 DataSet dataSet = new DataSet();
 dataAdapter.Fill(dataSet);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return dataSet;
}

The complete VB.NET replacement for CreateBugHistoryDataSet is shown in Example 11-15.

Example 11-15. VB.NET Replacement CreateBugHistoryDataSet using a
stored procedure

 Private Function CreateBugHistoryDataSet(ByVal bugID As Integer) As DataSet

 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPassword; " + _
 "database=ProgASPDotNetBugs"
 Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)
 connection.Open()

 Dim command As New System.Data.SqlClient.SqlCommand
 command.Connection = connection

 command.CommandText = "spBugHistory " & bugID
 command.CommandType = CommandType.Text

 Dim myDataAdapter As New SqlClient.SqlDataAdapter
 myDataAdapter.SelectCommand = command
 myDataAdapter.TableMappings.Add("Table", "BugHistory")
 Dim ds As New DataSet
 myDataAdapter.Fill(ds)
 Return ds

 End Function

11.7.2.2 Invoking a sproc with explicit parameters

Implicit parameters are straightforward and easy to use. Unfortunately, if you need a return (out)
parameter to get a result back, you will need to use explicit Parameter objects. Many programmers
also use explicit parameters when they have a large number of parameters. In any case, explicit
parameter invocation is more efficient.

The SqlCommand object and its cousin OleDbCommand both expose a Parameters collection that can
contain any number of Parameter objects.

To use an explicit parameter, you add it to the Parameters collection by calling the Add method. The
return value is a reference to an object of type Parameter. You may then modify that object's
properties, setting its direction (e.g., Input, Output, or InputOutput) as well as its value, as the

following code fragment shows:

System.Data.SqlClient.SqlParameter param;
param = command.Parameters.Add("@BugID",SqlDbType.Int);
param.Direction = ParameterDirection.Input;
param.Value = bugID;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now that you are using an explicit Parameter object, you can modify the command text to be just the
name of the stored procedure, and you may modify the CommandType property to be the more
efficient CommandType.StoredProcedure. The complete C# replacement for

CreateBugHistoryDataSet is shown in Example 11-16.

Example 11-16. C# Replacement CreateBugHistoryDataSetusing explicit
parameters to a stored procedure

private DataSet CreateBugHistoryDataSet(int bugID)
{
 // connection string to connect to the Bugs Database
 string connectionString =
 "server=YourServer; uid=sa; pwd=YourPassword; " +
 "database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // create a second command object for the bugs history table
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection = connection;

 command.CommandText= "spBugHistory";
 command.CommandType = CommandType.StoredProcedure;

 // declare the parameter object
 System.Data.SqlClient.SqlParameter param;

 // Add a new parameter, get back a reference to it
 param = command.Parameters.Add("@BugID",SqlDbType.Int);

 // set the parameter's direction and value
 param.Direction = ParameterDirection.Input;
 param.Value = bugID;

 // create a second data adapter and add the command
 // and map the table
 // then fill the dataset from this second adapter
 SqlDataAdapter dataAdapter = new SqlDataAdapter();
 dataAdapter.SelectCommand = command;
 dataAdapter.TableMappings.Add("Table", "BugHistory");

 DataSet dataSet = new DataSet();
 dataAdapter.Fill(dataSet);
 return dataSet;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The complete VB.NET replacement for CreateBugHistoryDataSet is shown in Example 11-17.

Example 11-17. VB.NET Replacement CreateBugHistoryDataSetusing
explicit parameters to a stored procedure

 Private Function CreateBugHistoryDataSet(ByVal bugID As Integer) As DataSet

 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPassword; " + _
 "database=ProgASPDotNetBugs"
 Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)
 connection.Open()

 Dim command As New System.Data.SqlClient.SqlCommand
 command.Connection = connection

 command.CommandText = "spBugHistory"
 command.CommandType = CommandType.StoredProcedure

 ' declare the parameter object
 Dim param As System.Data.SqlClient.SqlParameter

 ' Add a new parameter, get back a reference to it
 param = command.Parameters.Add("@BugID", SqlDbType.Int)

 ' set the parameter's direction and value
 param.Direction = ParameterDirection.Input
 param.Value = bugID

 Dim myDataAdapter As New SqlClient.SqlDataAdapter
 myDataAdapter.SelectCommand = command
 myDataAdapter.TableMappings.Add("Table", "BugHistory")
 Dim ds As New DataSet
 myDataAdapter.Fill(ds)
 Return ds

 End Function

11.7.2.3 Return values from a sproc

You can imagine that your stored procedure might return the total number of history items found
when you pass in a BugID. To capture this return value, you will need an output parameter. To
experiment with output parameters you will add a new sproc, SpBugHistoryCount, which will take
two parameters: @BugID, and a new parameter, @TotalFound. The stored procedure is written as

follows:

CREATE PROCEDURE spBugHistoryCount
@BugID integer,
@TotalFound integer output
 AS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

select @totalFound = count(bugHistoryID)
from BugHistory where BugID = @BugID

Note that the second parameter is marked as an output parameter. To display the output value
returned by this sproc, you'll add a new label to the Panel control in the .aspx file:

<asp:Label ID="lblTotalFound" Runat="server"/>

Remember to declare this label in the .cs file so that you can refer to it programmatically:

protected System.Web.UI.WebControls.Label lblTotalFound;

You now add a new method, TotalRecordsFound, which will invoke the sproc and return the value the
sproc returns as a string. You'll then insert the string into the label you just created.

To start, modify UpdateBugHistory and add the following line as the last line in the existing if

statement:

lblTotalFound.Text =
 "Total History Records Found: " +
 TotalRecordsFound(bugID);

Thus, if the user selects a bug, you'll run the sproc and display the total number of bugs found. The
implementation of TotalRecordsFound is fairly straightforward:

Create the connection and command objects.1.

Set the command text to the name of the sproc and set the command type to
StoredProcedure.

2.

Set up the two parameters, remembering to set their direction.3.

Invoke the sproc.4.

Extract the values.5.

What is new this time, however, is that rather than using the sproc to fill a dataset or even a data
adapter, you need only run the sproc and get back the output value in the Parameters collection of
the command object. To make this most efficient, the command object offers a ExecuteNonQuery
method. This highly efficient method simply executes the SQL statement (in this case the sproc) but
does not return a dataset. You can use ExecuteNonQuery when you need to poke the database but
do not need to get back records. For Update, Insert, and Delete statements, ExecuteNonQuery

returns the number of rows affected; otherwise it returns -1.

To extract the value from the output parameter, you must first extract it from the Parameters
collection. You may use the name of the parameter as an index into the collection:

param = command.Parameters["@TotalFound"];

The Parameter object has a Value property which is an object. You must cast that object to the
appropriate type, in this case int:

int val = (int) param.Value;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The TotalRecordsFound method returns a string. You can easily turn the int into a string because
int, like all objects, implements ToString:

string output = val.ToString();

You can, of course, combine all these steps in your return statement:

return command.Parameters["@TotalFound"].Value.ToString();

The complete C# source code for the TotalRecordsFound method is shown in Example 11-18.

Example 11-18. Retrieving an output value with C#

private string TotalRecordsFound(int bugID)
{
 // connection string to connect to the Bugs Database
 string connectionString =
 "server=YourServer; uid=sa; " +
 "pwd=YourPW; database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // create a command object for the sproc
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection = connection;

 command.CommandText= "spBugHistoryCount";
 command.CommandType = CommandType.StoredProcedure;

 // declare the parameter object
 System.Data.SqlClient.SqlParameter param;

 // Add a new parameter, get back a reference to it
 param = command.Parameters.Add("@BugID",SqlDbType.Int);

 // set the parameter's direction and value
 param.Direction = ParameterDirection.Input;
 param.Value = bugID;

 // Add a new parameter, get back a reference to it
 param = command.Parameters.Add("@TotalFound",SqlDbType.Int);

 // set the parameter's direction
 param.Direction = ParameterDirection.Output;

 // call ExecuteNonQuery because no dataset

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // will be returned
 command.ExecuteNonQuery();

 // get the param from the collection
 param = command.Parameters["@TotalFound"];

 // extract the value
 int val = (int) param.Value;

 // cast to a string
 string output = val.ToString();

 // return the value as a string
 return output;
}

The complete VB.NET source code for the TotalRecordsFound function is shown in Example 11-19.

Example 11-19. Retrieving an output value with VB.NET

 Private Function TotalRecordsFound(ByVal bugID As Integer) As String

 ' connection string to connect to the Bugs Database
 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPassword; " + _
 "database=ProgASPDotNetBugs"

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)
 connection.Open()

 ' create a command object for the sproc
 Dim Command As New System.Data.SqlClient.SqlCommand
 Command.Connection = connection

 Command.CommandText = "spBugHistoryCount"
 Command.CommandType = CommandType.StoredProcedure

 ' declare the parameter object
 Dim param As System.Data.SqlClient.SqlParameter

 ' Add a new parameter, get back a reference to it
 param = Command.Parameters.Add("@BugID", SqlDbType.Int)

 ' set the parameter's direction and value
 param.Direction = ParameterDirection.Input
 param.Value = bugID

 ' Add a new parameter, get back a reference to it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param = Command.Parameters.Add("@TotalFound", SqlDbType.Int)

 ' set the parameter's direction
 param.Direction = ParameterDirection.Output

 ' call ExecuteNonQuery because no dataset
 ' will be returned
 Command.ExecuteNonQuery()

 ' get the param from the collection
 param = Command.Parameters("@TotalFound")

 ' extract the value
 Dim val As Integer = CType(param.Value, Integer)

 ' cast to a string
 Dim output As String = val.ToString()

 ' return the value as a string
 Return output

 End Function

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 12. ADO Data Updates
Chapter 11 focused on retrieving data from the database and managing the complexity of related
tables. All of the examples focused on displaying data. In many applications, however, you will also
want to allow the user to update the data in the database.

There are two aspects to writing web applications that allow users to update data. The first aspect is
providing the user with a user interface that facilitates modifying the data. The second is to provide
the programmatic support for the update: how do you insert new records, or modify or delete
existing records once you know what changes you want to make? This chapter focuses on this second
aspect: how you write the code to update the data in the database. To simplify the examples, this
chapter shows very little of the user interface. Many of the examples will use hard-coded database
logic; others will use a very crude and simple form for updating the data tables.

Updating data in a database is very simple if you only update a single table, but once you update
related tables, things get complicated. This chapter explores how transactions can be used to ensure
the integrity of your data. In addition, if your program will be used by more than one user at a time,
you will encounter issues with concurrency. Is it possible for one user's changes to overwrite the
changes of another user. This chapter also explores how you manage concurrency issues, and shows
some of the powerful support available in the class library to simplify this difficult task.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.1 Updating with SQL

The simplest way to update the database is to generate a SQL Insert , Update , or Delete

statement, and execute it using the Command object's ExecuteNonQuery method. For example, you
can insert a few records into the Bugs table, edit existing rows, and delete rows, all with the
appropriate SQL statements.

To illustrate this, you'll use Visual Studio to create a simple form to display the current records in a
grid. Choose whichever language you feel most comfortable using, and name the project
BugHistoryHandEdits. In addition to the DataGrid control, you'll add three buttons to allow the user to
add, edit, or delete a record, and you'll also add a text field for the description, as shown in Figure 12-
1 . Table 12-1 shows the properties that you should set for the example to work.

Figure 12-1. The data entry page

The data entry page in Figure 12-1 is a quick and dirty application with a crude
user interface. While this may seem to have little relevance to real-world
applications at first glance, the truth is that this is exactly the kind of starter
program programmers often use to prove an approach or to experiment with an
alternative. In a final product, the user interface will certainly be more
attractive (for example, you might allow the user to click on the various fields
and edit them in place), but the back-end functionality will likely be unchanged.
(Manipulation of grids and the more attractive components for a user interface
will be explored in detail in Chapter 13 .)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 12-1. Non-default properties of the BugHistoryHandEdits controls

Control Property Value

DataGrid AlternatingItemStyle.Backcolor LightGray

 BorderColor Blue

 BorderStyle Solid

 BorderWidth 4px

 HeaderStyle.BackColor BlanchedAlmond

 HeaderStyle.Font.Bold True

Add Button ID btnAdd

 Text Add Record

Edit Button ID btnEdit

 Text Edit Record

Delete Button ID btnDelete

 Text Delete Record

TextBox ID TxtDescription

The .aspx file for both C# and VB.NET should now have code similar to the following between the
<form> and </form> tags:

<asp:DataGrid id="DataGrid1" runat="server" Width="320px" AutoGenerateColumns="False"
 BorderWidth="4px" BorderColor="Blue">
 <AlternatingItemStyle BorderWidth="4px" BorderStyle="Solid"
 BorderColor="Blue" BackColor="LightGray"></AlternatingItemStyle>
 <HeaderStyle Font-Bold="True" BackColor="BlanchedAlmond">
 </HeaderStyle>
 <Columns>
 <asp:BoundColumn DataField="BugID"
 HeaderText="Bug ID"></asp:BoundColumn>
 <asp:BoundColumn DataField="Description"
 HeaderText="Description"></asp:BoundColumn>
 <asp:BoundColumn DataField="reporter"
 HeaderText="Reported By"></asp:BoundColumn>
 </Columns>
</asp:DataGrid>
<asp:Button id="btnAdd" runat="server"
 Text="Add Record" Width="100px"></asp:Button>
<asp:Button id="btnEdit" runat="server"
 Text="Edit Record" Width="100px"></asp:Button>
<asp:Button id="btnDelete" runat="server"
 Text="Delete Record" Width="100px"></asp:Button>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<asp:TextBox id="TxtDescription" runat="server" Width="150px"></asp:TextBox>

Next, you'll write Click event handlers for the buttons, and in these event handlers you will interact
with the database, executing the SQL statements needed to add a record, edit a record, or delete a
record. To simplify the user interface even further, you'll always edit or delete the last record in the
table. (In a real application, of course, the user would indicate which record to modify.) The complete
C# source code is shown in Example 12-1 , and the complete VB.NET source code is shown in
Example 12-2 . Code not automatically generated by Visual Studio .NET is shown in boldface. Note
that, to keep the example as simple as possible, the code has no error checking.

Example 12-1. C# source for the data entry page

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Text;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace BugHistoryHandEdits
{
 public class WebForm1 : System.Web.UI.Page
 {
 // the three buttons
 protected System.Web.UI.WebControls.Button btnAdd;
 protected System.Web.UI.WebControls.Button btnEdit;
 protected System.Web.UI.WebControls.Button btnDelete;

 // text box to get user input
 protected System.Web.UI.WebControls.TextBox TxtDescription;

 // the data grid to display the contents of the bug table
 protected System.Web.UI.WebControls.DataGrid DataGrid1;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 // when you load the page bind the data from the db
 private void Page_Load(object sender, System.EventArgs e)
 {
 BindData();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // bind the grid to the DataReader produced by
 // the sproc and then update the data
 private void BindData()
 {
 DataGrid1.DataSource = CreateBugDataReader();
 DataGrid1.DataBind();
 }

 // return a DataReader object based on the sproc
 private SqlDataReader CreateBugDataReader()
 {
 // connection string to connect to the Bugs Database
 string connectionString =
 "server=YourServer; uid=sa; pwd=YourPassword;
 database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(
 connectionString);
 connection.Open();

 // Create a SqlCommand object and assign the connection
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection = connection;

 // set the stored procedure to get the bug records
 command.CommandText = "spBugsNoHistory";
 command.CommandType = CommandType.StoredProcedure;

 // return the data reader
 return command.ExecuteReader(
 CommandBehavior.CloseConnection);
 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.btnAdd.Click +=
 new System.EventHandler(this.btnAdd_Click);
 this.btnEdit.Click +=

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 new System.EventHandler(this.btnEdit_Click);
 this.btnDelete.Click +=
 new System.EventHandler(this.btnDelete_Click);
 this.Load +=
 new System.EventHandler(this.Page_Load);

 }
 #endregion

 // event handler for the edit button
 // edit the last record based on the user's input
 private void btnEdit_Click(object sender, System.EventArgs e)
 {
 string cmd = @"Update bugs set description = '" +
 TxtDescription.Text +
 @"' where bugid = (select max(BugID) from bugs)";

 UpdateDB(cmd);
 BindData();
 }

 // delete the last record in the table
 private void btnDelete_Click(object sender, System.EventArgs e)
 {
 string cmd =
 @"delete from bugs where bugid =
 (select max(BugID) from bugs)";

 UpdateDB(cmd);
 BindData();
 }

 // add a new record to the table
 // pick up the description field from the text box
 private void btnAdd_Click(object sender, System.EventArgs e)
 {
 string cmd = @"Insert into bugs values (1,'0.1', '" +
 TxtDescription.Text + @"',1)";

 UpdateDB(cmd);
 BindData();
 }

 // common routine for all database updates
 private void UpdateDB(string cmd)
 {
 // connection string to connect to the Bugs Database
 string connectionString =
 "server=YourServer; uid=sa;
 pwd=YourPassword; database=ProgASPDotNetBugs";

 // Create connection object, initialize with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // Create a SqlCommand object and assign the connection
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection = connection;
 command.CommandText = cmd;

 // clear the text box
 TxtDescription.Text = "";

 // execute the sproc
 command.ExecuteNonQuery();
 }
 }
}

Example 12-2. VB.NET source for the data entry page

Imports System.Data.SqlClient

Public Class WebForm1
 Inherits System.Web.UI.Page
 Protected WithEvents DataGrid1 As System.Web.UI.WebControls.DataGrid
 Protected WithEvents btnAdd As System.Web.UI.WebControls.Button
 Protected WithEvents btnEdit As System.Web.UI.WebControls.Button
 Protected WithEvents btnDelete As System.Web.UI.WebControls.Button
 Protected WithEvents TxtDescription As System.Web.UI.WebControls.TextBox

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BindData()
 End Sub

 ' bind the grid to the DataReader produced by
 ' the sproc and then update the data
 Private Sub BindData()
 DataGrid1.DataSource = CreateBugDataReader()
 DataGrid1.DataBind()
 End Sub

 ' return a DataReader object based on the sproc
 Private Function CreateBugDataReader() As SqlDataReader
 ' connection string to connect to the Bugs Database
 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPassword; " & _
 "database=ProgASPDotNetBugs"

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim connection As SqlConnection = New SqlConnection(connectionString)
 connection.Open()

 ' Create a SqlCommand object and assign the connection
 Dim command As New SqlCommand()
 command.Connection = connection

 ' set the stored procedure to get the bug records
 command.CommandText = "spBugsNoHistory"
 command.CommandType = CommandType.StoredProcedure

 ' return the data reader
 Return command.ExecuteReader(CommandBehavior.CloseConnection)
 End Function

 ' event handler for the edit button
 ' edit the last record based on the user's input
 Private Sub btnEdit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnEdit.Click
 Dim cmd As String = "Update bugs set description = '" & _
 TxtDescription.Text & _
 "' where bugid = (select max(BugID) from bugs)"
 UpdateDB(cmd)
 BindData()
 End Sub

 ' delete the last record in the table
 Private Sub btnDelete_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnDelete.Click
 Dim cmd As String = _
 "delete from bugs where bugid = (select max(BugID) from bugs)"
 UpdateDB(cmd)
 BindData()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Sub

 ' add a new record to the table
 ' pick up the description field from the text box
 Private Sub btnAdd_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click
 Dim cmd As String = "Insert into bugs values (1,'0.1', '" & _
 TxtDescription.Text + "',1)"
 UpdateDB(cmd)
 BindData()
 End Sub

 ' common routine for all database updates
 Private Sub UpdateDB(ByVal cmd As String)
 ' connection string to connect to the Bugs Database
 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPassword; " & _
 "database=ProgASPDotNetBugs"

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim connection As SqlConnection = New SqlConnection(connectionString)
 connection.Open()

 ' Create a SqlCommand object and assign the connection
 Dim command As New SqlCommand()
 command.Connection = connection
 command.CommandText = cmd

 ' clear the text box
 TxtDescription.Text = ""

 ' execute the sproc
 command.ExecuteNonQuery()
 End Sub

End Class

For each of the three event handlers for the Click event, you will want to execute the same steps:

Create the SQL string.1.

Create a connection object and a command object.2.

Set the command object's CommandText property to the SQL statement you've created.3.

Execute the SQL statement.4.

Rebind the data to update the display.5.

All three event handlers require identical steps 2 through 4, so this work is factored out into a
common method, UpdateDB, to which you pass the command string you want executed. The syntax

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.

of the UpdateDB method in C# is:

private void UpdateDB(string cmd)

In VB.NET, it is:

Private Sub UpdateDB(cmd As String)

You create your connection string and connection object as you have in previous examples. You then
set the command object's CommandText property to the string passed in as a parameter and execute
the query with the ExecuteNonQuery method:

command.CommandText=cmd;
command.ExecuteNonQuery();

Remember that ExecuteNonQuery, as you saw in Chapter 11 , is used when you do not expect to get
back a result set. The return value of ExecuteNonQuery is the number of records affected.

The SQL statement for adding a record is a simple Insert statement. In this example, you'll hardwire

the values for the Product, Version, and Reporter fields, but you'll pick up the text for the Description
field from the text box:

string cmd = @"Insert into bugs values (1,'0.1', '" +
 TxtDescription.Text + @"',1)";

C# tip: the @ symbol creates a verbatim string, allowing you to pass in single
quotation marks without escaping them.

You pass this cmd string to the UpdateDB method as described previously, and then you update the
label with the number of rows affected. Finally, you call BindData, which rebinds the data grid with
data from the database, and updates the label to display your progress.

int numRowsAdded = UpdateDB(cmd);

lblMessage.Text = "Added " + numRowsAdded.ToString() + " rows.";
BindData();

The three event handlers are identical except for the particular SQL statement executed. The call to
BindData rebinds the data grid to the data extracted from the database. BindData in turn calls
CreateBugDataReader, which creates an SqlDataReader from the result set returned by the
spBugsNoHistory stored procedure. This is a simple stored procedure to retrieve only the few fields

from Bugs, lkProduct, and People that we care about for this example program:

CREATE PROCEDURE spBugsNoHistory as
Select b.BugID, b.Description,p.ProductDescription,
r.FullName as reporter
from
bugs b
join lkProduct p on b.Product = p.ProductID
join People r on b.Reporter = r.PersonID

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.2 Updating Data with Transactions

A very important feature of most industrial-strength databases is support for transactions. A transaction
is a set of database operations that must all complete or fail together. That is, either all the operations
must complete successfully (commit the transaction), or all must be undone (roll back the transaction)
so that the database is left in the state it was in before the transaction began.

The canonical transaction is depositing a check. If I write a check to you for $50 and you deposit it, we
both expect that once the bank transaction is completed, your account will have increased by $50 and
mine will have decreased by $50. Presumably the bank computer accomplishes this in two steps:

Reduce my account by $50.1.

Increase your account by $50.2.

If the system fails between steps 1 and 2 or for any reason your account cannot be increased by $50,
the transaction should be rolled back; that is, it should fail as a whole (neither account should be
affected).

If my account is reduced by $50 and your account is not increased, then the database has become
corrupted. This should never be allowed, and it is the job of transactions to ensure either that both
actions are taken or that neither is.

The remaining alternative, in which my account is not decreased but yours is
increased, may be a happy outcome for you ("Bank Error In Your Favor-Collect
$50"), but the bank would not be pleased.

12.2.1 The ACID Test

Database designers define the requirements of a transaction in the so-called "ACID" test. ACID is an
acronym for A tomic, C onsistent, I solated, and D urable. Here's a brief summary of what each of these
terms means:

Atomic

An atomic interaction is indivisible (i.e., it cannot be partially implemented). Every transaction
must be atomic. For instance, in the previous banking example, it must not be possible to
decrement my account but fail to increment yours. If the transaction fails, it must return the
database to the state it would have been in without the transaction.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All transactions, even failed ones, affect the database in trivial ways (e.g.,
resources are expended, performance is affected). The atomic requirement
only implies that, if a transaction is rolled back, all of the tables and data will
be in the state they would have been in had the transaction not been
attempted at all.

Consistent

The database is presumed to be in a consistent state before the transaction begins, and the
transaction must leave it in a consistent state when it completes. While the transaction is being
processed, however, the database need not be in a consistent state. To continue with our example
of depositing a check, the database need not be consistent during the transaction (e.g., it is okay
to decrement my account before incrementing your account), but it must end in a consistent state
(i.e., when the transaction completes, the books must balance).

Isolated

Transactions are not processed one at a time. Typically a database may be processing many
transactions at once, switching its attention back and forth among various operations. This
creates the possibility that a transaction can view and act upon data that reflects intermediate
changes from another transaction that is still in progress and that therefore currently has its data
in an inconsistent state. Transaction isolation is designed to prevent this problem. For a
transaction to be isolated, the effects of the transaction must be exactly as if the transaction were
acted on alone; there can be no effects on or dependencies on other database activities. For more
information, see the sidebar, "Data Isolation."

Durable

Once a transaction is committed, the effect on the database is permanent.

Data Isolation

Creating fully-isolated transactions in a multithreaded environment is a non-trivial
exercise. There are three ways isolation can be violated:

Lost update: one thread reads a record, a second thread updates the record, and
then the first thread overwrites the second thread's update.

Dirty read: thread one writes data; thread two reads what thread one wrote.
Thread one then overwrites the data, thus leaving thread two with old data.

Unrepeatable read: thread one reads data; the data is then overwritten by thread
two. Thread one tries to re-read the data but it has changed.

Database experts identify four degrees of isolation:

Degree 0 is limited only to preventing the overwriting of data by any other
transaction that is of degree 1 or greater.

Degree 1 isolation has no lost updates.

Degree 2 isolation has no lost updates and no dirty reads but may have

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unrepeatable reads.

Degree 3 isolation has no lost updates, no dirty reads, and no unrepeatable reads.

While details about transaction isolation is beyond the scope of this book, the section
on multiuser updates, later in this chapter, discusses issues related to avoiding violation
of isolation.

12.2.2 Implementing Transactions

There are two ways to implement transactions in ASP.NET. You can allow the database to manage the
transaction by using transactions within your stored procedure, or you can use connection-based
transactions. In the latter case, the transaction is created and enforced outside of the database. This
allows you to add transaction support to databases that do not otherwise provide for it.

As Appendix B shows, the Bug database is designed so that each bug event is recorded as one record in
Bugs and one or more records in BugHistory. In the next example, you will elicit information from the
user about a new bug (e.g., the description, severity, etc.), and you will update both the Bugs table and
the BugHistory table.

If the update to the BugHistory table fails for any reason, you want to make sure the update to the Bugs
table rolls back as well. To ensure this, you wrap these updates in a transaction.

In this example, you will offer the user the option to have the transaction implemented either by the
database or by the connection, as shown in Figure 12-2 .

Figure 12-2. Data form for transaction-based add

The .aspx file for this form can be found later in Example 12-8 .

If the user selects DB Transaction, call a stored procedure that implements the transaction semantics. If
the user selects Connection Transaction, implement the transaction yourself, using an instance of the
System.Data.SqlClient.SqlTransaction class.

12.2.2.1 Database transactions

To implement the DB Transaction option, you need a stored procedure (or sproc) that adds a record

to the Bugs table and a record to the BugsHistory table, using SQL transaction support.

CREATE PROCEDURE spAddBugWithTransactions

To decide what parameters to provide to this sproc, you must examine the two tables you will update,
as shown in Figure 12-3 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 12-3. Bugs and BugHistory

There are 12 fields that must be filled in for the two tables. For Bugs, the required fields are BugID,
Product, Version, Description, and Reporter. Note, however, that you don't need to provide a BugID,
which is an identity column provided by the database.

For BugHistory, the obligatory fields are BugHistoryID, BugID, Status, Severity, Response, Owner, and
DateStamp. BugHistoryID is another identity column and is thus provided by the database. Note that
BugID must match the BugID generated by Bugs. Thus, rather than passing that into the stored
procedure, you'll get it back from the database when you add the Bug record. Status will always be
Open (new bugs are always open) and so you need not pass it in. Similarly, Response will always be
"Bug Created." To simplify this, we'll assume that when you create a new bug, it is always assigned first
to the user (i.e., Owner) whose ID is 1. The DateStamp need not be passed as a parameter, if your
table is set up to default to the current date. Thus, you are left passing in just the ProductID, Version,
Description, Reporter, and Severity:

@ProductID int,
@Version varChar(50),
@Description varChar(8000),
@Reporter int,
@Severity int

The core of the procedure is a pair of Insert statements. First you will insert values into the Bugs table:

Insert into Bugs values (@ProductID, @Version, @Description, @Reporter)

The Bugs table has an identity column, which you can retrieve with the SQL keyword @@identity :

declare @bugID int
select @bugID = @@identity

With that bugID in hand, you are ready to insert a record into BugHistory:

Insert into BugHistory
(bugID, status, severity, response, owner)
values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(@bugID,
 1, -- status
 @Severity,
 'Bug Created', -- action
 1 -- owner
)

Notice that you are hardwiring the status (1 = open), the action (Bug Created) and the owner (6 = a
person in QA).

To make this all work with database transactions, before the Insert statement that adds a record to the

first table, you need only begin with the line:

Begin Transaction

After the insert, you'll check the @@error value, which should be 0 if the Insert succeeded:

if @@Error <> 0 goto ErrorHandler

If there is an error, you'll jump to the error handler, where you'll call Rollback Transaction :

ErrorHandler:
rollback transaction

If there is no error, you continue on to the second Insert statement. If there is no error after that

insert, you are ready to commit the transaction and exit the sproc:

if @@Error <> 0 goto ErrorHandler
commit transaction
return

The net effect is that either both Insert statements are acted on, or neither is. The complete sproc is

shown in Example 12-3 .

Example 12-3. Stored procedure spAddBugWithTransactions

CREATE PROCEDURE spAddBugWithTransactions
@ProductID int,
@Version varChar(50),
@Description varChar(8000),
@Reporter int,
@Severity int
 AS
Begin Transaction
declare @bugID int
Insert into Bugs values (@ProductID, @Version, @Description, @Reporter)
select @bugID = @@identity
if @@Error <> 0 goto ErrorHandler

Insert into BugHistory
(bugID, status, severity, response, owner, DateStamp)
values
(@bugID,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1, -- status
 @Severity,
 'Bug Created', -- action
 1, -- owner
 GetDate() -- DateStamp
)
if @@Error <> 0 goto ErrorHandler
commit transaction
return
ErrorHandler:
rollback transaction
return
GO

With the stored procedure in hand, you are ready to create the ASP.NET page that allows the user to
choose a database transaction or a connection-based transaction.

You'll start by creating the radio button list in the .aspx page. To do so, drag a RadioButtonList control
onto the form, as shown in Figure 12-4 .

Figure 12-4. The radio button list

Set the properties for the buttons as shown in the following code snippet. You can do this from the
Property window or by clicking on the HTML tag and updating the HTML directly:

<asp:radiobuttonlist id="rbTransaction" Runat="server"
TextAlign="Right" RepeatLayout="flow"
RepeatDirection="Vertical" repeatColumns="2" CellSpacing="3">
 <asp:ListItem Text="DB Transaction" Value="0" />
 <asp:ListItem Text="Connection Transaction"
 Value="1" Selected="True" />
</asp:radiobuttonlist>

You also need controls for the various drop-downs and text fields (shown in the Example 12-8 later in
this chapter), as well as a button.

<asp:button id="btnAdd" Runat="server" Text="Add"/>

When the user clicks the Add button, your button handler is fired. In C#, it takes the form:

private void btnAdd_Click(object sender, System.EventArgs e)
{
 int whichTransaction =
 Convert.ToInt32(rbTransaction.SelectedItem.Value);
 if (whichTransaction == 0)
 UpdateDBTransaction();
 else
 UpdateConnectionTransaction();
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB.NET, the btnAdd_Click event handler appears as follows:

Private Sub btnAdd_Click(sender As Object, e As EventArgs) _
 Handles btnAdd.Click
 Dim whichTransaction = _
 Convert.ToInt32(rbTransaction.SelectedItem.Value)
 If whichTransaction = 0 Then
 UpdateDBTransaction()
 Else
 UpdateConnectionTransaction
 End If
End Sub

The entire job of the button handler is to determine which of the two buttons is chosen and to invoke
the appropriate method. If the user chooses a database transaction, you will invoke the private
UpdateDBTransaction helper method, which in turn will invoke the spAddBugWithTransactions stored

procedure.

You will create a connection and a command object in the normal way, setting the command object's
CommandType property to CommandType.StoredProcedure . You will then create all of the parameters

and invoke the stored procedure by calling the ExecuteNonQuery method. There is nothing new or
surprising here; all the work to support the transaction is actually done in the stored procedure itself.
The C# version of UpdateDBTransaction looks like this:

private void UpdateDBTransaction()
{
 // connection string to connect to the Bugs Database
 string connectionString =
 "server=YourServer; uid=sa; pwd=YourPassword; " +
 "database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // create a second command object for the bugs history table
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection = connection;

 command.CommandText= "spAddBugWithTransactions";
 command.CommandType = CommandType.StoredProcedure;

 // declare the parameter object
 System.Data.SqlClient.SqlParameter param;

 // add each parameter and set its direciton and value
 param = command.Parameters.Add("@ProductID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.Value = lbProduct.SelectedItem.Value; // from the list box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param = command.Parameters.Add("@Version",SqlDbType.VarChar,50);
 param.Direction = ParameterDirection.Input;
 param.Value = txtVersion.Text; // from the text box

 param = command.Parameters.Add("@Description",SqlDbType.VarChar,8000);
 param.Direction = ParameterDirection.Input;
 param.Value = txtDescription.Text; // from the text box

 param = command.Parameters.Add("@Reporter",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.Value = lbReporter.SelectedItem.Value; // from the list box

 param = command.Parameters.Add("@Severity",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.Value = lbSeverity.SelectedItem.Value; // from the list box

 command.ExecuteNonQuery(); // execute the sproc
}

Here's the same code in VB .NET:

Private Sub UpdateDBTransaction()
 ' connection string to connect to the Bugs Database
 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPassword" & _
 "database=ProgASPDotNetBugs"

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim connection As New _
 System.Data.SqlClient.SqlConnectionconnectionString)
 connection.Open()

 ' create a second command object for the bugs history table
 Dim command As New _
 System.Data.SqlClient.SqlCommand()
 command.Connection = connection

 command.CommandText= "spAddBugWithTransactions"
 command.CommandType = CommandType.StoredProcedure

 ' declare the parameter object
 Dim param As System.Data.SqlClient.SqlParameter

 ' add each parameter and set its direciton and value
 param = command.Parameters.Add("@ProductID",SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.Value = lbProduct.SelectedItem.Value ' from the list box

 param = command.Parameters.Add("@Version",SqlDbType.VarChar,50)
 param.Direction = ParameterDirection.Input
 param.Value = txtVersion.Text ' from the text box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param = command.Parameters.Add("@Description",SqlDbType.VarChar,8000)
 param.Direction = ParameterDirection.Input
 param.Value = txtDescription.Text ' from the text box

 param = command.Parameters.Add("@Reporter",SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.Value = lbReporter.SelectedItem.Value ' from the list box

 param = command.Parameters.Add("@Severity",SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.Value = lbSeverity.SelectedItem.Value ' from the list box

 command.ExecuteNonQuery() ' execute the sproc
End Sub

12.2.2.2 Connection transaction

The user may choose to use a connection transaction rather than a DB transaction. If so, the method
UpdateConnectionTransaction is called. With a Connection transaction there is no transaction support
provided by the stored procedure, instead you add the transaction support by creating an
SQLTransaction object.

For illustration purposes, you'll add to the Bugs table using a stored procedure, but one that does not
provide transaction support. You'll add to the BugHistory table using a simple SQL Insert statement.

You want the simple update and the stored procedure call to be wrapped inside a transaction, however,
to ensure that either both succeed or neither does.

To get started, you'll write the spAddBug sproc shown in Example 12-4 to insert a record into Bugs.

Example 12-4. The spAddBug stored procedure

CREATE PROCEDURE spAddBug
@ProductID int,
@Version varChar(50),
@Description varChar(8000),
@Reporter int,
@BugID int output
 AS
Insert into Bugs values (@ProductID, @Version, @Description, @Reporter)
select @BugID = @@identity

You need only those parameters required for the Bugs table; the BugHistory table is not updated by this
sproc. In addition, you must add an output parameter, @BugID , to return the identity of the new Bug

record, so that you can pass this to the new record in BugHistory.

The body of the sproc is nothing more than an Insert statement and a statement to set the @BugID

parameter with the new BugID retrieved from the @@identity value.

The job of the UpdateConnectionTransaction method, shown in the complete listing below (see Example
12-6) is to invoke both the stored procedure and the SQL Update statement, using a Connection

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

transaction. The steps are as follows:

Create the connection string and the SqlConnection object.1.

Create the SqlCommand object.2.

Open the connection.3.

Instantiate a SqlTransaction object by calling the BeginTransaction method of the SqlConnection
object.

4.

Set the SqlCommand object's Transaction property to the SqlTransaction object you've
instantiated, and set the SqlCommand object's Connection property to the SqlConnection object
you've created.

5.

Open a try block in which you will try to update the two tables. If an exception is thrown, you will

catch the exception and roll back the transaction.

6.

Set the SQL command object's CommandText property to the name of the stored procedure, and
set the CommandType property to CommandType.StoredProcedure .

7.

Add all the parameters, including the output parameters.8.

Invoke the Query.9.

Get back the BugID and use that to invoke a SQL statement to update the BugHistory table.10.

Commit the transaction.11.

Example 12-5 shows the complete source code for this example in C#, and Example 12-6 shows it in VB
.NET. This code is very similar to the examples in Chapter 11 , with the addition of UpdateDBTransaction
and UpdateConnectionTransaction, which are shown in bold.

Example 12-5. C# Updating with transactions

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Text;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace BugHistoryTransactions
{
 public class WebForm1 : System.Web.UI.Page
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 protected System.Web.UI.WebControls.DataGrid DataGrid1;
 protected System.Web.UI.WebControls.DataGrid HistoryGrid;
 protected System.Web.UI.WebControls.Panel BugHistoryPanel;
 protected System.Web.UI.WebControls.DropDownList lbProduct;
 protected System.Web.UI.WebControls.TextBox txtVersion;
 protected System.Web.UI.WebControls.TextBox txtDescription;
 protected System.Web.UI.WebControls.DropDownList lbSeverity;
 protected System.Web.UI.WebControls.Button btnAdd;
 protected System.Web.UI.WebControls.DropDownList lbReporter;
 protected System.Web.UI.WebControls.RadioButtonList rbTransaction;

 private string connectionString =
 "server=YourServer; uid=sa; pwd=YourPassword; " & _
 "database=ProgASPDotNetBugs";

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 public void OnItemDataBoundEventHandler(
 Object sender, DataGridItemEventArgs e)
 {
 ListItemType itemType = (ListItemType)e.Item.ItemType;
 if (itemType == ListItemType.Header ||
 itemType == ListItemType.Footer ||
 itemType == ListItemType.Separator)
 return;

 if (e.Item.DataItem == null) return;
 if (((DataRowView)e.Item.DataItem).
 Row.ItemArray[8].ToString() == "High")
 {
 TableCell severityCell = (TableCell) e.Item.Controls[7];
 severityCell.ForeColor = Color.FromName("Red");
 }
 }

 public void OnSelectedIndexChangedHandler(Object sender, EventArgs e)
 {
 UpdateBugHistory();
 }

 private void UpdateBugHistory()
 {
 int index = DataGrid1.SelectedIndex;
 if (index != -1)
 {
 // get the bug id from the data grid
 int bugID = (int) DataGrid1.DataKeys[index];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Get a dataset based on that BugID
 DataSet dataSet = CreateBugHistoryDataSet(bugID);

 // bind to the table returned and make
 // the panel visible
 HistoryGrid.DataSource = dataSet.Tables[0];
 HistoryGrid.DataBind();
 BugHistoryPanel.Visible = true;

 }
 else
 {
 // no history to display, hide the panel
 BugHistoryPanel.Visible = false;
 }
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!IsPostBack)
 {
 // hide the history panel
 UpdateBugHistory();

 // set the data source for the
 // grid to the first table
 DataSet ds = CreateBugDataSet();
 DataGrid1.DataSource = ds.Tables[0];
 DataGrid1.DataBind();

 lbProduct.DataSource = GetDataReader("lkProduct");
 lbProduct.DataBind();

 lbSeverity.DataSource = GetDataReader("lkSeverity");
 lbSeverity.DataBind();

 lbReporter.DataSource = GetDataReader("People");
 lbReporter.DataBind();
 }
 }

 private SqlDataReader GetDataReader(string whichTable)
 {

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);

 connection.Open();

 // Create a SqlCommand object and assign the connection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection = connection;

 // set the stored procedure to get the bug records
 command.CommandText = "select * from " + whichTable;

 // return the data reader
 return command.ExecuteReader(CommandBehavior.CloseConnection);
 }

 private DataSet CreateBugHistoryDataSet(int bugID)
 {

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // create a second command object for the bugs history table
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection = connection;

 command.CommandText= "spBugHistory";
 command.CommandType = CommandType.StoredProcedure;

 // declare the parameter object
 System.Data.SqlClient.SqlParameter param;

 // Add a new parameter, get back a reference to it
 param = command.Parameters.Add("@BugID", SqlDbType.Int);

 // set the parameter's direction and value
 param.Direction = ParameterDirection.Input;
 param.Value = bugID;

 // create a second data adapter and add the command
 // and map the table
 // then fill the dataset from this second adapter
 SqlDataAdapter dataAdapter = new SqlDataAdapter();
 dataAdapter.SelectCommand = command;
 dataAdapter.TableMappings.Add("Table", "BugHistory");

 DataSet dataSet = new DataSet();
 dataAdapter.Fill(dataSet);

 return dataSet;
 }

 private DataSet CreateBugDataSet()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // Create a SqlCommand object and assign the connection
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection = connection;
 command.CommandText = "spBugs";
 command.CommandType = CommandType.StoredProcedure;

 // create a data adapter and assign the command object
 // and add the table mapping for bugs
 SqlDataAdapter dataAdapter = new SqlDataAdapter();
 dataAdapter.SelectCommand = command;
 dataAdapter.TableMappings.Add("Table", "Bugs");

 // Create the dataset and use the data adapter to fill it
 DataSet dataSet = new DataSet();
 dataAdapter.Fill(dataSet);
 return dataSet;
 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.btnAdd.Click += new System.EventHandler(this.btnAdd_Click);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 private void UpdateConnectionTransaction()
 {

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 new System.Data.SqlClient.SqlConnection(connectionString);

 // declare the command object for the sql statements
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();

 // declare an instance of SqlTransaction
 SqlTransaction transaction;

 // connection string to connect to the Bugs Database
 connection.Open();

 // begin the transaction
 transaction = connection.BeginTransaction();

 // attach the transaction to the command
 command.Transaction = transaction;

 // attach connection to the command
 command.Connection = connection;

 try
 {
 command.CommandText = "spAddBug";
 command.CommandType = CommandType.StoredProcedure;

 // declare the parameter object
 System.Data.SqlClient.SqlParameter param;

 // add each parameter and set its direciton and value
 param = command.Parameters.Add("@ProductID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 // from the list box
 param.Value = lbProduct.SelectedItem.Value;
 param = command.Parameters.Add(
 "@Version",SqlDbType.VarChar,50);
 param.Direction = ParameterDirection.Input;
 // from the text box
 param.Value = txtVersion.Text;
 param = command.Parameters.Add(
 "@Description",SqlDbType.VarChar,8000);
 param.Direction = ParameterDirection.Input;
 // from the text box
 param.Value = txtDescription.Text;
 param = command.Parameters.Add("@Reporter",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 // from the list box
 param.Value = lbReporter.SelectedItem.Value;
 param = command.Parameters.Add("@BugID",SqlDbType.Int);
 param.Direction = ParameterDirection.Output;

 command.ExecuteNonQuery(); // execute the sproc

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // retrieve the identity column
 int BugID =
 Convert.ToInt32(command.Parameters["@BugID"].Value);

 // formulate the string to update the bug history
 string strAddBugHistory = "Insert into BugHistory " +
 "(bugID, status, severity, response, owner) values (" + BugID + ",1," +
 lbSeverity.SelectedItem.Value + ", 'Bug Created', 1)";

 // set up the command object to update the bug hsitory
 command.CommandType = CommandType.Text;
 command.CommandText = strAddBugHistory;

 // execute the insert statement
 command.ExecuteNonQuery();

 // commit the transaction
 transaction.Commit();
 }
 catch (Exception e)
 {
 Trace.Write(e.Message);
 transaction.Rollback();
 }
 }

 private void UpdateDBTransaction()
 {

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // create a second command object for the bugs history table
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection = connection;

 command.CommandText= "spAddBugWithTransactions";
 command.CommandType = CommandType.StoredProcedure;

 // declare the parameter object
 System.Data.SqlClient.SqlParameter param;

 // add each parameter and set its direciton and value
 param = command.Parameters.Add("@ProductID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.Value = lbProduct.SelectedItem.Value; // from the list box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param = command.Parameters.Add("@Version",SqlDbType.VarChar,50);
 param.Direction = ParameterDirection.Input;
 param.Value = txtVersion.Text; // from the text box

 param = command.Parameters.Add(
 "@Description",SqlDbType.VarChar,8000);
 param.Direction = ParameterDirection.Input;
 // from the text box
 param.Value = txtDescription.Text;
 param = command.Parameters.Add("@Reporter",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.Value = lbReporter.SelectedItem.Value; // from the list box

 param = command.Parameters.Add("@Severity",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.Value = lbSeverity.SelectedItem.Value; // from the list box

 command.ExecuteNonQuery(); // execute the sproc
 }

 private void btnAdd_Click(object sender, System.EventArgs e)
 {
 int whichTransaction = Convert.ToInt32(rbTransaction.SelectedItem.Value);
 if (whichTransaction == 0)
 UpdateDBTransaction();
 else
 UpdateConnectionTransaction();
 }
 }
}

Example 12-6. VB.NET Updating with transactions

Imports System.Data.SqlClient

Namespace BugHistoryTransactions

 Public Class WebForm1
 Inherits System.Web.UI.Page

 Protected DataGrid1 As System.Web.UI.WebControls.DataGrid
 Protected HistoryGrid As System.Web.UI.WebControls.DataGrid
 Protected BugHistoryPanel As System.Web.UI.WebControls.Panel
 Protected lbProduct As System.Web.UI.WebControls.DropDownList
 Protected txtVersion As System.Web.UI.WebControls.TextBox
 Protected txtDescription As System.Web.UI.WebControls.TextBox
 Protected lbSeverity As System.Web.UI.WebControls.DropDownList
 Protected WithEvents btnAdd As System.Web.UI.WebControls.Button
 Protected lbReporter As System.Web.UI.WebControls.DropDownList
 Protected rbTransaction As _
 System.Web.UI.WebControls.RadioButtonList

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' connection string to connect to the Bugs Database
 Private connectionString As String = _
 "server=localhost; uid=sa; pwd=; database=ProgASPDotNetBugs"

 Public Sub OnItemDataBoundEventHandler(_
 ByVal sender As Object, ByVal e As DataGridItemEventArgs)

 Dim itemType As ListItemType = CType(e.Item.ItemType, _
 ListItemType)
 If itemType = ListItemType.Header And _
 itemType = ListItemType.Footer And _
 itemType = ListItemType.Separator Then
 Return
 End If

 If e.Item.DataItem Is Nothing Then Return
 If CType(e.Item.DataItem, _
 DataRowView).Row.ItemArray(8).ToString() = "High" Then

 Dim severityCell As TableCell = _
 CType(e.Item.Controls(7), TableCell)
 severityCell.ForeColor = Color.FromName("Red")
 End If
 End Sub

 Public Sub OnSelectedIndexChangedHandler(_
 ByVal sender As Object, ByVal e As EventArgs)

 UpdateBugHistory()
 End Sub

 Private Sub UpdateBugHistory()

 Dim index As Integer = DataGrid1.SelectedIndex
 If index <> -1 Then
 ' get the bug id from the data grid
 Dim bugID As Integer = _
 CType(DataGrid1.DataKeys(index), Integer)

 ' Get a dataset based on that BugID
 Dim dataSet As DataSet = _
 CreateBugHistoryDataSet(bugID)

 ' bind to the table returned and make
 ' the panel visible
 HistoryGrid.DataSource = dataSet.Tables(0)
 HistoryGrid.DataBind()
 BugHistoryPanel.Visible = True
 Else
 ' no history to display, hide the panel
 BugHistoryPanel.Visible = False
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Sub

 Private Sub Page_Load(_
 ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles MyBase.Load

 If Not IsPostBack Then
 ' hide the history panel
 UpdateBugHistory()

 ' set the data source for the
 ' grid to the first table
 Dim ds As DataSet = CreateBugDataSet()
 DataGrid1.DataSource = ds.Tables(0)
 DataGrid1.DataBind()

 lbProduct.DataSource = GetDataReader("lkProduct")
 lbProduct.DataBind()

 lbSeverity.DataSource = GetDataReader("lkSeverity")
 lbSeverity.DataBind()

 lbReporter.DataSource = GetDataReader("People")
 lbReporter.DataBind()

 End If
 End Sub

 Private Function GetDataReader(ByVal whichTable As String) _
 As SqlDataReader

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)

 connection.Open()

 ' Create a SqlCommand object and assign the connection
 Dim command As New _
 System.Data.SqlClient.SqlCommand
 command.Connection = connection

 ' set the stored procedure to get the bug records
 command.CommandText = "select * from " & whichTable

 ' return the data reader
 Return command.ExecuteReader(_
 CommandBehavior.CloseConnection)
 End Function

 Private Function CreateBugHistoryDataSet(ByVal bugID As Integer) _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 As DataSet

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)

 connection.Open()

 ' Create a SqlCommand object and assign the connection
 Dim command As New _
 System.Data.SqlClient.SqlCommand
 command.Connection = connection

 command.CommandText = "spBugHistory"
 command.CommandType = CommandType.StoredProcedure

 ' declare the parameter object
 Dim param As System.Data.SqlClient.SqlParameter

 ' Add a new parameter, get back a reference to it
 param = command.Parameters.Add("@BugID", SqlDbType.Int)

 ' set the parameter's direction and value
 param.Direction = ParameterDirection.Input
 param.Value = bugID

 ' create a second data adapter and add the command
 ' and map the table
 ' then fill the dataset from this second adapter
 Dim dataAdapter As New SqlDataAdapter
 dataAdapter.SelectCommand = command
 dataAdapter.TableMappings.Add("Table", "BugHistory")

 Dim dataSet As New DataSet
 dataAdapter.Fill(dataSet)

 Return dataSet
 End Function

 Private Function CreateBugDataSet() As DataSet

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)

 connection.Open()

 ' Create a SqlCommand object and assign the connection
 Dim command As New _
 System.Data.SqlClient.SqlCommand

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 command.Connection = connection
 command.CommandText = "spBugs"
 command.CommandType = CommandType.StoredProcedure

 ' create a data adapter and assign the command object
 ' and add the table mapping for bugs
 Dim dataAdapter As New SqlDataAdapter
 dataAdapter.SelectCommand = command
 dataAdapter.TableMappings.Add("Table", "Bugs")

 ' Create the dataset and use the data adapter to fill it
 Dim dataSet As New DataSet
 dataAdapter.Fill(dataSet)
 Return dataSet
 End Function

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 'NOTE: The following placeholder declaration is required by
 'the Web Form Designer.
 'Do not delete or move it.
 Private designerPlaceholderDeclaration As System.Object

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Private Sub UpdateConnectionTransaction()

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)

 ' Create a SqlCommand object and assign the connection
 Dim command As New _
 System.Data.SqlClient.SqlCommand

 ' declare an instance of SqlTransaction
 Dim transaction As SqlTransaction

 ' connection string to connect to the Bugs Database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 connection.Open()

 ' begin the transaction
 transaction = connection.BeginTransaction()

 ' attach the transaction to the command
 command.Transaction = transaction

 ' attach connection to the command
 command.Connection = connection

 Try

 command.CommandText = "spAddBug"
 command.CommandType = CommandType.StoredProcedure

 ' declare the parameter object
 Dim param As System.Data.SqlClient.SqlParameter

 ' add each parameter and set its direciton and value
 param = command.Parameters.Add("@ProductID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 ' from the list box
 param.Value = lbProduct.SelectedItem.Value
 param = command.Parameters.Add(_
 "@Version", SqlDbType.VarChar, 50)
 param.Direction = ParameterDirection.Input
 ' from the text box
 param.Value = txtVersion.Text
 param = command.Parameters.Add(_
 "@Description", SqlDbType.VarChar, 8000)
 param.Direction = ParameterDirection.Input
 ' from the text box
 param.Value = txtDescription.Text
 param = command.Parameters.Add("@Reporter", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 ' from the list box
 param.Value = lbReporter.SelectedItem.Value
 param = command.Parameters.Add("@BugID", SqlDbType.Int)
 param.Direction = ParameterDirection.Output

 command.ExecuteNonQuery() ' execute the sproc

 ' retrieve the identity column
 Dim BugID As Integer = _
 Convert.ToInt32(command.Parameters("@BugID").Value)

 ' formulate the string to update the bug history
 Dim strAddBugHistory As String = _
 "Insert into BugHistory " & _
 "(bugID, status, severity, response, owner) values (" _
 & BugID & ",1," & _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lbSeverity.SelectedItem.Value & ", 'Bug Created', 5)"

 ' set up the command object to update the bug hsitory
 command.CommandType = CommandType.Text
 command.CommandText = strAddBugHistory

 ' execute the insert statement
 command.ExecuteNonQuery()

 ' commit the transaction
 transaction.Commit()

 Catch e As Exception

 Trace.Write(e.Message)
 transaction.Rollback()
 End Try
 End Sub

 Private Sub UpdateDBTransaction()

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)

 connection.Open()

 ' Create a SqlCommand object and assign the connection
 Dim command As New _
 System.Data.SqlClient.SqlCommand
 command.Connection = connection

 command.CommandText = "spAddBugWithTransactions"
 command.CommandType = CommandType.StoredProcedure

 ' declare the parameter object
 Dim param As System.Data.SqlClient.SqlParameter

 ' add each parameter and set its direciton and value
 param = command.Parameters.Add("@ProductID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.Value = lbProduct.SelectedItem.Value ' from the list box

 param = command.Parameters.Add("@Version", _
 SqlDbType.VarChar, 50)
 param.Direction = ParameterDirection.Input
 param.Value = txtVersion.Text ' from the text box

 param = command.Parameters.Add(_
 "@Description", SqlDbType.VarChar, 8000)
 param.Direction = ParameterDirection.Input

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' from the text box
 param.Value = txtDescription.Text
 param = command.Parameters.Add("@Reporter", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.Value = lbReporter.SelectedItem.Value ' from the list

 param = command.Parameters.Add("@Severity", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.Value = lbSeverity.SelectedItem.Value ' from the list

 command.ExecuteNonQuery() ' execute the sproc
 End Sub

 Private Sub btnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click

 Dim whichTransaction As Integer = _
 Convert.ToInt32(rbTransaction.SelectedItem.Value)
 If whichTransaction = 0 Then
 UpdateDBTransaction()
 Else
 UpdateConnectionTransaction()
 End If
 End Sub

 End Class
End Namespace

The complete source code for the .aspx file is shown in Example 12-7 . Again, this is relatively
unchanged from the examples in Chapter 11 , with the addition of the list boxes, text boxes, and
buttons necessary to gather the new Bug data.

Example 12-7. The .aspx file

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false" Inherits="BugHistoryTransactions.WebForm1" Trace="true"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5"> </HEAD>
 <body>
 <form id="Form1" method="post" runat="server">
 <table>
 <tr>
 <th>Product</th>
 <th>Version</th>
 <th>Description</th>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <th>Reporter</th>
 <th>Severity</th>
 </tr>
 <tr>
 <td>
 <asp:dropdownlist id="lbProduct" runat="server"
 DataValueField="ProductID"
 DataTextField="ProductDescription" />
 </td>
 <td>
 <asp:textbox id="txtVersion" Runat="server" Width="60"/>
 </td>
 <td>
 <asp:textbox id="txtDescription"
 Runat="server" Width="250"/>
 </td>
 <td>
 <asp:dropdownlist id="lbReporter" Runat="server"
 DataValueField="PersonID" DataTextField="FullName"/>
 </td>
 <td>
 <asp:dropdownlist id="lbSeverity" Runat="server"
 DataValueField="SeverityID"
 DataTextField="SeverityDescription"/>
 </td>
 </tr>
 <tr>
 <td>
 <asp:radiobuttonlist id="rbTransaction" Runat="server"
 TextAlign="Right" RepeatLayout="flow"
 RepeatDirection="Vertical" repeatColumns="2"
 CellSpacing="3">
 <asp:ListItem Text="DB Transaction" Value="0" />
 <asp:ListItem Text="Connection Transaction"
 Value="1" Selected="True" />
 </asp:radiobuttonlist>
 </td>
 <td>
 <asp:button id="btnAdd" Runat="server" Text="Add" />
 </td>
 </tr>
 </table>

 <asp:datagrid id="DataGrid1" runat="server" EnableViewState="true"
 AutoGenerateColumns="False" HeaderStyle-Font-Bold="True"
 AlternatingItemStyle-BackColor="LightGrey"
 OnSelectedIndexChanged="OnSelectedIndexChangedHandler"
 OnItemDataBound="OnItemDataBoundEventHandler"
 BorderColor="#000099" BorderWidth="5px"
 HeaderStyle-BackColor="PapayaWhip" CellPadding="5"
 DataKeyField="BugID">
 <Columns>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:ButtonColumn Text="History" CommandName="Select" />
 <asp:BoundColumn DataField="BugID" HeaderText="Bug ID" />
 <asp:BoundColumn DataField="Description"
 HeaderText="Description" />
 <asp:BoundColumn DataField="Reporter"
 HeaderText="Reported By" />
 <asp:BoundColumn DataField="Response"
 HeaderText="Most Recent Action" />
 <asp:BoundColumn DataField="Owner" HeaderText="Owned By" />
 <asp:BoundColumn DataField="StatusDescription"
 HeaderText="Status" />
 <asp:BoundColumn DataField="SeverityDescription"
 HeaderText="Severity" />
 <asp:BoundColumn DataField="DateStamp"
 HeaderText="LastUpdated" />
 </Columns>
 </asp:datagrid>
 <asp:panel id="BugHistoryPanel" Runat="server">
 <asp:DataGrid id="HistoryGrid" AutoGenerateColumns="False"
 HeaderStyle-Font-Bold AlternatingItemStyle-BackColor="LightGrey"
 BorderColor="#000099" BorderWidth="5px"
 HeaderStyle-BackColor="PapayaWhip" CellPadding="5" Runat="server">
 <Columns>
 <asp:BoundColumn DataField="Response"
 HeaderText="Most Recent Action" />
 <asp:BoundColumn DataField="Owner" HeaderText="Owned By" />
 <asp:BoundColumn DataField="StatusDescription"
 HeaderText="Status" />
 <asp:BoundColumn DataField="SeverityDescription"
 HeaderText="Severity" />
 <asp:BoundColumn DataField="DateStamp"
 HeaderText="LastUpdated" />
 </Columns>
 </asp:DataGrid>
 </asp:panel>
 </form>
 </body>
</HTML>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.3 Updating Data Using Datasets

So far in this chapter, you have seen how to update a database and how to add transactions to
ensure data integrity. All of that is fine as far as it goes, but nothing you've done so far to update the
database takes advantage of the DataSet object, which you will remember is the keystone of
ADO.NET.

If you are using the DataSet object to retrieve data and pass it from tier to tier within your
application, you would also like to manipulate that data within the dataset and push the changes back
to the database. To make this more sophisticated model of data updating work, you will need to take
advantage of the advanced capabilities of the DataSet and the DataAdapter classes, and you'll need
to understand how they in turn use the Command and Connection objects to mediate between the
dataset and the database itself.

12.3.1 The Dataset and the Data Adapter

As explained in Chapter 11, the DataSet object interacts with the database through a DataAdapter
object. Until now, you've created the data adapter by passing in a command string and a connection
string to the DataAdapter object's constructor and then calling the Fill method. It turns out that Fill
interacts with the database by creating a command object on your behalf and assigning that
command object to the SelectCommand property of the DataAdapter object.

Each SqlDataAdapter object has four command properties (SelectCommand, UpdateCommand,
InsertCommand, and DeleteCommand), each of which takes an object of type SqlCommand. Thus
far, you've been using the Fill method to create a SelectCommand object (that is, a command object
assigned to the SelectCommand property) by employing the command string parameter you've
passed in to the DataAdapter object's constructor. For example, in Example 11-2 you wrote:

// get records from the Bugs table
string commandString =
 "Select BugID, Description from Bugs";

// create the dataset command object
// and the DataSet object
SqlDataAdapter dataAdapter =
 new SqlDataAdapter(
 commandString, connectionString);

DataSet dataSet = new DataSet();

// fill the dataset object
dataAdapter.Fill(dataSet,"Bugs");

You could just as easily have explicitly set the SelectCommand property of the DataAdapter by
writing:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// define the SQL Select command
string commandString = "Select BugID, Description from Bugs";

// make a data adapter (default constructor)
SqlDataAdapter dataAdapter = new SqlDataAdapter();

// make a connection object (pass in connection string)
SqlConnection conn = new SqlConnection(connectionString);

// make a command object, passing in command string and connection object
SqlCommand cmd = new SqlCommand(commandString, conn);

// assign the new command object to the SelectCommand property
dataAdapter.SelectCommand = cmd;

In VB .NET, it would be:

' define the SQL Select command
Dim commandString As String = "Select BugID, Description from Bugs"

' make a data adapter (default constructor)
Dim dataAdapter As New SqlDataAdapter()

' make a connection object (pass in connection string)
Dim conn As New SqlConnection(connectionString)

' make a command object, passing in command string and connection object
Dim cmd As New SqlCommand(commandString, conn)

' assign the new command object to the SelectCommand property
dataAdapter.SelectCommand = cmd

To update the database with the changes you'll make to your dataset, you'll need to explicitly set the
other three properties: UpdateCommand, DeleteCommand, and InsertCommand. You will fill these
three properties with either SQL statements, or, more commonly, the names of stored procedures.
When the data adapter is told to update the database, it will examine the changes to the dataset and
call the appropriate command objects to update, delete, or insert records. Often, a single request to
a dataset to update the database will cause each of these commands to be called repeatedly, once
for each modified row.

12.3.2 Steps for Updating the Database

The steps to updating a database using a dataset are:

Create a dataset by retrieving data from the database and display it.1.

Persist the dataset.2.

Update the records in the dataset. This might include adding new records, deleting records, and
updating existing records. You may choose to rebind the changed dataset to display widgets on

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

your page to show the user what has changed, and optionally to give the user an opportunity to
make further changes before the database is updated.

3.

Create stored procedures in the database to manage the update, insert, and delete commands.4.

Create command objects to invoke the stored procedures. Add parameters to the command
objects as needed.

5.

Add transaction support to ensure all updates are done or none is done.6.

Call the Update method on the data adapter. The data adapter will examine the changes in the
dataset and call the appropriate command objects, which will update the database on your
behalf.

7.

The example program described in the next section will walk you through each of these steps and
examine their implementation and implications in some detail.

12.3.2.1 Creating and displaying a dataset

As you have done in many previous examples, you start by retrieving data from the database using a
stored procedure, and displaying that data in a grid, as shown in Figure 12-5.

Figure 12-5. Displaying bug and bug history information

This data grid is created once again by calling the CreateBugDataSet method:

private DataSet CreateBugDataSet()
{

 // connection string to connect to the Bugs Database
 string connectionString =
 "server=YourServer; uid=sa; pwd=YourPassword; database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Create a SqlCommand object and assign the connection
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.Connection=connection;
 command.CommandText="spBugsWithIDs";
 command.CommandType=CommandType.StoredProcedure;

 // create a data adapter and assign the command object
 // and add the table mapping for bugs
 SqlDataAdapter dataAdapter = new SqlDataAdapter();
 dataAdapter.SelectCommand=command;
 dataAdapter.TableMappings.Add("Table","BugInfo");

 // Create the dataset and use the data adapter to fill it
 DataSet dataSet = new DataSet();
 dataAdapter.Fill(dataSet);
 return dataSet;
}

The VB.NET equivalent is:

Private Function CreateBugDataSet() As DataSet
 ' connection string to connect to the Bugs Database
 Dim connectionString As String = _
 "server=YourDB; uid=sa; pwd=YourPassword; " & _
 "database=ProgASPDotNetBugs"

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim myConnection As _
 New System.Data.SqlClient.SqlConnection(connectionString)
 myConnection.Open()

 ' Create a SqlCommand object and assign the connection
 Dim myCommand As New System.Data.SqlClient.SqlCommand()
 myCommand.Connection = myConnection
 myCommand.CommandText = "spBugsWithIDs"
 myCommand.CommandType = CommandType.StoredProcedure

 ' create a data adapter and assign the command object
 ' and add the table mapping for bugs
 Dim dataAdapter As New SqlDataAdapter()
 dataAdapter.SelectCommand = myCommand
 dataAdapter.TableMappings.Add("Table", "BugInfo")

 ' Create the dataset and use the data adapter to fill it
 Dim myDataSet As New DataSet()
 dataAdapter.Fill(myDataSet)
 Return myDataSet
End Function

The only change to the previous example is that this time CreateBugDataSet calls a new stored

http://lib.ommolketab.ir
http://lib.ommolketab.ir

procedure, spBugsWithIDs.

The source code for the spBugsWithIDs stored procedure itself is shown in Example 12-8. There are
two important things to note in this stored procedure. The first is that the data displayed in the grid is
once again drawn from a number of different tables. The Description field is from the Bugs table. The
Response field (used to populate the Most Recent Action column on the grid) is taken from the last
BugHistory record for each Bug. The Owner is drawn from the People table based on the Owner value
in the latest BugHistory record (described in the sidebar "Finding the Last BugHistory").

Example 12-8. The spBugsWithIDs stored procedure

CREATE PROCEDURE spBugsWithIDs AS
select b.BugID, h.BugHistoryID, b.Description, b.Version, h.Response,
o.FullName as owner, h.owner as ownerID,
b.Product as ProductID, p.ProductDescription,
b.Reporter as ReporterID, r.FullName as reporter,
h.status as statusID, s.StatusDescription,
h.severity as severityID, sev.SeverityDescription, h.DateStamp
from
(select bugID, max(bugHistoryID) as maxHistoryID from BugHistory group by bugID) t
join bugs b on b.bugid = t.bugid
join BugHistory h on h.bugHistoryID = t.maxHistoryID
join lkProduct p on b.Product = p.ProductID
join People r on b.Reporter = r.PersonID
join People o on h.Owner = o.PersonID
join lkStatus s on s.statusid = h.status
join lkSeverity sev on sev.SeverityID = h.severity
GO

Finding the Last BugHistory

Your goal is to get information about the latest entry in the BugHistory table for each bug.
You know that each entry in the BugHistory table has its own BugHistoryID, but how do you
match the highest BugHistoryID with each bug? You do that with the group by clause in SQL.
You can find the maximum entry for each BugID per BugID with this query:

select bugID, max(bugHistoryID) as maxHistoryID from BugHistory group by bugID

You save the results of this query into a temporary table (t), and then join the other tables
on t to get the data you need from the appropriate records. Thus, in the stored procedure
shown above, you get the Description, Version, etc. for the appropriate records that match
the BugID and bugHistoryID from the temporary table (t).

The second important thing to note about this stored procedure is that it not only retrieves the values
to be displayed, it also carefully retrieves the IDs of the fields as they appear in Bugs and BugHistory.
That is, not only do you retrieve the severity description (High, Medium, Low) to display in the grid,
but you also retrieve the corresponding severity ID values (5, 4, 3) as they are stored in the
underlying records. This is important because in this example you will update these records, and
you'll need the IDs to appear in the table you have created in the dataset. If the user indicates he
wants to change the severity from High to Medium, your update will actually change the value from 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to 4.

Once a command object that can invoke the new stored procedure is created, as shown in the
previous C# code fragment, a new data adapter is created and the SelectCommand property is
manually set to that command object, as shown in the following code fragment:

SqlDataAdapter dataAdapter = new SqlDataAdapter();
dataAdapter.SelectCommand=command;

You then add a new TableMapping object to the TableMappings collection to map the results of the
stored procedure to a table within the BugInfo dataset named BugInfo:

dataAdapter.TableMappings.Add("Table","BugInfo");

It is critical to understand that to the dataset BugInfo appears as a single table, consisting of the
fields and values returned by the stored procedure. The dataset, in this example, is oblivious to the
underlying data structure of multiple interrelated tables.

Finally, a new dataset is created and filled using the data adapter you've crafted:

DataSet dataSet = new DataSet();
dataAdapter.Fill(dataSet);

12.3.2.2 Persisting the dataset

Later in this example, you will modify this dataset in response to the user pressing a button. When
the user presses the button, however, there is a round trip to the server, and web pages are
stateless. Thus, just as you are ready to update the dataset, it is gone (poof!), disappearing in a puff
of stateless smoke.

You have a number of options for dealing with this problem. First, you can recreate the dataset by
reissuing the query. This is not a great solution, not least because, after you update the dataset,
you'll want to write it back to the database-and you must hold on to the dataset at that point in
order to know what changes to write. In short, you can't recreate the dataset; you need to persist it.

For this example, you'll persist the dataset to session state. Session state is covered in detail in
Chapter 6, but writing and retrieving is dead simple. As soon as you get back the DataSet object
from the CreateBugDataSet method, you save it in a session variable named BugsDataSet. To do

this, you include the following code in the Page_Load method:

DataSet ds = CreateBugDataSet();
Session["BugsDataSet"] = ds;

The VB.NET equivalent is:

Dim ds As DataSet = CreateBugDataSet
Session("BugsDataSet") = ds

In the handler for the Update DataSet button, you'll retrieve the dataset from session state.
Remember that session state stores objects, and so you will have to cast the dataset back to its
correct type:

DataSet ds = (DataSet) Session["BugsDataSet"];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DataTable bugTable = ds.Tables["BugInfo"];

In VB.NET, use:

ds = CType(Session("BugsDataSet"), DataSet)
Dim bugTable As DataTable = ds.Tables("BugInfo")

Hey! Presto! You have the same dataset after your round trip. Even better, because Session objects
are stored on the server, the dataset did not make the round trip.

12.3.2.3 Updating the records in the dataset

There are many ways to allow the user to indicate how he wants to modify the data. This example
ignores all user interface issues (which are covered in Chapter 10 and Chapter 13) and focuses on
interacting with the data. To keep things simple, you'll have only two buttons: Update DataSet and
Update Database.

The event handler for the first button, Update DataSet, implements hard-coded changes to the data
in the dataset and then draws a second grid showing the changes. This will have no effect on the
underlying database. If you close the web page after updating and displaying these changes, the
database tables will be unaffected. The second button, Update Database, writes the changes to the
dataset back to the database.

The user interface is bare bones. As shown in Figure 12-5, the web page opens by displaying data
from the Bugs and BugHistory tables with two rather ugly buttons above the data grid.

In a real application, the user may indicate changes to the dataset in any number of ways. You might
provide buttons and links to allow the user to interact with the data directly in the data grid. Or you
might provide a form for adding and changing the data. For this application, as indicated earlier,
you'll just hardwire a number of changes that will mimic the changes that might be requested by a
user. You provide only a single button, Update DataSet, as described in the following section.

12.3.2.4 Updating the dataset

When a user clicks on the Update DataSet button, the btnUpdateDataSet_Click event handler is
called. In the previous step, you stashed the dataset away in session state; you retrieve it now, using
the code:

DataSet ds = (DataSet) Session["BugsDataSet"];

In VB.NET, it is:

Dim ds As DataSet = CType(Session("BugsDataSet"), DataSet)

With the dataset in hand, you can extract the table you created earlier named BugInfo:

DataTable bugTable = ds.Tables["BugInfo"];

In VB.NET, it is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim bugTable As DataTable = ds.Tables("BugInfo")

You are now ready to edit, insert, and delete values. The DataRow class has an Item property that
returns the data stored in a specified column. Because this is implemented as the indexer in C#, you
can access the value for a particular field in a given row by providing the row offset and the field
name. For example, the following line of code will change the Response value in the first row
(remember that in C# and VB.NET arrays are zero-indexed) to the value This is a test:

bugTable.Rows[0]["Response"] = "This is a test";

In VB.NET, Item is the default property of the DataRow class. Hence, the VB.NET code is similar to
the C# code:

bugTable.Rows(0)("Response") = "This is a test"

You can delete a row by calling the Delete method on the row itself:

bugTable.Rows[1].Delete();

You add a new row using exactly the same syntax you saw for creating new data rows by hand in
Chapter 11:

DataRow newRow = bugTable.NewRow();
newRow["Description"] = "New bug test";
newRow["Response"] = "Created new bug";
newRow["Owner"] = "Jesse Liberty";
newRow["OwnerID"] = 1;
newRow["ProductID"] = 2;
newRow["ProductDescription"] = "PIM - My Personal Infomation Manager";
newRow["Version"] = "0.01";
newRow["ReporterID"] = 3;
newRow["Reporter"] = "John Galt";
newRow["StatusID"] = 1;
newRow["StatusDescription"] = "open";
newRow["SeverityID"] = 2;
newRow["SeverityDescription"] = "High";
newRow["DateStamp"] = "07-27-2005";
bugTable.Rows.Add(newRow);

In VB.NET, the code looks like:

Dim newRow As DataRow = bugTable.NewRow()
newRow("Description") = "New bug test"
newRow("Response") = "Created new bug"
newRow("Owner") = "Jesse Liberty"
newRow("OwnerID") = 1
newRow("ProductID") = 2
newRow("ProductDescription") = "PIM - My Personal Infomation Manager"
newRow("Version") = "0.01"
newRow("ReporterID") = 3
newRow("Reporter") = "John Galt"
newRow("StatusID") = 1
newRow("StatusDescription") = "open"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

newRow("SeverityID") = 2
newRow("SeverityDescription") = "High"
newRow("DateStamp") = "07-27-2005"
bugTable.Rows.Add(newRow)

Keep in mind that you're filling the BugInfo table in the dataset that was created by calling the
spBugsWithIDs stored procedure. You must add a field for every field in the resulting set returned by

that sproc.

It is up to you, as the programmer, to ensure the data integrity of the hand-
created rows. For example, nothing stops you from adding a SeverityID of 4
(normally Low) with a SeverityDescription of High, except that if you do you will
display a value to the user that will not correspond to the value with which
you'll update the database!

Once you've made all the changes to the dataset, you will bind a second grid (DataGrid2) to the
BugInfo table and make that grid visible, so that the user can see the new values, as shown in Figure
12-6.

Figure 12-6. DataGrids showing change to DataSet

Notice in Figure 12-6 that the first record has been updated with a new Most Recent Action value.
This new value reflects the change to the Response field:

bugTable.Rows[0]["Response"] = "This is a test";

In VB.NET, it is:

bugTable.Rows(0)("Response") = "This is a test"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Most Recent Action value is highlighted in the image of Figure 12-6 to

make it easier for you to locate the change.

BugID 2, which was the second record (bugTable.Rows[1]), appears to have been deleted. In fact, it

has only been marked for deletion, but the data grid is smart enough not to display records marked
for deletion.

A new record has been added, as shown on the final line in the grid. Notice that there is no BugID.
(Looking back at the example, you will note that you did not provide a BugID.) The BugID field is an
identity column, which will be provided by the database when you write this data back to the
database.

The absence of a BugID illustrates quite clearly that while you've updated the dataset, you have not
yet written these changes back to the database. You can prove this to yourself by examining the
tables in the database directly, as shown in Figure 12-7.

Figure 12-7. Bug and history table after dataset update, but before
database update

12.3.2.5 Updating in the database

When the user clicks on the second button, Update Database, the btnUpdateDataBase_Click event
handler is invoked. Your goal in this method is to update the database with the changes in the
dataset.

The dataset keeps track of the changes to its data. You can update the database with all the changes
just by calling the Update method on the DataAdapter, passing in a reference to the DataSet object
and the name of the table you want to update.

That said, there is a bit of preparation work. For the update to work, you first need to provide

http://lib.ommolketab.ir
http://lib.ommolketab.ir

command objects to the InsertCommand, UpdateCommand, and DeleteCommand properties of the
data adapter. We'll examine each of these preparatory steps in the following sections.

12.3.2.5.1 The delete command

As indicated earlier, you must begin by creating the appropriate stored procedures. Example 12-9
shows the spDeleteBugFromDataSet stored procedure for deleting bug records. If the user deletes a

record from the grid, he intends to delete all record of that bug. Because of referential integrity, you
must first remove all records from that bug within BugHistory, and then you may remove the record
from the Bugs table.

Example 12-9. The stored procedure to delete bugs

CREATE PROCEDURE spDeleteBugFromDataSet
@BugID int
AS
DELETE FROM BugHistory WHERE BugID = @BugID
DELETE FROM Bugs WHERE BugID = @BugID
GO

Notice that you will pass in a single parameter that will be used to identify the record to delete. With
this stored procedure, you are ready to create the Command object you will assign to the
DataAdapters DeleteCommand property.

You begin by creating a new SqlCommand object:

SqlCommand deleteCmd =
 new SqlCommand("spDeleteBugFromDataSet",connection);
deleteCmd.CommandType=CommandType.StoredProcedure;

In VB.NET, it is:

Dim deleteCmd As New SqlCommand("spDeleteBugFromDataSet", myConnection)
deleteCmd.CommandType = CommandType.StoredProcedure

This SqlCommand object is just like every command object you've created to date. You will name it
deleteCmd to make it easy to identify, but it is just a garden-variety SqlCommand object, just like all
the others you've used so far to invoke stored procedures.

You'll add a single parameters BugID. This is an input parameter, but this time rather than assigning
a value to it, you must set two new properties of the Parameter object, SourceColumn and
SourceVersion. The SourceColumn property identifies the column within the table in the dataset that
this parameter will get its value from. That is, when you invoke the stored procedure, the parameter
(@BugID) will draw its value from this column in the record to be deleted. The column you want, of

course, is BugID:

param.SourceColumn="bugID";

The second property of the parameter is the SourceVersion, which must be set to one of the
DataRowVersion enumerated values (Current, Default, Original, or Proposed).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Default value is used only when you wish to use a default value, which does not apply to this

example.

The Original value is the value the field had when the dataset was created. The original value is

compared to the value in the database when the update is performed to see if the database has been
changed by another process. This is covered later in Section 12-4, Multiuser Updates.

The Current value holds the changes to the column you've made since the dataset was created. That
is, as you update columns, the Current value holds the changes you've made, while the Original

value has the value as you originally obtained it from the database.

In the case of the BugID, you'll tell the Param to use the Original value (though of course since
you've not changed the value, you can use the Current value as well):

param.SourceVersion=DataRowVersion.Original;

You are now ready to assign the command object to the DeleteCommand property of the data
adapter:

dataAdapter.DeleteCommand=deleteCmd;

12.3.2.5.2 The update command

The stored procedure for updating the database is somewhat more complicated than the procedure
for deleting records. This time, you want to pass in parameters for each of the fields that may be
changed. You will also pass in the BugID and BugHistory ID to uniquely identify the bug you wish to
alter. The complete stored procedure is shown in Example 12-10.

Example 12-10. The stored procedure for updating a bug

CREATE PROCEDURE spUpdateBugFromDataSet
@ProductID int,
@Description varChar(8000),
@Response varChar(8000),
@Reporter int,
@Owner int,
@Status int,
@Severity int,
@bugID int,
@BugHistoryID int
as
Update Bugs
set
 Product = @productID,
 [Description] = @Description,
 Reporter = @Reporter
 where bugID = @BugID

Update BugHistory
Set
 bugID = @BugID,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 status = @Status,
 severity = @Severity,
 response = @Response,
 owner = @Owner
where BugHistoryID = @bugHistoryID and bugID = @bugID
GO

Once again you create a command object, this time to hold the Update command stored procedure:

SqlCommand updateCmd =
 new SqlCommand("spUpdateBugFromDataSet",connection);
updateCmd.CommandType=CommandType.StoredProcedure;

In VB.NET, it is:

Dim updateCmd As New SqlCommand("spUpdateBugFromDataSet", myConnection)
updateCmd.CommandType = CommandType.StoredProcedure

You'll add a SqlParameter object for each parameter to the stored procedure:

param = updateCmd.Parameters.Add("@ProductID",SqlDbType.Int);
param.Direction = ParameterDirection.Input;
param.SourceColumn="ProductID";
param.SourceVersion=DataRowVersion.Current;

The ProductID parameter is like the BugID parameter, except that now you use the enumerated
value DataRowVersion.Current for the SourceVersion property. You will use Current for any value

that may have been changed in the dataset; this instructs the data adapter to update the dataset
with the value current in the dataset, rather than with the value that may reside back in the
database.

When you create the parameters for the Reporter, Owner, Status, and Severity fields, you must be
careful to use the ReporterID, OwnerID, StatusID, and SeverityID SourceColumns, respectively.
Remember that while you are displaying the full names of the reporter and owner, and the text value
of the status and severity, the records you are updating in the Bugs and BugHistory tables use the
ID.

12.3.2.5.3 The insert command

The final command you'll need to implement is the insert command. You start, once again, by
creating the necessary stored procedure, as shown in Example 12-11.

Example 12-11. The stored procedure spInsertBugFromDataSet

CREATE PROCEDURE spInsertBugFromDataSet
@ProductID int,
@Version varChar(50),
@Description varChar(8000),
@Response varChar(8000),
@Reporter int,
@Owner int,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

@Status int,
@Severity int
as
declare @bugID int
Insert into Bugs values (@ProductID, @Version, @Description, @Reporter)
select @bugID = @@identity
Insert into BugHistory
(bugID, status, severity, response, owner)
values
(@bugID,
 @status, -- status
 @Severity,
 @response,
 @owner
)
GO

You must remember to insert into the Bugs table before inserting into the BugHistory table because
referential integrity constraints require that the BugID must exist in Bugs before it can be inserted
into BugHistory.

Note that you do not pass in either the BugID nor the BugHistoryID as parameters; these are created
by the database itself. The BugHistory table requires the BugID generated by adding a record to
Bugs; you obtain this value from @@identity.

It is this stored procedure that will be called to insert the record you created by hand in the
btnUpdateDataSet_Click event procedure. Once again, you must create a command object, this time
for the InsertCommand property of the DataAdapter object:

param = insertCmd.Parameters.Add("@ProductID",SqlDbType.Int);

Once again, you create all the parameters and set their values. You then assign the command object
to the DataAdapter object's InsertCommand property:

dataAdapter.InsertCommand=insertCmd;

12.3.2.6 Adding transaction support

It is possible for one or another of the updates to fail, and if they do not all fail, it can be difficult to
return the database to a valid state. You will, therefore, add transaction support. You start, as last
time, by obtaining a reference to a SqlTransaction object by calling BeginTransaction on the
connection object:

SqlTransaction transaction;
connection.Open();
transaction = connection.BeginTransaction();

In VB.NET, it is:

Dim transaction As SqlTransaction
myConnection.Open()
transaction = myConnection.BeginTransaction()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With all three Command properties set, you can add the transaction to each command's Transaction
property:

dataAdapter.UpdateCommand.Transaction = transaction;
dataAdapter.DeleteCommand.Transaction = transaction;
dataAdapter.InsertCommand.Transaction = transaction;

12.3.2.7 Calling the Update method

You are now ready to call the Update method of the SqlDataAdapter object, which you will do from
within a try block. The Update method will return the number of rows that are updated, which you

will use to fill in the text of a label at the bottom of the data grid. The code is as follows:

try
{
 int rowsUpdated = dataAdapter.Update(ds,"BugInfo");
 transaction.Commit();
 CountUpdatedRows.Visible=true;
 CountUpdatedRows.Text =
 rowsUpdated.ToString() + " rows Updated.";
}
catch
{
 transaction.Rollback();
}

In VB.NET, it is as follows:

Try
 Dim rowsUpdated As Int32
 rowsUpdated = CType(dataAdapter.Update(ds, "BugInfo"), Int32)
 transaction.Commit()
 ' transaction.Rollback()
 CountUpdatedRows.Visible = True
 CountUpdatedRows.Text = rowsUpdated.ToString() + " rows Updated."

Catch
 transaction.Rollback()

End Try

If no exception is thrown, you commit the transactions; otherwise, you roll them back.

You can then rebind to the data grid, which will remain unchanged. The label is now visible, however,
showing the number of rows that were updated, as shown in Figure 12-8. (The label is highlighted in
the figure to make it easy to find.)

Figure 12-8. After updating the database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you examine the Bugs and BugHistory tables, you should now see that the data has been updated,
as shown in Figure 12-9.

Figure 12-9. Bug and BugHistory table after database update

Most of the methods in this example are unchanged from earlier listings. The important changes are
in declaring the user interface elements and three methods: Page_Load, btnUpdateDataSet_Click,
and btnUpdateDataBase_Click. These changes are shown in Example 12-12 (C#) and Example 12-13
(VB.NET).

Example 12-12. Updating the database from a dataset (C#)

protected System.Web.UI.WebControls.DataGrid DataGrid1;
protected System.Web.UI.WebControls.DataGrid DataGrid2;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

protected System.Web.UI.WebControls.DataGrid HistoryGrid;
protected System.Web.UI.WebControls.Panel BugHistoryPanel;
protected System.Web.UI.WebControls.Panel DataGrid2Panel;
protected System.Web.UI.WebControls.Button btnUpdateDataSet;
protected System.Web.UI.WebControls.Button btnUpdateDataBase;
protected System.Web.UI.WebControls.Label CountUpdatedRows;

private void Page_Load(
 object sender, System.EventArgs e)
{
 if (!IsPostBack)
 {
 // hide the history panel
 UpdateBugHistory();
 DataGrid2Panel.Visible=false;

 // set the data source for the
 // grid to the first table
 DataSet ds = CreateBugDataSet();
 Session["BugsDataSet"] = ds;
 DataGrid1.DataSource=ds.Tables[0];
 DataGrid1.DataBind();
 }
}
// respond to the request to update
 // the dataset. This would normally be
 // replaced by a complete user interface to allow
 // the user to specify what changes to make
 private void btnUpdateDataSet_Click(object sender, System.EventArgs e)
 {
 // retrieve the dataset from session state
 DataSet ds = (DataSet) Session["BugsDataSet"];

 // extract the table of Bug and BugHistory information
 DataTable bugTable = ds.Tables["BugInfo"];

 // change one field in row 0
 bugTable.Rows[0]["Response"] = "This is a test";

 // delete row 1
 bugTable.Rows[1].Delete();

 // append a new row
 DataRow newRow = bugTable.NewRow();
 newRow["Description"] = "New bug test";
 newRow["Response"] = "Created new bug";
 newRow["Owner"] = "Jesse Liberty";
 newRow["OwnerID"] = 1;
 newRow["ProductID"] = 2;
 newRow["ProductDescription"] =
 "PIM - My Personal Infomation Manager";
 newRow["Version"] = "0.01";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 newRow["ReporterID"] = 3;
 newRow["Reporter"] = "John Galt";
 newRow["StatusID"] = 1;
 newRow["StatusDescription"] = "open";
 newRow["SeverityID"] = 2;
 newRow["SeverityDescription"] = "High";
 newRow["DateStamp"] = "07-27-2005";
 bugTable.Rows.Add(newRow);

 // update two fields in row 2 - note we update the id
 // for writing back to the db. We are responsible
 // for ensuring that the id matches the description
 bugTable.Rows[2]["SeverityID"] = 5;
 bugTable.Rows[2]["SeverityDescription"] = "Trivial";

 // bind the DataSet to the second data grid
 // and make it visible
 DataGrid2.DataSource = ds.Tables["BugInfo"];
 DataGrid2.DataBind();
 DataGrid2Panel.Visible=true;
 Session["BugsDataSet"] = ds;
}

private void btnUpdateDataBase_Click(object sender, System.EventArgs e)
{
 DataSet ds = (DataSet) Session["BugsDataSet"];
 SqlDataAdapter dataAdapter = new SqlDataAdapter();

 string connectionString =
 "server=YourServer; uid=sa;
 pwd=YourPassword; database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);

 SqlTransaction transaction;
 connection.Open();
 transaction = connection.BeginTransaction();

 // *** create the update command object
 SqlCommand updateCmd =
 new SqlCommand("spUpdateBugFromDataSet",connection);
 updateCmd.CommandType=CommandType.StoredProcedure;

 // declare the parameter object
 System.Data.SqlClient.SqlParameter param;

 // Add new parameters, get back a reference
 // set the parameters' direction and value
 param =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 updateCmd.Parameters.Add("@ProductID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="ProductID";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@Description",SqlDbType.Text,8000);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Description";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@Response",SqlDbType.Text,8000);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Response";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@Reporter",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="ReporterID";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@Owner",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="OwnerID";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@Status",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="StatusID";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@Severity",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="SeverityID";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@bugID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="bugID";
 param.SourceVersion=DataRowVersion.Original; // note Original

 param =
 updateCmd.Parameters.Add("@BugHistoryID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="BugHistoryID";
 param.SourceVersion=DataRowVersion.Original; // note Original

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dataAdapter.UpdateCommand=updateCmd;

 // *** the delete command
 SqlCommand deleteCmd =
 new SqlCommand("spDeleteBugFromDataSet",connection);
 deleteCmd.CommandType=CommandType.StoredProcedure;

 param = deleteCmd.Parameters.Add("@bugID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="bugID";
 param.SourceVersion=DataRowVersion.Original; // note Original

 param = deleteCmd.Parameters.Add("@BugHistoryID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="BugHistoryID";
 param.SourceVersion=DataRowVersion.Original; // note Original

 dataAdapter.DeleteCommand=deleteCmd;

 // *** insert command
 SqlCommand insertCmd =
 new SqlCommand("spInsertBugFromDataSet",connection);
 insertCmd.CommandType=CommandType.StoredProcedure;

 // Add new parameters, get back a reference
 // set the parameters' direction and value
 param = insertCmd.Parameters.Add("@ProductID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="ProductID";
 param.SourceVersion=DataRowVersion.Current;

 param =
 insertCmd.Parameters.Add("@Version",SqlDbType.Text,50);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Version";
 param.SourceVersion=DataRowVersion.Current;

 param =
 insertCmd.Parameters.Add("@Description",SqlDbType.Text,8000);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Description";
 param.SourceVersion=DataRowVersion.Current;

 param =
 insertCmd.Parameters.Add("@Response",SqlDbType.Text,8000);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Response";
 param.SourceVersion=DataRowVersion.Current;

 param = insertCmd.Parameters.Add("@Reporter",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param.SourceColumn="ReporterID";
 param.SourceVersion=DataRowVersion.Current;

 param = insertCmd.Parameters.Add("@Owner",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="OwnerID";
 param.SourceVersion=DataRowVersion.Current;

 param = insertCmd.Parameters.Add("@Status",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="StatusID";
 param.SourceVersion=DataRowVersion.Current;

 param = insertCmd.Parameters.Add("@Severity",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="SeverityID";
 param.SourceVersion=DataRowVersion.Current;

 dataAdapter.InsertCommand=insertCmd;

 // add transaction support for each command
 dataAdapter.UpdateCommand.Transaction = transaction;
 dataAdapter.DeleteCommand.Transaction = transaction;
 dataAdapter.InsertCommand.Transaction = transaction;

 // try to update, if all succeed commit
 // otherwise roll back
 try
 {
 int rowsUpdated = dataAdapter.Update(ds,"BugInfo");
 transaction.Commit();
 CountUpdatedRows.Visible=true;
 CountUpdatedRows.Text = rowsUpdated.ToString() + " rows Updated.";
 }
 catch
 {
 transaction.Rollback();
 }

 // rebind the grid to show the results
 // grid should be unchanged
 DataGrid2.DataSource = ds.Tables["BugInfo"];
 DataGrid2.DataBind();
}

Example 12-13. Updating the database from a dataset (VB.NET)

Private Sub Page_Load(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles MyBase.Load
 If Not IsPostBack Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' hide the history panel
 UpdateBugHistory()
 DataGrid2Panel.Visible = False

 ' set the data source for the
 ' grid to the first table
 Dim ds As DataSet = CreateBugDataSet
 Session("BugsDataSet") = ds
 DataGrid1.DataSource = ds.Tables(0)
 DataGrid1.DataBind()
 End If
Private Sub btnUpdateDataSet_Click(_
 ByVal sender As Object, ByVal e As System.EventArgs)

 ' retrieve the dataset from session state
 Dim ds As DataSet
 ds = CType(Session("BugsDataSet"), DataSet)

 ' extract the table of Bug and BugHistory information
 Dim bugTable As DataTable = ds.Tables("BugInfo")

 ' change one field in row 0
 bugTable.Rows(0)("Response") = "This is a test"

 ' delete row 1
 bugTable.Rows(1).Delete()

 ' append a new row
 Dim newRow As DataRow = bugTable.NewRow()
 newRow("Description") = "New bug test"
 newRow("Response") = "Created new bug"
 newRow("Owner") = "Jesse Liberty"
 newRow("OwnerID") = 1
 newRow("ProductID") = 2
 newRow("ProductDescription") = _
 "PIM - My Personal Infomation Manager"
 newRow("Version") = "0.01"
 newRow("ReporterID") = 3
 newRow("Reporter") = "John Galt"
 newRow("StatusID") = 1
 newRow("StatusDescription") = "open"
 newRow("SeverityID") = 2
 newRow("SeverityDescription") = "High"
 newRow("DateStamp") = "07-27-2005"
 bugTable.Rows.Add(newRow)

 ' update two fields in row 2 - note we update the id
 ' for writing back to the db. We are responsible
 ' for ensuring that the id matches the description
 bugTable.Rows(2)("SeverityID") = 5
 bugTable.Rows(2)("SeverityDescription") = "Trivial"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' bind the dataset to the second data grid
 ' and make it visible
 DataGrid2.DataSource = ds.Tables("BugInfo")
 DataGrid2.DataBind()
 DataGrid2Panel.Visible = True
 Session("BugsDataSet") = ds
End Sub
Private Sub btnUpdateDataBase_Click(_
 ByVal sender As Object, ByVal e As System.EventArgs)

 Dim ds As DataSet = CType(Session("BugsDataSet"), DataSet)
 Dim dataAdapter As New SqlDataAdapter()

 Dim connectionString As String = _
 "server=YourDB; uid=sa; pwd=YourPassword; " & _
 "database=ProgASPDotNetBugs"

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim myConnection As New System.Data.SqlClient.SqlConnection(connectionString)

 Dim transaction As SqlTransaction
 myConnection.Open()
 transaction = myConnection.BeginTransaction()

 ' *** create the update command object
 Dim updateCmd As New SqlCommand("spUpdateBugFromDataSet", myConnection)
 updateCmd.CommandType = CommandType.StoredProcedure

 ' declare the parameter object
 Dim param As System.Data.SqlClient.SqlParameter

 ' Add new parameters, get back a reference
 ' set the parameters' direction and value
 param = updateCmd.Parameters.Add("@ProductID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "ProductID"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@Description", SqlDbType.Text, 8000)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Description"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@Response", SqlDbType.Text, 8000)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Response"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@Reporter", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "ReporterID"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@Owner", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "OwnerID"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@Status", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "StatusID"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@Severity", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "SeverityID"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@bugID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "bugID"
 param.SourceVersion = DataRowVersion.Original ' note Original

 param = updateCmd.Parameters.Add("@BugHistoryID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "BugHistoryID"
 param.SourceVersion = DataRowVersion.Original ' note Original

 dataAdapter.UpdateCommand = updateCmd

 ' *** the delete command
 Dim deleteCmd As New SqlCommand("spDeleteBugFromDataSet", myConnection)
 deleteCmd.CommandType = CommandType.StoredProcedure

 param = deleteCmd.Parameters.Add("@bugID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "bugID"
 param.SourceVersion = DataRowVersion.Original ' note Original

 param = deleteCmd.Parameters.Add("@BugHistoryID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "BugHistoryID"
 param.SourceVersion = DataRowVersion.Original ' note Original

 dataAdapter.DeleteCommand = deleteCmd

 ' *** insert command
 Dim insertCmd As New SqlCommand("spInsertBugFromDataSet", myConnection)
 insertCmd.CommandType = CommandType.StoredProcedure

 ' Add new parameters, get back a reference
 ' set the parameters' direction and value
 param = insertCmd.Parameters.Add("@ProductID", SqlDbType.Int)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param.Direction = ParameterDirection.Input
 param.SourceColumn = "ProductID"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Version", SqlDbType.Text, 50)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Version"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Description", SqlDbType.Text, 8000)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Description"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Response", SqlDbType.Text, 8000)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Response"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Reporter", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "ReporterID"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Owner", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "OwnerID"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Status", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "StatusID"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Severity", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "SeverityID"
 param.SourceVersion = DataRowVersion.Current

 dataAdapter.InsertCommand = insertCmd

 ' add transaction support for each command
 dataAdapter.UpdateCommand.Transaction = transaction
 dataAdapter.DeleteCommand.Transaction = transaction
 dataAdapter.InsertCommand.Transaction = transaction

 ' try to update, if all succeed commit
 ' otherwise roll back
 Try
 Dim rowsUpdated As Int32
 rowsUpdated = CType(dataAdapter.Update(ds, "BugInfo"), Int32)
 transaction.Commit()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' transaction.Rollback()
 CountUpdatedRows.Visible = True
 CountUpdatedRows.Text = rowsUpdated.ToString() + " rows Updated."

 Catch
 transaction.Rollback()

 End Try

 ' rebind the grid to show the results
 ' grid should be unchanged
 DataGrid2.DataSource = ds.Tables("BugInfo")
 DataGrid2.DataBind()
End Sub

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.4 Multiuser Updates

In the previous section, you read data from the database into a dataset, updated the data in the
dataset, and then wrote the changes back to the database. It is possible, of course, that many other
people were simultaneously reading the same data into datasets of their own, editing their data, and
writing their changes back to the database.

You can easily imagine that this could cause tremendous problems of data corruption. Imagine, for
example, that a QA person downloads the current open bugs and begins to review the bugs with an
eye towards updating some of the information. Meanwhile, across the office (or across town) a
developer has read a few open bugs into a form of his own. It happens that they both are reading
bug 17, which looks like this:

BugID 17
Reporter: John Galt
Severity: High
Status: Assigned
Owner: Jesse Liberty

The QA person decides to change the Severity to Medium and to reassign the bug to Dan Hurwitz.
Meanwhile the developer is updating his dataset to change the action taken on the bug. The QA
person writes back his changes, and the database now thinks the Owner is Dan and the Severity is
Medium. The record now appears as follows:

BugID 17
Reporter: John Galt
Severity: Medium
Status: Assigned
Owner: Dan Hurwitz

Then the developer writes back his dataset, in which the Owner was Jesse and the Severity was High.
These earlier values are written over the values updated by QA, and the QA edits are lost. The
technical term for this is bad.

To prevent this kind of problem, you may use any of the following strategies:

Locking the records. When one user is working with a record, other users can read the records
but they cannot update them.

1.

Updating only the columns you change. In the previous example, QA would have changed only
the owner and the status, while the developer would have changed only the description.

2.

Previewing whether the database has changed before you make your updates. If so, notify the
user.

3.

Attempting the change and handling the error, if any.4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

The following sections explore each of these possible strategies.

12.4.1 Locking the Records

Many databases provide pessimistic record-locking. When a user opens a record, it is locked, and no
other user may write to that record. For database efficiency, most databases also implement
pessimistic page-locking; not only is the particular record locked, but a number of surrounding
records are locked as well.

While record and page locking is not uncommon in some database environments, it is generally
undesirable, especially in large web applications. It's possible for a record to be locked, and the user
never returns to the database to unlock it. You would need to write monitoring processes that keep
track of how long records have been locked, and unlock records after a time-out period.

A single query may touch many records in many tables. If you were to lock all those records for each
user, it wouldn't take long before the entire database was locked. In addition, it often isn't necessary.
While each user may look at dozens of records, typically each user will update only a very few.
Locking is a very big, blunt weapon; what is needed in a web application is a small, delicate surgical
tool.

12.4.2 Comparing Original Against New

To understand how to compare the dataset against the database, you must keep in mind three
possible values for each of your fields:

The value currently in the database.1.

The value that was in the database when you first filled the dataset.2.

The value that is now in the data set because you have changed it.3.

The dataset provides support for this approach even though it is not an efficient way to manage data
updates. This method involves creating an event handler for the RowUpdating event. The event
handler examines the original value of each field and queries the database for the value currently in
the database. If these values are different, then someone has changed the database since the
dataset was filled, and you can take corrective action.

There are two significant problems with this approach. First, you must query the database for the
current values before each update. Second, there is no guarantee you have solved the problem. It is
certainly possible that someone will update a record after you've queried the database, but before
you write back your changes! In any case, this approach is so inefficient, we won't bother to
demonstrate it here.

12.4.3 Handling the Errors

Odd as it may seem at first, it turns out that the best approach to managing concurrency is to try the
update and then respond to errors as they arise. For this approach to be effective, you must craft

http://lib.ommolketab.ir
http://lib.ommolketab.ir

your Update statement so that it will fail if someone else has updated the records.

This approach has tremendous efficiency advantages. In the vast majority of cases, your update will
succeed, and you will not have bothered with extra reads of the database. If your update succeeds,
there is no lag between checking the data and the update, so there is no chance of someone
sneaking in another write. Finally, if your update fails, you know why, and you can take corrective
action.

For this approach to work, your stored procedure for updates must fail if the data has changed in the
database since the time you retrieved the dataset. Since the dataset can tell you the original values
that it received from the database, you need pass only those values back into the stored procedure
as parameters, and then add them to the Where clause in your Update statement, as shown in

Example 12-14.

Example 12-14. Modified update stored procedure

CREATE PROCEDURE spUpdateBugFromDataSetWithConcurrency
@ProductID int,
@OldProductID int,
@Description varChar(8000),
@OldDescription varChar(8000),
@Response varChar(8000),
@OldResponse varChar(8000),
@Reporter int,
@OldReporter int,
@Owner int,
@OldOwner int,
@Status int,
@OldStatus int,
@Severity int,
@OldSeverity int,
@bugID int,
@BugHistoryID int
as
 Update Bugs
 set
 Product = @productID,
 [Description] = @Description,
 Reporter = @Reporter
 where bugID = @BugID and Product = @OldProductID
 and [Description] = @OldDescription and Reporter = @OldReporter

if @@RowCount > 0
begin

 Update BugHistory
 Set
 bugID = @BugID,
 status = @Status,
 severity = @Severity,
 response = @Response,
 owner = @Owner

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 where BugHistoryID = @bugHistoryID and bugID = @bugID
 and status = @oldStatus and severity = @OldSeverity
 and response = @oldResponse and owner = @OldOwner

end
GO

When you update the record, the original values will now be checked against the values in the
database. If they have changed, no records will match, and you will not update any records. After
you attempt to update the Bugs Table, you check the @@RowCount to see if any rows were

successfully added. If so, you can add to the BugHistory table:

if @@RowCount > 0
begin

Update BugHistory

The result of this test of @@RowCount is that if no records are added to the Bugs table, then no

records will be added to the BugHistory table. You can test for how many rows were added altogether
in the RowUpdated event handler. If no row was updated, you can assume that it was because the
original row was changed and take appropriate corrective action.

The careful reader will note that it is possible that the update to Bugs will work,
but the update to BugHistory will fail, and the program will return 1 record
updated. For simplicity this example does not handle that permutation. A well-
crafted Update statement could catch this problem, but at the cost of making

the code somewhat more difficult to understand.

You will, of course, need to modify the btnUpdateDataBase_Click method to create the new
parameters you need. Notice that you have pairs of parameters, such as:

@ProductID int,
@OldProductID int,
@Description varChar(8000),
@OldDescription varChar(8000)

Both the ProductID and the OldProductID will be drawn from the same field in the dataset:
ProductID. In the former case, you will use the Current version of that field; in the latter case, you'll
use the Original version:

param =
 updateCmd.Parameters.Add("@ProductID",SqlDbType.Int);
param.Direction = ParameterDirection.Input;
param.SourceColumn="ProductID";
param.SourceVersion=DataRowVersion.Current;

// pass in the original value for the where statement
param =
updateCmd.Parameters.Add("@OldProductID",SqlDbType.Int);
param.Direction = ParameterDirection.Input;
param.SourceColumn="ProductID";
param.SourceVersion=DataRowVersion.Original;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

param =
 updateCmd.Parameters.Add("@Description",SqlDbType.Text,8000);
param.Direction = ParameterDirection.Input;
param.SourceColumn="Description";
param.SourceVersion=DataRowVersion.Current;

param =
 updateCmd.Parameters.Add("@OldDescription",SqlDbType.Text,8000);
param.Direction = ParameterDirection.Input;
param.SourceColumn="Description";
param.SourceVersion=DataRowVersion.Original;

In VB .NET, the code is virtually identical, without the semicolons.

Other than setting the new parameters for the Update command, the only other change to
btnUpdateDataBase_Click comes just before you call Update on the data adapter. You will add an
event handler for the RowUpdated event:

dataAdapter.RowUpdated +=
 new SqlRowUpdatedEventHandler(OnRowUpdate);

In VB .NET, it is:

AddHandler dataAdapter.RowUpdated, AddressOf OnRowUpdate

The RowUpdate event is called each time a row is updated and offers you an opportunity to examine
the row that was updated. In the event handler, you will get the statement type, which will be one of
the StatementTypeEnumeration values: Delete, Insert, Select, or Update. You can turn the
enumerated value into a string by calling the static GetName method on the System.Enum class,

passing in the type and the value:

string s =
 System.Enum.GetName(
 e.StatementType.GetType(),e.StatementType);

In VB .NET, it is:

Dim s As string = _
 System.Enum.GetName(_
 e.StatementType.GetType(),e.StatementType)

Use the type to inform the user of the success or failure of updating (or inserting or deleting) each
row. You can now examine the number of rows affected by the update:

if (e.RecordsAffected < 1)

Each update action affects zero or more rows. It is, of course, possible that a single update will affect
two or more rows. You saw that in the update stored procedure, which updates a row in Bugs and
also a row in BugsHistory. If this procedure succeeds, e.RecordsAffected will be 2 (one record each in
Bugs and BugHistory). You have crafted the update procedure so that if the update fails, no rows are
affected, and you can catch the error:

if (e.RecordsAffected < 1)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{
 Trace.Warn(s + "Error updating BugID: " +
 e.Row["BugID",DataRowVersion.Original].ToString());

In VB.NET, it is:

If e.RecordsAffected < 1 Then
 ' write to the trace log
 Trace.Warn(s & "Error updating BugID: " & _
 e.Row("BugID", DataRowVersion.Original))

In this example, you are handling the error by writing a statement to the trace output. You could, in
a real-world application, determine which row update had the problem and display that row (perhaps
along with the current contents of the database) to the user for resolution.

One of the properties of the SqlRowUpdatedEventArgs object passed into your RowUpdated event
handler is the Status property. This will be one of the UpdateStatus enumerated values: Continue,
ErrorsOccurred, SkipAllRemainingRows, or SkipCurrentRow. If an error was found (e.g., the
update failed), this value will be set to ErrorsOccurred, and if you do not change it, an exception will

be thrown. Since you have now handled the error (by displaying it to the user or in whatever way
you've chosen), you will want to change the value to SkipCurrentRow, which will allow the update

command to continue, skipping over the row whose update failed:

e.Status = UpdateStatus.SkipCurrentRow;

To test whether the update will be protected against concurrency issues, you will hand-update one
field in one record before attempting the automated update. To do so, just before you begin the
transaction, in btnUpdateDataBase_Click, you will create a new connection, open it, and execute a
SQL statement to update the Bugs table; you will also set the Product value to 1 where the BugID

equals 1:

System.Data.SqlClient.SqlConnection connection2 =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection2.Open();
 string cmd = "Update Bugs set Product = 1 where BugID = 1";
 SqlCommand cmd1 = new SqlCommand(cmd,connection2);
 cmd1.ExecuteNonQuery();

In VB.NET, it would be:

Dim myConnection2 As _
 New System.Data.SqlClient.SqlConnection(connectionString)
myConnection2.Open()
Dim cmd As String = _
 "Update Bugs set Product = 1 where BugID = 1"
Dim cmd1 As New SqlCommand(cmd, myConnection2)
cmd1.ExecuteNonQuery()

The sequence of events is now:

Fill the dataset from the database and display it in a grid and stash it in a session variable.1.

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

When the user clicks Update DataSet, retrieve the dataset from the session variable, modify the
dataset, and display the changes.

2.

When the user clicks Update Database, hand-modify one record in the database, then tell the
dataset to update the database. The record you modified (for BugID =1) should make the
update from the dataset for that bug fail.

3.

Catch the failure by noting that for one record, RecordsAffected is zero and handle the error.4.

Report on the remaining updates, deletes, and inserts. (They should all work fine.)5.

The source code is once again mostly unchanged. The only affected methods are
btnUpdateDataBase_Click and the new method, OnRowUpdate. These are annotated and shown in
full in Example 12-15 for C# and in Example 12-16 for VB.NET.

One change must be made to the btnUpdateDataSet_Click method for this test
to be meaningful. The field you update in BugID1 should be a field in Bugs
rather than in BugHistory. In previous examples, you wrote:

bugTable.Rows[0]["Response"] =
 "This is a test";

In this example, you will modify this to:

bugTable.Rows[0]["ReporterID"] = "1";

Example 12-15. Support for concurrency (C#)

private void btnUpdateDataBase_Click(
 object sender, System.EventArgs e)
{

 //retrieve the dataset from session variable
 DataSet ds = (DataSet) Session["BugsDataSet"];

 // create a new data adapter
 SqlDataAdapter dataAdapter = new SqlDataAdapter();

 // set up the connection string
 string connectionString =
 "server=YourServer; uid=sa;
 pwd=YourPassword; database=ProgASPDotNetBugs";

 // Create connection object, initialize with
 // connection string. Open it.
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);

 // mimic another user writing to your data after
 // you have retrieved the data from the database
 System.Data.SqlClient.SqlConnection connection2 =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 new System.Data.SqlClient.SqlConnection(connectionString);
 connection2.Open();
 string cmd = "Update Bugs set Product = 1 where BugID = 1";
 SqlCommand cmd1 = new SqlCommand(cmd,connection2);
 cmd1.ExecuteNonQuery();

 // create the transaction
 SqlTransaction transaction;
 connection.Open();
 transaction = connection.BeginTransaction();

 // *** create the update command object
 SqlCommand updateCmd =
 new SqlCommand("spUpdateBugFromDataSetWithConcurrency",connection);
 updateCmd.CommandType=CommandType.StoredProcedure;

 // declare the parameter object
 System.Data.SqlClient.SqlParameter param;

 // Add new parameters, get back a reference
 // set the parameters' direction and value
 param =
 updateCmd.Parameters.Add("@ProductID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="ProductID";
 param.SourceVersion=DataRowVersion.Current;

 // pass in the original value for the where statement
 param =
 updateCmd.Parameters.Add("@OldProductID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="ProductID";
 param.SourceVersion=DataRowVersion.Original;

 param =
 updateCmd.Parameters.Add("@Description",SqlDbType.Text,8000);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Description";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@OldDescription",SqlDbType.Text,8000);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Description";
 param.SourceVersion=DataRowVersion.Original;

 param =
 updateCmd.Parameters.Add("@Response",SqlDbType.Text,8000);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Response";
 param.SourceVersion=DataRowVersion.Current;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param =
 updateCmd.Parameters.Add("@OldResponse",SqlDbType.Text,8000);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Response";
 param.SourceVersion=DataRowVersion.Original;

 param =
 updateCmd.Parameters.Add("@Reporter",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="ReporterID";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@OldReporter",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="ReporterID";
 param.SourceVersion=DataRowVersion.Original;

 param =
 updateCmd.Parameters.Add("@Owner",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="OwnerID";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@OldOwner",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="OwnerID";
 param.SourceVersion=DataRowVersion.Original;

 param =
 updateCmd.Parameters.Add("@Status",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="StatusID";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@OldStatus",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="StatusID";
 param.SourceVersion=DataRowVersion.Original;

 param =
 updateCmd.Parameters.Add("@Severity",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="SeverityID";
 param.SourceVersion=DataRowVersion.Current;

 param =
 updateCmd.Parameters.Add("@OldSeverity",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="SeverityID";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param.SourceVersion=DataRowVersion.Original;

 param =
 updateCmd.Parameters.Add("@bugID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="bugID";
 param.SourceVersion=DataRowVersion.Original; // note Original

 param =
 updateCmd.Parameters.Add("@BugHistoryID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="BugHistoryID";
 param.SourceVersion=DataRowVersion.Original; // note Original

 dataAdapter.UpdateCommand=updateCmd;

 // *** the delete command
 SqlCommand deleteCmd =
 new SqlCommand("spDeleteBugFromDataSet",connection);
 deleteCmd.CommandType=CommandType.StoredProcedure;

 param = deleteCmd.Parameters.Add("@bugID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="bugID";
 param.SourceVersion=DataRowVersion.Original; // note Original

 param = deleteCmd.Parameters.Add("@BugHistoryID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="BugHistoryID";
 param.SourceVersion=DataRowVersion.Original; // note Original

 dataAdapter.DeleteCommand=deleteCmd;

 // *** insert command
 SqlCommand insertCmd =
 new SqlCommand("spInsertBugFromDataSet",connection);
 insertCmd.CommandType=CommandType.StoredProcedure;

 // Add new parameters, get back a reference
 // set the parameters' direction and value
 param = insertCmd.Parameters.Add("@ProductID",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="ProductID";
 param.SourceVersion=DataRowVersion.Current;

 param =
 insertCmd.Parameters.Add("@Version",SqlDbType.Text,50);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Version";
 param.SourceVersion=DataRowVersion.Current;

 param =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 insertCmd.Parameters.Add("@Description",SqlDbType.Text,8000);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Description";
 param.SourceVersion=DataRowVersion.Current;

 param =
 insertCmd.Parameters.Add("@Response",SqlDbType.Text,8000);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="Response";
 param.SourceVersion=DataRowVersion.Current;

 param = insertCmd.Parameters.Add("@Reporter",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="ReporterID";
 param.SourceVersion=DataRowVersion.Current;

 param = insertCmd.Parameters.Add("@Owner",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="OwnerID";
 param.SourceVersion=DataRowVersion.Current;

 param = insertCmd.Parameters.Add("@Status",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="StatusID";
 param.SourceVersion=DataRowVersion.Current;

 param = insertCmd.Parameters.Add("@Severity",SqlDbType.Int);
 param.Direction = ParameterDirection.Input;
 param.SourceColumn="SeverityID";
 param.SourceVersion=DataRowVersion.Current;

 dataAdapter.InsertCommand=insertCmd;

 // add transaction support for each command
 dataAdapter.UpdateCommand.Transaction = transaction;
 dataAdapter.DeleteCommand.Transaction = transaction;
 dataAdapter.InsertCommand.Transaction = transaction;

 // try to update, if all succeed commit
 // otherwise roll back
 try
 {
 dataAdapter.RowUpdated += new SqlRowUpdatedEventHandler(OnRowUpdate);
 int rowsUpdated = dataAdapter.Update(ds,"BugInfo");
 transaction.Commit();
 CountUpdatedRows.Visible=true;
 CountUpdatedRows.Text = rowsUpdated.ToString() + " rows Updated.";
 }
 catch
 {
 transaction.Rollback();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // rebind the grid to show the results
 // grid should be unchanged
 DataGrid2.DataSource = ds.Tables["BugInfo"];
 DataGrid2.DataBind();
}

// handle the Row Updated event
public void OnRowUpdate(object sender, SqlRowUpdatedEventArgs e)
{
 // get the type of update (update, insert, delete)
 // as a string
 string s = "Attempted " +
 System.Enum.GetName(
 e.StatementType.GetType(),e.StatementType) + ". ";

 // if the update failed
 if (e.RecordsAffected < 1)
 {
 // write to the trace log
 Trace.Warn(
 s + "Error updating BugID: " +
 e.Row["BugID",DataRowVersion.Original].ToString());

 // skip over this row, continue with the next
 e.Status = UpdateStatus.SkipCurrentRow;
 }
 else // the update succeeded
 {
 // write a success message to the trace log
 Trace.Write(s + " Row updated, BugID: " +
 e.Row["BugID",DataRowVersion.Original].ToString());
 }
}

Example 12-16. Support for concurrency (VB.NET)

Private Sub btnUpdateDataBase_Click(_
 ByVal sender As Object, ByVal e As System.EventArgs)

 Dim ds As DataSet = CType(Session("BugsDataSet"), DataSet)
 Dim dataAdapter As New SqlDataAdapter()

 Dim connectionString As String = _
 "server=YourDB; uid=sa; pwd=YourPassword; database=ProgASPDotNetBugs"

 ' Create connection object, initialize with
 ' connection string. Open it.
 Dim myConnection As _
 New System.Data.SqlClient.SqlConnection(connectionString)
 Dim myConnection2 As _
 New System.Data.SqlClient.SqlConnection(connectionString)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim transaction As SqlTransaction
 myConnection.Open()
 myConnection2.Open()

 Dim cmd As String = "Update Bugs set Product = 1 where BugID = 1"
 Dim cmd1 As New SqlCommand(cmd, myConnection2)
 cmd1.ExecuteNonQuery()

 transaction = myConnection.BeginTransaction()

 ' *** create the update command object
 Dim updateCmd As _
 New SqlCommand("spUpdateBugFromDataSetWithConcurrency", myConnection)
 updateCmd.CommandType = CommandType.StoredProcedure

 ' declare the parameter object
 Dim param As System.Data.SqlClient.SqlParameter

 ' Add new parameters, get back a reference
 ' set the parameters' direction and value
 param = updateCmd.Parameters.Add("@ProductID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "ProductID"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@OldProductID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "ProductID"
 param.SourceVersion = DataRowVersion.Original

 param = updateCmd.Parameters.Add("@Description", SqlDbType.Text, 8000)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Description"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add(_
 "@OldDescription", SqlDbType.Text, 8000)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Description"
 param.SourceVersion = DataRowVersion.Original

 param = updateCmd.Parameters.Add("@Response", SqlDbType.Text, 8000)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Response"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@OldResponse", SqlDbType.Text, 8000)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Response"
 param.SourceVersion = DataRowVersion.Original

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param = updateCmd.Parameters.Add("@Reporter", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "ReporterID"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@OldReporter", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "ReporterID"
 param.SourceVersion = DataRowVersion.Original

 param = updateCmd.Parameters.Add("@Owner", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "OwnerID"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@OldOwner", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "OwnerID"
 param.SourceVersion = DataRowVersion.Original

 param = updateCmd.Parameters.Add("@Status", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "StatusID"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@OldStatus", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "StatusID"
 param.SourceVersion = DataRowVersion.Original

 param = updateCmd.Parameters.Add("@Severity", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "SeverityID"
 param.SourceVersion = DataRowVersion.Current

 param = updateCmd.Parameters.Add("@OldSeverity", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "SeverityID"
 param.SourceVersion = DataRowVersion.Original

 param = updateCmd.Parameters.Add("@bugID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "bugID"
 param.SourceVersion = DataRowVersion.Original ' note Original

 param = updateCmd.Parameters.Add("@BugHistoryID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "BugHistoryID"
 param.SourceVersion = DataRowVersion.Original ' note Original

 dataAdapter.UpdateCommand = updateCmd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' *** the delete command
 Dim deleteCmd As New SqlCommand("spDeleteBugFromDataSet", myConnection)
 deleteCmd.CommandType = CommandType.StoredProcedure

 param = deleteCmd.Parameters.Add("@bugID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "bugID"
 param.SourceVersion = DataRowVersion.Original ' note Original

 param = deleteCmd.Parameters.Add("@BugHistoryID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "BugHistoryID"
 param.SourceVersion = DataRowVersion.Original ' note Original

 dataAdapter.DeleteCommand = deleteCmd

 ' *** insert command
 Dim insertCmd As New SqlCommand("spInsertBugFromDataSet", myConnection)
 insertCmd.CommandType = CommandType.StoredProcedure

 ' Add new parameters, get back a reference
 ' set the parameters' direction and value
 param = insertCmd.Parameters.Add("@ProductID", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "ProductID"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Version", SqlDbType.Text, 50)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Version"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Description", SqlDbType.Text, 8000)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Description"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Response", SqlDbType.Text, 8000)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "Response"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Reporter", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "ReporterID"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Owner", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "OwnerID"
 param.SourceVersion = DataRowVersion.Current

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param = insertCmd.Parameters.Add("@Status", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "StatusID"
 param.SourceVersion = DataRowVersion.Current

 param = insertCmd.Parameters.Add("@Severity", SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.SourceColumn = "SeverityID"
 param.SourceVersion = DataRowVersion.Current

 dataAdapter.InsertCommand = insertCmd

 ' add transaction support for each command
 dataAdapter.UpdateCommand.Transaction = transaction
 dataAdapter.DeleteCommand.Transaction = transaction
 dataAdapter.InsertCommand.Transaction = transaction

 ' try to update, if all succeed commit
 ' otherwise roll back
 Try
 AddHandler(myDataAdapter.RowUpdated, AddressOf OnRowUpdate);
 Dim rowsUpdated As Int32
 rowsUpdated = CType(dataAdapter.Update(ds, "BugInfo"), Int32)
 transaction.Commit()
 ' transaction.Rollback()
 CountUpdatedRows.Visible = True
 CountUpdatedRows.Text = rowsUpdated.ToString() + " rows Updated."

 Catch
 transaction.Rollback()

 End Try

 ' rebind the grid to show the results
 ' grid should be unchanged
 DataGrid2.DataSource = ds.Tables("BugInfo")
 DataGrid2.DataBind()
End Sub

Public Sub OnRowUpdate(_
 ByVal sender As Object, ByVal e As SqlRowUpdatedEventArgs)
 ' get the type of update (update, insert, delete)
 ' as a string
 Dim s As String = _
 "Attempted " & _
 System.Enum.GetName(e.StatementType.GetType(), e.StatementType) & _
 ". "

 ' if the update failed
 If (e.RecordsAffected < 1) Then
 ' write to the trace log
 Trace.Warn(s & "Error updating BugID: " & _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 e.Row("BugID", DataRowVersion.Original))
 ' skip over this row, continue with the next
 e.Status = UpdateStatus.SkipCurrentRow
 Else ' the update succeeded
 ' write a success message to the trace log
 Trace.Write(s & " Row updated, BugID: " & _
 e.Row("BugID", DataRowVersion.Original))
 End If
End Sub

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.5 Command Builder

In the previous section, you painstakingly created the update, insert, and delete commands. You first
created stored procedures, and then you created command objects for each procedure, passing in
the necessary parameters. ASP.NET will do a lot of this work for you, if the update, insert, and delete
commands are simple enough.

ASP.NET provides a Command Builder (SqlCommandBuilder and OleDbCommandBuilder) to generate
the necessary delete, update, and insert commands without your writing stored procedures. To take
advantage of these objects, the following conditions must be met:

The rows in the table you are generating must have come from a single table in the database.

The table must have a primary key or a field with values guaranteed to be unique.

The unique value column must be returned by the query used to fill the dataset (the select
command).

The name of the table must not have spaces, periods, quotation marks, or other special
characters.

To see how using the command builder classes simplifies the task when these conditions are met,
you'll modify the program to build the dataset only from the Bugs table. Your user interface will be
much simpler because you'll use a very simple Select statement, Select * from Bugs.

Strip down the .aspx page, and do not use custom columns; allow the data grid to get its value right
from its source table. Discard the BugHistory data grid, since you won't be using it for this example.
The complete .aspx page is shown in Example 12-17.

Example 12-17. The simpler .aspx file

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="BugHistoryUpdateAutoGenerated.WebForm1" trace="true" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
<meta content="Microsoft Visual Studio 7.0" name=GENERATOR>
<meta content=C# name=CODE_LANGUAGE>
<meta content="JavaScript (ECMAScript)" name=vs_defaultClientScript>
<meta content=http://schemas.microsoft.com/intellisense/ie5 name=vs_targetSchema>
 </HEAD>
<body>
<form id=Form1 method=post runat="server">
 <table>
 <tr>
 <td><asp:Button ID="btnUpdateDataSet"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Text="Update DataSet" Runat="server" /></td>
 <td><asp:Button ID="btnUpdateDataBase"
 Text="Update Database" Runat="server" /></td>
 </tr>
 </table>

 <asp:datagrid id="DataGrid1" runat="server" EnableViewState="true"
 HeaderStyle-Font-Bold AlternatingItemStyle-BackColor="LightGrey"
 BorderColor="#000099"
 BorderWidth="5px" HeaderStyle-BackColor="PapayaWhip"
 CellPadding="5" DataKeyField="BugID">
 </asp:datagrid></FORM>
 <asp:Panel ID="DataGrid2Panel" Runat="server" >
 <asp:datagrid id="DataGrid2" runat="server"
 DataKeyField="BugID" CellPadding="5"
 HeaderStyle-BackColor="PapayaWhip"
 BorderWidth="5px" BorderColor="#000099"
 AlternatingItemStyle-BackColor="LightGrey" HeaderStyle-Font-Bold
 EnableViewState="true">
 </asp:datagrid>
 <asp:Label id="CountUpdatedRows"
 Runat="server" visible="False"></asp:Label>
 </asp:Panel>
 </body>
</HTML>

You must toss out all the code that deals with the BugHistory table in the code-behind page. Notice
that the event handling has been removed from the data grid as well. To keep things simple, you'll
just display the Bugs table, modify it, and then update the database.

You must modify btnUpdateDataSet_Click so that you are updating and adding fields only in Bugs:

DataRow newRow = bugTable.NewRow();
newRow["Product"] = 2;
newRow["Version"] = "0.01";
newRow["Description"] = "New bug test";
newRow["Reporter"] = 3;
bugTable.Rows.Add(newRow);

In VB .NET, it is:

Dim newRow as DataRow = bugTable.NewRow()
newRow("Product") = 2
newRow("Version") = "0.01"
new Row("Description") = "New bug test"
newRow("Reporter") = "3"
bugTable.Rows.Add(newRow)

The important change is in btnUpdateDataBase_Click, which is now far simpler. You simply retrieve
the dataset and set up the connection object, exactly as you did earlier in Example 12-12:

DataSet ds = (DataSet) Session["BugsDataSet"];
string connectionString =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "server=YourServer; uid=sa; " +
 "pwd=YourPassword; database=ProgASPDotNetBugs";

System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);

connection.Open();

In VB .NET, it is:

Dim ds As DataSet = CType(Session("BugsDataSet"), DataSet)
Dim connectionString As String = _
 "server=YourServer; uid=sa; " & _
 "pwd=YourPassword; database=ProgASPDotNetBugs"

Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)

connection.Open()

You then create a data adapter and a SqlCommandBuilder:

SqlDataAdapter dataAdapter =
 new SqlDataAdapter("select * from Bugs", connection);
SqlCommandBuilder bldr = new SqlCommandBuilder(dataAdapter);

In VB .NET, it is:

Dim dataAdapter As _
 New SqlDataAdapter("select * from Bugs", connection)
Dim bldr As New SqlCommandBuilder(dataAdapter)

You use the Command Builder to build the DeleteCommand, UpdateCommand, and InsertCommand
objects required by the data adapter, which you previously built by hand:

dataAdapter.DeleteCommand = bldr.GetDeleteCommand();
dataAdapter.UpdateCommand = bldr.GetUpdateCommand();
dataAdapter.InsertCommand = bldr.GetInsertCommand();

The VB .NET code is identical (without the semicolons).

That's it! You are ready to enlist the commands in the transaction:

SqlTransaction transaction;
transaction = connection.BeginTransaction();

dataAdapter.DeleteCommand.Transaction = transaction;
dataAdapter.UpdateCommand.Transaction = transaction;
dataAdapter.InsertCommand.Transaction = transaction;

In VB .NET, it is:

Dim transaction As SqlTransaction

http://lib.ommolketab.ir
http://lib.ommolketab.ir

transaction = connection.BeginTransaction()

dataAdapter.DeleteCommand.Transaction = transaction
dataAdapter.UpdateCommand.Transaction = transaction
dataAdapter.InsertCommand.Transaction = transaction

With that done, you are ready to call Update on the dataAdapter, just as you did previously:

int rowsUpdated = dataAdapter.Update(ds,"Bugs");

In VB .NET, it is:

Dim rowsUpdated As Integer = dataAdapter.Update(ds,"Bugs")

The CommandBuilder object has created the necessary commands on your behalf. You can see what
these are by adding Trace statements to the btnUpdateDataBase_Click method:

Trace.Write(dataAdapter.InsertCommand.CommandText);
Trace.Write(dataAdapter.UpdateCommand.CommandText);
Trace.Write(dataAdapter.DeleteCommand.CommandText);

The VB .NET code is identical (without the semicolons). This will display the parameterized commands
in the Trace window, as shown in Figure 12-10.

Figure 12-10. Trace statements showing generated commands

Pay particular attention to the Update command; you can see that the Where clause is built exactly

as you built it by hand in the earlier section.

To save space, the complete program is not reproduced here, but it is available for download from
our web site. See the Preface for details.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 13. List-Bound Controls, Part II
In Chapter 10, you saw that there are three list-bound controls: Repeater, DataList, and DataGrid.
Chapter 10 explained the similarities among these controls and focused on the DataGrid control,
which it bound to an ArrayList of Bug objects. In Chapter 11 and Chapter 12, you saw how to extract
data from a database and bind a DataView or a DataTable object to a DataGrid control.

Now that you've seen how to extract data from the database and bind it to a control, we will now
return to the list-bound controls, since they are most often used for displaying data from the
database. In this chapter, you will see how templates are used to manage the presentation of the
Repeater and the DataList controls. You'll also see how to update data using in-place editing with the
DataList and the DataGrid controls.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.1 Binding to the DataList and Repeater Controls

Chapter 10 showed the differences among the entirely "lookless" Repeater control and the somewhat
more robust DataList control, as well as the DataGrid control that we have already examined in some
detail. The table is reproduced here for your convenience as Table 13-1.

Table 13-1. Comparison of the Repeater, DataList, and DataGrid controls

Feature Repeater DataList DataGrid

Table layout No No Yes

Flow layout Yes Yes No

Column layout No Yes No

Style properties No Yes Yes

Templates Yes Yes Columns/ optional

Select/ Edit/Delete No Yes Yes

Sort No No Yes

Paging No No Yes

You can see that the repeater and the data list do not automatically provide a table layout. In fact,
you can use either control to display data horizontally or vertically, and the DataList control can
provide automatic support for columns.

The key difference between the DataList and Repeater controls, on the one hand, and the DataGrid
control, on the other, is that the first two use templates to determine their look and feel.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.2 The Repeater Control

The Repeater class provides a great many properties and exposes a number of useful events. The
most important of these are summarized in Table 13-2.

Table 13-2. Properties and events of the Repeater control

Property or event name Description

AlternatingItemTemplate
property

Gets or sets the alternating item template

Controls property Gets the ControlCollection object containing all the child controls

DataMember property
Gets or sets the specific table in the DataSource to bind to the
control

DataSource property Gets or sets the data source

FooterTemplate property Gets or sets the footer template

HeaderTemplate property Gets or sets the header template

ItemCommand event Fired when a button is clicked

ItemCreated event Fired when an item is created

ItemDataBound event Fired after an item is databound but before it is rendered

Items property Gets a collection of repeater item objects

PreRender event
Fired when the control is about to render its containing Page
object

SeparatorTemplate property Gets or sets the separator template

The Repeater control is often referred to as lookless to indicate that the control has no intrinsic
appearance. You control the look and feel of the Repeater control through templates.

There are templates to control the appearance of the header, the footer, each item, alternating
items, and the separator between items, as shown in Table 13-3.

Table 13-3. Templates supported by the Repeater control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Template Description

AlternatingItemTemplate
Used exactly as you would the item template; however, the alternating
item is rendered for every other row in the control

FooterTemplate
Elements to render after all items and other templates have been
rendered

HeaderTemplate Elements to render before any other templates are rendered

ItemTemplate Elements rendered once for each row in the data source

SeparatorTemplate Elements to render between each row in the data source

To see how these templates work together, you will create a simple web page with a repeater that
will display data from the various tables in the ProgASPDotNetBugs database, as shown in Figure 13-
1. The complete .aspx page is shown in Example 13-1.

Example 13-1. The .aspx file

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false" Inherits="RepeaterControl.WebForm1" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript"
 content="JavaScript (ECMAScript)">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 <style>
 .header
 {
 FONT-FAMILY: Verdana, Ariel, Helvetica, sans-serif;
 FONT-SIZE: 22pt;
 FONT-WEIGHT bold;
 MARGIN-BOTTOM 2pt
 }
 .item
 {
 FONT-FAMILY: Verdana, Ariel, Helvetica, sans-serif;
 FONT-SIZE: 10pt;
 FONT-WEIGHT: normal;
 MARGIN-BOTTOM 2pt
 }

 </style>

 </HEAD>
 <body>
 <form id="Form1" method="post" runat="server">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:Repeater ID="Repeater1" Runat="server">
 <HeaderTemplate>
 <div class="header">
 Bugs<hr>
 </div>
 </HeaderTemplate>

 <ItemTemplate>
 <div class ="item">
 Bug:
 <%# Convert.ToString(
 DataBinder.Eval(Container.DataItem, "BugID")) %>

 Description:
 <%# Convert.ToString(
 DataBinder.Eval(Container.DataItem,"Description")) %>

 Product:
 <%# Convert.ToString(
 DataBinder.Eval(Container.DataItem,"ProductDescription")) %>

 Reported by:
 <%# Convert.ToString(
 DataBinder.Eval(Container.DataItem,"FullName")) %>
 </div>
 </ItemTemplate>

 <SeparatorTemplate>

<hr>

 </SeparatorTemplate>

 <FooterTemplate>
 <hr>
 Report additional bugs to

 Jesse Liberty
 </FooterTemplate>

 </asp:Repeater>
 </form>
 </body>
</HTML>

Figure 13-1. Repeater using templates

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that data-binding statements may not be split across lines in VB.NET
without the line continuation character (the underscore). Some lines were
artificially split throughout this book because of page size limitations.

To create this web page, you add a DataRepeater control to your form, which produces the following
HTML source:

<form id="Form1" method="post" runat="server">
<asp:Repeater ID="Repeater1" Runat="server">
</asp:Repeater>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Within the Repeater control, you add HeaderTemplate, ItemTemplate, SeparatorTemplate, and
FooterTemplate tags.

13.2.1 The HeaderTemplate

The HeaderTemplate is rendered once. You use it to write the title in the appropriate font. Its HTML

source is:

<HeaderTemplate>
 <div class="header">
 Bugs<hr>
 </div>
</HeaderTemplate>

The div element uses a class element from the following style sheet that you add to the Head

section of the page:

<style>
 .header
 {
 FONT-FAMILY: Verdana, Ariel, Helvetica, sans-serif;
 FONT-SIZE: 22pt;
 FONT-WEIGHT bold;
 MARGIN-BOTTOM 2pt
 }
 .item
 {
 FONT-FAMILY: Verdana, Ariel, Helvetica, sans-serif;
 FONT-SIZE: 10pt;
 FONT-WEIGHT: normal;
 MARGIN-BOTTOM 2pt
 }
</style>

13.2.2 The SeparatorTemplate

The item template is the only tricky one, so let's concentrate on that last. After each item you want

the browser to draw a rule with white space above and below. You accomplish that in the
SeparatorTemplate, which, in the case of our example, consists of the following:

<SeparatorTemplate>

<hr>

</SeparatorTemplate>

13.2.3 The FooterTemplate

Finally, after all the elements are rendered, you'll draw a final rule and add the mailto link in the
footer. Notice that the SeparatorTemplate will not be called after the final element, and so if you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

want a final hard rule, you must draw it yourself in the FooterTemplate. The HTML source for this
example's <FooterTemplate> is:

<FooterTemplate>
 <hr>
 Report additional bugs to

 Jesse Liberty
</FooterTemplate>

13.2.4 The ItemTemplate

The item template dictates how each item will be rendered. The content of the <ItemTemplate> tag

is as follows:

<ItemTemplate>
 <div class ="item">
 Bug:
 <%# Convert.ToString(DataBinder.Eval(Container.DataItem,
 "BugID")) %>

 Description:
 <%# Convert.ToString(DataBinder.Eval(Container.DataItem,
 "Description")) %>

 Product:
 <%# Convert.ToString(DataBinder.Eval(Container.DataItem,
 "ProductDescription")) %>

 Reported by:
 <%# Convert.ToString(DataBinder.Eval(Container.DataItem,
 "FullName")) %>
 </div>
</ItemTemplate>

In VB .NET, you need to take not to split data-binding expressions without using an underscore:

<ItemTemplate>
 <div class ="item">
 Bug:
 <%# Convert.ToString(DataBinder.Eval(Container.DataItem, _
 "BugID")) %>

 Description:
 <%# Convert.ToString(DataBinder.Eval(Container.DataItem, _
 "Description")) %>

 Product:
 <%# Convert.ToString(DataBinder.Eval(Container.DataItem, _
 "ProductDescription")) %>

 Reported by:
 <%# Convert.ToString(DataBinder.Eval(Container.DataItem, _
 "FullName")) %>
 </div>
</ItemTemplate>

You use a <div> element here just as you did in the header. You can use normal HTML elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

such as to control the display of text and other elements. The only tricky part is how you display

the contents of the data item you've bound to the row. To render the bugID, you start by displaying
the word Bug in bold:

Bug:

You then display the actual BugID by calling the static Eval method on the DataBinder object. You
pass in the DataItem you obtain from the Container. The Container is the Repeater control itself, and
the DataItem is the item you are rendering (in this case, a DataRow object from a data set). The
result of the Eval must be converted to a String for display purposes, which is handled by the
following line of code:

<%# Convert.ToString(DataBinder.Eval(Container.DataItem, "BugID")) %>

If you prefer, you can call ToString on the object returned by Eval, as follows:

<%# DataBinder.Eval(Container.DataItem, "BugID").ToString() %>

13.2.5 The Code-Behind File

The supporting code for this example is very simple. All the work is done in the Page_Load event,
where you obtain the data set based on a Select statement, and bind it to the Repeater. The

Page_Load event procedure is shown in C# in Example 13-2 and in VB.NET in Example 13-3.

Example 13-2. The Page_Load method in C#

private void Page_Load(object sender, System.EventArgs e)
{
 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa;" +
 "pwd=YourPassword; database=ProgASPDotNetBugs";

 // get records from the Bugs table
 string commandString =
 "Select b.BugID, b.Description, p.ProductDescription, " +
 "peo.FullName from Bugs b ";
 commandString += "join lkProduct p on b.Product = p.ProductID ";
 commandString += "join People peo on b.Reporter = peo.PersonID ";
 // create the data set command object
 // and the DataSet
 SqlDataAdapter dataAdapter =
 new SqlDataAdapter(
 commandString, connectionString);

 DataSet dataSet = new DataSet();

 // fill the data set object
 dataAdapter.Fill(dataSet,"Bugs");

 // Get the one table from the DataSet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataTable dataTable = dataSet.Tables[0];

 Repeater1.DataSource = dataTable;
 Repeater1.DataBind();
}

Example 13-3. The Page_Load method in VB.NET

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' connect to the Bugs database
 Dim connectionString As String = _
 "server=YourServer; uid=sa; " & _
 "pwd=YourPassword; database=ProgASPDotNetBugs"

 ' get records from the Bugs table
 Dim commandString As String = _
 "Select b.BugID, b.Description, p.ProductDescription, " & _
 "peo.FullName from Bugs b " & _
 "join lkProduct p on b.Product = p.ProductID " & _
 "join People peo on b.Reporter = peo.PersonID "

 ' create the data set command object and the data set
 Dim dataAdapter As New SqlDataAdapter(commandString, connectionString)

 Dim dataSet As New DataSet()

 ' fill the data set object
 dataAdapter.Fill(dataSet, "Bugs")

 ' Get the one table from the DataSet
 Dim dataTable As DataTable = dataSet.Tables(0)

 Repeater1.DataSource = dataTable
 Repeater1.DataBind()
End Sub

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.3 The DataList Control

The DataList control is very similar to the Repeater control. In fact, you can render exactly the same
output using exactly the same controls, changing only the Repeater to a DataList control. If you
examine Table 13-1, however, you will see that the DataList control provides support for both column
and flow layout. To see how this works, you'll add radio buttons to offer the user the choice of
vertical versus horizontal flow, and one versus two columns, as shown in Figure 13-2.

Figure 13-2. DataList with flow control

To create this page, you will modify the previous .aspx page and change the Repeater to a DataList,
changing its name from Repeater1 to DataList1:

<asp:DataList ID="DataList1" Runat="server">

You'll also need to modify the end tag by changing

</asp:Repeater>

to:

</asp:DataList>

The template for the DataList is identical; no changes are needed at all! You will want to add

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RadioButtons, however, to allow the user to specify the direction the items will flow, and number of
columns:

<table>
 <tr>
 <td class="item">Which direction?</td>
 <td class="item" colspan="2">
 <asp:RadioButton ID="Vertical"
 GroupName="Direction" Runat="server"
 AutoPostBack="True" Checked="True" />Vertical</td>
 <td class="item" colspan="2">
 <asp:RadioButton ID="Horizontal" GroupName="Direction"
 Runat="server" AutoPostBack="True" />Horizontal</td>
 </tr>
 <tr>
 <td class="item">How many columns?</td>
 <td class="item">
 <asp:RadioButton ID="Col1" GroupName="NumCols"
 Runat="server" AutoPostBack="True" Checked="True"/>1</td>
 <td class="item">
 <asp:RadioButton ID="Col2" GroupName="NumCols"
 Runat="server" AutoPostBack="True" />2</td>
 </tr>
</table>

That's it. No other changes are needed in the .aspx file. The code-behind page is almost identical as
well. You will, of course, change the declaration for the DataList:

protected System.Web.UI.WebControls.DataList DataList1;

The VB.NET declaration is identical except for the final semicolon.

While you are at it, you'll add declarations for the four radio buttons as well.

protected System.Web.UI.WebControls.RadioButton Vertical;
protected System.Web.UI.WebControls.RadioButton Horizontal;
protected System.Web.UI.WebControls.RadioButton Col1;
protected System.Web.UI.WebControls.RadioButton Col2;

In VB .NET, you would use:

Protected Vertical As System.Web.UI.WebControls.RadioButton
Protected Horizontal As System.Web.UI.WebControls.RadioButton
Protected Col1 As System.Web.UI.WebControls.RadioButton
Protected Col2 As System.Web.UI.WebControls.RadioButton

The Page_Load event is slightly different. In the Repeater example, there was no need to check for a
postback because the page was drawn only once. This time, you will check for a postback and load
the data set only if IsPostBack is false. If IsPostBack is true, however, you will check the status of

the Radio Buttons, and you'll set the RepeatDirection and the RepeatColumns properties of the
DataList control accordingly. In C#, this is done as follows:

DataList1.RepeatDirection =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Vertical.Checked ?
 RepeatDirection.Vertical : RepeatDirection.Horizontal;

DataList1.RepeatColumns =
 Col1.Checked ? 1 : 2;

The ? operator in C# is evaluated as follows: if the condition (Vertical.Checked)
evaluates to true, then return the first argument
(RepeatDirection.Vertical); otherwise, return the second argument
(RepeatDirection.Horizontal). The returned result is then assigned to the
RepeatDirection property of the DataList1 control.

Similarly, the second invocation evaluates whether Col1.Checked is true, and if

so assigns 1 to RepeatColumns; otherwise, 2 is assigned.

In VB.NET, this is handled by the following code:

DataList1.RepeatDirection = IIf(Vertical.Checked, _
 RepeatDirection.Vertical, RepeatDirection.Horizontal)

DataList1.RepeatColumns = IIF(Col1.Checked, 1, 2)

The complete Page_Load method for the DataList control example is shown in C# in Example 13-4
and in VB.NET in Example 13-5.

Example 13-4. C# version of Page_Load for the DataList control example

private void Page_Load(object sender, System.EventArgs e)
{

 if (!Page.IsPostBack)
 {
 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa;
 pwd=YourPasword; database=ProgASPDotNetBugs";

 // get records from the Bugs table
 string commandString =
 "Select b.BugID, b.Description, p.ProductDescription, ";
 commandString += "peo.FullName from Bugs b ";
 commandString += "join lkProduct p on b.Product = p.ProductID ";
 commandString += "join People peo on b.Reporter = peo.PersonID ";
 // create the data set command object
 // and the DataSet
 SqlDataAdapter dataAdapter =
 new SqlDataAdapter(
 commandString, connectionString);

 DataSet dataSet = new DataSet();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // fill the data set object
 dataAdapter.Fill(dataSet,"Bugs");

 // Get the one table from the DataSet
 DataTable dataTable = dataSet.Tables[0];

 DataList1.DataSource = dataTable;
 DataList1.DataBind();
 }
 else
 {
 // set the Repeat direction based on the value
 // in the radio buttons
 DataList1.RepeatDirection =
 Vertical.Checked ?
 RepeatDirection.Vertical :
 RepeatDirection.Horizontal;

 // set the number of columns based on the value
 // in the radio buttons
 DataList1.RepeatColumns =
 Col1.Checked ? 1 : 2;
 }
}

Example 13-5. VB.NET version of Page_Load for the DataList control
example

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 If Not Page.IsPostBack Then
 ' connect to the Bugs database
 Dim connectionString As String = "server=YourServer; uid=sa; " & _
 "pwd=YourPasword; database=ProgASPDotNetBugs"

 ' get records from the Bugs table
 Dim commandString As String = _
 "Select b.BugID, b.Description, p.ProductDescription, " & _
 "peo.FullName from Bugs b " & _
 "join lkProduct p on b.Product = p.ProductID " & _
 "join People peo on b.Reporter = peo.PersonID "

 ' create the data set command object and the data set
 Dim dataAdapter As New SqlDataAdapter(commandString, connectionString)

 Dim dataSet As New DataSet()

 ' fill the data set object
 dataAdapter.Fill(dataSet, "Bugs")

 ' Get the one table from the DataSet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim dataTable As DataTable = dataSet.Tables(0)

 DataList1.DataSource = dataTable
 DataList1.DataBind()
 Else
 ' set the Repeat direction based on the value
 ' in the radio buttons
 DataList1.RepeatDirection = IIf(Vertical.Checked, _
 RepeatDirection.Vertical, RepeatDirection.Horizontal)
 ' set the number of columns based on the value
 ' in the radio buttons
 DataList1.RepeatColumns = IIf(Col1.Checked, 1, 2)
 End If
End Sub

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.4 In-Place Editing

You now finally have all the necessary ingredients to create a web page with in-place editing:

Mastery of the DataGrid and DataList controls, which support in-place editing

Mastery of retrieving data from and writing data back to the database

Mastery of templates for creating the editable columns

In the next example, you will create a grid with an Edit column. When the user clicks on the edit link,
the selected row will be redrawn for editing, as shown in Figure 13-3. The user is free to change any
or all fields and then to click the Save link to have the changes written back to the database, or
Cancel to cancel the changes and return to non-edit mode.

Figure 13-3. Editing in place

Notice that the Product and Reported By fields are drop-down lists. These are populated from the
lkProduct and People tables, respectively. What must be written back to the Bugs table, however, is
the ID rather than the text for each of these values. The complete .aspx page for the project is
shown in Example 13-6; the complete code-behind page is shown in C# in Example 13-7, and in
VB.NET in Example 13-8. Analysis follows.

Example 13-6. The .aspx page for in-place editing

<%@ Page language="c#"
Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false"
Inherits="BugHistoryInPlaceEditing.WebForm1"
trace="false"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
<HEAD>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript"
 content="JavaScript (ECMAScript)">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
</HEAD>
<body>
 <form id="Form1" method="post" runat="server">
 <asp:DataGrid
 id="DataGrid1"
 runat="server"
 AutoGenerateColumns="False"
 CellPadding="5"
 HeaderStyle-BackColor="PapayaWhip"
 BorderWidth="5px"
 BorderColor="#000099"
 AlternatingItemStyle-BackColor="LightGrey"
 HeaderStyle-Font-Bold
 EditItemStyle-BackColor="Yellow"
 EditItemStyle-ForeColor="Black"
 DataKeyField ="BugID"
 OnEditCommand="OnEdit"
 OnCancelCommand="OnCancel"
 OnUpdateCommand="OnUpdate">
 <Columns>

 <asp:BoundColumn DataField="BugID"
 HeaderText="ID" ReadOnly="True" />
 <asp:BoundColumn DataField="Description"
 HeaderText="Description" />

 <asp:TemplateColumn HeaderText="Version">

 <ItemTemplate>
 <asp:Label
 Text='<%# Convert.ToString(
 DataBinder.Eval(Container.DataItem,"Version")) %>'
 Runat="server" ID="lblVersion"/>
 </ItemTemplate>

 <EditItemTemplate>
 <asp:TextBox
 Runat="server"
 ID="txtVersion"
 Text = '<%# Convert.ToString(
 DataBinder.Eval(Container.DataItem,"Version")) %>'
 Width="30"
 />
 </EditItemTemplate>

 </asp:TemplateColumn>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:TemplateColumn HeaderText="Product">

 <ItemTemplate>
 <asp:Label
 Text='<%# Convert.ToString(
 DataBinder.Eval(
 Container.DataItem,"ProductDescription")) %>'
 Runat="server" ID="lblProduct"/>
 </ItemTemplate>

 <EditItemTemplate>
 <asp:DropDownList
 Runat="server"
 ID="editProduct"
 DataSource='<%# GetValues("lkProduct") %>'
 DataTextField ="ProductDescription"
 DataValueField ="ProductID"
 Width ="200" />
 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Reported By">

 <ItemTemplate>
 <asp:Label
 Text='<%# Convert.ToString(
 DataBinder.Eval(Container.DataItem,"FullName")) %>'
 ID="lblReported"
 Runat="server"/>
 </ItemTemplate>

 <EditItemTemplate>
 <asp:DropDownList
 Runat="server"
 ID="editReporter"
 DataSource='<%# GetValues("People") %>'
 DataTextField ="FullName"
 DataValueField ="PersonID"
 Width ="200" />
 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:EditCommandColumn
 EditText="Edit"
 CancelText="Cancel"
 UpdateText="Save" />

 </Columns>
 </asp:DataGrid>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </form>
</body>
</HTML>

Example 13-7. The C# code-behind page for in-place editing

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace BugHistoryInPlaceEditing
{
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Repeater Repeater1;
 protected System.Web.UI.WebControls.DataList DataList1;
 protected System.Web.UI.WebControls.DataGrid DataGrid1;
 protected System.Web.UI.WebControls.ListBox lbReportedby;
 public System.Data.SqlClient.SqlDataReader personReader;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (! Page.IsPostBack)
 {
 BindGrid();
 }
 }

 // extract the bug records and bind to the datagrid
 private void BindGrid()
 {
 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa;
 pwd=YourPassword; database=ProgASPDotNetBugs";

 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 connection.Open();

 // get records from the Bugs table
 string commandString =
 "Select b.BugID, b.Version, b.Description, ";
 commandString += "p.ProductDescription, ";
 commandString += "peo.FullName from Bugs b ";
 commandString += "join lkProduct p on b.Product = p.ProductID ";
 commandString += "join People peo on b.Reporter = peo.PersonID ";

 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.CommandText = commandString;
 command.Connection = connection;

 // Create the Reader adn bind it to the datagrid
 SqlDataReader reader =
 command.ExecuteReader(CommandBehavior.CloseConnection);
 DataGrid1.DataSource=reader;
 DataGrid1.DataBind();
 }

 // Given the name of a table, return a DataReader for
 // all values from that table
 public System.Data.SqlClient.SqlDataReader
 GetValues(string tableName)
 {
 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa;
 pwd=YourPassword; database=ProgASPDotNetBugs";

 // create and open the connection object
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // get records from the Bugs table
 string commandString = "Select * from " + tableName;

 // create the command object and set its
 // command string and connection
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.CommandText = commandString;
 command.Connection = connection;

 // create the DataReader and return it
 return command.ExecuteReader(CommandBehavior.CloseConnection);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Handle the Edit event - set the EditItemIndex of the
 // selected row
 public void OnEdit(Object source, DataGridCommandEventArgs e)
 {
 DataGrid1.EditItemIndex = e.Item.ItemIndex;
 BindGrid();
 }

 // Handle the cancel event - set the EditItemIndex to -1
 public void OnCancel(Object source, DataGridCommandEventArgs e)
 {
 DataGrid1.EditItemIndex = -1;
 BindGrid();
 }

 // Handle the Update event
 // Extract the new values
 // Update the database and rebind the datagrid
 public void OnUpdate(Object source, DataGridCommandEventArgs e)
 {

 string PersonID =
 ((DropDownList)(e.Item.FindControl("editReporter"))).
 SelectedItem.Value;

 string newDescription =
 ((TextBox) e.Item.Cells[1].Controls[0]).Text;

 string ProductID =
 ((DropDownList)(e.Item.FindControl("editProduct"))).
 SelectedItem.Value;

 string newVersion =
 ((TextBox)(e.Item.FindControl("txtVersion"))).Text;

 // form the update statement
 string cmd = "Update Bugs set Product = " + ProductID +
 ", Version = '" + newVersion +
 "', Description = '" + newDescription +
 " ', Reporter = " + PersonID +
 " where BugID = " + DataGrid1.DataKeys[e.Item.ItemIndex];

 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa;
 pwd=YourPassword; database=ProgASPDotNetBugs";

 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // call the update and rebind the datagrid
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.CommandText = cmd;
 command.Connection = connection;
 command.ExecuteNonQuery();

 DataGrid1.EditItemIndex = -1;
 BindGrid();
 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 #region Web Form Designer generated code

 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }
}

Example 13-8. The VB.NET code-behind page for in-place editing

Imports System.Data.SqlClient

Public Class WebForm1
 Inherits System.Web.UI.Page

 Protected WithEvents repeater1 As System.Web.UI.WebControls.Repeater
 Protected WithEvents DataList1 As System.Web.UI.WebControls.DataList
 Protected WithEvents DataGrid1 As System.Web.UI.WebControls.DataGrid
 Protected WithEvents lbReportedby As System.Web.UI.WebControls.ListBox
 Public personReader As System.Data.SqlClient.SqlDataReader

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 InitializeComponent()
 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 If Not Page.IsPostBack Then
 BindGrid()
 End If
 End Sub

 ' extract the bug records and bind to the datagrid
 Private Sub BindGrid()
 ' connect to the Bugs database
 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPassword; " & _
 "database=ProgASPDotNetBugs"

 Dim connection As New SqlConnection(connectionString)
 connection.Open()

 ' get records from the Bugs table
 Dim commandString As String = _
 "Select b.BugID, b.Version, b.Description, " & _
 "p.ProductDescription, peo.FullName from Bugs b " & _
 "join lkProduct p on b.Product = p.ProductID " & _
 "join People peo on b.Reporter = peo.PersonID "

 Dim command As New SqlCommand()

 command.CommandText = commandString
 command.Connection = connection

 ' Create the Reader and bind it to the datagrid
 Dim reader As SqlDataReader = _
 command.ExecuteReader(CommandBehavior.CloseConnection)
 DataGrid1.DataSource = reader
 DataGrid1.DataBind()
 End Sub

 ' Given the name of a table, return a DataReader for
 ' all values from that table
 Public Function GetValues(tableName As String) As SqlDataReader
 ' connect to the Bugs database
 Dim connectionString As String = _
 "server=YourServer; uid=sa; " & _
 "pwd=YourPassword; database=ProgASPDotNetBugs"

 ' create and open the connection object
 Dim connection As New SqlConnection(connectionString)
 connection.Open()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' get records from the Bugs table
 Dim commandString As String = "Select * from " & tableName

 ' create the command object and set its
 ' command string and connection
 Dim command As New SqlCommand

 command.CommandText = commandString
 command.Connection = connection

 ' create the DataReader and return it
 Return command.ExecuteReader(CommandBehavior.CloseConnection)
 End Function

 ' Handle the Edit event - set the EditItemIndex of the
 ' selected row
 Public Sub OnEdit(ByVal source As Object, ByVal e As DataGridCommandEventArgs)
 DataGrid1.EditItemIndex = e.Item.ItemIndex
 BindGrid()
 End Sub

 ' Handle the cancel event - set the EditItemIndex to -1
 Public Sub OnCancel(ByVal source As Object, ByVal e As DataGridCommandEventArgs)
 DataGrid1.EditItemIndex = -1
 BindGrid()
 End Sub

 ' Handle the Update event
 ' Extract the new values
 ' Update the database and rebind the datagrid
 Public Sub OnUpdate(ByVal source As Object, ByVal e As DataGridCommandEventArgs)
 Dim PersonID As String = CType(e.Item.FindControl(_
 "editReporter"), DropDownList).SelectedItem.Value

 Dim newDescription As String = CType(e.Item.Cells(1).Controls(0), _
 TextBox).Text

 Dim ProductID As String = CType(e.Item.FindControl(_
 "editProduct"), DropDownList).SelectedItem.Value

 Dim newVersion As String = CType(e.Item.FindControl(_
 "txtVersion"), TextBox).Text

 ' form the update statement
 Dim cmd As String = "Update Bugs set Product = " & ProductID & _
 ", Version = '" & newVersion & _
 "', Description = '" & newDescription & _
 " ', Reporter = " & PersonID & _
 " where BugID = " & DataGrid1.DataKeys(e.Item.ItemIndex)

 ' connect to the Bugs database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPassword; " & _
 "database=ProgASPDotNetBugs"

 Dim connection As New SqlConnection(connectionString)
 connection.Open()

 ' call the update and rebind the datagrid
 Dim command As New SqlCommand()
 command.CommandText = cmd
 command.Connection = connection
 command.ExecuteNonQuery()

 DataGrid1.EditItemIndex = -1
 BindGrid()
 End Sub

End Class

13.4.1 Creating the EditTemplate Columns

To get started with this exercise, you'll create an .aspx page with just a single DataGrid control:

<asp:DataGrid
id="DataGrid1"
runat="server"
AutoGenerateColumns="False"
CellPadding="5"
HeaderStyle-BackColor="PapayaWhip"
BorderWidth="5px"
BorderColor="#000099"
AlternatingItemStyle-BackColor="LightGrey"
HeaderStyle-Font-Bold
EditItemStyle-BackColor="Yellow"
EditItemStyle-ForeColor="Black"
DataKeyField ="BugID"
OnEditCommand="OnEdit"
OnCancelCommand="OnCancel"
OnUpdateCommand="OnUpdate">

Once again, you will set AutoGenerateColumns to false. As you have in the past, you must set
DataKeyField to BugID so that the data grid can keep track of the primary key for each record on

your behalf. You'll see how this comes in handy when we're ready to update the database with the
edits you'll make.

There are three new attributes: OnEditCommand, OnCancelCommand , and OnUpdateCommand. These

are used to wire up the event handlers for the Edit, Cancel, and Update events, which are fired in
response to clicking on the Edit, Cancel, and Save links, respectively.

You create these links by adding an EditCommandColumn tag to your data grid:

<asp:EditCommandColumn

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EditText="Edit"
CancelText="Cancel"
UpdateText="Save" />

The EditText is displayed when not in edit mode. Clicking on that link redraws the data grid in edit
mode and displays the links with the text set in CancelText and UpdateText.

All that is left is to add the columns for each field you'll display in the data grid. You have a few
choices. For straightforward text, you can use a normal BoundColumn tag:

<asp:BoundColumn DataField="Description" HeaderText="Description" />

For columns that you do not want to be edited, you can add the ReadOnly attribute:

<asp:BoundColumn DataField="BugID" HeaderText="ID" ReadOnly="True" />

For some columns, you will want to take control of how the item is displayed in normal and in edit
mode. For example, the Version string is quite small, and you might want to control the size of the
text box used when editing the data. To accomplish this, you will add a TemplateColumn tag. Within
the TemplateColumn tag, you will add an ItemTemplate to control the display in normal mode, and
an EditItemTemplate to control the display in edit mode:

<asp:TemplateColumn HeaderText="Version">
 <ItemTemplate>
 <asp:Label
 Text='<%#
Convert.ToString(DataBinder.Eval(Container.DataItem,"Version")) %>'
 Runat="server" ID="lblVersion"/>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:TextBox
 Runat="server"
 ID="txtVersion"
 Text = '<%#
Convert.ToString(DataBinder.Eval(Container.DataItem,"Version")) %>'
 Width="30"
 />
 </EditItemTemplate>
</asp:TemplateColumn>

This is very similar to the way you created template columns in the previous section, except that in
this example, you add the new EditItemTemplate. In the code shown here, you display a text box

when you enter edit mode. The text box is initialized with the current value of the Version field.

For the Product and Reporter fields, you want to provide a drop-down with the legal values for each
field. To facilitate this, you'll create a code-behind method, GetValues, which takes the name of a
table and returns a DataReader object filled with the values in that table:

public System.Data.SqlClient.SqlDataReader GetValues(string tableName)
{
 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pwd=YourPassword; database=ProgASPDotNetBugs";

 // create and open the connection object
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // get records from the Bugs table
 string commandString = "Select * from " + tableName;

 // create the command object and set its
 // command string and connection
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.CommandText = commandString;
 command.Connection = connection;

 // create the DataReader and return it
 return command.ExecuteReader(CommandBehavior.CloseConnection);
}

Example 13-10 (at the end of this chapter) shows the corresponding VB .NET code.

There is nothing surprising about this method. What is new is that you will assign this method to the
Product EditItemTemplate declaratively. You will also set the DataTextField to determine what
value will be displayed in the drop-down, and you'll set the DataValueField to determine the value

held in the list box for each selection:

<asp:TemplateColumn HeaderText="Product">

 <ItemTemplate>
 <asp:Label
 Text='<%#
Convert.ToString(DataBinder.Eval(Container.DataItem,"ProductDescription"))
 %>'
 Runat="server" ID="lblProduct"/>
 </ItemTemplate>

 <EditItemTemplate>
 <asp:DropDownList
 Runat="server"
 ID="editProduct"
 DataSource='<%# GetValues("lkProduct") %>'
 DataTextField ="ProductDescription"
 DataValueField ="ProductID"
 Width ="200" />
 </EditItemTemplate>

</asp:TemplateColumn>

When not in edit mode, the ItemTemplate is used to display the asp:Label with the current value

taken from the ProductDescription field returned by the Sql query used to fill the data grid. When in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

edit mode, however, the asp:ListBox is populated by binding to the DataReader returned by

GetValues, and the Text and Value fields are bound based on the attributes shown.

The Reported By column is built in exactly the same way. Once again, you call GetValues, except that
this time you pass in the name of the People table. You bind the DataTextField to the FullName field
and the DataValueField to the PersonID field:

<asp:TemplateColumn HeaderText="Reported By">

 <ItemTemplate>
 <asp:Label Text='<%#
Convert.ToString(DataBinder.Eval(Container.DataItem,"FullName")) %>'
 ID="lblReported" Runat="server"/>
 </ItemTemplate>

 <EditItemTemplate>
 <asp:DropDownList
 Runat="server"
 ID="editReporter"
 DataSource='<%# GetValues("People") %>'
 DataTextField ="FullName"
 DataValueField ="PersonID"
 Width ="200" />
 </EditItemTemplate>
</asp:TemplateColumn>

13.4.2 Implementing the Edit Cycle

With the .aspx file in hand and the GetValues method working, you are able to display the items and
enter edit mode. All that remains is to write the event handlers.

The data grid is drawn in normal or edit mode based on the value of the EditItemIndex property of
the DataGrid control. Setting this zero-based property to a value other than -1 enables editing

controls for that item.

13.4.2.1 Implementing the OnEditCommand event handler

When the user clicks the Edit link on an item, the OnEditCommand event handler is called. At this
point, you have an opportunity to intercept the event and redirect editing in any way you want. You
could, for example, check permissions to see if the user is allowed to edit the item and cancel editing
if it should not be permitted. The simplest and most common thing to do, however, is simply to set
the DataGrid control's EditItemIndex property to the ItemIndex property of the data grid item that
was selected, and rebind the data grid, as shown in the following event handler:

public void OnEdit(Object source, DataGridCommandEventArgs e)
{
 DataGrid1.EditItemIndex = e.Item.ItemIndex;
 BindGrid();
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB .NET, this code is:

Public Sub OnEdit(ByVal source As Object, _
 ByVal e As DataListCommandEventArgs)
 DataList1.EditItemIndex = e.Item.ItemIndex
 BindGrid()
End Sub

The BindGrid method is the same method you called originally to populate the data grid:

private void BindGrid()
{
 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa;
 pwd=YourPassword; database=ProgASPDotNetBugs";

 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // get records from the Bugs table
 string commandString =
 "Select b.BugID, b.Version, b.Description, p.ProductDescription,";
 commandString += "peo.FullName from Bugs b ";
 commandString += "join lkProduct p on b.Product = p.ProductID ";
 commandString += "join People peo on b.Reporter = peo.PersonID ";

 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.CommandText = commandString;
 command.Connection = connection;

 SqlDataReader reader =
 command.ExecuteReader(CommandBehavior.CloseConnection);

 DataGrid1.DataSource=reader;
 DataGrid1.DataBind();
}

Example 13-10 (at the end of this chapter) shows the corresponding VB .NET code.

By rebinding the data grid with the EditItemIndex property set to the selected item (the row in the
data grid), that row will be displayed in edit mode.

13.4.2.2 Implementing the OnCancelCommand event handler

If the user clicks Cancel, you can reset the EditItemIndex property to -1 and rebind the data grid:

public void OnCancel(Object source, DataGridCommandEventArgs e)
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataGrid1.EditItemIndex = -1;
 BindGrid();
}

In VB.NET, this code is:

Public Sub OnCancel(ByVal source As Object, _
 ByVal e As DataListCommandEventArgs)
 DataList1.EditItemIndex = -1
 BindGrid()
End Sub

The data grid will be redrawn in normal mode.

13.4.2.3 Implementing the OnUpdateCommand event handler

The OnUpdateCommand event handler is where all the real action is. Here you want to extract the
new values from each of your widgets and then update the database accordingly.

There are two approaches to extracting the data. If you've used a bound control, as you have in this
example with the Version value, you can access the control directly through the Item property of the
DataGridCommandEventArgs parameter.

The Item property is of type DataGridItem. Every DataGridItem object has a Cells collection that it
inherits from the TableRow class. You can offset into that collection to extract the Controls collection
from the appropriate cell. The first control in that collection will be the text box. The Controls
collection returns an object of type Control, so you must cast it to TextBox. Once cast to TextBox,
you can access the Text property, which is a string:

string newDescription =
 ((TextBox) e.Item.Cells[1].Controls[0]).Text;

In VB.NET, this is done with a call to the CType function:

Dim newDescription As String = CType(e.Item.Cells(1).Controls(0), _
 TextBox).Text

The alternative method for extracting the data in your edit controls is to use the FindControl method
of the Item. You pass in the name of the control and get back an object of type Control, which again

you will cast:

string newVersion =
 ((TextBox)(e.Item.FindControl("txtVersion"))).Text;

In VB.NET, this would be done using:

Dim newVersion As String = CType(e.Item.FindControl("txtVersion"), TextBox).Text

When extracting the value from the drop-down listboxes, you will need to cast the Control object to a
DropDownList object and then access the SelectedItem property, which returns a ListItem object.
You can then access the Text property on that ListItem object to get the text displayed in the
selected list item, or, in this case, you can access the Value property. The code to do this in C# is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

string PersonID =
 ((DropDownList)(e.Item.FindControl("editReporter"))).
 SelectedItem.Value;

string ProductID =
 ((DropDownList)(e.Item.FindControl("editProduct"))).
 SelectedItem.Value;

The relationship between the Text and the Value properties of the listbox and
the values displayed and retrieved is established declaratively in the template
with the DataTextField and DataValueField attributes, respectively.

In VB.NET, the code is:

Dim PersonID As String = CType(e.Item.FindControl("editReporter"), _
 DropDownList).SelectedItem.Value

Dim ProductID As String = CType(e.Item.FindControl("editProduct"), _
 DropDownList).SelectedItem.Value

With the values retrieved from the controls, you are ready to formulate an Update statement and

update the database:

string cmd = "Update Bugs set Product = " + ProductID +
 ", Version = '" + newVersion +
 "', Description = '" + newDescription +
 " ', Reporter = " + PersonID +
 " where BugID = " + DataGrid1.DataKeys[e.Item.ItemIndex];

Notice that the Where clause includes the BugID from the current record. You obtain this by indexing

the selected item index into the data grid's DataKeys collection. This, finally, is why you set the
DataKeyField attribute on the data grid.

To invoke this SQL command you create the connection string and the connection object and use
both to set the properties of a SqlCommand object on which you invoke the ExecuteNonQuery

method:

// connect to the Bugs database
string connectionString =
 "server=YourServerYourServer; uid=sa; pwd=YourPWYourPW;" +
 "database=ProgASPDotNetBugs";

System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
connection.Open();

System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
command.CommandText = cmd;
command.Connection = connection;
command.ExecuteNonQuery();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB .NET, the code is this:

// connect to the Bugs database
Dim connectionString As String = _
 "server=YourServerYourServer; uid=sa; pwd=YourPWYourPW" & _
 "database=ProgASPDotNetBugs"

Dim connection As New _
 System.Data.SqlClient.SqlConnection(connectionString)
connection.Open()

Dim command As New System.Data.SqlClient.SqlCommand();
command.CommandText = cmd
command.Connection = connection
command.ExecuteNonQuery()

All that remains is to return to non-edit mode and rebind the data grid with the new values from the
newly updated database:

DataGrid1.EditItemIndex = -1;
BindGrid();

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.5 DataList Editing

The DataList control also provides extensive support for in-place editing. In the next example, you'll
modify the data list you built earlier to display Bugs, but this time you'll add in-place editing.

The same control over look and feel that the data list provides through templates can be extended to
the look and feel of the editing process. In the next example, you'll create a data list with two
columns of data. Each record will include an Edit button to put your grid into edit mode for that
record, as shown in Figure 13-4 .

Figure 13-4. The DataList with Edit buttons

When the user presses the Edit button the EditItemTemplate tag will dictate the exact look and feel

of the editing user interface, as shown in Figure 13-5 .

Figure 13-5. The DataList in edit mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To accomplish this, you'll create an .aspx file with a single data list. You'll add attributes to set the
edit, cancel, and update commands, and this time you'll also add an attribute for the delete
command. The DataList tag appears as follows:

<asp:DataList
id ="DataList1"
runat="server"
CellPadding="5"
HeaderStyle-BackColor="PapayaWhip"
BorderWidth="5px"
BorderColor="#000099"
AlternatingItemStyle-BackColor="LightGrey"
HeaderStyle-Font-Bold
EditItemStyle-BackColor="Yellow"
EditItemStyle-ForeColor="Black"
RepeatColumns="2"
RepeatDirection="Vertical"
DataKeyField ="BugID"
OnEditCommand="OnEdit"
OnDeleteCommand="OnDelete"
OnCancelCommand="OnCancel"
OnUpdateCommand="OnUpdate">

Within the DataList definition, you'll add templates for the header, items, edititems, separator, and

footer.

The Header, Separator, and Footer are unchanged from the previous example. The ItemTemplate is
also unchanged, except for the addition of a Button object before the <div> that holds the other

elements:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<ItemTemplate>
<asp:Button CommandName="Edit" Text="Edit" Runat="server" />
 <div class ="item">
Bug:
 <%# Convert.ToString(
 DataBinder.Eval(Container.DataItem, "BugID")) %>

Description:
 <%# Convert.ToString(
 DataBinder.Eval(Container.DataItem,"Description")) %>

Product:
 <%# Convert.ToString(
 DataBinder.Eval(Container.DataItem,"ProductDescription")) %>

Reported by:
 <%# Convert.ToString(
 DataBinder.Eval(Container.DataItem,"FullName")) %>
 </div>
</ItemTemplate>

So far, not much change from the previous data list. The one new element will be the
EditItemTemplate tag, which (no surprise) will be used to draw the data list item when it is in edit

mode.

You begin with the EditItemTemplate element. You will then add text to show the BugID. For

example:

<EditItemTemplate>
Bug:
<%# Convert.ToString(
 DataBinder.Eval(Container.DataItem, "BugID")) %>

With the BugID displayed, you want to place the three Buttons:

<asp:Button CommandName ="Update" Text="Update"
Runat="server" ID="btnUpdate" />

<asp:Button CommandName ="Delete" Text="Delete"
Runat="server" ID="btnDelete"/>

<asp:Button CommandName ="Cancel" Text="Cancel"
Runat="server" ID="btnCancel"/>

After the buttons, you'll add a break so that the edit boxes are each on their own line. The attributes
for the TextBox and DropDownLists are obtained directly from the previous example, as is the
supporting GetValues method:

<asp:TextBox
 Runat="server"
 ID="txtDescription"
 Text = '<%# Convert.ToString(
 DataBinder.Eval(Container.DataItem,"Description")) %>'
 Width="300"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 />

<asp:DropDownList
 Runat="server"
 ID="editProduct"
 DataSource='<%# GetValues("lkProduct") %>'
 DataTextField ="ProductDescription"
 DataValueField ="ProductID"
 Width ="300" />

<asp:DropDownList
 Runat="server"
 ID="editReporter"
 DataSource='<%# GetValues("People") %>'
 DataTextField ="FullName"
 DataValueField ="PersonID"
 Width ="300" />

 </EditItemTemplate>
</asp:DataList>

All that is left is to implement the event handlers. The Cancel and Edit events are nearly identical to
the previous example:

public void OnEdit(Object source, DataListCommandEventArgs e)
{
 DataList1.EditItemIndex = e.Item.ItemIndex;
 BindGrid();
}

public void OnCancel(Object source, DataListCommandEventArgs e)
{
 DataList1.EditItemIndex = -1;
 BindGrid();
}
Note: the VB.NET code is identical except for the semicolons.

The only change is to the type of the second argument, now set to DataListCommandEventArgs .

Both the Update and the Delete event handlers will need to invoke a SQL statement, so you'll factor
out the common code into a helper routine, ExecuteQuery:

private int ExecuteQuery(string sqlCmd)
{
 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa;
 pwd=YourPassword; database=ProgASPDotNetBugs";

 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 connection.Open();

 // call the update and rebind the datagrid
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.CommandText = sqlCmd;
 command.Connection = connection;
 return command.ExecuteNonQuery();
}

In VB.NET, the code is:

Private Function ExecuteQuery(ByVal sqlCmd As String) As Integer
 ' connect to the Bugs database
 Dim connectionString As String = "server=YourServer uid=sa " & _
 "pwd=YourPassword database=ProgASPDotNetBugs"

 Dim myConnection As New System.Data.SqlClient.SqlConnection(connectionString)
 myConnection.Open()

 ' call the update and rebind the datagrid
 Dim myCommand As New System.Data.SqlClient.SqlCommand()
 myCommand.CommandText = sqlCmd
 myCommand.Connection = myConnection
 Return myCommand.ExecuteNonQuery()
End Function

The Update statement is also very similar to that used in the previous example:

public void OnUpdate(Object source, DataListCommandEventArgs e)
{

 string PersonID =
 ((DropDownList)(e.Item.FindControl("editReporter"))).
 SelectedItem.Value;

 string newDescription =
 ((TextBox)(e.Item.FindControl("txtDescription"))).Text;

 string ProductID =
 ((DropDownList)(e.Item.FindControl("editProduct"))).
 SelectedItem.Value;

 // form the update statement
 string cmd = "Update Bugs set Product = " + ProductID +
 ", Description = '" + newDescription +
 " ', Reporter = " + PersonID +
 " where BugID = " + DataList1.DataKeys[e.Item.ItemIndex];

 ExecuteQuery(cmd);
 DataList1.EditItemIndex = -1;
 BindGrid();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

In VB.NET, the code is:

Public Sub OnUpdate(_
 ByVal source As Object, ByVal e As DataListCommandEventArgs)
 Dim PersonID As String = CType(e.Item.FindControl(_
 "editReporter"), DropDownList).SelectedItem.Value

 Dim newDescription As String = _
 CType(e.Item.FindControl("txtDescription"), _
 TextBox).Text

 Dim ProductID As String = CType(e.Item.FindControl(_
 "editProduct"), DropDownList).SelectedItem.Value

 Dim newVersion As String = CType(e.Item.FindControl(_
 "txtVersion"), TextBox).Text

 ' form the update statement
 Dim cmd As String = "Update Bugs set Product = " & ProductID & _
 ", Version = '" & newVersion & _
 "', Description = '" & newDescription & _
 " ', Reporter = " & PersonID & _
 " where BugID = " & DataList1.DataKeys(e.Item.ItemIndex)

 ExecuteQuery(cmd)
 DataList1.EditItemIndex = -1
 BindGrid()
End Sub

Notice that once again you use the DataKeys collection (this time of the DataList control) to retrieve
the BugID. This depends on your setting the DataKeyField attribute of the DataList.

Finally, you add a delete command event handler that forms the SQL statement to delete the current
record:

public void OnDelete(Object source, DataListCommandEventArgs e)
{

 string cmd = "Delete from Bugs where BugID = " +
 DataList1.DataKeys[e.Item.ItemIndex];
 int rowsDeleted = ExecuteQuery(cmd);

 DataList1.EditItemIndex = -1;
 BindGrid();
}

In VB.NET, the code is:

Public Sub OnDelete(_
 ByVal source As Object, ByVal e As DataListCommandEventArgs)
 Dim cmd As String = "Delete from Bugs where BugID = " & _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataList1.DataKeys(e.Item.ItemIndex)
 DataList1.EditItemIndex = -1
 BindGrid()
End Sub

The complete C# listing is shown in Example 13-9 and the VB.NET code in Example 13-10 .

Example 13-9. Using the DataList to edit in place (C#)

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace BugHistoryInPlaceDataListEdit
{
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.DataList DataList1;
 protected System.Web.UI.WebControls.ListBox lbReportedby;
 public System.Data.SqlClient.SqlDataReader personReader;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (! Page.IsPostBack)
 {
 BindGrid();
 }
 }

 // extract the bug records and bind to the datagrid
 private void BindGrid()
 {
 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa; pwd=YourPW; database=ProgASPDotNetBugs";

 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 connection.Open();

 // get records from the Bugs table
 string commandString =
 "Select b.BugID, b.Version, b.Description, ";
 commandString += "p.ProductDescription, peo.FullName from Bugs b ";
 commandString += "join lkProduct p on b.Product = p.ProductID ";
 commandString += "join People peo on b.Reporter = peo.PersonID ";

 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.CommandText = commandString;
 command.Connection = connection;

 // Create the Reader adn bind it to the datagrid
 SqlDataReader reader =
 command.ExecuteReader(CommandBehavior.CloseConnection);
 DataList1.DataSource=reader;
 DataList1.DataBind();
 }

 // Given the name of a table, return a DataReader for
 // all values from that table
 public System.Data.SqlClient.SqlDataReader GetValues(string tableName)
 {
 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa; pwd=YourPW; database=ProgASPDotNetBugs";

 // create and open the connection object
 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // get records from the Bugs table
 string commandString = "Select * from " + tableName;

 // create the command object and set its
 // command string and connection
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.CommandText = commandString;
 command.Connection = connection;

 // create the DataReader and return it
 return command.ExecuteReader(CommandBehavior.CloseConnection);

 }

 // Handle the Edit event - set the EditItemIndex of the
 // selected row

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void OnEdit(Object source, DataListCommandEventArgs e)
 {
 DataList1.EditItemIndex = e.Item.ItemIndex;
 BindGrid();
 }

 private int ExecuteQuery(string sqlCmd)
 {
 // connect to the Bugs database
 string connectionString =
 "server=YourServer; uid=sa; pwd=YourPW; database=ProgASPDotNetBugs";

 System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString);
 connection.Open();

 // call the update and rebind the datagrid
 System.Data.SqlClient.SqlCommand command =
 new System.Data.SqlClient.SqlCommand();
 command.CommandText = sqlCmd;
 command.Connection = connection;
 return command.ExecuteNonQuery();
 }

 public void OnDelete(Object source, DataListCommandEventArgs e)
 {

 string cmd = "Delete from Bugs where BugID = " +
 DataList1.DataKeys[e.Item.ItemIndex];
 int rowsDeleted = ExecuteQuery(cmd);

 DataList1.EditItemIndex = -1;
 BindGrid();
 }

 // Handle the cancel event - set the EditItemIndex to -1
 public void OnCancel(Object source, DataListCommandEventArgs e)
 {
 DataList1.EditItemIndex = -1;
 BindGrid();

 }

 // Handle the Update event
 // Extract the new values
 // Update the database and rebind the datagrid
 public void OnUpdate(Object source, DataListCommandEventArgs e)
 {

 string PersonID =
 ((DropDownList)(e.Item.FindControl("editReporter"))).
 SelectedItem.Value;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 string newDescription =
 ((TextBox)(e.Item.FindControl("txtDescription"))).Text;

 string ProductID =
 ((DropDownList)(e.Item.FindControl("editProduct"))).
 SelectedItem.Value;

 // form the update statement
 string cmd = "Update Bugs set Product = " + ProductID +
 ", Description = '" + newDescription +
 " ', Reporter = " + PersonID +
 " where BugID = " + DataList1.DataKeys[e.Item.ItemIndex];

 ExecuteQuery(cmd);
 DataList1.EditItemIndex = -1;
 BindGrid();

 }

 private void Page_Init(object sender, EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
 }
}

Example 13-10. Using the DataList to edit in place (VB.NET)

Imports System.Data.SqlClient

Public Class WebForm1
 Inherits System.Web.UI.Page

 Protected WithEvents DataList1 As System.Web.UI.WebControls.DataList
 Protected WithEvents lbReportedby As System.Web.UI.WebControls.ListBox
 Public personReader As System.Data.SqlClient.SqlDataReader

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 If Not Page.IsPostBack Then
 BindGrid()
 End If
 End Sub

 ' extract the bug records and bind to the datagrid
 Private Sub BindGrid()
 ' connect to the Bugs database
 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPW; " & _
 "database=ProgASPDotNetBugs"

 Dim connection As New SqlConnection(connectionString)
 connection.Open()

 ' get records from the Bugs table
 Dim commandString As String = _
 "Select b.BugID, b.Version, b.Description, " & _
 "p.ProductDescription, peo.FullName from Bugs b " & _
 "join lkProduct p on b.Product = p.ProductID " & _
 "join People peo on b.Reporter = peo.PersonID "

 Dim command As New SqlCommand()

 command.CommandText = commandString
 command.Connection = connection

 ' Create the Reader and bind it to the datagrid
 Dim reader As SqlDataReader = _
 command.ExecuteReader(CommandBehavior.CloseConnection)
 DataList1.DataSource = reader
 DataList1.DataBind()
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Given the name of a table, return a DataReader for
 ' all values from that table
 Public Function GetValues(ByVal tableName As String) As SqlDataReader
 ' connect to the Bugs database
 Dim connectionString As String = _
 "server=YourServer; uid=sa; " & _
 "pwd=YourPassword; database=ProgASPDotNetBugs"

 ' create and open the connection object
 Dim connection As New SqlConnection(connectionString)
 connection.Open()

 ' get records from the Bugs table
 Dim commandString As String = "Select * from " & tableName

 ' create the command object and set its
 ' command string and connection
 Dim command As New SqlCommand()

 command.CommandText = commandString
 command.Connection = connection

 ' create the DataReader and return it
 Return command.ExecuteReader(CommandBehavior.CloseConnection)
 End Function

 ' Handle the Edit event - set the EditItemIndex of the
 ' selected row
 Public Sub OnEdit(ByVal source As Object, ByVal e As DataListCommandEventArgs)
 DataList1.EditItemIndex = e.Item.ItemIndex
 BindGrid()
 End Sub

 ' Handle the cancel event - set the EditItemIndex to -1
 Public Sub OnCancel(ByVal source As Object, ByVal e As DataListCommandEventArgs)
 DataList1.EditItemIndex = -1
 BindGrid()
 End Sub

 ' Handle the delete event
 Public Sub OnDelete(ByVal source As Object, ByVal e As DataListCommandEventArgs)
 Dim cmd As String = "Delete from Bugs where BugID = " & _
 DataList1.DataKeys(e.Item.ItemIndex)
 DataList1.EditItemIndex = -1
 BindGrid()
 End Sub

 ' Handle the Update event
 ' Extract the new values
 ' Update the database and rebind the datagrid
 Public Sub OnUpdate(ByVal source As Object, ByVal e As DataListCommandEventArgs)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim PersonID As String = CType(e.Item.FindControl(_
 "editReporter"), DropDownList).SelectedItem.Value

 Dim newDescription As String = CType(e.Item.FindControl("txtDescription"), _
 TextBox).Text

 Dim ProductID As String = CType(e.Item.FindControl(_
 "editProduct"), DropDownList).SelectedItem.Value

 Dim newVersion As String = CType(e.Item.FindControl(_
 "txtVersion"), TextBox).Text

 ' form the update statement
 Dim cmd As String = "Update Bugs set Product = " & ProductID & _
 ", Version = '" & newVersion & _
 "', Description = '" & newDescription & _
 " ', Reporter = " & PersonID & _
 " where BugID = " & DataList1.DataKeys(e.Item.ItemIndex)

 ExecuteQuery(cmd)
 DataList1.EditItemIndex = -1
 BindGrid()
 End Sub
 Private Function ExecuteQuery(ByVal sqlCmd As String) As Int32
 ' connect to the Bugs database
 Dim connectionString As String = _
 "server=YourServer; uid=sa; pwd=YourPW;" & _
 "database=ProgASPDotNetBugs"

 Dim myConnection As New System.Data.SqlClient.SqlConnection(connectionString)
 myConnection.Open()

 ' call the update and rebind the datagrid
 Dim myCommand As New System.Data.SqlClient.SqlCommand()
 myCommand.CommandText = sqlCmd
 myCommand.Connection = myConnection
 Return myCommand.ExecuteNonQuery()
 End Function
End Class

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 14. Custom and User Controls
Chapter 4 includes a chart of the five types of controls supported in ASP.NET: HTML controls, HTML
server controls, web server controls, validation controls, and controls created by the developer. This
chapter discusses this last type of control, known as custom controls, and a subset of them called
user controls.

Custom controls are compiled controls that act, from the client's perspective, much like web (ASP)
controls. Custom controls can be created in one of three ways:

By deriving a new custom control from an existing control (e.g., deriving your own specialized
text box from asp:textbox). This is known as a derived custom control .

By composing a new custom control out of two or more existing controls. This is known as a
composite custom control .

By deriving from the base control class, thus creating a new custom control from scratch. This is
known as a full custom control .

Of course, all three of these methods, and the three control types that correspond to them, are
variations on the same theme. We'll consider these custom controls later in this chapter. The simplest
category of custom controls is a subset called user controls. Microsoft distinguishes user controls as a
special case because they are quite different from other types of custom controls. In short, user
controls are segments of ASP.NET pages that can be reused from within other pages. This is similar
to "include files" familiar to ASP developers. However, user controls are far more powerful. User
controls support properties and events, and thus provide reusable functionality as well as reusable
HTML.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.1 User Controls

User controls allow you to save a part of an existing ASP.NET page and reuse it in many other
ASP.NET pages. A user control is almost identical to a normal .aspx page, with two differences: the
user control has the .ascx extension rather than .aspx , and it may not have <HTML> , <Body> , or
<Form> tags.

The simplest user control is one that displays HTML only. A classic example of a simple user control is
an HTML page that displays a copyright notice. Example 14-1 shows the complete listing for
copyright.ascx .

Example 14-1. copyright.ascx

<%@ Control %>
<hr>
<table>
 <tr>
 <td align="center">Copyright 2005 Liberty Associates, Inc.</td>
 </tr>
 <tr>
 <td align="center">Support at http://www.LibertyAssociates.com</td>
 </tr>
</table>

To see this at work, you'll modify Example 8-1 , adding just two lines. At the top of the .aspx file,
you'll add the registration of your new user control:

<%@Register tagprefix="OReilly" Tagname="copyright" src="copyright.ascx" %>

This registers the control with the page and establishes both the prefix (O'Reilly) and the TagName
(copyright). In the page you are modifying, there are any number of ASP elements such as
<asp:ListItem> . The letters asp before the colon are the tag prefix that identifies this tag as being
a web control, and the token ListItem is the TagName.

Your user controls will have a tag prefix as well (in this case, Oreilly) , in addition to a specific tag
name (in this case, copyright) . Interestingly, there is nothing in the .ascx file itself that identifies

the tag prefix.

The modified .aspx code is shown in Example 14-2 . The output from this page is shown in Figure 14-
1 .

Example 14-2. Modification of Example 8-1

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false" Inherits="Validation04.WebForm1" %>

<%@Register tagprefix="OReilly" Tagname="copyright" src="copyright.ascx" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<HTML>
 <HEAD>

<!-- Demonstrate simple required field validation -->
 <meta name=vs_targetSchema content="Internet Explorer 5.0">
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 </HEAD>
 <body>
 <h3>
 Bug Report
 </h3>
 <form runat="server" ID="frmBugs">
 <table bgcolor=gainsboro cellpadding=10>
 <tr valign="top">
 <td colspan=3>
 <!-- Display error messages -->
 <asp:Label ID="lblMsg"
 Text="Please report your bug here"
 ForeColor="red" Font-Name="Verdana"
 Font-Size="10" runat=server />

 </td>
 </tr>
 <tr>
 <td align=right>
 Book
 </td>
 <td>
 <!-- Drop down list with the books (must pick one) -->
 <ASP:DropDownList id=ddlBooks runat=server>
 <asp:ListItem>-- Please Pick A Book --</asp:ListItem>
 <asp:ListItem>Programming ASP.NET</asp:ListItem>
 <asp:ListItem>Programming C#</asp:ListItem>
 <asp:ListItem>
 Teach Yourself C++ In 21 Days
 </asp:ListItem>
 <asp:ListItem>
 Teach Yourself C++ In 24 Hours
 </asp:ListItem>
 <asp:ListItem>TY C++ In 10 Minutes</asp:ListItem>
 <asp:ListItem>TY More C++ In 21 Days</asp:ListItem>
 <asp:ListItem>C++ Unleashed</asp:ListItem>
 <asp:ListItem>C++ From Scratch</asp:ListItem>
 <asp:ListItem>XML From Scratch</asp:ListItem>
 <asp:ListItem>Web Classes FS</asp:ListItem>
 <asp:ListItem>Beg. OO Analysis & Design</asp:ListItem>
 <asp:ListItem>Clouds To Code</asp:ListItem>
 <asp:ListItem>
 CIG Career Computer Programming
 </asp:ListItem>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </ASP:DropDownList>
 </td>
 <!-- Validator for the drop down -->
 <td align=middle rowspan=1>
 <asp:RequiredFieldValidator
 id="reqFieldBooks"
 ControlToValidate="ddlBooks"
 Display="Static"
 InitialValue="-- Please Pick A Book --"
 Width="100%" runat=server>
 Please choose a book
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td align=right>
 <!-- Radio buttons for the edition -->
 Edition:
 </td>
 <td>
 <ASP:RadioButtonList id=rblEdition
 RepeatLayout="Flow" runat=server>
 <asp:ListItem>1st</asp:ListItem>
 <asp:ListItem>2nd</asp:ListItem>
 <asp:ListItem>3rd</asp:ListItem>
 <asp:ListItem>4th</asp:ListItem>
 </ASP:RadioButtonList>
 </td>
 <!-- Validator for editions -->
 <td align=middle rowspan=1>
 <asp:RequiredFieldValidator
 id="reqFieldEdition"
 ControlToValidate="rblEdition"
 Display="Static"
 InitialValue=""
 Width="100%" runat=server>
 Please pick an edition
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td align=right style="HEIGHT: 97px">
 Bug:
 </td>
 <!-- Multi-line text for the bug entry -->
 <td style="HEIGHT: 97px">
 <ASP:TextBox id=txtBug runat=server width="183px"
 textmode="MultiLine" height="68px"/>
 </td>
 <!-- Validator for the text box-->
 <td style="HEIGHT: 97px">
 <asp:RequiredFieldValidator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 id="reqFieldBug"
 ControlToValidate="txtBug"
 Display="Static"
 Width="100%" runat=server>
 Please provide bug details
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td>
 </td>
 <td>
 <ASP:Button id=btnSubmit
 text="Submit Bug" runat=server />
 </td>
 <td>
 </td>
 </tr>
 </table>
 </form>
<OReilly:copyright runat="server" />
 </body>
</HTML>

In Figure 14-1 , the horizontal rule at the bottom of the page, and the copyright notice below it,
comes from the .ascx user control you've created. This control can be reused in many pages. If you
update the copyright, you will make that update only in the one .ascx file, and it will be displayed
appropriately in all the pages that use that control.

In the next example, you will recreate the book drop-down list itself, this time as a user control. The
process of converting part of an existing HTML page into a user control is very simple; you just
extract the code that creates the drop-down list into its own HTML file and name that file with the
.ascx extension.

Visual Studio .NET provides support for creating user controls. Right-click on the project and choose
Add Add New Item. One of the choices is New User Control. This choice opens a new form. The
HTML at the top of the form includes the Control directive, which sets the language attributes, etc.

Rename the new item BookList.ascx and copy in the code for creating the book list, as shown in

Example 14-3 .

Example 14-3. The BookList user control

<!-- Drop down list with the books (must pick one) -->
 <ASP:DropDownList id=ddlBooks runat=server>
 <asp:ListItem>-- Please Pick A Book --</asp:ListItem>
 <asp:ListItem>Programming ASP.NET</asp:ListItem>
 <asp:ListItem>Programming C#</asp:ListItem>
 <asp:ListItem>
 Teach Yourself C++ In 21 Days
 </asp:ListItem>
 <asp:ListItem>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Teach Yourself C++ In 24 Hours
 </asp:ListItem>
 <asp:ListItem>TY C++ In 10 Minutes</asp:ListItem>
 <asp:ListItem>TY More C++ In 21 Days</asp:ListItem>
 <asp:ListItem>C++ Unleashed</asp:ListItem>
 <asp:ListItem>C++ From Scratch</asp:ListItem>
 <asp:ListItem>XML From Scratch</asp:ListItem>
 <asp:ListItem>Web Classes FS</asp:ListItem>
 <asp:ListItem>Beg. OO Analysis & Design</asp:ListItem>
 <asp:ListItem>Clouds To Code</asp:ListItem>
 <asp:ListItem>
 CIG Career Computer Programming
 </asp:ListItem>
 </ASP:DropDownList>

Figure 14-1. The copyright user control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Example 14-3 , you'll strip out the validator code, to keep the focus on
working with the user control. The validator can be used with the user control
exactly as it was with the ASP control.

To make this work in your page, you'll add a new Register statement:

<%@Register tagprefix="OReilly" Tagname="bookList" src="bookList.ascx" %>

In the body of the page, you'll add the new user control, exactly where you cut the original code:

<OReilly:bookList runat="server" ID="Booklist"/>

14.1.1 Adding Code

So far, all you've put into the user control is straight HTML. This is simple, but also somewhat limited.
There is no reason to so severely limit the user control. In the next example, you'll add support for
filling the list box with books from a database. To do so, you'll need to add a table to the
ProgASPNetBugs database, as shown in Figure 14-2 .

Figure 14-2. Design of the Books table

You'll also need to populate this table with the values shown in Figure 14-3 , or simply download the
entire database with data already provided.

Figure 14-3. Contents of the Books table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You are ready to fill the list box dynamically, using data binding. Strip out all the code that fills the list
box by hand. This reduces Example 14-3 to two lines:

<ASP:DropDownList id=ddlBooks runat=server>
</ASP:DropDownList>

The key to making this work is now in the Control tag:

<%@ Control Language="c#" AutoEventWireup="false"
Codebehind="BookList.ascx.cs"
Inherits="UserControl1.WebUserControl1"%>

The Codebehind attribute points to the code-behind page. In that page, you'll add code to the

Page_Load method to bind the list box to the appropriate table in the database. That code is shown in
Example 14-4 for C# and Example 14-5 for VB.NET.

Example 14-4. C# Page_Load from the code-behind page for the user
control

private void Page_Load(object sender, System.EventArgs e)
{
 if (!IsPostBack)
 {
 string connectionString =
 "server= " + ServerName +
 "; uid=sa;pwd=" +
 Password + "; database= " + DB;

 // get records from the Bugs table
 string commandString =
 "Select BookName from Books";

 // create the data set command object
 // and the DataSet
 SqlDataAdapter dataAdapter =
 new SqlDataAdapter(
 commandString, connectionString);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataSet dataSet = new DataSet();

 // fill the data set object
 dataAdapter.Fill(dataSet,"Bugs");

 // Get the one table from the DataSet
 DataTable dataTable = dataSet.Tables[0];
 ddlBooks.DataSource = dataTable.DefaultView;
 ddlBooks.DataTextField = "BookName";
 ddlBooks.DataBind();
 }

Example 14-5. VB.NET Page_Load from the code-behind page for the user
control

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 If Not IsPostBack Then
 Dim connectionString As String = _
 "server= " & ServerName & _
 "; uid=sa;pwd=" & _
 Password & "; database= " & DB

 ' get records from the Bugs table
 Dim commandString As String = _
 "Select BookName from Books"

 ' create the data set command object
 ' and the DataSet
 Dim dataAdapter as SqlDataAdapter = _
 new SqlDataAdapter(_
 commandString, connectionString)

 Dim dataSet As DataSet = New DataSet()

 ' fill the data set object
 dataAdapter.Fill(dataSet, "Books")

 ' Get the one table from the DataSet
 Dim dataTable As DataTable = dataSet.Tables(0)

 ddlBooks.DataSource = dataTable.DefaultView
 ddlBooks.DataTextField = "BookName"
 ddlBooks.DataBind()
 End If
 End Sub

The host page does not change at all. The updated user control now works as intended, loading the
list of books from the database, as shown in Figure 14-4 .

Figure 14-4. Loading the book list from the database in a user control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.1.2 @Control Properties

There can be only one @Control directive for each user control. This attribute is used by the ASP.NET

page parser and compiler to set attributes for your user control. Possible values are shown in Table
14-1 .

Table 14-1. Values for @Control properties

Attribute Description Possible values

AutoEventWireup
true (the default) indicates the page automatically
posts back to the server. If false , the developer must

fire the server event manually.

true or false ;
default is true .

ClassName The class name for the page. Any valid class name.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description Possible values

CompilerOptions Passed to compiler.
Any valid compiler
string indicating
options.

Debug Whether to compile with debug symbols.
true or false ;
default is false .

Description Text description of the page. Any valid text.

EnableViewState Is view state maintained for the user control?
true or false ;
default is true .

Explicit Should page be compiled with VB.NET option explicit?
true or false ;
default is false .

Inherits Defines a code-behind class.
Any class derived from
UserControl.

Language
The language used for inline rendering and server-side
script blocks.

Any .NET-supported
language.

Strict Page should be compiled using VB.NET Strict option.
true or false ;
default is false .

Src Name of the source file for the code-behind. Any valid filename.

WarningLevel Compiler warning level at which compilation will abort. 0 -4 .

The src attribute is not used in Visual Studio .NET. VS.NET uses precompiled
code-behind classes with the Inherits attribute.

14.1.3 Adding Properties

You can make your user control far more powerful by adding properties. Properties allow your client
(in this case WebForm1) to interact with your control, setting attributes either declaratively (when the
user control is added to the form) or programmatically (while the program is running).

You can, for example, give your book list control properties for the server name, the password, and
the database to which you will connect. You do this in four steps:

Create a property. You must decide if you will provide a read-write, read-only, or write-only
property. For this example, you'll provide read-write properties.

1.

Provide an underlying value for the property. You can do this by computing the property,
retrieving it from a database or, as you'll do here, storing the underlying value in a private
member variable. You must also decide if you'll provide a default value for your properties.

2.

Integrate the underlying values into the body of the code.3.

Set the property from the client, either declaratively (as an attribute) or programmatically.4.

CompilerOptions Passed to compiler.
Any valid compiler
string indicating
options.

Debug Whether to compile with debug symbols.
true or false ;
default is false .

Description Text description of the page. Any valid text.

EnableViewState Is view state maintained for the user control?
true or false ;
default is true .

Explicit Should page be compiled with VB.NET option explicit?
true or false ;
default is false .

Inherits Defines a code-behind class.
Any class derived from
UserControl.

Language
The language used for inline rendering and server-side
script blocks.

Any .NET-supported
language.

Strict Page should be compiled using VB.NET Strict option.
true or false ;
default is false .

Src Name of the source file for the code-behind. Any valid filename.

WarningLevel Compiler warning level at which compilation will abort. 0 -4 .

The src attribute is not used in Visual Studio .NET. VS.NET uses precompiled
code-behind classes with the Inherits attribute.

14.1.3 Adding Properties

You can make your user control far more powerful by adding properties. Properties allow your client
(in this case WebForm1) to interact with your control, setting attributes either declaratively (when the
user control is added to the form) or programmatically (while the program is running).

You can, for example, give your book list control properties for the server name, the password, and
the database to which you will connect. You do this in four steps:

Create a property. You must decide if you will provide a read-write, read-only, or write-only
property. For this example, you'll provide read-write properties.

1.

Provide an underlying value for the property. You can do this by computing the property,
retrieving it from a database or, as you'll do here, storing the underlying value in a private
member variable. You must also decide if you'll provide a default value for your properties.

2.

Integrate the underlying values into the body of the code.3.

Set the property from the client, either declaratively (as an attribute) or programmatically.4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

4.

14.1.3.1 Creating a property

There is nothing special about the property for the user control; you create it as you would any
property for a class. In C#, this takes the form:

public string ServerName
{
 get
 {
 return serverName;
 }
 set
 {
 serverName = value;
 }
}
public string Password
{
 get { return password; } set { password = value; }
}

public string DB
{
 get { return db; } set { db = value; }
}

In VB.NET, the code is:

Public Property ServerName As String
 Get
 Return sServerName
 End Get
 Set(ByVal Value As String)
 sServerName = Value
 End Set
End Property

Public Property Password As String
 Get
 Return sPassword
 End Get
 Set(ByVal Value As String)
 sPassword = Value
 End Set
End Property

Public Property DB As String
 Get
 Return sDB
 End Get
 Set(ByVal Value As String)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sDB = Value
 End Set
End Property

Note that you can take advantage of C#'s case-sensitivity to differentiate the property name (such as
ServerName) from the private variable representing the underlying property value (such as
serverName). However, because VB.NET is case-insensitive, you must use a property name (such as
ServerName) that is clearly distinctive from the private variable holding the underlying property value
(such as sServerName).

When coding in C#, we tend to prefer the more extended property declaration style, as shown with
ServerName. However, in this book, we often use the terser form to save space, as shown for
Password and DB.

14.1.3.2 Providing an underlying value for the property

You certainly can compute the value of a property, or look up the value in a database. In this
example, however, you'll simply create member variables to hold the underlying value. In C#, the
code is:

private string serverName;
private string password;
private string db = "ProgASPDotNetBugs";

In VB.NET, it's:

Private sServerName, sPassword As String
Private sDB As String = "ProgASPDotNegBugs"

Acting in the role of control designer, you have decided to provide a default value for the db property
(the name of the database), but you have not provided a default value for the name of the server or
the sa (system administrator) password. This is appropriate; you can safely assume the database is
ProgASPDotNetBugs, but you can't possibly know in advance what database server will be used, or
what the sa password is.

14.1.3.3 Integrating the property into your code

Having declared the properties, you must now modify the connection string to use the properties,
rather than the hard-coded values. In C#, the code is:

string connectionString =
 "server= " + serverName +
 "; uid=sa;pwd=" +
 password + "; database= " + db;

In VB.NET, it's:

Dim connectionString As String = _
 "server= " & sServerName & _
 "; uid=sa;pwd=" & _
 sPassword & "; database= " & sDB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here you concatenate hard-coded string values ("server=") with the member variables that will be set
through the properties. You could, as an alternative, just use the properties' Get accessors, rather

than using the underlying values:

string connectionString =
 "server= " + ServerName +
 "; uid=sa;pwd=" +
 Password + "; database= " + DB;

While using the underlying value is trivially more efficient, using the property has the advantage of
allowing you to change the implementation of the property without breaking this code.

14.1.3.4 Setting the property from the client

In the client you must now provide values for the two required attributes, ServerName and Password

, and you may provide a value for the DB property. For example, you might write:

<OReilly:bookList runat="server" ID="Booklist"
DB="ProgASPDotNetBugs" Password="yourPassWord"
ServerName="YourServer"

Notice that in the preceding code, you have provided a value for the DB property. This code will
continue to work if you leave out this attribute, but adding it makes the code self-documenting.

14.1.4 Handling Events

Event handling with user controls can be a bit confusing. Within a user control (e.g., bookList), you
may have other controls (e.g., a list box). If those internal controls fire events, you'll need to handle
them within the user control itself. The page the user control is placed in will never see those events.

That said, a user control itself can raise events. You may raise an event in response to events raised
by internal controls, in response to user actions or system activity, or for any reason you choose.

14.1.4.1 Handling events in C#

You declare new events for the user control just as you would for any class. Example 14-6 shows the
complete code listing for BookList.ascx.cs .

Example 14-6. BookList.ascx.cs

namespace UserControl2A1
{
 using System;
 using System.Data;
 using System.Data.SqlClient;
 using System.Drawing;
 using System.Web;
 using System.Web.UI.WebControls;
 using System.Web.UI.HtmlControls;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public abstract class BookList : System.Web.UI.UserControl
 {
 protected System.Web.UI.WebControls.DropDownList ddlBooks;
 private string serverName;
 private string password = "myPassword";
 private string db = "ProgASPDotNetBugs";

 public delegate void
 ListChangedHandler(object sender, EventArgs e);
 public event ListChangedHandler ListChanged;

 protected virtual void OnListChanged(EventArgs e)
 {
 if (ListChanged != null)
 ListChanged(this, e);
 }

 public string ServerName
 {
 get
 {
 return serverName;
 }
 set
 {
 serverName = value;
 }
 }
 public string Password
 {
 get { return password; }
 set { password = value; }
 }

 public string DB
 {
 get { return db; }
 set { db = value; }
 }

 public BookList()
 {
 this.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!IsPostBack)
 {
 string connectionString =
 "server= " + ServerName +
 "; uid=sa;pwd=" +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Password + "; database= " + DB;

 // get records from the Bugs table
 string commandString =
 "Select BookName from Books";

 // create the data set command object
 // and the DataSet
 SqlDataAdapter dataAdapter =
 new SqlDataAdapter(
 commandString, connectionString);

 DataSet dataSet = new DataSet();

 // fill the data set object
 dataAdapter.Fill(dataSet,"Bugs");

 // Get the one table from the DataSet
 DataTable dataTable = dataSet.Tables[0];

 ddlBooks.DataSource = dataTable.DefaultView;
 ddlBooks.DataTextField = "BookName";
 ddlBooks.DataBind();
 }

 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.ddlBooks.SelectedIndexChanged +=
 new System.EventHandler(this.OnSelectedIndexChanged);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 public class BookListArgs : EventArgs
 {
 public string bookSelected;
 }

 private void OnSelectedIndexChanged(
 object sender, System.EventArgs e)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 OnListChanged(e);
 }
 }
}

You start by declaring a delegate that describes the event procedure:

public delegate void ListChangedHandler(object sender, EventArgs e);

You then declare the event itself:

public event ListChangedHandler ListChanged;

You must create a method that begins with the letters "On" followed by the name of the event, as
follows:

protected virtual void OnListChanged(EventArgs e)
{
}

This method typically checks that the event has one or more handlers registered, and if so, it raises
the event, as the following code shows:

protected virtual void OnListChanged(EventArgs e)
{
 if (ListChanged != null)
 ListChanged(this, e);
}

You are ready to test the event. For this example, go back to the list box within the book list user
control and add an event handler for the selected item being changed:

private void OnSelectedIndexChanged (object sender, System.EventArgs e)
{
 OnListChanged(e);
}

When the item is changed, you call the OnListChanged method, which in turn fires the ListChanged

event. More about this shortly.

Your web page can add an event handler for its BookList element. The declaration in the .aspx page is
unchanged:

<td><OREILLY:BOOKLIST id=Booklist runat="server"
 ServerName="yourServer" Password="yourPW"
 DB="ProgASPDotNetBugs"></OReilly:bookList></TD></TR>

The code-behind changes, however. To register the event, you'll need an instance of a booklist
object:

protected UserControl3.BookList Booklist;

You now have only to register the event handler. Within the InitializeComponent method of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WebForm1.aspx.cs , add this code:

this.Booklist.ListChanged +=
new UserControl3.BookList.ListChangedHandler(this.Booklist_ListChanged);

The event handler Booklist_ListChanged is thus wired to the ListChanged event of the booklist. When
the user chooses a book, the internal list box fires a postback event, the OnSelectedIndexChanged
event fires within the .ascx page, and the OnSelectedIndexChanged event handler within the user
control responds.

When the ListChanged event is fired, it is caught in the containing page's BookList_ListChanged
method, and the label is updated:

public void Booklist_ListChanged(object sender, System.EventArgs e)
{
 lblMsg.Text = "The list changed!!";
}

To the user, it appears just as it should; the list box within the user control appears just to be another
control with which the user can interact, as shown in Figure 14-5 .

Figure 14-5. The List event fired

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.1.4.2 Handling events in VB.NET

Defining a custom event, trapping the DropDownList control's SelectedIndexChanged event, raising a
custom event, and handling it within the .aspx page are very easy and require fewer lines of code in
VB.NET than in C#. Within the class definition of the BookList control, you simply declare the event
and its signature, as follows:

Public Event ListChanged(ByVal sender As Object, ByVal e As EventArgs)

Since Visual Studio automatically declares the DropDownList control in the code-behind file using the
WithEvents keyword, the control's events are automatically trapped by VB.NET, and any event

handler, if one is present, is executed. Hence, you simply need to define the following event handler,
which raises the custom ListChanged event:

Private Sub ddlBooks_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles ddlBooks.SelectedIndexChanged
 RaiseEvent ListChanged(sender, e)
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

That's all the code that's required in the user control's code-behind file. In the ASP.NET application,
you have to declare the instance of the Booklist class using the WithEvents keyword:

Protected WithEvents Booklist1 As UserControl1VB.Booklist

The final step is to provide the event handler, as follows:

Private Sub Booklist1_ListChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Booklist1.ListChanged
 lblMsg.Text = "The list changed!!"
End Sub

The code-behind page for the Booklist user control is shown in Example 14-7 .

Example 14-7. The VB.NET version of the Booklist user control's code-
behind file

Imports System.Data.OleDb

Public MustInherit Class Booklist
 Inherits System.Web.UI.UserControl

 Protected WithEvents ddlBooks As System.Web.UI.WebControls.DropDownList
 Public Event ListChanged(ByVal sender As Object, ByVal e As EventArgs)

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 If Not IsPostBack Then
 Dim connectionString As String = _
 "server= " & ServerName &
 "; uid=sa;pwd=" &
 Password & "; database= " & DB

 ' get records from the Bugs table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim commandString As String = _
 "Select BookName from Books"

 ' create the data set command object
 ' and the DataSet
 Dim dataAdapter as SqlDataAdapter = _
 new SqlDataAdapter(_
 commandString, connectionString);

 Dim dataSet As DataSet = New DataSet()

 ' fill the data set object
 dataAdapter.Fill(dataSet, "Books")

 ' Get the one table from the DataSet
 Dim dataTable As DataTable = dataSet.Tables(0)

 ddlBooks.DataSource = dataTable.DefaultView
 ddlBooks.DataTextField = "BookName"
 ddlBooks.DataBind()
 End If

 End Sub

 Private Sub ddlBooks_SelectedIndexChanged(ByVal sender As Object,_
 ByVal e As System.EventArgs) _
 Handles ddlBooks.SelectedIndexChanged
 RaiseEvent ListChanged(sender, e)
 End Sub

End Class

14.1.4.3 Custom event arguments

It would be even more useful if the control could tell the page what book was chosen. The idiom for
doing so is to provide a custom event argument type derived from System.EventArgs. To accomplish
this, you'll add a class declaration nested within the Booklist class. In C#, this takes the form:

public class BookListArgs : EventArgs
{
 public string bookSelected;
}

In VB.NET, this takes the form:

Public Class BookListArgs
 Inherits EventArgs

 Public bookSelected As String

End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can now declare the event to use this new type of Event argument. In C#, you do this by
modifying the delegate statement:

public delegate void ListChangedHandler(object sender, BookListArgs e);

In VB.NET, you modify the Event statement:

Public Event ListChanged(ByVal sender As Object, ByVal e As BookListArgs)

In C#, the event handler for the list box change event is now updated to get the selected item's text
and add that to the BookListArgs object's bookSelected property:

private void OnSelectedIndexChanged(
 object sender, System.EventArgs e)
{
 BookListArgs bookListArgs =
 new BookListArgs();
 bookListArgs.bookSelected =
 ddlBooks.SelectedItem.ToString();
 OnListChanged(bookListArgs);
}

Remember to update OnListChanged to take the new type of event argument:

protected virtual void OnListChanged(BookListArgs e)
{
 if (ListChanged != null)
 ListChanged(this, e);
}

In VB.NET, you just have to modify the handler for the DropDownList control's SelectedIndexChanged
event:

Private Sub ddlBooks_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles ddlBooks.SelectedIndexChanged

 Dim bla As New BookListArgs()
 bla.bookSelected = ddlBooks.SelectedItem.ToString()
 RaiseEvent ListChanged(sender, bla)

End Sub

All of the changes noted so far are within the BookList.ascx file. The only change in the page is to the
event handler itself. In C#, the code is:

public void Booklist_ListChanged(object sender, UserControl3.BookList.BookListArgs e)
{
 lblMsg.Text = "Selected: " + e.bookSelected;
}

In VB.NET, it's:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub Booklist1_ListChanged(ByVal sender As System.Object, _
 ByVal e As UserControl1VB.Booklist.BookListArgs) _
 Handles Booklist1.ListChanged
 lblMsg.Text = "Selected: " & e.bookSelected
End Sub

When you view the web page, it is now able to display the text of the selection, even though the
selection event occurs within the user control, as shown in Figure 14-6 .

Figure 14-6. Passing text from the list box within the user control to the
page

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.2 Custom Controls

In addition to creating user controls, which are essentially reusable small web pages, you can also create
your own compiled custom controls. There are three ways to create custom controls:

Create a derived custom control by deriving from an existing control.

Create a composite control by grouping existing controls together into a new compiled control.

Create a full custom control by deriving from System.Web.UI.WebControls.WebControl.

Composite controls are most similar to user controls. The key difference is that composite controls are
compiled into a DLL and used as you would any server control.

To get started, you'll create a Web Control Library in which you'll create the various custom controls for this
chapter. Open Visual Studio .NET and choose New Project. In the New Project Window, select either Visual
C# Projects or Visual Basic Projects and create a Web Control Library called CustomControls, as shown in
Figure 14-7 .

Figure 14-7. Custom control New Project window

You'll notice that Visual Studio has created a complete custom control named WebCustomControl1. Before
examining this control, create a Web Application to test it. From the File menu choose New Project (Ctrl-
Shift-N) and create a project named CustomControlWebPage in the same directory. Be sure to choose the
"Add to Solution" radio button, as shown in Figure 14-8 .

Figure 14-8. Add custom control web page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You'll create a series of custom controls and test them from this application. Right-click on the
CustomControls project to bring up the context menu. First click on Set as Startup Project, and then choose
Properties, as shown in Figure 14-9 .

Figure 14-9. Choosing project properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Choose the configuration properties and set the output path to the same directory as the test page, as
shown in Figure 14-10 .

Figure 14-10. Setting the output path

Normally, when you build a custom control you will copy the .dll file to the \bin directory of the page that will
test it. By setting the output to the \bin directory of your test page you will save that step and thus be able
to test the control quickly.

14.2.1 The Default (Full) Custom Control

Visual Studio .NET has provided a custom control named WebCustomControl1, as we saw. This is a full
custom control, derived from System.Web.UI.WebControls.WebControl. Even before you fully understand
how this code works, you can test it in the test page you created. Open WebForm1.aspx and add a
statement to register the new control:

<%@Register TagPrefix="OReilly"
Namespace="CustomControls"
Assembly="CustomControls" %>

This registers the custom control with the web page, similar to how you registered the user control in
Example 14-3 . Once again you use the @Register tag and provide a tag prefix (OReilly). Rather than
providing a Tagname and src , however, you provide a Namespace and Assembly , which uniquely identify

the control and the DLL that the page must use.

You now add the control to the page. The two attributes you must set are the Runat attribute, which is
needed for all server-side controls, and the Text attribute, which dictates how the control is displayed at

runtime. The tag should appear as follows:

<OReilly:WebCustomControl1 Runat="Server" Text="Hello World!" Id="WC1" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you view this page, the text you passed in is displayed, as shown in Figure 14-11 .

Figure 14-11. Viewing the default custom control

Example 14-8 shows the C# version of the complete custom control provided by Visual Studio .NET, while
Example 14-10 shows the VB.NET version.

Example 14-8. VS.NET default custom control (C#)

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;

namespace CustomControls
{
 [DefaultProperty("Text"),
 ToolboxData("<{0}:WebCustomControl1
 runat=server></{0}:WebCustomControl1>")]
 public class WebCustomControl1 : System.Web.UI.WebControls.WebControl
 {
 private string text;

 [Bindable(true),
 Category("Appearance"),
 DefaultValue("")]
 public string Text
 {
 get
 {
 return text;
 }

 set
 {
 text = value;
 }
 }

 protected override void Render(HtmlTextWriter output)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 output.Write(Text);
 }
 }
}

Example 14-9. VB.NET default custom control

Imports System.ComponentModel
Imports System.Web.UI

<DefaultProperty("Text"), ToolboxData("<{0}:WebCustomControl1
runat=server></{0}:
WebCustomControl1>")> Public Class WebCustomControl1
 Inherits System.Web.UI.WebControls.WebControl

 Dim text As String

 <Bindable(True), Category("Appearance"), DefaultValue("")> Property [Text]() As String
 Get
 Return text
 End Get

 Set(ByVal Value As String)
 text = Value
 End Set
 End Property

 Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)
 output.Write([Text])
 End Sub

End Class

This control contains a single property, Text, backed by a private string variable, text.

Note that there are attributes provided both for the property and for the class. These attributes are used by
Visual Studio .NET and are not required when creating custom controls. The most common attributes for
custom controls are shown in Table 14-2 .

Table 14-2. Common attributes for custom controls

Attribute Description

Bindable
Boolean. true indicates that VS .NET will display this control in the data bindings dialog

box.

Browsable Boolean. Is the property displayed in the designer?

Category
Determines in which category this control will be displayed when the Properties dialog is
sorted by category.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

DefaultValue The default value.

Description The text you provide is displayed in the description box in the Properties panel.

14.2.1.1 Properties

Custom controls can expose properties just as any other class can. You access these properties either
programmatically (e.g., in code-behind) or declaratively, by setting attributes of the custom control, as you
did in the text page, and as shown here:

<OReilly:WebCustomControl1 Runat="Server" Text="Hello World!" />

The Text property of the control is accessed through the Text attribute in the web page.

In the case of the Text property and the Text attribute, the mapping between the attribute and the

underlying property is straightforward because both are strings. ASP.NET will provide intelligent conversion of
other types, however. For example, if the underlying type is an integer or a long, the attribute will be
converted to the appropriate value type. If the value is an enumeration, ASP.NET matches the string value
against the evaluation name and sets the correct enumeration value. If the value is a Boolean, ASP.NET
matches the string value against the Boolean value; that is, it will match the string "True" to the Boolean
value true .

14.2.1.2 The Render method

The key method of the custom control is Render. This method is declared in the base class, and must be
overridden in your derived class if you wish to take control of rendering to the page. In Example 14-9 and
Example 14-10 , the Render method uses the HtmlTextWriter object passed in as a parameter to write the
string held in the Text property.

The HtmlTextWriter class derives from TextWriter and provides rich formatting capabilities.
HtmlTextWriter will ensure that the elements produced are well-formed, and it will manage the attributes,

including style attributes. Thus, if you want to set the text to red, you can add a color attribute, passing in an
enumerated color object that you've translated to HTML, as shown here:

output.AddStyleAttribute("color", ColorTranslator.ToHtml(Color.Red));

In order for the line of code to work, you will need to add an alias to the System.Drawing namespace with
either a using statement (in C#) or an imports statement (in VB .NET) at the top of the source code.

You can set the text to be within header (<h2>) tags with the HtmlTextWriter's RenderBeginTag and

RenderEndTag methods:

output.RenderBeginTag("h2");
output.Write(Text);
output.RenderEndTag();

The result is that when the text is output, the correct tags are created, as shown in Figure 14-12 . (The
source output that illustrates the HTML rendered by the HtmlTextWriter is circled and highlighted.)

DefaultValue The default value.

Description The text you provide is displayed in the description box in the Properties panel.

14.2.1.1 Properties

Custom controls can expose properties just as any other class can. You access these properties either
programmatically (e.g., in code-behind) or declaratively, by setting attributes of the custom control, as you
did in the text page, and as shown here:

<OReilly:WebCustomControl1 Runat="Server" Text="Hello World!" />

The Text property of the control is accessed through the Text attribute in the web page.

In the case of the Text property and the Text attribute, the mapping between the attribute and the

underlying property is straightforward because both are strings. ASP.NET will provide intelligent conversion of
other types, however. For example, if the underlying type is an integer or a long, the attribute will be
converted to the appropriate value type. If the value is an enumeration, ASP.NET matches the string value
against the evaluation name and sets the correct enumeration value. If the value is a Boolean, ASP.NET
matches the string value against the Boolean value; that is, it will match the string "True" to the Boolean
value true .

14.2.1.2 The Render method

The key method of the custom control is Render. This method is declared in the base class, and must be
overridden in your derived class if you wish to take control of rendering to the page. In Example 14-9 and
Example 14-10 , the Render method uses the HtmlTextWriter object passed in as a parameter to write the
string held in the Text property.

The HtmlTextWriter class derives from TextWriter and provides rich formatting capabilities.
HtmlTextWriter will ensure that the elements produced are well-formed, and it will manage the attributes,

including style attributes. Thus, if you want to set the text to red, you can add a color attribute, passing in an
enumerated color object that you've translated to HTML, as shown here:

output.AddStyleAttribute("color", ColorTranslator.ToHtml(Color.Red));

In order for the line of code to work, you will need to add an alias to the System.Drawing namespace with
either a using statement (in C#) or an imports statement (in VB .NET) at the top of the source code.

You can set the text to be within header (<h2>) tags with the HtmlTextWriter's RenderBeginTag and

RenderEndTag methods:

output.RenderBeginTag("h2");
output.Write(Text);
output.RenderEndTag();

The result is that when the text is output, the correct tags are created, as shown in Figure 14-12 . (The
source output that illustrates the HTML rendered by the HtmlTextWriter is circled and highlighted.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-12. The output and its source

14.2.1.3 Maintaining state

In the next example, you'll add a button to increase the size of the text. To accomplish this, you'll eschew
the rendering support of the HtmlTextWriter, instead writing the text yourself, using a new Size property (to
set the size of the output text). The C# code for the Render method should appear as follows:

protected override void Render(HtmlTextWriter output)
{
 output.Write("" + Text + "");
}

The VB.NET code should appear as:

Protected Overrides Sub Render(ByVal output As _
 System.Web.UI.HtmlTextWriter)
 output.Write("" & [Text] & "")
End Sub

The Size property must maintain its state through the postback fired by pressing the button. This is as simple
as writing to and reading from the ViewState collection maintained by the page (see Chapter 6), as shown in
the C# property definition of the Size property:

public int Size
{
 get { return Convert.ToInt32(ViewState["Size"]); }
 set { ViewState["Size"] = value.ToString(); }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB.NET, the Size property is defined as follows:

Public Property Size() As Integer
 Get
 Return Convert.ToInt32(ViewState("Size"))
 End Get
 Set(ByVal Value As Integer)
 ViewState("Size") = Value.ToString()
 End Set
End Property

The property Get method retrieves the value from ViewState, casts it to a string in the case of C#, and then
converts that string to its integer equivalent. The property Set method stashes a string representing the size
into ViewState.

To ensure that a valid value is in ViewState to start with, you'll also add a constructor to this control. In C#,
the constructor is:

public WebCustomControl1()
{
 ViewState["Size"] = "1";
}

In VB.NET, it is:

Public Sub New()
 ViewState("Size") = "1"
End Sub

The constructor initializes the value held in ViewState to 1. Each press of the button will update the Size
property. To make this work, you'll add a button declaration in the test page:

<asp:Button
 Runat="server"
 Text="Increase Size"
 OnClick="Button1_Click"
 id="Button1" />

The important changes here are that you've added an ID attribute (Button1) and defined an event handler

for the button. You will also need to create an event handler in the code-behind page.

Be sure to add a reference to the CustomControls DLL file to the web page. That will allow Intellisense to see
your object, and you'll be able to declare the control in the code-behind page. In C#, this takes the form:

public class WebForm1 : System.Web.UI.Page
{
 protected System.Web.UI.WebControls.Button Button1;
 protected CustomControls.WebCustomControl1 WC1;

In VB.NET, it takes the form:

Public Class WebForm1
 Inherits System.Web.UI.Page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Protected WithEvents Button1 As System.Web.UI.WebControls.Button
 Protected WC1 As VBCustomControls.WebCustomControl1

You can then use that declaration to set the Size property in the event handler in C# for the button click:

public void Button1_Click(object sender, System.EventArgs e)
{
 WC1.Size += 1;
}

The VB.NET code is nearly identical:

Public Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 WC1.Size += 1
End Sub

Example 14-10 is the complete .aspx page for testing, Example 14-11 is the complete C# code-behind page
(with the Visual Studio .NET generated code removed to save space), and Example 14-12 is the complete C#
source for the custom control. Example 14-13 is the complete VB.NET code-behind page (again, with the
Visual Studio .NET-generated code removed to save space), and Example 14-14 provides the complete
VB.NET source for the custom control.

Example 14-10. WebForm1.aspx

<%@ Page language="c#"
Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false"
Inherits="CustomControlWebPage.WebForm1" %>

<%@ Register TagPrefix="OReilly"
Namespace="CustomControls"
Assembly="CustomControls" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<HTML>
 <HEAD>

 </HEAD>
<body MS_POSITIONING="GridLayout">
<form id=Form1 method=post runat="server">

 <asp:Button Runat="server"
 Text="Increase Size"
 OnClick="Button1_Click"
 id="Button1" />

 <OReilly:WebCustomControl1
 Runat="Server"
 Text="Hello World!"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 id="WC1" />

</FORM>
 </body>
</HTML>

Example 14-11. WebForm1.aspx.cs

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace CustomControlWebPage
{
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Button Button1;
 protected CustomControls.WebCustomControl1 WC1;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 // ASP.NET generated code elided from listing

 private void InitializeComponent()
 {
 this.Button1.Click += new System.EventHandler(this.Button1_Click);
 this.Load += new System.EventHandler(this.Page_Load);
 }

 public void Button1_Click(object sender, System.EventArgs e)
 {
 WC1.Size += 1;
 }
 }
}

Example 14-12. WebCustomControl1.cs

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System.ComponentModel;

namespace CustomControls
{
 [DefaultProperty("Text"),
 ToolboxData("<{0}:WebCustomControl1
 runat=server></{0}:WebCustomControl1>")]
 public class WebCustomControl1 : System.Web.UI.WebControls.WebControl
 {
 private string text;

 // constructor initializes the value in ViewState
 public WebCustomControl1()
 {
 ViewState["Size"] = "1";
 }

 // Created by VS.NET
 [Bindable(true),
 Category("Appearance"),
 DefaultValue("")]
 public string Text
 {
 get { return text; }
 set{ text = value; }
 }

 // Your custom attribute to hold the Size in ViewState
 public int Size
 {
 get { return Convert.ToInt32(ViewState["Size"]); }
 set { ViewState["Size"] = value.ToString(); }
 }

 // Render method handler renders the size
 protected override void Render(HtmlTextWriter output)
 {
 output.Write("" +
 Text + "");
 }
 }
}

Example 14-13. WebForm1.aspx.vb

Imports CustomControls.WebCustomControl1

Public Class WebForm1
 Inherits System.Web.UI.Page

 Protected WithEvents Button1 As System.Web.UI.WebControls.Button

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Protected WC1 As VBCustomControls.WebCustomControl1

 Public Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 WC1.Size += 1
 End Sub
End Class

Example 14-14. WebCustomControl1.vb

Imports System.ComponentModel
Imports System.Web.UI
Imports System.Drawing

<DefaultProperty("Text"), ToolboxData("<{0}:WebCustomControl1 _
runat=server></{0}:WebCustomControl1>")> _
Public Class WebCustomControl1
 Inherits System.Web.UI.WebControls.WebControl

 Dim _text As String

 Public Sub WebCustomControl1()
 ViewState("Size") = "1"
 End Sub

 <Bindable(True), Category("Appearance"), DefaultValue("")> _
 Property [Text]() As String
 Get
 Return _text
 End Get

 Set(ByVal Value As String)
 _text = Value
 End Set
 End Property

 Protected Overrides Sub Render(_
 ByVal output As System.Web.UI.HtmlTextWriter)
 output.Write("" & [Text] & "")
 End Sub

 Public Property Size() As Integer
 Get
 Return Convert.ToInt32(ViewState("Size"))
 End Get
 Set(ByVal Value As Integer)
 ViewState("Size") = Value.ToString()
 End Set
 End Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Class

To illustrate the effect of clicking the button, in Figure 14-13 we created two instances of the program, and in
the second instance we pressed the button three times.

Figure 14-13. Maintaining state

Each time the button is clicked, the state variable Size is incremented; when the page is drawn, the state
variable is retrieved and used to set the size of the text.

14.2.2 Creating Derived Controls

There are times when it is not necessary to create your own control from scratch. You may simply want to
extend the behavior of an existing control type. You can derive from an existing control just as you might
derive from any class.

Imagine, for example, that you would like a button to maintain a count of the number of times it has been
clicked. Such a button might be useful in any number of applications, but unfortunately the web Button
control does not provide this functionality.

To overcome this limitation of the button class, you'll derive a new custom control from
System.Web.UI.WebControls.Button, as shown in Example 14-15 (for C#) and Example 14-16 (for VB.NET).

Example 14-15. CountedButton implementation in C#

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespace CustomControls
{
 // custom control derives from button
 public class CountedButton : System.Web.UI.WebControls.Button
 {

 // constructor initializes view state value
 public CountedButton()
 {
 this.Text = "Click me";
 ViewState["Count"] = 0;
 }

 // count as property maintained in view state
 public int Count
 {
 get
 {
 return (int) ViewState["Count"];
 }

 set
 {
 ViewState["Count"] = value;
 }
 }

 // override the OnClick to increment the count,
 // update the button text and then invoke the base method
 protected override void OnClick(EventArgs e)
 {
 ViewState["Count"] = ((int)ViewState["Count"]) + 1;
 this.Text = ViewState["Count"] + " clicks";
 base.OnClick(e);
 }
 }
}

Example 14-16. CountedButton implementation in VB.NET

Imports System.ComponentModel
Imports System.Web.UI
Imports System.Web.UI.WebControls

' custom control derives from button
Public Class CountedButton
 Inherits System.Web.UI.WebControls.Button

 ' constructor initializes view state value
 Public Sub New()
 Me.Text = "Click me"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ViewState("Count") = 0
 End Sub

 ' count as property maintained in view state
 Public Property Count() As Integer
 Get
 Return CInt(ViewState("Count"))
 End Get
 Set(ByVal Value As Integer)
 ViewState("Count") = Value
 End Set
 End Property

 ' override the OnClick to increment the count,
 ' update the button text and then invoke the base method
 Protected Overrides Sub OnClick(ByVal e As EventArgs)
 ViewState("Count") = CInt(ViewState("Count")) + 1
 Me.Text = ViewState("Count") & " clicks"
 MyBase.OnClick(e)
 End Sub
End Class

You begin by deriving your new class from the existing Button type:

public class CountedButton : System.Web.UI.WebControls.Button

The VB.NET equivalent is:

Public Class CountedButton
 Inherits System.Web.UI.WebControls.Button

The work of this class is to maintain its state: how many times the button has been clicked. You provide a
public property, Count, which is backed not by a private member variable but rather by a value stored in
view state. This is necessary because the button will post the page, and the state would otherwise be lost.
The Count property is defined as follows in C#:

public int Count
{
 get
 {
 return (int) ViewState["Count"];
 }

 set
 {
 ViewState["Count"] = value;
 }
}

It is defined as follows in VB.NET:

Public Property Count() As Integer
 Get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Return CInt(ViewState("Count"))
 End Get
 Set(ByVal Value As Integer)
 ViewState("Count") = Value
 End Set
End Property

To retrieve the value "Count" from view state, you use the string Count as an offset into the ViewState
collection. What is returned is an object that you cast to an int in C# or an Integer in VB.NET.

To ensure that the property will return a valid value, you initialize the Count property in the constructor,
where you also set the initial text for the button. The constructor in C# is:

public CountedButton()
{
 this.Text = "Click me";
 ViewState["Count"] = 0;
}

In VB.NET, it appears as follows:

Public Sub New()
 Me.Text = "Click me"
 ViewState("Count") = 0
End Sub

Because CountedButton derives from Button, it is easy to override the behavior of a Click event. In this case,
when the user clicks the button, you will increment the Count value held in view state and update the text on

the button to reflect the new count. You will then call the base class' OnClick method to carry on with the
normal processing of the Click event. The C# event handler is as follows:

protected override void OnClick(EventArgs e)
{
 ViewState["Count"] = ((int)ViewState["Count"]) + 1;
 this.Text = ViewState["Count"] + " clicks";
 base.OnClick(e);
}

While the source code for the VB.NET Click event handler is:

Protected Overrides Sub OnClick(ByVal e As EventArgs)
 ViewState("Count") = CInt(ViewState("Count")) + 1
 Me.Text = ViewState("Count") & " clicks"
 MyBase.OnClick(e)
End Sub

You add this control to the .aspx form just as you would your composite control:

<OReilly:CountedButton Runat="Server" id="CB1" />

You do not need to add an additional Register statement because this control, like the custom control, is in

the CustomControls namespace and the CustomControls assembly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you click the button four times, the button reflects the current count of clicks, as shown in Figure 14-
14 .

Figure 14-14. Counted button

14.2.3 Creating Composite Controls

The third way to create a custom control is to combine two or more existing controls. In the next example,
you will act as a contract programmer, and we will act as the client. We'd like you to build a slightly more
complex control that we might use to keep track of the number of inquiries we receive about our books.

As your potential client, we might ask you to write a control that lets us put in one or more books, and each
time we click on a book the control will keep track of the number of clicks for that book, as shown in Figure
14-15 .

Figure 14-15. Composite control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The .aspx file for this program is shown in Chapter 14 . Its C# and VB versions are identical, except for the @
Page directive.

Example 14-17. The .aspx file for the composite control

<%@ Page language="c#"
Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false"
Inherits="CustomControlWebPage.WebForm1" %>

<%@ Register TagPrefix="OReilly" Namespace="CustomControls" Assembly="CustomControls" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
<meta content="Microsoft Visual Studio 7.0" name=GENERATOR>
<meta content=C# name=CODE_LANGUAGE>
<meta content="JavaScript (ECMAScript)" name=vs_defaultClientScript>
<meta content=http://schemas.microsoft.com/intellisense/ie5 name=vs_targetSchema>
 </HEAD>
<body MS_POSITIONING="GridLayout">
<form id=Form1 method=post runat="server">

 <OReilly:BookInquiryList
 Runat="Server"
 id="bookInquiry1">

 <OReilly:BookCounter
 Runat="server"
 BookName="Programming ASP.NET"
 ID="Bookcounter1"/>

 <OReilly:BookCounter
 Runat="server"
 BookName="Programming C#"
 ID="Bookcounter2" />

 <OReilly:BookCounter
 Runat="server"
 BookName="Teach Yourself C++ 21 Days"
 ID="BookCounter3" />

 <OReilly:BookCounter
 Runat="server"
 BookName="Teach Yourself C++ 24 Hours"
 ID="Bookcounter4" />

 <OReilly:BookCounter
 Runat="server"
 BookName="Clouds To Code"
 ID="Bookcounter5" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <OReilly:BookCounter
 Runat="server"
 BookName="C++ From Scratch"
 ID="Bookcounter6" />

 <OReilly:BookCounter
 Runat="server"
 BookName="Web Classes From Scratch"
 ID="Bookcounter7" />

 <OReilly:BookCounter
 Runat="server"
 BookName="XML Web Documents From Srcatch"
 ID="Bookcounter8" />

 </OReilly:BookInquiryList>

</FORM>
 </body>
</HTML>

The key thing to note in this code is that the BookInquiryList component contains a number of BookCounter
elements. There is one BookCounter element for each book we want to track in the control. The control is
quite flexible. We can track one, eight (as shown here), or any arbitrary number of books. Each BookCounter
element has a BookName attribute that is used to display the name of the book being tracked.

You can see from Figure 14-15 that each book is tracked using a CountedButton custom control, but you do
not see a declaration of the CountedButton in the .aspx file. The CountedButton control is entirely
encapsulated within the BookCounter custom control.

The entire architecture, therefore, is as follows:

The BookInquiryList composite control derives from WebControl and implements INamingContainer ,

as described shortly.

1.

The BookInquiryList control has a Controls property that it inherits from the Control class (through
WebControl) and that returns a collection of child controls.

2.

Within this Controls collection is an arbitrary number of BookCounter controls.3.

BookCounter is itself a composite control that derives from WebControl and that also implements
INamingContainer .

4.

Each instance of BookContainer has two properties, BookName and Count.

The Name property is backed by view state and is initialized through the BookName BookName in the .

aspx file

The Count property delegates to a private CountedButton object, which is instantiated in
BookContainer.CreateChildControls().

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The BookInquiryList object has only two purposes: it acts as a container for the BookCounter objects, and it
is responsible for rendering itself and ensuring that it's contained BookCounter objects render themselves on
demand.

The best way to see how all this works is to work your way through the code from the inside out. The most
contained object is the CountedButton.

14.2.3.1 Modifying the CountedButton derived control

CountedButton needs only minor modification, as shown in Example 14-18 for C# and Example 14-19 for
VB.NET.

Example 14-18. The modified CountedButton.cs file

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;

namespace CustomControls
{
 // custom control derives from button
 public class CountedButton : System.Web.UI.WebControls.Button
 {

 private string displayString;

 // default constructor
 public CountedButton()
 {
 displayString = "clicks";
 InitValues();
 }

 // overloaded, takes string to display (e.g., 5 books)
 public CountedButton(string displayString)
 {
 this.displayString = displayString;
 InitValues();
 }

 // called by constructors
 private void InitValues()
 {
 if (ViewState["Count"] == null)
 ViewState["Count"] = 0;
 this.Text = "Click me";
 }

 // count as property maintained in view state
 public int Count

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 get
 {
 // initialized in constructor
 // can not be null
 return (int) ViewState["Count"];
 }

 set
 {
 ViewState["Count"] = value;
 }
 }

 // override the OnClick to increment the count,
 // update the button text and then invoke the base method
 protected override void OnClick(EventArgs e)
 {
 ViewState["Count"] = ((int)ViewState["Count"]) + 1;
 this.Text = ViewState["Count"] + " " + displayString;
 base.OnClick(e);
 }
 }
}

Example 14-19. The modified CountedButton.vb file

Imports System.ComponentModel
Imports System.Web.UI
Imports System.Web.UI.WebControls

' custom control derives from button
Public Class CountedButton
 Inherits System.Web.UI.WebControls.Button

 Private displayString As String

 ' constructor initializes view state value
 Public Sub New()
 displayString = "clicks"
 Init()
 End Sub

 ' overloaded, takes string to display (e.g., 5 books)
 Public Sub New(ByVal displayString As String)
 Me.displayString = displayString
 Init()
 End Sub

 ' called by constructors
 Private Shadows Sub Init()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If ViewState("Count") = Is Nothing Then
 ViewState("Count") = 0
 Me.Text = "Click me"
 End If
 End Sub

 ' count as property maintained in view state
 Public Property Count() As Integer
 Get
 Return CInt(ViewState("Count"))
 End Get
 Set(ByVal Value As Integer)
 ViewState("Count") = Value
 End Set
 End Property

 ' override the OnClick to increment the count,
 ' update the button text and then invoke the base method
 Protected Overrides Sub OnClick(ByVal e As EventArgs)
 ViewState("Count") = CInt(ViewState("Count")) + 1
 Me.Text = CStr(ViewState("Count") & " " & displayString
 MyBase.OnClick(e)
 End Sub
End Class

Because you want the button to be able to display the string 5 Inquiries rather than 5 clicks, you must

change the line within the OnClick method that sets the button's text:

this.Text = ViewState["Count"] + " " + displayString;

The VB.NET equivalent is:

Me.Text = ViewState("Count") & " " & displayString

Rather than hard-wiring the string, you'll use a private member variable, displayString, to store a value
passed in to the constructor:

private string displayString;

In VB.NET, you'd use:

Private displayString As String

You must set this string in the constructor. To protect client code that already uses the default constructor
(with no parameters), you'll overload the constructor, adding a version that takes a string:

public CountedButton(string displayString)
 {
 this.displayString = displayString;
 Init();
 }

In VB.NET, the code is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Sub New(ByVal displayString As String)
 Me.displayString = displayString
 Initialize()
End Sub

You can now modify the default constructor to set the displayString member variable to a reasonable default
value. In C#, the code is:

public CountedButton()
{
 displayString = "clicks";
 InitValues();
}

In VB.NET, use:

Public Sub New()
 displayString = "clicks"
 Init()
End Sub

The code common to both constructors has been factored out to the private helper method Init, which
ensures that the Count property is initialized to zero and sets the initial text for the button:

private void Init()
{
 if (ViewState["Count"] == null)
 ViewState["Count"] = 0;
 this.Text = "Click me";
}

In VB.NET, the same thing is accomplished using:

Private Shadows Sub Init()
 If ViewState("Count") = Nothing Then
 ViewState("Count") = 0
 Me.Text = "Click me"
 End If
End Sub

With these changes, the CountedButton is ready to be used in the first composite control, BookCounter.

14.2.3.2 Creating the BookCounter composite control

The BookCounter composite control is responsible for keeping track of and displaying the number of inquiries
about an individual book. Its complete source code is shown in C# in Example 14-20 and in VB.NET in
Example 14-21 .

Example 14-20. BookCounter.cs

using System;
using System.Web.UI;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System.Web.UI.WebControls;
using System.ComponentModel;

namespace CustomControls
{
 public class BookCounter :
 System.Web.UI.WebControls.WebControl,
 INamingContainer
 {

 // intialize the counted button member
 CountedButton btn = new CountedButton("inquiries");

 public string BookName
 {
 get
 {
 return (string) ViewState["BookName"];
 }

 set
 {
 ViewState["BookName"] = value;
 }
 }

 public int Count
 {
 get
 {
 return btn.Count;
 }
 set
 {
 btn.Count = value;
 }
 }

 public void Reset()
 {
 btn.Count = 0;
 }

 protected override void CreateChildControls()
 {
 Controls.Add(btn);
 }
 }
}

Example 14-21. BookCounter.vb

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Imports System
Imports System.Web.UI
Imports System.Web.UI.WebControls
Imports System.ComponentModel

Public Class BookCounter
 Inherits System.Web.UI.WebControls.WebControl
 Implements INamingContainer

 ' intialize the counted button member
 P btn As CountedButton = New CountedButton("inquiries")

 Public Property BookName() As String
 Get
 Return CStr(ViewState("BookName"))
 End Get
 Set(ByVal Value As String)
 ViewState("BookName") = Value
 End Set
 End Property

 Public Property Count() As Integer
 Get
 Return btn.Count
 End Get
 Set(ByVal Value As Integer)
 btn.Count = Value
 End Set
 End Property

 Public Sub Reset()
 btn.Count = 0
 End Sub

 Protected Overrides Sub CreateChildControls()
 Controls.Add(btn)
 End Sub

End Class

INamingContainer

The first thing to note about the BookCounter class is that it implements the INamingContainer interface.

This is a "marker" interface that has no methods. The purpose of this interface is to identify a container
control that creates a new ID namespace, guaranteeing that all child controls have IDs that are unique to the
page.

14.2.3.2.2 Containing CountedButton

The BookCounter class contains an instance of CountedButton:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CountedButton btn = new CountedButton("inquiries");

or:

Private btn As CountedButton = New CountedButton("inquiries")

The btn member is instantiated in the CreateChildControls method inherited from System.Control:

protected override void CreateChildControls()
{
 Controls.Add(btn);
}

The VB.NET equivalent is:

Protected Overrides Sub CreateChildControls()
 Controls.Add(btn)
End Sub

CreateChildControls is called in preparation for rendering and offers the BookCounter class the opportunity to
add the btn object as a contained control.

There is no need for BookCounter to override the Render method; the only thing it must render is the
CountedButton, which can render itself. The default behavior of Render is to render all the child controls, so
you need not do anything special to make this work.

BookCounter also has two properties: BookName and Count. BookName is a string to be displayed in the
control and is managed through ViewState. Its C# source code is:

public string BookName
{
 get
 {
 return (string) ViewState["BookName"];
 }

 set
 {
 ViewState["BookName"] = value;
 }
}

Its VB.NET source code is:

Public Property BookName() As String
 Get
 Return CStr(ViewState("BookName"))
 End Get
 Set(ByVal Value As String)
 ViewState("BookName") = Value
 End Set
End Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Count is the count of inquires about this particular book; responsibility for keeping track of this value is
delegated to the CountedButton. In C#, the code is:

public int Count
{
 get
 {
 return btn.Count;
 }
 set
 {
 btn.Count = value;
 }
}

In VB.NET, it's:

Public Property Count() As Integer
 Get
 Return btn.Count
 End Get
 Set(ByVal Value As Integer)
 btn.Count = Value
 End Set
End Property

There is no need to place the value in ViewState, since the button itself is responsible for its own data.

14.2.3.3 Creating the BookInquiryList composite control

Each of the BookCounter objects is contained within the Controls collection of the BookInquiryList. This
control has no properties or state. Its only method is Render, as shown in C# in Example 14-22 and in
VB.NET in Example 14-23 .

Example 14-22. BookInquiryList source in C#

[ControlBuilderAttribute(typeof(BookCounterBuilder)),ParseChildren(false)]
public class BookInquiryList : System.Web.UI.WebControls.WebControl, INamingContainer
{

 protected override void Render(HtmlTextWriter output)
 {
 int totalInquiries = 0;
 BookCounter current;

 // Write the header
 output.Write("<Table border='1' width='90%' cellpadding='1'" +
 "cellspacing='1' align = 'center' >");
 output.Write("<TR><TD colspan = '2' align='center'>");
 output.Write(" Inquiries </TD></TR>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // if you have no contained controls, write the default msg.
 if (Controls.Count == 0)
 {
 output.Write("<TR><TD colspan='2' align='center'>");
 output.Write(" No books listed </TD></TR>");
 }
 // otherwise render each of the contained controls
 else
 {
 // iterate over the controls colelction and
 // display the book name for each
 // then tell each contained control to render itself
 for (int i = 0; i < Controls.Count; i++)
 {
 current = (BookCounter) Controls[i];
 totalInquiries += current.Count;
 output.Write("<TR><TD align='left'>" +
 current.BookName + "</TD>");
 output.RenderBeginTag("TD");
 current.RenderControl(output);
 output.RenderEndTag(); // end td
 output.Write("</tr>");
 }
 output.Write("<TR><TD colspan='2' align='center'> " +
 " Total Inquiries: " +
 totalInquiries + "</TD></TR>");
 }
 output.Write("</TABLE>");
 }
}

Example 14-23. BookInquiryList source in VB.NET

Imports System.ComponentModel
Imports System.Web.UI

<ControlBuilder(GetType(BookCounterBuilder)), ParseChildren(False)> _
Public Class BookInquiryList
 Inherits System.Web.UI.WebControls.WebControl
 Implements INamingContainer

 Protected Overrides Sub Render(ByVal output As HtmlTextWriter)

 Dim totalInquiries As Integer = 0

 ' Write the header
 output.Write("<Table border='1' width='90%' cellpadding='1'" & _
 "cellspacing='1' align = 'center' >")
 output.Write("<TR><TD colspan = '2' align='center'>")
 output.Write(" Inquiries </TD></TR>")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' if you have no contained controls, write the default msg.
 If Controls.Count = 0 Then
 output.Write("<TR><TD colspan='2' align='center'>")
 output.Write(" No books listed </TD></TR>")
 ' otherwise render each of the contained controls
 Else
 ' iterate over the controls colelction and
 ' display the book name for each
 ' then tell each contained control to render itself
 Dim current As BookCounter

 For Each current In Controls
 totalInquiries += current.Count
 output.Write("<TR><TD align='left'>" & _
 current.BookName + "</TD>")
 output.RenderBeginTag("TD")
 current.RenderControl(output)
 output.RenderEndTag() ' end td
 output.Write("</tr>")
 Next
 Dim strTotalInquiries As String
 strTotalInquiries = totalInquiries.ToString
 output.Write("<TR><TD colspan='2' align='center'> " & _
 " Total Inquiries: " & _
 CStr(strTotalInquiries) & "</TD></TR>")
 End If
 output.Write("</TABLE>")
 End Sub

End Class

Friend Class BookCounterBuilder
 Inherits ControlBuilder

 Public Overrides Function GetChildControlType(_
 ByVal tagName As String, ByVal attributes As IDictionary) As Type
 If tagName = "BookCounter" Then
 Dim x As BookCounter
 Return x.GetType
 Else
 Return Nothing
 End If
 End Function

 Public Overrides Sub AppendLiteralString(ByVal s As String)
 End Sub

End Class

ControlBuilder and ParseChildren attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The BookCounter class must be associated with the BookInquiryClass so ASP.NET can translate the elements
in the .aspx page into the appropriate code. This is accomplished using the ControlBuilder attribute:

[ControlBuilderAttribute(typeof(BookCounterBuilder)),ParseChildren(false)]

The argument to the ControlBuilderAttribute is a Type object that you obtain by passing in

BookCounterBuilder, a class you will define to return the type of the BookCounter class given a tag named
BookCounter . The code for the BookCounterBuilder is shown in C# in Example 14-24 and in VB.NET in

Example 14-25 .

Example 14-24. C# version of BookCounterBuilder

internal class BookCounterBuilder : ControlBuilder
{
 public override Type GetChildControlType(
 string tagName, IDictionary attributes)
 {
 if (tagName == "BookCounter")
 return typeof(BookCounter);
 else
 return null;
 }

 public override void AppendLiteralString(string s)
 {
 }
}

Example 14-25. VB.NET version of BookCounterBuilder

Friend Class BookCounterBuilder
 Inherits ControlBuilder

 Public Overrides Function GetChildControlType(_
 ByVal tagName As String, ByVal attributes As Idictionary) As Type
 If tagName = "BookCounter" Then
 Dim x As BookCounter
 Return x.GetType
 Else
 Return Nothing
 End If
 End Function

 Public Overrides Sub AppendLiteralString(ByVal s As String)
 End Sub

End Class

ASP.NET will use this BookCounterBuilder, which derives from ControlBuilder, to determine the type of the
object indicated by the BookCounter tag. Through this association, each of the BookCounter objects will be

instantiated and added to the Controls collection of the BookInquiryClass.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The second attribute, ParseChildren , must be set to false to tell ASP.NET that you have handled the
children attributes and no further parsing is required. A value of false indicates that the nested child

attributes are not properties of the outer object, but rather are child controls.

Render

The only method of the BookInquiryClass is the override of Render. The purpose of Render is to draw the
table shown earlier in Figure 14-15 , using the data managed by each of the BookCounter child controls.

The BookInquiryClass provides a count of the total number of inquiries, as shown in Figure 14-16 .

Figure 14-16. Total inquiries displayed

The code tallies inquiries by initializing an integer variable, totalInquiries, to zero and then iterating over each
control in turn, asking the control for its Count property. The statement is the same in C# and VB.NET,
except for the closing semicolon in C#:

totalInquiries += current.Count;

The Count property of the control delegates to the CountedButton's count property, as you can see if you
step through this code in a debugger, as illustrated in Figure 14-17 .

Figure 14-17. Stepping into BookCounter.Count

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.2.3.3.3 Rendering the output

That same loop renders each of the child controls by iterating over each of the controls. In C#, this is done
using:

for (int i = 0; i < Controls.Count; i++)
{
 current = (BookCounter) Controls[i];
 totalInquiries += current.Count;
 output.Write("<TR><TD align='left'>" +
 current.BookName + "</TD>");
 output.RenderBeginTag("TD");
 current.RenderControl(output);
 output.RenderEndTag(); // end td
 output.Write("</tr>");
}

In VB.NET, the code is:

For Each current in Controls
 totalInquiries += current.Count
 output.Write("<TR><TD align='left'>" & _
 current.BookName + "</TD>")
 output.RenderBeginTag("TD")
 current.RenderControl(output)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 output.RenderEndTag() ' end td
 output.Write("</tr>")
Next

The local BookCounter object, current, is assigned to each object in the Controls collection in succession:

for (int i = 0; i < Controls.Count; i++)
{
 current = (BookCounter) Controls[i];

With that object, you are able to get the Count, as described previously:

totalInquiries += current.Count;

Then you proceed to render the object. The HtmlTextWriter is used first to create a row and to display the
name of the book, using the BookName property of the current BookCounter object:

output.Write("<TR><TD align='left'>" +
 current.BookName + "</TD>");

You then render a TD tag, and within that tag you tell the BookCounter object to render itself. Finally, you
render an ending TD tag using RenderEndTag, and an ending row tag using the Write method of the

HTMLTextWriter:

output.RenderBeginTag("TD");
 current.RenderControl(output);
 output.RenderEndTag(); // end td
 output.Write("</tr>");

You tell the contained control to render itself:

current.RenderControl(output);

When you do this, the Render method of BookCounter is called. Since you have not overridden this method,
the Render method of the base class is called, which tells each contained object to render itself. The only
contained object is CountedButton. Since you have not overridden Render in CountedButton, the base
Render method in Button is called, and the button is rendered.

Assignment of Responsibilities

This simple example of a composite control is interesting because the various responsibilities are
spread among the participating objects. The BookInquiryList object assumes all responsibility for
laying out the control, creating the table, and deciding what will be rendered where. However, it
delegates responsibility for rendering the button object to the individual contained controls.

Similarly, the BookInquiryList is responsible for the total number of inquiries-because that
information transcends what any individual BookCounter object might know. However, the
responsibility for the count held by each BookCounter is delegated to the BookCounter itself. As
far as the BookInquiryList is concerned, it gets that information directly from the BookCounter's
Count property. It turns out, however, that BookCounter in turn delegates that responsibility to
the CountedButton.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.2.3.3.4 Rendering the summary

Once all of the child controls have been rendered, the BookInquiryList creates a new row to display the total
inquiries:

output.Write("<TR><TD colspan='2' align='center'> " +
 " Total Inquiries: " +
 totalInquiries + "</TD></TR>");

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 15. Web Services Overview
The World Wide Web has opened up distributed computing on a large scale. However, normal web
pages only allow interaction between the client browser and the web server hosting the web page.
The goal of web services is to create web-based applications that interact with other applications with
no user interface. If you're a web page developer, having such web services available can greatly
increase your productivity. Imagine, for instance, you are creating a web site for a stock brokerage
firm. Rather than having to integrate your back-end database with all the various databases of the
different stock exchanges, your application can simply communicate with their web services,
exchanging data in XML format.

Web services are similar to web pages. The principal difference is that a web page is intended for
viewing by a person, while a web service is used strictly for one program to interact with another and
has no user interface.

Web services are entirely independent of the operating system or programming language used on
either the server or the client side. Unlike previous technologies for distributed computing (such as
DCOM), web services make it unnecessary for either end of the connection to be running the same
operating system or to be programmed in the same language. For example, the server code might be
written in VB.NET on Windows 2000 while the client is C++ running on a Unix machine, or vice versa.
In other words, while previous technologies required that the client and server be tightly coupled,
web services permit the client and server to be loosely coupled.

All that is necessary is that both server and client support the industry standard protocols HTTP,
SOAP, and XML. HTTP is the protocol used by the Web. SOAP (Simple Object Access Protocol) is a
lightweight, object-oriented protocol based on XML, which in turn is a cross-platform standard for
formatting and organizing information.

This chapter provides a high-level view of what web services are and how they work. It describes,
briefly, the standard protocols that make web services possible, as well as introducing how web
services are created and consumed.

Chapter 16 covers in detail what is actually involved in creating web services. Through the
development of a simple stock ticker, it demonstrates how to create a web service using either a text
editor or Visual Studio .NET. It also shows you how to create a discovery file and how to deploy the
web service.

Chapter 17 looks at web services from the other side of the fence, i.e., from the consumer's point of
view. This chapter builds on the stock ticker web service created in Chapter 16 to create a client web
application that consumes, or uses, the stock ticker web service. Again, we demonstrate doing this
using both a text editor and Visual Studio .NET.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.1 How Web Services Work

Web services allow an object on the server to expose program logic to clients over the Internet.
Clients call exposed methods on the web service using standard Internet protocols. In short, a web
service is merely a function or method call over the Internet.

The web services infrastructure has several defining characteristics:

Both the web service server and the client application are connected to the Internet and are
able to communicate with any other device connected to the Internet.

The data format with which the two ends of the connection communicate conforms to the same
open standard. This standard is usually the SOAP protocol. SOAP messages consist of self-
describing, text-based XML documents. It is also possible to communicate via HTTP-GET or
HTTP-POST requests.

The systems at the two ends of the connection are loosely coupled. In other words, web
services do not care what operating system, object model, or programming language is used on
either end of the connection, as long as both the web service and the consuming application are
able to send and receive messages that conform to the proper protocol standard.

The logic behind the web services process is shown schematically in Figure 15-1.

Figure 15-1. What goes on behind a web service

In Figure 15-1 at position 1, a web service consumer (i.e., a program that uses a particular web
service, sometimes called the consuming program) makes a call to the web service (position 2). The
consumer thinks it is talking directly to the web service over the Internet. This is only an illusion.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The actual call is being made to a proxy class (position 3) which is local to the consumer. The proxy
handles all the complex infrastructure of sending the request over the Internet to the server
machine, as well as getting results back and presenting them to the consumer.

All of this is made possible because the proxy was previously registered with the consuming
application (position 4). This is done by the developer of the consuming application.

This chapter, along with the next two chapters, will explain in detail all of the concepts outlined in
Figure 15-1.

In addition to creating and consuming the web service, there are other aspects to consider. These
include:

Protocol

The web service must communicate with the client, and vice versa, in a manner that both sides
will understand.

Directories

Web services will be developed by literally thousands or tens of thousands of companies.
Directories will be created to list these services and make them available to developers. For
directories to be useful, however, there must be conventions for discovery and description.

Discovery

Potential clients will need to locate, or discover, documents that describe the web service.
Thus, the service will often provide discovery documents-XML files that contain information
allowing potential clients to find other files that describe the web service.

Description

Once a web service has been identified, either through discovery or other means, it must make
available a document that describes the protocols it supports and the programmatic interface
to its usage. The Web Services Description Language (WSDL) is used to describe the web
service and all of its exposed methods with their parameters. In short, the description indicates
what methods the web service exposes, what parameters those methods require, and what
type of data the methods return.

Security

Many servers connected to the Internet are set up to be very conscious of security, with
firewalls and other means of blocking all traffic except that which is deemed not harmful. Web
services must live within these security constraints. Web services must not be portals for
malicious people or software to enter your network.

Also, it is often necessary to restrict access to specific clients. For example, suppose you are
developing a stock ticker for a brokerage firm. You might want to restrict access to the web
service to paying clients, excluding anyone who has not paid a usage fee.

Chapter 19 discusses in detail security for both web pages and web services.
State

Like web pages, web services use HTTP, which is a stateless protocol. And as with web pages,
the .NET Framework provides tools to preserve state, if the application requires this.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.1.1 Developing a Web Service

The process of developing a web service is nearly identical to developing a web page:

All the source files comprising both web pages and services are flat text files. They can be
created and edited in any text editor, then compiled using a command-line tool from a
command prompt.

Both web pages and services can be created in Visual Studio .NET.

Both web pages and web services can use code-behind. Code-behind is generally considered a
technique intended to separate visual content from programmatic content in web pages. As
such, its use in web services is less imperative, since a web service does not have any visual
content. However, since Visual Studio .NET uses code-behind for every web project, whether
visual or not, it gets used for web services as well. In fact, when using Visual Studio .NET to
create web services, just as with web pages, code-behind is used by default. (For a full
discussion of code-behind, see Chapter 6.)

Both web pages and web services make full use of the CLR and the .NET Framework.

However, while a web page is defined by its .aspx file, a web service is defined by its .asmx file.

Chapter 16 discusses creating web services in detail. For now, think of a web service as a web page
without any user interface or visual components in which some (but not necessarily all) of the
methods or functions in the web service class are exposed to outside requests as web methods. Web
services allow method calls over the Internet.

Once the .asmx page is complete, the web service class must be compiled into a dynamic link library
(.dll) file, the form in which it is made available to requests. You can compile either from a command
prompt or through Visual Studio .NET. Both techniques have advantages and disadvantages; Chapter
16 will demonstrate both.

You can easily test the .asmx file by entering its URL into any browser, as shown in Figure 15-2. This
test shows a list of usable links to each of the web methods exposed by the web service. It also
displays useful information and links pertaining to its deployment, including code samples in both
VB.NET and C#.

Figure 15-2. Testing the .asmx file in a browser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.1.2 Creating the Proxy

Before a client application can use a web service, a proxy must be created. A proxy is a substitute, a
stand-in, for the actual code you want to call. It is responsible for marshalling-or managing-the call
across machine boundaries. Requests to the web service on the server must conform to the proper
protocol and format, usually SOAP and/or HTTP. You could write all the code to serialize and send the
proper data to the web service yourself, but that would be a lot of work. The proxy does it all for you.

The proxy is registered with the client application. Then the client application makes method calls as
though it were calling a local object. The proxy does all the work of taking your calls, wrapping them
in the proper format, and sending them as a SOAP request to the server. When the server returns
the SOAP package to the client, the proxy decodes everything and presents it to the client application
as though it were returning from local calls. This process is shown schematically in Figure 15-3.

Figure 15-3. Web service proxy operation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To make this work, a developer must create the proxy and register it with the client application under
development. This registration consists of a list of the exposed web methods and their signatures.
The owner of the web service can add new web methods or update existing ones without changing
their signature, and the existing proxy will not break.

15.1.3 Creating the Consumer

The consumer of a web service can be a desktop application, a web page, or another web service. All
that is required is that the consumer be able to send and receive SOAP or HTTP packages.

If you develop your client using Visual Studio .NET, you need only register the proxy dll with the
application. If you are working from a command prompt, simply make a reference to the proxy dll
when you compile the application.

If the consuming application is a web page or another web service, then the proxy will be located on
the server that hosts the consuming web page or service. If the consumer application is a desktop
application, then the proxy will be located on the desktop machine. In any case, once the proxy is
created and registered with the consuming application, then all that application has to do to use a
web service is make a method or function call against that proxy object, as though it were a call
against a local object. Chapter 17 discusses in detail creating an application that consumes a web
service.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.2 Protocols and Standards

Various protocols are mentioned throughout this chapter, as well as in Chapter 16 and Chapter 17.
While going into detail about the various protocols is beyond the scope of this book and also not
necessary for an understanding of how web services work, some understanding is useful.

A protocol is a set of rules that describe the transmission and receipt of data between two or more
computing devices. For example, TCP/IP (Transmission Control Protocol/Internet Protocol) governs
the low-level transport of packets of data on the Internet.

15.2.1 HTTP

Layered on top of TCP/IP is HTTP (the HyperText Transfer Protocol), which is used to enable servers
and browsers on the Web to communicate. It is primarily used to establish connections between
servers and browsers and to transmit HTML to the client browser.

The client sends an HTTP request to the server, which then processes the request. The server
typically returns HTML pages to be rendered by the client browser, although in the case of web
services, the server may instead return a SOAP message containing the returned data of the web
service method call.

HTTP requests pass name/value pairs from the requesting browser to a server. The request can be
either of two types: HTTP-GET, or HTTP-POST.

15.2.2 HTTP-GET

In GET requests, the name/value pairs are appended directly to the URL. The data is uuencoded
(which guarantees that only legal ASCII characters are passed over the wire), then appended to the
URL, separated from the URL by a question mark.

For example, consider the following URL:

http://localhost/StockTicker1/Service1.asmx/GetName?StockSymbol=msft

The question mark indicates that this is an HTTP-GET request, the name of the variable passed to the
GetName method is StockSymbol, and the value is msft.

GET requests are suitable when all the data that needs to be passed can be handled by name/value
pairs, there are few fields to pass, and the length of the fields is relatively short. GET requests are
also suitable when security is not an issue. This last point arises because the URL is sent over the
wire and is included in server logs as plain text. As such, they can be easily captured by a network
sniffer or an unscrupulous person.

The .NET Framework provides a class, HttpGetClientProtocol (shown in Figure 15-4), for using the

http://localhost/StockTicker1/Service1.asmx/GetName?StockSymbol=msft
http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP-GET protocol in your clients.

Figure 15-4. WebClientProtocol hierarchy

15.2.3 HTTP-POST

In POST requests, the name/value pairs are also uuencoded, but instead of being appended to the
URL, they are sent as part of the request message.

POST requests are suitable for large numbers of fields or when lengthy parameters need to be
passed. Also, if security is an issue, a POST request is safer than a GET request, since the HTTP
request can be encrypted.

As with GET requests, with POST requests only name/value pairs can be passed. This precludes
passing complex data types (such as classes, structs, or datasets).

The .NET Framework provides a class, HttpPostClientProtocol (see Figure 15-4), for using the HTTP-
POST protocol in your clients.

15.2.4 XML

XML (eXtensible Markup Language) is an open standard promulgated by the World Wide Web
Consortium (W3C) as a means of describing data (for more information visit www.w3c.org). At the
time of this writing, the current version of the XML protocol is Version 1.0.

XML is similar to HTML. In fact, both XML and HTML are derived from SGML (Standard Generalized
Markup Language). Like HTML documents, XML documents are plain text documents containing tags.
However, while HTML uses predefined tags that specify how the HTML document will display in a
browser, XML allows tags to be defined by the document developer, so that virtually any data can be
conveyed.

XML documents are text files that are human-readable. However, they are typically not meant to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

actually be read by humans, except developers doing programming and debugging. Since tags are
used to define every field in an XML document, the files are generally much larger than the same
data in a proprietary binary database file. However, that is rarely an issue, since it is computer
programs, not people, reading the document, and the difference in transmission time over the
Internet is usually negligible at today's speeds.

An XML schema is a file used to define the tags. In the schema, both the tag name and content type
are specified.

One significant difference between HTML and XML is that while most HTML readers (i.e., web
browsers) are tolerant of coding errors, XML readers generally are not. XML must be well-formed.
(For a complete discussion of well-formed XML markup, see Chapter 4.) For example, while browsers
generally do not care if tags are upper- or lowercase, in XML they must be lowercase or an error will
be generated.

15.2.5 SOAP

SOAP (Simple Object Access Protocol) is an XML grammar that's tailored for exchanging web service
data. In a .NET web service, you'll usually send SOAP messages over HTTP. SOAP is a simple,
lightweight protocol for the exchange of information over the Internet. Like XML, the SOAP standard
is promulgated by the W3C.

SOAP uses XML syntax to format its content. It is, by design, as simple as possible and provides a
minimum of functionality. Therefore, it is very modular and flexible. Since SOAP messages consist of
XML, which is plain text, they can easily pass through firewalls, unlike many proprietary, binary
formats. At the time of this writing, the latest SOAP version is 1.2. The SOAP protocol was originally
developed by Compaq, HP, IBM, Lotus, Microsoft, and others.

SOAP is not limited to name/value pairs as HTTP-GET and HTTP-POST are. Instead, SOAP can also be
used to send more complex objects, including datasets, classes, and other objects.

One drawback to using SOAP to pass requests back and forth to web services is that SOAP messages
tend to be very verbose, because of the nature of XML. Therefore, if bandwidth or transmission
performance is an issue, you may be better off using either HTTP-GET or HTTP-POST.

The .NET Framework provides a class, SoapHttpClientProtocol (see Figure 15-4), for using the SOAP
protocol in your clients.

15.2.6 .NET Support for Protocols

The .NET Framework provides a number of classes for interacting with the HTTP protocol. Figure 15-4
shows a hierarchy of classes for the SOAP, HTTP-GET and HTTP-POST client protocols, all deriving
from WebClientProtocol and HttpWebClientProtocol.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 16. Creating Web Services
Chapter 15 provided an overview of web services, which are basically web applications with no user
interface. Web services allow an application to make method calls against another application over
the Internet as though it were calling a local dll.

There are two broad aspects to web service development: creating the web service and consuming
the web service. This chapter covers the creation of web services. Chapter 17 covers the creation of
web service client applications, also known as consumers.

Although a web service has no user interface and no visual component, the architecture and files
used to create a web service are very similar to those used to create a web page, which are
described in detail in Chapter 2 through Chapter 6. Some of these similarities include:

Full implementation of the .NET Framework and Common Language Runtime (CLR), including
the object-oriented architecture and all the base class libraries, as well as features such as
caching, state, and data access

Nearly identical file and code structures

All source code files in plain text, which can be created in any text editor

Full support by Visual Studio .NET, with all its productivity features, including IntelliSense, code
completion, and integrated debugging

Configurable on a global or application-wide basis using plain text configuration files

That said, web pages and web services are conceptually very different. A web page entails an
interface designed for interaction with a person sitting at a web browser. A web service, on the other
hand, consists only of methods, some of which are available for remote calls by client applications.

A web service can be coded inline, in a single file with an extension of .asmx. Alternatively, the
application logic of the web service can be segregated into a code-behind file, which is the default
behavior of Visual Studio .NET. While code-behind is generally preferred, especially for large projects,
both methods will be demonstrated in this chapter.

The rationale for code-behind is that it provides a clean separation between the
presentation and programmatic portions of an application. While this is
extremely useful in the development of web pages, it is not really relevant to
web services. However, since code-behind is the default coding technique for
Visual Studio .NET (which offers so many productivity enhancements), code-
behind becomes the de facto preferred technique. In addition, code-behind
confers a performance advantage over inline code because the code-behind
class must be precompiled for web services, while the .asmx file is compiled
into a class the first time it is run.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Whether using an inline or code-behind architecture, the .asmx file is the target entered into the
browser for testing or referenced by the utilities that create the proxy dll. (Recall from Chapter 15
that the client application actually makes calls to a proxy dll. Creation of this proxy dll will be
described in detail in Chapter 16.)

As a first step in understanding how web services work, we will create a simple web service, called
StockTicker, using any favorite text editor. In subsequent sections of this chapter, we will create the
same web service using Visual Studio .NET.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.1 A Simple StockTicker

The StockTicker web service will expose two web methods:

GetName

Expects a stock symbol as an argument and returns a string containing the name of the stock
GetPrice

Expects a stock symbol as an argument and returns a number containing the current price of the stock

If this web service were an actual production program, the data returned would be fetched from a live database. In
order not to confuse web service issues with data access issues, for this example the data will be stored in a two-
dimensional array of strings. For a complete discussion of accessing a database, please see Chapter 11 and Chapter
12 .

A single file will be created. The VB.NET version will be called vbStockTicker.asmx and is shown in Example 16-1 .
The C# version will be called csStockTicker.asmx and is shown in Example 16-2 .

The .asmx file contains the entire web service inline. It defines a namespace called ProgAspNet, and creates a class
called csStockTicker for the C# version, or vbStockTicker for the VB.NET version. The class instantiates and fills an
array to contain the stock data, then creates the two WebMethods that comprise the public aspects of the web
service.

If you're familiar with web page code, you may notice in glancing over Example 16-1 and Example 16-2 that the code
for a web service is virtually identical to the code in a code-behind page for an equivalent web page. There are some
differences, however, which are highlighted in the code examples and are discussed in the sections following the
examples.

Example 16-1. StockTicker web service in VB.NET, vbStockTicker.asmx

<%@ WebService Language="VB" Class="ProgAspNet.vbStockTicker" %>

Option Strict On
Option Explicit On
Imports System
Imports System.Web.Services

namespace ProgAspNet

 public class vbStockTicker
 inherits System.Web.Services.WebService
 ' Construct and fill an array of stock symbols and prices.
 ' Note: the stock prices are as of 7/4/01.
 dim stocks as string(,) = _
 { _
 {"MSFT","Microsoft","70.47"}, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {"DELL","Dell Computers","26.91"}, _
 {"HWP","Hewlett Packard","28.40"}, _
 {"YHOO","Yahoo!","19.81"}, _
 {"GE","General Electric","49.51"}, _
 {"IBM","International Business Machine","112.98"}, _
 {"GM","General Motors","64.72"}, _
 {"F","Ford Motor Company","25.05"} _
 }

 dim i as integer

 <WebMethod>public function GetPrice(StockSymbol as string) as Double
 ' Given a stock symbol, return the price.
 ' Iterate through the array, looking for the symbol.
 for i = 0 to stocks.GetLength(0) - 1
 ' Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks(i,0), true) = 0) then
 return Convert.ToDouble(stocks(i,2))
 end if
 next

 return 0
 End Function

 <WebMethod>public function GetName(StockSymbol as string) as string
 ' Given a stock symbol, return the name.
 ' Iterate through the array, looking for the symbol.
 for i = 0 to stocks.GetLength(0) - 1
 ' Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks(i,0), true) = 0) then
 return stocks(i,1)
 end if
 next

 return "Symbol not found."
 End Function
 End Class
End namespace

Example 16-2. StockTicker web service in C#, csStockTicker.asmx

<%@ WebService Language="C#" Class="ProgAspNet.csStockTicker" %>

using System;
using System.Web.Services;

namespace ProgAspNet
{
 public class csStockTicker : System.Web.Services.WebService
 {
 // Construct and fill an array of stock symbols and prices.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Note: the stock prices are as of 7/4/01.
 string[,] stocks =
 {
 {"MSFT","Microsoft","70.47"},
 {"DELL","Dell Computers","26.91"},
 {"HWP","Hewlett Packard","28.40"},
 {"YHOO","Yahoo!","19.81"},
 {"GE","General Electric","49.51"},
 {"IBM","International Business Machine","112.98"},
 {"GM","General Motors","64.72"},
 {"F","Ford Motor Company","25.05"}
 };

 [WebMethod]
 public double GetPrice(string StockSymbol)
 // Given a stock symbol, return the price.
 {
 // Iterate through the array, looking for the symbol.
 for (int i = 0; i < stocks.GetLength(0); i++)
 {
 // Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks[i,0], true) == 0)
 return Convert.ToDouble(stocks[i,2]);
 }
 return 0;
 }

 [WebMethod]
 public string GetName(string StockSymbol)
 // Given a stock symbol, return the name.
 {
 // Iterate through the array, looking for the symbol.
 for (int i = 0; i < stocks.GetLength(0); i++)
 {
 // Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks[i,0], true) == 0)
 return stocks[i,1];
 }
 return "Symbol not found.";
 }
 }
}

16.1.1 The WebService Directive

The first difference between a web service and a web page is seen in the first line of Example 16-1 and Example 16-2
. A normal .aspx file will have a Page directive as its first line, but a web service has a WebService directive, as

reproduced here in VB.NET:

<%@ WebService Language="VB" Class="ProgAspNet.vbStockTicker" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here it is in C#:

<%@ WebService Language="C#" Class="ProgAspNet.csStockTicker" %>

The WebService directive is required of all web services. Like all directives, it has the syntax:

<%@ DirectiveName Attribute="value" %>

where there can be multiple attribute/value pairs. The order of the attribute/value pairs does not matter.

16.1.1.1 The Language attribute

The WebService directive's Language attribute specifies the language used in the web service. Legal values include C#
, VB , JS , and VJ# for C#, VB.NET, JScript.NET, and J#, respectively. The value is not case-sensitive.

The Language attribute is not required. If it is missing, the default value is C# .

16.1.1.2 The Class attribute

The WebService directive's Class attribute specifies the name of the class implementing the web service. The Class

attribute is required. The class specified can reside in the .asmx file or in a separate file, a technique referred to as
code-behind .

If the implementing class resides in a separate file, then that file must be compiled and the resulting dll placed in the
\bin subdirectory under the directory where the .asmx file resides. This will be demonstrated shortly.

Notice that in the code listings in Example 16-1 and Example 16-2 , a namespace, ProgAspNet, has been defined. To
specify the implementing class contained in this namespace fully, the namespace is prepended to the class name in
the WebService directive.

Strictly speaking, the namespace containing the WebService class does not need to be
prepended to the inherited class name, since the System.Web.Services namespace is
referenced with the Imports keyword in VB.NET and the using keyword in C#. The longer

syntax is used to clarify the relationships.

16.1.2 Deriving from the WebService Class

In the StockTicker web service in Example 16-1 and Example 16-2 , the StockTicker class (the vbStockTicker class for
VB.NET and the csStockTicker class for C#) inherits from the WebService class.

Deriving from the WebService class is optional, but it offers several advantages. The principal one is that you gain
access to several common ASP.NET objects, including:

Application and Session

These objects allow the application to take advantage of state management. For a complete discussion of state
management, see Chapter 6 . State as it pertains specifically to web services will be covered in more detail
later in this chapter.

User

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This object is useful for authenticating the caller of a web service. For a complete discussion of security, see
Chapter 19 .

Context

This object provides access to all HTTP-specific information about the caller's request contained in the
HttpContext class.

16.1.3 Application State via HttpContext

Web services have access to the Application object (as do all ASP.NET resources) via the HttpContext object.

So, for example, you could modify Example 16-1 and Example 16-2 to add the web methods shown in Example 16-3
(for VB.NET) and Example 16-4 (for C#) to set and retrieve a value in application state.

Example 16-3. Code modification to vbStockTicker.asmx adding application state

<WebMethod>public sub SetStockExchange(Exchange as string)
 Application("exchange") = Exchange
end sub
<WebMethod>public function GetStockExchange() as string
 return Application("exchange").ToString()
end function

Example 16-4. Code modification to csStockTicker.asmx adding application state

 [WebMethod]
public void SetStockExchange(string Exchange)
{
 Application["exchange"] = Exchange;
}

[WebMethod]
public string GetStockExchange()
{
 return Application["exchange"].ToString();
}

You could accomplish the same thing without inheriting from System.Web.Services.WebService by using the
HttpContext object, as demonstrated in Example 16-5 and Example 16-6 .

Example 16-5. Code modification to vbStockTicker.asmx adding application state
without inheriting WebService

Option Strict On
Option Explicit On
Imports System
Imports System.Web
Imports System.Web.Services

namespace ProgAspNet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public class vbStockTicker
.
.
.
 <WebMethod>public sub SetStockExchange(Exchange as string)
 dim app as HttpApplicationState
 app = HttpContext.Current.Application
 app("exchange") = Exchange
 end sub

 <WebMethod>public function GetStockExchange() as string
 dim app as HttpApplicationState
 app = HttpContext.Current.Application
 return app("exchange").ToString()
 end function

Example 16-6. Code modification to csStockTicker.asmx adding application state
without inheriting WebService

using System;
using System.Web;
using System.Web.Services;

namespace ProgAspNet
{
 public class csStockTicker
.
.
.
 [WebMethod]
 public void SetStockExchange(string Exchange)
 {
 HttpApplicationState app;
 app = HttpContext.Current.Application;
 app["exchange"] = Exchange;
 }

 [WebMethod]
 public string GetStockExchange()
 {
 HttpApplicationState app;
 app = HttpContext.Current.Application;
 return app["exchange"].ToString();
 }

Notice that in Example 16-5 and Example 16-6 , a reference to System.Web has been added at the top of the listing.
Also, the web service class, vbStockTicker or csStockTicker, no longer inherits from the class WebService. Finally, an
HttpApplicationState object is declared to access the application state.

The main reason you might not want to inherit from WebService is to overcome the limitation imposed by the .NET
Framework that a class can only inherit from one other class. It would be very inconvenient to have to inherit from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WebService if you also needed to inherit from another class.

16.1.4 The WebMethod Attribute

As explained previously, a web service is defined by a WebService class. It is not necessary for the WebService class
to expose all of its methods to consumers of the web service. Each method you do want to expose must:

Be declared as public .

Have the WebMethod attribute placed before the method declaration. (The WebMethod attribute comes from the

WebMethodAttribute class, which is contained in the System.Web.Services namespace.)

As you saw in Example 16-1 and Example 16-2 , the syntax for defining a web method is slightly different, depending
on the language. In VB.NET, it looks like this:

<WebMethod>public function GetName(StockSymbol as string) as string

In C#, it looks like this:

[WebMethod]
public string GetName(string StockSymbol)

16.1.4.1 WebMethod properties

The WebMethod attribute has properties that are used to configure the behavior of the specific web method. The

syntax, again, is language-dependent.

In VB.NET, the syntax is:

<WebMethod(PropertyName:=value)> _
public function GetName(StockSymbol as string) as string

In C#, the syntax is:

[WebMethod(PropertyName=value)]
public string GetName(string StockSymbol)

PropertyName is a valid property accepted by the WebMethod attribute (these are described below), and value is

the value to be assigned to that property. Note the colon (:) in VB.NET (which is standard VB.NET syntax for named
arguments), as well as the use of the line continuation character if the combination of the WebMethod property and
method/function call stretches to more than one line.

Regardless of the language, if there are multiple WebMethod properties, separate each property/value pair with a

comma within a single set of parentheses. So, for example, in VB.NET:

<WebMethod(BufferResponse:=False, Description:="Sample description")>

In C#, it looks like this:

[WebMethod(BufferResponse=false, Description="Sample description")]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following sections describe the valid WebMethod properties.

16.1.4.1.1 The BufferResponse property

By default, ASP.NET buffers the entire response to a request before sending it from the server to the client. Under
most circumstances, this is the optimal behavior. However, if the response is very lengthy, you might want to disable
this buffering by setting the WebMethod attribute's BufferResponse property to false . If set to false , the response
will be returned to the client in 16KB chunks. The default value is true .

For VB.NET, the syntax for BufferResponse is:

<WebMethod(BufferResponse:=False)>

For C#, it is this:

[WebMethod(BufferResponse=false)]

16.1.4.1.2 The CacheDuration property

Web services, like web pages, can cache the results returned to clients, as is described fully in Chapter 18 . If a client
makes a request that is identical to a request made recently by another client, then the server will return the
response stored in the cache. This can result in a huge performance gain, especially if servicing the request is an
expensive operation (such as querying a database or performing a lengthy computation).

It should be emphasized that in order for the cached results to be used, the new request must be identical to the
previous request. If the web method has parameters, the parameter values must be identical. So, for example, if the
GetPrice web method of the StockTicker web service is called with a value of msft passed in as the stock symbol, that
result will be cached separately from a request with a value of dell passed in. If the web method has multiple

parameters, all the parameter values must be the same as the previous request for the cached results from that
request to be returned.

The CacheDuration property defines how many seconds after the initial request the cached page is sent in response
to subsequent requests. Once this period has expired, a new page is sent. CacheDuration is set to 30 seconds as
follows for VB.NET:

<WebMethod(CacheDuration:=30)>

For C#, it is set as follows:

[WebMethod(CacheDuration=30)]

The default value for CacheDuration is zero, which disables caching of results.

If the web method is returning data that does not change much (say, a query against a database that is updated
once hourly), then the cache duration can be set to a suitably long value, say 1800 (e.g., 30 minutes). You could
even set the cache duration in this case to 3600 (60 minutes) if the process of updating the database also forces the
cache to refresh by making a call to the WebMethod after the database is updated.

On the other hand, if the data returned is very dynamic, then you would want to set the cache duration to a very
short time, or to disable it altogether. Also, if the web method does not have a relatively finite range of possible
parameters, then caching may not be appropriate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.1.4.1.3 The Description property

The WebMethod attribute's Description property allows you to attach a descriptive string to a web method. This

description will appear on the web service help page when you test the web service in a browser.

Also, the WebMethod description will be made available to the consumer of the web service, as will be seen in Chapter

17 . When a representation of the web service is encoded into the SOAP message that is sent out to potential
consumers, the WebMethod Description property is included.

The syntax for Description is as follows for VB.NET:

<WebMethod(Description:="Returns the stock price for the input stock symbol.")>

For C#, it is as follows:

[WebMethod(Description="Returns the stock price for the input stock symbol.")]

16.1.4.1.4 The EnableSession property

The WebMethod attribute's EnableSession property, if set to true , enables session state for the web method. The
default value is false . (For a general discussion of session state, see Chapter 6 .)

If the EnableSession property is set to true and the web service inherits from the WebService class (see earlier

sections for a description of inheriting from the WebService class), the session state collection can be accessed with
the WebService .Session property. If the web service does not inherit from the WebService class, then the session

state collection can be accessed directly from HttpContext.Current.Session.

As an example, the code in Example 16-7 and Example 16-8 adds a per-session hit counter to the ongoing
StockTicker web service example.

Example 16-7. HitCounter WebMethod in VB.NET

<WebMethod(Description:="Number of hits per session.", EnableSession:=true)> _
public function HitCounter() as integer
 if Session("HitCounter") is Nothing then
 Session("HitCounter") = 1
 else
 Session("HitCounter") = CInt(Session("HitCounter")) + 1
 end if

 return CInt(Session("HitCounter"))
end function

Example 16-8. HitCounter WebMethod in C#

 [WebMethod(Description="Number of hits per session.", EnableSession=true)]
public int HitCounter()
{
 if (Session["HitCounter"] == null)
 {
 Session["HitCounter"] = 1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 else
 {
 Session["HitCounter"] = ((int) Session["HitCounter"]) + 1;
 }

 return ((int) Session["HitCounter"]);
}

Enabling session state adds additional overhead to the application. By leaving session state disabled, performance
may be improved.

In Example 16-7 and Example 16-8 , it would probably be more efficient to use a member variable to maintain the hit
counter, rather than session state, since the examples as written entail two reads of the session state and one write,
while a member variable would entail only one read and one write. However, session state is often useful as a global
variable that can exceed the scope of a member variable.

Session state is implemented via HTTP cookies in ASP.NET web services, so if the transport mechanism is something
other than HTTP (say, SMTP), then the session state functionality will not be available.

16.1.4.1.5 The MessageName property

It is possible to have more than one method or function in your web service class with the same name. They are
differentiated by their signature (the quantity, data type, and order of their parameters). Each unique signature can
be called independently. This is called method overloading , and can cause some confusion.

The WebMethod attribute's MessageName property eliminates confusion caused by overloaded methods. It allows you

to assign a unique alias to a method signature. When this method is referred to in SOAP messages, the
MessageName will be used, and not the method name.

Consider Example 16-9 and Example 16-10 . In both examples, two methods are added to the StockTicker web
service, both named GetValue. They differ in that one accepts only a single string parameter, while the other takes
both a string and an integer.

Example 16-9. GetValue WebMethods in VB.NET

' WebMethod generates an error
<WebMethod(Description:="Returns the value of the users holdings " & _
 " in a specified stock symbol.")> _
public Function GetValue(StockSymbol as string) as double
 ' Put code here to get the username of the current user, fetch both
 ' the current price of the specified StockSymbol and number of shares
 ' held by the current user, multiply the two together, and return the
 ' result.
 return 0
end Function

' WebMethod generates an error
<WebMethod(Description:="This method returns the value of a " & _
 "specified number of shares in a specified stock symbol.")> _
public Function GetValue(StockSymbol as string, NumShares as integer) as double

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Put code here to get the current price of the specified StockSymbol,
 ' multiply it times NumShares, and return the result.
 return 0
end function

Example 16-10. GetValue WebMethods in C#

// WebMethod generates an error
[WebMethod(Description="T Returns the value of the users holdings " +
 " in a specified stock symbol.")]
public double GetValue(string StockSymbol)
{
 /* Put code here to get the username of the current user, fetch both
 the current price of the specified StockSymbol and number of shares
 held by the current user, multiply the two together, and return the
 result.
 */
 return 0;
}

// WebMethod generates an error
[WebMethod(Description="This method returns the value of a " +
 "specified number of shares in a specified stock symbol.")]
public double GetValue(string StockSymbol, int NumShares)
{
 /* Put code here to get the current price of the specified
 StockSymbol, multiply it times NumShares, and return the result.
 */
 return 0;
}

If you attempt to test either of these in a browser, it will return an error similar to that shown in Figure 16-1 .

If you modify the code in Example 16-9 and Example 16-10 by adding the MessageName property, highlighted in
Example 16-11 and Example 16-12 , then everything compiles nicely.

Example 16-11. GetValue WebMethods with MessageName in VB.NET

<WebMethod(Description:="Returns the value of the users holdings " & _
 "in a specified stock symbol.", _
 MessageName:="GetValuePortfolio")> _
public Function GetValue(StockSymbol as string) as double
 ' Put code here to get the username of the current user, fetch
 ' both the current price of the specified StockSymbol and number
 ' of shares held by the current user, multiply the two together,
 ' and return the result.
 return 0
end Function

<WebMethod(Description:="Returns the value of a specified number " & _
 "of shares in a specified stock symbol.", _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MessageName:="GetValueStock")> _
public Function GetValue(StockSymbol as string, NumShares as integer) as double
 ' Put code here to get the current price of the specified StockSymbol,
 ' multiply it times NumShares, and return the result.
 return 0
end function

Example 16-12. GetValue WebMethods with MessageName in C#

 [WebMethod(Description="Returns the value of the users holdings " +
 "in a specified stock symbol.",
 MessageName="GetValuePortfolio")]
public double GetValue(string StockSymbol)
{
 /* Put code here to get the username of the current user, fetch
 both the current price of the specified StockSymbol and number
 of shares held by the current user, multiply the two together,
 and return the result.
 */ return 0;
}

[WebMethod(Description="Returns the value of a specified " +
 "number of shares in a specified stock symbol.",
 MessageName="GetValueStock")]
public double GetValue(string StockSymbol, int NumShares)
{
 /* Put code here to get the current price of the specified
 StockSymbol, multiply it times NumShares, and return the
 result.
 */
 return 0;
}

Now consumers of the web service will call GetValuePortfolio or GetValueStock rather than GetValue.

Figure 16-1. Conflicting WebMethod names

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To see the impact of this change, examine the WSDL, which is the description of the web service used by clients of
the web service. You can look at the WSDL by entering the URL for the .asmx file in a browser, followed by ?WSDL . If

you do that for Example 16-11 or Example 16-12 , then search for the first occurrence of GetValuePortfolio, you will
see something like Figure 16-2 .

Figure 16-2. MessageName WSDL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can see that the section defined by the tag

<operation name="GetValue">

is present twice. However, in the first instance, the method name used within the operation section of the document

is GetValuePortfolio, and in the second instance it is GetValueStock.

16.1.4.1.6 The TransactionOption property

ASP.NET web methods can use transactions (see Chapter 12 for more details on transactions), but only if the
transaction originates in that web method. In other words, the web method can only participate as the root object in
a transaction. This means that a consuming application cannot call a web method as part of a transaction and have
that web method participate in the transaction.

The WebMethod attribute's TransactionOption property specifies whether or not a web method should start a

transaction. There are five legal values of the property, all contained in the TransactionOption enumeration. However,
because a web method transaction must be the root object, there are only two different behaviors: either a new
transaction is started or it is not.

These values in the TransactionOption enumeration are used throughout the .NET Framework. However, in the case
of web services, the first three values produce the same behavior, and the last two values produce the same
behavior.

The three values of TransactionOption that do not start a new transaction are:

Disabled (the default)

NotSupported

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Supported

The two values that do start a new transaction are:

Required

RequiresNew

In order to use transactions in a web service, you must take several additional steps:

Add a reference to System.EnterpriseServices.dll .

In Visual Studio .NET, this is done through the Solution Explorer or the Project/Add Reference... menu item. If
using the Solution Explorer, right-click on References and select Add References.... In either case, you get the
dialog box shown in Figure 16-3 . Click on the desired component in the list, and then click OK.

Figure 16-3. Adding a reference to a project in Visual Studio .NET

When coding outside of Visual Studio .NET, you must add an Assembly directive pointing
to System.EnterpriseServices:

<%@ assembly name="System.EnterpriseServices" %>

1.

Add the System.EnterpriseServices namespace to the web service. This is done with the Imports statement in
VB.NET and the using statement in C#. In VB.NET, this would be:

2.

Imports System.EnterpriseServices

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In C#, it would be:

using System.EnterpriseServices;

Add a TransactionOption property with a value of RequiresNew to the WebMethod attribute. (The value of
Required will have the same effect.)

The syntax for TransactionOption is as follows for VB.NET:

3.

<WebMethod(TransactionOption:=TransactionOption.RequiresNew)>

For C#, it is as follows:

[WebMethod(Description=TransactionOption.RequiresNew)]

If there are no exceptions thrown by the web method, then the transaction will automatically commit unless the
SetAbort method is explicitly called. If an unhandled exception is thrown, the transaction will automatically abort.

16.1.5 The WebService Attribute

The WebService attribute (not to be confused with the WebMethod attribute or the WebService directive) allows
additional information to be added to a web service. The WebService attribute is optional.

The syntax for a WebService attribute is dependent on the language used. For VB. NET, it is:

<WebService(PropertyName:=value)>public class vbStockTicker()

or:

<WebService(PropertyName:=value)> _
public class vbStockTicker()

For C#, it is:

[WebService(PropertyName=value)]
public class csStockTicker()

PropertyName is a valid property accepted by the WebService attribute (these are described later), and value is the

value to be assigned to that property. Note the colon (:) in VB. NET (which is standard VB.NET syntax for named
arguments), as well as the use of the line continuation character if the combination of the WebService attribute and

the class declaration stretches to more than one line.

If there are multiple WebService properties, separate each property/value pair with a comma within a single set of
parenthesis. So, for example, in VB. NET:

<WebService (Description:="A stock ticker using VB.NET.", _
 Name:="StockTicker", _
 Namespace:="www.LibertyAssociates.com")> _

In C#, it would be:

[WebService (Description="A stock ticker using C#.",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name="StockTicker",
 Namespace="www.LibertyAssociates.com")]

There are three possible properties for a WebService attribute, described in the next three sections.

16.1.5.1 The Description property

The WebService attribute's Description property assigns a descriptive message to the web service. As with the
WebMethod attribute's Description property, the WebService description will be displayed in the web service help page

when the page is tested in a browser, and also made available in the SOAP message to any potential consumers of
the web service.

16.1.5.2 The Name property

The name of a web service is displayed at the top of a web service help page when the page is tested in a browser. It
is also made available to any potential consumers of the service.

By default, the name of a web service is the name of the class implementing the web service. The WebService

attribute's Name property allows the name to be changed. If you glance back at the syntax given in the section, "The
WebService Attribute," you'll notice that the two language implementations of the stock ticker web service have
different class names, but the code specifies that both will now be seen as StockTicker.

16.1.5.3 The Namespace property

Each web service has an XML namespace associated with it. An XML namespace allows you to create names in an
XML document that are uniquely identified by a Uniform Resource Identifier (URI). The web service is described using
a WSDL document, which is defined in XML. It is important that each WebService attribute has a unique XML

namespace associated with it to ensure it can be uniquely identified by an application.

The default URI of a web service is http://tempuri.org/ . Typically, you will define a new namespace using a unique
name, such as a firm's web site. Although the XML namespace often looks like a web site, it does not need to be a
valid URL.

In the syntax given in Section 16-1.5 , notice that the Namespace property is set to the web site,
www.LibertyAssociates.com .

16.1.6 Data Types

ASP.NET web services can use any CLR-supported primitive data type as either a parameter or a return value. Table
16-1 summarizes the valid types.

Table 16-1. CLR-supported primitive data types

VB.NET C# Description

Byte byte 1-byte unsigned integer

Short short 2-byte signed integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB.NET C# Description

Integer int 4-byte signed integer

Long long 8-byte signed integer

Single float 4-byte floating point

Double double 8-byte floating point

Decimal decimal 16-byte floating point

Boolean bool True/False

Char char Single Unicode character

String string Sequence of Unicode characters

DateTime DateTime Represents dates and times

Object object Any type

In addition to the primitive data types, you can also use arrays and ArrayLists of the primitive types. Since data is
passed between a web service and its clients using XML, whatever is used as either a parameter or return value must
be represented in an XML schema, or XSD.

The examples shown so far in this chapter have used simple primitive types, such as strings and numbers, as
parameters and return values. You could also use an array of simple types, as in the code shown here in C#:

[WebMethod]
public string[] GetArray()
{
 string[] TestArray = {"a","b","c"};
 return TestArray;
}

The code shown here is for VB .NET:

<WebMethod> _
Public Sub GetArray() As String()
{
 Dim TestArray() As String = {"a","b","c"}
 return TestArray
}

The main limitation of using arrays, of course, is that you must know the number of elements at design time. If the
number of elements is dynamic, then an ArrayList is called for. If an ArrayList is used in the web service, it is
converted to an object array when the web service description is created. The client proxy will return an array of
objects, which will then have to be converted to an array of strings.

The ArrayList is contained within the System.Collections namespace. To use an ArrayList, you must include the
proper reference, with the Imports keyword in VB.NET, as in the following:

Imports System.Collections

or the using keyword in C#:

Integer int 4-byte signed integer

Long long 8-byte signed integer

Single float 4-byte floating point

Double double 8-byte floating point

Decimal decimal 16-byte floating point

Boolean bool True/False

Char char Single Unicode character

String string Sequence of Unicode characters

DateTime DateTime Represents dates and times

Object object Any type

In addition to the primitive data types, you can also use arrays and ArrayLists of the primitive types. Since data is
passed between a web service and its clients using XML, whatever is used as either a parameter or return value must
be represented in an XML schema, or XSD.

The examples shown so far in this chapter have used simple primitive types, such as strings and numbers, as
parameters and return values. You could also use an array of simple types, as in the code shown here in C#:

[WebMethod]
public string[] GetArray()
{
 string[] TestArray = {"a","b","c"};
 return TestArray;
}

The code shown here is for VB .NET:

<WebMethod> _
Public Sub GetArray() As String()
{
 Dim TestArray() As String = {"a","b","c"}
 return TestArray
}

The main limitation of using arrays, of course, is that you must know the number of elements at design time. If the
number of elements is dynamic, then an ArrayList is called for. If an ArrayList is used in the web service, it is
converted to an object array when the web service description is created. The client proxy will return an array of
objects, which will then have to be converted to an array of strings.

The ArrayList is contained within the System.Collections namespace. To use an ArrayList, you must include the
proper reference, with the Imports keyword in VB.NET, as in the following:

Imports System.Collections

or the using keyword in C#:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System.Collections;

The code in Example 16-13 and Example 16-14 contains a web method called GetList. It takes a string as a
parameter. This match string is then compared with all the firm names in the data store (the array defined at the top
of the web service class shown in Example 16-1 and Example 16-2), and the web service returns all the firm names
that contain the match string anywhere within the firm name.

Example 16-13. GetList WebMethod in VB.NET

<WebMethod(Description:="Returns all the stock symbols whose firm " & _
 "name matches the input string as *str*.")> _
public function GetList(MatchString as string) as ArrayList
 dim a as ArrayList = new ArrayList()

 ' Iterate through the array, looking for matching firm names.
 for i = 0 to stocks.GetLength(0) - 1
 ' Search is case sensitive.
 if stocks(i,1).ToUpper().IndexOf(MatchString.ToUpper()) >= 0 then
 a.Add(stocks(i,1))
 end if
 next
 a.Sort()
 return a
end function

Example 16-14. GetList WebMethod in C#

 [WebMethod(Description="Returns all the stock symbols whose firm " +
 "matches the input string as *str*.")]
public ArrayList GetList(string MatchString)
{
 ArrayList a = new ArrayList();

 // Iterate through the array, looking for matching firm names.
 for (int i = 0; i < stocks.GetLength(0); i++)
 {
 // Search is case sensitive.
 if (stocks[i,1].ToUpper().IndexOf(MatchString.ToUpper()) >= 0)
 a.Add(stocks[i,1]);
 }
 a.Sort();
 return a;
}

The web method in Example 16-13 and Example 16-14 first instantiates a new ArrayList, then iterates through the
store of firms. This time the web method uses the IndexOf method of the String class. This IndexOf method does a
case-sensitive search in a string, looking for the match string. If it finds a match, it returns the index of the first
occurrence. If it does not find a match, it returns -1. In order to implement a case-insensitive search, the code first
converts both the MatchString and the firm name to uppercase.

If the IndexOf method finds a match, the web method adds the firm name to the ArrayList. The firm name is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contained in the second field of the array record, i.e., the field with index 1 (remember that array indices are zero-
based). After completing the search, the web method then sorts the ArrayList before returning it to the client. (As
alternative, you could convert the ArrayList to a strongly-typed array using ArrayList.ToArray(), before retuning it.)

To test this, enter the following URL into a browser. For VB.NET, use:

http://localhost/ProgAspNet/vbStockTicker.asmx

For C#, use:

http://localhost/ProgAspNet/csStockTicker.asmx

In either case, you will get a page with each of the web methods as a link, similar to the page shown in Figure 15-2 in
Chapter 15 . Clicking on GetList will bring up a page for testing the method. If you enter "or" (as shown in Figure 16-
4), you will see the results that would be returned to a client, shown in Figure 16-5 . Notice that in the test output,
Ford comes before General Motors, even though their order is reversed in the input data. That is a result of sorting
the ArrayList prior to return.

Figure 16-4. GetList test page

Figure 16-5. GetList test results

http://localhost/ProgAspNet/vbStockTicker.asmx
http://localhost/ProgAspNet/csStockTicker.asmx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Web services can also use user-defined classes and structs as either parameters or return types. The rules to
remember are:

All the class variables must be primitive data types or arrays of primitive data types.

All the class variables must be public.

To demonstrate the use of classes with web services, add the class definitions shown in Example 16-15 and Example
16-16 to the Stock Ticker being built in this chapter.

Example 16-15. Class Definitions in VB.NET

public class Stock
 public StockSymbol as string
 public StockName as string
 public Price as double
 public History(1) as StockHistory
end class

public class StockHistory
 public TradeDate as DateTime
 public Price as double
end class

Example 16-16. Class Definitions in C#

public class Stock
{
 public string StockSymbol;
 public string StockName;
 public double Price;
 public StockHistory[] History =
 new StockHistory[2];
}

public class StockHistory
{
 public DateTime TradeDate;
 public double Price;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first class definition, Stock , is comprised of two strings, a double, and an array of type StockHistory. The
StockHistory class consists of a date, called the TradeDate, and the stock price on that date.

In a real-world application, you would never design a stock ticker like this. Instead of the
Stock class having an array with a fixed number of stock history records, you would probably

want to use a collection. You would also store the data in a database, rather than filling an
array. That way, the number of history records returned by the web method would be
dependent upon the number of records returned from the database query. In the example
here, the data is hard-coded in an array to focus on the topic of using classes with web
services.

The web method shown in Example 16-17 and Example 16-18 uses the Stock class to return stock history data for

the stock symbol passed in to it.

Example 16-17. GetHistory WebMethod in VB.NET

<WebMethod(Description:="Returns stock history for " & _
 "the stock symbol specified.")> _
public function GetHistory(StockSymbol as string) as Stock
 dim theStock as new Stock

 ' Iterate through the array, looking for the symbol.
 for i = 0 to stocks.GetLength(0) - 1
 ' Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks(i,0), true) = 0) then
 theStock.StockSymbol = StockSymbol
 theStock.StockName = stocks(i,1)
 theStock.Price = Convert.ToDouble(stocks(i,2))

 ' Populate the StockHistory data.
 theStock.History(0) = new StockHistory()
 theStock.History(0).TradeDate = Convert.ToDateTime("5/1/2001")
 theStock.History(0).Price = Convert.ToDouble(23.25)

 theStock.History(1) = new StockHistory()
 theStock.History(1).TradeDate = Convert.ToDateTime("6/1/2001")
 theStock.History(1).Price = Convert.ToDouble(28.75)

 return theStock
 end if
 next
 theStock.StockSymbol = StockSymbol
 theStock.StockName = "Stock not found."
 return theStock
end function

Example 16-18. GetHistory WebMethod in C#

 [WebMethod(Description="Returns stock history for " +
 "the stock symbol specified.")]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public Stock GetHistory(string StockSymbol)
{
 Stock stock = new Stock();

 // Iterate through the array, looking for the symbol.
 for (int i = 0; i < stocks.GetLength(0); i++)
 {
 // Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks[i,0], true) == 0)
 {
 stock.StockSymbol = StockSymbol;
 stock.StockName = stocks[i,1];
 stock.Price = Convert.ToDouble(stocks[i,2]);

 // Populate the StockHistory data.
 stock.History[0] = new StockHistory();
 stock.History[0].TradeDate = Convert.ToDateTime("5/1/2001");
 stock.History[0].Price = Convert.ToDouble(23.25);

 stock.History[1] = new StockHistory();
 stock.History[1].TradeDate = Convert.ToDateTime("6/1/2001");
 stock.History[1].Price = Convert.ToDouble(28.75);

 return stock;
 }
 }
 stock.StockSymbol = StockSymbol;
 stock.StockName = "Stock not found.";
 return stock;
}

In Example 16-17 and Example 16-18 , notice that each class is instantiated before it can be used. Iterating over the
array of stocks finds the data to return. The class variables are populated from the array, and then the class itself is
returned. If the stock symbol is not found, a message is placed in a convenient field of the stock class and that is
returned.

Since a web service can return any data that can be encoded in an XML file, it can also return a DataSet, since that is
represented internally as XML by ADO.NET. A DataSet is the only type of ADO.NET data store that can be returned by
a web service.

As an exercise, we will modify an example shown previously in Chapter 11 to return a DataSet from the Bugs
database used in that chapter.

Although this sample web method does not really conform to the ongoing Stock Ticker
example, we will use it for convenience.

Add the namespaces shown in Example 16-19 and Example 16-20 to the Stock Ticker example.

Example 16-19. Namespace references for DataSet in VB.NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Imports System.Data
Imports System.Data.SqlClient

Example 16-20. Namespace references for DataSet in C#

using System.Data;
using System.Data.SqlClient;

Now add the web method shown in Example 16-21 (VB.NET) and Example 16-22 (C#). This web method, called
GetDataSet, takes no parameters and returns a DataSet object consisting of all the BugIDs and Descriptions from the
Bugs database.

Example 16-21. GetDataSet in VB.NET

<WebMethod(Description:="Returns a data set from the Bugs database.")> _
public function GetDataset() as DataSet
 dim connectionString as string
 dim commandString as string
 dim dataAdapter as SqlDataAdapter
 dim dataSet as new DataSet()

 ' connect to the Bugs database
 connectionString = "YourServer; uid=sa;
 pwd=YourPassword; database= ProgASPDotNetBugs "

 ' get records from the Bugs table
 commandString = "Select BugID, Description from Bugs"

 ' create the data set command object and the DataSet
 dataAdapter = new SqlDataAdapter(commandString, connectionString)

 ' fill the data set object
 dataAdapter.Fill(dataSet,"Bugs")

 return dataSet
end function

Example 16-22. GetDataSet in C#

 [WebMethod(Description="Returns a data set from the Bugs database.")]
public DataSet GetDataset()
{
 // connect to the Bugs database
 string connectionString = "server=YourServer; uid=sa;
 pwd= YourPassword; database= ProgASPDotNetBugs ";

 // get records from the Bugs table
 string commandString = "Select BugID, Description from Bugs";

 // create the data set command object and the DataSet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SqlDataAdapter dataAdapter = new SqlDataAdapter(commandString, connectionString);

 DataSet dataSet = new DataSet();

 // fill the data set object
 dataAdapter.Fill(dataSet,"Bugs");

 return dataSet;
}

The code is copied nearly verbatim from the Page_Load method in the code in Example 11-2 and Example 11-3 and
was described fully in that chapter. The important thing to note here is that a DataSet object is created from a query,
then returned by the web method to the consuming client.

Example 16-23 and Example 16-24 show the completed source code for the example web service that we've
developed in this chapter up to this point. The code is included here to show how all the snippets of code presented
so far fit together.

Example 16-23. vbStockTicker.asmx in VB.NET

<%@ WebService Language="VB" Class="ProgAspNet.vbStockTicker" %>

Option Strict On
Option Explicit On
Imports System
Imports System.Web.Services
Imports System.Collections
Imports System.Data
Imports System.Data.SqlClient

namespace ProgAspNet

 <WebService (Description:="A stock ticker using VB.NET.", _
 Name:="StockTicker", _
 Namespace:="www.LibertyAssociates.com")> _
 public class vbStockTicker
 inherits System.Web.Services.WebService

 ' Construct and fill an array of stock symbols and prices.
 ' Note: the stock prices are as of 7/4/01.
 dim stocks as string(,) = _
 { _
 {"MSFT","Microsoft","70.47"}, _
 {"DELL","Dell Computers","26.91"}, _
 {"HWP","Hewlett Packard","28.40"}, _
 {"YHOO","Yahoo!","19.81"}, _
 {"GE","General Electric","49.51"}, _
 {"IBM","International Business Machine","112.98"}, _
 {"GM","General Motors","64.72"}, _
 {"F","Ford Motor Company","25.05"} _
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dim i as integer

 public class Stock
 public StockSymbol as string
 public StockName as string
 public Price as double
 public History(2) as StockHistory
 end class

 public class StockHistory
 public TradeDate as DateTime
 public Price as double
 end class

 <WebMethod(Description:="Returns stock history for " & _
 "the stock symbol specified.")> _
 public function GetHistory(StockSymbol as string) as Stock
 dim theStock as new Stock

 ' Iterate through the array, looking for the symbol.
 for i = 0 to stocks.GetLength(0) - 1
 ' Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks(i,0), true) = 0) then
 theStock.StockSymbol = StockSymbol
 theStock.StockName = stocks(i,1)
 theStock.Price = Convert.ToDouble(stocks(i,2))

 ' Populate the StockHistory data.
 theStock.History(0) = new StockHistory()
 theStock.History(0).TradeDate = _
 Convert.ToDateTime("5/1/2001")
 theStock.History(0).Price = Convert.ToDouble(23.25)

 theStock.History(1) = new StockHistory()
 theStock.History(1).TradeDate = _
 Convert.ToDateTime("6/1/2001")
 theStock.History(1).Price = Convert.ToDouble(28.75)

 return theStock
 end if
 next
 theStock.StockSymbol = StockSymbol
 theStock.StockName = "Stock not found."
 return theStock
 end function

 <WebMethod(Description:="Returns all the stock symbols whose " & _
 "firm name matches the input string as *str*.")> _
 public function GetList(MatchString as string) as ArrayList
 dim a as ArrayList = new ArrayList()

 ' Iterate through the array, looking for matching firm names.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for i = 0 to stocks.GetLength(0) - 1
 ' Search is case sensitive.
 if stocks(i,1).ToUpper().IndexOf(MatchString.ToUpper()) _
 >= 0 then
 a.Add(stocks(i,1))
 end if
 next
 a.Sort()
 return a
 end function

 <WebMethod(Description:="Returns the stock price for the " & _
 "input stock symbol.", _
 CacheDuration:=20)> _
 public function GetPrice(StockSymbol as string) as Double
 ' Given a stock symbol, return the price.
 ' Iterate through the array, looking for the symbol.
 for i = 0 to stocks.GetLength(0) - 1
 ' Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks(i,0), true) = 0) then
 return Convert.ToDouble(stocks(i,2))
 end if
 next

 return 0
 End Function

 <WebMethod(Description:="Returns the firm name for the input " & _
 "stock symbol.", _
 CacheDuration:=86400)> _
 public function GetName(StockSymbol as string) as string
 ' Given a stock symbol, return the name.
 ' Iterate through the array, looking for the symbol.
 for i = 0 to stocks.GetLength(0) - 1
 ' Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks(i,0), true) = 0) then
 return stocks(i,1)
 end if
 next

 return "Symbol not found."
 End Function

 <WebMethod(Description:="Sets the stock exchange for the " & _
 "application.")> _
 public sub SetStockExchange(Exchange as string)
 Application("exchange") = Exchange
 end sub

 <WebMethod(Description:="Gets the stock exchange for the " & _
 "application. It must previously be set.")> _
 public function GetStockExchange() as string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return Application("exchange").ToString()
 end function

 <WebMethod(Description:="Number of hits per session.", _
 EnableSession:=true)> _
 public function HitCounter() as integer
 if Session("HitCounter") is Nothing then
 Session("HitCounter") = 1
 else
 Session("HitCounter") = CInt(Session("HitCounter")) + 1
 end if

 return CInt(Session("HitCounter"))
 end function

 <WebMethod(Description:="Returns the value of the users " & _
 "holdings in a specified stock symbol.", _
 MessageName:="GetValuePortfolio")> _
 public Function GetValue(StockSymbol as string) as double
 ' Put code here to get the username of the current user, fetch
 ' both the current price of the specified StockSymbol and number
 ' of shares held by the current user, multiply the two together,
 ' and return the result.
 return 0
 end Function

 <WebMethod(Description:="Returns the value of a specified " & _
 "number of shares in a specified stock symbol.", _
 MessageName:="GetValueStock")> _
 public Function GetValue(StockSymbol as string, _
 NumShares as integer) as double
 ' Put code here to get the current price of the specified
 ' StockSymbol, multiply it times NumShares, and return
 ' the result.
 return 0
 end function

 <WebMethod(Description:="Returns a data set from the Bugs " & _
 "database.")> _
 public function GetDataset() as DataSet
 dim connectionString as string
 dim commandString as string
 dim dataAdapter as SqlDataAdapter
 dim dataSet as new DataSet()

 ' connect to the Bugs database
 connectionString = "server=Ath13; uid=sa; pwd=stersol; " & _
 "database=Bugs"

 ' get records from the Bugs table
 commandString = "Select BugID, Description from Bugs"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' create the data set command object and the DataSet
 dataAdapter = new SqlDataAdapter(commandString, connectionString)

 ' fill the data set object
 dataAdapter.Fill(dataSet,"Bugs")

 return dataSet
 end function

 End Class
End namespace

Example 16-24. csStockTicker.asmx in C#

<%@ WebService Language="C#" Class="ProgAspNet.csStockTicker" %>

using System;
using System.Web.Services;
using System.Collections;
using System.Data;
using System.Data.SqlClient;

namespace ProgAspNet
{
 [WebService (Description="A stock ticker using C#.",
 Name="StockTicker",
 Namespace="www.LibertyAssociates.com")]
 public class csStockTicker : System.Web.Services.WebService
 {
 // Construct and fill an array of stock symbols and prices.
 // Note: the stock prices are as of 7/4/01.
 string[,] stocks =
 {
 {"MSFT","Microsoft","70.47"},
 {"DELL","Dell Computers","26.91"},
 {"HWP","Hewlett Packard","28.40"},
 {"YHOO","Yahoo!","19.81"},
 {"GE","General Electric","49.51"},
 {"IBM","International Business Machine","112.98"},
 {"GM","General Motors","64.72"},
 {"F","Ford Motor Company","25.05"}
 };

 public class Stock
 {
 public string StockSymbol;
 public string StockName;
 public double Price;
 public StockHistory[] History =
 new StockHistory[2];
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public class StockHistory
 {
 public DateTime TradeDate;
 public double Price;
 }

 [WebMethod(Description="Returns stock history for " +
 "the stock symbol specified.")]
 public Stock GetHistory(string StockSymbol)
 {
 Stock stock = new Stock();

 // Iterate through the array, looking for the symbol.
 for (int i = 0; i < stocks.GetLength(0); i++)
 {
 // Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks[i,0], true) == 0)
 {
 stock.StockSymbol = StockSymbol;
 stock.StockName = stocks[i,1];
 stock.Price = Convert.ToDouble(stocks[i,2]);

 // Populate the StockHistory data.
 stock.History[0] = new StockHistory();
 stock.History[0].TradeDate =
 Convert.ToDateTime("5/1/2001");
 stock.History[0].Price = Convert.ToDouble(23.25);

 stock.History[1] = new StockHistory();
 stock.History[1].TradeDate =
 Convert.ToDateTime("6/1/2001");
 stock.History[1].Price = Convert.ToDouble(28.75);

 return stock;
 }
 }
 stock.StockSymbol = StockSymbol;
 stock.StockName = "Stock not found.";
 return stock;
 }

 [WebMethod(Description="Returns all the stock symbols whose firm " +
 "name matches the input string as *str*.")]
 public ArrayList GetList(string MatchString)
 {
 ArrayList a = new ArrayList();

 // Iterate through the array, looking for matching firm names.
 for (int i = 0; i < stocks.GetLength(0); i++)
 {
 // Search is case sensitive.
 if (stocks[i,1].ToUpper().IndexOf(MatchString.ToUpper()) >= 0)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 a.Add(stocks[i,1]);
 }
 a.Sort();
 return a;
 }

 [WebMethod(Description="Returns the stock price for the input " +
 "stock symbol.",
 CacheDuration=20)]
 public double GetPrice(string StockSymbol)
 // Given a stock symbol, return the price.
 {
 // Iterate through the array, looking for the symbol.
 for (int i = 0; i < stocks.GetLength(0); i++)
 {
 // Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks[i,0], true) == 0)
 return Convert.ToDouble(stocks[i,2]);
 }
 return 0;
 }

 [WebMethod(Description="Returns the firm name for the input " +
 "stock symbol.",
 CacheDuration=86400)]
 public string GetName(string StockSymbol)
 // Given a stock symbol, return the name.
 {
 // Iterate through the array, looking for the symbol.
 for (int i = 0; i < stocks.GetLength(0); i++)
 {
 // Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks[i,0], true) == 0)
 return stocks[i,1];
 }
 return "Symbol not found.";
 }

 [WebMethod(Description="Sets the stock exchange for the " +
 "application.")]
 public void SetStockExchange(string Exchange)
 {
 Application["exchange"] = Exchange;
 }

 [WebMethod(Description="Gets the stock exchange for the " +
 "application. It must previously be set.")]
 public string GetStockExchange()
 {
 return Application["exchange"].ToString();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [WebMethod(Description="Number of hits per session.",
 EnableSession=true)]
 public int HitCounter()
 {
 if (Session["HitCounter"] == null)
 {
 Session["HitCounter"] = 1;
 }
 else
 {
 Session["HitCounter"] = ((int) Session["HitCounter"]) + 1;
 }

 return ((int) Session["HitCounter"]);
 }

 [WebMethod(Description="Returns the value of the users holdings " +
 "in a specified stock symbol.",
 MessageName="GetValuePortfolio")]
 public double GetValue(string StockSymbol)
 {
 /* Put code here to get the username of the current user, fetch
 both the current price of the specified StockSymbol and number
 of shares held by the current user, multiply the two together,
 and return the result.
 */
 return 0;
 }

 [WebMethod(Description="Returns the value of a specified " +
 "number of shares in a specified stock symbol.",
 MessageName="GetValueStock")]
 public double GetValue(string StockSymbol, int NumShares)
 {
 /* Put code here to get the current price of the specified
 StockSymbol, multiply it times NumShares, and return the
 result.
 */
 return 0;
 }

 [WebMethod(Description="Returns a data set from the Bugs " +
 "database.")]
 public DataSet GetDataset()
 {
 // connect to the Bugs database
 string connectionString = "server=Ath13; uid=sa; pwd=stersol; " +
 "database=Bugs";

 // get records from the Bugs table
 string commandString = "Select BugID, Description from Bugs";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // create the data set command object and the DataSet
 SqlDataAdapter dataAdapter = new SqlDataAdapter(commandString,
 connectionString);

 DataSet dataSet = new DataSet();

 // fill the data set object
 dataAdapter.Fill(dataSet,"Bugs");

 return dataSet;
 }
 }
}

16.1.7 Using Code-Behind

When you are creating web pages, code-behind allows you to separate application logic from design or user interface
(UI) elements.

Code-behind is the default code model of Visual Studio .NET. In fact, it is not possible to use
Visual Studio .NET to write an ASP.NET application without using code-behind.

Since web services have no design or UI component, the case for using code-behind is not quite so compelling.
However, there is a performance benefit to code-behind. As we will discuss, the class implementing the code-behind
must be compiled into a dll ahead of time and made available to the web service. By contrast, the WebService class

contained in the .asmx file, similar to the page class in the .aspx file, is compiled on-the-fly by the .NET Framework
the first time the class is called. That compiled version is then cached on the server for subsequent requests. For a
complete discussion of caching and performance, see Chapter 18 . For now, suffice it to say that the first time a web
service or web page is called, there will be a delay for inline code while the class is compiled, while a code-behind
implementation will never experience that delay.

It is very easy to convert the Stock Ticker web service created so far in this chapter from an inline code model to a
code-behind model. In this section, you will first do code-behind in a text editor, then in Visual Studio .NET.

16.1.7.1 Using a text editor

In a text editor, create a new file called vbStockTickerCodeBehind.asmx for the VB.NET version, and
csStockTickerCodeBehind.asmx for the C# version. Each file will consist of a single line of code, as shown in Example
16-25 and Example 16-26 .

Example 16-25. vbStockTickerCodeBehind.asmx

<%@ WebService Language="vb" Class="ProgAspNet.vbStockTicker" %>

Example 16-26. csStockTickerCodeBehind.asmx

<%@ WebService Language="c#" Class="ProgAspNet.csStockTicker" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This WebService directive uses the same attributes for code-behind as a normal web page, as described in Chapter 6
. The Language attribute specifies the language, either VB, C#, JS, or VJ# for VB.NET, C#, JScript, or J#,

respectively.

The Class attribute specifies the name of the code-behind class that implements the web service. In the code in

Example 16-25 and Example 16-26 , the class specified is ProgAspNet.vbStockTicker or ProgAspNet.csStockTicker,
depending on the language used. These are the fully qualified web service class names used in the examples in this
chapter. The class names themselves have prepended to them the namespace ProgAspNet , from Example 16-1 and

Example 16-2 .

When using just the Class attribute, the code-behind class must be compiled prior to calling the .asmx file (or .aspx
file for normal web pages; it works the same for both web pages and web services). The compiled dll then must be
placed in a \bin subdirectory directly beneath the directory containing the .asmx (or .aspx) file. This is shown
schematically in Figure 16-6 , using the names for the C# implementation.

Figure 16-6. Using code-behind

To create the code-behind file, follow these steps:

Save the inline .asmx file being developed throughout this chapter as either StockTickerCodeBehind.vb or
StockTickerCodeBehind.cs , depending on the language.

1.

Open this new code-behind file in an editor and delete the first line in the file, the WebService directive.2.

Save the new code-behind file.3.

The code-behind file can then be compiled into a dll . This is done using a language-specific command from the
command prompt.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In order for this (or any other .NET) command line to work, the path must be set to include the
executable being called. To do this manually would not be trivial. Instead, there is an item in the Start
menu:

Programs\Microsoft Visual Studio .NET 2003\Visual Studio .NET Tools\Visual Studio .NET
2003 Command Prompt

that opens a command prompt window (what used to be known as a DOS prompt, for you old-timers)
with the proper path set.

First change the current directory of the command window to be the directory containing the code-behind file. The
command to do this is something like this:

cd projects\programming asp.net

The generic syntax for the compiler is:

compilerExe [parameters] inputFile.ext

where compilerExe is either vbc for VB.NET or csc for C#. This is followed by one or more parameters, which is

then followed by the name of the source code file being compiled.

For VB.NET, use the following single-line command to compile the DLL:

vbc /out:bin\vbStockTickerCodeBehind.dll /t:library /r:system.dll,system.web.
dll,system.web.services.dll,
system.data.dll,system.XML.dll StockTickerCodebehind.vb

For C#, use this single-line command:

csc /out:bin\csStockTickerCodeBehind.dll /t:library /r:system.dll,system.web.
dll,system.web.services.dll StockTickerCodebehind.cs

The command-line compilers have a large number of parameters available to them, three of which are used here. To
see the complete list of parameters available, enter the following command at the command prompt:

compilerExe /?

Table 16-2 lists the parameters used in the preceding command lines.

Table 16-2. Parameters used in commands to compile the dll

Parameter
Short
form

Description

/out:<filename>
Output filename. If not specified, then the output filename is derived from the
first source file.

/target:library /t:library Build a library file. Alternative values for target are exe , winexe , and module .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Parameter
Short
form

Description

/reference:<file
list>

/r :

Reference the specified assembly files. If more than one file, either include
multiple reference parameters or separate filenames with commas within a
single reference parameter. Be certain not to include any spaces between
filenames.

Notice there is a correlation between the namespaces referenced in the source code and the files referenced in the
compile command. Table 16-3 shows the correspondence.

Table 16-3. Correspondence of source code and compiler references

Source code
reference

Compiler reference Description

System system.dll Supplies fundamental classes and base classes.

- system.web.dll
Supplies classes and interfaces to enable client/server
communications. Not necessary in source code because it is
referenced automatically by the ASP.NET runtime.

System.Web.Services system.web.services.dll Classes that enable web services.

System.Collections -

Provides classes and interfaces used by various collections,
including Arrays and ArrayLists. Not necessary in the compiler
reference because it is included in mscorlib.dll , which is
referenced by default.

Once the dll is created and located in the proper \bin subdirectory (which the previous command lines do for you),
then the .asmx file can be tested in a browser or called by a client, just like any other .asmx file, as long as the \bin
directory is a subdirectory of the proper virtual directory.

16.1.7.2 Using Visual Studio .NET

Visual Studio .NET offers the programmer several advantages over a plain text editor, in addition to automating the
creation of code-behind. Among them are color-coding of the source code, integrated debugging, IntelliSense,
integrated compiling, and full integration with the development environment. Chapter 6 discusses in detail the use of
the Visual Studio .NET IDE.

Open Visual Studio .NET to create a web service using code-behind. Click on the New Project button to start a new
project. You will be presented with the dialog box shown in Figure 16-7 .

Figure 16-7. New Project dialog box

/reference:<file
list>

/r :

Reference the specified assembly files. If more than one file, either include
multiple reference parameters or separate filenames with commas within a
single reference parameter. Be certain not to include any spaces between
filenames.

Notice there is a correlation between the namespaces referenced in the source code and the files referenced in the
compile command. Table 16-3 shows the correspondence.

Table 16-3. Correspondence of source code and compiler references

Source code
reference

Compiler reference Description

System system.dll Supplies fundamental classes and base classes.

- system.web.dll
Supplies classes and interfaces to enable client/server
communications. Not necessary in source code because it is
referenced automatically by the ASP.NET runtime.

System.Web.Services system.web.services.dll Classes that enable web services.

System.Collections -

Provides classes and interfaces used by various collections,
including Arrays and ArrayLists. Not necessary in the compiler
reference because it is included in mscorlib.dll , which is
referenced by default.

Once the dll is created and located in the proper \bin subdirectory (which the previous command lines do for you),
then the .asmx file can be tested in a browser or called by a client, just like any other .asmx file, as long as the \bin
directory is a subdirectory of the proper virtual directory.

16.1.7.2 Using Visual Studio .NET

Visual Studio .NET offers the programmer several advantages over a plain text editor, in addition to automating the
creation of code-behind. Among them are color-coding of the source code, integrated debugging, IntelliSense,
integrated compiling, and full integration with the development environment. Chapter 6 discusses in detail the use of
the Visual Studio .NET IDE.

Open Visual Studio .NET to create a web service using code-behind. Click on the New Project button to start a new
project. You will be presented with the dialog box shown in Figure 16-7 .

Figure 16-7. New Project dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can select a Project Type of the language of your choice. This example will use VB.NET.

Select the ASP.NET web service template.

The default name for the project will be WebService1 . Change that to StockTickerVB , as shown in Figure 16-7 .

When you click the OK button, Visual Studio .NET will cook for few a moments, and then it will open in design mode.

Be careful if using any non-alpha characters in the project name. We originally named this
project StockTicker-VB. Visual Studio .NET seemed to accept this, but on moving through the
process, the hyphen was converted to an underscore under some circumstances and the
project would not compile and run properly.

Pay particular attention to the Solution Explorer, located in the upper-right quadrant of the screen by default, and
shown in Figure 16-8 .

Figure 16-8. Default Solution Explorer

The Solution Explorer shows most, but not all, of the files that comprise the project. In a desktop .NET application
(i.e., not an ASP.NET project), all of the files in a project would be located in a subdirectory, named the same as the
project name, located under the default project directory. One of these files has an extension of .sln. The .sln file tells

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Studio .NET what files to include in the project. An associated file has an extension of .suo.

The default project location can be set by selecting Tools Options... Environment
Projects and Solutions and changing the directory in the edit box.

When creating an ASP.NET project, either a web page or a web service, the project directory is still created under the
default projects directory. That directory still contains the .sln and .suo files. If these files are missing, then Visual
Studio .NET cannot open the project. However, all the other files comprising the project are contained in the virtual
root directory of the application, which is a subdirectory with the project name created under the physical directory
corresponding to localhost. On most machines the physical directory corresponding to localhost is
c:\inetpub\wwwroot .

There are other files Visual Studio .NET does not display by default. You can force the Solution Explorer to show all
files by clicking on the Show All Files icon in the Solution Explorer tool bar. (It is the second icon from the right, just
below the word "StockTicker" in Figure 16-8 .) Clicking on this icon and expanding all the nodes results in the
Solution Explorer shown in Figure 16-9 .

Figure 16-9. Expanded Solution Explorer

Under References , you can see all the namespaces that are referenced by default. Under bin , you can see any files
contained in that subdirectory. (The IDE automatically put the dll and pdb files there on startup.)

The rest of the entries in the Solution Explorer are files contained in the virtual root directory of the application. For
this application, that virtual root directory will typically be:

c:\InetPub\wwwroot\StockTickerVB

AssemblyInfo.vb contains versioning information and will be covered in more detail in Chapter 20 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The global.asax file contains global configuration information for the entire application. It was covered in Chapter 6 ,
and will be covered further in Chapter 20 . Notice that it is now apparent that the global.asax file uses code-behind,
with the actual Global class contained in the code-behind file (global.asax.vb for VB.NET projects, global.asax.cs for
C# projects).

The .resx files are resource files created by the IDE which contain localization information.

The Service1 files contain the actual web service code. They will be covered shortly.

The StockTickerVB.vsdisco is a discovery file, used by the consumer of the web service. Discovery will be covered in
Chapter 17 .

Web.config is another configuration file, which was covered in Chapter 6 and will be covered further in Chapter 20 .

This leaves the Service1 files. Click on either the Service1.asmx or the Service1.asmx.vb files in the Solution
Explorer. Nothing appears in the design window. This is because Visual Studio .NET displays design objects by
default, and web services do not use any. They are all code.

To see the contents of Service1.asmx , right-click on the file in the Solution Explorer, select Open With..., and select
Source Code (Text) Editor from the list of choices. Looking at Service1.asmx , you will see that the file has a single
line of code, shown in Example 16-27 .

Example 16-27. Service1.asmx in Visual Studio .NET

<%@ WebService Language="vb" Codebehind="Service1.asmx.vb" \
 Class="StockTickerVB.Service1" %>

Compare this to the WebService directives in Example 16-1 and Example 16-2 . The Codebehind attribute is used by
Visual Studio .NET to know where to find the code-behind file. The Class attribute points to the default code-behind

class defined in the code-behind file.

You can view any of the other files in the Solution Explorer by right-clicking on the file and selecting either Open or
View Code, as appropriate. Once a code window is open in the design window, you can switch back and forth among
the various files by clicking on the correct tab at the top of the design window.

Click on the Service1.asmx file, right-click, and select View Code from the context-sensitive menu. The contents of
the code-behind file, Service1.asmx.vb , are displayed. Notice that there is already code in place, as shown in Figure
16-10 .

Figure 16-10. Boilerplate code in code-behind file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In addition to all the other infrastructure Visual Studio puts into the project, it includes the minimum necessary code
to implement a code-behind web service file. The Imports statement necessary to allow the web service class,

Service1, to derive from the WebService base class is added, and that class is defined, at least in skeleton form.

The class definition is followed by a collapsed region, indicated by the plus symbol along the left margin, which
contains boilerplate code inserted by and necessary to the IDE.

Next comes some commented code demonstrating a very simple web method. You can delete the commented sample
code.

Even though you have not yet added any custom code to this project, you can prove to yourself that this is indeed a
valid web service by clicking on the Start icon, or pressing F5, to compile and run the web service. After the code-
behind class is compiled and automatically placed in the \bin directory, a browser will open with the familiar web
service test page. However, since there are not yet any web methods defined, there will be nothing to test.

Now cut and paste the code from the code-behind file created earlier in this chapter into the code-behind file in Visual
Studio .NET, Service1.asmx.vb . Be careful not to duplicate the line importing System.Web.Services. Also, be sure to
put the Option lines at the very beginning of the file and the namespace opening line before the Service1 class
definition with the end namespace line at the very end of the file.

The beginning of the code-behind file now looks like Figure 16-11 .

Figure 16-11. Beginning of code-behind file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the WebService attribute's Description property has been slightly edited to clearly identify this as coming

from Visual Studio .NET, although the Name property remains unchanged as "StockTicker."

Before this will run correctly, the web service file, Service1.asmx , must be edited slightly to take into account the
addition of the namespace to the code-behind file. Switch to that file and edit the Class attribute value by including

the ProgAspNet namespace as part of the class name. The contents of the modified Service1.asmx should now look
like Example 16-28 .

Example 16-28. Modified Service1.asmx in Visual Studio .NET

<%@ WebService Language="vb" Codebehind="Service1.asmx.vb" Class="StockTickerVB.
ProgAspNet.Service1" %>

Now run test the web service by clicking on the Run icon or pressing F5. You should get a browser window looking
something like Figure 16-12 .

Figure 16-12. Visual Studio .NET code-behind test

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the name of the web service reflects the name property specified in the WebService attribute's Name
property. Also, the new WebService attribute's Description property is displayed in the test. Everything else is exactly

the same as the web service created in a text editor.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.2 Creating a Discovery File

Once you have created a web service, there must be some way for the developers who will develop
the consuming applications to find out about the methods exposed by the web service. This process is
called discovery.

The description of the web service is contained in a service description document, an XML document
written in a format called WSDL (Web Service Description Language). You have already seen the
WSDL document for our example web service in this chapter, in Figure 16-2. There are two ways to
view a WSDL document.

The first is to enter the URL of the web service .asmx file in a browser to generate the web service
test page, as shown in several of the figures in this chapter, including Figure 16-4 and Figure 16-12.
Near the top of the test page will be a link to a Service Description. Clicking on that link will bring up
the WSDL document.

Alternatively, enter the URL for a web service .asmx file in a browser with ?WSDL appended to the
end of the URL. For example, entering the following URL in a browser would display the WSDL for the
web service csStickTicker.asmx:

http://localhost/ProgAspNet/csStockTicker.asmx?WSDL

To ease the chore of generating a WSDL document for the developer creating the consuming
application, you can create a .disco file. This is an XML file located in the same virtual directory as the
.asmx file. The developer creating the consuming application can then use the .disco file, as will be
demonstrated shortly.

Example 16-29 shows a .disco file for the web service in the previous URL.

Example 16-29. csStockTicker.disco, a discovery file for StockTicker web
service

<?xml version="1.0" ?>
<disco:discovery
 xmlns:disco="http://schemas.xmlsoap.org/disco"
 xmlns:scl="http://schemas.xmlsoap.org/disco/scl">
 <scl:contractRef ref="http://localhost/ProgAspNet/csStockTicker.asmx?WSDL"/>
</disco:discovery>

The first line in Example 16-29 specifies the file as XML and the version. The rest of the file is
contained within a pair of disco:discovery tags. This tag points to the links a client should follow if

it wants to find out about the web service. The next two lines specify XML namespace aliases, which
refer to URLs that define the disco and scl tags.

The scl:contractRef tag specifies where the service description can be found. Notice that it is the

same URL mentioned previously for manually generating the WSDL. It is not always the case that the
URL of the .disco file and URL of the .asmx file it references point to the same location.

http://localhost/ProgAspNet/csStockTicker.asmx?WSDL
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The .disco file can also reference another .disco file by including a line similar to

<disco:discoveryRefref="SomeFolder/default.disco" />

where default.disco is another .disco file in a subdirectory below the current directory, called
SomeFolder.

Although you can create the .disco file manually, it is far easier to use the disco.exe command-line
utility. To do this, open a command prompt window (remember to use the Visual Studio .NET
Command Prompt from the Start Menu in order to get the correct path). Then enter a command
similar to the following:

disco /out:<output directory name> http://localhost/ProgAspNet/csStockTicker.asmx

As an alternative to using the out switch to specify the output directory, change the directory to the

directory you want the output to be located in before executing the command and run the disco
utility from that directory. The output will go to the current directory.

The disco utility executed in the previous command line will put three files (summarized in Table 16-
4) in the output directory.

Table 16-4. Files output by the disco utility

Filename Description

csStockTicker.disco Discovery document you are trying to create.

csStockTicker.WSDL
This is the exact same WSDL for the web service generated by entering the
.asmx file in a browser with "?wsdl"? appended to the URL.

results.discomap Alternative discovery document.

At this stage of the process, the .disco file is the main output you are interested in. The other two
files may be used by a developer creating a consuming application, as will be described in Chapter
17.

For a complete listing of all the parameters available to the disco utility, enter the following command
line:

disco /?

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.3 Deployment

Deploying web services is very similar to deploying web pages. The .asmx file must be located in a
virtual directory exposed by IIS so that it is accessible to a browser on the Internet. If you have a
.disco file for the web service (described in the previous section), then this file should also be in the
application virtual directory. This allows the web service to be discovered and also allows proxies to
be created by consuming applications. Both of these concepts will be described in Chapter 17.

Also, just as with web pages, if there is a code-behind class that implements the web service, the
assembly file (i.e., the dll) must be located in the \bin directory immediately beneath the virtual
directory containing the .asmx file.

If the application requires a web.config file (described fully in Chapter 20), then this file too should be
copied to the application virtual directory.

Figure 16-13 shows a typical directory structure on a production web server for a web service called
csStockTicker.

Figure 16-13. Typical deployment directory structure

Referring to Figure 16-13, if a virtual directory was defined on the web server called StockTicker,
which was mapped to the directory called csStockTicker, then the URL for referring to the .asmx file
would be:

http://YourDomain.com/StockTicker/csStockTicker.asmx

[Team LiB]

http://YourDomain.com/StockTicker/csStockTicker.asmx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 17. Consuming Web Services
While Chapter 15 gave an overview of web services and Chapter 16 described in detail how to create
a web service, this chapter explains how to create a web service client application or web service
consumer. The consuming application can be a web page, another web service, or a desktop
application.

Once a web service is created and made available to consumers on the Internet, it is up to the
developer creating the client application to find the web service, create the client proxy, and
incorporate the proxy into the client. The client can then make method calls against the remote web
service as though it were making local calls. In fact, the client application is making local method calls
against the proxy-it just behaves as if it is making calls directly to the web service over the Internet.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.1 Discovery

Discovery is the process of finding out what web services are available, what methods and properties
are exposed by a specific web service, what parameters those methods and properties expect to
receive, and what data type the web method returns. All of this information is contained in the WSDL
(Web Services Description Language) document, introduced in Chapter 16.

Discovery is an optional process. If the consuming developer knows the URL of the web service file
(.asmx) itself, then there is no need to do discovery. However, it will often be the case that the
consuming developer will not know the location of the web service file or the WSDL document. In
these instances, ASP.NET provides a discovery command-line utility called disco.exe that provides the
consuming developer with the information necessary to create the client.

You have already seen in Chapter 16 how the disco utility allows the developer who created the web
service to generate a .disco file. Now the consuming developer can use the same utility to aid in
creation of the client.

There are two equivalent ways of using the disco utility to generate the WSDL file. If you know the
URL of the web service file, you can use that as input, as shown in the following command line:

disco http://WebSrvcDomain.com/csStockTicker.asmx?WSDL

If you don't know the URL of the .asmx file but do know the URL of the .disco file, you can use that
file as input to disco, as in:

disco http://WebSrvcDomain.com/csStockTicker.disco

In either case, a WSDL file will be generated in the output directory.

To force the output directory to be somewhere other than the current directory, use the /out:
parameter, or /o: for short, as in:

disco /out:<output directory name>
 http://WebSrvcDomain.com/csStockTicker.disco

The disco utility executed in the previous command line will put three files, summarized in Table 17-
1, in the output directory.

Table 17-1. Files output by the disco utility

Filename Description

csStockTicker.disco Discovery document you are trying to create.

For a complete listing of all the parameters available to the disco utility, enter the following command
line:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Filename Description

csStockTicker.WSDL
The exact same WSDL for the Web Service generated by entering the .asmx
file in a browser with "?wsdl? appended to the URL.

results.discomap Alternative discovery document.

For a complete listing of all the parameters available to the disco utility, enter the following command
line:

disco /?

In addition to outputting a .disco file and a WSDL file, the disco utility will also create a .discomap file,
which can be used as input to the WSDL utility, described later in this chapter.

UDDI

UDDI (Universal Description, Discovery, and Integration) is a registry that allows
businesses to locate web services exposed on the Internet. For complete information
about UDDI, visit http://www.UDDI.org. UDDI is a joint project of IBM, Microsoft, and
Ariba and will eventually be turned over to a standards organization, such as the W3C
(http://www.w3c.org).

UDDI will have two main components:

A web-based registry for locating web services. Any business can publish information
about the web services it is making available. This registry can be searched either
through a web page interface or programmatically via web services.

Standard XML Schema for business descriptions. The data contained in the UDDI
Registry is contained in XML documents with standardized fields used to describe a
business.

As of this writing, the UDDI specification is still under development. However, it is
reasonable to expect that in time, UDDI will become a universal "phone book" for finding
and consuming web services.

[Team LiB]

csStockTicker.WSDL
The exact same WSDL for the Web Service generated by entering the .asmx
file in a browser with "?wsdl? appended to the URL.

results.discomap Alternative discovery document.

For a complete listing of all the parameters available to the disco utility, enter the following command
line:

disco /?

In addition to outputting a .disco file and a WSDL file, the disco utility will also create a .discomap file,
which can be used as input to the WSDL utility, described later in this chapter.

UDDI

UDDI (Universal Description, Discovery, and Integration) is a registry that allows
businesses to locate web services exposed on the Internet. For complete information
about UDDI, visit http://www.UDDI.org. UDDI is a joint project of IBM, Microsoft, and
Ariba and will eventually be turned over to a standards organization, such as the W3C
(http://www.w3c.org).

UDDI will have two main components:

A web-based registry for locating web services. Any business can publish information
about the web services it is making available. This registry can be searched either
through a web page interface or programmatically via web services.

Standard XML Schema for business descriptions. The data contained in the UDDI
Registry is contained in XML documents with standardized fields used to describe a
business.

As of this writing, the UDDI specification is still under development. However, it is
reasonable to expect that in time, UDDI will become a universal "phone book" for finding
and consuming web services.

[Team LiB]

http://www.UDDI.org
http://www.w3c.org
http://www.UDDI.org
http://www.w3c.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.2 Creating the Proxy

As described in Chapter 15 and shown schematically in Figure 15-1 , a web service is consumed by a
client application by use of a proxy . A proxy is a substitute, or local stand-in, for the web service. Once
the proxy is created and registered with the consuming application, then method calls can be made
against the web service. In actuality, those method calls will be made against the local proxy. It will
seem to the consuming application that the web service is local to the application.

There are two ways to generate the proxy. The first way (described in the next section) is to generate
the source code for the proxy class manually and compile that into the proxy DLL. The advantages to
this method are:

You do not need to use Visual Studio .NET.

The command-line approach offers more flexibility and features over Visual Studio .NET.

The alternative method is to allow Visual Studio .NET to create the proxy and register it with the
consuming application in a single step. The advantage to this method is that it is much less work. Using
Visual Studio .NET will be demonstrated shortly.

17.2.1 Manually Generating the Proxy Class Source Code

To create the proxy, use another command-line utility called wsdl.exe . This utility takes a WSDL file as
input. The WSDL file can either be stored locally, having been previously created using the disco
command-line utility, or it can be generated on the fly from the web service file itself. The following two
command lines will yield the same result, assuming that the local WSDL file came from the remote
.asmx file:

wsdl csStockTicker.WSDL
wsdl http://localhost/ProgAspNet/csStockTicker.asmx?wsdl

Alternatively, the WSDL utility can take a .discomap file (described earlier in Section 17-1) created by
the disco utility as input.

The output from the WSDL utility is a source code file containing the proxy class, which can then be
compiled into a library, or dll, file. The default language for this output source is C#. To change the
language of the output file, use the /language : parameter, or /l : for short. Valid values for the
language parameter are CS , VB , or JS , for C#, VB.NET, and JScript.NET, respectively. So, to force the

output to be VB.NET, you would use a command line similar to:

wsdl /l:VB http://localhost/ProgAspNet/vbStockTicker.asmx?wsdl

By default, the first component of the output filename is based on the input file as follows. If the
WebService attribute in the .asmx file has a Name property, then the output file will have that name. If

not, the output name will have the name of the web service class. Note that every output filename also
has an extension corresponding to the language.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, suppose that the file vbStockTicker.asmx has the following WebService attribute and class

definition:

<WebService (Description:="A stock ticker using VB.NET.", _
 Name:="StockTicker", _
 Namespace:="www.LibertyAssociates.com")> _
public class vbStockTicker
 inherits System.Web.Services.WebService

If the WSDL utility is run against the WSDL file generated from this .asmx file with the language set to
VB, then the output filename would be StockTicker.vb . However, if the Name property is removed from
the .asmx source file, then the output name will be vbStockTicker.vb . By default the output file will be
in the current directory of the command prompt.

You can specify both the output filename and location by using the /out : parameter, or /o : for short.

For example, the following command line will force the output file to have the name Test.vb and be
located in the bin directory below the current directory:

wsdl /l:VB /o:bin\test.vb
 http://localhost/ProgAspNet/vbStockTicker.asmx?WSDL

Table 17-2 shows some of the other switches available to the WSDL utility.

Table 17-2. WSDL utility switches

Parameter Description

/nologo Suppress the Microsoft banner.

/namespace:<namespace>
Specify the namespace for the
generated proxy. The default is
the global namespace.

/protocol:<protocol>

Specify the protocol to
implement. Valid values are
HttpGet , HttpPost , or SOAP .
The default is SOAP .

/username:<username>/password:<password>/domain:<domain>
Credentials to use when
connecting to a server that
requires authentication.

For a complete list of parameters for wsdl.exe , enter the following from the command line:

wsdl /?

17.2.2 Proxy Class Details

Compare the beginning of the original web service source file, csStockTicker.asmx , reproduced in
Example 17-1 , with the beginning of the generated source code for the proxy class, StockTicker.cs ,
shown in Example 17-2 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 17-1. Beginning of csStockTicker.asmx

<%@ WebService Language="C#" Class="ProgAspNet.csStockTicker" %>

using System;
using System.Web.Services;
using System.Collections;
using System.Data;
using System.Data.SqlClient;

namespace ProgAspNet
{
 [WebService (Description="A stock ticker using C#.",
 Name="StockTicker",
 Namespace="www.LibertyAssociates.com")]
 public class csStockTicker : System.Web.Services.WebService
 {
 // Construct and fill an array of stock symbols and prices.
 // Note: the stock prices are as of 7/4/01.
 string[,] stocks =
 {
 {"MSFT","Microsoft","70.47"},
 {"DELL","Dell Computers","26.91"},
 {"HWP","Hewlett Packard","28.40"},
 {"YHOO","Yahoo!","19.81"},
 {"GE","General Electric","49.51"},
 {"IBM","International Business Machine","112.98"},
 {"GM","General Motors","64.72"},
 {"F","Ford Motor Company","25.05"}
 };

 public class Stock
 {
 public string StockSymbol;
 public string StockName;
 public double Price;
 public StockHistory[] History =
 new StockHistory[2];
 }

 public class StockHistory
 {
 public DateTime TradeDate;
 public double Price;
 }

 [WebMethod(Description="Returns stock history for " +
 "the stock symbol specified.")]
 public Stock GetHistory(string StockSymbol)
 {
 Stock stock = new Stock();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Iterate through the array, looking for the symbol.
 for (int i = 0; i < stocks.GetLength(0); i++)
 {
 // Do a case-insensitive string compare.
 if (String.Compare(StockSymbol, stocks[i,0], true) == 0)
 {
 stock.StockSymbol = StockSymbol;
 stock.StockName = stocks[i,1];
 stock.Price = Convert.ToDouble(stocks[i,2]);

 // Populate the StockHistory data.
 stock.History[0] = new StockHistory();
 stock.History[0].TradeDate =
 Convert.ToDateTime("5/1/2001");
 stock.History[0].Price = Convert.ToDouble(23.25);

 stock.History[1] = new StockHistory();
 stock.History[1].TradeDate =
 Convert.ToDateTime("6/1/2001");
 stock.History[1].Price = Convert.ToDouble(28.75);

 return stock;
 }
 }
 stock.StockSymbol = StockSymbol;
 stock.StockName = "Stock not found.";
 return stock;
 }

Example 17-2. Beginning of Proxy class source code file StockTicker.cs

//--
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.1.4322.573
//
// Changes to this file may cause incorrect behavior and will be lost
// if the code is regenerated.
// </autogenerated>
//--

//
// This source code was auto-generated by wsdl, Version=1.0.2914.16.
//
using System.Diagnostics;
using System.Xml.Serialization;
using System;
using System.Web.Services.Protocols;
using System.Web.Services;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[System.Web.Services.WebServiceBindingAttribute(Name="StockTickerSoap", Namespace="www.
LibertyAssociates.com")]
public class StockTicker : System.Web.Services.Protocols.SoapHttpClientProtocol {

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public StockTicker() {
 this.Url = "http://localhost/ProgAspNet/csStockTicker.asmx";
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 "www.LibertyAssociates.com/GetHistorys",
 RequestNamespace="www.LibertyAssociates.com",
 ResponseNamespace="www.LibertyAssociates.com",
 Use=System.Web.Services.Description.SoapBindingUse.Literal,
 ParameterStyle=System.Web.Services.Protocols.
 SoapParameterStyle.Wrapped)]
 public Stock GetHistory(string StockSymbol) {
 object[] results = this.Invoke("GetHistory", new object[] {
 StockSymbol});
 return ((Stock)(results[0]));
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public System.IAsyncResult BeginGetHistory(string StockSymbol,
 System.AsyncCallback callback, object asyncState) {
 return this.BeginInvoke("GetHistory", new object[] {
 StockSymbol}, callback, asyncState);
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public Stock EndGetHistory(System.IAsyncResult asyncResult) {
 object[] results = this.EndInvoke(asyncResult);
 return ((Stock)(results[0]));
 }
 ...
}

Here's part of the VB .NET proxy class:

'--
' <autogenerated>
' This code was generated by a tool.
' Runtime Version: 1.1.4322.573
'
' Changes to this file may cause incorrect behavior and will be lost if
' the code is regenerated.
' </autogenerated>
'--

Option Strict Off
Option Explicit On

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Imports System
Imports System.ComponentModel
Imports System.Diagnostics
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Xml.Serialization

'
' This source code was auto-generated by Microsoft.VSDesigner,
' Version 1.1.4322.573.
'
Namespace localhost

 '<remarks/>
 <System.Diagnostics.DebuggerStepThroughAttribute(), _
 System.ComponentModel.DesignerCategoryAttribute("code"), _
 System.Web.Services.WebServiceBindingAttribute(_
 Name:="vbStockTickerSoap", _
 [Namespace]:=" www.LibertyAssociates.com"), _
 System.Xml.Serialization.XmlIncludeAttribute(_
 GetType(System.Object()))> _
 Public Class vbStockTicker
 Inherits System.Web.Services.Protocols.SoapHttpClientProtocol

 '<remarks/>
 Public Sub New()
 MyBase.New
 Me.Url = "http://localhost/WebApplication1/vbStockTicker.asmx"
 End Sub

 '<remarks/>
 <System.Web.Services.Protocols.SoapDocumentMethodAttribute(_
 "www.LibertyAssociates.com/GetHistory", _
 RequestNamespace:=" www.LibertyAssociates.com", _
 ResponseNamespace:=" www.LibertyAssociates.com", _
 Use:=System.Web.Services.Description.SoapBindingUse.Literal, _
 ParameterStyle:=SoapParameterStyle.Wrapped)> _
 Public Function GetHistory(ByVal StockSymbol As String) As Stock
 Dim results() As Object = Me.Invoke("GetHistory", _
 New Object() {StockSymbol})
 Return CType(results(0),Stock)
 End Function

 '<remarks/>
 Public Function BeginGetHistory(ByVal StockSymbol As String, _
 ByVal callback As System.AsyncCallback, _
 ByVal asyncState As Object) As System.IAsyncResult
 Return Me.BeginInvoke("GetHistory", _
 New Object() {StockSymbol}, callback, asyncState)
 End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 '<remarks/>
 Public Function EndGetHistory(ByVal asyncResult As _
 System.IAsyncResult) As Stock
 Dim results() As Object = Me.EndInvoke(asyncResult)
 Return CType(results(0),Stock)
 End Function

 '<remarks/>
 ...
 End Class
End Namespace

There is no need to understand fully all the nuances of the proxy class source code file. But there are
several points worth noting:

The namespaces referenced with the using statements at the beginning of Example 17-1 and

Example 17-2 are not the same. This is because the proxy class is not actually using System.Data.
It is merely taking the call to the method that will ultimately use System.Data, wrapping it in the
proper protocol (SOAP in this case), and passing it over the Internet to the web service. Therefore,
the only namespaces actually needed by the proxy class are those necessary for interacting with a
web service, serializing the data into an XML data stream, and sending and receiving those XML
packages.

The StockTicker class inherits from SoapHttpClientProtocol rather than from WebService. This

inherited class provides the methods for the proxy to talk to the web service using the SOAP
protocol.

Immediately following the StockTicker class declaration in the generated proxy is a constructor ,

which is a public method with the same name as the class. In the constructor, the URL of the web
service is specified.

A constructor is the method in a class that is invoked when the class is first
instantiated. The constructor is used to initialize the class and put it into a
valid state. If a class does not have a constructor, the CLR will create one by
default.

While the original .asmx file has the Stock and StockHistory classes, followed by the GetHistory

method, the proxy class goes directly to GetHistory. Again, the proxy does not need the first two
classes, since the proxy only substitutes for method calls.

While the original .asmx file has the public method GetHistory, the proxy class has that method
plus two additional, related public methods, BeginGetHistory and EndGetHistory. In fact, you will
notice that every web method in the original .asmx file has the same method in the proxy class,
plus two others, one for Begin... and another for End.... These additional methods are used to
implement asynchronous processing.

Normal method calls are synchronous . In other words, the calling application halts all further processing
until the called method returns. If this takes a long time, either because of a slow or intermittent
Internet connection (not that that ever happens, of course) or because the method is inherently time-
consuming (e.g., a lengthy database query), then the application will appear to hang, waiting.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On the other hand, if the method call is made asynchronously, then the Begin method call is sent out,
and processing can continue. When the results come back, the corresponding End method call receives
the results. Asynchronous method calls will be demonstrated later in this chapter.

17.2.3 Compiling the Proxy Class

The output of the WSDL utility is a class source code file for the proxy. This source code then must be
compiled with the appropriate command-line compiler.

For VB.NET, use the following single command line to compile the proxy:

vbc /out:bin\vbStockTickerProxy.dll /t:library
 /r:system.dll,system.web.dll,system.web.services.dll,
 system.xml.dll,system.data.dll StockTicker.vb

For C#, use the following single command line:

csc /out:bin\csStockTickerProxy.dll /t:library
 /r:system.dll,system.web.dll,system.web.services.dll
 StockTicker.cs

You will notice that although the VB.NET and C# versions of the StockTicker proxy
being compiled are functionally identical, with the exact same set of referenced
namespaces (using the Imports statement in VB.NET and the using statement in

C#) as can be seen by referring back to Example 16-23 and Example 16-24 in
Chapter 16 , the command-line compile commands are different for the two
languages, in that the VB.NET version has two additional namespaces referenced.

This is one of those mysterious, undocumented differences between VB.NET and
C#. It turns out that there is a configuration file located in the .NET Framework
program directory, called csc.rsp , which contains the list of default references for
the C# compiler. There is no comparable configuration file or default list for
VB.NET. Presumably the list of default references are hard-coded somewhere.

17.2.4 Automating the Process with a Batch File

Creating the proxy file requires several steps, all performed at a command prompt. Further, several of
those steps involve a fair amount of typing of parameters, with lots of places to make mistakes. Finally,
when all is done, you probably need to move or copy the resulting dll file to a different directory.

This entire process can be automated somewhat by creating a batch file . Batch files are text files that
contain one or more command-line operations. The batch file, which has an extension of .bat , can then
be executed from the command line, and all the operations within the file are executed one after the
other, just as though they were manually entered at the command line.

Back in the days of DOS, batch files were used extensively. It is possible to make them fairly
sophisticated, with replaceable parameters, conditional processing, and other programmatic niceties. For
our purposes, a simple batch file will do.

Example 17-3 shows the contents of a batch file that changes to the correct current directory, runs the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WSDL utility, compiles the resulting source code, and then copies the resulting dll from one bin directory
to another.

Example 17-3. csStockTickerProxy.bat

e:
cd \projects\Programming ASP.NET

rem Generate the proxy class source file
wsdl /l:CS http://localhost/ProgAspNet/csStockTicker.asmx?wsdl

rem Compile the proxy class source file
csc /out:bin\csStockTickerProxy.dll /t:library
 /r:system.dll,system.web.dll,system.web.services.dll
 StockTicker.cs

rem Copy the dll
copy bin\csStockTickerProxy.dll
 c:\inetpub\wwwroot\csWebServiceConsumer1\bin

The first line in the batch file makes drive E the current drive. The next line changes the current
directory. Blank lines are ignored. Lines beginning with rem are comments and are also ignored,

although the contents are displayed on the screen as the file is processed. After the WSDL utility is run
and the resulting file is compiled, it is copied. This last command is equivalent to:

copy e:\projects\Programming ASP.NET\bin\csStockTickerProxy.dll
 c:\inetpub\wwwroot\csWebServiceConsumer1\bin

Be careful of inadvertent line breaks. A line break in a batch file is the equivalent of hitting the Enter key
on the keyboard.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.3 Creating the Consuming Application

Once the proxy dll is created and placed in the bin subdirectory, then it is a simple matter to create
the consuming application. All that is necessary is to add the necessary reference to that dll in the
consuming application. This will be demonstrated for a web page created in a text editor and also for
a web page created in Visual Studio .NET.

As long as the signatures and return types of the exposed web service methods do not change, the
proxy will continue to work. The signature of a web method consists of the name of the method and
its parameter list and return value.

The web service can have additional web methods added without breaking the proxy, although the
new web methods will not be visible to the consuming application until the proxy source code is
regenerated and recompiled. Likewise, existing web methods can have their underlying code
modified, but as long as their signature does not change, the proxy will still work fine.

17.3.1 Using a Text Editor

To create a web page that will consume a web service, create a normal ASP.NET web page. Then
create a bin subdirectory immediately below the directory containing the .aspx file. Put the compiled
proxy dll in the bin directory. Then in the source code of the web page, instantiate the proxy class.
This is either done in the script block of the .aspx file, if it is coded inline, or just inside the class
definition, if it uses a code-behind class.

Example 17-4 and Example 17-5 show a consuming web page, coded inline, using VB.NET and C#,
respectively. Example 17-4 shows the complete .aspx file, while Example 17-5 shows only the script
block (since the HTML is identical for both the C# and the VB.NET versions). The resulting web page
is shown in Figure 17-1.

Example 17-4. vbStockTickerConsumer.aspx

<%@ Page Language="VB" %>
<script runat="server">

 dim proxy As new StockTicker()

 sub txtFirmNameStockSymbol_TextChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblFirmName.Text = proxy.GetName(txtFirmNameStockSymbol.Text)
 end sub

 sub txtPriceStockSymbol_TextChanged(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblStockPrice.Text = "$ " & _
 Convert.ToString(proxy.GetPrice(txtPriceStockSymbol.Text))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end sub

 sub btnStockExchangeSet_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 proxy.SetStockExchange(txtStockExchange.Text)
 end sub

 sub btnStockExchangeGet_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 txtStockExchange.Text = proxy.GetStockExchange()
 end sub

 sub btnGetHistory_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim theStock as Stock = _
 proxy.GetHistory(txtHistoryStockSymbol.Text)
 dim StockName as string = theStock.StockName
 dim StockPrice as double = theStock.Price

 dim TradeDate1 as DateTime = theStock.History(0).TradeDate
 dim Price1 as double = theStock.History(0).Price

 dim TradeDate2 as DateTime = theStock.History(1).TradeDate
 dim Price2 as double = theStock.History(1).Price

 ' Display the results.
 pnlHistory.Visible = true
 lblHistoryStockName.Text = StockName
 lblHistoryStockPrice.Text = "$ " + Convert.ToString(StockPrice)
 lblHistoryDate1.Text =TradeDate1.ToString("d")
 lblHistoryPrice1.Text = "$ " + Convert.ToString(Price1)
 lblHistoryDate2.Text = TradeDate2.ToString("d")
 lblHistoryPrice2.Text = "$ " + Convert.ToString(Price2)
 end sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>StockTicker Web Service Consumer</h1>

 Firm Name:
 <asp:textBox
 id="txtFirmNameStockSymbol"
 OnTextChanged="txtFirmNameStockSymbol_TextChanged"
 size="40"
 text="Enter stock symbol."
 AutoPostBack="true"
 runat="server" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:label id="lblFirmName" text="" runat="server"/>

 Stock Price:
 <asp:textBox
 id="txtPriceStockSymbol"
 OnTextChanged="txtPriceStockSymbol_TextChanged"
 size="40"
 text="Enter stock symbol."
 AutoPostBack="true"
 runat="server" />

 <asp:label id="lblStockPrice" text="" runat="server"/>

 StockExchange:
 <asp:textBox
 id="txtStockExchange"
 size="40"
 text=""
 AutoPostBack="false"
 runat="server" />

 <asp:button
 id="btnStockExchangeSet"
 text="Set"
 onClick="btnStockExchangeSet_Click"
 runat="server" />

 <asp:button
 id="btnStockExchangeGet"
 text="Get"
 onClick="btnStockExchangeGet_Click"
 runat="server" />

 Stock History:
 <asp:textBox
 id="txtHistoryStockSymbol"
 size="40"
 text=""
 runat="server" />

 <asp:button
 id="btnGetHistory"
 text="Get History"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 onClick="btnGetHistory_Click"
 runat="server" />

 <asp:Panel
 id="pnlHistory"
 visible="false"
 runat="Server" >

 Stock Name:
 <asp:label id="lblHistoryStockName" text="" runat="server"/>

 Stock Price:
 <asp:label id="lblHistoryStockPrice" text="" runat="server"/>

 Transaction 1:
 <asp:label id="lblHistoryDate1" text="" runat="server"/>

 <asp:label id="lblHistoryPrice1" text="" runat="server"/>

 Transaction 2:
 <asp:label id="lblHistoryDate2" text="" runat="server"/>

 <asp:label id="lblHistoryPrice2" text="" runat="server"/>
 </asp:Panel>

 </form>
 </body>
</html>

Example 17-5. Script block from csStockTickerConsumer.aspx

<%@ Page Language="C#" %>
<script runat="server">

 StockTicker proxy = new StockTicker();

 void txtFirmNameStockSymbol_TextChanged(Object Source, EventArgs E)
 {
 lblFirmName.Text = proxy.GetName(txtFirmNameStockSymbol.Text);
 }

 void txtPriceStockSymbol_TextChanged(Object Source, EventArgs E)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 lblStockPrice.Text = "$ " +
 Convert.ToString(proxy.GetPrice(txtPriceStockSymbol.Text));
 }

 void btnStockExchangeSet_Click(Object Source, EventArgs E)
 {
 proxy.SetStockExchange(txtStockExchange.Text);
 }

 void btnStockExchangeGet_Click(Object Source, EventArgs E)
 {
 txtStockExchange.Text = proxy.GetStockExchange();
 }

 void btnGetHistory_Click(Object Source, EventArgs E)
 {
 Stock theStock = proxy.GetHistory(txtHistoryStockSymbol.Text);
 string StockName = theStock.StockName;
 double StockPrice = theStock.Price;

 DateTime TradeDate1 = theStock.History[0].TradeDate;
 double Price1 = theStock.History[0].Price;

 DateTime TradeDate2 = theStock.History[1].TradeDate;
 double Price2 = theStock.History[1].Price;

 // Display the results.
 pnlHistory.Visible = true;
 lblHistoryStockName.Text = StockName;
 lblHistoryStockPrice.Text = "$ " + Convert.ToString(StockPrice);
 lblHistoryDate1.Text =TradeDate1.ToString("d");
 lblHistoryPrice1.Text = "$ " + Convert.ToString(Price1);
 lblHistoryDate2.Text = TradeDate2.ToString("d");
 lblHistoryPrice2.Text = "$ " + Convert.ToString(Price2);
 }

</script>

In Example 17-4 and Example 17-5, the first line of code inside the script block instantiates the web
service proxy class that was recently compiled and placed in the bin directory. By instantiating the
proxy here, the proxy variable can be used in any of the code that consumes the web service.

Figure 17-1. Web service consumer web page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The HTML portion of Example 17-4 and Example 17-5 provides only the minimum user input
necessary to allow demonstration of the principles. There are four textboxes, with the following
names: txtFirmNameStockSymbol, txtPriceStockSymbol, txtStockExchange, and
txtHistoryStockSymbol. The first two have their AutoPostBack property set to true. Therefore, as

soon as the value in those text boxes changes, it will fire the onTextChanged event, which will cause
the designated event handler to execute. Each event handler makes a call to the relevant proxy
method and displays the returned value in a label next to the text box.

The txtStockExchange text box does not do anything when the value in the text box changes.
However, it has two buttons associated with it. The Set button sets an application variable with the
contents of the txtStockExchange text box, while the Get button fills the txtStockExchange text box
with the contents of the application variable.

The txtHistoryStockSymbol text box also does not do anything when the value in the text box
changes. It has the btnGetHistory button associated with it. When that button is clicked, the
btnGetHistory_Click event handler is called. This method demonstrates how to retrieve class member
variables from within the web service class.

To retrieve the Stock member variables, you must first instantiate the Stock class. Looking back at
Example 16-17 and Example 16-18 in Chapter 16, you will recall that the GetHistory web method
returns an object of type Stock. The Stock object is instantiated here in the event handler with the
following line of code in VB.NET:

dim theStock as Stock = proxy.GetHistory(txtHistoryStockSymbol.Text)

In C#, it is done with this line of code:

Stock theStock = proxy.GetHistory(txtHistoryStockSymbol.Text);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once the class is instantiated, it is a simple matter to assign its member variables to local variables in
the event handler using dot notation. In VB.NET, it looks like this:

dim StockName as string = theStock.StockName

In C#, it looks like this:

string StockName = theStock.StockName;

Accessing the array variables contained in the StockHistory class contained within the Stock class is
similar. In VB.NET, the code is this:

dim TradeDate1 as DateTime = theStock.History(0).TradeDate

In C#, the code is this:

DateTime TradeDate1 = theStock.History[0].TradeDate;

Recall that array indices are zero-based.

To repeat a point made in Chapter 16 when the web service example was first
created, a real-world application would not store this type of history data in an
array, nor would it display the history data in fixed variables as shown here.
More likely, you would have the data in a collection or a dataset and display the
data in some sort of data-bound control, as described in Chapter 9.

To display the history, several labels contained within an ASP panel control are used. The panel is
used to control the labels' visibility. When the page is originally designed, the panel has its visibility
property set to false. When it is time to display the results in the button event handler, the panel
then has its visibility property set to true, which also makes all the labels contained within the panel

visible.

The important point to understand here is that calls to the web service are made instead to the
proxy, as though the web service were a local dll or component. When your code makes a method
call to the proxy dll, it has no idea that the call is being satisfied over the Internet by a web service.
The proxy hides all the complex stuff required to package the method call up as a SOAP message,
send it out over the wire using the proper protocol (typically HTTP), receive the SOAP message
response, and return that back to your calling program as though the Internet was never involved.

17.3.2 Using Visual Studio .NET

To make the same web page in Visual Studio .NET, open the program and start a new project. For
this demonstration, choose the Visual Basic Project type, using the ASP.NET Web Application
template. Name the project vbWebServiceConsumer, as shown in Figure 17-2.

Figure 17-2. New project for web service consumer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the new project opens, change the pageLayout property of the document from GridLayout to
FlowLayout. This changes the page layout from absolute positioning of the HTML elements to a

layout more like a word processor, where positioning is achieved with spaces and line breaks.

Working on the WebForm1.aspx design screen, place controls and lay out the page so that it looks
similar to that shown in Figure 17-3.

Figure 17-3. Page layout for web service consumer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name the text boxes, the labels to the right of the text boxes and in the panel, the panel itself, and
the buttons the same as in Example 17-4 and Example 17-5, for consistency and to clarify the
analysis. Be sure to clear the Text values from lblFirmName, lblStockPrice, and the labels in the
panel, and set the AutoPostBack property of the first two text boxes (txtFirmNameStockSymbol and
txtPriceStockSymbol) to True. Also, set the Visible property of pnlHistory to False.

Add event handlers for the first two text boxes and the buttons. To add an event handler, simply
double-click on the control. This will automatically bring you to the code-behind page and insert a
subroutine with the default name and declaration. Enter in the lines of code for each event handler
from the code in Example 17-4 and Example 17-5.

When you do this, you will notice that Visual Studio .NET underlines proxy in each line. This flags
those terms as compile errors waiting to happen. To solve that, enter the line of code at the top of
the code-behind class that instantiates the proxy. To repeat a line of code already placed in Example
17-4 and Example 17-5, this will look like this:

dim proxy As new StockTicker()

Now the error flag is gone from the proxy terms, but the StockTicker class name is flagged as a

compile error. This is because the proxy class is not yet available to the project. If you have not
already created and compiled the VB.NET proxy DLL, do so now.

Next comes the magic. Using the Solution Explorer, add a Reference to the DLL you just created.
Right-click on References in the Solution Explorer. You are presented with two choices:

Add Reference...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Add Web Reference...

In this example select the first choice, Add Reference.... Click on the Browse button and browse to
the location of the proxy dll, which here is called vbStockTickerProxy.dll. When you are finished, the
Solution Explorer will look like Figure 17-4. Once the reference is added, the error flag will disappear
from the StockTicker class name.

Figure 17-4. Adding reference to web service consumer

The project can now be run by pressing F5, clicking the Start icon, or selecting Start under the Debug
menu.

If you would rather let Visual Studio .NET create and compile the proxy, then select Add Web
Reference... after right-clicking on References in Solution Explorer. You will be presented with the
dialog box shown in Figure 17-5.

The Add Web Reference... option also allows you to add a reference from a web
service found in a UDDI directory. UDDI was described earlier in the chapter.

Figure 17-5. Adding web reference to web service consumer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enter a URL pointing to the web service .asmx file with ?WSDL appended to the end. For this
example, the URL entered is:

http://localhost/progaspnet/csStockTicker.asmx?WSDL

The resulting WSDL will be displayed in the left side of the dialog box. The right side will show the
available web service and the Add Reference button will become enabled. Click on the Add Reference
button. Visual Studio .NET will automatically create the proxy DLL and register it with the project.

Add (or modify, if you have already added the equivalent line above) the following line to the code-
behind file. In VB.NET, add:

dim proxy as new localhost.StockTicker()

In C#, add:

localhost.StockTicker proxy = new localhost.StockTicker();

Also, modify the line instantiating the Stock object in the btnGetHistory event handler. In VB.NET, it
should look like this:

dim theStock as localhost.Stock =
 proxy.GetHistory(txtHistoryStockSymbol.Text)

In C#, it should look like this:

localhost.Stock theStock = proxy.GetHistory(txtHistoryStockSymbol.Text);

17.3.3 Using Asynchronous Method Calls

http://localhost/progaspnet/csStockTicker.asmx?WSDL
http://lib.ommolketab.ir
http://lib.ommolketab.ir

As mentioned previously in Section 17-2, web services allow the developer to call any of the exposed
web methods either synchronously or asynchronously.

When a method is called synchronously, which is the "normal" way of doing method calls, the
program execution waits for the method to return. As long as the method does not take too long to
process and there is not too much network delay, this pause is not a problem.

Figure 17-6 shows synchronous processing. Methods are called on the server via the proxy. The
calling program is not aware that a proxy is intervening in the process. A call goes out and when the
results come back, the calling program continues processing.

Figure 17-6. Synchronous method calls

However, in situations where the method is time-consuming to process (for example, a lengthy
database operation or extensive computation) or where the network delay is significant, then this
delay can be an unacceptable performance hit. In the case of web services, where all the method
calls entail a round trip over the Internet, long network delays are common. Broadband Internet
connections can help, but performance will still suffer.

One solution is to use asynchronous processing. In this model, a web service method is called, with
instructions to notify the client when the result is ready. The client can go about its business, not
waiting for the method to return. When the asynchronous method completes, a callback method is
called. The client then retrieves the data from the server. Asynchronous processing is shown
schematically in Figure 17-7.

Figure 17-7. Asynchronous method calls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As with the synchronous method call, the client is not aware that the proxy is intercepting the
method call and passing it along to the server. The client event handler calls the Begin... method on
the web service (actually on the proxy) passing in a delegate for the callback method (step 1 in
Figure 17-7). The client then goes on to do other work.

The proxy calls the web method on behalf of the client (step 2). When the server has completed the
method, it returns the result to the proxy (step 3). The proxy calls the client's callback method and
passes in an object implementing IAsyncResult (step 4).

The client passes that IAsyncResult back to the proxy's End... method (step 5). The End... method

then returns the data to the client (step 6).

The client does not have to poll the server; it is notified by the callback when the method completes.

The callback method is a delegate. A delegate is a reference type that encapsulates a method with a
specific signature and return type. The async Begin... and End... methods define a delegate for the
callback mechanism you implement in your client.

To illustrate the use of delegates and asynchronous proxy calls, create a new C# web application
project named csWebServiceConsumerAsync in Visual Studio .NET.

The page layout should look like Figure 17-8. It is nearly identical to the layout shown in Figure 17-3,
including the panel used to control the visibility of the labels it contains. The only difference is that
there is no field or buttons for Stock Exchange, the Get History button from Figure 17-3 is now
labeled Get Data, and the button ID is now btnGetData. In addition, the AutoPostBack property of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

txtFirmNameStockSymbol and txtPriceStockSymbol text boxes should be set to false rather than
true.

Figure 17-8. Asynchronous web page layout

The web page will accept stock symbols in each of the text fields. When the Get Data button is
clicked, all the processing for each field will be done asynchronously. If this were a real-world
application where each field would typically be hitting a different web service on different servers, this
asynchronous processing would prevent one slow connection from holding up the works. All three
web service calls will essentially be occurring simultaneously.

Before entering the asynchronous code, you will make the page work synchronously to see how it
works. To the end user, the synchronous and asynchronous implementations will look identical,
except the latter should be somewhat faster (although that will not be noticeable in this example,
where all of the web method calls are actually going to localhost).

Add the single event handler to the Get Data button by double-clicking on the button. This will bring
you to the btnGetData_Click event handler in the code-behind page. Enter the code in Example 17-6
to the event handler (or Example 17-7 for VB .NET).

Example 17-6. Synchronous event handler in C#

lblFirmName.Text = proxy.GetName(txtFirmNameStockSymbol.Text);
lblStockPrice.Text = "$ " +
 Convert.ToString(proxy.GetPrice(txtPriceStockSymbol.Text));

Stock theStock = proxy.GetHistory(txtHistoryStockSymbol.Text);
string StockName = theStock.StockName;
double StockPrice = theStock.Price;

DateTime TradeDate1 = theStock.History[0].TradeDate;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

double Price1 = theStock.History[0].Price;

DateTime TradeDate2 = theStock.History[1].TradeDate;
double Price2 = theStock.History[1].Price;

// Display the results.
pnlHistory.Visible = true;
lblHistoryStockName.Text = StockName;
lblHistoryStockPrice.Text = "$ " + Convert.ToString(StockPrice);
lblHistoryDate1.Text =TradeDate1.ToString("d");
lblHistoryPrice1.Text = "$ " + Convert.ToString(Price1);
lblHistoryDate2.Text = TradeDate2.ToString("d");
lblHistoryPrice2.Text = "$ " + Convert.ToString(Price2);

Example 17-7. Synchronous event handler in VB .NET

lblFirmName.Text = proxy.GetName(txtFirmNameStockSymbol.Text)
lblStockPrice.Text = "$ " & _
 Convert.ToString(proxy.GetPrice(txtPriceStockSymbol.Text))

Dim theStock As Stock = proxy.GetHistory(txtHistoryStockSymbol.Text)
Dim StockName As String = theStock.StockName
Dim StockPrice As Double = theStock.Price

Dim TradeDate1 As DateTime = theStock.History(0).TradeDate
Dim Price1 As Double = theStock.History(0).Price

Dim TradeDate2 As DateTime = theStock.History(1).TradeDate
Dim Price2 As Double = theStock.History(1).Price

' Display the results.
pnlHistory.Visible = True
lblHistoryStockName.Text = StockName
lblHistoryStockPrice.Text = "$ " & Convert.ToString(StockPrice)
lblHistoryDate1.Text =TradeDate1.ToString("d")
lblHistoryPrice1.Text = "$ " & Convert.ToString(Price1)
lblHistoryDate2.Text = TradeDate2.ToString("d")
lblHistoryPrice2.Text = "$ " & Convert.ToString(Price2)

This code is identical to that in Example 17-5, except it is condensed into a single event handler
rather than spread over three different event handlers.

Run the web application, fill in the stock symbols, and press the Get Data button; the resulting web
page will look something like Figure 17-9.

Figure 17-9. Synchronous test result

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before adding the code to convert this web page from synchronous processing to asynchronous
processing, examine the proxy class source code shown in Example 17-2. That segment of the source
code shows the proxy method calls available for the GetHistory method. There are three of them:

GetHistory

This is the synchronous method. It takes a single parameter, the StockSymbol string.

BeginGetHistory

This method starts the asynchronous processing. It takes three parameters: the StockSymbol
string, the delegate callback method of type AsyncCallback, and an object called asyncState.

EndGetHistory

This method takes a single parameter, asyncResult, which is of type IAsyncResult.

Each of the methods exposed in the web service has equivalent Begin... and End... methods to
enable asynchronous processing.

The code in Example 17-8 shows the complete code listing for the code-behind page demonstrating
asynchronous event handling for a web service consumer. The lines of code relevant to converting
the event handling from synchronous to asynchronous are highlighted.

Example 17-8. Asynchronous event handler

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Threading;
using System.Web;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace csWebServiceConsumerAsync
{
 /// <summary>
 /// Summary description for WebForm1.
 /// </summary>
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Label Label1;
 protected System.Web.UI.WebControls.TextBox txtFirmNameStockSymbol;
 protected System.Web.UI.WebControls.Label lblFirmName;
 protected System.Web.UI.WebControls.TextBox txtPriceStockSymbol;
 protected System.Web.UI.WebControls.Label lblStockPrice;
 protected System.Web.UI.WebControls.TextBox txtHistoryStockSymbol;
 protected System.Web.UI.WebControls.Panel pnlHistory;
 protected System.Web.UI.WebControls.Label Label2;
 protected System.Web.UI.WebControls.Label lblHistoryStockName;
 protected System.Web.UI.WebControls.Label lblHistoryStockPrice;
 protected System.Web.UI.WebControls.Label lblHistoryDate1;
 protected System.Web.UI.WebControls.Label lblHistoryPrice1;
 protected System.Web.UI.WebControls.Label lblHistoryDate2;
 protected System.Web.UI.WebControls.Label lblHistoryPrice2;
 protected System.Web.UI.WebControls.Button btnGetData;

 int flags;

 StockTicker proxy = new StockTicker();

 // Create delegates.
 private AsyncCallback myCallBackFirmNameStockSymbol;
 private AsyncCallback myCallBackPriceStockSymbol;
 private AsyncCallback myCallBackHistory;

 public WebForm1()
 {
 Page.Init += new System.EventHandler(Page_Init);

 // assign the call back
 myCallBackFirmNameStockSymbol = new
 AsyncCallback(this.onCompletedGetName);
 myCallBackPriceStockSymbol = new
 AsyncCallback(this.onCompletedGetPrice);
 myCallBackHistory = new
 AsyncCallback(this.onCompletedGetHistory);
 }

 private void Page_Load(object sender, System.EventArgs e)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Put user code to initialize the page here
 }

 private void Page_Init(object sender, EventArgs e)
 {
 //
 // CODEGEN: This call is required by the Web Form Designer.
 //
 InitializeComponent();
 }

 #region Web Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.btnGetData.Click += new
 System.EventHandler(this.btnGetData_Click);
 this.Load += new System.EventHandler(this.Page_Load);
 }
 #endregion

 private void btnGetData_Click(object sender, System.EventArgs e)
 {
 flags = 0;
 // lblFirmName.Text = proxy.GetName(txtFirmNameStockSymbol.Text);
 proxy.BeginGetName(txtFirmNameStockSymbol.Text,
 myCallBackFirmNameStockSymbol,
 0);

 // lblStockPrice.Text = "$ " +
 Convert.ToString(proxy.GetPrice(txtPriceStockSymbol.Text));
 proxy.BeginGetPrice(txtPriceStockSymbol.Text,
 myCallBackPriceStockSymbol,
 0);

 // Stock theStock = proxy.GetHistory(txtHistoryStockSymbol.Text);
 proxy.BeginGetHistory(txtHistoryStockSymbol.Text,
 myCallBackHistory,
 0);

 while (flags < 3)
 {
 Thread.Sleep(100);
 }
 }

 private void onCompletedGetName(IAsyncResult asyncResult)
 {
 string s = proxy.EndGetName(asyncResult);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lblFirmName.Text = s;
 flags++;
 }

 private void onCompletedGetPrice(IAsyncResult asyncResult)
 {
 lblStockPrice.Text = "$ " +
 Convert.ToString(proxy.EndGetPrice(asyncResult));
 flags++;
 }

 private void onCompletedGetHistory(IAsyncResult asyncResult)
 {
 Stock theStock = proxy.EndGetHistory(asyncResult);
 string StockName = theStock.StockName;
 double StockPrice = theStock.Price;

 DateTime TradeDate1 = theStock.History[0].TradeDate;
 double Price1 = theStock.History[0].Price;

 DateTime TradeDate2 = theStock.History[1].TradeDate;
 double Price2 = theStock.History[1].Price;

 // Display the results.
 pnlHistory.Visible = true;
 lblHistoryStockName.Text = StockName;
 lblHistoryStockPrice.Text = "$ " + Convert.ToString(StockPrice);
 lblHistoryDate1.Text =TradeDate1.ToString("d");
 lblHistoryPrice1.Text = "$ " + Convert.ToString(Price1);
 lblHistoryDate2.Text = TradeDate2.ToString("d");
 lblHistoryPrice2.Text = "$ " + Convert.ToString(Price2);
 flags++;
 }
 }
}

The first step is to declare the delegates. Add the following lines of code to the code-behind page
inside the WebForm1 class:

private AsyncCallback myCallBackFirmNameStockSymbol;
private AsyncCallback myCallBackPriceStockSymbol;
private AsyncCallback myCallBackHistory;

These lines declare the delegates as private members of the class. Note that the delegates are of
type AsyncCallback. This is the same type as the second parameter required by the Begin... methods.

An AsyncCallback delegate is declared in the System namespace as follows:

public delegate void AsyncCallback (IAsyncResult ar);

Thus this delegate can be associated with any method that returns void and takes the IAsyncResult

interface as a parameter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You will create three methods in your client to act as callback methods: onCompletedGetName,
onCompletedGetPrice, and onCompletedGetHistory. You encapsulate these methods within their
delegates in the constructor, as follows:

myCallBackFirmNameStockSymbol = new
 AsyncCallback(this.onCompletedGetName);
myCallBackPriceStockSymbol = new AsyncCallback(this.onCompletedGetPrice);
myCallBackHistory = new AsyncCallback(this.onCompletedGetHistory);

You will see how to implement the three callback methods shortly.

The next step is to call all the Begin... methods to start the asynchronous processing. Replace each of
the lines of code in btnGetData_Click that calls one of the proxy methods with its equivalent Begin...
method. (For now, just comment out the original lines of code and keep them for reference.) The first
parameter for each Begin... method is the same as the parameter for the original synchronous
method. The second parameter is the delegate created previously. The third parameter is an object
for maintaining state, if necessary. For this example, use zero. The btnGetData_Click event
procedure should appear as follows:

private void btnGetData_Click(object sender, System.EventArgs e)
{
 flags = 0;
 // lblFirmName.Text = proxy.GetName(txtFirmNameStockSymbol.Text);
 proxy.BeginGetName(txtFirmNameStockSymbol.Text,
 myCallBackFirmNameStockSymbol,
 0);
 // lblStockPrice.Text = "$ " +
 Convert.ToString(proxy.GetPrice(txtPriceStockSymbol.Text));
 proxy.BeginGetPrice(txtPriceStockSymbol.Text,
 myCallBackPriceStockSymbol,
 0);
 // Stock theStock = proxy.GetHistory(txtHistoryStockSymbol.Text);
 proxy.BeginGetHistory(txtHistoryStockSymbol.Text,
 myCallBackHistory,
 0);
 while (flags < 3)
 {
 Thread.Sleep(100);
 }
}

The flags variable and the while loop will be explained shortly.

Create the three callback methods, and move the code from the current btnGetData_Click to the
appropriate method. Call the new methods onCompletedGetName, onCompletedGetPrice, and
onCompletedGetHistory. The contents of these methods is shown in Example 17-7.

In each of the callback methods, the End.. method associated with the appropriate web method in
the proxy is called to construct the label Text properties to be set for display in the web page. In
onCompletedGetName, a string is set to the return value from the proxy.EndGetName method. This
string is then assigned to the label Text property. onCompletedGetPrice uses a similar technique,
using a single line of code to replace the two lines in onCompletedGetName. onCompletedGetHistory
is similar, except that it instantiates a Stock object with the return value from proxy.EndGetHistory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you will recall from Example 17-1, a Stock object contains a stock symbol, stock name, price, and
an array of StockHistory objects.

The last thing to explain is the flags variable, which is a counter. Notice that this variable is declared

as a member variable:

int flags;

Each one of the callback methods increments the flags counter:

flags++;

Within the button click event handler, btnGetData_Click, the flags counter is reset to zero. Then

every callback method increments the counter. The while loop prevents the button click event from
completing until all three callback method methods have completed:

while (flags < 3)
{
 Thread.Sleep(100);
}

When the web page is run, the three Begin... methods are called. As each returns results, the
onCompleted... methods call the appropriate End method and increment the counter.

When the counter reaches 3, the web page redraws. The end result looks indistinguishable from that
shown in Figure 17-9.

Asynchronous consumption of web services can be very useful under the
correct circumstances, but may not scale well. This is because each
asynchronous method call spawns a new thread. So, Example 17-7 would
spawn three additional threads in addition to the main thread. This would be
fine for a low-volume web site, but the performance penalty could overwhelm a
large, busy web site.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 18. Caching and Performance
There are several ways to achieve higher performance and better scalability in ASP.NET. One way is
through the use of caching. Caching is a technique whereby frequently requested data is stored in a
quickly accessible location, so that the next time the same data is requested, it can be quickly
fetched from the cache location rather than regenerated by the application.

This can result in a significant performance boost, especially for dynamically generated content (such
as ASP.NET web pages and components), and in cases where the data underlying the response is
expensive to gather (such as database queries).

Most web browsers cache pages received so that if the same page is requested again, it does not
have to be sent over the Internet, but rather is retrieved directly from the local hard drive. Most
operating systems also employ caching of some sort to store frequently requested data in memory,
rather than require additional hard drive reads.

The only caching this chapter will be concerned with is server-side caching performed by the .NET
Framework.

In some respects, caching is similar to the storage of state objects. (See Chapter 6 for a complete
discussion of state in ASP.NET.) In both cases, data is saved for use across multiple requests, and, in
the case of application state, across multiple sessions. However, there the similarity ends. With state
objects, the developer explicitly saves a particular piece of data in a particular place, intending to be
able to retrieve that data at any time later in the session or in other sessions. The data stored in
state objects will last as long as the session or application, and will not be lost until the developer
specifies it is to be removed or replaced. In short, the developer can count on the data in a state
object being available.

In contrast, cached data is non-deterministic. You cannot assume that any piece of data you are
looking for will be in the cache. As will be shown later in this chapter, whenever your program
attempts to retrieve data from the cache, it must test to see if the data is there, and make provisions
to retrieve the data elsewhere if it is not present in the cache. The data may be missing because its
lifetime expired, because the application needed to free memory for other purposes, or simply
because the cache was never populated.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.1 Types of Caching

There are several different types of caching present in ASP.NET. Some are automatic and require no
intervention on the part of the developer, while others require explicit coding.

18.1.1 Class Caching

When a web page or web service (.aspx or .asmx file, respectively) contains all its code inline, then
that code is compiled into a page class the first time the page or service is run. This causes some
delay, but that compiled class file is then cached on the server and is called directly every subsequent
time the page (or service) is referenced. This is done automatically; there is no user or developer
interaction required for this to happen.

The CLR watches for source code changes. If the source code changes, the CLR knows to recompile
the next time the page or service is called.

If code-behind is used, the page or web service class is already pre-compiled,
either manually by the developer or automatically by Visual Studio .NET.

18.1.2 Configuration Caching

Application-wide configuration information is contained in the configuration files. Chapter 20 discusses
the specifics of configuration in detail. For now, the relevant point is that when the application is
started (i.e., the first time a page or service is called from the application virtual root directory), all
the configuration information must be loaded. This can take some time, especially if the configuration
files are extensive. Configuration caching allows the application to store the configuration information
in memory, thus saving time when the information is subsequently needed.

18.1.3 Output Caching

Output caching is the caching of pages or portions of pages that are output to the client. This is one
of the main performance-enhancing techniques available to the developer. Since the page does not
have to be recreated from scratch each time a request is made for it, the web site throughput,
measured in requests per second, can be significantly increased.

Cached pages or portions of pages are stored in the web server's memory. Subsequent requests for
the same page or portion of page are fulfilled directly from memory, rather than recreated by the
page's program logic.

Output caching is discussed in the next section of this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.1.4 Object Caching

Object caching is the caching of objects on the page, such as data bound controls. In contrast to
output caching, object caching stores the cached data in server memory. Object caching will be
covered in detail later in this chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.2 Output Caching

Output caching is the caching of pages or portions of pages that are output to the client. This does
not happen automatically. The developer must enable output caching using either the OutputCache

page directive or the HttpCachePolicy class. Both methods will be described.

Output caching can be applied to an entire page or a portion of the page. To cache only a portion of a
page, the caching is applied to a user control contained within the page. This too will be described
later in this section.

18.2.1 The OutputCache Page Directive

The OutputCache page directive, like all page directives, goes at the top of the page file. (For a
complete description of page directives, see Chapter 6.) A typical example of an OutputCache page

directive looks something like the following:

<%@ OutputCache Duration="60" VaryByParam="*" %>

The full syntax is:

<%@ OutputCache Duration="number of seconds"
VaryByParam="parameter list" Location="location"
VaryByControl="control list" VaryByCustom="custom output" VaryByHeader=
 "header list" %>

Only the first two parameters, Duration and VaryByParam, are required.

The VaryBy... parameters allow different versions of the cached page to be stored, with each version

satisfying the combination of conditions being varied.

The various parameters are described in the following sections.

18.2.1.1 Duration

The Duration parameter specifies the number of seconds that the page or user control is cached.

Items placed in the output cache are only valid for this specified time period. When the time limit is
reached, then the cache is said to be expired. The next request for the cached page or user control
after the cache is expired causes the page or user control to be regenerated, and the cache is refilled
with the fresh copy.

An example will clarify this. Example 18-1 and Example 18-2 show the VB.NET and C# versions,
respectively, of a very simple web page with output caching implemented. Each time the page is
loaded, it will display the time in a Label control. The HTML is omitted from Example 18-2, since it is
identical to that in Example 18-1. Running the page in a browser gives the result shown in Figure 18-
1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 18-1. Simple output caching in VB.NET, vbOutputCache-01.aspx

<%@ Page Language="VB" %>
<%@ OutputCache Duration="10" VaryByParam="*" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblMsg.Text = "This page was loaded at " & _
 DateTime.Now.ToString("T")
 end sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>Output Caching</h1>

 <asp:Label
 id="lblMsg"
 runat="server"/>

 </form>
 </body>
</html>

Example 18-2. Simple output caching in C#, csOutputCache-01.aspx

<%@ Page Language="C#" %>
<%@ OutputCache Duration="10" VaryByParam="*" %>

<script runat="server">
 void Page_Load(Object Source, EventArgs E)
 {
 lblMsg.Text = "This page was loaded at " +
 DateTime.Now.ToString("T");
 }
</script>

Figure 18-1. Results of simple caching demo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Example 18-1 and Example 18-2, the only thing necessary to implement output caching is the
second line in the listing, the OutputCache page directive. It specifies a Duration of 10 seconds.
(The other parameter, VaryByParam, will be explained in the next section.) This means that if the

same page is requested from the server within 10 seconds of the original request, the subsequent
request will be served out of the cache, rather than being regenerated by ASP.NET.

This is easy to verify. Run the page and note the time. Then quickly refresh the page in the browser.
If you refresh within 10 seconds of originally running the page, the displayed time will not have
changed. You can refresh the page as many times as you wish, but the displayed time will not change
until 10 seconds have passed.

18.2.1.2 VaryByParam

The VaryByParam parameter allows you to cache different versions of the page depending on which

parameters are submitted to the server when the page is requested. These parameters are contained
in a semicolon-separated list of strings.

In the case of a GET request, the strings in the parameter list represent query string values
contained in the URL. In the case of a POST request, the strings represent variables sent as part of
the form.

There are two special values for the VaryByParam parameter:

Value Description

none
Don't vary by parameter - i.e., save only a single version of the page in the cache and
return that version no matter what query string values or form variables are passed in as
part of the request.

*

Save a separate version of the page in cache for each unique combination of query string
values or form variables. The order of the query string values or form variables have no
effect on the caching. However, the parameter values are case sensitive: state=ma is
different from state=MA.

To see the effects of the VaryByParam parameter, modify the previous example. Add two labels for

displaying parameters passed in as a query string as part of the URL in a GET request. Also, change
the Duration parameter to 60 seconds to give you more time to explore the effects. The resulting
.aspx page is shown in Example 18-3 (for VB.NET) and Example 18-4 (for C#). (The HTML is omitted

from Example 18-4 since it is identical to that in Example 18-3.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 18-3. Output caching using the VaryByParam parameter in
VB.NET, vbOutputCache-02.aspx

<%@ Page Language="VB" %>
<%@ OutputCache Duration="60" VaryByParam="*" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblMsg.Text = "This page was loaded at " & _
 DateTime.Now.ToString("T")
 lblUserName.Text = Request.Params("username")
 lblState.Text = Request.Params("state")
 end sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>Output Caching</h1>

 <asp:Label
 id="lblMsg"
 runat="server"/>

 UserName:
 <asp:Label
 id="lblUserName"
 runat="server"/>

 State:
 <asp:Label
 id="lblState"
 runat="server"/>

 </form>
 </body>
</html>

Example 18-4. Output caching using the VaryByParam in parameter in
C#, csOutputCache-02.aspx

<%@ Page Language="C#" %>
<%@ OutputCache Duration="60" VaryByParam="*" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<script runat="server">
 void Page_Load(Object Source, EventArgs E)
 {
 lblMsg.Text = "This page was loaded at " +
 DateTime.Now.ToString("T");
 lblUserName.Text = Request.Params["username"];
 lblState.Text = Request.Params["state"];

 }
</script>

To test Example 18-3 and Example 18-4, enter the following URL in a browser:

http://localhost/progaspnet/vbOutputCache-02.aspx?username=Dan&state=MA

This will give the result shown in Figure 18-2.

Figure 18-2. Results of caching in VaryByParam demo

Now enter the same URL but with different parameters, say username=Jesse and state=NY, as in:

http://localhost/progaspnet/vbOutputCache-02.aspx?username=Jesse&state=NY

This will give a different time in the resulting page. Now go back and enter the original URL with
username=Dan and state=MA. You will see the original time shown in Figure 18-2, assuming 60

seconds have not passed since you first entered the URL.

Suppose the previous example was part of an application where the username was needed for login
purposes and the state was used to query a database to return information about publicly traded
firms in that state. In that case, it would make no sense to cache based on the username, but it
would make a lot of sense to cache based on the state parameter.

To accomplish this, set VaryByParam equal to the parameter(s) you wish to cache by. So, for
example, to cache only by state, use the following OutputCache directive:

<%@ OutputCache Duration="60" VaryByParam="state" %>

If you need to cache by the unique combination of two parameters, say state and city, use a

directive similar to:

http://localhost/progaspnet/vbOutputCache-02.aspx?username=Dan&state=MA
http://localhost/progaspnet/vbOutputCache-02.aspx?username=Jesse&state=NY
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@ OutputCache Duration="60" VaryByParam="state;city" %>

18.2.1.3 Location

The Location parameter specifies the machine where the cached data is stored. The permissible
values for this parameter are contained in the OutputCacheLocation enumeration (see Table 18-1).

Table 18-1. Location parameter values

Parameter
value

Description

Client
The cache is located on the same machine as the client browser. Useful if the
page requires authentication.

Downstream
The cache is located on a server downstream from the web server. This might be
a proxy server.

Server The cache is located on the web server processing the request.

None Output caching is disabled.

Any
The output cache can be located either on the client, on a downstream server, or
on the web server. This is the default value.

The Location parameter is not supported when output caching user controls.

18.2.1.4 VaryByControl

The VaryByControl parameter is used when caching user controls, which will be described in Section
18-2.2 later in this chapter. This parameter is not supported in OutputCache directives in web pages

(.aspx files).

The values for this parameter consist of a semicolon-separated list of strings. Each string represents
a fully qualified property name on a user control.

18.2.1.5 VaryByCustom

The VaryByCustom parameter allows the cache to be varied by browser if the value of the parameter
is set to browser. In this case, the cache is varied by browser name and major version. In other

words, there will be separate cached versions of the page for IE 4, IE 5, Netscape 6, or any other
browser type or version used to access the page.

18.2.1.6 VaryByHeader

The VaryByHeader parameter allows the cache to by varied by HTTP header. The value of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parameter consists of a semicolon-separated list of HTTP headers. This parameter is not supported in
OutputCache directives in user controls.

18.2.2 Fragment Caching: Caching Part of a Page

All the examples shown so far have cached the entire page. Sometimes all you want to cache is part
of the page. To do this, wrap that portion of the page you want to cache in a user control and cache
just the user control. This is known as fragment caching. (For a complete discussion of user controls,
see Chapter 14.)

For example, suppose you develop a stock portfolio analysis page, where the top portion of the page
displays the contents of the user's stock portfolio, and the bottom portion contains a data grid
showing historical data about one specific stock. There would be little benefit in caching the top
portion of the page, since it will be different for every user. However, it is likely that in a heavily used
web site, many people will be requesting historical information about the same stock, so there would
be benefit to caching the bottom portion of the page. This is especially true since generating the
historical data requires a relatively expensive database query. In this case, you can wrap the data
grid in a user control and cache just that.

To demonstrate fragment caching, create the very simple user control shown in Example 18-5 using
VB.NET and in Example 18-6 using C#.

Example 18-5. Simple user control in VB.NET, vbUserControl.ascx

<%@ Control Language="VB" %>
<%@ OutputCache Duration="10" VaryByParam="*" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblMsg.Text = "This User Control was loaded at " & _
 DateTime.Now.ToString("T")
 end sub
</script>

<hr/>
<h1>User Control</h1>

<asp:Label
 id="lblMsg"
 runat="server"/>

<hr/>

Example 18-6. Simple user control in C#, csUserControl.ascx

<%@ Control Language="C#" %>
<%@ OutputCache Duration="10" VaryByParam="*" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<script runat="server">
 void Page_Load(Object Source, EventArgs E)
 {
 lblMsg.Text = "This User Control was loaded at " +
 DateTime.Now.ToString("T");
 }
</script>

<hr/>
<h1>User Control</h1>

<asp:Label
 id="lblMsg"
 runat="server"/>

<hr/>

This user control does nothing more than display the time it was loaded. The visible portion of the
control is surrounded by horizontal rules (<hr/>) to distinguish it when it is used in a web page.
Notice that the OutputCache directive specifies a Duration of 10 seconds.

Now create a web page to use this user control, as shown in Example 18-7 and Example 18-8, in
VB.NET and C#, respectively.

Example 18-7. Fragment caching demo in VB.NET, vbOutputCache-
UserControl.aspx

<%@ Page Language="vb" %>
<%@ Register TagPrefix="SampleUserControl" TagName="LoadTime"
 Src="vbUserControl.ascx" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblMsg.Text = "This page was loaded at " & _
 DateTime.Now.ToString("T")
 end sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>Fragment Caching</h1>

 <asp:Label
 id="lblMsg"
 runat="server"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <SampleUserControl:LoadTime
 runat="server"/>

 </form>
 </body>
</html>

Example 18-8. Fragment caching demo in C#, csOutputCache-
UserControl.aspx

<%@ Page Language="C#" %>
<%@ Register TagPrefix="SampleUserControl" TagName="LoadTime"
 Src="csUserControl.ascx" %>

<script runat="server">
 void Page_Load(Object Source, EventArgs E)
 {
 lblMsg.Text = "This page was loaded at " +
 DateTime.Now.ToString("T");
 }
</script>

<html>
 <body>
 <form runat="server">

 <h1>Fragment Caching</h1>

 <asp:Label
 id="lblMsg"
 runat="server"/>

 <SampleUserControl:LoadTime
 runat="server"/>

 </form>
 </body>
</html>

Notice that the web page that uses the user control does not have any caching implemented; there is
no OutputCache directive.

When you run the web page from Example 18-7 or Example 18-8 in a browser, you will initially see
something like Figure 18-3.

Figure 18-3. Results of fragment caching demo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The time displayed for both the user control and the containing page are the same. However, if you
refresh the view, you will notice that the time the page was loaded will be the current time, while the
time the user control was loaded is static until the 10-second cache duration has expired.

One caveat to keep in mind when caching user controls is that it is not possible to programmatically
manipulate the user control being cached. This is because a user control in cache is only generated
dynamically the first time it is requested. After that, the object is not available for the code to interact
with. If you need to manipulate the contents of the user control programmatically, the code to do so
must be contained within the user control.

To demonstrate this, modify the code in Example 18-5 to add a property called UserName to the
sample user control. The new user control is shown Example 18-9 (VB.NET) and Example 18-10
(C#). (The HTML is omitted from Example 18-10 since it is identical to that in 18-9.)

Example 18-9. User control with UserName property in VB.NET,
vbUserControl-02.ascx

<%@ Control Language="VB" %>
<%@ OutputCache Duration="10" VaryByParam="*" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblMsg.Text = "This User Control was loaded at " & _
 DateTime.Now.ToString("T")
 end sub

 public property UserName() as string
 get
 return lblUserName.Text
 end get

 set
 lblUserName.Text = value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end set
 end property
</script>

<hr/>
<h1>User Control</h1>

<asp:Label
 id="lblMsg"
 runat="server"/>

<asp:Label
 id="lblUserName"
 Text="Dan"
 runat="server"/>

<hr/>

Example 18-10. User control with UserName property in C#,
csUserControl-02.ascx

<%@ Control Language="C#" %>
<%@ OutputCache Duration="10" VaryByParam="*" %>

<script runat="server">
 void Page_Load(Object sender,
 EventArgs e)
 {
 lblMsg.Text = "This User Control was loaded at " +
 DateTime.Now.ToString("T");
 }

 public string UserName
 {
 get
 {
 return lblUserName.Text;
 }

 set
 {
 lblUserName.Text = value;
 }
 }
</script>

In Example 18-9 and Example 18-10, a property named UserName was added to the code, with both
a Get and a Set method. Also, a label was added to display the UserName. For now, this label is
hard-coded to Dan.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now modify the code in Example 18-7 to call this modified user control. The code for this modified
page is shown in Example 18-11 (in VB.NET) and in Example 18-12 (in C#). (The HTML is omitted
from Example 18-12 since it is identical to that in 18-11.)

Example 18-11. Fragment caching demo with a property in VB.NET,
vbOutputCache-UserControl-02.aspx

<%@ Page Language="vb" %>
<%@ Register TagPrefix="SampleUserControl" TagName="LoadTime"
 Src="vbUserControl-02.ascx" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblMsg.Text = "This page was loaded at " & _
 DateTime.Now.ToString("T")

 lblUserControlText.Text = MyUserControl.UserName
 end sub

 sub btn_OnClick(ByVal Sender as Object, _
 ByVal e as EventArgs)
 MyUserControl.UserName = "Jesse"
 end sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>Fragment Caching</h1>

 <asp:Label
 id="lblMsg"
 runat="server"/>

 <SampleUserControl:LoadTime
 ID="MyUserControl"
 runat="server"/>

 <asp:Label
 id="lblUserControlText"
 runat="server"/>

 <asp:Button

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 id="btn"
 Text="Change Name to Jesse"
 OnClick="btn_OnClick"
 runat="server"/>

 </form>
 </body>
</html>

Example 18-12. Fragment caching demo with a property in C#,
csOutputCache-UserControl-02.aspx

<%@ Page Language="C#" %>
<%@ Register TagPrefix="SampleUserControl" TagName="LoadTime"
 Src="csUserControl-02.ascx" %>

<script runat="server">
 void Page_Load(Object sender,
 EventArgs e)
 {
 lblMsg.Text = "This page was loaded at " +
 DateTime.Now.ToString("T");

 lblUserControlText.Text = MyUserControl.UserName;
 }

 void btn_OnClick(Object sender,
 EventArgs e)
 {
 MyUserControl.UserName = "Jesse";
 }
</script>

The code in Example 18-11 and Example 18-12 adds the highlighted code to populate the
lblUserControlText label with the initial value of the lblUserName control contained in the user control.
This works fine when the page is first called, giving the result shown in Figure 18-4.

Figure 18-4. Results of fragment caching with property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It even works as expected if you click the button to change the name to Jesse. This is because the

button causes the form to be posted to the server, so everything is regenerated and the request for
the user control is not being satisfied from the cache. However, as soon as you refresh the page and
ASP.NET attempts to satisfy the request for the user control from the cache, an error occurs.

The only way around this is to move all the code that accesses the user control property into the user
control itself, as shown in Example 18-13 and Example 18-14 for the user control. The calling page
then reverts back to the same page shown in Example 18-7 and Example 18-8. (Be certain to change
the name of the Src parameter in the Register directive in Example 18-7 or Example 18-8 to point

to the correct user control.) The HTML is omitted from Example 18-14 since it is identical to that in
Example 18-13.

Example 18-13. User control setting UserName property in VB.NET,
vbUserControl-03.ascx

<%@ Control Language="VB" %>
<%@ OutputCache Duration="10" VaryByParam="*" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblMsg.Text = "This User Control was loaded at " & _
 DateTime.Now.ToString("T")
 end sub

 public property UserName() as string
 get
 return lblUserName.Text
 end get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 set
 lblUserName.Text = value
 end set
 end property

 sub btn_OnClick(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblUserName.Text = "Jesse"
 end sub
</script>

<hr/>
<h1>User Control</h1>

<asp:Label
 id="lblMsg"
 runat="server"/>

<asp:Label
 id="lblUserName"
 Text="Dan"
 runat="server"/>

<asp:Button
 id="btn"
 Text="Change Name to Jesse"
 OnClick="btn_OnClick"
 runat="server"/>

<hr/>

Example 18-14. User control setting UserName property in C#,
csUserControl-03.ascx

<%@ Control Language="C#" %>
<%@ OutputCache Duration="10" VaryByParam="*" %>

<script runat="server">
 void Page_Load(Object sender,
 EventArgs e)
 {
 lblMsg.Text = "This User Control was loaded at " +
 DateTime.Now.ToString("T");
 }

 public string UserName
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 get
 {
 return lblUserName.Text;
 }

 set
 {
 lblUserName.Text = value;
 }
 }

 void btn_OnClick(Object sender,
 EventArgs e)
 {
 lblUserName.Text = "Jesse";
 }
</script>

While this restriction on programmatically modifying user controls that are in the cache might seem
significant, as a practical matter it should not be. The entire point of putting user controls in the
cache is that they will not change while cached. If that is not the case, then they are probably not a
good candidate for caching.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.3 Object Caching

All the examples in this chapter so far have cached pages or parts of pages wrapped in user controls. But
ASP.NET allows you much more caching flexibility. You can use object caching to place any object in the
cache. The object can be of almost any type: a data type, a web control, a class, a DataSet, etc.

The object cache is stored in server memory. As such, it is a limited resource and the careful developer will
husband that resource carefully. That said, it is an easy way to buy significant performance benefits when
used wisely, especially since ASP.NET will evict older items if memory becomes scarce.

Suppose you are developing a retail shopping catalogue web application. Many of the page requests contain
queries against the same database to return a relatively static price list and descriptive data. Instead of your
control requerying the database each time the data is requested, the data set is cached, so that subsequent
requests for the data will be satisfied from high-speed cache rather than the slow and expensive regeneration
of the data. You might want to set the cache to expire every minute, hourly, or daily, depending on the needs
of the application and the frequency with which the data is likely to change.

Object caching is implemented by the Cache class. One instance of this class is created automatically per
application domain when the application starts. The class remains valid for the life of the application. The
Cache class uses syntax very similar to that of session and application state. Objects are stored in Cache as
key/value pairs in a dictionary object. The object being stored is the value, and the key is a descriptive string.

To clarify object caching, look at the code shown in Example 18-12 . The web page in this listing will display a
data grid containing data from the Bugs database. It will initially query data from the Bugs database, then
store it in cache for subsequent requests. Example 18-15 contains the VB.NET source, while Example 18-16
shows the C# source. Example 18-16 omits the HTML, since it is identical to the VB.NET version shown in
Example 18-15 .

Example 18-15. Object caching a data set in VB.NET, vbObjCache-01.aspx

<%@ Page Language="vb" %>
<%@ Import namespace="System.Data" %>
<%@ Import namespace="System.Data.SqlClient" %>

<script runat="server">

 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 CreateDataGrid()
 end sub

 sub btnClear_OnClick(ByVal Sender as Object, _
 ByVal e as EventArgs)
Cache.Remove("DataGridDataSet")
 CreateDataGrid()
 end sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sub CreateDataGrid()
 dim dsGrid as DataSet

 dsGrid = CType(Cache("DataGridDataSet"), DataSet)

 if dsGrid is Nothing then
 dsGrid = GetDataSet()
 Cache("DataGridDataSet") = dsGrid
 lbl.Text = "Data from database."
 else
 lbl.Text = "Data from cache."
 end if

 dg.DataSource=dsGrid.Tables(0)
 dg.DataBind()
 end sub

 public function GetDataSet() as DataSet
 ' connect to the Bugs database
 dim connectionString as string = "server=MyServer; uid=sa; " & _
 "pwd=dan; database=Bugs"

 ' get records from the Bugs table
 dim commandString as string = "Select BugID, Description from Bugs"

 ' create the data set command object and the DataSet
 dim da as SqlDataAdapter = new SqlDataAdapter(commandString, _
 connectionString)

 dim dsData as DataSet = new DataSet()

 ' fill the data set object
 da.Fill(dsData,"Bugs")

 return dsData
 end function

</script>

<html>
 <body>
 <form runat="server">

 <h1>Object Caching</h1>

 <asp:Label
 id="lbl"
 runat="server"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:DataGrid
 id="dg"
 runat="server"/>

 <asp:Button
 id="btnClear"
 Text="Clear Cache"
 OnClick="btnClear_OnClick"
 runat="server"/>

 <asp:Button
 id="btnPost"
 Text="Post"
 runat="server"/>

 </form>
 </body>
</html>

Example 18-16. Object Caching a DataSet in C#, csObjCache-01.aspx

<%@ Page Language="C#" %>
<%@ Import namespace="System.Data" %>
<%@ Import namespace="System.Data.SqlClient" %>

<script runat="server">
 void Page_Load(Object Source, EventArgs E)
 {
 CreateDataGrid();
 }

 void btnClear_OnClick(Object Source, EventArgs E)
 {
 Cache.Remove("DataGridDataSet");
 CreateDataGrid();
 }

 public void CreateDataGrid()
 {
 DataSet dsGrid;

 dsGrid = (DataSet)Cache["DataGridDataSet"];

 if (dsGrid == null)
 {
 dsGrid = GetDataSet();
 Cache["DataGridDataSet"] = dsGrid;
 lbl.Text = "Data from database.";
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else
 {
 lbl.Text = "Data from cache.";
 }

 dg.DataSource=dsGrid.Tables[0];
 dg.DataBind();
 }

 public DataSet GetDataSet()
 {
 // connect to the Bugs database
 string connectionString = "server=MyServer; uid=sa; pwd=dan; " +
 "database=Bugs";

 // get records from the Bugs table
 string commandString = "Select BugID, Description from Bugs";

 // create the data set command object and the DataSet
 SqlDataAdapter dataAdapter = new SqlDataAdapter(commandString,
 connectionString);

 DataSet dsData = new DataSet();

 // fill the data set object
 dataAdapter.Fill(dsData,"Bugs");

 return dsData;
 }
</script>

The heart of Example 18-15 and Example 18-16 involves data access. For a complete discussion of data
access in ASP.NET, see Chapter 11 and Chapter 12 . For now, notice that the directives at the top of the code
listing include two Import directives in order to make the classes and methods from the System.Data and

System.Data.SqlClient namespaces available to the code.

While looking at the page directives, also notice that there is no OutputCache directive, since this example

does not use output caching.

A method named CreateDataGrid is called every time the data grid needs to be created. Notice that it is called
in the Page_Load every time the page is loaded.

Looking at the CreateDataGrid method, a DataSet object is instantiated to contain the data that will be bound
and displayed by the data grid. In VB.NET, the code is:

dim dsGrid as DataSet

In C#, the code is:

DataSet dsGrid;

The Cache object with the key DataGridDataSet is then retrieved and assigned to the dsGrid DataSetobject.

In VB.NET, the code is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dsGrid = CType(Cache("DataGridDataSet"), DataSet)

In C#, the code is:

dsGrid = (DataSet)Cache["DataGridDataSet"];

As with the Session and Application objects seen in Chapter 6 , whatever is retrieved from the Cache object
must be explicitly cast , or converted, to the correct data type, here DataSet. For this purpose, C# uses an
explicit cast, while VB.NET uses the CType function.

The dsGrid data set is then tested to see if it actually exists. Although the DataSet object has been
instantiated, it is only a placeholder until it actually contains data. If the Cache object with the key
DataGridDataSet has not yet been created or has expired, then dsGrid still has no data in it. In VB.NET, this

is done using:

if dsGrid is Nothing then

In C#, it's:

if (dsGrid == null)

If the DataSet object does already contain data, meaning the Cache had been previously filled and was not
expired, then the Label control's Text property is set accordingly to convey this to you on the web page.
Otherwise, the GetDataSet method is called, the cache is filled with the data set returned by GetDataSet, and
the Label control's Text property is set accordingly. In VB.NET, the code is:

dsGrid = GetDataSet()
Cache("DataGridDataSet") = dsGrid
lbl.Text = "Data from database."

In C#, it's:

dsGrid = GetDataSet();
Cache["DataGridDataSet"] = dsGrid;
lbl.Text = "Data from database.";

In either case, once the data set is filled, the DataSource property of the DataGrid control on the web page is
set to be the data set, and the DataGrid control is data bound. In VB.NET, the code is:

dg.DataSource=dsGrid.Tables(0)
dg.DataBind()

In C#, it's:

dg.DataSource=dsGrid.Tables[0];
dg.DataBind();

The result of running the code in Example 18-12 and Example 18-13 is shown in Figure 18-5 .

Figure 18-5. Results of object caching

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first time the web page is run, the label just above the DataGrid control will indicate that the data is
coming directly from the database. Every subsequent time the form is requested, the label will change to say
"Data from cache."

There is no way for the cache in this example to expire (i.e., to go away), unless memory becomes scarce on
the server and ASP.NET removes it automatically. As you will see shortly, there are several ways to force a
cache to expire. In this example, however, even opening a new browser instance on a different machine will
cause the data to come from the cache unless the application on the server is restarted. That is because the
cache is available to the entire application, just as the Application object is.

In this example, a button, called btnClear, is added to the form to empty the cache and refill it. The event
handler for this button calls the Cache.Remove method. This method removes the cache record specified by
the key named as the parameter to the method. In VB.NET, the code is:

Cache.Remove("DataGridDataSet")

In C#, it's:

Cache.Remove("DataGridDataSet");

In Example 18-12 and Example 18-13 , the button event handler then refills the cache by calling the
CreateDataGrid method. As an exercise in observing different behavior, comment out the line that calls
CreateDataGrid in the btnClear_OnClick event procedure and observe the different behavior when you repost
the page after clicking the Clear Cache button. When the line calling the CreateDataGrid method is not
commented out, then the next time a browser is opened after the Clear Cache button is clicked, the data will
still come from the cache. But if the line is commented out, the next browser instance will get the data directly
from the database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3.1 Cache Class Functionality

Example 18-15 and Example 18-16 demonstrate how to add values to and retrieve values from the Object
cache using a dictionary syntax of key/value pairs. The Cache class exposes much more functionality than
this, including the ability to set dependencies, manage expirations, and control how memory used by cached
objects can be recovered for more critical operations. All of these features will be covered in detail in the next
sections.

This additional functionality is exposed through a different syntax for adding objects to the cache that uses the
Add and Insert methods of the Cache class. The Add and Insert methods are very similar in effect. The only
difference is that the Add method requires parameters for controlling all the exposed functionality, while the
Insert method allows you to make some of the parameters optional, using default values for those
parameters.

The syntax for the Add method in VB.NET is:

Cache.Add(KeyName, KeyValue, Dependencies, AbsoluteExpiration, _

SlidingExpiration, Priority, CacheItemRemovedCallback)

For C#, it's:

Cache.Add(KeyName, KeyValue, Dependencies, AbsoluteExpiration, SlidingExpiration,

Priority, CacheItemRemovedCallback);

In these syntaxes, KeyName is a string with the name of the key in the Cache dictionary, and KeyValue is the

value to be inserted into the Cache. KeyValue is an object of any type. All the other parameters will be

described below.

While the Add method requires that all the parameters be provided, the Insert method is overloaded to allow
several of the parameters to be optional.

An object may overload its methods, which means it may declare two or more methods
with the same name. The compiler differentiates among these methods based on the
number and type of parameters provided.

The syntax for the overloaded Insert methods in VB.NET is described in this list. For C#, the syntax is identical
except that there is a terminating semicolon for each statement:

To insert a key/value pair with default values for all the other parameters:
Cache.Insert(KeyName, KeyValue)

To insert a key/value pair with dependencies and with default values for the other parameters:
Cache.Insert(KeyName, KeyValue, Dependencies)

To insert a key/value pair with dependencies and expiration policies and with default values for the other
parameters:
Cache.Insert(KeyName, KeyValue, Dependencies, AbsoluteExpiration, SlidingExpiration)

To insert a key/value pair with dependencies, expiration policies, and priority policy, and a delegate to
notify the application when the inserted item is removed from the cache:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cache.Insert(KeyName, KeyValue, Dependencies, AbsoluteExpiration,

SlidingExpiration, Priority, CacheItemRemovedCallback)

To see this syntax in action, replace a single line from Example 18-12 or Example 18-13 . Find the line in the
CreateDataGrid method that looks like this in VB.NET:

Cache("DataGridDataSet") = dsGrid

It looks like this in C#:

Cache["DataGridDataSet"] = dsGrid;

Replace it with the following line in VB.NET:

Cache.Insert("DataGridDataSet", dsGrid)

Replace it with the following in C#:

Cache.Insert("DataGridDataSet", dsGrid);

On running the modified page in a browser, you will see no difference from the prior version.

By using the Insert method rather than the Add method, you are only required to provide the key and value,
just as with the dictionary syntax.

There is much more you can do with these methods.

18.3.2 Dependencies

One very useful feature exposed by the Cache class is dependencies. A dependency is a relationship between
a cached item and either a point in time or an external object. If the designated point in time is reached or if
the external object changes, then the cached item will be automatically expired and removed from the cache.

The external object controlling the dependency can be a file, a directory, an array of files or directories,
another item stored in the cache (represented by its key), or an array of items stored in the cache. The
designated point in time can be either an absolute time or a relative time. In the following sections, we'll
examine each of these dependencies and how they can be used to control the contents of the cache
programmatically.

18.3.2.1 File change dependency

With a file change dependency, a cached item will become expired and be removed from the cache if a
specified file has changed. This feature is typically used when a cached data set is derived from an XML file.
You do not want the application to get the data set from the cache if the underlying XML file has changed.

To generate the XML file:

Use Start/Programs/Microsoft SQL Server\Configure SQL XML Support in IIS.1.

Set a virtual directory (BugsDB)2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

2.

Use the following URL in a browser:3.

http://localhost/bugsdb?sql=select+*+from+bugs+for+xml+auto&root=ROOT

Example 18-17 shows the contents of an XML file that contains all the records from the Bugs table in the Bugs
database. The code in Example 18-17 can be modified to demonstrate a file change dependency. Since the
data set will be coming from XML rather than SQL Server, replace the Import directive pointing to

System.Data.SqlClient with a directive pointing to System.Xml.

Example 18-17. Bugs.xml

<?xml version="1.0" encoding="utf-8" ?>
<ROOT>
 <bugs BugID="1" Product="2" Version="0.1" Description="Update bug test" Reporter="3" />
 <bugs BugID="2" Product="1" Version="0.1" Description="Does not report correct owner of
bug" Reporter="5" />
 <bugs BugID="3" Product="1" Version="0.1" Description="Does not show history of previous
action" Reporter="6" />
 <bugs BugID="4" Product="1" Version="0.1" Description="Fails to reload properly"
Reporter="5" />
 <bugs BugID="5" Product="2" Version="0.7" Description="Loses data overnight"
Reporter="5" />
 <bugs BugID="6" Product="2" Version="0.7" Description="HTML is not shown properly"
Reporter="6" />
 <bugs BugID="31" Product="1" Version="0.3" Description="this is test 7" Reporter="1" />
 <bugs BugID="32" Product="2" Version="0.1" Description="New bug test" Reporter="3" />
 <bugs BugID="33" Product="2" Version="0.1" Description="Cache test 3" Reporter="3" />
 <bugs BugID="34" Product="2" Version="0.1" Description="Object cache test 1"
Reporter="3" />
 <bugs BugID="35" Product="2" Version="0.1" Description="Obj Cache test 2" Reporter="4" />
</ROOT>

Next, modify the CreateDataGrid andGetDataSet methods as shown in Example 18-18 for VB.NET and
Example 18-19 for C#, where the highlighted lines of code are different from the code in Example 18-15 and
Example 18-16 .

Example 18-18. Cache file dependency in VB.NET, vbObjCache-02.aspx

sub CreateDataGrid()
 dim dsGrid as DataSet
 dsGrid = CType(Cache("DataGridDataSet"), DataSet)

 if dsGrid is Nothing then
 dsGrid = GetDataSet()
 dim fileDepends as new CacheDependency(Server.MapPath("Bugs.xml"))
 Cache.Insert("DataGridDataSet", dsGrid, fileDepends)
 lbl.Text = "Data from XML file."
 else
 lbl.Text = "Data from cache."
 end if

http://localhost/bugsdb?sql=select+*+from+bugs+for+xml+auto&root=ROOT
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dg.DataSource=dsGrid.Tables(0)
 dg.DataBind()
end sub

public function GetDataSet() as DataSet
 dim dsData as new DataSet()
 dim doc as new XmlDataDocument()
 doc.DataSet.ReadXml(Server.MapPath("Bugs.xml"))
 dsData = doc.DataSet
 return dsData
end function

Example 18-19. Cache file dependency in C#, csObjCache-02.aspx

public void CreateDataGrid()
{
 DataSet dsGrid;
 dsGrid = (DataSet)Cache["DataGridDataSet"];

 if (dsGrid == null)
 {
 dsGrid = GetDataSet();
 CacheDependency fileDepends = new
 CacheDependency(Server.MapPath("Bugs.xml"));
 Cache.Insert("DataGridDataSet", dsGrid, fileDepends);
 lbl.Text = "Data from XML file.";
 }
 else
 {
 lbl.Text = "Data from cache.";
 }

 dg.DataSource=dsGrid.Tables[0];
 dg.DataBind();
}

public DataSet GetDataSet()
{
 DataSet dsData = new DataSet();
 XmlDataDocument doc = new XmlDataDocument();
 doc.DataSet.ReadXml(Server.MapPath("Bugs.xml"));
 dsData = doc.DataSet;
 return dsData;
}

You also need to import the System.Data and System.Xml namespaces:

<%@ Import namespace="System.Data"%>
<%@ Import namespace="System.Xml" %>

The goal of the GetDataSet method is still to return a data set. However, the source of the data for the data
set is now the XML file called Bugs.xml . Since ASP.NET stores data sets internally as XML, it is very easy to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

move back and forth between XML and data sets. The XML object equivalent to a data set is the
XmlDataDocument. An XmlDataDocument object named doc is instantiated. This XmlDataDocument object is
filled using the ReadXml method. The MapPath method maps a virtual path of a file on the server to a physical
path.

The DataSet object is obtained from the DataSet property of the XmlDataDocument object, then returned to
the calling method.

In the CreateDataGrid method, only three lines have changed from Example 18-15 and Example 18-16 . A
CacheDependency object is defined against the source XML file. Again, MapPath is used to map the virtual
path to a physical path.

The dictionary syntax used in Example 18-15 and Example 18-16 to add the item to the cache is changed to
use the Insert method of the Cache class. Using the Insert method allows you to specify a dependency in
addition to the key name and value.

The text string assigned to the label has been updated to reflect the fact that the data is now coming from an
XML file rather than a database.

Test this page by running the code from Example 18-18 or Example 18-19 in a browser. You will get
something similar to Figure 18-6 .

Figure 18-6. Object caching from XML file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you repost the page by highlighting the URL and pressing Enter, the label at the top of the page will indicate
that the data is coming from the cache.

Now open the Bugs.xml file in a text editor and make a change to one of the values in one of the records.
Remember to save the XML file. When you repost the page in the browser, instead of the data still coming
from the cache, it will once again be coming from the XML file.

As soon as the XML source file was changed, the cached data set was expired and removed from the cache.
The next time the page requested the data set from the server, it had to retrieve it fresh from the XML file.

If you want to condition the cache dependency on an array of files or directories, the syntax for the
CacheDependency constructor in Example 18-18 and Example 18-19 would take an array of file paths or
directories rather than a single filename. So, for example, the single line of code in Example 18-18 and
Example 18-19 that defines the CacheDependency object would be preceded by code defining a string array
with one or more files or paths, and the CacheDependency constructor itself would take the array as a
parameter. In VB.NET, it would look something like this:

dim fileDependsArray as string() = {Server.MapPath("Bugs.xml"), _
 Server.MapPath("People.xml")}
dim fileDepends as new CacheDependency(fileDependsArray)

In C#, it would look like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

string[] fileDependsArray = {Server.MapPath("Bugs.xml"),
 Server.MapPath("People.xml")};
CacheDependency fileDepends = new CacheDependency(fileDependsArray);

18.3.2.2 Cached item dependency

A cached item can be dependent on other items in the cache. If a cached item is dependent on one or more
other cached items, it will be expired and removed from the cache if any of those cached items upon which it
depends change. These changes include either removal from the cache or a change in value.

To make a cached item dependent on other cached items, the keys of all of the controlling items are put into
an array of strings. This array is then passed in to the CacheDependency constructor, along with an array of
file paths. (If you do not want to define a dependency on any files or paths, then the array of file paths can be
Nothing in VB.NET or null in C#.)

This is demonstrated in Example 18-20 and Example 18-21 . In the web page in this listing, two buttons have
been added to the UI. The first button initializes several other cached items. The second button changes the
value of the cached text string in one of the controlling cached items. As with the previous examples, a label
near the top of the page indicates if the data was retrieved directly from an XML file or from cache. The Clear
Cache and Post buttons are unchanged.

The lines of code in Example 18-20 and Example 18-21 that are new or changed from Example 18-18 and
Example 18-19 are highlighted. Note that the HTML is not included in the C# listing in Example 18-21 , since it
is identical to that in the VB.NET listing.

Example 18-20. Cache item dependency in VB.NET, vbObjCache-03.aspx

<%@ Page Language="vb" %>
<%@ Import namespace="System.Data" %>
<%@ Import namespace="System.Xml" %>

<script runat="server">

 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 CreateDataGrid()
 end sub

 sub btnClear_OnClick(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Cache.Remove("DataGridDataSet")
 CreateDataGrid()
 end sub

 sub btnInit_OnClick(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' Initialize caches to depend on.
 Cache("Depend0") = "This is the first dependency."
 Cache("Depend1") = "This is the 2nd dependency."
 Cache("Depend2") = "This is the 3rd dependency."
 end sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sub btnKey0_OnClick(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Cache("Depend0") = "This is a changed first dependency."
 end sub

 sub CreateDataGrid()
 dim dsGrid as DataSet
 dsGrid = CType(Cache("DataGridDataSet"), DataSet)

 if dsGrid is Nothing then
 dsGrid = GetDataSet()

 dim fileDependsArray as string() = {Server.MapPath("Bugs.xml")}
 dim cacheDependsArray as string() = _
 {"Depend0","Depend1", "Depend2"}

 dim cacheDepends as new CacheDependency(_
 fileDependsArray, cacheDependsArray)
 Cache.Insert("DataGridDataSet", dsGrid, cacheDepends)

 lbl.Text = "Data from XML file."
 else
 lbl.Text = "Data from cache."
 end if

 dg.DataSource=dsGrid.Tables(0)
 dg.DataBind()
 end sub

 public function GetDataSet() as DataSet
 dim dsData as new DataSet()
 dim doc as new XmlDataDocument()
 doc.DataSet.ReadXml(Server.MapPath("Bugs.xml"))
 dsData = doc.DataSet
 return dsData
 end function

</script>

<html>
 <body>
 <form runat="server">

 <h1>Object Caching</h1>
 <h2>Cache Item Dependency</h2>

 <asp:Label
 id="lbl"
 runat="server"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:DataGrid
 id="dg"
 runat="server"/>

 <asp:Button
 id="btnClear"
 Text="Clear Cache"
 OnClick="btnClear_OnClick"
 runat="server"/>

 <asp:Button
 id="btnPost"
 Text="Post"
 runat="server"/>

 <asp:Button
 id="btnInit"
 Text="Initialize Keys"
 OnClick="btnInit_OnClick"
 runat="server"/>

 <asp:Button
 id="btnKey0"
 Text="Change Key 0"
 OnClick="btnKey0_OnClick"
 runat="server"/>

 </form>
 </body>
</html>

Example 18-21. -Cache item dependency in C#, csObjCache-03.aspx

<%@ Page Language="C#" %>
<%@ Import namespace="System.Data" %>
<%@ Import namespace="System.Xml" %>

<script runat="server">
 void Page_Load(Object Source, EventArgs E)
 {
 CreateDataGrid();
 }

 void btnClear_OnClick(Object Source, EventArgs E)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 Cache.Remove("DataGridDataSet");
 CreateDataGrid();
 }

 void btnInit_OnClick(Object Source, EventArgs E)
 {
 // Initialize caches to depend on.
 Cache["Depend0"] = "This is the first dependency.";
 Cache["Depend1"] = "This is the 2nd dependency.";
 Cache["Depend2"] = "This is the 3rd dependency.";
 }

 void btnKey0_OnClick(Object Source, EventArgs E)
 {
 Cache["Depend0"] = "This is a changed first dependency.";
 }

 public void CreateDataGrid()
 {
 DataSet dsGrid;
 dsGrid = (DataSet)Cache["DataGridDataSet"];

 if (dsGrid == null)
 {
 dsGrid = GetDataSet();

 string[] fileDependsArray = {Server.MapPath("Bugs.xml")};
 string[] cacheDependsArray = {"Depend0","Depend1", "Depend2"};

 CacheDependency cacheDepends = new CacheDependency
 (fileDependsArray, cacheDependsArray);
 Cache.Insert("DataGridDataSet", dsGrid, cacheDepends);

 lbl.Text = "Data from XML file.";
 }
 else
 {
 lbl.Text = "Data from cache.";
 }

 dg.DataSource=dsGrid.Tables[0];
 dg.DataBind();
 }

 public DataSet GetDataSet()
 {
 DataSet dsData = new DataSet();
 XmlDataDocument doc = new XmlDataDocument();
 doc.DataSet.ReadXml(Server.MapPath("Bugs.xml"));
 dsData = doc.DataSet;
 return dsData;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
</script>

In the btnInit_OnClick event handler, the controlling cache items are created. The values of the cached items
are not important for this example, except as something to change when the Change Key 0 button is clicked,
as is done in the event handler for that button, btnKey0_OnClick.

The real action here occurs in the CreateDataGrid method. Two string arrays are defined, one to hold the file
to depend upon, and one to hold the keys of the other cached items to depend upon.

The file dependency is exactly as described in the preceding section. If you do not wish to implement any file
or directory dependency here, then use Nothing or null for VB.NET or C#, respectively. For example, in

VB.NET, the code would be:

dim cacheDepends as new CacheDependency(Nothing, cacheDependsArray)

In C#, it would be:

CacheDependency cacheDepends = new CacheDependency(null, cacheDependsArray);

Running the code in Example 18-20 or Example 18-21 brings up the page shown in Figure 18-7 . Initially, the
label above the data grid will show that the data is from the XML file. Re-entering the URL will cause the data
to come from the Cache. Clicking any of the buttons or changing the contents of Bugs.xml will cause the
cached data set to expire and the data to be retrieved fresh from the XML file the next time the page is
posted. Although this example does not explicitly demonstrate what would happen if one of the controlling
cached items was removed from the Cache, that, too, would cause the dependent cached item to expire.

Figure 18-7. Cached item dependency

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3.2.3 Time dependency

Items in the Cache can be given a dependency based on time. This is done with two parameters in either the
Add or Insert methods of the Cache object.

The two parameters that control time dependency are AbsoluteExpiration and SlidingExpiration . Both

parameters are required in the Add method and are optional in the Insert method through method
overloading.

To insert a key/value pair into the Cache with file or cached item dependencies and time-based dependencies,
use the following syntax (the same in both VB.NET and C#, except for the closing semicolon):

Cache.Insert(KeyName, KeyValue, Dependencies, AbsoluteExpiration, SlidingExpiration)

If you don't want any file or cached item dependencies, then the Dependencies parameter should be Nothing
in VB.NET or null in C#. If this syntax is used, default values will be used for the scavenging and callback

parameters (described in the next sections).

The AbsoluteExpiration parameter is of type DateTime. It defines a lifetime for the cached item. The time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provided can be an absolute time, such as August 21, 2001 at 1:23:45 P.M. The code to implement that type
of absolute expiration would look something like the following (in C#):

DateTime expDate = new DateTime(2001,8,21,13,23,45);
Cache.Insert("DataGridDataSet", dsGrid, null, expDate,
 Cache.NoSlidingExpiration);

Obviously, this is not very flexible. Of greater utility is an absolute expiration based on the current time, say
30 minutes from now. The syntax for that expiration would be (again in C#-VB.NET is identical except for the
trailing semicolon and possibly a line continuation character):

Cache.Insert("DataGridDataSet", dsGrid, null,
 DateTime.Now.AddMinutes(30), Cache.NoSlidingExpiration);

This line of code inserts the specified data set into the Cache, then expires that item 30 minutes after it was
inserted. This scenario would be useful when accessing a slowly changing database where it was only
necessary to be sure that the data presented was no more than 30 minutes old.

Suppose that the data was extremely volatile and/or needed to be very current. Then perhaps the data
presented must never be more than 10 seconds old. The following line of code implements that scenario:

Cache.Insert("DataGridDataSet", dsGrid, null,
 DateTime.Now.AddSeconds(10), Cache.NoSlidingExpiration);

If your web page is receiving hundreds of hits per minute, implementing a 10-second cache would provide a
huge performance boost by reducing the number of database queries by a factor of 20 or more. Even a one-
second cache can provide a significant performance enhancement to heavily trafficked web servers.

The other time-based parameter is SlidingExpiration , of type TimeSpan. This parameter specifies a time

interval between when an item is last accessed and when it expires. If the sliding expiration is set for 30
seconds, for example, then the cached item will expire if the cache is not accessed within 30 seconds. If it is
accessed within that time period, the clock will be reset, so to speak, and the cached item will persist for at
least another 30 seconds. To implement this scenario, use the following line of code (again in C#, with the
VB.NET version nearly identical):

Cache.Insert("DataGridDataSet", dsGrid, null,
 Cache.NoAbsoluteExpiration, TimeSpan.FromSeconds(30));

Cache.NoAbsoluteExpiration is used for the AbsoluteExpiration parameter. Alternatively, you could use

DateTime.MaxValue. This constant is the largest possible value of DateTime, corresponding to 11:59:59 PM,
12/31/9999. (That's a millennium problem we can live with.) This indicates to ASP.NET that absolute
expiration should not be used. If you attempt to use both types of expiration policies at once (absolute and
sliding), an error will occur.

18.3.3 Scavenging

One of the features of object caching is scavenging , where ASP.NET automatically removes seldom used
items from the Cache object if server memory becomes scarce. This frees up memory to handle a higher
volume of page requests.

Scavenging is influenced through the Priority parameter of the Add and Insert methods of the Cache class.

This parameter is required of the Add method and optional for the Insert method through method overloading.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Priority parameter indicates the cost of the cached item relative to the other items stored in the cache.

This parameter is used by the cache when it evicts objects in order to free up system memory when the web
server runs low on memory. Cached items with a lower priority are evicted before items with a higher priority.

The legal values of the Priority parameter are contained in the CacheItemPriority enumeration, shown in

Table 18-2 in descending order of priority.

Table 18-2. Members of the CacheItemPriority enumeration

Priorityvalue Description

NotRemovable Items with this priority will not be evicted.

High Items with this priority level are the least likely to be evicted.

AboveNormal Items with this priority level are less likely to be evicted than items assigned Normal priority.

Default This is equivalent to Normal .

Normal The default value.

BelowNormal
Items with this priority level are more likely to be evicted than items assigned Normal

priority.

Low Items with this priority level are the most likely to be evicted.

To implement scavenging, use the following line of code in VB.NET:

Cache.Insert("DataGridDataSet", dsGrid, null, _
 Cache.NoAbsoluteExpiration, _
 Cache.NoSlidingExpiration, _
 CacheItemPriority.High, _
 Nothing)

In C#, use the following code:

Cache.Insert("DataGridDataSet", dsGrid, null,
 Cache.NoAbsoluteExpiration,
 Cache.NoSlidingExpiration,
 CacheItemPriority.High,
 null);

The final parameter in the above lines of code pertain to callback support, which will be covered in the next
section.

Since these Insert method calls use all seven parameters, you could also use the Add method with the same
parameters.

18.3.4 Callback Support

It may be useful to be informed when an item is removed from the cache for any reason. Perhaps you will
want to reinsert the item into the cache, or perhaps you will want to know if you need to install more memory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in your web server. Such notification is implemented using the CacheItemRemovedCallback parameter of the

Add or Insert methods. This parameter specifies a callback method to be run when the cached item is
removed.

In the example web page shown in Example 18-22 (VB.NET) and Example 18-23 (C#), support is added for a
callback when the cached item is expired or removed from the cache. This callback method, RemovedCallback,
makes a log entry in a text file in the root of drive C. The log entry has a timestamp and the reason for the
removal. The lines in Example 18-22 and Example 18-23 that are changed or new from the previous example
are highlighted.

Example 18-22. Cache callbacks in VB.NET, vbObjCache-04.aspx

<%@ Page Language="vb" %>
<%@ Import namespace="System.Data" %>
<%@ Import namespace="System.Xml" %>

<script runat="server">

 private shared onRemove as CacheItemRemovedCallback = Nothing

 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 CreateDataGrid()
 end sub

 sub btnClear_OnClick(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Cache.Remove("DataGridDataSet")
 CreateDataGrid()
 end sub

 sub btnInit_OnClick(ByVal Sender as Object, _
 ByVal e as EventArgs)
 ' Initialize caches to depend on.
 Cache("Depend0") = "This is the first dependency."
 Cache("Depend1") = "This is the 2nd dependency."
 Cache("Depend2") = "This is the 3rd dependency."
 end sub

 sub btnKey0_OnClick(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Cache("Depend0") = "This is a changed first dependency."
 end sub

 sub CreateDataGrid()
 dim dsGrid as DataSet
 dsGrid = CType(Cache("DataGridDataSet"), DataSet)

 onRemove = new CacheItemRemovedCallback(_
 AddressOf Me.RemovedCallback)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if dsGrid is Nothing then
 dsGrid = GetDataSet()

 dim fileDependsArray as string() = _
 {Server.MapPath("Bugs.xml")}
 dim cacheDependsArray as string() = _
 {"Depend0","Depend1", "Depend2"}

 dim cacheDepends as new CacheDependency(_
 fileDependsArray, cacheDependsArray)
 Cache.Insert("DataGridDataSet", dsGrid, cacheDepends, _
 DateTime.Now.AddSeconds(10), _
 Cache.NoSlidingExpiration, _
 CacheItemPriority.Default, _
 onRemove)

 lbl.Text = "Data from XML file."
 else
 lbl.Text = "Data from cache."
 end if

 dg.DataSource=dsGrid.Tables(0)
 dg.DataBind()
 end sub

 public sub RemovedCallback(k As String, _
 v As Object, _
 r As CacheItemRemovedReason)
 Call WriteFile("Cache removed for following reason: " & _
 r.ToString())
 end sub

 public sub WriteFile(strText as string)
 dim writer as System.IO.StreamWriter = new System.IO.StreamWriter(_
 "C:\test.txt",true)
 dim str as string
 str = DateTime.Now.ToString() & " " & strText
 writer.WriteLine(str)
 writer.Close()
 end sub

 public function GetDataSet() as DataSet
 dim dsData as new DataSet()
 dim doc as new XmlDataDocument()
 doc.DataSet.ReadXml(Server.MapPath("Bugs.xml"))
 dsData = doc.DataSet
 return dsData
 end function

</script>

<html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <body>
 <form runat="server">

 <h1>Object Caching</h1>
 <h2>Cache Callbacks</h2>

 <asp:Label
 id="lbl"
 runat="server"/>

 <asp:DataGrid
 id="dg"
 runat="server"/>

 <asp:Button
 id="btnClear"
 Text="Clear Cache"
 OnClick="btnClear_OnClick"
 runat="server"/>

 <asp:Button
 id="btnPost"
 Text="Post"
 runat="server"/>

 <asp:Button
 id="btnInit"
 Text="Initialize Keys"
 OnClick="btnInit_OnClick"
 runat="server"/>

 <asp:Button
 id="btnKey0"
 Text="Change Key 0"
 OnClick="btnKey0_OnClick"
 runat="server"/>

 </form>
 </body>
</html>

Example 18-23. Cache callbacks in C#, csObjCache-04.aspx

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@ Page Language="C#" %>
<%@ Import namespace="System.Data" %>
<%@ Import namespace="System.Xml" %>

<script runat="server">

 private static CacheItemRemovedCallback onRemove = null;

 void Page_Load(Object Source, EventArgs E)
 {
 CreateDataGrid();
 }

 void btnClear_OnClick(Object Source, EventArgs E)
 {
 Cache.Remove("DataGridDataSet");
 CreateDataGrid();
 }

 void btnInit_OnClick(Object Source, EventArgs E)
 {
 // Initialize caches to depend on.
 Cache["Depend0"] = "This is the first dependency.";
 Cache["Depend1"] = "This is the 2nd dependency.";
 Cache["Depend2"] = "This is the 3rd dependency.";
 }

 void btnKey0_OnClick(Object Source, EventArgs E)
 {
 Cache["Depend0"] = "This is a changed first dependency.";
 }

 public void CreateDataGrid()
 {
 DataSet dsGrid;
 dsGrid = (DataSet)Cache["DataGridDataSet"];

 onRemove = new CacheItemRemovedCallback(this.RemovedCallback);

 if (dsGrid == null)
 {
 dsGrid = GetDataSet();

 string[] fileDependsArray = {Server.MapPath("Bugs.xml")};
 string[] cacheDependsArray = {"Depend0","Depend1", "Depend2"};

 CacheDependency cacheDepends = new CacheDependency(
 fileDependsArray, cacheDependsArray);
 Cache.Insert("DataGridDataSet", dsGrid, cacheDepends,
 DateTime.Now.AddSeconds(10),
 Cache.NoSlidingExpiration,
 CacheItemPriority.Default,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 onRemove);

 lbl.Text = "Data from XML file.";
 }
 else
 {
 lbl.Text = "Data from cache.";
 }

 dg.DataSource=dsGrid.Tables[0];
 dg.DataBind();
 }

 public void RemovedCallback(String k,
 Object v,
 CacheItemRemovedReason r)
 {
 WriteFile("Cache removed for following reason: " + r.ToString());
 }

 void WriteFile(string strText)
 {
 System.IO.StreamWriter writer = new System.IO.StreamWriter(
 @"C:\test.txt",true);
 string str;
 str = DateTime.Now.ToString() + " " + strText;
 writer.WriteLine(str);
 writer.Close();
 }

 public DataSet GetDataSet()
 {
 DataSet dsData = new DataSet();
 XmlDataDocument doc = new XmlDataDocument();
 doc.DataSet.ReadXml(Server.MapPath("Bugs.xml"));
 dsData = doc.DataSet;
 return dsData;
 }
</script>

Looking at the lines of code that call the Insert method, you can see that one more parameter has been
added, onRemove . This is the callback.

The callback method is encapsulated within a delegate . A delegate is a reference type that encapsulates a
method with a specific signature and return type. The callback method is of the same type and must have the
same signature as the CacheItemRemovedCallback delegate. The callback method is declared as a private
member of the Page class. In VB.NET, the line of code is:

private shared onRemove as CacheItemRemovedCallback = Nothing

In C#, it's:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

private static CacheItemRemovedCallback onRemove = null;

Further down, in the CreateDataGrid method, the callback delegate is instantiated, passing in a reference to
the appropriate method. In VB.NET, the code is:

onRemove = new CacheItemRemovedCallback(_
 AddressOf Me.RemovedCallback)

In C#, it's:

onRemove = new CacheItemRemovedCallback(this.RemovedCallback);

This instantiation associates the onRemove delegate with the RemovedCallback method. Notice the use of the
AddressOf keyword in VB.NET to create a reference to the method, which is not necessary in C#.

The RemovedCallBack method is reproduced here in VB.NET:

public sub RemovedCallback(k As String, _
 v As Object, _
 r As CacheItemRemovedReason)
 Call WriteFile("Cache removed for following reason: " & _
 r.ToString())
end sub

The code in C# is this:

public void RemovedCallback(String k,
 Object v,
 CacheItemRemovedReason r)
{
 WriteFile("Cache removed for following reason: " + r.ToString());
}

This code has the required signature, which consists of three parameters:

A string containing the key of the cached item

An object that is the cached item

A member of the CacheItemRemovedReason enumeration

This last parameter, CacheItemRemovedReason , provides the reason that the cached item was removed from

the cache. It can have one of the values shown in Table 18-3 .

Table 18-3. Members of the CacheItemRemovedReason enumeration

Reason Description

DependencyChanged A file or item key dependency has changed.

Expired The cached item has expired.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Reason Description

Removed
The cached item has been explicitly removed by the Remove method, or replaced by

another item with the same key.

Underused The cached item was removed to free up system memory.

In this example, the only thing the RemovedCallback method does is call WriteFile to make a log entry. It does
this by instantiating a StreamWriter on the log file. In VB.NET, the code is:

dim writer as System.IO.StreamWriter = new System.IO.StreamWriter(_
 "C:\test.txt",true)

In C#, it's:

System.IO.StreamWriter writer = new System.IO.StreamWriter(
 @"C:\test.txt",true);

The second parameter for the StreamWriter class, the Boolean, specifies to append to the file if it exists, and
to create the file if it doesn't exist. If false , it would have overwritten the file if it existed. In order for this to

work as written, the account used by the ASP.NET process must have sufficient rights to create files in the
root directory.

The WriteLine method is then used to write the string to be logged to the log file.

[Team LiB]

Removed
The cached item has been explicitly removed by the Remove method, or replaced by

another item with the same key.

Underused The cached item was removed to free up system memory.

In this example, the only thing the RemovedCallback method does is call WriteFile to make a log entry. It does
this by instantiating a StreamWriter on the log file. In VB.NET, the code is:

dim writer as System.IO.StreamWriter = new System.IO.StreamWriter(_
 "C:\test.txt",true)

In C#, it's:

System.IO.StreamWriter writer = new System.IO.StreamWriter(
 @"C:\test.txt",true);

The second parameter for the StreamWriter class, the Boolean, specifies to append to the file if it exists, and
to create the file if it doesn't exist. If false , it would have overwritten the file if it existed. In order for this to

work as written, the account used by the ASP.NET process must have sufficient rights to create files in the
root directory.

The WriteLine method is then used to write the string to be logged to the log file.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.4 The HttpCachePolicy Class

Just as the OutputCache page directive provides a high-level API for implementing caching, a low-

level API is available through the HttpCachePolicy class. This class is contained within the
System.Web namespace. It uses HTTP headers to control the caching. The HttpCachePolicy class
mirrors the functionality provided by the page directive. It also provides additional low-level control,
comparable to the type of control provided for object caching.

To use the HttpCachePolicy class to control output caching, do not include an OutputCache directive

in the page file. Instead, use the Response.Cache syntax, as shown in the highlighted lines in
Example 18-24 (for VB.NET) or Example 18-25 (for C#). (Example 18-25 includes only the script
block, since the HTML is identical to that in Example 18-24. Note that these examples are similar to
Example 18-3 and Example 18-4.)

Example 18-24. Output caching using HttpCachePolicy Class in
VB.NET,vbOutputCache-03.aspx

<%@ Page Language="VB" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Cache.SetExpires(DateTime.Now.AddSeconds(10))
 Response.Cache.SetCacheability(HttpCacheability.Public)

 lblMsg.Text = "This page was loaded at " & _
 DateTime.Now.ToString("T")
 lblUserName.Text = Request.Params("username")
 lblState.Text = Request.Params("state")
 end sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>Output Caching</h1>

 <asp:Label
 id="lblMsg"
 runat="server"/>

 UserName:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <asp:Label
 id="lblUserName"
 runat="server"/>

 State:
 <asp:Label
 id="lblState"
 runat="server"/>

 </form>
 </body>
</html>

Example 18-25. Output Caching Using HttpCachePolicy Class in C#,
csOutputCache-03.aspx

<%@ Page Language="C#" %>

<script runat="server">
 void Page_Load(Object Source, EventArgs E)
 {
 Response.Cache.SetExpires(DateTime.Now.AddSeconds(10));
 Response.Cache.SetCacheability(HttpCacheability.Public);

 lblMsg.Text = "This page was loaded at " +
 DateTime.Now.ToString("T");
 lblUserName.Text = Request.Params["username"];
 lblState.Text = Request.Params["state"];

 }
</script>

The first highlighted line in Example 18-21 and Example 18-22 sets the cache duration to 10 seconds.
It is equivalent to a Duration parameter in an OutputCache page directive.

The second line corresponds to the Location parameter in the OutputCache directive. Table 18-4
compares the SetCacheability values, which are members of the HttpCacheability enumeration,
with the Location values.

Table 18-4. SetCacheability versus Location

Location
value

SetCacheability
values

SetCacheability description

Client Private
Default value. Response is cacheable on the client. Useful if
page requires authentication.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Location
value

SetCacheability
values

SetCacheability description

Downstream Public
Also uses SetNoServerCaching method to disallow caching
on the web server.

Server Server Response is cached on the web server.

None NoCache Disables caching.

Any Public Response is cacheable by clients and shared (proxy) caches.

There are many other HttpCachePolicy methods and properties available. Some of the more common
ones include:

SetMaxAge

Another method, in addition to SetExpires, to set an expiration. Accepts a TimeSpan value. The

following line of code would set the expiration time to 45 seconds:
Response.Cache.SetMaxAge(new TimeSpan(0,0,45))

SetNoServerCaching

Disables all further server caching. For example:
Response.Cache.SetNoServerCaching()

SetSlidingExpiration

A method to enable sliding expiration. Takes a Boolean parameter. If true, enables sliding

expiration. Sliding expiration forces the clock to start over, so to speak, every time the cache is
accessed. So, if SetMaxAge (described above) is set to 30 seconds, every time the cache is

accessed, the 30-second clock is reset to zero. As long as the cache is accessed at least every
30 seconds, it will never expire. The following statement, for example, enables sliding
expiration of the cache:

Response.Cache.SetSlidingExpiration(true)

VaryByParams

This property is the equivalent of the VaryByParam parameter in the OutputCache directive

(note the slight difference in spelling). It forces a separate cache for each unique combination
of parameters passed to the server in the page request.

To duplicate the VaryByParam parameter in the following OutputCache directive:
<%@ OutputCache Duration="60" VaryByParam="state;city" %>

you would use the following lines of code:

Response.Cache.VaryByParams.Item("state")=true
Response.Cache.VaryByParams.Item("city")=true

[Team LiB]

Downstream Public
Also uses SetNoServerCaching method to disallow caching
on the web server.

Server Server Response is cached on the web server.

None NoCache Disables caching.

Any Public Response is cacheable by clients and shared (proxy) caches.

There are many other HttpCachePolicy methods and properties available. Some of the more common
ones include:

SetMaxAge

Another method, in addition to SetExpires, to set an expiration. Accepts a TimeSpan value. The

following line of code would set the expiration time to 45 seconds:
Response.Cache.SetMaxAge(new TimeSpan(0,0,45))

SetNoServerCaching

Disables all further server caching. For example:
Response.Cache.SetNoServerCaching()

SetSlidingExpiration

A method to enable sliding expiration. Takes a Boolean parameter. If true, enables sliding

expiration. Sliding expiration forces the clock to start over, so to speak, every time the cache is
accessed. So, if SetMaxAge (described above) is set to 30 seconds, every time the cache is

accessed, the 30-second clock is reset to zero. As long as the cache is accessed at least every
30 seconds, it will never expire. The following statement, for example, enables sliding
expiration of the cache:

Response.Cache.SetSlidingExpiration(true)

VaryByParams

This property is the equivalent of the VaryByParam parameter in the OutputCache directive

(note the slight difference in spelling). It forces a separate cache for each unique combination
of parameters passed to the server in the page request.

To duplicate the VaryByParam parameter in the following OutputCache directive:
<%@ OutputCache Duration="60" VaryByParam="state;city" %>

you would use the following lines of code:

Response.Cache.VaryByParams.Item("state")=true
Response.Cache.VaryByParams.Item("city")=true

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.5 Performance

Performance is often a vitally important issue in computer applications, especially in web applications
receiving a large number of requests. One obvious way to improve performance is to buy faster
hardware with more memory. But you can also tune your code to enhance performance in many
ways, some of them significant. We'll begin by examining some of the areas specific to ASP.NET
which offer the greatest performance improvements and then examine some of the general .NET
topics related to improving performance.

Several Microsofties involved with actually writing the .NET Framework used the
word performant to mean that something is delivering higher performance. We
can't find the word in our dictionary, but it seems like a good word.

18.5.1 ASP.NET-Specific Issues

Correctly using the following features of ASP.NET offers the greatest performance improvements
when an ASP.NET application is running.

18.5.1.1 Session state

Session state is a wonderful thing, but not all applications or pages require it. For any that do not,
disable it.

Session state can be disabled for an entire application by setting the EnableSessionState attribute
in the Page directive to false, as in:

<%@ Page Language="VB" EnableSessionState="false"%>

If a page will not be creating or modifying session variables but still needs to access them, set the
session state to read-only:

<%@ Page Language="VB" EnableSessionState="ReadOnly"%>

By default, web services do not have session state enabled. They only have access to session state if
the EnableSession property of the WebMethod attribute is set to true. In VB.NET this looks like:

<WebMethod(EnableSession:=true)>

In C#, it looks like this:

[WebMethod(EnableSession=true)]

Session state can be disabled for an entire application by editing the sessionState section of the
application's web.config file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<sessionState mode="off" />

Session state can be stored in one of three ways:

In-process

Out-of-process, as a Windows service

Out-of-process, in a SQL Server database

Each has advantages and disadvantages. Storing session state in-process is by far the most
performant. The out-of-process stores are necessary in web farm or web garden scenarios (see
Section 18-5.1.5 later in this chapter) or if the data must not be lost if a server or process is stopped
and restarted.

For a complete discussion of session state, see Chapter 6.

18.5.1.2 View state

Automatic view state management is another great feature of ASP.NET server controls that enables
the controls to correctly show property values after a round trip with no work on the part of the
developer. However, there is a performance penalty. This information is passed back and forth via a
hidden field, which consumes bandwidth and takes time to process. To see the amount of data used
in view state, enable tracing and look at the Viewstate column of the Control Hierarchy table.

By default, view state is enabled for all server controls. To disable view state for a server control, set
the EnableViewState attribute to false, as in the following example:

<asp:TextBox
 id="txtBookName"
 text="Enter book name."
 toolTip="Enter book name here."
 EnableViewState="false"
 runat="server" />

You can also disable view state for an entire page by setting the EnableViewState attribute of the
Page directive to false, as in:

<%@ Page Language="C#" EnableViewState="false" %>

18.5.1.3 Caching

Use output and data caching whenever possible. This is especially valuable for database queries that
either return relatively static data or have a limited range of query parameters. Effective use of
caching can have a profound effect on the performance of a web site.

18.5.1.4 Server controls

Server controls are very convenient and offer many advantages. In Visual Studio .NET, they are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

practically the default type of control. However, they have a certain amount of overhead and are
sometimes not the optimal type of control to use.

In general, if you do not need to programmatically manipulate a control, do not use a server control.
Use a classic HTML control instead. For example, if placing a simple label on a page, there is no need
to use a server control unless you need to read or change the value of the label's Text property.

If you need to substitute values into HTML sent to the client browser, you can achieve the desired
result without using a server control, instead using data binding or a simple rendering. For example,
the following VB.NET example shows three ways of displaying a hyperlink in a browser:

<script language="VB" runat="server">

 Public strLink As String = "www.anysite.com"
 Sub Page_Load(sender As Object, e As EventArgs)
 '..retrieve data for strLink here
 ' Call the DataBind method for the page.
 DataBind()
 End Sub

</script>

<%--the server control is not necessary...--%>
<a href='<%# strLink %>' runat="server">
The Name of the Link

<%-- use DataBinding to substitute literals instead...--%>
<a href='<%# strLink %>' > The Name of the Link

<%-- or a simple rendering expression...--%>
<a href='<%= strLink %>' > The Name of the Link

18.5.1.5 Web gardening and web farming

Adding multiple processors to a computer is called web gardening. The .NET Framework takes
advantage of this by distributing work to several processes, one process per CPU.

For truly high-traffic sites, multiple web server machines can work together to serve the same
application. This is referred to as a web farm.

At the least, locating the web server on one machine and the database server on another will buy a
large degree of stability and scalability.

18.5.1.6 Round trips

Round trips to the server are very expensive. In low bandwidth situations, they are slow for the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

client, and in high-volume applications, they bog down the server and inhibit scaling. You should
design your applications to minimize round trips.

The only truly essential round trips to the server are those that read or write data. Most validation
and data manipulations can occur on the client browser. ASP.NET server controls do this
automatically for validation with uplevel browsers (i.e., IE 4 and IE 5, or any browser that supports
ECMAScript).

When developing custom server controls, having the controls render client-side code for uplevel
browsers will substantially reduce the number of round trips.

Another way to minimize round trips is to use the IsPostBack property in the Page_Load method.
Often, you will want the page to perform some process the first time the page loads, but not on
subsequent postbacks. For example, the following code in VB.NET shows how to make code execution
conditional on the IsPostBack property:

sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 ' Do the expensive operations only the
 ' first time the page is loaded.
 end if
end sub

In C#, it looks like this:

void Page_Load(Object sender, EventArgs e)
{
 if (! IsPostBack)
 {
 // Do the expensive operations only the
 // first time the page is loaded.
 }
}

For a complete discussion of the IsPostBack property, see Chapter 3.

18.5.2 General .NET Issues

Many of the performance enhancements that affect an ASP.NET application are general ones that
apply to any .NET application. This section lists some of the major .NET-related areas to consider
when developing your ASP.NET applications.

18.5.2.1 String concatenation

Strings are immutable in the .NET Framework. This means that methods and operators that appear
to change the string are actually returning a modified copy of the string. This has huge performance
implications. When doing a lot of string manipulation, it is much better to use the StringBuilder class.

Consider the code shown in Example 18-26 (in VB .NET) and Example 18-27 (in C#). It measures the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

time to create a string from 10,000 substrings in two different ways. The first time, a simple string
concatenation is used, and the second time the StringBuilder class is used. If you want to see the
resulting string, uncomment the two commented lines in the code.

Example 18-26. String concatenation benchmark in VB .NET,
vbStringConcat.aspx

<%@ Page Language="VB" %>

<script runat="server">
 Private Sub Page_Load(Source As Object, E As EventArgs)
 Dim intLimit As Integer = 10000
 Dim startTime As DateTime
 Dim endTime As DateTime
 Dim elapsedTime As TimeSpan
 Dim strSub As String
 Dim strWhole As String

 ' Do string concat first
 startTime = DateTime.Now
 Dim i As Integer
 For i = 0 To intLimit
 strSub = i.ToString()
 strWhole = strWhole + " " + strSub
 Next
 endTime = DateTime.Now
 elapsedTime = endTime.Subtract(startTime)
 lblConcat.Text = elapsedTime.ToString()
' lblConcatString.Text = strWhole

 ' Do stringBuilder next
 startTime = DateTime.Now
 Dim sb As New StringBuilder()
 For i=0 To intLimit
 strSub = i.ToString()
 sb.Append(" ")
 sb.Append(strSub)
 Next
 endTime = DateTime.Now
 elapsedTime = endTime.Subtract(startTime)
 lblBuild.Text = elapsedTime.ToString()
' lblBuildString.Text = sb.ToString()
 End Sub

</script>

<html>
 <body>
 <form runat="server">

 <h1>String Concatenation Benchmark</h1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Concatenation:
 <asp:Label
 id="lblConcat"
 runat="server"/>

 <asp:Label
 id="lblConcatString"
 runat="server"/>

 StringBuilder:
 <asp:Label
 id="lblBuild"
 runat="server"/>

 <asp:Label
 id="lblBuildString"
 runat="server"/>

 </form>
 </body>
</html>

Example 18-27. String concatenation benchmark in C#,
csStringConcat.aspx

<%@ Page Language="C#" %>

<script runat="server">
 void Page_Load(Object Source, EventArgs E)
 {
 int intLimit = 10000;
 DateTime startTime;
 DateTime endTime;
 TimeSpan elapsedTime;
 string strSub;
 string strWhole = "";

 // Do string concat first
 startTime = DateTime.Now;
 for (int i=0; i < intLimit; i++)
 {
 strSub = i.ToString();
 strWhole = strWhole + " " + strSub;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 endTime = DateTime.Now;
 elapsedTime = endTime - startTime;
 lblConcat.Text = elapsedTime.ToString();
// lblConcatString.Text = strWhole;

 // Do stringBuilder next
 startTime = DateTime.Now;
 StringBuilder sb = new StringBuilder();
 for (int i=0; i < intLimit; i++)
 {
 strSub = i.ToString();
 sb.Append(" ");
 sb.Append(strSub);
 }
 endTime = DateTime.Now;
 elapsedTime = endTime - startTime;
 lblBuild.Text = elapsedTime.ToString();
// lblBuildString.Text = sb.ToString();
 }

</script>

When this page is run, you should see something like Figure 18-8. The difference between the two
techniques is fairly dramatic: the StringBuilder's Append method is nearly 200 times faster than
string concatenation.

Figure 18-8. String concatenation benchmark results

18.5.2.2 Minimize exceptions

It is possible to use try...catch blocks to control program flow. However, this coding technique is a

serious impediment to performance. You will do much better if you first test whether some condition
will cause a failure, and if so, code around it.

For example, rather than dividing two integers inside a try...catch block and catching any Divide By

Zero exceptions thrown, it is much better to first test whether the divisor is zero, and if it is, not do

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the operation.

18.5.2.3 Use early binding

.NET languages allow both early and late binding. Early binding occurs when all objects are declared
and the object type known at compile time. Late binding occurs when the object type is not
determined until runtime, at which point the CLR figures out, as best it can, what object type it is
dealing with.

Early binding is much faster than late binding, although the latter can be very convenient to the
developer. In VB.NET, it is perfectly legal to not declare your variables before they are used, to
declare them but not assign a data type (in which case they will be of type Object), or to explicitly
declare them as type Object. All these cases constitute late binding. Including an Option Explicit
On statement in your code (analogous to the Option Explicit statement in VB6) helps impose

discipline by requiring that all variables be declared before they are used, although you do not have
to declare the type. This line should appear before any other lines of code except for page directives;
for example:

<%@ WebService Language="VB" Class="ProgAspNet.vbStockTicker" %>
Option Explicit On

Alternatively, you can include an Explicit attribute for the Page directive, as in:

<%@ Page Language="VB" Explicit="true" %>

There is also an Option Strict available, which, if enabled, prevents data conversions from

happening implicitly if there is any possibility of lost data due to type incompatibility. This imposes
type-safe behavior on the code, but does not eliminate late binding. As with Explicit, Option
Strict can be either a line of code at the beginning of a module:

<%@ WebService Language="VB" Class="ProgAspNet.vbStockTicker" %>
Option Explicit On
Option Strict On

or a page directive:

<%@ Page Language="VB" Explicit="true" Strict="true" %>

Jscript.NET also supports early binding, although there are no compiler directives to enforce its use.
C# supports early binding by default; you achieve late binding in C# using reflection.

18.5.2.4 Use managed code

Managed code is more performant than unmanaged code. It may be worthwhile porting heavily used
COM components to managed code.

18.5.2.5 Disable debug mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you deploy your application, remember to disable Debug mode. For a complete discussion of
deployment issues, refer to Chapter 20.

18.5.3 Database Access Issues

Almost all applications involve some form of database access, and accessing data from a database is
necessarily an expensive operation. Data access can be made more efficient, however, by focusing on
several areas.

18.5.3.1 Stored procedures

When interacting with a database, using stored procedures is always much faster than the same
operation passed in as a command string. This is because stored procedures are compiled and
optimized by the database engine. Use stored procedures whenever possible.

18.5.3.2 Use DataReader class

There are two main ways to get data from a database: from a DataReader object or a DataSet
object. The DataReader classes, either SqlDataReader, OleDbDataReader, or OracleDataReader is a

much faster way of accessing data if all you need is a forward-only data stream.

18.5.3.3 Use SQL or Oracle classes rather than OleDB classes

Some database engines have managed classes specifically designed for interacting with that
database. It is much better to use the database-specific classes rather than the generic OleDB
classes. So, for example, it is faster to use a SqlDataReader rather than a OleDbDataReader.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.6 Benchmarking and Profiling

Benchmarking is the process of conducting reproducible performance tests to see how fast an
application is running. It may involve coding the same task two different ways and seeing which one
runs faster. The web page shown previously in Example 18-23, which tested the relative speed of
string concatenation techniques, is an example of a simple benchmarking program. Obviously,
benchmarking programs will often be much more complex than that example. They should be
designed to emulate your environment as closely as possible.

Profiling is the gathering of performance information about an application. There are several ways to
profile an application. Two that are part of the .NET Framework are:

Windows NT, Windows 2000, and Windows XP System Performance Monitor

The .NET performance counters API

The System Monitor can be used to watch a huge variety of system parameters, both .NET-specific
and otherwise, in real time. You can open the System Monitor by going to
Start\Settings\ControlPanel\AdministrativeTools\Performance, or by opening a Command Prompt and
entering perfmon. When the System Monitor opens, click on the Add icon on the toolbar to select and

add any number of performance counters. The available counters cover the processor, memory, hard
disk, SQL Server, .NET, and ASP.NET.

The performance counter's API includes several classes. The PerformanceCounter component in the

System.Diagnostics namespace can be used for both reading existing performance counters and for
creating and writing to custom counters.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 19. Security
Back in the good old days-before the Internet-when personal computers were mostly standalone
or, at most, connected to an office LAN, security was not such a big deal. Until viruses were invented
and became a real threat, security for most PCs meant screen-saver passwords and a lock on the
office door.

All that has changed. Today's computers are interconnected in myriad ways, on local networks and
over the Internet. The pipes of data that connect your machine to the rest of the world are double-
edged swords: tremendously beneficial, but at the same time potentially harmful, opening your
machine to outsiders. Some of those outsiders are malicious or just plain unwelcome. In any case, it
is the job of security to let the good stuff in and keep the bad stuff out.

As part of the .NET Framework, ASP.NET has a very robust security infrastructure. ASP.NET is
designed to work with Microsoft Internet Information Server (IIS), Windows 2000/XP/2003, and the
NTFS filesystem. Consequently, there is tight integration with the security provided inherently in
those environments. If you can be certain that all your clients will be using Windows and Internet
Explorer, there are features you can take advantage of to make your job as software developer that
much easier. Alternatively, you can implement your own security system completely independent of
Windows or NTFS.

The fundamental role of security in ASP.NET is to selectively restrict access to portions of a web site.
It does this through the following methods:

Authentication

Verifying that a client is who he says he is.
Authorization

Determining whether the client has permission to access the resource he is requesting.
Impersonation

ASP.NET assumes the role of the user gaining access, limiting system access to that which is
allowed to the user.

Delegation

A more powerful form of impersonation that allows remote resources to be accessed by the
web server while it is impersonating the client.

The decision to allow or deny access is made based on Windows 2000/XP/2003 and NTFS security
features in conjunction with IIS, or by verifying credentials against a security database. The security
database may be a traditional relational database, or it may be an XML file (although this may
present scaling issues), or it may be housed in the web site configuration files.

As with much of ASP.NET, security is configurable and extensible using the configuration files
discussed in detail in Chapter 20.

Security in ASP.NET is a two-layered process, as shown in Figure 19-1. All web requests are first

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handled by IIS. This gives IIS security a chance to accept or reject the request. If the request is
accepted by IIS, it is then passed to ASP.NET, where it is again subjected to a security decision, and
either accepted or rejected. The security systems of IIS and ASP.NET are completely independent of
each other. They can be used either independently or in coordination, as will be described later in this
chapter.

Figure 19-1. Security overview

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

19.1 Authentication

Authentication is the first of three fundamental functions necessary to secure a web application. (The
other two functions are authorization and impersonation, as described shortly.) Authentication is the
process of ensuring that clients are who they claim to be. Authentication is accomplished using
credentials, or some form of identification. The requesting client presents the credentials to IIS and
the ASP.NET application, usually in the form of a username and password.

The credentials are then validated against some authority. Depending on how authentication is
configured, that authority might be Windows 2000/XP/2003 security or it might be a store of names,
passwords, and rights, maintained in a configuration file such as web.config, a relational database
such as SQL Server, or an XML file.

Authentication is not required. If no authentication is performed, then the client is an anonymous
user. By default, all web sites allow anonymous access. However, if you need to restrict access to any
part of the web site, authentication is a necessary step.

If the system cannot identify a user based on the credentials presented, and if anonymous users are
disallowed, then access is denied. If the system can identify the user, than that user is considered an
authenticated identity and allowed to proceed on to authorization. Sometimes the identity is known
as a principal.

Authentication is provided through code modules called authentication providers. Authentication
providers are enabled using the ASP.NET configuration files, either machine.config or the copy of
web.config in the application virtual root directory. (For a complete description of the configuration
files, see Chapter 20.)

A typical entry in a configuration file to enable authentication would look like the following:

<configuration>
 <system.web>
 <authentication mode="Forms" />
 </system.web>
</configuration>

The mode attribute determines which authentication provider is used. There are four possible values
for the mode attribute, as shown in Table 19-1. Each of these authentication modes will be described

in the following sections.

Table 19-1. Values of the Authentication key's mode attribute

Mode
value

Description

Windows Windows authentication will be used in conjunction with IIS. This is the default.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mode
value

Description

Forms
Unauthenticated requests are redirected to an HTML form, which gathers credentials
from the user and submits them to the application for authentication.

Passport
Centralized commercial authentication service offered by Microsoft to web site
developers, providing single logon across web sites.

None No authentication will be performed. Enables anonymous access.

19.1.1 Anonymous Access

Anonymous access occurs when a web application does not need to know the identity of users. In this
case, credentials are not requested by IIS and authentication is not performed. Allowing anonymous
access is the default configuration for web sites.

To configure IIS to disallow anonymous authentication, use either the Computer Management console
or the Internet Services console. Click on the Start button, then Settings Control Panel, then
Administrative Tools. Now you have a choice of two ways to get to the same place. Click on either
Internet Services Manager or Computer Management.

From either, you get the Microsoft Management Console (MMC), which is used throughout Windows
for displaying and controlling many system functions. In the left pane is a hierarchical tree structure
showing resources relevant to the aspect(s) of the computer being managed. The right pane contains
the child nodes of the currently selected node on the left.

From Computer Management, select "Services and Applications" in the left-hand pane, then drill
down to Internet Information Services, then Default Web Site. From Internet Services Manager go
directly to Internet Information Services, then Default Web Site. At this point, you can right-click on
Default Web Site to set the properties for the entire server (i.e., all the web applications on the
server), or you can drill down further to the application virtual directory to set the properties for a
specific application. In either case, right-clicking will present a menu, from which you select
Properties. Select the Directory Security tab. This tab is shown in Figure 19-2.

Figure 19-2. Directory Security tab

Forms
Unauthenticated requests are redirected to an HTML form, which gathers credentials
from the user and submits them to the application for authentication.

Passport
Centralized commercial authentication service offered by Microsoft to web site
developers, providing single logon across web sites.

None No authentication will be performed. Enables anonymous access.

19.1.1 Anonymous Access

Anonymous access occurs when a web application does not need to know the identity of users. In this
case, credentials are not requested by IIS and authentication is not performed. Allowing anonymous
access is the default configuration for web sites.

To configure IIS to disallow anonymous authentication, use either the Computer Management console
or the Internet Services console. Click on the Start button, then Settings Control Panel, then
Administrative Tools. Now you have a choice of two ways to get to the same place. Click on either
Internet Services Manager or Computer Management.

From either, you get the Microsoft Management Console (MMC), which is used throughout Windows
for displaying and controlling many system functions. In the left pane is a hierarchical tree structure
showing resources relevant to the aspect(s) of the computer being managed. The right pane contains
the child nodes of the currently selected node on the left.

From Computer Management, select "Services and Applications" in the left-hand pane, then drill
down to Internet Information Services, then Default Web Site. From Internet Services Manager go
directly to Internet Information Services, then Default Web Site. At this point, you can right-click on
Default Web Site to set the properties for the entire server (i.e., all the web applications on the
server), or you can drill down further to the application virtual directory to set the properties for a
specific application. In either case, right-clicking will present a menu, from which you select
Properties. Select the Directory Security tab. This tab is shown in Figure 19-2.

Figure 19-2. Directory Security tab

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Directory Security tab has sections for enabling server certificates and imposing restrictions
based on IP address and domain name. (This latter section will be available only for Windows 2000
Server and Windows 2003, but will be grayed out for Windows 2000 Professional and Windows XP
Professional.)

Click on the Edit button in the "Anonymous access and authentication control" section. You will get
the dialog box shown in Figure 19-2.

Figure 19-3. Authentication Methods dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the "Anonymous access" checkbox is checked, then any request will be accepted by IIS without
credentials being requested by IIS and with no authentication performed. This is the default
configuration for web sites. (This assumes that the IP address or domain name is not restricted in the
Directory Security tab shown in Figure 19-1.)

Since all requests made to IIS must have credentials, anonymous requests are assigned to a
standard user account. This account defaults to IUSR_MachineName, where MachineName is the name

of the web server. You can change the account assigned to anonymous access by clicking on the Edit
button in that section. The IUSR_MachineName account is a built-in account, created when IIS is

installed on the machine. It has a very limited set of permissions-just enough to allow access to the
web site.

Anonymous access is appropriate if your application has no need to know the username or password
of the person or application calling on the application, and if the information or service contained in
the application is considered public. It is also possible to personalize a site without requiring login
through the use of cookies. This would be useful where the content on the site is public, but you want
to preserve user preferences or previous selections.

Of all the security configurations available to a web site, anonymous access provides the best
performance, although it is also the least secure.

19.1.2 Windows Authentication

Windows authentication offers the developer a way to leverage the security built into the Windows
2000/XP/2003 platform and the NTFS filesystem. It takes advantage of the security built into IIS.
Using Windows authentication, a high level of security can be built into an ASP.NET application with
little or no code being written by the developer. The trade-off is that Windows authentication only
works if the client is using a Windows platform and already has a user account on the web server or
in the Windows domain to which the web server belongs.

To configure IIS for Windows authentication, follow the steps above for configuring IIS for
anonymous access, shown in Figures Figure 19-1 and Figure 19-2. Uncheck the "Anonymous access"
checkbox. Check one or more of the checkboxes under "Authenticated access."

If more than one type of authentication access is checked, then IIS will first attempt to use
Integrated Windows authentication, if it is checked. If that fails, it will then attempt Digest
authentication, if that is checked. Finally, if all else fails, it will use Basic authentication.

In order to use the Windows identity that IIS authenticates with ASP.NET, you must include the
following section in the appropriate web.config configuration file:

<configuration>
 <system.web>
 <authentication mode="Windows" />
 </system.web>
</configuration>

There are three types of Windows authentication: basic, digest, and integrated Windows
authentication. These are described in the following sections.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.1.2.1 Role-based security

Windows 2000/XP/2003 provides role-based security. In this security scheme, roles, also known as
groups, are defined. A role defines the range of actions and access that is permitted to users
assigned to the role. Users are assigned to one or more roles, or groups. For example, if a user is a
member of the Administrator role, then that person will have complete access to the computer and
all its resources. If a user is a member only of the Guest group, then he will have very few
permissions.

Groups and users are assigned by going to Control Panel, clicking on Administrative Tools, then
clicking on Computer Management. You will see the MMC console shown in Figure 19-4.

Figure 19-4. Groups in the Computer Management console

All the groups shown in Figure 19-3 were installed by default. All are standard built-in groups, except
for the three beginning with the name ATH13, which is the name of the server from which the screen
shot was taken, and Debugger Users and VS Developers, which were installed by Visual Studio.NET.

Windows users log in to the operating system, providing a username and password. These constitute
their credentials. At login time, those credentials are authenticated by the operating system. Once
their credentials are verified, they will have certain permissions assigned, depending on which role(s)
they have been assigned to. As you will see shortly, these credentials and roles are used by ASP.NET
if the web application makes use of Windows authentication.

When a client requests an ASP.NET page or web service, all the requests are handled by IIS. If
Windows authentication is the currently configured authentication scheme, then IIS hands off the
authentication chores to the Windows NT, Windows 2000, Windows XP operating system. The user is
authenticated based on the credentials that were presented when they first logged into their Windows
system. These credentials are verified against the Windows user accounts either contained on the
web server or on the domain controller that handles the web server.

19.1.2.2 Basic authentication

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Basic authentication is the simplest and least secure type of Windows authentication. In this type of
authentication, the browser presents a standard Windows-supplied dialog box to the user for entry of
credentials, consisting of a username and password. These credentials are then compared against
valid user accounts-either on the domain server or on the local machine. If the credentials compare,
then the user is authenticated and access to the requested resource is provided.

The reason that basic authentication is the least secure method of authentication is that the
username and password are sent to the server encoded as a Base64 string. However, they are not
encrypted. The username and password are available to your application code in clear text. A skilled
person using a network sniffer can easily intercept and extract the username and password.
Therefore, basic authentication is best suited for those applications where a high level of security is
not a requirement, or no other authentication method will work.

It is possible to use basic authentication in conjunction with Secure Sockets Layer (SSL) to achieve a
high level of security. This encrypts the information passed over the network and prevents the
password from being deciphered, although the performance hit from SSL is significant.

To set the authentication method to Basic, refer back to Figure 19-2. Uncheck "Anonymous access,"
"Digest authentication," and "Integrated Windows authentication," if any of them are checked. Then
check "Basic authentication." That is all that is necessary to implement basic authentication in IIS. To
configure ASP.NET, include the following section in the relevant web.config configuration file:

<configuration>
 <system.web>
 <authentication mode="Windows" />
 </system.web>
</configuration>

By default, the local domain of the web server is active and is used for basic authentication. If you
wish to authenticate against a different domain, click the Edit button and select a different default
domain.

Basic authentication works across proxy servers and through firewalls. It is supported by essentially
all browsers. Basic authentication allows for delegation from one computer to another, but only for a
single hop (i.e., only to one other computer). If you need to access resources beyond the first hop,
you will need to log on locally to each of the other computers in the call chain. This is possible, since
the username and password are available to your application in clear text.

19.1.2.3 Digest authentication

Digest authentication is very similar to basic authentication, except that the credentials are encrypted
and a hash is sent over the network to the server. It is a fairly secure method of authentication,
although not as secure as basic authentication used with SSL, Windows integrated authentication, or
certificate authentication. Like basic authentication, digest works through firewalls and proxy servers.
Digest authentication does not support delegation (i.e., impersonated requests to remote machines).

Digest authentication works only with Internet Explorer 5.x and higher and .NET web services. It also
requires that the web server is running on Windows 2000, XP or Server 2003, and that all users have
Windows accounts stored in an Active Directory. Because of these requirements, digest
authentication is generally limited to intranet applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the user requests a resource that requires digest authentication, the browser presents the
same credentials dialog box as with basic authentication. The username and password are combined
with a server-specified string value and encrypted to a hash value. This hash value is sent over the
network. Since the server knows the string used to create the hash, it is able to decrypt the hash and
extract the username and password. These are compared with the user accounts to determine if the
user is authenticated, and if so, if the user has permission to access the requested resource.

To set the authentication method to Digest, refer back to Figure 19-2. Uncheck "Anonymous access,"
"Basic authentication," and "Integrated Windows authentication," if any of them are checked. Then
check "Digest authentication." Note that the Digest authentication checkbox will not be available if
the machine is not connected to a domain.

In addition, to configure ASP.NET you must include the following section in the relevant web.config
configuration file:

<configuration>
 <system.web>
 <authentication mode="Windows" />
 </system.web>
</configuration>

In order for a user to be able to use digest authentication, the user account must be set to store the
password using reversible encryption. To do this, go to the management console for Active Directory
Users and Computers. Open the domain you want to administer and double-click on the user name
that you want to use digest authentication. On the Account Options tab, select "Store password using
reversible encryption."

19.1.2.4 Integrated Windows authentication

Integrated Windows authentication uses the current user's credentials presented at the time they
logged into Windows. A dialog box is never presented to the user to gather credentials unless the
Windows logon credentials are not adequate for a requested resource.

Integrated Windows authentication comprises two different types of authentication: NTLM (NT LAN
Manager) challenge/response, and Kerberos. NTLM is the protocol used in Windows NT, Windows
2000 work groups, and environments with mixed NT and 2000 domains. If the environment is a pure
Windows 2000 or Windows XP Active Directory domain, then NTLM is automatically disabled and the
authentication protocol switches to Kerberos.

Kerberos is named after the three-headed, dragon-tailed dog (Cerberus) who
guarded the entrance to Hades in Greek mythology.

Integrated Windows authentication works particularly well in intranet environments, where all the
users will already have Windows domain accounts and presumably all users will be using IE 3.01 or
later. It is very secure, since the encrypted password is not sent over the network. Note that
Integrated Windows authentication does not work through a proxy server. NTLM does not support
delegation, although Kerberos does.

Integrated Windows authentication does not require any login dialog boxes. Not only is this more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

convenient for the user, but it is well suited to automated applications, such as those using web
services.

To set the authentication method to Integrated Windows authentication, refer back to Figure 19-2.
Uncheck "Anonymous access," "Basic authentication," and "Digest authentication," if any of them are
checked. Then check "Integrated Windows authentication."

In addition, to configure ASP.NET you must include the following section in the relevant web.config
configuration file:

<configuration>
 <system.web>
 <authentication mode="Windows" />
 </system.web>
</configuration>

Kerberos is faster than NTLM, although neither is as fast as basic authentication or well-designed
custom authentication methods. If you are anticipating a large number of concurrent users or are
delegating security to back-end servers (e.g., SQL Server), then scalability may become an issue
with Integrated Windows Authentication.

19.1.3 Passport Authentication

Passport is a centralized authentication service provided by Microsoft. It offers a single logon for all
web sites that have registered with the Passport service, accepted the license agreement, paid the
requisite fee, and installed the Passport SDK.

When a client makes a request to a Passport protected site, the server detects that the request does
not contain a valid Passport ticket as part of the query string. The client is redirected to the Passport
Logon Service along with encrypted parameters about the original request. The Passport Logon
Service presents the client with a logon form, which the user fills out and posts back to the logon
server using the SSL protocol. If the logon server authenticates the user, the request is redirected
back to the original site, this time with the authentication ticket encrypted in the query string. When
the original site receives this new request, it detects the authentication ticket and authenticates the
request.

Subsequent requests to the same site are authenticated using the same authentication ticket. There
are also provisions for expiring the authentication ticket and using the same ticket at other sites.

For sites that have implemented Passport and installed the Passport SDK, the
PassportAuthenticationModule provides a wrapper around the SDK for ASP.NET applications.

Passport uses Triple-DES encryption to encrypt and decrypt the authentication key when passed as
part of the query string. When a site registers with the Passport service, it is given a site-specific key
that is used for this encryption and decryption.

It is not possible to use delegation if using Passport authentication.

To use Passport authentication, ASP.NET must be configured by including the following section in the
relevant web.config configuration file:

<configuration>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <system.web>
 <authentication mode="Passport" />
 </system.web>
</configuration>

19.1.4 Forms Authentication

Integrated Windows authentication offers many advantages to the developer who is deploying to an
environment where all the clients are known to have user accounts in the requisite Windows domain
or Active Directory and are also known to be using a recent version of Internet Explorer. However, in
many web applications, one or both of these conditions will not be true. In these cases, forms
authentication allows the developer to collect credentials from the client and authenticate them.

In forms authentication, a custom login form is presented to the unauthenticated user to gather
credentials. This form does not necessarily authenticate the user itself, but rather submits the
credentials, via form post, to application code that performs the authentication. The application code
generally authenticates by comparing the credentials submitted with usernames and passwords
contained in a data store of some sort. This data store can be a web.config configuration file, a
relational database, an XML file, or even the Windows domain database or Active Directory.

The credentials submitted by the login form are sent unencrypted over the network, and so are
vulnerable to interception by a skilled and malicious user of a network sniffer. A forms authentication
scheme can be made fully secure by sending the credentials and all subsequent authenticated
requests using the SSL protocol.

Once the client is authenticated, the server returns a small piece of data, called a cookie, back to the
client. This authentication cookie is then passed from the client to the server on each subsequent
request, which tells the server that this client has already been authenticated. If a request is made
without a valid authentication cookie, then the user is automatically redirected to the login form,
where credentials are once again gathered and authenticated.

19.1.4.1 Login form

To demonstrate forms authentication, you must first create a login form. At a minimum, this form
must provide a means for the user to enter his username and password. It must also either provide
the code to perform the authentication or call application code to do likewise.

Example 19-1 and Example 19-2 show the code for a simple login form using VB.NET and C#,
respectively. Example 19-2 shows only the script block for the login form in C#, since the HTML
portion is identical to that in Example 19-1.

Example 19-1. Simple login form in VB.NET, vbLoginForm-01.aspx

<%@ Page Language="vb" %>
<script runat="server">
 sub btn_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if (txtUserName.Text = "Dan" and txtPassword.Text = "password") then
 lblMessage.Text = "Authenticated:
" & txtUserName.Text & _
 "
" & txtPassword.Text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FormsAuthentication.RedirectFromLoginPage(txtUserName.Text, _
 false)
 else
 lblMessage.Text = "Not Authenticated:
" & txtUserName.Text & _
 "
" & txtPassword.Text
 end if
 end sub
</script>

<html>
<body>
 <h1>Login Form</h1>
 Please enter your credentials:

 <form runat="server">
 Username:
 <asp:Textbox
 id="txtUserName"
 runat="server" />

 Password:
 <asp:Textbox
 id="txtPassword"
 TextMode="password"
 runat="server" />

 <asp:Button
 id="btn"
 Text="Authenticate"
 OnClick="btn_Click"
 runat="server" />

 <asp:Label
 id="lblMessage"
 runat="server" />
 </form>
</body>
</html>

Example 19-2. Simple login form in C#, csLoginForm-01.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void btn_Click(Object Source, EventArgs E)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (txtUserName.Text=="Dan" && txtPassword.Text=="password")
 {
 lblMessage.Text = "Authenticated:
" + txtUserName.Text +
 "
" + txtPassword.Text;
 FormsAuthentication.RedirectFromLoginPage(txtUserName.Text,
 false);
 }
 else
 {
 lblMessage.Text = "Not Authenticated:
" + txtUserName.Text +
 "
" + txtPassword.Text;
 }
 }
</script>

When the login page from Example 19-1 or Example 19-2 is run in a browser and incorrect
credentials are entered, you get the results shown in Figure 19-5.

Figure 19-5. Login form

The HTML portion of the login form has an Authenticate button and two textboxes, one for the
username and one for the password. Note that the password textbox has its TextMode attribute set
to password, so that any characters entered will be displayed as asterisks. The HTML also includes a

label for displaying the results of the authentication to the user.

When the Authenticate button is clicked, the btn_Click event handler is called. In this simple login
scenario, a single username and password are hard-coded into the code. (Later in this chapter, you
will see how to implement more flexible stores of usernames and passwords.) A simple if statement

tests to see whether the username and password match. In VB.NET, this is done using:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if (txtUserName.Text = "Dan" and txtPassword.Text = "password") then

In C#, the code is:

if (txtUserName.Text=="Dan" && txtPassword.Text=="password")

Depending on the results of the test, the appropriate message is displayed in the label, along with the
username and password (in clear text) entered in the textboxes.

The interesting action occurs in the highlighted line of code in Example 19-1 and Example 19-2,
reproduced here (in VB.NET, without the line continuation character):

FormsAuthentication.RedirectFromLoginPage(txtUserName.Text, false);

FormsAuthentication is a helper class in the System.Web.Security namespace that provides static or
shared helper methods for managing forms authentication. (You will see more of these helper
methods throughout this section.) The static RedirectFromLoginPage method first generates and
places an authentication cookie on the client, then redirects the client browser back to the page which
made the original request.

The first parameter in RedirectFromLoginPage is a text string that contains the username associated
with the cookie. It is not necessary for this username to be an account name; it is used only for
identification of the cookie itself.

The second parameter in RedirectFromLoginPage is a Boolean that specifies whether the cookie is
persistent or not. A persistent cookie is one that is saved across browser sessions. If a persistent
cookie is set, the user will not have to log in again on subsequent visits.

Obviously, hard-coding usernames and passwords into if statements in your code is a fairly limited

authentication scheme. It would be much more useful if you could do some sort of lookup in a
relational database, such as SQL Server, or in an XML data store. This could be accomplished with
code based on that shown in Example 19-3 (in C#).

Example 19-3. Authenticating users from an external store

if (CheckCredentials(txtUserName.Text, txtPassword.Text))
{
 // Do stuff if authenticated
}
else
{
 // Do stuff if not authenticated
}

private bool CheckCredentials(string username, string password)
{
 // Do a database or XML lookup to see if the username and
 // password are valid.
...// If valid, then return true, otherwise return false.
}

Here is the corresponding code in VB .NET:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if CheckCredentials(txtUserName.Text, txtPassword.Text) then
 ' Do stuff if authenticated
else
 ' Do stuff if notauthenticated
end if

private function CheckCredentials(username as string, _
 password as string) as Boolean
 ' Do a database or XML lookup to see if the username and
 ' password are valid.
 ' If valid, then return true, otherwise return false.
end function

In Example 19-3, a private method is created called CheckCredentials, which returns a Boolean. This
method accesses an external store of usernames and passwords. This external store could be a
relational database, an XML file, or even the Windows domain database or Active Directory. The point
is that this method will do the actual work of authenticating the credentials passed in. If the
credentials check out OK, the method returns true. If the credentials do not pass muster, the
method returns false.

19.1.4.2 Configuring IIS

To implement forms authentication, IIS must be properly configured. This is done in the
Authentication Methods dialog box shown in Figure 19-2. Depending upon whether you right-clicked
on the default web site in the management console or in a specific virtual directory, the
Authentication Methods dialog box will apply either to the entire server or to a specific web
application.

Referring to Figure 19-2, uncheck all three checkboxes under "Authenticated access." That will
disable integrated windows authentication.

Check the checkbox for "Anonymous access." That will tell IIS to allow any request to pass through
IIS and be handled by ASP.NET. Your login form will pick it up from there, once all the pieces are in
place.

19.1.4.3 Configuring ASP.NET

The final piece to setting up forms authentication is to properly configure ASP.NET. This is done using
the appropriate instance of the web.config configuration file.

Remember that the effect of the configuration files in ASP.NET is hierarchical, in that a specific
instance of web.config applies to its own directory and all subdirectories below it. If a subdirectory
contains its own instance of web.config, any settings it contains will override its parent's settings and
will apply to its directory and all its child subdirectories. (For a complete discussion of ASP.NET
configuration files, see Chapter 20.)

To configure an entire web application, place the configuration settings in the instance of web.config
in the application virtual root directory.

To configure ASP.NET to use forms authentication, edit the instance of web.config in the application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

virtual root directory to contain the code shown in Example 19-4.

Example 19-4. web.config entry for forms authentication

<configuration>
 <system.web>
 <authentication mode = "Forms">
 <forms name="ProgAspNetCookie" loginUrl="csLoginForm.aspx" />
 </authentication>

 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

In the <authentication> section, the mode is set to Forms. This tells ASP.NET to use forms

authentication.

Within that section is a <forms> tag. This contains the name of the authentication cookie to be placed
on the client machine. In this example, the name of the cookie will be ProgAspNetCookie. If no name
is provided, the default name is .ASPXAUTH.

The next attribute within the <forms> tag is loginUrl. (Note the casing of loginUrl. Remember

that web.config files are case sensitive.) This contains the URL of the login form to be redirected to if
an unauthenticated request is received by IIS.

The <forms> tag has three other attributes, which are as follows:

protection

Specifies whether the application should use data validation, data encryption, neither, or both
to protect the cookie when it is passed between the server and the client. The default value is
All, which specifies both. None specifies neither, Encryption specifies encryption only (using
Triple-DES), and Validation specifies validation only.

Using a value of None is the weakest form of security a forms authentication scheme can have.

It is not recommended, except for sites that do not have stringent security requirements, such
as personalization. It is, however, the least resource-intensive way to implement
personalization, and will scale better than the other methods.

timeout

Specifies the integer number of minutes before the authentication cookie expires. The default is
30. Whenever a new request is received for the cookie, the clock is reset. If a cookie is
persistent, it never expires.

path

Specifies the path for cookies issued by the application. The default value is a backslash (/).
Note that most browsers are case sensitive and will not return a cookie if there is a path/case
mismatch.

The <authorization> section shown in Example 19-4 will be described in detail later in this chapter.

For now, it is sufficient to know that it denies authorization to all anonymous users (i.e., all users who

http://lib.ommolketab.ir
http://lib.ommolketab.ir

have not been authenticated).

19.1.4.4 Authenticating against web.config

The sample shown in Example 19-1 and Example 19-2 authenticate against a username and
password hard-coded into the application code. Example 19-3 shows how to authenticate against an
external data store. A third option is to authenticate against names stored in web.config. This is done
by adding a <credentials> section within the <forms> section of web.config.

A typical <credentials> section is shown highlighted in Example 19-5.

Example 19-5. web.config entry for <credentials> section

<authentication mode = "Forms">
 <forms name="ProgAspNetCookie" loginUrl="csLoginForm.aspx" >
 <credentials passwordFormat="Clear">
 <user name="Tom" password="mot" />
 <user name="Dick" password="kcid" />
 <user name="Harry" password="yrrah" />
 </credentials >
 </forms>
</authentication>

<authorization>
 <deny users="?" />
</authorization>

Other than the lines highlighted in Example 19-5, this listing is identical to that in Example 19-4. (The
<authorization> section will be described later in this chapter.)

The <credentials> tag has a single attribute, passwordFormat. This specifies the hash, or
encryption, format for storing passwords. The legal values are Clear, MD5, and SHA1. The latter two

are well-known hashing algorithms that are supported by most browsers.

To use the MD5 or SHA1 hash formats, the password strings actually entered
into the web.config file must be hashed in the appropriate format. To get the
string containing the hashed password, use the
HashPasswordForStoringInConfigFile method of the FormsAuthentication class.

Within the <credentials> section, there are multiple <user> tags. Each specifies a username and

associated password.

To fully implement authentication against web.config, you will need to modify the login form shown in
Example 19-1 and Example 19-2, as shown in Example 19-6 and Example 19-7 for VB.NET and C#,
respectively. Only the script blocks are shown in either language, since the HTML is unchanged. The
highlighted lines are changed from Example 19-1 and Example 19-2.

Example 19-6. Login form authenticating against web.config in VB.NET,
vbLoginForm-02.aspx

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@ Page Language="vb" %>
<script runat="server">
 sub btn_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if FormsAuthentication.Authenticate(txtUserName.Text, _
 txtPassword.Text) then
 FormsAuthentication.RedirectFromLoginPage(txtUserName.Text, _
 false)
 else
 lblMessage.Text = "Not Authenticated:
" & txtUserName.Text & _
 "
" & txtPassword.Text
 end if
 end sub
</script>

Example 19-7. Login form authenticating against web.config in C#,
csLoginForm-02.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void btn_Click(Object Source, EventArgs E)
 {
 if (FormsAuthentication.Authenticate(txtUserName.Text,
 txtPassword.Text))
 {
 FormsAuthentication.RedirectFromLoginPage(txtUserName.Text,
 false);
 }
 else
 {
 lblMessage.Text = "Not Authenticated:
" + txtUserName.Text +
 "
" + txtPassword.Text;
 }
 }
</script>

The login form shown in Example 19-6 and 19-7 uses the Authenticate method of the
FormsAuthentication class. This static or shared method takes two parameters: username and
password. These credentials are compared against the users listed in the <credentials> section of
web.config. If the credentials authenticate, then the Authenticate method returns true; otherwise, it
returns false.

Notice that the lines of code from Example 19-1 and Example 19-2 that display a message on
successful authentication have been removed from Example 19-6 and Example 19-7, since they will
never actually be seen. If the request is authenticated, the user will immediately be redirected back
to the originating form. That message was useful primarily when originally developing the login form.

19.1.4.5 Authenticating with redirect to a specified page

All the forms authentication samples shown so far have used the RedirectFromLoginPage method of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the FormsAuthentication class. This method creates the authentication cookie, then redirects the
client back to the page that made the original unauthenticated request.

It is also possible to create the authentication cookie without an automatic redirection back to the
originating page. This would be useful if you wanted to control where the client is redirected to.

To accomplish this, use the static SetAuthCookie method of the FormsAuthentication class. This
method creates an authentication cookie and attaches it to the outgoing response. However, there is
no automatic redirect. Instead, your code must perform the redirect explicitly.

Consider the script block shown for VB.NET and C# in Example 19-8 and Example 19-9, respectively.
It is identical to the code in Example 19-6 and Example 19-7 except for the highlighted lines of code.

Example 19-8. Login form using SetAuthCookie in VB.NET

<%@ Page Language="vb" %>
<script runat="server">
 sub btn_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if FormsAuthentication.Authenticate(txtUserName.Text, _
 txtPassword.Text) then
 FormsAuthentication.SetAuthCookie(txtUserName.Text, _
 false)
 Response.redirect("default.aspx")
 else
 lblMessage.Text = "Not Authenticated:
" & txtUserName.Text & _
 "
" & txtPassword.Text
 end if
 end sub
</script>

Example 19-9. Login form using SetAuthCookie in C#

<%@ Page Language="c#" %>
<script runat="server">
 void btn_Click(Object Source, EventArgs E)
 {
 if (FormsAuthentication.Authenticate(txtUserName.Text,
 txtPassword.Text))
 {
 FormsAuthentication.SetAuthCookie(txtUserName.Text,
 false);
 Response.Redirect("default.aspx");
 }
 else
 {
 lblMessage.Text = "Not Authenticated:
" + txtUserName.Text +
 "
" + txtPassword.Text;
 }
 }
</script>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Example 19-8 and Example 19-9, the SetAuthCookie method creates the authentication cookie for
the client, using the same parameters as the RedirectFromLoginPage method. The first parameter is
the username of the client, and the second parameter is a Boolean that specifies whether the cookie
is persistent.

Rather than redirecting the client back to the originating page, the code in Example 19-8 and
Example 19-9 redirects the client to the specified page, here called default.aspx.

In this example, the redirect page is hard-wired. It is easy to imagine modifying the CheckCredentials
method described in Example 19-3 so that, in addition to authenticating the credentials, the method
also sets a member variable containing a category to which the user belongs. Then your code could
redirect to whichever page was appropriate for each category.

If you want your code to do the redirect, as in Example 19-8 and Example 19-9, but you want to
redirect to the original requesting page, similar to the functionality provided by
RedirectFromLoginPage, then you can use the static GetRedirectUrl method of the
FormsAuthentication class. This method returns a string containing the originating URL. It takes the
same parameters as RedirectFromLoginPage, and sets the authentication cookie similarly. You could
replace the highlighted lines of code in Example 19-8 with the following code to redirect back to the
originating page:

dim strUrl as string
strUrl = FormsAuthentication.GetRedirectUrl(txtUserName.Text, _
 false)
Response.redirect(strUrl)

19.1.4.6 Getting the authentication cookie

Sometimes it is useful to get the authentication cookie but not immediately send it back to the client.
This would be the case if you wanted to add information to the cookie or modify the information it
already contains. The static GetAuthCookie method of the FormsAuthentication class serves this
purpose.

Consider the code in Example 19-10 for VB.NET and Example 19-11 for C#, which modify the code
shown in Example 19-8 and Example 19-9, respectively. It creates the authentication cookie,
modifies it, then does the redirect.

Example 19-10. Login form using GetAuthCookie in VB.NET,
vbLoginForm-03.aspx

<%@ Page Language="vb" %>
<script runat="server">
 sub btn_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if FormsAuthentication.Authenticate(txtUserName.Text, _
 txtPassword.Text) then

 dim myCookie as HttpCookie
 myCookie = FormsAuthentication.GetAuthCookie(txtUserName.Text, _
 false)
 myCookie.Expires = DateTime.Now.AddHours(24)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Response.Cookies.Add(myCookie)

 Response.redirect("default.aspx")
 else
 lblMessage.Text = "Not Authenticated:
" & txtUserName.Text & _
 "
" & txtPassword.Text
 end if
 end sub
</script>

Example 19-11. Login form using GetAuthCookie in C#, csLoginForm-
03.aspx

<%@ Page Language="c#" %>
<script runat="server">
 void btn_Click(Object Source, EventArgs E)
 {
 if (FormsAuthentication.Authenticate(txtUserName.Text,
 txtPassword.Text))
 {
 HttpCookie myCookie =
 FormsAuthentication.GetAuthCookie(txtUserName.Text,
 false);
 myCookie.Expires = DateTime.Now.AddHours(24);
 Response.Cookies.Add(myCookie);
 Response.Redirect("Default.aspx");
 }
 else
 {
 lblMessage.Text = "Not Authenticated:
" + txtUserName.Text +
 "
" + txtPassword.Text;
 }
 }
</script>

In Example 19-10 and Example 19-11, if the credentials are authenticated, a cookie variable,
myCookie, is instantiated. The GetAuthCookie method is called, which returns an object of type
HttpCookie. This is assigned to myCookie. The Expires property of the cookie is modified to add 24
hours to the expiration date and time. Finally, the cookie myCookie is added to the Cookies collection
of the HttpResponse object. If this last step is not performed, then the cookie will not be set on the
client's computer and the request will not be authenticated. Once the cookie is set, the redirect can
occur, as before.

19.1.4.7 Logging out

If a cookie is not persistent, it will expire when its expiration period ends. If it is persistent, it will
never expire. It is possible to force an authentication cookie to expire immediately by calling the
static SignOut method of the FormsAuthentication class.

The code in Example 19-12 shows a simple page that contains only a button that removes the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

authentication cookie, effectively logging the user out of the application. The code in Example 19-12
is in VB.NET; the C# code within the <script> tag is very similar, as shown in Example 19-13:

Example 19-12. Logout form in VB.NET, vbLogout.aspx

<%@ Page Language="vb" %>
<script runat="server">
 sub btn_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 FormsAuthentication.SignOut()
 end sub
</script>

<html>
<body>
 <h1>Logout Form</h1>

 <form runat="server">

 <asp:Button
 id="btn"
 Text="Log Out"
 OnClick="btn_Click"
 runat="server" />

 </form>
</body>
</html>

Example 19-13. Logout form in C#, csLogout.aspx

<%@ Page Language="C#" %>
<script runat="server">
 void btn_Click(Object sender,
 EventArgs e)
 {
 FormsAuthentication.SignOut();
 }
</script>

The page coded in Example 19-12 consists of a single button, labeled "Log Out." Clicking on this
button calls the SignOut method. You can verify that this works by calling any page in the virtual
directory in your browser, logging in, then calling any other page to verify that you do not need to log
in with subsequent pages once you are logged in. Then call vbLogoutForm.aspx in your browser and
click the Log Out button. Now call one of the other pages again. You will be redirected to the login
form, since there is no longer a valid authentication cookie on your client machine.

19.1.5 Certificate Authentication

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Certificates are digital keys that are installed on a computer. Certificates can be installed on either
the server or the client. Certificates are generally issued by third parties, which manage the logistics
of issuing and maintaining the certificates and guarantee their validity. When a request is made to a
server using certificate authentication, the client certificate is passed to the server as credentials, and
the server certificate is passed back to the client to verify the identity of the server. Mutual
authentication can take place.

Certificate authentication is seamless: it does not present any login dialog boxes or forms, and there
is no need for the client to programmatically provide the username or password. The server and the
client authenticate each other automatically, with no user interaction. This not only makes it much
easier for the client, but it is also ideal for automated scenarios, such as those using web services.

Certificate authentication is very secure. The data contained in the certificate is encrypted using
public key encryption technology. While it is beyond the scope of this book to discuss cryptography
details and the merits of public key encryption, suffice it to say that it is a widely used and very safe
means of passing encrypted data over the Internet.

You can create your own certificates conforming to the X.509 standard for
authentication and encryption for testing purposes. This is done using
MakeCert.exe, a command-line certificate creation tool included with the .NET
Framework. For a complete description of MakeCert.exe, including all the
command-line arguments, see the SDK documentation that comes with .NET.

Client certificates can be mapped to user accounts in either a Windows domain or Active Directory.
This mapping can be either one-to-one, where a certificate is mapped to a single user, or many-to-
one, where a single certificate is mapped to many users. With a many-to-one mapping, a single
certificate can be assigned to a company, and all the users from within that company can
authenticate using the same certificate.

There is a cost associated with issuing, installing, and managing certificates. There is typically a fee
paid to the third-party issuer of the certificates. There is also the cost of the effort by the developers
and/or system administrators to implement certificate authorization on both the server and all client
machines. Client certificates must be physically deployed on each client machine. This deployment
can be performed over the web or via installation software on CD, but it must be performed for each
client. This limits deployment of certificate authentication to closed systems, such as intranets or B2B
relationships.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

19.2 Authorization

Once a requesting client has been authenticated, the server must then determine whether this user is
allowed to access the resources it is requesting. This process is known as authorization. You have
already seen an example of authorization in Example 19-4 and Example 19-5, in the
<authorization> sections in web.config. The details of authorization will now be explained. There

are two ways of authorizing users: file authorization and URL authorization.

19.2.1 File Authorization

Any Windows operating system that supports NTFS (this includes Windows 2000, Windows XP, and
Windows 2003) uses a security system based on Access Control Lists (ACLs). ACLs control access to
any specific file or directory based on the requesting user's membership in a Windows Domain or
Active Directory and the group(s) to which that user belongs. You have seen users and groups in
Figure 19-3.

You will only be able to use file authorization if the hard drive(s) containing the
resources are formatted using NTFS.

If all the legitimate users of a web application are known to have Windows user accounts, then you
can use file authorization to authorize a user's access to a resource. Each user is assigned to an
appropriate group and that group is given the necessary permissions, using the Computer
Management console, to use the application.

For further information on the minimum file access rights required by a web
application, see the Microsoft Knowledge Base Article Q187506, "List of NTFS
Permissions Required for IIS Site to Work."

You can examine the ACL for any file or directory in Windows by right-clicking on the object in
Windows Explorer, selecting the Properties menu item, then going to the Security tab. You will see
something similar to Figure 19-6.

Figure 19-6. ACL for a directory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Figure 19-5, the single-headed icon represents a user and the two-headed icons represent groups.
Each of the users and groups listed in the Name box can have a different set of permissions. These
permissions available for each file or folder, shown in Figure 19-5, are easily set by checking and
unchecking the checkboxes to allow or deny the permission.

When a request is received and authenticated by IIS, there is one of two possibilities: either it is
authenticated as a known user, or it is treated as an anonymous user. If the request is from a known
user, then, of course, the username is known. If the request comes from an anonymous user, then it
is assigned to the standard user account IUSR_MachineName, where the name of the server machine

is substituted for MachineName.

This is relevant because it is the username that ultimately determines which resources are available
to a user. This depends on the impersonation mode currently set. (Impersonation will be described
shortly.) If impersonation is enabled, the application will run with the permissions assigned to the
user. If impersonation is not enabled, the application will run with the permissions of the ASP.NET
account.

There are two liabilities to file authorization:

All the users of the web application must have a Windows user account.

Managing ACLs for a large, complex web site can become a logistical nightmare.

19.2.2 URL Authorization

It is also possible to authorize users against either a list or rules, both contained in a configuration
file. This is known as URL authorization.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This nomenclature is very confusing. The Microsoft SDK documentation states
that URL authorization "maps users and roles to pieces of the URI namespace."
However, when actually implementing URL authorization, neither URIs nor URLs
are used.

URL authorization allows for both positive and negative authorizations. In other words, authorizations
can be either allowed or denied. In addition, authorizations can be based on usernames, on roles, or
on the HTTP verb.

Access conditions are contained within an <authorization> section in the web.config file. A simple

example was shown in Example 19-4 and Example 19-5. As with all configuration files, the conditions
apply to the current directory and all subdirectories unless overridden by web.config files contained in
those subdirectories.

One or more access elements are contained within the <authorization> section. The permissible
access elements are either <allow> or <deny>. Both access elements may be present in the same
<authorization> section, in which case the first match found will take precedence.

Within each access element, there are one or more attributes. There are three possible attributes,
listed in Table 19-2.

Table 19-2. Authorization access element attributes

Access
element
attribute

Description

Roles

Specifies one or more targeted roles. Multiple roles are comma-separated. The
default WindowsPrincipal class uses Windows 2000/XP/2003 groups to determine
role membership. Typical built-in roles therefore include Administrators, Guests,
and Users.

Users

Specifies one or more targeted identities. Multiple usernames are comma-
separated. There are two special identities: * (asterisk) specifies everyone (i.e., all
identities), and ? (question mark) refers to all unauthenticated identities (i.e.,

anonymous users).

Verbs Specifies HTTP verbs to which action applies. Legal values are GET, HEAD, or POST.

Either the Roles or Users attribute must be present. Both are allowed simultaneously, but both are
not required. The Verbs attribute is optional.

Consider the following <authorization> section:

<authorization>
 <allow users="Dan, Jesse, stersol\Jennifer" roles="Administrators" />
 <deny users="Bill" />
 <deny users="?" />
</authorization>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This example will allow local domain users Dan and Jesse, as well as Jennifer, who is a member of the
stersol domain. All members of the Administrators group will also be allowed access. Bill will be

denied access, and all anonymous users will also be denied access.

Consider the next sample <authorization> section:

<authorization>
 <allow verb="GET" users="*" />
 <allow verb="POST" users="Dan, Jesse" />
 <deny verb="POST" users="*" />
</authorization>

In this example, all users will be allowed if the request is a GET request. Dan and Jesse are allowed to
make POST requests, but all other users making post requests will be denied access. This type of
scenario might be useful because GET requests are typically used for simple requests with few
parameters, such as may be sent by a link on a web page, while POST requests are typically sent by
forms, with much more robust access.

As with all configuration file settings, the system merges all the access rules from all the
configuration files contained in the hierarchy of directories and subdirectories of the application. It
then checks the rules for each request, starting at the head of the list and moving down the list until
the first match is found. If a match is found and the access element is <deny>, then a 401 error will

be returned.

The default <authorization> section contained in machine.config contains the following line, which

allows all identities:

<allow users="*" />

Therefore, if there are no <authorization> sections in any of the web.config files, all users will be

granted access to the application. Likewise, if no matches are found, the user will be granted access.

If you want a subdirectory of the application virtual root directory to have different access rules than
its parent directory, you have two choices. One possibility is to include a web.config file in the desired
subdirectory. However, any rules it contains will also apply to its subdirectories, and so on. This may
cause logistical problems similar to ACLs.

An alternative way to apply different access rules to a specific subdirectory is to use the <location>

tag in the web.config file. Consider the web.config file shown in Example 19-14.

Example 19-14. <location> tag in web.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <authentication mode = "Forms">
 <forms name="ProgAspNetCookie" loginUrl="vbLoginForm.aspx" >
 <credentials passwordFormat="Clear">
 <user name="Tom" password="mot" />
 <user name="Dick" password="kcid" />
 <user name="Harry" password="yrrah" />
 </credentials >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </forms>
 </authentication>

 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>

 <location path="pages/public.aspx" >
 <system.web>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
 </location>

 <location path="pages" >
 <system.web>
 <authorization>
 <allow users="Dan, Jesse " roles="Administrators" />
 </authorization>
 </system.web>
 </location>

</configuration>

The web.config file shown in Example 19-14 specifies that the application will use forms
authentication. Tom, Dick, and Harry will be authenticated, and all other users will be denied access,
except that the file called public.aspx contained in the pages subdirectory of the application root will
allow all users to access it. In addition, Dan, Jesse, and all members of the Administrators group will
have access to the pages subdirectory.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

19.3 Impersonation

Every process running on a Windows 2000/2003 server has a username associated with it. The
username, in conjunction with ACLs (described earlier in Section 19-2 determines what resources the
process will have access to.

By default, ASP.NET processes run with a userName of machine (note all lowercase). This causes the

processes to run under a special low privilege user account named "ASPNET", which is created when
the ASP.NET is installed. It is also possible to change the value of userName to SYSTEM, which gives

the processes full access to all resources, or to any valid username which is a member of a domain
which has sufficient access rights to the web server. If there is a security breach, then a malicious
user may be able to run processes with the same access to resources provided by the userName
assigned to the ASP.NET processes.

To provide more flexibility, ASP.NET supports impersonation. Using impersonation, the ASP.NET
process assumes, and executes with, the identity of the client making the request. For example, if
user Dan requests a web page, and this web page requests access to a resource on the server, then
when ASP.NET requests that resource, it will be as though Dan made the request, not machine. The
permissions assigned to Dan in the ACLs will govern the request.

Impersonation is not enabled by default, since it consumes additional server resources.
Impersonation is enabled with an <identity> section in a configuration file. The default <identity>
section in machine.config looks like the following:

<identity impersonate="false" />

To enable impersonation for an application, add a similar line to the web.config file in the application
virtual root directory, changing the impersonate attribute value to true.

If impersonation is enabled and the request is from an authenticated user, then the ASP.NET process
will run as though it were the authenticated user. If the request if from an anonymous user, the
process will run as though it were IUSR_MachineName, where MachineName is the name of the web

server.

It is also possible to configure ASP.NET to always impersonate using a specific identity. The following
<identity> section configures ASP.NET to always run as Dan with a password of pwd:

<identity impersonate="true" username="Dan" password="pwd" />

If the username is part of a different domain from the web server, the domain name can be part of
the username, as in Stersol\Dan.

If the application resides on a UNC (Universal Naming Convention) share, then the ASP.NET process
will execute as the IIS UNC token whether impersonation is enabled or disabled. The only exception is
that if impersonation is enabled with a specific username, then that username will be used for the
UNC share, and access to the share will be dependent on that username's access rights.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.3.1 Application Identity

As stated earlier, the default identity for ASP.NET is machine. This is controlled by setting the
username attribute to machine in the <processModel> section of the machine.config configuration
file. The default <processModel> section looks like the following:

<processModel
 enable="true"
 timeout="Infinite"
 idleTimeout="Infinite"
 shutdownTimeout="0:00:05"
 requestLimit="Infinite"
 requestQueueLimit="5000"
 restartQueueLimit="10"
 memoryLimit="60"
 webGarden="false"
 cpuMask="0xffffffff"
 userName="machine"
 password="AutoGenerate"
 logLevel="Errors"
 clientConnectedCheck="0:00:05"
 comAuthenticationLevel="Connect"
 comImpersonationLevel="Impersonate"
/>

The relevant attributes here are userName and password. There are two special values for
userName: SYSTEM and machine (note all lowercase). The default is machine. In either case, the
value for password needs to be AutoGenerate, which forces the system to create its own password.
As mentioned previously, when ASP.NET assumes the username SYSTEM, it has full access to all
resources. The default value of userName, machine, will cause the process to run using a special
account, installed automatically when ASP.NET is installed, called ASPNET. This account is a member
of the Users group, which is prevented from making system-wide changes.

You can also set userName and password to a specific domain or Active Directory user account, which

will then become the default user for all ASP.NET processes. If you do this, the user account specified
must have the following rights:

Read/write access to %installroot%\ASP.NET\TemporaryASP.NETFiles. Typically this is a
subdirectory of c:\ProgramFiles. Subdirectories here are used for dynamically compiled output.

Read/write access to the %temp% directory. This is used by the compilers during dynamic
compilation.

Read access to the application directory.

Read access to the %installroot% hierarchy of directories to allow access to system assemblies.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 20. Controlling, Configuring,and
Deploying Applications
ASP.NET offers many improvements over classic ASP. The topics covered in this chapter highlight
several of the major improvements in controlling, configuring, and deploying ASP.NET applications.

ASP.NET provides easy control of the entire application through the global.asax file. This text file
allows you to create event handlers for a wide variety of events exposed by both the application as a
whole and by individual sessions. You can also include methods and server-side include files that will
apply globally to the entire application.

Configuration of web applications is handled using the configuration files machine.config and
web.config. These XML files provide a flexible and hierarchical configuration scheme. Configuration
settings can apply to every application on the web server, to specific applications, or to specific
subdirectories within an application.

Since all of the configuration and control for ASP.NET applications is done with text files, either XML
or some other variant of plain text, it is very easy to maintain and update a web application
remotely. It is no longer necessary to be physically present at a web server to reconfigure the
application through IIS.

Perhaps the single greatest improvement that .NET has made over previous generations of
development environments is in the area of deployment:

dll files only have to be located in a specific directory to be visible to an application.

There is no registration of objects, either in the Registry or elsewhere, required for an
application to utilize the contents of a dll. Installation does not require any registering of
components with regsrvr32 or any other utility, though some globally available components will
be placed in the Global Assembly Cache.

XCOPY installations are here.

There are no versioning issues with conflicting dll files.

All of this will be described fully in this chapter. In the meantime, shout it from the rooftops: No more
DLL hell!

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

20.1 What Is an Application?

The term application has been used throughout this book. Everyone knows intuitively, more or less,
what an application is. Here is a precise working definition for a web application: "An application
consists of all of the web pages, files, code, objects, executables, images, and other resources
located in an Internet Information Server (IIS) virtual directory (described shortly) or a subdirectory
of that virtual directory."

The application will start the first time any page or web service is requested from the web server. It
will run until any of a number of events cause it to shut down. These events include:

Editing global.asax, a server-side include file for global.asax, or a web.config file

Restarting IIS

Restarting the machine

If a page is requested and the application is not running, the application will automatically restart.

Unlike traditional EXE applications, web applications do not have a fixed starting point. A user can
drop in through any number of paths or entry points. Web applications should be designed
accordingly.

For example, a virtual directory may contain three web pages: default.aspx, login.aspx, and
bugs.aspx. If you enter the following text at a browser, you will go to default.aspx, which may send
you to login.aspx:

http://localhost

On the other hand, registered users may enter the following to go directly to the login page:

http://localhost/login.aspx

In any event, once logged in, they can go to bugs.aspx. If someone tries going directly to bugs.aspx
without logging in, your code must send them to login.aspx to log in first.

Classic ASP and new ASP.NET applications can coexist side-by-side on the same server. In fact, they
can coexist in the same application directory. However, configuration, application, and session
objects cannot be shared between them. They are totally distinct and independent.

20.1.1 Virtual Directories

Virtual directories in IIS are central to web applications. A virtual directory is any directory on the
server, or accessible to the server, that has been designated as such in IIS. Virtual directories are
isomorphic with applications; that is, each virtual directory is a separate application, and each
application must have a single virtual root directory. When a new project is created in Visual Studio

http://localhost
http://localhost/login.aspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

.NET, the application virtual directory is created automatically. When a new application is created
using a text editor, you (the developer) must create the virtual directory using IIS, as described
later.

Virtual directories are accessible to requests from browsers coming in over the Internet. The URL is
the name of the domain name, followed by the virtual directory. For example, if an application with a
starting web page called MyPage.aspx was using a virtual directory called ProgAspNet, and the
domain name of the hosting web server was SomeDomainName. com, the URL to access that

application would be:

http://www.SomeDomainName.com/ProgAspNet/MyPage.aspx

To create, look at, or modify virtual directories in IIS, click on the Start button, then Settings
Control Panel, then Administrative Tools. Now you have a choice of two approaches: click on either
Internet Information Services or Computer Management.

From either, you get the Microsoft Management Console (MMC), which is used throughout Windows
for displaying and controlling many system functions. In the left pane is a hierarchical tree structure
showing resources relevant to the aspect(s) of the computer being managed. The right pane contains
the child nodes of the currently selected node on the left.

Looking at Computer Management, the tree on the left has top-level nodes for System Tools,
Storage, and Services and Applications. Drilling down through Services and Applications, then
Internet Information Services, to the default Web Site, the MMC window should look something like
that shown in Figure 20-1.

Figure 20-1. Computer Management console

http://www.SomeDomainName.com/ProgAspNet/MyPage.aspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Internet Services Manager is identical to Computer Management except that the tree on the left
starts with Internet Information Services.

Drilling further down, click on Default Web Site. The contents of the default web site will be visible, as
shown in Figure 20-2. The default web site, by default, is the physical directory c:\inetpub\wwwroot.
When IIS is installed on a machine, it creates this directory, along with several subdirectories
(beginning with the underscore character). If you open a browser window and enter the URL, you will
see the default page for the default web site:

Figure 20-2. Virtual directories

http://localhost

If your web server is accessible over the Internet through a domain name, a remote user at a
browser who entered that domain name as a URL (say for example, as the following), would see the
same thing:

http://www.SomeDomainName.com

You will not actually see anything in the browser unless one of the following conditions is true:

A suitably named file (default.htm, default.asp, default.aspx, or iisstart.asp) containing a default
web page exists in the physical directory.

http://localhost
http://www.SomeDomainName.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory Browsing is enabled by right-clicking on Default Web Site, going to the Home
Directory tab in the Default Web Site Properties dialog box, and checking the Directory browsing
checkbox.

Note that enabling Directory Browsing can be a serious gap in security, so
it is generally not something to do on a production site unless there is a
good reason.

Compare the contents of the default web site in Figure 20-2 with the actual contents of c:\
inetpub\wwwroot shown in Figure 20-3. You can see that all the files and directories actually in the
physical directory are also in the default web site in Figure 20-2. These physical directories, such as
images and _ private, are normal directories with standard Explorer-style directory icons.

Figure 20-3. c\inetpub\wwwroot

Other directories in the default web site shown in Figure 20-2, such as _vti_bin and Scripts, have a
directory icon with a small globe on the lower-right corner. These are virtual directories, created
either by IIS or by a developer.

Finally, some of the directories in the default web site shown in Figure 20-2 have an icon that looks
like a cardboard box with a green thing inside (it's a package, get it?). These are web application
directories. They can be either physical directories or virtual directories. The virtual directories
created by developers are also application directories by default. This can be changed by right-
clicking on the directory in question in the left pane, selecting Properties, then clicking either the
Create Application Settings button to make it an application directory, or the Remove Application
Settings button to convert the directory to a plain vanilla virtual directory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a new web application or web service is created in Visual Studio .NET, it automatically creates
a physical directory under c:\inetpub\wwwroot with the same name as the application or web service.
This new physical directory is also both a virtual directory and an application directory.

You can make a new virtual directory outside Visual Studio .NET using the Computer Management
window shown in Figure 20-2 (or the equivalent Internet Services Manager window) by right-clicking
on Default Web Site in the left pane, selecting New... Virtual Directory, and following the wizard.
Once the new virtual directory is created, you can right-click on it and select Properties to modify its
properties.

Back in Chapter 2, you created a virtual directory called ProgAspNet. This was mapped to the
physical directory c:\myProjects. In order to access this virtual directory, enter one of the following
URLs from a browser, depending on whether you are on a local machine or accessing the application
over a local intranet or the Internet:

http://localhost/ProgAspNet [local]
http://SomeComputerName/ProgAspNet [intranet]
http://www.SomeDomainName.com/ProgAspNet [Internet]

20.1.2 Application Domains

Each application is run in its own application domain, which is created by the runtime server. Each
application domain is isolated from every other application domain. If one application crashes or
otherwise compromises its own stability, it cannot affect any other domains. This greatly enhances
security and stability.

Since each application is independent from any other application, this also means that each
application has its own independent configuration and control structures.

This chapter assumes that you are using IIS 5 or 5.1, the versions that are
included with the Windows 2000 and Windows XP operating systems. IIS 6
(included with Windows Server 2003) features a similar interface, but adds
enhanced options and a revamped request processing architecture. You can use
all the instructions in this chapter to configure virtual directories in IIS 6.

20.1.3 Assemblies and the \bin Directory

All the files that comprise a .NET application are gathered into an assembly. Assemblies are the basic
units of .NET programming. They appear to the user as a single dynamic link library (dll) or
executable (exe) file. dll files contain classes and methods, which are linked into an application at
runtime as they are needed. Assemblies also contain versioning information so that multiple versions
of the same code can run side-by-side with no conflicts.

Assemblies must be physically located somewhere; these locations are called the assembly cache.
There are two general types of assembly cache: global and application. In order for a class or method
to be visible to an ASP.NET application, the dll containing the class or method must be located in the
assembly cache, either global or application.

The Global Assembly Cache (GAC) is used to store modules that need to be available to all the
applications on a server. It is typically located at c:\winnt\assembly. The Global Assembly Cache will

http://localhost/ProgAspNet [local]
http://SomeComputerName/ProgAspNet [intranet]
http://www.SomeDomainName.com/ProgAspNet [Internet]
http://lib.ommolketab.ir
http://lib.ommolketab.ir

be discussed in Section 20-4 later in this chapter.

The application assembly cache contains compiled methods and classes specific to the application.
Each application directory has a special \bin subdirectory to contain the application assembly cache.
All that is necessary to "register" your dll with an application is to copy it to the \bin directory. Any
class or method in any dll in the \bin directory is automatically visible to all web pages and services in
the application (i.e., in the directory that is the parent directory of the \bin directory).

If there are multiple versions of identically named classes or methods within the
assembly cache, an error will occur. This is where namespaces can be useful in
resolving ambiguities on otherwise identically named methods or classes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

20.2 Controlling the Application

Now that an application has been defined, you will see how applications can be controlled globally.
There are two ways of doing this: using the HttpApplication object and using the global.asax file.

20.2.1 HttpApplication Object

Just as a web page instantiates the Page class, when an application runs, it instantiates an object
from the HttpApplication class. This object has methods, properties, and events that are available to
all the objects within the application. It provides several objects that allow you to interact with the
HTTP request. These include:

The Application object for using application state

The Request object for getting access to the incoming request

The Response object for sending an HttpResponse back to the client

The Session object for access to session state

ASP.NET maintains a pool of HttpApplication instances during the lifetime of each application. Every
time a page is requested from the server, an HttpApplication instance is assigned to it. This instance
manages the request from start to end. Once the request is completed, that instance is freed up for
reuse.

You can program against the HttpApplication object by using a file called global.asax, described in the
next section.

20.2.2 global.asax

Any code contained in the global.asax file becomes part of the application in which it is located There
can be only a single global.asax file per application, located in the virtual root directory of the
application. However, this file is optional. If there is no global.asax file, then the application will run
using default behavior for all the events exposed by the HttpApplication class.

Classic ASP had a file with similar format and structure, called global.asa. In
fact, if you copy all the code from a working copy of global.asa into global.asax,
the application should run fine.

When the application runs, the contents of global.asax are compiled into a class that derives from the
HttpApplication class. Thus, all the methods, classes, and objects of the HttpApplication class are
available to your application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The CLR monitors global.asax for changes. If it detects a change in the file, the application is
automatically stopped and restarted. This starts a new application domain. Any requests that are
currently being handled by the old application domain are allowed to complete, but any new requests
are handled by the new application domain. When the last request on the old application domain is
finished, that application domain is removed. This effectively reboots the web application without any
users being aware of the fact.

To prevent application users from being able to see the code underlying the application, ASP.NET is
configured by default to prevent users from seeing the contents of global.asax. If someone enters the
following URL in a browser:

http://localhost/progaspnet/Global.asax

they will receive a 403 (forbidden) error message or an error message similar to the following:

This type of page is not served.

web.config files, described shortly, have behaviors similar to global.asax. If
changed, the application will automatically restart. And it is not possible to view
the files in a browser.

The global.asax file looks and is structured very similarly to a page file (.aspx). It can have one or
more sections, which will be described in detail shortly. The sections are:

Directives

Script blocks

Server-side includes

Object declarations

Just as web pages and web services can use code-behind, the global.asax file can also use code-
behind. In fact, similar to web pages and web services, the default behavior of Visual Studio .NET is
to use the code-behind technique with global.asax. It creates a default global.asax file in the
application root. The Application directive in that global.asax file (which is analogous to the Page

directive in the page file and will be described fully in the next section of this chapter) has an Inherits
property that points to the code-behind class created in global.asax.vb or global.asax.cs, depending
on your language.

A sample global.asax file is shown in Example 20-1 in VB.NET and in Example 20-2 in C#. Note that,
in order to use this example, the ASP.NET account must have the permission to access the root
directory c:\ (which isn't recommended in a production system).

Example 20-1. Sample global.asax in VB.NET

<%@ Application Language="VB"%>
<script runat="server">

 protected sub Application_Start(ByVal Sender as Object, _
 ByVal e as EventArgs)

http://localhost/progaspnet/Global.asax
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Application("strDSN") = _
 "SERVER=Zeus;DATABASE=Pubs;UID=sa;PWD=secret;"

 dim Books() as string = {"SciFi","Novels", "Computers", _
 "History", "Religion"}
 Application("arBooks") = Books

 WriteFile("Application Starting")
 end sub

 protected sub Application_End(ByVal Sender as Object, _
 ByVal e as EventArgs)
 WriteFile("Application Ending")
 end sub

 sub WriteFile(strText as string)
 dim writer as System.IO.StreamWriter = _
 new System.IO.StreamWriter("C:\test.txt",true)
 dim str as string
 str = DateTime.Now.ToString() & " " & strText
 writer.WriteLine(str)
 writer.Close()
 end sub
</script>

Example 20-2. Sample global.asax in C#

<%@ Application Language="C#"%>
<script runat="server">

 protected void Application_Start(Object sender, EventArgs e)
 {
 Application["strDSN"] =
 "SERVER=Zeus;DATABASE=Pubs;UID=sa;PWD=secret;";

 string[] Books = {"SciFi","Novels", "Computers",
 "History", "Religion"};
 Application["arBooks"] = Books;

 WriteFile("Application Starting");
 }

 protected void Application_End(Object sender, EventArgs e)
 {
 WriteFile("Application Ending");
 }

 void WriteFile(string strText)
 {
 System.IO.StreamWriter writer =
 new System.IO.StreamWriter(@"C:\test.txt",true);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 string str;
 str = DateTime.Now.ToString() + " " + strText;
 writer.WriteLine(str);
 writer.Close();
 }
</script>

20.2.2.1 Directives

As with web page and web service files, the global.asax file begins with zero, one, or more application
directives. These are used to specify settings to be used by the application compilers when they
process the ASP.NET files. Just like page directives, application directives use a dictionary structure
that accepts one or more attribute/value pairs. There are three supported directives: Application,
Import, and Assembly.

Application

The Application directive specifies application-specific attributes used by the compiler. A sample
Application directive might look something like this:

<%@ Application Language="VB" Inherits="WebServiceConsumer.Global"
 Description="A sample application" %>

The Language attribute can have any of the standard language values: VB, C#, JS, or VJ# for

VB.NET, C#, JScript .NET, or J#, respectively. (Any third-party language that supports the .NET
platform can also be used.) The default is C#. The language specified here applies only to the

language used in the global.asax file, not to any of the other code files in the application. It is
perfectly legal to use C# in the global.asax file and VB.NET in the .aspx file, or vice versa, for
example.

The Inherits attribute specifies the name of a class to inherit from. When Visual Studio .NET creates

a global.asax file, it uses this attribute to specify the name of the class created in the code-behind
file.

The Description attribute will accept a text description of the application, which is then ignored by

the parser and compiler.

The CodeBehind attribute is used only by Visual Studio .NET to keep track of the file that contains the

code-behind.

The ClassName attribute is used to assign a name to the class generated by the code in the

global.asax file. This class name can then be used for identifying global static variables and instance
methods, as will be shown later.

Import

The Import directive takes a single attribute, a namespace. The specified namespace is explicitly

imported into the application, making all its classes and interfaces available. The imported
namespace can either be part of the .NET Framework or a custom namespace.

A typical Import directive might look like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@ Import Namespace="System.Data" %>

There can be only a single Namespace attribute. If you need to import multiple namespaces, use
multiple Import directives.

The following namespaces are automatically imported into all web applications and so do not need an
Import directive:

System
System.Collections
System.Collections.Specialized
System.Configuration
System.IO
System.Text
System.Text.RegularExpressions
System.Web
System.Web.Caching
System.Web.Security
System.Web.SessionState
System.Web.UI
System.Web.UI.HtmlControls
System.Web.UI.WebControls

Assembly

The Assembly directive links an assembly to the current application during compilation. This makes

all the assembly's classes and interfaces available to the application.

Using the Assembly directive enables both early binding and late binding, since the assembly can be

referenced at compile time, then loaded into the application domain at runtime.

Assemblies that are physically located in the application assembly cache (i.e., the \bin directory) are
automatically linked to the application. Therefore, any assembly located in the \bin directory does not
need to be linked with an Assembly directive.

There are two possible attributes for the Assembly directive: Name and Src. Name is a string with the
name of the assembly to link to the application. It should not include a path. Src is the path to a

source file that will be dynamically compiled and linked.

Each Assembly directive can have only a single attribute. If you need to link to multiple assemblies,
use multiple Assembly directives.

Assembly directives will look something like this:

<%@ Assembly Name="SomeAssembly" %>
<%@ Assembly Src="SomeSourceFile.cs" %>

20.2.2.2 Script blocks

The typical global.asax file will contain the bulk of its code in a script block. In Example 20-1 and
Example 20-2, this would include all the code contained between the script tags:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<script runat="server">
.
.
.
</script>

If using code-behind, the code contained within the code-behind class in the code-behind file is
equivalent to putting the code in a script block, although code in the code-behind file itself is not
enclosed by script tags.

The code contained within the script block can consist of event handlers, methods, or static variables.
All of these are described in the following sections. In Example 20-1 and Example 20-2, the script
block contains two event handlers, Application_Start and Application_End, plus a public method,
WriteFile.

Events

Just as web pages and the controls that they contain expose events that can be handled by the CLR,
the application and sessions running under the application also expose events. These events can be
handled by event handlers contained in the global.asax file. For example, the Application_Start event
is fired when the application starts, and the Application_End event is fired when the application ends.

Some of the application events fire every time a page is requested, while others, such as
Application_Start or Application_Error, only fire under certain conditions.

The Application_Start event is fired when the application starts and the Application_End event is fired
when the application ends. The sample global.asax file shown in Example 20-1 and Example 20-2
demonstrates event handlers for these two events. The Application_Start event in Example 20-1 and
Example 20-2 sets two Application properties: a string called strDSN and an array of strings called
arBooks. The event handler then calls a method, WriteFile, which is also contained within the
global.asax file. This method writes a line to a log file with a message that the application is starting.

The WriteFile method is a very simple logging method. It opens a StreamWriter object on a text file,
hard-coded to be c:\test.txt. It adds a line to the file containing a timestamp and whatever text
string is passed in to the method. The Boolean parameter true in the StreamWriter method call

specifies that if the file already exists, the line will be appended to the file. If the file does not exist, it
is created.

The Application_End event handler simply makes another call to WriteFile to make a log entry that
the application has ended.

To see the results of these two event handlers, make some meaningless edit to global.asax and save
the file. This will force the application to end. Then request any URL in the virtual directory that
contains the global.asax file. For this example, use one of the web pages from a previous chapter-it
doesn't really matter which one-or even a very simple web page of your own creation. Example 20-3
shows an excerpt from the resulting log file.

Example 20-3. Excerpt from Test.txt

8/26/2001 5:46:23 PM Application Starting
8/26/2001 6:13:35 PM Application Ending

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8/27/2001 10:17:39 PM Application Starting
8/27/2001 10:18:23 PM Application Ending
8/27/2001 10:18:36 PM Application Starting

Just as there are Start and End events for the Application, there are Start and End events for each
session, Session_Start and Session_End. This allows you to have code that will run every time every
session within the application starts and ends.

By putting an event handler in global.asax for every possible application event, as shown in Example
20-4 for VB.NET and Example 20-5 for C#, it is easy to see the cycle of application events as the
page request is received, processed, and rendered.

Example 20-4. global.asax event demonstration in VB.NET

<%@ Application Language="VB" %>

<script runat="server">

 protected sub Application_Start(ByVal Sender as Object, _
 ByVal e as EventArgs)
 WriteFile("Application Starting")
 end sub

 protected sub Application_End(ByVal Sender as Object, _
 ByVal e as EventArgs)
 WriteFile("Application Ending")
 end sub

 protected sub Session_Start(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Session_Start" + "
")
 end sub

 protected sub Session_End(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Session_End" + "
")
 end sub

 protected sub Application_Disposed(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_Disposed" + "
")
 end sub

 protected sub Application_Error(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim strError as string
 strError = Server.GetLastError().ToString()

 Context.ClearError()

 Response.Write("Application_Error" + "
")
 Response.Write("Error Msg: " & strError + "
")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end sub

 protected sub Application_BeginRequest(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_BeginRequest" + "
")
 end sub

 protected sub Application_EndRequest(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_EndRequest" + "
")
 end sub

 protected sub Application_AcquireRequestState(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_AcquireRequestState" + "
")
 end sub

 protected sub Application_AuthenticateRequest(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_AuthenticateRequest" + "
")
 end sub

 protected sub Application_AuthorizeRequest(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_AuthorizeRequest" + "
")
 end sub

 protected sub Application_PostRequestHandlerExecute(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_PostRequestHandlerExecute" + "
")
 end sub

 protected sub Application_PreRequestHandlerExecute(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_PreRequestHandlerExecute" + "
")
 end sub

 protected sub Application_PreSendRequestContent(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_PreSendRequestContent" + "
")
 end sub

 protected sub Application_PreSendRequestHeaders(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_PreSendRequestHeaders" + "
")
 end sub

 protected sub Application_ReleaseRequestState(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_ReleaseRequestState" + "
")
 end sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 protected sub Application_ResolveRequestCache(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_ResolveRequestCache" + "
")
 end sub

 protected sub Application_UpdateRequestCache(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Response.Write("Application_UpdateRequestCache" + "
")
 end sub

 sub WriteFile(strText as string)
 dim writer as System.IO.StreamWriter = _
 new System.IO.StreamWriter("C:\test.txt",true)
 dim str as string
 str = DateTime.Now.ToString() & " " & strText
 writer.WriteLine(str)
 writer.Close()
 end sub

</script>

Example 20-5. global.asax event demonstration in C#

<%@ Application Language="C#" %>

<script runat="server">

 protected void Application_Start(Object sender, EventArgs e)
 {
 WriteFile("Application Starting");
 }

 protected void Application_End(Object sender, EventArgs e)
 {
 WriteFile("Application Ending");
 }

 protected void Session_Start(Object sender, EventArgs e)
 {
 Response.Write("Session_Start" + "
");
 }

 protected void Session_End(Object sender, EventArgs e)
 {
 Response.Write("Session_End" + "
");
 }

 protected void Application_Disposed(Object sender, EventArgs e)
 {
 Response.Write("Application_Disposed" + "
");
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 protected void Application_Error(Object sender, EventArgs e)
 {
 string strError;
 strError = Server.GetLastError().ToString();

 Context.ClearError();

 Response.Write("Application_Error" + "
");
 Response.Write("Error Msg: " + strError + "
");
 }

 protected void Application_BeginRequest(Object sender, EventArgs e)
 {
 Response.Write("Application_BeginRequest" + "
");
 }

 protected void Application_EndRequest(Object sender, EventArgs e)
 {
 Response.Write("Application_EndRequest" + "
");
 }

 protected void Application_AcquireRequestState(Object sender, EventArgs e)
 {
 Response.Write("Application_AcquireRequestState" + "
");
 }

 protected void Application_AuthenticateRequest(Object sender, EventArgs e)
 {
 Response.Write("Application_AuthenticateRequest" + "
");
 }

 protected void Application_AuthorizeRequest(Object sender, EventArgs e)
 {
 Response.Write("Application_AuthorizeRequest" + "
");
 }

 protected void Application_PostRequestHandlerExecute(Object sender, EventArgs e)
 {
 Response.Write("Application_PostRequestHandlerExecute" + "
");
 }

 protected void Application_PreRequestHandlerExecute(Object sender, EventArgs e)
 {
 Response.Write("Application_PreRequestHandlerExecute" + "
");
 }

 protected void Application_PreSendRequestContent(Object sender, EventArgs e)
 {
 Response.Write("Application_PreSendRequestContent" + "
");
 }

 protected void Application_PreSendRequestHeaders(Object sender, EventArgs e)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 Response.Write("Application_PreSendRequestHeaders" + "
");
 }

 protected void Application_ReleaseRequestState(Object sender, EventArgs e)
 {
 Response.Write("Application_ReleaseRequestState" + "
");
 }

 protected void Application_ResolveRequestCache(Object sender, EventArgs e)
 {
 Response.Write("Application_ResolveRequestCache" + "
");
 }

 protected void Application_UpdateRequestCache(Object sender, EventArgs e)
 {
 Response.Write("Application_UpdateRequestCache" + "
");
 }

 void WriteFile(string strText)
 {
 System.IO.StreamWriter writer =
 new System.IO.StreamWriter(@"C:\test.txt",true);
 string str;
 str = DateTime.Now.ToString() + " " + strText;
 writer.WriteLine(str);
 writer.Close();
 }
</script>

The following are all the events fired with every page request, in the order in which they are fired:

Application_BeginRequest

Raised for every request handled by ASP.NET. Code in this event handler is executed before
the web page or service processes the request.

Application_AuthenticateRequest

Raised prior to authentication of the request. (As was covered in Chapter 19, authentication is
the process whereby a user is verified as being who they say they are.) Code in this event
handler allows custom security routines to be implemented.

Application_AuthorizeRequest

Raised prior to authorization of the request. (Authorization is the process of determining if the
requesting user has permission to access a resource as discussed in Chapter 19.) Code in this
event handler allows custom security routines to be implemented.

Application_ResolveRequestCache

Raised before ASP.NET determines whether the output should be generated fresh or fulfilled
from cache. Code in this event handler is executed in either case.

Application_AcquireRequestState

Raised prior to acquiring the session state.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application_PreRequestHandlerExecute

Raised just prior to the request being passed to the handler that is servicing the request. After
the event is raised, the page is processed by the HTTP handler processing the request.

Application_PostRequestHandlerExecute

Raised when the HTTP handler is finished with the page request. At this point, the Response
object now has the data to send back to the client.

Application_ReleaseRequestState

Raised when the session state is released and updated.
Application_UpdateRequestCache

Raised when the output cache is updated, if the output is to be cached.
Application_EndRequest

Raised when the request is finished.
Application_PreSendRequestHeaders

Raised prior to sending the HTTP headers to the client. If response buffering is enabled,
meaning that none of the data will be sent until all the data is ready (the default condition),
this event will always follow Application_EndRequest. If response buffering is disabled, then this
event will be raised whenever the data is sent back to the client. Response buffering is
controlled by an attribute to a Page directive or, in the case of web services, a WebMethod

attribute.
Application_PreSendRequestContent

Raised prior to sending the HTTP content to the client. As with
Application_PreSendRequestHeaders, the order in which the event is raised depends on
whether or not response buffering is enabled.

The following are the application events that fire only under certain conditions:

Application_Start

Raised whenever the application is started. An application is started the first time any page is
requested from an application virtual directory and the application is not already running.

Application_End

Raised whenever an application ends. An application ends whenever one of the configuration
files (global.asax, global.asax.cs, global.asax.vb, web.config, or a server-side include file) is
modified, or the server is crashed or restarted. Cleanup code, such as closing database
connections, is normally executed in this event handler.

Session_Start

Raised for every session that starts. This is a good place to place code that is session-specific.
Session_End

Raised for every session that ends. This provides an opportunity to save any data stored in
session state.

Application_Disposed

Raised when the CLR removes the application from memory.
Application_Error

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Raised whenever an unhandled error occurs anywhere in the application. This provides an
excellent opportunity to implement generic application-wide error handling.

You can handle specific error conditions where necessary in your code, using try.. catch blocks. You
can also trap for errors at the page level using the ErrorPage attribute of the Page directive. Any

errors handled in these ways will not trigger the Application_Error event.

To test this new version of global.asax, create the simple web page shown in Example 20-6 for
VB.NET or Example 20-7 for C#. In the C# version of the code listing in Example 20-7, only the script
block is shown, since the HTML is identical to the VB.NET version. When this web page is run, you will
typically see something similar to the screen shot shown in Figure 20-4.

Example 20-6. Web page demonstrating application events in VB.NET,
vbGlobalEvents-01.aspx

<%@ Page Language="VB" %>

<script runat="server">

 sub btnEndSession_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Session.Abandon()
 end sub</script>

<html>
 <body>
 <form runat="server">

 <h1>Global Events</h1>

 <asp:Button
 id="btnEndSession"
 Text="End Session"
 OnClick="btnEndSession_Click"
 runat="server"/>

 </form>
 </body>
</html>

Example 20-7. Web page demonstrating application events in C#,
csGlobalEvents-01.aspx

<%@ Page Language="C#" %>

<script runat="server">

 void btnEndSession_Click(Object Source, EventArgs E)
 {
 Session.Abandon();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
</script>

Figure 20-4. Viewing global events

In Figure 20-4, you see that a series of application events have fired. About midway through the
page, the .aspx file itself is finally rendered, followed by another series of application events.

Notice that the first time the page is displayed, the Session_Start event is fired, but on subsequent
displays, the Session_Start event may not be fired. This is because the request is part of the same
session. Clicking on the End Session button causes the Session.Abandon method to be called, which
ends the current session. The next time the page is submitted to the server, the Session_Start event
will again be fired.

Most of the Application event handlers in Example 20-4 and Example 20-5 use the Response.Write
method to indicate that the event has been called. However, the Application_Start and
Application_End methods call the WriteFile method instead. If you try using Response.Write in these
event handlers, they will not display on the web page because the session in which the page is to be
rendered is not running. However, by examining the log file, c:\test.txt, you will see entries that
indicate when the application starts and ends.

The sample global.asax file shown in Example 20-4 and Example 20-5 demonstrates one way of using
the Application_Error event. That code is reproduced here for reference. In VB.NET, it is:

protected sub Application_Error(ByVal Sender as Object, _
 ByVal e as EventArgs)
 dim strError as string
 strError = Server.GetLastError().ToString()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Context.ClearError()

 Response.Write("Application_Error" + "
")
 Response.Write("Error Msg: " & strError + "
")
end sub

In C#, it is:

protected void Application_Error(Object sender, EventArgs e)
{
 string strError;
 strError = Server.GetLastError().ToString();

 Context.ClearError();

 Response.Write("Application_Error" + "
");
 Response.Write("Error Msg: " + strError + "
");
}

This event handler uses the HttpServerUtility object's GetLastError method to report the last error
that occurred. That error is converted to a string and assigned to a string variable:

strError = Server.GetLastError().ToString()

Next the HttpContext object's ClearError method is called to clear all the errors for the current HTTP
request:

Context.ClearError()

If the errors are not cleared, then the error will still display on the client browser and the subsequent
Response.Write statements will never be visible.

Finally the Response.Write statements display a message and the current error to the client

browser.

An alternative technique for reporting an error to the user would display a custom error handling
page. To do this, replace the Response.Write lines in the Application_Error event handler with the

following line of code in C#:

Response.Redirect("CustomErrorPage.aspx?Msg=" +
 Server.UrlEncode(strError));

In VB.NET, use the following:

Response.Redirect("CustomErrorPage.aspx?Msg=" & _
 Server.UrlEncode(strError))

This line of code uses the HttpServerUtility object's UrlEncode method to pass the error message as a
query string parameter to the custom error page coded in CustomErrorPage.aspx.
CustomErrorPage.aspx would have a label control, called lblMessage, and the following code in its
Page_Load method (in C#):

void Page_Load(Object Source, EventArgs E)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{
 lblMessage.Text = Request.QueryString(Msg);
}

20.2.2.3 Global static variables and instance methods

It was noted previously that the code contained in the global.asax file is compiled into a class derived
from HttpApplication and becomes part of the application. You can assign a name to this compiled
class by using the ClassName attribute of the Application directive. In VB.NET, the Application

directive then looks something like the following:

<%@ Application Language="VB" ClassName="ProgAspNet"%>

In C#, it might look like this:

<%@ Application Language="C#" ClassName="ProgAspNet"%>

Once a name has been assigned to the class, it can be referred to throughout the application, making
available global static variables and instance methods.

Static member variables are those variables that do not require that the class containing the variable
be instantiated. Static member variables are defined using the Shared keyword in VB.NET, and with
the static keyword in C#.

Public methods can also be defined using either the VB.NET Shared keyword or the C# static

keyword, in which case they do not require that the class of which the method is a member be
instantiated in order to invoke the method. For example, given the following Application directive in

global.asax:

<%@ Application Language="C#" ClassName="ProgAspNet"%>

a method named SomeMethod defined in global.asax can be invoked anywhere in the application with
the following line of code:

ProgASPNet.SomeMethod();

Methods can also be instance methods; that is, they can be called from an object instance. For
example, given the following Application directive in global. asax:

<%@ Application Language="VB" ClassName="ProgAspNet"%>

the following code invokes the method (in VB .NET):

Dim oProg As New ProgAspNet
oProg.SomeMethod()

To see how global static variables and instance methods defined in global.asax can be made available
throughout an ASP.NET application, make the following modifications to the global.asax files in either
Example 20-4 or Example 20-5:

To assign a name to the class compiled from global.asax, modify the Application directive by
adding the ClassName attribute. In VB.NET, the Application directive will then look like this:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

<%@ Application Language="VB" ClassName="ProgAspNet"%>

In C#, it will look like this:

<%@ Application Language="C#" ClassName="ProgAspNet"%>

Define and initialize a static variable named successRate by adding one of the following lines of

code to the script block in the global.asax file. In VB.NET, it will look like this:

2.

public shared successRate as integer = 50

In C#, it will look like this:

public static int successRate = 50;

Add the public keyword to the WriteFile method declaration in order to make that method

globally available. The C# method declaration will then look like this:

3.

public void WriteFile(string strText)

The VB method declaration will look like this:

Public Sub WriteFile(strText as string)

To demonstrate the use of global static variables and global instance methods, access the sample
web page shown in Example 20-8 (for VB.NET) or Example 20-9 (for C#). The pages are similar to
those shown in Example 20-6 and Example 20-7, respectively, with the code changes highlighted. In
the C# version of the code listing in Example 20-9, only the script block is shown, since the HTML is
identical to the VB. NET version.

Example 20-8. Global static variable and instance method demonstration
web page in VB.NET, vbGlobalEvents-02. aspx

<%@ Page Language="VB" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 lblGlobalStatic.Text = ProgAspNet.successRate.ToString() + " %"

 dim p as new ProgAspNet

 p.WriteFile("Now in Page_Load of web page.")
 end sub

 sub btnEndSession_Click(ByVal Sender as Object, _
 ByVal e as EventArgs)
 Session.Abandon()
 end sub</script>

<html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <body>
 <form runat="server">

 <h1>Global Events</h1>

 Global Static Variable:
 <asp:Label
 id="lblGlobalStatic"
 runat="server"/>

 <asp:Button
 id="btnEndSession"
 Text="End Session"
 OnClick="btnEndSession_Click"
 runat="server"/>

 </form>
 </body>
</html>

Example 20-9. Global static variable and instance method demonstration
web page in C#, csGlobalEvents-02.aspx

<%@ Page Language="C#" %>

<script runat="server">

 void Page_Load(Object Source, EventArgs E)
 {
 lblGlobalStatic.Text = ProgAspNet.successRate.ToString() + " %";

 ProgAspNet p = new ProgAspNet();

 p.WriteFile("Now in Page_Load of web page.");
 }

 void btnEndSession_Click(Object Source, EventArgs E)
 {
 Session.Abandon();
 }
</script>

Once the class name has been assigned and a static variable is declared in global.asax, referencing
the static variable is as simple as prepending the class name to the variable name using dot notation,
as in:

lblGlobalStatic.Text = ProgAspNet.successRate.ToString() + " %";

The ToString method must be called to convert the variable to a string so that it can be concatenated
with a string literal and assigned to the Text property of the label.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Calling the instance method is slightly more involved, since the class must first be instantiated. In
VB.NET the following line of code instantiates the class:

dim p as new ProgAspNet

In C#, that is accomplished with the following line:

ProgAspNet p = new ProgAspNet();

Once the class has been instantiated, the WriteFile method is called using dot notation. In VB.NET,
the line is:

p.WriteFile("Now in Page_Load of web page.")

In C#, it's:

p.WriteFile("Now in Page_Load of web page.");

20.2.2.4 Server-side includes

External source code files can be included in the application using server-side includes. The code
contained within an include file is added to global.asax before it is compiled. The language used in the
include file must match the language used in the global.asax file, although that may be different from
the language(s) used within the application.

The syntax for a server-side include is identical for both VB.NET and C#:

<!--#Include PathType="fileName" -->

In this syntax, PathType can have one of two values, shown in Table 20-1.

Table 20-1. PathType attributes

Type of
path

Description

File
fileName is a string containing a relative path from the directory containing the

global.asax file.

Virtual
fileName is a string containing a full virtual path from a virtual directory in your web

site.

Looking at the sample global.asax listed in Example 20-1 or Example 20-2, add the following line as
the second line in the file:

<!--#Include File="IncludeFile.vb" -->

or:

<!--#Include File="IncludeFile.cs" -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

depending on your language. Create a new text file, called either IncludeFile.vb or IncludeFile.cs, and
store it in the same directory that contains global.asax. This file requires a pair of script tags, just like
the global.asax file itself.

Move a copy of the WriteFile method from global.asax to the include file. Finally, comment out (or
delete) the WriteFile method from global.asax. The include file should look like Example 20-10 or
Example 20-11, depending on the language.

Example 20-10. Include file for global.asax in VB.NET

<script runat="server" >

 Public sub WriteFile(strText as string)
 dim writer as System.IO.StreamWriter = _
 new System.IO.StreamWriter("C:\test.txt",true)
 dim str as string
 str = DateTime.Now.ToString() & " " & strText
 writer.WriteLine(str)
 writer.Close()
 end sub

</script>

Example 20-11. Include file for global.asax in C#

<script runat="server">

 public void WriteFile(string strText)
 {
 System.IO.StreamWriter writer =
 new System.IO.StreamWriter(@"C:\test.txt",true);
 string str;
 str = DateTime.Now.ToString() + " " + strText;
 writer.WriteLine(str);
 writer.Close();
 }

</script>

If you run any of your web pages, there should be no difference in behavior, because all you did was
move the code for a method from one file to another.

Just as the CLR watches for changes in global.asax and restarts the application if any occur, it also
watches for changes in any include files. If an include file changes, then the application restarts for
that as well.

Include files are very useful for including the same standard code into multiple applications. This
common code could include such things as methods for database access, writing log entries, error
handling routines, logins, or any number of infrastructure-type pieces that are part of every
application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.2.2.5 Object declarations

One additional way to include code in the global.asax file is as declarative object tags. These static
objects are declared as either Application objects or Session objects. They are then available for the
duration of either the application or each session.

Here is a code snippet showing how an object might be declared in the global.asax file. This snippet
would be located outside the script block in the file:

<object id="strDSN"
 class="System.String"
 scope="Application"
 runat="server"/>

The object in this snippet can be referred to in the application by the value of the id attribute, which
in this example is strDSN.

The class attribute specifies the type of this object. In this case, it is a string object. The class

attribute implies that the object is derived from a .NET assembly. Alternatively, you can use either a
progid or classid instead of the class attribute to instantiate a COM object rather than a .NET
object. Each object declaration can have only one of either class, progid, or classid.

In this snippet, the scope attribute specifies that this will be an Application object. The other legal
value for this attribute is Session.

Objects declared in this way are not actually created upon declaration. They are created the first time
they are referenced in the application. To reference the static object shown in the code snippet above
in your code, refer to:

Application("strDSN")

It is also possible to store application or session information elsewhere, such as in the web.config file,
which will be described in the next section.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

20.3 Configuring the Application

ASP.NET provides a very powerful and flexible means of configuring applications. This configuration is
accomplished using text-based XML configuration files. The server-wide configuration file is called
machine.config , described in Section 20-3.1 . This is supplemented by a number of application-specific
configuration files, all called web.config , located in the application virtual root directory and subdirectories.

This configuration scheme offers the following features:

The XML files that control the configuration can be edited with any standard text editor or XML parser.
It is not necessary to use the IIS control panel, as was the case with classic ASP.

Since the configuration is accomplished with text files, it is easy to administer remotely. Files can be
created or edited remotely, then copied into place via FTP or remote network access by anyone with
suitable security clearance. There is no need for a person to be physically present at the server
machine hosting the application in order to perform configuration chores, as is the case with classic
ASP.

The system is hierarchical. Each application inherits a baseline configuration from machine.config ,
located on the server. The web.config files then apply successive configuration attributes and
parameters as the application directory tree structure is traversed. This will be explained in detail in
Section 20-3.1 .

A corollary of the hierarchical nature of the system is that each application can have its own
independent configuration. It is not necessary for all applications to share a server-wide configuration,
as with classic ASP.

The system is extensible . The baseline system provides configurability to a large number of standard
program areas. In addition, you can add custom parameters, attributes, and section handlers, as
required by your application. This too will be explained in detail later.

It is possible to modify the configuration of a running application without stopping and restarting either
the application or the server. The changes automatically and immediately apply themselves to any
new client requests. Any clients online at the time the changes are made will not be aware that
changes are being made, other than perhaps a slight delay for the first request made after the change
is put in place.

The configuration settings for each unique URL are computed at application runtime, using all the
hierarchical web.config files. These configuration settings are then cached so that requests to each
URL can retrieve the configuration settings in a performant manner. ASP.NET automatically detects if
any configuration files anywhere in the hierarchy are modified, and recomputes and recaches the
configuration settings accordingly.

Configuration files are hidden from browser access. If a browser directly requests a configuration file in
a URL, an HTTP access error 403 (forbidden) will be returned. This is the same behavior seen if the
global.asax file is requested directly by a browser.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.3.1 Hierarchical Configuration

The configuration system is hierarchical, just as a directory tree structure is hierarchical. The file at the very
top of the hierarchy is a file called machine.config . This file is contained in the subdirectory:

c:\winnt\Microsoft.NET\Framework\version number\CONFIG

where version number will be replaced with the version of the .NET runtime installed on your machine,
such as v1.1.4322 .

All the other configuration files are called web.config . These files are optional: if there are none anywhere
in an application virtual directory or its subdirectories, then the configuration settings contained in
machine.config will apply to your application without any modifications.

Each directory and subdirectory contained in the application can have at most a single web.config file. The
configuration settings contained in a specific instance of web.config apply to the directory in which it is
contained and to all its child directories. If a specific instance of web.config contains a setting that is in
conflict with a setting higher up in the configuration hierarchy (i.e., in a parent directory or machine.config
), then the lower-level setting will override and apply to its own directory and all child subdirectories below it
(unless, of course, any of those child subdirectories have their own copies of web.config , which will further
override the settings).

So, for example, consider the directory structure shown in Figure 20-5 . The virtual root of the web site is
called MyWebSite , corresponding to the physical directory c:\inetpub\wwwroot\MyWebSite . Underneath
the virtual root are two child subdirectories, each of which has additional child subdirectories. The URL for
this web site would be www.MyWebSite.com (assuming that the domain name MyWebSite.com was
registered to the IP address assigned to the server).

Figure 20-5. Hierarchical configuration

If there were no web.config files in any of these directories, then all the configuration would come directly
from machine.config . If there is a version of web.config in the directory MyWebSite , then any settings it
contains would apply to the entire application (but only to that application), including all the subdirectories
beneath it. If there were another version of web.config in the MembersOnly directory, then its configuration
settings would apply to the MembersOnly directory and its subdirectories, but not to PublicStuff . If any of
the settings in web.config in MembersOnly conflicted with those in MyWebSite , then the settings in
MembersOnly would override those in MyWebSite .

It is important to note that the hierarchical nature of the configuration files is based on application virtual
directories. Refer again to Figure 20-5 . The only virtual directory defined so far for that application is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MyWebSite . However, suppose another virtual directory, MyPublicWebSite , were defined, corresponding to
c:\inetpub\wwwroot\MyWebSite\PublicStuff . The URL for this application would be
www.MyPublicWebSite.com . This application would inherit the configuration settings from machine.config ,
but not from c:\inetpub\wwwroot\MyWebSite\web.config . Although c:\inetpub\wwwroot\MyWebSite is the
physical parent directory of c:\inetpub\wwwroot\MyWebSite\PublicStuff , it is not the virtual parent. In fact,
c:\inetpub\wwwroot\MyWebSite\PublicStuff is a virtual root and does not have a parent. Configuration
settings inherit from virtual parents, not physical parents.

20.3.2 Format

The configuration files, machine.config and web.config , are XML files. As such they must be well-formed.
(For a description of well-formed XML, see the sidebar "Well-Formed HTML" in Chapter 4.) Specifically,
these files consist of a nested hierarchy of XML tags. All opening tags must have the corresponding closing
tag or be self-closing (with a trailing / character just inside the closing angle bracket). The tag pairs must

not be interleaved with other tag pairs. Subtags may be nested inside tag pairs. Both tags and subtags may
have attributes and attribute values. All of these elements are case-sensitive.

Typically, tag and attribute names consist of one or more words run together. Tag and attribute names are
camel-cased. Attribute values are usually Pascal-cased.

Camel-casing means that all the characters are lowercase, including the first character, except the first
character of each run-on word after the first. Examples of camel-casing are appSettings , configSections
, section , and sessionState .

Pascal-casing is the same as camel-casing except that the first character of the name
is also upper case. Examples of Pascal-casing are SortByTime , InProc , and
StateServer .

The word usually is used because there are exceptions:

true and false are always lowercase.

Literal strings do not adhere to either camel- or Pascal-casing. A database connection string may be
specified as: SERVER=Zeus;DATABASE=Pubs;UID=sa;PWD=secret;

If the value is the name of another tag in a configuration file, then it will be camel-cased.

The first line in the configuration file declares the file to be an XML file, with attributes specifying the version
of the XML specification to which the file adheres and the character encoding used. Here is a typical XML
declaration line:

<?xml version="1.0" encoding="UTF-8" ?>

The character encoding specified here is UTF-8, which is a superset of ASCII. The character encoding
parameter may be omitted if, and only if, the XML document is written in either UTF-8 or UTF-32.
Therefore, if the XML file is written in pure ASCII, the encoding parameter may be omitted, although
including the attribute contributes to self-documentation.

The next line in the configuration files is the opening <configuration> tag:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<configuration>

The entire contents of the configuration file, except the initial XML declaration, is contained between the
opening <configuration> tag and the closing </configuration> tag.

Comments can be contained within the file using the standard XML (and HTML) format:

<!-- Your comments here -->

Within the <configuration> tags are two broad categories of entries. They are, in the order in which they

appear in the configuration files:

Configuration section handler declarations

Configuration sections

20.3.3 Configuration Section Handler Declarations

The handler declarations are contained between an opening <configSections> tag and a closing
</configSections> tag. Each handler declaration specifies the name of a configuration section, contained

elsewhere in the file that provides specific configuration data. Each declaration also contains the name of
the .NET class that will process the configuration data in that section.

This terminology is very confusing. The first part of the file is enclosed in
<configSections> tags, but contains only a list of the configuration sections and

their handlers, not the configuration sections themselves. And, as you will see
shortly, the configuration sections are each contained within tags, but there is no
grouping tag to contain all the separate configuration sections, analogous to
<configSections> .

The machine.config file contains, in the default installation, many configuration section handler declarations
that cover the areas subject to configuration by default. (Since this is an extensible system, you can also
create your own. A typical entry containing a handler declaration is shown in Example 20-12 .

In the original machine.config file, the contents of Example 20-12 were all contained
in a single line.

Example 20-12. Typical configuration section handler declaration

<section name="compilation"
 type="System.Web.UI.CompilationConfigurationHandler,
 System.Web,
 Version=1.0.2411.0,
 Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" />

Despite appearances to the contrary, the <section> tag has only two attributes: name and type . The name
is compilation . This implies that somewhere else in the configuration file is a configuration section called

http://lib.ommolketab.ir
http://lib.ommolketab.ir

compilation . This configuration section will contain the configuration settings, which are name/value pairs,

to be used by the application(s). It will be described in detail shortly.

The type attribute has a lengthy parameter enclosed in quotation marks. This parameter contains:

The class that will handle the named configuration section

The assembly file (dll) that contains that class

Version and culture information to coordinate with the assembly file

A public key token used to verify that the dll being called is secure

Each handler need only be declared once, either in the base level machine.config file or in a web.config file
further down the configuration hierarchy. The configuration section it refers to can then be specified as
often as desired in other configuration files.

Example 20-13 shows a truncated version of the default machine.config .

Only a small subset of the actual entries in machine.config are included in Example
20-13 . Also, the type attribute of each entry has been edited to remove all but the

class, and lines have been broken to enhance the readability.

Example 20-13. Truncated machine.config file

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
 <configSections>
 <section name="runtime"
 type="System.Configuration.IgnoreSectionHandler" />
 <section name="mscorlib"
 type="System.Configuration.IgnoreSectionHandler" />
 <section name="startup"
 type="System.Configuration.IgnoreSectionHandler" />

 <section name="appSettings"
 type="System.Configuration.NameValueFileSectionHandler " />

 <sectionGroup name="system.net">
 <section name="defaultProxy"
 type="System.Net.Configuration.DefaultProxyHandler " />
 </sectionGroup>

 <sectionGroup name="system.web">
 <section name="compilation"
 type="System.Web.UI.CompilationConfigurationHandler " />
 <section name="pages"
 type="System.Web.UI.PagesConfigurationHandler " />
 </sectionGroup>
 </configSections>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <appSettings>
 <!-- use this section to add application specific configuration
 example: <add key="XML File Name" value="myXmlFileName.xml" /> -->
 </appSettings>

 <system.net>
 <defaultProxy>
 <proxy
 usesystemdefault="true"
 />
 </defaultProxy>
 <webRequestModules>
 <add prefix="http"
 type="System.Net.HttpRequestCreator"
 />
 <add prefix="https"
 type="System.Net.HttpRequestCreator"
 />
 <add prefix="file"
 type="System.Net.FileWebRequestCreator"
 />
 </webRequestModules>
 </system.net>

 <system.web>
 <compilation debug="false" explicit="true" defaultLanguage="vb">
 <compilers>
 <compiler language="c#;cs;csharp" extension=".cs"
 type="Microsoft.CSharp.CSharpCodeProvider " />
 <compiler language="vb;visualbasic;vbscript" extension=".vb"
 type="Microsoft.VisualBasic.VBCodeProvider " />
 <compiler language="js;jscript;javascript" extension=".js"
 type="Microsoft.JScript.JScriptCodeProvider " />
 <compiler language="VJ#;VJS;VJSharp" extension=".jsl"
 type="Microsoft.VJSharp.VJSharpCodeProvider "/>
 </compilers>

 <assemblies>
 <add assembly="mscorlib"/>
 <add assembly="System "/>
 <add assembly="System.Web "/>
 <add assembly="System.Data "/>
 <add assembly="System.Web.Services "/>
 <add assembly="System.Xml "/>
 <add assembly="System.Drawing "/>
 <add assembly="*"/>
 </assemblies>
 </compilation>
 <pages buffer="true" enableSessionState="true" enableViewState="true"
 enableViewStateMac="false" autoEventWireup="true"
 validateRequest="true" />
 </system.web>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</configuration>

The first three declarations in machine.config are runtime , mscorlib , and startup . They are special

because they are the only declarations that do not have corresponding configuration sections in the file.

In Example 20-13 , you can also see that many of the handler declarations are contained within
<sectionGroup> tags. The name attribute of these tags corresponds to the namespace that contains the

handlers. This groups together all the configuration sections that are handled out of the same namespace.

20.3.4 Configuration Sections

The configuration sections contain the actual configuration data. They each are contained within a pair of
tags corresponding to the name of the section specified in the configuration section handler declaration.
Alternatively, a single self-closing tag can be used. For example, the following two configuration sections are
equivalent:

<globalization requestEncoding="utf-8" responseEncoding="utf-8" />

and:

<globalization>
 requestEncoding="utf-8"
 responseEncoding="utf-8"
</globalization>

Configuration sections contain name/value pairs that hold the configuration data. They may also contain
subsections.

machine.config contains one configuration section for each handler declaration. If the handler declaration
was contained within a <sectionGroup> tag, then its corresponding configuration section will be contained
within a tag containing the name of the <sectionGroup> . This can be seen in Example 20-13 for both
system.net and system.web .

The sections that follow provide a description of each of the configuration sections contained in the default
machine.config . There are other configuration sections that are beyond the scope of this book, including
system . diagnostics , system.runtime.remoting , and system . windows.forms .

20.3.4.1 appSettings

appSettings allows you to easily store application-wide name/value pairs for read-only access. It is similar

in function to application objects in the global.asax file.

Consider the handler declaration for appSettings , shown in Example 20-13 and reproduced here:

<section name="appSettings"
 type="System.Configuration.NameValueSectionHandler " />

This indicates that the NameValueSectionHandler class is used to handle appSettings . This class provides

name/value pair configuration handling for a specific configuration section.

As seen in Example 20-13 , the appSettings section in the default machine.config file contains only a
comment. More typically, you would add an appSettings section to one or more web.config files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 20-14 shows a web.config file with an appSettings section added to provide two application-wide
values. Note that the appSettings section is not contained within any higher-level tag other than
<configuration> .

Example 20-14. appSettings configuration section

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="appDSN"
 value=" SERVER=Zeus;DATABASE=Pubs;UID=sa;PWD=secret;" />
 <add key="appTitle" value="Programming ASP.NET" />
 </appSettings>
</configuration>

These values can be accessed anywhere in the application to which this configuration is applicable (i.e., its
current directory and any child directories in which the value is not overridden by another web.config file).
Example 20-15 and Example 20-16 show a script block from an .aspx file to illustrate how this is done in
both VB.NET and C#, respectively. The C# version of the code in Example 20-16 shows only the script
block, since the HTML is identical to the VB.NET version in Example 20-15 .

Example 20-15. Reading appSettings values in VB.NET

<%@ Page Language="vb" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 dim strDSN as string
 strDSN = ConfigurationSettings.AppSettings("appDSN")
 ' use the DSN to connect to the database here
 lblDSN.Text = strDSN

 lblTitle.Text = ConfigurationSettings.AppSettings("appTitle")
 end if
 end sub
</script>

<html>
 <body>
 <form runat="server">
 <h1>Configuration</h1>
 Application DSN:
 <asp:Label
 id="lblDSN"
 runat="server"/>

 Application Title:
 <asp:Label

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 id="lblTitle"
 runat="server"/>
 </form>
 </body>
</html>

Example 20-16. Reading appSettings values in C#

<%@ Page Language="cs" %>

<script runat="server">
 void Page_Load(Object Source, EventArgs E)
 {
 if (!IsPostBack)
 {
 string strDSN;
 strDSN = ConfigurationSettings.AppSettings["appDSN"];
 // use the DSN to connect to the database here

 lblDSN.Text = strDSN ;

 lblTitle.Text = ConfigurationSettings.AppSettings["appTitle"];
 }
 }

</script>

Configuration settings are read by an application using the AppSettings property of the
ConfigurationSettings class. This class provides methods and properties for reading configuration settings in
an application's configuration files. It is part of the System.Configuration namespace, which is automatically
imported into every ASP.NET application.

The AppSettings property of the ConfigurationSettings class is of type NameValueCollection. It takes a key
as a parameter and returns the value associated with that key.

20.3.4.2 system.net

The system.net configuration section contains subsections that deal with networking. These subsections
include authenticationModules , defaultProxy , connectionManagement , and webRequestModules .

These subsections are not used by ASP.NET developers and are outside the scope of this book.

20.3.4.3 system.web

The system.web configuration section contains subsections that configure ASP.NET. Each of these

subsections will be described briefly in the following sections.

browserCaps

This subsection contains information about the capabilities of all the web browsers and operating systems
your clients are likely to use. This information includes such items as the name of the browser; its major

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and minor version numbers; whether it supports frames, tables, cookies, cascading style sheets, VBScript,
JavaScript, Java applets; and so on.

The version of <browserCaps> contained in the default machine.config file performs fairly extensive testing

of the client browser to determine both the browser capabilities and the client platform.

As new browser versions come on the market, you can update the information contained in this section by
visiting http://www.cyscape.com/browsercaps/ .

clientTarget

Closely related to <browserCaps> , the <clientTarget> subsection provides ASP.NET with aliases for the

browsers. For example, it provides the aliases shown in Table 20-2 .

Table 20-2. Browser aliases

Alias Browser characteristics

ie5 Internet Explorer 5.5

ie4 Internet Explorer 4.0

uplevel Internet Explorer 4.0 and higher

downlevel All others

compilation

This subsection allows you to configure the compilation behavior in ASP.NET. For example, you can change
the default language and enable or disable debugging. If the default language is VB.NET, you can also set
the explicit attribute to true , which is the equivalent of including the Option Explicit On statement in

your page or web service.

The default <compilation> tag in machine.config looks like this:

<compilation debug="false" explicit="true" defaultLanguage="vb">

In a VB.NET project created in Visual Studio .NET, the default <compilation> tag in the web.config file for

the application looks like this:

<compilation defaultLanguage="vb" debug="true" />

For a C# project in Visual Studio .NET, it looks like this:

<compilation defaultLanguage="c#" debug="true" />

Notice that the debug attribute in either web.config file overrides the value set in machine. config .

In addition to setting the language and debug mode, this subsection includes two other subsections:
<compilers> and <assemblies> . The former subsection specifies what language names map with what file

extensions. It also specifies the class containing the code provider and version information. The latter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subsection specifies which assembly files are to be included when the project is compiled.

pages

This subsection specifies whether page options (such as buffering, session state, and view state) are
enabled for the pages under the control of the configuration file. The default <pages> tag in the default

machine.config file looks like this:

<pages buffer="true"
 enableSessionState="true"
 enableViewState="true"
 enableViewStateMac="false"
 autoEventWireup="true" />

The autoEventWireup attribute is specific to Visual Studio .NET. When AutoEventWireup is true (the default

value outside of VS.NET), then the .NET Framework calls page events (Page_Init & Page_Load)
automatically, with no code necessary to explicitly add an event handler to an event delegate. If
AutoEventWireup is false (the default when using VS.NET), you must explicitly add event handler methods
to the event delegates. VS.NET does this for you.

customErrors

This subsection allows you to control what the user sees when there is an error. Example 20-17 shows a
typical <customErrors> configuration section that demonstrates the available features.

Example 20-17. <customErrors> configuration section

<customErrors defaultRedirect="StdError.htm" mode="RemoteOnly" >
 <error statusCode="404" redirect="err404.htm" />
 <error statusCode="407" redirect="err407.htm" />
</customErrors >

When custom errors are enabled, if an error occurs, the web page specified in defaultRedirect is

presented to the client rather than the standard ASP.NET error page.

The mode attribute specifies how custom errors are enabled. There are three possible values for this mode,

which are shown in Table 20-3 .

Table 20-3. Values for the mode attribute of the <customErrors> tag

Value Description

On Custom errors are enabled for all users.

Off Custom errors are disabled for all users.

RemoteOn
ly

Custom errors are shown only to remote clients, not to local clients. This setting allows
developers to see the full error message provided by ASP.NET while showing end users the
error page you wish them to see.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can add multiple <error> tags to present specific error pages for specific errors.

In Example 20-17 , error 404 will result in err404.htm being presented to the client, error 407 will result in
err407.htm , and all other errors will result in StdError.htm being presented. In any case, the developer
working on the local machine will see none of these custom error pages, but rather will see the standard
error page put up by ASP.NET.

httpRuntime

This subsection configures the ASP.NET HTTP runtime settings. There are several attributes available in this
section, as shown in Table 20-4 .

Table 20-4. Attributes of the httpRuntime subsection

Attribute Description

useFullyQualifie
dRedirectUrl

Specifies if client-side redirects are fully qualified, which is necessary for some
mobile controls. Legal values are true , for fully qualified URLs, and false , for

relative URLs.

executionTimeout
Maximum number of seconds a request is allowed to execute before being shut
down by ASP. NET.

maxRequestLength
Maximum file size for upload, in bytes. This can help prevent denial of service
attacks by preventing clients from posting large files.

minFreeThreads
Minimum number of free threads for execution of new requests. These threads
are available for requests that require additional threads.

minLocalRequestF
reeThreads

Minimum number of free threads available for requests to localhost.

appRequestQueueL imit
Maximum number of requests queued waiting for a free thread. If incoming
request rejected, then "503 Server too busy" error will be returned.

The <httpRuntime> tag in the default machine.config file looks like this:

<httpRuntime
 executionTimeout="90"
 maxRequestLength="4096"
 useFullyQualifiedRedirectUrl="false"
 minFreeThreads="8"
 minLocalRequestFreeThreads="4"
 appRequestQueueLimit="10"
/>

globalization

This subsection is used to configure the globalization settings for an application. The attributes shown in
Table 20-5 are supported.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 20-5. Attributes of the globalization subsection

Attribute Description

requestEncoding
Specifies the encoding assumed for incoming requests. If not specified in any
configuration file, defaults to computer's Regional Options locale setting.

responseEncoding
Specifies the encoding of responses. If not specified in any configuration file, defaults
to computer's Regional Options locale setting.

fileEncoding Specifies the default encoding for parsing .aspx , .asmx , and .asax files.

culture Specifies the default culture for incoming requests.

uiCulture Specifies the default culture for locale-dependent resource searches.

The <globalization> tag in the default machine.config file looks like this:

<globalization
 requestEncoding="utf-8"
 responseEncoding="utf-8"
/>

httpHandlers

This subsection maps incoming requests to a class that implements either the IHttpHandler or
IHttpHandlerFactory interfaces. There is a fairly extensive mapping in the default machine.config file,

which maps standard file types to a specific class (e.g., all .aspx requests are mapped to the
PageHandlerFactory class).

The <httpHandlers> tag has several subtags:

<add>

Specifies the mapping. A typical <add> subtag looks like:
<add verb="*"
 path="*.vb"
 type="System.Web.HttpForbiddenHandler"/>

The verb attribute can either contain a comma separated list of HTTP verbs, such as GET , PUT , or POST ,
or the wildcard character (*). The path attribute can contain either a single URL path or a wildcard string.
The type attribute is a class name. ASP.NET first searches for the specified class in the \bin directory, then

in the global assembly cache. (See Section 20-4 later in this chapter for a description of the global assembly
cache.)

<remove>

Removes a previously added mapping. It has the same syntax as the <add> subtag, except that there
is no type attribute.

<clear>

Clears all currently configured or inherited mappings. It has no attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

httpModules

This subsection configures the HTTP modules within an application. Each <add> subtag within the subsection

assigns a class to a module. The default machine.config file includes the modules and their classes shown in
Table 20-6 .

Table 20-6. Modules and classes defined in the httpModules subsection

Module Class

OutputCache System.Web.Caching.OutputCacheModule

Session System.Web.SessionState.SessionStateModule

WindowsAuthentication System.Web.Security.WindowsAuthenticationModule

FormsAuthentication System.Web.Security.FormsAuthenticationModule

PassportAuthentication System.Web.Security.PassportAuthenticationModule

UrlAuthorization System.Web.Security.UrlAuthorizationModule

FileAuthorization System.Web.Security.FileAuthorizationModule

processModel

This tag configures the process model settings on an IIS web server. The <processModel> tag in the default

machine.config file looks like this:

<processModel
 enable="true"
 timeout="Infinite"
 idleTimeout="Infinite"
 shutdownTimeout="0:00:05"
 requestLimit="Infinite"
 requestQueueLimit="5000"
 restartQueueLimit="10"
 memoryLimit="60"
 webGarden="false"
 cpuMask="0xffffffff"
 userName="machine"
 password="AutoGenerate"
 logLevel="Errors"
 clientConnectedCheck="0:00:05"
 comAuthenticationLevel="Connect"
 comImpersonationLevel="Impersonate"
/>

Two of these attributes are worth special mention, since they can improve the stability of the system. The
timeout attribute controls how often every process is automatically shut down and restarted. The default

value is "Infinite," indicating that the process is never restarted. It may also have a time value of the form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hh:mm:ss. So, for example, if you want every process to restart every 20 minutes, use the value
"00:20:00." The requestLimit attribute specifies how many requests each process can receive before it is

re-started. The default value is also "Infinite." Typical values would be an integer inside quotes. So, to
restart every process every 5000 requests, use the value "5000."

For a detailed description of each of these attributes, consult the SDK documentation. Note that these
settings are ignored if you are using IIS 6, which has its own process model settings.

sessionState

The <sessionState> tag configures session state. Chapter 6 fully examines session state. This tag supports

the attributes shown in Table 20-7 .

Table 20-7. Attributes of the <sessionState> tag

Attribute Description

mode

Specifies where the session state is stored. It has four legal values. Off disables
session state. Inproc , the default value, stores session state on the local server.
StateServer stores session state in a remote process, which may be hosted on the
same computer or a remote server. SqlServer stores session state in a SQL Server

database. One of the latter two values are required when running a web farm.

cookieless

Specifies whether cookieless sessions should be used. A value of true indicates that

cookieless sessions should be used, in which case the session information will be
munged as part of the URL. A value of false , the default, indicates that cookies will

be used to maintain session state.

timeout The number of minutes a session is idle before it is abandoned. The default is 20.

stateConnecti
onString

Specifies the connection string to the server where session is to be stored if mode is set
to StateServer .

sqlConnection
String

Specifies the connection string to the SQL Server where session is to be stored if mode
is set to SqlServer .

The default <sessionState> tag in machine.config is shown here:

<sessionState
 mode="InProc"
 stateConnectionString="tcpip=127.0.0.1:42424"
 stateNetworkTimeout="10"
 sqlConnectionString="data source=127.0.0.1;user id=sa;password="
 cookieless="false"
 timeout="20"
/>

trace

The <trace> tag configures the ASP.NET trace service. Chapter 7 describes tracing fully. The <trace> tag

supports the attributes shown in Table 20-8 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 20-8. Attributes of the <trace> tag

Attribute Description

enabled Enables or disables tracing. Legal values are true or false . The default is false .

requestLimit The number of trace requests to store on the server.

pageOutput
true specifies that trace output is appended to each page. false, the default, specifies that

trace output is accessible only through the trace utility.

traceMode
Specifies the sort order of the trace display. SortByTime , the default value, specifies that
trace information is sorted in the order processed. SortByCategory specifies that trace

information is displayed alphabetically by user-defined category.

localOnly
true , the default, specifies that the trace viewer is available only on the host web server.
false specifies that the trace viewer is available remotely.

The default <trace> tag in machine.config is shown here:

<trace
 enabled="false"
 localOnly="true"
 pageOutput="false"
 requestLimit="10"
 traceMode="SortByTime"
/>

webControls

The <webControls> tag specifies the location of the script that is generated to be run client-side. It
supports a single attribute, clientScriptsLocation .

The default <webControls> tag in machine.config is shown here:

<webControls
 clientScriptsLocation="/aspnet_client/{0}/{1}/"
/>

webServices

The <webServices> tag configures web services.

The default <webServices> tag in machine.config is shown here:

webServices>
 <protocols>
 <add name="HttpSoap"/>
 <add name="HttpPost"/>
 <add name="HttpGet"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <add name="Documentation"/>
 </protocols>
 <soapExtensionTypes>
 </soapExtensionTypes>
 <soapExtensionReflectorTypes>
 </soapExtensionReflectorTypes>
 <soapExtensionImporterTypes>
 </soapExtensionImporterTypes>
 <wsdlHelpGenerator href="DefaultWsdlHelpGenerator.aspx" />
 <serviceDescriptionFormatExtensionTypes>
 </serviceDescriptionFormatExtensionTypes>
/webServices>

20.3.4.4 Security settings

Many aspects of ASP.NET security are configurable, using the machine.config and web.config files. For a
complete discussion of the security concepts configured here, see Chapter 19 .

There are several configuration sections controlling security. They are described in the following sections.

identity

The <identity> tag controls the identity of the application at runtime. Specifically, it enables and disables

impersonation, and if impersonation is enabled, it allows you to specify the userName and password to use.

The <identity> tag supports three attributes shown in Table 20-9 .

Table 20-9. Attributes of the <identity> tag

Attribute Description

impersonate Set to true to enable impersonation or false to disable impersonation.

userName If impersonation is enabled, specifies the username to use.

password If impersonation is enabled, specifies the password to use.

The <identity> tag in the default machine.config file looks like this:

<identity impersonate="false" userName="" password=""/>

authentication

The <authentication> tag controls authentication in ASP.NET applications. As is described fully in Chapter

19 , authentication is the process whereby ASP.NET security verifies that a client making a request is who
they say they are.

The <authentication> tag has one attribute, mode , which specifies the default authentication mode for the
application. There are four legal values for mode , which are shown in Table 20-10 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 20-10. Values of the <authentication> tag's mode attribute

Mode
value

Description

Windows
Sets the default authentication mode to Windows. Using this mode allows IIS to perform
authentication.

Forms
Sets the default authentication mode to Forms. Using this mode, your application controls
authentication through a login form created as part of the application.

Passport
Sets the default authentication mode to Passport. Passport is a centralized authentication
service offered by Microsoft.

None
No authentication will be performed. This means that only anonymous users will access the
site or the application will provide its own authentication.

The <authentication> tag also has two subtags. They are <forms> and <passport> .

The <forms> tag has five attributes, listed in Table 20-11 .

Table 20-11. Attributes of the <forms> tag

Attribute Description

name
Specifies the name of the HTTP cookie used for authentication. The default name is
.ASPXAUTH .

loginUrl Specifies the URL to which the request is redirected if there is no valid authentication.

protectio
n

Four legal values. All , the default and recommended value, specifies that the application
use both data validation and encryption to protect the authentication cookie. None specifies

that the cookies will be neither validated nor encrypted, but will be available for
personalization. Encryption specifies that the authentication cookie is encrypted but not
validated. Validation specifies that the authentication cookie is validated (i.e., it is verified

as not having been altered in transit between the client and the server).

timeout
The integer number of minutes after the last request that the cookie expires. Does not apply
to persistent cookies. Default value is 30 .

path
Specifies the path for cookies. Default value is / (backslash). Note that most browsers are

case-sensitive and will not return a cookie if there is a path/case mismatch.

The <forms> tag also has one subtag, <credentials> . This subtag allows you to specify the type of
password encryption used and also to define name/password pairs within the <user> subtag.

The <credentials> tag has a single attribute, passwordFormat . This attribute has three legal values,

which are shown in Table 20-12 .

Table 20-12. Values of the <credentials> tag's passwordFormat attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

passwordFormat values Description

Clear Passwords are not encrypted.

MD5 Passwords are encrypted using the MD5 hash algorithm.

SHA1 Passwords are encrypted using the SHA1 hash algorithm.

The <credentials> tag enables you to specify user/password pairs using the <user> subtag. The <user>
subtag has two attributes: name and password . Their values are the username and password ,

respectively.

The <passport> subtag of the <authentication> tag has a single attribute, redirectUrl . The value of

this attribute is the URL to redirect to if the page requires authentication and the user has not signed on
with Passport.

The <authentication> tag in the default machine.config file looks like this:

<authentication mode="Windows">
 <forms name=".ASPXAUTH"
 loginUrl="login.aspx"
 protection="All"
 timeout="30"
 path="/" >
 <credentials passwordFormat="SHA1">
 <!-- <user name="UserName" password="password"/> -->
 </credentials>
 </forms>
 <passport redirectUrl="internal" />
</authentication>

authorization

The <authorization> tag controls authorization in ASP.NET applications. Authorization is how ASP.NET

security controls access to URL resources.

The <authorization> tag supports two subtags, <allow> and <deny> . Both subtags have the same set of

three attributes, which are shown in Table 20-13 . Those attributes are used to define access rules that are
iterated at runtime. Access for a particular user is allowed or denied based on the first rule found that fits
that user.

Table 20-13. Attributes of the <allow> and <deny> subtags

Attribute Description

users
Comma-separated list of users either allowed or denied access. Question mark (?) allows
anonymous users. Asterisk (*) allows all users.

roles Comma-separated list of roles that are allowed or denied access.

The default <authorization> tag in machine.config is shown here. It allows all users.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

verbs
Comma-separated list of HTTP verbs that are allowed or denied access. Registered verbs are
GET , HEAD , POST , and DEBUG .

The default <authorization> tag in machine.config is shown here. It allows all users.

<authorization>
 <allow users="*" />
</authorization>

machineKey

The <machineKey> tag configures keys used for encryption and decryption of authentication cookies. This

section can be declared at the server level in machine.config or in web.config files at the site or application
root level. The <machineKey> tag supports three attributes, which are shown in Table 20-14 .

Table 20-14. Attributes of the <machineKey> tag

Attribute Description

validationKey

Specifies the key used for validation. Supports two types of values: AutoGenerate , the

default value, specifies that ASP.NET will generate a random key. Alternatively, a value
can be manually set to allow operation across a web farm. This value must be between
40 and 128 hexadecimal characters long (between 20 and 64 bytes).

decryptionKey
Specifies the key used for decrypting the cookie. Uses the same values as the
validationKey .

validation
Specifies the type of encryption used for data validation. There are three legal values:
SHA1 specifies SHA1 encryption, MD5 specifies MD5 encryption, and 3DES specifies Triple-

DES encryption.

The default authorization in machine.config is shown here:

<machineKey validationKey="AutoGenerate"
 decryptionKey="AutoGenerate"
 validation="SHA1"/>

securityPolicy

The <securityPolicy> tag maps named security levels to policy files. This section can be declared at the

server level in machine.config or in web.config files at the site or application root level.

The <securityPolicy> tag supports one subtag, <trustLevel> . This subtag is used to specify one
security level name and an associated policy level. There is a separate <trustLevel> tag for each named

security level.

The <trustLevel> tag supports the two attributes shown in Table 20-15 .

verbs
Comma-separated list of HTTP verbs that are allowed or denied access. Registered verbs are
GET , HEAD , POST , and DEBUG .

The default <authorization> tag in machine.config is shown here. It allows all users.

<authorization>
 <allow users="*" />
</authorization>

machineKey

The <machineKey> tag configures keys used for encryption and decryption of authentication cookies. This

section can be declared at the server level in machine.config or in web.config files at the site or application
root level. The <machineKey> tag supports three attributes, which are shown in Table 20-14 .

Table 20-14. Attributes of the <machineKey> tag

Attribute Description

validationKey

Specifies the key used for validation. Supports two types of values: AutoGenerate , the

default value, specifies that ASP.NET will generate a random key. Alternatively, a value
can be manually set to allow operation across a web farm. This value must be between
40 and 128 hexadecimal characters long (between 20 and 64 bytes).

decryptionKey
Specifies the key used for decrypting the cookie. Uses the same values as the
validationKey .

validation
Specifies the type of encryption used for data validation. There are three legal values:
SHA1 specifies SHA1 encryption, MD5 specifies MD5 encryption, and 3DES specifies Triple-

DES encryption.

The default authorization in machine.config is shown here:

<machineKey validationKey="AutoGenerate"
 decryptionKey="AutoGenerate"
 validation="SHA1"/>

securityPolicy

The <securityPolicy> tag maps named security levels to policy files. This section can be declared at the

server level in machine.config or in web.config files at the site or application root level.

The <securityPolicy> tag supports one subtag, <trustLevel> . This subtag is used to specify one
security level name and an associated policy level. There is a separate <trustLevel> tag for each named

security level.

The <trustLevel> tag supports the two attributes shown in Table 20-15 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 20-15. Attributes of the <trustLevel> tag

Attribute Description

name
Defines a name to associate with the specified level of trust. Legal values are Full , High ,
Low , and None . If set to None , indicates file mapping for the Full security level.

policyFile
Specifies the policy level, relative to the directory containing machine.config , associated
with the specified level of trust.

The default <securityPolicy> in machine.config is shown here:

<securityPolicy>
 <trustLevel name="Full" policyFile="internal" />
 <trustLevel name="High" policyFile="web_hightrust.config" />
 <trustLevel name="Low" policyFile="web_lowtrust.config" />
 <trustLevel name="None" policyFile="web_notrust.config" />
</securityPolicy>

trust

The <trust> tag configures the code access security permissions for an application. This section can be

declared at the server level in machine.config or in web.config files at the site or application root level.

The <trust> tag supports the two attributes shown in Table 20-16 .

Table 20-16. Attributes of the <trust> tag

Attribute Description

level
Specifies the security level under which the application will be run. Legal values are Full ,
High , Low , and None . Required.

originalUrl Specifies an application's URL of origin. Optional.

The default <trust> in machine.config is shown here:

<trust level="Full" originUrl="" />

location

The location section is used to apply configuration settings to specific resources, such as individual web
pages or contained subdirectories. The <location> tag has a single attribute, path . The path attribute

specifies a file or child directory (relative to the location of the current web.config file) to which specific
configuration settings apply.

Suppose you had an application with custom error pages specified in the web.config file in the application
virtual root directory. These custom error pages would apply to the entire application, including all child
directories. Suppose further that there are two subdirectories under the virtual root directory, called sub1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and sub2 . sub1 is to have the application-wide custom error handling, but sub2 is to have its own specific
error handling.

You could put another copy of web.config in sub2 to override the custom error handling, but an alternative
would be to use the <location> tag. You would add the following lines to the web.config file in the virtual

root of the application:

<location path="sub2">
 <system.web>
 <customErrors defaultRedirect="Sub2Error.htm" mode="RemoteOnly" >
 <error statusCode="404" redirect="err404-sub2.htm" />
 <error statusCode="407" redirect="err407-sub2.htm" />
 </customErrors >
 </system.web>
</location>

Notice that the <system.web> tag must be reproduced within the location section.

The configuration settings contained in a location section will apply to the directory specified in the path

attribute and also to any child directories of that directory, unless they are further overridden either by
another web.config file or another location section.

If you want to apply specific configuration settings to a single file, that too can be done using a location

section. Suppose the application root had a web page that requires special error handling. The following
location section will accomplish that.

<location path="SpecialPage.aspx">
 <system.web>
 <customErrors defaultRedirect="SpecialError.htm"
 mode="RemoteOnly" >
 <error statusCode="404" redirect="err404-spcl.htm" />
 </customErrors >
 </system.web>
 </location>

20.3.5 Custom Configuration

In addition to all the predefined configuration sections, you can also add your own custom configuration
sections. There are two different types of custom configuration sections you might wish to add:

Sections that provide access to a collection of name/value pairs, similar to appSettings

Sections that return any type of object

Both will be demonstrated here.

20.3.5.1 Name/value pairs

Back in Example 20-14 , you added an <appSettings> key to store the database DSN string. Suppose you

wanted to store DSNs for multiple databases, say one called Test (for testing purposes) and one called
Content (to hold the production content). A custom configuration section returning a name/value pair would

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be one way to handle this situation.

The finished version of lines of code inserted into web.config is shown in Example 20-18 . There are several
steps to adding a custom configuration section that returns a name/value pair:

Determine which specific configuration file to add the custom section to. This will determine the scope,
or visibility, of the custom section.

Adding the section to machine.config will make it available to every application on that machine.
Adding it to a web.config file in the virtual root directory of an application will make the section visible
to that entire application, but to no other applications. Adding it to a web.config file in an application
subdirectory will make it visible only to that subdirectory and its child subdirectories.

1.

Declare the section handler by adding a line to the <configSections> section of the designated

configuration file. This tells ASP.NET to expect a configuration section with the specified name, and
also which class and assembly file to use to process the section.

Add the highlighted lines between the <configSections> tags in Example 20-18 to the designated
configuration file. If the file you are editing does not already have a pair of <configSections> tags,
then you will need to add those as well. The <configSections> element should be the first child of the
root <configuration> element.

2.

Add the custom section itself to the configuration file. This consists of the highlighted lines in Example
20-18 between the <altDB> tags. This custom configuration section contains two entries, one named
Test and the other named Content, each with its own value attribute.

3.

Example 20-18. Custom sections in web.config

<configSections>
 <section name="altDB"
 type="System.Configuration.NameValueSectionHandler, System,
 Version=1.0.5000.0, Culture=neutral,PublicKeyToken=b77a5c561934e089,
 Custom=null" />
</configSections>

<altDB>
 <add key="Test"
 value=" SERVER=Zeus;DATABASE=Test;UID=sa;PWD=secret;" />
 <add key="Content"
 value=" SERVER=Zeus;DATABASE=Content;UID=sa;PWD=secret;" />
</altDB>

Note that the type in the <section> tag is exactly the same as that provided for appSettings in the

machine.config file. It specifies the NameValueSectionHandler class in the System.dll assembly file. For
further documentation, check SDK documentation, search on Custom Elements and choose Custom Element
for NameValueSectionHandler.

To read the contents of this custom configuration section, you again use a method from the
ConfigurationSettings class, this time the GetConfig method. The code for a sample web page for doing this
is shown in Example 20-19 in VB. NET and in Example 20-20 in C#. The C# version of the code in Example
20-20 shows only the script block, since the HTML is identical to the VB.NET version in Example 20-19 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 20-19. Reading custom configuration values in VB.NET, vbConfig-
02.aspx

<%@ Page Language="vb" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 dim strTest as string
 dim strContent as string

 strTest = ConfigurationSettings.GetConfig("altDB")("Test")
 lblTest.Text = strTest

 lblContent.Text = _
 ConfigurationSettings.GetConfig("altDB")("Content")
 end if
 end sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>Configuration</h1>

 Test Database DSN:
 <asp:Label
 id="lblTest"
 runat="server"/>

 </br>
 Content Database DSN:
 <asp:Label
 id="lblContent"
 runat="server"/>

 </form>
 </body>
</html>

Example 20-20. Reading custom configuration values in C#, csConfig-02.aspx

<%@ Page Language="cs" %>

<script runat="server">
 void Page_Load(Object Source, EventArgs E)
 {
 if (!IsPostBack)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 string strTest;
 string strContent;

 strTest = ((NameValueCollection)
 ConfigurationSettings.GetConfig("altDB"))["Test"];
 lblTest.Text = strTest;

 lblContent.Text = ((NameValueCollection)
 ConfigurationSettings.GetConfig("altDB"))["Content"];
 }
 }</script>

The code in Example 20-19 and Example 20-20 shows two equivalent ways of displaying the contents of the
key value. One way is to assign the value to a string, then assign the string to the Text property of a label.
The other way is to assign the value directly to the Text property. Although the latter technique is more
concise, the former is often easier to debug.

In either case, notice the highlighted code in Example 20-19 and Example 20-20 . These are the calls to the
GetConfig method. They are different for VB.NET and C#, and a bit confusing in both.

The GetConfig method takes a configuration section name as a parameter and returns an object of type
NameValueCollection. The desired value in the collection is retrieved by using the key as an offset into the
collection, using the get property syntax. In VB.NET, a property is retrieved by enclosing the property name
in parentheses, and in C#, the property is retrieved using square brackets.

Notice that the C# code first casts, or converts, the value returned by GetConfig to type
NamedValueCollection, while VB.NET does not. This is because C# does not support late binding, while
VB.NET does by default. You can disable late binding in VB.NET (almost always a smart move) by setting
the Strict attribute to true in the Page directive. You must then explicitly cast the object returned by

GetConfig, just as in C#. This is shown in Example 20-21 .

Example 20-21. Reading custom configuration values in VB.NET using early
bindingvbConfig-02b.aspx

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 dim strTest as string
 dim strContent as string

 strTest = _
 CType(ConfigurationSettings.GetConfig("altDB"), _
 NameValueCollection)("Test")
 lblTest.Text = strTest

 lblContent.Text = _
 CType(ConfigurationSettings.GetConfig("altDB"), _
 NameValueCollection)("Content")
 end if
 end sub
</script>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.3.5.2 Objects

appSettings and custom configuration sections are very useful. However, they both suffer from the same

limitation of only being able to return a name/value pair. Sometimes it would be very useful to return an
object.

For example, suppose you have a standard query into a database. You could store the query string in an
appSettings tag, then open a database connection after retrieving the string. However, it would be much

more convenient to store the query string in web.config and then have the configuration system return a
DataSet directly.

To do this, you must add a <section> tag and a configuration section to the designated configuration file,

just as with the custom section returning name/value pairs, described in the previous section.

Edit the web.config file used in the previous example and shown in Example 20-18 , adding the lines of code
highlighted in Example 20-22 .

Example 20-22. Custom sections returning objects in web.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <configSections>
 <section name="altDB"
 type="System.Configuration.NameValueSectionHandler, System" />
 <sectionGroup name="system.web">
 <section name="DataSetSectionHandler"
 type="ProgAspNet.Handlers.DataSetSectionHandler,
 vbSectionHandlers">
 </section>
 </sectionGroup>
 </configSections>

 <appSettings>
 <add key="appDSN"
 value=" SERVER=Zeus;DATABASE=Pubs;UID=sa;PWD=secret;" />
 <add key="appTitle" value="Programming ASP.NET" />
 </appSettings>

 <altDB>
 <add key="Test"
 value=" SERVER=Zeus;DATABASE=Test;UID=sa;PWD=secret;" />
 <add key="Content"
 value=" SERVER=Zeus;DATABASE=Content;UID=sa;PWD=secret;" />
 </altDB>

 <system.web>

 <!-- Custom config section returning an object -->
 <DataSetSectionHandler str="Select BugID, Description from Bugs" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </system.web>
</configuration>

In the <sectionGroup> section within the <configSections> section, a handler declaration is created for
the DataSetSectionHandler within the system.web group. This specifies that elsewhere within the file,
there will be a custom configuration section called DataSetSectionHandler within the system.web custom

section. Furthermore, it also specifies that the class that will handle that configuration section is called
ProgAspNet. Handlers.DataSetSectionHandler, and that the class will be found in an assembly file called
vbSectionHandlers.dll in the \bin directory.

Further down in the file, within the <system.web> section, there is in fact a section called
DataSetSectionHandler . It has a single attribute, str . This is a string containing the SQL statement you

wish to pass to the database.

Next you must create the ProgAspNet.Handlers.DataSetSectionHandler class and place it in a file called
DataSetSectionHandler.vb . To do this, create a VB.NET source code file as shown in Example 20-23 . (The
C# version of the same class is shown in Example 20-24 .)

Example 20-23. Source code for section handler in VB.NET,
DataSetSectionHandler.vb

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Xml
Imports System.Configuration

Namespace ProgAspNet.Handlers
 public class DataSetSectionHandler
 Implements IConfigurationSectionHandler

 public Function Create(parent as Object, _
 configContext as Object, _
 section as XmlNode) as Object _
 Implements IConfigurationSectionHandler.Create

 dim strSql as string
 strSql = section.Attributes.Item(0).Value

 dim connectionString as string = "server=Ath13; uid=sa; " & _
 "pwd=password; database=Bugs"

 ' create the data set command object and the DataSet
 dim da as SqlDataAdapter = new SqlDataAdapter(strSql, _
 connectionString)

 dim dsData as DataSet = new DataSet()

 ' fill the data set object
 da.Fill(dsData,"Bugs")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return dsData
 end Function
 end class
end NameSpace

Example 20-24. Source code for section handler in C#,
DataSetSectionHandler.cs

using System;
using System.Data;
using System.Data.SqlClient;
using System.Xml;
using System.Configuration;

namespace ProgAspNet.Handlers
{
 public class DataSetSectionHandler : IConfigurationSectionHandler
 {
 public Object Create(Object parent,
 Object configContext,
 XmlNode section)
 {

 string strSql;
 strSql = section.Attributes.Item(0).Value;

 string connectionString = "server=Ath13; uid=sa; " +
 "pwd=password; database=Bugs";

 // create the data set command object and the DataSet
 SqlDataAdapter da = new SqlDataAdapter(strSql,
 connectionString);

 DataSet dsData = new DataSet();

 // fill the data set object
 da.Fill(dsData,"Bugs");

 return dsData;
 }
 }
}

Be sure to set the connection string to match your specific database. The server
name and password are certainly different than that shown in Example 20-23 .

The database aspects of the code in this example are covered thoroughly in Chapter 11 and won't be
covered here in detail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At the beginning of the Example 20-23 are several Imports statements (when written in C#, these are
using statements). Next a namespace is declared to contain the class. This is to prevent any ambiguity

when calling the class.

In order for a class to be used as a configuration section handler, it must be derived from the
IConfigurationSectionHandler interface. In VB.NET, this is implemented by using the Implements

keyword. (In C#, this would be indicated with a colon between the class or method name and the class or
interface being inherited.)

A full discussion of object-oriented concepts such as inheritance, base classes, and
interfaces is beyond the scope of this book. For now, you should just know that an
interface acts as a contract that the implementing class must fulfill. The interface
may, for example, dictate the signature of methods that the implementing class must
implement, or it may dictate which properties the class must provide.

The IConfigurationSectionHandler interface has only a single method, Create. Therefore our

implementing class must implement the Create method with the specified signature. The three parameters
are dictated by the interface. The first two parameters are rarely used and will not be further discussed
here. The third parameter is the XML data from the configuration file.

The XML node is parsed and the value of the first item in the Attributes collection is assigned to a string
variable in this line:

strSql = section.Attributes.Item(0).Value

Once the SQL string is in hand, the connection string is hard-coded, a SqlDataAdapter object is

instantiated and executed, and the DataSet is filled. Then the DataSet is returned.

Before this class can be used it must be compiled. Open a command prompt by clicking on the Start button,
then Microsoft Visual Studio .NET Visual Studio . NET Tools Visual Studio .NET Command Prompt.
Use the cd command to make the application virtual root the current directory. This assumes that the

virtual root directory already has a child directory called \bin. If not, you'll have to make one. Then enter
the following command line:

vbc /t:library /out:bin\vbSectionHandlers.dll /r:system.dll,System.data.dll,System.xml.dll
 DataSetSectionHandler.vb

In C#, use the following:

csc /t:library /out:bin\vbSectionHandlers.dll /r:system.dll,System.data.dll,System.xml.dll
 DataSetSectionHandler.cs

Using command-line compilers is explained in some detail in Chapter 16. Here the target type of output is
set to be library , i.e., a dll . The name of the output file to be placed in the bin directory will be

vbSectionHandlers.dll . Notice that three dll files are referenced. The input source file is
DataSetSectionHandler.vb . When the source file is compiled, you will have the output dll in the \bin
directory, where the classes it contains will automatically be available to the application.

The web page shown in Example 20-25 (in VB.NET) and Example 20-26 (in C#) shows how to utilize this
configuration section.

Example 20-25. Section handler demonstration in VB.NET, vbConfig-03.aspx

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@ Page Language="vb" %>
<%@ Import namespace="System.Data" %>

<script runat="server">
 sub Page_Load(ByVal Sender as Object, _
 ByVal e as EventArgs)
 if not IsPostBack then
 CreateDataGrid()
 end if
 end sub

 sub CreateDataGrid()
 dim dsGrid as new DataSet
 dsGrid = _
 ConfigurationSettings.GetConfig(_
 "system.web/DataSetSectionHandler")
 dg.DataSource=dsGrid.Tables(0)
 dg.DataBind()
 end sub
</script>

<html>
 <body>
 <form runat="server">

 <h1>Configuration</h1>

 <asp:DataGrid
 id="dg"
 runat="server"/>

 </form>
 </body>
</html>

Example 20-26. Section handler demonstration in C#, csConfig-03.aspx

<%@ Page Language="C#" %>
<%@ Import namespace="System.Data" %>

<script runat="server">
 void Page_Load(object Sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 CreateDataGrid();
 }
 }

 void CreateDataGrid()
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataSet dsGrid = new DataSet();
 dsGrid = (DataSet)
 ConfigurationSettings.GetConfig(
 "system.web/DataSetSectionHandler");
 dg.DataSource=dsGrid.Tables[0];
 dg.DataBind();
 }
</script>

The page in Example 20-25 first imports two namespaces necessary for working with the SQL Server
database. The interesting work is done in the CreateDataGrid method. There, rather than supply a DSN and
SQL query string, a call is made to the GetConfig method of the ConfigurationSettings class, which returns a
DataSet object directly. Then the DataSet object is set as the DataSource of the DataGrid control, and the
control is data bound. The parameter of the GetConfig method is a string containing the name of the section
containing the configuration settings. Notice the syntax with the section name (system.web) separated from
the subsection name (DataSetSectionHandler) by a slash.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

20.4 Deploying the Application

It is very simple to deploy an ASP.NET application, especially when compared to classic ASP. There is
no registering of components in the Registry, no need to stop and start the server or the operating
system, no problem with multiple versions of the same dll for different applications, and no more DLL
hell.

That's the good news. There is no bad news, especially if you do not need to deploy assemblies
globally.

ASP.NET derives all this deployment bliss by virtue of being part of the .NET Framework. The
deployment features mentioned earlier are common to all applications developed under the .NET
Framework.

There are actually two different ways to deploy applications. The first, XCOPY deployment , is so
simple as to cause experienced developers to ask, "Is that all there is to it?" It provides all the
deployment benefits of .NET except for the ability to deploy assemblies globally (i.e., to use
application code modules for multiple applications). In order to implement globally available code
modules, you will use global deployment . Both deployment methods are described in more detail in
the following sections.

20.4.1 Assemblies

An assembly is the .NET unit of versioning and deploying code modules. Strictly speaking, an
assembly consists of Portable Executable (PE) files. PE files can be either dll files or exe files. These PE
files are in exactly the same format as normal Windows PE files.

In ASP.NET, an assembly will typically consist of a single dll , although it may consist of multiple files.
Assemblies appear to the user to be a single file.

Assemblies are self-describing because they contain metadata that fully describes the assembly and
the classes, methods, and types it contains. One of the files in the assembly contains a manifest as
part of the metadata, which details exactly what is in the assembly. This includes identification
information (name, version, etc.), a list of the types and resources in the assembly, a map to connect
public types with the implementing code, and a list of assemblies referenced by this assembly.

An application consists of all the files and resources in an application virtual root directory and in all
the subdirectories underneath the virtual root. One of the standard subdirectories found in nearly all
applications is the \bin directory, sometimes called the application assembly cache . All the assemblies
for the application are typically placed in this directory.

If an assembly file is placed in the application assembly cache, then all the classes contained in that
assembly are automatically registered with the application. There is no developer or user action
required for this registration to occur. Any class, method, or type defined in the \bin directory is
available to the rest of the application.

Assemblies are not loaded into memory unless and until they are needed. When an assembly is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

needed, the CLR does not actually load the assembly itself into memory. If it did, then that assembly
would be locked until the application was stopped. This would require the application to be stopped
and restarted every time a new version of the assembly was to be installed. Instead, a shadow copy
of the dll is created in memory. This shadow copy is then locked, leaving the original assembly file
unlocked.

The CLR constantly monitors the assembly cache to see if any new assemblies have been added or if
any of the existing assemblies have changed. If a new assembly is detected, the classes it contains
are automatically registered with the application. If a change to an existing application is detected,
than all pending requests to the old version of the assembly are allowed to complete but all new
requests are handled by the new version. When the last request to the old version is finished, then
the shadow copy of that version is allowed to expire and the transition is complete.

Note that ASP.NET is configured to prohibit access to the \bin directory. This prevents anyone from
tampering with your assemblies.

20.4.2 XCOPY Deployment

All that is necessary to deploy most ASP.NET applications-in fact, to deploy most .NET applications -
is to copy the new files to the proper directories on the proper machine, overwriting any previous
versions of files if they exist. This is referred to as XCOPY deployment .

XCOPY is a command-prompt command that originated in the DOS days and has been enhanced for

use in modern networks. It is used to copy files and directories from one location to another. The
basic syntax is:

XCOPY source destination switches

Both source and destination can be either filenames or directories. There is full support for

wildcards. There are a multitude of switches available that control such things as resetting (or not)
the archive bit, copying (or not) any empty subdirectories, controlling the screen display during
copying, and copying (or not) security information about the files. For a full list of the switches
available, go to a command prompt and enter:

XCOPY /?

All command-prompt commands (known colloquially as DOS commands, even
though DOS is no more) are case-insensitive.

It is not required to actually use the XCOPY command to copy the files. You can copy the files in any

manner you wish, including DOS commands from the command prompt, dragging and dropping in
Windows Explorer, or FTP over the Internet. It is called XCOPY deployment to convey the essential fact

that all that is required to deploy is to copy the application virtual root and all its subdirectories.

The CLR automatically handles any changes to application files seamlessly and invisibly to the user. If
either the global.asax or web.config file (or their code-behinds) changes, the application is
automatically restarted. If a page, web service, or custom or user control file changes, the next
request to come in to the application just gets the new version. If an assembly file changes, the CLR
handles the transition from old version to new for any pending requests. It doesn't get much easier
than this.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since all the files necessary to the application are contained within the application virtual root and its
child directories, this implies that if two different applications on a server use a dll of the same name,
they are two independent copies of the file. They may be identical copies, but they don't have to be. It
is possible to have two or more different versions of a dll on the same machine, each in its own
application directory structure, with no conflict between applications. This relegates DLL Hell to
something that old programmers will tell war stories about, like 64KB boundaries or running out of
conventional memory in DOS.

20.4.3 Global Deployment

In the previous section "XCOPY Deployment," it was stated that most applications are deployed by
simply copying files to the proper directory. The exception occurs when you wish to use the same
assembly in more than one application. In this case, you use global deployment .

There are many scenarios in which it might be desirable to have a common assembly file accessible to
multiple applications. A firm might have two different web sites on a server, both providing access to
the same database. One web site is free of charge and open to the public but of limited functionality,
while the other is fully functional, requiring a paid subscription. Since both sites access the same
database, they will have common database query routines. They might also have common login
routines. Using the same assembly to contain those common routines will enhance maintainability.
Another scenario might be a web-hosting firm that has many web sites running on a server. They
might want to offer some functionality to all their client web sites. Encapsulating this functionality in a
globally available assembly would make this easy to offer and maintain.

Another consideration is versioning. When assemblies are local to an application, then each application
can have its own version of common assemblies. The .NET Framework also allows for global
assemblies to have multiple versions. Each application making use of the global assembly can either
specify the version it wants to use or take the latest version. By specifying the version, an application
will not break if a newer version of the assembly introduces signature changes or bugs.

To provide global availability of an assembly, it must be installed to the global assembly cache , or
GAC. The GAC is a machine-wide location for code that is to be shared among multiple applications on
that machine. Typically, it is physically located at c:\winnt\assembly . However, you cannot just copy
an assembly file to that directory and have it be made available to all the applications. The assembly
needs to be registered with the GAC, using the .NET command-line utility GacUtil.exe .

In order to make an assembly file suitable for inclusion in the GAC, it must have assembly information
compiled into it. This is done using Assembly attributes. These Assembly attributes can either be

included in the same source code file as the class(es) being compiled into the assembly, or in a
separate source code file that is compiled into the assembly along with the class source code file(s).
The format of the attributes is dependent on the language used. In VB.NET they look like this:

<Assembly:attributeName(attributeValue)>

In C#, the Assembly attribute looks like this:

[Assembly:attributeName(attributeValue)]

where attributeName is the name of the Assembly attribute, and attributeValue is the string
value assigned to the attribute. So, for example, if assigning the AssemblyVersionAttribute , it

would look like the following in VB.NET:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<Assembly: AssemblyVersionAttribute ("1.0.3.101")>

It would look like this in C#:

[Assembly: AssemblyVersionAttribute ("1.0.3.101")]

If the project was developed using Visual Studio .NET, then this assembly information is contained in
a file called AssemblyInfo.cs if the project was developed in C#, or AssemblyInfo.vb if the project was
developed in VB.NET.

Table 20-17 lists the available Assembly attributes with a brief description.

Table 20-17. Assembly attributes

Attribute Description

AssemblyCompanyAttribute String containing company name.

AssemblyConfigurationAttribute
String configuration, such as Retail or Debug. Not used by
CLR.

AssemblyCopyrightAttribute String containing copyright information.

AssemblyCultureAttribute Field indicating culture supported by the assembly.

AssemblyDefaultAliasAttribute
String containing default alias for the assembly. Can contain
a friendly name.

AssemblyDelaySignAttribute Boolean indicating delayed application of digital signature.

AssemblyDescriptionAttribute String containing short description of the assembly.

AssemblyFileVersionAttribute
String containing Win32 file version number. Defaults to
assembly version.

AssemblyFlagsAttribute Flag indicating the kind of side-by-side execution allowed.

AssemblyInformationalVersionAt
tribute

String containing version information not used by the CLR.

AssemblyKeyFileAttribute

String containing name of file with either public key
signature if using delayed signing, or both public and private
keys. Filename is relative to output file path, not source file
path.

AssemblyKeyNameAttribute String containing key container.

AssemblyProductAttribute String containing product information.

AssemblyTitleAttribute String containing friendly name for the assembly.

AssemblyTrademarkAttribute String containing trademark information.

AssemblyVersionAttribute
A numeric version representation, in the form major .minor

. build.revision .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are using Assembly attributes in a source file, you must also reference the System. Reflection
namespace, using the Imports keyword in VB.NET or the using keyword in C#.

In order for an assembly to be included in the GAC, it must have a strong name . This is a
cryptographically secure name that identifies an assembly by its name, version number, and a public
key. A strong name can be generated using the .NET command-line utility sn.exe . To use this utility,
enter at a command prompt:

sn -k outputDirectory\strongNameFile.snk

where outputDirectory is the path to the application virtual root directory, and
strongNameFile.snk is the name of the file that will contain the public and private keys comprising

the digital signature.

Having generated the strong name, you would add an Assembly attribute providing that strong name.

In VB.NET, it appears as follows:

<Assembly: AssemblyKeyFileAttribute(_
 "outputDirectory\strongNameFile.snk ")>

In C#, it takes the form:

[Assembly: AssemblyKeyFileAttribute (
 @"outputDirectory\strongNameFile.snk ")]

Once all this is in place, you can use GacUtil.exe to add the assembly to the GAC. The syntax is:

gacutil /i pathToDLL\myDLL.DLL

where pathToDLL is the path to the directory containing the assembly file, and myDLL.DLL is the

name of the assembly file.

The GacUtil.exe utility has several command-line switches. For a complete list, enter at a command
prompt:

gacutil /?

Some of the more common switches are described in Table 20-18 .

Table 20-18. Some common switches to GacUtil.exe

Switch Description

/i Installs an assembly to the GAC.

/u
Uninstalls an assembly from the GAC. Note that if the name of the assembly to be
uninstalled has no qualifying information, such as version, then all assemblies of that name
will be uninstalled.

/l Lists all the assemblies installed in the GAC.

To use a global assembly in applications, it must be registered in the machine.config file. To add the
above assembly to the machine.config file, add the following line to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<configuration><system.web><compilation><assemblies> section:

<add assembly="myDLL, Version=1.0.3.101, Culture=neutral, PublicKeyToken= nnnnnnnn"/ >

where nnnnnnnn is obtained from GacUtil by running:

GacUtil /l

from the command line, finding myDLL in the listing, and copying the public key token into place.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix A. Relational Database
Technology: A Crash Course
ADO.NET can be used to access data from any data source: relational databases, object databases,
flat files, and text files. The vast majority of web applications, however, will access data from a
relational database such as SQL Server. While one can certainly write an entire book on relational
databases and another on SQL, the essentials of these technologies are not hard to understand.

All of the examples in this appendix assume you are working with SQL Server
and that the flavor of SQL you are using is T-SQL. Users of other relational
databases will find that the lessons learned here transfer well to their
environment, but be especially careful with applications like Access that use a
different variation of SQL.

A database is a repository of data. A relational database organizes your data into tables that are
"related" to one another. For example, one table might contain a customer's information and a
second table might contain information about orders. The tables are related to one another because
each customer has certain orders, and each order is owned by an individual customer.

Similarly, you might have a table of cars and a second table of car parts. Each part can be in one or
more cars, and each car is made up of parts. Or, you might have a table for bugs and a table for
developers. Each bug is owned by one developer, and each developer has a list of bugs he owns.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.1 Tables, Records, and Columns

The principal division of a database is into tables. Tables, like classes, should describe one logical
entity and all of what you know about that entity.

Every table in a relational database is organized into rows, where each row represents a single
record. The rows are organized into columns. All the rows in a table have the same column structure.
For example, the Bugs table described in Appendix B (and used in Chapter 11) might have columns
for the bugID, the ID of the person reporting the bug, the date the bug was reported, the status of
the bug, and so forth.

It is common to make an analogy between tables and classes, and between
rows and objects. The Bugs table, for example, tells you a great deal about the
contents of a Bug, just as a Bug class tells you about the state and structure of
a Bug. Each row in the Bug table describes a particular Bug, much as an object
does.

This analogy is compelling, but limited. There is only an imperfect match
between relational databases and objects, and one of the challenges facing an
object-oriented programmer is overcoming the design differences between the
object model, on the one hand, and the database model, on the other.

Relational databases are very good at defining the relationship among objects,
but are not good at capturing the behavior of the types described in the table.
The "impedance mismatch" between relational databases and object-oriented
programs has led some developers to try to create object databases. While this
has met with some success, the vast majority of data is still stored in relational
databases because of their great flexibility, performance, and ability to be
searched quickly and easily.

Typically, the interface between the back-end relational database and the
objects in the application is managed by creating a database interface layer of
objects that negotiate between the creation of objects and the storage of
information in the database tables.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.2 Table Design

To understand the issues in table design, consider the Bug database described in Chapter 11. You
need to know who reported each bug, and it would be very useful to know the email address, phone
number, and other identifying information about each person as well.

You can imagine a form in which you display details about a given bug, and in that detail page you
offer the email address and phone number of the "reporter" so that the developer working on the bug
can contact that person.

You could store the identifying information with each bug, but that would be very inefficient. If John
Doe reported 50 bugs, you'd rather not repeat John Doe's email address and phone number in 50
records. It's also a data maintenance nightmare. If John Doe changes his email address and phone
number, you'd have to make the change in 50 places.

Instead, you'll create a second table called People, in which each row represents a single person. In
the People table there will be a column for the PersonID. Each person will have a unique ID, and that
field will be marked as the primary key for the Person table. A primary key is the column or
combination of columns that uniquely identifies a record in a given table.

The Bugs table will use the PersonID as a foreign key. A foreign key is a column (or combination of
columns) that is a primary (or otherwise unique) key from a different table. The Bug table uses the
PersonID, which is the primary key in People, to identify which person reported the bug. If you need
later to determine the email address for that person, you can use the PersonID to look up the Person
record in the People table and that will give you all the detailed information about that person.

By "factoring out" the details of the person's address into a Person table, you reduce the redundant
information in each Bug record. This process of taking out redundant information from your tables is
called normalization.

A.2.1 Normalization

Normalization not only makes your use of the database more efficient, it reduces the likelihood of
data corruption. If you kept the person's email address both in the People table and also in the Bug
table, you would run the risk that a change in one table might not be reflected in the other. Thus, if
you changed the person's email address in the Person table, that change might not be reflected in
every row in the Bugs table (or it would be a lot of work to make sure that it was reflected). By
keeping only the PersonID in Bugs, you are free to change the email address or other personal
information in People, and the change will automatically be reflected for each bug.

Just as VB and C# programmers want the compiler to catch bugs at compile time rather than at
runtime, database programmers want the database to help them avoid data corruption. A compiler
helps avoid bugs by enforcing the rules of the language. For example, in C# you can't use a variable
you've not defined. SQL Server and other modern relational databases help you avoid bugs by
enforcing constraints that you create. For example, the People database marks the PersonID as a
primary key. This creates a primary key constraint in the database, which ensures that each

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PersonID is unique. If you were to enter a person named Jesse Liberty with the PersonID of LIBE,
and then you were to try to add Stacey Liberty with a PersonID of LIBE, the database would reject
the second record because of the primary key constraint. You would need to give one of these people
a different, and unique, personID.

A.2.2 Declarative Referential Integrity

Relational databases use Declarative Referential Integrity (DRI) to establish constraints on the
relationships among the various tables. For example, you might declare a constraint on the Bug table
that dictates that no Bug may have a PersonID unless that PersonID represents a valid record in
People. This helps you avoid two types of mistakes. First, you cannot enter a record with an invalid
PersonID. Second, you cannot delete a Person record if that PersonID is used in any Bug. The
integrity of your data and the relationships among records is thus protected.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.3 SQL

The language of choice for querying and manipulating databases is Structured Query Language, often
referred to as SQL. SQL is often pronounced "sequel." SQL is a declarative language, as opposed to a
procedural language, and it can take a while to get used to working with a declarative language if you
are used to languages like VB or C#.

Most programmers tend to think in terms of a sequence of steps: "Find me all the bugs, then get the
reporter's ID, then use that ID to look up that user's records in People, then get me the email
address." In a declarative language, you declare the entire query, and the query engine returns a set
of results. You are not thinking about a set of steps; rather, you are thinking about designing and
"shaping" a set of data. Your goal is to make a single declaration that will return the right records.
You do that by creating temporary "wide" tables that include all the fields you need and then filtering
for only those records you want. "Widen the Bugs table with the People table, joining the two on the
PersonID, then filter for only those that meet my criteria."

The heart of SQL is the query. A query is a statement that returns a set of records from the
database. For example, you might like to see all of the BugIDs and Bug Descriptions in the Bugs table
whose status is Open. To do so you would write:

Select BugID, BugDescription from Bugs where status = 'open'

SQL is capable of much more powerful queries. For example, suppose the Quality Assurance manager
would like to know the email address for everyone who has reported a high-priority bug that was
resolved in the past ten days. You might create a query such as:

Select emailAddress from Bugs b
join People p on b.personID = p.personID
where b.priority='high'
and b.status in ('closed', 'fixed','NotABug')
and b.dateModified < DateAdd(d,-10,GetDate())

GetDate returns the current date, and DateAdd returns a new date computed

by adding or subtracting an interval from a specified date. In this case, you are
returning the date computed by subtracting ten days from the current date.

At first glance, you appear to be selecting the email address from the Bugs table, but that is not
possible because the Bugs table does not have an email address. The key phrase is:

Bugs b join People p on b.personID = p.personID

It is as if the join phrase creates a temporary table that is the width of both the Bugs table and the
People table joined together. The on keyword dictates how the tables are joined. In this case, the

tables are joined on the personID: each record in Bugs (represented by the alias b) is joined to the
appropriate record in People (represented by the alias p) when the personID fields match in both
records.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.3.1 Joining Tables

When you join two tables you can say either "get every record that exists in either," (this is called an
outer join) or you can say, as we've done here, "get only those records that exist in both tables"
(called an inner join).

Inner joins are the default, and so writing join is the same as writing inner
join.

The inner join shown above says: get only the records in People that match the records in Bugs by
having the same value in the PersonID field (on b.PersonID = p.PersonID).

The where clause further constrains the search to those records whose priority is high, whose status
is one of the three that constitute a resolved Bug (closed, fixed, or not a bug), and that were last

modified within the past ten days.

A.3.2 Using SQL to Manipulate the Database

SQL can be used not only for searching for and retrieving data but also for creating, updating, and
deleting tables and generally managing and manipulating both the content and the structure of the
database. For example, you can update the Priority of a bug in the Bugs table with this statement:

Update Bugs set priority = 'high' where BugID = 101

For a full explanation of SQL and details on using it well, take a look at Transact-SQL Programming,
by Kevin Kline, Lee Gould, and Andrew Zanevsky (O'Reilly).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix B. Bug Database Architecture
The Bug database consists of three primary tables (Bugs, BugHistory, and People) and four
secondary (lookup) tables (lkProduct, lkRoles, lkSeverity, and lkStatus). To keep the examples as
simple as possible, these tables have been stripped down to the absolute essentials.

Table B-1 shows the structure of the Bugs table and Table B-2 shows the structure of the BugHistory
table. Table B-3 shows the structure of the People table.

Table B-1. Structure of the Bugs table

Column Type Notes

BugID int (identity) Uniquely identifies each bug in the database.

Product int Foreign key into lkProducts (identifies the unique product).

Version varchar Text description of the version number (e.g., 0.1.2).

Description varchar Text description of the bug as entered by the person recording the bug.

Reporter int Foreign key into People (ID of the person reporting the bug).

Table B-2. Structure of the BugHistory table

Column Type Notes

BugHistoryID
int
(identity)

Uniquely identifies each bug history record.

BugID int
Foreign key into Bugs table. This column combined with BugHistoryID is
sufficient to track all the updates for a given bug.

Status int
Foreign key into lkStatus-identifies the current status of the bug (e.g.,
open, closed, etc.).

Severity int
Foreign key into lkSeverity-identifies the current severity of the bug
(e.g., high, medium, low, etc.).

Response varchar
Text description of the action taken at this step in the progress of the
bug resolution.

Owner int
Foreign key into People - identifies the current "owner" of the bug
(typically a developer while bug is unresolved).

DateStamp datetime Date and time stamp for the current entry.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table B-3. People

Column Type Notes

PersonID
int
(identity)

Uniquely identifies each person's record.

FullName varchar
Text of person's full name (title, first, last and suffix: e.g., Mr. John Galt,
Jr.).

eMail varchar Optional text field for email address. Cannot be null, can be blank.

Phone varchar Optional text field for telephone number. Cannot be null, can be blank.

Role int
Foreign key into lkRoles, designates the person's current role within the
organization (e.g., QA, Developer, etc.).

Each record in the BugHistory table has a Status value. The possible values for the Status field are
captured in lkStatus, as shown in Table B-4.

Table B-4. Possible status values

Status Notes

Open The bug has been reported but not yet assigned to anyone to fix.

Assigned Assigned (typically to a developer) but not yet accepted by that developer.

Accepted Accepted (typically by a developer) but not yet resolved.

NYD
Not Yet Deployed: the developer thinks he has fixed it but has not yet deployed it for
testing.

NAB
Not A Bug: the developer alleges that this is the intended behavior or is otherwise to
specification.

NR Not Reproducible: the developer cannot reproduce the behavior.

NPTF
No Plan To Fix: the developer agrees that the bug is as shown, but believes that the
organization ought not fix it.

Defer
Without commenting on whether the bug is real or not, the developer suggests deferring
all future action on the bug.

Fixed The developer has deployed a fix for the bug but it has not yet been closed by QA.

Closed Closed by QA.

You can certainly imagine other status values, but these will get you started. The work flow
envisioned is that a bug is reported by entering the bug in the system. QA reads through the Open
bugs and assigns a bug to a developer. The developer asks for all the bugs with his ID as owner and
the status of Assigned and accepts the bugs. He then works on the bugs and marks them one of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NYD, NAB, NR, NPTF, Defer, or (ideally) Fixed. QA then checks the results and either resets the
status (e.g., marks a bug from Defer back to Assigned), reassigns the bug, or marks it Closed.

Table B-5 illustrates the lkStatus table structure.

Table B-5. lkStatus

Column Type Notes

StatusID int (identity) Uniquely identifies each status record.

StatusDescription VarChar One of the values shown in the left column in Table B-4.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

B.1 Table Relationships

With these tables, you are able to create a working bug database.

Any two tables will typically have one of the following relationships:

One to Many

Each developer may "own" multiple bugs
Many to One

The reciprocal relationship of one to many. The developer is in a one-to-many relationship with
bugs, and bugs are in a many-to-one relationship with developers

Many to Many

You can imagine a system that allows more than one person to own a bug. Perhaps the bug is
owned by a developer and also a marketing person. Each of these people may also own more
than one bug. Thus, bugs and people would be in a many-to-many relationship. In the current
design, we do not allow this relationship between bugs and people.

The relationships among the tables is shown in Table B-6.

Table B-6. The relationship among the tables

Primary Key Foreign Key Relationship

BugHistory BugID Bugs BugID One bug to many history records.

BugHistory Status lkStatus StatusID Each BugHistory has one status.

BugHistory Severity lkSeverity SeverityID Each BugHistory has one severity.

BugHisotry Owner People PersonID Each BugHistory has one owner.

Bug Reporter People PersonID Each Bug has one Reporter.

Bug Product lkProduct ProductID Each Bug has one Product.

People Role lkRoles RoleID Each person has one Role.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Programming ASP.NET, Second Edition is a stingray. The stingray is a
cartilaginous fish, distinguished from other types of rays by the saw-edged, venomous spines that
adorn its whip-like tail. Stingrays have flat, disk-shaped bodies without distinct heads. They have
well-developed pectoral fins, which undulate to propel their bodies through the water. Stingrays' eyes
are on the top sides of their bodies, while their mouths are on their undersides. Because of this, they
cannot see what they are eating and sometimes leave "hickeys" on scuba divers.

Stingrays live in shallow bays, sounds, and in-shore waters with sandy bottoms. They usually keep to
the ocean floor and will flatten themselves against the ground to hide from predators. Despite their
venomous tail spines, stingrays are not aggressive and will flee from danger whenever possible. They
feed on mollusks, crustaceans, and some types of small fish. Sharks often prey on them, even
though the two are closely related.

Sarah Sherman was the production editor and copyeditor for Programming ASP.NET, Second Edition.
Reg Aubry, Claire Cloutier, Colleen Gorman, and Darren Kelly provided quality control. Mary Agner
and James Quill provided production assistance. Johnna VanHoose Dinse and Tom Dinse wrote the
index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover
layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. Julie Hawks converted the files from Microsoft Word to
FrameMaker 5.5.6 using tools created by Mike Sierra. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The
illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by
Christopher Bing. This colophon was written by Linley Dolby.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

>= (greater-than-or-equal-to) navigation symbol, SelectionMode property and

<%# syntax>

@Control directive, user controls

_blank value

 Target property (AdRotator control)

 Target property (HyperLink control)

_new value

 Target property (AdRotator control)

 Target property (HyperLink control)

_parent value

 Target property (AdRotator control)

 Target property (HyperLink control)

_self value

 Target property (AdRotator control)

 Target property (HyperLink control)

_top value

 Target property (AdRotator control)

 Target property (HyperLink control)

{0} symbol (substitution parameter)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

<a> tag

 HyperLink controls and

absolute URLs

AbsoluteExpiration parameter, time dependency and

Access

 ADO.NET and

 database, Bugs database and

access modifiers

AccessKey property

ACID test (Atomic, Consistent, Isolated, and Durable), database transactions

ACLs (Access Control Lists), authorization and

<Ad> tag (AdRotator control)

AdCreated event (AdRotator control) 2nd

Add() method, overloading

ADO.NET 2nd

 Access and

 database updates

 multiple users

 SQL

 transactions

 DataGrid control, creating

 managed providers

 object model [See ADO.NET object model]

 sample program

ADO.NET object model

 DataAdapter object

 DataReader object

 DataSet class

 DataRow class

 DataTable class

 methods

 properties

 DBCommand object

 DBConnection object

adProperties dictionary

AdProperties property (AdRotator control), Dictionary object

AdRotator control

 AdCreated event

 C# code example

 onAdCreated event handler

 properties

 Target property

 VB.NET code example

ads on web pages

advertisement files

AdvertisementFile property (AdRotator control)

<Advertisements> tag (AdRotator control)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AllowCustomPaging property (DataGrid control)

AllowPaging attribute (DataGrid control)

AllowSorting attribute (DataGrid control)

<AlternateText> tag (AdRotator control)

AlternateText property, Image control

AlternatingItem (ListItemType enumeration)

anonymous access

anonymous users, authentication and

application assembly cache

Application dictionary

 objects

 concurrency and

 retrieving

 WriteFile method

Application directive 2nd

 attributes

 global.asax file 2nd

application domains

application events

Application object

 Contents subproperty

 WebService class

 HttpContext object and

 WebService class and

Application property (HTTPApplication class)

application state

 concurrency and

 deadlocks

 memory and

 objects

 Lock method

 Unlock method

 persistence and

 scalability

 static objects and

 survivability

 web farms

 web gardens

application-level classes (FCL)

application-level tracing 2nd

application-wide error pages

Application_End event

 application state and

Application_Start event

 application state and

applications

 configuration

 custom

 hierarchical

 web.config file

 XML

 controlling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 global.asax file and

 HttpApplication object

 deadly embrace

 deployment

 assemblies

 global deployment

 XCOPY deployment

 overview

 virtual directories

 Visual Studio .NET, running

 web applicatin directories

appSettings configuration section

arguments

 custom event arguments

 event handlers

ArrayList

 controls, binding to

 DataSource property

 DropDownList control and

 Page_Load event handler

ArrayList objects

 created by BindGrid()

 setting private variables

 sorting

arrays, binding to controls

ascending sort order

.ascx files

 Implements directive and

 Import directive and

 user controls

 Assembly directive and

.asmx files

 proxy class

 web services 2nd

ASP

 events

 ASP.NET comparison

 Hello World code

 Hello World program converted to ASP.NET

 key differences

 table population

ASP controls 2nd

 browsers and

 buttons and

 comments

 hierarchy

 HTML server control comparison 2nd

 WebControl class

ASP.NET

 ASP comparison

 browsers, uplevel/downlevel

 comments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 events

 ASP comparison

 Hello World program converted from

 introduction

 selecting items from lists

 table population and

ASPCheckBoxList.aspx file

.aspx files

 controlling columns in DataGrid control

 in-line code to code-behind conversion

.aspx pages, user controls and

assemblies

 applications, deployment and

 attributes

 metadata

assembly cache

Assembly directive

 .ascx files

 attributes

 \bin subdirectory

 global.asax file and 2nd

asynchronous method calls, web services

attribute

 Class

 WebService directive

 Language

 WebService directive

attributes

 Application directive

 assemblies and

 Assembly directive

 Codebehind, user controls

 Control directive

 ControlBuilder

 custom controls

 directives

 Height, Panel control

 HorizontalAlign, Panel control

 OnCancelCommand

 onClick

 OnEditCommand

 onInit

 OnItemDataBound

 OnSelectedIndexChanged

 OnUpdatecommand

 Page directive

 ParseChildren

 Reference directive

 state bag

 Table control

 BackImageUrl

 Width

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Target, HyperLink control

 user controls

 WebMethod

 properties

 WebService

 Description property

 Name property

 NameSpace property

 Width, Panel control

authentication 2nd

 anonymous access

 anonymous users

 authentication providers

 certificate authentication

 credentials

 forms authentication

 ASP.NET configuration

 cookies

 IIS configuration

 login form

 logout

 redirect

 web.config and

 MMC and

 modes

 Passport authentication

 Windows authentication

 basic authentication

 digest authentication

 Integrated Windows authentication

 role-based security

authentication configuration section

authorization

 ACLs

 file authorization

 URL authorization

authorization configuration section

AutoGenerateColumns attribute (DataGrid control)

AutoIncrementSeed property (DataColumn class)

AutoPostBack property

 CheckBox control

 CheckBoxList control

 DropDownList control

 TextBox control

Autos window, debugging

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

BackColor property

BackImageUrl attribute, Table control

base classes (FCL)

BaseDataList class

basic authentication

batch files, proxy class automation

benchmarking, performance and

BindGrid()

 creating ArrayList object

 sorting ArrayList object

binding [See also data binding]

 checkboxes

 to classes

 to controls

 controls to controls

 DataList list-bound control

 early binding, performance and

 explicit binding

 radio buttons

Bold subproperty (Font class)

BookCounter class

 ControlBuilder attribute

 INamingContainer interface

 ParseChildren attribute

BookCounter composite control

BookInquiryClass, Render method

BookInquiryList composite control

BookList user control

 event handling

 ListChanged event

 OnListChanged method

bookmarks, Visual Studio .NET

Boolean properties, Calendar control

BorderColor property

BorderStyle property

BorderWidth property

BoundColumn element 2nd

breakpoints, debugging

 Breakpoint window

 Condition property

 Hit Count property

 icons

 properties

 setting

 stepping through code

browserCaps configuration section

browsers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ASP controls and

 calendars as HTML tables

 trace log and

 uplevel, validation and

 uplevel/downlevel 2nd 3rd

btn_Click event handler method

btnBookName_Click method

btnBookName_Click()

btnUpdateDatabase_Click event handler

BubbleEvent event

BufferResponse property, WebMethod attribute

Bug database

 BugHistory table

 Bugs table

 design

 People table

 using Access with, instead of SQL Server

BugHistory records as child records

BugHistory table

 structure

 transaction implementation

Bugs table

 populating by hand

 structure

Build menu, Visual Studio .NET IDE

Button control

 C# code example 2nd

 date ranges

 postback event

 System.Web.UI.WebControls namespace

 VB.NET code example 2nd

<button> tag

buttons

 Button control

 Click event and

 Command event and

 ImageButton control

 LinkButton control

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C#

 code-behind files

 coding differences

 comments

 event handling, user controls

 Hello World program

 introduction

 populating tables, ASP.NET

 using statement 2nd

Cache class

 dependencies and

 functionality

cached item dependency

CacheDependency constructor

CacheDuration property, WebMethod attribute

CacheItemRemovedReason enumeration

caching

 application assembly cache

 assembly cache

 cached item dependency

 callback support

 class caching

 configuration caching

 definition

 dependencies and

 file change dependency

 fragment caching

 GAC

 HttpCachePolicy class

 object caching 2nd

 output caching 2nd

 OutputCache page directive

 OutputCache directive

 performance and 2nd

 scavenging

 time dependency

Calendar control 2nd 3rd

 date range selection 2nd

 DayRender event and 2nd

 DropDownList control

 expanded selection functionality 2nd

 Label control

 Label controls

 onSelectionChanged event handler

 postback event

 properties

 Boolean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SelectedDates

 style

 TodaysDate

 VisibleDate

 SelectionChanged event

 SelectionChanged event and 2nd

 SelectionChanged method

 SelectionMode property

 VisibleMonthChanged event

 VisibleMonthChanged event and 2nd

Calendar-Simple.aspx file

Calendar-Simple2.aspx file

Calendar-Simple3.aspx file

CalendarDay class

calendars as HTML tables

Call Stack window, debugging and

callback methods

 caching and

 delegates and

camel-casing

 variable names

 XML files

Cancel event

CausesValidation property

cblFontStyle_Init method

cblGenre_Init method

cblGenre_Init()

Cell property, DayRender event

Cells collection

cells in tables

 width

certificate authentication

CheckBox control

 C# code example

 labels and

 non-postback event

 value selection and

 VB.NET code example

checkboxes, binding

CheckBoxList control 2nd

 adding items

 from arrays 2nd

 from data source

 programmatically

 statically

 with values from arrays 2nd

 fonts

 Items collection

 non-postback event

 onInit event handler and

 properties

 responding to user action 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Table controls and

 user selection responses

 value selection and

CheckedChanged event 2nd

child controls, loops

Class attribute

 WebService directive

class caching

Class View, Visual Studio .NET

classes

 ADO.NET

 binding to

 Cache class 2nd

 code-behind files

 DateTime

 HttpCachePolicy

 WebService

 deriving from

classes libraries, .NET Framework

Click event

 button controls and

Client Errors status codes

client-side event handlers

client-side scripting

client-side validation 2nd

 CustomValidator control and

 regular expressions matched using JScript

 warning message

clients

 proxies and

 user control properties

clientTarget configuration section

Clipboard Ring, Visual Studio .NET

CLR (Common Language Runtime)

CLS (Common Language Specification)

code comments

code-behind

 .aspx file conversion

 Visual Studio .NET and

 web pages and

 web services

 web services and

code-behind files

 .aspx file modifications

 classes

 csCodeBehind.aspx

 filenames

 VS.NET and

Codebehind attribute

 Page directive, VS.NET

 user controls

Color.FromName()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

colors

 conditionally setting bug severity colors

 setting

columnar vs. flow layout (HTML)

columns

 controlling, in DataGrid control

 data-bound

 databases

 DataTable objects

 EditTemplate

 properties

 sorting in DataGrid control 2nd

Columns attribute

 TextBox control

<Columns tag>

ColumnSpan property (TableCell control)

COM+ interfaces

Command Builder

Command event and button controls

CommandEventArgs event argument

CommandType property

 stored procedures, inline arguments and

comments

 ASP controls

 C#

 Transact SQL

 VB.NET

comments in code

CompareValidator control 2nd

compilation configuration section

composite controls

 BookCounter

 BookInquiryList

 creating

composite custom controls

concatenation of strings, performance and

concurrency, application state and

Condition property, breakpoints (debugging)

configuration

 applications

 custom

 hierarchical

 machine.config file

 web.config file

 debugging enabling/disabling

 name/value pairs

 session state

configuration caching

configuration sections

 appSettings

 security

connection pooling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

connection strings

 user control properties

connection transactions

constructors

 CacheDependency

 overloaded

consumers, web services

 creating

 creating application

Contents collection, SessionState class

Contents subproperty, Application object

context-sensitive help, Visual Studio.NET

Control attribute, Reference directive

Control class

 events derived from

 Repeater control derived from

Control directive

 attributes

 user control files

control events

Control tag

control trees

Control.EnableViewState property

ControlBuilder attribute

ControlCollection class

controlling applications

 global.asax file

 HttpApplication object

controls

 AdRotator

 properties

 ASP controls 2nd

 binding

 to ArrayList

 to controls

 data sources to

 BugHistoryHandEdits

 Button

 buttons

 Calendar 2nd

 properties

 SelectionMode property

 CheckBox 2nd

 CheckBoxList 2nd 3rd

 adding items from data source

 adding items programmatically

 adding items statically

 properties

 child controls, loops

 custom controls 2nd

 attributes

 composite custom controls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CountedButton

 creating

 derived controls

 derived custom controls

 full custom controls

 properties

 Render method

 state

 testing

 DataGrid control

 DropDownList 2nd 3rd

 event arguments and

 events, default

 HTML

 HTML server controls

 HyperLink

 Image

 ImageButton

 Label

 LinkButton

 list items and

 list-bound

 DataList

 Repeater

 ListBox 2nd 3rd

 LiteralControl

 non-postback events

 Panel

 postback events

 RadioButton 2nd

 RadioButtonList 2nd 3rd

 server controls, performance and

 Table controls, DataList controls and

 table creation

 TableCell

 TableHeaderCell

 TableRow

 TextBox

 user controls

 validation 2nd 3rd

 CompareValidator

 CustomValidation

 CustomValidator

 RangeValidator 2nd

 RegularExpression

 RegularExpressionValidator

 RequiredFieldValidator 2nd

 ValidationSummary

 value comparison between controls

 value selection and

 values, session state and

 view state, disabling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 web server controls

Controls collection

 adding labels to

 specifying cells

ControlToCompare attribute, CompareValidator control

cookieless attribute, <sessionState> section

cookies

 forms authentication

 session state and

Count property, Cells collection

CountedButton control

CountedButton custom control

counters, incrementing

CreateBugDataSet method

CreateBugHistoryDataSet method

credentials, authentication

csASPAdRotator.aspx file

csASPButtons.aspx file 2nd

csASPCalendarDayRender.aspx file

csASPCalendarMoreSelections.aspx file

csASPCalendarRangeSelection.aspx file

csASPCalendarSelectionChanged.aspx file

csASPCalendarVisibleMonth.aspx file

csASPCheckboxes.aspx file

csASPCheckBoxListArray.aspx file

csASPCheckBoxListArrayValue.aspx file

csASPCheckBoxListDataBind.aspx file

csASPCheckBoxListEvents.aspx file

csASPDropDownList.aspx file

csASPHyperLink.aspx file

csAspImageAlign.aspx file

csASPListBox.aspx file

csASPPanel.aspx file

csASPRadioButtonList.aspx file

csASPRadioButtons.aspx file

csASPServerControlBasics.aspx file

csASPServerControlBasics2.aspx file

csASPTable.aspx file

csHelloWorld1.aspx file

csHTMLServerControls.aspx file

CssClass property

CType function (VB.NET), expression to type conversion

CType() method, session state and

CurrentPageIndex property (DataGrid control)

custom controls 2nd

 attributes

 composite controls

 BookCounter

 BookInquiryList

 creating

 composite custom controls

 CountedButton

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 creating

 derived controls

 CountedButton

 creating

 derived custom controls

 full custom controls

 Visual Studio .NET

 properties

 Render method

 state

 testing

 user controls [See user controls]

custom event arguments

CustomControls DLL file, web page and

customErrors configuration section

CustomValidator control 2nd

CustomValidator validation control

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data binding

 C# code example

 controls to ArrayList

 postback and

 VB.NET code example

data classes (FCL)

data grid

 creating

 relational data

data isolation

Data menu, Visual Studio .NET IDE

data objects, creating by hand

data sources, binding to controls

data types

 web services

DataAdapter

 DataSet and

 SqlDataAdapter object, properties

DataAdapter object, ADO.NET object model

databases

 Bug databases

 design

 Bugs databases

 Access and

 columns

 datasets comparison

 look-up tables

 normalization

 relational databases

 rows 2nd

 SQL

 tables

 design

 joining

 transactions

 ACID test

 connection transactions

 DB Transaction option

 implementation

 UpdateConnectionTransaction method

 updates

 ADO.NET 2nd 3rd

 dataset creation

 delete command

 error handling with multiple users

 insert command

 multiple users

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 record locking

 records

 update command

 Update method

DataBind() method

 list-bound controls and 2nd 3rd

DataBinder class

DataBinding event 2nd

DataField attribute of BoundColumn element

DataGrid

 EditTemplate, column creation

 web pages, in-place editing

DataGrid control 2nd

 ADO.NET and 2nd

 AutoGenerateColumns attribute, adding to

 Bug class 2nd

 C# code-behind file for

 code-behind file for paging/sorting 2nd

 creating link to

 data apparance

 details page

 details.aspx file

 displaying data

 events

 events for page navigation, handling

 footer, adding to

 handling footer and details page 2nd

 implementing events 2nd

 ItemDataBound event, handling

 OnItemDataBound attribute, adding

 OnSortCommand event handler, implementing

 paging, implementing

 postback event

 putting results on one page

 summary footer, adding to

 VB.NET code-behind file for

DataGridItem objects 2nd

 Controls collection and

DataGridItemEventArgs class

 handling ItemCreated event

 handling ItemDataBound event

DataGridPageChangedEventArgs class

DataGridSortCommandEventArgs class

DataItem property (DataGridItem object)

DataKeyField attribute, DataGrid control

DataKeys collection

DataList control 2nd

 postback event

 Table controls and

DataList list-bound control

 binding to

 editing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 templates

 web pages, in-place editing and

DataListItem objects

DataNavigateUrlField attribute

DataNavigateUrlFormatString attribute

DataReader class, performance and

DataReader object, ADO.NET object model

DataReaders

 datasets comparison

DataRelation objects

DataRelationCollection class

DataRow class, ADO.NET object model DataSet class

DataRow method, DataTable object

DataSet class

 ADO.NET object model

 DataRow class

 DataTable class

 ADO.NET, object model

 methods

 properties

 creating new objects

DataSet object

 file change dependency and

datasets

 creating, database updates and

DataSets

 DataAdapter and

datasets

 database comparison

 database updates

 comparing values

 delete command

 insert command

 records

 transaction support

 update command

 Update method

 DataReaders and

 persistence

DataSets

 tables, adding

datasets

 updates

DataSource property

 ArrayList

 BindGrid() and 2nd

 DataGrid control 2nd

 list-bound controls

DataTable class, ADO.NET object model DataSet class

DataTable objects

 adding data

 adding tables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 columns 2nd

 constraints

 foreign keys

 instantiation

 primary keys

 PrimaryKey property

 relations

 rows, arrays of objects and

DataTextField attribute

 DataGrid control

 DropDownList control

DataValueField attribute (DropDownList control)

DataView object

date ranges

DateTime class

 overloaded constructors used by

 properties

Day property

 CalendarDay class

 DayRender event

Day value (CalendarSelectionMode enumeration)

DayRender event

 C# code example

 Calendar control and

 Cell property

 Day property

 VB.NET code example

DayWeek value (CalendarSelectionMode enumeration)

DayWeekMonth value (CalendarSelectionMode enumeration)

DB Transaction option

DBCommand object, ADO.NET object model

DBConnection object, ADO.NET object model

deadlocks, application state and

deadly embrace

Debug menu, Visual Studio .NET IDE

Debug mode, performance and

Debug toolbar

debugger, Visual Studio .NET

debugging

 Autos window

 breakpoints

 Breakpoint window

 icons

 properties

 setting

 Call Stack window

 Disassembly window

 enabling/disabling

 Immediate window

 Locals window

 Me window

 Memory windows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Modules window

 objects and

 Registers window

 stepping through code

 symbolic

 This window

 Threads window

 variables and

 Watch window

DebuggingApp sample applications

delegates

 callback methods and

 asynchronous method calls and

 events and

delegation, security and

DeleteRule property

dependencies

 cached item dependency

 file change dependencies

 time dependency

deploying applications

 assemblies

 global deployment

 XCOPY deployment

derived controls

 CountedButton

 creating

 custom

descending sort order 2nd

Description property

 WebService attribute

Description property, WebMethod attribute

Design view, Visual Studio .NET

details.aspx file

 C# code-behind file for

 VB.NET code-behind file for

Dictionary object, AdProperties property (AdRotator control)

digest authentication

directives

 @Control directive

 user controls

 Application directive 2nd

 Assembly directive

 attribute/value pairs

 Control

 global.asax file

 Application

 Assembly

 Import

 Implements directive

 Import directive

 OutputCache

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OutputCache page directive

 Page directive

 page directives

 Reference

 Register

 WebService

directories

 virtual directories 2nd

 web application directories

 web services

Disassembly window, debugging and

disco.exe

 output files

 WSDL file generation 2nd

disconnected data architecture

discovery, web services

 disco.exe

 file creation

 methods and

 properties and

Display attribute, RequiredFieldValidator control

DisplayMode attribute (ValidationSummary control)

Dispose method, lifecycles

Disposed event

dlls (dynamic link libraries), assemblies and

downlevel browsers 2nd 3rd

DRI (Declarative Referential Integrity), relational databases and

DropDownList control 2nd

 ArrayList and

 C# code example

 Calendar control

 Calendar control and

 non-postback event

 Panel control and

 value selection and

 VB.NET code example

Duration parameter, OutputCache page directive

dynamic content, adding to web pages

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

early binding, performance and

Edit event

Edit menu, Visual Studio .NET IDE

EditItem (ListItemType enumeration)

EditTemplate columns

embedded scripts, adding to web pages

Enabled property

EnableSession property, WebMethod attribute

EnableSessionState attribute, Page directive

EnableViewState attribute, Page directive

enumerations, ImageAlign members

Error event

error handling 2nd

 application-wide error pages

 database updates, multiple users

 logic errors

 page-specific error pages

 syntax errors

 unhandled errors

ErrorMessage attribute, ValidationSummary control

Eval() method, DataBinder class

event handlers

 arguments

 Cancel event

 creating

 database update, UpdateDB method

 declarations

 Edit event

 EvantArgs class

 list box selection processing

 names

 onAdCreated

 OnCancelCommand event

 OnCheckedChanged

 OnEditCommand event

 OnUpdateCommand event

 Save event

 VB.NET tables

event handling

 user controls

 C#

 custom event arguments

 VB.NET

event model

event-driven programming

EventArgs class

 event handler declaration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

events

 AdCreated, AdRotator control

 application events

 arguments

 CommandEventArgs

 ASP.NET to ASP comparison 2nd

 btnUpdateDatabase_Click

 CheckedChanged

 client side

 Control class and

 control events

 controls, default events

 DataGrid control

 DayRender, Calendar control and

 delegates and

 event handler names

 global.asax file

 Init

 ItemDataBound

 non-postback

 page events

 postback

 Repeater control

 SelectedIndexChanged 2nd

 server-side

 session events

 sessions

 TemplateControl class and

 VisibleMonthChanged, Calendar control 2nd

 Visual Studio .NET

exceptions, performance and

executable code, presentation code and

ExecuteReader()

explicit binding

 list-bound controls and

 requiring

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

FCL (Framework Class Library)

 application-leve classes

 base classes

 web forms and

 web services and

 Windows forms and

file authorization

file change dependency

file extensions, code-behind files and

File menu, Visual Studio .NET IDE

filenames, code-behind files and

find and replace, Visual Studio .NET

flow vs. columnar layout (HTML)

FlowLayout mode, Visual Studio .NET

Font class, subproperties of

Font property

fonts

 CheckBoxList control

 name assignments

 RadioButtonList control 2nd

 subproperties

 TableRow object

FontUnit object, VB.NET instantiation

Footer (ListItemType enumeration)

footers, adding to DataGrid control

FooterTemplate, Repeater control

ForeColor property

foreign keys, DataTable objects

<form> tag

Format menu, Visual Studio .NET IDE

Formatting menu, Visual Studio .NET

forms authentication

 ASP.NET configuration

 cookies

 IIS configuration

 login form

 logout

 redirect

 web.config and

fragment caching

framework base classes, CLR

Framework Class Library (FCL)

Friedl, Jeffrey

FromName() (Color class)

full custom controls

 Visual Studio .NET

function calls, stepping through code and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

GAC (global assembly cache) 2nd

GacUtil.exe

 switches

Get() method

GetName web method

GetPrice web method

global application objects

global deployment

global static variables, global.asax file

global.asax file

 application control and

 Application directive and

 application state and

 Assembly directive and

 directives

 Application

 Assembly

 Import

 events

 global static variables

 Import directive and

 instance methods

 object declarations

 script blocks

 server-side includes

 session-scoped application objects

 VB.NET sample

 virtual directories and

globalization configuration section

GridLayout mode, Visual Studio .NET

GroupName property, RadioButton control

GUIs (graphical user interfaces), controls and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

handler declarations

 machine.config file sections

 web.config file sections

Handles keyword

handling errors [See error handling]

Header (ListItemType enumeration)

HeaderTemplate, Repeater control

HeaderText attribute

 BoundColumn element 2nd

 ValidationSummary control

Height attribute, Panel control

Height property

Hello World program

 ASP code

 C#

 initial

 VB.NET

 Visual Studio .NET

Help menu, Visual Studio .NET IDE

hierarchical configuration, applications

hierarchies

 ASP controls

 control trees

Hit Count property, breakpoints (debugging)

HorizontalAlign attribute, Panel control

HorizontalAlign property, TableCell control

HTML (Hypertext Markup Language)

 columnar vs. flow layout

 commenting code

 editing

 editing directly, using HTML tab 2nd

 editor, Visual Studio .NET

 page files

 server controls

 tables, calendars as

 tags, table creation

 user controls and

 well-formed

HTML controls

 container controls

 C# code example

 HTML server control conversion

 input controls

 types

 Visual Studio .NET

HTML server controls

 ASP controls comparison 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 C# code example

 HTML control conversion

 page directives

HTML view, Visual Studio .NET

HTML: The Definitive Guide 2nd

HTTP (HyperText Transfer Protocol), web services and 2nd

HTTP-GET requests

HTTP-POST requests, web services

HttpApplication class

HttpApplication object

HttpBrowserCapabilities object

HttpCachePolicy class

 methods

 properties

HttpContext object

 WebService class

httpHandlers configuration section

httpModules configuration section

HttpRequest.Browser property

httpRuntime configuration section

HyperLink control

 adding to DataGrid control

 C# code example

 ImageUrl attribute

 NavigateUrl attribute

 Target attribute

 Text attribute

 VB.NET code example

HyperLinkColumn element

 creating hyperlinks

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

IComparer class

id attribute, submit button and

ID property

IDE (Integrated Development Environment)

 Visual Studio .NET

 Build menu

 Data menu

 Debug menu

 Edit menu

 File menu

 Format menu

 Help menu

 menus

 Project menu

 toolbars

 Tools menu

 View menu

 Window menu

 windows

identity configuration section

identity, impersonation and

IDEs (integrated development environments)

if statements

IIS (Internet Information Server)

 configuration

 Windows authentication and

Image control

 C# code example

 properties

 VB.NET code example

ImageAlign enumeration, members

ImageAlign property (Image control)

ImageButton control

 C# code example

 postback event

 System.Web.UI.WebControls namespace

 VB.NET code example

images, controls

ImageUrl attribute, HyperLink control

ImageUrl property, Image control

<ImageUrl> tag (AdRotator control)

 tag

Immediate window, debugging and

impersonation 2nd

 identity

implementing transactions (databases)

Implements directive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 .ascx files and

 COM+ interface

Import directive

 .ascx files and

 global.asax file

 global.asax file and

 Table controls and

Imports statement, VB.NET 2nd

<Impressions> tag (AdRotator control)

in-place editing

 OnCancelCommand event handler

 OnEditcommand event handler

 OnUpdateCommand event

 web pages

incrementing counter

Informational status codes

inherits attribute, Page directive

Init event 2nd 3rd

 initialization phase, web page loading

initialization phase, lifecycles

InitialValue attribute, RequiredFieldValidator control

inline arguments, stored procedures and

inner HTML content, Text property and

inner joins, databases

InnerHtml property

 Html controls

InnerText property

 HTML controls

input controls

 HTML

 C# code example

 types of

<input> tag

input, checking type

InstalledFontCollection objects, instantiation

instance methods, global.asax file

integrated development environments

Integrated Windows authentication

IntelliSense, Visual Studio .NET 2nd 3rd

Internet Information Server [See IIS]

ISM (Internet Services Manager)

 virtual directories and

ISM (Internet Services Manager), virtual directories and

isolation

IsPostBack property

 DropDownList control

 Page_Load method and

 testing value of

Italic subproperty (Font class)

Item (ListItemType enumeration)

ItemCreated event

 populating summary footer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ItemDataBound event 2nd

 populating summary footer

Items collection, list-bound controls 2nd

ItemTemplate, Repeater control

ItemType property

 DataGridItem object

 Items collection

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

JavaScript

 adding to web pages

 commenting code

joining tables

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Kennedy, Bill 2nd

<Keyword> tag (AdRotator control)

KeywordFilter property (AdRotator control)

keywords

 Handles

 Property

 ViewState

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Label control

 C# code example 2nd

 Calendar control 2nd

 Text property

 VB.NET code example 2nd

labels

 CheckBox control and

 Text property

 web forms, Visual Studio .NET

Language attribute

 Application directive

 WebService directive

lblTime_Init method

Liberty, Jesse 2nd 3rd 4th 5th

lifecycles

 Dispose method

 initialization phase

 Page class

 postback

 Render method

 SaveViewState method

 view state, saving

 ViewState property

linear programming

LinkButton control

 C# code example

 postback event

 System.Web.UI.WebControls namespace

 VB.NET code example

list boxes

 multiple selection

 processing selection, event handlers and

 single selection

list-bound controls

 DataList

 binding to

 editing

 differences among

 Repeater

 shared properties and collections

ListBox control 2nd

 C# code example

 non-postback event

 value selection and

 VB.NET code example

ListControl class, controls derived from

ListItem object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ListItemType enumeration (ItemType property) 2nd 3rd

lists, controls and

LiteralControl control

 control trees in web pages

literals in regular expressions

lkStatus table structure

Load event 2nd

LoadPostData method

LoadViewState method

Locals window, debugging and

location configuration section

Location parameter, OuputCache page directive

Location, HttpCachePolicy class

Lock method, application state objects

locking

 application locking

 database records

logic errors

login form authentication

Lomax, Paul

look-up tables

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

machine.config file

 configuration sections

 disabling view state

 format

 handler declarations section

machineKey configuration section

macros, Visual Studio .NET

managed code, performance and

managed providers, ADO.NET

marshaling

Mastering Regular Expressions 2nd Edition

MaxLength property, TextBox control

Me window, debugging and

Memory windows, debugging

memory, application state and

MessageName property, WebMethod attribute

metacharacters, regular expressions and

metadata, assemblies and

methods

 btnBookName_Click

 callback methods

 cblFontStyle_Init

 cblGenre_Init

 CreateBugDataSet

 CreateBugHistoryDataSet

 DataAdapter class

 DataBind()

 DataReader class

 DataSet class, ADO.NET object model

 DataTable class, ADO.NET object model

 Get()

 HttpCachePolicy class

 instance methods, global.asax file

 LoadPostData

 LoadViewState

 overloading 2nd

 Page_Load

 IsPostBack property and

 RaisePostBackEvent

 RaisePostDataChangedEvent

 Render

 SelectionChanged

 TblTime_Init

 UpdateBugHistory

 UpdateConnectionTransaction

 UpdateDB, event handlers

 web methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 GetName

 GetPrice

 web services, discovery and

MMC (Microsoft Management Console), authentication and

mode attribute, <sessionState> section

Modules window, debugging and

MoveNext/MovePrevious commands

multiple selection list boxes

Musciano, Chuck 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Name property

 WebService attribute

Name subproperty (Font class)

name/value pairs, configuration

Names subproperty (Font class)

NameSpace property

 WebService attribute

namespaces

 proxy class

 System.Web.UI.WebControls

NameValueCollection, returned by QueryString property

NAT (network address translation) software

NavigateUrl attribute, HyperLink control

NavigateUrl property, HyperLink control

<NavigateUrl> tag (AdRotator control)

.NET Framework

 class libraries

 CLS

 protocols

NewPageIndex property (DataGrid control)

NewRow method, DataTable object

NextPrev mode

None value, CalendarSelectionMode enumeration

normalizing databases

NumericPages mode

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

object caching 2nd

object model, ADO.NET

objects

 Application dictionary

 concurrency and

 retrieving

 Cache class

 DataView

 debugging and

 declarations, global.asax file

 Dictionary, AdRotator control

 global application objects

 HttpBrowserCapabilities

 InstalledFontCollection, instatiation

 ListItem

 overloading methods

 Session dictionary

 populating

 string arrays, assigning

 session state dictionary objects

 static, application state and

 TableCell

 creating

 Wrap property

 Trace, writing to

OLE DB managed providers, ADO.NET and

OleDB classes, performance and

OleDbCommand

OleDbCommandBuilder

OleDbConnection

oleDbDataAdapter

OleDbDataReader class

OnAdCreated attribute, event handler for

onAdCreated event handler

OnBubbleEvent attribute

OnCancelCommand attribute

OnCancelCommand even

OnCheckedChanged attribute

OnCheckedChanged event handler

OnClick attribute

onClick attribute

OnDataBinding attribute

OnEditCommand attribute

OnEditCommand event handler

OnInit attribute

onInit attribute

onInit event handler, CheckBoxList control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OnInit method, initialization phase, web page loading

OnItemCreated attribute

 populating summary footer

 SortColumn property and

OnItemDataBound attribute 2nd 3rd

 not included in VB.NET version

 parameters for

 setting bug severity color

OnLoad attribute

OnPageIndexChanged attribute

OnPreRender attribute

OnPreRender method

OnSelectedIndexChanged attribute 2nd

onSelectionChanged event handler, Calendar control

OnServerValidate attribute (CustomValidator control)

OnSortCommand attribute, event handler implementation

OnTextChanged attribute 2nd

OnUnload attribute

OnUpdateCommand attribute

OnUpdateCommand event

Operator attribute, CompareValidator control

Oracle classes, performance and

outer joins, databases

outlines, Visual Studio .NET

output caching 2nd

 OutputCache page directive

output parameters

OutputCache directive

OutputCache page directive

 Duration parameter

 Location parameter

 VaryByControl parameter

 VaryByCustom parameter

 VaryByHeader parameter

 VaryByParam parameter

Overline subproperty (Font class)

overloaded constructors

overloaded constructors used by DateTime class

overloading methods 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Page attribute, Reference directive

Page class, web page lifecycle

Page directive

 .aspx files

 attributes

 Codebehind attribute, VS.NET

 EnableViewState attribute

 page-level tracing

 page-specific error pages

 session state, EnableSessionState attribute

 src attribute, text editors

 Strict attribute, VS.NET

 Table controls and

page directives

 HTML server controls and

page events

page files, HTML

page navigation and DataGrid control

page-level tracing 2nd

page-specific error pages

Page_Load event

 ASP.NET tables

 HTML server controls and

Page_Load event handler, ArrayList

Page_Load method

 C# code example

 IsPostBack property and

 Panel control

 retrieving Request.QueryString collection

 VB.NET code example

PageButtonCount attribute (DataGrid control)

PageIndexChanged event

pageLayout property, Visual Studio .NET

Pager (ListItemType enumeration)

PagerStyle element (DataGrid control)

pages configuration section

PageSize attribute (DataGrid control)

Panel control

 adding to BugHistory table

 C# code example

 DropDownList control

 Height attribute

 HorizontalAlign attribute

 Page_Load method

 VB.NET code example

 Width attribute

parent/child relationships

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ParseChildren attribute

Pascal-casing, variable names

Passport authentication

People table

performance

 benchmarking and

 caching and 2nd

 DataReader class

 Debug mode and

 early binding

 exceptions, minimzing

 managed code

 OleDB classes

 Oracle classes

 profiling and

 round trips to server

 server controls and

 session state and

 SQL classes

 stored procedures and

 string concatenation

 view state and

 web farms and

 web gardening and

persistence

 application state

 datasets

Petrusha, Ron

populating tables

 ASP.NET and

 classic ASP and

postback

 data binding and

 DropDownList control 2nd

 events, non-postback events comparison

 IsPostBack property and

 lifecycles

 testing value of

 TextBox control

PreRender event 2nd 3rd

PreRender phase, lifecycles

presentation code, executable code and

primary keys, DataTable objects

PrimaryKey property, DataTable objects

primitive data types

 web services

Priority parameter, scavenging

private variables, setting

procedures, stored procedures

processModel configuration section

profiling, performance and

Programming C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming C#

Programming C# 2nd

Programming Visual Basic.NET

Project menu, Visual Studio .NET IDE

projects, Visual Studio .NET

 naming

 new

properties

 AdProperties, Dictionary object

 AdRotator control

 Boolean, Calendar control

 breakpoints, debugging

 BugHistoryHandEdits control

 Calendar control

 CalendarDay class

 Cell, DayRender event

 CheckBoxList control

 Condition, Breakpoints Properties

 Control.EnableViewState

 custom controls

 DataAdapter class

 DataReader class

 DataSet class, ADO.NET object model

 DataTable class, ADO.NET object model

 DateTime class

 Day, DayRender event

 DeleteRule

 Hit Count, Breakpoints Properties

 HttpCachePolicy class

 HttpRequest.Browser

 Image control

 InnerHtml

 InnerText

 IsPostBack

 Repeater class

 SelectedDates, Calendar control

 SelectedItem 2nd

 style, Calendar control

 subproperties, fonts

 Table control

 Target, AdRotator control

 Text

 Label control

 labels

 TodaysDate, Calendar control

 UpdateRule

 user controls

 connection string

 creating

 setting from client

 values

 VisibleDate, Calendar control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Visual Studio .NET

 web services, discovery and

 WebMethod attribute

 BufferResponse

 CacheDuration

 Description

 EnableSession

 MessageName

 TransactionOption

 Width, TableCell object

Properties Window, Visual Studio .NET

Property keyword

protocols

 definition

 web services 2nd

 HTTP

 HTTP-GET requests

 HTTP-POST requests

 .NET support

proxies

 clients and

 creating

 web services

 source code, manual generation

proxy classes, web services and

 .asmx file

 asynchronous method calls

 batch files for automation

 classes

 compiling

 namespaces

 synchronous method calls

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

queries, SQL

query strings, retrieving 2nd

question mark (?), query strings and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

radio buttons, binding

RadioButton control

 C# code example

 non-postback event

 value selection and

 VB.NET code example

RadioButtonList control 2nd

 C# code example

 fonts

 attributes, setting

 Items collection

 non-postback event

 SelectedIndex property

 SelectedItem property

 Table controls and

 value selection and

 VB.NET code example

RaisePostBackEvent method

RaisePostDataChangedEvent method

range checking, validation

RangeValidator control

RangeValidator validation control

ReadOnly property (TextBox control)

records, databases

 locking

 updates and

Redirection status codes

Reference directive

 Control attribute

 Page attribute

Register directive

Registers window, debugging and

regular expressions

 literals

 metacharacters

 validation

 Visual Studio .NET

RegularExpressionValidator control

RegularExpressionValidator validation control

relational data

 Columns attribute

 data grid and

relational databases

 DRI

Relations property, DataSet class

relationships

 DataRelations objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataTable objects

 parent/child relationships

 XML

relative URLs

RemoveAt() (Cells collection)

Render method

 BookInquiryClass

 custom controls

 lifecycles

Repeater control

 HeaderTemplate

 postback event

Repeater list-bound control

 code-behind file

 FooterTemplate

 ItemTemplate

 SeparatorTemplate

 templates

RepeaterItem objects

Request.QueryString collection 2nd

requests, session state and

RequiredFieldValidator validation control 2nd

return values, stored procedures

role-based security, Windows authentication

Roman, Steven

round trips to server, performance and

rows

 creating in DataGrid control

 databases 2nd

 DataTable objects, arrays of objects and

Rows property, TextBox control

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Save event

SaveViewState method, lifecycles

scalability, application state

scavenging, caching and

script blocks, global. asax file

scripting code, adding to web pages

SDI (Single Document Interface) applications

searches, Visual Studio .NET

security

 authentication 2nd

 authorization 2nd

 configuration settings

 delegation

 impersonation 2nd

 web services

securityPolicy configuration section

Select statement (SQL), creating stored procedures

<select> tag

SelectedDates property, Calendar control

SelectedIndex property

 CheckBoxList 2nd

 DataGrid control

 RadioButtonList controls 2nd

SelectedIndexChanged event 2nd 3rd

 C# code example

SelectedItem (ListItemType enumeration)

SelectedItem property

 CheckBoxList

 RadioButtonList control 2nd

 RadioButtonList controls

SelectionChanged event

 C# code example

 Calendar control

 VB.NET code example

SelectionChanged method

 Calendar control

SelectionMode property

 Calendar control

 ListBox control

Separator (ListItemType enumeration)

SeparatorTemplate, Repeater control

server controls, performance and

Server Errors status codes

Server Explorer, Visual Studio .NET

server-side event handlers

server-side includes, global.asax file

server-side processing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 disabling view state

 HTML server controls and

server-side validation, CustomValidator control and 2nd

Session dictionary objects

session events

Session object

 WebService class and

session state

 configuration

 control values and

 cookies and

 dictionary objects

 enabling

 implementation

 performance and

Session_End event

 application state and

Session_Start event

 application state and

SessionIDs

 storing, using cookies

SessionState class, Contents collection

sessionState configuration section

Set() (SortColumn property)

SetCacheability, HttpCachePolicy class

ShowFooter attribute (DataGrid control)

ShowSummary attribute (ValidationSummary control)

signatures, web services

single selection list boxes

Size subproperty (Font class)

SlidingExpiration parameter, time dependency and

SOAP (Simple Object Access Protocol)

 web services and 2nd

Solution Explorer

Solution Explorer, Visual Studio .NET 2nd

 references, adding

 web references

solutions, Visual Studio .NET

Sort command event, creating event handler for

sort symbols, adding to columns in DataGrid controls

SortAscend property

SortColumn property 2nd

SortExpression attribute of BoundColumn element

spAddBug sproc

spAddBugWithTransactions sproc

spBugsWithIDs sproc

sprocs [See stored procedures]

SQL (Structured Query Language)

 classes, performance and

 data classes

 database updates

 databases

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 queries

SQL managed provider, ADO.NET and

SQL Server Query Analyzer

SqlCommand

SqlCommandBuilder

SqlConnection

sqlConnectionString attribute of <sessionState> section

SqlDataAdapter

 properties

SqlDataReader class

src attribute, Page directive

SSL (Secure Sockets Layer)

state

 application state

 concurrency and

 custom controls

 session state

 performance and

 state bag

 view state

 disabling

 performance and

 web services

state bag, attribute/value pairs

StateBag class, counter increments

stateConnectionString attribute of <sessionState> section

stateless environments

static objects

static web pages

stepping through code, debugging

StockTicker web service

 VB.NET code

stored procedures

 creating

 inline arguments and

 invoking

 explicit parameters

 parameters and 2nd

 programmatically

 output parameters

 performance and

 return values

 spAddBug

 spAddBugWithTransactions

 spBugsWithIDs

 SQL Server Query Analyzer

Strict attribute, Page Directive

Strikeout subproperty (Font class)

strings

 concatenation, performance and

 connection strings

Structured Query Language [See SQL]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Successful status codes

survivability, application state

symbolic debugger 2nd

syntax errors

 error handling and

 VS.NET and

System.Collections.ICollection interface and DataSource property

System.Data.Dataview objects and DataSource property

System.Drawing namespace

system.net configuration section

System.Object class, System.Web.UI.Control class

system.web configuration section

System.Web.UI.Control class

 Repeater class and

 WebControl class and

System.Web.UI.WebControls namespace

 ASP controls

 LinkButton control

 list-bound controls

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

tabbed document interface (Visual Studio .NET)

Table control

 BackImageUrl attribute

 C# code example

 CheckBoxList control

 DataList controls and

 Import directive

 Page directive

 properties not derived from other controls

 RadioButtonList control

 VB.NET code example

 Width attribute

<table> tag

TableCell control

 displaying message in cell

 setting color properties of

TableCell object

 creating

 Width property

 Wrap property

TableHeaderCell control

TableRow control

TableRow object, fonts and

tables [See also look-up tables]

 ASP.NET and

 cells

 wdith

 classic ASP and

 controls

 databases

 design

 joining

 rows

 event handlers, VB.NET

 HTML tags

Target attribute, HyperLink control

Target property, AdRotator control 2nd

<td> tag 2nd

TemplateColumn class, adding object to DataGrid control

TemplateColumn tag

TemplateControl class, events derived from

templates

 DataList control

 Repeater control 2nd

 Visual Studio .NET

TERM

Text attribute, HyperLink control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

text editors

 code-behind

 web services

 src attribute, Page directive

 VS.NET and

 web services

Text property

 inner HTMl content

 Label control 2nd

 labels

 ListItem object

 TableCell control

 TextBox control

<textarea> tag

TextBox control

 C# code example

 date ranges

 non-postback event

 VB.NET code example

TextChanged event 2nd

TextMode property (TextBox control)

<th> tag

This window, debugging and

Threads window, debugging and

time dependency

timeout attribute, <sessionState> section

TodaysDate property, Calendar control 2nd

toolbars

 Debug

 Visual Studio .NET IDE

Tools menu, Visual Studio .NET IDE

ToolTip property 2nd

<tr> tag

Trace attribute, Page directive

trace configuration section

trace log

 inserting to

 page-level tracing and

 viewing from browsers

Trace object

 C# code example

 VB.NET code example

 writing to

trace viewer

trace.axd file

Trace.Write()

tracing 2nd

 application-level

 application-level tracing

 page-level tracing 2nd

 trace viewer

Transact SQL comments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TransactionOption property, WebMethod attribute

transactions, databases

 ACID test

 connection transactions

 DB Transaction option

 implementations

 isolation

 spAddBugWithTransactions sproc

 UpdateConnectionTransaction method

 updates

trust configuration section

Type attribute, CompareValidator control

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UDDI (Universal Description, Discovery, and Integration)

Underline subproperty (Font class)

unhandled errors

Unload event 2nd

Unlock method, application state objects

UpdateBugHistory method

UpdateConnectionTransaction method

UpdateDB method, event handlers

UpdateRule property

updates

 databases

 ADO.NET 2nd 3rd

 btnUpdateDatabase_Click event and

 dataset creation

 delete command

 error handling with multiple users

 insert command

 multiple users

 record locking

 records

 update command

 Update method

 UpdateDB method

 datasets

uplevel browsers 2nd

 validation and

URL authorization

URLs (Uniform Resource Locators)

 absolute

 HyperLink control and

 navigating to, using HyperLink control

 query strings and

 relative

user controls 2nd

 @Control directive

 adding code

 .ascx extension

 .aspx pages and

 attributes

 BookList

 Codebehind attribute

 Control directive

 Control tag

 event handling

 C#

 custom event arguments

 VB.NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HTML and

 properties

 connection string

 creating

 setting from client

 values

 Visual Studio .NET

User object

 WebService class

user selection responses, CheckBoxList control

using statement (C#)

 import directives and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

validation

 client-side

 warning message

 comparisons

 controls, adding

 input type checking

 overview

 range checking

 regular expressions

 uplevel browsers

validation controls 2nd

 CompareValidator 2nd

 CustomValidator 2nd 3rd

 RangeValidator 2nd 3rd

 RegularExpression

 RegularExpressionValidator

 RequiredFieldValidator 2nd

 ValidationSummary

 value comparison between controls

ValidationExpression attribute (RegularExpressionValidator control)

ValidationSummary control

Value property, ListItem object

values

 controls, comparing

 directives

 return values, stored procedures

 selecting using controls

 state bag

 user control properties

ValueToCompare attribute, CompareValidator control

variables

 debugging and

 global static variables, global.asax file

VaryByControl parameter, OutputCache page directive

VaryByCustom parameter, OutputCache page directive

VaryByHeader parameter, OutputCache page directive

VaryByParam parameter, OutputCache page directive

VB.NET

 code-behind files

 coding differences

 comments

 event handlers

 tables

 user controls

 FontUnit object instantiation

 global.asax file sample

 Hello World program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Imports statement 2nd

 introduction

 populating tables

VB.NET Language in a Nutshell

vbASPAdRotator.aspx file

vbASPButtons.aspx file

vbASPCalendarDayRender.aspx file

vbASPCalendarMoreSelections.aspx file

vbASPCalendarRangeSelection.aspx file

vbASPCalendarSelectionChanged.aspx file

vbASPCalendarVisibleMonth.aspx

vbASPCheckboxes.aspx file

vbASPCheckBoxListArray.aspx file

vbASPCheckBoxListArrayValue.aspx file

vbASPCheckBoxListDataBind.aspx file

vbASPCheckBoxListEvents.aspx file

vbASPDropDownList.aspx file

vbASPHyperLink.aspx file

vbAspImageAlign.aspx file

vbASPListBox.aspx file

vbASPPanel.aspx file

vbASPRadioButtonList.aspx file

vbASPRadioButtons.aspx file

vbASPServerControlBasics1.aspx file

vbASPServerControlBasics2.aspx file

vbASPTable.aspx file

vbHTMLServerControls.aspx file

VBScript

 adding to web pages

 commenting code

View menu, Visual Studio .NET IDE

view state

 disabling

 controls

 performance and

 saving, lifecycles

 SortColumn property and

ViewState keyword

ViewState property, lifecycles

virtual directories

 applications and

 defining with Internet Services Manager

 global.asax file

 web application directories

VirtualItemCount property (DataGrid control)

Visible property

 DataGrid control

 inherited by all controls

VisibleDate property, Calendar control

VisibleMonthChanged event

 C# code example

 VB.NET code example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Studio .NET

 advantages of using

 applications, running

 bookmarks

 Class View

 Clipboard Ring

 code-behind and

 web services

 code-behind files and

 context-sensitive help

 debugger

 design surface

 developer advantages

 event handler declarations

 event-driven data tables

 events

 find and replace

 FlowLayout mode

 Formatting menu

 full custom controls

 GridLayout mode

 Hello World program

 HTML controls

 HTML editor

 IDE

 Build menu

 Data menu

 Debug menu

 Edit menu

 File menu

 Format menu

 Help menu

 menus

 Project menu

 toolbars

 Tools menu

 View menu

 Window menu

 windows

 IntelliSense 2nd 3rd

 macros

 menu items, adding

 new projects

 outlines

 Page directive

 Codebehind attribute

 Strict attribute

 pageLayout property

 projects

 naming

 properties

 Properties Window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 regular expressions

 searches

 Server Explorer

 Solution Explorer 2nd

 references, adding

 web references, adding

 solutions

 syntax errors and

 tabbed documents

 templates

 text editors and

 user controls

 web forms

 controls

 labels

 Web Forms and

 Web Forms controls

 web services and

 web.config file, editing

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Watch window, debugging and

web application directories

Web Control Library

web farms

 application state and

 performance and

Web Forms

 FCL classes

 Visual Studio .NET and

 controls 2nd

 labels

web gardening, performance and

web gardens, application state and

web methods

 GetName

 GetPrice

web pages

 ads in

 advertisement files

 code-behind and

 CustomControls DLL file

 HTML creation

 in-place editing

 DataGrid

 lifecycle of

web server controls

web services [See also WSDL]

 .asmx files 2nd

 code-behind and 2nd

 consumers

 creating

 creating application

 data types

 deployment

 development

 directories

 disco.exe

 discovery

 files, creating

 methods and

 properties and

 FCL classes

 GetName method

 GetPrice method

 HTTP-GET requests

 HTTP-POST requests

 introduction

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 overview

 properties, discovery and

 protocols 2nd

 HTTP

 .NET support

 proxies

 creating

 source code, manual generation

 proxy class

 .asmx file

 asynchronous method calls

 batch files for automation

 compiling

 namespaces

 synchronous method calls

 proxy classes, calling

 security

 signatures

 SOAP and

 state

 StockTicker

 text editors

 UDDI and

 Visual Studio .NET and

 web methods

 WebService directive

 XML and

web.config file

 application-level tracing

 application-wide error pages

 configuration sections

 debugging, disabling/enabling

 editing, VS.NET

 format

 sections, handler declarations

 view state, disabling

 well-formed

WebControl class

 ASP controls

 controls derived from

 list-bound controls and

webControls configuration section

WebCustomControl1

Webding text symbols

WebMethod attribute

 properties

 BufferResponse

 CacheDuration

 Description

 EnableSession

 MessageName

 TransactionOption

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WebService attribute

 Description property

 Name property

 NameSpace property

WebService class

 Application object

 HttpContext object and

 deriving from

 HttpContext object

 Session class

 User object

 WebMethod attribute

 properties

 WebService attribute

 Description property

 Name property

 NameSpace property

WebService directive

 Class attribute

 Language attribute

webServices configuration section

well-formed HTML

Width attribute

 Panel control

 Table control

Width property

 TableCell object

Window menu, Visual Studio .NET IDE

Windows authentication

 basic authentication

 digest authentication

 IIS and

 Integrated Windows authentication

 role-based security

Windows forms, FCL classes

Wrap property

 TableCell object

 TextBox control

Write()

WriteFile method, Application dictionary

WSDL (Web Service Description Language)

 viewing

WSDL (Web Services Description Language)

 disco.exe and 2nd

 discovery and

wsdl.exe

 proxy creation

 switches

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XCOPY deployment

XML (eXtensible Markup Language)

 application configuration and

 camel-casing

 data manipulation

 file change dependency and

 machine.config file, format

 relationships and

 web services and

 web.config file, format

XML schema

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Main Page
	Table of content
	Copyright
	Preface
	About This Book
	How This Book Is Organized
	Who This Book Is For
	Conventions Used in This Book
	Support: A Note from Jesse Liberty
	We'd Like to Hear from You
	Acknowledgments

	Chapter 1. ASP.NET and the .NET Framework
	1.1 The .NET Framework
	1.2 ASP.NET
	1.3 Hello World

	Chapter 2. Visual Studio .NET
	2.1 Start Page
	2.2 Projects and Solutions
	2.3 The Integrated Development Environment (IDE)
	2.4 Building and Running

	Chapter 3. Events
	3.1 Event Model
	3.2 ASP Versus ASP.NET Events
	3.3 Event Arguments
	3.4 Application and Session Events
	3.5 Page and Control Events
	3.6 IsPostBack
	3.7 Postback Versus Non-Postback Events
	3.8 Comparing ASP.NET to ASP
	3.9 Events in Visual Studio .NET

	Chapter 4. Controls
	4.1 HTML Server Controls
	4.2 ASP (Web Server) Controls

	Chapter 5. ASP Control Details
	5.1 The Basics
	5.2 Label Control
	5.3 TextBox Control
	5.4 Button Controls
	5.5 HyperLink Control
	5.6 Selecting Values
	5.7 Selecting from a List
	5.8 Tables
	5.9 Panel Control
	5.10 Images
	5.11 Calendar

	Chapter 6. Programming Web Forms
	6.1 Code-Behind
	6.2 State
	6.3 Lifecycle
	6.4 Directives

	Chapter 7. Tracing, Debugging, and Error Handling
	7.1 Creating the Sample Application
	7.2 Tracing
	7.3 Debugging
	7.4 Error Handling

	Chapter 8. Validation
	8.1 The RequiredFieldValidator
	8.2 The Summary Validator
	8.3 The Compare Validator
	8.4 Range Checking
	8.5 Regular Expressions
	8.6 Custom Validation

	Chapter 9. Data Binding
	9.1 ArrayList
	9.2 Data Binding and Postback
	9.3 Binding to a Class
	9.4 Binding to Other Simple Controls
	9.5 Binding Radio Buttons and Checkboxes

	Chapter 10. List-Bound Controls, Part I
	10.1 Shared Properties and Collections
	10.2 The DataGrid Control
	10.3 Next Steps

	Chapter 11. Accessing Data with ADO.NET
	11.1 Bug Database Design
	11.2 The ADO.NET Object Model
	11.3 Getting Started with ADO.NET
	11.4 Managed Providers
	11.5 Creating a Data Grid
	11.6 Creating Data Objects by Hand
	11.7 Stored Procedures

	Chapter 12. ADO Data Updates
	12.1 Updating with SQL
	12.2 Updating Data with Transactions
	12.3 Updating Data Using Datasets
	12.4 Multiuser Updates
	12.5 Command Builder

	Chapter 13. List-Bound Controls, Part II
	13.1 Binding to the DataList and Repeater Controls
	13.2 The Repeater Control
	13.3 The DataList Control
	13.4 In-Place Editing
	13.5 DataList Editing

	Chapter 14. Custom and User Controls
	14.1 User Controls
	14.2 Custom Controls

	Chapter 15. Web Services Overview
	15.1 How Web Services Work
	15.2 Protocols and Standards

	Chapter 16. Creating Web Services
	16.1 A Simple StockTicker
	16.2 Creating a Discovery File
	16.3 Deployment

	Chapter 17. Consuming Web Services
	17.1 Discovery
	17.2 Creating the Proxy
	17.3 Creating the Consuming Application

	Chapter 18. Caching and Performance
	18.1 Types of Caching
	18.2 Output Caching
	18.3 Object Caching
	18.4 The HttpCachePolicy Class
	18.5 Performance
	18.6 Benchmarking and Profiling

	Chapter 19. Security
	19.1 Authentication
	19.2 Authorization
	19.3 Impersonation

	Chapter 20. Controlling, Configuring,and Deploying Applications
	20.1 What Is an Application?
	20.2 Controlling the Application
	20.3 Configuring the Application
	20.4 Deploying the Application

	Appendix A. Relational Database Technology: A Crash Course
	A.1 Tables, Records, and Columns
	A.2 Table Design
	A.3 SQL

	Appendix B. Bug Database Architecture
	B.1 Table Relationships

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X

