
Access 2007: The Missing Manual

By Matthew MacDonald

...

Publisher: O'Reilly

Pub Date: December 01, 2006

ISBN-10: 0-596-52760-8

ISBN-13: 978-0-596-52760-0

Pages: 600

Table of Contents | Index

Compared to industrial-strength database products such as Microsoft's SQL Server, Access is a
breeze to use. It runs on PCs rather than servers and is ideal for small- to mid-sized businesses and
households. But Access is still intimidating to learn. It doesn't help that each new version crammed
in yet another set of features; so many, in fact, that even the pros don't know where to find them
all. Access 2007 breaks this pattern with some of the most dramatic changes users have seen since
Office 95. Most obvious is the thoroughly redesigned user interface, with its tabbed toolbar (or
"Ribbon") that makes features easy to locate and use. The features list also includes several long-
awaited changes. One thing that hasn't improved is Microsoft's documentation. To learn the ins and
outs of all the features in Access 2007, Microsoft merely offers online help.

Access 2007: The Missing Manual was written from the ground up for this redesigned application.
You will learn how to design complete databases, maintain them, search for valuable nuggets of
information, and build attractive forms for quick-and-easy data entry. You'll even delve into the
black art of Access programming (including macros and Visual Basic), and pick up valuable tricks
and techniques to automate common tasks -- even if you've never touched a line of code before.
You will also learn all about the new prebuilt databases you can customize to fit your needs, and
how the new complex data feature will simplify your life. With plenty of downloadable examples, this
objective and witty book will turn an Access neophyte into a true master.

Access 2007: The Missing Manual

By Matthew MacDonald

...

Publisher: O'Reilly

Pub Date: December 01, 2006

ISBN-10: 0-596-52760-8

ISBN-13: 978-0-596-52760-0

Pages: 600

Table of Contents | Index

 Copyright

 The Missing Credits

 Introduction

 Part I: Storing Information in Tables

 Chapter 1. Creating Your First Database

 Section 1.1. Understanding Access Databases

 Section 1.2. Getting Started

 Section 1.3. Saving and Opening Access Databases

 Section 1.4. The Navigation Pane

 Chapter 2. Building Smarter Tables

 Section 2.1. Understanding Data Types

 Section 2.2. Design View

 Section 2.3. Access Data Types

 Section 2.4. The Primary Key

 Section 2.5. Six Principles of Database Design

 Chapter 3. Mastering the Datasheet: Sorting, Searching, Filtering, and More

 Section 3.1. Datasheet Customization

 Section 3.2. Datasheet Navigation

 Section 3.3. Advanced Editing

 Section 3.4. Printing the Datasheet

 Chapter 4. Blocking Bad Data

 Section 4.1. Data Integrity Basics

 Section 4.2. Input Masks

 Section 4.3. Validation Rules

 Section 4.4. Lookups

 Chapter 5. Linking Tables with Relationships

 Section 5.1. Relationship Basics

 Section 5.2. Using a Relationship

 Section 5.3. More Exotic Relationships

 Section 5.4. Relationship Practice

 Part II: Manipulating Data with Queries

 Chapter 6. Queries That Select Records

 Section 6.1. Query Basics

 Section 6.2. Creating Queries

 Section 6.3. Queries and Related Tables

 Chapter 7. Essential Query Tricks

 Section 7.1. Calculated Fields

 Section 7.2. Query Functions

 Section 7.3. Summarizing Data

 Section 7.4. Query Parameters

 Chapter 8. Queries That Update Records

 Section 8.1. Understanding Action Queries

 Section 8.2. Update Queries

 Section 8.3. Append Queries

 Section 8.4. Delete Queries

 Section 8.5. Tutorial: Flagging Out-of-Stock Orders

 Chapter 9. Analyzing Data with Crosstab Queries and Pivot Tables

 Section 9.1. Understanding Crosstab Queries

 Section 9.2. Creating Crosstab Queries

 Section 9.3. Pivot Tables

 Section 9.4. Pivot Charts

 Part III: Printing Reports

 Chapter 10. Creating Reports

 Section 10.1. Report Basics

 Section 10.2. Printing, Previewing, and Exporting a Report

 Section 10.3. Formatting a Report

 Section 10.4. Filtering and Sorting a Report

 Chapter 11. Designing Advanced Reports

 Section 11.1. Improving Reports in Design View

 Section 11.2. The Report Wizard

 Section 11.3. The Label Wizard

 Section 11.4. Fine-Tuning Reports with Properties

 Section 11.5. Expressions

 Section 11.6. Grouping

 Part IV: Building a User Interface with Forms

 Chapter 12. Creating Simple Forms

 Section 12.1. Form Basics

 Section 12.2. Sorting and Filtering in a Form

 Section 12.3. Creating Better Layouts

 Section 12.4. The Form Wizard

 Chapter 13. Designing Advanced Forms

 Section 13.1. Customizing Forms in Design View

 Section 13.2. Taking Control of Controls

 Section 13.3. Forms and Linked Tables

 Chapter 14. Building a Navigation System

 Section 14.1. Mastering the Navigation Pane

 Section 14.2. Building Forms with Navigation Smarts

 Section 14.3. Linking to Related Data

 Part V: Programming Access

 Chapter 15. Automating Tasks with Macros

 Section 15.1. Macro Essentials

 Section 15.2. Macros and Security

 Section 15.3. Three Macro Recipes

 Section 15.4. Managing Macros

 Section 15.5. Connecting Macros to Forms

 Section 15.6. Conditional Macros

 Chapter 16. Automating Tasks with Visual Basic

 Section 16.1. The Visual Basic Editor

 Section 16.2. Putting Code in a Form

 Section 16.3. Understanding Objects

 Section 16.4. Using Objects

 Chapter 17. Writing Smarter Code

 Section 17.1. Exploring the VB Language

 Section 17.2. Dealing with Trouble

 Section 17.3. Deeper into Objects

 Section 17.4. Using VB to Run a Better Business

 Part VI: Sharing Access with the Rest of the World

 Chapter 18. Sharing a Database with Multiple Users

 Section 18.1. Opening Up Your Database to the World

 Section 18.2. Preparing Your Database

 Section 18.3. Playing Well with Others

 Section 18.4. Data Corruption

 Section 18.5. Securing Your Database

 Chapter 19. Importing and Exporting Data

 Section 19.1. Case for Importing and Exporting

 Section 19.2. Using the Clipboard

 Section 19.3. Import and Export Operations

 Section 19.4. Access and XML

 Section 19.5. Collecting Info by Email

 Chapter 20. Connecting Access to SQL Server

 Section 20.1. Should You Switch to SQL Server?

 Section 20.2. Getting Started: SQL Server 2005 Express

 Section 20.3. Creating a SQL Server Database

 Section 20.4. Adding Objects to a SQL Server Database

 Chapter 21. Connecting Access to SharePoint

 Section 21.1. Understanding SharePoint

 Section 21.2. Setting Up SharePoint

 Section 21.3. SharePoint and Access

 Part VII: Appendix

 Appendix A. Customizing the Quick Access Toolbar

 Section A.1. The Quick Access Toolbar

 Colophon

 Index

Access 2007: The Missing Manual

by Matthew McDonald

Copyright © 2007 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Table

Printing History:

December 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, the O'Reilly logo, and "The book that should have
been in the box" are registered trademarks of O'Reilly Media, Inc. Access 2007: The Missing Manual,
The Missing Manual logo, Pogue Press, and the Pogue Press logo are trademarks of O'Reilly Media,
Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52760-8

ISBN-13: 978-0-596-52760-0

[M]

The Missing Credits

About the Author

Matthew MacDonald is an author and programmer extraordinaire. He's the author of
Excel 2007: The Missing Manual, Creating Web Sites: The Missing Manual, and over a dozen books
about programming with the Microsoft .NET Framework. In a dimly remembered past life, he studied
English literature and theoretical physics.

About the Creative Team

Peter Meyers (editor) works as an editor at O'Reilly Media on the Missing Manual series. He lives
with his wife and cats in New York City. Email: peter.meyers@gmail.com.

Juel Bortolussi (technical reviewer) has worked as an Access database developer for inventory and
asset management systems in the design, beverage, and publishing industries. She thinks this book
would make a great classroom textbook, providing students with database, Visual Basic, SQL, and
SharePoint skills. Email: juel@oreilly.com

Michael Schmalz (technical reviewer) works in banking and performs business and technology
consulting in a variety of industries. He has done technical editing for O'Reilly on Microsoft Office
books. Michael has a degree in finance from Penn State. He lives with his wife and daughter in
Pennsylvania.

Sohaila Abdulali (copy editor) is a freelance writer and editor. She has published a novel, several
children's books, and numerous short stories and articles. She recently finished an ethnography of an
aboriginal Indian woman. She lives in New York City with her husband Tom and their small but
larger-than-life daughter, Samara. She can be reached through her Web site at www.sohailaink.com.

Jill Steinberg (copy editor) is a freelance writer and editor based in Seattle, and has produced
content for O'Reilly, Intel, Microsoft, and the University of Washington. Jill was educated at Brandeis
University, Williams College, and Stanford University. Email: saysjill@mac.com.

Acknowledgements

Writing a book about a program as sprawling and complex as Access is a labor of love (love of pain,
that is). I'm deeply indebted to a whole host of people, including those who helped me track down all
the neat and nifty things you can do with the latest version of Office (including bloggers
extraordinaire Jensen Harris and Erik Rucker), those who kept the book clear, concise, and
technically accurate (Peter Meyers, Sarah Milstein, Brian Sawyer, Juel Bortolussi, and Michael
Schmalz), and those who put up with me while I wrote it (more on that in a moment). I also owe
thanks to many people who worked to get this book formatted, indexed, and printedyou can meet
many of them on the Missing Credits page.

Completing this book required a few sleepless nights (and many sleep-deprived days). I extend my
love and thanks to my daughter Maya, who put up with it without crying most of the time; my dear
wife Faria, who mostly did the same; and our moms and dads (Nora, Razia, Paul, and Hamid), who
contributed hours of babysitting, tasty meals, and general help around the house that kept this book
on track. So thanks everyonewithout you half of the book would still be trapped inside my brain!

The Missing Manual Series

Missing Manuals are witty, superbly written guides to computer products that don't come with printed
manuals (which is just about all of them). Each book features a handcrafted index.

Recent and upcoming titles include:

Access 2003 for Starters: The Missing Manual by Kate Chase and Scott Palmer

Access 2007 for Starters: The Missing Manual by Matthew MacDonald

AppleScript: The Missing Manual by Adam Goldstein

AppleWorks 6: The Missing Manual by Jim Elferdink and David Reynolds

CSS: The Missing Manual by David Sawyer McFarland

Creating Web Sites: The Missing Manual by Matthew MacDonald

Digital Photography: The Missing Manual by Chris Grover and Barbara Brundage

Dreamweaver 8: The Missing Manual by David Sawyer McFarland

eBay: The Missing Manual by Nancy Conner

Excel 2003 for Starters: The Missing Manual by Matthew MacDonald

Excel 2003: The Missing Manual by Matthew MacDonald

Excel 2007 for Starters: The Missing Manual by Matthew MacDonald

Excel 2007: The Missing Manual by Matthew MacDonald

FileMaker Pro 8: The Missing Manual by Geoff Coffey and Susan Prosser

Flash 8: The Missing Manual by E. A. Vander Veer

Front 2003: The Missing Manual by Jessica Mantaro

GarageBand 2: The Missing Manual by David Pogue

Google: The Missing Manual, Second Edition by Sarah Milstein, J.D. Biersdorfer, and Matthew
MacDonald

Home Networking: The Missing Manual by Scott Lowe

iMovie HD 6: The Missing Manual by David Pogue

iPhoto 6: The Missing Manual by David Pogue

iPod: The Missing Manual, Fifth Edition by J.D. Biersdorfer

Mac OS X: The Missing Manual, Tiger Edition by David Pogue

Office 2004 for Macintosh: The Missing Manual by Mark H. Walker and Franklin Tessler

PCs: The Missing Manual by Andy Rathbone

Photoshop Elements 5: The Missing Manual by Barbara Brundage

PowerPoint 2007 for Starters: The Missing Manual by E. A. Vander Veer

PowerPoint 2007: The Missing Manual by E. A. Vander Veer

QuickBooks 2006: The Missing Manual by Bonnie Biafore

Quicken for Starters: The Missing Manual by Bonnie Biafore

Switching to the Mac: The Missing Manual, Tiger Edition by David Pogue and Adam Goldstein

The Internet: The Missing Manual by David Pogue and J.D. Biersdorfer

Windows 2000 Pro: The Missing Manual by Sharon Crawford

Windows XP for Starters: The Missing Manual by David Pogue

Windows XP Home Edition: The Missing Manual, Second Edition by David Pogue

Windows XP Pro: The Missing Manual, Second Edition by David Pogue, Craig Zacker, and Linda
Zacker

Windows Vista: The Missing Manual by David Pogue

Windows Vista for Starters: The Missing Manual by David Pogue

Word 2007 for Starters: The Missing Manual by Chris Grover

Word 2007: The Missing Manual by Chris Grover

Introduction
In the past, people have tried a variety of techniques to organize information. They've used
Rolodexes, punch cards, cardboard boxes, vertical files, Post-it notes, 10,000-page indexes, and
(when all else failed) large piles on top of flat surfaces. But after much suffering, people discovered
that computers were far better at dealing with information, especially when that information's large,
complex, or changes frequently.

That's where Microsoft Access comes into the picture. Access is a tool for managing databases
carefully structured catalogs of information (or data). Databases can store just about any type of
information, including numbers, pages of text, and pictures. Databases also range wildly in sizethey
can handle everything from your list of family phone numbers to a ginormous product catalog for
Aunt Ethel's Discount Button Boutique.

In this book, you'll learn how to design complete databases, maintain them, search for valuable
nuggets of information, and build attractive forms for quick and easy data entry. You'll even delve
into the black art of Access programming , where you'll pick up valuable tricks and techniques that
you can use to automate common tasks, even if you've never touched a line of code before.

Best of all, this book was written from scratch for Access 2007, the latest and greatest incarnation of
Microsoft's bestselling database software. Access 2007's quite a bit different from previous versions,
with a slick new interface that has computer geeks buzzing. And for once, it's not just a gimmick. As
you'll see in this book, once you master Access's new style, you'll be able to build great databases in
record time.

What You Can Do with Access

The modern world is filled with information. A Web search for a ho-hum topic like "canned carrots"
nets more than a million Web pages. As a result, it's no surprise that people from all walks of life
need great tools to store and manage information.

It's impossible to describe even a fraction of the different databases that Access fans create every
day. But just to get you thinking like a database maven, here are some common types of information
that you can store handily in an Access database:

Catalogs of books, CDs, rare wine vintages, risqué movies, or anything else you want to collect
and keep track of

Mailing lists that let you keep in touch with friends, family, and co-workers

Business information, like customer lists, product catalogs, order records, and invoices

Lists of guests and gifts for weddings and other celebrations

Lists of expenses, investments, and other financial planning details

Think of Access as a personal assistant that can help you organize, update, and find any type of
information. This help isn't just a convenienceit also lets you do things you could never accomplish on
your own.

Imagine you've just finished compiling a database for your collection of 10,000 rare comic books. On
a whim, you decide to take a look at all the books written in 1987. Or just those that feature
Aquaman. Or those that contain the words "special edition" in the title. Performing these searches
with a paper catalog would take days. On an average computer, Access can perform all three
searches in under a second.

Access is also the king of small businesses, because of its legendary powers of customization. After
all, you can use virtually any database product to create a list of customer orders. But only Access
makes it easy to build a full user interface for that database (as shown in Figure I-1).

The Two Sides of Access

As you'll see, there are actually two separate tasks you'll perform with Access:

Designing your database . This task involves creating tables to hold data, queries that can
ferret out important pieces of information, forms that make it easy to enter information, and
reports that produce attractive printouts.

Dealing with data . This task involves adding new information to the database, updating
what's there, or just searching for the details you need. In order to do this work, you use the
tables, queries, forms, and reports that you've already built.

Figure I-1. This sales database includes handy forms that sales people can use to place new orders (shown here), customer

service representatives can use to sign up new customers, and warehouse staff can use to review outgoing shipments. Best of all, the

people who are using the forms in the database don't need to know anything about Access. As long as a database pro (like your future

self, once you've finished this book) has designed these forms, anyone can use them to enter, edit, and review data.

Most of this book's dedicated to task #1creating and perfecting your database. This job's the heart of
Access, and it's the part that initially seems the most daunting. It's also what separates the Access
masters from the neophytes.

Once you've finished task #1, you're ready to move on to task #2actually using the database in your
day-to-day life. Although task #1 is more challenging, you'll (eventually) spend more time on task
#2. For example, you might spend a couple of hours creating a database to keep track of your
favorite recipes, but you'll wind up entering new information and looking up recipes for years (say,
every time you need to cook up dinner).

Access vs. Excel

Access isn't the only Office product that can deal with lists and tables of information. Microsoft Excel
also includes features for creating and managing lists. So what's the difference?

Although Excel's perfectly good for small, simple amounts of information, it just can't handle the
same quantity and complexity of information as Access. Excel also falters if you need to maintain

multiple lists with related information (for example, if you want to track a list with your business
customers, and a list of the orders they've made). Excel forces you to completely separate these
lists, which makes it harder to analyze your data and introduces the possibility of inconsistent
information. Access lets you set up strict links between tables, which prevents these problems.

UP TO SPEED
The Benefits of a Good Database

Many people use an address book to keep track of close friends, distant relatives, or annoying co-
workers. For the most part, the low-tech address book works great. But consider what happens if you
decide to store the same information in an Access database. Even though your contact list isn't
storing Google-sized volumes of information, it still offers a few features that you wouldn't have
without Access:

Backup . If you've ever tried to decipher a phone number through a coffee stain, you know
that sometimes it helps to have things in electronic form. Once you place all your contact
information into a database, you'll be able to preserve it in case of disaster, and print up as
many copies as you need (each with some or all of the information showing). You can even
share your list with a friend who needs the same numbers.

Space . Although most people can fit all the contacts they need into a small address book, a
database ensures you'll never fill up that "M" section. Not to mention that there are only so
many times you can cross out and rewrite the address for your itinerant Uncle Sy before you
run out of room.

Searching . An address book organizes contacts in one wayby name. But what happens once
you've entered everyone in alphabetical order by last name, and you need to look up a contact
you vaguely remember as Joe? Access can effortlessly handle this search. It can also find a
matching entry by phone number, which is great if your phone gives you a log of missed calls
and you want to figure out who's been pestering you.

Sharing . Only one person at a time can edit most ordinary files, like Microsoft Word documents
and spreadsheets. This limitation causes a problem if you need your entire office team to
collaborate on a pot-luck menu. But Access lets multiple people review and change your data at
the same time, on different computers. Chapter 18 has the full story.

Integration with other applications . Access introduces you to a realm of timesaving
possibilities, like mail merge. You can feed a list of contacts into a form letter you create in
Word, and automatically generate dozens of individually addressed letters. You'll see how to do
this in Chapter 19 .

All these examples demonstrate solid reasons to go electronic with almost any type of information.

Access also provides all sorts of features that don't have any parallel in the spreadsheet world, such
as the ability to create customized search routines, design finetuned forms for data entry, and print a
variety of snazzy reports.

Of course, all this isn't to say that Access is better than Excel. In fact, in many cases you might want
Excel to partner up with Access. Excel shines when crunching reams of numbers to create graphs,

generate statistics, or predict trends. Many organizations use Access to store and manage
information, and then export a portion of that information to an Excel spreadsheet whenever they
need to analyze it. You'll learn how to take this step in Chapter 19 .

Note: Looking to polish up your Excel skills? Check out Excel 2007: The Missing Manual .

Access vs. SQL Server

Microsoft provides another database productthe industrial-strength SQL Server, which powers
everything from Microsoft's own search engine to the NASDAQ stock exchange. Clearly, SQL Server is
big business, and many Access fans wonder how their favorite database software compares.

One of the most important differences between Access and database products like SQL Server is that
Access is a client-side database. In non-techie terms, that means that Access runs right on your
personal computer. Database engines like SQL Server are server-based : They store the data on a
high-powered server computer, which you access from a garden variety PC. (This interaction
happens over a local network.)

Server-based databases are much more complex to set up and maintain, but they provide enhanced
performance and rock-solid stability, even when thousands of people use them at once. However, the
only people that require high-end databases like SQL Server are large organizations. Amazon.com
wouldn't last five minutes if it had to rely on an Access database. But Access works just fine for most
small and mid-sized businesses. It's also perfect for personal use. (If you still have lingering doubts
about whether Access can meet your needs, check out the box "When Access Is Not Enough" in
Section 3.2 .)

Another important difference between Access and server-side database products is that Access is an
all-in-one solution for storing and interacting with data. Server-side database engines like SQL Server
focus exclusively on storing data (and sending that data to other computers when they request it).
However, this single-minded design has a sizable price. An ordinary person can't directly edit a
database that's stored by SQL Server. Instead, you need to use yet another program that can talk to
SQL Server and ask for the information it needs. In most cases, this program needs to be hand-built
by a savvy programmer. In other words, if you're using SQL Server, you need to write a whole
application before you can effectively use your database.

Sometimes, Access fans do turn into SQL Server gurus. You can start with a modest Access database
and then step up to SQL Server when your needs exceed what Access provides. The process isn't
always seamless, but it's possible. You can even keep using Access as a front-end to manage your
SQL Server database. You can learn about this trick in Chapter 20 .

The New Face of Access 2007

Ever since Microsoft Office conquered the world (way back in the 1990s), programs like Word, Excel,
and Access haven't changed a lot. Although a genuinely useful new feature appears once in a while,
Microsoft spends more time wedging in odd gimmicks like a talking paper clip.

WORD TO THE WISE
When Access Is Not Enough

If you've picked up this book, you probably have a good sense that Access will meet your needs. But
if you're in any doubt, a quick reality check will confirm whether you're on the right path.

The following list describes a few warning signs that suggest you and Access just aren't a good fit. If
you don't fall into any of these categories, congratulationsyou're ready to use the most
straightforward and productive database software anywhere!

You need to store huge volumes of information (more than 2 gigabytes of data) .
You're unlikely to hit this mark unless you're storing large pictures or other types of digital
content inside a database. Most Access databases are several mega-bytes in size (about 1,000
times smaller than the 2 GB limit).

You're going to share your database on a net-work, and more than a dozen people
need to use it at once . It's difficult to correctly interpret this limit. It's perfectly fine for
hundreds of people to use your database from time to time, but problems occur when a group
of people are all jockeying to make changes to the same database file at the exact same
instant. You need to test your database to figure out whether you can cross this limit without
introducing problems. Chapter 18 has more information about sharing Access with groups of
people.

You need to use your database to power a Web application . A Web application lets lots
of people access the database at once. Access probably can't keep up under the strain. In this
situation, you're better off with a server-side database like SQL Server (and a crack
programming team to help you out).

Access 2007 breaks this pattern and introduces some of the most dramatic changes Office fans have
seen since Office 95. The most obvious change is the thoroughly revamped user interface (the
windows, toolbars, menus, and keyboard shortcuts you use to interact with Access). After spending
far too long trying to simplify the haphazard, toolbar-choked interfaces in most Office applications,
Microsoft finally worked up the courage to redesign it all from scratch.

The Ribbon

The Access 2007 ribbon is a super-toolbar that replaces the various toolbars and menus in previous
versions.

Note: Access doesn't show the ribbon until you create a database. If you can't stand the suspense any longer, and you want to be able

to look at the ribbon on your monitor as you read the next couple of pages, follow the instructions in Section 1.2.1 to create a blank

database.

The ribbon's divided into task-specific tabs Home, Create, External Data, and so on. Initially, Access
starts out with four tabs (although other tabs appear when you perform specific tasks). When you
launch Access, you start at the Home tab. Click Create (as shown in Figure I-2), and you get access
to a slew of powerful commands that let you add new database components.

Figure I-2. The ribbon's full of craftsman-like detail. When you hover over a button, you don't see a paltry two- or threeword

description in a yellow box. Instead, you see a friendly pop-up box with a complete mini-description. Here, the mouse is hovering over

the Table command.

Tip: Want to reclaim the screen real estate that the ribbon occupies? Just double-click the current tab, and the ribbon collapses, leaving

only the row of tab titles visible. Double-click the tab again to pop the buttons back into sight. Section 1.4.2 has more about this feature.

Here's a quick snapshot of the four basic ribbon tabs:

Home gathers together a variety of common commands, including the familiar copy-and-paste
tools and formatting commands for tweaking fonts and colors. You'll also find handy features
like sorting, searching, and filtering, all of which you'll tackle in Chapter 3 .

Create has commands for inserting all the different database objects you'll learn about in this
book (see Section 1.2 for the lowdown). These include the tables that store data, the queries
that search it, the forms that help you edit it, and the reports that help you print it.

External Data has commands for importing data into Access and exporting it to other
programs. You'll also find features for integrating with Microsoft Share-Point Server. You'll use
these commands in Part Six .

Database Tools features the pro tools you'll use to analyze a database, link tables, and scale
up to SQL Server. You'll also find the commands for inserting Visual Basic code, which you'll
explore in detail in Part Five .

It's worth spending some time getting accustomed to the tab-based ribbon. Try clicking one tab after
the other, rifling back and forth through the four sections to see what they hold. You'll learn more
about all these commands as you make your way through this book.

Tip: If you have a scroll mouse, you can breeze through the tabs even faster by moving the mouse pointer over the ribbon, and then

moving the scroll wheel up or down.

One nice ribbon tab feature is that they never changein other words, you don't see commands
mysteriously moving around or winking out of existence. Microsoft designed the ribbon to be
predictable, so commands always remain in the same place. However, commands will change their
arrangement a bit if you resize the Access window, so that they better use the available space
(Figure I-3).

Figure I-3. This super-skinny Access window doesn't have much room for ribbon buttons. All the same commands that you

saw in Figure I-2 are still in the ribbon, but now you see only small icons with no text. When you're in doubt about a button, hover over it

to see its name.

NOSTALGIA CORNER
Why Reinvent the Wheel?

Some Access veterans are understandably skeptical about the new Access interface. After all, we've
had to suffer through some painful experiments. Past versions of Access have introduced kooky ideas
like personalized menus that always seem to hide just the command you need, pop-up side panels
that appear when you least expect them, and floating toolbars that end up strewn across the screen.

In reality, all the Office applications have been struggling to keep up with more than a decade's worth
of new features. The menus in most Office programs haven't changed since Word 2.0 hit the scene in
the early 1990s. In those days, a basic menu and a single toolbar were just the ticket, because the
number of commands was relatively small.

Today, the Office programs are drowning in featuresand they're crammed into so many different
nooks and crannies that even pros don't know where to look.

That's where the new ribbon fits in. Not only can you easily understand and navigate it, it provides
one-stop shopping for everything you need to do. Microsoft's user interface designers have a new
mantra: It's all in the ribbon . In other words, if you need to find a feature, then look for it in one of
the tabs at the top of the Access window. As you get accustomed to this new system, you'll find it not
only helps you quickly use your favorite features, it also helps you discover new features just by
browsing.

Using the Ribbon with the Keyboard

If you're a diehard keyboard lover, you'll be happy to hear that you can trigger ribbon commands
with the keyboard. The trick's using keyboard accelerators , a series of keystrokes that starts with
the Alt key (the same keys you used to use to get to a menu). When using a keyboard accelerator,
you don't hold down all the keys at the same time. (As you'll soon see, some of them have enough
letters to tie your fingers up better than the rowdiest game of Twister.) Instead, you hit the keys one
after the other.

The trick to keyboard accelerators is to understand that once you hit the Alt key, you do two things,
in this order:

Pick the correct ribbon tab .1.

In that tab, choose a command .2.

Before you can trigger a specific command, you must select the right tab (even if you're already
there). Every accelerator requires at least two key presses after you hit the Alt key. You'll need even
more if you need to dig through a submenu.

By now, this whole process probably seems hopelessly impractical. Are you really expected to
memorize dozens of different accelerator key combinations?

Fortunately, Access is ready to help you out with a new feature called KeyTips . Here's how it works:
Once you press the Alt key, letters magically appear over every tab in the ribbon. Once you hit a key
to pick a tab, letters appear over every button in that tab. You can then press the corresponding key
to trigger the command. Figure I-4 shows how it works.

Figure I-4. Top: When you press Alt, Access pins KeyTips next to every tab, over the Office menu, and over the buttons in the

Quick Access toolbar (more about the Office menu and the Quick Access toolbar in a moment).

Bottom: If you follow up with A (for the Database Tools tab), you'll see letters next to every command in that tab. Now you can hit another

key to run a command (for example, W moves your data to SQL Server). Don't bother trying to match letters with tab or button namesthe

ribbon's got so many features packed into it that in many cases, the letters don't mean anything at all.

Note: In some cases, a command may have two letters, and you need to press both keys, one after the other. You can back out of

KeyTips mode at any time without triggering a command by pressing the Alt key again.

Some other shortcut keys don't use the ribbon. These key combinations start with the Ctrl key. For
instance, Ctrl+C copies highlighted text, and Ctrl+S saves your current work. Usually, you find out
about a shortcut key by hovering over a command with the mouse. Hover over the Paste button in

the ribbon's Home tab, and you see a tooltip that tells you its timesaving shortcut key is Ctrl+V. And
if you've worked with a previous version of Access, you'll find that Access 2007 keeps most of the
same shortcut keys.

NOSTALGIA CORNER
Access 2003 Menu Shortcuts

If you've worked with a previous version of Access, you may have trained yourself to use menu
shortcutskey combinations that open a menu and pick out the command you want. When you press
Alt+E in Access 2003, the Edit menu pops open (in the main menu). You can then press the S key to
choose the Paste Special command.

At first glance, it doesn't look like these keyboard shortcuts amount to much in Access 2007. After all,
Access 2007 doesn't even have a main menu! Fortunately, Microsoft went to a little extra trouble to
make life easier for longtime Access aficionados. You can still use your menu shortcuts, but they work
in a slightly different way.

If you hit Alt+E in Access 2007, a tooltip appears over the top of the ribbon (Figure I-5) that lets you
know you've started to enter an Access 2003 menu shortcut. If you go on to press S, then you wind
up at the familiar Paste Special dialog box, because Access knows what you're trying to do. It's
almost as though Access has an invisible menu at work behind the scenes.

Of course, this feature can't help you out all the time. It doesn't work if you're trying to use one of
the few commands that don't exist any longer. And if you need to see the menu to remember what
key to press next, you're out of luck. Access just gives you the tooltip.

Figure I-5. By pressing Alt+E, you've triggered the "imaginary" Edit menu. You can't actually see it (because it doesn't exist in

Access 2007). However, the tooltip lets you know that Access is paying attention. You can now complete your action by pressing the

next key for the menu command.

The Office Menu

One small part of the traditional Access menu's left in Access 2007sort of. The traditional File menu
that lets you open, save, and print files has been transformed into the Office menu . You get there
using the Office button, which is the big, round logo in the window's top-left corner (Figure I-6).

Figure I-6. The Office menu's bigger and easier to read than a traditional menu. When you click it, it displays a list of menu

commands (on the left) and a list of the databases you used recently (on the right).

You generally use the Office menu for three things:

Opening, creating, and saving your database. You'll do plenty of this in Chapter 1 .

Printing your work (Chapter 3) and sending it off to other people by email (Chapter 19).

Configuring how Access behaves. Choose Access Options at the bottom of the menu to get to
the Access Options dialog box, an all-in-one hub for configuring Access settings.

There's one menu quirk that takes a bit of getting used to. Some Office menu commands hide
submenus that have more commands. Take the Print command. You can choose Print from the Office
menu to fire off a quick printout of your work. But if you click the right-pointing arrow at the edge of
the Print command (or if you hover over it for a moment), then you see a submenu with more
options, as shown in Figure I-7 .

Figure I-7. Print's both a clickable menu command and a submenu. To see the submenu, you need to hover over Print (without

clicking), or click the arrow at the right edge (shown here). The ribbon also has a few buttons that work this way.

The Quick Access Toolbar

Keen eyes will have noticed the tiny bit of screen real estate that sits on the Office button's right side,
just above the ribbon (Figure I-8). This bit of screen holds a series of tiny icons, like the toolbars in
older versions of Access. This area's the Quick Access toolbar (or QAT to Access nerds).

Figure I-8. The Quick Access toolbar puts the Save, Undo, and Redo commands right at your fingertips. Access singles out

these commands because people use them more frequently than any other commands. But as you'll learn in the Appendix, you can add

anything you want here.

If the Quick Access toolbar were nothing but a specialized shortcut for three commands, it wouldn't
be worth the bother. However, the nifty thing about the Quick Access toolbar is that you can
customize it. In other words, you can remove commands you don't use, and can add your own
favorites. The Appendix shows how.

Microsoft's deliberately kept the Quick Access toolbar very small. It's designed to give a carefully
controlled outlet for those customization urges. Even if you go wild stocking the Quick Access toolbar
with your own commands, the rest of the ribbon remains unchanged. (And that means a co-worker
or spouse can still use your computer without suffering a migraine.)

The New Features in Access 2007

Access 2007's most impressive enhancement is the new interface. But the new look isn't the only
significant change. When Microsoft decided to rework Access 2007, they created a development team
that was seven times larger than the team that created Access 2003. All this extra manpower allowed
them to make a number of long-awaited changes. Here are some of the highlights:

A new and improved database engine . Longtime Access pros know that Access uses the
Jet engine to manage operations (like inserting and updating data) behind the scenes. Jet's part
of the Microsoft operating system, so it's rarely changed. But Access 2007 now has its own
customized version of Jet, which let Access creators add new features and fine-tune
performance. The new database engine goes hand-in-hand with a new database file format, as
you'll see in Section 1.2.2 .

Note: Don't worry, Access 2007 is 100 percent backward compatible with earlier versions. That means you can keep using old-

style Access 2003 databases in Access 2007, although you can't use a few features (like attachments and complex data,

described next) until you upgrade to the new file format.

Attachments . One of the niftiest new features in Access is the Attachment data type, which
lets you store entire files in your database, including pictures, documents, and spreadsheets.
(Movies, music, and other hefty media files need not apply, as all Access databases have a 2 GB
database size limit.) You'll learn how to use attachments in Section 2.3.8 .

Easy-to-design forms and reports . Creating an attractive data-entry form or print report
used to take a lot of fiddling. In Access 2007, it's much easier thanks to automatic layout a
feature that groups related pieces of information together in neat columns or tables. There's
even a new Layout view that lets you add formatting and see the results immediately.

Complex data . Complex data's an optional new feature that lets you store several values in
one field (or data "slot"). Complex data can simplify your life when you need to link tables
together. For example, using complex data, you can associate several authors with a single
book. The key reason for introducing complex data is to support the SharePoint integration
feature (next on this list).

Note: Complex data isn't for everyone. Some database experts may find it an unnecessary and potentially confusing frill. In

Chapter 5 you'll learn how to link tables, and you'll decide whether complex data is a useful shortcut you want to use.

SharePoint integration . SharePoint services are a popular set of features designed to help
teams of people share information and collaborate in an organization. These features are built
into the Windows Server 2003 operating system. Using Access 2007, you can manage and
modify information that's stored in a SharePoint list.

Note: You won't want to use SharePoint if you're content with the tools Access provides. However, you'll love the SharePoint

integration features if you're already using SharePoint to store information or if you need to share data with lots of people, and an

ordinary Access database just can't keep up. You'll learn more about how Access and SharePoint can work together in Chapter

21 .

Better security when dealing with code . As you'll learn in Part Five , database pros use
macros and handwritten programming code routines to pull off tricky tasks. However, Access is
notoriously suspicious of any code, because it has no way to verify that code won't do
something dangerous (like deleting your files). As a result, Access has an aggravating habit of
disabling all your code just to be safe. In Access 2007, you can use the new trust center to
specify what databases you're ready to trust, based on who created them or where they're
stored. Access 2007 is also smarter about recognizing safe code (code that can't possibly cause
damage), which it allows even in untrusted databases.

About This Book

Despite the many improvements in software over the years, one feature hasn't improved a bit:
Microsoft's documentation. In fact, with Office 2007, you get no printed user guide at all. To learn
about the thousands of features included in this software collection, Microsoft expects you to read the

online help.

Occasionally, these help screens are actually helpful, like when you're looking for a quick description
explaining a mysterious new function. On the other hand, if you're trying to learn how to, say, create
an attractive chart, you'll find nothing better than terse and occasionally cryptic instructions.

This book is the manual that should have accompanied Access 2007. In these pages, you'll find step-
by-step instructions and tips for using almost every Access feature, including those you haven't (yet)
heard of.

About the Outline

This book is divided into seven parts, each containing several chapters.

Part One: Storing Information in Tables . In this part, you'll build your first database and
learn how to add and edit tables that store information. Then you'll pick up the real-world skills
you need to stop mistakes before they happen, browse around your database, and link tables
together.

Part Two: Manipulating Data with Queries . In this part, you'll build queries specialized
commands that can hunt down the data you're interested in, apply changes, and summarize
vast amounts of information.

Part Three: Printing Reports . This part shows you how to use reports to take the raw data
in your tables and format it into neat printouts, complete with fancy formatting and subtotals.

Part Four: Building a User Interface with Forms . In this part, you'll build forms
customized windows that make data entry easy, even for Access newbies.

Part Five: Programming Access . Now that you've mastered the essentials of databases,
you're ready to delve into the black art of Access programming. In this part, you'll use macros
and Visual Basic programming to automate complex tasks and solve common challenges.

Part Six: Sharing Access with the Rest of the World . In this part, you'll learn how to pull
your data out of (or put your data into) other types of files, like text documents and Excel
spreadsheets. You'll also see how to use Access to interact with some of Microsoft's most
powerful server software: the database engine SQL Server and the collaboration software
SharePoint Server.

Part Seven: Appendix . This book wraps up with an appendix that shows how to customize
the Quick Access toolbar to get easy access to your favorite commands.

About These Arrows

Throughout this book, you'll find sentences like this one: "Choose Create Tables Table." This
method's a shorthand way of telling you how to find a feature in the Access ribbon. It translates to
the following instructions: "On the ribbon, click the Create tab. On the tab, look for the Tables
section. In the Tables box, click the Table button." (Look back to Figure I-2 to see the button you're
looking for.)

As you saw back in Figure I-3 , the ribbon adapts itself to different screen sizes. Depending on your

Access window's size, the button you need to click may not include any text. Instead, it shows up as
a small icon. In this situation, you can hover over the mystery button to see its name before deciding
whether or not to click it.

If you resize the Access window so that it's really small, you might run out of space for a section
altogether. In that case, you get a single button that has the section's name. Click this button, and
the missing commands appear in a drop-down panel (Figure I-9).

Figure I-9. In this example, Access doesn't have the room to display the Home tab's Views, Records, or Find sections, so

they're all replaced with buttons. If you click any of these buttons, then a panel appears with the content you're looking for.

Contextual tabs

Although nice, predictable tabs are a great idea, some features obviously make sense only in specific
circumstances. Say you start designing a table. You may have a few more features than when you're
entering data. Access handles this situation by adding one or more contextual tabs to the ribbon,
based on your current task. These tabs have additional commands that are limited to a specific
scenario (Figure I-10).

Figure I-10. When you're designing a form, a new contextual tab appears, named Datasheet, under the heading Table Tools.

Contextual tabs always appear on the ribbon's right side.

When dealing with contextual tabs, the instructions in this book always include the title of the tab
section (it's Table Tools in Figure I-10). Here's an example: "Choose Table Tools | Datasheet
Fields & Columns New Fields." Notice that this instruction's first part includes the contextual tab
title (Table Tools) and the tab name (Datasheet), separated by the | character.

Drop-down buttons

From time to time you'll encounter buttons in the ribbon that have short menus attached to them.
Depending on the button, this menu appears as soon as you click the button, or it appears only if you
click the button's drop-down arrow, as shown in Figure I-11 .

Figure I-11. Access lets you switch between several different views of your database. Click the bottom part of the View button

to see the menu of choices shown here, or click the top part to switch to the next view in the list, with no questions asked.

When dealing with this sort of button, the last step of the instructions in this book tells you what to
choose from the drop-down menu. For example, say you're directed to "Home Views View

Design View." That tells you to select the Home tab, look for the Views section, click the drop-
down part of the View button (to reveal the menu with extra options), and then choose Design View
from the menu.

Note: Be on the look out for drop-down arrows in the ribbonthey're tricky at first. You need to click the arrow part of the button to see the

full list of options. If you click the other part of the button, then you don't see the list. Instead, Access fires off the standard command (the

one Access thinks is the most common choice), or the command you used most recently.

Ordinary menus

As you've already seen, the ribbon has taken the spotlight from traditional toolbars and menus.
However, in a couple of cases, you'll still use the familiar Windows menu, like when you use the
Visual Basic editor (in Chapter 16). In this case, the arrows refer to menu levels. The instruction
"Choose File Open" means "Click the File menu heading. Then, inside the File menu, click the
Open command."

You'll find the same thing when you use the Office menu. Instructions for the Office menu look
something like this: "Choose Office button Open." That translates to "Click the Office button in
the window's top-left corner to show the Office menu. Next, choose Open from the menu."

About Shortcut Keys

Every time you take your hand off the keyboard to move the mouse, you lose a few microseconds of
time. That's why many experienced computer fans use keystroke combinations instead of toolbars
and menus wherever possible. Ctrl+S, for one, is a keyboard shortcut that saves your current work
in Access (and most other programs).

When you see a shortcut like Ctrl+S in this book, it's telling you to hold down the Ctrl key, and, while
it's down, press the letter S, and then release both keys. Similarly, the finger-tangling shortcut
Ctrl+Alt+S means hold down Ctrl, then press and hold Alt, and then press S (so that all three keys
are held down at once).

About Clicking

This book gives you three kinds of instructions that require you to use your computer's mouse or
trackpad. To click means to point the arrow cursor at something on the screen and thenwithout
moving the cursor at allpress and release the left-side clicker button on the mouse (or laptop
trackpad). To double-click , of course, means to click twice in rapid succession, again without moving
the cursor at all. And to drag means to move the cursor while holding down the button.

Examples

As you read this book, you'll see a number of examples that demonstrate Access features and
techniques for building good databases. Many of these examples are available as Access database
files in a separate download. Just surf to www.missingmanuals.com , click the link for this book, and
then click the "Missing CD" link to visit a page where you can download a zip file that includes the
examples, organized by chapter.

About MissingManuals.com

At www.missingmanuals.com , you'll find news, articles, and updates to the books in the Missing
Manual and For Starters series.

But the Web site also offers corrections and updates to this book (to see them, click the book's title,
and then click Errata). In fact, you're invited and encouraged to submit such corrections and updates
yourself. In an effort to keep the book as up to date and accurate as possible, each time we print
more copies of this book, we'll make any confirmed corrections you've suggested. We'll also note
such changes on the Web site, so that you can mark important corrections into your own copy of the
book, if you like.

In the meantime, we'd love to hear your own suggestions for new books in the Missing Manual and
For Starters lines. There's a place for that on the Web site, too, as well as a place to sign up for free
email notification of new titles in the series.

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com .

Part I: Storing Information in Tables
Chapter 1: Creating Your First Database

Chapter 2: Building Smarter Tables

Chapter 3: Mastering the Datasheet: Sorting, Searching, Filtering, and More

Chapter 4: Blocking Bad Data

Chapter 5: Linking Tables with Relationships

1. Creating Your First Database
Although Microsoft won't admit it, Access can be intimidatingintimidating enough to trigger a cold
sweat in the most confident office worker. Even though Microsoft has spent millions making Access
easier to use, most people still see it as the most complicated Office program on the block. They're
probably right.

Access seems more daunting than any other Office program because of the way that databases work.
Quite simply, databases need strict rules. Other programs aren't as obsessive. For example, you can
fire up Word, and start typing a letter straight away. Or you can start Excel, and launch right into a
financial report. But Access isn't nearly as freewheeling. Before you can enter a stitch of information
into an Access database, you need to create that database's structure. And even after you've defined
that structure, you'll probably want to spend more time creating other useful tools, like handy search
routines and friendly forms that you can use to simplify data lookup and data entry. All of this setup
takes effort, and a good understanding of how databases work.

In this chapter, you'll conquer any Access resistance you have and learn to create a simple but
functional database. Along the way, you'll get acquainted with the slick new Access user interface,
and you'll learn exactly what you can store in a database. You'll then be ready to tackle the fine art of
database design, covered in more detail throughout this book.

1.1. Understanding Access Databases

As you already know, a database is a collection of information. In Access, every database is stored in
a single file. That file contains database objects, which are simply the components of a database.

Database objects are the main players in an Access database. Altogether, you have six different
types of database objects:

Tables store information. Tables are the heart of any database, and you can create as many
tables as you need to store different types of information. A fitness database could track your
daily running log, your inventory of exercise equipment, and the number of high-protein whey
milkshakes you down each day, as three separate tables.

Queries let you quickly perform an action on a table. Usually, this action involves retrieving a
choice bit of information (like the 10 top-selling food items at Ed's Roadside Dinner, or all the
purchases you made in a single day). However, you can also use queries to apply changes.

Forms are attractive windows that you create, arrange, and colorize. Forms provide an easy
way to view or change the information in a table.

Reports help you print some or all of the information in a table. You can choose where the
information appears on the printed page, how it's grouped and sorted, and how it's formatted.

Macros are mini-programs that automate custom tasks. Macros are a simple way to get
custom results without becoming a programmer.

Modules are files that contain Visual Basic code. You can use this code to do just about
anythingfrom updating 10,000 records to firing off an email. (Chapter 16 has the full story on
Visual Basic.)

Access gurus refer to all these database ingredients as objects because you manage them all in
essentially the same way. If you want to use a particular object, then you add it to your database,
give it a name, and then fine-tune it. Later on, you can view your objects, rename them, or delete
ones you don't want anymore.

Tip: Designing a database is the process of adding and configuring database objects. For those keeping score, an Access database can

hold up to 32,768 separate objects.

In this chapter, you'll consider only the most fundamental type of database object: tables. But first,
you need to learn a bit more about databases and the Access environment.

1.2. Getting Started

It's time to begin your journey and launch Access. You'll start at a spiffy Getting Started page (Figure
1-1).

Figure 1-1. The Getting, Started page is a bit of a cross between a Windows program and a Web page. Use the links on the

left to browse through different categories of templates (ready-to-go databases that you can download and fill with your own information).

Or check out the links on the bottom, which show you the latest Access news and tips.

FREQUENTLY ASKED QUESTION
Using Someone Else's Database

Can I use an Access database I didn't design ?

Although every database follows the same two-step process (first somebody creates it, and then
people fill it with information), the same person doesn't need to perform both jobs. In fact, in the
business world, different people often work separately on these two tasks.

For example, a summer student whiz kid at a beer store may build a database for tracking orders
(task #1). The sales department can then use the database to enter new orders (task #2), while
other employees look up orders and fill them (also task #2). Warehouse staff can make sure stock
levels are OK (again, task #2), and the resident accountant can keep an eye on total sales (task #2).

If task #1 (creating the database) is done well, task #2 (using the database) can be extremely easy.
In fact, if the database is well designed, people who have little under-standing of Access can still use
it to enter, update, and look up information. Amazingly, they don't even need to know they're
running Access at all!

You'll learn more about sharing Access with groups of people in Chapter 18 .

The Getting Started page looks a little dizzying at first glance, but it really serves just three
purposes:

It shows you recent content from Microsoft's Office Online Web site . For example, you
can read helpful articles about Access, find timesaving tips, or download updates. All links open
in a separate browser window.

It lets you open a database you used recently . Look for the Open Recent Database section
on the right, which gives you a list.

It lets you create a new database . You can start off with an empty database (use the Blank
Database button), or you can try to find a ready-made template that fits the bill.

UP TO SPEED
Templates: One Size Fits Some

Templates are prebuilt databases. Templates aim to save you the work of creating your database,
and let you jump straight to the fine-tuning and data-entry stage.

As you might expect, there's a price to be paid for this convenience. Even if you find a template that
stores the type of information you want to track, you might find that the pre-defined structure isn't
quite right. For example, if you choose to use the Home Inventory template to track all the stuff in
your basement, you might find that it's missing some information you want to use (like the projected
resale value of your stuff on eBay) and includes other details you don't care about (like the date you
acquired each item). To make this template work, you'll need to change the design of your table,
which involves the same Access know-how as creating one.

In this book, you'll learn how to build your own databases from the ground up and customize every
square inch of them. Once you're an Access master, you can spend many fun hours playing with the
prebuilt templates and adapting them to suit your needs.

You may think that it would be nice to customize the Getting Started page. Access does let you do so,
but it's not all that easyand it's recommended only for organizations that want to standardize the
Getting Started page to better suit their employees. A business could add links to a company Web
site or a commonly used database template. If you're interested in this feature, you'll need another
tool: the freely downloadable Access Developer's Toolkit, which you can search for at
http://msdn.microsoft.com . (This tool wasn't yet released at the time of this writing.)

The Getting Started page is only the front door to the features in Accessthere's lot more in store once
you get rolling. You won't be able to try out other parts of the Access until you create a new
database, and the next section shows you how.

1.2.1. Creating a New Database

In this chapter, you'll slap together a fairly straightforward database. The example's designed to
store a list of prized bobblehead dolls. (For those not in the know, a bobblehead doll is a toy figure
with an outsize head on a spring, hence the signature "bobbling" motion. Bobblehead dolls usually
resemble a famous celebrity, politician, athlete, or fictional character.)

UP TO SPEED
Access Goes Online

One of the Getting Started page's neatest features is the way it gets live content from the Web. This
process happens so seamlessly that you don't even know it's taking place. When you start Access, it
contacts Microsoft's highpowered Web servers behind the scenes, and requests the latest information
for the box of links at the bottom of the Getting Started page. From time to time, you'll see the
content in this box change. One day, you may see a link for an article about macro viruses, while the
next day you'll find an article with timesaving tips. (When you click a link, the article loads up in the
Access Help window, but don't be fooledthe content's still just a Web page that's pulled off the Office
Online site.)

A similar magic takes place when you browse through the templates (by clicking one of the
categories under the From Microsoft Office Online heading). Once again, Access heads back to the
Webthis time, to get a list of suitable templates.

This Web-based system lets you benefit from recent developments and new content, and you don't
have to upgrade your Access software. Of course, it goes without saying that you won't see any
updates if your computer can't connect to the Internet. (Instead, you'll be left looking at stale
content indefinitely.)

If you want to browse a much larger catalog of Access articles and resources, you can head to the
Office Online site on your own (outside Access), by surfing to http://office.microsoft.com in your
favorite browser.

http://msdn.microsoft.com

Tip: You can get the Bobblehead database, and all the databases in this book, on the Web. Check out Section 3.4.2.3 in the Introduction

for more details.

Here's how to create a blank new database:

On the Getting Started page, click the Blank Database button .

A side panel appears on the right (see Figure 1-2).

1.

Type in a file name .

Access stores all the information for a database in a single file with the extension. accdb (which
stands for Access database). Don't stick with the name Access picks automatically (like
Database1.accdb). Instead, pick something more suitable. In this example, Bobblehead.accdb
does the trick.

As with any other file, Access files can contain a combination of letters, spaces, numbers,
parentheses, hyphens (-), and the underscore (_). It's generally safest to stay away from other
special characters, some of which aren't allowed.

Note: Depending on your computer settings, Windows may hide file extensions. Instead of seeing the Access database file

MyScandalousWedding.accdb in file-browsing tools like Windows Explorer, you may just see the name MyScandalousWedding

(without the .accdb part on the end). In this case, you can still tell the file type by looking at the icon. If you see a small Access

icon next to the file name (which looks like a key), that's your signal that you're looking at an Access database. If you see

something else (like a tiny paint palette), you need to make a logical guess about what type of file it is.

2.

Figure 1-2. The database Bobblehead.accdb will be placed in the folder C:\Documents and Settings\Matt\My

Documents. You can edit the file name by clicking in the File Name box, and you can browse to a different folder by clicking the

folder icon.

Choose a folder .

Like all Office programs, Access assumes you want to store every file you create in your
personal My Documents folder. If this isn't the case, click the folder icon to show the File New
Database dialog box, browse to the folder you want (Figure 1-3), and then click OK.

3.

Click the Create button (at the bottom-right of the Access window) .

Access creates your database file and then pops up a datasheet where you can get to work
creating your first table.

4.

4.

Once you create or open a database, the Access window changes quite a bit. An impressive-looking
toolbar (the ribbon) appears at the top of your screen, and a navigation pane shows up on the left.
You're now in the control center where you'll perform all your database tasks (as shown in Figure 1-4
).

The Introduction covers the basics of how the ribbon works. (Jump to Section 3.2 for the full details.)
But first, it's time to consider how you can make use of your brand-new, empty database by adding a
table.

Figure 1-3. The File New Database dialog box lets you choose where you'll store a new Access database file. It also gives you

the option to create your database in the format used by previous versions of Access (.mdb). To do so, you need to choose either the

2000 or 2002-2003 format options from the "Save as type" list, as shown here. If you're running Windows Vista, you'll notice that the File

New Database dialog box has a whole different look, but all the same features.

Figure 1-4. The navigation pane on the left lets you see different items (or objects) in your database. You can use the

navigation pane to jump from a list of products to a list of customers and back again. The ribbon along the top groups together every

Access command. This ribbon's the mission control that lets you perform various tasks with your database. The document window in the

middle takes up the rest of the window. This window's where you'll do your work, such as designing tables and entering data.

WORD TO THE WISE
Sharing Databases with Older Versions of Access

Older versions of Access don't use the .accdb format. If you try to open Bobblehead.accdb in Access
2003, you'll get nothing more than a blank stare and an error message.

Earlier versions of Access use the .mdb file format (which stands for Microsoft database). Although
Access 2007 is happy using both .accdb and .mdb files, previous versions of Access recognize only
.mdb. (And just to make life more interesting, the .mdb format actually has three versions: the
really, really old original format, a retooled version that appeared with Access 2000, and the
improved-yet-again version that Microsoft introduced with Access 2002 and reused for Access 2003.)

Here's what you need to know to choose the right format for your new databases. The standard
.accdb format's the best choice if you don't need to worry about compatibility, because it has the best
performance and a few extra features. But if you need to share databases with other versions of
Access, skip the new kid on the block, and rely instead on the tested-and-true .mdb format.

To create an old-style .mdb database file in Access 2007, use the "Save as type" option shown in
Figure 1-3 . You can choose the Access 2002-2003 file format, or the even older Access 2000 format.
(If you're set on going back any further, say the Access 95 format, your best bet's a time machine.)

1.2.2. Understanding Tables

Tables are information containers. Every database needs at least one tablewithout it, you can't store
any data. In a simple database, like the Bobblehead database, a single table (which we'll call Dolls) is
enough. But if you find yourself wanting to store several lists of related information, then you need
more than one table. In the database BigBudgetWedding.accdb, you might want to keep track of the
guests that you invited to your wedding, the gifts that you requested, and the loot that you actually
received. In Chapter 5 , you'll see plenty of examples of databases that use multiple tables.

Figure 1-5 shows a sample table.

Figure 1-5. In a table, each record occupies a separate row. Each field is represented by a separate column. In this table, it's

clear that you've added six bobblehead dolls. You're storing information for each doll in five fields (ID, Character, Manufacturer,

PurchasePrice, and DateAcquired).

Before you start designing this table, you need to know some very basic rules:

A table's nothing more than a group of records . A record's a collection of information
about a single thing. In the Dolls table, for example, each record represents a single bobblehead
doll. In a Family table, each record would represent a single relative. In a Products table, each
record would represent an item that's for sale. You get the idea.

Each record's subdivided into fields . Each field stores a distinct piece of information. For
example, in the Dolls table, one field stores the person on whom the doll's based, another field
stores the price, another field stores the date you bought it, and so on.

Tables have a rigid structure . In other words, you can't bend the rules. If you create four
fields, every record must have four fields (although it's acceptable to leave some fields blank if
they don't apply).

UP TO SPEED
Database Planning for Beginners

Many database gurus suggest that before you fire up Access, you should decide exactly what
information you want to store by brainstorming. Here's how it works. First, determine the type of list
you want by finishing this sentence "I need a list of…." (One example: "I need a list of all the
bobblehead dolls in my basement.")

Next, jot down all your must-have pieces of information on a piece of paper. Some details are
obvious. For example, for the bobblehead doll collection, you'll probably want to keep track of the
doll's name, price, and date you bought it. Other details, like the year it was produced, the company
that created it, and a short description of its appearance or condition may require more thought.

Once you've completed this process and identified all the important bits of data you need, you're
ready to create the corresponding table in Access. The bobblehead doll example demonstrates an
important theme of database design: First you plan the database, and then you create it using
Access. In Chapter 5 , you'll learn a lot more about planning more complex databases.

1.2.3. Creating a Simple Table

When you first create a database, it's almost empty. But in order to get you started, Access creates
your first database objecta table named Table1. The problem is, this table begins life completely
blank, with no defined fields (and no data).

If you followed the steps to create a new database (Section 1.2.1), you're already at the Datasheet
view (Figure 1-5), which is where you enter data into a table. All you need to do is customize this
table so that it meets your needs.

There are two ways to customize a table:

Design view lets you precisely define all aspects of a table before you start using it. Almost all
database pros prefer Design view, and you'll start using it in Chapter 2 .

Datasheet view is where you enter data into a table. Datasheet view also lets you build a
table on the fly as you insert new information. You'll use this approach in this chapter.

The following steps show you how to turn a blank new table (like Table1) into the Dolls table using
the Datasheet view:

To define your table, you need to add your first record .

In this case, that means mentally picking a bobblehead doll to add to the list. For this example, you'll use
a nifty Homer Simpson replica.

1.

Note: It doesn't matter which doll you enter first. Access tables are unsorted , which means they have no underlying order. However, you can

sort them any way you want when you need to retrieve information later on.

In the datasheet's Add New Field column, type the first piece of information for the record
(see Figure 1-6) .

Based on the simple analysis you performed earlier (Section 1.2.3), you know that you need to enter four
fields of information for every doll. For the Homer Simpson doll, this information is: "Homer Simpson" (the
name), "Fictional Industries" (the manufacturer), $7.99 (the price), and today's date (the purchase date).
Although you could start with any field, it makes sense to begin with the name, which is clearly an
identifying detail.

Figure 1-6. To fill in your first record, start by entering something in the first field of information (like the doll name "Homer Simpson").

Then, hit Tab to jump to the second column, and then enter the second piece of information. Ignore the ID column for nowAccess adds that to

every table to identify your rows.

2.

Press Tab to move to the next field, and return to step 2 .

Repeat steps 2 and 3 until you've added every field you need, being careful to put each separate piece of
information into a different column.

UP TO SPEED
Putting Big Values in Narrow Columns

3.

A column can hold entire paragraphs of information, so you may find yourself running out of space once
you start typing. This phenomenon isn't a problem (after all, you can just scroll through your field itself
while you're editing it), but it is annoying. Most people prefer to see the entire contants of a column at
once.

Fortunately, you don't need suffer in silence with cramped columns. To expand a column, just position
your mouse at the right edge of the column header. (To expand a column named Field1, move your
mouse to the right edge of the Field1 box.) Then, drag the column to the right to resize it as big as you
want.

If you're just a bit impatient, there's a shortcut. Double-click the right edge of the column to resize it to fit
the largest piece of information that's in the column (provided this doesn't stretch the column beyond the
edge of the Access window). That way, you automatically get all the room you need.

If you want to get a little fancier, include the currency symbol ($) when you enter the price, and make
sure you put the data in a recognized date format (like January 1, 2008 or 01-01-2008). These clues tell
Access what type of information you're putting in the column. (In Chapter 2 , you'll learn how to take
complete control of the type of data in each column and avoid possible misunderstandings.) Figure 1-7
shows the finalized record.

Note: If you hit Tab without entering any information, you'll move to the next row and start inserting a new record. If you make a mistake, you

can backtrack using the arrow keys.

Figure 1-7. The only problem with the example so far is that as you enter a new record, Access creates spectacularly useless field

names. You'll see its choices at the top of each column (they'll have names like Field1, Field2, Field3, and so on). The problem with using these

meaningless names is that they might lead you to enter a piece of information in the wrong place. You could all too easily put the purchase

price in the date column. To prevent these slip-ups, you need to set better field names.

It's time to fix your column names. Double-click the first column title (like Field1) .

The field name switches into Edit mode.

4.

Type in a new name, and then press Enter. Return to step 4 .

Repeat this process until you've cleaned up all the field names. The proper field names for this example
are Character, Manufacturer, PurchasePrice, and Date-Acquired. Figure 1-8 shows how it works.

Figure 1-8. To choose better field names, double-click the column title. Next, type in the real field name, and then press Enter.

Section 2.5.1 has more about field naming, but for now just stick to short, text-only titles that don't include any spaces, as shown here.

Tip: Don't be too timid about tweaking your table. You can always rename fields later, or even add entirely new fields. (It's also possible to

delete existing fields, but that has the drawback of also clearing out all the data that's stored in that field.)

5.

Choose Office button Save (or use the Ctrl+S shortcut) to save your table .

Access asks you to supply a table name (see Figure 1-9).

6.

Type a suitable table name, and then click OK .

Congratulations! The table's now a part of your database.

7.

7.

Figure 1-9. A good table name's a short text title that doesn't have any spaces (like Dolls here).

Note: Technically, you don't need to save your table right away. Access prompts you to save it when you close the datasheet (by clicking

the X at the document window's top-right corner), or when you close Access.

As you can see, creating a simple table in Access is almost as easy as laying out information in Excel
or Word. If you're itching to try again, you can create another table in your database by choosing
Create Table from the ribbon. But before you get to that stage, it makes sense to take a closer
look at how you edit your table.

1.2.4. Editing a Table

You now have a fully functioning (albeit simple) database, complete with one table, which in turn
contains one record. Your next step's filling your table with useful information. This often-tedious
process is data entry .

To fill the Dolls table, you use the same datasheet you used to define the table. You can perform
three basic tasks:

Editing a record . Move to the appropriate spot in the datasheet (using the arrow keys or the
mouse), and then type in a replacement. You may also want to use Edit mode, which is
described in the next section.

Inserting a new record . Move down to the bottom of the table, to the row that has an
asterisk (*) on the left. This row doesn't actually exist until you start typing in some
information. At that point, Access creates the row and moves the asterisk down to the next row
underneath. You can repeat this process endlessly to add as many rows as you want (Access
can handle millions).

Deleting a record . You have several ways to remove a record, but the easiest is to right-click
the margin immediately to the left of the record, and then choose Delete Record. Access asks
you to confirm that you really want to remove the selected record, because you can't reverse
the change later on.

WORD TO THE WISE
When in Doubt, Don't Delete

Most seasoned database designers rarely delete records from their databases. Every ounce of
information is important.

For example, imagine you have a database that lists the products that a mail-order origami company
has for sale. You might think it makes sense to delete products once they've been discontinued and
can't be ordered anymore. But it turns out that it makes sense to keep these old product records
around. For example, you might want to find out what product categories were the best sellers over
the previous year. Or maybe a manufacturer issues a recall of asbestos-laced paper, and you need to
track down everyone who ordered it. To perform either of these tasks, you need to keep your product
records.

This hang-onto-everything rule applies to any kind of database. For example, imagine you're tracking
student enrollment at a top-flight culinary academy. When a class is finished, you can't just delete
the class record. You might need it to find out if a student has the right prerequisites for another
course, what teachers she's had in the past, and so on.

The same is true for employees who retire, promotions that end, items that you used to own but
you've sold, and so on. You need them all (and you probably need to keep them indefinitely).

In many cases, you'll add extra fields to your table to help you separate old data from the new. For
example, you can create a Discontinued field in the Products table that identifies products that aren't
available anymore. You can then ignore those products when you build an order-placement form.

1.2.4.1. Edit mode

You'll probably spend a lot of time working with the datasheet. So settle in. To make your life easier,
it helps to understand a few details.

As you already know, you can use the arrow keys to move from field to field or row to row. However,
you might have a bit of trouble editing a value. When you start typing, Access erases any existing
content. To change this behavior, you need to switch into Edit mode by pressing the F2 key; in Edit
mode, your typing doesn't delete the stuff that's already in that field. Instead, you get to change or
add to it. To switch out of Edit mode, you press F2 again. Figure 1-10 shows a closeup look at the
difference.

Tip: You can also switch in and out of Edit mode by double-clicking a cell.

Figure 1-10. Top: Normal mode. If you start typing now, you'll immediately erase the existing text ("Hobergarten"). The fact

that all the text in the field's selected is a big clue that you're about to wipe it out.

Bottom: Edit mode. The cursor shows where you're currently positioned in the current field. If you start typing now, you'll insert text in

between "Hober" and "garten".

Edit mode also affects how the arrow keys work. In Edit mode, the arrow keys move through the
current field. For example, to move to the next cell, you need to move all the way to the end of the
current text, and then press the right arrow () key again. But in Normal mode, the arrow keys
always move you from cell to cell.

1.2.4.2. Shortcut keys

Power users know the fastest way to get work done is to use tricky keyboard combinations like
Ctrl+Alt+Shift+*. Although you can't always easily remember these combinations, a couple of tables
can help you out. Table 1-1 lists some useful keys that can help you whiz around the datasheet.

Tab (or Enter)

Moves the cursor one field to the right, or down when you reach the edge of the table. This key also

turns off Edit mode if it's currently switched on.

Shift+Tab

Moves the cursor one field to the left, or up when you reach the edge of the table. This key also turns
off Edit mode.

Moves the cursor one field to the right (in Normal mode), or down when you reach the edge of the
table. In Edit mode, this key moves the cursor through the text in the current field.

Moves the cursor one field to the left (in Normal mode), or up when you reach the edge of the table.
In Edit mode, this key moves the cursor through the text in the current field.

Moves the cursor up one row (unless you're already at the top of the table). This key also turns off
Edit mode.

Moves the cursor down one row (or it moves you to the "new row" position if you're at the bottom of
the table). This key also turns off Edit mode.

Home

Moves the cursor to the first field in the current row. This key brings you to beginning of the current
field if you're in Edit mode.

End

Moves the cursor to the last field in the current row. This key brings you to end of the current field if
you're in Edit mode.

Page Down

Moves the cursor down one screenful (assuming you have a large table of information that doesn't all
fit in the Access window at once). This key also turns off Edit mode.

Page Up

Moves the cursor up one screenful. This key also turns off Edit mode.

Ctrl+Home

Moves the cursor to the first field in the first row. This key doesn't do anything if you're in Edit mode.

Ctrl+End

Moves the cursor to the last field in the last row. This key doesn't do anything if you're in Edit mode.

Table 1-1. Keys for Moving Around the Datasheet

Key Result

Table 1-2 . lists some convenient keys for editing records.

Esc

Cancels any changes you've made in the current field. This key works only if you use it in Edit mode.
Once you move to the next cell, change is applied. (For additional cancellation control, try the Undo
feature, described next.)

Ctrl+Z

Reverses the last edit. Unfortunately, the Undo feature in Access isn't nearly as powerful as it is in
other Office programs. For example, Access allows you to reverse only one change, and if you close
the datasheet, you can't even do that. You can use Undo right after you insert a new record to
remove it, but you can't use the Undo feature to reverse a delete operation.

Ctrl+"

Copies a value from the field that's immediately above the current field. This trick's handy when you
need to enter a batch of records with similar information. Figure 1-11 shows this often-overlooked
trick in action.

Ctrl+;

Inserts today's date into the current field. The date format's based on computer settings, but expect
to see something like 24-12-2007. You'll learn more about how Access works with dates in Section
2.3.5 .

Ctrl+Alt+Space

Inserts the default value for the field. You'll learn how to designate a default value in Section 4.1.2 .

Table 1-2. Keys for Editing Records

Key Result

Figure 1-11. An Access user has been on an eBay buying binge and needs to add several dolls at once. With a quick Ctrl+"

keystroke, the acquire date from the previous record's pasted into the current field.

1.2.4.3. Cut, copy, and paste

Access, like virtually every Windows program, lets you cut and paste bits of information from one
spot to another. This trick's easy using just three shortcut keys: Ctrl+C to copy, Ctrl+X to cut
(similar to copy, but the original content's deleted), and Ctrl+V to paste. When you're in Edit mode,
you can use these keys to copy whatever you've selected. If you're not in Edit mode, the copying or
cutting operation grabs all the content in the field.

GEM IN THE ROUGH
Copying an Entire Record in One Step

Usually, you'll use copy and paste with little bits and pieces of data. However, Access has a little-
known ability that lets you copy an entire record . To pull it off, follow these steps:

Click the margin to the left of the record you want to copy.1.

This selects the record. (If you want to copy more than one adjacent record, hold down Shift,
and then drag your mouse up or down until they're all selected.)

2.

Right-click the selection, and then choose Copy.3.

This copies the content to the clipboard.4.

Scroll to the bottom of the table until you see the new-row marker (the asterisk).5.

Right-click the margin just to the left of the new-row marker, and then choose Paste.6.

Prestoan exact duplicate. (Truth be told, one piece of data doesn't match exactly. Access updates the
ID column for your pasted record, giving it a new number. That's because every record needs to

6.

have a unique ID. You'll learn why in Section 2.4.1 .)

1.3. Saving and Opening Access Databases

Unlike other programs, Access doesn't require that you save your work. It automatically saves any
changes you make.

When you create a new database (Section 1.2.1), Access saves your database file. When you add a
table or another object to the database, Access saves the database again. And when you enter new
data or edit existing data, Access saves the database almost instantaneously.

This automatic save process takes place behind the scenes, and you probably won't notice anything.
But don't be alarmed when you exit Access and it doesn't prompt you to save changes, as all
changes are saved the moment you make them .

1.3.1. Making Backups

The automatic save feature can pose a problem if you make a change mistakenly. If you're fast
enough, you can use the Undo feature to reverse your last change (Figure 1-12). However, the Undo
feature reverses only your most recent edit, so it's no help if you edit a series of records and then
discover the problem. It also doesn't help if you close your table and then reopen it.

Figure 1-12. The Undo command appears in the Quick Access toolbar at the top left of the Access window (circled), so it's

always available.

For these reasons, it's a good idea to make frequent database backups. To make a database backup,
you simply need to copy your database file to another folder, or make a copy with another name (like
Bobblehead_Backup1.accdb). You can perform these tasks with Windows Explorer, but Access gives
you an even easier option. Just choose Office button Manage Back Up Database, and Access
creates a copy of your database for you, in the location you choose (Figure 1-13).

Note: It's still up to you to remember to back up your database. Access doesn't include an automatic backup feature, but you can use

another tool to periodically copy your database file. One example is the Windows Task Scheduler that's included with most versions of

Windows. (You can read a quick no-nonsense Task Scheduler tutorial at www.pctechguide.com/tutorials/ScheduleTasks.htm .)

Figure 1-13. When you choose Office button Manage Back Up Database, Access fills in a suggested file name

that incorporates the current date. That way, if you have several backup files, you can pick out the one you want.

GEM IN THE ROUGH
Shrinking a Database

When you add information to a database, Access doesn't always pack the data as compactly as
possible. Instead, Access is more concerned with getting information in and out of the database as
quickly as it can.

After you've been working with a database for a while, you might notice that its size bloats up like a
week-old fish in the sun. If you want to trim your database back to size, you can use a feature called
compacting . To do so, just choose Office button Manage Compact and Repair Database.
The amount of space you reclaim varies widely, but it's not uncommon to have a 10 MB database
shrink down to a quarter of its size.

The only problem with the database compacting feature is that you need to remember to use it. If

you want to keep your databases as small as possible at all times, you can switch on a setting that
tells Access to compact the current database every time you close it. Here's how:

Open the database that you want to automatically compact.1.

Choose Office button Access Options. Access opens the Access Options window where you
can make a number of configuration changes.

2.

In the list on the left, choose Current Database.3.

In the page on the right, turn on the "Compact on Close" checkbox.4.

Click OK to save your changes.5.

You can set the "Compact on Close" setting on as few or as many databases as you want. Just
remember, it's not switched on when you first create a new database.

1.3.2. Saving a Database with a Different Name or Format

If you decide you want to save your database with a different name, in a different place, or using an
older Access file format, you can use the trusty Save As command. Begin by choosing Office button

 Save As, and then use one of the options in Figure 1-14 . Keep in mind that, once Access creates
the new database file, that file's the one it keeps using. In other words, when you create a table or
edit some data, Access updates the new file. (If you want to go back to the old file, you either need
to open it in Access, or use Save As again.)

Figure 1-14. Make sure you click the rightpointing arrow next to the Save As menu command to see this submenu of choices.

(Just clicking Save As performs the default option, which saves a copy of the currently selected database object, not your entire

database.) Then, choose one of the options under the "Save the database in another format" heading.

1.3.3. Opening a Database

Once you've created a database, it's easy to open it later. You can use any of these approaches:

Double-click a database file. (You can browse to it using My Computer, Windows Explorer, or
just plop in on your desktop.) Remember, Access databases have the file extension .accdb or
.mdb.

Launch Access, and then look for your database in the Open Recent Database section on the
right of the Getting Started page. (The same list's available through the Office menu, as shown
in Figure 1-15 .)

Launch Access, choose Office button Open, and then browse for your Access database file.

Figure 1-15. The Office menu's Recent Documents list has the same list of files as the Open Recent Database section on the

Getting Started page. But if you already have a database open, the Recent Documents list's more convenient, because you don't need to

head back to the Getting Started page.

When you open a database, you'll notice something a little bizarre. Access pops up a message bar
with a scary-sounding security warning (Figure 1-16).

Figure 1-16. This security warning tells you that Access doesn't trust your databasein other words, it's opened your file in a

special safe mode that prevents your database from performing any risky operations.

The security warning's a bit confusing, because right now your database doesn't even attempt do
anything risky. However, once you start building databases with code routines (as described in Part
Five) or when you start using action queries (Chapter 8), it's a different story. At that point, you
may want to reconfigure Access so it recognizes your files and learns to be a bit more trusting.

FREQUENTLY ASKED QUESTION
What's with the .laccdb File?

I see an extra file with the extension .laccdb. What gives ?

So far, you've familiarized yourself with the .accdb file type. But if you're in the habit of browsing
around with Windows Explorer, you may notice another file that you didn't create, with the cryptic
extension .laccdb. Along with Bobblehead. accdb, you may spot the mysterious Bobblehead.laccdb.

Access creates a .laccdb file when you open a database file and removes it when you close the
database, so you'll see it only while you (or someone else) is browsing the database.

Access uses the .laccddb to track who's currently using the database. The l stands for lock , and it's
used to make sure that if more than one person's using the database at once, people can't make
changes to the same record at the same time (which could cause all manner of headaches).

You'll learn more about how Access works with multiple users in Chapter 18 , but for now it's safe to
ignore the .laccddb file. You don't need to include it in your backups.

In the meantime, you're probably wondering what you should do about the message bar. You have

two options:

Click the X at the right side of the message bar to banish it. (It'll reappear the next time you
open the database.)

Tell Access that it can trust your databases by designating a trusted location a folder on your
hard drive where you store your database files. You'll learn how to set up a trusted location in
Section 15.2.4 .

1.3.4. Opening More Than One Database at Once

Every time you use the Office button Open command, Access closes the current database, and
then opens the one you chose. If you want to see more than one database at a time, you need to fire
up more than one copy of Access at the same time. (Computer geeks refer to this action as starting
more than one instance of a program.)

It's almost embarrassingly easy. If you double-click another database file while Access is already
open, then a second Access window appears in the taskbar for that database. You can also launch a
second (or third, or fourth…) instance of Access from the Start menu, and then use Office button
Open to load up a different database in each one.

1.3.5. Opening a Database Created in an Older Version of Access

You can use the Office button Open command to open an Access database that somebody
created with a previous version of Access. (See the box "Sharing Databases with Older Versions of
Access" in Section 1.2.2 for more about different Access file formats.)

POWER USERS' CLINIC
Changing the Folder Access Uses for Databases

Access always assumes you want to store databases in the My Documents folder. And though you
can choose a different location every time you save or open a database, if there's another folder you
need to visit frequently, then it makes sense to make that your standard database storage location.
You can configure Access to use this folder with just a few steps:

Choose Office button Access Options. The Access Options window appears.1.

In the list on the left, choose Popular.2.

In the page on the right, look for the "Creating data-bases" heading. Underneath, you'll find a
"Default database folder" text box. Type in the folder you want to use (like C:\MyDatabases), or
click Browse to navigate to it.

3.

When you're finished, click OK to save your changes.

Access handles old database files differently, depending on just how old they are. Here's how it

works:

If you open an Access 2002-2003 file, you don't get any notification or warning. Access keeps
the current format, and you're free to make any changes you want.

If you open an Access 2000 file, you're also in for smooth sailing. However, if you change the
design of the database, the new parts you add may not be accessible in Access 2000.

If you open an older Access file (like one created for Access 97, 95, or 2.0), Access asks
whether you want to convert the database or just open it (see Figure 1-17).

Figure 1-17. Access gives you a choice when you open a database file that was created in Access 97, 95, or 2.0. If you

choose to convert the database (click Yes), Access copies the existing database into a new database file, in Access 2002-2003 format.

You can then edit this copy normally. If you choose to open the database (click No), Access opens the original file without making a

copy. You can still edit existing data and add new data, but you can't change the database's design.

Tip: You can always tell the current database's format by looking at the text in brackets in the Access window's title bar. If you open an

Access 2002-2003 file, the title bar might read "Bobblehead: Database (Access 2002-2003 file format)".

When you open an old-school Access database, you'll notice something else has changed. When you
open a table, it won't appear in a tabbed window (like the ones shown in Figure 1-20). Instead, the
table opens in an ordinary window that can float wherever it wants inside the main Access window.
This seems fine at first, until you open several tables at once. Then, you're stuck with some real
clutter, as shown in Figure 1-18 .

Figure 1-18. In an old-style Access database, different windows can overlap each other. It's not long before the table you want

is buried at the bottom of a stack of windows.

This somewhat unfriendly behavior is designed to be more like previous versions of Access. But don't
worryyou can get back to the slick tabs even if you don't convert your database to the new format.
All you need to do is set a single configuration option for your database:

Choose Office button Access Options. The Access Options window appears .1.

In the list on the left, choose Current Database .2.

Under the Application Options heading, look for the Document Windows Options
setting, where you can choose Overlapping Windows (the Access 2003 standard) or
Tabbed Windows (the wave of the future) .

3.

Click OK .4.

Close and open your database so the new setting takes effect .5.

For a retro touch, you can use the same setting to make a brand new Access database use
overlapping windows instead of tabs.

1.3.6. Creating Another Database

Creating a new database is the easiest task yet. You simply need to choose Office button New.
Access takes you back to the Getting Started page, where you can create a blank database by
clicking the familiar Blank Database button, as described earlier (Section 1.2.1).

1.4. The Navigation Pane

It's time to step back and take a look at what you've accomplished so far. You've created the
Bobblehead database, and added a single database object: a table named Dolls. You've filled the
Dolls table with several records. You don't have the fancy windows, reports, and search routines that
make a database work really smoothly, but you do have the most important ingredientorganized
data.

One issue you haven't tackled yet is how you manage the objects in your database. For example, if
you have more than one table, you need a way to move back and forth between the two. That tool's
the navigation pane, shown in Figure 1-19 .

Figure 1-19. Unhappy with the space consumed by the navigation pane? Click the Open/Close button in the top-right corner

(top), and the navigation bar slides out of the way to give more room for the datasheet (bottom). Click the button again to expand it back

into view.

1.4.1. Browsing Tables with the Navigation Pane

The navigation pane shows the objects (Section 1.2) that are part of your database, and it lets you
manipulate them. However, you don't necessarily see all your database objects at all times. The
navigation pane has several different viewing modes, so you can home in on exactly what interests
you.

When you first create a database, the navigation pane shows only the tables in your database. That's

good enough for nowafter all, your database doesn't contain anything but the tables you've created.
(You'll learn how to customize the navigation pane in Chapter 14 .)

To really try out the navigation pane, you need a database with more than one table. To give it a
whirl, choose Create Table from the ribbon to add a new blank table. Follow all the steps in
Section 1.2.3 to define the table and insert a record or two.

Tip: Not sure what table to create? Try creating a Collectors table that tracks all the friends you know who share the same bobbleheaded

obsession. Now try to come up with a few useful fields for this table (while remembering that there's no need to go crazy with the details

yet), and then compare your version to the example in Figure 1-20 .

Once you've added the new table, you see both the new table and the old in the navigation pane at
the same time. If you want to open a table, then, in the navigation pane, just double-click it. If you
have more than one datasheet open at once, then Access organizes them into tabs (see Figure 1-20
).

Figure 1-20. Using the navigation pane, you can open as many tables at once as you want. Access gives each datasheet a

separate tabbed window. To move from one window to another, you just click the corresponding tab. If you're feeling a bit crowded, just

click the X at the far right of the tab strip to close the current datasheet.

If you open enough tables, eventually all the tabs you need won't fit. In this situation, Access adds
tiny scroll buttons to the left and right of the tab strip. You can use these buttons to move through all
the tabs, but it takes longer.

GEM IN THE ROUGH
Collapsing the Ribbon

Most people are happy to have the ribbon sit at the top of the Access window, with all its buttons on
hand. However, serious data crunchers demand maximum space for their data. They'd rather look at
another record of information than a pumped-up toolbar. If this preference describes you, then you'll
be happy to find out you can collapse the ribbon, which shrinks it down to a single row of tab titles,
as shown in Figure 1-21 . To do so, just double-click any tab title.

Even when the ribbon's collapsed, you can still use all its features. Just click a tab. If you click Home,
the Home tab pops up over your worksheet. As soon as you click the button you want in the Home
tab (or click somewhere else in the Access window), the ribbon collapses itself again. The same trick
works if you trigger a command in the ribbon using the keyboard, as described in Section 3.2.1 .

If you use the ribbon only occasionally, or if you prefer to use keyboard shortcuts, it makes sense to
collapse the ribbon. Even when collapsed, the ribbon commands are available; it just takes an extra
click to open the tab. On the other hand, if you make frequent trips to the ribbon, or if you're
learning about Access and you like to browse the ribbon to see the available features, don't bother
collapsing it. The extra space that you'll lose is well worth it.

Figure 1-21. Do you want to use every square inch of screen space for your data? You can collapse the ribbon (as shown

here) by double-clicking any tab. Click a tab to pop it open temporarily, or double-click a tab to bring the ribbon back for good. And if you

want to perform the same trick without raising your fingers from the keyboard, then you can use the shortcut key Ctrl+F1.

1.4.2. Managing Database Objects

So far, you know how to open a table using the navigation pane. However, opening tables isn't all
you can do with the navigation pane. You can actually perform three more simple tasks with any
database object that shows up in the navigation pane:

Rename it . Right-click the object, and then choose Rename. Then, type in the new name, and
then press Enter. Go this route if you decide your Dolls table would be better off named
DollsInMyWorldRenownedCollection.

Create a copy . Right-click the object, and then choose Copy. Right-click anywhere in the
navigation pane, and then choose Paste. Access prompts you to supply the new copy's name.
The copy-an-object feature's useful if you want to take an existing table and try redesigning it,
but you're not ready to remove the original copy just yet.

Delete it . Right-click the object, and then choose Delete. Access asks you to confirm this
operation, because you can't reverse it.

Access gives you a few more options for transferring database objects and tucking them out of sight.
You'll consider these features later in the book.

TIMESAVING TIP
Creating a Shortcut to a Table

You probably already know that you can place a Windows shortcut on your desktop that points to
your database file. To do so, just right-click your desktop, choose New Shortcut, and then follow
the instructions to pick your database file and choose a shortcut name. Now, any time you want to
jump back into your database, you can double-click your shortcut.

You probably don't know that you can create a shortcut that opens a database and navigates directly
to a specific table. In fact, this maneuver's even easier than creating a plainvanilla shortcut. Just
follow these steps:

Resize the Access window so it doesn't take up the full screen, and then minimize any other
programs. This way, you can see the desktop behind Access, which is essential for this trick.

1.

Find the table you want to use in the navigation pane. Drag this table out of Access and over
the desktop.

2.

Release the mouse button. Access creates a shortcut with a name like "Shortcut to Dolls in
Bobblehead. accdb". Double-click this shortcut to load the Bobblehead database and open a
datasheet right away for the Dolls table.

3.

2. Building Smarter Tables
In the previous chapter, you learned how to dish out databases and pop tables into them without
breaking a sweat. However, there's bad news. The tables you've been creating so far aren't up to
snuff.

Most significantly, you haven't explicitly told Access what type of information you intend to store in
each field of your table. A database treats text, numbers, dates, and other types of information
differently. If you store numeric information in a field that expects text, then you can't do calculations
later on (like find the average value of your bobblehead dolls), and you can't catch mistakes (like a
bobblehead with a price value of "fourscore and twenty").

To prevent problems like these, you need to define the data type of each field in your table. This is
the central task you'll tackle in this chapter. Once you've mastered data types, you're ready to
consider some of the finer points of database design.

2.1. Understanding Data Types

All data's not created equal. Consider the Dolls table you created in Chapter 1 (Section 1.2.3). Its
fields actually contain several different types of information:

Text . The Character and Manufacturer fields.

Numbers . The ID and PurchasePrice fields.

Dates . The DateAcquired field.

You may naturally assume that the PurchasePrice field always includes numeric content, and the
DateAcquired field always includes something that can be interpreted as a date. But if you haven't set
the data types correctly, Access doesn't share your assumptions, and doesn't follow the same rules.

When you create a new field in Datasheet view, Access makes an educated guess about the data type
by examining the information you've just typed in. If you type 44 , then Access assumes you're
creating a number field. If you type Jan 6, 2007 , then Access recognizes a date. However, it's easy
to confuse Access, which leads to the problems shown in Figure 2-1 .

Figure 2-1. Here, Access doesn't recognize the date format used for the DateAcquired field when it was created. As a result,

Access treats that field as ordinary text. You can enter dates in several different formats (which makes the DateAcquired information

harder to read and impossible to sort). You also let in completely nonsensical entries, like "fourscore bananas."

In order to prevent invalid entries, you need to tell Access what each field should contain. Once you

set the rules, Access enforces them rigorously. You put these requirements in place using another
windowthe Design view of your table.

2.2. Design View

When you create a new database, Access starts you off with a single table and shows that table in
Datasheet view. (As you learned last chapter, Datasheet view is the grid-like view where you can
create a table and enter data.) To switch to Design view, right-click the tab name (like "Dolls:
Table"), and then choose Design View. (Or you can use the Home View command, the Table
Tools | Datasheet View command, or the View buttons at the bottom of the Access window.
Figure 2-2 shows all your options. All of these commands do the same thing, so pick whichever
approach seems most convenient.)

Note: If you've opened an old Access 2003 database, you won't see any tabs. Instead, you'll get a bunch of overlapping windows. You

can remedy this problem and get your tabs back by following the instructions in Section 1.3.6 . Or, if you want to keep the overlapping

windows, just use the view buttons or the ribbon to change views (instead of the right-click-the-tab-title approach described above).

Figure 2-2. Right-click the tab name to see this menu. You can switch to Design view (choose Design View) and back again

(choose Datasheet View). Alternatively, you can use the tiny view buttons in the window's bottom-right corner to jump back and forth.

(Don't worry about the other two view buttons. You'll use those to analyze your data in a pivot table, as described in Chapter 9 .)

If you switch to Design view on a brand-new table that you haven't saved yet, Access asks you for a
table name. Access then saves the table before switching you to Design view.

Tip: For a handy shortcut, you can create a new table and automatically start in Design view. To do this, choose Create Tables

 Table Design. However, when you take this route, your table doesn't include the very important ID column, so you need to add one,

as described in Section 2.4.1 .

While Datasheet view shows the content in your table, Design view shows only its structure (see
Figure 2-3).

You can use Design view to add, rearrange, and remove fields, but you can't use it to add new
records. In the Dolls table, you can use Design view to add a Quantity field to keep track of doll
duplicates. However, you can't add your newly purchased Bono bobblehead without switching back to
the Datasheet view. Design view isn't intended for data entry.

At first, Design view seems quite intimidating. To simplify what you're looking at, you should start by
closing the Property Sheet box on the window's right side. (The Property Sheet lets you set a few
highly technical table settings, none of which you need to consider right now.) To banish it, choose
Table Tools | Design Property Sheet. If you want to bring it back later, then just repeat the same
command.

2.2.1. Organizing and Describing Your Fields

Design view allows you to rearrange the order of your fields, add new ones, rename the existing
ones, and more. You can also do all these things in Datasheet view, but Access gurus usually find it's
easier to work in Design view, because you won't be distracted by the data in the table.

Figure 2-3. Design view lists the fields in your table, putting each in a separate row. Fields here are listed from top to bottom,

but they appear in datasheet view ordered from left to right. Next to each field is its data type and an optional description. Underneath the

field list, the Field Properties section shows more information about the currently selected field. Here, the navigation pane has been

collapsed (Section 1.4) to provide extra space.

Here are a few simple ways you can change the structure of your table in Design view:

Add a new field to the end of your table . Scroll to the last row of the field list, and then
type in a new field name. This action's equivalent to adding a new field in Datasheet view.

Add a new field between existing fields . Move to the field that's just under the place
where you want to add the new field. Right-click the field, and then choose Insert Rows. Then,
type a field name in the new, blank row.

Move a field . Drag the gray square immediately to the left of the field you want to move, to
the new position.

Note: Remember, fields' order isn't all that important, because you can change the order in which you view the fields in Datasheet view.

However, most people find it's easier to design a table if you organize the fields from the very start.

Delete a field . Right-click the gray square immediately to the left of the field you want to
remove, and then choose Delete Rows. Keep in mind that when you remove a field, you also
wipe out any data that was stored in that field. This action isn't reversible, so Access prompts
you to confirm it's really what you want to do.

Add a description for a field . Type in a sentence or two in the Description column next to
the appropriate field. (You might use "The celebrity or fictional character that this bobblehead
resembles" as the description for the Character field in the Dolls table, as shown in Figure 2-4 .)

Figure 2-4. Descriptions can help you remember what's what if you need to modify a table later on. Descriptions are a great

idea if more than one person maintains the same database, in which case you need to make sure your fields are as clear as possible.

Descriptions also appear in the status bar when you're entering information in a table (see Figure 2-5).

Figure 2-5. The status bar text tells you what goes in this column, based on the field description. Sadly, this feature isn't as

useful as it seems, because most people never think to look down in the status bar.

2.2.2. How Updates Work in Design View

Access doesn't immediately apply the changes you make in Design view. Instead, it waits until you
close the table or switch back to Datasheet view. At that point, Access asks whether you want to
save the table. (The answer, of course, is Yes.)

Sometimes, you may apply a change that causes a bit of a problem. You could try to change the data
type of a field so that it stores numbers instead of text. (The box in Section 2.3.1 , "Changing the
Data Type Can Lose Information," discusses this problem in more detail.) In this situation, you won't
discover the problem until you close the table or switch back to the Datasheet view, which might be a
little later than you expect.

If you've made a potentially problematic change and you just can't take the suspense, you're better
off applying your update immediately , so you can see if there's a problem before you go any further.
To do so, click the Quick Access toolbar's Save button (it's the diskette icon in the Access window's
top-left corner), or just use the keyboard shortcut Ctrl+S. Access applies your change, and then
saves the table. If it runs into a problem, Access tells you about it (and lets you choose how you want
to fix it) before you do anything else with the table.

2.3. Access Data Types

Design view's a much more powerful place for defining a table than Datasheet view. As you'll see
throughout this chapter, Design view allows you to tweak all sorts of details that are hidden in
Datasheet view (or just awkward to change).

One of these is the data type of your fielda setting that tells Access what type of information you're
planning to store. To change the data type, make a selection in the Data Type column next to the
appropriate field (Figure 2-6). Here's where you separate the text from numbers (and other data
types). The trick's choosing the best data type from the long list Access providesyou'll get more help
in the following section.

Figure 2-6. To choose a data type, click the Data Type column next to the appropriate field. A drop-down list box appears, with

11 choices.

Depending on the data type you choose, there are other field properties that you can adjust to nail
down your data type even more precisely. If you use a text data type, then you use field properties
to set the maximum length. If you choose a decimal value, then you use field properties to set the
number of decimal places. You set field properties in the Field Properties part of the Design view,
which appears just under the field list. You'll learn more about field properties throughout this
chapter (and you'll consider them again in Chapter 4).

The most important decision you'll make for any field is choosing its data type. The data type tells
Access what sort of information you plan to store in that field. Access uses this information to reject
values that don't make sense (see Figure 2-7), to perform proper sorting, and to provide other
features like calculations, summaries, and filtering.

Figure 2-7. This currency field absolutely does not allow text. Access lets you fix the problem by entering a new value (the right

choice) or changing the field data type to text so that it allows anything (the absolutely wrong choice).

Note: A field can have only one data type. You can't create a field that can store two or three different data types, because Access

wouldn't have enough information to manage the field properly. (Instead, in this situation, you probably need two separate fields.)

As you learned earlier, there are three basic types of data in the world: text, numbers, and dates.
However, Access actually provides a whopping 11 data types, which include many more specialized
choices. Before you pick the right data type, it's a good idea to review all your choices. Table 2-1
shows an overview of the first 10 menu options in the Data Type list. (The Lookup wizard choice isn't
included, because it isn't a real data type. Instead, this menu option launches the Lookup wizard,
which lets you set a list of allowed values. You'll learn more about this in Section 4.4.1 in Chapter 4 .)

Text

Numbers, letters, punctuation, and symbols, up to a maximum of 255 characters (an average-sized
paragraph).

Names, addresses, phone numbers, and product descriptions. This data type's the most common.

Memo

Large amounts of unformatted text, up to 65,536 characters (an average-sized chapter in a novel).

Articles, memos, letters, arrest warrants, and other short documents.

Number

A variety of different kinds of numbers, including negative numbers and those that have decimal
places.

Any type of number except dollar values. Stores measurements, counts, and percentages.

Currency

Similar to Number, but optimized for numbers that represent values of money.

Prices, payments, and expenses.

Date/Time

A calendar date or time of day (or both). Don't use this field for time intervals (the number of
minutes in a song, the length of your workout session)instead, use the Number data type.

Birthdates, order dates, ship dates, appointments, and UFO sighting times.

Yes/No

Holds one of two values: Yes or No. (You can also think of this as True or False.)

Fields with exactly two options, like male/female or approved/unapproved.

Hyperlink

A URL to a Web site, an email address, or a file path.

www.FantasyPets.com , noreplies@antisocial.co.uk , f:\Documents\Report.doc.

Attachment

One or more separate files. The content from these files is copied into the database.

Pictures, Word documents, Excel spreadsheets, sound files, and so on.

AutoNumber

Stores a number that Access generates when you insert a new record. Every record automatically
gets a unique number that identifies it.

Used to uniquely identify each record, especially for a primary key (Section 2.4). Usually, the field's
named ID.

OLE Object

Holds embedded binary data, according to the Windows OLE (object linking and embedding)
standard. Rarely used, because it leads to database bloat and other problems. The Attachment field's
almost always a better choice.

Some types of pictures and documents from other programs. Mostly used in old-school Access
databases. Nowadays, database designers use the Attachment data type instead of the OLE Object
data type.

Table 2-1. Access Data Types

Data Type Description Examples

The following sections describe each data type except for OLE Object, which is a holdover from the
dark ages of Access databases. Each section also describes any important field properties that are
unique to that data type.

2.3.1. Text

Text is the all-purpose data type. It accepts any combination of letters, numbers, and other
characters. So you can use a text field for a word or two (like "Mary Poppins"), a sentence ("The
candidate is an English nanny given to flights of song."), or anything else ("@#$d sf_&!").

WORD TO THE WISE
Changing the Data Type Can Lose Information

The best time to choose the data types for your fields is when you first create the table. That way,
your table's completely empty, and you won't run into any problems.

If you add a few records, and then decide to change the data type in one of your fields, life becomes
a little more complicated. You can still use Design view to change the data type, but Access needs to
go through an extra step and convert the existing data to the new data type.

In many cases, the conversion process goes smoothly. If you have a text field that contains only
numbers, you won't have a problem changing the data type from Text to Number. But in other cases,
the transition isn't quite so seamless. Here are some examples of the problems you might run into:

You change the data type from Text to Date, but Access can't interpret some of your values as
dates.

You change the data type from Text to Number, but some of your records have text values in
that field (even though they shouldn't).

You change the data type from Text to Number. However, your field contains fractional
numbers (like 4.234), and you forget to change the Field Size property (Section 2.3.3.1). As a
result, Access assumes you want to use only whole numbers, and chops off all your decimal
places.

The best way to manage these problems is to make a backup (Section 1.3.1) before you make any
drastic changes, and be on the lookout for changes that go wrong. In the first two cases in the list
above, Access warns you that it needs to remove some values because they don't fit the data type
rules (see Figure 2-8). The third problem's a little more insidiousAccess gives you a warning, but it
doesn't actually tell you whether or not a problem occurred. If you suspect trouble, switch to Design
view, and then check out your data before going any further.

Figure 2-8. Don't say you weren't warned. Here, Access lets you know (in its own slightly obscure way) that it can't make the

change you wantmodifying the data type of field from Text to Datewithout throwing out the values in four records. The best course of

action is to click No to cancel the change and then take a closer look at your table in Datasheet view to track down the problematic

values.

Note: Because text fields are so lax, you can obviously enter numbers, dates, and just about anything else in them. However, you should

use text only when you're storing some information that can't be dealt with using another data type, because Access always treats the

contents of a text field as plain, ordinary text. In other words, if you store the number 43.99 in a text field, Access doesn't realize you're

dealing with numbers, and it doesn't let you use it in a calculation.

Sometimes it seems that the Text data type's just too freewheeling. Fortunately, you can apply some
stricter rules that deny certain characters or force text values to match a preset pattern. For
example, Access usually treats phone numbers like text, because they represent a series of
characters like 123-4444 (not the single number 1,234,444). However, you don't want to let people
put letters in a phone number, because they obviously don't belong. To put this restriction into
action, you can use input masks (Section 4.2) and validation (Section 4.3), two features discussed
in Chapter 4 .

2.3.1.1. Text length

Every text field has a maximum length . This trait comes as a great surprise to many people who
aren't used to databases. After all, with today's gargantuan hard drives, why worry about space?
Can't your database just expand to fit whatever data you want to stuff inside?

The maximum length matters because it determines how densely Access can pack your records
together. For performance reasons, Access needs to make sure that an entire record's stored in one
spot, so it always reserves the maximum amount of space a record might need. If your table has four
fields that are 50 characters apiece, Access can reserve 200 characters worth of space on your hard
drive for each record. On the other hand, if your fields have a maximum 100 characters each, Access
holds on to twice as much space for each record, even if you aren't actually using that space. The
extra space isn't a major issue (you probably have plenty of room on your computer), but the more
spread out a database, the slower your searches.

The standard maximum length is 50, a good starting point. The box "Maximum Length Guidelines"
(Section 2.3.2.1) has some more recommendations.

To set the maximum length, enter a number in the Field Size box, in the Field Properties section
(Figure 2-9). The largest maximum you're allowed is 255 characters. If you need to store a large
paragraph or an entire article's worth of information, then you need the Memo data type instead
(Section 2.3.1.1).

Tip: It's worthwhile being a little generous with maximum lengths to avoid the need to modify the database later on.

2.3.2. Memo

Microsoft designed the Memo data type to store large quantities of text. If you want to place a
chapter from a book, an entire newspaper article, or just several paragraphs into a field, you need
the Memo data type. The name's a little oddalthough a memo field could certainly store the
information from an inter-office memorandum, it's just as useful any time you have large blocks of
text.

When creating a memo field, you don't need to supply a maximum length, because Access stores the
data in a memo field differently from other data types. Essentially, it stuffs memo data into a
separate section, so it can keep the rest of the record as compact and efficient as possible, but
accommodate large amounts of text.

Figure 2-9. To set a maximum length, choose your field, and then click the Field Size box in the Field Properties list (shown

here). (All the field properties you need in this chapter are on the General tab.) When you click a field property box, that field property's

description appears on the right.

A memo field tops out at 65,536 characters. To put it in perspective, that's about the same size as
this chapter. If you need more space, then add more than one memo field.

Note: Technically, the 65,536 character limitation's a limitation in the Access user interface, not the database. If you program an

application that uses your database, it could store far moreup to a gigabyte's worth of information in a memo field.

If you need to edit a large amount of text while you're working on the datasheet, then you can use
the Zoom box (Figure 2-10). Just move to the field you want to edit, and then press Shift+F2.

2.3.2.1. Formatted text

Like a text field, the memo field stores unformatted text. However, you can also store rich text in a
memo fieldtext that has different fonts, colors, text alignment, and so on. To do so, set the Text
Format setting to Rich Text (rather than Plain Text).

To format part of your text, you simply need to select it and then choose a formatting option from
the ribbon's Home Font Home Rich Text sections. However, most of the time you won't take
this approach, because it's difficult to edit large amounts of text in the datasheet's narrow columns.
Instead, use Shift+F2 to open a Zoom box, and then use the minibar (Figure 2-11).

Figure 2-10. If you have lengthy text in a field, it's hard to see it all at once without a lot of scrolling. By opening a Zoom box

(Shift+F2), you can see more content and edit it more easily. You'll need to click OK (to accept your edits) or Cancel (to abandon them)

to get back to the datasheet.

UP TO SPEED
Maximum Length Guidelines

Here are some recommended maximum lengths:

First names and last names . 25 characters handles a first name, while 50 characters each
plays it safe for a long, hyphenated last name.

Middle initial . One character. (Sometimes common sense is right.)

Email address . Go with 50 characters. Email addresses closer to 100 characters have turned
up in the wild (Google "world's longest email address" for more), but they're unlikely to reach
your database.

Cities, states, countries, and other places . Although a Maori name for a hill in New Zealand
tops out at over 80 characters (see http://en.wikipedia.org/wiki/Longest_word_in_English), 50
is enough for most practical purposes.

Street address . A street address consists of a number, followed by a space, then the street
name, another space, and the street abbreviation (like Rd or St). Fifty characters handles it, as
long as you put postal codes, cities, and other postal details in other fields.

Phone numbers, postal codes, credit card numbers, and other fixed-length text .
Count the number characters and ignore the placeholders, and set the maximum to match. If
you want to store the phone number (123) 456-7890, make the field 10 characters long. You
can then store the phone number as 1234567890, but use an input mask (Section 4.2) to add
the parentheses, spaces, and dash when you display it. This approach is better because it
avoids the headaches that result from entering similar phone numbers in different ways.

Description or comments . 255 characters fits three or four average sentences of
information. If you need more, consider the memo data type instead (Section 2.3.1.1).

Figure 2-11. To show the minibar (sadly, of the non-alcoholic variety), select some text, and then hover over it with the mouse.

The minibara compact toolbar with formatting optionsgradually fades into view. The minibar's sometimes a little finicky, and you may

need to reselect the text more than once to get it to appear.

Tip: There's another, even easier way to get formatted text into a memo field. Create the text in a word processing program (like Word),

format it there, and then copy and paste it into the field. All the formatting comes with it.

As neat as this feature may seem at first glance, it's rarely worth the trouble. Database purists
believe that tables should store raw information and let other programs (or fancy forms) decide how
to format it. The problem is that once you've created your formatted text, it can be quite a chore to
maintain it. Just imagine having to change the font in 30,000 different records.

If you really do want to store formatted content, then consider linking your database to a separate
document, like a Word file. In Access, you can do this in two ways:

Create a field that points to the file . For example, c:\myfile\BonoBobblehead-
Description.docx). For this trick, use the Text or Hyperlink data type (Section 2.3.7).

Embed the file inside your database . This way, it's impossible to lose the file (or end up
pointing to the wrong location). However, you'll need to pull the file out every time you want to
update it. To do this, you need to use the Attachment data type (Section 2.3.8).

2.3.3. Number

The Number data type includes a wide variety of differently sized numbers. You can choose to allow
decimal numbers, and you can use negative values (just precede the value with a minus sign). You
should use the Number data type for every type of numeric information you haveexcept currency
amounts, in which case the Currency data type (Section 2.3.4) is a better match.

When you use numeric fields, you don't include information about the units you're using. You may
have a field that represents a Weight in pounds, a Height in Meters, or an Age in Years. However,
these fields contain only a number. It's up to you to know what that number signifies. If you think
other people may be confused, consider explaining the units in the description (Section 2.2.1), or
incorporate it into the field name (like HeightInMeters).

Note: Your field should never, ever contain values like "44 pounds." Access treats this value as a text value, so if you make this mistake,

you can't use all the important number crunching and validation tools you'll learn about later in this book.

2.3.3.1. Number size

As with a text field, when you create a number field, you need to set the Field Size property to make
sure Access reserves the right amount of space. However, with numbers your options are a little
more complicated than they are for ordinary text.

Essentially, numbers are divided into several subgroups, depending on whether or not they support
fractional values (numbers to the right of a decimal point) and how many bytes of space Access uses
to store them.

Note: A byte's a group of eight bits, which is the smallest unit of storage in the computer world. For example, a megabyte's

approximately one million bytes.

Table 2-2 lists the different Field Size options you can choose for the Number data type, and explains

when each one makes most sense. Initially, Access chooses Long Integer for all fields, which gives a
fair bit of space but doesn't allow fractional values.

Byte

An integer (whole number) from 0 to 255. Requires just one byte of space.

This size is risky, because it fits only very small numbers. Usually, it's safer to use Integer for small
numbers and give yourself a little more breathing room.

Integer

An integer (whole number) from32,768 to 32,767. Requires two bytes of space.

Useful if you need small numbers with no decimal part.

Long Integer

An integer (whole number) from2,147,483,648 to 2,147,483,647. Requires four bytes of space.

The Access standard. A good choice with plenty of room. Use this to store just about anything
without hitting the maximum, as long as you don't need decimals.

Single

Positive or negative numbers with up to 38 zeroes and 7 decimal places of accuracy. Requires four
bytes of space.

The best choice if you need to store fractional numbers or numbers that are too large to fit in a Long
Integer.

Double

Positive or negative numbers with up to 308 zeroes and 15 decimal places of accuracy. Requires eight
bytes of space.

Useful if you need ridiculously big numbers.

Decimal

Positive or negative numbers with up to 28 zeroes and 28 decimal places of accuracy. Requires eight
bytes of space.

Useful for fractional numbers that have lots of digits to the right of the decimal point.

Table 2-2. Field Size Options for the Number Data Type

Field Size Contains When to Use It

Note: Table 2-2 doesn't include Replication ID, because you use that option only with the Number data type (Section 2.3.9).

2.3.3.2. Number formatting

The Field Size determines how Access stores your number in the table. However, you can still choose
how it's presented in the datasheet. For example, 50, 50.00, 5E1, $50.00, and 5000% are all the
same number behind the scenes, but people interpret them in dramatically different ways.

To choose a format, you set the Format field property. Your basic built-in choices include:

General Number . Displays unadorned numbers, like 43.4534. Any extra zeroes at the end of
a number are chopped off (so 4.10 becomes 4.1).

Currency and Euro . Both options display numbers with two decimal places, thousands
separators (the comma in $1,000.00), and a currency symbol. These choices are used only with
the Currency data type (Section 2.3.4).

Fixed . Displays numbers with the same number of decimal places, filling in zeroes if necessary
(like 432.11 and 39.00). A long column of numbers lines up on the decimal point, which makes
your tables easier to read.

Standard . Similar to Fixed, except it also uses thousands separators to help you quickly
interpret large numbers like 1,000,000.00.

Percent . Displays fractional numbers as percentages. For example, if you enter 0.5, that
translates to 50%.

Scientific . Displays numbers using scientific notation, which is ideal when you need to handle
numbers that range widely in size (like 0.0003 and 300). Scientific notation displays the first
non-zero digit of a number, followed by a fixed number of digits, and then indicates what power
of ten that number needs to be multiplied by to generate the specified number. For example,
0.0003 becomes 3.00 x 10-4 , which displays as 3.00E-4. The number 300, on the other hand,
becomes 3.00 x 102 , or 3E2.

Tip: When using Fixed, Standard, Percent, or Scientific, you should also set the Decimal Places field property to the number of decimal

places you want to see. Otherwise, you always get two.

A custom format string . This is a cryptic code that tells Access exactly how to format a
number. You need to type the format string you need into the Format box. For example, if you
type in the weird-looking code #,##0, (including the comma at the end) Access hides the last
three digits of every number, so 1 million appears as 1,000 and 15,000 as 15.

Note: Custom number formats aren't terribly common in Access (they're more frequently used with Excel). Later on, you'll learn about

expressions (Section 7.1.1), which let you do pretty much the same thing.

2.3.4. Currency

Currency's a slight variation on the Number data type that's tailored for financial calculations. Unlike

the Number data type, here you can't choose a Field Size for the Currency data typeAccess has a
one-size-fits-all policy that requires eight bytes of storage space.

Note: The Currency data type's better than the Number data type because it uses optimizations that prevent rounding errors with very

small fractions. The Currency data type's accurate to 15 digits to the left of the decimal point, and four digits to the right.

You can adjust the number of decimal places Access shows for currency values on the datasheet by
setting the Decimal Places field property. Usually, it's set to 2.

The formatting that Access uses to display currency values is determined by the Regional and
Language Options settings on your computer (Section 2.3.5). However, these settings might produce
results you don't wantfor example, say you run an artisanal cereal business in Denmark that sells all
its products overseas in U.S. dollars (not kroner). You can control exactly how currency values are
formatted by setting the Format field property, which gives you the following options:

Currency . This option is the standard choice. It uses the formatting based on your computer's
regional settings.

Euro . This option always uses the Euro currency symbol ()

A custom format string . This option lets you get any currency symbol you want (as
described below). You need to type the format string you need into the Format box.

There's a simple recipe for cooking up format strings with a custom currency symbol. Start by adding
the character for the currency symbol (type in whatever you want) and then add #,###.## which is
Access code for "give me a number with thousands separators and two decimal places."

For example, the Danish cereal company could use a format string like this to show the U.S. currency
symbol:

 $#,###.##

Whereas a U.S. company that needs to display a Danish currency field (which formats prices like kr
342.99) would use this:

 kr #,###.##

Note: Enterprising users can fiddle around with the number format to add extra text, change the number of decimal places (just add or

remove the number signs), and remove the thousands separators (just take out the comma).

2.3.5. Date/Time

Access uses the Date/Time data type to store a single instant in time, complete with the year, month,

day, and time down to the second. Behind the scenes, Access stores dates as numbers, which lets
you use them in calculations.

Although Access always uses the same amount of space to store date information in a field, you can
hide some components of it. You can choose to display just a date (and ignore any time information)
or just the time (and ignore any date information). To do this, you simply need to set the Format
field property. Table 2-3 shows your options.

General Date

2/23/2008 11:30:15 PM

Long Date

February 23, 2008 11:30:15 PM

Medium Date

23-Feb-08

Short Date

2/23/2008

Long Time

11:30:15 PM

Medium Time

11:30 PM

Short Time

23:30

Table 2-3. Date/Time Formats

Format Example

Note: Both the General Date and Long Date show the time information only if it's not zero.

The format affects only how the date information's displayedit doesn't change how you type it in.
Access is intelligent enough to interpret dates correctly when you type any of the following:

2008-23-2 (the international year-month-day standard always works)

2/23/2008 (the most common approach, but you might need to flip the month and day on non-

U.S. computers)

23-Feb-08

Feb 23 (Access assumes the current year)

23 Feb (ditto)

To add date and time information, just follow the date with the time, as in 23-Feb-08 5:06 PM. Make
sure to include the AM/PM designation at the end, or use a 24hour clock.

If it's too much trouble to type in a date, then consider using the calendar smart tag instead. The
smart tag is an icon that appears next to the field whenever you move to it, as shown in Figure 2-12
.

Figure 2-12. Access automatically pops up the calendar smart tag for all date fields. Click the calendar icon to pop up a mini

calendar where you can browse to the date you want. However, you can't use the calendar to enter time information.

UP TO SPEED
Dating Your Computer

Windows has regional settings for your computer, which affect the way Microsoft programs display
things like dates and currencies. In Access, the regional settings determine how the different date
formats appear. In other words, on a factory-direct U.S. computer, the Short Date format shows up
as 2/23/2008. But on a British computer, it may appear as 23/2/2008. Either way, the information
that's stored in the database is the same. However, the way it appears in your datasheet changes.

You can change the regional settings, and they don't have to correspond to where you liveyou can
set them for your company headquarters on another continent, for instance. But keep in mind that
these settings are global, so if you alter them, you affect all your programs.

To make a switch, head to Control Panel. (In Windows XP, click the Start menu and choose Settings
 Control Panel. In Windows Vista, click Start and look for the Control Panel option on the right

side.) Once you've opened the Control Panel, double-click Regional and Language Options, which
brings up a dialog box. The first tab has all the settings you want. The most important setting's in the
first box, which has a drop-down list you can use to pick the region you want to use, like English
(United States) or Swedish (Finland).

You can fine-tune the settings in your region, too. This makes sense only if you have particular
preferences about how dates should be formatted that don't match the standard options. Click the
Customize button next to the region box to bring up a new dialog box, and then click the Date tab
(shown in Figure 2-13).

Figure 2-13. The Regional and Language Options dialog box lets you customize how dates appear on your computer. Use the

drop-down lists to specify the date separator; order of month, day, and year components in a date; and how Access should interpret two-

digit years. You can mix and match these settings freely, although you could wind up with a computer that's completely counterintuitive to

other people.

2.3.5.1. Custom date formats

If you're not happy with the seven standard date options that Access provides, you can craft your
own date format string and type in the Format property. This format string tells Access how to
present the date and time information.

A date format string is built out of pieces. Each piece represents a single part of the date, like the
day, month, year, minute, hour, and so on. You can combine these pieces in whatever order you
want. For example, consider the following format string:

 yyyy-mm-dd

This string translates as the following instructions: Display the four-digit year, followed by a dash,
followed by a two-digit month number, followed by another dash, followed by a two-digit day
number. You're free to put these components in any order you like, but this example defines them
according to the ISO date standard. You can also control how to display the year, day, and month
components. You can use month abbreviations or full names instead of a month number (just replace
the mm code with something different).

If you apply this format string to a field that contains the date January 1, 2008, then you see this in
the datasheet:

 2008-01-01

Remember that regardless of what information you choose to display or hide, Access stores the same
date information in your database.

Table 2-4 shows the basic placeholders that you can use for a date or time format string.

d

The day of the month, from 1 to 31, with the numbers between 1 and 9 appearing without a leading
0.

7

dd

The day of the month, from 01 to 31 (leading 0 included for 1 to 9).

07

ddd

A three-letter abbreviation for the day of the week.

Fri

dddd

The full name of the day of the week.

Friday

m

The number value, from 1 to 12, of the month (no leading 0 used).

1

mm

The number value, from 01 to 12, of the month (leading 0 used for 01 to 09).

01

mmm

A three-letter abbreviation for the month.

Jan

mmmm

The full name of the month.

January

yy

A two-digit abbreviation of the year.

08

yyyy

The year with all four digits.

2008

h

The hour, from 0 to 23 (no leading 0 used).

13

hh

The hour, from 00 to 23 (leading 0 used for 00 to 09).

13

:m

The minute, from 0 to 59 (no leading 0 used).

5

:mm

The minute, from 0 to 59 (leading 0 used for 00 to 09).

05

:s

The second, from 0 to 59 (no leading 0 used).

5

:ss

The second, from 0 to 59 (leading 0 used for 00 to 09).

05

AM/PM

Tells Access to use a 12-hour clock, with an AM or PM indication.

PM

am/pm

Indicates a 12-hour clock, with an am or pm indication.

pm

A/P

Tells Access to use a 12-hour clock, with an A or P indication.

p

a/p

Tells Access to use a 12-hour clock, with an a or p indication.

p

Table 2-4. Date and Time Formatting Codes

Code Description Displays (for the Date January 1, 2008)…

2.3.6. Yes/No

A Yes/No field is a small miracle of efficiency. It's the leanest of Access data types, because it allows
only two possible values: Yes or No.

When using a Yes/No field, imagine that your field poses a yes or no question by adding an imaginary
question mark at the end of your field name. You could use a field named InStock to keep track of
whether or not a product's in stock. In this case, the yes or no question is "in stock?" Other examples
include Shipped (in a list of orders), Male (to separate the boys from the girls), and Republican
(assuming you're willing to distinguish between only two political orientations).

Although every Yes/No field is essentially the same, you can choose to format it slightly differently,
replacing the words "Yes" and "No" with On/Off or True/False. You'll find these three options in the
Format menu. However, it doesn't make much difference because on the datasheet, Yes/No fields are
displayed with a checkbox, as shown in Figure 2-14 .

Figure 2-14. In this example, ForSale is a Yes/No field. A checked checkbox represents Yes (or True or On). An unchecked

checkbox represents No (or False or Off).

2.3.7. Hyperlink

The Hyperlink data type comes in handy if you want to create a clickable link to a Web page, file, or
email address. You can mix and match any combination of the three in the same table.

Access handles hyperlinks a little differently in the Datasheet view. When you type text into a
hyperlink field, it's colored blue and underlined. And when you click the link, Access pops it open in
your browser (Figure 2-15).

Note: Access doesn't prevent you from entering values that aren't hyperlinks in a hyperlink data field. This trait leads to problems if you

click the hyperlink. If you put the text "saggy balloons" in a hyperlink field and click it, then Access tries to send your browser to

http://saggy balloons, which obviously doesn't work.

Figure 2-15. Click this hyperlink, and you'll head straight to the welcoming arms of Office Online.

One hyperlink field feature isn't immediately obvious. Hyperlink fields actually store more than one
piece of information. Every hyperlink includes these three components:

The text you see in the cell

The destination you go to when you click the cell (the URL or file path)

The text you see when you hover over the link with your mouse (the tooltip)

When you type a link into the datasheet, all three of these are set to the same valuewhatever you've
just typed in. In other words, when you type http://www.FantasyPharmacologists.com , the text you
see, the URL link, and the tooltip are all set to hold the same content, which is the URL
http://www.FantasyPharmacologists.com .

Most of the time, this approach is good, because it lets you quickly size up a link. However, you
aren't limited to this strategy. If you want to set these three components to have different values,
move to the value, and then hit Ctrl+K to pop up the Edit Hyperlink window (see Figure 2-16). Or
right-click it, and then choose Hyperlink Edit Hyperlink.

2.3.8. Attachment

http://saggy
http://www.FantasyPharmacologists.com

The Attachment data type's new in Access 2007. It lets you add files to your database record in much
the same way that you tack on attachments to your email messages. Access stores the files you add
to an attachment field as part of your table, embedded inside your database file.

The Attachment data type's a good choice if you need to insert a picture for a record, a short sound
file, or even a document from another Office application, like Word or Excel. You could create a
People table with a picture of each person in your contact list, or a product catalog with pictures of
the wares you're selling. In these cases, attachments have an obvious benefitbecause they're stored
inside your database file, you'll never lose track of them.

Figure 2-16. Using the Edit Hyperlink window, you can change the text that appears in the cell (at the top of the window) and

the page that Access opens when you click it (at the bottom). You can also create links that use email addresses (in which case Access

opens the email program that's configured on your computer) or links to file paths (use the folder browsing area to pick the file you want).

However, attachments aren't as graceful with large files, or files you need to modify frequently. If
you place a frequently modified document into an Access database, it isn't available on your hard
drive for quick editing, printing, and searching. Instead, you'll need to fire up Access, and then find
the corresponding record before you can open your document. If you want to make changes, then
you'll also need to keep Access open so it can take the revised file and insert it back into the
database.

Warning: Think twice before you go wild with attachments. As you've already learned, an Access database is limited to two gigabytes of

space. If you start storing large files in your tables, you just may run out of room. Instead, store large documents in separate files, and

then record the file name in a text or hyperlink field.

When you use the Attachment data type, make sure you set the Caption field property, which
determines the text that appears in the column header for that field. (Often, you'll use the field name
as the caption.) If you don't set a caption, the column header shows a paper clip but no text.

You'll recognize an attachment field in the datasheet because it has a paper clip icon next to it
(Figure 2-17).

To attach a file or review the list of attached files, double-click the paper clip icon. You'll see the
Attachments dialog box (see Figure 2-18).

Here's what you can do in the Attachments window:

Add a new attachment . Click the Add button. Then browse to a new file, and then click OK.
You'll see it appear at the bottom of the list.

Delete an attachment . Select the attachment in the list, and then click Remove.

Figure 2-17. Attachments are flagged with a paper clip icon and a number in brackets, which tells you how many files

are attached. In this example, all the values in the Picture attachment field are empty except Count Chocula, which has two.

Figure 2-18. The Attachments dialog box shows you all the files that are linked to your field.

Save a copy of an attachment . Select the attachment, click Save, and then browse to a
location on your computer. Or, click Save All to save copies of all the attachments in this field. If
you change these copies, you don't change the attachment in the database.

Edit or view an attachment . Select the attachment, and then click Open. Access copies the
attachment to a temporary folder on your computer, where Internet content is cached. If you
save the file, then Access notices the change, updates the attachment automatically, and then
removes the file. If you close the Attachments window before you've closed the file, then Access
warns you that your updates might not be reflected in the database. Figure 2-19 shows what
happens.

Unfortunately, the Attachment data type doesn't give you a lot of control. Here are some of its
limitations:

You can't restrict the number of attachments allowed in an attachment field. All attachment
fields allow a practically unlimited number of attachments (although you can't attach two files
with the same name).

You also can't restrict the types of files used for an attachment.

You can't restrict the size of the files used for an attachment.

Figure 2-19. Top: In this example, the file "The Story of the Count. doc" is still open. If you continue, then any changes you

make (or any changes you've made so far and haven't saved) aren't reflected in the database.

Bottom: If Access notices you've saved your file since you first opened it, then Access also asks if you want to update the database with

the last saved version. (To avoid such headaches, attach only files that you don't plan to edit.)

2.3.9. AutoNumber

An AutoNumber is a special sort of data type. Unlike all the other data types you've seen, you can't
fill in the value for an AutoNumber field. Instead, Access does it automatically whenever you insert a
new record. Access makes sure that the AutoNumber value is uniquein other words, it never gives
two records the same AutoNumber value.

Note: Every table can have up to one AutoNumber field.

Ordinarily, the AutoNumber field looks like a sequence of numbersAccess tends to give the first
record an AutoNumber value of 1, the second an AutoNumber of 2, and so on. However, the truth
isn't so straightforward. Sometimes, Access skips a number. This skipping could happen when several
people are using a database at once, or if you start adding a new record, and then cancel your action
by pressing the Esc key. You may also delete an existing record, in which case Access never reuses
that AutoNumber value. As a result, if you insert a new record and you see it's assigned an
AutoNumber value of 401, then you can't safely assume that there are already 400 records in the
table. The actual number's probably less.

Truthfully, an AutoNumber value doesn't represent anything, and you probably won't spend much
time looking at it. The AutoNumber field's sole purpose is to make sure you have a unique way to
point to each record in your table. Usually, your AutoNumber field's also the primary key for your
table, as explained in Section 2.4 .

2.3.9.1. Using AutoNumbers without revealing the size of your table

AutoNumber values have one minor problem: they give a clue about the number of records in a
table. You may not want a customer to know that your brand-new food and crafts company, Better
Butter Sculptures, hasn't cracked 12 customers. So you'll be a little embarrassed to tell him he's
customer ID number 6.

The best way to solve this problem is to start counting at a higher number. You can fool Access into
generating AutoNumber values starting at a specific minimum. For example, instead of creating
customer IDs 1, 2, and 3, you could create the ID values 11001, 11002, 11003. This approach also
has the advantage of keeping your IDs a consistent number of digits, and it allows you to distinguish
between IDs in different tables by starting them at different minimums. Unfortunately, in order to pull
this trick off, you need to fake Access out with a specially designed query, which you'll see in Section
8.3.2 .

Alternatively you can tell Access to generate AutoNumber values in a different way. You have two
choices:

Random AutoNumber value . To use random numbers, change the New Values field property
from Increment to Random. Now you'll get long numbers for each record, like 212125691,
1671255778, and1388883525. You might use random AutoNumber to create values that other
people can't guess. (For example, if you have an Orders table that uses random values for the
OrderID field, you can use those values as confirmation numbers.) However, random Auto-
Numbers are rarely used in the Access world.

Replication IDs . Replication IDs are long, obscure codes like 38A94E7B-2F95-4E7D-8AF1-
DB5B35F9700C that are statistically guaranteed to be unique. To use them, change the Field
Size property from Long Integer to Replication ID. Replication IDs are really used only in one

scenarioif you have separate copies of a database and you need to merge the data together in
the future. The next section explains that scenario.

Both of these options trade the easy-to-understand simplicity of the ordinary AutoNumber with
something a little more awkward, so evaluate them carefully before using these approaches in your
tables.

2.3.9.2. Using replication IDs

Imagine you're working at a company with several regional sales offices, each with its own database
for tracking customers. If you use an ordinary AutoNumber field, then you'll end up with several
customers with the same ID, but at different offices. If you ever want to compare data, you'll quickly
become confused. And you can't combine all the data into one database for further analysis later on.

Access gives you another choicea replication ID . A replication ID's a strange creationit's an
extremely large number (16 bytes in all) that's represented as a string of numbers and letters that
looks like this:

 38A94E7B-2F95-4E7D-8AF1-DB5B35F9700C

This ID's obviously more cumbersome than an ordinary integer. After all, it's much easier to thank
someone for submitting Order 4657 than Order 38A94E7B-2F95-4E7D-8AF1-DB5B35F9700C. In
other words, if you use the AutoNumber value for tracking or bookkeeping, then the replication ID's a
bad idea.

However, the replication ID solves the problem described earlier, where multiple copies of the same
database are being used in different places. That's because replication IDs are guaranteed to be
statistically unique . In other words, there are so many possible replication IDs that it's absurdly
unlikely that you'll ever generate the same replication ID twice. So even if you have dozens of
separate copies of your database, and they're all managing hundreds of customers, you can rest
assured that each customer has a unique customer ID. Even better, you can periodically fuse the
separate tables together into one master database. (This process is called replication , and it's the
origin of the term replication ID. You'll learn more about transferring data from one database to
another in Chapter 19 .)

Note: A replication ID is also called a GUID (short for " globally unique identifier"). In theory, the chance of two GUIDs being identical are

one in 2128 , which is small enough that you could set one billion people to work, ask them to create one billion GUIDs a year, and still be

duplicate-free for the next decade or two. In practice, the real limitation's how good the random number generator is in Access.

Figure 2-20 shows a table that uses replication IDs.

Figure 2-20. This figure shows 10 records in the FictionalCharacters table, each with a statistically unique AutoNumber value.

2.4. The Primary Key

Design view also allows you to set a table's primary key, which is a field (or a combination of fields)
that's unique for each record. Every table must have a primary key. To understand why the primary
key's important, you need to consider a little bit more about how databases work. The box "How
Access Prevents Duplicate Records" in Section 2.4.1 has the full story.

Choosing a primary key is trickier than it seems. Imagine you have a list of friends (and their contact
information) in a table named People. You may logically assume that you can create a primary key
using a combination of first and last name.

UP TO SPEED
How Access Prevents Duplicate Records

In order to function correctly, a database program like Access needs to be able to tell
the difference between each and every record in your table. In other words, you can't
insert two records with exactly the same information. Databases are notoriously fussy,
and they don't tolerate this sort of sloppiness.

The challenge of preventing duplicates isn't as easy as it seems. Access is designed to be
blisteringly fast, and it can't afford to double-check your new record against every other
record in the table to see if there's a duplicate. So instead, it relies on a primary key. As
long as every record in a table has a unique, never-duplicated primary key, you can't
have two identical records. (At worst, they'll be two almost identical records that have
the same information in all their other fields, but have different primary keys. And this is
perfectly acceptable to Access.)

In an Employees table, the Social Security number could serve as the primary key. This
method works well, because when you insert a new record, Access can check for
duplicates by breezing through the list of Social Security numbers, which is much faster
than scanning through the entire table.

Unfortunately, that just won't doafter all, many are the address books that have two Sean Smiths.

Your best solution's to invent a new piece of information. You can label every individual in your
contact list with a unique ID number. Best of all, you can get Access to automatically create this
number for you (and make sure that no two people get the same number), so you don't even need to
think about it. That way, if you have two Sean Smiths, each one has a different ID. And even if Ferris
Wheel Simpson decides to change his first name, the ID remains the same.

This approach is exactly the one Access uses when you create a table using the Datasheet view.
Consider the Dolls table you built in Chapter 1. You'll notice that it includes a field named ID, which

Access fills automatically. You can't set the ID value in a new record, or change it in an existing
record. Instead, Access takes complete control, making sure each bobblehead has a different ID
number. This behavior's almost always what you want, so don't try to change it or delete the ID field.

However, there's one exception. If you create a table in Design view by choosing Create Tables
 Table Design, then Access assumes you know what you're doing, and it doesn't create an ID field

for you. You need to add an ID field (or something like it).

2.4.1. Creating Your Own Primary Key Field

If your database doesn't have an ID field (perhaps because you created it using the Create
Tables Table Design command), it's up to you to create one and set the primary key. Here's how
to do it:

Create a new field by typing a name in the Field Name column.

For automatically generated values, the name ID is the best choice. Some people prefer to be a
little more descriptive (for example, BobbleheadID, CustomerID, and so on), but it's
unnecessary.

1.

In the Data Type column, choose AutoNumber.

By choosing the AutoNumber data type, you make sure that Access generate a unique ID value
for every new record you insert. If you don't want this process to happen, you can choose
something else (like the Text or Number data type). You'll be responsible for entering your own
unique value for each record, which is more work that it seems.

2.

Right-click the field, and then choose Primary Key.

This choice designates the field as the primary key for the table. Access doesn't allow duplicate
values in this field.

3.

Note: If you want to make a primary key that includes more than one field, then you need to take a slightly different approach. First, click

the margin next to the field name, and then drag the mouse to select more than one field. Then, hold down Shift, and then right-click your

selection. Now you can choose Primary Key.

UP TO SPEED
Why It's Important to Be Unique

You won't completely understand why it's so important for each record to have a unique
ID number until you work with the more advanced examples in later chapters. However,
one of the reasons is that other programs that use your database need to identify a
record unambiguously.

To understand why there's a problem, imagine that you've built a program for editing
the Dolls table. This program starts by retrieving a list of all your table's bobbleheads. It
displays this list to the person using the program, and lets her make changes. Here's the
catchif a change is made, the program needs to be able to apply the change to the
corresponding record in the database. And in order to apply the change, it needs some
unique piece of information that it can use to locate the record. If you've followed the
best design practices described above, the unique "locator" is the bobblehead's ID.

2.5. Six Principles of Database Design

With great power comes great responsibility. As a database designer, it's up to you to craft a set of
properly structured tables. If you get it right, you'll save yourself a lot of work in the future. Well-
designed databases are easy to enhance, simpler to work with, and lead to far fewer mind-bending
problems when you need to extract information.

Sadly, there's no recipe for a perfect database. Instead, a number of recommendations can guide you
on the way. In this section, you'll learn about a few of the most important.

Tip: Building a good database is an art that takes practice. For best results, read these guidelines, and then try building your own test

databases.

2.5.1. 1. Choose Good Field Names

Access doesn't impose many rules on what field names you can use. It lets you use 64 characters of
your choice. However, field names are important. You'll be referring to the same names again and
again as you build forms, create reports, and even write code. So it's important to choose a good
name from the outset.

Here are some tips:

Keep it short and simple . The field name should be as short as possible. Long names are
tiring to type, more prone to error, and can be harder to cram into forms and reports.

CapitalizeLikeThis . It's not a set-in-stone rule, but most Access fans capitalize the first letter
of every word (known as CamelCase), and then cram them all together to make a field name.
Examples include UnitsInStock and DateOfExpiration.

Avoid spaces . Spaces are allowed in Access field names, but they can cause problems. In SQL
(the database language you'll use to search for data), spaces aren't kosher. That means you'll
be forced to use square brackets when referring to field name that includes spaces (like
[Number Of Guests]), which gets annoying fast. If you really must have spaces, then consider
using underscores instead.

Be consistent . You have the choice between the field names Product_Price and ProductPrice.
Either approach is perfectly reasonable. However, it's not a good idea to mingle the two
approaches in the same databasedoing so's a recipe for certain confusion. Similarly, if you have
more than one table with the same sort of information (for example, a FirstName field in an
Employees table and a Customers table), use the same field name.

Don't repeat the table name . If you have a Country field in a Customers table, it's fairly
obvious that you're talking about the Country where the customer lives. The field name

CustomerCountry would be overkill.

Don't use the field name Name . Besides being a tongue-twister, Name is an Access
keyword. Instead, use ProductName, CategoryName, ClassName, and so on. (This is one case
where it's OK to violate the previous rule and incorporate the table name in the field name.)

You should also give careful thought to naming your tables. Once again, consistency is king. For
example, database nerds spend hours arguing about whether or not to pluralize table names (like
Customers instead of Customer). Either way's fine, but try to keep all your tables in line.

2.5.2. 2. Break Down Your Information

Be careful that you don't include too much information in a single field. You want to have each field
store a single piece of information. Rather than have a single Name field in a table of contacts, it
makes more sense to have a FirstName and a LastName field.

There are many reasons for breaking down information into separate fields. First of all, it stops some
types of errors. With a Name field, the name could be entered in several different ways (like "Last,
First" or "First Last"). Splitting the name avoids these issues, which can create headaches when you
try to use the data in some sort of automated task (like a mail merge). But more importantly, you
can more easily work with data that's broken down into small pieces. Once the Name field's split into
FirstName and LastName, you can perform sorts or searches on just one of these two pieces of
information, which you couldn't otherwise do. Similarly, you should split address information into
columns like Street, City, State, and Countrythat way, you can far more easily find out who lives in
Nantucket.

Figure 2-21 (top) shows an example of proper separation. Figure 2-21 (bottom) shows a dangerous
mistakean attempt to store more than one piece of information in a single field.

Figure 2-21. This example shows the right way to subdivide information in the Contacts table (top), and the wrong way

(bottom). Notice that it's technically still possible to break the information down furtherthe street address information could theoretically

be split into StreetNumber, StreetName, and StreetType. However, that added bit of complexity doesn't add anything, so database gurus

rarely go to the extra trouble.

2.5.3. 3. Include All the Details in One Place

Often, you'll use the same table in many different tasks. You may use the Dolls table to check for
duplicates (and avoid purchasing the same bobblehead twice), to identify the oldest parts of your
collection, and to determine the total amount of money you've spent in a given year (for tax
purposes). Each of these tasks needs a slightly different combination of information. When you're
calculating the total money spent, you aren't interested in the Character field that identifies the doll.
When checking for a duplicate, you don't need the DateAcquired or Purchase-Price information.

Even though you don't always need all these fields, it's fairly obvious that it makes sense to put them
all in the same table. However, when you create more detailed tables, you may not be as certain. It's
not difficult to imagine a version of the Dolls table that has 30 or 40 fields of information. You may
use some of these fields only occasionally. However, you should still include them all in the same
table. All you'll see in this book, you can easily filter out the information you don't need from the
datasheet, as well as in your forms and printed reports.

2.5.4. 4. Avoid Duplicating Information

As you start to fill a table with fields, it's sometimes tempting to include information that doesn't
really belong. This inclusion causes no end of headaches, and it's a surprisingly easy trap to fall into.
Figure 2-22 shows this problem in action with a table that tries to do too much.

Figure 2-22. This table lists the available pets at an exotic animal breeder's. It also lists some helpful information about the life

expectancy, temperament, and meal requirements of each type of animal. Initially, this design seems fairly reasonable. However, a

problem appears when you have several of the same type of animals (in this case, three elephants). Now the elephant-specific details

are repeated three separate times.

Duplicate data like that shown in Figure 2-22 is inefficient. You can easily imagine a table with
hundreds of similar records, needlessly wasting space repeating the same values over and over
again. However, this concern's minor compared to the effort of updating that information, and the
possibility of inconsistency. What happens if you want to update the life expectancy information for
every elephant based on new studies? Based on the current design of the table, you need to change
each record that has the same information. Even worse, it's all too easy to change some records but
leave others untouched. The overall result's inconsistent datainformation in more than one spot that
doesn't agreewhich makes it impossible to figure out the correct information.

This problem occurs because the information in the Pets table doesn't all belong. To understand why,
you need to delve a little deeper into database analysis.

As a rule, every table in a database stores a single thing . In the Pets table, that thing is pets. Every
field in a table is a piece of information about that thing.

In the Pets table, fields like Name, Animal, and Weight all make sense. They describe the pet in
question. But the LifeSpan, Temperament, and Diet fields aren't quite right. They don't describe the
individual pet. Instead, they're just standards for that species. In other words, these fields aren't
based on the pet (as they should be)they're based on the animal type . The only way to solve this
problem is to create two tables: Pets and AnimalTypes (Figure 2-23).

Figure 2-23. Now the animal-specific information is maintained in one place, with no duplicates. It takes a little more work to

get all the pet information you needfor example, to find out the life expectancy for Beatrice, you need to check out the Elephant record in

the AnimalTypes tablebut the overall design's more logical.

It takes experience to spot fields that don't belong. And in some cases, breaking a table down into
more and more sub-tables isn't worth the trouble. You could theoretically separate the address
information (contained in fields like Street, City, Country, and PostalCode) from a Customers table,
and then place it into a separate Addresses table. However, it's relatively uncommon for two
customers to share the same address, so this extra work isn't likely to pay off. You'll consider how to
define formal relationships between tables like Pets and AnimalTypes in Chapter 5 .

Tip: Many database gurus find the best way to plan a database is to use index cards. To do this, start by writing down all the various

types of information you need in your database. Then, set aside an index card for each table you expect to use. Finally, take the fields on

the scrap paper, and write them down on the appropriate index cards, one at a time, until everything's set into neat, related groups.

2.5.5. 5. Avoid Redundant Information

Another type of data that just doesn't belong is redundant informationinformation that's already
available elsewhere in the database, or even in the same table, sometimes in a slightly different
form. As with duplicated data, this redundancy can cause inconsistencies.

Calculated data's the most common type of redundant information. An AverageOrderCost field in a
Customers table is an example. The problem here is that you can determine the price of an average
order by searching through all the records in the Orders table for that customer, and averaging them.
By adding an AverageOrderCost field, you introduce the possibility that this field may be incorrect (it
may not match the actual order records). You also complicate life, because every time a customer
places an order, you need to recalculate the average, and then update the customer record.

Note: Database gods do sometimes use calculated data as a performance-improving technique. However, this type of optimization's

very rare in Access databases. It's more common in industrial-strength server-side databases that power large companies and Web

sites.

Here are some more examples of redundant information:

An Age and a DateOfBirth field (in a People table) . Usually, you'll want to include just a
DateOfBirth field. If you have both, then the Age field contains redundant information. But if
you have only the Age field, you're in troubleunless you're ready to keep track of birthdays and
update each record carefully, your information will soon be incorrect.

A DiscountPrice field (in a Products table) . You should be able to calculate the discount
price as needed based on a percentage. In a typical business, markups and markdowns change
frequently. If you calculate 10 percent discounts and store the revised prices in your database,
then you'll have a lot of work to do when the discount drops to nine percent.

2.5.6. 6. Include an ID Field

As you learned earlier, Access automatically creates an ID field when you create a table in Datasheet
view and sets it to be the primary key for the table. But even now that you've graduated to Design
view, you should still add an ID field to all your tables. Make sure it uses the AutoNumber data type
so Access fills in the numbers automatically, and set it to be the primary key.

In some cases, your table may include a unique field that you can use as a primary key. Resist the
temptation . You'll always buy yourself more flexibility by adding an ID field. You never need to
change an ID field. Other information, even names and social insurance numbers, may change. And if
you're using table relationships, Access copies the primary key into other tables. If a primary key
changes, you'll need to track down the value in several different places.

Note: It's a good idea to get into the habit of using ID fields in all your tables. In Chapter 5 , you'll see the benefits when you start

creating table relationships.

3. Mastering the Datasheet: Sorting,
Searching, Filtering, and More
In Chapter 1, you took your first look at the datasheeta straightforward way to browse and edit the
contents of a table. As you've learned since then, the datasheet isn't the best place to build a table.
(Design view's a better choice for database control freaks.) However, the datasheet is a great tool for
reviewing the records in your table, making edits, and inserting new data.

Based on your experience creating the Dolls table (Section 1.2.3), you probably feel pretty confident
breezing around the datasheet. However, most tables are considerably larger than the examples
you've seen so far. After all, if you need to keep track of only a dozen bobbleheads, then you really
don't need a databaseyou'll be just as happy jotting the list down in any old spreadsheet, word
processor document, or scrap of unused Kleenex.

On the other hand, if you plan to build a small bobblehead empire (suitable for touring in
international exhibitions), you need to fill your table with hundreds or thousands of records. In this
situation, it's not as easy to scroll through the mass of data to find what you need. All of a sudden,
the datasheet seems more than a little overwhelming.

Fortunately, Access is stocked with datasheet goodies that can simplify your life. In this chapter,
you'll become a datasheet expert, with tricks like sorting, searching, and filtering at your fingertips.
You'll also learn a quick-and-dirty way to print a snapshot of the data in your table.

Note: It's entirely up to you how much time you spend using datasheets. Some Access experts prefer to create forms for all their tables

(as described in Part Four). With forms, you can design a completely customized window for data entry. Designing forms takes more

work, but it's a great way to satisfy your inner Picasso.

3.1. Datasheet Customization

Getting tired of the drab datasheet, with its boring stretch of columns and plain text? You can do
something about it. Access lets you tweak the datasheet's appearance and organization to make it
more practical (or suit it to your peculiar sense of style). Some of these customizationslike modifying
the datasheet fontare shameless frills. Other options, like hiding or freezing columns, can genuinely
make it easier to work with large tables.

Note: Access doesn't save formatting changes immediately (unlike record edits, which it stores as soon as you make them). Instead,

Access prompts you to save changes the next time you close the datasheet. You can choose Yes to keep your customizations or No to

revert to the table's last look and feel (which doesn't affect any edits you've made to the data in that table).

3.1.1. Formatting the Datasheet

Access lets you format the datasheet with eye-catching colors and fonts. Do these options make any
difference to the way the datasheet works? Not really. But if your computer desktop looks more like a
'60s revival party than an office terminal, then you'll enjoy this feature.

To find the formatting features, look at the ribbon's Home Font section (see Figure 3-1).

Figure 3-1. The Home Font section lets you change the text font and colors in the entire datasheet. The most practical

frill is the ability to turn off some or all of the gridlines and use alternating row colors to highlight every other row, as shown here.

Every formatting change you make affects the entire table. You may think it's a nifty idea to apply
different formatting to different columns, but Access doesn't let you. If this limitation's frustrating
you, be sure to check out forms and reports later in this book. Both are more complicated to set up,
but give you more formatting power.

Note: There's one other way you can use the ribbon's Home Font section. If you have a field that uses the Memo data type and

you've set your field to use rich text (Section 2.3.2.1), then you can select some text inside your field, and change its formatting using

the ribbon.

GEM IN THE ROUGH
Customizing All Your Datasheets

Access lets you format only one table at a time. So if you find a formatting option you really like,
you'll need to apply it separately to every table in your database.

However, you can set formatting options so that they automatically apply to every table in every
database by configuring Access itself. To pull this trick off, follow these steps:

Choose Office button Access Options to show the Access Options window.1.

Choose Datasheet from the list on the left.2.

On the right, you see the standard font, color, gridline, and column width options, which you
can change to whatever you want.

3.

When you change the datasheet formatting settings in the Access Options window, you change the
defaults that Access uses. These settings determine the formatting that Access uses for new tables
and any tables that aren't customized. When you customize a table, you override the default
settings, no matter what they are.

If you set Access to use red text, but you format a specific table to use green text, the green text
setting takes precedence. However, if you set a yellow background in the Access Options window,
and you don't customize that detail for your table, then it automatically acquires the standard yellow.

3.1.2. Rearranging Columns

The fields in the datasheet are laid out from left to right, in the order you created them. Often, you'll
discover that this order isn't the most efficient for data entry.

Imagine you've created a Customers table for a novelty pasta company. When a new customer
registration ends up on your desk, you realize that the registration form starts with the name and
address information, and then includes the customer's pasta preferences. Unfortunately, the fields on
the datasheet are laid out in a completely different order. From right to left, they're arranged like
this: ID, FreshPastaPreference, DriedPastaPreference, FirstName, LastName, Street, City, State,
Country. (This organization isn't as crazy as it seemsit actually makes it easier for the people filling
pasta orders to quickly find the information they want.) Because of this ordering, you need to skip

back and forth just to enter the information from a single registration.

Fortunately, you can solve this problem without redesigning the table. Drag the columns you want to
move to new positions, as shown in Figure 3-2 .

Figure 3-2. To move a column, click the column header once to select that column. Then, drag the column header to its new

location. In this example, the FirstName field is about to be relocated that it's just before the FreshPastaPreference field.

The best part of this approach is that you don't need to modify the database's actual structure. If you
switch to Design view after moving a few columns, you'll see that the field order hasn't changed. In
other words, you can keep the exact same physical order of fields (in your database file) but organize
them differently in Datasheet view.

Tip: Rearranging columns is a relatively minor change. Don't worry about shifting columns around to suit a specific editing job and then

switching them back later on. Your changes don't affect the data in the database. If you want to use a particular column order for a one-

time job, simply refrain from saving your changes when you close the datasheet.

3.1.3. Resizing Rows and Columns

As you cram more and more information into a table, your datasheet becomes wider and wider. In
many cases, you'll be frustrated with some columns hogging more space than they need and others
being impossibly narrow.

As you'd expect, Access lets you tweak column widths. But you probably haven't realized how many
different ways you can do it:

Resize a single column . Move the mouse to the column's right edge. Drag to the left (to
shrink the column) or to the right (to make it larger).

Resize a column to fit its content . Double-click the column edge. Access makes the column
just wide enough to fit the field name or the largest value (whichever's larger). However, it
doesn't make the column so wide that it stretches beyond the bounds of the window.

Resize several adjacent columns . Drag the first column's header across the columns until
you've selected them all. Then, drag the right edge of your selection to the left or the right. All
the selected columns shrink or expand to fit the available space, sharing it equally.

Resize a column with pinpoint accuracy . Right-click the column header, and then choose
Column Width. You'll see the Column Width dialog that lets you set an exact width as a number
(Figure 3-3).

Figure 3-3. The Column Width dialog box lets you set an exact width as a number. (The number doesn't actually have a

concrete meaningit's supposed to be a width in characters, but because modern Access uses proportional fonts, different characters are

different sizes.) You can also turn on the Standard Width checkbox to reset the width to the standard narrow size, or click Best Fit to

expand the column to fit its content (just as when you double-click the edge of the column).

Note: Remember, a column doesn't need to be wide enough to show all its data at once. You can scroll through a lengthy text field using

the arrow keys, and if that's too awkward, use the Shift+F2 shortcut to show the full contents of the current field in a Zoom box.

Just as you can resize columns, you can also resize rows. The difference is that Access makes sure all
rows have the same size. So when you make one row taller or shorter, Access adjusts all the other
rows to match.

You'll mainly want to shrink a row to cram more rows into view at once. You'll want to enlarge a row
mostly to show more than one line of text in each text field (see Figure 3-4).

Figure 3-4. If a row's large enough, Access wraps the text inside it over multiple lines, as shown here with the Description

column.

3.1.4. Hiding Columns

Many tables contain so many columns that you can't possibly fit them all into view at the same time.
This quality's one of the drawbacks to the datasheet, and often you have no choice but to scroll from
side to side.

However, in some situations, you may not need to see all the fields at once. In this case, you can
temporarily hide the columns that don't interest you, thereby homing in on the important details
without distraction. Initially, every field you add to a table is out in the open.

To hide a column, select the column by clicking the column header. (You can also select several
adjacent columns by clicking the column header of the first, and then dragging the mouse across the
rest.) Then, right-click your selection, and then choose Hide Columns. The column instantly vanishes
from the datasheet. (This sudden disappearance can be a little traumatic for Access newbies.)

Fortunately, the field and all its data remain just out of sight. To pop the column back into view,
right-click any column header and choose Unhide Columns. Access then shows the Unhide Columns
dialog box (Figure 3-5).

Figure 3-5. Using the Unhide Columns dialog box, you can choose to make hidden columns reappear, and (paradoxically) you

can hide ones that are currently visible. Every column that has a checkmark next to it is visibleevery column that doesn't is hidden. As

you change the visibility, Access updates the datasheet immediately. When you're happy with the results, click Close to get back to the

datasheet.

Note: At the bottom of the field list, you'll see an entry named Add New Field. This "field" isn't really a fieldit's the placeholder that

appears just to the right of your last field in datasheet view, which you can use to add new fields (Section 2.2.1). If you're in the habit of

adding fields using Design view (Section 1.2.3), then you can hide this placeholder to free up some extra space.

If you add a new record while columns are hidden, you can't supply a value for that field. The value
starts out either empty or with the default value (if you've defined one for that field, as described in
Section 4.1.2). If you've hidden a required field (Section 4.1.1), you receive an error message when
you try to insert the record. All you can do is unhide the appropriate column, and then fill in the
missing information.

3.1.5. Freezing Columns

Even with the ability to hide and resize columns, you'll probably need to scroll from side to side in a
typical datasheet. In this situation, you can easily lose your place. You might scroll to see more
information in the Contacts table, but then forget exactly which person you're looking at. Access has
one more feature that can help you by making sure important information is always visiblefrozen
columns.

A frozen column remains fixed in place at the Access window's left side at all times. Even as you scroll
to the right, all your frozen columns remain visible (Figure 3-6). To freeze a column (or columns),
select them, right-click the column header, and then choose Freeze Columns.

Tip: If you want to freeze several columns that aren't next to each other, start by freezing the column that you want to appear at the very

left. Then, repeat the process to freeze the column that you want to appear just to the right of the first column, and so on.

Figure 3-6. Top: In this example, the FirstName and LastName field are frozen. They appear initially at the left. (The ribbon's

collapsed in this figure to make more room, as described in Section 1.4.2 .)

Bottom: When you scroll to the side to see more information, the FirstName and LastName columns stay put.

Frozen columns must always be positioned at the left size of the datasheet. If you freeze a column
that's somewhere else, Access moves it to the left side and then freezes it. You can move it back
after you unfreeze the column using the column reordering trick in Section 3.1.2 . Keep in mind that
while a column's frozen, you can't drag it to a different place.

To unfreeze columns, right-click a column header, and then choose Unfreeze All Columns.

Note: Eventually, you'll discover that the customizations provided by the datasheet aren't enough, or you'll need to customize the same

table different ways for different people. These signs tell you that you need to step up to forms, a more advanced data display option

described in Part Four .

3.2. Datasheet Navigation

In Chapter 1 , you learned the basics of moving around the datasheet. Using your mouse and a few
select keystrokes, you can cover a lot of ground. (Refer back to Section 1.2.4.2 for a review of the
different keys you can use to jump from place to place and perform edits.)

However, you haven't seen a few tricks yet. One's the timesaving record navigation buttons at the
bottom of the datasheet (Figure 3-7).

Figure 3-7. You could easily overlook the navigation buttons at the bottom of the datasheet. These buttons let you jump to the

beginning and end of the table, or, more interestingly, head straight to a record at a specific position. To do this, type the record number

(like "4") into the box (where it says "3 of 6" in this example), and then hit Enter. Of course, this trick works only if you have an

approximate idea of where in the list your record's positioned.

Several more datasheet features help you orient yourself when dealing with large amounts of data,
including sorting (which orders the records so you can see what you want), filtering (which cuts down
the data display to include only the records you're interested in), and searching (which digs specific
records out of an avalanche of data). You'll try all these features out in the following sections.

3.2.1. Sorting

In some cases, you can most easily make sense of a lot of data by putting it in order. You can
organize a customer list by last name, a product catalog by price, a list of wedding guests by age,
and so on.

To sort your records, pick a column you want to use to order the records. Click the drop-down arrow
at the right edge of the column header, and then choose one of the sort options at the top of the
menu (see Figure 3-8).

Figure 3-8. This text field gives you the choice of sorting alphabetically from the beginning of the alphabet (A to Z) or backward

from the end (Z to A). The menu also provides filtering options, which are described in Section 3.2.2 .

Depending on the data type of field, you'll see different sorting options, as explained in Table 3-1 .
(You can also apply the same types of sort using the commands in the ribbon's Home Sort &
Filter section.)

Text, Memo, and Hyperlink

Sort A to Z

Sort Z to A

Performs an alphabetic sort (like the dictionary), ordering letter by letter. The sort isn't case-

sensitive, so it treats "baloney" and "Baloney" the same.

Number, Currency, and AutoNumber

Sort Smallest to Largest

Sort Largest to Smallest

Performs a numeric sort, putting smaller numbers at the top or bottom.

Date/Time

Sort Oldest to Newest

Sort Newest to Oldest

Performs a date sort, distinguishing between older dates (those that occur first) and more recent
dates.

Yes/No

Sort Selected to Cleared

Sort Cleared to Selected

Separates the selected from the unselected values.

Table 3-1. Sorting Options for Different Data Types

Data Type Sort Options Description

In an unsorted table, records are ordered according to when they were created, so that the oldest
records are at the top of the datasheet, and the newest at the bottom. Sorting doesn't change how
Access stores records, but it does change the way they're displayed.

Tip: Use the Home Sort & Filter Clear All Sorts command to return your table to its original, unsorted order.

Sorting is a one-time affair. If you edit values in a sorted column, then Access doesn't reapply the
sort. Imagine you sort a list of people by FirstName. If you then edit the FirstName value for one of
the records, changing "Frankie" to "Chen," Access doesn't relocate the row to the C section. Instead,
the changed row remains in its original place until you resort the table. Similarly, any new records
you add stay at the end of the table until the next sort (or the next time the table is opened). This
behavior makes sense. If Access relocated rows whenever you made a change, you'd quickly become
disoriented.

Note: The sorting order's one of the details that Access stores in the database file. The next time you open the table in Datasheet view,

Access automatically applies your sort settings.

UP TO SPEED
Numbers and Special Characters in Text Fields

Text sorts can be a little counterintuitive, especially if you have a text field that includes numeric
content.

Ordinarily, when you sort two numbers (like 153 and 49), the numbers are arranged from smallest to
largest (49, 153). However, a text sort doesn't work this way. When Access performs a text sort, it
examines the text character by character, which means it sorts numbers based on the first digit . If
the first digit's the same, then it checks the second digit, and so on. As a result, if you sort 49 and
153 alphabetically, you get 153, 49, because 4 (the first digit in 49) is larger than 1 (the first digit in
153).

Life gets even more interesting if you throw punctuation and other special characters into the mix.
Here's the order in which Access sorts everything (in a standard A-to-Z sort):

Blank (empty) values1.

Space2.

Special characters (like punctuation)3.

Letters4.

Numbers5.

3.2.1.1. Sorting on multiple fields

If a sort finds two duplicate values, there's no way to know what order they'll have (relative to one
another). If you sort a customer list with two "Van Hauser" entries in it, then you can guarantee that
sorting by last name will bring them together, but you don't know who'll be on top.

If you want more say in how Access treats duplicates, then you can choose to sort based on more
than one column. The traditional phone book, which sorts people by last name and then by first
name, is a perfect example of this. People who share the same last name are thus grouped together
and ordered according to their first name, like this:

 …
 Smith, Star
 Smith, Susan
 Smith, Sy
 Smith, Tanis
 …

In the datasheet, sorts are cumulative , which means you can sort based on several columns at the

same time. The only trick's getting the order right. The following steps take you through the process:

Choose Home Sort & Filter Clear All Sorts .

Access reverts your table to its original, unsorted order.

1.

Use the drop-down column menu to apply the sub-sort that you want for duplicates .

If you want to perform the phone book sort (names are organized by last name, then first
name), you need to turn on sorting for the FirstName field. Section 3.2 explains the sorting
options you'll see, depending on the data type.

2.

Use the drop-down column menu to apply the first level sort .

In the phone book sort, this is the LastName field.

3.

You can extend these steps to create sorts on more fields. Imagine you have a ridiculously large
compendium of names that includes some people with the same last and first name. In this case, you
could add a third sortby middle initial. To apply this sort, you'd switch sorting on in this order:
MiddleInitial, FirstName, Last-Name. You'll get this result:

 …
 Smith, Star
 Smith, Susan K
 Smith, Susan P
 Smith, Sy
 …

3.2.2. Filtering

In a table with hundreds or thousands of records, scrolling back and forth in the datasheet is about as
relaxing as a pneumatic drill at 3:00 a.m. Sometimes, you don't even need to see all the records at
oncethey're just a finger-tiring distraction from the data you're really interested in. In this case, you
should cut the datasheet down to just the records that interest you, with filtering .

In order to filter records, you specify a condition that record must meet in order to be included in the
datasheet. For example, an online store might pick out food items from a full product catalog, a
shipping company might look for orders made last week, and a dating service might hunt down
bachelors who don't live with their parents. When you apply a filter condition, you end up hiding all
the records that don't match your requirements. They're still in the tablethey're just tucked neatly
out of sight.

Access has several different ways to apply filters. In the following sections, you'll start with the
simplest, and then move on to the more advanced options.

3.2.2.1. Quick filters

A quick filter lets you choose what values you want to include and which ones you want to hide,
based on the current contents of your table. To apply a quick filter, choose the column you want to
use, and then click the drop-down arrow at the column header's right edge. You'll see a list of all the
distinct values in that column. Initially, each value has a checkmark next to it. Clear the checkmark
to hide records with that value. Figure 3-9 shows an example where a sort and filter are being used
at the same time.

Figure 3-9. This list of eligible bachelors is sorted first by height (in descending largest-to-smallest order), and then filtered to

include only those hopefuls who live in the state of New York. A checkmark indicates that records that have this value are included in the

datasheet. Others are hidden from view.

Note: To remove all the filters on a column (and show every record in the datasheet), click the drop-down button at the right edge of the

column header, and then choose "Clear filter."

Not all data types support filtering. Data types that do include Number, Currency, AutoNumber, Text,
Hyperlink, Date/Time, and Yes/No. Memo fields don't support quick filters (because their values are
typically too large to fit in the drop-down list), but they do support other types of filters.

You can apply quick filters to more than one column. The order in which you apply the filters doesn't
matter, as all filters are cumulative , which means you see only records that match all the filters

you've set. You can even use quick filters in combination with the other filtering techniques described
in the following sections. To remove your filters, choose Home Sort & Filter Remove Filter.

Tip: Quick filters work best if you have a relatively small number of distinct values. Limiting people based on the state they live in is a

great choice, as is the political party they support or their favorite color. It wouldn't work as well if you wanted to cut down the list based

on birth date, height, or weight, because there's a huge range of different possible values. (You don't need to give up on filtering

altogetherrather, you just need to use a different type of filter.)

3.2.2.2. Filter by selection

Filter by selection lets you apply a filter based on any value in your table. This choice is handy if
you've found exactly the type of record you want to include or exclude. Using filter by selection, you
can turn the current value into a filter without hunting through the filter list.

Here's how it works. First, find the value you want to use for filtering in the datasheet. Right-click the
value, and then choose one of the filter options at the end of the menu (see Figure 3-10).

Figure 3-10. Depending on the data type, you see slightly different filtering options. For a text field (like the City field shown

here), you have the option to include only the records that match the current value (Equals "Chicago"), or those that don't (Does Not

Equal "Chicago"). You also have some extra filtering options that go beyond what a quick filter can donamely, you can include or exclude

fields that simply contain the text "Chicago." That filter condition applies to values like "Chicagoland" and "Little Chicago."

All data types that support filtering allow you to filter out exact matches. But many also give you
some additional filtering options in the right-click menu. Here's what you'll see for different data

types:

Text-based data types . You can filter values that match exactly, or values that contain a
piece of text.

Numeric data types . You can filter values that match exactly, or numbers that are smaller or
larger than the current number.

Date data types . You can filter values that match exactly, or dates that are older or newer
than the current date.

Finally, to get even fancier, you can create a filter condition using only part of a value. If you have
the value "Great at darts" in the Description field in your table of hopeful bachelors, you can select
the text "darts," and then right-click just that text. Now you can find other fields that contain the
word "darts." This ability is what gives the filter "by selection" feature its name.

Access makes it easy to switch filtering on and off at a moment's notice. Figure 3-11 shows how.

Figure 3-11. Right next to the navigation controls at the bottom of your datasheet is a Filtered/Unfiltered indicator that tells you

when filtering's applied. You can also use this box to quickly switch your filter on and offclicking it once removes all filters, and clicking it

again reapplies the most recent set of filters.

3.2.2.3. Filter by condition

So far, the filters you use have taken the current values in your table as a starting point. But if you're
feeling confident with filters, you may be ready to try a more advanced approach: filtering by
condition . When you use a filter by condition, you can define exactly the filter you want.

Imagine you want to find all the rare wine vintages in your cellar with a value of more than $85.
Using the filter-by-selection approach, you need to start by finding a wine with a value of $85, which
you can use to build your condition. But what if there isn't any wine in your list that has a price of
exactly $85, or what if you just can't seem to find it? A quicker approach is defining the filter
condition by hand.

Here's how it works. First, click the drop-down arrow at the right edge of the column header. But
instead of choosing one of the quick filter options, look for a submenu with filtering options. This
menu's named according to the data, so text fields include a Text Filters option, number fields have a
Number Filters option, and so on. Figure 3-12 shows an example.

Figure 3-12. Top: With a numeric field like this PurchasePrice field, filtering by condition lets you look at values that fall above

a certain minimum.

Bottom: Once you've chosen the type of filter you want, you need to supply the information for that filter. If you choose Greater Than,

then you need to supply the minimum number. Records that are equal to or larger than this value are shown in the datasheet.

Here's a quick overview that describes the extra options you get using filter by condition, depending
on your data type:

Text-based data types . All the same options as filter by selection, plus you can find values
that start with specific text, or values that end with certain text.

Numeric data types . All the same options as filter by selection, plus you can find values that
are in a range, meaning they're greater than a set minimum but smaller than a set maximum.

Date data types . All the same options as filter by selection, plus you can find dates that fall in
a range, and you can chose from a huge list of built-in options, like Yesterday, Last Week, Next
Month, Year to Date, First Quarter, and so on.

3.2.3. Searching

Access also provides a quick search feature that lets you scan your datasheet for specific information.
Whereas filtering helps you pull out a batch of important records, searching's better if you need to
find a single detail that's lost in the mountains of data. And while filtering changes the datasheet view
by hiding some records, searching leaves everything as is. It just takes you to the data you want to
see.

POWER USERS' CLINIC
Filters vs. Queries

If you use filters frequently, you're sure to run into a problem. Access stores only one set of filtersthe
filters you're currently using. In other words, once you apply a different filter, your original filter's
gone and you need to reapply from scratch the next time you need it. In most cases, reapplying a
filter isn't difficult. But if you've spent a considerable amount of effort crafting the perfect set of filter
conditions, and you know you want to use them later, it's frustrating.

If you find yourself in this situation, you're overusing filters. Instead of relying on filters to show the
information you're interested in, you'd be better off creating a separate, reusable query . Like filters,
queries let you see a subset of your data based on certain conditions. Unlike filters, queries can
contain much more sophisticated logic, they can leave out columns you're not interested in, and
Access saves them as separate database objects so you can always reuse them later. You'll start
using queries in Chapter 6 .

The quickest way to search is through the search box next to the record navigation controls (see
Figure 3-13). Just type in the text you want to find. As you type, the first match in the table is
highlighted automatically. You can press Enter to search for subsequent matches.

Figure 3-13. Here, a search is being performed for the word "bobblehead." If you find a match, you can keep searchingjust

press Enter again to jump to the next match. In this example, pressing Enter sends Access to the next record's Description field.

When performing a search, Access scans the table starting from the first field in the first record. It
then goes left to right, examining every field in the current record. If it reaches the end without a
match, then it continues to the next record and checks all of its values, and so on. When it reaches
the end of the table, it stops.

If you want to change the way Access performs a search, you'll need to use the Find feature instead:

Choose Home Sort & Filter Find. (Or, just use the shortcut Ctrl+F.)

The Find and Replace dialog box appears (Figure 3-14).

Figure 3-14. The Find and Replace dialog box is the perfect tool for hunting for lost information.

1.

Specify the text you're searching for in the Find What box, and then set any other
search options you want to use :

Find What . The text you're looking for.

Look In . Allows you to choose between searching the entire table or just a single field.

Match . lets you specify whether values need to match exactly. Use Whole Field to require
exact matches. Use Start of Field if you want to match beginnings (so "bowl" matches
"bowling"), or Any Part of Field if you want to match text anywhere in a field (so "bowl"
matches "League of extraordinary bowlers").

Search . Sets the direction Access looks: Up, Down, or All (which loops from the end of
the table to beginning, and keeps going until it has traversed the entire table).

Match Case . If selected, finds only matches that have identical capitalization. So
"banana" doesn't match "BANANA."

Search Fields as Formatted . If selected, means Access searches the value as it appears

2.

on the datasheet. For example, the number 44 may appear in a Currency field as $44.00.
If you search for 44, you always find what you're looking for. But if you search for the
formatted representation $44.00, you get a match only if you have Search Fields as
Formatted switched on. In extremely large tables (with thousands of records), searches
may be faster if you switch off Search Fields as Formatted.

Note: In order to turn off Search Fields as Formatted, you must choose to search a single field in the Look In box. If you are

searching the entire table, then you must search the formatted values.

Click Find Next .3.

Access starts searching from the current position. If you're using the standard search direction
(Down), Access moves from left to right in the current record, and then down from record to record
until it finds a match.

When Access finds a match, it highlights the value. You can then click Find Next to look for the next
match, or Cancel to stop searching.

GEM IN THE ROUGH
Find and Replace

The search feature doubles as a powerful (but somewhat dangerous) way to modify records.

Initially, when the Find and Replace dialog box appears, it shows the Find tab. However, you can click
the Replace tab to be able to find specific values and replace them with different text. All the settings
for a replace operation are the same as for a find operation, except you have an additional text box,
called Replace With, to supply the replacement text.

The safest way to perform a replace operation is to click the Find Next button to jump to the next
match. At this point, you can look at the match, check that you really do want to modify it, and then
click Replace to change the value and jump to the next match. Repeat this procedure to move
cautiously through the entire table.

If you're a wild and crazy skydiving sort who prefers to live life on the edge, you can use the Replace
All button to change every matching value in the entire table in a single step. Although this
procedure's ridiculously fast, it's also a little risky. Replace operations can't be reversed (the Undo
feature's no help here because it can reverse only a single record change), so if you end up changing
more than you intend, there's no easy way back. If you're still seduced by the ease of a Replace All,
consider creating a backup of your database file (Section 1.3.1) before going any further.

3.3. Advanced Editing

In Chapter 1 , you learned the essentials of editing, including how to add, delete, and modify records.
However, Access has a few finer points that you haven't seen yet. In the following sections, you'll
tackle two great conveniences in Accessthe spell checker and AutoCorrectand you'll learn a simple
way to insert special characters in your fields.

3.3.1. The Spell Checker

The spell checking functionality in Access is almost exactly the same as in other Office applications
like Wordit uses the same dictionary, catches the same sorts of errors, and gives you the option to
ignore things it doesn't recognize, or add them to the dictionary.

The difference is that when you perform a spell check with Access, it examines only the content in
text and memo fields. Numbers, dates, and everything else get a pass. Of course, many of your fields
are likely to contain text you don't want to spell checklike names, places, or product titles. You have
two ways to handle this. You can perform a spell check on a single field, thereby ignoring everything
else. Or, you can start a datasheet-wide spell check, but choose to ignore certain fields on the fly.

Here's how it works:

Move to the field where you want to start the spell check .

If you want to check the entire datasheet from start to finish, then move to the first field in the
first record.

If you want to check part of the datasheet, then move to the location where you want to start
checking. Keep in mind that when Access reaches the end of your datasheet, it loops around
and starts again at the top, continuing until it's reviewed every field in every record. (Of course,
you can cancel a spell check at any time.)

If you want to check just a single field, then select that field before continuing by clicking the
column header.

1.

Choose Home Records Spelling (or just press F7) .

The Check Spelling button looks like a small checkmark with the letters ABC above it.

If you're performing a datasheet-wide spell check, then Access examines the current record and
moves through the fields from left to right. When it finishes, it moves to the next record and
repeats the process. If you've selected a single column, then Access scans only the values in
that field, from top to bottom.

2.

When the spell check finishes, a dialog box informs you that all your data's been checked. If your

table passes the spell check, then this dialog box is the only feedback you receive. On the other
hand, if Access discovers any potential spelling errors during its check, then it displays a Spelling
window (as shown in Figure 3-15), showing the offending word and a list of suggestions.

Figure 3-15. When Access encounters a word it thinks is misspelled, it highlights the word. Unlike Microsoft Word, Access

doesn't let you edit your file while the Spelling window's active. You have to either click one of the options on the Spelling windowfor

example, clicking Change to replace the misspelled word with the first suggested spellingor cancel the spell check.

The Spelling window offers a wide range of choices. If the spell checker's complaining about a word
that really is misspelled, you have three options:

Fix it once . Click one of the words in the list of suggestions, and then click Change to replace
your text with the proper spelling. You can also double-click the word in the list of suggestions,
which has the same effect.

Fix it everywhere . Click one of the words in the list of suggestions, and then click Change All
to replace your text with the proper spelling. If Access finds the same mistake elsewhere in your
datasheet during the spell check, then it automatically repeats the change, without bothering to
alert you about the problem.

Fix it forever . Click one of the words in the list of suggestions, and then click AutoCorrect.
Access makes the change for this field, and for any other similarly mistaken words. In addition,
it adds the information for the change to the AutoCorrect list (described in Section 3.3.3). If
you type the same unrecognized word into another record (or even another table), Access
automatically corrects your entry. This option's useful if you've discovered a mistake that you
make frequently.

On the other hand, if the spell checker's complaining about a word that you don't want to change,
you have a few more possibilities available, by clicking the following options:

Ignore skips this problem and keeps checking. If Access finds the same mystery word
elsewhere in your spreadsheet, then it prompts you again for a correction.

Ignore All skips this problem and keeps checking. If Access finds the same mystery word
elsewhere in your spreadsheet, then it ignores the word. You might use Ignore All to force
Access to disregard something you don't want to correct, like a person's name.

Ignore Field ignores any errors in that field for the remainder of the spell check. This way's
handy to filter out fields that contain a lot of names, places, or titles, so you don't waste your
time reviewing bogus spell checker suggestions.

Add adds the word to the custom spell check dictionary. This step's a great one to take if you
plan to keep using the word in this datasheet and many more. (A company name makes a great
addition to the custom dictionary.) Not only does Access ignore any occurrences of this word,
but if it finds a similar but slightly different word in a field, it provides the custom word in its list
of suggestions, letting you quickly clear up minor typos.

Cancel stops the operation altogether. You can then correct the field, and resume the spell
check later.

Note: Every Office application on your computer shares the same custom dictionary. If you add a word in Access and then perform a

spell check in Word, the same word's allowed. This convenience is timesaving, as long as you don't go overboard adding words that

don't really belong.

3.3.1.1. Spell checking options

You can control how the spell checker works by setting a few straightforward options. To set these
options (or just take a look at them), choose Office button Access Options to show the Access
Options window. Then, choose Proofing in the list on the left (Figure 3-16). You can also find the
same page of options if you click the Spelling window's Options button while a spell check's
underway.

Figure 3-16. The spell checker options let you specify the language and a few other miscellaneous settings. All spell check

settings are language-specific; the last box in the window indicates the language you're currently using.

Here are the most common spelling options:

Ignore words in UPPERCASE . If you choose this option, then Access doesn't bother to check
any word in all capitals (which is helpful when your text contains lots of acronyms).

Ignore words that contain numbers . If you choose this option, then Access doesn't check
words that contain numeric characters, like Sales43 or H3ll0. If you don't choose this option,
Access checks these entries and flags them as errors, unless you've specifically added them to
the custom dictionary.

Ignore Internet and file addresses . If you choose this option, then Access ignores words
that appear to be file paths (like c:\Documents and Settings) or Web site addresses (like
http://FreeSweatSocks.com).

Flag repeated words . This search finds errors where you inadvertently repeat the same word
twice, like like this this.

http://FreeSweatSocks.com

Enforce accented uppercase in French . Forces French words to take the accents they
should have, even for capital letters (where they look a little weird). English speakers don't
need to worry about this setting.

Suggest from main dictionary only . If you choose this option, then the spell checker
doesn't use words in the custom dictionary as suggestions if it finds an unrecognized word.
However, it still accepts a word that matches one of the entries in the custom dictionary.

You can also choose the file that Access uses to store custom wordsthe unrecognized words that you
add to the dictionary while a spell check's underway. To do so, click the Custom Dictionaries button,
which shows the Custom Dictionaries dialog box (Figure 3-17).

Figure 3-17. Top: Using the Custom Dictionaries dialog box, you can delete the current custom dictionary, add new ones, or

edit the word list by hand.

Bottom: If you click Edit Word List, then you see all the words in your custom.dic file. You can add new ones or remove entries that no

longer apply.

Note: Custom dictionaries are stored in an account-specific section of your hard drive. For example, if you're logged in under the user

account Dan_Quayle, you'll probably find the custom dictionary in the folder C:\Documents and Settings\Dan_Quayle\Application

Data\Microsoft\UProof. One side effect of this system's that custom dictionaries aren't shared between two people who use different

accounts on the same computer (unless you manually add the other user's dictionary in the Custom Dictionaries dialog box).

3.3.2. AutoCorrect

As you type text in a field, AutoCorrect cleans up behind you, correcting things like miscapitalized
letters and common misspellings. AutoCorrect is such a subtle feature that you might not even
realize it's monitoring your every move. To get a taste of its magic, look for behaviors like these:

If you type HEllo, then AutoCorrect changes it to Hello.

If you type friday, then AutoCorrect changes it to Friday.

If you start a sentence with a lowercase letter, then AutoCorrect uppercases it.

If you scramble the letters of a common word (for example, typing thsi instead of this , or teh
instead of the), then AutoCorrect replaces the word with the proper spelling.

If you accidentally hit Caps Lock, and then type jOHN sMITH when you really wanted to type
John Smith, then Access not only fixes the mistake, it also switches off Caps Lock.

For the most part, AutoCorrect's harmless and even occasionally useful, as it can spare you from
delivering minor typos in a major report. But if you need to type irregularly capitalized words, or if
you have a garden-variety desire to rebel against standard English, you can turn off some or all of
the AutoCorrect actions.

To set AutoCorrect options, choose Office button Access Options to show the Access Options
window. Then, choose Proofing in the list on the left. In the page of settings on the right side, click
the "AutoCorrection settings" button.

Most of the settings are self-explanatory, and you can turn them off by unchecking them. Figure 3-18
explains the "Replace text as you type" option, which is not just for errors.

Figure 3-18. Under "Replace text as you type" is a long list of symbols and commonly misspelled words (the column on the

left) that Access automatically replaces with something else (the column on the right). But what if you want the copyright symbol to

appear as a C in parentheses? You can remove individual corrections (select one, and then click Delete), or you can change the

replacement text. And you can add your own rules. You may want to be able to type "PESDS" and have Access insert "Patented

Electronic Seltzer Delivery System". Simply type in the "Replace" and "With" text as shown here, and then click Add.

Tip: For really advanced AutoCorrect settings, you can use the Exceptions button to define cases where Access doesn't use

AutoCorrect. When you click this button, the AutoCorrect Exceptions dialog box appears with a list of exceptions. This list includes

abbreviations that include the period but shouldn't be capitalized (like pp .) and words where mixed capitalization's allowed (like

WordPerfect).

3.3.3. Special Characters

Text content isn't just about letters, numbers, and punctuation. You also have special symbols that
you can't type directly on your keyboard. One example's the copyright symbol (©), which you can
insert into a field by entering the text (C), and letting AutoCorrect do its work. Other symbols, like
the Greek theta (), aren't as readily available. To use a symbol like this, you'll need the help of the
Character Map utility.

The Character Map is an often-overlooked tool that lets you see all the characters that a font
provides. It's great for digging out the odd accented é and other non-English characters.

Note: Other Office applications, like Word and Excel, provide far more special characters for you to use. They support all sorts of fonts,

including the nifty Wingdings font that's included with Windows and packed with icons. However, Access has a more rigorous way or

working. It accepts only plain-vanilla characters that are supported in any font. Databases store unformatted information, and, as a

consequence, text fields don't include font and formatting details. The only exception's the seldom-used rich text feature for memo fields

(Section 2.3.2.1).

Here's how you can use the Character Map to add a special character:

Click the Windows Start button, and then choose Run .

The Character Map utility's a part of Windows, not Access. As a result, you need to launch it
outside of Access.

1.

In the Run dialog box, type charmap , and then click OK .

The Character Map window appears (Figure 3-19).

2.

In the Font list, select the Calibri font .

There's no point using an exotic font, because Access doesn't support it. However, you can find
the supported special characters using any common font, including Arial, Times, and Tahoma.
Calibri's the standard font that Access uses to display information in the datasheet, unless
you've customized it (as described in Section 3.1.2).

3.

Scroll through the list of characters until you find the one you want .

If you need a letter character from another language, look hardyou'll almost certainly find it. If
you want something a little more exotic but can't find it, you're probably out of luck. You'll need
to use ordinary text instead.

4.

Double-click the character .

It appears in the "Characters to copy" box at the bottom of the Character Map window. You can
repeat steps 4 and 5 as many times as you need to copy several characters in a row.

5.

Figure 3-19. In this example, the copyright symbol's being copied with the help of Character Map.

Click Copy .

Windows copies the symbols in " Characters to copy" to the clipboard.

6.

Switch back to the Access window .

If you aren't in the right fieldthe place where you want to insert the copied textmove there now.
If you want to place the symbol between existing characters, then make sure you move the
cursor to the right place inside the field.

7.

Press Ctrl+V to paste the symbol .8.

3.4. Printing the Datasheet

If you want to study your data at the dinner table (and aren't concerned about potential conflicts with
non-Access-lovers), nothing beats a hard copy of your data. You can dash off a quick printout by
choosing File Print from the menu while your datasheet's visible. However, the results you get
will probably disappoint you, particularly if you have a large table.

The key problem's that Access isn't bothered about tables that are too wide to fit on a printed page.
It deals with them by splitting the printout into separate pages. If you have a large table and you
print it out using the standard Access settings, you could easily end up with a printout that's four
pages wide and three pages long. Assembling this jigsaw is not for the faint of heart. To get a better
printout, it's absolutely crucial that you preview your table before you print it, as described in the
next section.

3.4.1. Print Preview

The print preview feature in Access gives you the chance to tweak your margins, paper orientation,
and so on, before you send your table to the printer. This way, you can make sure the final printout's
genuinely usable. To preview a table, open it (or select it in the navigation pane), and then choose
Office button Print Print Preview.

The print preview shows a picture of what your data will look like once it's committed to paper. Unlike
the datasheet view, the print preview paginates your data (Figure 3-20). You see exactly what fits on
each page and how many pages your printout requires (and what content shows up on each page).

Figure
3-20.
This table's

too wide to

fit on one

sheet of

paper, so

some of the

columns

are

relocated to

a second

page.

If you decide you're happy with what you see, then you can fire off your printout by choosing Print
Preview Print Print from the ribbon. This opens the familiar Windows Print dialog box, where
you can pick a printer and seal the deal.

When you're finished looking at the print preview window, choose Print Preview Close Preview
 Close Print Preview, or click one of the view buttons at the Access window's bottom-right corner

to switch to Datasheet view or Design view.

3.4.1.1. Moving around the print preview

You can't change anything in the print preview window. However, you can browse through the pages
of your virtual printout and see if it meets your approval.

Here's how you can get around in the preview window:

Use the scroll buttons to move from one page to another. These buttons look the same as the
scroll buttons in the datasheet, but they move from page to page, not record to record.

To move from page to page, you can use the scroll bar at the side of the window or the Page Up
and Page Down keys.

To jump in for a closer look, click anywhere on the preview page (you'll notice that the mouse
pointer has become a magnifying glass). This click magnifies the sheet to 100 percent zoom, so
you can more clearly see the text and details. To switch back to full-page view, click the page or
click the mouse pointer again.

To zoom more precisely, use the zoom slider that's in the status bar's bottom-right corner. Slide
it to the left to reduce your zoom (and see more at once), or slide it to the right to increase
your zoom (and focus on a smaller portion of your page).

To see two pages at once, choose Print Preview Zoom Two Pages. To see more, choose
Print Preview Zoom More Pages, and then pick the number of pages you want to see at
once from the list.

3.4.1.2. Changing the page layout

Access provides a small set of page layout options that you can tweak using the ribbon's Print
Preview Page Layout section in the print preview window. Here are your options:

Size. Lets you use different paper sizes. If you're fed up with tables that don't fit, you might
want to invest in some larger stock (like legal-sized paper).

Portrait and Landscape. Let you choose how the page is oriented. Access, like all Office
programs, assumes you want to print out text using standard portrait orientation. In portrait
orientation, pages are turned upright so that the long edge is along the side and the short edge
is along the top. It makes perfect sense for résumés and memos, but it's pure madness for a
wide table, because it guarantees at least some columns will be rudely chopped off and
relocated to different pages. Landscape orientation makes more sense in this case, because it
turns the page on its side, fitting fewer rows per page but many more columns.

Margins. Lets you choose the breathing space between your table and the edges of the page.
Margins is a drop-down button, and when you click it, you see a menu with several common
margin choices (Normal, Narrow, and Wide). If none of those fit the bill, then click the Page
Setup button, which opens a Page Setup dialog box where you can set the exact width of the
margin on each side of the page.

3.4.2. Fine-Tuning a Printout

Based on the limited page layout options, you might assume that there's not much you can do
customize a printout. However, you actually have more control than you realize. Many of the
formatting options that you've learned about in this chapter also have an effect on your printout. By
applying the right formatting, you can create a better printout.

Here are some pro printing tips that explain how different formatting choices influence your
printouts:

Font. Printouts use your datasheet font and font size. Scale this down, and you can fit more in
less space.

Column order and column hiding. Reorder your columns before printing out to suit what you
want to see on the page. Even better, use column hiding (Section 3.1.4) to conceal fields that
aren't important.

Column widths and row height. Access uses the exact widths and heights that you've set on
your datasheet. Squeeze some columns down to fit more, and expand rows if you have fields
with large amounts of text and you want them to wrap over multiple lines.

Frozen columns. If a table's too wide to fit on your printout, then the frozen column is printed
on each part. For example, if you freeze the FirstName field, you'll see it on every separate
page, so you don't need to line the pages up to find up who's who.

Sort options. They help you breeze through data in a datasheetand they can do the same for a
printout. Apply them before printing.

Filter options. These are the unsung heroes of Access printing. Use them to get just the
important rows. That way, your printout has exactly what you need.

The only challenge you face when using these settings is the fact that you can't set them from the
print preview window. Instead, you have to set them in the datasheet, jump to the print preview
window to see the result, jump back to the datasheet to change them a little bit more, jump back to
the print preview window, and so on. This process can quickly get tiring.

Tip: Don't spend too much time tweaking the formatting options to create the perfect printout. If you have a large table that just can't fit

gracefully into a page, you probably want to use reports, which are described in Part Three. They provide much more formatting muscle,

including the ability to split fields over several lines, separate records with borders, and allow large values to take up more space by

gently bumping other information out of the way.

4. Blocking Bad Data
Even the best database designer has spent a sleepless night worrying about the errors that could be
lurking in a database. Bad data's a notorious problemit enters the database, lies dormant for months,
and appears only when you discover you've mailed an invoice to customer "Blank Blank" or sold a
bag of peanuts for$4.99.

The best way to prevent these types of problems is to stop bad data from making it into your
database in the first place. In other words, you need to set up validation rules that reject suspicious
values as soon as someone types them in. Once bad data's entered your database, it's harder to spot
than a blueberry in a swimming pool.

This chapter covers the essential set of Access data validation tools:

The basics include duplicates, required fields, and default values.

Input masks format ordinary text into patterns, like postal codes and phone numbers.

Validation rules lay down strict laws for unruly fields.

Lookups limit values to a list of preset choices.

4.1. Data Integrity Basics

All of Access's data validation features work via the Design view you learned about in Chapter 2 . To
put them in place, you choose a field and then tweak its properties. The only trick's knowing what
properties are most useful. You've already seen some in Chapter 2 , but the following sections fill in a
few more details.

Tip: Remember, Access gives you three ways to switch to Design view. You can right-click the table tab title and then choose Design

View from the menu, use the Home View button on the ribbon, or use the tiny view buttons at the Access window's bottom-right

corner. And if you're really impatient, then you don't even need to open your table firstjust find it in the navigation pane, right-click it there,

and then choose Design View.

4.1.1. Preventing Blank Fields

Every record needs a bare minimum of information to make sense. However, without your help,
Access can't distinguish between critical information and optional details. For that reason, every field
in a new table is optional, except for the primary-key field (which is usually the ID value). Try this out
with the Dolls table from Chapter 1 ; you'll quickly discover that you can add records that have
virtually no information in them.

You can easily remedy this problem. Just select the field that you want to make mandatory in Design
view, and then set the Required field property to Yes (Figure 4-1).

Figure 4-1. The Required field property tells Access not to allow empty values (called nulls in tech-speak).

Access checks the Required field property whenever you add a new record or modify a field in an
existing record. However, if your table already contains data, there's no guarantee that it follows the
rules.

Imagine you fill the Dolls table with a few bobbleheads before you decide that every record requires a
value for the Character field. You switch to Design view, choose the Character field, and then flip the
Required field property to Yes. When you save the table (by switching back to Datasheet view or
closing the table), Access gives you the option of verifying the bobblehead records that are already in
the table (Figure 4-2). If you choose to perform the test and Access finds the problem, it gives you
the option of reversing your changes (Figure 4-3).

Figure 4-2. It's a good idea to test the data in your table to make sure it meets the new requirements you put into place.

Otherwise, invalid data could still remain. Don't let the message scare youunless you have tens of thousands of records, this check

doesn't take long.

Figure 4-3. If Access finds an empty value, then it stops the search and asks you what to do about it. You can keep your

changes (even though they conflict with at least one record)after all, at least new records won't suffer from the same problem. Your other

option is to reset your field to its more lenient previous self. Either way, you can track down the missing data by performing a sort on the

field in question (Section 3.2), which brings empty values to the top.

WORD TO THE WISE
Don't Require Too Much

You'll need to think very carefully about what set of values you need, at a minimum, to create a
record.

For example, a company selling Elvis costumes might not want to accept a new outfit into their
Products table unless they have every detail in place. The Required field property's a great help here,
because it prevents half-baked products from showing up in the catalogue.

On the other hand, the same strictness is out of place in the same company's Customers table. The
sales staff needs the flexibility to add a new prospect with only partial information. A potential
customer may phone and leave only a mailing address (with no billing address, phone number, email
information, and so on). Even though you don't have all the information about this customer, you'll
still need to place that customer in the Customers table so that he or she can receive the monthly
newsletter.

As a general rule, make a field optional if the information for it isn't necessary or might not be
available at the time the record is entered.

4.1.1.1. Blank values and empty text

Access supports this Required property for every data type. However, with some data types you
might want to add extra checks. That's because the Required property prevents only blank fieldsfields
that don't have any information in them at all. However, Access makes a slightly bizarre distinction

between blank values and something called empty text .

A blank (null) value indicates that no information was supplied. Empty text indicates that a field value
was supplied, but it just happens to be empty. Confused yet? The distinction exists because
databases like Access need to recognize when information's missing. A blank value could indicate an
oversightsomeone might just have forgotten to enter the value. On the other hand, empty text
indicates a conscious decision to leave that information out.

Note: To try this out in your datasheet, create a text field that has Required set to Yes. Try inserting a new record, and leaving the record

blank. (Access stops you cold.) Now, try adding a new record, but place a single space in the field. Here's the strange part: Access

automatically trims out the spaces, and by doing so, it converts your single space to empty text. However, you don't receive an error

message because empty text isn't the same as a blank value.

The good news is that if you find this whole distinction confusing, then you can prevent both blank
values and empty text. Just set Required to Yes to stop the blank values, and set Allow Zero Length
to No to prevent empty text.

Note: A similar distinction exists for numeric data types. Even if you set Required to Yes, you can still supply a number of 0. If you want

to prevent that action, then you'll need to use the validation rules described later in this chapter (Section 4.3).

4.1.2. Setting Default Values

So far, the fields in your tables are either filled in explicitly by the person who adds the record or left
blank. But there's another optionyou can supply a default value . Now, if someone inserts a record
and leaves the field blank, Access applies the default value instead.

You set a default value using the Default Value field property. For a numeric AddedCost field, you
could set this to be the number 0. For a text Country field, you could use the text "U.S.A." as a
default value. (All text values must be wrapped in quotations marks when you use them for a default
value.)

Access shows all your default values in the new-row slot at the bottom of the datasheet (Figure 4-4).
It also automatically inserts default values into any hidden columns (Section 3.1.4).

Access inserts the default value when you create a new record. (You're then free to change that
value.) You can also switch a field back to its default value using the Ctrl+Alt+Space shortcut while
you're editing it.

Figure 4-4. This dating service uses four default values: a default height (5.9), a default city (New York), a default state (also

New York), and a default country (U.S.A.). This system makes sense, because most of their new entries have this information. On the

other hand, there's no point in supplying a default value for the name fields.

Tip: One nice feature is that you can use the default value as a starting point for a new record. For example, when you create a new

record in the datasheet, you can edit the default value, rather than replacing it with a completely new value.

You can also create more intelligent dynamic default values. Access evaluates dynamic default values
whenever you insert a new record, which means that the default value can vary based on other
information. Dynamic default values use expressions (specialized database formulas) that can
perform calculations or retrieve other details. One useful expression, Date() , grabs the current date
that's set on your computer. If you use Date() as the default value for a date field (as shown in
Figure 4-5), then Access automatically inserts the current date whenever you add a new record.

Note: You'll learn much more about SQL expressions in Part Two .

4.1.3. Preventing Duplicate Values with Indexes

Any table's first rule is that each record it contains must be unique. To enforce this restriction, you
need to choose a primary key (Section 2.4), which is one or more fields that won't ever be
duplicated in different records.

Here's the catch. As you learned in Chapter 2 , the safest option's to create an ID field for the
primary key. So far, all the tables you've seen have included this detail. But what if you need to

make sure other fields are unique? Imagine you create an Employees table. You follow good database
design principles and identify every record with an automatically generated ID number. However, you
also want to make sure that no two employees have the same Social Security number (SSN) to
prevent possible errorslike accidentally entering the same employee twice.

Figure 4-5. If you use the Date() function as the default value for the DateAcquired field in the bobblehead table, then every

time you add a new bobblehead record, Access fills in the current date. You decide whether you want to keep that date or replace it with

a different value.

Note: For a quick refresher about why ID fields are such a good idea, refer to Section 2.4.1 . In the Employees table, you certainly could

choose to make the SSN the primary key, but it's not the ideal situation when you start linking tables together (Chapter 5), and it causes

problems if you need to change the SSN later on (in the case of an error), or if you enter employee information before you've received

the SSN.

You can force a field to require unique values with an index . A database index is analogous to the
index in a bookit's a list of values (from a field) with a cross-reference that points to the
corresponding section (the full record). If you index the SocialSecurityNumber field, Access creates a
list like this and stores it behind the scenes in your database file:

001-01-3455

…

001-02-0434

…

001-02-9558

…

002-40-3200

…

Table 4-1.

SocialSecurityNumber Location of Full Record

Using this list, Access can quickly determine whether a new record duplicates an existing SSN. If it
does, then Access doesn't let you insert it.

So how do you apply an index to a field? The trick's the Indexed field property, which is available for
every data type except Attachment and OLE Object. When you add a field, the Indexed property's set
to No, which means Access doesn't create a field. To add an index and prevent duplicates, you can
change the Indexed property in Design view to Yes [No Duplicates]. The third option, Yes [Duplicates
OK], creates an index but lets more than one record have the same value. This option doesn't help
you catch repeated records, but you can use it to speed up searches (see the box, "How Indexes
Speed Up Searches" in Section 6.2.2 for more).

UP TO SPEED
How Indexes Work

It's important that the list of SSNs is sorted . Sorting means the number 001-01-3455 always occurs
before 002-40-3200 in the index, regardless of where the record's physically stored in the database.
This sorting's important, because it lets Access quickly check for duplicates. If you enter the number
001-02-4300, then Access needs to read only the first part of the list. Once it finds the next "larger"
SSN (one that falls later in the sort, like 001-02-501), it knows the remainder of the index doesn't
contain a duplicate.

In practice, all databases use many more optimizations to make this process blazingly fast. But
there's one key principlewithout an index, Access would need to check the entire table. Tables aren't
stored in sorted order, so there's no way Access can be sure a given SSN isn't in there unless it
checks every record.

Note: As you know from Chapter 2 (Section 2.4.1), primary keys also disallow duplicates, using the same technique. When you define a

primary key, Access automatically creates an index on that field.

When you close Design view after changing the Indexed field property, Access prompts you to save
your changes. At this point, it creates any new indexes it needs. You can't create a no-duplicates
index if you already have duplicate information in your table. In this situation, Access gives you an
error message when you close the Design window and it attempts to add the index.

FREQUENTLY ASKED QUESTION
Indexes and Performance

Are indexes a tool for preventing bad data or a technique for boosting performance?

Indexes aren't just for preventing duplicate values. They also shine when you need to boost the
speed of common searches. Access can use the index to look up the record it wants, much like you
can use the index at the back of this book to find a specific topic.

If you perform a search that scours the Employees table looking for the person with a specific SSN,
then Access can use the index. That way, it locates the matching entry much quicker, and simply
follows the pointer to the full record.

For more information about how indexes can speed up searches, refer to Section 6.2.2 . However, it's
important to realize that indexes enhance performance only for extremely large, complex tables. If
you're storing a few hundred records, each of which has a handful of fields, you really don't need an
indexAccess already performs searches with blinding speed.

4.1.3.1. Multifield indexes

You can also use indexes to prevent a combination of values from being repeated. Imagine you
create a People table to track your friends and their contact information. You're likely to have entries
with the same first or last name. However, you may want to prevent two records from having the
same first and last name. This limitation prevents you from inadvertently adding the same person
twice.

Note: This example could cause endless headaches if you honestly do have two friends who share the same first and last names. In

that case, you'll need to remove the index before you're allowed to add the name. You should think carefully about legitimate reasons for

duplication before you create any indexes.

To ensure that a combination of fields is unique, you need to create a compound index , which
combines the information from more than one field. Here's how to do it:

In Design view, choose Table Tools | Design Show/Hide Indexes .

The Indexes window appears (Figure 4-6). Using the Indexes window, you can see your current
indexes and add new ones.

1.

Figure 4-6. The Indexes window shows all the indexes that are defined for a table. Here, there's a single index for the

ID field (which Access created automatically) and a compound index that's in the process of being created.

Choose a name for your index. Type this name into the first blank row in the Index
Name column .

The index name has no real importanceAccess uses it to store the index in the database, but
you don't see the index name when you work with the table. Usually, you'll use the name of one
or both of the fields you're indexing (like Last-Name+FirstName).

2.

Choose the first field in the Field Name column in the same row (like Last-Name) .

It doesn't matter which field name you use first. Either way, the index can prevent duplicate
values. However, the order does affect how searches use the index to boost performance. You'll
learn more in Section 6.2.2 .

3.

In the area at the bottom of the window, set the Unique box to Yes .

This creates an index that prevents duplicates (as opposed to one that's used only for boosting
search speeds).

You can also set the Ignore Nulls box to Yes, if you want Access to allow duplicate blank values.
Imagine you want to make the SSN field optional. However, if an SSN number is entered, then
you want to make sure it doesn't duplicate any other value. In this case, you should Ignore
Nulls to Yes. If you set Ignore Nulls to No, then Access lets only one record have a blank SSN
field, which probably isn't the behavior you want.

Note: You can also disallow blank values altogether using the Required property, as described in Section 4.1.1

Ignore the Primary box (which identifies the index used for the primary key).

4.

Move down one row. Leave the Index Name column blank (which tells Access it's still
part of the previous index), but choose another field in the Field Name column (like
FirstName) .

5.

If you want to create a compound index with more than two fields, then just repeat this step
until you've added all the fields you need. Figure 4-7 shows what a finished index looks like.

You can now close the Indexes window.

5.

Figure 4-7. Here's a compound index that prevents two people from sharing the same first and last names.

4.2. Input Masks

As you've already learned, databases prize consistency . If you have a field named Height, you better
be sure every value in that field uses the same type of measurements; otherwise, your data's not
worth its weight in sock lint. Similarly, if you have a PhoneNumber field, you better make sure every
phone number has the same format. If some phone numbers are written with dashes, spaces, and
parentheses (like (844) 547-1123), while others are a bit different (say 847-547-1123), and a few
leave out the area code information altogether (547-1123), then you've got a small problem on your
hands. Because of the lack of consistency, you'll have a hard time working with this information (say,
searching for a specific phone number or sorting the phone numbers into different categories based
on area code).

To help you manage values that have a fixed patternlike phone numbersyou can use an input mask .
Essentially, an input mask (or just mask for short) gives you a way to tell Access what pattern your
data should use. Based on this pattern, Access changes the way values are entered and edited to
make them easier to understand and less error-prone. Figure 4-8 shows how a mask lets Access
format a series of characters as they're being typed into a field.

Figure 4-8. Top: Here's a PhoneNumber field with a mask that's ready to go. So far, the person entering the record hasn't

typed anything. The PhoneNumber field automatically starts out with this placeholder text.

Bottom: The mask formats the numbers as you type. If you type 1234567890 into this phone number mask, then you see the text (123)

456-7890. Behind the scenes, the databases stores 1234567890, but the information's presented in the datasheet using a nicely

formatted package. That package is the mask.

You can add a mask to any field that uses the Text data type. Masks give you several advantages
over ordinary text:

Masks guide data entry . When empty, a masked edit control shows the place-holders where
values need to go. A phone number mask shows the text (_ _ _) _ _ _-_ _ _ _ when it's empty,
clearly indicating what type of information it needs.

Masks make data easier to understand . You can read many values more easily when

they're presented a certain way. Most people can pick out the numbers in this formatted Social
Security number (012-86-7180) faster than this unformatted one (012867180).

Masks prevent errors . Masks reject characters that don't fit the mold. If you're using the
telephone mask, you can't use letters.

Masks prevent confusion . With many types of data, you have several ways to present the
same information. You can enter phone numbers both with and without area codes. By
presenting the mask with the area code placeholder, you're saying that this information's
required (and where it goes). It's also obvious that you don't need to type in parentheses or a
dash to separate numbers, because those details are already there. You'll see the same benefit
if you use masks with dates, which can be entered in all sorts of different combinations
(Year/Month/Day, Month-Day-Year, and so on).

Masks are best suited for when you're storing numeric information in a text field. This scenario occurs
with all sorts of data, including credit card numbers, postal codes, and phone numbers. These types
of information shouldn't be stored in number fields, because they aren't meant to be interpreted as a
single number. Instead, they're meant to be understood as a series of digits. (If you do make the
mistake of storing a phone number in a number field, you'll find out that people can type in perfectly
nonsensical phone numbers like 0 and14 because these are valid numbers, even if they aren't valid
phone numbers. But an input mask on a text field catches these errors easily.)

Masks can't help you with more sophisticated challenges, like data values that have varying lengths
or subtle patterns. For instance, a mask doesn't help you spot an incorrect email address.

Note: Text and Date/Time are the only data types that support masks.

4.2.1. Using a Ready-Made Mask

The easiest way to get started with masks is to use one of the many attractive options that Access
has ready for you. This method's great, because it means you don't need to learn the arcane art of
mask creation.

Here's what you need to do to pick out a prebuilt mask:

In Design view, select the text field where you want to apply the mask .

For this test, try a PhoneNumber field.

1.

Look for the Input Mask field property. Click inside the field .

When you do, a small ellipsis (…) button appears at the left edge, as shown in Figure 4-9 .

2.

Figure 4-9. The ellipsis (…) button (circled) is just the way Access tells you that you don't need to fill in this value by

hand. Instead, you can click the ellipsis and pop up a wizard (like the Input Mask wizard) or some sort of helpful dialog box.

2.

Click the ellipsis button .

The Input Mask wizard starts (see Figure 4-10).

Figure 4-10. The Input Mask wizard starts with a short list of commonly used masks. Next to every mask, Access

shows you what a sample formatted value looks like. Once you select a mask, you can try using it in the Try It text box. The Try It

text box gives you the same behavior that your field will have once you apply the mask.

3.

4.

Choose the mask you want from the list of options .

In this case, choose the first item in the list (Phone Number).

Note: Don't see what you want? You'll need to create your own, using the tips in Section 4.2.2 . If you see one that's close but not

perfect, select it. You can tweak the mask in the wizard's second step.

4.

Click Next .

The wizard's second step appears (see Figure 4-11).

5.

If you want, you can change the mask or the placeholder character .

To change the mask, you'll need to learn what every mask character means. Section 4.2.2
explains it all.

Figure 4-11. The phone number mask is !(999) 000-000. Each 9 represents an optional number from 0 to 9. Each 0

represents a required number from 0 to 9. So according to this mask, (123) 456-7890 is a valid phone number, as is 123-4567,

but (123) 456 isn't.

You use the placeholder to show the empty slots where you enter information. The standard
choice is the underscore. Optionally, you can use a space, dash, asterisk, or any other character
by typing it in the "Placeholder character" box.

6.

Click Next .

If you're adding a mask to a text field, then the wizard's final step appears (see Figure 4-12).

7.

If you're adding a mask to a date field, then Access doesn't need to ask you how to store the
informationit already knows. In this case, you can jump to step 9 and click Finish.

Figure 4-12. The final step lets you choose how the data in your field is chosenwith or without the mask symbols.

7.

Choose how you want to store the value in this field .

The standard choice is to store just the characters you've typed in (in other words, everything
you type into the field). If you use this option, the placeholders aren't included. For example,
the phone number (416) 123-4567 is stored as 4161234567 . This option saves a little space,
and it also lets you change the mask later on to present the information in a slightly different
way.

You could also store the mask complete with all the extra characters. Then a phone number's
stored complete with hyphens, dashes, and spaces, like (416) 123-4567 . This approach isn't
nearly as flexible because you can't change the mask later.

8.

Click Finish .

The final mask appears in the Input Mask field property.

Before going any further, you may want to make sure that the length you've reserved for your
field matches the mask. In the phone number example, you need a Field Size of 10 if you've
chosen to store unformatted values (because there are 10 digits), or a Field Size of 14 for the
whole shebang, complete with placeholders (one dash, one space, and two parentheses).

9.

Switch back to the Datasheet view, and click Yes when Access asks you to save
changes .

10.

Your input mask is now in place.

10.

Note: Access uses the input mask information to control how you enter information in the datasheet. However, it's possible to circumvent

the mask by entering the information in other ways. You could, for instance, create a form (as described in Part Four), and switch off the

mask. A mask's not an absolute guarantee against invalid dataif you want such a guarantee, then you need a validation rule instead.

4.2.2. Creating Your Own Mask

The Input Mask wizard provides a fairly limited set of choices. If you want to use a mask with your
own type of information (like a special customer code that your business uses), then you'll have to
create your own mask.

Creating a mask's fairly easy, but it can take a bit of fiddling before you nail down exactly the result
you want. You have two basic options:

Type or edit the mask directly in the Input Mask field property.

Launch the Input Mask wizard, choose a mask to use as a starting point (as described in Section
4.2.1), and then tweak it in step 2. This approach has the advantage that you can test your
mask in the Try It box before you save it as part of your table.

Every mask's built out of three types of characters:

Placeholders designate where you type in a character.

Special characters give additional instructions that tell Access how to treat a part of the
mask.

Literals are all other characters, which are really just decoration to help make the value easier
to interpret.

In the previous example, the phone number mask was !(999) 000-000. The characters 9 and 0 are
placeholdersthey represent where you type in the digits of the phone number. The parentheses,
space, and dash are just formatting nicetiesthey're the literals. And the exclamation mark's the only
special character. It tells Access that characters should be entered into the mask from left to right,
which is the standard option and the only one that really makes sense for a phone number.

To help you sort all this out, refer to the following tables. Table 4-1 shows all the placeholders you
can use in an input mask. Table 4-2 shows other special characters. Everything else is automatically
a literal character.

0

A required digit (0 through 9).

9

An optional digit (0 through 9).

#

An optional digit, a plus sign (+), or a minus sign (-)

L

A required letter.

?

An optional letter.

A

A required letter or digit.

a

An optional letter or digit.

&

A required character of any type (including letters, numbers, punctuation, and so on).

C

An optional character of any type (including letters, numbers, punctuation, and so on).

Table 4-2. Placeholder Characters for an Input Mask

Character Description

!

Indicates that the mask's filled from left to right when characters are typed in. This is the default, so
this character's not required (although the prebuilt masks include it).

<

Converts all characters that follow to lowercase.

>

Converts all characters that follow to uppercase.

\

Indicates that the following character should be treated as a literal. For example, the # character has
a special meaning in masks. Thus, if you want to actually include a # in your mask, you need to use
\#. Sometimes, this character's used before a placeholder even when it's not needed. You may see a

phone mask that has the character sequence \- instead of just -. Both are equivalent.

Password

Creates a password entry box. Any character you type in the box is stored as the character but
displayed as an asterisk (*). When using this option, you can't include anything else in your mask.

Table 4-3. Special Characters for an Input Mask

Character Description

Here are a few sample masks to get you started:

(000) 000-000 . A phone number that requires the area code digits. This mask's different
from the phone number mask that the Input Mask wizard uses. That mask replaces the first
three 0 characters with 9, making the area code optional.

00000-9999 . A U.S. zip code, which consists of five required digits followed by a hyphen and
(optionally) four more digits.

L0L 0L0 . A British or Canadian postal code, which is a pattern of six characters that alternate
between characters and digits, like M6S 3H2.

99:00:00 >LL . A mask for entering time information into a Date/Time field. It's made up of
two digits for the hour and two digits for the minute. The last two characters are always
displayed in uppercase (thanks to the > character), and are meant to be AM or PM.
(Technically, this mask doesn't prevent the user from flouting the system and typing in two
different characters. However, if you enter a time like 12:30 GM, Access complains that it can't
convert your entry into the Date/Time data type, as required for the field.)

099.099.099.099 . An IP (Internet Protocol) address, which identifies a computer on a
network. An IP address is written as four values separated by periods. Each value must have at
least one digit, and can have up to three. This pattern's represented in the mask by 099 (one
required digit, followed by two optional digits).

Password . A mask that allows ordinary, unlimited text, with one difference. All characters are
displayed as asterisks (*), to hide them from prying eyes.

Masks can also have two optional bits of information at the end, separated by semicolons (;).

The second section's a number that tells Access whether or not it should store the literal characters
for the mask in the record. (This is the last question that the Input Mask wizard asks.) If you leave
this piece out or use the number 1, then Access stores only the characters that someone types in. If
you use the number 0, then Access stores the full text with the literals.

The third section supplies the placeholder character. If you leave this section out, then Access uses
the familiar underscore.

Here's a mask that uses these two extra bits of information:

 (000) 000-000;1;#

Here, the second section's 1 , and the third section's #. This mask's for phone numbers, and it stores
literals (in this case, two parentheses, a space, and a dash) and uses the number sign for a
placeholder instead of the underscore.

POWER USERS' CLINIC
Adding Your Mask to the Mask List

Sometimes you may create a mask that's so useful you want to use it in many different tables in
your database (and maybe even in different databases). While you can certainly copy your mask to
every field that needs to use it, Access has a nicer optionyou can store your mask in its mask list .
That way, the mask shows up whenever you run the Input Mask wizard, right alongside all Access's
other standard masks.

To add your mask to the list, head to the Input Mask field property (for any field), and then click the
ellipsis button to fire up the Input Mask wizard. Then, click the Edit List button, which pops up a
handy window where you can edit the masks that Access provides, and add your own (Figure 4-13).

Figure 4-13. To add your own mask, use the record scrolling buttons (at the bottom of this window) to scroll to the end. Or you

can use this window to change a mask. For example, the prebuilt telephone mask doesn't require an area code. If that's a liberty you're

not willing to take, then replace it with the more restrictive version (000) 000-0000.

4.3. Validation Rules

Input masks are a great tool, but they apply to only a few specific types of informationusually fixed-
length text that has a single, unchanging pattern. To create a truly bulletproof table, you need to use
more sophisticated restrictions, like making sure a number falls in a certain range, checking that a
date hasn't yet occurred, or verifying that a text value starts with a certain letter. Validation rules can
help you create all these restrictions by drawing on the full power of the SQL language.

Note: You'll get a more thorough introduction to SQL starting in Chapter 6 . Fortunately, you need only a dash of SQL to write a

validation rule. The key ingredient's a validation expression , and you'll see several practical examples of expressions that you can drop

straight into your tables.

A validation rule's premise is simple. You set up a restriction that tells Access which values to allow in
a field and which ones are no good. Whenever someone adds a new record or edits a record, Access
makes sure the data lives up to your validation rules. If it doesn't, then Access presents an error
message and forces you to edit the offending data and try again.

4.3.1. Applying a Field Validation Rule

Each field can have a single validation rule. The following set of steps show you how to set one up.
You'll start out easy, with a validation rule that prevents a numeric field from accepting 0 or any
negative number (and in the following sections you'll hone your rule-writing abilities so you can tackle
other data types).

Here's how to add your validation rule:

In Design view, select the field to which you want to apply the rule .

All data typesexcept Memo, AutoNumber, and OLE Objectsupport validation. The validation rule in this
example works with any numeric data type (like Number or Currency).

1.

In the Validation Rule field property, type a validation expression (Figure 4-14) .

An expression's a bit of SQL that performs a check on the data you've entered. Access performs its
validation check when you finish entering a piece of data, and try to navigate to another field or
another record. For example, >0 is a validation rule that forces the value in a Number field to be larger
than 0. You'll learn more validation rules in the following sections.

2.

Figure 4-14. Here, the Validation Rule property prevents impossible prices, and the Validation Text provides an error message.

Type some error-message text in the Validation Text field property .

If you enter a value that fails the validation check, then Access rejects the value and displays this error
text in a dialog box. If you don't supply any text, then Access shows the validation rule for the field
(whatever you entered in step 2), which is more than a little confusing for most mere mortals.

3.

Right-click the tab title, and then choose Datasheet View .

If your table has existing records, Access gives you the option of checking them to make sure they
meet the requirements of your validation rule. You decide whether you want to perform this check, or
skip it altogether.

Once you're in Datasheet view, you're ready to try out your validation rule (Figure 4-15).

4.

Figure 4-15. Here, a validation rule of >0 prevents negative numbers in the Price field. When you enter a negative number,

Access pops up a message box with the validation text you defined, as shown here. Once you click OK, you return to your field, which

remains in edit mode. You can change the value to a positive number, or press Esc to cancel the record edit or insertion.

Note: Just because your table has validation rules doesn't mean the data inside follows these rules. A discrepancy can occur if you

added records before the validation rules came into effect. (You learned about the same potential problem with required fields in Section

4.1.1 .) To avoid these headaches, set up your validation rules before you start adding data.

4.3.2. Writing a Field Validation Rule

As you can see, it's easy enough to apply a validation rule to a field. But creating the right validation
rule takes more thought. In order to get the result you want, you need to take your first step into the
sometimes quirky world of SQL.

Although validation's limited only by your imagination, Access pros turn to a few basic patterns again
and again. The following sections give you some quick and easy starting points for validating different
data types.

Note: Access uses your validation rule only if a field contains some content. If you leave it blank, then Access accepts if without any

checks. If this isn't the behavior you want, then just set the Required property to Yes to make the field mandatory, as described in

Section 4.1.1 .

4.3.2.1. Validating numbers

For numbers, the most common technique's to check that the value falls in a certain range. In other
words, you want to check that a number's less than or greater than another value. Your tools are the
comparison signs < and >. Table 4-3 shows some common examples.

Less than

<100

The value must be less than 100.

Greater than

>0

The value must be greater than 0.

Not equal to

<>42

The value can be anything except 42.

Less than or equal to

<=100

The value must be less than or equal to 100.

Greater than or equal to

>=0

The value must be greater than or equal to 0.

Equal to

=42

The value must be 42. (Not much point in asking anyone to type it in, is there?)

Between

Between 0 and 100

The value must be 0, 100, or somewhere in between.

Table 4-4. Expressions for Numbers

Comparison Sample Expression Description

4.3.2.2. Validating dates

As with numbers, date validation usually involves checking to see if the value falls within a specified
range. Here, your challenge is making sure that your date's in the right format for an expression. If
you use the validation rule >Jan 30, 2007 , Access is utterly confused, because it doesn't realize that
the text (Jan 30, 2007) is supposed to represent a date. Similarly, if you try >1/30/07 , then Access
assumes the numbers on the right are part of a division calculation.

To solve this problem, use Access universal date syntax, which looks like this:

 #1/30/2007#

A universal date always has the date components in the order month/day/year, and it's always
bracketed by the # symbol on either side. Using this syntax, you can craft a condition like
>#1/30/2007 #, which states that a given date must be larger than (fall after) the date January 30,
2007. January 31, 2007 fits the bill, but a date in 2006 is out.

The universal date syntax can also include a time component, like this:

 #1/30/2007 5:30PM#

Note: When comparing two dates, Access takes the time information into consideration. The date #1/30/2007# doesn't include any time

information, so it's treated as though it occurs on the very first second of the day. As a result, Access considers the date value

#1/30/2007 8:00 AM# larger, because it occurs eight hours later.

Once you've learned the universal date syntax, you can use any of the comparison operators you
used with numbers. You can also use these handy functions to get information about the current date
and time:

Date() gets the current date (without any time information, so it counts as the first second of
the day).

Now() gets the current instant in time, including the date and time information.

Note: A function's a built-in code routine that performs some task, like fetching the current date from the computer clock. You'll learn

about many more date functions, which let you perform advanced tasks like finding the day of the week for a date, in Section 7.2.6 .

Table 4-4 has some examples.

Less than

<#1/30/2007#

The date occurs before January 30, 2007.

Greater than

>#1/30/2007 5:30 PM#

The date occurs after January 30, 2007, or on January 30, 2007, after 5:30 p.m.

Less than or equal to

<=#1/30/2007#

The date occurs before January 30, 2007, or on the first second of January 30, 2007.

Greater than or equal to

>=#1/30/2007#

The date occurs on or after January 30, 2007.

Greater than the current date

>Date()

The date occurs today or after.

Less than the current date

<Date()

The date occurs yesterday or before.

Greater than the current date (and time)

> Now()

The date occurs today after the current time, or any day in the future.

Less than the current date (and time)

<Now()

The date occurs today before the current time, or any day in the past.

Table 4-5. Expressions for Dates

Comparison Sample Expression Description

4.3.2.3. Validating text

With text, validation lets you verify that a value starts with, ends with, or contains specific
characters. You perform all these tasks with the Like operator, which compares text to a pattern.

This condition forces a field to start with the letter R:

 Like "R*"

The asterisk (*) represents zero or more characters. Thus, the complete expression asks Access to
check that the value starts with R (or r), followed by a series of zero or more characters.

You can use a similar expression to make sure a piece of text ends with specific characters:

 Like "*ed"

This expression allows the values talked, walked , and 34z%($) #ed , but not talking, walkable , or
34z%($)# .

For a slightly less common trick, you can use more than one asterisk. The following expression
requires that the letter a and b appear (in that order but not necessarily next to each other)
somewhere in a text field:

 Like "*a*b*"

Along with the asterisk, the Like operator also supports a few more characters. You can use ? to
match a single character, which is handy if you know how long text should be or where a certain
letter should appear. Here's the validation rule for an eight-character product code that ends in 0ZB:

 Like "?????0ZB"

The # character plays a similar role, but it represents a number. Thus, the following validation rule
defines a product code that ends in 0ZB and is preceded by five numbers:

 Like "#####0ZB"

And finally, you can restrict any character to certain letters or symbols. The trick's to put the allowed
characters inside square brackets.

Suppose your company uses an eight-character product code that always begins with A or E. Here's
the validation rule you need:

 Like "[AE]???????"

Note that the [AE] part represents one character, which can be either A or E. If you wanted to allow
A, B, C, D, you'd write [ABCD] instead, or you'd use the handy shortcut [A-D], which means "allow
any character from A to D, including A and D."

Here's one more validation expression, which allows a seven-letter word, and doesn't allow numbers
or symbols. It works by repeating the [A-Z] code (which allows any letter) seven times.

 Like [A-Z][A-Z][A-Z][A-Z][A-Z][A-Z][A-Z]

As you can see, text validation expressions aren't always pretty. Not only can they grow to ridiculous
sizes, but there are lots of restrictions they can't apply. You can't, for instance, let the length of the
text vary between a minimum and maximum that you set. And you can't distinguish between
capitalized and lowercase letters.

Note: You can get around many of these limitations using some of the functions that Access provides. in Section 7.2.5 , you'll learn how

to use functions that can snip out bits of text, test lengths, check capitalization, and more.

4.3.2.4. Combining validation conditions

No matter what the data type, you can also combine your conditions in two different ways. Using the
And keyword, you can create a validation rule that enforces two requirements. This trick's handy,
because each field can have at most a single validation rule.

To use the And keyword, just write two validation rules and put the word And in between. It doesn't
matter which validation rule's first. Here's a validation rule that forces a date to be before today but
later than January 1, 2000:

 <Date() And >#1/1/2000#

You can also use the Or keyword to accept a value if it meets either one of two conditions. Here's a
validation rule that allows numbers greater than 1000 or less than1000:

 >1000 Or <-1000

4.3.3. Creating a Table Validation Rule

Field validation rules always apply to a single field. However, database designers often need a way to
compare the values in different fields. Suppose you have an Orders table that logs purchases from
your monogrammed sock store. In your Orders table, you use two date fields: DateOrdered and
DateShipped. To keep everything kosher, you need a validation rule that makes sure DateOrdered
falls before DateShipped. After all, how can you ship a product out before someone orders it?

Because this validation rule involves two fields, the only way to put it in place is to create a validation
rule for the whole table. Table validation rules can use all the SQL tricks you've learned about so far,
and they can pull the values out of any field in the current record.

Here's how to create a table validation rule:

In Design view, choose Table Tools | Design Show/Hide Property Sheet .

A box with extra settings appears on the right side of the window (Figure 4-16).

Note: You can create only a single validation rule for a table. This limit might sound like a problem, but you can get around it by

using the And keyword (Section 4.3.2.4) to yoke together as many conditions as you want. The validation rule may be a little

difficult to read, but it still works without a hitch.

1.

Figure 4-16. The Property Sheet shows some information about the entire table, including the sorting (Section 3.2)

and filtering settings (Section 3.2.2) you've applied to the datasheet, and the table validation rule. Here, the validation rule

prevents orders from being shipped before they're ordered.

In the Property Sheet tab, set the Validation Rule .

A table validation rule can use all the same keywords you learned about earlier. However, table
validation rules usually compare two or more fields. The validation rule [DateOrdered] <
[DateShipped] ensures that the value for the Date-Ordered field is older than that used for the
DateShipped.

When referring to a field in a table validation rule, you need to include square brackets around
your field names. That way, Access can tell the difference between fields and functions (like the
Date() function you learned about in Section 4.1.3).

2.

Set the Validation Text .

This message is the error message that's shown if the validation fails. It works the same as the
validation text for a field rule.

3.

When you insert a new record, Access checks the field validation rules first. If your data passes the
test (and has the right data types), then Access checks the table validation rule.

Tip: Once you set the table validation rule, you might want to close the Property Sheet to get more room in your design window. To do

so, choose Table Tools | Design Show/Hide Property Sheet.

4.4. Lookups

In a database, minor variations can add up to big trouble. Suppose you're running International
Cinnamon, a multinational cinnamon bun bakery with hundreds of orders a day. In your Orders table,
you have entries like this:

 Quantity Product
 10 Frosted Cinnamon Buns
 24 Cinnamon Buns with Icing
 16 Buns, Cinnamon (Frosted)
 120 FCBs
 …

(Other fields, like the ID column and the information about the client making the order, are left out of
this example.)

All the orders shown here amount to the same thing: different quantities of tasty cinnamon and icing
confections. But the text in the Product column's slightly different. This difference doesn't pose a
problem for ordinary human beings (for example, you'll have no trouble filling these orders), but it
does create a small disaster if you want to analyze your sales performance later. Since Access has no
way to tell that a Frosted Cinnamon Bun and an FCB are the same thing, it treats them differently. If
you try to total up the top-selling products or look at long-range cinnamon sales trends, then you're
out of luck.

Note: This example emphasizes a point that you've seen before. Namely, databases are strict, no-nonsense programs that don't tolerate

minor discrepancies. In order for your databases to be useful, you need to make sure you store top-notch information in them.

Lookups are one more tool to help standardize your data. Essentially, a lookup lets you fill a value in
a field by choosing from a ready-made list of choices. Used properly, this tool solves the problem in
the Orders tableyou simply need a lookup that includes all the products you sell. That way, instead of
typing the product name in by hand, you can choose Frosted Cinnamon Buns from the list. Not only
do you save some time, but you also avoid variants like FCBs, thereby ensuring that the orders list is
consistent.

Access has two basic types of lookup lists: lists with a set of fixed values that you specify, and lists
that are drawn from a linked table. In the next section, you'll learn how to create the first type. Then,
in Chapter 5 , you'll graduate to the second.

Note: The following data types don't support lookups: Memo, Date/Time, Currency, AutoNumber, Yes/No, OLE Object, Hyperlink, and

Attachment.

4.4.1. Creating a Simple Lookup with Fixed Values

Simple lookups make sense if you have a simple, short list that's unlikely to change. The state prefix
in an address is a perfect example. In this case, there's a set of just 50 two-letter abbreviations (AL,
AK, AZ, and so on).

To try out the process in the following list of steps, you can use the Bachelors table included with the
online examples for this chapter (look for the DatingService.accdb database file). Or, you can jump
straight to the completed lookup by checking out the DatingServiceLookup.accdb file:

Open the table in Design view .

If you're using the DatingService.accdb example, then open the Bachelors table.

1.

Find the field where you want to add the lookup .

In the Bachelors table, it's the State field.

2.

Make sure your field has the correct data type .

Text and Number are the most common data types that you'll use in conjunction with the
lookup feature.

3.

Choose Lookup Wizard from the data type list .

This action doesn't actually change your data type. Instead, it tells Access you want to run the
Lookup wizard based on the current data type. When you select this option, the first step of the
Lookup wizard appears (Figure 4-17).

4.

Choose "I will type in the values that I need" .

Section 5.2.5 describes your other choice: drawing the lookup list from another table.

5.

Click Next .

The second step of the wizard gives you the chance to supply the list of values that should be
used, one per row (Figure 4-18). In this case, it's a list of abbreviations for the 50 U.S. states.

You may notice that you can supply multiple columns of information. For now, stick to one
column. You'll learn why you may use more in Section 5.2.5 .

6.

Click Next .

The final step of the Lookup wizard appears.

7.

Figure 4-17. First you choose the source of your lookup: fixed values or data from another table.

Figure 4-18. This lookup includes the abbreviations for all the American states. This list's unlikely to change in the near

future, so it's safe to hardcode this rather than store it in another table.

7.

8.

Choose whether or not you want the lookup column to store multiple values .

If you allow multiple values, then the lookup list displays a checkbox next to each item. You can
select several values for a single record by checking more than one item.

In the State field, it doesn't make sense to allow multiple valuesafter all, a person can physically
inhabit only one state (discounting the effects of quantum teleportation). However, you can
probably think of examples where multiple selection does make sense. For example, in the
Products table used by International Cinnamon, a multiple-value lookup would let you create an
order for more than one product. (You'll learn more about multiple value selections and table
relationships in Chapter 5 .)

8.

Click Finish .

Switch to Datasheet view (right-click the tab title, and then choose Datasheet View), and then
save the table changes. Figure 4-19 shows the lookup in action.

9.

Figure 4-19. When you move to a field that has a lookup, you'll see a downpointing arrow on the right side. Click this arrow,

and a drop-down list appears with all your possibilities. Choose one to insert it into the field.

UP TO SPEED
Creating a Lookup That Uses Another Table

In the previous example (in Section 4.4.1), you created a lookup list that's stored as part of your
field settings. This is a good approach, but it's not the best solution. A much more flexible approach is
to store the lookup list in a separate table.

There are several reasons to use a separate table:

It allows you to add, edit, and remove items , all by simply editing the lookup table. Even
if you think you have a set of fixed, unchanging values, it's a good idea to consider a separate
table. For example, the set of state abbreviations in the previous section seem unlikely to
changebut what if the dating service goes international, and you need to add Canadian
provinces to the list?

It allows you to reuse the same lookup list in several different fields (either in the
same table, or in different tables). That beats endless copy-and-paste operations.

It allows you to store extra information . For example, maybe you want to keep track of
the state abbreviation (for mailing purposes) but show the full state name (to make data entry
easier). You'll learn how to perform this trick in Section 5.2.5 .

Table-based lookups are a little trickier, however, because they involve a table relationship : a link
that binds two tables together and (optionally) enforces new restrictions. Chapter 5 is all about
relationships, which are a key ingredient in any practical database.

4.4.2. Adding New Values to Your Lookup List

When you create a lookup that uses fixed values, the lookup list provides a list of suggestions . You
can choose to ignore the lookup list and type in a completely different value (like a state prefix of ZI),
even if it isn't on the list. This design lets you use the lookup list as a timesaving convenience without
limiting your flexibility.

In many cases, you don't want this behavior. In the Bachelors table, you probably want to prevent
people from entering something different in the State field. In this case, you want the lookup to be an
error-checking and validation tool that actually stops entries that don't belong.

Fortunately, even though this option's mysteriously absent in the Lookup wizard, it's easy enough to
add after the fact. Here's what you need to do:

In Design view, go to the field that has the lookup .1.

In the Field Properties section, click the Lookup tab .2.

1.

The Lookup tab provides options for fine-tuning your lookup, most of which you can configure
more easily in the Lookup wizard. In the Row Source box, for example, you can edit the list of
values you supplied. (Each value's on the same line, in quotation marks, separated from the
next value with a semicolon.)

2.

Set the Limit to List property to Yes .

This action prevents you from entering values that aren't in the list.

3.

Optionally, set Value List Edits to Yes .

This action lets people modify the list of values at any time. This way, if something's missing
from the lookup list, you can add it on the fly (Figure 4-20).

4.

Figure 4-20. If you set Value List Edits to Yes, an icon appears under the lookup list when you use it (left). Click this icon to

open an Edit List Items dialog box (right) where you can edit the items in the lookup list and change the default value.

5. Linking Tables with Relationships

The tables you've seen so far lead lonely, independent lives. You don't find this isolation with real-
world databases. Real databases have their tables linked together in a web of relationships.

Suppose you set out to build a database that can manage the sales of your custom beadwork shop.
The first ingredient's simple enougha Products table that lists your merchandisebut before long you'll
need to pull together a lot more information. The wares in your Products table are sold in your Orders
table. The goods in your Orders table are mailed out and recorded in a Shipments table. The people
in your Customers table are billed in your Invoices table. All these tablesProducts, Orders, Shipments,
Customers, and Invoiceshave bits of related information. As a result, if you want to find out the
answer to a common question (like, "How much does Jane Malone owe?" or "How many beaded wigs
did we sell last week?"), you'll need to consult several tables.

Based on what you've learned so far, you already know enough to nail down the design for a
database like this one. But relationships introduce the possibility of inconsistent information. And
once a discrepancy creeps in, you'll never trust your database the same way again.

In this chapter, you'll learn how to explicitly define the relationships between tables. This process lets
you prevent common errors, like data in different tables that doesn't sync up. It also gives you a
powerful tool for browsing through related information in several tables.

5.1. Relationship Basics

One of any database's key goals is to break information down into distinct, manageable pieces. In a
well-designed database, you'll end up with many tables. Although each table records something
different, you'll often need to travel from one table to another to get all the information you want.

To better understand relationships (of the non-romantic kind, anyway), consider an example. The
following section demonstrates two ways to add information to the bobblehead database: one that
risks redundant data, and one that avoids the problem by properly using a relationship.

5.1.1. Redundant Data vs. Related Data

Think back to the Dolls table you created in Chapter 1 to store a list of bobblehead dolls. One of the
Dolls table's pieces of information is the Manufacturer field, which lists the name of the company that
created each doll. Although this seems like a simple-enough detail, it turns out that to properly
assess the value of a bobblehead, you need to know a fair bit more about the manufacturing process.
You may want to know things like where the manufacturing company's located, how long it's been in
business, and if it's had to fight off lawsuits from angry customers.

If you're feeling lazy, you could add all this information to the Dolls table, like so (the shaded columns
are the new ones):

342

Yoda

MagicPlastic

China

2003

No

$8.99

Table 5-1.

ID Character Manufacturer
Manufacturer-

Location
Manufacturer-
OpeningYear

Manufacturer-
Lawsuits

PurchasePrice

Your first reaction to this table is probably to worry about the clutter of all these fields. But don't

panicin the real world, tables must include all the important details, so they often grow quite wide.
(That's rule #3 of data design, from Section 2.5.4 .) So don't let the clutter bother you. You can use
techniques like column hiding (Section 3.1.4) to filter out the fields that don't interest you.

Although column clutter isn't a problem, another issue lurks under the surface in this
exampleredundant data. A well-designed table should list only one type of thing. This version of the
Dolls table breaks that rule by combining information about the bobblehead and the bobblehead
manufacturer.

This situation seems innocent enough, but if you add a few more rows, things don't look as pretty:

342

Yoda

MagicPlastic

China

2003

No

$8.99

343

Dick Cheney

Rebobblicans

Taiwan

2005

No

$28.75

344

Tiger Woods

MagicPlastic

China

2003

No

$2.99

Table 5-2.

ID Character Manufacturer
Manufacturer-

Location
Manufacturer-
OpeningYear

Manufacturer-
Lawsuits

PurchasePrice

Once you have two bobbleheads that were made by the same company (in this case, MagicPlastic),
you've introduced duplicate data, the curse of all bad data-bases. (You'll recognize this as a violation
of rule #4 of good database design, from Section 2.5.4 .) The potential problems are endless:

If MagicPlastic moves its plants from China to South Korea, you'll need to update a whole batch
of bobblehead records. If you were using two tables with related data (as you'll see next), you'd
have just one record to contend with.

It's all too easy to update the manufacturer information in one bobblehead record but miss it in
another. If you make this mistake, you'll wind up with inconsistent data in your table, which is
even worse than duplicate data. Essentially, your manufacturer information will become
worthless because you won't know which record has the correct details, so you won't be able to
trust anything.

If you want to track more manufacturer-related information (like a contact number) in your
database, you'll have to update your Dolls table and edit every single record . Your family may
not see you for several few weeks.

If you want to get information about manufacturers (but not dolls), you're out of luck. For
example, you can't print out a list of all the bobblehead manufacturers in China (at least not
easily).

It's easy to understand the problem. By trying to cram too many details into one spot, this table
fuses together information that would best be kept in two separate tables. To fix this design, you
need to create two tables that use related data . For example, you could create a Dolls table like this:

342

Yoda

MagicPlastic

$8.99

343

Dick Cheney

Rebobblicans

$28.75

344

Tiger Woods

MagicPlastic

$2.99

Table 5-3.

ID Character Manufacturer PurchasePrice

And a separate Manufacturers table with the manufacturer-specific details:

1

MagicPlastic

China

2003

No

2

Rebobblicans

Taiwan

2005

No

Table 5-4.

ID Manufacturer Location OpeningYear Lawsuits

This design gives you the flexibility to work with both types of information (dolls and manufacturers)
separately. It also removes the risk of duplication. The savings are small in this simple example, but
in a table with hundreds or thousands of bobblehead dolls (and far fewer manufacturers), the
difference is dramatic.

Now, if MagicPlastic moves to South Korea, you need to update the Location field for only one record,
rather than many instances in an overloaded Dolls table. You'll also have an easier time building
queries (Chapter 6) that combine the information in neat and useful ways. (For example, you could
find out how much you've spent on all your MagicPlastic dolls and compare that with the amounts
you've spent for dolls made by other manufacturers.)

Note: Access includes a tool that attempts to spot duplicate data in a table and help you pull the fields apart into related tables. (To try it

out, choose Database Tools Analyze Analyze Table.) Although it's a good idea in theory, this tool really isn't that useful. You'll

do a much better job of spotting duplicate data and creating well-designed tables from the start if you understand the duplicate-data

problem yourself.

5.1.2. Matching Fields: The Relationship Link

This bobblehead database shows you an example of a relationship . The telltale sign of a relationship
is two tables with matching fields. In this case, the tip-off's the Manufacturer field, which exists in
both the Dolls table and the Manufacturers table.

Note: In this example, the fields that link the two tables have the same name in both tables: Manufacturer. However, you don't have to

do it this way. You can give these fields different names, so long as they have the same data type.

Using these linked fields, you can start with a record in one table and look up related information in
the other. Here's how it works:

Starting at the Dolls table , pick a doll that interests you (let's say Yoda). You can find out
more information about the manufacturer of the Yoda doll by looking up "MagicPlastic" in the
Manufacturers table.

Starting at the Manufacturers table , pick a manufacturer (say, Rebobblicans). You can now
search for all the products made by that manufacturer by searching for "Rebobblicans" in the
Dolls table.

In other words, a relationship gives you the flexibility to ask more questions about your data, and get
better answers.

5.1.3. Linking with the ID Column

In the previous example, the Dolls and Manufacturers tables are linked through the Manufacturer
field, which stores the name of the manufacturing company. This seems like a reasonable designuntil
you spend a couple of minutes thinking about what might go wrong. And databases experts are
known for spending entire weeks contemplating inevitable disasters.

Here are two headaches that just may lie in store:

Two manufacturers have the same company name . So how do you tell which one made a
doll?

A manufacturer gets bought out by another company and changes its name . All of a
sudden, there's a long list of records to change in the Dolls table.

You might recognize these problems, because they're similar to the challenges you faced when you
tackled primary keys (Section 2.4). As you learned, it's difficult to find information that's guaranteed
to be unique and unchanging. Rather than risk problems, you're better off just relying instead on an
AutoNumber field, which stores an Access-generated ID number.

Interestingly enough, you use the same solution when linking tables. To refer to a record in another
table, you shouldn't use just any piece of informationinstead, you should use the unique ID number
that points to the right record. Here's a redesigned Dolls table that gets it right by changing the
Manufacturer field to ManufacturerID:

342

Yoda

1

$8.99

343

Dick Cheney

2

$28.75

344

Tiger Woods

1

$2.99

Table 5-5.

ID Character ManufacturerID Purchase-Price

If you take a look back at the Manufacturers table (Section 5.1.1), then you can quickly find out that
the manufacturer with the ID value 1 is MagicPlastic.

This design's the universal standard for databases. However, it does have two obvious drawbacks:

The person adding records to the Dolls table probably doesn't know the ID of each
manufacturer.

When you look at the Dolls table, you can't tell what manufacturer created each doll.

To solve both these problems, use a lookup . Lookups show the corresponding manufacturer
information in the Dolls table, and they also let you choose from a list of manufacturers when you
add a record or edit the ManufacturerID field. (You saw how to use lookups with value lists in Section
4.4.1 . You'll learn how to use lookups to bring together related tables, like Dolls and Manufacturers,
in Section 5.2.5 .)

Tip: For even more power, you can use a join query (Section 6.3). A join query lets you fill in all the manufacturer details alongside the

doll information so you can view them side by side.

5.1.4. The Parent-Child Relationship

No, this isn't a detour into feel-good Dr. Phil psychology. Database nerds use the labels parent and
child to identify the two tables in a relationship, and keep track of which one's which.

Here's the analogy. As you no doubt know, in the real world a parent can have any number of
children. However, a child has exactly one set of parents. The same rule works for databases. In the
bobblehead database, a single manufacturer record can be linked to any number of doll records.
However, each doll record refers to a single manufacturer. So according to the database world's
strange sociology, Manufacturers is a parent table and Dolls is a child table. They're linked by a
parent-child relationship .

Tip: Don't think too hard about the parent-child analogy. It's not a perfect match with biological reality. For example, in the bobblehead

database, you may create a manufacturer that doesn't link to any dolls (in other words, a parent with no children). You still call that

record a parent record, because it's part of the parent table.

It's important to realize that you can't swap the parent and child tables around without changing your
relationship. It's incorrect to suggest that Dolls is the parent table and Manufacturers is the child
table. You can see that such a suggestion would break the parent-child analogy: a single doll can't
have more than one manufacturer, and a manufacturer isn't limited to creating a single doll. In order
to prevent problems and all-around fuzzy thinking, you need to know exactly which table's the parent
and which one's the child.

Tip: If you have trouble identifying which table's the parent, there's a simple rule to steer you right. The child table always contains a

piece of identifying information from the parent table. In the bobblehead database, the Dolls table contains the ManufacturerID field. On

the other hand, the Manufacturer table doesn't have any doll information.

If you have database-savvy friends, you'll hear the term parent-child relationship quite a bit. The
same relationship's also called a one-to-many relationship (where one is the parent and many
represents the children, because a single parent record in one table can link to several child records
in the other). It's the most common relationship, but not the only oneyou'll learn about two other
types in Section 5.3 and Section 5.3.2 .

Note: Relationships are so common in modern-day databases that software like Access is often described as a relational database

management system (RDBMS). A database without relationships is about as common as a beachfront resort in Ohio.

5.2. Using a Relationship

The relationship between Dolls and Manufacturers is implicit , which is a fancy way of saying that you
know the relationship exists, but Access doesn't. Database pros aren't satisfied with this
arrangement. Instead, they almost always define their relationships explicitly . When you create an
explicit relationship, you clearly tell Access how two tables are related. Access then stores the
information about that relation-ship in the database file.

You have good reasons to bring your relationships out into the open. Once Access knows about a
relationship, it can enforce better error checking. It can also provide handy features for browsing
related data and editing linked fields. You'll see all these techniques in the following sections. But
first, you need to learn how to define a relationship.

5.2.1. Defining a Relationship

You can try out the following steps with the Bobblehead.accdb file, which is included with the online
examples for this chapter. It contains the Dolls and Manufacturers tables, in their original form (with
no relationships defined). The BobbleheadRelationships.accdb database file shows the final product:
two tables with the right relationship.

Here's what you need to do to set up a relationship:

Every relationship links two fields, each in a different table. Your first step is to identify the
field you need to use in the parent table .

In a well-designed database, you use the primary-key field (Section 2.4) in the parent table. For
example, in the Manufacturers table, you use the ID column, which uniquely identifies each
manufacturer.

1.

Open the child table in Design view. (The quickest way is to right-click it in the navigation
pane, and then choose Design View.)

In this example, the child table is Dolls.

2.

Create the field you need in the child table, if it's not there already .

Each child record creates a link by storing a piece of information that points to a record in the parent
table. You need to add a new field to store this information, as shown in Figure 5-1 .

Note: The fields that you link in the parent and child tables must have consistent data types. However, there's one minor wrinkle. If the

parent field uses the AutoNumber data type, then the child field should use the Number data type instead (with a Field Size of Long

Integer). Behind the scenes, an AutoNumber and a Long Integer actually store the same numeric information. But the AutoNumber data

type tells Access to fill in the field with a new, automatically generated value whenever you create a record. You obviously don't want this

3.

behavior for the ManufacturerID field in the Dolls table.

Figure 5-1. In the Dolls table, you need a field that identifies the manufacturer for that doll. It makes sense to add a new field

named ManufacturerID. Set the data type to Number, and the Field Size to Long Integer, so it matches the ID field in the Manufacturers

table. After you add this field, you need to fill it with the right information. (Each doll record should have the ID number of the corresponding

manufacturer.)

Close both tables .

Access prompts you to save your changes. Your tables are now relationship-ready.

4.

Choose Database Tools Show/Hide Relationships .

Access opens a new tab named Relationships. This tab's a dedicated window where you can define the
relationships between all the tables in your database. In this example, you'll create a just a single
relationship, but you can use the Relationships tab to define many more.

Before Access lets you get to work in the Relationships tab, it pops up a Show Table dialog box asking
what tables you want to work with (see Figure 5-2).

5.

Figure 5-2. You can add as many tables as you want to the Relationships tab. Be careful not to add the same table twice (it's

unnecessary and confusing).

Add both the parent table and child table to your work area .

It doesn't matter which one you choose first. To add a table, select it in the list, and then click Add (or
just double-click it).

Access represents each table in the Relationships tab by a small box that lists all the table fields. If
relationships are already defined between these tables, they'll appear as connecting lines.

6.

Click Close .

You can now arrange the tables in the Relationships tab (see Figure 5-3). The Relationships tab shows
a database diagram it's the canvas where you add relationships by "drawing" them on.

7.

Figure 5-3. You can drag the tables you've added to any place in the window. If you have a database that's thick with

relationships, this ability lets you arrange them so that the relationships are clearly visible. To remove a table from the diagram, right-click

it, and then choose Hide Table. To add another table, right-click the blank space, and then choose Show Table to pop up the Show Table

dialog box.

Tip: Access gives you a shortcut if you need to rework the design of a table that's open in the Relation-ships tab. Just right-click the table

box, and choose Design Table.

To define your relationship, find the field you're using in the parent table. Drag this field to
the field you want to link it to in the child table .

In this case, you're linking the ManufacturerID field in the Dolls table (the child) to the ID field in the
Manufacturers table (the parent). So drag ManufacturerID (in the Dolls box) over to ID (in the
Manufacturers box).

Tip: You can drag the other way, too (from the child to the parent). Either way, Access creates the same relationship.

When you release the mouse button, the Edit Relationships dialog box appears (see Figure 5-4).

8.

Figure 5-4. Access is clever enough to correctly identify the parent table (shown in the Table/Query box) and the child table

(shown in the Related Table/Query box) when you connect two fields. Access identifies the field in the parent table because it has a

primary key (Section 2.4) or a unique index (Section 4.1.3). If something isn't quite right in the Edit Relationships dialog box, then you can

swap the tables or change the fields you're using to create the relationship before continuing.

If you want to prevent potential errors, then put a checkmark in the Enforce Referential
Integrity option. (It's always a good idea.)

This setting turns on enhanced error checking, which prevents people from making a change that
violates the rules of a relationship (like creating a doll that points to a nonexistent manufacturer).
You'll learn more about referential integrity and the two settings for cascading changes in Section
5.2.3 . For now, it's best to switch on the Enforce Referential Integrity option and leave the others
unchecked.

9.

Click Create .

This action creates the relationship that links the two tables. It appears in the diagram as a line (Figure
5-5).

Tip: If you chose Enforce Referential Integrity (in step 9), Access checks to make sure any existing data in the table follows the

relationship rules. If it finds some that doesn't, then it alerts you about the problem and refuses to continue. At this point, the best strategy's

to create the relationship without referential integrity, correct the invalid data, and then edit the relationship later to turn on referential

integrity.

10.

Close the Relationships tab. (You can click the X in the tab's top-right corner, or choose
Relationship Tools | Design Relationships Close.)

Access asks whether or not you want to save the Relationships tab's layout. Access is really asking you
whether you want to save the relationship diagram you've created. No matter what you choose, the
relationship remains in the database, and you can use it in the same way. The only difference is
whether you'll be able to quickly review or edit the relationship in the Relationships tab.

11.

Figure 5-5. Access uses a line to connect related fields in the Relationships tab. The tiny 1 and infinity () symbols let you

distinguish between the "one" and the "many" side in this one-to-many relationship. To edit the relationship, double-click the line. To

remove it altogether, right-click the line, and then choose Delete.

If you choose to keep the relationship diagram, the next time you switch to the Relationships tab (by
choosing Database Tools Show/Hide Relationships), you see the same arrangement of tables.
This feature's handy.

If you choose not to keep the relationship diagram, it's up to you to recreate the diagram next time by
adding the tables you want to see and arranging them in the window (although you won't need to
redefine the relationships). This process takes a little more work.

Tip: Many database pros choose to save their database diagram, because they want to see all their relationships at once in the

Relationships tab, just the way they left them. However, real-world databases often end up with a tangled web of relationships. In this

situation, you may choose not to save a complete diagram so you can focus on just a few tables at once.

5.2.2. Editing Relationships

The next time you want to change or add relationships, you'll follow the same path to get to the

Relationship window (choose Database Tools Show/Hide Relationships).

If you choose to save a relationship diagram (in step 11 in the previous section), the tables you
added appear automatically, just as you left them. If you want to work with tables that aren't in any
relationships yet, you can add them to the diagram by right-clicking anywhere in the blank area, and
then choosing Show Table.

If you chose not to save your relationship diagram, you can use a few shortcuts to put your tables
back on display:

Drag your tables right from the navigation pane, and then drop them in the Relationships tab.

Choose Relationship Tools | Design Relationships All Relationships to show all the
tables that are involved in any relationships you've created previously.

Add a table to the diagram, select it, and then choose Relationship Tools | Design
Relationships Direct Relationships to show the tables that are linked to that table.

As you already know, you can use the Relationships tab to create new relationships. You can also edit
the relationships you've already created. To do so, right-click the line that represents the
relationship, and then choose Edit Relationship. (This takes some nimble finger-clicking. If you don't
see the Edit Relationships option in the menu, you've just missed the line.) To remove a relationship,
right-click the relationship line, and then choose Delete.

Note: Usually, you edit a relationship to change the options for referential integrity, which you'll learn about in the next section.

5.2.3. Referential Integrity

Now that you've gone to the work of defining your relationship, it's time to see what benefits you've
earned. As in the real world, relationships impose certain restrictions. In the database world, these
rules are called referential integrity . Taken together, they ensure that related data's always
consistent.

Note: Referential integrity comes into action only if you switched on the Enforce Referential Integrity option (Section 5.2.1) for your

relationship. Without this detail, you're free to run rampant and enter inconsistent information.

In the bobblehead example, referential integrity requires that every manufacturer you refer to in the
Dolls table must exist in the Manufacturer table. In other words, there can never be a bobblehead
record that points to a nonexistent manufacturer. That sort of error could throw the hardiest
database software out of whack.

To enforce this rule, Access disallows the following three actions:

Adding a bobblehead that points to a nonexistent manufacturer.

Deleting a manufacturer that's linked to one or more bobblehead records. (Once this record's
removed, you're left with a bobblehead that points to a nonexistent manufacturer.)

Updating a manufacturer by changing its ID number, so that it no longer matches the
manufacturer ID in the linked bobblehead records. (This updating isn't a problem if you use an
AutoNumber field, because you can't change AutoNumber values once you've created the
record.)

Note: If you need to add a new doll made by a new manufacturer, you must add the manufacturer record first, and then add the doll

record. There's no problem if you add manufacturer records that don't have corresponding doll recordsafter all, it's perfectly reasonable

to list a manufacturer even if you don't have any of the dolls they've made.

Along with these restrictions, Access also won't let you remove a table if it's in a relationship. You
need to delete the relationship first (using the Relationships window) and then remove the table.

5.2.3.1. Blank values for unlinked records

It's important to realize that there's one operation you can perform that doesn't violate referential
integrity: creating a bobblehead that doesn't point to any manufacturer. You do this by leaving the
ManufacturerID field blank (which database nerds refer to as a null value). The only reason you'll
leave the ManufacturerID field blank is if the manufacturer record doesn't exist in your database, or if
the information doesn't apply. Perhaps the bobblehead wasn't created by any manufacturer but was
created by an advanced space-faring alien race and left on this planet for you to discover.

If this blank-value back door makes you nervous, then you can stop it. Just set the Required field
property (Section 4.1.1) on the ManufacturerID field in the Dolls table. This setting ensures that
every bobblehead in your Dolls table has legitimate manufacturer information. This technique's
important when related information isn't optional. A sales company shouldn't be able to place an
order or create an invoice without linking to the customer who made the order.

5.2.3.2. Cascading deletes

The rules of referential integrity stop you cold if you try to delete a parent record (like a
manufacturer) that other child records (like dolls) link to. However, there's another optionand it's
much more drastic. You can choose to blow away all related child records whenever you delete a
parent. For example, this would allow you to remove a manufacturer and wipe out all the dolls that
were produced by that manufacturer.

Warning: Cascading deletes are risky. It's all too easy to wipe out way more records that you intend, and if you do there's no going back.

Even worse, the Undo feature can't help you reverse this change. So proceed with caution.

FREQUENTLY ASKED QUESTION
Switching Off Referential Integrity

Are there any situations where you don't want to enforce referential integrity ?

In most cases, referential integrity's the ultimate database safety check, and no one wants to do
without itespecially if the database includes mission-critical information for your business. Remember,
referential integrity prevents only inconsistent data. It still lets you leave a field blank if there's no
related record that you want to link to.

The only time you may decide to dodge the rules of referential integrity is when you're using partial
copies of your database. This situation usually happens in a large business that's using the same
database at different sites.

Consider an extremely successful pastry sales company with six locations. When a customer makes
an order at your downtown location, you add a new record in the Orders table, and fill in the
CustomerID (which links to a full record in the Customers table). But here's the problem. The full
customer record may not be in your copy of the databaseinstead, it's in one of the databases at
another site, or at company headquarters. Although the link in the Orders table's valid, Access
assumes you've made a mistake because it can't find the matching customer record.

In this situation, you may choose to turn off referential integrity so you can insert the record. If you
do, then be sure to enter the linked value (in this case, the CustomerID) very carefully to avoid
errors later on.

To turn on this option, you need to switch on the Cascade Delete Related Records setting when you
create your relationship (Figure 5-4). You can also modify the relationship later on to add this
setting.

Once you've switched this option on, you can try it out by deleting a manufacturer, as shown in
Figure 5-6 .

Figure 5-6. In this example, the Dolls-Manufacturers relationship uses the Cascade Delete Related Records setting. When you

delete a manufacturer, Access warns you that you'll actually end up deleting every linked doll record, for a total of nine records.

5.2.3.3. Cascading updates

Access also provides a setting for cascading updates. If you switch on this feature (by going to the
Edit Relationships dialog box, and then choosing Cascade Update Related Fields), Access copies any
change you make to the linked field in the parent record to all the children.

With the bobblehead database, a cascading update lets you change the ID of one of your
manufacturers. When you change the ID, Access automatically inserts the new value into the
ManufacturerID field of every linked record in the Dolls table. Without cascading updates, you can't
change a manufacturer's ID if there are linked doll records.

WORD TO THE WISE
Use Cascading Deletes with Care

Cascade Delete Related Records is the nuclear option of databases, so think carefully about whether
it makes sense for you. This setting makes it all too easy to delete records when you should really be
changing them.

If you're dropping a customer from your customer database, then it doesn't make sense to remove
the customer's payment history, which you need to calculate your total profit. Instead, you're better
off modifying the customer record to indicate that this record isn't being used anymore. You could
add a Yes/No field named Active to the customer record, and set this field to No to flag customer
accounts that aren't currently in use, without removing them.

You should also keep in mind that cascading deletes are just a convenience. They don't add any new
features. If you don't switch on Cascade Delete Related Fields, you can still remove linked records, as
long as you follow the correct order. If you want to remove a manufacturer, then start by removing
any linked bobbleheads, or changing those bobbleheads to point to a different manufacturer (or have
no manufacturer at all) by modifying the ManufacturerID values. Once you've taken this step, you
can delete the manufacturer record without a problem.

Cascading updates are safer than cascading deletes, but you rarely need them. That's because if
you're following the rules of good database design, you're linking based on an AutoNumber ID
column (Section 2.3.9). Access doesn't let you edit an AutoNumber value, and you don't ever need
to. (Remember, an AutoNumber simply identifies a record uniquely, and it doesn't correspond to
anything in the real world.)

On the other hand, cascading updates come in handy if you're working with a table that hasn't been
designed to use AutoNumber values for links. If the Dolls and Manufacturers table were linked based
on the manufacturer name, then you need cascading updatesit makes sure that child records are
synchronized whenever a manufacturer name's changed. Cascading updates are just as useful if you
have linked records based on Social Security numbers, part numbers, serial numbers, or other codes
that aren't generated automatically and are subject to change.

5.2.4. Navigating a Relationship

Relationships aren't just useful for catching mistakes. Relationships also make it easier for you to
browse through related data. In Chapter 6 , you'll learn to create search routines that pull together
information from related tables (Section 6.3). But even without this technique, Access provides some
serious relationship mojo in the datasheet.

Here's how it works. If you're looking at a parent table in the datasheet, then you can find the related
child records for any parent record by clicking the plus box that's just at the left of the row (Figure 5-
7).

Figure 5-7. Curious to find out what dolls you have from MagicPlastic? Just click the plus box (circled).

This drops a subdatasheet into view, which shows just the related records (Figure 5-8). You can use
the subdatasheet to edit the doll records here in exactly the same way as you would in the full Dolls
datasheet. You can even add new records.

Figure 5-8. The subdatasheet's really a filtered version of the ordinary Dolls datasheet. It shows only the records that are linked

to the manufacturer you chose. The subdatasheet has all the same view settings (like font, colors, column order) as the datasheet for the

related table.

Note: You can open as many subdatasheets as you want at the same time. The only limitation's that the records in a subdatasheet don't

show up if you print the datasheet (Section 3.4).

A parent table may be related to more than one child table. In this case, Access gives you a choice of
what table you want to use when you click the plus box. Imagine you've created a Customers table
that's linked to a child table of customer orders (Orders), and a child table of billing information
(Invoices). When you click the plus box, Access doesn't know which table to choose, so it asks you
(see Figure 5-9).

Figure 5-9. When Access doesn't know which table to use as a subdatasheet, it lets you pick from a list of all your tables. In

this case, only two choices make sense. Choose Orders to see the customer's orders, or Invoices to see the customer's invoices. When

you select the appropriate table in the list, Access automatically fills in the linked fields in the boxes at the bottom of the window. You can

then click OK to continue.

Note: You have to choose the subdatasheet you want to use only once. Access remembers your setting and always uses the same

subdatasheet from that point on. If you change your mind later on, you'll need to tweak the table settings, as described in the box

"Changing Subdatasheet Settings" in Section 5.2.5 .

As you create more elaborate databases, you'll find that your tables are linked together in a chain of
relationships. One parent table might be linked to a child table, which is itself the parent of another
table, and so on. This complexity doesn't faze Accessit lets you drill down through all the relationships
(see Figure 5-10).

Figure 5-10. There are two relationships at work here. Customers is the parent of Orders (which lists all the orders a

customer's placed). Orders is the parent of OrderDetails (which lists the individual items in each order). By digging through the levels,

you can see what each customer bought.

POWER USERS' CLINIC
Changing Subdatasheet Settings

You can tweak a few more details that affect how sub-datasheets are shown for your table. To show
these settings, switch your table to Design view. Then, choose Table Tools | Design Show/Hide

 Property Sheet (assuming the Property Sheet isn't currently visible). This action shows the
Property Sheet box at the right side of the window.

The Property Sheet has a collection of miscellaneous settings that apply to your whole table. Here are
the ones that relate to subdatasheets:

Subdatasheet Name . The linked table used for the subdatasheet. If you have several linked
tables, you may choose to adjust this to the one you want to work with. Or set it to (Auto) so
that Access prompts you for the subdatasheet you want to use the next time you click the plus
box, as shown in Figure 5-9 .

Subdatasheet Height . Sets the height, in inches, given to the subdatasheet to display its
data. If all the related rows don't fit into this space, then you'll need to scroll through them. The
standard setting's 0, which allows the subdatasheet to take as much space as it needs.

Subdatasheet Expanded . Lets you choose whether the subdatasheets should start off hidden
until you click the plus box (the default setting), or automatically expand when you open the
table (choose Yes).

5.2.5. Lookups with Related Tables

So far, you've seen how relationships make it easier to review and edit your records. But what about
when you add your records in the first place? Relationships are usually based on an unhelpful
AutoNumber value. When you create a new doll, you probably won't know that 3408 stands for
Bobelle House O' Dolls. Access stops you from entering a manufacturer ID that isn't linked to anyone
at all, but it doesn't help you choose the ID value you want.

Fortunately, Access has a technique to help you out. In the previous chapter, you learned about
lookups (Section 4.4.1), a feature that provides you with a list of possible values for a column. When
creating a lookup, you can supply a list of fixed values, or you can pull values from another table. You
could create a lookup for the ManufacturerID field in the Dolls table that uses a list of ID values
drawn from the Manufacturers table. This type of lookup helps a bitit gives you a list of all the
possible values you can usebut it still doesn't solve the central problem. Namely, the befuddled
people using your database won't have a clue what ID belongs to what manufacturer. You still need a
way to show the manufacturer name in the lookup list.

Happily, lookup lists provide just this feature. The trick's to create a lookup that has more than one
column. One column holds the information (in this case, the manufacturer name) that you want to
display to the person using the database. The other column has the data you want to use when a
value's picked (in this case, the manufacturer ID).

Note: Access is a bit quirky when it comes to lookups. It expects you to add the lookup, and then the relationship. (In fact, when you set

up a lookup that uses a table, Access creates a relationship automatically .) So if you've been following through with the examples on

your own, then you'll need to delete the relationship between the Dolls and Manufacturers tables (as described in Section 5.2.3) before

you go any further.

The following steps show how you can create a lookup list that links the Dolls and Manufactures
tables:

Open the child table in Design view .

In this example, it's the Dolls table.

1.

Select the field that links to the parent table, and, in the Data Type column, choose
the Lookup Wizard option .

In this example, the field you want is ManufacturerID.

2.

Choose "I want the lookup column to look up the values in a table or query" and then
click Next .

The next step shows a list of all the tables in your database, except the current table.

3.

Choose the parent table, and then click Next .

In this case, you're after the Manufacturers table. Once you select it and move to the next step,

4.

5.

you'll see a list of all the fields in the table.

4.

Add the field you use for the link and another more descriptive field to the list of
Selected Fields (Figure 5-11). Click Next to continue .

In this case, you need to add the ID field and the Manufacturer field.

Figure 5-11. The secret to a good lookup is getting two pieces of information: the primary key (in this case, the ID field)

and a more descriptive value (in this case, the manufacturer's name). The ID field's the piece of information you need to store in

the doll record, while the Manufacturer field's the value you'll show in the lookup list to make it easier to choose the right

manufacturer.

Tip: In some cases, you might want to use more than one field with descriptive information. For example, you might grab both a

FirstName and LastName field from a FamilyRelatives table. But don't add too much information, or the lookup list will become

really wide in order to fit it all in. This looks a bit bizarre.

5.

Choose a field to use for sorting the lookup list (Figure 5-12), and then click Next .

In this example, the Manufacturer field's the best choice to sort the list.

6.

Figure 5-12. It's important to sort the lookup list, so that the person using it can find the right item quickly. One links

students to classes, and the other links teachers to classes.

6.

The next step shows a preview of your lookup list (Figure 5-13). Make sure the
"Hide key column" option's selected, and then click Next .

Although the primary-key field has the value that links the two tables together, it doesn't mean
much to the person using the database. The other, descriptive field's more important.

7.

Figure 5-13. Here, the lookup list shows the manufacturer name (the Manufacturer field) and hides the manufacturer

ID (the ID field).

Choose a name for the lookup column .

Usually, it's clearest if you keep the name of the field that uses the lookup (in this case,
ManufacturerID).

The final step also gives you an option named Allow Multiple Values. If you check this, then the
lookup list shows a checkbox next to each item, so that you can pick several at once. (In this
example, you can create a doll that has more than one manufacturer.) You'll learn more about
the Allow Multiple Values option in Section 5.3.2.2 .

8.

Click Finish .

Now, Access creates the lookup for the field and prompts you to save the table. Once you do,
Access creates a relationship between the two tables you've linked with your lookup column.
Here, Access creates a parent-child relationship between Manufacturers and Dolls, just as you
did yourself in Section 5.2.1 .

9.

Note: The relationships that Access creates don't enforce referential integrity, because Access doesn't know if your records can live up

to that strict standard. You can have a doll that points to a nonexistent manufacturer. If this possibility seems dangerously lax, you can

edit your relationship using the Relation-ships tab (as described in Section 5.2.2). Begin by adding both the Dolls and the Manufacturers

table to the relationships diagram. Then, right-click the relationship line in between, and then choose Edit Relation-ship. Finally, switch

on the Enforce Referential Integrity checkbox, and then click OK.

Now, if you switch to the design view of the Dolls table, you can use your lookup when you're editing

or adding records (Figure 5-14).

Figure 5-14. Even though the Dolls table stores an ID value in the ManufacturerID field behind the scenes, that's not how it

appears on your datasheet. Instead, you see the related manufacturer name (both onscreen and in any printouts you make). Even

better, if you need to add a new record or change the manufacturer that's assigned to an existing one, then you can pick the

manufacturer from the list by name.

5.3. More Exotic Relationships

As you learned in Section 5.2 , a one-to-many (a.k.a. parent-child) relationship that links a single
record in one table to zero, one, or more records in another table is the most common relationship. A
single manufacturer could be linked to one bobblehead, several bobbleheads, or no bobbleheads at
all.

FREQUENTLY ASKED QUESTION
Refreshing a Lookup

I just added a record, but it doesn't appear in my lookup. Why not ?

Access fills in your lookup lists when you first open the table. For example, when you open the Dolls
table, Access gets a list of manufacturers ready to go. However, sometimes you might have both the
table that uses the lookup and the table that provides the lookup data open at the same time. In this
situation, the changes you make in the table that provides the lookup won't appear in the table that
uses the lookup.

To see how this works, open both the Dolls and Manufacturers tables at once. (They'll appear in
separate tabs.) In the Manufacturers table, add a new manufacturer. Now, switch back to the Dolls
table and try using the ManufacturerID lookup. You'll notice that the lookup list doesn't show the new
record.

Fortunately, there's an easy to solution. You can tell Access to refresh the lookup list at any time by
choosing Home Records Refresh All. Try that out in the Dolls table, and you'll see the
updated list of manufacturers appear in the lookup.

Along with one-to-many relationships, there are two subtly different types of relationships: one-to-
one relationships and many-to-many relationships. You'll learn about both in the following sections.

5.3.1. One-to-One Relationship

A one-to-one relationship links one record in a table to zero or one record in another table. People
sometimes use one-to-one relationships to break down a table with lots of fields into two (or more)
smaller tables.

A Products table may include detailed information that describes the product and its price, and
additional information that describes how it's built. This information's important only to the people in
the engineering department, so you may choose to split it into a separate table (named something
like Products-Engineering). That way, sales folks don't need to think about it when they're making an
order. Other times, you might break a table into two pieces because it's simply too big. (Access
doesn't let any table have more than 255 fields.)

You create a one-to-one relationship in the same way you create a one-to-many relationshipby
dragging the fields in the Relationships tab (Figure 5-15). The only difference is that the linked fields
in both tables need to be set to prevent duplicates. This way, a record in one table can (at most) be
linked to a single record in the other table.

Note: A field prevents duplicates if it's set as the primary key for a table (Section 2.4), or if it has an index that prevents duplicates

(Section 4.1.3).

Figure 5-15. When you link two fields that don't allow duplicates (and you have the Enable Referential Integrity option

switched on), Access realizes that you're creating a one-to-one relationship. Access places the number 1 at each side of the line to

distinguish it from other types of relationships. In this example, the ID column in the Products table and the ID column in the

ProductsEngineering table are both primary keys of their respective tables, so there's no way to link more than one record in

ProductsEngineering to the same record in Products.

WORD TO THE WISE
Approach One-to-One Relationships with Caution

One-to-one relationships are extremely rare in Access. Usually, features like column hiding (Section
3.1.4) and queries (Chapter 6) are better choices if you want to see only some of the fields in a
table.

Splitting a table into two pieces complicates the design of your database, and you'd generally do it
only if you have other reasons to separate the tables. Some possible examples include:

The two parts of the table need to be placed in separate databases (Section 18.2) so that
different people can copy them to separate computers and edit them independently.

You want to stop prying eyes from seeing sensitive data. One way to do this is to put the
information that should be secure into a separate table, and put that separate table in a
different, more secure database file.

You have a table that stores huge amounts of data, like an Attachment field (Section 2.3.8)
with large documents. In this case, you might get better performance by splitting the table. You
might even choose to put one half of the table in a separate database (Section 18.2).

Some of the data in your table's optional. Rather than include a lot of blank fields, you can pop
it into a separate table. If you don't need to include this information, then you don't need to add
a record to the linked table.

If you don't have these requirements, then you're better off creating a single large table.

5.3.2. Many-to-Many Relationship

A many-to-many relationship links one or more records in one table to one or more records in
another table. Consider a database that tracks authors and books in separate tables. Best-selling
authors don't stop at one book (so you need to be able to link one author to several books).
However, authors sometimes team up on a single title (so you need to be able to link one book to
several authors). A similar situation occurs if you need to put students into classes, employees into
committees, or ingredients into recipes. You can even imagine a situation where this affects the
bobblehead database, if more than one manufacturer can collaborate to create a single bobblehead
doll.

Many-to-many relationships are relatively common, and Access gives you two ways to deal with
them.

5.3.2.1. Junction tables

Junction tables are the traditional approach for dealing with many-to-many relationships, and people
use them throughout the database world (including in industrial-strength products like Microsoft SQL
Server). The basic idea's that you create an extra table that has the sole responsibility of linking
together two tables.

Each record in the junction table represents a link that binds together a record from each table in the
relationship. In the books and authors database, a single record in the junction table links together
one author with one book. If the same author writes three books, then you need to add three records
to the junction table. If two authors work on one book, then you need an additional record to link
each new author.

Suppose you have these records in your Authors table:

10

Alf

Abet

11

Cody

Pendant

12

Moe

DeLawn

Table 5-6.

ID FirstName LastName

And you have these records in your Books table:

402

Fun with Letters

January 1, 2007

403

How to Save Money by Living with Your Parents

February 24, 2008

404

Unleash Your Guilt

May 5, 2007

Table 5-7.

ID Title Published

Here's the Authors_Books table that binds it all together:

1

10

402

2

11

403

3

12

403

4

11

404

Table 5-8.

ID AuthorID BookID

Authors_Books is a junction table that defines four links. The first record indicates that author #10
(Alf Abet) wrote book #402 (Fun with Letters). As you traverse the rest of the table, you'll discover
that Cody Pendant contributed to two books, and two authors worked on the same book (How to
Save Money by Living with Your Parents).

Tip: The junction table often has a name that's composed of the two tables it's linking, like Authors_ Books.

The neat thing about a junction table is that it's actually built out of two one-to-many relationships
that you define in Access. In other words, the junction table's a child table that has two parents. The
Authors table has a one-to-many relationship with the Authors_Books table, where Authors is the
parent. The Books table also has a one-to-many relationship with Authors_Books, where Books is the
parent. You can define these two relationships in the Relationships tab to make sure referential
integrity rules the day (Figure 5-16).

Figure 5-16. The many-to-many relationship between Authors and Books is really two one-to-many relationships that involve

the Authors_Books table. Once you've defined these relationships, you can't link to an author or book that doesn't exist, and can't delete

an author or book that has a record in the Authors_ Books table.

Although junction tables seem a little bizarre at first glance, most database fans find that they quickly
become very familiar. As with the one-to-many relationships you used earlier, you can create lookups
(Section 5.2.5) for the AuthorID and BookID fields in the Authors_Books table. However, you'll
always need to add the Authors_Books record by hand to link an author to a book.

5.3.2.2. Multi-value fields

Up until Access 2007, junction tables were the only option for many-to-many relationships. But to
support the SharePoint integration features (Chapter 21), Access 2007 adds a new feature: multi-
value fields .

As its name suggests, a multi-value field can store more than one value. This capacity neatly solves
the problem of many-to-many relationships. The trick's to configure the linked field in the child table
as a multi-value field. Reconsider the authors and books example. Without the junction table, you'd
need to add an AuthorID column to the books table to indicate which author wrote a given Book:

402

Fun with Letters

January 1, 2006

10

403

How to Save Money by Living with Your Parents

February 24, 2005

11

404

Unleash Your Guilt

May 5, 2006

11

Table 5-9.

ID Title Published AuthorID

But an ordinary field holds a single value. Thus, this table can indicate only one of the two authors for
book #403.

However, if you change AuthorID to allow multiple values, you can enter a list of authors, like this:

403

How to Save Money by Living with Your Parents

February 24, 2005

11, 12

Table 5-10.

ID Title Published AuthorID

Behind the scenes, a multi-value field actually uses a junction table. However, Access hides that
detail from you, which makes it a bit easier to link related records.

In order to create a multi-value field, you need to use a lookup. As you've already seen (Section 5.3
), you can choose to turn on this option in the last step of the Lookup wizard. Alternatively, if you
already have a lookup in a field, you just need to make one minor modification. Open the table in
Design view, choose the field that has the lookup (like ManufacturerID), and then, in the Field
Properties section, click the Lookup tab. Look for the Allow Multiple Values property, and change it
from No to Yes.

Note: Once you change your field to support multiple values, you can't switch back.

Figure 5-17 shows a multi-value lookup list in action.

Figure 5-17. This lookup list uses checkboxes, because it's on a multi-value field. You can select several values for a single

record by checking more than one item. So you can indicate that a single doll was created by a two-manufacturer partnership.

Multi-value fields are available only if you're using the new .accdb database format (Section 1.2.2).
You can't use them with an .mdb file (a database that was created in Access 2003 and hasn't been
converted yet).

Multi-value fields also cause headaches if you want to upsize your database to SQL Server (as
described in Chapter 20), because SQL Server doesn't support them. So if there's a possibility that
you'll need to share your database with lots of people (say, in a large company), and you might move
your data to a high-powered SQL Server database someday, avoid multi-value fields.

Note: Multi-value fields don't pose a problem if you want to upsize your database to SharePoint Server (as described in Chapter 21).

5.4. Relationship Practice

Every database designer needs to see the world in terms of tables and relationships. Savvy database
designers can quickly assess information and see how it's related. With this ability, they can build just
the right database for any situation.

The following sections provide two scenarios that help you practice more realistic relationship
building. Both databases used in these scenarios are available with the samples for this chapter, and
they'll turn up again in the following chapters, when you start to build more sophisticated database
objects like queries, reports, and forms.

FREQUENTLY ASKED QUESTION
Dealing with Many-to-Many Relationships

Which approach is better: junction tables or multi-value fields ?

Most database purists will stick with junction tables for years to come. They're accepted, established,
and don't hide your database's inner workings. Junction tables are particularly useful if you want to
add extra bits of information about the relationship between these two tables. Suppose you create a
Students_Classes table to keep track of the classes every student's taking at a popular school. In the
Students_Classes table, you could insert additional fields like EnrollmentDate,
ConfirmationLetterSentDate, and PrerequisitesChecked.

On the other hand, junction tables have a downsideyou can't work with them as easily in the
datasheet. If your data-base uses the Authors_Books junction table, then you need to edit at least
two tables just to add one new book to your system. First, you need to insert a record into the Books
table. Then, you need to open the Authors_Books table, and add a new record there that maps this
book to an author. (You can use lookups in the Authors_Books table to make this process easy, but it
still requires a separate step.) But if the Books table includes a multi-value Authors field, then you
can add the book and assign the authors in one step, which is more convenient.

If you've decided to go with junction tables and you want to make your life a bit easier, then Access
has a great solution. You can build a customized form that deals with more than one table at once.
You can create a form that lets the person using the database insert a record in the Books and
Authors_Books table at the same time. Best of all, your form can make it look like there's only one
table involved. You'll learn how to pull this trick off in Part Four .

5.4.1. The Music School

Cacophoné Studios runs a medium-sized music school. They have a fixed series of courses in mind,
and a roster of teachers that can fill in for most of them. They also have a long list of past and
potential customers. Last year, a small catastrophe happened when 273 students were crammed into
the same class and no teacher was assigned to teach it. (Next door, a class of 14 had somehow

ended up with three instructors.) They're hoping that Access can help them avoid the same
embarrassment this time around.

Tip: Want to play along with Cacophoné Studios? Try to pick out possible tables and their relationships before reading ahead.

5.4.1.1. Identifying the tables

Every business is a little different, and it would take a long, detailed analysis to get the perfect table
structure for Cacophoné Studios. However, even without knowing that much, you can pick out some
fairly obvious candidates:

Teachers . A table to store a list of all the teachers on their roster, complete with contact
information.

Students . A table to store all class-goers past, present, and potential. You don't need to
distinguish between these different groups of people in the Students tableinstead, you can sort
out the current students from the others by looking for related data (namely, their class
enrollments). So you can keep things simple in the Students table, and just store name and
contact information.

Classes . A table to store the classes that Cacophoné Studios is running. This table should
include the class name, date it starts, date it ends, maximum enrollment number, and any
other key information.

Note: Course requirements are stored using a multi-value lookup field named PreviousClassRequirements. This field contains the ID

values of each required class. (In other words, every record in the Classes table has the nifty ability to point to other classes in the same

table.)

Cacophoné Studios will certainly want many more tables before long. But these tables are enough to
get started.

5.4.1.2. Identifying the relationships

It's fairly easy to pick out the relationships you need. Students take classes. Teachers teach classes.
This suggests two relationshipsone between Students and Classes, and one between Teachers and
Classes.

But there's a bit of a hitch. Cacophoné Studios certainly doesn't want to stop a single student from
taking more than one class, so you'll need a many-to-many relationship between the two tables. And
even though Cacophoné Studios plans to have only one teacher in each class, they want to keep
open the possibility that two or more teachers might co-teach. So Teachers and Classes are also
locked in a more complex many-to-many relationship. To support these two relationships, you can
create two junction tables, named Students_Classes and Teachers_Classes (respectively).

Figure 5-18 shows a snapshot of this arrangement.

Figure 5-18. Two many-to-many relationships form the basis of the Cacophoné Studios music school.

Note: Each record in the Students_Classes table represents a student enrollment in a class. You may want to add some additional fields

to Students_Classes to track information like the enrollment date, an enrollment discount you might have offered for early booking, and

so on.

5.4.1.3. Getting more detailed

Cacophoné Studios is off to the right start, but there's a lot more they still need to think about. First
of all, each time they offer a class, they need to create a separate record in the Classes table. This
method makes sense, but it causes a potential problem. That's because when a class (like Electro-
Acoustic Gamelan) ends, it's usually offered again in a new session, with new students. Although this
is a whole new class, it has some information in common with the previous class, like the description,
fee, course requirements, and so on.

To deal with this requirement, you need to create another table, named ClassDescriptions. The
ClassDescriptions record should have all the descriptive information for a class. The Classes record
represents a single, scheduled session of a particular class. That way, the school can offer the same
class multiple times with-out confusion.

To make this design work, each record in Classes links to a single record in ClassDescriptions. There's
a one-to-many relationship between ClassDescriptions and Classes (Figure 5-19).

Figure 5-19. Thanks to the ClassDescriptions table, you can use the same description for several classes, thereby avoiding

redundant data.

Cacophoné Studios also needs to think about the sticky financial side of things. Each time they put a
student in a class, they need to collect a set fee. Each time they assign a teacher to a class, they
need to pay up.

Two tables can fill in these details: TeacherPayments and StudentCharges. Obviously, these tables
need relationshipsbut maybe not the ones you expect. You may assume that you should link the
StudentCharges record directly to the records in the Students table. That linking makes sense,
because you need to know which student owes money. However, it's also important to keep track of
what the money's fornamely, the class that the student's paying for. In other words, every record in
StudentCharges needs to link to both the Students and the Classes table.

But there's an easier approach. You can save some effort by linking the StudentCharges table directly
to the Students_Classes table. Remember, each record in Students_Classes has the student and
class information for one enrollment. Every time you add a record in Students_Classes, you need to
add a corresponding charge in StudentCharges. One record in the Students_Classes table should link
to exactly one record in the StudentCharges table. A similar relationship exists between the
Teachers_Classes and TeacherPayments tables. Figure 5-20 shows the whole shebang (not including
the ClassDescriptions table shown in Figure 5-19).

Figure 5-20. Every assigned class results in a payment in the TeacherPayments table (top left). Every enrollment results in a

charge in StudentCharges (top right). Although this picture's a bit intimidating at first glance, you should be able to work your way

through all the tables and relationships one by one. When building a database, it's easiest to start with a few tables, and then keep

adding on.

Note: Remember, to create a one-to-one relationship, you need to use a primary key or an index that doesn't allow duplicates (Section

4.1.3). In this example, you need to add a no-duplicates index to the Student_ClassesID field in the StudentCharges table, and the

Teacher_ClassesID field in the Teacher-Payments table. These indexes make sure that students get charged only once for each class

they take, and teachers get only a single payment for each class they teach.

This database has quickly become quite sophisticated. And Cacophoné Studios probably isn't done
yet. (For example, it'll more than likely want a table to track student payments.) As with most
realistic databases, you can keep adding on new tables and relationships endlessly.

5.4.2. The Chocolate Store

A sales database that stores the products, customers, and orders for a company that sells something
is one of the most common databases. In fact, this pattern turns up so often that it's worth looking at
a quick example. As you'll see, there are a few basic principles that apply to every sales-driven
business, whether the business is selling collectible books or discount pharmaceuticals.

FREQUENTLY ASKED QUESTION
Printing Your Relationship

Why is the Office button Print command disabled when I'm looking at the Relationships tab ?

Once you've created your relationships, you might want to have a printed copy at your fingertips.
You can't print the contents of the Relationships tab directly, but you can convert it into a report,
which is a specialized database object that lets you create a printout whenever you want. (You'll
learn how to create reports in Part Three .)

To create a report for your relationships, first arrange all the tables to your liking in the Relationships
tab. Then, choose Relationship Tools | Design Tools Relationship Report. A preview window
appears, which looks more or less the same as the current contents of the Relationships tab. You can
then choose Office button Print to send it to the printer.

When you close the relationship report, Access asks you if you want to save it permanently in your
database. Usually, you won't bother, because you can easily regenerate the report whenever you
need it. However, if you have a complex database and you want to print several different diagrams
(each showing a different group of relationships), you may decide to save your relationship report for
later use. You'll learn more about reports in Chapter 10 .

In this example, you'll meet Boutique Fudge, a mail-order company that serves decadent treats to a
large audience of chocolate-crazed customers. Their daring chefs are always innovating, and they
need a better way to manage their ever-growing catalog of chocolate goodness. They also need a
way to keep track of customers and the orders they make.

5.4.2.1. The product catalog and customer list

Even though you don't know much about Boutique Fudge, you can already think of a few key tables
that it'll need. In order to put anything up for sale, they should have the following tables:

Products lists the sinful chocolate delicacies they have for sale. This table records the name,
description, and price of each item available. A few optional details also make sensefor example,
why not keep track of the current stock using two numeric fields (UnitsInStock and
UnitsOnOrder) and a Yes/No field (named Discontinued) to identify products that aren't
available any longer?

Note: In many databases, you can't delete old information. A company like Boutique Fudge can't simply delete old products from

their catalogs, because these products might be linked to old orders. Also, it makes sense to keep historical information to allow

data analysis. (Boutique Fudge could use a query to uncover the top selling products in 1999, and check if declining cocoa levels

are linked to lessening sales.) For this reason, you need tricks like the Discontinued field. When you list the products for sale, you

can leave out all the discontinued ones, using the filtering skills you picked up in Section 3.2.2 .

ProductCategories splits products into a few descriptive groups. That way, customers can
browse just the products in the category they want (whether it's Beverages, Candies,
Chocolate, or Personalized Choco-wear).

Customers holds the list of chocoholics that have signed up to make an order. You need all the
customary information here, like customer names, shipping information, and billing information.

Note: Many companies let customers supply multiple shipping addresses and credit cards. If you allow this flexibility, then you'll need

(surprise) more tables. You could create a table of CustomerCreditCards. Every record in Customers could then link to one or more

records in CustomerCreditCards. Boutique-Fudge takes the easy way out, and stores a customer credit card and address directly in the

Customers table.

So far, there's only one relationship at work: a one-to-many relationship between ProductCategories
and Products. Figure 5-21 shows this design.

Figure 5-21. A product (like Chocolate Jasmine Tea) can be placed in one category (like Beverages), but a single category

holds many products.

5.4.2.2. Ordering products

It doesn't matter how fancy your sales database isif it doesn't have a way for customers to order the
items they're interested in, then Boutique Fudge will run out of money fast.

Database newbies often make the mistake of assuming that they can use one table to store order
information. In truth, you need two:

Orders records each order a customer places. It links to the customer who made the order,
and adds information like the date the order was placed.

OrderDetails lists the individual items in an order. Each record in the OrderDetails table
includes the ID of the product that was ordered, the number of units ordered, and the price at
which they were ordered.

Because the average order includes more than one item, a single record in the Orders table is usually
linked to multiple records in the OrderDetails table (as shown in Figure 5-22). This setup may sound
a bit awkward (because it means you'll need to create a batch of new records for just one order), but

the process doesn't have to be that difficult. Access has two features that help out: the subdatasheet
feature you've already seen (Figure 5-23) and the forms feature (Chapter 12).

Figure 5-22. Every order can hold an unlimited number of order items. This ability makes Boutique Fudge happy.

Figure 5-23. Thanks to the subdatasheet feature (Section 5.2.4), you can add an order record and the linked order items in

the same place.

Notice that the OrderDetails record stores the price of each ordered item. This system may seem to
violate the redundant data rule. After all, the product prices are always available in the Products
table. However, product prices change, and companies offer discounts. For those reasons, it's
absolutely essential that you keep track of the price of an item when it was ordered. Otherwise, you'll
have to guess how much each customer owes you.

Note: Database nerds call this sort of information point-in-time data , because it varies over time.

You should also notice that the Order record doesn't store the total cost of the order. That's because
the total cost is simply the sum of all the ordered items. If you stored a total cost, you'd open up the
possibility of inconsistent datain other words, you've got a problem if the order total you store
doesn't match the cost of all the items.

You still have more work to do before Boutique Fudge can become a true database-driven company.
For example, you'll probably need to create a Shipments table that tracks orders that it's mailed and
a Payments table that makes sure customers pay up. Conceptually, there's nothing new here, but the
more tables you add, the more complex your databases become. Now that you know the basics of
relationships and good table design, you can stay cool under the pressure.

Part II: Manipulating Data with Queries
Chapter 6: Queries That Select Records

Chapter 7: Essential Query Tricks

Chapter 8: Queries That Update Records

Chapter 9: Analyzing Data with Crosstab Queries and Pivot Tables

6. Queries That Select Records
In a typical database, with thousands or millions of records, you may find it quite a chore finding the
information you need. In Chapter 3, you learned how to go on the hunt using the tools of the
datasheet, including filtering, searching, and sorting. At first glance, these tools seem like the perfect
solution for digging up bits of hard-to-find information. However, there's a problem: The datasheet
features are temporary.

To understand the problem, imagine you're creating an Access database for a mail-order food
company named Boutique Fudge. Using datasheet filtering, sorting, and column hiding, you can pare
down the Orders table so it shows only the most expensive orders placed in the past month. (This
information's perfect for targeting big spenders or crafting a hot marketing campaign.) Next, you can
apply a different set of settings to find out which customers order more than five pounds of fudge
every Sunday. (You could use this information for more detailed market research, or just pass it
along to the Department of Health.) But every time you apply new datasheet settings, you lose your
previous settings. If you want to jump back from one view to another, then you need to painstakingly
reapply all your settings. If you've spent some time crafting the perfect view of your data, this
process adds up to a lot of unnecessary extra work.

The solution to this problem's to use queries: ready-made search routines that you store in your
database. Even though the Boutique Fudge company has only one Orders table, it may have dozens
(or more) queries, each with different sorting and filtering options. If you want to find the most
expensive orders, then you don't need to apply the filtering, sorting, and column hiding settings by
handinstead, you can just fire up the MostExpensiveOrdersLastMonth query, which pulls out just the
information you need. Similarly, if you want to find the fudge-a-holics, then you can run the
LargeRepeatFudgeOrders query.

Queries are a staple of database design. In this chapter, you'll learn all you need to design and fine-
tune basic queries.

6.1. Query Basics

As the name suggests, queries are a way to ask questions about your data, like what products net
the most cash, where do most customers live, and who ordered the embroidered toothbrush? Access
saves each query in your database, like any other database object (Section 1.2). Once you've saved
a query, you can run it any time you want to take a look at the live data that meets your criteria.

Queries' key feature is their amazing ability to reuse your hard work. Queries also introduce some
new features that you don't have with the datasheet alone:

Queries can combine related tables. This feature's insanely useful because it lets you craft
searches that take related data into account. In the Boutique Fudge example, you can use this
feature to create queries that find orders with specific product items, or orders made by
customers living in specific cities. Both these searches need relationships, because they branch
out past the Orders table to take in information from other tables (like Products and
Customers). You'll see how this works in Section 6.3.

Queries can perform calculations. The Products table in the Boutique Fudge database lists
price information, along with the quantity in stock. A query can multiply these details, and then
add a column that lists the calculated value of the product you have on hand. You'll try out this
trick in Chapter 7 (Section 7.1).

Queries can perform summaries. To analyze large chunks of data, you can group together
rows with similar information. You can group all the orders by customer to find out who's
spending the most. Or you can group orders by products to have a quick line-by-line list that
compares the sales of Thermo-Nutcular Fudge against Vanilla Bean Dream. You'll learn this
technique in Chapter 7 (Section 7.3).

Queries can automatically apply changes. If you want to find all the orders made by a
specific person and reduce the cost of each one by 10 percent, then a query can apply the
entire batch of changes in one step. This action requires a different type of query, an action
query, which you'll consider in Chapter 8.

In this chapter, you'll consider the simplest and most common type of query: the select query, which
retrieves a subset of information from a table. Once you've retrieved this information, you print or
edit it using a datasheet, in the same way you interact with a table.

6.2. Creating Queries

Access gives you three ways to create a query:

The Query wizard gives you a quick-and-dirty way to build a simple query. However, this
option also gives you the least control.

Note: If you decide to use the Query wizard to create your query, then you'll probably want to refine your query later on using

Design view.

Design view offers the most common approach to query building. It provides a handy
graphical tool that you can use to perfect any query.

SQL view gives you a behind-the-scenes look at the actual query command , which is a piece
text (ranging from one line to more than a dozen) that tells Access exactly what to do. The SQL
view's where many Access experts hang outand though it seems intimidating at first glance, it's
actually not that difficult to decipher (as you'll see in Section 6.2.3).

6.2.1. Creating a Query in Design View

The best starting point for query creation's the Design view. The following steps show you how it
works. (To try this out yourself, you can use the BoutiqueFudge.accdb database that's included with
the downloadable samples for this chapter.) The final resulta query that gets the results that fall in
the first quarter of 2007is shown in Figure 6-6.

Here's what you need to do:

Choose Create Other Query Design .

A new design window appears, where you can craft your query. But before you get started,
Access pops open the Show Table dialog box, where you can choose the tables that you want to
work with (Figure 6-1).

1.

Select the table that has the data you want, and then click Add (or just double-click
the table).

In the Boutique Fudge example, you need the Orders table.

Access adds a box that represents the table to the design window. You can repeat this step to
add several related tables, but for now stick with just one.

2.

Click Close .3.

The Show Table dialog disappears, giving you access to the Design view for the query.

3.

Select the fields you want to include in your query .

To select a field, double-click it in the table box (Figure 6-2). Take care not to add the same
field more than once, or that column shows up twice in the results. If you're using the Boutique
Fudge example, then make sure you choose at least the ID, DatePlaced, and CustomerID fields.

Figure 6-1. You've seen the Show Table dialog box beforeit's the same way you added tables to the relationships

window in Chapter 5 .

4.

Figure 6-2. Each time you double-click a field in the table box, Access adds it to the field list at the bottom of the

window. You can then configure various settings to control filtering criteria and sorting for that column. If you don't want to keep

mousing back to the table box, then you can add a field directly to the column list by choosing its name from the dropdown Field

box.

You can double-click the asterisk (*) to choose to include all the columns from a table.
However, in most cases, it's better to add each column separately. Not only does this help you
more easily see at a glance what's in your query, it also lets you choose the column order, and
use the field for sorting and filtering.

Note: A good query includes only the fields you absolutely need. Keeping your query lean ensures it's easier to focus on the

important information (and easier to fit your printout on a page).

Arrange the fields from left to right in the order you want them to appear in the
query results .

When you run the query, the columns appear in the same order as they're listed in the column
list in Design view. (Ordinarily, this system means the columns appear from left to right in the
order you added them.) If you want to change the order, then all you need to do is drag (as
shown in Figure 6-3).

5.

Figure 6-3. To reorder your columns, drag the gray bar at the top of the column you want to move to its new home. This

technique's similar to the technique you use to arrange columns in the datasheet (Section 3.1.2). In this example, the

DatePlaced field's being moved to the far left side.

If you want to hide one or more columns, then clear the Show checkbox for those
columns .

Ordinarily, Access shows every column you've added to the column list. However, in some
situations you want to work with a column in your query, but not actually display its data.
Usually, it's because you want to use the column values for sorting or filtering.

6.

Choose a sort order .

If you don't supply a sort order, then you'll get the records right from the database in whatever
order they happen to be. This convention usually (but not always) means the oldest records
appear first, at the top of the table. To sort your table explicitly, choose the field you want to
use to sort the results, and then, in the corresponding Sort box, choose a sorting option. In the
current example, the table's sorted by date in descending order, so that the most recent orders
are first in the list (Figure 6-4).

7.

Figure 6-4. Choose Ascending if you want to sort a text field from AZ, a numeric field from lowest to highest, or a date

field from oldest to most recent. Choose Descending to use the reverse order. Section 3.2 has more information about sorting

and how it applies to different data types.

Tip: You can sort based on several fields. The only trick's that your columns need to be ordered so that the first sorting criteria

appears first (to the left) in the column list. Use the column rearranging trick from step 5 to make sure you've got it right.

Set your filtering criteria .

Filtering (Section 3.2.2) is a tool that lets you focus on the records that interest you and ignore
all the rest. Filtering cuts a large swath of data down to the information you need, and it's the
heart of many a query. (You'll learn much more about building a filter expression in the next
section.)

Once you have the filter expression you need, place it into the Criteria box for the appropriate
field (Figure 6-5). In the current example, you can put this filter expression in the Criteria box
for the DatePlaced field to get the orders placed in the first three months of the year:

 >=#1/1/2007# And <=#3/31/2007#

You aren't limited to a single filterin fact, you can add a separate filter expression to each field.
If you want to use a field for filtering but not display it in the results, then clear the Show
checkbox for that field.

8.

Figure 6-5. Here's a filter that finds orders made in a date range (from January 1 to March 31, in the year 2007). Notice

that when you use an actual hard-coded date as part of a condition (like January 1, 2007 in this example), you need to bracket

the date with the # symbols. For a refresher about date syntax, refer to Section 4.3.2.2 .

Choose Query Tools | Design Results Run .

Now that you've finished the query, you're ready to put it into action. When you run the query,
you'll see the results presented in a datasheet (complete with lookups on linked fields), just like
when you edit a table. (Figure 6-6 shows the result of the query on the Orders table).

You can switch back to Design view by right-clicking the tab title and then choosing Design
View.

Figure 6-6. Here are the results of a query that shows orders placed within a specific date range. You can use the

datasheet window to review or print your results, or you can edit information just as you would in a table datasheet.

9.

Note: The datasheet for your query acquires any formatting you applied to the datasheet of the underlying table. If you applied a

hot-pink background and cursive font to the datasheet for the Orders table, then the same settings apply to any queries that use

the Orders table. However, you can change the datasheet formatting for your query just as you would with a table.

Save the query .

You can save your query at any time using the keyboard shortcut Ctrl+S. If you don't, then
Access automatically saves your query when you close the query tab (or your entire database).
Of course, you don't need to save your query. Sometimes you might create a query for a
specific, one-time-only task. If you don't plan to reuse the query, then there's no point in
cluttering up your database with extra objects.

The first time you save your query, Access asks for a name. Use the same naming rules that
you follow for tablesrefrain from using spaces or special characters, and capitalize the first letter
in each word. A good query describes the view of data that it presents. One good choice for the
example shown in Figure 6-6 is FirstQuarterOrders_2007.

10.

Note: Remember, when you save a query, you aren't saving the query results you're just saving the query design , with all its settings.

That way, you can run the query any time to get the live results that match your criteria.

Once you've created a query, you'll see it in your database's navigation pane (Figure 6-7). If you're
using the standard All Tables view, then the query appears under the table that it uses. If a query
uses more than one table, then the same query appears in more than one group in the navigation
pane.

Figure 6-7. By default, the navigation pane organizes your queries so they appear right underneath the table they use. For

example, the TopProducts query (shown here) appears under the Products table. (You'll learn how to change the way the navigation

pane organizes itself in Section 14.1 .)

You can launch the query at any time by double-clicking it. Suppose you've created a query named
TopProducts that grabs all the expensive products in the Products table (using the filter criteria >50
on the Price field). Every time you need to review, print, or edit information about expensive
products, you run the TopProducts query. To fine-tune the query settings, right-click it in the
navigation pane, and then choose Design View.

Access lets you open your table and any queries that use it at the same time. (They all appear in
separate tabs.) However, you can't modify the design of your table until you close all the queries that
use it.

If you add new records to a table while a query's open, then the new records don't automatically
appear in the query. Instead, you'll need to run your query again. The quickest way is to choose
Home Records Refresh Refresh All. You can also close your query and open it again,
because Access runs your query every time you open it in Datasheet view.

Note: Remember, a query's a view of some of the data in your table. When you edit your query results, Access changes the data in the

underlying table. On the other hand, it's perfectly safe to rename, modify, and delete queriesafter all, they're there to make your life

simpler.

6.2.1.1. Building filter expressions

The secret to a good query's getting the information you want, and nothing more. To tell Access what
records it should get (and which ones it should ignore), you need a filter expression .

The filter expression defines the records you're interested in. If you want to find all the orders that
were placed by a customer with the ID 1032, you could use this filter expression:

 =1032

To put this filter expression into action, you need to put it in the Criteria box under the CustomerID
field.

Technically, you could just write 1032 instead of =1032 , but it's better to stick to the second form,
because that's the pattern you'll use for more advanced filter expressions. It starts with the operator
(in this case, the equals sign) that defines how Access should compare the information, followed by
the value (in this case, 1032) you want to use to make the comparison.

Note: If you're using a multivalue field (Section 5.3.2.2), then Access includes the record in the query results if any value matches your

filter. Imagine a Classes table that includes a multivalue InstructorID field (indicating that more than one teacher can team up to teach

the same class). If you write the filter condition =1032 for the InstructorID field, then Access includes any record where instructor 1032

teaches, whether or not other teachers are also assigned to the class.

If you're matching text, then you need to include quotation marks around your value. Otherwise,
Access wonders where the text starts and stops.

 ="Harrington Red"

Instead of using an exact match, you can use a range. Add this filter expression to the OrderTotal
field to find all the orders worth between $10 and $50:

 <50 And >10

This condition's actually two conditions (less than 50 and greater than 10), which are yoked together
by the powerful And keyword (Section 4.3.2.4). Alternatively, you can use the Or keyword if you
want to see results that meet any one of the conditions you've included (Section 4.3.2.4). In Chapter
7 , you'll consider some more powerful tools for crafting filter expressions.

WORD TO THE WISE
Don't Get Confused by Lookups

As you know, lookups change the way values appear on the datasheet. If you add a lookup on the
CustomerID field in the Orders table, then you don't see a cryptic number like 1032. Instead, you see
some descriptive information, like the name Hancock, John .

However, when you write your filter expression, you need to remember what information's actually
stored in the field. So the CustomerID filter expression =1032 works fine, but =Hancock, John
doesn't, because the name information's actually stored separately. (It's in the Customers table, not
the Orders table.)

Sometimes, you really do want to create a filter expression that uses linked information. You may
want to find records in the Orders table using a customer name instead of a customer ID, because
you don't have the ID value handy. In this situation, you have two choices:

You can look up the ID value you need in the Customers table before you start. Then, you can
use that value when you build your query for the Orders table.

You can use a join query to get the name information from the Customers table, and display it
along-side the rest of your order details. You'll learn how to perform this trick in Section 6.3 .

Date expressions are particularly useful. Just remember to bracket any hardcoded dates with the #
character (Section 4.3.2.2). If you add this filter condition to the DatePlaced field, then it finds all the
orders that were placed in 2007:

 <#1/1/2008# And >#12/31/2006#

This expression works by requiring that dates are earlier than January 1, 2008, but later than
December 31, 2006.

Tip: With a little more work, you could craft a filter expression that gets the orders from the first three months of the current year, no

matter what year it is. This trick requires the use of the functions Access provides for dates. You'll see how to use them in Section 4.1.3 .

6.2.1.2. Getting the top records

When you run an ordinary query, you see all the results that match your filter conditions. If that's
more than you bargained for, you can use filter expressions to cut down the list.

However, in some cases, filters are a bit more work than they should be. Imagine a situation where
you want to see the top 10 most expensive products. Using a filter condition, you can easily get the
products that have prices above a certain threshold. Using sorting, you can arrange the results so the
most expensive items turn up at the top. However, you can't as easily tell Access to get just 10
records and then stop.

UP TO SPEED
Filter Syntax

If filters seem uncannily familiar, there's a reason. Filters have exactly the same syntax as the
validation rules you used to protect a table from bad data (Section 4.3). The only difference is the
way Access interprets the condition. A validation rule like <50 And >10 tells Access a value shouldn't
be allowed unless it falls in the desired range (10 to 50). But if you pop the same rule into a filter
condition, it tells Access you aren't interested in seeing the record unless it fits the range. Thanks to
this similarity, you can use all the validation rules you saw in Section 4.3.1 to 137 as filter conditions.

In Chapter 7 , you'll learn how to beef up filter conditions with Access functions.

In this situation, the query Design view has a shortcut that can help you out. Here's how it works:

Open your query in Design view (or create a new query and add the fields you want
to use) .

This example uses the Products table, and includes the ProductName and Price fields.

1.

Sort your table so that the records you're most interested in are at the top .

If you want to find the most expensive products, then add a descending sort (Section 3.2) on
the Price field.

2.

In the Query Tools | Design Query Setup Return box, choose a different
option (Figure 6-8) .

The standard option's All, which gets all the matching records. However, you can choose 5, 25,
or 100 to get the top 5, 25, or 100 matching records, respectively. Or, you can use a
percentage value like 25 percent to get the top quarter of matching records.

3.

Note: In order for the Query Tools | Design Query Setup Return box to work, you must choose the right sort order. To

understand why, you need to know a little more about how this feature works. If you tell Access to get just five records, then it

actually performs the normal query, gets all the records, and arranges them according to your sort order. It then throws everything

away except for the first five records in the list. If you've sorted your list so that the most expensive products are first (as in this

example), you're left with the top five budget-busting products in your results.

Run your query to see the results (Figure 6-9) .4.

Figure 6-8. If you don't see the number you want in the list, just type it into the Return box on your own. There's no reason you

can't grab the top 27 most expensive products.

Figure 6-9. Here are the top five most expensive products.

6.2.2. Creating a Simple Query with the Query Wizard

Design view's usually the best place to start constructing queries, but it's not the only option. You can
use the Query wizard to give you an initial boost, and then refine your query in Design view.

The Query wizard works by asking you a series of questions, and then creating the query that fits the
bill. Unlike many of the other wizards in Access and other Office applications, the Query wizard's
relatively feeble. It's a good starting point for query newbies, but not an end-to-end performer.

Here's how you can put the Query wizard to work:

POWER USERS' CLINIC
How Indexes Speed Up Searches

In Chapter 2 (Section 4.1.3.1), you learned about table indexes, and how to create them. (An index
is a list of all the values in one field, in sorted order. Next to each value is a pointer to the full record
in the table.)

Indexes have two purposes. First, they can prevent duplicate values (Section 4.1.3). Second, they
can help Access perform searches more speedily. Access can often hunt through an index faster than
it can scan an entire table. Not only is the index physically smaller (because it has the value from
only one field), but it's also sorted, so Access can skip to the right place more quickly.

To understand the difference, suppose you ask Access to find the "Bavarian Tart" record in the
Products table. If you have an index for the ProductName field, then Access can scan the B section
until it finds the right entry, and then jump to the full details. If you don't have an index, Access is
forced to search the entire table, record by record. The table isn't in any sorted order, so there's no
telling how long it'll take before Access stumbles across the right record.

At first glance, indexes sound tremendously useful, and you'll be tempted to create them for all your
table fields. But indexes have drawbacks. The more indexes you add, the more work Access needs to

do when inserting and updating records. Each index also takes up some space. In fact, indexes are a
waste of resources unless you know they'll improve search performance.

Here are some reasons to consider using an index to improve performance:

Your database is huge . If you have only a few hundred records, Access can almost always
scan the entire table faster than it can use an index, due to the way that hard drives work. Even
if you have thousands of records, Access can often load the whole shebang into your computer's
memory, so it doesn't have to wait for the hard drive to respond, and all your queries are
blisteringly fast.

Your search is slow . There's no reason to enhance a query if it's already working at top
speed. Most Access fans can search giant databases day after day without ever having to wait.

The field you want to index is used in a search . Don't index a field unless you're using it
in a filter condition. If you often search for a single, specific customer by looking up the last
name, then consider adding an index on the LastName field.

The field you want to index is unique (or close to it) . It makes sense to add an index to
the ProductName field in the Products table, because very few products (if any) share the same
name. On the other hand, it doesn't make sense to index the City field in the Customers table,
because many customers live in the same city. As a result, an index on the City field would be
inefficient, and Access probably wouldn't bother to use it at all.

Choose Create Other Query Wizard .

Access gives you a choice of several different wizards (Figure 6-10).

1.

Choose a query type. The Simple Query wizard's the best starting point for now

The Query wizard includes a few common kinds of queries. With the exception of the crosstab
query, there's nothing really unique about any of these choices. You'll learn to create them all
using Design view:

Simple Query Wizard gets you started with an ordinary query, which displays a subset
of data from a table. This query's the kind you created in the previous section.

2.

Figure 6-10. In the first step of the Query wizard, you choose from a small set of basic query types.

Crosstab Query Wizard generates a crosstab query, which lets you summarize large
amounts of data using different calculations. You'll build one of your own in Section 9.1 .

Find Duplicates Query Wizard is similar to the Simple Query wizard, except it adds a
filter expression that shows only records that share duplicated values. If you forgot to set
a primary key or create a unique index for your table (Section 4.1.3), then this can help
you clean up the mess.

Find Unmatched Query Wizard is similar to the Simple Query wizard, except it adds a
filter expression that finds unlinked records in related tables. You could use this to find an
order that isn't associated with any particular customer. You'll learn how this works in
Section 6.3.2.1 .

Click OK .

The first step of the Query wizard appears.

3.

In the Tables/ Queries box, choose the table that has the data you want. Then, add
the fields you want to see in the query results, as shown in Figure 6-11 .

For the best control, add the fields one at a time. Add them in the order you want them to
appear in the query results, from left to right.

You can add fields from more than one table. To do so, start by choosing one of the tables, add
the fields you want, and then choose the second table and repeat the process. This process
really makes sense only if the tables are related. You'll learn more in Section 6.3 .

4.

Click Next .5.

If your query includes a numeric field, the Query wizard gives you the choice of creating a
summary query that arranges rows into groups, and calculates information like totals and
averages. You'll learn about summary queries in Chapter 7 (Section 7.3). For now, if you get
this choice, pick Detail and then click Next.

Figure 6-11. To add a field, select it in the Available Fields list, and then click the > arrow button (or just double-click

it). You can add all fields at once by clicking the >> arrow button, and you can remove fields by selecting them in the Selected

Fields list and then clicking <. In this example, three fields are included in the query.

The final step of the Query wizard appears (Figure 6-12).

5.

Figure 6-12. In the last step, you choose the name for your query, and decide whether you want to see the results right

away or refine it further in Design view.

Supply a query name in the "What title do you want for your query?" box .6.

If you want to fine-tune your query, then choose "Modify the query design". If you're
happy with what you've got, then choose "Open the query to view information" to
run the query .

One reason you may want to open your query in Design view is to add filter conditions (Section
3.2.2) to pick out specific rows. Unfortunately, you can't set filter conditions in the Query
wizard.

7.

Click Finish .

Your query opens in Design view or Datasheet view, depending on the choice you made in step
7. You can run it by choosing Query Tools | Design Results Run.

8.

GEM IN THE ROUGH
Queries on Queries

The examples in this chapter assume you're creating a query based on a table in your database. But
keen eyes may have spotted a different choicenamely, you can create a query that selects results
from another query. If you're creating a query in the design window, then you simply need to use the
Queries tab of the Show Table dialog box (instead of the Tables tab). If you're creating a query with
the wizard, then all your queries appear in the Tables/Queries list in the first step, along with your
tables.

You most often build a query on another query when you want to reuse your hard work and simplify
complex queries. For example, imagine you want to create a query for Boutique Fudge that gets the
customers who've placed an order in the last month, and retrieves all their customer information.
Based on that query, you may want to build a more specialized summary query (Section 7.3) that
arranges the customers into groups based on their city, and counts how many recent purchasers you
have in each location. You could create a single query that does both these steps. But by splitting this
logic into two pieces, you get the ability to easily reuse the first query (recent customers) to create
many more related queries.

6.2.3. Understanding the SQL View

Behind the scenes, every query's actually a text command written in an exotic language called SQL
(Structured Query Language). SQL's a staple of the database world, and it's supported in all major
database products, albeit with minor variations and idiosyncrasies.

Note: Database gurus still argue about whether SQL is pronounced Es-Cue-El (which is historically correct) or Sequel (which is how it's

used in the product name Microsoft SQL Sever). In this book, we assume you'll use the more hip Sequel .

As you craft a query in the design window (or using the Query wizard), Access generates a matching
SQL command. When you save your query, Access simply stores the text of this command in your
database. That text's all Access needs to run the query later on.

Most of the time, you won't spend much time contemplating the SQL that lurks under your queries'
surfaces. However, sometimes you may want to take a closer look. Here are some possible reasons:

You want to perform an action that's supported by SQL but isn't available in the query designer.
Of course, you'll need to know more than a little about SQL to edit your command. Later in this
chapter (Section 6.2.3.2), you'll see how to use SQL view to create a union query that
combines the results from two similar tables.

You want to learn SQL. This ambition's a great idea if you're planning a career as a database
administrator, but it's not really necessary if you're sticking with Access.

You want to transplant a command to another database product. You could be in the process of
moving databases from Access to a high-powered Oracle database. This job's ambitious, and
you'll find that while you can move your data to its new home, you can't move other database
objects like queries. Instead, you need to take a closer look at the underlying SQL, which you
can use to reconstruct the query in the new database.

You're just plain curious. Looking at the SQL for your queries clears up a lot of the mystery
behind how Access works.

You're a SQL coding genius, and the query designer just slows you down.

To take a look at the SQL command for a query, right-click the tab title, and then choose SQL view.
Figure 6-13 shows what you see.

Figure 6-13. Here's the SQL command for the TopProducts query, which finds products that cost more than $50. If you're

intimidated, then you can jump back to another view at any time by right-clicking the tab title, and then choosing Design View or

Datasheet View.

6.2.3.1. Analyzing a query

Although SQL looks complex at first glance, all queries boil down to essentially the same ingredients.
Consider the query for finding high-priced orders, which looks like this (with each line numbered for
easy reference):

 1. SELECT Products.ID, Products.ProductName, Products.Price
 2. FROM Products
 3. WHERE (((Products.Price)>50))
 4. ORDER BY Products.Price;

Here's a breakdown of the first two lines:

Line 1 starts with the word SELECT, which indicates it's a query that selects records (like all the
queries you've seen in this chapter).

After the word SELECT is a comma-separated list of fields that you want to see. Each field's
written out in the long format TableName.FieldName, just in case you decide to create a query
that uses more than one table.

Line 2 starts with the word FROM, which indicates the table (or tables) that you're searching.
In this case, the Products table has the records you need.

These two lines represent a complete functioning query. However, you'll often have more lines that
apply filtering settings and sorting:

Line 3 starts with the word WHERE, which indicates the start of your filter conditions. In this
case, there's only onea requirement that the product price be over $50. If you've defined more
than one criteria on different fields, then you see them all here, joined together using the AND
operator.

Note: Access goes a little crazy with parentheses in the filter conditions. You could rewrite WHERE (((Products.Price)>50)) more

simply as WHERE Products.Price>50 . Access uses the parentheses because they make it easier to sort out complex queries

with multiple conditions.

Line 4 starts with the words ORDER BY, which defines the sorting order. In this case, records
are sorted from lowest to highest using the value in the Price field. In the case of a descending
sort, you'd see the abbreviation DESC after the field name. If you're sorting on multiple fields,
then you see a comma-separated field list.

The command ends with a final semicolon (;). Access doesn't need this detail, but it's a SQL
world convention.

The lesson here's that every query you build is shaped out of a few common ingredients, represented
by the SELECT, FROM, WHERE, and ORDER BY sections.

Access keeps all the different views of a query synchronized. If you make a change to the SQL text,
and then switch back to the Design view, then you see the newly modified version of the query
(unless you've made a mistake, in which case Access delivers an error message).

To try this characteristic out, you can modify the SQL text so that it selects an extra column and
sorts on two fields, so that products with the same price are arranged alphabetically (the new parts
are highlighted in bold):

 SELECT Products.ID, Products.ProductName, Products.Price,
 Products.Description
 FROM Products
 WHERE (((Products.Price)>100))
 ORDER BY Products.Price, Products.ProductName;

Right-click the tab title, and then choose Design View to see how these changes appear in the query
designer.

6.2.3.2. Creating a union query

The query designer doesn't recognize some rare SQL tricks. You can use them only by editing the
SQL command in SQL view, and once you've made the change, you can't look at your query in
Design view any longer (unless you remove the unsupported change later on).

A union query is one example of a query that's occasionally useful but not supported by the query
designer. A union query merges the results from more than one table, and then presents them in a
single datasheet.

Essentially, a union query's composed of two (or more) separate select queries. The trick's that the

results from each select query must have the same structure. So you need to retrieve similar
columns from each table, in the same order. Assuming you can meet this standard, all you need to
do is add the word UNION between the two queries.

Here's a union query that presents a list of names drawn from two tables Customers and Employees:

 SELECT Customers.FirstName, Customers.LastName
 FROM Customers
 UNION
 SELECT Employees.FirstName, Employees.LastName
 FROM Employees

This query works even though the structure of the Customers and Employees tables is different. The
important part's that the query results from both tablesin this case, the FirstName and LastName
fieldsmatch up.

Note: You can create a union query even if the column names differif the columns in the Employees table were F_Name and L_Name,

the query would still work. Access simply uses the column names from the first query when it displays the results in the datasheet.

In this example, when you view the query results, you see a list of customer names followed by a list
of employee names, although you can't necessarily tell where one table leaves off and the other
begins. You also can't edit any of the data union queries are strictly for reviewing information, not
changing it. Access doesn't let you edit union queries in the query designer. If you right-click the tab
title, and then choose Design View, you wind up in SQL view instead.

Access puts union queries in the Unrelated Objects section of the navigation pane, and uses a
different icon for them than for normal queries (Figure 6-14).

Note: If there are any duplicates in the results, union queries show just one copy. You can change this behavior by replacing UNION

with UNION ALL. In the previous example, this step causes a person who's both an employee and a customer to show up twice in the

combined results.

Figure 6-14. Union queries appear in the navigation pane with a different icon. The two joined circles indicate that more than

one set of results are being shown together.

Union queries are a good way to link together similar tables that have been separated for reasons of
performance, security, or distribution. (See Section 18.2 for the different reasons you might split a
single set of data into different tables.) Union queries aren't a good way to work with parent-child
relationships. For this task you need join queries, which are described in the next section.

WORD TO THE WISE
Think Twice Before Redesigning Your Tables

Access is surprisingly savvy at keeping track of which queries use particular tables. This trait
becomes important when you crack open a table in design mode to change something about its
structure.

Suppose you rename the Orders table to Sales, and the DatePlaced field to OrderDate. The next time
you run the FirstQuarterOrders_2007 query (Figure 6-6), you find thatremarkablyit still works.
Access knows that the FirstQuarterOrders_2007 query depends on the Orders table. When you
change the names in the table, it adjusts the query accordingly.

Access includes a nifty tool that can look at any database object you choose, and tell you what other
database objects depend on it. You can use this tool to figure out what queries, forms, and reports
use the Orders table before you change it. To use this feature, follow these steps:

Choose Database Tools Show/Hide Object Dependencies. The Object Dependencies box
appears on the Access window's right side. (Choose the same command again when you want
to hide it.)

1.

In the navigation pane, select the database object that you want to examine.2.

In the Object Dependencies box, choose either "Objects that depend on me" (to see other3.

4.

2.

objects that use this object) or "Objects that I depend on" (to see all the objects this object
uses).

3.

At the top of the Object Dependencies box, click the Refresh link. The Object Dependencies box
lists all the appropriate objects, divided into categories by type (Figure 6-15).

4.

Access can't spot all dependencies, like when you need to delve into the SQL view to create a query
that you can't build in Design view. If you create a union query (as in the previous example), then
Access isn't smart enough to figure out what tables your query depends on. If you redesign those
tables, then you'll get an error the next time you run your query, saying that Access can't find the
right field or table. (To fix the error, you need to open your query in SQL view again, and change the
field and table names to their new values.)

Figure 6-15. Here, the Object Dependencies box analyzes the Products table. It shows three tables that link to Products, and

four queries that use the Products table. You can dig deeper into any object by clicking the plus (+) box next to its name. (Click the +

next to TopProducts to check if any other database objects use that query.) The Ignored Objects section's at the bottom of the list. The

CustomersAndEmployees union query shows up here, and it tells you that Access has no idea what it depends on.

6.3. Queries and Related Tables

In Chapter 5 , you learned how to split data down into fundamental pieces and store it in distinct,
well-organized tables. This sort of design's only problem's that it's more difficult to get the full picture
when you have related data stored in separate places. Fortunately, Access has the perfect
solutionyou can bring the tables back together for display using a join .

A join's a query operation that pulls columns from two tables and fuses them together in one grid of
results. You use joins to amplify child tables by adding information from the parent table. Here are
some examples:

In the bobblehead database, you can show a list of bobblehead dolls (drawn from the child table
Dolls) along with the manufacturer information for each doll (from the parent table
Manufacturers).

In the Cacophoné music school database, you can get a list of available classes, with instructor
information.

In the Boutique Fudge database, you can get a list of orders, complete with the details for the
customer who placed the order.

Note: You've already learned how to create lookup tables to show just a bit of information from a linked table. A lookup can show the

name of a product category in place of the ID number in the ProductID field. However, a join query's far more powerful. It can grab

oodles of information from the linked tablefar more than you could fit in a single field.

Figure 6-16 shows how a table join works.

Figure 6-16. On its own, the Classes table tells you about each class, but it gives each class, but it gives you only the ID of

the assigned instructor. But join this table to the Teachers table, and you can get any other details from the linked teacher

recordincluding the first and last name. You'll see how to build this example in Section 6.3.3 .

6.3.1. Joining Tables in a Query

Access makes it remarkably easy to join two tables. The first step's adding both tables to your query,
using the Show Table dialog box. If you're creating a new query in Design view, then the Show Table
dialog appears right away. If you're working with a query you've already created, then make sure
you're in Design view, right-click the window, and then choose Show Table.

If you've already defined a relationship between the two tables (using the relation-ships window, as
described in Section 5.2.1 , or by creating a lookup, as described in Section 5.2.5), then Access uses
that relationship to automatically create a query join. You'll see a line on the diagram that connects
the appropriate fields, as shown in Figure 6-17.

If you haven't already defined a relationship between the two related tables, then you probably
should, before you create your query (see Chapter 5 for full instructions). But if for some cryptic
reason you've decided not to create the relationship (perhaps the database design was set in stone
by another, less savvy Access designer), then you can manually define the join in the query window.
To do so, just drag the linked field in one table to the matching field in the other table. You can also
remove a join by right-clicking the line between the tables, and then choosing Delete.

Figure 6-17. Access automatically joins the CustomerID field in the Orders table to the ID field in the Customers table, based

on the relationship that's defined in the database.

Note: If you add two unrelated tables, then Access tries to help you out by guessing a relationship. If it spots a field with the same data

type and the same name in both tables, then it adds a join on this field. This action often isn't what you wantfor example, many tables

share a common ID field. Also, if you're following the database design rules from Section 2.5 , then your linked fields have slightly

different names in each table, like ID and CustomerID. If you run into a problem where Access assumes a relationship that doesn't exist,

then just remove it before adding the join you really want.

UP TO SPEED
Relationships vs. Joins

It's important to understand the differences between a relationship and a query join.

Relationship . A permanent link between two tables, which is stored in your database. When
creating a relationship in the database, you have the option of switching on referential integrity:

a set of rules that prevents inconsistent data in related tables (Section 5.2.3).

Join . A query feature that lets you combine related data from two tables into one set of
results. The join doesn't affect how you enter or edit that information in the underlying tables.

If you have a relationship in place, then Access assumes you'll want to use a join to link those tables
together in a query, which only makes sense.

Once you have your two tables in the query design window and you've defined the join, then you're
ready to choose the fields you want. You can pick fields from both tables. You can also add filter
conditions and supply a sort order, as you would with any other query. Figure 6-18 shows an
example of a query that uses a join, and Figure 6-19 shows that same query in action.

Note: When you have two linked tables, it's easy to forget what you're showing. If you join the Orders and Customers tables, and then

select fields from each, then what do you end up with: a list of classes or a list of instructors? Easy, you get a list of orders, complete

with customer information. Queries with linked tables always act on the child table and bring in additional information from the parent.

Figure 6-18. This query shows information from the Orders and Customers tables. It doesn't matter whether the first field's

from the Orders or Customers tableeither way, you're creating a list of orders with added customer information. Notice how the Table box

(under the Field box) shows which table each field comes from.

Figure 6-19. You can easily see at a glance who ordered what. The ID column's the order ID (although you could display the

IDs from both the Customers and Orders tables).

Note: When you perform a join, you see repeated information. If you join the Customers and Orders tables, you see the first and last

name of a shopaholic customer appear next to several orders. However, this doesn't violate the database rule against duplicate data.

Even though the customer details appear in more than one place in the query results, they're stored only once in the Customers table.

Remember, when you link a parent and child table with a join query, you're really performing a query
that gets all the records from the child table, and then adds extra information from the parent table.
For example, you can use a join query to get a list of orders (from the child table) and supplement
each record with information about the customer that made the order. No matter how you create the
join, you won't ever get a list of customers with order information tacked onthat wouldn't make
sense, because every customer can make multiple orders.

Joins are one of the most useful features in any query writer's toolkit. They let you display one table
that has all the information you need.

Note: When using more than one table, there's always a risk that two tables have a field with the same name. This possibility isn't a

problem if you don't plan to show these fields in your query, but it can cause confusion if you do. One way to distinguish between the two

fields is to rename one of them in the query datasheet. You'll learn how to perform this trick with a calculated field in Section 7.1.2 .

UP TO SPEED
Modifying Information Using a Join Query

You need to be careful when modifying the data in a query that uses a join. There's never a problem

if you want to modify the details from the child table. In the example in Figure 6-19 , it's easy enough
to change the DatePlaced or StatusID fields to change the order record.

However, consider what happens if you change one of the values in the parent table, like the
customer's first or last name. Obviously, the same customer information may appear several times in
the query. (For example, the query in Figure 6-19 shows two orders by a customer named Toby.) If
you modify the customer name in one place, then Access automatically changes the information in
the Customers table, and then refreshes the entire query. So, if you change "Toby" to "Tony" in
Figure 6-19 , then Access refreshes the second and third rows of the datasheet.

A potential problem occurs if you want to change the link between the order record and the customer
record. You may want to edit an order that's assigned to Toby so that the database says Lisa made
the order. However, you can't make this change by editing the FirstName and LastName fields in the
query. (If you do, you'll simply wind up changing Toby's record in the Customers table.) Instead, you
need to change the CustomerID field in the Orders table so that it points to the right person. In the
query shown in Figure 6-19 , the CustomerID field isn't included, so there's no way to change the
link.

6.3.2. Outer Joins

The queries you saw in the previous example use what database nerds call an inner join . Inner joins
show only linked recordsin other words, records that appear in both tables. If you perform a query on
the Customers and Orders tables, then you don't see customers that haven't placed an order. You
also don't see orders that aren't linked to any particular customer (the CustomerID value's blank) or
aren't linked to a valid record (they contain a CustomerID value that doesn't match up to any record
in the Customers table).

Outer joins are more accommodatingthese joins include all the same results you'd see in an inner
join, plus the leftover unlinked records from one of the two tables (it's your choice). Obviously, these
unlinked records show up in the query results with some blank values, which correspond to the
missing information that the other table would supply.

Suppose you perform an outer join between the Orders and Customers tables, and then configure it
so that all the order records are shown. Any orders that aren't linked to a customer record appear at
the bottom of the list, and have blank values in all the customer-related fields (like FirstName and
LastName):

Stanley

Lem

7

13-Jun-07

Cancelled

Toby

Grayson

4

03-Nov-06

Returned

Toby

Grayson

6

03-Nov-06

Shipped

18

01-Jan-08

In Progress

19

01-Jan-08

In Progress

Table 6-1.

FirstName LastName ID DatePlaced StatusID

In this particular example, it doesn't make sense for orders that aren't linked to a customer to exist.
(In fact, it probably indicates an order that was entered incorrectly.) However, if you suspect a
problem, an outer join can help you track down the problem.

Tip: You can prevent orphaned order records altogether by making CustomerID a required value (Section 4.1.1) and enforcing relational

integrity (Section 5.2.3).

You can also perform an outer join between the Orders and Customers tables that shows all the
customer records. In this case, at the end of the query results, you'll see every unlinked customer
record, with the corresponding order fields left blank:

Stanley

Lem

7

13-Jun-07

Cancelled

Toby

Grayson

4

03-Nov-06

Returned

Toby

Grayson

6

03-Nov-06

Shipped

Ben

Samatara

Goosey

Mason

Tabasoum

Khan

Table 6-2.

In this case, the outer join query picks up three stragglers.

FirstName LastName ID DatePlaced StatusID

In this case, the outer join query picks up three stragglers.

So how do you add an outer join to your query? Your start with an inner join (which Access usually
adds automatically; see Section 6.3.1), and then convert it to an outer join. To do so, just right-click
the join line that links the two tables in the design window, and then choose Join Properties (or just
double-click the line). The Join Properties dialog box (Figure 6-20) appears, and lets you change the
type of join you're using.

Figure 6-20. The first option, "Only include rows where the joined fields from both tables are equal", performs the standard

inner join. The other two options let you create an outer join that incorporates all the unlinked rows from one of the two tables.

6.3.2.1. Finding unmatched records

Inner joins are by far the most common joins. However, outer joins let you create at least one
valuable type of query: a query that can track down unmatched records.

You've already seen how an outer join lets you see a list of all your orders, plus the customers that
haven't made any orders. That combination isn't terribly useful. However, the marketing
department's already salivating over the second part of this equationthe list of people who haven't
bought anything. This information could help them target a first-time-buyer promotion.

To craft this query, you start with the outer-join query that includes all the customer records. Then,
you simply add one more ingredient: a filter condition that matches records that don't have an order
ID. Technically, these are considered null (empty) values.

Here's the filter condition you need, which you must place in the Criteria box for the ID field of the
Orders table:

 Is Null

Now, when Access performs the query, it includes only the customer records that aren't linked to
anything in the orders table. Figure 6-21 shows the query in Design view.

Figure 6-21. This query combines an outer join with a filter condition that matches only unlinked customer records. Notice the

Show checkbox isn't checked. That's because the ID field's used for a filter condition, but there's no point in displaying it in the results

datasheet.

6.3.3. Multiple Joins

Just as you're getting comfortable with inner and outer joins, Access has another feature to throw
your way. Many queries don't stop at a single join. Instead, they use three, four, or more to bring
multiple related tables into the mix.

Although this sounds complicated at first, it really isn't. Multiple joins are simply ways of bringing
more related information into your query. Each join works the same in a multiple-join situation as it
does when you use it on its own. To use multiple joins, just add all the tables you want from the
Show Table dialog box, make sure the join lines appear, and then choose the fields you want. Access
is almost always intelligent enough to figure out what you're trying to do.

Figure 6-22 shows an example where a child table has two parents that can both contribute some
extra information.

Sometimes, the information you want's more than one table away. Consider the OrderDetails table
Boutique Fudge uses to list each item in a customer's order. On its own, the OrderDetails doesn't
provide a link to the customer who ordered the item, but it does provide a link to the related order
record. (See Section 5.4.2.2 for a discussion of this design.) If you want to get the information about

who ordered each item, you need to add the OrderDetails, Orders, and Customers table to your
query, as shown in Figure 6-23.

Figure 6-22. In this example, a list of products is amplified with product category information and supplier information. The

Products table's a child of both the ProductCategories and Suppliers tables, so this query uses both tables effortlessly.

Figure 6-23. If you want to find out who ordered each item, then you need to find the linked Orders table, and then continue to

the linked Customers table. Even if you don't want to show any data from the Orders table, you still need to follow this two-step process.

The top figure shows the query that does this, and the bottom figure shows the result you'll get when you run the query.

Multiple joins are also the ticket if you have a many-to-many relationship with a junction table
(Section 5.3.2.1), like the one between teachers and classes. As you'll remember from Chapter 5
(Section 5.4.1), the Cacophoné Studios music school uses an intermediary table to track teacher
class assignment. If you want to get a list of classes, complete with instructor names, then you need
to create a query with three tables: Classes, Teachers, and Teachers_Classes (see Figure 6-24).

Figure 6-24. Here's how you define a list of classes that includes the name of the assigned teacher next to each class. The

top query shows the design you need, and the bottom figure shows the result.

7. Essential Query Tricks
Every Access expert stocks his or her database with a few (or a few dozen) useful queries that
simplify day-to-day tasks. In the previous chapter, you learned how to create queries that chew
through avalanches of information and present exactly what you need to see. But as Access masters
know, there's much more power lurking just beneath the surface of the query design window.

In this chapter, you'll delve into some query magic that's sure to impress your boss, co-workers, and
romantic partners. You'll learn how to carry out calculations in a query and perform summaries that
boil columns of numbers down to neat totals. You'll also learn how to write super-intelligent filter
expressions and how to create dynamic queries that ask for information every time you run them.
These techniques are indispensable to the repertoire of any true query fanatic.

7.1. Calculated Fields

When you started designing tables, you learned that it's a database crime to add information that's
based on the data in another field or another table. An example of this mistake is creating a Products
table that has both a Price and a PriceWithTax field. The fact that the PriceWithTax field is calculated
based on the Price field is a problem. Storing both is a redundant waste of space. Even worse, if the
tax rate changes, then you're left with a lot of records to update and the potential for inconsistent
information (like a with-tax price that's lower than a no-tax price).

Even though you know not to create fields like PriceWithTax, sometimes you will want to see
calculated information in Access. Before Boutique Fudge prints a product list for one of its least-loved
retailers, it likes to apply a 10 percent price markup. To do this, it needs a way to adjust the price
information before printing the data. If the retailer spots the lower price without the markup, they're
sure to demand it.

Queries provide the perfect solution for these kinds of problems, because they include an all-purpose
way to mathematically manipulate information. The trick's to add a calculated field : a field that's
defined in your query, but doesn't actually exist in the table. Instead, Access calculates the value of a
calculated field based on one or more other fields in your table. The values in the calculated field are
never stored anywhereinstead, Access generates them each time you run the query.

7.1.1. Defining a Calculated Field

To create a calculated field, you need to supply two details: a name for the field, and an expression
that tells Access what calculation it must perform. Calculated fields are defined using this two-part
form:

 CalculatedFieldName: Expression

For example, here's how you can define the PriceWithTax calculated field:

 PriceWithTax: [Price] * 1.10

Essentially, this expression tells Access to take the value from the Price field, and then multiply it by
1.10 (which is equivalent to raising the price by 10 percent). Access repeats this calculation for each
record in the query results. For this expression to work, the Price field must exist in the table.
However, you don't need to show the Price field separately in the query results.

You can also refer to the Price field using its full name , which is made up of the table name, followed

by a period, followed by the field name, as shown here:

 PriceWithTax: [Products].[Price] * 1.10

This syntax is sometimes necessary if your query involves more than one table (using a query join,
as described in Section 6.3), and the same field appears in both tables. In this situation, you must
use the full name to avoid ambiguity. (If you don't, Access gives you an error message when you try
to run the query.)

Note: Old-time Access users sometimes replace the period with an exclamation mark (as in [Products]![Price] , which is equivalent.

To add the PriceWithTax calculated field to a query, you need to use Design view. First, find the
column where you want to insert your field. (Usually, you'll just tack it onto the end in the first blank
column, although you can drag the other fields around to make space.) Next, type the full definition
for the field into the Field box (see Figure 7-1).

Figure 7-1. This query shows two fields straight from the database (ID and Name), and adds the calculated PriceWithTax field.

The ordinary Price field, which Access uses to calculate PriceWithTax, isn't shown at all.

Now you're ready to run the query. When you do, the calculated information appears alongside your
other columns (Figure 7-2). If you don't like the fact that your calculated information appears in a

slightly messier formatwith more decimal places and no currency symbolyou can fix it up using the
rounding (Section 7.2.1.1) and formatting (Section 7.2.3) features discussed later in this chapter.

Figure 7-2. The query results now show a PriceWithTax field, with the result of the 10 percent markup. The neat part's that this

calculated information's now available instantaneously, even though it isn't stored in the database. Try and beat that with a pocket

calculator.

Calculated fields do have one limitationsince the information isn't stored in your table, you can't edit
it. If you want to make a price change, you'll need to edit the underlying Price fieldtrying to change
PriceWithTax would leave Access thoroughly confused.

Note: An expression works on a single record at a time. If you want to combine the information in separate records to calculate totals

and averages, then you need to use the grouping features described in Section 7.3 .

UP TO SPEED
Query Synchronization

Here's an interesting trick to try. Run the ProductsWithTax query and leave it open, displaying its
results. Now, open the Products table that has the actual data, and then change the price of any
product. Switch back to the ProductsWithTax query. Has the PriceWithTax value changed?

If you can't stand the suspense, fear notthe PriceWithTax is automatically refreshed to reflect the
new price. Access automatically keeps query views synchronized with the live data in your table.
When you change a record, Access noticesand it instantly refreshes the query window.

It's worth noting a few exceptions to this rule:

Access doesn't notice if you insert a new record after you launch a queryto get that to appear in
your query results, you need to refresh the results.

If you change a record so it no longer appears in your query, it doesn't automatically disappear
from view. If you have a query showing all products over $100, and you cut the price of one
down to $50, then it still appears in your query result list (with the new price) until you refresh
the results.

Similarly, if you change a record that currently appears in your query so it no longer fits one of
your filter criteria, it doesn't disappear from view until you rerun the query.

If multiple people are editing the database on different computers (as described in Chapter 18),
you don't see other people's changes right away.

To get the latest results, you can refresh individual records or the entire query. To refresh a single
record, choose Home Records Refresh Refresh Record. To rerun the query and refresh
everything, choose Home Records Refresh Refresh All. This action also shows any new
records and hides any that have been changed so that they no longer satisfy your filter conditions.

Before going any further, it's worth reviewing the rules of calculated fields. Here are some pointers:

Always choose a unique name . An expression like Price: [Price] * 1.10 creates a circular
reference , because the name of the field you're using is the same as the name of the field
you're trying to create. Access doesn't allow this sleight of hand.

Build expressions out of fields, numbers, and math operations . The most common
calculated fields take one or more existing fields or hard-coded numbers and combine them
using familiar math symbols like addition (+), subtraction (-), multiplication (*), or division (/).

Expect to see square brackets . The expression PriceWithTax: [Price] * 1.10 is equivalent to
PriceWithTax: Price * 1.10 (the only difference is the square brackets around the field name
Price). Technically, you need the brackets only if your field name contains spaces or special
characters. However, when you type in expressions that don't use brackets in the query Design
view, then Access automatically adds them, just to be on the safe side.

GEM IN THE ROUGH
Renaming a Field in a Query

Tired of seeing long field names in your query results? Based on what you've just learned about
expressions, you can painlessly rename a field in your query results. All you need is a calculated field.

The trick's to create a calculated field that matches one of the existing fields (using an expression)
and supplies a new name. Technically, you aren't performing any calculation here, but it still works
perfectly well. Here's an example of a calculated field that renames
DateCustomerPlacedPurchaseOrder to Date:

 Date: DateCustomerPlacedPurchaseOrder

The new name (in this example, Date) is known as an alias .

When using this technique, remember not to include the original field (in this case,
DateCustomerPlacedPurchaseOrder) in your query. The calculated field (Date) already shows the
information you want.

7.1.2. Simple Math with Numeric Fields

Many calculated fields rely entirely on ordinary high school math. Table 7-1 gives a quick overview of
your basic options for combining numbers.

+

Addition

1+1

2

-

Subtraction

1-1

0

*

Multiplication

2*2

4

^

Exponentiation

2^3

8

/

Division

5/2

2.5

\

Integer division (returns the lowest whole number and discards the remainder)

5\2

2

Mod

Modulus (returns the remainder left after division)

5 Mod 2

1

Table 7-1. Arithmetic Operators

Operator Name Example Result

You're free to use as many fields and operators as you need to create your expression. Consider a
Products table with a QuantityInStock field that records the number of units in your warehouse. To
determine the value you have on hand for a given product, you can write this expression that uses
two fields:

 ValueInStock: [UnitsInStock] * [Price]

Tip: When performing a mathematical operation with a field, you'll run into trouble if the field contains a blank value. To correct the

problem, you need the Nz() function, which is described in Section 7.3 .

7.1.2.1. Date fields

You can also use the addition and subtraction operators with date fields. (You can use multiplication,
division, and everything else, but it doesn't have any realistic meaning.)

Using addition, you can add an ordinary number to a date field. This number moves the date forward
by that many days. Here's an example that adds two weeks of headroom to a company deadline:

 ExtendedDeadline: [DueDate] + 14

If you use this calculation with the date January 10, 2007, the new date becomes January 24, 2007.

Using subtraction, you can find the number of days between any two dates. Here's how you calculate
how long it was between the time an order was placed and when it was shipped:

 ShippingLag: [ShipDate] - [OrderDate]

If the ship date occurred 12 days after the order date, you'd see a value of 12.

Note: Date fields can include time information. In calculations, the time information's represented as the fractional part of the value. If

you subtract two dates and wind up with the number 12.25, that represents 12 days and six hours (because six hours is 25 percent of a

full day).

Remember, if you want to include literal dates in your queries (specific dates you supply), you need
to bracket them with the # character and use Month/Day/Year format. Here's an example that uses
that approach to count the number of days between the date students were expected to submit an
assignment (March 20, 2007) and the date they actually did:

 LateDays: [DateSubmitted] - #03/20/07#

A positive value indicates that the value in DateSubmitted is larger (more recent) than the deadline
datein other words, the student was late. A value of 4 indicates a student that's four days off the
mark, while 4 indicates a student that handed the work in four days ahead of schedule.

7.1.2.2. Order of operations

If you have a long string of calculations, Access follows the standard rules for order of operations :
mathematician-speak for deciding which calculation to perform first when there's more than one
calculation in an expression. So if you have a lengthy expression, Access doesn't just carry on from
left to right. Instead, it evaluates the expression piece by piece in this order:

Parentheses (Access always performs any calculations within parentheses first)1.

Percent2.

Exponents3.

Division and multiplication4.

Addition and subtraction5.

4.

5.

Suppose you want to take the QuantityInStock and the QuantityOnOrder fields into consideration to
determine the value of all the product you have available and on the way. If you're not aware of the
order of operation rules, then you might try this expression:

 TotalValue: [UnitsInStock] + [UnitsOnOrder] * [Price]

The problem here is that Access multiplies QuantityOnOrder and Price together, and then adds it to
the QuantityInStock. To correct this oversight, you need parentheses like so:

 TotalValue: ([UnitsInStock] + [UnitsOnOrder]) * [Price]

Now the QuantityInStock and QuantityOnOrder fields are totaled together, and then multiplied with
the Price to get a grand total.

Tip: Need some more space to write a really long expression? You can widen any column in the query designer to see more at once, but

you'll still have trouble with complex calculations. Better to click in the Field box, and then press Shift+F2. This action pops open a dialog

box named Zoom, which shows the full content in a large text box, wrapped over as many lines as necessary. When you've finished

reviewing or editing your expression, click OK to close the Zoom box and keep any changes you've made, or Cancel to discard them.

7.1.3. Expressions with Text

Although calculated fields usually deal with numeric information, they don't always. You have
genuinely useful ways to manipulate text as well.

If you have text information, then you obviously can't use addition, subtraction, and other
mathematical operations. However, you can join text together. You can, for instance, link several
fields of address information together and show them all in one field, conserving space (and possibly
making it easier to export the information to another program).

To join text, you use the ampersand (&) operator. For example, here's how to create a FullName field
that draws information from the FirstName and LastName fields:

 FullName: [FirstName] & [LastName]

This expression looks reasonable enough, but it's actually got a flaw. Since you haven't added any
spaces, the first and last name end up crammed together, like this: BenJenks . A better approach is
to join together three pieces of text: the first name, a space, and the last name. Here's the revised
expression:

 FullName: [FirstName] &" "& [LastName]

This produces values like Ben Jenks . You can also swap the order and add a comma, if you prefer to
have the last name first (like Jenks, Ben) for better sorting:

 FullName: [LastName] & ", " & [FirstName]

Note: Access has two types of text values: those you draw from other fields, and those you enter directly (or hard-code). When you

hard-code a piece of text (such as the comma and space in the previous example), you need to wrap it in quotation marks so Access

knows where it starts and stops.

You can even use the ampersand to tack text alongside numeric values. If you want the slightly
useless text "The price is" to appear before each price value, use this calculated field:

 Price: "The price is: " & [Price]

7.2. Query Functions

By now, it may have crossed your mind that you can manipulate numbers and text in even more
ambitious waysways that go beyond what the basic operators let you do. You may want to round off
numbers or capitalize text. Access does include a feature that lets you take your expressions to the
next level, and it's called functions .

A function's a built-in algorithm that takes some data that you supply, performs a calculation, and
then returns a result. The difference between functions and the mathematical operators you've
already seen is the fact that functions can perform far more complex operations. Access has a
catalog with dozens of different functions, many of which perform feats you wouldn't have a hope of
accomplishing on your own.

Functions come in handy in all sorts of interesting places in Access. You can use them in:

Calculated fields . To add information to your query results.

Filter conditions . To determine what records you see in a query.

Visual Basic code . The all-purpose extensibility system for Access that you'll tackle in Part
Five .

As you explore the world of functions, you'll find that many are well suited to calculated fields but not
filter conditions. In the following sections, you'll see exactly where each function makes most sense.

Note: Functions are a built-in part of the Access version of SQL (Section 6.2.3), which is the language it uses to perform data

operations.

7.2.1. Using a Function

Whether you're using the simplest or the most complicated function, the syntax the rules for using a
function in an expressionis the same. To use a function, simply enter the function name, followed by
parentheses. Then, inside the parentheses, put all the information the function needs in order to
perform its calculations (if any).

For a good example, consider the handy Round() function, which takes a fractional number and then
tidies up any unwanted decimal places. Round() is a good way to clean up displayed values in a
calculated field. You'll see why Round() is useful if you create an expression like this, which discounts
prices by five percent:

 SalePrice: [Price] * 0.95

Run a price like $43.97 through this expression, and you wind up with 41.7715 on the other
sidewhich doesn't look that great on a sales tag. The Round() function comes in handy here. Just
feed it the unrounded number and the number of decimal places you want to keep:

 SalePrice: Round([Price] * 0.95, 2)

Technically, the Round() function requires two pieces of information, or arguments . The first's the
number you want to round (in this case, it's the result of the calculation Price * 0.95), and the
second's the number of digits that you want to retain to the right of the decimal place (2). The result:
the calculation rounded to two decimal places, or 41.77.

Note: Most functions, like Round(), require two or three arguments. However, some functions can accept many more, while a few don't

need any arguments at all.

FREQUENTLY ASKED QUESTION
Banker's Rounding

Access doesn't seem to round numbers correctly. What's going on?

It may surprise you that Access rounds the number 21.985 to 21.98. If you were taught to always
round up the number 5, you probably expect 21.99 instead. This is known as arithmetic rounding .
However, Access doesn't use arithmetic roundinginstead, it chooses banker's rounding , which is
better in some situations.

The difference between arithmetic rounding and banker's rounding is how they treat the number 5.
Since 21.985 lies exactly halfway between 21.98 and 21.99, it isn't easy to decide what to do with it.
If you always round 5 up, you'll introduce a bias in totals and averages. Because you round up more
often that you round down, any total or average that you calculate ends up just a smidge higher than
it should be.

Banker's rounding addresses this by rounding 5 up sometimes and down other times, depending on
whether it's paired with an even or odd number. 21.985 is rounded down to 21.98, but 21.995 is
rounded up to 22. This way isn't the only way to fight rounding bias (you could decide randomly
when to round and when not to), but it's a commonly accepted practice in accounting and statistics.

7.2.1.1. Nested functions

You can use more than one function in a single calculated field or filter condition. The trick is nesting :
nerdspeak for putting one function inside another. For example, Access provides an absolute-value
function named Abs() that converts negative numbers to positive numbers (and leaves positive
numbers unchanged). Here's an example that divides two fields and makes sure the result is
positive:

 Speed: Abs([DistanceTravelled] / [TimeTaken])

If you want to round this result, you place the entire expression inside the parentheses for the
Round() function, like so:

 Speed: Round(Abs([DistanceTravelled] / [TimeTaken]), 2)

When evaluating an expression with nested functions, Access evaluates the innermost function first.
Here, it calculates the absolute value, and then rounds the result. In this example, you could swap
the order of these steps without changing the result:

 Speed: Abs(Round([DistanceTravelled] / [TimeTaken], 2))

In many other situations, the order you use is important, and different nesting produces a different
result.

Nested functions can get ugly fast. Even in a relatively simple example like the speed calculation, it's
difficult to tell what's going on without working through the calculation piece by piece. And if you
misplace a bracket, the whole calculation can be thrown off. When you need to nest functions, it's a
good idea to build them up bit by bit, and run the query each time you add another function into the
mix, rather than try to type the whole shebang at once.

7.2.2. The Expression Builder

Functions are a great innovation, but Access just might have too much of a good thing. Access
provides a catalog of dozens of different functions tailored for different tasks, some of which are
intended for specialized mathematical or statistical operations.

Note: This book doesn't cover every Access function. (If it did, you'd be fighting to stay awake.) However, in the following sections you'll

see the most useful functions for working with numbers, text, and dates. To discover even more functions, use the Expression Builder.

Or, if you prefer to do your learning online, check out the pithy resource www.techonthenet.com/access/functions .

To quickly find the functions you want, Access provides a tool called the Expression Builder. To launch
the Expression Builder, follow these steps:

Open a query in Design view .1.

Right-click the box where you want to insert your expression, and then choose Build .

If you're creating a calculated field, then you need to right-click the Field box. If you're creating

2.

a filter condition, then you need to right-click the Criteria box.

Once you choose Build, the Expression Builder appears, showing any content that's currently in
the box (Figure 7-3).

Figure 7-3. The Expression Builder consists of a text box at the top of the window, where you can edit your expression,

some buttons that quickly insert common operators (like +, -, /, and *, if for some reason you can't find them on the keyboard),

and a three-paned browser at the bottom of the window that helps you find fields and functions you want to use.

2.

Add or edit the expression .

The Expression Builder includes two shortcuts that you'll want to try. You can insert a name
without typing it by hand (Figure 7-4), and you can find a function by browsing (Figure 7-5).

3.

Figure 7-4. To pop in a new field name, double-click the Tables folder in the leftmost list. Then, click the subfolder that

corresponds to the table you want to use. Finally, double-click the field name in the middle list to insert it into your expression.

This technique's recommended only for those who love to click.

Note: The Expression Builder is an all-purpose tool to create expressions for calculated fields and filter conditions. Some options

make sense only in one context. The logical operators like the equals (=) symbol and the And, Or, Not, and Like operators are

useful for setting criteria for filtering (Section 6.2.1.1), but don't serve any purpose in calculated fields.

Figure 7-5. To find a function, start by double-clicking the Functions folder in the list on the left. Then, choose the Built-

In Functions subfolder. (The other option shows you any custom functions that you've added to your database using custom VBA

code.) Next, choose a function category in the middle list. The list on the right shows all the functions in that category. You can

double-click the function to insert it into your expression.

Note: When you insert field names in the Expression builder, they're written in a slightly lengthier format that always includes the

table name. You'll see [Products]![Price] instead of just [Price] . Don't worry both mean the same thing to Access.

Click OK .

Access copies your new expression back into the Field box or Criteria box.

4.

Note: When you use the Expression Builder to add a function, it adds placeholders (like <number> and <precision>) where you need to

supply the arguments. Replace this text with the values you want to use.

Most Access experts find that the Expression Builder is too clunky to be worth the trouble. But even
though the Expression Builder may not be the most effective way to write an expression, it's a great
way to learn about new and mysterious functions, thanks to its built-in function reference. If you find
a function that sounds promising but you need more information, select it in the list and then click
Help. You'll be rewarded with a brief summary that explains the purpose of the function and the

arguments you need to supply, as shown in Figure 7-6 .

Figure 7-6. The reference for the Round() function spells out what it does, and explains the two parameters. One

parameterthe number of decimal placesis wrapped in square brackets, which means it's an optional value. Leave it out, and Access

rounds to the nearest whole number. You'll also notice a table of contents on the left that lets you browse to any other Access function

and read its description.

7.2.3. Formatting Numbers

Format() is one interesting mathematical function, which transforms numbers into text. Format() is
interesting because the text it creates can be formatted in several different ways, which allows you to
control exactly how your numbers are presented.

To understand the difference, think back to the expression you used earlier for discounting product
prices:

 SalePrice: [Price] * 0.95

Even if the Price field has the Currency data type, the calculated values in the SalePrice field appear
as ordinary numbers (without the currency sign, thousands separator, and so on). So you see 43.2
when you might prefer $43.20.

You can remedy this problem by using the Format() function to apply a currency format:

 SalePrice: Format([Price] / 0.95, "Currency")

Now the calculated values include the currency sign. Even better, since currencies are displayed with
just two decimal places, you no longer need to clean up fractional values with the Round() function.

The trick to using the Format() function is knowing what text to supply for the second argument in
order to get the result you want. Table 7-2 spells out your options.

Currency

Displays a number with two decimal places, thousand separators, and the currency sign.

$1,433.20

Fixed

Displays a number with two decimal places.

1433.20

Standard

Displays a number with two decimal places and the thousands separator.

1,433.20

Percent

Displays a percent value (a number multiplied by 100 with a percent sign). Displays two digits to the
right of the decimal place.

143320.00%

Scientific

Displays a number in scientific notation, with two decimal places.

1.43E+03

Yes/No

Displays No if the number's 0 and Yes if the number's anything else. You can also use the similar
format types True/False and On/Off.

Yes

Table 7-2. Formatting Options

Format Description Example

POWER USERS' CLINIC
More Advanced Number Formats

True perfectionists won't be happy with the format options in Table 7-2 . Instead, they'll want
complete control over the number of decimal places. One option is to use the FormatCurrency(),
FormatPercent(), and FormatNumber() functions (depending on whether you want the resulting text
to use currency format, percent format, or be displayed as an ordinary number). When using these
functions, you pass the value that you want to format as the first argument, and the number of
decimal places you want to keep in the second argument.

For even more control, you can define a custom number format that spells out exactly what you
want, and use that with the Format() function. You won't learn about custom number formats in this
book, but you can get more information on this feature in Excel 2007: The Missing Manual , or in
Access Help (Figure 7-6).

7.2.4. More Mathematical Functions

The mathematical functions in Access don't get much respect, because people don't need them
terribly often. You've already seen Round() and Format()the most useful of the bunchbut there are
still a few others that Access mavens turn to from time to time in calculated fields. They're listed in
Table 7-3 .

Sqr()

Get the square root

Sqr(9)

3

Abs()

Gets the absolute value (negative numbers become positive)

Abs(-6)

6

Round()

Rounds a number to the specified number of decimal places

Round(8.89, 1)

8.9

Fix()

Gets the integer portion of the number, chopping off any decimal places

Fix(8.89)

8

Int()

The same as Fix(), but negative numbers are rounded down instead of up

Int(-8.89)

-9

Rnd()

Generates a fractional random number between 0 and 1

Int ((6) * Rnd + 1)

A random integer from 1 to 6

Val()

Converts numeric data in a text field into a bona fide number, so that you can use it in a calculation.
Stops as soon as it finds a non-numeric character, and returns 0 if it can't find any numbers.

Val("315 Crossland St")

315

Format()

Turns a number into a formatted string, based on the options you chose

Format(243.6, Currency)

$243.60

Table 7-3. Functions for Numeric Data

Function Description Example Result

GEM IN THE ROUGH
Use Random Numbers for a Random Sort

People rarely use the Rnd() functionafter all, who needs to fill a column with made-up information?
However, enterprising Access gurus have come up with one intriguing use for Rnd(). They use it to
sort a table so that all the records appear in a random order.

Basically, you add a calculated field that holds the random number. You can use a field expression
such as Random: Rnd() . If you look at your query results, then you will see a random value
between 0 and 1 (like 0.7045, 0.2344, and so on) next to each record.

Now, switch back to Design view, and then clear the Show checkbox so that the Random field doesn't
appear in the datasheet. Next, choose Ascending or Descending (it really doesn't matter) in the Sort
box, and then rerun the query. Voilà! Every time you use this query, the records appear in a different
order, according to the random numbers that Access generates on the fly.

7.2.5. Text Functions

So far, all the functions you've seen have worked with numeric data. However, there's still a lot you
can do with text. Overall, there are three ways you can manipulate text:

Join text . You can do things like combining several fields together into one field. This
technique doesn't require a functioninstead, you can use the & operator described in Section
7.1.3 .

Extract part of a text value . You may want just the first word in a title or the first 100
characters in a description.

Change the capitalization . You may want to show lowercase text in capitals, and vice versa.

Table 7-4 shows the most common functions people use with text.

UCase()

Capitalizes text

UCase("Hi There")

HI THERE

LCase()

Puts text in lowercase

LCase("Hi There")

hi there

Left()

Takes the number of characters you indicate from the left side

Left("Hi There", 2)

Hi

Right()

Takes the number of characters you indicate from the right side

Right("Hi There", 5)

There

Mid()

Takes a portion of the string starting at the position you indicate, and with the length you indicate

Mid("Hi There", 4, 2)

Th

Trim()

Removes blank spaces from either side (or use LTrim() and RTrim() to trim spaces off just the left
or right side)

Trim("Hi There")

Hi There

Len()

Counts the number of characters in a text value

Len("Hi There")

8

Table 7-4. Functions for Text

Function Description Example Result

Using these functions, you can create a calculated field that shows a portion of a long text value, or
changes its capitalization. However, how you can use these functions in a filter expression may not

be as obvious. You could create a filter condition that matches part of a text field, instead of the
whole thing. Here's an example of a filter condition that selects records that start with Choco :

 Left([ProductName], 5) = "Choco"

Figure 7-7 shows how you enter this filter condition.

Figure 7-7. The Left(), Right(), and Mid() functions work in much the same way as the Like keyword (Section 4.3.2.3) to help

you match bits and pieces of long text values.

The Len() function's a bit of an oddity. It examines a text value and returns numeric information (in
this case, the number of characters in the value, including all spaces, letters, numbers, and special
characters). The Len() function isn't too useful in a simple calculated expression, because you'll
rarely be interested in the number of letters in a text value. However, it does let you write some
interesting filter conditions, including this one that grabs records with a Description of less than 15
characters (which probably could use some extra information):

 Len(Description) < 15

7.2.6. Date Functions

You've already seen how you can use simple addition and subtraction with dates (Section 7.1.2.2).
However, you can accomplish a whole lot more with some of Access's date functions.

Without a doubt, everyone's favorite date functions are Now() and Date(), which you first saw in
Chapter 4 (Section 4.3.2.3). These functions grab the current date and time, or just the current
date. You can use these functions to create queries that work with the current year's worth of orders.

Here's a filter condition that uses Date() to select projects that are past due:

 =<Date()

Add this to the Criteria box for the DueDate field, and you'll see only those records that have a
DueDate that falls on or before today.

Date logic becomes even more powerful when paired with the DatePart() function, which extracts
part of the information in a date. DatePart() can determine the month number or year, letting you
ignore other details (like the day number and the time). Using DatePart() and Date(), you can easily
write a filter condition like this one, which selects all the orders placed in the current month:

POWER USERS' CLINIC
How to Extract the First Word from a Text Value

The string manipulation functions are designed with characters in mind. They can count letters, but
they don't have any understanding of words and sentences.

One way you can get around this limitation is to use the unusual Instr() function, which searches for
one or more characters inside a text value. (The name Instr() is short for "in string", because you're
looking for specific characters inside a text string.) To search for the characters "he" in the text string
"Hi There," you'd use Instr() like this:

 Instr("Hi There", "he")

The result's 5, because the text "he" begins in the fifth character position. If Access can't find a
match, then Instr() returns a result of 0. If there are multiple matches, then Instr() gets the first.

On its own, Instr() isn't terribly useful for filter conditions or calculated fields. However, you can use
it in combination with other functions, like Mid() and Left(), to snip out a part of a string near
another letter. You could use Instr() to search for the first space, and take all the text before that
space. In this way, you end up extracting an entire word.

Here's a slightly mind-bending calculated field that gets the first word from a ProductName field,
using nested functions (Section 7.2.2). (It's split over several lines here to fit the page. When you
type it in, you'll put the entire expression on one line.)

 FirstWordProduct:
 Left([ProductName], Instr([ProductName],
 " " - 1))

This expression translates as "find the position of the first space, subtract one, and take that many
characters from the left of the text." Run this on a field with the value Banana Cream Fudge , and
you'll wind up with the truncated text Banana , which makes for an impressive party trick.

 DatePart("m", [DatePlaced])=DatePart("m", Date())
 And DatePart("yyyy", [DatePlaced])=DatePart("yyyy", Date())

This rather lengthy expression's actually a combination of two conditions joined by the And keyword.
The first condition compares the month of the current date with that of the date stored in the
DatePlaced field:

 DatePart("m", [DatePlaced])=DatePart("m", Date())

This expression establishes that they're the same calendar month, but you also need to make sure
it's the same year:

 DatePart("yyyy", [DatePlaced])=DatePart("yyyy", Date())

The trick to using DatePart() (and several other date functions) is understanding the concept of date
components . As you can see, using the text m with the DatePart() functions gets the month
number, and using the text yyyy extracts a four-digit year. Table 7-5 shows all your options.

yyyy

Year, in four-digit format

2006

q

Quarter, from 1 to 4

1

m

Month, from 1 to 12

2

y

Day of year, from 1 to 365 (usually)

51

d

Day, from 1 to 31

20

w

Day of week, from 1 to 7

2

ww

Week of the year, from 1 to 52

8

h

Hour, from 1 to 24

13

n

Minute, from 1 to 60

30

s

Second, from 1 to 60

0

Table 7-5. Date Components

Component Description Value for February 20, 2006 1:30 PM

WORD TO THE WISE

Calculations with Dates and Times

When using date functions, you always need to be mindful of dates that include time information.
(Remember, all date values can include time information. However, you tell Access whether or not to
show the time component of a date, and let people enter it by choosing the right format for you date
field, as explained in Section 2.3.5 . Most of the time, you'll use a format that hides any time
information.)

Here's the issue: The Date() function returns the current date with a time value of 0. In other words,
if the current date's July 4, 2008, the Date() function gives you the very first second of July 4,
2008the moment when the clock hit 12:00 a.m. (midnight).

If you aren't storing time values, this issue isn't important, because all your dates have a time value
of 0. But consider what happens if you use the General Date format (Section 2.3.5) for your
DueDate, which lets users enter both date and time information. Now the =<Date() filter
expressions has a slightly different meaningit tells Access to match all the fields that were due on or
before the first second of the current day. This filter expression doesn't match a record with a due
date of 4:00 p.m. today.

In this situation, you probably want to change the filter expression to this:

 <(Date()+1)

Date()+1 is tomorrow. In other words, this filter matches any records that have a due date that falls
before the first second of tomorrow.

Incidentally, Access also has a function named Now() that gets the current date and time. So this
filter expression matches any records that were due at the current time (of the current day) or any
time and any day before that:

 =<Now()

You use the date components with several date functions, including DatePart(), DateAdd(), and
DateDiff(). Table 7-6 has these and more useful date-related functions.

Date()

Gets the current date

Date()

1/20/2006

Now()

Gets the current date and time

Now()

1/20/2006 10:16:26 PM

DatePart()

Extracts a part of a date (like the year, month, or day number)

DatePart(#1/20/2006#, "d")

20

DateSerial()

Converts a year, month, and day into an Access date value

DateSerial(2006, 5, 4)

5/4/2006

DateAdd()

Offsets a date by a given interval

DateAdd ("yyyy", 2, #22/11/2006#)

22/11/2008

DateDiff()

Measures an interval between two dates

DateDiff("w", #10/15/2006#, #1/11/2007#)

12

MonthName()

Gets the name that corresponds to a month number (from 1 to 12)

MonthName(1)

"January"

WeekdayName()

Gets the name that corresponds to a weekday number (from 1 to 7)

WeekdayName(1)

"Sunday"

Format()

Converts a date into formatted text (using any of the date formats described in Section 2.3.5)

Format (#27/04/2008#, "Long Date")

"April 27, 2008"

Table 7-6. Functions for Dates

Function Description Example Result

Tip: Access has other date functions that provide part of the functionality of DatePart(). One example's Month(), which extracts the

month number from a date. Other duplicate functions include Year(), Day(), Hour(), Minute(), and Second(). These functions don't

add any advantages, but you may see them used in other people's queries to get an equivalent result.

7.2.7. Dealing with Blank Values (Nulls)

Databases have two types of fields: required and optional. Ordinarily, fields are optional (as discussed
in Section 4.1.1), which means a sloppy person can leave a lot of blank values. These blank values
are called nulls , and you need to handle them carefully.

If you want to write a filter condition that catches null values, simply type this text into the criteria
box:

 Is Null

This condition matches any fields that are left blank. Use this on the CustomerID field in the Orders
table to find any orders that aren't linked to a customer. Or ignore unlinked records by reversing the
condition, like so:

 Is Not Null

Sometimes, you don't want to specifically search for (or ignore) null values. Instead, you want to
swap those values with something more meaningful to the task at hand. Fortunately, there's an oddly
named tool for just this task: the Nz() function.

The Nz() function takes two arguments. The first's a value (usually a query field) that may contain a
null value. The second parameter's the value that you want to show in the query results if Access
finds a null value. Here's an example that uses Nz() to convert null values in the Quantity field to 0:

 Nz([Quantity], 0)

Converting to 0 is actually the standard behavior of Nz(), so you can leave off the second parameter
if that's what you want:

 Nz([Quantity])

At this point, you may not be terribly impressed at the prospect of changing blank values in your
datasheet into zeroes. But this function's a lifesaver if you need to create calculated fields that work
with values that could be null. Consider this innocent-seeming example:

 OrderItemCost: [Quantity] * [Price]

This expression runs into trouble if Quantity is null. Nulls have a strange way of spreading, somewhat
like an invasive fungus. If you have a null anywhere in a calculation, the result of that calculation is
automatically null. In this example, that means the OrderItemCost for that record becomes null. Even
worse, if the OrderItemCost enters into another calculation or a subtotal, that too becomes null.
Before you know it, your valuable query data turns into a ream of empty cells.

To correct this problem, use the Nz() function to clean up any potential nulls in optional fields:

 OrderItemCost: Nz([Quantity]) * Nz([Price])

Finally, you can use Nz() to supply a different value altogether. In a text field, you may choose to
enter something more descriptive. Here's an example that displays the text [Not Entered] next to
any record that doesn't include name information:

 Name: Nz([FirstName] & [LastName], "[Not Entered]")

7.3. Summarizing Data

All the queries you've used so far work with individual records. If you select 143 records from an
Orders table, you see 143 records in your results. You can also group your records to arrive at totals
and subtotals. That way, you can review large quantities of information much more easily, and make
grand, sweeping conclusions.

Some examples of useful summarizing queries include:

Counting all the students in each class

Counting the number of orders placed by each customer

Totaling the amount of money spent on a single product

Totaling the amount of money a customer owes or has paid

Calculating the average order placed by each customer

Finding the highest or lowest priced order that a customer has placed

These operationscounting, summing, averaging, and finding the maximum and minimum valueare
the basic options in a totals query . A totals query's a different sort of query that's designed to chew
through a large number of records and spit out neat totals.

To create a totals query, follow these steps:

Create a new query by choosing Create Other Query Design .1.

Add the tables you want to use from the Show Table dialog box, and then click Close .

The following example uses the Products table from the Boutique Fudge database.

2.

Add the fields you want to use .

This example uses the Price field, but with a twist: the Price field is added three separate times.
That's because the query will show the result of three different calculations.

3.

Choose Query Tools | Design Show/Hide Totals .

Access adds a Total box for each field, just under the Table box.

4.

For each field, choose an option from the Total box. This option determines whether
the field is used in a calculation or used for grouping .

5.

A totals query is slightly different from a garden-variety query. Every field must fall into one of
these categories:

It's used in a summary calculation (like averaging, counting, and so on) . You
pick the type of calculation you want to perform using the Total box. Table 7-7 describes
all the options in the Total box.

It's used for grouping . Ordinarily, a totals query lumps everything together in one
grand total. But you can subdivide the results into smaller subtotals, as described in the
next section.

It's used for filtering . In this case, in the Total box, you need to choose WHERE.
(Database nerds may remember that Where is the keyword used to define criteria in SQL,
as described in Section 6.2.3.1 .) You also need to clear the checkmark in the Show box,
because Access doesn't have a way to show individual values in a totals summary.

5.

Note: If you try to add a field to a totals query that isn't used for a calculation, isn't used for grouping, and isn't hidden, you'll receive an

error when you try to run the query.

In this example (Figure 7-8), the Price field uses three different summarizing options: Max, Min, and
Avg.

Figure 7-8. Top: This totals query includes the same fieldPricethrice, and uses three difficult calculations. Notice that each field

uses an expression that provides a more descriptive name (Section 7.1.2).

Bottom: The results show a single record with the maximum price, minimum price, and average price of the products sold by Boutique

Fudge.

Note: Table 7-7 leaves out two options that are tailor-made for statisticians StDev and Varwhich calculate the standard deviation and

variance of a set of numbers.

Group By

Subgroups records based on the values in this field

Sum

Adds together the values in this field

Avg

Averages the values in this field

Min

Retains the smallest value in this field

Max

Retains the largest value in this field

Count

Counts the number of records (no matter which field you use)

First

Retains the first value in this field

Last

Retains the last value in this field

Table 7-7. Options for Summarizing Data

Choice in the Total Box Description

You can use all the same query-writing skills you picked up earlier in this chapter when designing a
totals query. If you want to summarize only the products in a specific category, you can use a filter
expression like this in the CategoryID field:

 =3

This expression matches records that have a CategoryID of 3 (which means they're in the Candies
category).

Note: If you want to perform a filter on a field that you aren't using for a calculation or grouping, make sure that in the Total box, you

choose Where, and in the Show box, you clear the checkmark.

7.3.1. Grouping a Totals Query

The simplest possible totals query adds all the records you select into a single row of results, as
shown in Figure 7-8 . A more advanced totals query uses grouping to calculate subtotals .

The trick to using grouping properly is remembering that the field you use should have many
duplicate values. For example, it's a good idea to group customers based on the state in which they
live. Because a given state has many customers, you'll end up with meaningful subtotals. However,
it's a bad idea to group them based on their Social Security numbers, because you'll end up with just
as many groups as you have customers. Figure 7-9 shows an example of totals query that uses
grouping.

You can use multiple levels of grouping in a totals query by adding more than one field with the Total
box set to Group By. However, the results might not be exactly what you expect. Suppose you group
a long list of sales records by product and by customer. You'll end up with a separate group for every
customer-and-product combination. Here's part of the results for a query like this that groups records
from the OrderDetails table in the Boutique Fudge database and then sorts them by CustomerID:

Figure 7-9. Top: Here, products are grouped by product category.

Bottom: The result: a separate row with the totals for each product category.

10

108

$432.12

10

134

$16.79

10

210

$53.30

14

144

$18.99

18

112

$107.04

18

210

$12.02

Table 7-8.

CustomerID ProductID TotalSales

This table tells you that customer #10 has spent a total of $432.12 dollars on product #108 across all
orders. Customer #10 also spent a total of $16.79 on product #134, $53.30 on product #210, and so
on. (You could take the same information and sort it by ProductID to look at the total sales of each
product to different customers. You still get the same information, but you can analyze it in a
different way.)

This is the result you wantsort of. It lacks nice subtotals. It would be nice to know how much
customer #10 spent on each type of product, and how much customer #10 spent in total. But thanks
to the rigid tabular structure of the totals query, this result just isn't possible.

If you want to look at this subgrouped information with subtotals, you have two choices. You can use
a crosstab query or a pivot-table querytwo advanced summary options that are described in Chapter
9 . Or, if you're really interested in printing out your information, you can generate a report that
includes multiple levels of grouping and subtotals, as described in Part Three .

7.3.2. Joins in a Totals Query

Summary queries are insanely useful when you combine them with table joins (Section 6.3) to get
related information out of more than one table. In the Boutique Fudge database, the OrderDetails
table stores the individual items in each order. You can group this information (as shown in the

previous section) to find top-selling products or customers. However, you see only the customer and
product ID values, which isn't very helpful.

Note: If you have a lookup defined on the ProductID field and CustomerID field, you will see the descriptive information from the lookup

(like the product name or customer name). This information helps a bit, but you may still want to pull extra informationlike the customer's

address, the product description, and so onout of the linked table.

If you throw a join or two into the mix, you can pull in related information from linked tables (like
Customers, Products, and Orders) and add it to your results. Figure 7-10 shows an example that
groups the OrderDetails table by OrderID to find the total cost of each order. It then sorts the results
by CustomerID.

You already know enough to build the query shown in Figure 7-10 . Here's what you need to do:

Create a new query by choosing Create Other Query Design .1.

Add the tables you want to use from the Show Table dialog box, and then click Close .

The example in Figure 7-10 uses the Customers, Orders, and OrderDetails tables. As you add
these tables, Access fills in the join lines in between, based on the relationships defined in your
database.

2.

Choose Query Tools | Design Show/Hide Totals .

This adds the Total box for each field.

3.

Figure 7-10. Top: This totals query gets more advanced by drawing from three related tablesCustomers, Orders, and

OrderDetailsto show a list of order totals, organized by customer. The query ignores orders less than $25. You could also add a

filter expression on the DatePlaced field to find out how much customers spent so far this year, how much they spent last year,

how much they spent last week, and so on.

Bottom: The results are grouped by OrderID and sorted by LastName and FirstName, which preserves a good level of detail.

3.

4.

Add the fields you want to use, and then, in the Total box, choose the appropriate
grouping or summarizing option for each one .

You can choose your fields from any of the linked tables. This example uses several fields:

OrderID . This field's used to group the results. In other words, you want to total all the
records in the OrderDetails table that have the same OrderID. To make this work, in the
Total box, choose Group By. (Incidentally, it makes no difference whether you choose the
OrderID field in the OrderDetails table or the ID field in the Orders tablethey're both
linked.)

OrderTotal . This field's a calculated field that uses the expression [Price]*[Quantity] to
multiply together two fields from the OrderDetails table. The result's the total for that
individual line of the order. Access adds up all these line totals to create the grand order
total, so set the Total box to Sum. In addition, the OrderTotal field includes the filter
expression >=25, which hides any orders that have a combined value of less than $25.

LastName and FirstName . These fields identify the customer who made the order.
However, there's a trick here. In order to show any field in a totals query, you need to
perform a calculation on it (as with OrderTotal) or use it for grouping (as with OrderID).
That means you must set the Total box to Group By for both LastName and FirstName.
However, this setting doesn't actually have an effect, because every order's always placed
by a single customer. (In other words, you'll never find a bunch of records in the
OrderDetails table that are for the same order but for different customers. It just isn't
possible.) The end result is that Access doesn't perform any grouping on the LastName
and FirstName fields. Instead, they're simply displayed next to every order.

Note: This grouping trick's a little weird, but it's a common technique in totals queries. Just remember, Access creates the

smallest groups it can. If you want to group by customers only (so you can see how much everyone spends), you simply need to

remove the OrderID grouping and group on CustomerID instead. Or, if you want to total all the sales of a particular product,

remove all the customer information, group on ProductID, and then add any extra fields you want to see from the Products table

(like Product-Name and Description).

4.

You can now run your query .5.

7.4. Query Parameters

Query parameters are the Access database's secret weapon. Query parameters let you create
supremely flexible queries by intentionally leaving out one (or more) pieces of information. Every
time you run the query, Access prompts you to supply the missing values. These missing values are
the query parameters.

Usually, you use query parameters in filter conditions. Suppose you want to view the customers who
live in a specific state. You could create a whole range of different queries, like NewYorkCustomers,
CaliforniaCustomers, OhioCustomers, and so on. If you're really interested in only a few states, this
approach makes sense. But if you want to work with each and every one, it's better to create a single
query that uses a parameter for the state information. When you run the query, you fill in the state
you want to use at that particular moment.

To create a query that uses parameters, follow these steps:

Create a new query by choosing Create Other Query Design.1.

From the Show Table dialog box, add the tables you want to use, and then click
Close.

This example uses the Customers table.

2.

Choose Query Tools | Design Show/Hide Parameters.

The Query Parameters dialog box appears.

3.

Choose a name and data type for your parameter (Figure 7-11).

You can use any name you want (but don't choose a name that's already in use for a field in
your query). The data type should match the field on which you're using the parameter. You set
the data type by choosing one of the options in the drop-down list. Common choices are Text,
Integer, Currency, and Date/Time.

4.

Figure
7-11. You

can define as

many

parameters as

you want. Here,

the window

defines a single

parameter

named

CustomerState,

which contains

text.

Click OK to close the Query Parameters dialog box.5.

Now you can use the parameter by name, in the same way that you'd refer to a field in your query.
For example, you can add the following filter condition to the State field:

 [CustomerState]

Make sure you keep the square brackets so Access knows you're not trying to enter a piece of text.

When you run this query, Access pops open the Enter Parameter Value dialog box, asking for a value
(Figure 7-12). Enter the state you're interested in, and then click OK. Access uses your value for the
filter on the State field.

Figure 7-12. Every time you run this

query, you can home in on a different state. Here,

you're about to see customers in New York.

Tip: Even though you can, it's best not to use more than one query parameter in the same query. When you run a query, Access shows

a separate Enter Parameter Value dialog box for each value. If you have a handful of parameters, then you need to click your way

through an annoying number of windows.

There's no shortage of practical ways to use query parameters. You could adapt a yearly sales query
to use whatever year you choose. You could work similar magic to create a single query to show
sales from any month.

However, you shouldn't use query parameters to help you out with day-to-day data-entry tasks (like
updating a single customer record). Forms, which you'll begin building in Part Four, give you a more
powerful way to browse and edit information.

8. Queries That Update Records
Queries are most famously known for their ability to show small subsets of huge amounts of
information. This type of query's called a select query, and it's the variety you learned about in the
previous two chapters.

Many Access fans don't realize that queries have another identity. Not only can you use them to
search for information, but you can also use them to change data. Queries that take this more drastic
stepwhether it's deleting, updating, or adding recordsare known collectively as action queries.

8.1. Understanding Action Queries

Action queries aren't quite as useful as select queries, because they tend to be less flexible. You
create an ideal query once, and reuse it over and over. Select queries fit the bill, because you'll often
want to review the same sort of information (last week's orders, top-selling products, class sizes, and
so on). But action queries are trickier, because they make permanent changes.

In most cases, a change is a one-time-only affair, so you don't have any reason to hang onto an
action query that just applies the same change all over again. And even if you do need to modify
some details regularly (like product prices or ware-house stocking levels), the actual values you set
aren't the same each time. As a result, you can't create an action query that can apply your change
in an auto-mated fashion.

But before you skip this chapter for greener pastures, it's important to consider some cases where
action queries are surprisingly handy. Action queries shine if you have:

Batch tasks that you want to repeatedly apply. Some tasks can be repeated exactly. You
may need to copy a large number of records from one table to another, delete a batch of old
information, or update a status field across a group of records. If you need to perform this kind
of task over and over again, action queries are a perfect timesaver.

Complex or tedious tasks that affect a large number of records. Every once in a while, a
table needs a minor realignment. You may decide that it's time to increase selling prices by 15
percent, or you may discover that all orders linked to customer 403 really should point to
customer 404. These are one-off tasks, but they affect a large number of records. To polish
them off, you need to spend some serious time in the datasheetor you can craft a new action
query that makes the change more efficiently. When you're done, you decide whether you
delete the action query, or save it in case you want to modify and reuse your work later on.

Tasks that depend on a single piece of information, which you supply every time you
run the query. You can create an action query that also uses parameters, which allow you to
supply critical values every time you run the query. (Query parameters are explained in Section
7.4.) Using query parameters, you can change a relatively inflexible query (like one that deletes
a specific record) to a more flexible one (like one that deletes any record you choose).

8.1.1. Testing Action Queries (Carefully)

In the wrong hands, action queries are nothing but a high-tech way to shoot your-self in the foot.
They commit changes (usually to multiple records), and once you've applied the changes, you can't
reverse them. Some database fans avoid action queries completely.

If you do decide to use action queries (and there are plenty of handy tricks you can accomplish with
them), then you need to take the right precautions. Most importantly, before you use an action
query, make a database backup! This step's especially crucial when you're creating a new action

query, because it may not always generate the result you expect. To make a backup, you can copy
your .accdb database file (just like you would any other file; one way is to right-click it, and then
select Copy). If you don't want to mess with Windows Explorer, then you can create a backup without
leaving Access by selecting the Office button Manage Back Up Database (Section 1.3.1).

Tip: It's always easier to make a backup than to clean up the wake of changes left by a rampaging action query.

Backups are great for disaster recovery, but it's still a good idea to avoid making a mistake in the
first place. One safe approach is to start by creating a select query. You can then make sure your
query's selecting the correct records before taking the next step and converting it into an action
query (by choosing one of the action query types in the Query Tools | Design Query Type section
of the ribbon).

8.1.2. The Action Query Family

Access has four types of action queries:

An update query changes the values in one or more records.

An append query selects one or more records, and then adds them to an existing table.

A make-table query selects one or more records, and then creates a new table for them.

A delete query deletes one or more records.

In the following sections, you'll try out all of these queries.

8.2. Update Queries

An update query searches for some records, and then modifies them. Usually, you'll limit your
modifications to a single field, but Access lets you change as many fields as you want. You also have
a fair bit of flexibility in how you apply the update. The simplest option's to stuff an entirely new
value into a field. You could create a query that moves all the products in one category into another
by entering a new value in the CategoryID field. Alternatively, you could take the current values in a
field and change them, using an expression (a specialized database formula that can perform a
variety of different calculations). You could increase all your product prices by 10 percent, or add a
week to the due date of every outstanding project.

Tip: If you have a relatively straightforward, one-time-only update to make, you may prefer to use the datasheet's find-and-replace

feature (Section 3.2.3). This approach gives you the chance to review the matches and choose whether or not to apply the change for

each value.

The example that follows uses the Products and ProductsCategories tables from the Boutique Fudge
database (which is described in Section 5.4.2). The query updates all the products in the Beverages
category, increasing their prices by 10 percent. You can try this example for yourself by downloading
the examples for this chapter from the "Missing CD" page at www.missingmanuals.com .

Here's how you can create the update query:

Create a new query by choosing Create Other Query Design .

The Show Table dialog box appears.

1.

Add each table you want to include in your query by selecting it and then clicking
Add (just as you did when creating a select query). Click Close when you're finished .

Usually, an update query will use a single table. However, if you need information from more
than one related table, then add them all. Adding multiple tables creates a join (Section 6.3).
Joins work the same in an action query as they do in a select querythey pull information from a
parent table, and then display it alongside the records from the child table.

In this example, you need the Products and ProductCategories tables.

2.

Change your query to an update query by choosing Query Tools | Design Query
Type Update .

The column list at the bottom of the window changes to reflect your new type of query. The Sort
and Show boxes disappear (because they have no meaning in the world of update queries), and
a new Update To box appears for every field that's included in the query.

3.

Add the field (or fields) you want to use for filtering, and then set the Criteria box for4.

each one .

Your filter conditions determine what records Access selects. Since this query's an update query,
the records you select are the records you'll end up changing.

In this example, you need to use the CategoryID field or CategoryName field. If you use the
CategoryID field, you need to supply the ID value for your category. If you use the
CategoryName field, you can match records using the descriptive name.

To add a field, double-click it in the table box, just as you would with a select query. Then set
the criteria to the value you want to match, as in Figure 8-1 . If you want to apply an update to
all the records in a table, then you don't need to set any filter criteria.

4.

Add the field (or fields) you want to change .

In this example, you need to add the Price field so you can modify the product prices.

5.

In the Update To box, supply the new value that your query will apply to each field .

You have two options for updating a field. You can apply a fixed value by typing it into the
Update To box. If you take this approach, Access updates every record you select with the exact
same value.

You can also use an expression that takes one or more existing fields values, and uses them to
calculate a new value. You can use all the operations and functions described in Chapter 7 to
manipulate text, numbers, and dates. You can, for instance, use the following expression on the
Price field to ratchet up product prices by 10 percent:

 [Price]*1.10

6.

Figure 8-1. This query matches products in the Beverages category.

Tip: You can also use one or more parameters (Section 7.4) in your update expression. That way, Access prompts the person

running the query to supply critical information (like the percentage to use for changing the price).

Add any other fields that you want to inspect to confirm that you're selecting the
correct records .

Before you run your query and apply your changes, you perform a preview that displays all the
rows your update query will select (and thus, all the records it'll change when you run it). In
order to confirm that your query's grabbing the right records, you may need to see some other
identifying information in the datasheet grid, like the ProductName.

However, there's one bit of bureaucratic trickery you need to perform to make this preview
work. Access ignores fields that you don't plan to update. So if you want to make sure the
ProductName field appears in the datasheet preview, then you need to supply something in the
Update To box. In this case, use the value [ProductName]. This step tells Access to update the
ProductName field with the current value of the ProductName field. In other words, Access
doesn't actually change anything, but it shows the ProductName field in the datasheet preview.

Figure 8-2 shows the finished update query.

7.

Figure 8-2. This query matches all the products in a specific category and raises the price 10 percent.

Right-click the query's tab title, and choose Datasheet View to see the rows that your
query affects (Figure 8-3) .

This step lets you preview the rows you're about to change, before you actually pull the trigger.
In the datasheet, you see all the records that match your query's filtersin other words, all the
records you'll change when you run the query. However, you won't see the changes you want to
make.

Note: In a basic select query, viewing the datasheet and running the query are equivalent actions. In an action query, viewing the

datasheet shows you the rows that'll be affected, but doesn't actually change them. Running the query performs the modification,

but doesn't show you the changed records.

8.

Figure 8-3. Here's the datasheet preview. It shows all the products in the Beverages category, with the current prices.

When you run this query, these are the records that will be changed.

Now switch back to Design view (right-click the tab title, and then choose Design
View). If you're confident you've got your query right, choose Query Tools | Design

 Results Run to run your update query and have Access apply your changes .

Remember, it's always a good idea to back up your database (Section 1.3.1) before you take
this step.

When you run an action query, Access warns you about the change it's about to make (Figure
8-4). Click Yes to make the change.

Sadly, Access doesn't show you the updated recordsin fact, it doesn't show you anything. If
you're wondering what happened, you may want to review the records you just changed. One
way to do this is to show the preview for your update query again (by right-clicking the tab title,
and then choosing Datasheet View). This method works as long as you haven't changed the
records in such a way that they no longer match your filtering conditions. (If you have, you'll
need to create a new query or browse the table to double-check your data.)

9.

Figure 8-4. Top: Every time you run an action query, Access warns you that the query will change your database. If you

don't need this reminder, follow the steps in this window to open the Access Options dialog box and turn off this warning. (You'll

need to click No to close the dialog box first.)

Bottom: Next, Access tells you how many records will be affected and gives you a last-minute chance to back out. Access always

gives you this information, even if you turn off the standard warning. If you click Yes now, then Access updates your table.

If you want to save your query, then hit Ctrl+S (or close the query tab). You'll need
to supply a name for your query .

Consider using a query name that clearly indicates that this is an action query. You may want to
use a name like UpdateProductPrices. Action queries show up with an exclamation-mark icon in
the navigation bar. Each type of action query has a slightly different iconfor update queries,
you'll see a pencil with an exclamation mark beside it (Figure 8-5).

TROUBLESHOOTING MOMENT
When Access Blocks Your Update

Consider this bit of Access existential philosophy: What happens if you click Run (as described in
step 9 in Section 8.2), and nothing happens? There's no warning, no message box, and no
error to explain what went wrong. All you get is a cryptic message in the Status bar at the
bottom of the Access window, which blandly advises you, "The action or event has been blocked

10.

by Disabled Mode". What does it all mean?

Access is a truly paranoid program. It's just not ready to let you perform some actions unless
you explicitly say it's OK.

As you learned in Section 1.3.3 , every time you open your database, Access shows a message
bar with a security warning. It's up to you what you do about that security warning. You can
click the X in the top-right corner to hide the message bar altogether. In this case, your
database remains in a slightly disabled state. You can still create, modify, and delete database
objects on your own.

However, you can't run any code or action queries. (To get the message bar back and see the
security warning again, choose Database Tools Show/Hide Message Bar.)

Your other choice is to click the Options button in the message bar to show the Microsoft Office
Security Options dialog box. Then, choose "Enable this content", and then click OK. This action
gives Access your ironclad guarantee that the database is safein other words, it hasn't been
created by some Cheeto-munching hacker in his parents' basement. Once you take this step,
Access allows you to run action queries (at least until you close the database and open it again,
at which point the security warning reappears).

If you're getting tired of turning on your database every time you use it, there's a solution. You
can tell Access to trust all the databases in a specific folder on your hard drive. This technique's
explained in Section 15.2.4 .

If you don't plan to use your query again, then consider deleting it. Deleting it prevents you (or
someone else) from accidentally rerunning the query and applying changes you don't want.

Figure 8-5. Remember, every time you double-click a query in the navigation pane, you run it. If the query you click is an action

query, like the one highlighted here, you may have just updated or deleted some important data. (To open an action query without

running it, right-click it, and then choose Design View instead.)

8.3. Append Queries

An append query selects records from a table, and then inserts them into another table. (Technically
speaking, appending is the process of adding records to the end of a table.)

You may create an append query for a number of reasons, but usually you do it to transfer records
from one table to another. You may want to use an append query to transfer records from one
database to another. This trick's handy if you have duplicate tables in different databases (perhaps
because different people need to use the database on different computers).

Note: Once you've finished copying records to a new table, you may want to follow up with a delete query (Section 8.4) to remove the old

versions.

Append queries also make sense if you're working with a super-sensitive database. In this case, you
might enter new records in a temporary table so someone else can look them over. When the
inspection's finished, you can then use an append query to transfer the records to the real table.

Append queries are a bit stricter than other types of action queries. In order to transfer the records,
you need to make sure the two tables line up. Here are some guidelines:

Data types must match. The fields you select (from the source table) and the fields you're
heading towards (in the target table) must have matching data types. However, the names
don't need to match. You can configure your query so that information drawn from a field
named FirstName is placed into a field name F_Name, provided they're both text fields.

You can ignore some fields. If the source has fields that aren't in the destination table, just
don't include them in your query. If the destination table has fields that aren't in the source,
then Access leaves them blank, or uses the default values (Section 4.1.2). However, if you
leave out a required field (one that has the Required field property set to Yes, as explained in
Section 4.1.3), then you'll get an error.

Access enforces all the normal rules for adding a record. You can't do things like insert
data that violates a validation rule (Section 5.2.3), and you can't insert duplicate values into a
field that has a primary key or a unique index (Section 4.1.3).

If the destination table has an AutoNumber field, then don't supply a value for that
field. Access automatically generates one for each record you insert.

Note: You can't copy AutoNumber values in an append query. If you use AutoNumber fields for your ID fields, then the new copied

records have different ID numbers from the originals.

Access gives you another choice that's similar to the append query: the make-table query, which is

the same in all ways but one. The make-table query creates the destination table, and then copies
the records to it.

8.3.1. Creating an Append (or Make-Table) Query

The following steps show you how to create an append or make-table query. You'll transfer records
from the Contacts table in the Marketing.accdb database to the PotentialClients table in the
Sales.accdb database. (You can find both these databases on the "Missing CD" page at
www.missingmanuals.com.)

Open the source database.

In this example, that's the Marketing.accdb database that has the contact information.

1.

Create a new query by choosing Create Other Query Design.

The Show Table dialog box appears.

2.

Using the Show Table dialog box, add the source table that has the records you want
to copy. Then click Close to close it.

This example uses the Contacts table.

3.

Change your query to an append query by choosing Query Tools | Design Query
Type Append (or choose Query Tools | Design Query Type Make Table to
convert it to a make-table query).

The destination table (the PotentialClients table in the Sales.accdb database) already exists. For
that reason, you use an append query instead of a make-table query.

When you change your query to an append or make-table query, Access asks you to supply the
destination table (the place where you'll copy the records), as shown in Figure 8-6.

4.

Figure
8-6.
Access

wants to

know

where you

plan to

transfer the

records

you're

copying.

You can

choose a

table from

the handy

drop-down

list. If

you're

copying

data from

one

database to

another,

then

choose the

Another

Database

option, click

the Browse

button to

specify the

database

file, and

then click

OK.

If you want to transfer the records to another database, then choose Another
Database, and then click Browse. Browse to your database file, and then click OK to
select it.

You're transferring records to the Sales.accdb database.

Especially if you plan to keep using this new query, be sure to keep the destination database in
the same spot. If you move the destination file to another location (or rename it), Access can't
find it when you run the query and gives you an error.

5.

In the Table Name box, enter the name of the table to which you want to transfer the
records.

If you're creating an append query, then the table you choose must already exist

6.

somewhereeither in the database file or another one you have on hand. You can pick it out of
the Table Name drop-down list.

If you're creating a make-table query, then you need to type in the name for a brand-new
table. Access will create this table when you run the query.

Here, you're transferring records to the PotentialClients table.

6.

Click OK to close the Append or Make Table dialog box.7.

Now, add the field (or fields) you want to copy from the source table.

Remember, you don't have to copy all the fields. In this example, all you need is the FirstName
and LastName fields.

8.

If you're creating an append query, then fill in the names of the destination fields in
the Append To boxes.

In this example, set the Append To box for the FirstName field to F_Name. That way, Access
copies the information from the FirstName field in the source table to the F_Name field in the
destination table (Figure 8-7). Similarly, set LastName so it appends to L_Name.

Figure
8-7. This

append query

transfers the

information

from the

Contacts table

in the

Marketing

database to the

9.

PotentialClients

list in the Sales

database.

Since both

these tables

use ID fields

with the

AutoNumber

data type, the

ID numbers in

the copied

records will be

different from

the ID numbers

in the original

records. (If this

isn't the

behavior you

want, then you

need to copy

the

AutoNumber ID

from the

Contacts table

to a normal

numeric

column in the

PotentialClients

tableone that

doesn't use the

AutoNumber

feature.)

If you want to copy only some of the records in the source table, then set the filter
conditions you need.

Like everywhere else in Access, these filters determine what records are copied from the source
table. To set a filter condition, just fill in the Criteria box for the appropriate field.

If you add a filtering field to an append query, but don't want to copy the field's value to the
target table, then don't put anything in its Append To box.

If you add a filtering field to a make-table query, but don't want to copy the field's value to the
target table, then turn off that field's Show checkbox.

10.

Right-click the tab title, and then choose Datasheet View to see the rows that your
query affects.

This step lets you preview the rows you're about to copy.

11.

If you're confident you've got things right, then switch back to Design view, and then12.

choose Query Tools | Design Results Run to transfer your records.

Access warns you about the change it's about to make. Click Yes to copy the records. Access
doesn't show you the copiesyou need to track those down by browsing the destination table's
datasheet.

At this point, you have the same records in two placesthe source table and the destination
table. You may want to follow up with a delete query to clean out the original versions, as
described in Section 8.4.

12.

If you want to save your query, hit Ctrl+S (or close the query tab). You need to
supply a name for your query.

If you don't plan to use your query again, then consider deleting it.

13.

8.3.2. Getting AutoNumbers to Start at Values Other Than 1

Access gurus also use append queries in one of the most tricky Access workarounds: changing a table
so its AutoNumber field doesn't start at 1.

As you learned in Chapter 2, Access always generates AutoNumber values beginning with the number
1. (The only exceptions are if you're using random numbers or replications IDs, two rare choices that
are described in Section 2.3.9.2.) However, there are plenty of reasons that you might not want
Access to work this way. A company like Boutique Fudge might want its customer numbers to start at
1,000, its product numbers to start at 5,000, or its orders to start at 10,000. Numbering schemes
like these often make for easier bookkeeping. They let you keep a consistent number of digits in your
AutoNumber values, they help you distinguish between the IDs in different tables, and they help you
avoid the embarrassment of telling a customer they just placed order number 1.

Thankfully, there is a (slightly awkward) way to cheat the system and force Access to start at
whatever number you want. Basically, you use an append query to do something you can't do on
your own: Directly insert a record with a specific AutoNumber value. Once you create that record,
Access keeps incrementing values starting from the new number you inserted. So if you append a
record with the AutoNumber value 999, then Access gives the next record a value of 1000, and so
on.

Here's how it all goes down:

Create a new table (Create Tables Table Design).

You're going to keep this table around only for a few minutes.

1.

Add one field. Give this field the same name as the AutoNumber field in the table
you're trying to change.

Usually, this name's just ID.

2.

Set the field to use the Number data type (not AutoNumber), and make sure its Field
Size property's set to Long Integer (the standard choice).

3.

4.

3.

Right-click the table title, and then choose Datasheet View.

Save the table when Access prompts you, but don't worry about the nameTable1 is fine. When
Access asks you if you want a primary key, just click No.

4.

In Datasheet view, enter a value in the Number field of the temporary table that's 1
less than the starting value you want for the AutoNumber field.

If you want the AutoNumber field to start at 100, then enter 99 in the Number field. Close the
table.

5.

Create a new query (Create Other Query Design).

In the Show Table dialog box that appears, pick the temporary table you created (like Table1),
and then click Close.

6.

Choose Query Tools | Design Query Type Append to change this query into an
append query.

When Access asks you what table to append to, choose the table that has the AutoNumber
value you're trying to modify.

7.

Double-click the field you added to your table (like ID).

Access sets the Append To box to the same name, which is what you want.

8.

Choose Query Tools | Design Results Run to run the query.

Click Yes when Access warns you that it's about to add a record.

9.

Open the table you just updated, and then delete the newly inserted record.

From this point onward, the AutoNumber values will keep incrementing from that number.

10.

Delete the temporary table you created in step 1, because you don't need it anymore.11.

This technique has a few limitations. Namely, if your table has strict validation rulesfor example, one
or more fields have the Required field property set to YesAccess doesn't let you insert the new record
using the append query. In this situation, you need to either turn off your validation rules (by
temporarily setting the Required field property to No for all fields), or add the required fields to your
temporary table with the right values.

8.4. Delete Queries

Delete queries are the simplestand most dangerousof the action queries. A delete query works much
like a normal select query. You specify a set of filter conditions, and then Access finds the matching
records in the table. But the delete query doesn't just display the recordsinstead, it erases them from
the database.

Note: Think twice before you delete anything. You just might need old information for reporting and analysis. Section 1.2.4 explains why.

Delete queries are great for clearing out a huge number of records at once after you've finished
transferring them to another table. In the append-query example described earlier (Section 8.3.1),
you probably want a way to remove the original records once you've copied them to the new table. A
delete query fits the bill perfectly.

To create a delete query, follow these steps:

Create a new query by choosing Create Other Query Design.1.

Using the Show Table dialog box that appears, add the table that has the records you
want to delete. Then click Close to close it.

2.

Change your query to a delete query by choosing Query Tools | Design Query
Type Delete.

The Sort and Show boxes disappear from the column list, and the Delete box appears.

3.

Add the fields you want to use for filtering, and then set your filter conditions.

Your filter conditions determine what records are deleted, so make sure you define them
carefully. If you don't include any filter conditionsgulpAccess will delete all the records when you
run the query.

4.

Add any other fields that you want to inspect to confirm you're getting the correct
records in the datasheet preview.

It's critical that you verify that you're removing only the records you want to delete. Delete
queries have a nifty feature that can help you identify each record before you perform the
actual delete operation. To use it, double-click the asterisk (*) in the table field list. The Delete
box automatically sets itself to From, which indicates this information isn't being used as part of
a filter conditioninstead, it's just there to show the list of to-be-deleted records in your
previews.

5.

Figure
8-8.
This query

removes

old order

records.

The first

field in the

query

defines the

filter

condition

(orders with

a

DatePlaced

before

1900). The

second

field (*) is a

shortcut

that lets

you see all

the fields in

the

preview, so

you can

carefully

review the

data you're

removing.

Right-click the tab title, and then choose Datasheet View to see the rows that'll be
affected by your query.

This step lets you preview the rows that you're about to delete. If you used the asterisk (*),
you'll see the full information for each record.

6.

If you're confident you've got things right, then switch back to Design view, and then
choose Query Tools | Design Results Run to remove the records.

Access warns you about the change it's about to make. Click Yes to delete the records for good.

7.

If you want to save your query, hit Ctrl+S (or close the query tab). You'll need to
supply a name for your query.

If you don't plan to use your delete query again, consider not saving it. It's a dangerous tool to
have lying around.

8.

GEM IN THE ROUGH
Hiding a Query

If you want to keep a delete query around for later use, but you've decided it's just too
dangerous, Access does give you a safer option. You can hide the query, so that it
doesn't appear in the navigation pane. That way, you won't inadvertently use it. Those
who use it will need to hunt it down.

To hide a query, right-click it in the navigation pane, and then choose "Hide in this
Group". The query quietly disappears from view.

The only way to get a hidden database object back is to right-click the title of the
navigation pane (which says something like "All Tables"), and then choose Navigation
Options. Then you can switch on the Show Hidden Objects setting. When this setting's
active, you see hidden objects in the navigation pane, but they're displayed in a lighter
gray color. To return an object to normal, fully visible status, right-click it, and then
choose "Unhide in this Group".

Be careful you don't overuse hiding. If you do, you'll just encourage others to switch on
the Show Hidden Objects option, which makes all the queries visible and usable.

If you're still not comfortable leaving a dangerous query in your database, consider
placing the action query in an entirely separate database fileand don't let other people
use that file. Section 18.2 has more information about splitting databases into multiple
files.

8.5. Tutorial: Flagging Out-of-Stock Orders

Boutique Fudge has a challenge. It makes all its products in small batches, and products frequently
sell out. For example, if its supply of imported durian dries up, then so too does its world-famous
Mocha Malaysian Espresso Milk.

However, eager shoppers keep ordering products that aren't in stock. Eventually they'll get the
goods, but an order for an out-of-stock product might linger, lonely and forgotten, in the database
for weeks. Boutique Fudge would prevent a lot of customer confusion (not to mention thirst) if it
could track down the folks who've ordered out-of-stock items and warn them about the wait.

The database designers at Boutique Fudge have thought about this problem, and have decided they
want a field in the Orders table that lets them mark orders that are waiting due to out-of-stock
ingredients. They decide to use a Yes/No field (Section 2.3.7) named OnHold. That way, when the
warehouse workers are filling an order, they can save time by ignoring all the orders on hold. And the
customer service department can track down the customers who placed these orders and explain the
problem.

So far, there's nothing new in this example. But here's the trick: Boutique Fudge wants to automate
the process of setting the OnHold field. It wants to be able to run a query that can look at the
UnitsInStock field in the Products table and then set the OnHold field for any in-progress orders that
include an out-of-stock item. Now that you've mastered action queries, you're ready to consider this
mindbending puzzle.

Like many problems in Access, you can solve this challenge by attacking it one piece at a time. Here,
you'll solve the problem by creating two separate queries:

A select query that finds orders containing out-of-stock products

An action query that updates the OnHold field for the out-of-stock items

8.5.1. Finding Out-of-Stock Items

The first step is finding all the orders that include out-of-stock items. To do this, you need a query
that includes two tables:

Products , because it contains the fields with the stock levels

OrderDetails , because it tells you which orders include a specific product

In this case, the OrderDetails table's the child table, and the Products table's the parent. (See Section
5.4.2 if you need a refresher on how the Boutique Fudge database is structured.) As a result, when
you perform this query, you're really getting a list of OrderDetails records, supplemented with the
product information.

Once you've created a query with the right tables, you need to add the appropriate fields:

UnitsInStock (from the Products table). This field tells you if the product's out of stock. To find
just the out-of-stock order items, set the Criteria box to 0.

OrderID (from the OrderDetails) table. This field identifies the orders that are affected.

There's still one problem. When you run this query, you may see the same order ID appear multiple
times. That's because you're retrieving a list of out-of-stock order items , and there might be several
out-of-stock items in the same order. (You certainly don't want customer service calling shoppers
multiple times, telling them their orders are delayed, right?) The easiest way to fix this problem is to
tell Access to ignore duplicates in your query by following these steps:

Choose Query Tools | Design Show/Hide Property Sheet .

A Property Sheet box appears on the right side of the Access window, with lowlevel query
settings.

1.

Click somewhere on the empty space on the query design surface (like just beside
one of the table boxes) .

The Property Sheet box should say "Selection Type: Query Properties" at the top.

2.

In the Property Sheet box, change the Unique Values setting from No to Yes .

Now each order ID appears only once in the query results.

3.

Figure 8-9 shows the completed query.

Figure 8-9. This query (named OrdersWithOutOfStockItems) generates a list of out-of-stock product IDs. Notice that it uses

the UnitsInStock field for filtering, but it doesn't include it in the results (the Show box, circled, isn't turned on). To avoid having the same

OrderID appear more than once (if it contains more than one out-of-stock item), the Unique Values query property (also circled) is set to

Yes.

8.5.2. Putting the Orders on Hold

Next, you need to perform an update query that modifies all the problematic orders. This query
needs to find all the order records found by the OrdersWith-OutOfStockItems query and then change
them.

The solution? An update query, of course, as described in Section 8.1.2 . In your update query, you
need to use the Orders table and two fields:

ID . You use this field to find the order records you want to update.

OnHold . You update this field to Yes to place the order on hold.

You already know enough to add both these fields to the query, and to fill in the Update To box for
the OnHold field (with the value Yes). However, the tricky part's finding just the right records.
Clearly, you need to find orders that have one of the ID values you pinpointed in the
OrdersWithOutOfStockItems query. But how can you use that query inside your update query?

To pull this off, you need a couple of new tricks in your filter expression. First, you need to use the In
keyword, which checks to see if a value falls somewhere within a list of values. Here's an example of
the In keyword at work:

 In (14,15,18)

This filter expression matches any records that have ID values of 14, 15, or 16.

Obviously, it's way too much work to type in all the ID values by hand. It makes more sense to reuse
the work you did when you created the OrdersWithOutOfStockItems. To make this process happen,
you need to use another fancy move: a subquery .

A subquery's a query that's embedded inside another query. When you write your subquery, you
need to use the SQL syntax you learned about in Section 6.2.3 . You start with the word SELECT, list
the fields you want to get, followed by the word FROM, and finish things off with the name of the
table or query you're using. Here's the SQL for a select query that gets all the order IDs from the
OrdersWithOutOfStockItems query:

 SELECT OrderID FROM OrdersWithOutOfStockItems

Now that you have both the ingredients you need, you just need to fuse them together into one
super-elegant filter expression. Here's the final product:

 In (SELECT OrderID FROM OrdersWithOutOfStockItems)

You place this filter expression in the ID field. It gets all the IDs for problematic orders using the
OrdersWithOutOfStockItems query, and then compares that against the full list of records in the
Orders table. The completed action query's shown in Figure 8-10 .

Figure 8-10. This update query (PutOutOfStockOrdersOnHold) ensures that Boutique Fudge will have happy customers for

years to come. It selects the orders that have out-of-stock items, and then applies the change to the OnHold field. Now you just need to

make sure that the customer service reps are polite.

If you create a query like this one, you'll probably want to include another query that does the
reverse, and puts on-hold queries back into action, provided that stock's available. Based on what
you've learned in this section, you shouldn't have any problem crafting the query you need.

9. Analyzing Data with Crosstab Queries
and Pivot Tables

Access is ready and willing to store all the details in your database. But sometimes you don't need to
know everythinginstead you just want the big picture. You need a way to take your raw data, which
may include hundreds or thousands of records, and summarize it in some meaningful way.

You've already learned one way to analyze large volumes of information: with a totals query (Section
7.3). Using a totals query, you can take a huge swatch of rows and reduce it to a few neatly grouped
subtotals. In this chapter, you'll learn about two more specialized options for crunching the numbers:
crosstab queries and pivot tables.

Crosstab queries and pivot tables play the same role as the totals queries that you've already
mastered. However, they present the data in a slightly different way. Crosstab queries use extra
columns to pack summary information into an extremely tight table. Pivot tables use a drag-and-drop
interface that lets you rearrange your summary on the fly to search for different trends and
relationships. Both these features get plenty of usage in the toolkit of every Access expert.

Note: To try out crosstab queries and pivot tables, you need dataand lots of it. The sample databases used in earlier chapters just don't

have enough raw data. Instead, the examples in this chapter use some of the tables from Microsoft's huge AdventureWorks sample

database, which has the product catalog and sales data for a fictional bicycle manufacturer. Surf over to the "Missing CD" page for this

book (at www.missingmanuals.com) to download everything you need.

9.1. Understanding Crosstab Queries

A crosstab query is a powerful summary tool that examines huge amounts of data and uses it to
calculate information like subtotals and averages. If this sounds familiar, it's because you've already
seen totals queries do exactly the same thing in Chapter 7 .

As with totals queries, crosstab queries use two key ingredients: grouping and summary functions.
The grouping is used to organize the rows into small sets. The summary function is used to calculate
a single piece of information for each group.

Behind the scenes, crosstab queries and totals queries work in almost exactly the same way. Both
take large numbers of records and boil them down to totals, averages, minimums, maximums, and
so on. However, there are two important differences.

First, crosstab queries always use two levels of grouping. For example, a typical totals query may
group order records by product, so you can see the top sellers and how much cash they bring in. But
a crosstab query can analyze sales figures by country and product category. Using this type of
analysis, you can quickly see what product categories do well in particular countries.

The other difference between totals queries and crosstab queries is the way Access organizes the
results. A totals query creates a separate row for each different group. For example, if you're
analyzing sales by country and product category, a totals query gives you a row for each country and
category combination, as shown in Figure 9-1 , top. A crosstab query works a little differently; it
takes the same information and packs it into separate columns, creating a denser view (Figure 9-1 ,
bottom).

Figure 9-1 , bottom, shows you what things look like with two levels of grouping: countries and
products. But if you want, your crosstab queries can use more than two levels of grouping. (More
levels are helpful when you want to perform really detailed analysisfor example, find out what
product categories do well in specific countries, states, and cities.) In this case, the last grouping
level is used to split the row into columns. Every other level is used to subdivide your results into
more rows. If you create a crosstab query that groups sales by product category, product name, and
country, you see the result shown in Figure 9-2 .

Note: Remember, if you use more than two levels of grouping, the last level of grouping (the one used to create the columns) shouldn't

be related to any other level. However, the other levels can be related. The example in Figure 9-2 works because it follows this rule

(grouping by category, product, and then country). The same data grouped differently (for example, category, country, product) doesn't

work nearly as well.

Figure 9-1. Top: In a totals query, each group resides on a separate row, representing the sales of a single product category in

a single country. There are 24 groups in all, and this makes for a long, narrow list of results.

Bottom: In a crosstab query, Access uses the first level of grouping (in this case, the country) to divide the data into rows, and the last

level (the product category) to divide each row into columns. The numbers you see are the same as in the top figure, but now you have

just six rows, each with four product groups.

Figure 9-2. In this example, the records are grouped into rows by product category, and then subdivided by product. The data

for each product is then further split into country-specific columns.

FREQUENTLY ASKED QUESTION
Summary Smackdown: Totals Query vs. Crosstab Query

Which is better: the totals query or the crosstab query?

It all depends on the type of information you want to analyze, and how it's structured. Here are some
guidelines to help you decide which option is right for your data:

If you want to group according to one field only (as shown, for example, in Figure 9-
1 , top), use a totals query . Crosstab queries always have at least two levels of grouping.

If you want to perform more than one type of calculation (for example, averages and
totals, or minimums and maximums), use a totals query . Because of their compact
format, crosstab queries can show only a single calculated value for each group. Totals queries
can show as many calculated values as you want, because each one is placed in a separate
column.

If you want to compare one group against another, use a crosstab query . This is
where crosstab queries really shine. They put subgroups on a single row so you can see trends

at a single glance. To see an example, look at Figure 9-1 . In the crosstab query, it is easy to
spot that accessories bring in the least amount of money, no matter what country you are
looking at. In the totals query, your eyes need to jump back and forth between different
categories and countries to make the same comparison.

If your grouping criteria results in a large number of groups, consider using a totals
query . A crosstab query can be hard to read if it has too many columns. (Another option is to
use filtering [Section 6.2.1.1] to cut down the number of different groups.)

If you're using two unrelated levels of grouping, consider the crosstab query . For
example, product category and customer country are two totally separate criteria. You have no
way to know whether some countries favor certain categories until you dig into the numbers.
This type of organization is an ideal candidate for the dense grid of the crosstab query. On the
other hand, product category and product name are related. Every product falls into a set
category, and no product turns up in more than one category. If you use this type of grouping
in a crosstab query, you wind up with a lot of wasted space, as you can see in Figure 9-3 .

In many cases, you may want to try both approaches creating a totals query and a crosstab
queryand then compare them to see which representation you prefer.

9.2. Creating Crosstab Queries

Access gives you two ways to create a crosstab query: You can use the Crosstab Query wizard, or
you can build it by hand. Most Access fans prefer to use the Crosstab Query wizard to get started,
and then further refine their query in Design view to add other details, like filtering.

In the following sections, you'll take a crack at cooking up a crosstab query both ways.

Figure 9-3. Consider yourself warned: Don't group using related fields in a crosstab query. In this example, rows are grouped

by product name, and columns are grouped by product category. The problem is that every product is in a single category, so each row

has data in just one columnthe row for that product's category. To solve this problem and to create a better summary, you could use

three levels of grouping, as shown in Figure 9-2 .

WORD TO THE WISE
Create a Join Query for Better Grouping

When you use any type of query that involves grouping, you often need to pull information from
several different tables. For example, if you're considering a table with sales records, you probably

want to pull in additional details about the products sold, the customers who bought them, the
location where they were purchased, and so on. Most of the time, this involves bringing together
information from several related tables.

The easiest way to prepare for a summary query (like a crosstab query) is to create another query
that has all the information you need. This new query will use joins (Section 6.3) to combine all the
tables that have the information you need. You can then use this query to build your summary. This
technique is particularly useful with crosstab queries, because the Crosstab Query wizard is able to
use only one table or query. It can't join tables together on its own.

The AdventureWorks database uses a query named OrderedItems, which forms the basis for all the
crosstab queries that you've seen so far. The OrderedItems query gets all the individual items that
have been purchased in every order that's ever been made (from the SalesOrder- Details table), and
then uses joins to get additional information from the SalesOrderHeader table (which represents the
entire order), the Customers table, the Products table, the Store table, and the ShipMethod table.
You need to make several jumps to get to the customer address information, which lets you profile
how sales stack up in different cities, states, and countries. (You can study this query by downloading
the AdventureWorks database from the "Missing CD" page at www.missingmanuals.com .)

9.2.1. Creating a Crosstab Query with the Wizard

The easiest way to build a crosstab query is with the Crosstab Query wizard. If you want to try it out
yourself, follow these steps using the AdventureWorks database:

If you want to bring together information from linked tables, start by creating a join
query .

In this example, you'll use the already created OrderedItems join query that draws on a wealth of
information about the ordered items, the corresponding products, the customers, the geographic
location where they live, and so on. For more information about building a join query of your own,
see Section 6.3 .

If you decide that you can get everything you need from a single table, you can skip this step.

1.

Choose Create Other Query Wizard .

Here's where the wizard magic begins. A New Query window appears, with a list of the different
types of queries the wizard can create.

2.

Choose Crosstab Query Wizard, and then click OK .

The first step of the wizard prompts you to pick a table or query (Figure 9-4). Make your selection
by clicking one of the buttons in the View box.

3.

Figure 9-4. To see a list of tables in your database, click Tables. To see the queries, click Queries.

Select your table. If you want to choose a query, click the Queries option, and then
choose your query from the list. Click Next .

In this example, you need to pick the Queries option, and then choose the OrderedItems query.

The next step asks you to supply the grouping criteria that will be used to combine your data into
rows (Figure 9-5).

If you're creating a simple two-level crosstab query, you pick one criterion for rows and one for
columns (in the next step). However, it's possible to pick up to three levels of grouping for rows.
This approach works best if the different levels are related. For example, you can choose to group
rows by customer country, subgroup each country by city, and subgroup each city by customer
ID. See Figure 9-2 for an example of a nicely subgrouped crosstab query.

4.

Figure 9-5. To use a field as a row heading, select it in the Available Fields list, and then click the funny > button to move it

to the Selected Fields list.

Add the fields you want to use to the Selected Fields list, and then click Next .

In the OrderedItems example, rows are grouped by the StateProvince field. You can easily change
your grouping in the query design window after you try out your query. For example, if you
wanted, you could switch the StateProvince field to the Country field. You'll learn how to
manipulate a crosstab query in Design view in Section 9.2.2 .

The next step asks you to supply the grouping criteria that's used to split your rows into columns
(Figure 9-6). This time, you can choose only one field.

5.

Choose the field you want to use for column grouping, and then click Next .

In this example, it's the ProductCategory field.

The last step asks you to pick what calculation you want to perform to create your summary.

6.

Figure 9-6. As you move through the wizard, Access shows a mini-preview of the structure of your in-progress crosstab

query at the bottom of the window. In this example, rows are grouped by StateProvince and columns by ProductCategory.

Choose the field you want to use for your calculation, and then choose a summary
function (Figure 9-7) .

For example, you can choose to find the lowest-priced sale, the order with the highest number of
units sold, the average item price, and so on. In this example, you're using the OrderQty field to
count the number of items sold.

7.

Figure 9-7. In this example, the Sum function totals up the OrderQty value from each record. For example, this query tells

you that you've sold a total of 53 items from the Bike category to customers in Alabama. If you want to count how many orders your

customers have made (instead of how many items you've shipped), you'd need a slightly different queryin this case, you'd use the

Count function to count the number of distinct SalesOrderID values.

UP TO SPEED
Picking the Right Groups

Trying to decide which field to use for row grouping and which one to use for column grouping? If
these two fields are unrelated (and they should be), it makes sense to use the field that creates
the fewest groups for column grouping. That's because tables with lots of rows and few columns
are easier to read (and print) than tables with lots of columns and few rows.

For example, if you're grouping by product name and country, it's a safe bet that you'll wind up
with more product groups than country groups. (For example, you may have customers in eight
different countries but a product catalog with 480 items.) So use the product grouping for rows,
and the country grouping for columns.

If you want to show a subtotal for each row, turn on the "Yes, include row sums"
checkbox .

The row subtotal is shown in the very first column. For example, if you activate this option with

8.

the states and categories query, the total sales for each state are shown in the first column,
followed by a category-by-category breakdown (Figure 9-8).

Figure 9-8. The final crosstab query highlights the relationship between states and the types of products their inhabitants

buy. (At the far left is the total for each state or province across all product categories.) Who knew Californians prefer bikes to

clothing?

8.

Click Next .

The final step asks you to supply the query name. You can then choose to run the query and view
its results, or continue editing it in Design view. If you need to apply filtering, head over to Design
view. Otherwise, it's time to see the fruit of your labor.

9.

Click Finish .10.

9.2.2. Creating a Crosstab Query from Scratch

As with any query, you can fine-tune a crosstab query in Design view. You can also create a new
crosstab query from scratch by following these steps:

1.

Choose Create Other Query Design .

Access creates a new, blank query, and opens it in Design view.

1.

Add the table or query you want to use from the Show Table dialog box, and then
click Close .

If you're using the AdventureWorks database, the easiest option is to choose the Queries tab of
the Show Table box, and then add the OrderedItems query.

Tip: Alternatively, you can close the Show Table dialog box and just drag the tables you want from the navigation pane onto the

query design surface.

2.

Choose Query Tools | Design Query Type Crosstab .

Access converts your query into a crosstab query. Crosstab queries look like totals queries, with
one difference. In the field list at the bottom of the window, you find an extra property named
Crosstab (Figure 9-9).

Figure 9-9. Like a totals query, crosstab queries include the Total property where you specify whether a field is used for

grouping, filtering, or a summary calculation. Unlike a totals query, crosstab queries also include a Crosstab property where you

specify the crosstab placement of the fieldin a row, in a column, as a value, or not shown at all (in which case you're probably

using the field for sorting or filtering).

3.

Choose the fields you want to use in your crosstab query .

Every field in a crosstab query plays one of the following roles:

It's used for row grouping . In this case, set the Total property to Group By and the
Crosstab property to Row Heading.

Although the Crosstab wizard limits you to three fields for row grouping, you can actually
add a virtually unlimited number of fields for column grouping. Make sure you arrange

4.

them in the order you want them applied. For example, if you have two row grouping
fields, the field on the left is used first for grouping, and then the groups are subdivided
using the next field.

It's used for column grouping . In this case, set the Total property to Group By and
the Crosstab property to Column Heading.

You must use exactly one field for this purpose. Remember, column grouping is applied
after your row grouping.

It's displayed as a value in the table . In this case, set the Total property to the
summary function you want to use (like Sum, Count, Avg, and so on), and then set the
Crosstab property to Value.

You must use exactly one field for this purpose. However, you can use an expression that
performs a calculation based on more than one field. For example, the crosstab queries
shown in Figures 9-1 and 9-2 use the expression Revenue: [UnitPrice]*[OrderQty] to
calculate the total revenue for each line item in an order.

Tip: You may remember that the Crosstab Query wizard gives you the option of showing the total for each row in a

separate column. Figure 9-10 shows how to create the same effect on your own.

It's used for filtering . In this case, set the Total property to Where, and set the
Crosstab property to "(not shown)." Then, fill in your filter criteria in the Criteria slot. (See
Section 6.2.1.1 for a review of filter expressions.)

Note: Unfortunately, you can't use filtering or sorting on the calculated field. That means that if you're creating a query that

totals sales numbers, you can't filter out just the rows with high sales totals. However, you can perform the same feat with

a pivot table, as described in the next section.

Figure 9-10 shows the query definition for the query you built with the wizard in the
previous section (Figure 9-8).

9.3. Pivot Tables

If totals queries and crosstab queries just don't thrill you enough, Access has yet another high-
powered feature for summarizing your data. A pivot table is a specialized table that performs the
same tricks as a crosstab queryrow and column groupingbut has even more muscle. Here are some
of the extra features:

Pivot tables can be rearranged at any time . With a quick drag of the mouse, you can
convert a sales-by-country summary to a sales-by-customer-age grid. That makes pivot tables
great for data exploration , in which you try to ferret out hidden trends and relationships from
an avalanche of raw data.

Pivot tables support unlimited levels of grouping . You aren't limited to one level of
column grouping, as you are in a crosstab query. Instead, you can sub-divide your rows and
columns into smaller and smaller groups.

Figure 9-10. Notice that the OrderQty field appears twice. The first time, it's defined as the value that appears in the

table grid. The second time, it's defined as a row heading, which creates an extra column with the total for each row. Using an

alias (Section 7.1.2), the extra column is renamed to Total Of OrderQty to prevent confusion.

Pivot tables are collapsible . You can hide row and column groups you aren't interested in at
the moment, and you can dig down into a group to see the individual records it contains. By
browsing your data in this way, you can get a better idea of what's taking place with your data.

Pivot tables support unlimited calculations . Crosstab queries can perform only a single
calculation, which is repeated for each group. A pivot table can perform as many calculations as

you want, and it stuffs them all into the same cell.

Pivot tables support sorting by your calculated values . For example, if your pivot table
adds up total sales, you can sort it so the best performers rise to the top.

Note: Many Access fans lead long and happy lives without ever coming across a pivot table. That's because it's a fairly specialized tool,

and many experts prefer to perform data analysis in another program (like Microsoft Excel). However, the pivot-table features are worth

taking a look at, because they just may come in handy the next time you need to draw sweeping conclusions about how your celebrity-

themed pastry company is performing.

9.3.1. Building a Pivot Table

Access incorporates pivot tables in a rather unusual way. Unlike totals queries and crosstab queries,
pivot tables aren't a specialized type of query. Instead, Access provides a pivot table viewing mode
that you can use with any table or any query.

Note: The reason for this seemingly odd design is because pivot tables are designed to be exceedingly flexible. With just a few mouse

clicks, you can rearrange categories or drill down from the summary view to the individual records. In order for this to be possible, the

pivot table needs to have the full set of records at its fingertips.

To use the Pivot Table view, open the table or query you want to use, and then choose Home
Views View PivotTable View. Alternatively, you can use the tiny view buttons at the bottom-
right corner of the window to switch to the Pivot Table view with a single click.

Initially, the Pivot Table view is empty (Figure 9-11).

Figure 9-11. This example shows the Pivot Table view of the OrderedItems query. Currently, there's nothing to see, because

you haven't yet built the pivot table. A Pivot Table Field List window pops up off to the side with all the fields in your table or query.

Note: Pivot tables work only with a single table or query at a time. So it makes very good sense to create a query that joins all the tables

you want, just as you did when you built your crosstab query. You can also use a query to create additional calculated fields (like a field

that multiplies a product cost by the number of units).

To create a pivot table, you need to tell Access what field to use for each part of the table. Every
pivot table is made up of five ingredients:

Row fields are used to group your records into rows.

Column fields are used to group your records into columns.

Data fields are used to calculate summary values for every group.

Detail fields show individual values for every record in a group. Optionally, you can also show
summary information (in which case the detail field acts like a data field).

Filter fields are used to pare down the list of records used to create your pivot table based on

the criteria you specify.

Note: The structure of a pivot table is very similar to the structure of a crosstab querythe key difference is that many of the limitations

that restrict crosstab queries don't apply to pivot tables.

The easiest way to get comfortable with pivot tables and their many possibilities is to try your hand
at building one. The following steps guide you through the process of creating a simple pivot table
that shows a sales summary that's grouped by country and product category. If you want to follow
along, use the OrderedItems query in the AdventureWorks database, which you can download from
the "Missing CD" page at www.missingmanuals.com . You can then enhance the pivot table to take
advantage of its extra features.

Note: Prefer a more visual approach to learning about pivot tables? You'll also find a screencastan online animated tutorialon the

"Missing CD" page.

From the PivotTable Field List, drag the ProductCategory field onto the Drop Row
Fields Here region .

When you drop the field, Access fills in the names of all the product categories from top to
bottom, in alphabetical order (see Figure 9-12). If you want to reverse your sort, just right-
click one of the values, and then choose Sort Sort Descending.

Tip: If you accidentally close the PivotTable Field List window, you can get it back by choosing PivotTable Tools | Design

Show/Hide Field List.

1.

From the PivotTable Field List, drag the Country field to the Drop Column Fields Here
region .

When you drop the field, Access fills in the names of all the countries from the list from left to
right, in alphabetical order. In other words, each country is listed in its own column.

2.

Figure 9-12. In this example, the list of products has already been added to the row area, and the second grouping

criteria (the list of countries) is being dragged onto the column area. Notice that once a field is linked, its name is listed in

boldface in the PivotTable Field List.

Tip: If dragging and dropping is a little too awkward, there's another way to lay out a pivot table. In the PivotTable Field List

window, simply select the field you want to add to the pivot table, and then, in the drop-down list underneath, choose where you

want to place the field. Finally, click the Add To button (next to the list) to add the field.

Now you need to choose what data you want to examine. Drag the OrderQty field
over the "Drop Totals or Details Fields Here" region .

This step fills the pivot table with data (although Access may need a few moments to group all
the data if your table is extremely large).

The OrderQty field is added as a detail , which means you see all the records in your table (or
query), organized into their respective groups (Figure 9-13).

3.

It's time to add your summary calculations. Right-click the OrderQty field in the pivot
table (any of the OrderQty fields will do), and then choose an option from the
AutoCalc submenu .

You can perform all the summary functions that you're familiar with, including sums, counts,
and averages. For example, choose AutoCalc Sum if you want to find the total product
quantity that's sold in a given category.

4.

All the summaries that you create with the AutoCalc submenu are known as totals . They're
added to the PivotTable Field List window in a Totals group at the top of the list. (Click the +/-
box next to the word Totals to open the Totals group.) To remove a total, right-click it in the
list, and then choose Delete.

Figure 9-13. This pivot table shows all the OrderQty values from the OrderedItems query, but it's a bit hard to analyze.

To get an overview of what's really taking place, you need to hide some of these details and look at summary information instead.

To hide all the details and see just the summary information, right-click the OrderQty
field again, and then choose Hide Details .

Once you've hidden the details, you get a respectable result that looks more like a crosstab
query (Figure 9-14).

5.

Tip: If you know in advance that you don't want to see details (ever), you can add a total right away. To do so, select the field (in this

case OrderQty) in the PivotTable Field List window, and then, in the drop-down list at the bottom of the window, choose Data Area.

Then, click the Add To button. You can use this approach when working with huge tables that have thousands of records. In this

situation, adding a total is faster than adding the full details from every record.

Figure 9-14. With the details tucked out of the way, you can spot top-ranked and underperforming groups at a glance. The

total for each row appears at the end of the row (not shown here), and the total for each column appears in the Grand Total row at the

bottom of the column.

9.3.2. Manipulating a Pivot Table

This is where the fun starts. One of the key benefits of pivot tables is their flexibility. There's just no
limit to how many times you can move fields, how many levels of grouping you can throw into the
mix, or how many different calculations you can perform at once.

Here are a few ways to quickly change a pivot table:

To remove a field , right-click it, and then choose Remove. Or, just drag it out-side the Access
window (so the mouse pointer becomes an arrow with an "X"), and then let it go.

To move a field from one position to another , just drag the field header to the correct
region. For example, you can reverse the example shown earlier by dragging the column field
(Country) to the row region, and then by dragging the row field (ProductName) to the column
region.

To sort a group , right-click anywhere inside the column for that group, and then choose Sort
 Sort Ascending or Sort Sort Descending. You can use this trick to find the countries

and categories that sell the best (or make the most money).

To add more data items , drag additional fields from the PivotTable Field List onto the table.
For example, you can calculate the total quantity ordered and the average unit price. You can
even add the same field more than once to per-form different summary calculations. Just drag
the same field onto the pivot table, right-click it, and then choose an option from the AutoCalc

submenu.

To add more levels of grouping , drag additional fields from the PivotTable Field List onto the
row or column regions. The trick is to make sure that you place the field where you want it in
the grouping hierarchy. For example, if you want to subdivide your country groups into state
groups, you need to drop the StateProvince field immediately to the right of the Country field,
as shown in Figure 9-15 . And if you want to subdivide your product category groups into
individual product groups, you need to drop the ProductName field just to the right of the box
for the ProductCategory field.

Every time you change the structure of the pivot table, it rescans your table and rebuilds the entire
pivot table. If you change the data in the table while the pivot table is open, you can choose
PivotTable Tools | Design Data Refresh Pivot to force Access to rebuild the pivot table right
away.

9.3.3. Creating a Calculated Field

To get some of the most interesting information from a pivot table, you often need to combine more
than one field in an expression. The classic example (which you already saw with the crosstab query
earlier in this chapter) is multiplying order quantity with product prices to determine the total sales.
You can also multiply product prices with stock numbers to find the value of the inventory you have
on hand.

Figure 9-15. Top: Here, the StateProvince field is being placed to the right of the Country field. Columns will now be grouped

by Country, and then subgrouped by StateProvince, which is what you want. Notice that Access shows a thick blue bar where the

column will appear when you drop it.

Bottom: Here, the StateProvince field is being placed to the left of the Country field. Columns are now grouped by StateProvince and

then Country. Access lets you do this, but it doesn't make much sense. Because every StateProvince belongs to a single Country, each

group will have exactly one subgroup, which is no help.

This feat also works with a pivot table, but you need to do a bit more work. Here's what to do:

From Pivot Table view (Section 9.3.1), choose PivotTable Tools | Design Tools
 Formulas Create Calculated Detail Field .

A multitabbed Properties window appears, with the Calculation tab currently visible (Figure 9-16

1.

).

Figure 9-16. This calculated field performs the simple trick of multiplying two fields.

1.

In the Name box, enter a name for your calculated field .

For example, you could enter TotalRevenue .

2.

In the large box underneath the Name box, enter the expression that performs the
calculation .

For example, you could enter [UnitPrice]*[OrderQty] .

You can use any combination of Access functions and the fields in your under-lying table. (For a
refresher on creating expressions for calculated fields, flip back to Section 7.1 .) If you forget a
field name, you can use the pull-down list under the text box. Just choose the field there, and
then click the Insert Reference To button.

3.

Using the other tabs, apply any formatting changes you want for your field .

The other tabs let you control how your calculated field works with other pivot tables (like
filtering), and how the field's formatted. The most useful settings are on the Format tab, where
you can set the font, the colors, and (most importantly) the number format. For example, it
makes sense to set the number format for the TotalRevenue field to Currency, so it appears
with the currency symbol that's configured for your computer, commas, and just two fractional
digits.

4.

Click the Calculation tab (if you're not currently there), and then click Change to add
your calculated field to the pivot table .

5.

If you used the Hide Details button to collapse your pivot table down to just summary
information, you won't see anything in the pivot table. That's because the calculated field you
just added is a detail field. To see the full list of values from every record, choose PivotTable
Tools | Design Show/Hide Show Details before continuing.

You'll also see your calculated field appear in the PivotTable Field List. If you want to get rid of it
later on, you can right-click the field there, and then choose Delete.

The next step adds a more useful total for your detail field.

5.

Right-click your calculated field, choose AutoCalc, and then pick a summary option
(like Sum). You can then right-click your calculated field and choose Hide Details to
return to the more compact summary view .

Your total field is added to the PivotTable Field List, under the Totals group at the top of the list.
To delete it, right-click it there, and then choose Delete. To remove it from the pivot table but
keep it around for possible later use, click the field on the table, and then choose Remove. And
if you don't like the long name of the total (which is usually something like "Sum of
TotalRevenue"), right-click it, and then choose Properties to open the Properties window. You
can shorten the title in the Caption tab, in the Name box.

Figure 9-17 shows the finished example.

6.

Figure 9-17. The pivot table shown here subdivides the country groups into states and subdivides the product categories into

individual products. The pivot table also shows two totals fields: the total revenue (TotalRevenu) and the total number of units sold

(OrderQty Sum).

GEM IN THE ROUGH
Putting Pivot Tables on Their Own Forms

As you've already learned, a pivot table is just a fancy viewing mode on a table (or query). When you
close the window after building a pivot table, Access asks if you want to save the "layout changes"
you've made. At this point, you have two choices: choose Yes to store the structure of your pivot
table with your table or query so you can review it later, or choose No to toss it away. If you choose
No, the next time you switch to Pivot Table view you'll start out with a blank surface all over again,
and you'll need to assemble your pivot table from scratch.

If you're a true pivot table connoisseur, you may want to store two different pivot table views for the
same table or query. That way, you can quickly take a look at your data from different perspectives.
Unfortunately, each table and query can accommodate only a single pivot table. So what's an
enterprising database developer to do?

The answer is to create a separate form for your pivot table. Forms are custom windows that you
create to make data entry and review easier. You'll study them in detail in Part Four . But for now,
it's important to realize that you can take a single table and create an endless number of pivot table
forms for it. If you plan to work with pivot tables in the long term, separating the pivot table from
your data is invaluable.

To create a pivot table form, follow these steps:

In the navigation pane, select the table or query that has the data you want to use with your
pivot table.

1.

Choose Create Forms More Forms Pivot Table.

This shows the standard pivot table design surface.

2.

Drag and drop the fields to create your pivot table.3.

Choose Office button Save when you're ready to save your pivot table (or just close the
form, and Access will prompt you to save it). Either way, you need to supply a name for your
form.

4.

Choose a name that clearly indicates your form is a pivot table, like SalesPivotTable. Later on,
you can open the form from the navigation pane by double-clicking it.

5.

9.3.4. Hiding and Showing Details

As you've seen, pivot tables are a pretty darned helpful tool for creating detailed summary tables.
The only problem is that sometimes pivot tables are too detailedleaving you with summaries that are
nearly as detailed as the underlying table.

For example, consider the pivot table shown in Figure 9-17 . When you create this pivot table, you
see the information about every product and every geographic region. But what if you want to show
only a specific product, a product in a specific category, or products in a specific country or state? In
this case, the trick is to hide every category you don't want to see using collapsing .

The easiest way to expand or collapse information is to use the +/-buttons that appear next to the
row headers and column headers (Figure 9-18). This technique lets you expand and collapse all the
groups in a particular row or column.

Figure 9-18. Use the plus (+) button to show the details for a collapsed group and the minus (-) button to hide the details for

one that's expanded. In this pivot chart, all the product groups are collapsed except for Accessories. Also, the country Australia is

collapsed, so you see only the totals (not the region-by-region breakdown).

If you want to zero in on specific data more precisely, you can expand a single cell . In this case, just
right-click the cell, and then choose Show Details. For example, using this technique, you can expand
the cell that shows the clothing sales in Australia (rather than all the clothing sales or all the sales in
Australia).

9.3.5. Filtering Pivot Tables

Another way to simplify your pivot tables is to leave out some of the data that goes into building
them. In order to do this, you use pivot table filtering , which is a lot like datasheet filteringyou tell
Access what records you want to use and what ones you don't care about.

You can use filtering in several ways. The two quickest filtering options are to choose the items you
want to see from a list. Here are your choices:

You can filter using the fields that group the rows and columns of your pivot table . For
example, you can use this type of filtering to hide countries or product categories you aren't
interested in. To apply this filtering, just click the drop-down arrow at the right of the appropriate
field header (Figure 9-19). Then, turn off the checkmark next to each item you don't want to
include in the pivot table. This is similar to collapsing parts of the pivot table (Section 9.3.5), except
the information you filter out disappears completely. Not even the totals remain.

Figure 9-19. The quick filtering feature lets you hide specific items you don't want in your pivot table. When this sort of

filtering is in place, the drop-down arrow for the appropriate field turns from black to blue.

You can filter using other fields in the source table . Just drag them from the PivotTable Field
List to the Drop Filter Fields Here region just above the pivot table. Once you've added a filter field, a

drop-down list appears next to the field header. Click the arrow to show the list of all values, and
remove the check-mark next to the ones you don't want to see.

Access also lets you filter for the highest or lowest calculated values in any group. For example, you
can use this technique to hide sales data for poorly selling products. To try this out, right-click the
header for the ProductName field, and then choose an option from the Show Top/Bottom Items
submenu. Perhaps you want to see a fixed number of products (the best or worst 1, 10, 25, and so
on) or a percentage (the best 1 percent, the best 10 percent, and so on). Figure 9-20 shows an
example.

Figure 9-20. Here, the pivot table is cut down to the bestselling five percent of all products. If you have categories that don't

include a product in this range, these categories won't appear at all. (Incidentally, the top five percent of products leaves you with just

two bike models.)

Note: When top/bottom filtering is in place, an AutoFilter icon appears on the right side of the field header (it looks like a funnel). Hover

over the icon to find out what filtering is in place. To remove the filtering, click the icon, and then choose AutoFilter. Choose it again to

switch it back on any time.

Top/bottom filtering is easy to apply, but if you have several levels of subgrouping, you need to take
care to apply it in the right place. For example, consider the pivot table shown in Figure 9-20 , which
splits up sales by category and product name. If you apply the top/bottom filter to the ProductName
field, you see the best one percent of all products. But if you apply the one-percent filter to the
ProductCategory field, you'll see the best one percent of all categories. In other words, you'll focus on
categories that have the most sales rather than hot products.

To understand the difference, consider what happens if the Components category has a large number
of slow-selling items that, when totaled together, add up to a lot. When you filter by
ProductCategory, you see all the products in this top-performing category. But when you filter by
ProductName, you focus on the most popular products and the categories that contain them. In this
case, the Clothing category takes the spotlight with a few hot sellers.

Tip: It's possible to tie yourself up in knots by applying too much filtering at once. If you've forgotten which filter settings you've applied,

you can switch them all off at once by choosing PivotTable Tools | Design Filter & Sort AutoFilter.

9.4. Pivot Charts

Access lets you create charts based on the data in a pivot table report. In fact, every Pivot Table view
has an associated Pivot Chart view. To switch from the table to the chart that displays your results
graphically, select PivotTable Tools | Design View PivotChart View, or use the view buttons
at the bottom-right corner of the window.

With the product pivot-table example from earlier in this chapter, the pivot chart lets you easily spot
high-flying groups. You just need to look for the biggest bars, as shown in Figure 9-21 .

Figure 9-21. This pivot chart shows a pivot table that's been split into category row groups and country column groups. Each

row group appears as a cluster of adjacent bars. You can hover over a bar to see a tooltip that tells you more about it. In this example,

the currently selected bar (which is clearly the biggest) shows that bike sales in the U.S. lead all other groups.

Tip: Choose PivotChart Tools | Design Show/Hide Legend to see a legend box that identifies your groups.

Like pivot tables, pivot charts are interactive. If you look closely at a pivot chart, you see that the
field headers you've chosen for rows, columns, and data items appear right on the chart itself. You
can use these field headers to change the data that's displayed, rearrange the grouping levels, or
apply filtering, all without leaving your chart. For example, in Figure 9-21 , if you want to show fewer
countries, just click the Country field header on the right side of the chart. A list of countries appears,
with a checkmark next to each country you've chosen to display. If you turn off a checkmark, that
country disappears from the pivot chart and the underlying pivot table.

Pivot charts aren't as useful as they first appear. One of the problems is that detailed summary data
can't always be displayed effectively in a chart. If you have a large number of groups (for example,
you've grouped by product name or by customer city, as in earlier examples), you end up with
dozens of bars crammed next to each other, and you won't be able to read the legend to tell which
bar represents which group.

Tip: Before you create a pivot chart, it's often useful to limit the amount of information in your pivot table. Too much information can lead

to a chart that's dense and hard to read. The easiest ways to hide data are to avoid using too many levels of grouping, and to restrict

groups you aren't interested in, by using filtering, as described in the previous section.

9.4.1. Choosing a Chart Type

Another limitation with pivot charts is that they don't give you many options for data visualization.
You can change the type of chart that's used by right-clicking the chart, and then choosing Change
Chart Type. A gallery appears with different options. However, most of the charts shown in the
gallery, from pie charts to line charts, won't create a decent display of your data if you have a lot of
groups. In fact, really only three other reasonable options are worth trying:

A stacked bar or column chart creates a bar for each group, and then subdivides that bar to
show you the subgroups (Figure 9-22).

Figure 9-22. In a stacked column chart, each row group is a single bar. The bar is then subdivided into its column

groups. In this example, that means you have one bar for each country, and separate regions in the bar represent sales in

different categories for that country. The stacked column chart makes it easier to tell how different categories compare. Clearly,

bikes lead the sales in all countries.

A 100% stacked bar or column chart is similar, except it stretches every bar to occupy the
full height of the chart. This way, you can really compare the sub-groups (Figure 9-23).

Figure 9-23. In a 100-percent stacked column chart, you can't tell which country has the most sales, but you can

compare the breakdown. For example, you can find out which country makes the highest proportion of its sales from bikes. (In

this example, it appears to be Australia, but the other countries are surprisingly similar.)

A 3-D bar or column chart is basically the same as a normal bar or column chart. It just lets
you pack the bars from side to side and front to back in a more logical arrangement (Figure 9-
24).

Tip: To rotate a 3-D chart, click somewhere in the blank space around your chart. Then, choose Pivot-Chart Tools | Design Tools

 Property Sheet, which shows the Properties window. Now head to the 3D View tab, which is packed full of sliders you can move to

get a different perspective on your data.

9.4.2. Printing a Pivot Chart

If you want to print a pivot chart, just use Office button Print (or Office button Print Preview
to take a closer look at what your results will look like first).

If you don't have a color printer, you may have trouble distinguishing the different groups. You can

pick specific colors for each group, but it's a bit of work. Here's how:

Figure 9-24. In the 3-D column chart, the countries are arranged from left to right, with each product category bar placed from

front to back. Sadly, you can't choose which product category is placed at the front and which one ends up at the backit's alphabetic.

Click a specific group somewhere on your chart (like the Bikes group in the Australia
column.)

1.

Pause, and then click the group again to select it everywhere . For example, if you
click the Bikes group in Australia twice, you wind up selecting the Bikes group in all
countries, which is what you want to change .

2.

Choose PivotChart Tools | Design Tools Property Sheet from the ribbon to
show the Properties window .

3.

Choose the Border/Fill tab. You'll find options there that let you set the thickness
and color of the borders around each column, and the fill color (or pat-tern) that's
used inside the column .

4.

Repeat this process for each group you want to change, until you have a nice set of5.

printer-friendly colors .
5.

Part III: Printing Reports
Chapter 10: Creating Reports

Chapter 11: Designing Advanced Reports

10. Creating Reports
There are many reasons to create a hard copy of your lovingly maintained Access data. With a good
printout, you can:

Carry your information without lugging your computer around. For example, you can
take an inventory list while you go shopping.

Show your information to non-Access users. For example, you can hand out product
catalogs, order forms, and class lists to other people.

Review details outside the office. For example, you can search for mistakes while you're on
the commuter train home.

Impress your boss. After all, it's difficult to argue with 286 pages of raw data.

In Chapter 3 you learned how to print the raw data that's in a table, straight from the datasheet. This
technique is handy, but it provides relatively few features. You don't have the flexibility to deal with
large blocks of information, you can't fine-tune the formatting of different fields, and you don't have
tools like grouping and summarizing that can make the information easier to understand. As you've
probably already guessed, Access provides another printing feature that fills in these gaps. It's called
reports, and it allows you to create a fine-tuned blueprint that tells Access exactly how it should
prepare your data for the printer.

Reports are specialized database objects, much like tables and queries. As a result, you can prepare
as many reports as you need, and keep them on hand indefinitely. Life isn't as easy if you stick to the
datasheet alone. For example, if you're using the bobblehead database, you may want to print a list
of bobblehead dolls with the doll's name and manufacturer information for your inventory list, and a
separate list with prices for your budgeting process. To switch back and forth between these two
types of printouts using the datasheet, you have to manually rearrange and hide columns every time.
Reports don't suffer from this problem, because each report is saved as a separate database object.
So if you want to print your inventory list, you simply run the DollInventory report. If you want the
budgeting details, you fire up the DollPrices report.

Note: This philosophy is the same one that you saw with queries in Chapter 6. Rather than get locked into one set of sorting and filtering

options, queries let you cook up every combination you could ever want, and then store each one as a separate database object.

To see one reason why reports are insanely better than ordinary datasheet printouts, compare Figure
10-1 (which shows a datasheet printout) and Figure 10-2 (which puts the same data into a simple
report). Notice how the datasheet printout has both wasted space and missing information.

Figure
10-1.
Ordinary

printouts

are

notoriously

bad at

dealing

with large

amounts of

data in a

single

column.

Consider

the

Description

field in this

Dolls table.

Every

record has

the same-

sized box

for its

description,

which fits

three short

lines. If the

information

is larger

than the

available

space (as it

is for the

Edgar Allan

Poe doll),

it's

chopped

off at the

end. If the

information

is smaller

(as with the

James

Joyce doll),

you have

some

wasted

white

space to

look at.

Figure
10-2. In

a typical

report, you

size the

column

widths, but

the height of

each row

depends on

the amount of

information in

the record.

That means

each row is

just large

enough to

show all the

text in the

Description

field. Best of

all, you don't

need to apply

any special

settings to

get this

behavior.

Reports do it

automatically.

10.1. Report Basics

You can take more than one path to create a report. Experienced report writers (like you, once
you've finished this chapter) often choose to create a report from scratch. Report newbies (like you,
right now) usually generate a quick report with a single click. This section covers the simplest method
for generating a report.

Note: As you'll see, the simple approach to creating a report always puts your information in a tabular structure (with columns and rows).

You'll learn how to break out of this design in Chapter 11 .

10.1.1. Creating a Simple Report

It takes just two steps to create a simple report, and a few more to fine-tune it. If you want to try
out this technique for yourself, open the Boutique Fudge database (included with the downloadable
content for this chapter, explained in Section 3.4.2.3) or a database of your creation, and follow
these steps:

In the navigation pane, select the table you want to use for your new report .

This example uses the Products table from the Boutique Fudge database. You can also create a report
that's based on a query. See the box "Doing the Heavy Lifting with a Query" (Section 10.1.2) for more
about this trick.

1.

Choose Create Reports Report .

A new tab appears with a simple, automatically generated report. This report arranges information in a
table, with each field in the table (or query) occupying a separate column. The Report view looks
somewhat like the datasheet, except for the fact that it has nicer formatting and uses space more
efficiently, as shown in Figure 10-2 .

When you first create a report, the fields are arranged from left to right in the same order that they
live in the table. It doesn't make any difference if you've rearranged the columns in the datasheet.
However, any columns you've hidden in the datasheet (Section 3.1.4) are left out of the report.

Note: You can fine-tune exactly which data appears in your report by removing columns you don't want and adding new columns. Section

10.1.3 has more about this trick.

2.

Resize the columns smaller or larger until you have the balance you want .

To resize a column, first click the column header to select it. (A dotted line will appear around the
column.) Next, move the mouse to the right-side of the column header, so that it changes into the

3.

two-way resize pointer. Finally, drag the column border to the left (to make it smaller) or to the right
(to make it larger). Figure 10-3 shows this process in action.

Figure 10-3. Drag the edge of the column to the desired width. A black box shows you the new width. When you release the

mouse button, Access changes the column width and moves all the following columns accordingly. To prevent the last column from

leaking off the edge of the page, you may need to shrink some columns after you expand others.

Note: You'll see a dotted line on the right side of your report that indicates the edge of the page. You can resize a column right off the edge

of the pagewhich may make sense if you have dozens of columns, and the only way you can deal with them is to create a printout that's

two pages wide. Generally, though, it's better to make sure all your fields fit the width of the page, and turn the page sideways using

landscape orientation (Section 3.4.1.2) if you need to accommodate more columns.

3.

Arrange the columns in the order you want by dragging them .

To move a column, click the column heading, and then drag the column to a new position.

Tip: You can also move columns with the keyboard. Just click to select the right column, and then use the left and right arrow keys to hop

from one spot to the next.

4.

Optionally, you can tweak the formatting by changing fonts, colors, and borders .

The quickest way to change the formatting of your report is to select the appropriate part (by clicking),
and then use the buttons in the Report Layout Tools | Formatting Font section of the ribbon. Using
this technique, you can change how titles, column headers, and data appear. Section 10.3.1 has more

5.

6.

on this technique.

Add the finishing touches .

Now's the time to change the headings, add a logo, and apply page numbers. You'll learn how to fill in
these details starting in Section 10.1.5 .

6.

Optionally, choose Office button Print to print the report now .

You can also adjust the print settings in Print Preview mode (choose Office button Print Print
Preview), as described in Section 10.2 .

7.

Save your report to use later .

You can save your report at any time by pressing Ctrl+S. If you close the report tab without saving it,
Access prompts you to make the save. Either way, you need to supply a name for your report.

It's possible to create reports that have the same names as tables or other data-base objects. For
example, you could create a Products report that shows information about the Products table.
However, in practice it's usually better to pick a more specific report name (like ProductsByCategory,
ProductListForDealers, and Top50Products). The report shown in Figure 10-2 and elsewhere in this
chapter is named ProductCatalog.

8.

UP TO SPEED
Doing the Heavy Lifting with a Query

The most obvious way to build a report is to base it on an existing table. However, you can also
create a report on top of a query . This approach lets you use some heavy-duty filtering or sorting on
your records before they reach the report. It also makes sense if you want to create a report that
uses information from more than one table.

For example, imagine you decide you want to create a product list that includes additional details
from another table (like the category description from the ProductCategories table). Although you
can create this report from scratch, it often makes more sense to structure your data with a query
first. That way, you can reuse the query for different purposes (like editing), and you can change it
any time.

In this example, the first step is to create a query that joins the Categories and Products table (
Section 6.3). Then, you save this query, select it in the navigation pane, and choose Create
Reports Report to create a report that's based on the query. You can then follow the normal
steps to perfect your report.

10.1.2. Arranging a Report

You've already learned how you can shuffle columns around in a report. However, that's not all you
can move. You can also add space between the rows (see Figure 10-4) and adjust all the following
elements:

The logo (in the top-left corner). In a new report, the logo looks like a note-book with a circle

around it.

The report title (right next to the logo). To start out, this is the name of the table or query on
which the report is based (like Products).

The date and time (which is updated every time you open the report). Initially, this appears in
the top-right corner.

The page number . This appears at the center-bottom of each page. In Layout view, Access
treats the report as though all the data occupies one page, so you need to scroll to the end to
find this element.

The report data (after the title). To change where the table in the report first appears on the
page, click one of the column headers, and then drag it down (to add space between the title
and the report data) or up (to remove the space).

The totals (at the bottom of some columns). Access automatically adds calculations for
numeric fields. For example, when the ProductCatalog report is first created, Access adds a total
at the bottom of the Price column that indicates how much it costs to buy one of each product.
(This total is of dubious value to change it, select the column, and then pick another summary
option from Report Layout Tools | Formatting Grouping & Totals Totals menu.)

Tip: You can also remove most elements by selecting them, and then pressing the Delete key. This trick is handy if you don't want to see

details like page numbers, dates, or totals.

Figure 10-4. Top: To add space between the rows, click a value in one of the rows, and drag it down.

Bottom: All the rows are adjusted to have the same spacing.

10.1.3. Adding and Removing Fields

If you're tired of merely rearranging columns, you may want to try adding ones that aren't already

included or removing existing ones that you don't want. Removing a field is easy: just click to select
it, and then press Delete. (You can try out this technique with the Discontinued field in the
ProductCatalog report.)

When you create a simple report using the quick creation technique described in Section 10.1.1 , you
usually end up with all the fields you need. However, there are two reasons why you may need to
add an additional field that isn't already in the report:

You want to add a field that's hidden in the Datasheet view (Section 3.1.4) . When
you create a new report, hidden fields are left out.

You want to add a field with related information from a linked table . For example, you
could add fields from the ProductCategories table to show information about the category that
each product is in.

To add a new field, you need the help of the Field List pane (see Figure 10-5). To show it, choose
Report Layout Tools | Formatting Controls Add Existing Fields.

Figure 10-5. The top portion of the Field List window lists the fields from the table (or query) on which the report is based. The

middle portion lists the fields in any related tables, and the bottom portion lists unrelated tables (which you probably won't use). To add a

field, drag it from the Field List pane and drop it on your report.

When you add a new field, Access uses the field name for the column heading, which isn't always
what you want. Maybe you'd prefer Product Name (with a space) to ProductName . Or maybe you'd
like to shorten ProductCategoryID to just Category . After all, the report shows the name instead of
the numeric category ID, because the ProductCategoryID field uses a lookup (Section 5.2.5).
Fortunately, renaming the column headers is easy. Just double-click one to switch it into edit mode.
You can then edit the existing text or replace it altogether.

FREQUENTLY ASKED QUESTION
Adding Pictures to Reports

Can I store pictures in a table and show them in a report?

Many tables include embedded pictures using the Attachment data type (Section 2.3.8). You can use
this technique to store employee photos, product pictures, or supplier logos. Depending on the type
of picture, you may then want to include them in your printouts.

It is possible to show your pictures in a report (and even print them), provided you meet the
following requirements:

Your picture is stored in an attachment field . (See Section 2.3.8 for more information
about the attachment data type.)

Your picture is stored in a standard picture format (think .bmp, .jpg, .gif, .tif, .wmf,
and so on) . If you have another type of file in an attachment field, you just see the icon of the
related application (like Microsoft Word for a .doc file) in your report.

Your picture is the first attachment . If you have more than one attachment, when you
select the row in the report, tiny arrow buttons appear above that you can use to move from
one attachment to another. But it's way too much work to do this with all your records before
you print a report.

The Dolls table in the bobblehead database Products table fits the bill, which lets you create a report
like the one shown in Figure 10-6 .

Alternatively, you can show the file name or the file type of an attachment in a report. To do this, you
need to use the Field List pane (Figure 10-5). For example, if you have an attachment field named
Picture, it appears with a plus button next to it in the Field List pane. Click the plus button, and you'll
see the three Picture-related details you can display in a report: Picture.FileData (the attachment
content itself, which is the image), Picture.FileName (the name of the file), and Picture.FileType (the
type of file). If you want to show these details, just drag them onto your report.

10.1.4. The Many Views of a Report

Just like tables and queries, you can use several different views to change a report. When you create
a report using the quick creation technique described earlier, you begin in Layout view, which is an
ideal starting place for report builders. But depending on the task at hand, you may choose to switch
to another view. You have four viewing options:

Layout View . Shows what the report will look like when printed, complete with the real data
from the underlying table. You can use this view to format and rearrange the basic building
blocks of the report.

Report View . Looks almost the same as Layout view but doesn't allow you to make changes.
If you double-click a report in the navigation pane, Access opens it in Report view so you can
see the data it contains without accidentally changing its design. One common reason to use
Report view is to copy portions of your report to the clipboard, so you can paste them into other
programs (like Microsoft Word). Figure 10-7 shows how that works.

Figure 10-6. You can see this in the sample Bobblehead database examples for this chapter. (They're available on the

"Missing CD" page at www.missingmanuals. com.) The report is named DollsWithPictures.

Figure 10-7. To select a bunch of rows, click in the margin on the left next to the first row you want to select, and then

drag down to highlight the rows you want. Then, right-click the highlighted portion, and choose Copy to transfer it to the clipboard,

so it's ready for pasting into other Windows applications.

Note: If you want to transfer the entire content of a report, you should consider the export features described in Section 6.3.1 .

Print Preview . Shows a live preview of your report, just like Layout view and Report view.
The difference is that the preview is paginated (divided into print pages), so you can figure out
how many pages your printout needs and where the page breaks fall. You can also change print
settings (like page orientation) and export the complete report, as described in Section 10.2.2 .

Design View . Shows a template view where you can define the different sections of your
report. It's not nearly as intuitive as Layout view, but it does give you complete, unrestrained
flexibility to customize your report. Access experts often begin creating a report in Layout view
and then add more exotic effects in Design view. You'll learn more about Design view in Chapter
11 .

Note: Design view is a throwback to previous versions of Access, which didn't include the more intuitive Layout view and Report view

options. It's still useful for some tasks, but it's no longer the central station for shaping and formatting a report.

You can switch from one view to another by right-clicking the report tab title, and then choosing the
appropriate view from the pop-up menu. (Or, you can use the Home Views View menu or
the view buttons in the bottom-right corner of the Access window. It's just a matter of personal
preference.)

After you've closed your report, you can reopen it in the view of your choice. Just right-click the
report in the navigation pane, and then choose the appropriate view. Or double-click the report in the
navigation pane to open it in Report view.

10.1.5. Creating a Report from Scratch

So far, you've learned how to quickly create a report based on a table or a query. However, you have
another choiceyou can start with a blank slate and explicitly add each field you want. Both
approaches are equally valid. You may prefer to use the quick creation technique when you want to
build a report that closely follows the structure of an existing table or query. Alternatively, if you plan
to create a report that uses just a few fields from a table, you may find it's easier to start from
scratch.

Here's how you create a report from the bottom up:

Choose Create Reports Blank Report .

A new, empty report appears in Layout view. The Field List appears on the right, with all the
tables in your database.

1.

Add the fields you want from the appropriate table, either by dragging them from the
Field List onto the report surface or by double-clicking them .

You can also use fields from related tables. For example, you can create a report that combines
product information and the category details for each product.

In this case, the report automatically uses a join query (Section 6.3) to get the results.

2.

Format the columns .

When you create a report from scratch, the columns start off with no formatting at all. You'll
need the formatting techniques described in the next section to add color and emphasis.

3.

Add any other elements you want, like a logo, a title, page numbers, and the date .

When you create a simple report, you get all these ingredients for free. Fortunately, it's just as
easy to add them to a report you're building from scratch. Just head to the Report Layout Tools
| Formatting Controls section of the ribbon (see Figure 10-8).

4.

Figure 10-8. The logo and title typically sit at the top of your report. You can use any picture for the logo and any text

for the title. Access gives you more options for the date (Figure 10-9) and page number (Figure 10-10).

Figure 10-9. When adding date information, you can choose whether to include the date, the time, or both. You also pick the

format. Once you've added the date information, you can change the font, borders, and colors, as with any other report element.

Figure 10-10. With page numbers, you can choose the format, the position, and the alignment. (The position determines

whether the page numbers appear above or below the report data. Although you can drag the page numbers around after you add them,

Access will shift the report data to make room, based on your choice.)

10.2. Printing, Previewing, and Exporting a Report

Once you've created the perfect report, it's time to share it with rest of the world. Most commonly,
you'll choose to print it.

Printing a report is easysimply choose Office button Print. But before you inadvertently fire off an
87-page customer list in jumbo 24-point font, it's a good idea to preview the end result. Access
makes it easy with its integrated Print Preview feature.

Tip: You don't need to open your report to print it. Just select it in the navigation pane, and then choose Print from the Office menu. But

bewarewhen you use this shortcut you don't get the chance to preview the result and make sure it's what you want before it pops out of

the printer.

10.2.1. Previewing a Report

To get a preview of what your printed report will look like, right-click the report tab title and then
choose Print Preview, or choose Office button Print Print Preview. Print Preview mode
doesn't let you make any changes or select any part of the report. You're limited to zooming in and
out, and moving from page to page (see Figure 10-11). When you're finished looking at your print
preview, choose Print Preview Close Preview Close Print Preview.

In Print Preview mode, the ribbon changes dramatically. The tabs you've grown to know and love
disappear, and Access replaces them with a single tab named Print Preview. (This is the same Print
Preview tab you saw when you previewed a datasheet printout in Chapter 3 .) You can use all the
same techniques that you learned in Section 3.4.1.1 to move around the preview, see multiple pages
at once (which lets you study where page breaks occur), and change the page margins and paper
orientation.

For example, the Portrait and Landscape buttons let you quickly switch between the standard portrait
orientation (which places the short edge at the top of the page) and landscape (which rotates the
page, placing the long edge at the top). Portrait fits more rows, while landscape fits more columns.
Generally, portrait is best, provided it can fit all your columns. If portrait mode doesn't fit all your
columns, you can try using landscape orientation, a smaller font size (Section 10.3.1), narrower
margins, or a larger type of paper.

Figure 10-11. To zoom in, click once with the mouse. Click again to zoom back out to the full page view. You can also use

the page navigation buttons at the bottom of the window to move from one page to the next, and the zoom slider (not shown) for more

precise zooming. But the most useful commands appear in the ribbon, which lets you tweak the print settings and export your report

results to another type of file.

Note: Reports always use your standard paper size (which is usually 8.5 x 11 inches, or letter size) when you first create them.

However, if you change the size, the new size setting is stored with the report. That means the next time you open your report, it still has

the customized paper size. The same applies for the paper orientation setting.

Access has two extra options that aren't provided in a normal datasheet print preview:

Use the Print Data Only button to produce a streamlined printout that leaves out details like
column headers and titles. This option is rarely useful, because the resulting printout is harder
to read.

Use the Columns button to fit more report data on a page. This option works only if your
report is much narrower than the page width. For example, if your report is less than half the
width of the page, you can double-up by using two columns. You'll need half the number of
pages. in Section 11.3 , you'll see how the Label wizard uses a multicolumn report to pack
mailing labels on a page.

Tip: You can change a lot of the page layout settings (like margins and paper orientation) without heading to the print preview. You'll find

many of the same buttons in the Report Layout Tools | Page Setup tab of the ribbon, which appears whenever you have your ribbon in

Layout view.

10.2.2. Exporting a Report

The Print Preview tab is a bit of an oddity, because it includes a few commands that don't have
anything to with printing your report. The commands in the Print Preview Data section let you
take a snapshot of the current report data, and then export it into some other type of file so you can
view it outside of Access or work with it in another program. This technique is a great one to use if
you want to share some data with other people (read: impress the boss).

Although Access supports many different formats for exporting a report, you'll use just a few with
reports. (The others are more useful when you're exporting pure data from a table or query, as
explained in Chapter 19 .) The useful formats for exporting reports include:

Word . This option transforms your report into a document you can open in Microsoft Word.
However, the format Access uses is a bit clumsy. (It separates each column with tabs and each
line with a hard return, which makes it difficult to rearrange the data after the fact in Word.) A
nicer export feature would put the report data into a Word table, which would make it far easier
to work with.

HTML Document . This option transforms your report into a rich HTML document, suitable for
posting on the Web or just opening straight from your hard drive. The advantage of this format
is that all you need to view it is a Web browser (and who doesn't have one of those?). The only
drawback is that the formatting, layout, and pagination of your report won't be preserved
exactly, which is a disadvantage if someone wants to print the exported report.

Snapshot Viewer . This option creates a .snp snapshot file, which anyone can open to view
and print the fully formatted report. In order to view the snap-shot file, you need Microsoft's
free Snapshot Viewer program. (To download it, surf to http://office.microsoft.com and search
for "Snapshot Viewer.") Although the Snapshot Viewer works perfectly well, most people prefer
to use the more standard PDF format (next in the list), which provides the same features.
(Truthfully, the Snapshot Viewer is a bit of a holdover from earlier versions of Office.)

PDF or XPS . This option lets you preserve your exact report formatting (so your report can be

printed), and it lets people who don't have Access (and possibly don't even have Windows) view
your report. The only disadvantage is that this feature isn't included in the basic Access
package. Instead, you need to install a free add-in to get it (you'll see how in Section 10.2.3).
For more information about the PDF and XPS formats, see the box "Learning to Love PDFs"
below.

UP TO SPEED
Learning to Love PDFs

You've probably heard about PDF, Adobe's popular format for sharing formatted, print-ready
documents. PDFs are used to pass around product manuals, brochures, and all sorts of electronic
documents. Unlike a document format such as .xlsx, PDF files are designed to be viewed and printed,
but not edited.

The best part about PDFs is that they can be viewed on just about any type of computer and
operating system using the free Adobe Reader. You can download Adobe Reader at
www.adobe.com/products/acrobat/readstep2.html , but you probably don't need to. Most computers
already have Adobe Reader installed, because it comes bundled with so many different programs
(usually so you can view their electronic documentation). It's also used widely on the Web.

PDF isn't the only kid on the block. Microsoft's newest operating system, Windows Vista, includes its
own electronic paper format called XPS (XML Paper Specification). In time, as XPS is integrated into
more and more products, it may become a true PDF competitor. But for now, PDF is dramatically
more popular and widespread, so it's the one to stick with.

No matter which format you use, the process is essentially the same:

If you're not already in Print Preview mode, right-click the report tab title, and then
choose Print Preview .

1.

Click one of the buttons in the Print Preview Data section of the ribbon,
depending on the format you want to use for your export .

For example, choose Print Preview Data Word to copy the results of your report into a
Word-compatible document. Some of the options are stored under the Print Preview Data

 More menu, and you won't see a PDF export option until you install the PDF add-in (as
described in the next section).

2.

Choose a name for the destination file (Figure 10-12) .

The destination file is the place where the exported data will be stored.

3.

If you wish to open your exported file in the related program, check the setting
"Open the destination file after the export operation is complete."

Say you're exporting a Word document and you choose this option; Access will export the data,
launch Word, and load up the document. This is a good way to make sure your export operation
worked as expected. This option works only if you have the program you need on your
computer.

4.

5.

Click OK to perform the export .

Ignore the other two checkboxes, which are grayed out. They apply only to export operations
that work with other database objects.

Figure 10-12. Access assumes you want a name that matches your report (for example, ProductCatalog.rtf if the

ProductCatalog report is exported to a rich text document that can be opened in Word). However, you can change the file name

to whatever you want.

Note: Remember, exporting a report is like printing a report. Your exported file contains the data that existed at that moment in

time. If you decide a week later that you need more recent data, you need to export your report again.

5.

Choose whether or not you want to save your export settings .

By saving your export settings, you can quickly repeat your export operation later on. For
example, if you export to a Word document and save the export settings, you can export the
report data tomorrow, next week, or a year in the future. This feature is described in Section
19.3.7 in Chapter 19 , which tackles export operations in more detail.

6.

Tip: You don't need to open your report in order to export it. Instead, you can use all the commands you need straight from the

navigation pane. Just right-click the report name, and then choose Export to show a menu of all your export options, from PDF files to

HTML pages. You'll also see a few options that don't appear in the Export tab of the ribbon, including options for exporting the report to

older, almost forgot-ten database and spreadsheet products like dBase, Paradox, and Lotus 1-2-3.

10.2.3. Getting the "Save As PDF" Add-in

To export a report as a PDF file, you need the "Save As PDF or XPS" add-in. To get it, surf to
www.microsoft.com/downloads , and search for "PDF". The links will lead you to a page where you
can download the add-in and install it with just a couple clicks.

Once you install the add-in, all your Office applications will have the ability to export their documents
in PDF format. In an Access report, you work this magic by choosing Print Preview Data PDF
or XPS while you've got a report in Print Preview mode. Or, you can right-click your report in the
navigation pane, and then choose Export PDF or XPS.

When you export a PDF file, you get a few extra options in the " Publish as PDF or XPS" dialog box
(Figure 10-13). PDF files can be exported with different resolution and quality settings (which mostly
affect reports that have pictures). Normally, you use higher-quality settings if you're planning to print
your PDF file because printers use higher resolutions than computer monitors.

Figure 10-13. The "Publish as PDF or XPS" dialog box looks a lot like the Export As dialog box, except it has a Publish

button instead of an Export button. You can turn on the "Open file after publishing" checkbox to tell Access to open the PDF file in Adobe

Reader (assuming you have it installed) after the publishing process is complete, so you can check the result.

The "Publish as PDF or XPS" dialog box gives you some control over the quality settings with the
"Optimize for" options. If you're just exporting a PDF copy so other people can view the information
in your report, choose "Minimum size (publishing online)" to save some space. On the other hand, if
there's a possibility that the people reading your PDF may want to print it out, choose "Standard
(publishing online and printing)" instead. You'll export a slightly larger PDF file that will make for a
better printout.

Finally, if you want to publish only a portion of your report as a PDF file, click the Options button to
open a dialog box with yet a few more settings. You can choose to publish just a fixed number of
pages rather than the full report.

Tip: Getting the "Save As PDF or XPS" add-in is a bit of a hassle, but it's well worth the effort. In previous versions of Access, people

who wanted to create PDF files had to get another add-in or buy the expensive full version of the Adobe Acrobat software. The "Save As

PDF or XPS" feature was originally slated for inclusion in Office (with no add-in required), but antitrust concerns caused an ultra-cautious

Microsoft to keep it out. Best of all, the add-in gives you PDF-saving abilities in other Office applications, like Word, Excel, and

PowerPoint.

FREQUENTLY ASKED QUESTION
Different Ways to Export Data

Is it better to export the results of a report, or the entire contents of a table?

There are several ways to transport data out of Access. You can take data directly from a table, or
you can export the results of a query or a report. So which approach is best?

Generally, the easiest option is to get data straight from the appropriate table (as described in
Chapter 19). However, in a few cases it makes more sense to use a report:

You want to use the unique arrangement of columns that you've defined in a report. (For
example, you may not want the full Products tableinstead, the ProductCatalog report lays out
exactly what you need.)

You want to use the filtering, sorting, or grouping settings that you've applied to a report.
(You'll learn about these features in Chapter 11 .)

You want to take advantage of the formatting you've applied to a report. Depending on what
exporting option you use, you may be able to keep formatting details like fonts. If you export to
a PDF file, HTML document, or snapshot, all the formatting remains in place. If you export to an
Office application like Word or Excel, only some of the formatting is retained. But if you export a
table or a query, you get the data only, and it's up to you to make it look nice all over again.

In Chapter 19 , you'll take a closer look at how to export tables and queries.

10.4. Filtering and Sorting a Report

Reports offer much the same filtering and sorting features that you learned to use with the datasheet
in Chapter 3. In addition, you have options for grouping and subtotals, which you'll explore in
Chapter 11.

10.4.1. Filtering a Report

The ProductCatalog report presents all the records from the Products table. However, reports often
need to filter out just an important subset of information. For example, you may want to analyze the
sales of products in a specific category or the orders made by customers in a specific city. In the case
of the ProductCatalog, it's logical to leave out discontinued items. After all, there's no reason for
Boutique Fudge to advertise items it no longer sells.

You can pare down the results that are included in a report in two ways. You've already learned
about one option: creating a query that extracts the results you want, and then using that query to
build your report. This option is a good choice if you already have a query that fits the bill or you plan
to use this subset of data for several purposes (reports, editing, other queries, and so on).

Another choice is to apply the filtering through report settings. The advantage of this technique is
that you can change the filter settings quickly and repeatedly. If you plan to use the same report to
print several different subsets of data, this approach is best. For example, you could filter out the
products in one category, print them, and then adjust the filtering to select products in a different
category, which you could also print.

Report filtering works the same way datasheet filtering does (discussed in detail in Section 3.2.2).
You have two options:

If you want to quickly build a filter condition based on an existing value, right-click that value,
as shown in Figure 10-20. For example, in the CategoryName field, you can right-click the value
"Beverages." The menu that pops up includes several filtering options based on the current
value. Depending on the option you choose, you can include records in the Beverages category,
records in different categories, records that have a category name that includes Beverages (like
"Alcoholic Beverages"), and so on.

Figure
10-
20. The

quick

filtering

options you

see vary

based on

the data

type. Here,

the filtering

options let

you set a

variety of

filters

based on

the term

"Beverage."

If you need more flexibility to create the filter expression you want, right-click any value in a
column, and then look for the filtering submenu. The exact name of the menu depends on the
data type. For example, if you right-click the CategoryName field, you see a submenu named
Text Filters. If you right-click the Price field, you see a submenu named Number Filters. These
submenus include a range of filtering options that let you set specific ranges. For all the
exquisite details and help creating a variety of filter expressions, refer to the instructions in
Section 3.2.2.

You can apply filters to multiple columns at once. To remove a filter, right-click the column, and then
choose Clear Filter.

10.4.2. Sorting a Report

Ordinarily, a report has the same order as the underlying data source. If you've built your report on a
query, the order is determined by the sort order you used in the query. If you've built your report on
a table, the records have no particular order at all, although they'll typically appear in the order you
added them.

Either way, you can apply formatting directly in your report, in much the same way that you can with
the datasheet (Section 3.2). Simply right-click the appropriate column header, and then look for the
sorting options. The sort commands depend on the data typefor example, you can order text fields
alphabetically, dates chronologically, and numeric fields in ascending or descending order.

Note: You can sort using only one field at a time. If you want to apply a more complex sort that uses more than one column (for example,

a sort that separates products into alphabetical categories and then orders each category by price), you need to build a query for your

report.

11. Designing Advanced Reports
In the previous chapter, you learned to create simple reportsnicely formatted printouts that arrange
information inside a single table. Simple reports are a great way to create a hard copy that has more
polish than a datasheet printout. As you learned in the previous chapter, simple reports give you the
fine-grained formatting you need to highlight important columns and values, and they handle long
text fields gracefully, without wasting space or chopping off part of the data.

Simple reports are a great Access tool, but they're still, well, simple. Their structure is their main
limitation. No matter how you format or arrange your data in a simple report, Access always presents
it as a table. In the real world, you may want your printed data to take other forms. You may want to
transform your data into customer invoices, class attendance lists, or mailing labels. All these reports
perform the same taskthey take the data in a table, and then arrange it on the printed pagebut none
of them can be satisfied with a plain-vanilla report and its simple tabular structure.

In this chapter, you'll see how to create a variety of more specialized reports that take the concepts
you learned in the last chapter, and extend them with a few new tricks. Along the way, you'll take a
look at Design view, you'll learn how to add pictures and shapes, and you'll tell Access where it can
break pages in long printouts. You'll also see how to use grouping to analyze data and calculate
subtotals.

11.1. Improving Reports in Design View

Design view is the secret to setting your reports free. As you learned in the previous chapter, Design
view's another way of looking at your report. Unlike Layout view, in Design view you don't see any
report data. Instead, you see a blueprint that tells Access how to create the report. Using this
blueprint, you can do things that just aren't possible in any other view.

Consider the simple report with the list of products that you created in the previous chapter. If you
switch to Design view, then you see what makes this report tick (Figure 11-1). To get to Design
view, right-click the tab title, and then choose Design view.

Figure 11-1. The Design view window's divided into five sections. Each section tells Access how to construct part of the

report. The Detail section's the most important part. When you fire up the report (by printing it or viewing it in layout mode), Access

repeats the detail section once for each row. It fills in the boxes in the Detail view with the values from the corresponding record.

Note: The odd grid of lines and dots you see in Design view is intended to help you line up different parts of your report. As you'll see,

people often use Design view to place data in precise locations, and there's no automatic feature to line up different parts of your report.

11.1.1. The Design View Sections

The secret to mastering Design view is understanding its five different sections. Although you can
leave some sections blank, every report includes them in exactly the same order:

Report Header . This section appears once at the beginning of your report, on the first page.
This section's where you add titles, logos, and your own personal byline.

Page Header . This section appears just under the report header on the first page, and at the
top of each subsequent page. It's the place to add page numbers, and you can also use it for
column headers in simple, tabular reports like the product catalog.

Detail . This section appears once immediately after the page header, and it's the heart of all
reports. The trick's that the detail section's repeated once for each record in your report. In a
simple tabular report, this section represents a single row.

Page Footer . This section appears at the bottom of each page. If you don't use the page
header for page numbers, then this section provides your other option.

Report Footer . This section appears once at the very end of the report. You can use it to print
summary information, copyright statements, the date of printing, and other miscellanea.

These sections' content looks a fair bit different from what you see in other views, because it doesn't
show the live data. Instead, it includes placeholders where Access can insert the necessary
information each time it runs the report. When you run the product report, Access grabs the values
from the ProductCategoryID, Product-Name, Price, and Description fields, and then shuffles them into
the matching boxes.

You'll need a bit of time before you're comfortable manipulating the content in Design view. First, you
need to learn that you can adjust each section's size. This ability makes sense, because different
reports allocate different amounts of space to each region. Figure 11-2 shows how this works.

Figure 11-2. To resize a section, move your mouse to the border just underneath the section you want to change. Drag the

border down (to add more space) or up (to remove space). It's then up to you to shuffle around the content inside to fit the available

space. In this example, the Details section's being heightened.

Note: If you don't want to use a section, then you can resize it almost out of existence. Look at the report footer section in Figure 11-1 .

It's there, but vanishingly small, because this report doesn't use the footer. Alternately, you can hide the header and footer section. Just

right-click the report, and then choose Page Header/Footer to hide the page header and page footer sections, or Report Header/Footer

to hide the report header and footer sections. (Click these commands again to make these sections reappear.)

11.1.2. Understanding Controls

Design view gives you a different perspective for your report. Access represents everything in your
report with controls : graphical widgets that have text, pictures, and formatting. Each control's a
distinct element. You can change what it looks like, or you can drag it to a different position
(although you may need to pull it out of its layout table first, as described in Section 11.1.3).

Figure 11-3 points out the controls in the product catalog report. You don't see all the controls,
because not all the columns fit into view at once.

Figure 11-3. In the product report, you'll find controls for the title, page number information, column headers, and data. Each

control has a thin black border around it, which helps you spot it and resize it in Design view. These borders won't appear in the printout.

Note: Something may strike you as a little odd in Figure 11-3 . Namely, there are several text box controls that look more like label

controls. These controls' content causes this phenomenon. As you'll learn later in this chapter, reports use label controls for text that

never changes, and text box controls for text that does (based on the current date, the current record, the current page, and so on).

To get a little more comfortable in Design view, play around with a simple report. (If you don't have a
report handy, then you can download the Boutique Fudge database with the examples for this
chapter; see the "Missing CD" page at www.missingmanuals.com .) Here are some tasks to try out:

Drag the controls in the report header and page footer sections from one place to another.

Change the size of a control in the report header or page footer section by dragging the black
border that appears around it.

Rearrange the columns by dragging the column headers around the page header section, or by
dragging the fields around the detail section. When you move a column, Access automatically
arranges the other columns around it. Access works the same way when you rearrange the
columns in Layout view.

Select a control, and then change its formatting using the ribbon's Report Design Tools | Design
 Font section. This method works with the elements in the page header and footer sections

as well as the column headers and individual fields.

When you're finished making a change, right-click the tab title, and then choose another view (like
Report view, Layout view, or Print Preview) to see what your printed report will look like. When you
close your report, Access prompts you to save the changes you've made.

You should be able to do everything you did to customize a report in Layout view using Design view.
Of course, Layout view's easier to use for most of these tasks. But as you'll see in the following
section, Design view gives you more freedom to break out of the typical report table and arrange
your data however you want.

11.1.3. Moving Fields out of a Layout

In a simple report, Access groups all the fields into something called a layout . The layout's actually a
specialized container that lets you easily work with groups of fields. It's new in Access 2007, and it
provides several indispensable conveniences that you saw in Chapter 10 :

When you move a column header, the column data moves with it, and vice versa.

When you move a column to a new position, Access rearranges all the other columns
accordingly.

When you widen a column, Access bumps all the following columns out of the way. Similarly,
when you shrink a column, the following columns move to fill the extra space.

Without a layout, you couldn't move your columns around as quickly. Every time you wanted to make
a change in one column, you'd need to painstakingly reposition every other column. In a report with
several dozen fields, this process adds up to a major headache.

Although layouts are small miracles of convenience, they're also a bit of a straight-jacket if you want
to arrange your data differently. Suppose you want to take the product catalog report and make it
look less like an inventory list and more like a retail publication, as shown in Figure 11-4 . You can't
do this with a layout, because your fields are always locked into a tight tabular structure. You can
only get this result if you take your fields out of their layout table, and then arrange them by hand.

Note: Don't get confused between layouts and Layout view . A layout's a container that arranges a bunch of controls. Layout view's a

way to look at your report and change various aspects of it. You can use Layout view even if you don't use any layout containers.

Figure 11-4. This version of the product catalog report doesn't use a layout tableinstead, all the controls are free-floating.

Access still creates the report in the same way as it does when you use a layout tableit repeats the detail section once for each row. The

only difference is the way Access arranges information in the detail section.

Here's how to transform the layout-based product catalog into the table-free version shown in Figure
11-4 :

Switch to Layout view (right-click the tab title, and then choose Layout View) .

You can remove fields in Design view, but the results aren't as pleasant. When you remove a
field in Layout view, Access automatically bumps it aside and gives it a little space of its own.
But when you remove a field in Design view, Access leaves it in its original position. Because the
layout table's still underneath this field, you end up with controls that are bunched up on top of
each other, which makes them very difficult to arrange.

1.

Find the field that you want to remove from the layout. Right-click the column
header, and then choose Layout Remove .

Repeat this step to remove all the fields you want to arrange. You decide whether you want to
mix and match by putting some fields in a layout and keeping others layout-free, or if you want
to remove all your fields from the layout table (as in Figure 11-4).

To remove several fields at once, hold down Shift while you click several columns, and then
choose Layout Remove. (Or click the tiny four-way-arrow icon that appears in the report's

2.

3.

top-right corner to select every column.)

Now you'll see a jumble of fields on your report. Right-click the tab title, and then
choose Design view .

You could arrange your fields in Layout view, but most people find this tricky because Layout
view shows several records at a time. Instead, you'll probably have an easier time arranging
them using the section templates in Design view.

3.

Make the detail section larger by dragging down the bottom edge (as shown in Figure
11-2) .

In a simple report, you need exactly one row to fit your record. But when you create a custom
arrangement, you almost always need more space.

4.

Drag the text box control for each field to the right place in the detail section, and
then resize it to the right size .

It may take some rearranging before you finally get all the boxes in the right place. Since the
information isn't in a layout table anymore, Access doesn't automatically move information out
of the way. Instead, you need to arrange everything by hand and make sure no two fields
overlap.

5.

In the page header section, select a column header for one of the fields in the detail
section. Either press Delete to remove it, or drag it down into the detail section .

It makes no sense to include a column header at the top of a page when your field isn't a part
of the table any longer. If the data's fairly self-explanatory, you don't need a caption at all.
However, you could also drag the column header into the detail section, and place it next to the
corresponding data, so that it acts like a caption. The report in Figure 11-4 keeps the captions
for the UnitsInStock and UnitsOnOrder fields.

6.

If you haven't already, select each field, and then apply the formatting you want .

You can format the data in Design view in much the same way you do in Layout view. Just
select the field, and then use the ribbon's Report Design Tools | Design Font section. Hold
down Shift if you want to select (and then format) several controls at a time.

When you're finished, switch to Layout view or Report view to see the result of your changes.
Figure 11-5 shows the final arrangement for the revamped product catalog report shown in
Figure 11-4 .

7.

11.1.4. Adding More Controls

In the previous example, you used your knowledge of controls to unshackle the fields in your report.
However, text boxes with field values aren't the only type of control you can use. Access reports also
support labels, pictures, buttons and other graphical gizmos that can jazz up the dullest report. Some
of the reasons you may add more controls include:

To add more text information, like subtitles, disclaimers, explanatory notes, the company name, and so
on.

To draw separating lines between regions in the detail section.

Figure 11-5. Once you've removed the fields from their layout table, you can arrange them any way you wanteven letting one

control overlap another for a tighter display.

To draw additional borders around important content.

To pop a logo into the header or footer. (The automatic logos you learned about in Section 10.1.5 are
limited to the report header.)

You can easily add a few more controls to your report. Just find the right button on the ribbon. When
your report's in Design view, you'll find one-stop shopping in the Report Design Tools | Design
Controls section, as shown in Figure 11-6 .

Figure 11-6. Using the buttons on the left of the Controls section, you can add a few familiar ingredients, like the report title

and page numbers. When you click the appropriate button, Access automatically inserts the corresponding element where it belongs.

The buttons in the middle are more specialized. To add one of these controls, you need to click the button, and then draw the control

onto the design surface at the right location. Once you've added your control, the buttons on the right let you add a border around it.

Some of these controlslike text boxes, checkboxes, and other editing controlsare really intended for
use in forms, and aren't much use in a report. Others, like buttons and hyperlinks, can trigger useful
actions when combined with a dash of macro code (as you'll see in Chapter 15). But right now, you'll
want to use only a few controls:

The label control holds small or large amounts of fixed text. For example, all the column
headers with the field names are labels.

The text box control holds a dynamic expressionin other words, text that can change.

The image control holds a picture.

The line control lets you draw vertical, horizontal, and even diagonal lines. It's handy when
you want to separate content graphically, and borders alone don't give you the effect you want.

The rectangle control lets you draw formatted rectangles around other controls to help
content stand out.

The page break control lets you split the detail section into separate pagesexactly where you
want. It's useful when there's a large amount of information in the detail section, or when
you're printing forms that need to wind up on separate pages (like invoices for different
customers).

Note: Although Access has controls for pictures, rectangles, and lines, it doesn't have the Clip Art features you find in other Office

applications. So don't look around for fancy shapes and word artyou won't find them.

Once you've picked the control you want, you can add it your report, as shown in Figure 11-7 .

Figure 11-7. Top: To add a control to your report, click it in the toolbar. Then, drag the design surface until the rectangle

covers the area where you want to place the control.

Bottom: When you release the mouse button, the control appears in the rectangle. Of course, you can move or resize the control after

the fact to get it just right. If you're adding a label (as shown here), you need to follow up by typing in your text.

If you're adding a label, you'll want to set the text that appears inside. Once you add the label, the
cursor appears inside so you can enter some text. If you want to edit the text in a label later on, click
once to select the label, and then pause until the mouse pointer changes into a text pointer (known
to techies as an I-beam). Then, click again in the label to start editing its text.

Note: When you add a new label, Access may pop up an exclamation-mark icon. If you hover over the exclamation mark, then you see a

warning that tells you your label isn't linked to any other control (like a text box with the value of a field). Don't worry, if you're just adding

a basic title or some unchanging bit of text, this situation's exactly what you want.

If you're adding a rectangle, you probably want to set both the line color (using the Report Design
Tools | Design Controls section) and the background fill color (using the Report Design Tools |
Design Font section). If you put two controls in the same place, then Access stacks the control
that you added most recently on top of the control you added first. To move a control into the
background, select it, and then choose Report Design Tools | Arrange Position Send to Back.

11.1.5. Creating a Report from Scratch (in Design View)

So far, you've tried your hand at modifying a simple report using Design view. But if you don't want
to use a layout table, then it's easier to start out in Design view and build your report there. When
you build a report in Design view, Access doesn't automatically add your fields to a layout, as it does
in Layout view.

To create a report in Design view, you simply need to create a new, blank report, and then add all
the controls you need to the appropriate sections. The following steps walk you through the process:

Choose Create Reports Report Design .

This action creates a new, blank report, and then opens it in Design view.

1.

Choose Report Design Tools | Design Tools Add Existing Fields .

The Field List pane appears at the right of the window, with a list of tables and the fields they contain.

2.

Drag the fields you want to show in your report from the Field List into the detail section .

Each time you drop a field onto your report, Access adds two controls: a label that shows the field name
and a text box that displays the field data (see Figure 11-8).

Note: Access needs to use the text box control instead of the label control to display field values, because the label control's limited to fixed,

unchanging text. Only the text box can get live values from a field.

3.

Move the field to the right place, and then resize it to the right size .

Resizing can be a bit tricky at first, because you're working with two linked controls. If you drag either
piece, then the other moves along with it. Figure 11-9 shows how to move just the caption or just the field
value.

If you don't want the label at all, then just select it, and then press Delete.

4.

Add additional content (like a title, page numbers, and miscellaneous text and pictures) using
the ribbon's Report Design Tools | Design Controls section .

The Controls and Fields section lets you insert a wide range of different controls, as described in Section
11.1.4 .

5.

Figure 11-8. Here the ProductName field's been added to a new report. As you add the fields you want, you'll need to spend

considerable time moving them around the design surface until the report looks right.

Figure 11-9. Depending on where you click, you can move both the field caption and field value at once, or you can move just one

piece. You can also resize either part by dragging the left or right edge.

Apply any formatting you want to your controls .

The Report Design Tools | Design Font section has the commands you need to change the typeface,
text size, and colors, while the Report Design Tools | Design Controls section has the commands
needed to add borders around a control.

You can format field values and field captions separatelyjust make sure you select the right part before
you click the formatting command.

Tip: You can use conditional formatting to make certain values stand out, just like you did in Layout view (Section 10.3.2).

6.

If you want to use a report header or footer, then right-click a blank space on the design
surface, and then choose Report Header/Footer .

This action makes the report header and report footer sections appear. You can then add controls to these
sections. Repeat this step to hide the report and footer if you decide you don't need them.

You can also hide the page header and footer sections by right-clicking the design surface, and then
choosing Page Header/Footer.

7.

8.

Resize the report sections so they don't have extra blank space at the bottom .

Typically, you'll need to shrink the detail section, because it starts out being quite large. If you don't, then
you'll have considerable blank space between each record in your report.

8.

Save your report .

You can save your report at any time by going to the Office menu, and then choosing File Save, or
you can close your report, at which point Access prompts you to save it.

9.

11.2. The Report Wizard

Creating a report in Design view is a labor of love. Adding and arranging the controls you need takes
time. Seeing as the average Access fanatic's about as patient as a caffeine junkie in New York City
traffic, Microsoft decided to add a shortcut for quickly generating different types of reports. That
shortcut's the Report wizard.

Note: The Report wizard lets you more easily create a report that doesn't use a layout, provided you like the preset options it gives you

for arranging controls. If you want to create a simple report that uses a layout (as you did in Chapter 10), then you don't have to use the

Report wizardyou can create the report you need in one step (Section 10.1.5).

The Report wizard asks a few basic questions, and then creates the corresponding report. You can
then tweak it to your heart's content in Design view. Here's how it works:

Choose Create Reports Report Wizard.

The Report wizard's first step appears.

1.

From the drop-down list, choose the table you want to use.

In the Available Fields list, the wizard shows all the fields in your table.

Note: You'll probably recognize this window, because it's exactly the same as the one you use to start building a query with the

Query wizard in Section 6.2.2.

2.

Add the fields you want to include, as shown in Figure 11-10. When you're finished,
click Next.

You can choose fields from more than one table, provided these tables are related.

3.

Figure
11-
10. To

add a field,

select it,

and then

click the >

button to

move it

from the

Available

Fields list

to the

Selected

Fields list.

Click >> to

add all the

fields in

one shot.

The next step asks you if you want to add any grouping. For now, click Next to create
a report without grouping.

You'll learn how to use grouping in a report in Section 11.6.

4.

Choose the field (or fields) you want to use to sort your report results, and then click
Next.

You can sort your results by a combination of four fields, but usually one's enough to get them
in the order you want.

5.

Choose a layout option for your report (Figure 11-11).

Your layout options include:

Columnar puts each field on a separate row, one after the other. The name's a little
misleadingessentially your report has two columns. The first column holds the field
caption, and the second column includes the field data.

Tabular uses invisible layout tables that you explored in Chapter 10. Access transforms
each field into a separate column.

Justified packs the information into the smallest space possible. One row could include
several fields. The name "justified" refers to the fact that the data fills the entire width of
the page with no spaces. Where one fields ends, the next begins.

6.

Figure
11-
11. The

layout

option tells

Access

how it

should

organize

your fields

in the detail

section.

If you want to turn the page on its side, then choose Landscape orientation, and then
click Next.

Landscape orientation lets you fit wide tables or large amounts of information, but it includes
fewer rows per page.

7.

Choose one of the preset styles, and then click Next.

The styles determine the formatting Access applies to your report. Unfortunately, you'll have a
difficult time visualizing the final result unless you actually try each option.

8.

Enter the name for your report.

When the Report wizard finishes, it immediately saves your report.

9.

Choose "Preview the report" if you want to look at the finished product in Print
Preview mode, or "Modify the report's design" if you want to change it in Design
view first. Then, click Finish.

Access saves your report, and then opens it in Print Preview mode or design mode, depending
on your choice.

10.

As you can see, the Report wizard really isn't that flexible. It supports only a few types of layouts,
and it doesn't let you tailor how Access arranges different fields. However, it may give you a good
starting point (and even if it doesn't, it's a worthwhile way to explore report layout in Design view).

11.3. The Label Wizard

If you have a table with address information (like customer homes, business locations, or suspected
UFO sites), Access has another wizard to offer you. The Label wizard pulls address information out of
any table you want and uses it to print out handy mailing labels.

To make this work, you just need to buy a few sheets of label paper from your favorite office supply
store. Label paper variessome types pack the information in very tightly, so you can print out dozens
of return addresses at once, while others use larger labels for putting the mailing address on a letter
or package. But no matter what type of label paper you pick, it has a standard Avery number that
tells Access everything it needs to know about the labels' size, and how they're arranged. You give
Access the Avery number, and then it can create a report that puts the address information in the
correct place. All you have to do is print, peel, and stick.

Tip: If you have a database that stores information about people, then you may have thought about using Access reports to build form

letters and other documents. Getting Access to cooperate isn't all that easy. Instead, you'll do better using a real word processing

program like Word. Word includes a mail merge feature that can extract data from an Access database, and then use it to generate any

document you want. For more information, check out Word 2007: The Missing Manual .

To create a batch of labels, here's what you need to do:

In the navigation pane, select the table with the address information .

It doesn't actually need to be address information. If you want to print employee name tags or
product stickers, or you just have an insatiable urge to label mysterious items around the house,
then you can place that data on your labels instead.

Note: If you need to create labels using the information in more than one table, then you'll need to create a join query (Section 6.3),

and then select that before you launch the Label wizard.

1.

Choose Create Reports Labels .

The Label wizard starts. The first step asks you to pick the type of label paper you're using (Figure
11-12).

2.

If your label paper's one long roll (as opposed to individual sheets), choose Continuous
instead of "Sheet feed" .

Unless you have a printer from the dark ages of computer printing, you're unlikely to use this option.

3.

Find the label that has the same product number as your label paper. Double-check that
the dimensions Access shows make sense .

4.

Normally, the product number's the Avery number, which is what most people use. (You should have
no trouble finding the Avery number on the front of a package of label paper.) However, if your label
paper uses a different numbering system, then pick the company that made the paper from the
"Filter by manufacturer" list.

Figure 11-12. This example uses the common C2160 type of label, which arranges labels in three columns per page.

Note: If you're creating strange nonstandard labels of your own devising, then click the Customize box to show the New Label Size

dialog box, and then click New to show the New Label dialog box. Then you can fill in the exact measurements for each part of your

label.

4.

Click Next .

The next step of the wizard asks you to choose the formatting for your label text (Figure 11-13).

5.

Figure 11-13. Access shows a Preview box with some text so that you won't inadvertently make a dangerously oversized

label.

5.

Pick the font, text size, and the font color you want, and then click Next .

Of course, you can change these details in Design view after the fact, but it's better to get them
right from the beginning. Usually, you should keep the font size that Access recommendsthis size fits
a good four to six lines of text in your label (depending on the label type).

In the next step, you get to pick the fields that Access should place on the label.

6.

To add the first line to your table, find the fields you need in the "Available fields" list,
and then double-click them .

Add the fields in the order you want them to appear (FirstName, LastName, Street, City, and so on).
As you pick fields, Access inserts a special placeholder in the "Prototype label" box. It adds the code
{FirstName} to show you where it'll place the value from the FirstName field.

It's up to you to add the spacing you want between these fields. (Usually, you just want spaces and
commas.) Figure 11-14 shows how.

7.

Figure 11-14. To space out the information in your label, click between two fields you want to separate in the "Prototype

label" box. Then, hit the Space bar to add a space. You can also add plain text wherever you want (like the word "To:" or a comma).

In the "Prototype label" box, click the second line. Now, repeat step 7 to add fields to
this line .

Repeat this step until you've added all the fields you need, each on the appropriate line.

8.

Optionally, pick a field to use to sort the labels, and then click Next .

The sort order may or may not be important to you. (It could help you match a label up with a
letter, if the letters are also in the same sorted order. But it doesn't make a difference if you're
preparing a mass mailing that's the same for every person.)

Often, people don't use sorting but do use filtering (Section 6.2.1.1) to get just some labels (like all
the customers living in a specific city).

If you use sorting, then Access will arrange your labels from left to right, and then down the page.

9.

Enter your report's name .

When the Label wizard finishes, it immediately saves your report.

10.

Choose "See the labels as they will look printed" if you want to look at the finished
product in Print Preview mode, or "Modify the label design" if you want to change it in
Design view first. Then, click Finish .

Access saves your report, and then opens it in print preview mode (Figure 11-15) or design mode,

11.

depending on your choice. If you open it in design mode, then you can add extra touches. (You could
place a company logo in the corner of the address, and so on.)

Figure 11-15. The final report, with labels.

The label report's really just an ordinary Access report, like the kind you've learned about
throughout this chapter. The Detail section contains a template that defines how Access places the
fields for a single label, and that template's copied across the form.

The only difference between label reports and ordinary reports is that label reports use multiple
columns. That way, the Detail section (which represents the label) can be copied from right to left
across the width of the page, and then down the page. This method gives you a tightly packed grid
of labels. (Usually, the Detail section's copied in one direction only: down the page.)

You can create your own report that also uses multiple columns to put records in a grid. You simply
need to open your report in Design view, make sure your detail section's very narrow (see Chapter
11), and then choose Report Design Tools | Page Setup Page Layout Columns. This pops
open a dialog box where you can set the number of columns, and the space between them. You can
also choose whether Access lays out your records from top to bottom and then left to right, or from
left to right and then top to bottom. Either way, check the Print Preview to make sure everything fits
nicely on the page.

11.4. Fine-Tuning Reports with Properties

As you've already learned, you can most easily tweak your report's controls with the toolbar buttons.
However, even though the toolbar's packed full of useful features, it doesn't have everything. Behind
the scenes, each control has a host of low-level settings, known as properties. Many of these settings
are obscure, and people rarely use them. Some are known only to a small number of antisocial
Access junkies. But a few are genuinely useful, because they provide features that you can't reach
anywhere else in Access. You can hunt down and change these settings only with the Property Sheet.

Tip: The Properties window's occasionally useful for report writing, but it becomes much more important when you tackle forms in Part

Four and add code in Part Five.

To show the Property Sheet, choose Report Design Tools | Design Tools Property Sheet. The
Property Sheet appears at the window's right side (Figure 11-16).

The Property Sheet lets you fine-tune a single report item at a time. You choose the item by selecting
it on the design surface, or choosing it from the drop-down list at the top of the Property Sheet. If
you want to tweak a specific control, it's usually easier to click to select it on the design surface. The
drop-down list's by name, and Access doesn't always use the most intuitive names. Sometime they
match the underlying field (like ProductCategoryID), and sometimes they don't (like Text3).

Most controls have a similar set of properties. To help get around this intimidating long list, the
Property Sheet divides it into the following tabs:

Format contains the options you'll change most often, including the font, color, borders, and
margins.

Data identifies where the control gets its information. For the controls in the detail section, this
tab identifies the linked field's name. Usually, you don't need to change these settings on your
own.

Event lets you attach Visual Basic code that springs into action when something specific
happens. You'll learn much more about code in Part Five.

Other includes the Name property, which defines the control name, and a few miscellaneous
properties that are more relevant with forms.

All shows the whole shebang.

Figure
11-
16. The

Property

Sheet

shows a list

of settings

(known as

properties)

for a single

control.

You can

see the full

list in the

All tab, or

you can

see a

partial list

of

properties

in one of

the other

tabs. In this

example, a

text box

control's

currently

selected.

Tip: To get a quick one-sentence description of a mysterious property, click to select it in the Property Sheet, and then, at the bottom of

the Access window, look for the descriptive text that appears in the Status bar.

Interestingly, controls aren't the only thing you can change in the Property Sheet. You can also
adjust report settings (at the top of the Property Sheet, choose Report in the drop-down list), which
identify where the data comes from and how you can view or edit the report. And you can tweak
settings that are specific to a particular section (like ReportHeader, ReportFooter,
PageHeaderSection, PageFooter-Section, and Detail), which include page break details and additional
formatting.

Of course, it's one thing to know that there are a bunch of settings you can change, and another
thing entirely to know what settings are worth tweaking. The Property Sheet's cluttered with a lot of
properties that aren't worth your time. In the next section, you'll consider a table (Table 11-1) that
lists the most useful properties in reports.

11.4.1. Modifying Common Properties

If you're still a little overwhelmed by the Property Sheet, then try the following steps. They walk you
through the process of making a change:

Select a control on the design surface.

Its properties appear in the Property Sheet.

1.

Click the Format tab, and then scroll down the list until you find the Back Color
setting.

The Back Color setting determines the color that appears for the control background, behind the
text.

2.

Click the Back Color box. An ellipsis (…) button appears in the box. Click it.

A color picker dialog box appears.

The Back Color box shows a color number that represents the color. But unless you've
memorized hundreds of thousands of cryptic color codes, you'll find it easier to choose the color
from the color picker dialog box.

3.

Choose a color.

The new color appears immediately, along with the new color number.

4.

You can also use this technique to set the background for an entire section of the report. From the
drop-down list in the Property Sheet, just choose a section like ReportHeader or Detail, and then
follow these steps.

Tip: If you change the background color of a report section, then make sure you also change it for all the controls on that part of the

report, or they'll have white boxes around them. You can select all the controls you want to change at once by dragging a selection box

around them, or you can just hold down Shift, and then click each one. Then, head to the Property Sheet to make your batch change.

In this example, you could change the background color more easily using the ribbon. However, you
can change many properties in the Property Sheet that have no equivalent in the ribbon. Table 11-1
lists a few useful examples, all of which you find in the Format tab.

Table 11-1. Useful Control Properties (in the Format Tab)

Selected Item Property Description

Any control that shows
text

Text Align

Normally, the alignment depends on the type of data
you're displaying. For example, Access right-aligns
numbers and dates. If you want to compare a long list of
numbers, then this system makes sense. But if you want
your numbers to line up with other pieces of text data,
then you can choose a different alignment option here, like
Left or Center.

Text box Format

Normally, Access uses the number formatting that's
defined for your data type, and you don't need to worry
about this setting. However, if you're using a calculated
expression (Section 7.1), then Access shows the result as
an ordinary number, even if you want two decimal places
and a currency symbol. To fix this, choose the format you
want (like Currency). Section 2.3.3.2 describes your other
options.

Text box Can Grow

If you set Can Grow to Yes, Access expands the field
vertically to fit its content. Can Grow is switched on for all
fields when you create a simple tabular report, but it's not
necessarily on for other types of reports that you generate
with the Report wizard. When it's not switched on, Access
chops down long content to fit the available space.

Report
Default
View

Determines what view your report starts in when you open
it by double-clicking its name in the navigation pane.
Ordinarily, you start in Report view.

Report
Page
Header and
Page Footer

The standard setting, All Pages, places the header and
footer on every page. Alternately, you can choose to leave
the page header or page footer out on pages that include
the report header or report footer.

PageHeaderSection,
Page-FooterSection,
Report-Header,
ReportFooter

Display
When

Ordinarily, these sections appear onscreen, and in the final
printout. Alternately, you can choose to include them in
either the onscreen representation or the printout, but not
both.

Detail
Force New
Page

Ordinarily, this property's set to None, and Access packs in
as much information as possible before moving to the next
page. Alternatively, you can use Before Section to start
each record on a new page. The other Force New Page
options are intended for use with grouping (Section 11.6).

Detail
Keep
Together

If set to Yes, then Access never splits the detail section
over a page break in a printout. If there isn't enough room
for a complete record left on a page, then Access skips
straight to the next page, and resumes printing there.

11.5. Expressions

Earlier in this chapter, you learned how to add a label and set its text. But if you look at the controls
on a typical report, you'll quickly notice that they don't all use ordinary text. Consider the date or
page number information (which appears in the top-right corner of a simple report). Both these
details appear in ordinary label controls, but the text looks distinctly different. It starts with an equal
(=) sign, which indicates the presence of an expression .

Expressions let labels and other controls show dynamic values. No one wants to type in a specific
date in a report, because you'd be forced to update it every time you want to make a printout.
Instead, you use an expression like =Date() , which tells Access to grab the current date from the
computer clock and display that.

Expressions aren't new. You learned about them with queries in Chapter 6 (Section 7.1). However,
until now you probably didn't realize that they're equally at home in reports. You can add your own
expressions to a report to display dynamic data, or perform calculations based on other fields.

Suppose you want to improve the wedding list by combining the first and last names into a compact
one-line display. As you learned in Section 7.1.3 , the & symbol's the ticket for fusing together pieces
of text. Here's the expression you need:

 =FirstName & " " & LastName

Tip: Refer to Chapter 7 (starting in Section 7.1) for an overview of expressions, the different types of calculations you can perform, and

the different functions you can use with them.

You can't enter an expression into a label control, because a label's limited to fixed, unchanging text.
Instead, you need to use the text box control. (Access also uses the text box control to display most
fields.)

Once you've added the text box to the design surface, click to select it. The mouse pointer changes
into the text pointer. Click again to edit the text, and then enter your expression exactly,
remembering to start with the equal sign (Figure 11-17).

Figure 11-17. Top: The expression looks like an ordinary text value in Design view.

Bottom: When you preview the report, Access performs the calculation, and then shows the result.

11.6. Grouping

Grouping's an indispensable tool for making sense of large volumes of data by arranging them into
smaller groups. You can then perform calculations on each individual group. Consider a list of orders
in the Boutique Fudge company. Depending on how you want to group your data, you can consider
whether chocolate milk outsells chocolate beer, whether customers in New York crave more cocoa
than those in Alabama, and so on.

You have three ways to use grouping to analyze information in a report:

Use grouping with a query . In this case, your report doesn't include any details. Instead, it
features calculated sums, averages, maximums, or minimums. You don't need any fancy
reporting mojo to pull this offjust create a totals query with grouping (as described in Section
7.3), and then use that query to build a report.

FREQUENTLY ASKED QUESTION
Expression Errors

Why does my expression display #Error when I preview it?

The #Error code indicates, unsurprisingly, that something's not quite right with your expression.
Access tries to evaluate it, runs into trouble, and shows the error message instead.

You can often get a good indication of the problem by switching back to Design view, and then
looking at the offending text box control. Usually, you'll see a green triangle in the control's top-
left corner to highlight the problem. Select it, and an error icon appears immediately to the left.
You can hover over the error icon to see a description of the problem, and click it to see a short
menu of possible fixes that you can apply and error checking options that can tell Access to
ignore this problem in the future.

Access error messages are notoriously unclear, so even when you find the error icon and get
the details, you may still be in the dark about the real problem. To get you on the right track,
consider this short list of common problems:

You didn't start your expression with an equal sign.

You misspelled the field name, or you referred to a field that isn't in the underlying table or
query.

You included a mismatched set of parentheses.

Your text box has the same name as one of the fields you're trying to use. If you have the
expression =UnitsInStock+UnitsOnOrder and your text box control is named UnitsInStock,
Access becomes confused. To resolve this, rename the text box by changing the Name
property of the text box to something else (like UnitsInStockCalculation) using the

Property Sheet. (The Name property appears at the top of the All tab.)

Use report grouping . This way, you can organize large volumes of information into
subgroups. You still see all the details, but you can use subtotals and other calculations. You can
also add multiple grouping levels to pull out buried trends.

Use subreports . This way has the same effect as report grouping. The only difference is that
you create your report in two distinct pieces.

Note: Subreports are largely a holdover from earlier versions of Access. In Access 2007, the grouping features have improved so much

that you no longer need subreports. In this book, you'll focus on getting the most from report grouping, and bypass subreports.

11.6.1. Report Grouping

To create groups, follow these steps:

Switch to Layout view or Design view .1.

Choose the field you want to use for sorting .

Usually, you should sort your table using the same field you plan to use for grouping.

If you want to group by ProductCategoryID (which creates a separate group of products for each
category), then you should begin by sorting your results by ProductCategoryID. That way, all the
products in the same group are listed together. (You could also sort by a unique field in the linked
ProductCategories table, like CategoryName. Since each product category has a different name, this
sorts your products into groups just as effectively.)

Note: If you've created a lookup, Access is smart enough to do the right thing, and use the descriptive field, rather than the linked field,

for sorting. ProductCategoryID uses a lookup that displays the matching product name, rather than the underling category ID number

that no one really cares about. When you right-click the ProductCategoryID field and choose Sort On, Access actually uses the

CategoryName field.

2.

To apply a sort, right-click the field you want to use for sorting, and then choose a sort
command (like "Sort A to Z" or "Sort Smallest to Largest") .

The exact wording of the menu command depends on the data type of the field.

3.

Right-click the field you want to use for grouping, and then select Group On. Access
sorts your results by that field, and then groups them .

Figures 11-18 and 11-19 show two reports that group products by category.

4.

Figure 11-18. Here, a simple tabular report's sorted and grouped by category with a few quick clicks.

Tip: When you use grouping, it may not make sense to keep your column headers in the page layout section. That's because every

group header interrupts your table. Often, you're better off placing the column headers at the bottom of the group header, so they appear

at the beginning of every group (not at the top of every page). Figure 11-18 uses this approach. (Figure 11-19 doesn't need to, because

it doesn't use any headers at all.) Unfortunately, in order to use this more attractive arrangement, you need to remove your fields from

their automatic layout (Section 11.1.3).

Figure 11-19. Grouping works equally well with reports that have complex, non-tabularlayouts. However, you could have a

slightly harder time seeing where the groups begin and end, so consider giving the category section a different background color (using

the Back Color property described in Section 11.4.1) to make it stand out, as in this example. Or, you can use the line control to create a

divider at the top of each category. Figure 11-20 shows this report in Design view.

Grouping works by adding more sections to your report. If you group using the ProductCategoryID
field, then your report gains a new section named Product-CategoryID Header, which Access places
just above the detail section (see Figure 11-20). This group header includes information about the
groupingin this case, the product category. The detail section has the data for each record that's
placed in the group.

Note: As you'll see later, you can actually add multiple levels of grouping. When you do, Access adds one group header for each level.

11.6.2. Fine-Tuning with the "Group, Sort, and Total" Pane

Once you have your grouping in place, you have many more options:

You can add an extra layer of sorting that sorts each subgroup.

You can perform summary calculations for each group.

You can force page breaks to occur at the start of each new group.

Figure 11-20. Design view provides the easiest way to add content to the header section of each group. In the

ProductCatalog report, you may want to add additional fields from the ProductCategories table to the ProductCategoryID Header section

(like the Description).

You can most easily add any of these features with the " Group, Sort, and Total" pane. To show it in
Design view, choose Report Design Tools | Design Grouping & Totals Group & Sort. Or, in
Layout view, choose Report Layout Tools | Formatting Grouping & Totals Group & Sort.

The Group, Sort, and Total pane appears at the bottom of the window. Figure 11-21 shows what
you'll see if you examine the products-by-category report from Figure 11-19 .

Figure 11-21. This report has one level of sorting (alphabetically by CategoryName) and one level of

grouping(byProductCategoryID). To see more options for any given level, select it and then click More (circled). Figure 11-22 shows the

grouping settings you can change.

The following sections describe your options in the Group, Sort, and Total pane:

11.6.2.1. Sort by …

Chooses the field that's used for sorting. In Figure 11-21 , fields are sorted by CategoryName, and
then grouped by ProductCategoryID.

Figure 11-22. The Group, Sort, and Total pane gives you a quick way to set up subtotals, headers and footers, and page

break options for each level of grouping you use.

11.6.2.2. Group on …

Chooses the field that's used for grouping. This option lets you switch up your grouping in a flash.

11.6.2.3. From A to Z/from smallest to largest

Changes the sort order. The exact wording depends on the data type, but you can sort alphabetically
for text, numerically for numbers, or chronologically for dates.

11.6.2.4. By entire value

Tells Access to create a separate group for every different value in the grouped field. If you're
grouping by ProductCategoryID, then this option ensures that Access places each category in a
distinct group. In some situations, this approach creates too many groups, making it difficult to
perform any analysis (and wasting reams of paper). In cases like that, you need a way to create
larger groups that include more records. If you're grouping products by price or orders by date, then
you may prefer to group a range of values, as shown in Figure 11-23 .

11.6.2.5. With … totaled

Subtotals is the most popular grouping feature. Subtotals lets you compare how different groups
stack up to one another. The "Group, Sort, and Total" pane lets you perform calculations using any
numeric fields for your subtotals (Figure 11-24).

Depending on what you're trying to accomplish, you can count values, add them, calculate averages,
or determine maximum and minimum values in a group. You can place this information into a header
that appears at the beginning of each group, or a footer that follows at the end. Finally, you can top
your report off with a final grand total that adds up all the subgroups.

Figure 11-23. With date or numeric fields, you can choose to create a group that encompasses an entire range of values. In

this example, groups are created by price in intervals of five. The first group has products priced less than $5, the next group stretches

from $5 to $9.99, and so on.

11.6.2.6. With title …

Click this section to add a fixed title that appears in the category header, at the beginning of each
category section. Of course, you can add a title on your own by inserting a label in Design view, but
this option provides a convenient shortcut.

11.6.2.7. With a header section / with a footer section

You can apply a header at the beginning of each group, and a footer at the end. Once you add these
sections, you can place any content you want in them using Design view. You'll use them most often
to display information about the entire group, show subtotals, or draw separating lines with the line
control (Section 11.1.4).

11.6.2.8. Keep group together on one page

This setting helps you prevent orphaned category headers. In the product catalog example, this
option makes sure you don't wind up with a group title like Beverages at the bottom of a page, and
all the matching products on the following page.

Ordinarily, Access doesn't prevent awkward page breaks. Instead, it simply tries to fill each page. If
this isn't what you want, then you have two other choices. You can choose to make sure the entire
group's always placed on the same page (assuming it's less than one page long), or you can choose
to make sure the header and at least one record are kept together on the same page.

Figure 11-24. In this example, the list of products is grouped by category, and the average price of each category is

displayed in the footer (circled).

One option the "Group, Sort, and Total" pane doesn't offer you is forcing a new page break at the
beginning of each group. To accomplish this, you need to switch to Design view, select the group
header section, and then, in the Format section Property Sheet, look for the Force New Page setting
(Section 11.5). Set it to Before Section to force a page break at the beginning of each new section,
or After Section to force the page break at the end of the section. (You don't see a difference
between these two settings unless you're using a report header and footer. If you have a report
header and you use Before Section, then you end up with a page break between the report header
and the first section.)

Note: You don't see Force New Page setting's effect in Layout view, Report view, or Design view. It appears only when you use the Print

Preview feature (Section 10.2), or when you actually print your report.

In many scenarios, you'll want a group to start on a new page. This stipulation makes sense when
printing the class list shown in Figure 11-25 . In this case, the Force New Page setting lets you avoid
putting two attendance lists on the same page.

Figure 11-25. This class attendance list uses several of the tricks you've learned in this chapter to create a printout that's a

world away from a typical report. The report displays a list of students grouped by class. There's no report header, but the group header

for each class adds a few key pieces of information from the Classes table. Each class group starts on a new page thanks to the Force

New Page settings, and each student's followed by a row of hand-drawn rectangle controls where you can tick off the attendance.

11.6.3. Multiple Groups

Your reports aren't limited to a single group. In fact, you can add as many levels of sorting and
grouping as you want, to slice and dice your data into smaller, more tightly focused subgroups.

To add another level of grouping, just right-click the field you want to use, and then click Group On.
This adds it to the list in the "Group, Sort, and Total" pane. (You can also add additional levels of
sorting by right-clicking a field, and then choosing a sort command. If you began by sorting and
grouping your products into categories, then you could sort each category by product name.)

When you have more than one group in the "Group, Sort, and Total" pane, it's important to make
sure they're applied in the right order. If you try to group a list of ordered items by customer and
then by product category, you'll get a different result from the one you get if you group first by
category and then by customer. Figure 11-26 illustrates the issue.

Each group you add can have a header and footer section and its own set of totals. You add these
ingredients using the "Group, Sort, and Total" panejust select the appropriate grouping level, click
More, and then change the various options, as described in the previous section.

Figure 11-26. Access applies groups in a top-to-bottom order. So in this example, the results are grouped by CustomerID,

and then by OrderID. If you don't want this outcome, then select one of the grouping levels, and then click the up or down arrow button to

move it. (To remove a grouping level altogether, select it and then press Delete.)

Figure 11-27. This report transforms order information into a printable invoice using grouping and a few other tricks you've

seen already. The raw information comes from the OrderDetails table (supplemented with information from the Orders, Product, and

Customer tables). Line controls separate the different sections of the invoice, automatically generated totals tell you how much the order

costs altogether, and expressions combine a few fields and add some extra text (like "Order History for" and "Order #"). This example's

included in the Boutique Fudge database with the downloadable content for this chapter.

When you have more than one level of grouping, you can hide some of your information so you see
just the totals. In Layout view, just choose Report Layout Tools | Formatting Grouping & Totals

 Hide Details. If you use this technique on the example in Figure 11-27 , Access hides the line-by-
line order details, and all you'll see is the total for each order.

Tip: The invoice example creates a report that prints invoices for all the orders in your database. However, you can use filtering (Section

3.2.2) to filter down the results to a specific order or customer.

Part IV: Building a User Interface with
Forms

Chapter 12: Creating Simple Forms

Chapter 13: Designing Advanced Forms

Chapter 14: Building a Navigation System

12. Creating Simple Forms
So far, you've learned how to create tables that house your data, queries that search it, and reports
that prepare it for printing. You've also created action queries that automate big updates. But your
actual database users (whether that's you or someone else) will spend most of their time on an
entirely different job: daily database upkeep.

Database upkeep includes reviewing, editing, and inserting information. Real data-bases go through
this process continuously. In a typical day, the staff at Cacoph-oné Studios adds new students, the
customer service department at Boutique Fudge places new orders, and the Gothic Wedding planners
tweak the seating arrangements. Bobbleheads are bought, addresses are changed, purchases are
logged, test scores are recorded, and your data grows and evolves.

You can perform your daily upkeep using the datasheet (Chapter 3), but that isn't the easiest
approach. Although the datasheet packs a lot of information into a small space, it's often awkward to
use, and it's intimidating to Access newcomers. The solution is forms: specialized database objects
that make it easier for anyone to review and edit the information in a table.

Note: Remember, if you're using Access in a business environment, different people probably use your database. You may create it, but

others need to be able to use it to perform a variety of tasksusually data entry and searches. These other folks may not be as Access-

savvy as you are.

12.1. Form Basics

Forms get their name from paper forms that people use to record information when a computer isn't
handy. Depending on your situation, you may create an Access form that resembles a paper form
that your company or organization uses. If you're working at a bank, you can create an Access form
that lays out information in the same basic arrangement as a paper-based customer application form.
This arrangement makes it easy to copy information from the paper into your database. However,
most of the time the forms you design don't have a real-world equivalent. You'll create them from
scratch, and use them to make data entry easier.

To understand why forms are an indispensable part of almost all databases, it helps to first consider
the datasheet's shortcomings. Here are some areas where forms beat the datasheet:

Better arrangements . In the datasheet, each field occupies a single column. This
arrangement works well for tables with few fields, but leads to endless side-to-side scrolling in
larger tables. In a form, you can make sure the data you need is always in sight. You can also
use color, lines, and pictures to help separate different chunks of content.

Extra information . You can pack a form with any text you want, which means you can add
clues that help newbies understand the data they need to supply. You can also add calculated
detailsfor example, you can calculate and display the total purchases made by a customer
without forcing someone to fire up a separate query.

Table relationships . Many tasks involve adding records to more than one related table. If a
new customer places an order in the Boutique Fudge database, then you need to create a new
record in the Customers and Orders tables, along with one or more records in the OrderDetails
table. A form lets you do all this work in one place (rather than forcing you to open two or three
datasheets).

Buttons and other widgets . Forms support controls buttons, links, lists, and other fancy
pieces of user interface matter you can add to your form. The person using your database can
then click a button to fire off a related task (like opening another form or printing a report).

Properly designed forms are what the geeks call a database's front end . In a data-base that uses
forms, you can edit data, perform searches, and take care all of your day-to-day tasks without ever
touching a datasheet.

12.1.1. Creating a Simple Form

As with reports, Access gives you an easy and a more advanced way to construct a form. The easy
way creates a ready-made form based on a table or query. Keen eyes will notice that this process
unfolds in more or less the same way as when you automatically generate a simple report (Section
10.1.1).

Here's how it works:

In the navigation pane, select the table or query you want to use to generate the
form .

Try the Products table from the Boutique Fudge database.

Note: If you create a form for a parent table that's linked to other tables, then you wind up with a slightly different type of form. If

you create a form for the Categories table (a parent of the Products table), then you end up with a two-part form that lets you view

and modify the category record and the linked product records in each category. You'll take a closer look at using forms with

linked tables in Chapter 13 (Section 13.3.1).

1.

Choose Create Forms Form .

A new tab appears, with your form in Layout view. The simple form shows one record at a time,
with each field on a separate line (Figure 12-1). If your table has lots of fields, then Access
creates more than one column (Figure 12-2).

2.

Figure 12-1. This simple form for the Products table already shows a fair bit of intelligence. Access uses text boxes for

all the text fields, a drop-down list box for fields that have a lookup (in this case, ProductCategoryID), and a checkbox for any

Yes/No field (like Discontinued). It also makes some boxes (like Description) larger than others, because it notices that the

underlying field has a larger maximum allowable length (Section 2.3.1.1).

Figure 12-2. In this form for the Customers table, Access can't fit all the fields using the ordinary one-field-per-line

arrangement. Instead, it adds a second column.

Tip: Good design practices pay off when you begin building forms. If your text fields store a far greater number of characters than

they need (as controlled by the Field Size property described in Section 2.3.1.1), your form winds up with huge text boxes that

waste valuable space. You need to resize them by hand.

When you first create a form, Access arranges the fields from top to bottom in the same order
in which they're defined in the table. It doesn't make any difference if you've rearranged the
columns in the datasheet. However, Access leaves any columns you've hidden in the datasheet
(Section 3.1.4) out of the form.

Tip: You can add or remove fields in a form in the same way you do with a report. If the Field List pane isn't open, then choose

Form Layout Tools | Formatting Controls Add Existing Fields. Then, drag the field you want from the Field List pane

onto the form. To remove a field, click to select it on the form, and then press Delete. However, keep in mind that people often

use forms to add records, and if you want to preserve that ability, you need to make sure your form includes all the required fields

for the table.

Arrange the fields in the order you want by dragging them around .

Although a simple form doesn't look like the simple reports you learned about back in Chapter
10 , you can actually work with it in much the same way. One of the easiest ways to tailor your
form is to drag fields from one place to another (Figure 12-3).

3.

Change your columns' widths .4.

When you create a new form in Layout view, Access makes all the fields quite wide. Usually,
you'll want to shrink them down to make your form more compact. It's also hard to read long
lines of text, so you can show large amounts of information better in a narrower, taller text box.

To do so, just click to select the appropriate field; a yellow rectangle appears around it. Then,
drag one of the edges. Figure 12-4 shows this process in action.

Figure 12-3. To move a field, drag it to a new position. Access reshuffles all the other fields accordingly. In this

example, the Price field's being relocated to the top of the form, just under the ProductName field. Access bumps all the other

fields down the page to make room.

4.

Figure 12-4. Here, the Description field is being heightened to fit more lines of text at a time. You can also make a field

wider or narrower, but there's a catchwhen you do so, it affects the entire column. In this report for the Products table, every field

always has the same width. (You'll learn how to get around this limitation later in Section 12.3 .)

Note: You may like to make a number of changes that you can't accomplish just by dragging, such as adding a new column or

giving each field a different width. To make changes like these, you need to understand layouts, which are covered in Section

12.3 .

Optionally, you can click a field header to edit its text .

This option lets you change ProductCategoryID to just Category.

5.

Optionally, you can tweak the formatting to make the form more attractive, by
changing fonts and colors .

You can most quickly change the formatting of your form by selecting the appropriate part (by
clicking), and then using the buttons in the ribbon's Form Layout Tools | Formatting Font
section. You can also use the Form Layout Tools | Formatting Formatting section to adjust
the way Access shows numeric values. You learned about all your formatting options in Section
10.3.1 when you built basic reports.

Often, you'll want to format specific fields differently to make important information stand out.
You can also format the title, header section, and form background. Figure 12-5 shows an
example of judicious field formatting.

6.

Figure 12-5. You can select the field header (Price, for example) and the box with the field value separately, which

means you can give these components different formatting. This form gives a shaded background fill to the Price, UnitsInStock,

and UnitsOnOrder fields. It also gives a larger font size to the Price field and Price header, so this information stands out.

Tip: To select more than one part of a form at once, hold down Ctrl while you click. This trick allows you to apply the same

formatting to several places at once.

If you're in a hurry (or just stylistically challenged), then you can use a nifty Access feature
called AutoFormat to apply a whole slew of related formatting changes. Just make a choice from
the Form Layout Tools | Formatting Auto-Format section (which has the same AutoFormat
choices you used with reports in Section 10.3).

Save your form .

You can save your form at any time by choosing Office button Save. Or, if you close the
form without saving it, Access prompts you to save it at that time.

7.

12.1.2. Using a Form

Now that you've created your first form, it's time to take it for a test spin. All forms have three
different viewing modes:

UP TO SPEED
AutoNumber Fields in Forms

The best way to uniquely identify each record is with an AutoNumber field (Section 2.3.9). When you
insert a record, Access fills in a value for the AutoNumber field. All the tables you'll see in this book
include a field named ID that uses the AutoNumber data type.

Only Access can set an AutoNumber field. For that reason, you may not want to show it in your
forms. (If you decide not to show it, just select it in Layout view and then press Delete.) However,
there are some reasons that you might actually want to keep the AutoNumber field on display:

You use the AutoNumber field on some type of paperwork . Cacophoné Studios puts
each student's ID number on their registration papers. When you need to look up the student
record later on, it's easier to use the ID number than search by name.

You use the AutoNumber field as a tracking value or confirmation number . After you
enter a new order record in the Boutique Fudge database, you can record the order record's ID
number. The next time you have a question about the order (has it shipped?), you can use the
ID number to look it up.

Depending on how you use the ID number, you may choose to place it at the bottom of the
form rather than in its usual position at the top. That approach avoids confusion. (It's less likely
that people will try to type in their own ID numbers when they create new records.)

Layout view . This is the view you've been using so far. It lets you see what your form looks
like (with live data), rearrange fields, and apply formatting.

Design view . While Layout view provides the simplest way to refine your form, Design view
gives you complete power to fine-tune it. In Design view, you don't see the live data. Instead,
you see a blueprint that tells Access how to construct your form. You'll start using Design view
later in this chapter.

Form view . Both Layout view and Design view are there to help you create and refine your
form. But once you've perfected it, it's time to stop designing your form and start using it to
browse your table, review the information it contains, make changes, and add new records.

Note: When you open a form by double-clicking it in the navigation pane, it opens in Form view. If you don't want this view, then right-

click your form in the navigation pane, and then choose Layout View or Design View to start out in a different view.

To try out the form you created, switch it to Form view if you're not already there. Just right-click the
tab title, and choose Form View.

In Form view, you can perform all the same tasks you performed in the datasheet when you worked
with a table. With a simple form, the key difference is that you see only one record at a time.

Most people find forms much more intuitive than the datasheet grid. The following sections give a
quick overview of how you can use Form view to perform some common tasks.

UP TO SPEED
Different People, Different Forms

In many situations, you'll want to create more than one form for the same table. That way, you can
design forms to help with specific tasks.

At Boutique Fudge headquarters, a single person's in charge of setting prices. This individual (known
as the Price Fudger) reviews the product list every day, and tweaks the prices based on the current
inventory. To do this, the Price Fudger needs just three pieces of information for each product: the
field values for ProductName, Price, and UnitsInStock. To streamline this process, you can create a
form that includes just these details.

To make this form really practical, you can add some features that you haven't seen yet, but which
are described later in this chapter. You can do things such as prevent changes in all the fields except
Price to guard against accidental changes, you can pack several records onto the form for a quick, at-
a-glance price setting, and you can filter the product list down to leave out discontinued items. These
steps make the form better suited to the task at hand. And if you really want to impress your fellow
Access fans, then you can throw in the macro and code features described in Part Five to create
buttons that perform a task (like jacking up a price by 10 percent) automatically .

It's up to you how many forms you want to create. Some people try to create as few forms as
possible and make them flexible enough to work for a variety of different tasks. Other people create
dozens of specialized forms that can save time. In a large company like Boutique Fudge, each
department (like sales, shipping, customer service, and so on) will probably use its own tailored form.
Every form guides employees to do exactly what they need to do (and stops them from doing what
they shouldn't).

12.1.2.1. Finding and editing a record

Rare is the record that never changes. Depending on the type of data you're storing, most of your
work in Form view may consist of hunting down a specific record and making modifications. You may
need to ratchet up the price of a product, change the address details of an itinerant customer, or
reschedule a class.

Before you can make any of these changes, you need to find the right record. In Form view, you
have four ways to get to the record you need. The first three of these methods use the navigation
controls that appear at the bottom of the form window.

By navigating . If your table's relatively small, then the fastest way to get going is to click the
arrow buttons to move from one record to the next. Section 3.2 has a button-by-button breakdown.

By position . If you know exactly where your record is, then you can type in the number that
represents the position (for example, 100 for the one-hundredth record), and then hit Enter. If you
don't get exactly where you want, then you can also use the navigation buttons to move to a
nearby record.

By searching . The quick search feature finds a record with a specific piece of text (or numeric
value) in one of its fields. To use quick search, type the text you want to find in the search box, as
shown in Figure 12-6 . If you want a search that examines a specific field or gives you additional

options, then use the Home Find Find command, which is described in Section 3.2.3 .

Figure 12-6. When you use the quick search box, you don't need to hit Enter. Access finds the next match as you type.

By filtering . Using filtering, you can narrow down the displayed records to a small set. Filtering's
best-kept secret's that you can use a feature called filter by form to quickly hunt down a single
record. You'll see how that works in Section 12.2.2 .

Once you've found the record you want to change, you can edit it in the same way you would in the
datasheet. If you make a change that breaks a rule (like typing the text "Exasperated Bananas " in a
date field), then you get the same familiar error messages.

Access commits any change you make as soon as you move to another record or field. To back out of
a change, hit Esc before you move on. When you do, the original value reappears in the cell, and
Access tosses out your changes. And if you do commit a change by accident, then you can use the
Undo button in the Quick Access toolbar (above the ribbon), or hit Ctrl+Z, to reverse it.

12.1.2.2. Adding a record

As you already know, you add a new record in datasheet view by scrolling to the very bottom of the

table, and typing just underneath the last row. In Form view, the concept's similarscroll to the very
end of your table, just past the last record.

You'll know you've reached the magic ready-to-add-a-record spot when all the fields in your form are
blank (Figure 12-7). To save yourself the scrolling trip, use the New Record button at the bottom of
the form (marked in Figure 12-7).

If you've decided that you don't want to add a new record after all, then hit Esc twice. The first time
you press Esc, Access wipes out the value in the current field.

Figure 12-7. When you create a new record, you start off with a clean slate that shows your form's formatting but no values. If

you've set any default values for the table (Section 4.1.2), then you see them appear instead of the blank values. In the Products table,

the UnitsInStock field has a default value of 10.

The second time, Access removes all the other values you entered. Now that your form's been
restored to its original emptiness, you can safely scroll off to another record.

If you scroll away from your new record while there's still some data left in it, then Access creates the
new record and adds it to the table. You can't reverse this action. If you want to get rid of a newly

created record, then you need to delete it, as described in the next section.

12.1.2.3. Deleting a record

When you find a record that shouldn't exist, you can wipe it out in seconds. The easiest way to delete
the current record is to choose Home Records Delete. But you have another option. You can
select the whole record by clicking the margin on the form window's left side. Then you can liquidate
it by pressing Delete.

No matter what approach you use, Access asks you for confirmation before it removes a record. You
can't recover deleted records, so tread carefully.

12.1.2.4. Printing records

Here's a little-known secret about forms: You can use them to create a quick print-out. To do so,
open your form, and then choose Office button Print. The familiar Print dialog box appears,
where you can choose your printer and the number of copies you want.

GEM IN THE ROUGH
Showing Pictures from a Database

As you learned in Chapter 2 , you can store a picture file as part of a record using the Attachment
data type. Forms handle attachments gracefully using the Attachment control . The Attachment
control has one truly useful perkit shows picture content directly on your form.

Here's how it works. If your attachment field stores a picture, then that picture appears in the
Attachment control box so you can admire it right on your form. This behavior's a great improvement
over the datasheet, which forces you to open the picture file in another program to check it out. Even
better, if the attachment field stores more than one picture, then you can use the arrows on the
handy pop-up minibar to move from one image to the next, as shown in Figure 12-8 .

As you know, attachment fields can store any type of file. If you're not storing a picture, then the
Attachment control isn't nearly as useful. All you see's an icon for the program that owns that file
type. If your attachment field contains a Word document, then you see a Word icon. If it contains a
text document, then you see a Notepad icon, and so on. If your attachment fields don't include
pictures, you may as well resize the box for the Attachment control so that it's just large enough to
display the file type icon. There's no reason to make it any bigger, because the rest of the space will
be wasted.

Figure 12-8. Top: Here, the Picture field shows a bobblehead doll's picture. Access sizes the picture to fit the Attachment

control box (without unnaturally stretching or skewing the picture).

Bottom: When you select the Picture field, you see a minibar with additional options appear right above the image. The arrows let you

step through all the attached files for this record. The paper clip icon opens the Attachments window, where you can add or remove

attachments, or open them in a different program. (The Attachments window's described in Section 2.3.8 .)

When you print a form, Access prints all the records, one after the other. If you want to print just the
current record, then, in the Print dialog box, choose the Selected Records option before you click OK.

You can also use Office button Print Print Preview to check out the result before you send it
to the printer (Figure 12-9). Click Print Preview Close Preview Close Print Preview to return
to your form.

Figure 12-9. This preview shows what you'll get if you print the CustomerList form. The printout closely matches the form, with

the same formatting and layout. When Access first creates the form, it gives it the same width as an ordinary sheet of paper. When you

print the form, Access crams as many recordsthree in this caseas it can fit on each page.

Although you might be tempted to use forms as a convenient way to create snazzy printouts, you'll

always get more features and better control if you use reports.

12.2. Sorting and Filtering in a Form

Sorting and filtering are two indispensable features that Access gives you with Form view. Learning
how to use them could hardly be easierin fact, you already learned everything you need to know
when you tackled the datasheet in Chapter 3 . The creators of Access took great care to ensure that
filtering and sorting work the same in forms as they do in the datasheet. You use the same
commands, on the same part of the ribbon, to put them into action.

12.2.1. Sorting a Form

As you've probably realized by now, forms show your data in raw, unsorted order. So records appear
in the order you created them. (The only exception's if you create a form that gets its data from a
query, and that query uses sorting.)

Fortunately, sorting's easy. In fact, you can sort the records that are shown in a form in exactly the
same way you sort records in a datasheet. Choose the field you want to use for sorting, right-click it,
and then choose one of the sorting options. In a text-based field, you'll see the sorting choices "Sort
A to Z" (for an alphabetical sort) and "Sort Z to A" (for a reverse-alphabetical sort). You can also use
the Ascending and Descending buttons on the ribbon's Home Sort & Filter section.

For more information about your sorting options (including how to sort by multiple fields), see
Section 3.2 .

12.2.2. Filtering a Form

Filtering's a feature that lets you cut down the total number of records so you see only those that
interest you. Filtering can pick out active customers, in-stock products, expensive orders, and other
groups of records based on specific criteria.

In a form, you have the following filtering choices:

Quick filter shows you a list of all the values for a particular field and lets you choose which
ones you want to hide. It's easy to use, but potentially time-consuming. If you want to hide
numeric values that fall into a certain range, then you'll get the job done much faster with the "
filter by condition" approach (as described later). To show the list of quick filter values, move to
the field you want to filter, and then click Home Sort & Filter Filter. Section 3.2.2.1 has
full details about quick filters.

Filter by selection applies a filter based on an existing value. First, find the value in one of the
records, right-click it, and then choose a filter option. You can right-click a price value of $25,
and then choose "Greater Than or Equal to 25" to hide low-cost items. For more information,
see Section 3.2.2.2 .

Filter by condition lets you define the exact criteria you want to use to filter records. You

don't need to base it on an existing value. To add this sort of filter, right-click the field and then
look for a submenu with filtering options. This menu item's named according to the data, so text
fields include a Text Filters option, number fields have a Number Filters option, and so on. You
can learn more about this type of filter in Section 3.2.2.3 .

Advanced filters are filters that you design using a window that looks just like the query
designer. The advantage of advanced filters is that you can apply filters on more than one field
in a single step. To create a set of advanced filters, choose Home Sort & Filter
Advanced Filter Options Advanced Filter/Sort.

Note: If you insert a new record that doesn't match the currently active filter conditions, your new record disappears from sight as soon

as you add it. To get it back, remove the filter settings using the ribbon: Select the Home tab, click the Advanced button in the Sort &

Filter chunk, and then choose Clear All Filters. Or, use the Toggle Filter button to temporarily suspend your filter settings (and click

Toggle Filter later to get them back).

12.2.3. Using the Filter by Form Feature

One other filtering technique works with forms: filter by form . Essentially, "filter by form" transforms
your form into a full-fledged search form. Using this search form, you supply one or more criteria.
Then you apply the filter to see the matching record (or records).

Although you can use "filter by form" with the datasheet, it really shines with forms. "Filter by forms"
is particularly useful for searching out a single hard-to-find record. (If you want to use filtering to pull
out a whole group of records, one of the other filtering options is generally easier.)

Here's how to use the "filter by form" feature:

Choose Home Sort & Filter Advanced Filter Options Filter By Form .

Access changes your form to search mode. In search mode, your form looks exactly the same, except
all the fields are blank.

If you've already used the "filter by form" feature and you're returning to change the filter settings,
then you should start by clearing the previous set of filters. To do so, right-click a blank spot on the
form surface, and then choose Clear Grid.

1.

Move to the field you want to use for filtering .

A drop-down arrow appears in the field.

2.

Click the drop-down arrow, and then choose the value you want to include in your results .

The drop-down list shows all the values from the different records in the table (Figure 12-10). When
you choose one, it appears in the field box in quotation marks.

3.

If you want to apply a filter to more than one field, then return to step 2 .

Use multiple filter conditions if a single filter condition may result in more matches than you want. If you
don't remember a customer's last name, you could apply a FirstName filter. But if that customer has a
common first name, then you may also want to apply a filter on another field, like City.

4.

If you don't want to use exact matches, then you can write in more complex filters using an expression.
Use <10 to find numeric values under 10, and Like Jon* to find text values like "Jones," "Jonathon," and
"Jonson." Filtering's particularly useful with date fields. Section 6.2.1.1 has the full scoop on filtering
expressions.

If you want to perform more than one filtering operation and combine the results, then click
the Or tab and fill out more filter settings (Figure 12-11) .

If you fill out your first search form so that it matches the LastName "Gorfinkel," and the second search
form to match the FirstName "Jehosophat," your results will include all the records that have the last
name Gorfinkel and all those that have the first name Jehosophat. However, if you put both those filter
conditions on the same search form, your matches include only people named Jehosophat Gorfinkel.

Figure 12-10. Here's the Customers form in "filter by form" mode. Using the dropdown list, you can quickly find a customer by

last name. Or you can find a name by typing the first few letters rather than scrolling through the list, as shown here. In this example, typing

"Ra" brings up the first alphabetical match: the last name Randawa.

5.

Figure 12-11. The Or tab appears at the bottom of the form. When you click the Or tab, a second copy of your search form

appears, where you can fill out additional filter conditions. Each time you click the Or tab, another Or tab appears. You can repeat this

process to fill in a dozen search forms at once, but there's rarely any reason to go to such lengths.

Right-click a blank spot on the form surface, and then choose Apply Filter/Sort .

Access switches back to your normal form, and then applies the filter settings. At the bottom of the
form, between the navigation buttons and the search box, you see the word " Filtered" appear to let you
know that you aren't seeing all the records.

If you decide not to apply the filter settings, just close the search form. Access switches back to your
normal form but doesn't apply any filtering.

6.

Tip: To remove your filter settings but keep them handy for later use, choose Home Sort & Filter Toggle Filter. To reapply the

filter settings later on, click Toggle Filter a second time. Access stores the most recent filter settings with your form, so they're always

available.

12.2.4. Saving Filters for the Future

One of form filtering's limitations is that Access remembers only your most recent set of filters. If
you've perfected a complex filter expression that you want to reuse later, this quality's a problem. As
soon as you apply a different filter, you'll lose all your hard work.

Fortunately, you have several solutions to this dilemma. One option's to create a whole new query
that performs the filtering, and use that query in a whole new form. This choice is a good one if you
want to use your filter criteria to perform a specific task, and you also want to customize the way the
form works or the way it displays its data.

On the other hand, if you don't plan to use your filtering settings very often, but you just want to
have them on hand for the next time you need them (or if you need to store dozens of different filter
settings, and you don't want to be stuck with dozens of nearly identical forms), there's a better
option. You can save your filter settings as a query in your database. Then, when you want them
back, you can load them up and apply them to your form.

Here's how to pull this trick off:

Apply your filters .

Use any of the techniques described in Section 12.2.2 .

1.

Choose Home Sort & Filter Advanced Advanced Filter/Sort .

This action opens a query window. This query uses the same data source (table or query) as
your form, and it applies your filtering using the Criteria box under the appropriate field (Section
6.2.1). You don't need to make any changes in the query window because Access automatically
fills in the Criteria box (or boxes) based on the current filter settings.

2.

Choose Home Sort & Filter Advanced Save as Query. Supply a name for
this query, and then click OK .

Although you can use this query like a normal query, you probably won't. So to prevent
confusion, use a different type of name, like CustomerBrowser_Filter, that clearly indicates this
query's designed for form filtering.

3.

The next time you want to retrieve your filter settings and reapply them, open your form and follow
these steps:

Choose Home Sort & Filter Advanced Advanced Filter/Sort .

This action shows the query window.

1.

Choose Home Sort & Filter Advanced Load From Query .

Access shows all the queries that use the same table and don't involve joins.

2.

Pick the filter query you created earlier, and then click OK .3.

4.

The filter settings for that query appear in the query window.

3.

Right-click anywhere on the blank space in the query window, and then choose Apply
Filter/Sort to put your filter settings into effect .

4.

Tip: You can use this trick to apply the same filter expression to different forms, as long as these forms include the fields you want to

filter. (You can use the filter settings that you created for the Customer-Browser form to filter another form that shows a list of customers,

but not a form that shows products.)

12.3. Creating Better Layouts

So far, all the forms you've been creating look fairly similar: All the fields get channeled into one or
more columns of tightly packed information. In many cases, that system works perfectly fine. But
sometimes you want to let your inner form designer come out and play.

You've already seen this idea with reports in Chapter 11 . Once you break a report out of its layout
table, you can create a printout that looks more like a retail product catalog than a drab table of
information. The same principle's at work with formsonce you decide to leave the Simple World of
Simple Forms, you can create forms that are a lot more original. You can create forms that use white
space to break up dense groupings of information; forms that add graphical frills like pictures, lines,
and rectangles; forms that pack information more tightly or more loosely; forms that resemble the
paper documents they're based on; and so on.

12.3.1. Liberating Controls from Layouts

Like reports, forms use a helpful feature called a layout : a formatting container that Access uses
behind the scenes to arrange a group of controls. If you widen one field in a layout, all the other
fields in it are widened as well. If you move a layout, all the controls move along with it. And if you
rearrange a layout, all the controls maintain a consistent amount of spacing.

Note: Remember, controls (Section 11.1.2) are the ingredients you can add to a form or report. Controls include things like labels,

pictures, and text boxes. You use some controls to display fixed content (like your form title), while others have dynamic content (like the

field values from the current record).

If you want to be able to arrange your controls precisely, then you need to start by removing them
from the layout. (And, as with reports, it takes a fair amount of time to place each control by hand
and still make sure things looks nice.)

Before you pull a control out of its layout, make sure you're in Layout view or Design view (by right-
clicking the tab title, and then choosing Layout View or Design View). Layout view's a bit nicer to look
at, but Design view makes it a bit easier to move your fields. When you drag a field caption (like the
label that contains the word "ProductName") in Design view, the linked control that shows the field
value moves along with it. In Layout view, you need to move both pieces separately, which makes for
twice as much work. (Incidentally, you can drag the captions and field boxes separately in Design
view too, if you understand where to click. Section 11.1.5 explains.)

To actually remove a field, right-click the field you want to reposition, and then choose Layout
Remove. Finally, drag the field to its new location. Figure 12-12 shows an example of aform that
doesn't use layouts for any of its controls.

Figure 12-12. The weird staggered effect shown here wouldn't be possible with the rigid table-based structure of a layout.

But you pay a price for this design (and it's not just eye strain). If you ever modify the table and need to update the form, then you'll have

more work to rearrange the fields, since there's no layout behind the scenes holding them all together.

12.3.2. Using More Than One Layout

As you learned earlier in this chapter, Access arranges fields into more than one column if it can't fit
them all in just one (as shown in Figure 12-2). When Access creates multiple columns, each column's
actually a separate layout.

Great news: You too can create multiple layouts. You might want to for several reasons, including:

To arrange your fields in side-by-side columns . You do this by placing one lay-out next to
another.

To arrange your fields into several discrete groups . These fields can appear in different
places on the form. You could have one group at the top and one group at the bottom,
separated by other content.

To give different width to different fields . All the fields in a layout have the same width. If

you place your fields into different layouts, they can have different widths.

To place fields into a new layout, follow these steps:

Make sure you're in Layout view .

If not, right-click the form's tab title, and then choose Layout View.

1.

Right-click the first field you want to remove, and then choose Layout Remove .

If the field's inside the middle of a layout table, Access pops it off to the side. If the field's at the
end of the layout table, its position doesn't change.

2.

Drag your field off to another part of the form .

If you want to place your second layout beneath the first, then drag this field down the form to
its new position.

3.

Right-click the field you've removed, and then choose Layout Stacked .

This action creates a new layout for the field you cut loose in step 2.

All the layouts you've seen so far are stacked, which means the fields appear one on top of the
other. You'll see an example of tabular (side-by-side) layout in the next section.

4.

Find one of the fields you want to move into the new layout, and then drag it down
there (Figure 12-13) .

Dragging a field from one layout to another's a shortcut. It's faster than removing all the fields
you want from the first layout, and then adding them to the second layout.

5.

Figure 12-13. As your mouse cursor passes over the new layout you've just created, a yellow line appears showing

where the field will be placed if you release the mouse button. You can drop a field at the top of the layout, at the bottom, or

anywhere inside. In this example, the PostalCode field's being placed between the State and Country fields.

Repeat step 5 for each of the fields you want in the new layout .

Moving fields between layouts can be a bit tricky. If everything goes wonky and a field lands in
the wrong place, then just use the Undo feature to put things right. (Undo an action by pressing
Ctrl+Z, or by clicking the Undo button in the Quick Access toolbar above the ribbon.)

6.

When you've perfected your second layout, move it to the correct position .

To move your layout, click one of the fields and then look for the four-way-arrow icon in the
top-left corner. Drag that icon to move the whole layout. Be carefulif you place a layout too
close to another layout, then Access assumes you want to merge them into a single layout.
(You can hold down the Ctrl key while you drag to tell Access not to do this.)

Figure 12-14 shows a finished form with several layouts.

7.

12.3.3. Using Tabular Layouts

Layouts can organize controls in two different ways: in stacked groups (where each field's in a
separate row) and in tables (where each field's placed in a separate column). Usually, stacked group
layouts are more useful for forms, while tabular lay-outs make sense for densely packed reports.
However, you may occasionally choose to use a tabular layout in a form. You'd do this most often
when you want to show more than one record at a time; it's often easier to fit more onscreen when
you pack fields into columns.

Tip: Although a form can contain several of both types of layout (tabular and stacked), they rarely fit well together. So pick one and stick

with it.

To change an ordinary form (with a stacked layout) so that it uses a tabular layout, follow these
steps:

Make sure you're in Layout view .

If not, right-click the tab title, and then choose Layout View.

Figure 12-14. This form groups fields into four neat subsections. It adds a clearer, more structured organization than

a single layout table but dodges the complexity of creating a form without any layouts, especially if you need to add more fields or

1.

change their order later on.

Select all the fields on your form by holding down Shift and clicking them one at a
time .

To save some time, look for the four-way-arrow icon that appears at a layout's top-right corner
when you select something inside it. You can click this icon to select the whole layout in one
shot.

2.

Right-click your selection, and then choose Layout Tabular .

When creating a tabular layout, Access puts each field caption in the form's header area and the
corresponding field value underneath, as shown in Figure 12-15 . You'll need to perform some
drag-and-drop fiddling to get all the fields in the right order, and to make them the right sizes.

3.

This process is a bit awkward. Fortunately, there's a shortcut. If you know you want to use a tabular
layout, then you can create one from the beginning. Instead of choosing Create Forms Form
to create your form, choose Create Forms Multiple Items. Doing so creates a form that uses
a tabular layout and shows more than one record at a time (Figure 12-16).

Figure 12-15. This tabular layout shows four columns of information. This form's got one layout-less control: the box for the

Notes field, which the person designing this form has moved down to make room.

Figure 12-16. Usually, tabular layouts go hand-in-hand with forms that show lots of records at once, like the form shown

here.

12.3.4. Showing Multiple Records in any Form

You can show more than one record in a form even if you don't use a tabular layout. In fact, as long
as your form's fairly compact, it's easy. Here's how:

Arrange your form so that it's as compact as possible .

When showing multiple records, they're placed one above the other, as shown in Figure 12-17 . So the
shorter you make your form, the more records you can see at once. On the other hand, it doesn't
matter how wide or narrow your form is (so long as everything fits on your screen at once).

1.

Figure 12-17. Now you can see three products all on the same screen. (Notice how the bottom three fields have been

removed from the top three fields' stacked layout so they can fit more tightly together.) The arrow in the margin indicates that the second

record's the current record. To see more records, you can use the familiar record navigation buttons at the bottom of the form, or you can

use the scroll bar on the right.

Switch to Design view, if you're not there already .

As always, you can switch to Design view by right-clicking the tab title and then choosing Design View.

2.

Resize your form so there's no blank space, as shown in Figure 12-18 .

As you rearrange your controls, you'll free up space at the bottom of your form. However, it's up to
you to reclaim this space by shrinking the overall form. If you try to shrink a form but it remains
stubbornly locked in place, there's probably a control on the form that extends into that space. You
need to shrink the control first and then the form.

3.

Figure 12-18. To shrink the form, drag the bottom border up, until it reaches the bottom of the lowest control.

Note: In order to fit more than one record into view at once, the form window needs to be larger than the actual form.

If the Property Sheet isn't visible, then choose Form Design Tools | Design Tools
Property Sheet .

As you learned in Chapter 11 , the Property Sheet lets you tweak the settings for controls and other
items. In this case, the setting you need to change isn't available in the ribbon. Instead, it's buried in
the Property Sheet.

4.

In the Property Sheet list box, choose Form .

This action shows settings that apply to the entire form, not just a single control.

5.

Click the Format tab, and then find the Default View setting .

The Default View setting appears near the top of the list. It lets you control how the form appears
when you first open it.

6.

Choose Continuous Form .

The most common options are Single Form (which shows a single record of information), and
Continuous Form (which shows multiple records, one after the other). You can also choose a non-Form
view, like Datasheet (the boring spreadsheet-like tables you learned about in Chapter 3), PivotTable,
or Pivot-Chart. Finally, you can use Split Form for a view that combines the datasheet with your
custom form. You'll learn more about this option in the next section.

7.

Optionally, set the Dividing Lines property to Yes to show a thin horizontal line between
each record .

Now, when you switch back to Form view, you'll see several records at once, provided they fit into the

8.

window.

8.

12.3.5. Split Forms

Both single-record view and multiple-record view have their advantages. With single-record view, you
have plenty of room to examine one record, and you don't get distracted by onscreen clutter. With
multiple-record view, you can compare the current record to other nearby records.

Access has a type of form that lets you get the best of both worlds: split forms . Split forms combine
two views of your data in one form. The idea's that you can use the datasheet to scroll through all
your records, and use the form to view or edit a recordbut all in the same window. Figure 12-19
shows an example.

Note: Usually, you'll use the datasheet to move to the record you want to edit and the form to review or edit it, but that way's not

necessaryyou can change records in the datasheet, and you can navigate using the navigation buttons at the bottom of the form.

Figure 12-19. The most common type of split form puts the datasheet section at the top. The currently selected record's

shown underneath. You can change the size of each portion by dragging the splitter bar that's in between.

It's easy to create a split formall you need to do is, on the ribbon, choose Create Forms Split
Form. However, you need to know a little bit more if you want to convert an existing form into a split
form, or if you want to change how Access presents the two sections of a split form.

The secret lies in changing the form settings using the Property Sheet. Here's how:

1.

Switch your form to Design view .1.

If the Property Sheet isn't already visible, then show it by choosing Form Design
Tools | Design Tools Property Sheet .

2.

In the Property Sheet drop-down list, choose Form .3.

Choose the Format tab, which includes all the settings that relate to split forms .4.

Find the Default View, and then set this to Split Form. Now you get the two-part
window shown in Figure 12-19 .

5.

Several more settings let you control how split forms work. Table 12-1 has the details.

Split Form Orientation

Using this setting, you can place the datasheet portion of the window at the top (the standard
choice), at the bottom, on the left, or on the right.

Split Form Size

Sets how large the datasheet portion of the window appears. You'll need to experiment with different
numbers to find what works. Most people prefer to size the split window by hand in Form view.

Split Form Splitter Bar

If you change this setting to No, there won't be a splitter bar in between the two portions of the
window. You (or the person using the form) can't change the space allocated to each portion by
dragging the splitter bar. Instead, you'll be stuck with the size that's specified in the Split Form Size
setting.

Save Splitter Bar Position

If you change this setting to Yes, every time you move the splitter bar, the datasheet size is recorded
in the Split Form Size setting. The next time you open the form, the splitter bar's positioned where it
was most recently. If you change this setting to No, then Access doesn't save your changes. The
splitter bar reverts to its original position, as set in the Split Form Size property.

Split Form Datasheet

Change this setting to Read Only if you want to prevent people from changing data in the datasheet
section of the window. (They can still use the datasheet to navigate from one record to another.)
Doing so's one way to prevent errors caused by accidental key presses. If you want to prevent edits
altogether, then use the Allow Edits, Allow Deletions, and Allow Additions settings described in Table
12-2 .

Split Form Printing

Tells Access whether to use the datasheet view (Datasheet Only) or the Form view (Form Only) to
create a printout. The standard setting's Form Only, which means Access organizes the information in
your printout to fit your form's layout.

Table 12-1. Form Properties for Split Forms

Property Description

12.3.6. Even More Useful Form Properties

So far, you've used the Property Sheet to change the view of your form, letting an ordinary form
show multiple items or a split view. However, the Property Sheet's packed with many more settings.
Some are useful; others you'll almost never touch. Table 12-2 lists a few more settings that may
come in handy.

Record Source

Data

Where the data comes from. This property's usually the name of a table or query in the database.
However, if you're technically inclined, then you can type a new SQL command (Section 6.2.3)
directly into this field.

Filter

Data

The filter expression that's used to limit results. You can set this field by hand, or build a filter
expression using the ribbon, as described in Section 12.2.2 .

Filter On Load

Data

If set to Yes, the filter expression's applied as soon as you open the form. If No, the filter
expression's stored, but not applied until you choose Home Sort & Filter Apply Filter.

Order By

Data

The sorting expression you use to order results. You can set this field by hand, or set the sort order
using the ribbon, as described in Section 12.2 .

Order By On Load

Data

If set to Yes, Access applies the sort order as soon as you open the form. If No, the sort order's
stored but not applied. That option's not particularly usefulunless you open up the Property Sheet
again and set Order By On Load back to Yes, the stored sort order won't ever come into effect.

Allow Filters

Data

If set to No, you can't use any of the filtering commands described in this chapter. Instead, you'll
always see all the records.

Caption

Format

The text that appears in the tab title (or the window caption, if you're using overlapping windows
instead of tabbed documents). If you leave this blank, then Access uses the form's name as the
caption.

Allow […] View

Format

These settings let you turn off a particular view. For example, if you set Allow Layout View to No, you
don't see the option for switching your form to Layout view.

Allow Edits

Data

If set to No, you can't change any data in the form. However, you can still add a new record with all-
new data. The standard option's Yes.

Allow Deletions

Data

If set to No, you can't delete any record while using this form. The standard option's Yes.

Allow Additions

Data

If set to No, you can't insert a new record with this form. The standard option's Yes.

Data Entry

Data

If set to Yes, this form can only be used to add new records. When you switch to Form view, you
don't see any of the existing records. Instead, you see a blank slate where you can add a new record.
As you add new records, they remain visibleat least until you close the form and reopen it.

Record Selectors

Format

If set to No, your form doesn't include the margin on the left. This margin has two roles. First, it
shows an arrow next to the current record (which is useful in forms that show several records at a
time). Second, if you click the margin, then you can select the entire record (after which you can
quickly delete it with the Delete key).

Navigation Buttons

Format

If set to No, your form doesn't include the handy navigation controls at the bottom that let you jump
from record to record. You're most likely to use this option if you're designing a form with a radically
different appearance and you don't want any of the Access staples, or if you're creating your own
navigation buttons that use VBA code.

Table 12-2. Useful Form Properties

Property Tab Description

Note: Many form properties apply only in the rare case that you're using free-floating windows (Section 1.3.6). You can choose whether

the window's automatically centered (Auto Center), whether it can be resized (Border Style), whether it includes minimize and maximize

icons (Min Max Buttons), and so on. These properties have no effect if your database is using the more standard tabbed windows.

UP TO SPEED
The Access Form Family

Access forms manage to please just about everyone. If you're in a hurry, then you can create a
ready-made form with a basic layout and add a dash of formatting. Or, if you're feeling a creative
buzz coming on, you can pull your fields out of the standard layouts and place them absolutely
anywhere. In other words, forms are flexibletime-pressed business types get the convenience they
need, while serious artistes get the creative control they demand.

Here's a roundup of all your form choices:

A simple form shows one record at a time in a basic stacked layout. To create a simple form,
choose Create Forms Form.

A layout-less form lets you place controls anywhere you want on a form. It's up to you
whether you want to show a single record at once, or several records at a time. When creating
a layout-less form, you need to do all the work. You can get started by choosing Create
Forms Form Design (to start in Design view) or Create Forms Blank Form (which
starts you in Layout view).

A tabular form shows records in a tabular layout. Usually, tabular forms show several records
at once (which gives the appearance of a table). To quickly create one of these babies, choose
Create Forms Multiple Items.

A PivotChart or PivotTable form is a form that exists for the sole purpose of showing a
PivotChart or PivotTable (see Chapter 9). You can create these forms by choosing Create
Forms PivotChart and Create Forms More Forms PivotTable. Section 9.3 has
more.

A datasheet form looks exactly like the Datasheet view you get with a table. This form's not

as powerful as other form types, but it's still useful if you want a customized datasheet-like view
of your data. You can create a datasheet form that shows fewer columns, uses filtering to hide
certain records, prevents record insertions, uses different formatting, and so on. To create a
datasheet form, choose Create Forms More Forms Datasheet.

A split form combines two types of form in one window. One portion of the window shows the
current record in a simple form. The other portion of the window shows a datasheet with several
records. To create a split form, choose Create Forms Split Form.

A modal dialog is a special type of form. Rather than show data from a table, the modal dialog
asks you a question. The idea's that you can pop it up at some critical moment as part of an
automated task. To use modal forms, you'll need to mix in some VBA code. You'll see an
example that uses a modal form (also known as a dialog form) in Section 17.4.3 .

12.4. The Form Wizard

By now, you've learned how to create a number of common forms. Access gives you one other way
to build a form: using the Form wizard. The Form wizard has an uncanny similarity to the report
wizard you used in Chapter 10. It asks you a series of questions and then builds a form to match.
However, the questions are fairly rudimentary, and the form it builds is little more than a good
starting point for further customization.

Here's how to put the Form wizard through its paces:

Choose Create Forms More Forms Form Wizard.

The first step of the Form wizard appears.

1.

From the drop-down list, choose the table you want to use.

In the Available Fields list, the wizard shows all the fields that are in your table.

2.

Add the fields you want to include, as shown in Figure 12-20. When you're finished,
click Next.

You can choose fields from more than one table, provided these tables are related.

3.

Figure
12-
20. To

add a field,

select it,

and then

click the >

button to

move it

from the

Available

Fields list

to the

Selected

Fields list.

To add all

the fields,

click >>.

Choose a layout option for your form.

Your layout options include:

Columnar creates a form with a stacked layout. It's similar to clicking Create Forms
 Form in the ribbon.

Tabular creates a form with a tabular layout. It's similar to clicking Create Forms
Multiple Items in the ribbon.

Datasheet creates a datasheet form. It's similar to selecting Create Forms More
Forms Datasheet in the ribbon.

Justified creates a form that doesn't use any set layout. Instead, it packs controls closely
together, combining several fields on a single line if they're small enough to fit. A justified
form's the only kind of form you can't create directly from the ribbon using another
command. It's similar to the layout-less forms you designed in Section 12.3.2.

Note: Justified forms are difficult to modify later on. For example, if you need to add a field into the middle of a layout form, you're

stuck with the painstaking task of moving many more fields out of the way to new positions. Often it's easier to recreate the form

from scratch using the wizard.

4.

Choose one of the preset styles, and then click Next.5.

The styles determine the formatting that Access applies to your form. Unfortunately, it's difficult
to get a feeling for what the final result will look like unless you actually try each option.

5.

Enter a name for your form.

When the Form wizard finishes, it immediately saves your form using this name.

6.

Choose "Open the form to view or edit information" if you want to start using your
form to work with data, or "Modify the form's design" if you want to adjust it in
Design view first. Then, click Finish.

Access saves your form and opens it in Form view or Design view, depending on your choice.

7.

13. Designing Advanced Forms
Forms suit a database like pocket protectors on a programmer. They streamline day-to-day tasks
and give your database a sharp, distinctive look. In order to be a master database builder, you need
to be able to craft top-notch forms.

In the previous chapter, you learned how to design several common types of forms. In this chapter,
you'll take form building to the next level with a whole new arsenal of techniques. First, you'll learn
how to create a form in the no-holds-barred Design view, where you can tweak and polish every
square inch of your form. Then, you'll take a tour of Access's different controls, and jazz up your
form with links, tabbed panels, and buttons. You'll also learn how to work with linked tables by
creating special types of forms called subforms that work in harmony with other forms.

13.1. Customizing Forms in Design View

In the previous chapter, you learned how to quickly create different forms using the ribbon's buttons
and the Form wizard. But serious form gurus take a different approachthey build a form by hand.
There are two ways you go about this task:

Create a form in Layout view . Choose Create Forms Blank Form. Then, drag the fields
you want from the Field List pane onto your form (Figure 13-1). You learned everything you need to
pull this off in Chapter 12 . You can quickly create a standard form with a stacked or tabular layout,
but it doesn't give you any extra frills.

Figure 13-1. When you drop your first field onto a new form in Layout view, Access adds that field to a stacked layout and

shows a smart tag icon (circled). If you want a tabular layout instead, then click this icon, and then choose "Show in Tabular Layout".

Create a form in Design view . Choose Create Forms Form Design. Now you'll start with a
blank form in the design window. You can drag fields onto your form from the Field List pane (just as
you do in Layout view), and you can add a wide variety of more specialized controls from the ribbon.

Note: If you don't see the Field List pane, then choose Form Layout Tools | Formatting Tools Add Existing Fields (in Design

view) or Form Design Tools | Design Controls Add Existing Fields (in Layout view).

Of course, while you're working with a form, you can easily jump back and forth between the two
views. (Just right-click the tab title, choosing the view you want, or click the view buttons at the
window's bottom-right corner.) You can add fields to your form using either view. However, when you
add fields in Layout view, Access automatically positions them in a layout. When you add fields in
Design view, they start out layout-free. Access assumes that people who use Design view want more
control over how their fields are placed.

Tip: Remember, you can move a free-floating field into a layout after the fact by dragging it into place. Figure 12-13 (Section 12.3.3)

shows how.

There's another, more important difference between Layout view and Design view. In Design view,
you can add one of over a dozen fancy controls, like buttons, boxes, and labels. These controls make
the difference between the cookie-cutter forms Access creates automatically, and forms that exhibit
your own personal style.

13.1.1. Form Sections: The Different Parts of Your Form

In Chapter 12 , you learned that a report's divided into separate sections (like a report header, a
details section, a report footer, and so on), each of which appears in a specific place. The same's true
for forms. However, newly created forms start life with only one section: the details section, which
defines the content for each record.

If you want to add a title or logo at the top of your form, or some sort of summary information or
message at the bottom, you'll want to include a header and footer section. To add these elements to
your form, right-click anywhere on the form's surface, and then choose Page Header/Footer.

When working with form sections, remember to keep them small (as shown in Figure 13-2). Each
form section should be just large enough to fit the content you're displaying. If you create an
oversized form with a lot of blank space, the results look unprofessional. You'll get unnecessary scroll
bars on your form's sides, which let you scroll off into nothingness.

Tip: You can't make a form smaller than the controls it contains. This fact's the source of a frequent stumbling block for form designers.

If Access doesn't let you resize a form, then something, somewhere, is still too big. (If all else fails, check that you don't have a large box

in the form header or form footer sections.)

Figure 13-2. Even though this form easily fits all its fields in the display area, it still has scroll bars. If you switch to Design

view, you'll see whythe form's wider and longer than it needs to be.

Note: If your database is set to use overlapping windows instead of tabs (Section 1.3.6), then you'll see a slightly different problemyour

form windows are unnecessarily large. In fact, they may not even fit in the main Access window, in which case Access chops off the

edges.

13.1.2. Adding Controls to Your Form

You first learned about controlsgraphical widgets like labels and text boxeswhen you created
advanced reports in Chapter 12 . Access gives you the same ability to use controls with forms. In
fact, you use the same ribbon section to add them. However, many of the controls that didn't make
much sense with reports really shine with forms.

Note: Behind the scenes, everything on a form's actually a control. Each time you add a field, you end up with two linked controls: a label

that displays the field name, and a text box that holds the field value.

One of the simplest and most useful controls is the humble label. Using the label, you can add
formatted text anywhere on your form. You could choose to use labels to highlight additional
instructions, as shown in Figure 13-3 .

Figure 13-3. Use labels to add helpful instructions (or cheeky commentary) to your forms. Line and rectangle controls add a

little polish.

To add a control, follow these steps:

Head to the ribbon's Form Design Tools | Design Controls section .

The Controls section has one-stop shopping for all the controls you can use.

1.

Optionally, switch on the Use Control Wizards button. This button activates the
wizards for controls .

Some types of controls, like buttons and lists, come equipped with helpful wizards. As soon as
you drop one on your form, the wizard pops up to help you perfect it. Ordinarily, wizards are
switched on. However, control experts who know exactly what they want may find that the
wizards just slow them down.

When the Use Control Wizards button (found the Form Design Tools | Design Controls
section's far-right side) is not highlighted, the Control wizards leave you alone.

2.

Click the icon for the control you want .

On most people's screens, Access can't fit the control name on the ribbon's control button.
(Thirty-inch monitor owners, congratulate yourselves and skip to the next paragraph.) Hover
over each control icon for a moment, and Access displays the control name in a tooltip.

Once you click your icon, it remains highlighted. Your mouse cursor changes to a cross with a
small picture of the control superimposed. That change is your indication that your control's
ready and waiting for you to drop it onto the form.

3.

Tip: If this is your first time experimenting with controls, why not try the labelit's easy to master, and genuinely useful.

To place your control on the form, drag the mouse to draw the control on the form .

If you don't get it right the first time, then you can always drag a control to a new position, or
drag its borders to resize it.

If you decide that you don't want to add the control you picked, then just click the Select button
(at the far right of the Form Design Tools | Design Controls section). It looks like a mouse
pointer. When you click Select, your mouse pointer returns to normal. You can now click on the
form to select an existing control. You don't create a new one.

Tip: For an even faster shortcut, just hit Esc to back out of control creation after you've selected a control.

4.

If your control has a Control wizard and you choose to use Control Wizards (see step
2), the wizard appears now .

Answer all the questions to configure your control, or just hit Esc to skip out of the wizard and
do all the configuration on your own.

5.

If you're adding a label, supply some text for the control .

After you drop a label onto your form, Access waits for you to type in some text (which is set in
the Caption property). If you don't type anything for your label, Access assumes you don't
really want the label, and just gets rid of it.

6.

If the Property Sheet isn't already visible (at the right side of the window), click
Form Design Tools | Design Tools Property Sheet to show it .

To configure the control's many settings, or properties, you need to use the Property Sheet.

7.

Change the appropriate settings in the Property Sheet .

If you've added a bound control (see the box " Bound Controls), select the Data tab, and then
set the Control Source field to the name of the field you want to display.

Tip: If you have a label control that doesn't fit all the text you've entered, you can bump its size up in one step. Just right-click the

control, and then choose Size To Fit. Access resizes the label so it's just large enough to fit all its content. Don't try this with

other controls like text boxesit won't work.

UP TO SPEED
Bound Controls

A bound control's a control that displays the value in a database field. (It's called a bound
control because it's "bound"tightly linkedto the appropriate field in your table.) The most
familiar example's the text box, but other bound controls include the checkbox, the list box, and
so on.

8.

When you add a bound control, you need to specify the linked field so Access knows what to
display. You can most easily add a bound control by dragging a field from the Field List pane
and letting Access create the control for you. However, there's no reason you can't choose to
create a bound control by hand.

Begin by dropping the right control type (like a text box) onto your form. Then, select the Data
tab and look for the Control Source setting. This setting's where you fill in the corresponding
field. For example, a text box with a Control Source set to ProductName displays the contents of
the ProductName field on your form.

Of course, this procedure works only if the form's data sourcethe table or query on which you're
building the formhas the field you want to use. To change a form's data source, select Form in
the Property Sheet, click the Data tab, and then look for the Record Source property. The
Record Source property has the name of the linked table or query or an SQL SELECT command
(Section 6.2.3) that gets the records you need. To choose a different table or query, type in its
name. Or, click the ellipsis button in the Record Source box to open a query window that lets
you pick and choose exactly the fields you want to use, from as many linked tables as
necessary, with the exact filtering and sorting options you want.

Optionally, give your control a better name by setting the Name property (in the
Other tab) .

If you've just created a new label, Access bestows a name like Label46. If you want to honor
your control with something more becoming, just change the text in the Name property. You'll
have an easier time finding your control in the drop-down list in the Property Sheet next time
you want to change it.

9.

Format your control .

Although you can adjust many formatting details via the Property Sheet, the ribbon's much
easier to use. Use the Form Design Tools | Design Font section for basic font and color
formatting, and use the Form Design Tools | Design Controls chunk to add a stylized border
around your control.

Tip: Want to make controls stand out with a shadow or embossed edge? Select the control, and then choose an effect from the

Form Design Tools | Design Controls Special Effect list. This method's a great way to make a basic rectangle control

look a little different.

GEM IN THE ROUGH
Reusing Your Favorite Border Settings

On the Controls section, there's an often overlooked button named Set Control Defaults. This
button lets you reuse border settings over and over again. That way, if you come up with a nifty
border for one control, you can quickly apply it to others.

Here's how it works. Suppose you create a label and use the buttons in the Controls chunk to
apply a carefully formatted border around it, with just the right thickness (hairline), color
(fuchsia), and line style (dotted). You can reuse these settings by selecting the newly created
label control and then clicking Set Control Defaults. Now, the next time you add a label to this
form, it'll automatically have the same border settings.

10.

The Set Control Defaults command works on a per-control basis, so you can store different
border settings for labels, pictures, text boxes, and so on. Although it's an interesting frill, many
Access experts prefer to apply the same formatting to several controls by selecting them all at
once, and then choosing the border options.

13.1.3. The Control Gallery: A Quick Tour

Later in this chapter, you'll consider how to create some popular form designs with controls. But first,
it's worth taking a quick overview of all the controls on the rib-bon so you can see exactly what's
available (and what isn't). Table 13-1 introduces you to every member of the control family.

Label

Displays fixed text. Perfect for captions, notes, and helpful instructions.

Text Box

Displays the value of a field from a record. You can also use a text box to show the result of an
expression, as described in Section 11.5 .

Check Box

Displays the value of a Yes/No field. If it's Yes, the check box has a checkmark.

Toggle Button

Shows a button that can be in two different states: normal and pressed. You switch it from one state
to the other by clicking it. The toggle button's a rarely used oddity, but you can substitute it for the
check box to display the value of a Yes/No field. In this case, the button's depressed if the field value
is Yes.

Combo Box

Displays a list that pops into view when you click the drop-down arrow. This list can be a list of values
you supply, or it can be drawn from another table. Access automatically uses a combo box for lookup
fields or linked tables.

List Box

Displays a large box with a list of items. This list can be a list of values you supply, or it can be drawn
from another table. You can use list boxes and combo boxes interchangeablythe key difference is the
fact that list boxes take more space and combo boxes let you type in your own values that aren't in
the list.

Attachment

Shows the first file in an attachment field. If this file's a picture, the picture's displayed directly on the
form. Otherwise, all you see's a small icon that indicates the file type. If the attachment field holds
more than one file, then you can step through each one using the arrows in the minibar (which

appears when you click this field), as described in Section 12.1.2.3 .

Option Group and Option Button

The option group's a rectangular container that holds one or more option buttons.

Hyperlink

Displays a fixed hyperlinkblue underlined text that, when clicked, transports the clicker to a specific
Web page. Section 13.2.5 shows how it works.

Line and Rectangle

The line and rectangle controls are just decoration. Skillful designers use them to separate sections
and highlight important information.

Image

Displays a picture that you supply. Perfect for logos and eye candy that sets your form apart. Set the
Size Mode property to determine whether your picture's chopped down to fit its box (Clip), stretched
to fit (Stretch), or resized without changing the shape (Zoom, which is the standard setting). You can
even use the Picture Tiling property to repeat a picture over a larger surface. To keep your pictures
(and database files) small, use compact .jpg files rather than bloated .bmp files.

Tab Control

Displays several tabs of information. You can see the content in one tab at a timeyou click to pick
which tab you want. This Windows staple allows you to pack more information into a smaller space.
Section 13.2.4 shows an example.

Subform

Displays a form inside a form. Usually, a subform shows linked records from a related table. You'll
see how this works in Section 13.3.1 .

Chart

Creates a basic chart using the Chart wizard that's included with Office. Alas, charts aren't very well
integrated into Access. If you want to provide a graphical view of your data, then you're better off
using a pivot chart (see Chapter 9) or just exporting your raw data to Excel, which is much more
capable.

Unbound Object Frame

Shows content, which is known as an object , from another program using a somewhat old-fashioned
standard called OLE. You can use this control to do things like embed a spreadsheet, audio file, or
Word document within your form. Most folks resist the urge, because the results tend to be awkward
and confusing.

Bound Object Frame

Similar to the unbound object frame, but this control retrieves the object you want to display from a
field in the current record. This feature seems nifty, but the quirky and outdated OLE standard causes
more trouble than it's worth. If you want this sort of feature, then you're far better off using an

attachment field with an attachment control (Section 2.3.8), with an attachment control, which is
designed to solve these problems.

Page Break

Indicates where a page break should fall. This control has an effect only when you usfe your form to
create a printout. Usually, you should steer clear of this control in forms and use it exclusively in
reports, which are tailor-made for printing.

ActiveX Control

ActiveX is a control building standard that's supported by many different programming platforms. If
there's a specialized widget that you need to use in Access, you may be able to buy an ActiveX
control from a component company, and then drop it onto your forms. Beware, thoughusing ActiveX
controls often requires hefty amounts of code, and it's beyond the scope of this book.

Table 13-1. Form Controls

Control Description

FREQUENTLY ASKED QUESTIONS
The Windows Control Face-Lift

Why do my controls look so old fashioned ?

Most people know Windows XP as the operating system that ushered in a whole new era of slightly
different-looking buttons. Microsoft, in its relentless drive to make minor cosmetic changes, used
Windows XP to redesign the visual appearance of common controls like buttons and checkboxes.

To the untrained eye, the differences between Windows XP design frills and its predecessors are
slight. For example, Microsoft replaced boxy grey buttons with carefully rounded buttons that glow
with a hint of yellow shading when the mouse hovers over them. Most Windows pro-grams take
advantage of the new look, but some are still trapped in the past. In previous versions of Access, it
didn't matter whether you were using Windows XP or an earlier version of the operating system.
Either way, your controls had the old styling.

In Access 2007, your forms automatically get the new Windows XP look (assuming you're running
Windows XP or Windows Vista as your operating system). However, there's a possible exception. If
you open a database that you created with an older version of Access, then your forms keep their
original outdated appearance. Access doesn't want to tamper with any aspect of your form's
appearance, in case it throws off your whole design.

Fortunately, you can have the final say. If you've opened an old database, here's how to get the new
look:

Choose Office button Access Options.

The Access Options dialog box appears.

1.

2.

1.

In the list on the left, choose Current Database.

Access displays settings that pertain to the currently open database file.

2.

In the "Application Options" section, find the setting "Use Windows-themed Controls on Forms".
If you want the Windows XP styles, then turn on the check-box here. If you don't, then remove
the checkmark.

3.

Click OK.4.

13.1.4. Arranging Controls on Your Form

By now, you're probably comfortable working with controls in Design view. Here's a quick refresher if
your memory needs a little jump start:

Create a control . Use the ribbon to pick the control you want, and then draw it in the right
place.

Move a control . Just drag. You can also move several controls at once, as explained in Figure
13-4 .

Resize a control . Drag the edges of the rectangle that surrounds it. If you have a linked label-
and-text-box combination (which Access creates when you add a field), then be careful to click
the right part. Figure 11-9 (Section 11.1.5) shows where to click to move just the caption, just
the field value box, or both.

Modify a control . Select it, and then, in the Property Sheet, find the setting you want to
change.

Delete a control . Select it, and then hit Delete to wipe it out forever.

Figure 13-4. To move multiple controls at once, start by clicking somewhere on the form surface. Drag a selection box around

all the controls you want to move, as shown here. Then, once all the controls are highlighted, drag any one of them. All the controls

move as a unit. (You could also hold down Shift, and click each control one by one.)

If your controls aren't contained in a layout, it can be difficult to get them neatly arranged. In an
effort to help, Access supplies some shortcuts that can line up rogue controls and iron out minor
variances. The following sections provide a few useful tips for using these features.

POWER USERS' CLINIC
Breaking Free From the Grid

When you place or move a control in Design view, Access always lines it up with the nearest part of
the grid. (The grid lines are represented by all those dots that appear underneath your controls in
Design view.) Access does this lining up because it makes it easier to create a consistent form. If
controls were completely free-floating, it would be difficult to line two controls up next to each other.
Even if you don't have shaky hands, it's hard to control the mouse that precisely!

However, in some situations, you may want to nudge a control just between the grid dots. Usually,
it's because your form includes pictures, and you're trying to create a snazzy effect.

In such cases, Access lets you free yourself from the grid. Just choose Form Design Tools | Arrange
 Control Layout Snap to Grid. Ordinarily, this button's highlighted to indicate that controls are

always lined up with the grid. To turn it off, click it. You can turn it back on when you're finished by
clicking it again.

Incidentally, if you find that the grid dots are distracting, you can hide them using Form Design Tools
| Arrange Show/ Hide Show Grid. And if you decide that you do want your controls to line
back up with the grid, then just select them all, right-click the selection, and then choose Align
To Grid. Access bumps each control over to the nearest grid line. Use Size To Grid to make sure
their heights and widths also fit the grid.

13.1.4.1. Aligning controls

If you have a group of controls that needs to be neatened up, select them all (by drawing a selection
box, as shown in Figure 13-4), right-click the selection, and then choose an option in the Align
submenu. Use the ever-popular "left" option to line all the controls up along their left edges. You can
also line up controls on the right (see Figure 13-5), top, or bottom edges.

Figure 13-5. Top: These controls look messy.

Bottom: Even though the controls aren't in a layout, you can line them up properly using the Align options. Here, someone used the Align

 Right command to pull them together against the right edge.

13.1.4.2. Sizing controls

If you have controls of different sizes, then you can tell Access to make them all the same size.
Select them all, right-click the selection, and then choose an option from the Size menu. Use To
Widest to make all the controls as wide as the widest one of the bunch (see Figure 13-6).
Alternatively, you can shrink controls down by choosing To Narrowest, or change their heights with
To Tallest and To Shortest.

Figure 13-6. The To Widest command makes all these text boxes (top) the same width (bottom), which creates a cleaner and

more visually pleasing form.

13.1.4.3. Spacing controls

If you have controls that are scattered unevenly over the form, you can reposition them so that a
consistent amount of space appears between them. To do so, select all the controls, and then head to
the ribbon's Form Design Tools | Arrange Position section. In the Position section, you'll find
several buttons to adjust the spacing between controls:

Make Vertical Spacing Equal spaces out controls so they're an even distance apart (from top
to bottom).

Make Horizontal Spacing Equal spaces out controls so they're an even distance apart (from
side to side).

Increase Vertical Spacing and Increase Horizontal Spacing add a bit more space between
all the controls you've selected.

Decrease Vertical Spacing and Decrease Horizontal Spacing remove a bit of space
between all the controls you've selected.

13.1.4.4. Controls that overlap

If you have overlapping controls, you may want to decide which one's placed on top and which one
on the bottom. To do so, select one of the controls, head to the ribbon's Form Design Tools | Arrange

 Position section, and then choose Bring to Front (to move the control to the top) or Send to Back
(to banish it to the background).

It goes without saying that most forms don't have overlapping controls. The exception's if you're
aiming for a unique graphical effect, or if you're trying to use a rectangle to frame a bunch of controls
(in which case the rectangle needs to sit behind the other controls).

13.1.5. Anchoring: Automatically Resizing Controls

Ordinarily, your controls have a fixed, unchanging size. This characteristic lets you precisely arrange
a large number of controls next to each other. However, fixedsize controls also have a downside. If
you resize the Access window to make it very large, then the controls can't use the extra space.
Conversely, if you make the Access window very small, then you're sure to cut off part of your form.
In other words, fixed-size controls make for easy design, but they're inflexible.

Most people don't worry too much about these limitations. They design their forms to fit comfortably
on an average-sized screen (see the box "How Big Is Your Screen?" in Section 13.1.5.1). However, if
you have one or more fields that display a large amount of datalike a memo field (Section 2.3.1.1)
that's chock-full of textyou might want to get a bit more ambitious.

Access 2007 introduces a feature called anchoring , that lets you create controls that can grow to fill
extra space when the Access window's resized. Anchoring's a little tricky to get right, but if you have
huge text fields, it's worth the trouble.

Essentially, anchoring lets you attach a control to the sides of the form. As a result, when the form
changes size, the control's dragged to a new position or resized. Figure 13-7 shows an ordinary form
that uses standard anchoring settings. Nothing happens when this form's resized.

Figure 13-7. Ordinarily, all controls are anchored to the form's top-left corner (top). If the form window changes size, nothing

happens to the controls, because the top-left corner never moves (bottom).

If you anchor a control to a form's right side, it's a different story. As the form's resized wider, the

control hugs the right side, moving to a new position. Similarly, if you attach a control to the bottom
of the window and make it taller, then the control keeps close to the bottom, no matter how small or
large the window becomes. The really exciting bit's what happens when you anchor a control to
opposite sides. In this case, its position doesn't change, but its size does. If you anchor a control to a
form's left and right sides, then the control widens as the form widens. Figure 13-8 shows how life
changes when you anchor your control to different sides.

Tip: The amount of space between the control and the anchored side always remains the same.

Figure 13-8. This form includes controls that are anchored to different sides. The ID and Email fields are anchored to the top

right, and the Notes field is anchored to the bottom right. As the form grows, the controls change position.

Theoretically, you can use anchoring to create all kinds of bizarre effects. You could anchor controls
to all different sides of the form, so they move and overlap as the form changes size, scrambling the
form in complete confusion. More realistically, people use anchoring to achieve two effects, which are
demonstrated in the following two sections.

UP TO SPEED
How Big Is Your Screen?

When it comes to monitors, size doesn't matter (really). What is important is your monitor's
resolution . Resolution measures how many pixels (tiny dots) your monitor displays. If you have a
larger resolution, then you can fit more content into view. The only drawback's that everything

onscreen appears smaller. If you maximize the Access window and open a datasheet, then you see
more rows and columns at once on a high-resolution screen than a lowresolution one.

Ordinary people tend to use a resolution of 800 x 600 or 1024 x 768, although higher resolutions
aren't unusual. (A resolution of 800 x 600 is 800 pixels wide and 600 pixels tall.) Your specific
resolution isn't all that important. But if you plan to share your Access database with other people,
then you may want to check that your forms look respectable at other common resolutions.

To check what resolution you're currently using, minimize all your programs. Then, right-click the
Windows desktop, and then choose Properties. The Display Properties window appears. Choose the
Settings tab to find out your current resolution, and to try out other resolutions to see how they
affect your forms' usability.

13.1.5.1. Making controls as wide as the form

Ordinarily, you size a text box, and its size never changes. But with anchoring, you can make
controls stretch wider or narrower to match your Access window's size. And as long as you don't put
any other controls in the way, you don't have a problem with overlapping controls.

Just follow these steps:

First, make sure your form doesn't have extra blank space. In Design view, shrink the
width of the details section so it's just wide enough to fit your controls .

If you leave extra blank space, then it's harder to see anchoring at work. Flip back to Figure 13-
2 for a quick review of how to size forms properly.

1.

Choose the controls that you want to expand along with the window's size .

If you have the form shown in Figure 13-7 , you may choose all the text boxes. Hold down the
Shift key while you click to select them all.

Figure 13-9 shows the final result you're after.

Note: If your controls are in a layout (Section 12.3), you need to remove them from the layout before you apply anchoring.

Although you can apply anchoring settings to an entire layout container, they won't work the way you want them too because

they'll influence the size of both the field value boxes and the field captions.

2.

Figure 13-9. Top: These text boxes could stand to grow so they can accommodate long names and email addresses.

But you don't want them to be so wide that people need to scroll from side to side if their monitors have a lower resolution than

yours.

Bottom: The solution's anchoring, so the text boxes always use the available space, and not one whit more.

Choose Form Design Tools | Arrange Size Anchoring Stretch Across Top.
(If you prefer to adjust your anchoring settings in Layout view, then choose Form
Design Tools | Arrange Position Anchoring Stretch Across Top.)

This action anchors your control to three sides of the form: the top, left, and right. The top
anchoring just makes sure the control stays at the same vertical position if the form window
grows taller or shorter. The anchoring to the left and right sides ensures that the text box grows
as the form widens, and shrinks as it narrows.

3.

13.1.5.2. Making a single control as large as possible

In the previous example, you saw how to use anchoring to make a control grow horizontally. You can
also use anchoring to make a control grow vertically, but there's a catch. In most forms, you have
several controls placed one on top of the other. If you're not careful, when a control gets taller, it
starts blotting out the control underneath it.

The solution's to make sure that only one control on the form can grow vertically. This control
(probably a large field that's stuffed with text) then expands to consume all the extra space. All the

controls above this control must be anchored to the top of the form. All the controls underneath it
must be docked to the bottom so they stay out of the way.

Here's how to put this model into practice:

In Design view, shrink the width of the details section so it's just wide enough to fit
your controls .

As with all types of anchoring, extra space is your enemy.

1.

Select the control that you want to grow vertically to get the extra space .

Consider the form in Figure 13-9 , which shows customers. In this case, it's the Notes field that
has the most text and would benefit most from the extra space. Even if you anchor the Notes
field to both sides, you'll still get only a bit of extra space. Better to use whatever blank space
you can get at the bottom of the form.

2.

Choose Form Design Tools | Arrange Size Anchoring Stretch Down and
Across .

This action anchors your control to all four sides of the form: the top, bottom, left, and right. As
a result, the control grows when the form's widened or heightened. If you want the control to
grow vertically but not horizontally, you choose Anchoring Stretch Down instead.

3.

Select the first control under the control that grows vertically. Choose Anchoring
Bottom Left .

This action anchors the control to the left and bottom sides. That way, as the form's
heightened, the control drops down to make space for the one above.

4.

You could also use the Stretch Across Bottom option. In this case, the control's still anchored to
the bottom, but it grows horizontally to fit the width of the form.

Note: In the previous example, you didn't need to anchor the labels in front of every field, because they stayed fixed in place.

However, in this example, you do need to use Bottom Left anchoring for all the labels that appear underneath the control that

stretches vertically. (Otherwise, this label doesn't line up with its value box.) You never use one of the stretch anchoring options

with a label, because you don't want your label to change size.

5.

Repeat step 4 for each control underneath .

If you forget a control, you see a telltale sign. When you resize the form window smaller, some
controls overlap because the different anchoring settings don't agree.

Assuming you anchor everything correctly, you get the result that's shown in Figure 13-10 .

6.

Figure 13-10. Now, when the form gets taller, the Notes field gets the extra room.

13.1.6. Tab Order: Making Keyboard Navigation Easier

When you're using a form to edit a record, you need to skip from one field to another. You can jump
anywhere you want by using your mouse, but hard-core keyboard jockeys don't want to waste time
raising their fingers from the keys. Here's where the Tab key comes into the picture.

You probably already know that the Tab key lets you move from one control to another in any
Windows application. The Tab key also works in the datasheet, letting you skip from one column to
the next. So it should come as no surprise that the Tab key also works in your forms.

The first time you press Tab in a form, you may be in for an embarrassing surprise. If you've spent a
fair bit of time fiddling with your controls and rearranging them, then the Tab key doesn't necessarily
take you to the control you expect. Figure 13-11 illustrates the problem.

Figure 13-11. You'd expect that you could press the Tab key here to jump from the FirstName field to the LastName field.

But try it and you wind up in the Country field instead, halfway down the form.

Note: The Tab key always works correctly if you're using a tabular or stacked layout, because Access keeps it up to date as you move

the controls around. It's only when you've taken your controls out of a layout that you'll see the problem described here.

Getting a form straightened out so that the Tab key moves from one control to the next in an orderly
fashion is called setting the tab order . Essentially, every control that supports tabbing has three
important properties (which you can find in the Other tab in the Property Sheet). These properties
are:

Tab Stop determines whether a control supports tabbing. If set to Yes, you can tab to this
control. If you change this setting to No, then it doesn't matter how much tabbing you doyou'll
never get here. When you first add a control, this property's always set to Yes.

Auto Tab has an effect only if the control's using an input mask (see Section 4.2). If you set
Auto Tab to Yes, then as soon as you type the last character into the mask, you're automatically
tabbed to the next control. This feature's handy for really fast data entry, but it can be annoying
if you make a mistake, because you're tabbed out of the control before you can fix it.

Tab Index controls the tab orderin other words, where you go each time you hit Tab. When
you first open a form, you start at the control that has a tab index of 0. When you hit Tab, you

then move to the control with the next highest tab index (like 1). This process continues until
you reach the control with the highest tab index. Hit Tab again, and you'll start back at the
beginning.

Note: The only controls that have these properties are controls that can accept focus in other words, controls you can click and interact

with. Obviously, text boxes, checkboxes, and buttons support tabbing. However, labels and pictures don't, because there's no way to

interact with these items.

Every time you add a new control, Access gives it a new, higher tab index. Even if you drop a new
control at the top of the form, Access puts it at the end of the tab order. To fix this problem, you
could select each control in Design view, and then change the Tab Index setting by hand. However, a
much less time-consuming alternative lets you set the tab order for the entire form in one go. Here's
how it works:

Right-click a blank spot on the form design surface, and then choose Tab Order .

The Tab Order dialog box appears. It lists all the controls on your form that support tabbing,
from lowest to highest Tab Index.

1.

In the Selection list, choose the section of your form you want to work with. It's
almost always the details section .

The Tab Order dialog box lets you set the tab order separately for each section of your form. If
your form includes a header and footer, you can choose to work with the header, footer, or
details section. However, it's very rare to find a form that has controls to support tabbing
outside the details section.

2.

If you want to let Access take a crack at setting the correct tab order, then click Auto
Order .

When you click Auto Order, Access sets the tab order based on the controls' position. The order
goes from left to right, and then from top to bottom. Most of the time, the Auto Order feature
gets you the right tab order (or at least gets you closer to it).

3.

To move a single control to a new position in the tab order, drag it .

This step's a bit tricky. Figure 13-12 shows how it works.

4.

Figure 13-12. To reposition a control in the tab order, begin by clicking the gray margin that's just to the left of the

control. The entire row's selected. Next, drag the control to a new position on the list. In this example, the Country field's being

moved down the tab order.

4.

Click OK when you've got the tab order perfected .5.

Tip: The tab order goes both ways. You can move one step forward in the tab order by pressing Tab, and you can move one step

backward by pressing Shift+Tab.

13.2. Taking Control of Controls

So far, you've seen how to create a form from scratch, and add all the controls you want. However,
you haven't used this newfound power to do anything special. Sure, you've picked up the ability to
add extra labels, lines, and rectangles. But that kind of eye candy pales in comparison to the truly
helpful features Access lets you add to your forms. Want to prevent people from entering buggy
data? Check. Want to add Web page-style hyperlinks? No problem. The list of what you can do to
soup up your forms' abilities is almost endless. The following sections show you the most popular
ways to take charge of the controls on a form.

13.2.1. Locking Down Fields

In a database, almost every piece of information's subject to change. However, that doesn't mean
people should have free range over every field.

Suppose Boutique Fudge creates a form named CurrentOrders that lets people in the warehouse
review outstanding customer orders, sorted by date. The warehouse personnel need to review each
order, pack it up, and then ship it out. The only change they need to make is to update the order
status (to indicate when it's been sent out), or add a record to the shipment log. Other details, like
the order date, the order contents, and the customer who's receiving the order, should be off limits.
The warehouse people have no reason to change any of this information.

Forms are powerful tools in scenarios like this, because they let you prevent changes in certain fields.
That way, there's no chance that a misplaced keystroke can wipe out a legitimate piece of
information.

Every bound control (a control that displays a field from your table) provides the following two
properties that you can use to control editing. You can change these properties using the Property
Sheet in Design view (Section 11.4).

Locked determines whether or not you can make changes in a field. If Locked is set to Yes,
then you can't edit the field value. However, you can still select the text in a text box, and then
copy it.

Enabled lets you deactivate a control altogether. If Enabled is set to No, the control appears
with dimmed (gray) text. Although you can still see the field value in a disabled control, you
can't interact with it in any way. If it's a text box, you can't even select and copy the text it
contains.

Tip: If you want to prevent edits altogether, consider using the Allow Edits, Allow Deletions, and Allow Additions form properties instead,

which are described in Section 12.3.6 .

13.2.2. Prevent Errors with Validation

In Chapter 4 , you learned how to prevent errors from creeping into your tables by using validation
rules, default values, and input masks. This bulletproofing's an essential part of database design.

However, validation rules don't help in some situations because the rules apply sometimes, but not
always. You don't want the sales people at Boutique Fudge to enter a new order with an old date.
Clearly, that's a mistakea new order should receive today's date. To try and stamp out the problem,
a clever database designer like yourself may use the following validation rule on the OrderDate field:

 <=Date()

However, a few weeks later you discover that the catering department neglected to enter the
information about their orders on time. For record-keeping purposes, these orders need to indicate
when the order was originally placed. So you need to remove your well-intentioned validation rule
before you can enter these records.

It turns out situations like these abound in real life. Fortunately, there's a way to handle this scenario
without giving up on validation. The trick's to place the validation in the controls on the form. That
way, different forms can use different validation rules. If you want to make completely unrestricted
changes, then you can edit the data directly using the datasheet for the table.

If you plan to move the validation out of your tables and into your forms, then you'll be interested in
the following control properties, which you can tweak in the Property Sheet:

Validation Rule sets an expression that the value must meet in order to be considered valid.
For example, the expression <=Date() compares the current field value to the date returned by
the Date() function (which is today's date). The entry's allowed only if it's today's date or
before. You can find many more examples of validation expressions in Section 4.3.2 .

Validation Text sets the error message that appears if you attempt to enter a value that
violates the validation rule. This custom text replaces Access's generic error message"The value
you entered does not meet the validation rule defined for the field or control"which doesn't
make much sense to real people.

Input Mask sets a pattern that both guides and restricts people's input. Input masks are a
good way to deal with fixed-length text values like phone numbers, postal codes, and social
security numbers. Section 4.2 has more about how input masks work and how to create them.

Default Value sets the value that appears in a field when you create a new record. (You're
free, of course, to change the default value if it's not what you want.) You'll find it particularly
useful to set default values at the form level, because defaults often apply to a specific task
rather than the entire table.

Note: You can set a default value for the same field at the table level and the form level. If you do, the form's default value takes over.

13.2.3. Performing Calculations with Expressions

An expression's a formula that manipulates some information, like numbers, dates, or text, and
displays the final result (see Figure 13-13). Often, expressions perform calculations with field values.
You've used expressions before to crunch the numbers in queries (Chapter 7) and reports (Chapter
10), and now you'll put them to work in your forms.

To create an expression, follow these steps:

Add a text box control to your form (from the ribbon's Form Design Tools | Design
 Controls section) .

You need to use the text box, because it can show dynamic values like expressions. A label can
show only a fixed piece of text, so it's no help.

1.

In the Property Sheet, choose the Data tab. Place your expression in the Control
Source setting .

Remember, expressions start with the equals sign. The expression =Price*1.15 calculates the
price with tax for a product by multiplying the value in the Price field by 1.15.

Figure 13-13. In this form, the expression ="You have " & [DueDate]-Date() & " days to finish" calculates the number

of days between the current date and the project due date, and places that number in a complete sentence. You'll see this

information appear as soon as you type in a due date and move to another field. (You can get around this requirement, and force

the fields to update themselves as you type, by using a tiny bit of VBA code that triggers a recalculation. Section 17.4.2 shows an

example.)

2.

3.

Optionally, set Enabled to No to hammer home the point that this value can't be
edited .

When you create a control that uses an expression, Access doesn't let you edit the calculated
value. It's just as if you set the Locked property to Yes. However, some people may still try to
change this value. If you think this scenario's a problem, set Enabled to No so that the control
appears dimmed and nobody can tab to it. This setting also means that you can't copy the value
in the text box.

3.

Optionally, apply formatting .

You can adjust fonts and colors using the ribbon's Form Design Tools | Design Font section.
To configure the way Access shows numeric values, switch to Layout view, and then use the
Form Layout Tools | Formatting Formatting section.

4.

Note: To remove the border around a text box (so it looks more like a label), select it in Design view, choose Form Design Tools |

Design Controls Line Type, and then pick the first item in the list (which is blank, signifying "no line").

13.2.4. Organizing with Tab Controls

One of the control world's unsung heroes is the tab control , which lets you present large amounts of
content in a limited space. The tab control's trick's the way it lets you organize this content into
separate pages . You can see only one page at a time, and you choose which one by clicking the
corresponding tab (see Figure 13-14).

The tab control isn't all good news. Its main drawback's that you need to use extra clicks to get from
one tab to another. For that reason, the tab control isn't a great choice in forms that you've set up to
create new records. In those instances it's better to streamline the new record creation process and
have all the controls on one page, so you can move through them quickly. A tab control makes most
sense in forms that are primarily designed for editing or reviewing data. If this data can be
subdivided into logical groups, and if editing tasks often involve just one group, then the tab control's
a good choice.

Figure 13-14. It makes sense to put customer address information on a separate tab, because all these fields make up a

logical group of related information.

To use a tab control, follow these steps:

In the ribbon's Form Design Tools | Design Controls section, click the Tab Control
icon .

Once the tab control appears, you may want to move or resize it so it fits into your form
perfectly.

1.

Add all the tab pages you need .

Every new tab control starts with two pages. You can move from page to page by clicking the
correct tab.

To create a new page, right-click any page (but not the tabs themselves), and then choose Add
Page. To remove an existing page, right-click it, and then choose Delete Page.

2.

Give the tabs good names .

The tabs that Access creates start out with pointless names like Page19 and Page20. To change

3.

the name, select the page, and then change the Caption setting in the Property Sheet. The page
that displays customer address fields could have the caption "Address Information".

To rearrange your pages, right-click the tab control, and then choose Page Order. Access opens
a Page Order dialog box with a list of tabs. To change the order of a tab, select it, and then click
Move Up or Move Down.

Note: If you create more pages that can comfortably fit in your tab control, Access adds a strange scrollbar in the top-right corner

that lets you scroll through the tabs. To avoid this oddity, resize your tab control so that it's wide enough to fit every tab, or avoid

using long tab names.

3.

Place controls on the different pages .4.

You can drag controls from the rest of your form onto a page, or you can add new controls from the
ribbon. Either way, remember to select the tab you want first, and then add the controls you need.
Even in Design view, you can see only one page of a tab control at a time.

Tip: If your controls are in a layout, you can't drag them into a tab. Instead, select them, right-click your selection, and then choose Cut.

Next, right-click inside the tab page where you want to place them, and then choose Paste.

13.2.5. Going Places with Links

Links are the less powerful cousin of buttons. Whereas command buttons (Section 13.2.7) can
perform almost any action, links are limited to exactly two tasks:

Launching your default browser and navigating to a specific site.

Opening a file (like a Word document) in the program that owns it.

To create a link, follow these steps:

In the ribbon's Form Design Tools | Design Controls section, click the Hyperlink
icon .

Assuming you have Control Wizards switched on (Section 13.1.2), the Insert Hyperlink dialog box
appears (see Figure 13-15). Using this window, you can supply the text for the link and the
destination where the link transports people when clicked.

1.

Click the Existing File or Web Page option on the dialog box's left side .

You can also use the Object in This Database option to create a link that opens another database
object, like a form. However, command buttons are better suited to this task.

Alternatively, you can choose E-mail Address to create a link to an email address. When you click
this link, your default email program launches, and creates a new message with the starter text
you supply.

2.

Figure 13-15. Someone's about to create a new hyperlink. It'll appear with the text "Click here to visit the company

website" (which, of course, you can edit to say anything you want).

In the "Text to display" text box, enter whatever you would like the link to say .

Common choices for the text include the actual Web address (like http://www.mycompany.com)
or a descriptive message (like "Click here to go to my com-pany's Web site").

3.

If you want to set a custom tooltip for this hyperlink, then click the ScreenTip button.
Type in your message, and then click OK .

As you no doubt already know, a tooltip's a little yellow message-bearing window that opens above
a hyperlink when your mouse pointer hovers over the link. If you don't specify a custom tooltip,
then Access shows the full path or URL (Web address) instead.

4.

If you want to add a link to a document, browse to the appropriate file, and then select
it. If you want to add a link to a Web page, then type the URL into the Address text box
.

If you're adding a link to a document, then Access sets the address to the full file path, as in
C:\MyDocuments\Resume.doc . You can type this path in manually, and if your network supports
it, you can use UNC (Universal Naming Convention) paths that point to a file on another computer
using the name of the computer, as in \\SalesComputer\Documents\CompanyPolicy.doc .

Note: You're free to link to files on your computer or those that are stored on network drives. Just remember that when you click the

link, Access looks in the exact location you've specified. If you move the target file to a new location, or you open the database on

another computer, Access can't find the linked file.

5.

6.

Click OK to insert the hyperlink .

The new hyperlink appears on your form. You can then drag it wherever you want.

To use a hyperlink, just click it. You'll notice that the mouse pointer changes to a pointing hand as
soon as you move over the hyperlink.

6.

13.2.6. Navigating with Lists

There are two list controls in Access forms: the list box and the combo box. The difference is that the
list box shows several items at once (depending on how large you make it). The combo box shows
just one itemto see the list, you need to click the drop-down arrow.

Access gives you two ways to use list controls:

You can use them to edit a field . Access automatically creates a combo box control when
there's a lookup defined for the field (as described in Section 5.2.5). This combo box works the
same as a lookup list in the datasheet.

You can use them to navigate to the record you want . In this case, the list shows the
field value for every record in the table. When you chose one of the values, Access jumps to the
corresponding record.

Using lists for navigation is a true Access power trick. If you often look for a record using the same
criteria (like if you hunt down products by name or employees by social security number), this
technique's much faster than using the navigation buttons or filtering the records.

Here's how to create a list for navigation:

Make sure the Control Wizard feature's turned on .

If you're not sure, check that the Form Design Tools | Design Controls Use Control
Wizards button's highlighted.

1.

In the ribbon's Form Design Tools | Design Controls section, click the List Box or
Combo Box icon .

Both these controls work exactly the same when you're using them for navigation. The only
difference is that the List Box takes more space. If you decide to use it, then place it at the side
of the form. People usually choose the Combo Box (Figure 13-16).

2.

Draw the control on the form .

As soon as you finish, a wizard appears to help you set up the list (Figure 13-17). This process
works in a similar way to the Lookup wizard you used to set up table relationships (Section
5.2.5).

3.

Choose "Find a record on my form", and then click Next .

You'll learn about the other options in the next section.

4.

5.

4.

Choose the field you want to use for the lookup, and then click Next .

The example in Figure 13-16 uses the ProductName field. Technically, the list always works the
same wayit finds items based on their unique primary key value (Section 2.4). The list you're
creating actually has two columns. The first column stores the primary key, and the second
column shows the value that's in the field you selected. However, on your form, you don't see
the primary key, because it's hidden.

Figure 13-16. In this form, a list box lets you jump to the product you want with one click. Notice that this list doesn't

take the place of the ProductName text box control. You use the list to find the record you want, and the text box to change the

product name. Of course, if you never needed to change product names in this form, you wouldn't need to include the

ProductName text box.

5.

Figure 13-17. When you create a list, the List Box wizard lets you choose to use it for editing or navigation.

Note: This technique doesn't work as well if the field you pick allows duplicates. If you create a list that uses the LastName field,

you may spot more than one MacDonald. In this case, consider adding more than one field to your lookup list (like both the

LastName and FirstName).

Leave the "Hide key column" checkbox turned on, and click Next to continue .

If you don't plan to show the primary key columnand usually you won'tjust click Next to breeze
past this window.

6.

Enter a text caption for your list .

This caption appears in a label next to the list control. You may want to use something like
"Click the product you want to see". You can move or delete the label after the fact.

7.

Click Finish to create the list .

Now you can try out your list. Right-click the tab title and choose Form View to switch back to
the form. Then, choose an entry from the list to jump straight to the appropriate record.

Note: List-based navigation has one quirk. If you change the value that appears in the list, then Access doesn't update the list

until you move to another record. In the previous example, this property means that if you rename a product, then the old name

appears in the list until you move on.

8.

13.2.7. Performing Actions with Command Buttons

The last control you'll consider is one of the most powerful. Command buttons let you trigger just
about any action, like opening a new form, printing a report, or polishing off last year's taxes. (All
right, some tasks are more difficult than others, but if you're willing to hunker down with some Visual
Basic code, almost anything's possible.)

When you add a button to a form, Access launches the useful Command Button wizard, where you
can choose the action you want from a list of ready-made choices. The Command Button wizard then
helps you build a macro (see Chapter 15) that does whatever you requested.

The choices in the Button wizard provide a good menu of possibilities. Some Access fans find that
they can do almost everything they want to do by just using buttons and the wizard. Other people
eventually want to do something more original, in which case they need to create their own macros
or write custom code (tasks you'll tackle in Part Five).

The following steps lead you through the Button wizard:

In the ribbon's Form Design Tools | Design Controls section, click the Button icon
.

1.

Draw the button onto your form .

When you finish, the Control wizard starts, and gets right down to business. The first questions
it asks is what action you want to perform (see Figure 13-18).

Figure 13-18. You can instruct your form to carry out six categories of actions. Once you select a category (in the list

on the left), you see a list of actions in that category (in the list on the right).

2.

3.

Choose the action you want to perform .

Most actions are self-explanatory. Here are some of the highlights:

In the Record Navigation category , you can use commands like Go To First Record,
Go To Last Record, Go To Next Record, and Go To Previous record to create your own
navigation buttons. If you do, then set the form's Navigation Buttons property to No to
hide the standard buttons.

In the Record Operations category , you can create a new blank record (Add New
Record) or do something with the current one (like Delete Record, Duplicate Record, and
Print Record). You can even choose to commit changes right away before you navigate to
the next record (Save Record), or undo the last change (Undo Record).

In the Form Operations category , you can close the current form (Close Form) or
print it (Print Current Form). You can also open another form (Open Form), which is one
of the most used button actions because it helps you move from task to task.

Note: When you use the Open Form action, you have the option of applying filtering based on the current record. Sadly,

this feature's somewhat broken. In Chapter 14 (Section 14.3.1), you'll consider a more detailed example that uses filtering

to show related records.

In the Report Operations category , you can work with other reports using commands
like Open Report, Preview Report, and Print Report. These actions help you make the jump
from reviewing data (in a form) to printing it (in a report).

In the Application category , you're limited to one actionthe self-explanatory Quit
Application.

In the Miscellaneous category , you'll find options to run a separate query (Run
Query) or fire off a macro (Run Macro). You'll learn how to create macros in Chapter 15 .

3.

Click Next .

The next step depends on what action you selected. Some actions require extra information. If
you chose to show a form or print a report, Access prompts you to pick the form or report you
want to use.

Once you've finished supplying any extra information, Access asks you to sup-ply the button
text and choose a picture (Figure 13-19).

4.

Figure 13-19. Pictures are tempting, but the ones Access includes are decidedly old-fashioned. Most Access fans

decide to create picture-less buttons. If you want to include a picture, then turn on the Show All Pictures checkbox to see

everything Access has to offer (even pictures that may not make sense for your current action), or use the Browse button to add

in your own picture.

Note: Any bitmap (.bmp file) works for your button picture, so long as it's small enough to fit. Icons, .jpeg, and .gif files are also

acceptable.

Enter some text and choose a picture. Then, click Next .

You can change these details after the fact by modifying the Caption and Picture properties
(which appear in the Format tab).

5.

Supply a name for the button .

The name's what appears in the Property Sheet list. Better names make your button easier to
find. And if you write code that works with your buttons (Chapter 16), better names make for
code that people can more easily read and understand.

6.

Click Finish .

To try out your button, switch to Form view, and then give it a click.

7.

13.3. Forms and Linked Tables

As you learned in Chapter 5 , few tables are truly independent. Most are linked to others in a web of
relationships. Forms can take advantage of these relationships to show linked information. You can
use a single form to view (and edit) information about customers and their orders. Or, you can look
at products and product categories. This freedom just isn't possible in the Datasheet view.

Note: Enterprising Access developers use join queries (Section 6.3) to show information from more than one table. However, you can't

edit the linked information in a join query. In a properly designed form, you don't have this limitationyou can change the information in

both the parent and child records.

13.3.1. Table Relationships and Simple Forms

Access is intelligent enough to notice relationships when you create a new form for a parent table. To
see what this ability means in practice, select a table that's the parent of another table. You can use
the ProductCategories table in the Boutique Fudge database, because every category's a parent
record that's linked to one or more child records in the Products table. (You can also use the
Customers table, because customers are linked to orders, or the Orders table, because orders are
linked to order items. To try this out, use the Boutique Fudge database that's included with the
downloadable content for this chapter.)

Figure 13-20 shows what happens if you select the ProductCategories table, and then choose Create
 Forms Form. Access creates a form that displays the records you expect (the categories),

and the linked records in the child table (in this case, the products).

Note: Don't bother creating a split form or a multi-item form. Access ignores relationships when you create these form types.

If your table's the parent of more than one child table, then Access shows only records from one
table. It chooses the first relationship it finds. If this relationship isn't the one you want, don't
worryit's easy to change once you understand how the subform control works. The next section has
the inside scoop.

13.3.2. The Subform Control

Access shows linked records using the subform control. You can add the subform control to any form
to show linked records. It's available in the ribbon's Form Design Tools | Design Controls section
with all the other controls. If you add it by hand, then Access prompts you to pick the table you want
to show.

Three properties determine what the subform control shows. First, the Source Object property
identifies the object in the database that has the related records. You can choose an existing table,
query, or form.

Figure 13-20. This form lets you browse through the different product categories. Each time you move to a new category, a

mini datasheet on the form shows the linked product records. Using this form, you can edit products and product category information.

The next two properties Link Master Fields and Link Child Fieldslet you define the way the two tables
are related. The master field's the field in the form, and the child field's the field in the source object.
In the product category example, the master field's ID (in the ProductCategories table) and the child
field's ProductID (in the Products table). Once this link's defined, Access knows how to filter the
subform. It looks at the master field, and displays only records that have the same value in their
child fields. In Figure 13-20 , Access shows only the products in the current category.

Usually, the master field corresponds to the parent table, and the child field's in the child table.
However, you can reverse this relationship. You could create a form of products that includes a
subform that shows each product's matching category. When you use this approach, the subform
includes only a single record (because only one parent's linked to any child).

Now that you understand how the subform control works, you can add it to your forms with wild
abandon. There's no reason you can't add several subforms to show a whole collection of related data
at once. If you're creating a form for the Customers table, then you could display two subformsone
for the orders made by that customer, and one for the payments. You just need two subform controls
with different data sources.

Tip: When your form includes a subform, consider using the anchoring features described in Section 13.1.4.4 so the subform grows to fit

the available space when the form's resized.

13.3.3. Creating Customized Subforms

When you set the Source Object property to a table or query, Access always displays the linked
records in a mini datasheet. If you're intent on customizing every last piece of your form, you may
not want that behavior. Interestingly, Access lets you control exactly how linked records are shown, if
you do a little more work.

The trick's to set the Source Object to the form that you want to show in the subform control. Then,
the form appears in its Default view mode, which is whatever that form's Default View property is set
to (see Section 12.3.5). You can show linked records in a tabular or stacked form. Figure 13-21
shows an example.

Figure 13-21. Thanks to the magic of subforms, this window actually shows two forms at once: ProductCategories_

WithSubform and ProductsInCategory_ Subform. In this example, the subform uses Continuous Form view (Section 12.3.5), so it shows

a list of all the matching products. To see the rest of the products, you need to use the second set of navigation buttons (circled).

Depending on the effect you're trying to achieve, you may already have a suitable form lying around
ready to use. If you're designing a form for the ProductCategories table, you can use the form you
created for the Products table in a subform control. However, you'll often want to use a completely
separate form so you can customize it just the way you want. In the products table example, you
may want to show products differently in the subform than they appear in their own dedicated form.
After all, there's less space available when you use the subform control, so you may choose a more
compact format and leave out the report header altogether.

Tip: If you choose to create a dedicated form to use with a subform control, consider indicating that in the name. The name

"ProductsInCategory Subform" suggests a form that's designed for use as a subform.

Sometimes, try as you might, there's no way to fit everything in the small subform area of a form. In
this case, you have two options: Try to rearrange your subform to make it more compact, or use two
separate forms. Section 14.3.1 in Chapter 14 shows how you can use navigation and filtering to show
related records in a separate form.

14. Building a Navigation System

Throughout the last 13 chapters, you've assembled all the pieces for a first rate database. But
without a good way to bring them all together, they're just thata pile of unorganized pieces.

The best Access databases include some way for people to jump from one part of the database to
another. The goal's to make the database more convenient and easier to use. Rather than forcing
you to hunt through the navigation pane for the right object, these databases start with some sort of
menu form, and let you work your way from one task to another by clicking handy buttons. This sort
of design's particularly great for people who aren't familiar with Access's kinks and quirks. If the
navigation system's built right, these people don't need to know a lick about Accessthey can start
entering data without learning anything new.

You already know most of what you need to create a first-rate navigation system. Now you need a
new perspective on databasesnamely, that they can (and should) behave more like ordinary Windows
programs, and less like intimidating forts of data. In this chapter, you'll learn different ways to add
user-friendly navigation tools to a database. You'll learn how to create switchboards (forms that
direct people to other forms), how to make a form appear when you first start the database, and how
to show related information in separate forms. But first, you'll start by taking a closer look at the
navigation pane to learn how you can control navigation without creating anything new.

14.1. Mastering the Navigation Pane

Chapter 1 introduced the navigation pane, and you've used it ever since to breeze around the
database. However, the navigation pane starts to get congested as your database grows. Depending
on your monitor size, once you hit about 20 database objects, they don't fit into view all at once. As a
result, you need to scroll from top to bottom to find what you need, which can be a major pain in the
wrist.

One way you can combat this confusion is by designing your own switchboard forms that let you
move around the database. But before you jump to that solution, it's worth considering some of the
features built right into the navigation pane. These features may solve the problem with less work.

14.1.1. Configuring the Navigation List

For starters, consider using filtering to cut down the amount of information shown in the navigation
pane. You might have a database with three dozen objects, only 10 of which you use regularly. In
this case, there's no reason to show the objects you don't use.

Essentially, Access lets you make two decisions with the navigation pane:

You can choose the way objects are arranged in the navigation pane. This process is known as
categorizing your database objects.

You can choose which objects are hidden from view. This process is known as filtering your
database objects.

The confusing part's that you make both these choices using the same menu. To open this
menu, click the drop-down arrow in the navigation pane's title region. Figure 14-1 explains how
it works.

You can choose to categorize the navigation pane in five ways:

Tables and Related Views groups database objects based on the table they use. If you've
created two forms, three queries, and a report for a Students table, you'll see all these objects
together in one group (under the heading "Students"). The challenge with this option's that you
can have a hard time telling the difference between the different types of database objects,
particularly if you use similar names. You need to look carefully at the icon to determine
whether a given item's a form, a report, or something else. Tables and Related Views is the
categorization setting with which Access starts you off.

Tip: Many database objects use more than one table. If you create a query that uses a join (Section 6.3) to show products with

category information, then your query uses both the Products and ProductCategories tables. In Tables and Related Views mode,

you see this query in two placesunder the Products heading and under the ProductCategories heading.

When you use Tables and Related Views, the menu's Filter By Group section includes every
table in your database. If you choose a specific table, then you see only the objects that are
related to that table. You can also choose Unrelated Objects to see any objects that don't fit into
one of the table-specific categories, like code files.

Figure 14-1. When you're ready to tell Access how to arrange objects in the navigation pane, make your selection in

the menu's top portion (named Navigate to Category). The current choiceObject Typegroups tables, queries, forms, and reports

into separate sections. To decide which objects appear, make a selection in the menu's bottom portion (named Filter By Group).

These options let you decide how your database objects are grouped These options let you control which objects appear

Object Type groups database objects based on the type of object. This method clearly
distinguishes tables from forms, reports, and other sorts of objects. Many Access gurus prefer
using this view when browsing a complete database, because it imposes order on the unruliest
database. It also works particularly well if you don't remember the exact name of the object you
want. If you know you need to print a report that shows a list of classes, then you can head

straight to the Reports group.

When you use Object Type, the filtering list lets you see just a single type of object. If you've
created forms for every task you need, then select Forms to see your forms and hide everything
else.

Created Date groups database objects based on the time they were created. Access creates a
group for Today, groups for the recent days of the week (Monday, Sunday, and so on), and
groups for longer intervals (Last Week, Two Weeks Ago, and so on). You probably won't use this
view mode regularly, because as time passes, the objects move from one group to another.
However, it's a good way to hunt down recent work.

When you use Created Date, the filtering options let you pick out just those object that were
created today, yesterday, last week, last month, and so on (as shown in Figure 14-2). If you
remember when you created an important form or report, but don't know its name, this ability
can save serious time.

Figure 14-2. When grouping by Created Date, you see groups that organize your objects based on when they were

created.

Modified Date works like the Created Date option, except it lets you pick out database objects
that have been changed recently. This option's handy if you want to ignore tables and other
objects that you rarely use.

When you use Modified Date, you get all the same filtering options you do with Created Date.

Custom lets you choose exactly what database objects are shown, and which ones are hidden.
This choice is good if you have certain commonly used objects, and others that you want to tuck
out of sight. You'll try out custom groups in Section 14.1.4 .

Tip: You can quickly apply filtering. Right-click a group heading, and then choose Show Only [Group-Name]. To show just tables when

grouping by Object Type, right-click the Tables group, and then choose Show Only Tables. To remove the filtering, right-click the

navigation pane again, and then choose Show All Groups.

When you apply filtering in the navigation pane, Access completely hides whatever you don't want to
see. But as you probably already know, Access gives you another option. You can click the collapse
arrows next to a specific section to shrink it down so that only the section title's visible (Figure 14-3
). You can then pop it back into display when you need it.

Figure 14-3. Click the collapse arrows to quickly hide the objects in a particular section. In this example, the queries group's

collapsed neatly out of the way.

GEM IN THE ROUGH
Sort and View Options in the Navigation Pane

The navigation pane has many carefully buried settings you can configure. For example, if you don't
like the way items are ordered in each group, you have several sorting options. To see them all,
right-click the navigation pane's title bar, and then choose the Sort By submenu.

As you'll see, you can apply an ascending or descending sort according to any of the following

criteria:

Name sorts according to the database object's name.

Type sorts according to the object type (form, report, table, and so on). This option has no
effect if you're already grouping by object type.

Created Date and Modified Date sort so that older or newer objects appear first.

You can also change what the navigation pane looks like by right-clicking the navigation pane's title,
and then choosing an option from the View By menu. Figure 14-4 compares the different settings.

14.1.2. Better Filtering

The filtering system has one limitationit lets you choose only one category at a time. If you've chosen
Tables and Related Views, then you can filter the list down to the objects that are related to a single
table. However, you can't choose to include two (or more) table groups. Similarly, if you choose
Object Type, then you can show all the forms or all the reports in your database, but you can't show
forms and reports without including everything else (although the collapsing trick shown in Figure 14-
3 helps to reclaim most of the space).

There's an easy way around this restriction. To get more control over filtering, follow these steps:

Right-click the navigation pane's title bar, and then choose Navigation Options .

The Navigation Options dialog box appears (Figure 14-5).

1.

Figure 14-4. So far, you've been using List view in the navigation pane, the most compact option. However, Access also

lets you use a slightly bigger icon view (left), or a details view that includes information about when an object was created and last

modified (right).

1.

Figure 14-5. The list on the left shows the different ways you can categorize the navigation pane. You don't see the Created

Date and Modified Date options, because you can't customize those. The list on the right shows the groups in the currently selected

category.

Choose the category you want to customizeeither Tables and Related View or Object
Types .

The list on the right shows all the groups in that category.

2.

If you don't want a category to appear in the navigation list, then clear the checkmark
next to it .

If you want your navigation pane to show only reports and forms, choose the Object Types
category, and then clear the checkmark next to Tables, Queries, Macros, and Modules.

3.

If you're customizing the Tables and Related Views category, then you can also change
the order of the groups, as shown in Figure 14-6 .

The only item you can't move is Unrelated Objects, which always appears at the bottom. And you
can't change the order of the groups in the Objects Types category at all.

4.

Figure 14-6. To move a group, just select it. An up and down arrow icon appears in the item, as shown here. You can click

these arrows to move the group up or down.

Click OK to close the window .5.

Tip: Many databases get a whole lot clearer the moment you hide the extra objects. If you've outfitted your database with a full

complement of forms and reports, these objects may be all you need to see. So why not go ahead and hide the lower-level tables,

queries, and code?

14.1.3. Hiding Objects

Hiding the groups you don't want to see is all well and goodbut what if there's a single object you
want to tuck out of sight? Maybe you want to make sure other people who use your database aren't
distracted by a few potentially risky action queries (Chapter 8) that they really shouldn't use. No
problem. Just right-click the query in the navigation pane, and then choose Hide in this Group.

Note: When you hide an object, it's hidden in the current view mode, in the current group. (Remember, in Tables and Related Views

mode, some objects may appear in more than one group.) If you want to hide an object everywhere, you need to track it down in each

group, and hide it there.

To reveal a hidden object, you first need to configure the navigation pane so that it shows hidden
objects. To do so, right-click the title bar, choose Navigation Options, add a checkmark in the Show
Hidden Objects box, and then click OK. Now, hidden objects appear in the navigation pane, but
they're slightly faded so you can distinguish them from the other non-hidden objects. To unhide an
object, right-click it, and then choose Unhide in this Group.

All of these approachesfiltering, custom groups, hidden objectsare designed to make your database
easier to use. These approaches don't provide any security. (A person who really wants to use a
database object can just change the navigation settings to get to it.)

Note: in Section 18.2 , you'll learn how to divide a database into separate files, which gives you the best way to keep some database

objects out of the wrong hands. However, no matter what you do, Access is not bulletproof. Access is designed to be intuitive, capable,

and easy to use. Unlike server-side databases like SQL Server (Section 20.1.1), it's not designed to lock out bad guys if they get hold of

your database files.

14.1.4. Using Custom Groups

Ordinary people don't think in terms of tables and database objects. Instead, they think about the
tasks they need to accomplish. But none of the ready-made grouping options fit this approach.
Fortunately, you can build your own groups that do. Here's how:

Click the drop-down arrow in the navigation pane's title bar, and then choose Custom
.

In a new database, you start out with two groups in the Custom view. The first, Custom Group
1, is empty. The second, Unassigned Objects, contains all the objects in your database.

1.

You can create a new group and move an object into it in one step. To do so, right-
click the object you want to relocate (in the Unassigned objects section), and then
choose Add To Group New Group. Enter the group name, and then hit Enter.
Figure 14-7 shows the results .

Repeat this step to create all the groups you need. If you want to move an object into an
existing group, right-click it, choose Add To Group, and then pick the corresponding group
name.

Tip: For speedier work, just drag and drop your objects into the right groups.

2.

You can also rename, remove, and reorder your groups. The easiest way to do this is
using the Navigation Options dialog box. Right-click the navigation pane's title, and
then choose Navigation Options .

The Navigation Options dialog box lets you make a few useful group-related things happen:

3.

Figure 14-7. It's often a good idea to create groups that reflect specific types of tasks, as in this database.

Select a group, and then click Rename Group to apply a new name.

Remove your groupjust select it, and then click Delete Group.

Add a group, by clicking Add Group. It starts with no objects.

Rearrange your groups. Just click one, and then use the arrow icons that appear to move
it up or down.

Move your custom category to a different place in the list, which affects how the menu
appears when you click the drop-down arrow in the navigation pane.

Hide a group (temporarily, or for the long term). Just remove the checkmark next to the
group.

The only thing you can't do with groups in the Navigation Options dialog box is change the
objects that each group contains. (In order to change them, you need to drag your objects
around the navigation pane, as described in step 2.

You can also change the name of the view that contains all your groups. Initially, this category's
named Custom, but you can change it to something more descriptive by selecting it in the
Navigation Options dialog box, and then clicking the Rename Item button. And if you're more
ambitious, you can create more than one top-level custom view mode. Click Add Item to add a
new one, and Delete Item to remove it. Figure 14-8 shows an example with several custom
categories.

Click OK when you're finished making your changes .4.

4.

14.1.5. Searching the Navigation List

If you just can't bear to have anything out of your sight, you may need to put up with a
cumbersomely long list of objects in the navigation pane. However, Access still provides you with one
convenient feature that can save you hours of scrolling.

Figure 14-8. One reason you might create multiple views is if different people use your database. In the Cacophoné Studios

example, the administrative staff sees forms for creating classes and adding students (using the Administration view), while the teachers

get to print attendance lists and create assignments (using the Teachers view, which is selected here). As you can see, the Teachers

view contains a category named "Attendance and Marking" and one named "Payments". Each has its own set of forms and reports.

It's the search box , and it lets you jump to an object almost instantaneously, pro-vided you know its
name.

To show the search box, follow these steps:

Right-click the navigation bar's title, and then choose Navigation Options .1.

In the Navigation Options window, choose Show Search Bar .2.

Click OK .3.

2.

3.

The search box appears at the top of the list in the navigation pane. As you type, Access filters down
the list so it includes only matching objects (Figure 14-9).

Figure 14-9. The search box matches objects that contain the text you type. So if you type "Class", you'll see objects like

Classes and Students_Classes.

14.2. Building Forms with Navigation Smarts

The navigation pane's an invaluable tool for getting around your database, but it doesn't suit
everyone. People who've never used Access before might find it a little perplexing, and there's
nothing stopping someone from changing the navigation options (and opening objects they
shouldn't).

To get more control and add a friendly veneer, many Access experts build navigation features into
their forms (and occasionally their reports). After all, a form gives you virtually unlimited possibilities
for customization. You can add a paragraph of text, throw in a hot pink background and a company
logo, and reduce confusing options to a few fat, friendly buttons.

If you do decide to use forms for navigation, your first decision's what kind of form to build. Access
gives you a few options, including built-in support for something it calls switchboards.

14.2.1. Building a Switchboard

A switchboard is a form whose sole purpose is to lead you to other forms (usually, when you click a
button). Think of a switchboard as the main menu for your database. It's both the starting place and
the central hub of activity. A typical switchboard form has a stack of buttons that lead to different
places.

Figure 14-10. This Access switchboard provides single-click access to five different forms. The nice thing about Access

switchboards is that you can click your way to building one in a matter of seconds. The drawback's that they have a slightly dated look,

which leads picky people to design their own from scratch.

Note: A switchboard, once created, is like any other type of form. So you can use the skills you picked up over the last two chapters to

give your switchboard a personal touch after you create it.

To automatically create a switchboard, you need to use the Form wizard. Here's how it works:

Choose Database Tools Database Tools Switchboard Manager .

The first time you click this button in a database, Access informs you that it can't find a
switchboard, and asks if you'd like to create one. Click Yes to continue to the Switchboard
Manager (Figure 14-11).

If a switchboard already exists, then you'll barrel ahead to step 2, where you can edit the
current switchboard.

1.

Figure 14-11. The Switchboard Manager shows a list of pages. Each page is a separate part of the switchboard's

menu. The simplest, most straightforward switchboards have only one page, which means they're only one level deep and every

button performs a useful action (like opening a form or report).

Click Edit to edit the main switchboard page .

The Edit Switchboard Page window appears (Figure 14-12). Here's the spot where you'll define
the actual menu commands.

Figure 14-12. The Edit Switchboard Page window lets you create menu commands, remove ones you don't want

anymore, and rearrange them (their order dictates their order on the switchboard form).

2.

To create a new menu command, click New .3.

The Edit Switchboard Item window appears (Figure 14-13). To create a menu command, you
need to supply two pieces of information: the text that appears on the form, and the command
that Access should perform when you click the button.

Figure 14-13. This command launches the Attendance report. From the Command drop-down menu, pick the action

you want the command to perform.

3.

Enter the menu text, and then choose the action you want the button to perform .

Your options include:

Go to Switchboard jumps to another switchboard page. You can use switchboard pages
to break up really large menus into several smaller menus.

Open Form in Add Mode opens a form in data entry mode so you can start adding new
records.

Open Form in Edit Mode opens a form in its normal mode for viewing or editing records.
(This mode doesn't let you edit the form, contrary to the misleading name.)

Open Report launches a report in print preview mode.

Design Application opens the Switchboard Manager window so you can edit the
switchboard menu. You rarely need to include this option in the menu.

Exit Application quits Access.

Run Macro and Run Code fire up a macro you've created (see Chapter 15) or a piece of
Visual Basic code you've written (Chapter 16).

4.

Repeat step 3 and 4 until you've created all the commands you need. Then click Close
to move back to the main Switchboard Manager window .

Switchboards have an ugly secret: Each page can accommodate only eight menu commands. If
you need more (and who doesn't?), you need to add extra pages to your menu, as described in
the next step.

5.

If you've decided to use more than one switchboard page, click New to add the page,
enter the page name, and then click OK. Next, click Edit to start adding commands,
and then Close when you're finished .

Follow the instructions in steps 3 to 5 to fill in the commands for this page.

6.

7.

When your switchboard's complete, click Close in the Switchboard Manager window .

To try out your switchboard, find the new Switchboard form that Access has created, and then
double-click it.

Switchboard forms don't always look right with the tabbed windows that Access uses. Mainly,
there'll be some extra blank space at the bottom and the right side.

7.

UP TO SPEED
Switchboards with Multiple Pages

A switchboard shows one page of menu commands at a time. When you first create a switchboard, it
has exactly one page. However, you can easily add more from the Switchboard Manager window (see
Figure 14-11), using the New button.

Switchboards don't give you any built-in way to get from one page to another. Instead, it's up to you
to add the Go to Switchboard command. Suppose you have three pagesa main page and two more
with extra commands. On the main page, you need two Go to Switchboard commands, each of which
leads to one of the new pages. On the new pages, you need a Go to Switchboard command that lets
you get back to the main page.

Using multiple switchboard pages really isn't ideal. It's just too much like the annoying touch-tone
menus on automated voicemail systems. Before you know it, you'll have pages that lead to more
pages and you'll be scrambling through all of them to find the command you want. So, if possible,
consider limiting your switchboard to eight tasks. If you're crafty, each of these tasks can pull
together multiple forms, either by using subforms (Section 13.3.1) or buttons that navigate to
related records (Section 14.3.1). And if you really and truly do need a more comprehensive switch-
board, consider undertaking the task of building your own. That way, you can split all the navigation
buttons into separate sections, draw borders around related buttons, add labels with descriptive text,
and so on. In the end, it'll probably look a whole lot better.

To remedy this problem, you can show the switchboard form as a pop-up window that appears above
all other windows. That way, the window's always sized correctly. To make this change, open your
form in Design view. Using the Property Sheet to configure the form, choose the Other tab, and then
set the Pop Up property to Yes.

14.2.2. Designating a Startup Form

Seeing as the switchboard's the gateway to your Access database, it's a good starting point for folks
who are going to use your database. You can tell Access to open any form (like the switchboard)
automatically when someone first opens your database. Here's how:

Choose Office button Access Options .

The Access Options window appears.

1.

In the list on the left, click Current Database .2.

3.

The settings for the current database appear.

2.

Under the Application Options heading, look for the Display Form box. Choose your
switchboard form in the list .

Now, whenever you open the database, Access launches your form immediately.

3.

Optionally, if your switchboard completely eliminates the need for the navigation
pane, look down under the Navigation heading and clear the checkbox next to the
Display Navigation Pane setting .

4.

BEHIND THE SCENES
Switchboard Menus are Stored in the Database

If you're the sort of person who likes to worry about potential problems on the horizon, you've
probably already noticed something questionable in the switchboard universe. It's easy to imagine a
scenario where you create the perfect switchboard, but then decide to redesign your database with a
few new forms. In this situation, you don't want to be stuck with new forms but an old switchboard
that doesn't include buttons to display them.

Fortunately, the people at Microsoft who created the switchboard feature thought about exactly this
sort of problem. Their solution's to have Access store the switchboard menu in the database.

Here's how it works. When you create a switchboard, Access adds a table named Switchboard Items
to your data-base. As you add entries to the switchboard, Access enters them into the Switchboard
Items table. In order to make this system work, Access needs to take a few extra steps.

Namely, when your switchboard form's opened, Access runs a macro (see Chapter 15) that grabs
the list of switchboard items from the table, and uses it to fill in the list of buttons that appear on
your switchboard form.

Here's how you benefit. If you decide you want to change your switchboard after creating it, it isn't
too difficult. You just open the Switchboard Manager (choose Database Tools Database Tools
Switchboard Manager), and then edit your entries. Access updates the records in the Switchboard
Items table. It doesn't need to change the Switchboard form itself. So if you've customized the
switchboard form (with your own content or buttons), it isn't affected.

Usually, you won't have any reason to open the Switchboard Items table directly. So why not hide it
in the navigation pane to prevent confusion? Section 1.4 explains how.

If you're worried about overzealous folks opening something they shouldn't, then hide the navigation
pane, and train them to use the switchboard for all their needs. It's like navigating the database with
training wheels on.

Tip: Every time you finish a task in a database, you return to the switchboard and pick another task (or just exit Access). To make this

process easier, you may want to add a button to each form you create that closes it, allowing the switchboard to come back to the

forefront. You can do this using the Command Button wizard (Section 13.2.7).

14.2.3. Switchboard Alternatives

Switchboards are a great idea, but they have some clear drawbacks. The eight-item limit, the slightly
antiquated look, and the extra maintenance are all good reasons to think twice about using a
switchboard unless it's clearly simplifying the navigation in an otherwise complicated database.

If you aren't quite convinced that the Access switchboard fits the bill, you have some other options,
as described in the following sections.

14.2.3.1. Custom switchboard forms

One of the simplest and most compelling approaches is to build your own switchboard form by hand,
and then set that as the startup form for your database. Consider the form shown in Figure 14-14 ,
which presents the same navigation buttons as the switchboard in Figure 14-10 , but adds a hefty
dose of modern styling. This switchboard presents a clean blank surface along with an image control
that shows a snazzy graphic. It also includes several ordinary button controls that were created with
the Command Button wizard (Section 13.2.7). Each button's Back Style property's set to
Transparent, to give it a more modern flat look. The Cursor On Hover property's set to "Hyperlink
hand" so that the mouse pointer changes to a pointing hand when you move over a button, which
lets you know that you can click there.

Note: Another approach is to use a picture as the background for the whole form, and put other controls on top. To do this, you need to

set these properties on the form: Picture (the picture file you want to show), Picture Tiling (whether or not the image should be repeated

to fill the available space), Picture Alignment (use Top Left so that it starts from the form's top-left corner), and Picture Size Mode (use

Clip, so the picture's not stretched, resized, or otherwise mangled). All the controls you place on top of a form with a background picture

should have their Back Style property set to Transparent so that the picture shows through.

Check out the "Missing CD" page at www.missingmanuals.com to see a screencast (an online,
animated tutorial) that demonstrates how the custom switchboard shown in Figure 14-14 was
created.

Figure 14-14. This custom switchboard's just an ordinary form with a lot of navigation buttons. The advantage to crafting

your own switchboard is that you can make everything just the way you like it. The disadvantage is that it's more work to update when

the database changes. Every time you add a new form, you need to modify your switchboard's design to use it.

14.2.3.2. Compound forms

Alternatively, you could forget about designing a way to jump from form to form, and instead create
a form that brings everything you need into one place. This trick, called a compound form , uses the
subform control you learned about in Section 13.3.1 .

In Chapter 13 , you learned how the subform control lets you show related data (like a list of
products for the current product category). However, the subform also makes sense if you want to
show several unrelated tables in one place. Just leave the Link Master Fields and Link Child Fields
properties of the subform emptythat way the subform shows all the records without filtering. Figure
14-15 shows an example.

Tip: There's a shortcut to creating a compound form. First, choose Create Forms Form Design to create a blank new form.

Find a form you want to use in the subform, and then drag it from the navigation pane to your new form's design surface. Access creates

a subform control that shows that form. You can also drag a table onto your form, in which case Access creates a subform for that table

(and asks you to pick a name for it).

Figure 14-15. This compound form's an all-in-one dashboard for adding and reviewing products and reviewing the customer

list. The prebuilt templates that Access includes (Section 1.2.1) often use compound forms to put several related editing tasks in one

place.

If you're using Tables and Related Views mode in the navigation pane, a compound form usually
appears in the Unrelated Objects area. That's because the switchboard form itself doesn't use any
tables. Instead, it contains subforms, and these subforms use the various tables you're displaying.

14.2.4. Showing All Your Forms in a List

You may find one last trick useful when building a navigation hub. Rather than create a button for
each and every form you want to use, you can create a list control that has them all. When the
person using the database picks a form from the list, Access jumps to that form. This approach works

well if you have a large number of forms, which would make the button-only approach irredeemably
cluttered.

Note: This technique works as well for reports as it does for forms.

The first step's to put the form names in a list box. Access gives you three ways to do this:

Type the names in by hand . Just drop a combo box control onto your form. When the wizard
starts, choose "I will type in the values that I want", and then enter the form names in the
appropriate order.

Note: Section 13.2.6 has more about the List wizard. Just remember, at the end of the wizard, you need to choose "Remember

the value for later use". Your list's used for navigation, not record editing.

Pull the names out of a custom table you create . Create a new table, and then fill it with
the names of the forms you want to show in the list. Then, when you create the combo box,
choose "I want to look up the values in a table or query", and then specify your custom table.
This method's conceptually similar to the way that an Access-generated switchboard works.

Pull the names out of the system table . For a really nifty trick, you can get the full list of
forms straight from your database without any extra work. The trick's to use one of the hidden
system tables . These system tables are tables that Access uses to keep track of database
objects. Every Access database has these tables, but tucked out of sight.

The first two options are straightforward. The third option's more impressive, but it takes a little
more work. Ordinarily, the system tables are hidden from sight. You can pop them into view (see
Figure 14-16) by choosing Show System Objects from the Navigation Options window. Showing the
system tables isn't a good choice for the long term, because any change you make in these tables
could damage your database and confuse Access.

Even if you don't show the system tables, you can still use them. The most interesting system table's
MSysObjects, which lists all the objects in your database. You can get a list of all the forms in your
database by querying this table with an SQL command (see Section 6.2.3 for a refresher on how
queries use SQL). The Name field provides the database objects' name. The Type field contains a
numeric code that identifies the type of object. Table 14-1 lists the types in which you may be
interested.

Figure 14-16. Here, the navigation pane shows a bunch of system tables, which are ordinarily hidden. You can open them to

take a look, but you'll have a hard time making sense of the (mostly numeric) data they contain.

Table

1

Query

5

Form

-32768

Report

-32764

Table 14-1. Useful Type Codes

Object Type

Based on this information, you can get a list of forms by retrieving the Name field, and then filtering
out those records with a Type value of -32768.

You can most easily build this bit of logic into your list control by adding your list to the form and
skipping out of the wizard (hit Esc when it starts). Then, you can configure the control using the
Property Sheet. In the Data tab, find the Row Source property, and then enter the following SQL
statement, which performs the query you need:

 SELECT Name FROM MSysObjects WHERE MSysObjects.Type=-32768

You now have a list that shows all the forms in the database. You can substitute the number -32764
for -32768 to get reports instead; Figure 14-17 shows the results.

So far, you've seen only half of the solution you need. You've learned how to get the list into the right
control, but at the moment nothing happens when you use the control. You really need a way to
jump to the selected form or report.

Figure 14-17. This form shows a list of all the available reports.

It turns out that this solution's a bit more advanced than the examples you've seen so far. In order
to make it work, you need to customize a macro. (A macro's a list of one or more instructions that's
stored as a database object so you can use any time.)

As you learned in Chapter 13 , when you create a command button, the Button wizard asks you a few
questions, and then builds the macro you need. However, the Button wizard's woefully
underpowered. For instance, while it can create a macro that navigates to a specific form, it can't
create a macro that can go to any form. But with just a little more work, you can create a simple
macro with the wizard, and then fix it up to really suit your needs. Here's how:

Drop the button onto your form .

Place it next to the combo box control. The Button wizard launches.

1.

Choose the Report Operations category and the Open Report action, and then click
Next .

Or, if you're showing a list of forms, choose the Format Operations category and the Open Form
action.

2.

Pick any report (or form), and then click Next .

It doesn't matter what you choose here, because you'll change this part later.

3.

Complete the wizard .

Make sure you give your button a suitable caption, like "Go," "Open Form," or "Show Report."

Once the wizard's finished, it's time to take a closer look at the button in the Property Sheet.

4.

In the Property Sheet, select your newly created button, and then switch to the Event
tab .

Events are occurrences that can trigger your macros. For example, every button has an OnClick
event that takes place when you click the button.

5.

Find the OnClick property, and then click inside the property box, where it says
[Embedded Macro] .

An ellipsis (…) appears at the corner of the box.

6.

Click the ellipsis to edit the macro .

A macro editing window appears (Figure 14-18). In the lower portion of the window, an Action
Arguments section lets you edit how the macro works.

7.

Figure 14-18. You'll learn much more about this window in Chapter 15 . For now, all you need to know is that this

macro has a single action (represented by the single line in the grid). That action opens a report (as indicated by the OpenReport

value in the Action column). The Arguments column has all the additional informationnamely, which report to open.

In the Action Arguments section, find the Report Name (or Form Name) property.
Change it to the expression =MyList.Value

This expression finds your combo box, and pulls out the currently selected value. It assumes
your combo box is named MyList. If not, change the expression accordingly. (If you don't
remember the name of your list control, click to select it, and then look at what name appears
in the drop-down list at the top of the Property Sheet.)

8.

Close the macro window, and then choose Yes to save your changes when prompted .

You return to the form design window.

9.

Switch to Form view, and then try out your new list mojo .

You should be able to select a form in the list, and then click the button to open the form you

10.

chose.

10.

14.3. Linking to Related Data

The switchboard's the secret to providing a bird's-eye view of your database. However, your work
doesn't end here. A well-designed navigation system lets you move easily from one form to the next,
so you can move efficiently through your entire database.

The secret to form-to-form navigation is thinking about your workflow (that is, the order in which you
move between tasks when working on your database). Suppose you're a furniture company selling
hand-painted coffee tables. What happens when you receive a new order? Probably, you start by
creating or selecting the customer (in one form), and then you add the order information for that
customer (in another form). The switchboard doesn't need to go directly to the order form. Instead,
you should start with a customer form. That form should provide a button (or some other control)
that lets you move on to the order form.

You need to go through a similar thought process to create forms for, say, the customer service
department. In their case, they need a way to pick a customer and see, at a glance, the billing and
payment details, the order information, and the shipping records. The best solution in this scenario
could be to create a compound form that pulls everything together.

Getting from one form to another is easy. All you need's the right button. The following two sections
walk you through two common examples.

14.3.1. Showing Linked Records in Separate Forms

In Chapter 13 , you learned how a subform control can show linked records in one place (Section
13.3.1). However, subforms don't always give you enough room to work. Depending on the way you
work and the sheer volume of information you're facing, you may prefer to show the related records
in a different place. You could add a button to your form that pops open another form with the linked
records. The trick to making this work is using filtering in the second form so that it shows only the
related records. Figures 14-19 and 14-20 show an example with the Cacophoné Studios database.

You can create the two forms that appear in Figures 14-19 and 14-20 without much effort. The tricky
bit's creating the "See Students in this Class" button.

Here's what you need to do to wire up a button that opens another form to show related records:

Open the parent form .

Here, you start with the Classes form.

1.

In the Design tab, click the Button icon. Draw the button onto your form .

The Button wizard springs into action.

2.

Figure 14-19. The Classes form shows a list of classes. Click "See Students in this Class" to open a second form (Figure 14-

20).

2.

Figure 14-20. The StudentEnrollments form homes in on the students in just one class.

Choose the Form Operations category, choose Open Form, and then click Next .

The next step in the wizard shows all the forms in your database.

3.

Choose the child form that has the related records, and then click Next .

In this case, choose the StudentEnrollments form.

4.

Choose "Open the form and show all the records", and then click Next .

This part seems a bit oddafter all, don't you want to show just the related records in the
StudentEnrollments table? Of course you do. But unfortunately, the Button wizard can't help youit has
a nasty bug in this area that prevents it from creating the right filter condition. So you need to do a bit
more work to define the filter condition yourself.

5.

Enter some text, and then choose a picture .

From this point on, the Button wizard shows the standard steps you learned about earlier (Section
13.2.7).

6.

Supply a name for the button, and then click Finish .7.

Now you have a button that opens the form you want, but doesn't filter it down. To add that part, you
need to change the macro that the button uses.

Note: A macro's a list of actions that you want Access to perform. In the next chapter, you'll explore macros in depth. For now, you'll learn

just enough to create the button you need.

7.

If the Property Sheet isn't visible, then choose Form Design Tools | Design Tools
Property Sheet .

8.

Select your button by clicking it on the design surface .

Or, you can choose it from the list at the top of the Property Sheet.

9.

In the Property Sheet, choose the Event tab, and then click the On Click box .

You see the text [Embedded Macro] there, which indicates that there's a macro attached to this event.

10.

Click the ellipsis button to open your macro for editing .

A new tab appears, which lists all the actions your macro performs, in order. You'll learn your way
around this window in Chapter 15 . For now, you have just two simple changes to make.

11.

At the top of the list, you see an action named OpenForm. (This action opens your child
form when the button's clicked.) Click to select it (Figure 14-21) .

When you select an action in a macro, a bunch of information about it appears in the Action Arguments
section at the bottom of the window.

12.

Click the Where Condition box (in the Action Arguments section at the bottom of the
window), and then type in your filter expression .

This filter expression needs to select the linked records. In the current example, that means you're
interested in records that have the current class ID. Here's the expression you need:

 [ClassID]=[Forms]![Classes]![ID]

13.

Figure 14-21. The Where Condition box is the place where you need to put your filter expression.

This expression tells Access to show an enrollment record only if the ClassID value in the
StudentEnrollments form matches the ID value in the Classes form. In other words, you're getting the
student enrollments for the current class.

Note: The strange exclamations in this filter expression let you link two forms. The filter expression's being set on the form you're opening

(the StudentEnrollments form), which has the ClassID field. However, you need to narrow down the records it shows based on the ID field

in another form (Classes). The syntax [Forms]![Classes]![ID] is just a fancy way to tell Access to go looking for the ID value it needs on a

currently open form named Classes.

The change you made in the previous step almost completes your macro. However, it's a
good idea to add one more action. Click the box underneath OpenForm, and then type
Requery (Figure 14-22) .

This instruction tells Access to refresh the current form (which is the StudentEnrollments form you just

14.

opened). This step's necessary because the StudentEnrollments form might already be open when you
click the "See Students in this Class" button. If it is, your macro changes its filter, but the filter doesn't
spring into action. To update the record display, you need to use Requery to force the form to refresh
itself.

Now you're finished. Close the macro tab, and then click Yes when Access prompts you to
save it .

Now you have a perfect navigation button that shows a related form and cuts it down to just those
records that you're interested in. You'll learn much more about fine-tuning macros in the next chapter.

15.

Figure 14-22. The Requery action refreshes the current form. It doesn't need any extra information.

To try out your button, switch to Form view, and then give it a click. When you click the "See
Students in this Class" button and the StudentEnrollments form appears, your filtering takes effect.

Tip: There's nothing to stop someone from removing your filtering using the ribbon's Home Sort & Filter section (or by clicking the

Filtered button that appears at the bottom of the form, next to the navigation buttons). If you don't want to allow this flexibility, you can

configure the StudentEnrollments form so it doesn't let anyone change its filtering settings. To do so, open the form in Design view,

select the Form item in the Property Sheet list, and then change the Allow Filters property from Yes to No.

14.3.2. Showing More Detailed Reports with Links

You can use a similar technique to allow navigation in reports. If you want, you can create a way to
jump from one report to another, related report. In fact, the macro you need to create's almost
identical to the one in the previous example.

Usually, Access experts use this technique to start with a general report, and let people click their

way to a more detailed report that highlights part of the data. Figures 14-23 and 14-24 show an
example.

Note: Reports are designed to be printed. For that reason, big gray buttons look a little out of place. Your other option linkingas shown in

this example, is much more common because it shows the data you need to print, and adds interactivity at the same time.

To create this navigation, you need to begin by creating a text box that looks like a hyperlink. (You
can't use the bona fide hyperlink control, because it displays only fixed, unchanging text. Instead,
you need a way to display a field's content as a linkin this example, the customer ID.) You can then
create a macro that springs into action when the text field's clicked, to move you to the new report.
This macro's job is to open the detailed report that you want, and then apply filtering so that only the
related records appear.

Figure 14-23. The first report (TotalsByCustomer) shows all the customers and their total orders. Click a single customer,

and then Access launches the more detailed report shown in Figure 14-24 .

Figure 14-24. Here's the CustomerPurchases report that profiles the selected individual's spending habits. A string-building

expression (="Products Purchased By " & [FirstName] & " " & [LastName]) puts the current customer's name into the title.

You can easily format the text box. You can select any control, and then change its color, font, and so
on, using the commands in the ribbon. However, you don't even need to perform this work. That's
because every text box has an odd property named Is Hyperlinkset this to Yes, and the text box
morphs into a blue underlined piece of text, which is just what you want.

Once that's out of the way, it's time to add the macro you need. You can use the following steps with
the Boutique Fudge database (included with the downloadable content for this chapter) to add a link
that opens the CustomerPurchases report to the TotalsByCustomer report.

Open the report you want to use in Design view .

In this example, everything starts at the TotalsByCustomer form.

1.

If the Property Sheet isn't visible, then choose Report Design Tools | Design
Tools Property Sheet .

2.

Decide what field you want to use to create the link, and then select it .

Usually, you'll want to use the unique ID value that links two tables together. Here, you use the
ID field that stores the customer ID. If you haven't already, you should format this field to look

3.

like a link using the Is Hyperlink property.

Now it's time to create and attach your macro.

3.

In the Property Sheet, switch to the Event tab, and then click the On Click box. Click
the ellipsis (…) button .

The Choose Builder dialog box appears, and asks you how you want to create the code that
runs when the link's clicked.

4.

Choose Macro Builder, and then click OK .

The macro editing window appears.

5.

In the first row, in the Action column, click the drop-down arrow. Choose OpenReport
.

You could also use OpenForm to launch a form (for editing) when the report link's clicked.

6.

In the Action Arguments section, change the Report Name property to the report you
want to use .

In this example, that's CustomerPurchases.

7.

Now you need to set the Where Condition property to apply your filter. Your filter
needs to select customers that match the ID value in the current record .

The expression you need's very similar to the one you used in the form example. You need to
pick the right field in the report you're opening (the CustomerID field in the CustomerPurchases
report), and then match it to the field where you clicked the link (the ID field in the
TotalsByCustomers report). Here's what you need:

 [CustomerID]=[Reports]![TotalsByCustomer]![ID]

As in the form example, this expression uses some wonky syntax with exclamation marks to tell
Access how to find the TotalsByCustomers report.

8.

Underneath the OpenReport action, type in Requery .

As in the form example, you need to refresh your report so that the filtering takes effect even if
the form's already open.

9.

Close the macro window, and then choose Yes to save your changes when prompted .

You return to the report design window.

10.

Switch to report view, and then try out your link .

Now you can click the link to drill down to the more detailed report.

11.

As always, you can try this example out for yourself using the sample databases for this chapter.

Part V: Programming Access
Chapter 15: Automating Tasks with Macros

Chapter 16: Automating Tasks with Visual Basic

Chapter 17: Writing Smarter Code

15. Automating Tasks with Macros
The secret to a long and happy relationship with Access is learning how to make it work the way you
want.

As you've already seen, true Access fanatics don't use the ordinary datasheet to enter information.
Instead, they create their own customized data entry forms. Similarly, Access fans don't print their
data using basic yawn-inspiring tables. Instead, they create richly formatted reports that are just
right for presenting their data. And Access pros definitely don't struggle through the same tedious
series of steps to accomplish a common taskinstead, they create macros that make Access do the
work for them.

A macro is a miniature program that you create and store in your database. Macros can range from
the exceedingly simple (like a command that shows a form) to the mind-bendingly complex (like a
conditional macro that checks how much raw meat you have in stock, and automatically prints out an
order in triplicate if your fridge is empty).

In this chapter, you'll learn how to create basic macros. Then, you'll learn how to make them
smarter. By the end of the chapter, you'll be able to put together macros that can fire themselves up
when needed, perform an entire sequence of steps, and even make decisions. You'll also be ready to
head on to the next chapter, where you'll step up to full-fledged Visual Basic programming.

15.1. Macro Essentials

Although you may not realize it, you've already used macros. In Chapter 14 , you created buttons
that could perform useful tasks, like opening another form or navigating to a specific record. To
create these actions, you used the Command Button wizard, which asks a few simple questions, and
then generates a made-to-measure macro.

UP TO SPEED
Macros vs. Code

In the past, macros have had a bit of a mixed reputation. Some Access gurus avoided them,
preferring to use more powerful Visual Basic (VB) programming language (which you'll pick up in the
next chapter). Microsoft contributed to the confusion by suggesting that macros were an oldschool
technique, and not the best option for forward-thinking developers.

With Access 2007, macros finally get more attention from Microsoftand a more respectable
reputation. Although macros don't have anywhere near the power of raw VB code, they're simple,
clean, and quick in a way that VB code can never be. But the most important advantage that macros
have is security . Because Access knows what every macro does, it can vouch that most macros are
safe.

In other words, Access knows that an OpenForm macro action can be used only to open a form, so it
doesn't need to worry that it could delete your files, spam your friends, or reformat your hard drive.
On the other hand, Access isn't as trusting with VB code. As a result, it's liable to lock out your code-
powered features, even if they're no more threatening than two bunnies cuddling on a pillow. (You'll
take a closer look at the security story in Section 15.2 .)

Even if you're planning to give macros a pass, and become a black belt Visual Basic coder, you should
still start with this chapter. Here, you'll learn some important information about how macros plug into
forms (Section 15.5). As you'll see in the next chapter, code routines interact with forms in exactly
the same way.

Although the Command Button wizard's easy to use, it's not all that flexible. Now, you're ready to get
more power by building your own macros.

15.1.1. Creating a Macro

In the following example, you'll start slow, with a simple macro that opens a table, and then heads
straight to the last row. Here's how to create it:

Choose Create Other Macro .1.

A new window appears for you to create your macro. Unofficially, this window's known as the macro
builder .

Every macro's made up or a sequence of one or more steps, or actions . To create a macro, you
supply this list of actions, putting each one in a separate row (see Figure 15-1). Initially, this list's
empty, and your macro doesn't do anything at all.

1.

Choose the first action .

Access has a predefined list of actions you can use to cook up a macro. When you add an action, you
simply choose it from this list, as shown in Figure 15-2 . For this example, begin by choosing the
OpenTable action.

Figure 15-1. This macro consists of two actions. The first action opens a table, and the second goes to a specific record. When

you run the macro, Access starts at the top of the list and moves down, performing each action in sequence.

2.

Figure 15-2. Click the drop-down arrow (circled) to see all the actions you can use, in alphabetical order. Once you pick an

action, a concise but helpful description appears in the window's bottom-right corner.

Note: Right now, you're working with only the actions that Access considers safe for all databases. A little later (in Section 15.2), you'll

consider how you can use a few actions that Access considers risky business.

Choose the arguments for your macro at the bottom of the Macro tab, in the Action
Arguments section (see Figure 15-3) .

Most actions need some information from you in order to carry out their business. An OpenTable action
doesn't have much meaning unless you tell Access exactly what table you want it to open. These extra
bits of information are called arguments .

3.

Figure 15-3. When you select an action in the list, all the arguments appear at the bottom of the window. As this example

shows, the OpenTable action has three arguments (Table Name, View, and Data Mode). Every time you click one of these boxes, a brief

description of the argument appears in the box on the right. For quick reference, your argument values also appear in a comma-separated

list in the Arguments column next to your action.

The OpenTable action actually has three arguments:

Table Name is the table you want to open. You can choose it from a drop-down list of tables.
For this example, you can use any table that isn't empty.

View lets you pick the view mode that's used. You can choose ordinary Datasheet view to enter
information, Design view to change the table structure, Print Preview to get ready to print the
data, or PivotTable and PivotChart to work with a pivot table summary (as described in Section
9.3). For this example, choose Datasheet view. (Of course, once the table's open, you can still

switch to a different view by right-clicking the tab title, or using the View button on the ribbon.)

Data Mode determines what type of changes are allowed. You can use the standard option, Edit,
to allow all changes, Read Only to allow none, or Add to allow only record insertions. In this
example, choose Read Only.

Note: You've already seen how custom macros have more power than the Command Builder wizard. When using the Command

Builder wizard, you can open forms and reports, but not ordinary tables, and you can't control the view mode or the allowed types of

edits. Macros don't face these limitations.

Optionally, type some extra information in the Comment column to help you remember
what this action does .

Don't use the Comment column to explain the obvious (as in "Opens the Products table"). Instead, use
it to explain the significance of a step in a more complex operation. Right now, you don't need
comments, but later on, when you create macro groups and use conditions, you'll see how they
become useful.

4.

Move to the next row, and then repeat steps 2 to 4 to add another action .

You can add a practically unlimited number of actions to a macro. (For Access trivia buffs, macros top
out at 999 actions.) Each action takes a separate row, and Access runs your actions in order, from top
to bottom.

To complete this example, add a GoToRecord action. This action moves through the table you just
opened to get to the record you want.

Using arguments, you'll need to point out the correct object (set the Object Type to Table, and the
Object Name to whatever table you picked in step 3). Then, you can use the Record and Offset
arguments to specify exactly where you want to end up. Using the Record argument, you can choose
to head to the previous row (Previous), the next row (Next), the new row placeholder at the bottom of
the table (New), a specific row (Go To), the first row (First), oras in this examplethe last row (Last). If
you choose Go To, then you can use the Offset argument to point out a specific positionlike setting it
to 5 to jump to the fifth record.

Note: Some macro actions depend on previous macro actions. GoToRecord is a prime exampleit assumes you opened a table, form, or

query that has the record you want to see. If you use GoToRecord without having a suitable object open, you get an error message when

you run the macro.

And just for fun, why not add one more macro action? Try the MsgBox action, which displays a
message of your choosing in a small Message box window. You set the message in the Message
argument. Try something like "Your first macro just finished doing its job." You can also add an
optional title (using the Title argument), warning beep (by setting the Beep argument to Yes), and
predefined icon (using the Type argument).

Tip: You can reorder actions at any time. Simply click the margin just to the left of the item you want to move; this click selects the action.

Then, drag the action to its new position. Access automatically bumps other actions out of the way.

5.

6.

Press Ctrl+S to save your macro, and then provide a macro name .

You could name the macro in this example ShowTheLastProduct. If you don't save the macro explicitly,
then Access politely asks you to when you close the macro window, or when you run your macro for
the first time.

Macros appear in the navigation pane. If you're grouping objects by type, you'll see that macros get
their own type. If you're using the Tables and Related Views grouping, Access adds macros to an extra
group at the bottom named Unrelated Objects.

6.

Note: When you use the Command Builder wizard, you're also creating a macro. However, this macro doesn't appear in the navigation

pane, because it's locked into a specific form. This type of macro is known as an embedded macro , because it's embedded inside a

form object.

15.1.2. Running a Macro

Now that your macro's finished, you're ready to try it out. Access gives you four ways to run a
macro:

You can run it directly . Just find the macro you want in the navigation pane, and then
double-click it. (This method works only if the macro isn't already open.) Or, if the macro's
open, choose Macro Tools | Design Tools Run.

Tip: If you've filtered the navigation pane (Section 14.1) so that macros don't appear, you can still run your macros. Just select

Database Tools Macro Run Macro. You'll then get the chance to pick your macro out of a list.

You can trigger it using a keystroke . You can, for instance, set up a macro that opens your
end-of-month financial report whenever you hit Ctrl+F. You'll learn how in Section 15.4.2 .

You can run it automatically when the database is first opened . You could create a
macro that always starts you out by running your favorite query and showing you the results.
You'll try this out in Section 15.4.3 .

You can attach it to a form . You could set your macro to spring into action automatically
when a button's clicked or new data's entered. This way's the most common way to use
macros, and the way the Command Builder wizard works. You'll explore this technique in
Section 15.5 .

In this chapter, you'll get a chance to try out all these techniques. But right now, keep to the simplest
option, and run the macro you created in the previous section using the Macro Tools | Design
Tools Run command. Figure 15-4 shows the result.

Figure 15-4. Here's the result of running the ShowTheLastProduct macro. Access opens the Products table (in read-only

mode, so no changes are allowed), moves to the last, most recent record, and then shows a message informing you that the macro's

finished.

Tip: If you want to tweak a macro that you've already created, right-click it in the navigation pane, and then choose Design View. You'll

wind up back in the macro window you used to create the macro.

15.1.3. Debugging a Macro

Not all macros run without a hitch. If you've made a mistakemaybe your macro tries to open an
object that doesn't exist, or use an argument that doesn't make senseyou get a detailed error
message, as shown in Figure 15-5 .

Figure 15-5. This error message occurs if you use the OpenTable action without filling in a value for the required Table Name

argument.

Although macro error messages are quite descriptive, they don't always give you enough information
to pinpoint the problem. For example, the error message shown in Figure 15-5 has more than one
possible causeit could result from a failed OpenTable action (as it does in this example), or a
TransferText or TransferSpreadsheet action. And even if you know it's OpenTable that's to blame,
that information won't help you if you call OpenTable more than once in the same macro.

To diagnose problems, you can use debugging a programming technique that lets you put your
macro under the microscope and see exactly what's happening. The type of debugging that Access
gives you with macros is called single-step debugging , because it lets you test your macro one
action at a time. That way, you know exactly when the error occurs.

To use single-step debugging, follow these steps:

Open your macro in Design view .

All new macros begin in Design view. If you want to test a macro you created earlier, find it in
the navigation pane, right-click it, and then choose Design View.

1.

Choose Macro Tools | Design Tools Single Step .

Single Step's a toggle button, which means it appears highlighted when it's selected. After you
click Single Step, it should be highlighted. (If not, single-step debugging was already switched
on, and you just turned it off. Click Single Step again to switch it back on.)

2.

Choose Macro Tools | Design Tools Run .

Your macro begins to run. But now there's a difference. Before each action, Access shows you
the relevant information in the Macro Single Step window. Figure 15-6 shows you how it works.

3.

Figure 15-6. This window tells you that you're running a macro named ProblematicMacro. The next step is to perform

an OpenTable action, with the argument values shown in the Arguments box. (Pay no heed to the Condition box, because you

haven't yet learned how to craft conditional macros.)

Click Step, Continue, or Stop All Macros, depending on what you want to do next .

Step performs the action. If the action completes successfully, then Access pauses the
macro again, and then shows you the Macro Single Step window with information about
the next action. That's why this process is called single-steppingit lets you perform a single
step at a time. If you click Step and the action fails, then you see the error information, as
shown in Figure 15-7 .

Figure 15-7. When an error occurs, you can't go any further. The Macro Single Step window shows the Access

error number for your problem (which is useful if you need to search for help in Microsoft's online knowledge base), but it

doesn't let you keep going. You must click Stop All Macros, fix the problem, and then try again.

4.

Continue switches off single-step mode and runs the rest of the macro without
interruption. If an error occurs, it fails with an error message, just like before.

Stop All Macros stops the macro before it performs any more actions. The all in Stop All
Macros indicates that if there's more than one macro running at once, then Access aborts
them all. You could create a macro that calls another macro. If you stop processing during
this sequence of events, then both macros give up.

Note: The Single Step setting affects all macros, including any you created with the Command Builder wizard. So remember to switch it

off when you're done testing your macro. Otherwise, the Macro Single Step window appears when you're using macros that work

perfectly fine.

15.2. Macros and Security

In recent years, the people at Microsoft have become paranoid about security. They've clamped down
in Office programs like Access in a bid to lock out evil virus writers. And although these changes
make Access a safer place to be, they also make it a bit inconvenient to use certain types of macros.

15.2.1. Unsafe Macro Actions

Access distinguishes between two types of macros: those that are always harmless, no matter how
they're used, and those that have the potential for abuse. The OpenTable macro's harmless. It could
open a table you don't want to see, but it can't cause any real mischief. On the other hand, the
PrintOut macro isn't as innocent. In the wrong hands, it could send 400 copies of your data to the
printer in 80-point font. Similarly, DeleteObject could wreak real havoc in your database, and RunApp
definitely isn't safeit could launch the latest spy ware or install a computer virus.

POWER USERS' CLINIC
Dealing with Macro Errors

You'll face two types of errors with macros. First, there are the errors you make when you design
your macro. Using single-step debugging, you can track these down and fix them. Second, there are
errors that occur when the macro's being used in the wrong context. Perhaps the data you need isn't
in the current record, or the form you're trying to use isn't open. You can't avoid this sort of error by
changing the macro, but you can tell Access what to do about it.

Ordinarily, Access halts your macro as soon as an error occurs. If you want to take a different
approach, then start your macro with the OnError action. The OnError action chooses one of three
error handling options, depending on the Go To argument. Set it to Fail, and you get the standard
behavior. Set it to Next, and Access skips over a troublecausing action and runs the next action in the
list. And if you set it to Macro Name, Access jumps down the list until it finds a specific macro. (You
tell it what macro to go to, using the Macro Name argument.) You'll learn how macro names work in
Section 15.4 .

OnError is an unusual action, because its effects last throughout your macro (or at least until the
next time you use OnError). In a long, complex macro, you can call OnError several times. But be
careful not to use error handling options that may cause additional problems. In many macros, one
action depends on the next, so it's best to halt the entire macro at the first sign of trouble.

When you create a macro, the drop-down list of actions shows only actions that are 100 percent
harmless. These actions are known as safe actions. Of course, there are valid reasons to use
potentially unsafe macros. Maybe you really do want to print out a report, delete an object, or run
another program. In that case, you need to use potentially unsafe macro actionsones that Access
doesn't trust quite so readily.

Note: As long as you're the one in control of your database, you know it doesn't contain devious code and other trickery. There's no

good reason to stay away from potentially unsafe macro actions. However, if someone's just sent you a database in an email message,

or if you've downloaded a database from the Web, you may not be so sure. For that reason, Access automatically disables the unsafe

macros in a database, unless you tell it otherwise. You'll learn more about how this works in Section 15.2.2 .

To see the full list of macro actions, including those that Access considers unsafe, create a new macro
(or open an existing one), and then choose Macro Tools | Design Show/Hide Show All
Actions. Now the drop-down list of actions includes several more possibilities. When you choose an
unsafe action while building a macro, Access lets you know with a warning icon (Figure 15-8).

Note: Access has no concept of what actions may be more or less dangerous. Instead, it simply distinguishes between safe and unsafe.

Figure 15-8. The triangular exclamation mark highlights the actions that Access may refuse to run. In this case, the PrintOut

action's the problem.

UP TO SPEED
The Actions that Access Doesn't Trust

Here's the lineup of the most common unsafe actions:

Deleting an object . Clearly, a dangerous move.

Printing an object . Because who knows how much paper you'll need?

Copying an object . A devious attacker could use this to create a macro that fills up your
database.

Saving an object . This action may seem fairly innocent, but it could easily be combined with
other actions to create a macro that changes a database object, and then saves a tampered
version.

Copying your database file . After all, this action could overwrite a copy that you've already
made, or replace another important file. Exporting data's considered just as risky.

Maximizing, minimizing, or moving a window . Perhaps Microsoft was being a little too
conservative when it decided not to trust these actions, which let you reposition forms and other
windows. In any case, people don't use these actions too often in Access 2007, because they
don't apply to tabbed windows, only the less commonly used free-floating windows (Section
1.3.6).

Running SQL . As you learned in Section 6.2.3 , SQL is the language that underlies Access
queries. You can use raw SQL commands to perform just about any task in your database, from
deleting a dozen records to creating a new table.

Running VB code . Although this action doesn't appear with an exclamation icon, Access treats
all VB code as unsafe. You'll learn more in Chapter 16 .

Sending arbitrary keystrokes . The SendKeys action lets you send a stream of keystrokes to
the currently active window. You can do just about anything, and that's the problem.
Respectable Access users avoid SendKeys anyway, because it's a bit buggy. (Weird problems
occur if you click with the mouse while the macro runs, and end up directing the keystrokes to a
different window from the one you intended.)

Some actions may be considered unsafe, depending on what arguments you use with them:

Quitting Access . Access lets you perform a normal Quit action, which prompts the person
using the database to save changes, discard them, or cancel the exit request. However, you can
configure the Quit action to close immediately without prompting you to save anything (or to
close immediately, and save all outstanding changes). If you use either of these options, then
Access treats the action as unsafe.

Sending an email . This action's considered unsafe if you don't let the macro user confirm or
cancel the message before it's sent.

15.2.2. How Access Handles Unsafe Macros

You've learned the difference between safe and unsafe macro actions, but you haven't considered
what Access does when it comes face to face with a risky action. Previous versions of Access pop up a
stream of warning messages. Access 2007 handles the challenge on its own, by quietly disabling the
unsafe macros whenever you open a database file.

As you've no doubt noticed by now, when you open a database, Access shows a security message, as
shown in Figure 15-9 . This message warns you that Access has switched off any potentially risky
parts of your database.

Note: The message bar can be hidden. If you think Access has disabled some macros, but you don't see the message bar, then choose

Database Tools Show/Hide Message Bar.

Figure 15-9. The message bar gives you an ominous alert. To switch the unsafe macros back on in this database, click

Options and then, in the window that appears (shown in Figure 15-10), select "Enable this content". The permission you're granting lasts

only as long as the database is open, so you'll need to click Enable Content every time you open the database. You could also click the

"Open the Trust Center" link (shown in Figure 15-10) to adjust the security settings for a more permanent solution.

All this fuss about safe and unsafe macros might seem a little unnecessary, considering you can
enable all your macros and get back to normal with a quick click of the Enable Content button.
However, life isn't always that easy. Here's why:

Although you may not be bothered by a few unnecessary warning messages, other people won't
be as trusting. They'll see the security warning and think twice, which means they won't be able
to use all your database's features. Or they might not understand the question, or realize they
need to click Enable Content.

In corporate environments, the system administrator can configure Access so it doesn't show
the security warning at all. Your macros are quietly disabled, and the person using the database
won't understand why certain features don't work.

Clicking Enable Content for the one thousandth time gets annoying. Really.

Figure 15-10. When you click Options (as shown in Figure 15-9), Access explains the problem with this slightly intimidating

Message box. Choose "Enable this content", and then click OK, and you're good to go.

15.2.3. The Trust Center

So what if you don't want to face the message bar every time you open a database? Access gives
you three options to make it easier to work with databases that contain unsafe macros:

You can lower the Access security settings so that unsafe macros are allowed . This
approach isn't recommended, because it allows any code in your database. If you accidentally
open a database that contains troublemaking code, you have no protection.

You can tell Access to trust the database files in certain folders on your computer (or
on other computers) . This way's the most convenient way to go.

You can tell Access to trust databases that have been created by a trusted publisher .
This option's the most secure, but in order to set it up, you need to pay another company to get
a security certificate. For that reason, only big companies with money to burn use this option.

All these actions take place in the same window: the Trust Center (Figure 15-11). To get to it, in the
Microsoft Office Security Options dialog box (Figure 15-10), click the "Open the Trust Center" link.

Or, use the following more roundabout approach:

Choose Office button Access Options .1.

In the Access Options window, select Trust Center .2.

Click the Trust Center Settings button .3.

Figure 15-11. The Macro Settings section lets you decide how Access reacts to unsafe macros. You can choose to enable

or disable unsafe macros, and you can choose whether or not Access should notify you when it disables something.

There are six sections in the Trust Center:

Trusted Publishers lets you tell Access to trust databases that are digitally signed by certain
people. In order to use this feature, your company needs to buy a digital certificate from a
company like VeriSign (www.verisign.com). Then, when you open a signed database, Access
contacts the company that issued the certificate, and checks that it's valid. If it is, everything's
kosher, the database is trusted, and all unsafe macros are allowed. Digital certificates are
outside the scope of this book.

Note: If you dig around long enough, you'll discover that Microsoft has a tool (named makecert.exe) for generating your own

digital certificates. However, this tool's for testing purposes only, as the certificates it generates doesn't work on anyone else's

computer. Bewaresome Access books and Web sites may lead you astray.

Trusted Locations lets you pick out the places on your hard drive where you store your
databases. That way, Access knows to trust your database files, but not anyone else's. You'll
learn how to set up a trusted location in the following section.

Add-ins lets you adjust whether Access add-ins (mini programs that extend the features in
Access) should be supported even if they weren't created by a supported publisher. Ordinarily,
all add-ins are allowed. (After all, if you don't trust a specific add-in, don't install it!) People use
this setting only in corporate environments where they need to lock down Access severely to
prevent any chance of a problem.

Macro Settings lets you configure how Access deals with macros. You can make it more
rigorous (so that no macros are allowed, unless they're from a trusted publisher), or less (so
that all macros are allowed, no matter what they might do). By far the best choice is to leave
this option at the standard setting: "Disable all macros with notification."

Message Bar lets you set whether Access shows the message bar when it blocks unsafe
macros in an untrusted database.

Privacy Options lets you tweak a few options that aren't related to macros at all. You can
choose whether Access checks the Web for updated Help content, and whether it sends
troubleshooting information to Microsoft when a problem occurs (so that Microsoft can spot
bugs and learn how to improve Access in the future). If you're paranoid about Internet spies,
then you may want to disable some of these options. Most of the time, these settings are only
for conspiracy theorists.

15.2.4. Setting Up a Trusted Location

Wouldn't it be nice to have a way to distinguish between your databases, which contain perfectly
harmless code, and other databases? Access 2007 adds a new feature to make this easy. It lets you
designate a specific folder on your hard drive as a trusted location. If you open a database in this
location, then Access automatically trust it and allows unsafe macros.

Note: Of course, it's still up to you to make sure that you don't put potentially dangerous databases in the trusted location. If you do, then

you won't have any protection when you open it. However, this compromise is reasonable, because most Access fans are already in the

habit of putting their databases in a separate folder.

Here's how you can set up a new trusted location:

Open the Trust Center window .

If you're not there already, follow the steps in Section 15.2.3 .

1.

Choose the Trusted Locations section .2.

You see a window that lists all the trusted locations (Figure 15-12). Initially, you just see one
trusted location: the ACCWIZ folder that Access uses to store its wizard.

2.

Make sure the "Disable all Trusted Locations" options isn't set .

If it is, you need to switch it off before you can use the trusted locations feature.

3.

If you want to trust a folder on your company or home network, then choose "Allow
trusted locations on my network" .

This setting's a bit riskier, because a network location's out of your control. A hacker could sneak a
virus-laden database into that location without your noticing. However, if you're reasonably certain
that the network's secure (and the other people who use the folder aren't likely to download
databases from the Web and place them there), you don't need to worry.

Figure 15-12. In this example, a new trusted location has been added for the FunkyAccessFiles subfolder in the hard

drive's My Documents section.

4.

Click "Add new location" .5.

Access asks you to fill in a few pieces of information (Figure 15-13).

Figure 15-13. To configure a trusted location, you need to specify the path (click Browse to hunt it down). You can also

choose whether or not subfolders of this folder should be trusted, and you can fill in an optional description that appears in the list of

trusted locations.

5.

Click OK to add the location to the list .

You can configure the location or remove it at any time by selecting it in the list, and then using the
clear-as-a-bell Remove and Modify buttons.

6.

15.3. Three Macro Recipes

So far, you've created a basic macro, tried it out, and thought deeply about macro security. It's
about time you got a payoff for all your work, and considered a few practical ways to use macros.

The full list of macro actions contains many actions that aren't that interesting, or relate only to
specific project types (like Access projects that front SQL Server databases, which you'll consider in
Chapter 18). The following sections highlight a few of the more useful macro commands. You can
check them out in the downloadable content for this chapter, or try the shake-and-bake recipes in
your own database.

15.3.1. Find a Record

The FindRecord action works just like the Datasheet Find feature you saw in Section 3.2.3. You fill in
all the search information using arguments.

Let's say you want to search the Diet field in the AnimalTypes table, looking for the word "hay." Here
are the actions you may use:

OpenForm to open the form that you'll use to display the matching the record (in this case,
AnimalTypes). You can substitute OpenTable to search using a datasheet.

GoToControl to move to the field you want to search (in this case, Description). If you're
planning to perform a search that spans every field, then you can skip this step.

FindRecord to find the text. It's up to you whether you want to start searching at the first
record or the current one, as in this example. You can also choose whether you'll search for the
text anywhere inside the field, or require the whole field value to match the search text exactly.

Once you put together the complete macro, you'll get something like this:

Table 15-1.

Action Important Arguments[1] Description

1. OpenForm Form Name: AnimalTypes
Opens the form. If it's already open,
then this switches to the existing
window.

2.
GoToControl

Control Name: Diet Jumps to the Diet field.

Action Important Arguments[1] Description

3.
FindRecord

Find What: ="hay" Match: Any Part of
Field Only Current Field: Yes Find First: No

Finds the specified text anywhere in the
Diet field, starting at the current record.

[1] You can use the default values for all the other arguments.

Note: You may have noticed that the Find What argument of the FindRecord action starts with an equal sign. It accepts an expression

(Section 7.1). In this example, the expression's nothing more than a fixed piece of text, which is wrapped in quotation marks. However,

you could substitute a more complex expression that uses operators, functions, and other advanced techniques.

The neat thing about this macro is that you can use it several times in a row to look for more
occurrences of the text. If the AnimalTypes form's already open, then this macro just carries on to
the next match.

Tip: For even more flexibility, you could create a macro that uses only the FindRecord action. That way, you could search for specific

text in any field in any form or table. Of course, if you try to run such a macro and you don't have any forms or tables open, FindRecord

can't do anything, and you get an error.

15.3.2. Print a Report

Do you need a helpful macro that automatically spits out a frequently used report? Access gives you
several options. Here are two:

If you want to use the standard print settings, then you can print any report by using the
OpenReport action, and setting the View argument to Print.

If you want to customize the print quality, number of copies, and starting and stopping page,
you need to use a three-step approach. Start with Open Report, use PrintOut to send it off, and
then wind up with Close to tidy up.

Tip: Don't try either of these techniques with an untrusted databaseAccess doesn't let you.

The following sequence of actions demonstrates the second approach. This macro prints two copies of
a list of so-called customers who haven't actually ordered a single thing, using the
CheapskateCustomers report:

Table 15-2.

Action
Important

Arguments[2] Description

3.
FindRecord

Find What: ="hay" Match: Any Part of
Field Only Current Field: Yes Find First: No

Finds the specified text anywhere in the
Diet field, starting at the current record.

[1] You can use the default values for all the other arguments.

Note: You may have noticed that the Find What argument of the FindRecord action starts with an equal sign. It accepts an expression

(Section 7.1). In this example, the expression's nothing more than a fixed piece of text, which is wrapped in quotation marks. However,

you could substitute a more complex expression that uses operators, functions, and other advanced techniques.

The neat thing about this macro is that you can use it several times in a row to look for more
occurrences of the text. If the AnimalTypes form's already open, then this macro just carries on to
the next match.

Tip: For even more flexibility, you could create a macro that uses only the FindRecord action. That way, you could search for specific

text in any field in any form or table. Of course, if you try to run such a macro and you don't have any forms or tables open, FindRecord

can't do anything, and you get an error.

15.3.2. Print a Report

Do you need a helpful macro that automatically spits out a frequently used report? Access gives you
several options. Here are two:

If you want to use the standard print settings, then you can print any report by using the
OpenReport action, and setting the View argument to Print.

If you want to customize the print quality, number of copies, and starting and stopping page,
you need to use a three-step approach. Start with Open Report, use PrintOut to send it off, and
then wind up with Close to tidy up.

Tip: Don't try either of these techniques with an untrusted databaseAccess doesn't let you.

The following sequence of actions demonstrates the second approach. This macro prints two copies of
a list of so-called customers who haven't actually ordered a single thing, using the
CheapskateCustomers report:

Table 15-2.

Action
Important

Arguments[2] Description

1.
OpenReport

Report Name:
Cheapskate-Customers

Opens the report (but as you'll see, it's only around for a
couple of seconds).

2. PrintOut Copies: 2
You can use other arguments to print just a range of
pages or change the quality. However, you can't pick the
printer.

3. Close

Object Type: Report

Object Name:
Cheapskate-Customers

There's no need to keep this report open, now that the
printout's sent off.

[2] You can use the default values for all the other arguments.

As soon as Access performs the PrintOut action, the pages start streaming out of the default printer
on your computer. You don't get a chance to confirm or cancel the operation. For even more fun, you
can extend this macro with more steps so it prints several reports at once.

Tip: There's one more option. You can open a table or a report with the View Argument set to Print Preview. This option doesn't actually

send the data to your printer, but it gets you one step closer. This option's best if you want a final chance to choose a printer, make sure

the data's correct, and check that the report isn't ridiculously long. It also works in untrusted databases.

15.3.3. Email Your Data

One of the hidden gems of the Access macro language is SendObjectan all-purpose action for sending
email messages.

UP TO SPEED
SendObject Works with Your Email Software

The SendObject action uses a standard called MAPI (Messaging Application Programming
Interface), which means it lets you use just about any Windows email program. It
doesn't matter whether you favor Outlook, Eudora, Pegasus, or something way more
exoticSendObject can fire up your email application and use it to send a message.

If you're not sure which email program is set for automatic use on your computer, then
you can easily find out. Just head to the Control Panel, select Internet Options, and then
click the Programs tab. You'll find your standard Web browser, your email software, and
a few less common Web-related applications (like newsreaders).

SendObject is surprisingly versatile. You can use it in three ways:

To email a database object to another person. The database object's converted to another
format you choose, like an Excel spreadsheet, an HTML Web page, or even a print-read PDF file
(if you've installed the free Save As PDF add-in, as described in Section 10.2.3). You specify the
object you want to send, using the Object Type and Object Name arguments.

To email the current database object. This way gives you an infinitely flexible macro that
can send off whatever data you're currently looking at. The only limitation's that you need to
know what type of object you're planning to send, whether it's a full table, a query that
highlights important information, or a report with grouping and subtotals. Just set the Object
Type argument accordingly, and leave Object Name blank.

To send an ordinary email message. To send a message, you simply leave both the Object
Type and Object Name arguments blank. You can fill in the message using the Message Text
property. This method's a handy way to let someone know when you've added some new data,
or finished a hefty editing job.

Note: SendObject can send only a single database object at a time. If you want to send several database objects, you need to use

SendObject several times. To send three reports, you need three email messages, with three attached files. In some cases, you may be

able to get around this requirement by creating a clever query that fuses together all the information you want to send into one set of

results. (For example, see union queries in Section 6.2.3.2.)

The nicest thing about SendObject is that you can use it in an untrusted database, provided you
follow one rule: Set the Edit Message argument to Yes. That way, when the macro runs, you get a
final chance to review the message, change any text, and cancel it if you're unhappy. But if you set
Edit Message to No, then the SendObject action fires the message off without giving you a chance to
step in. That behavior's considered risky, so Access doesn't allow it in an untrusted database.

The following macro converts two queries with sales information into Excel spreadsheets. It then
mails them off to the head honchos.

Table 15-3.

Action Important Arguments[3] Description

1. SendObject

Object Type: Query

Object Name: MonthlySales-
Totals

Output Format: Excel Work-
book (.xlsx)

To: headhoncho@acme.com

Subject: Monthly Update

Message Text: Here are the
most recent sales figures,
straight from our macro-fied
Access database. You'll get the
customer totals in a separate
email.

Edit Message: Yes

Sends an email message to
headhoncho@acme.com, with the data
from the MonthlySalesTotals query
converted to an Excel workbook. The
message subject and message text are
set by the Subject and Message Text
arguments. You have a chance to tweak
them before the message is sent. Figure
15-14 shows this action.

2. SendObject

Object Type: Query

Object Name: CustomerSales-
Totals

Output Format: Excel
Workbook (.xlsx)

To: headhoncho@acme.com

Subject: Monthly Update

Message Text: Here are the
totals by customer.

Edit Message: Yes

Sends an email message
to headhon-
cho@acme.com, with the
data from the
CustomerSalesTotals
query.

[3] You can use the default values for all the other arguments.

Figure
15-
14.
When the

Edit

Message

property's

set to Yes,

you get a

final

chance to

review (and

change)

the

message

before it's

sent.

If you're crafty, you can mail huge numbers of people at once. The most straightforward option's to
supply a whole list of addresses for the To, Cc, or Bcc argument, separating each one with a
semicolon (;). For an even better approach, use a mailing list. This technique may vary depending on
your mail software, but in Outlook and Outlook Express, it's easyjust put the name of the mailing list
in the To field. If you've created a mailing list named FairweatherFriends, then just type the word
FairweatherFriends for the To argument.

Tip: Running out of room to edit your message? Press Shift+F2 while you're editing the Message Text property to pop up a much larger

Zoom window, where you can see several lines of text at once.

15.4. Managing Macros

As you build more and more snazzy macros, you'll need some way to keep them all organized, and
make sure the macros you need are at your fingertips when you need them. Access gives you a few
tools to help, including macro groups, which combine related macros into one object for easier
storage, and macro shortcut keys, which let you trigger the right macro exactly when you need it.

15.4.1. Macro Groups

The average macro's only three to five actions long. However, the average database that uses
macros quickly accumulates dozens of them. Managing these tiny programs can become quite a
headache, especially when you need to remember what each macro does.

You could use a macro group. On the surface, a macro group looks like one macro, because it's
stored in a single database object. However, a macro group can contain a nearly unlimited number of
individual macros, each with its own name. Once you put related macros together in a single group,
you'll have an easier time finding the macro you need when it's time to edit it.

Tip: Access masters use macro groups to group together macros that you use on the same form, macros that work with the same table,

or macros that perform a similar type of task (like printing or record editing).

To create a macro group, you simply create a macro that uses the Macro Name column. Ordinarily,
the Macro Name column's hidden because all actions are part of the same macro. But when creating
a macro group, you must select Macro Tools | Design Show/Hide Macro Names to pop it into
view.

Now here's the trick. Each time you start a new macro, you fill in the name for that macro in the
Macro Name column. This way, it's possible to stack one macro on top of another, so long as you
remember to keep changing the name. You can even use blank rows to help keep them separate and
make the macro group easier to read and understand. The best way to understand it is to check out
the sample group in Figure 15-15 .

Figure 15-15. This macro group combines three macros by listing all their actions, one after another. Each time a new macro

starts, the name appears in the Macro Name column. Notice that blank space and comments abound. Access ignores these details.

Tip: It's easiest to use macro groups with short macros (macros that don't have too many actions). When you need to edit your macros,

you can use the ribbon's handy Insert Rows command to make more space.

Every macro in a macro group has a two-part name. The first part's the macro group, and the second
part's whatever text you put in the Macro Name column. The PrintCheapskates macro in the
BasicMacros group that's shown in Figure 15-15 has the full name BasicMacros.PrintCheapSkates.
You need to use the full name when you want to run the macro.

One limitation to macro groups is that you can't use them from the navigation pane. If you right-click
a macro group in the navigation pane, and then choose Run, Access runs only the first macro in the
group. To run a different macro, you need to choose Database Tools Macro Run Macro. You
can then type in the right two-part name or pick it from a list (as shown in Figure 15-16).

Figure 15-16. In this example, Access is poised to run the MailResults macro from the BasicMacros group.

Note: If this sounds like too much work, don't worry. Most macros aren't launched through the navigation pane, but linked to a form, in

which case the two-part name doesn't require any extra work. But if you have a macro that you do want to run from the navigation pane,

grouped macros obviously aren't the way to go.

15.4.2. Assigning a Macro to a Keystroke

Occasionally, you'll create a macro that's just so handy you want it at your fingertips at all times. You
can make this happen by assigning your macro to a key combination. Then, instead of heading to the
navigation pane, you hit something like Ctrl+M, and your macro springs into action right away.

Tip: Keys are valuable. Only assign a macro to a key combination if you know that you'll use that macro often, and with many different

forms or tables.

Oddly enough, the way you assign key combinations in Access is by creating another macro. This
macro must be named AutoKeys, and its sole purpose in life is to assign keystrokes to other macros.

So how does AutoKeys work? It's all in the name. When you add a macro to the AutoKeys group, you
give it a specially coded name that's really a keystroke combination. If you name the macro ^M ,
Access knows to trigger it when you press Ctrl+M on the keyboard. Figure 15-17 shows a few macro
examples.

Note: In Figure 15-17 , notice that each macro in the group runs a separately stored macro object using the RunMacro action. This

design isn't necessary (you could code each macro right inside the AutoKeys group by including all the necessary actions), but it

improves organization. It also gives you better flexibility, because you can choose to use a different set of macros with the same key

combinations without removing the macro from the AutoKeys group.

Figure 15-17. In this example, the AutoKeys macro group includes three macros, which are mapped to the keys

Ctrl+Shift+M, Ctrl+Shift+P, and Ctrl+Shift+T, respectively.

The only trick to using the AutoKeys macro group is knowing how to name your macro so Access
uses the key combination you want. Access lets you use letters and numbers, in combination with the
Ctrl and Shift keys. (The Alt key is off-limits, because it lets you choose commands on the ribbon, as
described in Section 3.2.1 .) Additionally, you can use the function keys (F1 through F12), and the
Insert and Delete keys, also in conjunction with Ctrl and Shift.

Here's how you name your macros:

^ means Ctrl . So ^M means Ctrl+M.

+ means Shift . So ^+M means Ctrl+Shift+M.

{ F1 } means the F1 key . So +{F1} means Shift+F1. You can use all the other function keys
in the same way.

{ INS } means Insert and { DEL } means Delete . So ^{INS} is Ctrl+Insert.

Tip: Before you assign a macro to a key combination, you should check that the keystroke doesn't already do anything useful. Your

macro overrides any built-in Access commands. One example's Ctrl+S, which saves the current object. To help reduce the chance of

keystroke collisions, you can use keystrokes that involve the Shift key, which are less commonly used.

15.4.3. Configuring a Startup Macro

Every once in a while, you'll create a macro that's so important you want to call it into action as soon
as you open a database. Perhaps this macro opens a few important forms and reports, imports data
from another file, or runs a clean-up query. No matter what the reason, Access makes it easy to
launch a startup macro. All you need to do is name your macro AutoExec.

Access also gives you a way to sidestep the AutoExec macro. If you hold down the Shift key while a
database is first loading, then Access doesn't run the AutoExec macro (and it doesn't show any
startup form you may have configured, as described in Section 14.2.2). However, don't rely on this
dodge, because it's all too easy to forget to hold Shift down at the right time.

Tip: Remember, if your macro contains unsafe actions and your database isn't trusted, Access doesn't run it. If you open an untrusted

database, and choose to turn on the database using the message bar (as described in Section 15.2.2), Access reloads the database, at

which point it runs the AutoExec macro.

15.5. Connecting Macros to Forms

The slickest macros work with the forms in your database. Using this combination, you can create
macros that fire automatically when something happens (like when a button's clicked or a record's
changed). You can also build much more flexible macros that don't have fixed argument
valuesinstead, they can read the data they need from the text boxes on a form.

In the following sections, you'll learn how to help macros and forms come together.

15.5.1. Understanding Events

So far, you've been running macros the hard way: by finding the ones you want in the navigation
pane, and then launching them by hand. But in a well-oiled database, macros seldom play an upfront
role. Instead, they hide behind the scenes until they're sparked into action. You could create a macro
that's triggered when you click a button, open a form, or make a change in a text box. These triggers
are known as events .

A form has three types of events:

Control events . These events are the most useful. They happen when you do something with
a control. For example, when you click a button, it fires an On Click event. (This is a great time
to perform just about any action.) When you change a value in a text box, you get an On
Change event. (This is a good time to check that the text makes sense using your crafty
validation code.) You'll notice that most event names start with the word "On".

Note: Many controls have the same events. If you have two text boxes and a button on your form, then they all have an On Click

event. However, there's no confusion for Access, because it keeps track of what event happens, and what control it happens to .

Section events . As you learned earlier, forms are divided into sections so you can separate
the header and footer content from the rest of the record. Each section has a few of its own
events, which fire when you move the mouse around (On Mouse Move), or click somewhere on
a blank space (On Click). These events tend to be less useful for macro programmers.

Form events . A long list of more general events relate to the form. This list includes events
that fire when the form's first opened (On Open) and when it's closed (On Close), when you
move from one record to the next (On Current), and when you complete a data operation like
an update (After Update).

To see the list of events for a form's different parts, follow these steps:

Open your form in design mode .1.

If the Property Sheet isn't visible, then show it by choosing Form Tools | Design Tools
Property Sheet.

1.

Select the item that has the events you want to examine .

You can select an individual control, a section, or a form. If you have trouble clicking on the
design surface to select the item you want, then just choose it by name from the drop-down list
at the top of the Property Sheet.

2.

In the Property Sheet, choose the Event tab .

Now you'll see the list of events that are provided by the control, as shown in Figure 15-18 .

3.

Figure 15-18. Here are the events for a typical text box. When you click one of the Event boxes, a one-line description of the

event appears in the Status bar at the window's bottom-left section. As you can see, right now all the Event boxes are empty, which

means there aren't any attached macros.

The biggest challenge in using events is figuring out which ones to employ. If you take a few seconds
exploring the events on your form, you'll find dozens of events, many that are rarely used or
ridiculously specialized. That's where Table 15-1 fits init highlights some of the most useful events for
macro programming.

All Controls

On Enter

On Mouse Move

Occurs when you move to a control for the first time (either by pressing a key like Tab or by clicking
with the mouse).

Occurs when you move the mouse over the control.

Any Editable Control

On Change

Occurs when you modify the value in a control.

Button

On Click

Occurs when you click a button. Other controls have click events too, but most people are in the
habit of clicking buttons to get things done.

Combo Box

On Not In List

Occurs when you type in an entry that's not in the list.

Form

On Load

On Close

On Current

On Dirty

On Undo

Before Insert, Before Update, Before Del Confirm

After Insert, After Update, After Del Confirm

Occurs when the form's first opened (and you can initialize it).

Occurs when the form's closed. You can cancel this event if you want the form to stay open.

Occurs when you move to a record (including when you open the form, and then move to the first
record).

Occurs when you make the first change in a record. It's now in edit mode.

Occurs when you back out of edit mode and cancel your changes (usually, by pressing Esc).

Occurs when you're in the process of applying an insert, update, or delete. You can cancel this event
if you don't like what you see (for example, if you find invalid data).

Occurs after the operation's complete. You can't cancel it any longer, but you may want to react to
the change to perform another task or update the information you're showing.

Table 15-4. Useful Events for Macro Programming

Control Event Description

Note: The update, insert, and delete confirmation events (the last two rows in the table) also apply to any editable control. A text box also

uses the Before Update and After Update events to indicate when its value has changed. In Chapter 17 (Section 17.1.3), you'll see an

example that uses this event to react immediately when a specific field's changed (rather than wait until the entire record's updated).

If you browse the Property Sheet's Event tab, then you'll find many more events, including ones that
let you react when someone presses a key, clicks somewhere with the mouse, or moves from one
control to the next. You don't need to worry about all these options right now. Once you've learned
how to respond to an event with a macro, you'll be able to deal with just about any event.

15.5.2. Attaching a Macro to an Event

Now that you've seen the events that forms and controls offer, it's time to try hooking up a macro.
The basic sequence of steps is easy:

Create and save a macro, as described in Section 15.1.1 .1.

Open your form in design mode, and make sure the Property Sheet's visible .2.

Select a control, a section, or the entire form .3.

In the Property Sheet, choose the Events tab, and then find the event you want to
use .

4.

In the Event box, click the drop-down arrow, and then choose the macro you want to
use .

5.

Figure 15-19 shows an example.

Figure 15-19. In this example, the On Click event of a button's being connected to the MailResults macro you saw in Section

15.3.3 . Now, whenever you click the button, the MailResults macro runs.

15.5.3. Reading Arguments from a Form

Earlier in this chapter, you saw macros that could search for records, print reports, and email data.
In all of these cases, the macro arguments were fixed valuesin other words, you type them in
exactly, and they never change. in Section 15.3.1 you saw a macro that searched for the text "hay."
Convenient as this macro is, you can't reuse it to search for anything else. If you want to dig up
different text, then you need to create a whole new macro.

FREQUENTLY ASKED QUESTION
Embedded Macros

I created a macro with the Command Button wizard. How can I edit it ?

When you drop a button onto a form, Access fires up the Button wizard, which creates a macro for
you (Section 13.2.7). The macros that the Command Button wizard creates are embedded macros,
which means they're stored inside the form object. This system has some advantages (for example,
you can transfer your form from one database to another without losing the associated macros). It
also has a downsidenamely, you can't edit or run the macro independently.

Fortunately, you can still modify your embedded macros (or just take a look at them if you're

curious). The trick's to use the Property Sheet. Here's how:

Select the control that uses the macro (in this case, a button).1.

Find the event that has the attached macro. In the case of the button, it's the On Click event.
You'll see the text [Embedded Macro] in the Event box, rather than a macro name.

2.

Click once inside the Event box. The ellipsis (…) button appears next to it.3.

Click the ellipsis button to edit the embedded macro in the familiar macro builder.4.

To make more flexible macros, you can use an expression instead of a fixed value. You've already
used expressions extensively in the past (see Section 7.1 for examples with queries, 345 with
reports, and 410 with forms), so you won't have any problem building basic expressions that combine
text, add numbers, and use Access functions. But when you're creating a macro, the most useful
expressions are those that can pull a value out of a form. All you need to know is the control's name.

To see how this process works, you can revise the filtering example shown earlier and create a
search form like the one shown in Figure 15-20 .

To create this example, you need to start by adding the text box you need for searching. Here's how:

Open the form in design mode .

Select Form Tools | Design Controls Text Box, and then draw the text box
onto the form .

Once it's there, select it, and then, in the Property Sheet, choose the Other tab .

At the top of the Other tab, change the Name property to something more
descriptive, like SearchText .

Note: You don't always have to create a new control. Macros can read the value in any control on your form, including those that are

linked to the database record. However, in this example, you need a way to supply some text that isn't part of a record, so it makes

sense to add another text box for that purpose.

Figure 15-20. Instead of searching for the word "hay," this example finds any text you want. The trick? You supply the search

text in a text box at the top of the form.

Next, it's time to build the macro. You no longer need the OpenForm action (which you used in the
original macro), because you can assume that Access will launch this macro from the already open
AnimalTypes form. So the first action you need is GoToControl, with the Control Name argument set
to Description.

The second action's FindRecord. However, instead of setting the Find What argument to a fixed piece
of text (="hay "), you point it to the SearchText control using the control name (=SearchText). If
there are any spaces or special characters in the control name, make sure you wrap the name in
square brackets (=[SearchText]).

Note: If you're referring to a field or control on the current form, all you need to do is use the field or control name. However, sometimes

you may want to refer to a control on another form. In this case, you need a wacky-looking syntax that indicates the form name and the

control name. If you want to refer to a control named SearchText on a form named SearchForm, you'd write

=Forms!SearchForm!SearchText .

Once you've polished off the macro, the last step's adding a button to the Animal-Types form to
trigger it. Here's how:

Select Form Tools | Design Controls Button, and then draw the button onto
the form .

Hit the Esc key to cancel the Button wizard .

In the Property Sheet, choose the Events tab .

Click the drop-down arrow next to the On Click event, and then, from the list, choose
the macro you've just created .

Now choose the Format tab, and, in the Caption field, enter the word Search . This
descriptive text appears on the button .

This step completes the example. To try it out, switch to Form view, type some-thing in the
SearchText text box, and then click the Search button. You'll skip ahead to the next matching record.

15.5.4. Changing Form Properties

Not only can you read form values, you can also change them. The trick's a macro action called
SetValue. SetValue is a remarkably powerful action, because it can change any property of a control.
You can use it to change the text in a control, hide it, change its formatting, and so on. (For more
about different control properties you may want to use, see Chapter 13 .) The only catch is that
Access considers SetValue to be an unsafe action, so it doesn't let you perform it in an untrusted
database (Section 15.2.2).

SetValue has only two arguments. The first argument, Item, identifies what you want to change. You
can modify a form, section, field, or control. The second argument, Expression, sets the new value.
You can use a fixed value, or you can read the value you want from another control using an
expression.

If you want to create a macro that clears the search text from the SearchText text box, then you
could add a SetValue action, and set the Item property to SearchText and the Expression property to
"" (which represents a bit of text with nothing in it).

Note: This example assumes you're using SetValue on the current form (for example, by pressing a button named Clear). If you're

running the macro from the navigation pane, you'll need to change SearchText to the full name Forms!AnimalTypes!SearchText so it

clearly tells Access which form you're using.

If you like SetValue, then you may be interested in the related SetProperty action. The SetProperty
action changes one of a control's properties. (You choose what property you want to change with the
Property argument.) You can use SetProperty to change a control's color, position, or captioning.
However, the most common way to use SetProperty is to modify the Enabled property (to lock down
controls that shouldn't be editable) or the Visible property (to hide controls that aren't relevant). You
can set both properties to True or False.

SetProperty's nicest quality's that Access always considers it a safe action. The only drawback's that
Access doesn't let set the Text property of a control, because then you could use it to modify a table.

15.6. Conditional Macros

The macros you've seen so far are linear . They run all their actions from start to finish. If that seems
a little boring, well, it is. But your macros don't need to stay that way. You can give let them make
decisions and perform conditional actions. As a bonus, you can easily set them up.

In order to create a conditional macro, you need to use the Condition column. Ordinarily, this column
isn't shown. To make it visible while you're using the macro builder, choose Macro Tools | Design
Show/Hide Conditions.

Unsurprisingly, the Condition column's the place you put conditions . A condition's a little like an
expression, except it always produces one of two results: True or False. Access examines the
condition, and uses it to decide whether or not to perform the corresponding action. (This is known as
evaluating the condition in programmer-speak.)

Here's how it works:

If you leave the Conditions column blank (as with the actions in an ordinary macro), Access
always runs that action, unless it's derailed by an error.

If you supply a condition, and the condition turns out to be True, Access runs the corresponding
action.

If you supply a condition, and the condition turns out to be False, Access skips over the action
and continues with the next one in the list.

Prestoyou have a way to make an action run only sometimes, when you need it.

15.6.1. Building a Condition

This discussion raises one excellent questionnamely, how do you build a condition? The simplest
types of conditions compare two different values. Here's an example:

 [ProductName] = "Baloney"

This condition compares the current value of the ProductName control with the word Baloney . If
ProductName currently contains that text (and only that text), this condition's True. If ProductName
contains anything else, the condition's False.

Tip: Sometimes you wind up with exactly the opposite of the condition you want. In a pinch, you can always reverse a condition by

putting the word Not at the beginning. Not [ProductName]="Baloney " is True only if the current item isn't everyone's favorite meat

product.

The equal sign (=) is one of the staples of conditional logic, but it's not your only option. You can also
use the greater than (>) and less than (<) symbols, and the "not equal to" (<>) operator. (You
learned to use these operators with validation expressions in Section 4.3.2.2 .) Here's an expression
that checks if a numeric field's above a certain value:

 [Price] > 49.99

For even more fun, you can throw your favorite Access functions into the mix. (Chapter 4 and
Chapter 7 describe plenty of useful functions.) Here's a condition that checks the length of a field,
and then evaluates to True if the field's less than three characters:

 Len([FirstName]) < 3

Instead of using the operators you've seen so far to create your own conditions, you can use a
function that gives you a True or False result. Programming nerds call a result that can be True,
False, and nothing in between a Boolean value, after the British uber-mathematician George Boole.

Access has quite a few functions that return Boolean values, but the all-star most valuable one out of
the bunch is named IsNull() . As you learned earlier (see Section 4.1.2), null fields are fields that
don't have any information in them. IsNull() checks if a given field or control's empty. Here's how
you can use it to pick up a missing last name:

 IsNull([LastName])

This condition evaluates to True if there's no value in the current LastName field.

This technique's a basic building block of validation logic (as you'll see in the next section). You use
IsNull() to spot missing information, and then warn the person using your macro that they've left
out something important.

Finally, the last trick you may want to try with conditions is combining more than one to make still
more powerful super-conditions. You have two keywords that can help you join conditions: And and
Or.

And enforces two conditions at once, making your condition that much more stringent. The following
condition evaluates to True only if both the FirstName and the LastName fields are longer than three
characters apiece:

 Len([FirstName]) < 3 And Len([LastName]) < 3

Or gives you two alternate ways to satisfy a condition. The following condition evaluates to True if the
FirstName or the LastName field's empty. It evaluates to False only if both fields have text in them.

 IsNull([FirstName]) Or IsNull([LastName])

With all these building blocks conditional operators, functions, and the NOT, AND, and OR
keywordsyou can build conditions galore. In the next section, you'll see an example that puts
conditions to work.

15.6.2. Validating Data with Conditions

Many Access gurus use macros to prevent bad edits and other suspicious data operations (like
insertions and deletions). Now that you understand how to write conditions, you can easily create this
sort of validation logic.

Note: As you learned in Chapter 4 , Access has several tools that can help safeguard the data in your table, including input masks,

validation rules, and lookups. You should always try to use these features before you resort to macro code. However, there are many

types of errors that require macro logic. One common example is when the validity of one field depends on the value in another field.

The first step's to react to the right eventsmainly, the Before Insert, Before Update, and Before Del
Confirm events of a form. When these events occur, you can perform your conditional logic to check
for error conditions. If you see something you don't like, then use the CancelEvent action to stop the
process altogether (and thus cancel the insert, update, or delete operation).

Note: CancelEvent doesn't use any argumentsit simply halts the process currently underway. CancelEvent works with any event that

starts with the word "Before," which indicates the actual operation's just about to take place, but hasn't happened yet.

Suppose you want to create a simple condition that stops certain record updates. Consider the form
shown in Figure 15-21 .

Figure 15-21. When you turn on the "Please notify me about special offers" checkbox, the WantsEmail field's set to Yes.

However, this record has a glitchthere's no value in the Email field.

In this example, a missing email causes severe headaches. You could solve the problem by changing
EmailAddress into a required field (Section 4.1.1), but what you really want is something a little
more sophisticated. When WantsEmail is Yes, the EmailAddress field shouldn't be empty. A
conditional macro can implement exactly this sort of logic.

Here's the condition you need:

 WantsEmail = Yes And IsNull([EmailAddress])

This condition evaluates to True if WantsEmail is Yes and the EmailAddress is blank. When that
happens, it's time to cancel the update using the CancelEvent action.

Note: There's another option. You could use the SetValue action to fix up invalid values. But it's usually better to let the person who's

making the update try to fix the problem.

When you cancel an event, it doesn't roll back the process altogether. Instead, it stops you from
finishing the operation. If you modify a record, and then try to move to another record, the Before
Update event fires. If a macro cancels the Before Update event, then Access doesn't let you move
oninstead, you're locked in place. However, the current record stays in edit mode, with all the same
edited values. It's up to you to fix the problem or hit Esc to cancel the update attempt altogether.

The conditional CancelEvent action's the heart of many validation macros. However, you still need
one more finishing touch: an error message. Otherwise, the person who's making the update or
insert won't have any idea what's wrong. They're likely to think that Access has gone completely off
its rocker.

To show the error message, you can use the MsgBox action. Obviously, you want to show the error
message only if the error's actually occurred, so both the CancelEvent and the MsgBox actions need
to be conditional.

Access has a fantastic shortcut to help you out when you need to use the same action twice. Rather
than repeating the same condition next to each action (which is a bit messy), just put three dots (…)
in the Condition column for each subsequent action. These three dots are a shorthand that tells
Access to use the condition from the previous action.

Figure 15-22 shows the completed macro, and Figure 15-23 shows the macro in action.

15.6.3. More Complex Conditional Macros

As conditional macros get longer and more complex, they can become a little awkward to manage.
You may have several conditions on the go at once, each requiring separate actions. If some
conditions are true, then you may want to skip other conditions entirely. Or, you may want to stop
running the macro.

To see a typical example of the challenges you'll face, it's worth revisiting the StopMissingEmail
macro you saw in the previous section. But this time, you'll add a new wrinkle. Instead of canceling
the update or insert, your macro will ask for confirmation that this really and truly is what you want
to do, as shown in Figure 15-24 .

Figure 15-22. This macro consists of two conditional actions. To lock out bad data, attach this macro to both the

BeforeUpdate and the BeforeInsert event.

Figure 15-23. Here, the macro detects the missing email address and explains the problem.

Figure 15-24. Now it's up to you to decide whether to apply this apparently contradictory update: signing up for email

updates, but not providing an email address. (Maybe you really do want regular emails, but you need to come back later to add the right

email address.)

Creating a confirmation message is easy enough. You can do it all with this oddlooking condition:

 MsgBox("Is this really what you want to do?", 4) = 7

The condition's first part uses the MsgBox() function to show a Message box. The number 4 tells
Access to that the Message box should include a Yes button and a No button. The MsgBox() function
returns a result of 6 if you click Yes, and 7 if you click No, so this condition's True only if you click No
to cancel the change.

Note: You could easily confuse the MsgBox() function with the MsgBox macro action. The two are closely related. However, it's the

MsgBox() function that makes this example work, because you can trigger it from inside a condition. If you want to learn more about the

MsgBox function (like what other options it provides for showing different buttons), click the Access Help button, and then search for

"MsgBox function."

To sum up, you need a macro that checks for invalid data and, if it exists, shows a confirmation
Message box. Conceptually, this macro isn't too tricky. But if you try to build the macro you need,
you'll find that there's no good way to combine the conditions. You can check for invalid input easily
enough, but how do you make sure the second condition (the Message box) is shown only if the first
condition was met?

The best way to solve problems like these is to use the StopMacro and RunMacro actions. StopMacro
ends the current macro, which makes it a handy way to skip out of a macro if you know the following
actions don't apply. RunMacro launches another macro, which makes it a good way to run a separate
task when a specific condition's met.

Using StopMacro, you can complete the AskAboutMissingEmail macro. Here's what you need to do:

Use a condition to check if the data's valid. If it is, you don't need to take any more
steps, so run the StopMacro action .

1.

If the macro's still running, there's a missing email address. The next action uses the
confirmation message as a condition. If No's clicked, run CancelEvent to stop the edit
.

2.

Figure 15-25 shows the complete macro.

Figure 15-25. The revised CatchMissingEmail macro needs just two actionsone to stop processing if everything's OK, and

one to cancel the update if someone clicks No in the confirmation Message box.

16. Automating Tasks with Visual Basic
Macros are plenty of fun, but they can only do so much. If you can't find a readymade macro action
that does the job you want, you can't use a macro. No such limit applies in the world of Visual Basic
code, where you can do just about anything (if you spend enough late-night hours at the computer
keyboard).

Here are some examples of tasks you can accomplish with code, but not with macros:

Modify a whole batch of records at once.

Deal intelligently with errors so Access doesn't pop up a cryptic message.

Perform complex calculations. You can calculate an order confirmation code using a secret
algorithm, or transform a line of text into Pig Latin.

Interact with other programs on your computer. For example, you can copy some data out of a
table and into a Word document.

Write even more sophisticated validation routines that lock out bad data.

The goal of this chapter (and the next) isn't to make you a full-time code jockey. If that's your
ambition, you can continue on to read entire books about programming Access. Instead, this chapter
aims to teach you just enough to get the lowhanging fruit of Access programming. In other words,
you'll pick up enough VB smarts to use the popular and practical code tricks discussed in the next
chapter. You'll also build a great foundation for future exploration.

Note: The version of Visual Basic that Access and other Office applications use is called VBA, which stands for Visual Basic for

Applications

16.1. The Visual Basic Editor

Although Visual Basic code's stored in your database, you need to use a different tool to view and
edit it. This tool's called the Visual Basic editor.

The Visual Basic editor works in concert with Access, but it appears in a separate window. To get to
the Visual Basic editor, in the Access ribbon, choose Database Tools Macro Visual Basic.
Access launches the standalone window shown in Figure 16-1 , complete with an old-fashioned menu
and toolbar.

Note: You can close the Visual Basic editor at any time. If you don't, Access shuts it down when you exit.

Figure 16-1. When you start out in the Visual Basic editor, you'll notice that everything's blank. There aren't any code modules

in the Project window, and there isn't any code on display (yet).

The Visual Basic editor window's divided into three main regions. At the top left, the Project window
shows all the modules in your database. (Each module's a container for one or more code routines.)
Initially, the Project window's almost empty, because you haven't created any code yet. In Figure 16-
1 , the Project window has a single item (named "BoutiqueFudge" to correspond with the current
database). However, this project doesn't contain any modules with code.

Note: Depending on the recent tasks you've undertaken in Access, you may see an oddly-named acwztool project in the Projects

window. This project's an Access add-in that powers most of the wizards you use in Access. Don't try to browse any of the code in this

projectAccess doesn't let you.

Just under the Project window is the Properties window, which shows settings that you can change
for the currently selected item in the Project window. At the bottom's the Immediate window, a quick
testing tool that lets you run code without first putting it in your database. Everything else is empty
space that's used to display your code files, once you create them. This region starts off blank.

In the following sections, you'll learn the most straightforward way to create a piece of code:

First, you'll create a brand new module, which is the container where you place your
code .

1.

Then, you'll write the simplest possible code routine inside your module .2.

Finally, you'll run your code to see it in action .3.

And when you've finished all this, you'll consider how code can plug into the forms and reports that
are already in your database. (This is where things really start rocking.)

16.1.1. Adding a New Module

Usually, you'll build code routines that connect to forms, and spring into action when specific events
(Section 15.5) take place. However, in this chapter you'll start a bit slower by creating a standalone
code routine that runs only when you tell it to.

The first step's to add a new module for your code. In the Visual Basic editor's menu, choose Insert
 Module. Figure 16-2 shows what you'll see.

Figure 16-2. Once your project has at least one module, the Project window shows a Modules group. Access gives new

modules boring names like Module1, Module2, and so on. To choose something better, select the module in the Project window, and

then, in the Properties window just underneath, change the "(Name)" property. DataCleanupCode makes a good module name.

When you add a new module, the Visual Basic editor automatically opens a code window that shows
the contents of that module. (If your database has more than one module, you can open the one you
want by double-clicking it in the Project window.) Initially, a brand new module has just one line of
code, which looks like this:

 Option Compare Database

This line's an instruction that tells Visual Basic how to handle operations that compare pieces of text.
Ordinarily, Visual Basic has its own rules about how to deal with text, but this statement tells it to use
the Access settings instead.

The Access settings depend on the locale of the current database (like whether your version of

Windows is using U.S. English or Japanese kanji script). Option Compare Database's ultimate result's
that most English-speaking people case-insensitive comparisons. That means fudge is considered the
same as fUdGe , which is the same way Access treats text when you write queries.

Before you write code that actually does anything, you should add one more instruction to the top of
your code file. Just before (or after) the Option Compare Database instruction, add this:

 Option Explicit

This instruction tells Visual Basic to use stricter error checking, which catches common typos when
using variables (Section 17.1).

Tip: You can tell Visual Basic to add the Option Explicit line automatically to all new code files. To do so, select Tools Options,

check the Require Variable Declarations option, and then click OK. Access experts always use this setting.

As with other Access database objects, when you close the Visual Basic editor, Access prompts you to
save any newly created modules. If you don't want to wait that long, then choose File Save
[DatabaseName] where DatabaseName is the name of your database file.

Note: Once you've saved your module, you can see it in the Access window's navigation pane. If you're using the Tables and Related

Views mode, your module appears in the Unrelated Objects category. If you're using the Object Type mode, then it appears in a

separate Module category. If you double-click a module in the navigation pane, then Access opens it in the Visual Basic editor.

16.1.2. Writing the Simplest Possible Code Routine

Inside every module (except the empty ones) are one or more Visual Basic subroutines . A
subroutine's a named unit of code that performs a distinct task. In the VB language, subroutines start
with the word Sub followed by the name of the subroutine. Subroutines end with the statement End
Sub . Here's an example subroutine that's rather unimaginatively named MyCodeRoutine:

 Sub MyCodeRoutine()
 ' Your code goes here.
 End Sub

This small snippet of VB code illustrates two important principles. First, it shows you how to start and
end any subroutine (by using the Sub and End Sub statements). This code also shows you how to
create a comment . Comments are special statements that Access completely ignores. Comments are
notes to yourself (like explaining in plain English what the following or preceding line of code actually
does). To create a comment, you just place an apostrophe (') at the beginning of the line.

Tip: The Visual Basic editor displays all comments using green text so you can clearly see the difference between comments and code.

Right now, MyCodeRoutine doesn't actually do anything. To give it more smarts, you add code
statements between the Sub and End Sub. The following exceedingly simple code routine shows a
Message box:

 Sub MyCodeRoutine()
 ' The following statement shows a message box.
 MsgBox "Witness the power of my code."
 End Sub

This code works because the Visual Basic language includes a command named MsgBox. (See the
box "The Visual Basic Language Reference" in Section 16.2 for advice on how to master all the
commands you have at your disposal.) You use this command to pop up a basic Message box with a
message of your choosing. The message itself is a piece of text (or string in programmer parlance),
and like all text values in VB, it needs to be wrapped in quotation marks so Access knows where it
starts and where it ends. (Access forces you to obey the same rules when you use text in an
expression.)

Once you've typed this in (go aheadtry it!), you're ready to run your code routine. To do so, place the
cursor anywhere inside the subroutine so the Visual Basic editor knows what code you're interested
in. Now, on the Visual Basic toolbar, click the Run button (which looks like the play button on a VCR
control), or, from the menu, choose Run Run Sub/UserForm. Figure 16-3 shows the result.

Figure 16-3. Your first code routine isn't terribly useful, but it does prove that you know enough to write a line of code and run

it.

Access runs the code in a subroutine one line at a time, from start to finish. When you show a
MsgBox, your code pauses until you click the OK button in the Message box, at which point it carries
on and finishes the subroutine.

Note: Remember, Access considers VB code potentially dangerous, so it doesn't run it in an untrusted database. In other words, if you

see the security message (Section 15.2.2), then you need to click Options to show the Microsoft Office Security Options dialog box,

choose the "Enable this content" option, and then click OK. Or you can create a trusted location for your database files. Section 15.2.4

has the full story.

GEM IN THE ROUGH
The Visual Basic Language Reference

Visual Basic is stuffed full of magical commands like Msg-Box. You'll explore many of them in this

chapter and the next, but for the full scoop on all the commands, you need to fire up Access Help.
Here's how:

From the Visual Basic editor's menu, choose Help Microsoft Visual Basic Help.

You see a list of links that promises to teach you more about the VB language.

1.

Click Visual Basic for Applications Language Reference.

You see several more topics that cover all the messy details of VB.

2.

Click Visual Basic Language Reference to delve deeper.

Now you see topics that describe the VB language itself. These fundamentals apply to Visual
Basic in any Office program.

3.

Click Functions to see a list of Visual Basic commands, including MsgBox. (Click any function to
see a detailed reference page about it.)

4.

Access Help's a great way to learn more about Visual Basiconce you know a few fundamentals. If you
dive into it too soon, you'll probably find that the explanations are about as clear as split-pea soup.
But by the time you've finished working through the code examples in this book, you'll be ready to
use it to learn more.

16.2. Putting Code in a Form

Running a code routine directly is a bit awkward. At least when you run a macro directly, you can
launch it from the navigation pane or use a handy button in the ribbon (Section 15.1.2). Neither
option's available with VB code. Instead, you need to open the Visual Basic editor, choose the right
module, scroll to the right subroutine, and then click Run. No one actually takes this approach,
because it's just too tedious.

Fortunately, there's a better approach. You can place code in a form, and then set it to run
automatically when something important happens. The following sections explain how.

16.2.1. Responding to a Form Event

Instead of running code routines straight from the editor, Access fans wire them up to form events,
just as you can with macros. Here's how you can try this out:

Open a form in design mode .

The fastest way's to right-click a form in the navigation pane, and then choose Design View.

1.

Add a new button .

To do so, choose Forms Tools | Design Controls Button, and then draw the button onto
your form.

2.

When the Button wizard begins, press Esc to cancel it .

You don't need to create a macro for your button. Instead, this button'll be powered by pure VB
code.

3.

If the Property Sheet isn't currently visible, then choose Forms Tools | Design
Tools Property Sheet .

4.

In the Property Sheet, choose the Other tab, and then set the Name property to give
the button a good name .

Access uses the button name to name the subroutine for your button. It's much easier to
remember what CommitOrder_Click does than Command42_Click. Now's also a good time to
set the text that's shown on the button (the Caption property) if you haven't already done so.

5.

In the Property Sheet, choose the Event tab, and then select the button's On Click
event .

When you click inside an Event box, a drop-down arrow appears in it.

6.

7.

Click the drop-down arrow next to On Click, and then choose [Event Procedure] .

This step tells Access that you're supplying VB code for this event, rather than a macro.

7.

Click the ellipsis (…) in the On Click Event box .

This step opens the Visual Basic editor and creates a code routine for your button. If you've
already created the code routine, then Access switches to your existing code so you can edit it.

8.

The first time you add code to a form, Access creates a new module for that form. This module's
named after the form and placed in a special group in the Project window named Microsoft Office
Access Class Objects (see Figure 16-4). If you add more code to the same form, whether it's
connected to the same control or another one, Access inserts the code routine in the existing module
for that form.

Tip: Form modules don't appear in the navigation pane. If you want to edit them, then you have to open the Visual Basic editor yourself,

and then, in the Project window, double-click the module. Or you can open the corresponding form, select the appropriate event, and use

the ellipsis button to jump straight to the code routine that interests you.

Figure 16-4. The module for a form is always named Form_[FormName]. Here's the module you'll see for a form named

OneButtonForm.

When you follow these steps, Access doesn't just create a new module; it also inserts a new, empty
subroutine for your event. Assuming your button was named ButtonOfPower, you'll see code that
looks like this:

 Private Sub ButtonOfPower_Click()
 End Sub

This subroutine looks similar to the subroutine you created earlier, but with two differences:

It starts with the word Private . This word ensures that other modules can't use this
subroutine. Instead, it's accessible only to the form where your button's placed. (If you don't
specify Private, then you get the default accessibility, which is Public, and your code routine's
available to all. Most of the time, it doesn't matter which one you use, but Private's considered
tidier.)

It has a name in the format [ControlName]_[EventName] . For example, the subroutine
shown above responds to the On Click event of a button named ButtonOfPower.

Note: Wait a secondisn't it the On Click event? Just to keep you on your toes, Visual Basic uses a slightly different naming convention

for events than the Access form designer. It ignores the word "On" and leaves out any spaces, which means that On Click becomes just

Click. It's best not to worry about the naming discrepancy. Instead, let Access create the right subroutine names for you.

To try out your subroutine, you need to add some code. So far, you've learned only one code
command, so try using that to show a message:

 Private Sub ButtonOfPower_Click()
 MsgBox "You clicked the ButtonOfPower."
 End Sub

Now switch back to the form and click your button. You should see the message shown in Figure 16-5
, which indicates that your code caught the event and responded successfully.

Tip: You don't need to save your module when you make changes. Instead, you can freely jump back and forth between your code

window and the form you're using in the Access window to test every change you make.

Figure 16-5. Events make code run automatically. In this case, if you click the ButtonOfPower, then Access instantly shows a

message.

If you delete the ButtonOfPower later on, Access doesn't remove your code. Instead, it stays there,
inactive. This behavior's good if there's something really useful in that code that you might want to
use somewhere else later on. (In this case, a little cutting and pasting can help you out.) But if it's
just a bunch of old code, use the Visual Basic editor to delete the subroutine as soon as you get the
chance.

16.2.2. Calling the Code in a Module

Based on what you've learned so far, you may wonder why you would ever bother to create an
ordinary module by hand. After all, there's no convenient way to run the code, and you can't connect
it to a control event in a form.

WORD TO THE WISE
How Code Connects to Events

It's all in the namethe subroutine name, that is. When you open a form that has a matching code
module, Access looks for code routines with specific names. If it finds a subroutine named
MyButton_Click, then it checks first for a control named MyButton, and then it verifies that this
control has an event named Click. If both details check out, then this code routine becomes an event
handler , which is fancy programmer-speak that means your code's linked to the event. When the
event happens (for example, when the button's clicked), Access runs the code in your subroutine.

If Access finds a subroutine named MyButton_Click and the form doesn't have a control named
MyButton, there's no need to panic. Access simply assumes you've created a subroutine for your own
personal use. Since this subroutine isn't an event handler, Access doesn't run it automatically in
response to an event. However, your code can still call upon it when needed, as described on this
page.

This system introduces two possibilities to trip yourself up. First, don't change the name of an event
handler on your ownif you do, you'll break the connection between your form and your code, and the
event handler won't run when the event takes place. (In other words, you click the button, but
nothing happens.) Second, don't change the name of your control using the Property Sheet on the
form, because that also breaks the connection. Or, if you really must fix up a bad name, just make
sure you change the name of the subroutine to match the new control name.

In both these cases (renaming the subroutine and renaming the control), Access doesn't warn you
about the possible effect. So keep these guidelines in mind to prevent unwanted surprises.

Ordinary modules become useful if you create a fantastically useful piece of code that you want to
use in several different places. You could design the perfect search routine and use it in two, three, or
four dozen different forms. And you could cut and paste the code into each subroutine that needs it.
Except that duplicate code is always a Bad Idea (just like duplicate data). Why? Consider what
happens if you need to fix a problem or add an improvement. With duplicate code, you'll be forced to
hunt down each copy of the code and repeat the same change. That's a sure way to waste your
holiday weekends.

The solution's to take your useful, reusable code routine, and place it in a module. You can then call
that code routine wherever you need itand you can edit it just once when you need to update or fix
it. To call a code routine in another module, you use the name of the module, followed by a period
(.), followed by the name of the subroutine. Here's an example:

 Private Sub ButtonOfPower_Click()
 MyCodeRoutine
 End Sub

Here's a play-by-play account of what happens when you use this code:

You click the ButtonOfPower button .1.

Access finds the ButtonOfPower_Click code, and then runs it .2.

The code runs another routine, the MyCodeRoutine subroutine in the MyModule
module. This code shows the Message box you saw earlier (Section 16.1.2) .

3.

After MyCodeRoutine completes, Access runs the rest of the code in
ButtonOfPower_Click. In this example, there aren't any code statements, so the
process ends here .

4.

4.

You can break a single task into as many subroutines as you want. You can also call subroutines that
call other subroutines, which call still more subroutines, and so on. Access doesn't care. All it's
interested in are the actual code statements.

Note: You can use this trick only with public subroutines. Private subroutines aren't accessible to code outside the module where they're

stored. All subroutines are automatically public unless you add the word Private before the word Sub. So the MyCodeRoutine example

you saw in Section 16.1.2 is public.

If the ButtonOfPower_Click and MyCodeRoutine subroutines are both in the same module, there's a
bit of a shortcut. You no longer need to include the module name when you call MyCodeRoutine.
Instead, you can use this code:

 Private Sub ButtonOfPower_Click()
 MyCodeRoutine
 End Sub

Now Access assumes MyCodeRoutine must be in the same module, and it looks for it there. Also, in
this case it doesn't matter whether MyCodeRoutine is public or privateeither way, your code can call
it.

Tip: If you want to reuse a piece of code in several places in the same form (for example, in response to different button clicks), then

consider creating your own subroutine and putting your code there. If you want to reuse a piece of code in several different forms, then

consider putting it in a subroutine in a separate module.

16.2.3. Reading and Writing the Fields on a Form

As you learned in Chapter 15 , the most exciting macros are those that take charge of your forms
and controls. In VB code, this task's spectacularly easy. You just need to know the names of all the
controls you want to work with.

Suppose you're creating a (somewhat dangerous) code routine that clears a text box. You plan to use
this routine to reset the text in the Description field. Here's the line of code that does the job:

 Description = ""

This line's a basic Visual Basic assignment statement (a line of code that modifies a piece of data),
and it all revolves around the equal sign (=). When Access runs this line of code, it takes the content
on the righthand side of the equal sign (in this case, an empty set of quotation marks that represents
no text), and it stuffs that content into the receptacle on the left-hand side (in this case, the
Description field). The end result's that the current content in the Description field is wiped out.

Note: You can also use the familiar square brackets so that it's [Description] rather than Description. The brackets are optional, unless

you've been reckless enough to break the good field naming rules you learned about in Section 2.5.1 . If you have a text box name with a

space in it, then you always need to wrap the name in square brackets.

Of course, you can also substitute a specific piece of text:

 Description = "Type something here, please"

The effect of running this code is just the same as if you typed in the new text yourself (except it
happens a whole lot faster). As you know, when you modify any field, you place the current record
into edit mode. As soon as you move to another record or close the form, Access commits your edit
and saves your new values in the database.

There's only so much you can do with fixed text values. After all, when you use a fixed piece of text,
you need to decide at the outset exactly what you want to use. By the time you actually click a
button and trigger your code, you may want something different. For that reason, programmers
rarely used fixed values in this way. Instead, they use more complex expressions , which are a lot
like the Access expressions you used for query calculations (Section 7.1) and validation rules
(Section 4.3).

With text, you can use the & operator to create a large piece of text out of several smaller pieces.
Here's an example that takes the current description and adds a sentence at the end that identifies
the product by name.

 Description = Description & " This is a description for " & ProductName & "."

If the Description starts off as "Enjoy delectable waves of fudge.", it may end up being "Enjoy
delectable waves of fudge. This is a description for Fudge Tsunami."

GEM IN THE ROUGH
Splitting Long Lines of Code

If you're dealing with overly long lines of code, it's a good time to use Visual Basic's line continuation
character , which is a fancy name for the underscore (_). End any line with a space and the
underscore, and you can continue your code straight away on the next line:

 Description = Description & _
 " This is a description for " & _
 ProductName & "."

If you're going to use this trick, then it helps to indent every line except the first one so you can see
at a glance that they're part of one code statement.

More commonly, expressions manipulate numeric or date values. Here's the code for an IncreasePrice
button that ratchets up a price by 10 percent every time you click the button (and best of all, you can
click it as many times as you like):

 Private Sub IncreasePrice_Click
 Price = Price * 1.10
 End Sub

For a review of the different operators you can use with expressions to perform different types of
calculations (like addition, multiplication, division, and so on), go back to Section 7.1.2 .

Note: Visual Basic treats Yes/No fields (Section 2.3.7) as True/False fields. The end result's the same, but the syntax you use is just a

bit different. To set the value of a Yes/No field, you use one of two built-in Visual Basic keywords: True or False.

16.3. Understanding Objects

You can actually do a whole lot more with the controls on your form. Rather than just changing their
content, you can also change their color, font, position, visibility, and many other details. The secret
to unlocking the magic is to realize that all controls are programming objects.

In the programming world, an object's nothing more than a convenient way to group together some
related features. The Description field isn't just a single value, it's an entire text box object, and that
means it has all sorts of built-in features. If you understand how text box objects work, then you
have you a way to get to these other features.

Note: Access invites some confusion because it uses the word object in two different ways. Throughout this book, you've referred to all

the ingredients of your database (things like tables, queries, and forms) as database objects. Programmers use the word "object" in a

stricter sense to refer to a programming construct that brings together related features (and that's how this chapter uses the term).

You can interact with objects in three ways:

Properties. Properties are pieces of information about an object. You change properties to
modify the object or how it behaves. A text box object has a FontSize property that controls its
text's size.

Methods. Methods are actions you can perform with an object. For instance, every form has a
Requery method that lets you rerun the query that gets its data.

Events. Events are notifications that an object sends out, which you can respond to with your
code. You can react to button clicks using the button control's On Click event.

The following sections take a closer look at these three object ingredients.

16.3.1. Properties

Properties aren't anything new. After all, you've spent considerable time tweaking them with the
Property Sheet to get just the right formatting and behavior (see Section 13.1.2). However,
properties show a whole different side when you change them using your code. With code, you can
modify properties dynamically in response to various actions (like clicking a button or editing the text
in a text box). This technique opens up a world of new possibilities.

The secret to accessing the built-in features of an object is the lowly period (which programming
nerds call the dot operator). Suppose you want to modify the background color of the Description
text box. You can do this job by setting the BackColor property of the corresponding text box object.
Here's how it's done:

 Description.BackColor = vbYellow

This line of code takes the Description object, and then uses the dot operator to pick out its
BackColor property. The BackColor is then set with the help of a specially-created keyword, called
vbYellow. As you saw with events, the name of a property in code doesn't always match the name of
the property in the Property Sheet. In code, property names never include spaces.

You can use this line of code in any subroutine in a form module, as long as that form really and truly
has a text box control named Description.

Note: Access colors are set using cryptic numbers. VB simplifies life for the most common colors by giving you predefined names to

use, which start with the letters vb. These names are just shorthand ways to refer to the corresponding color numbers. Behind the

scenes, vbYellow is really the number 65535. (If you search the Access Help for "vbYellow," you'll find the full list of eight color

constants. You'll also learn how to get more color choices in Section 16.4.1.)

If you don't include the dot, then you end up using the default property. For the text box object, the
default property's Value, which represents the content of the field. That's why you can write code like
this, which doesn't include the dot operator:

 Description = "A very fine product, indeed."

So now that you know that all the controls on your forms are objects with a whole range of useful
details that you can change, the important question is: How do you know what properties there are,
and how do you find the ones you want? Several guidelines can help you out:

Identical controls have identical properties. Even though every text box on your form is
represented by a distinct text box object, each object has exactly the same properties.
Obviously, the property values will differ, but you can rest assured that if you find a BackColor
property in one text box, you'll find a BackColor property in every other one as well.

Similar controls have similar properties. All controls have a BackColor property, whether
it's a text box, button, or a lowly label. Even the objects that represent parts of the form (like
Detail, FormHeader, and FormFooter) provide a BackColor property for setting background
colors. This bit of standardization allows you to reuse what you learn with one control on
another control.

You can look it up in the Property Sheet. The property names you use in code usually
correspond to the property names you see in the Property Sheet. One difference is that the
names you use in code never have spaces, so the BackColor property in the Property Sheet
becomes the BackColor property in code.

You can find it with Visual Basic IntelliSense. The Visual Basic editor offers a great feature
that can help you find the property you want. As soon as you type the period after the name of
an object, it pops up a list with all the properties and methods you can use for that object
(Figure 16-6).

Figure 16-6.
When you type an

object name, and then

enter the period,

Visual Basic pops up

a list of choices. If you

type a few letters,

Visual Basic moves to

the matching part of

the list. If you see the

property you want,

then you can insert it

by clicking it or

pressing the Space

bar.

Note: The IntelliSense list actually contains two types of elements: properties (which are separate characteristics that are associated

with an object) and methods (which are actions you can perform on an object). Properties are far more common, and they're marked with

an icon that looks like a hand holding a card. Methods have an icon that looks like a flying green eraser. You'll learn how to use methods

in Section 16.3.2.

Table 16-1 lists some control properties that you may want to manipulate with Visual Basic code.

Table 16-1. Useful control properties

Property Type of Data Description

Value Depends

Stores the a control's value. Usually, each control's linked to
a field, so the Value property lets you read or change a value
from the current record. Depending on the field's data type,
the property could be text, a number, a True/False value,
and so on.

Enabled True or False

Determines whether a control value can be changed. If you
set this property it to False, it locks the control so the person
using the form can't edit the field (although your code can
still change the Value property). Controls that are turned off
look a little different from enabled controlstypically, they
have a grayedout or "dimmed" appearance.

Property Type of Data Description

Visible True or False

Determines whether the person using a form can see a
control. If you set this property to False, then the control
disappears from the form. This property's a handy way to
hide fields that don't apply. If a customer lives in Zambia,
you can hide the State box.

ForeColor and
BackColor

A number
Determines the color that's used for text (the foreground
color) and the color that's shown behind the text (the
background color).

Left and Top A number

Determines the position of a control on a form. The Left
property provides the distance between the left edge of the
form and the left edge of the control. The Top property gives
the distance between the top of the form and the top edge of
the control. Both values are in pixels (see Section 16.3.1).

Width and Height A number Determines the size of a control, in pixels.

FontName and
FontSize

A text string and
a number
(respectively)

Determines the font that's used to show the text in a control.
FontName is the name of the font (like "Arial") and FontSize
is the point size (like 10).

FontBold and
FontItalic

True or False Determines whether text should be bolded or italicized.

Picture[1] A text string
Lets you show a background picture on part of a form, or a
tab, image, or button. You supply a path that points to a
picture file.

Text[2] A text string

Provides the current text inside a text box. In most cases,
this property gives you the same information as the Value
property. However, if someone's edited the text but hasn't
yet moved to another control, these properties differ. In this
situation, Value is the text that's stored in the table and Text
is the newly edited information that hasn't been applied yet.

Caption[3] A text string

Sets the text for a label or button control, or the title of a
form. This property's important when you create labels that
aren't linked to fields in a table. You could use a label to
display a status message.

ItemsSelected[4] A collection
object

Provides a collection, which is a special type of object that
contains zero or more subobjects. This collection holds the
values of all the items currently selected in the list. The
ItemsSelected property's useful only if you've created a list
that supports multiple selections. Otherwise, use the Value
property.

[1] These properties are more specialized, and they don't apply to most controls.

[2] These properties are more specialized, and they don't apply to most controls.

Visible True or False

Determines whether the person using a form can see a
control. If you set this property to False, then the control
disappears from the form. This property's a handy way to
hide fields that don't apply. If a customer lives in Zambia,
you can hide the State box.

ForeColor and
BackColor

A number
Determines the color that's used for text (the foreground
color) and the color that's shown behind the text (the
background color).

Left and Top A number

Determines the position of a control on a form. The Left
property provides the distance between the left edge of the
form and the left edge of the control. The Top property gives
the distance between the top of the form and the top edge of
the control. Both values are in pixels (see Section 16.3.1).

Width and Height A number Determines the size of a control, in pixels.

FontName and
FontSize

A text string and
a number
(respectively)

Determines the font that's used to show the text in a control.
FontName is the name of the font (like "Arial") and FontSize
is the point size (like 10).

FontBold and
FontItalic

True or False Determines whether text should be bolded or italicized.

Picture[1] A text string
Lets you show a background picture on part of a form, or a
tab, image, or button. You supply a path that points to a
picture file.

Text[2] A text string

Provides the current text inside a text box. In most cases,
this property gives you the same information as the Value
property. However, if someone's edited the text but hasn't
yet moved to another control, these properties differ. In this
situation, Value is the text that's stored in the table and Text
is the newly edited information that hasn't been applied yet.

Caption[3] A text string

Sets the text for a label or button control, or the title of a
form. This property's important when you create labels that
aren't linked to fields in a table. You could use a label to
display a status message.

ItemsSelected[4] A collection
object

Provides a collection, which is a special type of object that
contains zero or more subobjects. This collection holds the
values of all the items currently selected in the list. The
ItemsSelected property's useful only if you've created a list
that supports multiple selections. Otherwise, use the Value
property.

[1] These properties are more specialized, and they don't apply to most controls.

[2] These properties are more specialized, and they don't apply to most controls.

[3] These properties are more specialized, and they don't apply to most controls.

[4] These properties are more specialized, and they don't apply to most controls.

UP TO SPEED
Interacting with Other Forms

As you learned in Chapter 15 (Section 15.5.2), you can retrieve values or set properties
for the fields and controls in the current form, or in other forms that are currently open.
The trick's that you need to explicitly tell Access what form you're trying to use.

Suppose you want to change the color of the Price control on a form named Product
when you click a button on a form named PriceChanger. This code doesn't work,
because Access looks for a Price control on the PriceChanger form, which doesn't exist:

 Price.BackColor = vbRed

However, this code does the trick nicely, by directing Access to the right form:

 Forms("Product").Price.BackColor = vbRed

Technically, this code tells Access to look in the Forms collection, which keeps track of all
the currently open forms. (If Product isn't currently open, then this statement fails.) It
grabs the form named Product from the collection, reaches into the form to get its Price
control, and then digs into the Price control to find the BackColor property.

There are actually two ways to write this same line of logic. Old-school Access
programmers use a wacky syntax with exclamation marks that looks like this:

 Forms!Product!Price!BackColor = vbRed

Access interprets both lines of code in the same way. It's really just a matter of taste.
However, you should be familiar with both approaches in case you see
bizarre!code!with!exclamation!marks!

If you're a little troubled by the fact that this technique causes an error if the form you
need isn't open, then two techniques can help you out. In Chapter 17 (Section 17.3.1),
you'll learn how to open a form at will.

16.3.2. Methods

Methods let you perform actions with an object. In many cases, calling a method does more than
setting a property. In fact, a single method may launch a complex operation that affects many
properties. The Requery method tells your form to get the latest data from the database, and then
refresh all its controls.

Tip: When you use controls, you'll spend most of time working with properties. In fact, controls have a whole lot of properties, but just a

few odd methods.

To use a method, you type the object name, followed by a period, followed by the method name.
However, you don't use the equal sign because you aren't setting the method. You're just calling it
into action.

Here's an example that refreshes the current record on a form using the Refresh method:

 Form.Refresh

In some cases, a method requires some extra information. If this is the case, you'll know, because
Visual Basic's IntelliSense lets you know as you write your code (see Figure 16-7).

Figure 16-7.
The rarely used Move

method lets you

reposition and resize a

control in one blow.

Once you type the

name of this method,

the Visual Basic editor

shows you the four

values you can

supply. In this

example, only the first

value (Left) is

requiredthe others are

placed in square

brackets, which

means you can leave

them out.

If you need to supply extra information for a method, you must add a space after the method name,
followed by the appropriate value. If you need to supply several values, you separate each one with a

comma. Here's an example that moves a control to the top left corner of a form:

 Description.Move 0, 0

Table 16-2 lists the most important control methods.

Table 16-2. Useful control methods

Method Description

SetFocus
Moves the cursor into the control, so that it becomes the currently active control. This
technique's useful when you're performing validation. If you notice an error in a field,
you can send the person back to the control that has the error.

Undo
Reverse any recent (uncommitted) changes in a control. You can also call this method
on a form to abandon all changes and revert back to the original values. If the form
isn't currently in edit mode, then this method does nothing.

Recalc[5] Recalculates any expressions (Section 13.2.3) in the controls of a form.

Refresh[6]

Gets the latest values for this record from the table, and then refreshes the form
accordingly. This method's useful if you've just triggered another task that may have
modified the record, or if you're using a multiuser database (see Chapter 18), where
several people might be changing a record at once.

Requery[7]

Re-runs the query that's used to get the data for the form, and then shows that data,
starting at the first record. This method's like Refresh, but instead of affecting the
current record, it refreshes them all. You can also use this method on a lookup list to
refresh its contents.

[5] These methods apply only to form objects, not individual controls.

[6] These methods apply only to form objects, not individual controls.

[7] These methods apply only to form objects, not individual controls.

16.3.3. Events

As you know, events are the notifications that objects use to tell your code something important has
just happened. You've already mastered events, and you've used them in this chapter to react to
button clicks. For a list of the most common control events, refer to Section 15.5.1.

One topic that you haven't considered yet is how events can provide extra bits of information. As you
may have already noticed, every subroutine includes a pair of parentheses. Here's a second look:

 Private Sub ButtonOfPower_Click()

In the examples you've seen so far, those parentheses don't contain anything at all. However, they
exist for a reason. Some events provide your code with additional event information, and this
information's sandwiched between the two parentheses.

Consider the On Key Press event of a text box, which occurs every time someone types a character.
It provides a special numeric code that represents the key that was pressed. (Programmers call this
the ASCII code.)

If you add a subroutine to respond to the On Key Press event, then Access generates code like this:

 Private Sub MyTextBox_KeyPress(KeyAscii As Integer)
 End Sub

This code means that the On Key Press event's providing your code with another piece of
information. It's an integer (whole number) named KeyAscii, and you can use it in your own code.
Here's an example that simply shows the key code in a Message box:

 Private Sub MyTextBox_KeyPress(KeyAscii As Integer)
 MsgBox "Your pressed the key with the code: " & KeyAscii
 End Sub

Some events provide several pieces of information. In these cases, you'll spot a whole list between
the parentheses. Each piece of information's separated by a comma, and called a parameter.

Note: Technically, parameters are a type of variable. Variables are handy containers that store some information. (This information can

vary, which is what gives them their name.) You'll learn more about using variables in Section 17.1.

Here's an example for the On Mouse Move event (which occurs when you move the mouse pointer
over the control). The opening declaration for the subroutine is so long that it had to be split over two
lines using the underscore:

 Private Sub SomeControl_MouseMove(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
 End Sub

In this case, you get four pieces of information. The Button parameter indicates which mouse buttons
are currently pressed. The Shift parameter indicates whether the Shift, Ctrl, and Alt keys were held

down while the mouse was moved. Finally, the X and Y parameters indicate where the mouse pointer
is (its coordinates).

16.4. Using Objects

Now that you've learned the basics of Visual Basic, you're probably itching to get to work with some
practical code. The following sections present two examples that put control objects to work.

Tip: If you're eager to learn more, you can find an object-by-object reference in the Access Help. To get to Access Help, choose Help

 Microsoft Visual Basic Help. Next, click through these topics: Visual Basic for Applications Language Reference Microsoft

Forms Visual Basic Reference Reference. You can then see a list of all the objects Access has to offer (click Objects), or browse

through a combined list of events, methods, or properties that are offered by the Access objects (click Events, Methods, or Properties).

16.4.1. Indicating That a Record Has Changed

Record editing's a two-stage process. First, you change one or more field values, which places the
record into edit mode. Then, you close the form or move to another record, which commits your
change. Or you hit Esc, which cancels your changes, and then reverts to the original values.

If you're using the Record Selection bar (meaning the Record Selectors property of the form's set to
Yes in the Property Sheet, which is the standard setting), Access indicates when you're in edit mode
by changing the tiny arrow in the form's top-left corner to a tiny pencil icon. This icon's a helpful
indicator that something's changed on your form and you need to decide whether to go through with
the update. However, Access newbies and pros alike can easily miss the tiny pencil icon. That's why
some people prefer to make the change much more obvious by showing a message on the form, or
changing the background color.

The following example demonstrates this technique. Figure 16-8 shows the result.

Figure
16-8. Top:

The form seems

normal at first

glance.

Bottom: If you

change any

value, the form

background

changes color,

and a text

message

appears at the

bottom.

In order to create this example, you need to start by building the right form. Take an ordinary form,

and then add a label to the form footer (see Section 13.1.1). Give the label a respectable name, like
InfoMessage, by changing the Name in the Property Sheet. Now you're ready to write some code.

Note: Control names are important. You use the control name to refer to the control object in your code. And when you're reading a

piece of code, no onenot even youknows what Label44 means.

Before you add the code to your form, you need to determine two things:

Where does the code go? In other words, you need to identify the event that should trigger
your code. Once you've answered this question, you can create the right subroutine.

What does your code need to do? In other words, you need to decide what objects you're
using and what properties you're modifying. Once you've figured this part out, you can write the
code in your subroutine.

In this example, you need to respond to the On Dirty event of the form. This event occurs when the
record's changed in any way, and the form switches into edit mode. (Deeply repressed programmers
say this moment's when the form "becomes dirty.") If several values are modified, the On Dirty
event fires only for the first change. After that, the form's already in edit mode, and already "dirty."

Note: Each individual control also has its own On Dirty event, which fires the first time someone changes a particular control. You don't

want to pay any attention to these events. Instead, you want to use the On Dirty event of the form, so you catch all possible changes.

Here's the subroutine you need to react to the On Dirty event of your form:

 Private Sub Form_Dirty(Cancel As Integer)
 End Sub

Note: This subroutine looks a little different from the previous ones you've seen because it includes cancellation support. Don't worry

about this feature right nowyou'll learn all about it in Section 17.1.3.

You can type this into an existing form module by hand (as long as you use exactly the same name
for your subroutine), or you can add it using the Property Sheet (just select the Form in the Property
Sheet list, find the On Dirty event, choose Event Procedure from the list, and then click the ellipsis
button).

Now comes the fun partwriting the code. First, you need a statement that changes the form's
background color. Although the form object doesn't provide a BackColor property, the objects that
represent the individual parts of the form (Details, FormFooter, and FormHeader) do. So you can use
code like this:

 Detail.BackColor = vbRed

You also need to fill in a message in the label:

 InfoMessage.Caption = "You have modified this record. " & _
 "If you move to another record, your changes will be applied. " & _
 "To cancel your changes, hit the Esc key."

Place these two code statements into the Form_Dirty subroutine, and you're ready to go.

POWER USERS' CLINIC
Getting the Color You Want

If you set colors only by using keywords like vbRed, vbWhite, and vbYellow, you're
missing out. There's a whole world of pastel shades and vibrant hues just waiting to be
welcomed into your Visual Basic code. Unfortunately, you can't use keywords to set
these colors. Instead, you need to use a numeric color code.

Most of the time, you won't know the right color code to use. However, you can solve
this problem using the handy RGB function, which is a part of the Visual Basic language
(just like the MsgBox function you used earlier). RGB takes three separate numbers,
which represent the red, green, and blue components of color, and transforms them into
a color code you can use to set the ForeColor or BackColor property. Here's an example
that uses this technique to apply a shade of light salmon:

 Detail.BackColor = RGB(266, 160, 122)

This statement works in two stages. First Access runs the RGB function to create your
color code. Then, it stuffs the color code into the BackColor property.

You might wonder what advantage the RGB function provides, seeing as it forces you to
come up with three separate numbers. In fact, the RGB color notation's a common
standard that's used on the Web and in most Windows applications. You can even find a
color using the color picker in Access, and then determine the right RGB components by
following these steps:

Open a form in design mode.1.

Select a control, and then, in the Property Sheet, click in the ForeColor or
BackColor box.

2.

Click the ellipsis (…) button in the color box to open the quick color picker, which
shows some common and recently used color choices.

3.

4.

3.

Choose More Colors to open the full color picker.4.

Click the Custom tab.5.

Choose a color, as shown in Figure 16-9.6.

Make note of the RGB values. You can use these values in your code.7.

Click Cancel to return to Access.8.

Right now, the form has a flaw. When you make your first change, the label appears and the
background color changes, just as it should. However, once you commit that change by moving to
another record, the color and message remain. This result's obviously not what you want.

To fix this problem, you need to react to another event: the form's After Update event. This event
takes place after Access has successfully applied the change. Here's the code you need to return the
form back to its normal appearance:

 Private Sub Form_AfterUpdate()
 Detail.BackColor = vbWhite
 InfoMessage.Caption = ""
 End Sub

Figure
16-9.
To pick a

color, click

the color

grid. (The

crosshairs

shows your

current

location.)

Then, use

the vertical

slider to

adjust your

color's

intensity.

You see

the Red,

Green, and

Blue values

change as

you change

the color.

Note: You don't want to use the Before Update event, because it takes place just before the change is committed. At this point, you have

no way of knowing if Access will spot some invalid data, show an error message, and prevent the update (in which case the red

background color should remain).

The example still isn't quite complete. Besides committing a change, someone can also hit Esc to
cancel it. You need to respond to this possibility as well, and use the same code to return the form to
normal. In this case, you use the form's On Undo event:

 Private Sub Form_Undo()
 Detail.BackColor = vbWhite
 InfoMessage.Caption = ""
 End Sub

This step completes the example. To see all three subroutines together, and try them out, download
the sample database for this chapter (Section 3.4.2.3 explains the deal on sample databases).

16.4.2. Creating a Mouseover Effect

A mouseover effect is an action that takes place when you move the mouse over some region of a
form. You could do things like highlight the control underneath by changing its formatting or content.
Web designers often use mouseover effects to create buttons that change their appearance when you
hover over them.

You can easily create a mouseover effect in Access. You simply need to respond to the On Mouse
Move event. You can use the form's On Mouse Move event if you want to watch the mouse move all
over. More typically, you can use the On Mouse Move event for specific controls, which allows you to
detect when the mouse moves over those controls.

FREQUENTLY ASKED QUESTION
Continuous Forms and Unbound Controls

I changed the Default View property of my form to Continuous Form, and my code's
gone wonky. What happened?

The Continuous Form view (Section 12.3.4) is a handy way to see multiple records at
once in your form. However, it has some significant limitations when it comes to code.
You'll see these limitations when you add unbound controlscontrols that aren't linked to
any field in the database. In the previous example, the InfoMessage is an example of an
unbound control. Your code uses it to show text whenever you want. It doesn't interact
with a field value in a table.

Here's the problem: When you use an unbound control, you get exactly one copy to play
with. If you combine an unbound control with a continuous form, you get an M. C.
Escher-style paradoxnamely, there's only one control in existence, but this control
appears in several places at once (next to each record).

This phenomenon isn't such a problem until you decide to modify your unbound control.
Since there's really just one unbound control, when you modify it in one place, it's
changed wherever it appears. In the example you just looked at, when you start editing
a record, the editing message appears next to every record, even though you're actually
modifying only one record.

Unfortunately, this scenario simply reflects an Access design limitation. The best
workaround is to avoid using continuous forms if you need to use an unbound control.

The form in Figure 16-10 uses a mouseover effect.

As usual, to create this, you need to start by adding the extra controls you need, like the Don't Click
Me button (which we'll name DoNotClickButton) and the image (named HappyFace).

Once those details are in place, you need to create two subroutines. The first responds to the On
Mouse Move event of the button. It swaps in the n you move over the button:

 Private Sub DoNotClickButton_MouseMove(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)

 HappyFace.Picture = "c:\Images\UnHappy.jpg"
 End Sub

This code assumes that you've placed the picture file (named UnHappy.jpg) in a folder named
c:\Images.

As with all your code, you can type this into an existing form module by hand or, more conveniently,
you can use the Property Sheet to create it (Section 16.2).

Tip: The On Mouse Move event happens very frequently. As you move the mouse from one side of the form to the other, you trigger it

dozens of times. For that reason, you should make sure that the code that you use in response to that event is fast, or it could make your

whole form feel sluggish.

Figure
16-
10. Top:

The form

as it first

appears.

Bottom:

When you

move the

mouse over

the Don't

Click Me

button, the

image at

the side

changes

from a

happy face

to a

frowning

face. Move

anywhere

else, and

the happy

face

returns.

The second subroutine responds to the On Mouse Move event of the form's detail section, which
happens when you move out of the button and over the blank space around it. This subroutine
switches the image back to its original happy face:

 Private Sub Detail_MouseMove(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)

 HappyFace.Picture = "c:\Images\Happy.jpg"

 End Sub

The way this example's currently written has one weakness. Right now, it relies on the UnHappy.jpg

and Happy.jpg files being in specific locations on the hard drive. This detail's hard to guaranteeafter
all, who's to say you won't move them somewhere else or try to open the database on another
computer?

A better solution is to place the images in the same folder as the database file. You can point Access
to that location using code like this:

 HappyFace.Picture = CurrentProject.Path & "\Happy.jpg"

This code works using a special object that's always available in any code you write: the
CurrentProject object, which provides information about your current database and the objects it
contains. CurrentProject has a Path property, which gives you the location of the current database as
a text string.

With this code in place, you can confidently copy your database anywhere, as long as you make sure
the image files are placed in the same folder.

POWER USERS' CLINIC
Linking Records to Images

In Chapter 2, you learned how you can store images in a table using an attachment
field. However, this technique isn't always suitable, particularly if your image files need
to be modified or used outside Access, or if they're extremely large. In these cases, you
might prefer to store the file name for your image.

You can still show the image inside an Access form. The trick's easyjust follow these
steps:

Add a new image control to the form, but don't link this form to any field. Instead,
you'll show the right picture using code.

1.

Create an event handler for the form's On Current event, which you trigger every
time you move to a record.

2.

In the event handler, set the Picture property of the image control to the picture
you want to show. If your table has a field named ImageFileName and an image
control named Img, you'd write code like this:

 Img.Picture = CurrentProject.Path & _
 "\Images\" & ImageFileName

3.

This example assumes that all the picture files are stored in an Images subfolder inside

the folder that contains your database file. When the form first loads (and every time
you move to a different record), this code runs and places the appropriate picture in the
picture control.

If you use this code, you should also use error handling (Section 17.2.2). Error
handling's important since you can't be certain that the pictures haven't been moved or
removed and if they have, you want to handle the problem gracefully.

17. Writing Smarter Code
In Chapter 16, you dove headfirst into the world of Visual Basic code, writing routines that could
show messages, respond to events, and modify forms. Along the way, you learned a fair bit about
the Visual Basic language, and the object-based system that gives VB its mojo.

There's still more to explore. In this chapter, you'll learn how to use VB code to solve some of the
most common problems Access experts face. You'll focus on improving the Boutique Fudge database,
which you've worked with throughout this book. However, the solutions you'll use are so useful that
you'll want to incorporate them into your own databases.

But first, before you tackle these more advanced examples, you'll start by brushing up on the Visual
Basic language, learning how to defang errors, and taking a closer look at objects. These topics
complete the Visual Basic picture, and prepare you to become a true Access programmer.

17.1. Exploring the VB Language

Although you now know enough to react to events and change control properties, there's still a lot to
learn about the Visual Basic language itself. In the following sections, you'll learn how to use
variables, conditional logic, and loops to write more powerful code. Finally, you'll see how to use
these features to build a more complex code routine that checks for invalid credit card numbers.

17.1.1. Storing Information in Variables

Every programming language includes the concept of variables , which are temporary storage
containers where you can keep track of important information.

Suppose you want to swap the content in two fields. On the surface, this operation seems fairly
straightforward. All you need to do is take the text from one text box, place it in the other, and then
insert the second box's text in the first box. Here's a first crack at a solution:

 TextBoxOne.Value = TextBoxTwo.Value
 TextBoxTwo.Value = TextBoxOne.Value

To make this code work, you need to put it in the right subroutine. In this example, the code runs
when someone clicks a button in a form. You can create the sub-routine you want for the On Click
event using the Property Sheet. (See Section 16.2 for a refresher.)

Sadly, this code's doomed from the start. Figure 17-1 illustrates the problem.

Figure 17-1. Top: Initially, each text box has its own information.

Bottom: After running your swap code routine, you don't get the result you expect. Once you paste the new content into the second text

box, you end up overwriting the content you want to put in the first text box. The end result's two text boxes with the same content.

The easiest way around this problem is to use a variable to keep track of the information you need.
To create a variable in VB, you use the oddly named Dim keyword (short for dimension , which is
programmer jargon for "create a new variable"). After the word Dim, you enter the variable's name.

Here's how you'd create a variable named TextContent:

 Dim TextContent

POWER USERS' CLINIC
Using Smarter Variables

The example in Section 17.1 shows the simplest way to create a variable in VB code. It creates a
variable that's known as a variant , which means it can store any type of content, including text,
numbers, True/False values, and so on. Advanced VB programmers often prefer to be stricter and
explicitly identify the data type for each variable they create. That way, nobody can accidentally store

text in a variable that's intended for numeric content, and vice versa.

To create a variable that has a locked-in data type, you add the As keyword to your declaration.
Here's how you create a TextContent variable for storing text only:

 Dim TextContent As String

And here's a variable that stores a large integer:

 Dim NumberContent As Long

This approach is good coding style, and it can help you catch certain types of mistakes. However, in
order to use this approach, you need to be familiar with the various Visual Basic data types. The most
commonly used ones are String, Date, Boolean (a True or False value), Long (an integer that can be
very small or very big), Single (a number that can be fractional), and Currency (a numeric data type
that's ideal for storing financial amounts).

You can find a reference of all the VB data types in the Access Help. To get there, choose Help
Microsoft Visual Basic help from the menu in the Visual Basic editor. Then, follow these links: Visual
Basic for Applications Language Reference Visual Basic Language Reference Data Types.

Once you've created the variable, you're free to put information in it, and take information out. To
perform both these operations, you use the familiar equal sign, just as you would with properties.

Here's an example that stores some text in a variable:

 TextContent = "Test text"

The following code puts all these concepts together. It uses a variable to swap the content of two text
boxes.

 Dim TextContent
 ' Copy the text from the first text box for later use.
 TextContent = TextBoxOne.Value

 ' Change the text in the first text box.
 TextBoxOne.Value = TextBoxTwo.Value

 ' Change the text in the second text box, using the variable.
 TextBoxTwo.Value = TextContent

17.1.2. Making Decisions

Conditional logic, another programming staple, is code that runs only if a certain condition's true.
There's no limit to the number of ways you can use conditional logic. You may want to prevent an
update if newly entered data doesn't check out. Or you may want to configure the controls on a form
differently, depending on its data. You can do all this, and more, using conditional logic.

All conditional logic starts with a condition : a simple expression that can turn out to be true or false
(programmers call this process evaluating to true or false). Your code can then make a decision to
execute different logic depending on the condition's outcome. To build a condition, you need to
compare a variable or property using a logical operator like = (equal to), < (less than), > (greater
than), and <> (not equal to). For example, Price = 10 is a condition. It can be true (if the Price field
contains the number 10), or false (if Price contains something else). You've already used conditions
to create validation rules (Section 4.3) and filter records in a query (Section 6.2.1.1). Visual Basic
conditions follow a very similar set of rules.

On its own, a condition can't do anything. However, when used in conjunction with other code, it can
become tremendously powerful. Once you've created a suitable condition, you can put it inside a
special structure called the If block . The If block evaluates a condition, and runs a section of code if
the condition's true. If the condition isn't true, Access completely ignores the code.

Here's an If Block that checks whether the Price field's value is greater than 100. If it is, Access
displays a message:

 If Price > 100 Then
 MsgBox "I hope you budgeted for this."
 End If

Note that the If block always starts with If and ends with End If. Inside the If block, you can put as
much code as you want. This is the conditional codeit runs only if the condition's true.

An If block can also evaluate several different conditions. Here's an example that calculates the fully
taxed price of a product, and then displays that in a label. The trick's that the tax rate depends on
another field (the Country), which is where the conditional logic comes into play.

 ' Store the tax rate you want to use in this variable.
 Dim TaxRate

 If Country = "U.S.A." Then
 ' Taxes are charged for U.S. customers (7%).
 TaxRate = 1.07
 ElseIf Country = "Canada" Then
 ' Even more taxes are charged for Canadian customers (14%).
 TaxRate = 1.14
 Else

 ' Everyone else gets off with no tax.
 TaxRate = 1
 End If

 ' Display the final total in a label.
 TotalWithTax.Caption = Price * TaxRate

Only one segment of code runs in an If block. In this example, Access works its way through the
block, testing each condition until one matches. As soon as it finds a match, it runs the conditional
block of code, jumps down to the closing End If, and then continues with any other code that's in the
subroutine. If no condition matches, then Access runs the code in the final Else clause (if you've
added it). Figure 17-2 shows this code in action.

Figure 17-2. Thanks to conditional logic, this subform shows the correctly calculated total price at all times, taking into account

both the current price and the customer's country. It works by responding to the On Current event, which occurs every time a record's

displayed in the form.

These examples only scratch the surface of what careful conditional logic can do. You can use And
and Or keywords to combine conditions, put one conditional block inside another, and much more.

In Chapter 15 , you saw an example that performed a specific type of validation with customer
records (Section 15.6.2). This validation worked using two fields: WantsEmail and EmailAddress. If
the WantsEmail field was set to Yes, then the EmailAddress field couldn't be empty. However, if
WantsEmail was set to No, then a blank EmailAddress was completely acceptable. You can implement
the identical validation logic using VB code, but there's a twistit uses two If blocks (a line-by-line
explanation follows the code):

 1 Private Sub Form_BeforeUpdate(Cancel As Integer)

 ' Check if this person wants the email.

 2 If WantsEmail = True Then

 ' Make sure the EmailAddress isn't blank or null.
 3 If EmailAddress = "" Or IsNull(EmailAddress) Then
 ' This is considered invalid.
 ' Cancel the change and show a message.
 4 MsgBox "You can't be notified without an email address."
 5 Cancel = True
 6 End If

 7 End If
 8 End Sub

Here's how it works:

Line 1 declares a code routine that handles the Before Update event of the form. Notice that
this event handler gets one piece of informationa true or false value named Cancel, which you
can set to stop the update.

Line 2 starts an If block that checks if the WantsEmail checkbox has a check-mark in it.

Line 3 performs a second check. It's a bit more complex because there are two things that can
cause the conditional code to run. It runs if the email address is a blank value (which happens if
someone enters an email address, and then deletes it) or if the email address is null (which
means that an email was never entered in the first place; see Section 4.1.2 for a discussion of
null values).

Line 4 shows an explanatory error message. Remember, the code gets to this spot only if both
the If blocks evaluate to true. If either check turns out false (the WantsEmail checkbox isn't
turned on, or the EmailAddress is supplied), Access breezes right on past.

Note: Technically, you could combine both these If blocks into a single If block by writing a more complex condition that checks

for everything at once. However, getting this right (and understanding what you've written later on) is more difficult. Veteran

programmers know that it's always better to write code clearly, even if that makes the code a little more verbose.

Line 5 cancels the update using the Cancel parameter that the On Before Update event
provides. That way, the change doesn't go ahead and the record remains in edit mode.

Lines 6 to 8 finish up by closing both If blocks, and ending the subroutine.

Access has many events you can cancel, like On Before Update. Look for the Cancel parameter
between the parentheses after the subroutine name. If it's there, you can set it to True to stop the
action that's about to occur.

17.1.3. Repeating Actions with a Loop

A loop is a tool that lets you repeat an operation as many times as you want. Visual Basic has several
types of loops you can use. The most popular are the Do/Loop block, and the For/Next block, both of
which you'll see in this section.

Here's an example Do/Loop block that's sure to infuriate people:

 Do
 MsgBox "Ever ever get that nagging deja vu feeling?"
 Loop

When Access enters this block of code, it starts by displaying the Message box and pausing your
code. Once you click OK, the code continues until Access reaches the final Loop statement at the
bottom of the loop. At this point, Access automatically jumps back to the beginning (the Do
statement) and repeats your code, showing a second Message box. However, there's one problemthis
process continues forever! If you make the mistake of running this piece of code, your database will
be locked up indefinitely (until you press the emergency-stop key combination, Ctrl+Break).

To avoid this situation, you should build all loops with an exit condition , a condition that signals when
the loop should end. Here's a rewritten version of the same loop that stops after it's shown a
message five times:

 ' Keep track of how many times you've looped.
 Dim NumberOfTimes

 ' Start the count at 0.
 NumberOfTimes = 0

 Do
 MsgBox "Ever ever get that nagging deja vu feeling?"

 ' Up the count by 1.
 NumberOfTimes = NumberOfTimes + 1
 Loop Until NumberOfTimes = 5

The important bit's the final clause at the end of the loop block, Until NumberOfTimes = 5 . This
clause defines a condition, and as soon as it's true (the NumberOfTimes variables reaches 5) and
Access reaches the end of the loop, it jumps out and continues running the rest of your subroutine.

If you have this type of code, where you're looping a fixed number of times, then you may be
interested in the For/Next loop. The For/Next loop is exactly the same as the Do/Next loop, except
that it has a built-in counter, which it increments for you.

Here's how you could rewrite the previous example in a more compact form with a For/Next loop:

 Dim NumberOfTimes

 For NumberOfTimes = 1 To 5
 MsgBox "Ever ever get that nagging deja vu feeling?"
 Next

The important part's NumberOfTimes = 1 To 5 , which tells Access to start NumberOfTimes at 1, to
increment it by 1 at the beginning of each pass through the loop, and to stop after the fifth pass.

The Do/Loop block works well when you need to move through a collection of data. You can use the
loop to keep going until you run out of information, even though you don't know how much
information there is when you first start the loop. You'll see an example of this technique at the end
of this chapter (Section 17.4.5), when you perform a batch update on your database using code.

On the other hand, the For/Next loop shines when you can determine at the out-set exactly how
many times you want to repeat a loop. You'll see an example where this is true later in this chapter
(Section 17.1.5), when you test credit card numbers.

17.1.4. Creating Custom Functions

You've already learned how to create your subroutines. But you haven't yet seen how to create their
big brother, functions .

Like a subroutine, a function's a self-contained piece of code that can hold as many or as few
statements as you want. And like subroutines, you add functions to modules. In fact, any number of
subroutines and functions can exist side by side in a module.

 Function DoSomething()
 ' Function code goes here.
 End Function

The key difference between functions and subroutines is that a function produces a final result . In
other words, functions give you a piece of information that you may need.

You set the result by writing a line of code that assigns the result value to the function name.
(Essentially, you pretend that the function name's a variable where you can stuff some data.) Here's
an example:

 Function GetMyFavoriteColor()
 GetMyFavoriteColor = "Magenta"
 End Function

This function's named GetMyFavoriteColor. The result's the text string "Magenta".

Calling a function is slightly different than calling a subroutine. To call a subroutine, you use the
module name, followed by a period, followed by the subroutine name. You can use the same
technique with a function, as shown here:

 MyModule.GetMyFavoriteColor

However, there's a problem. This step triggers the GetMyFavoriteColor function, causing its code to
run, but it tosses away the result (the string with the text "Magenta").

If you're interested in the result, then you can call your function as part of an assignment statement.
The following code creates a variable, uses it to store the result, and then displays the result in a
Message box:

 ' Create a variable to store the result in.
 Dim Color

 ' Call the function and hold on to the result in the variable.
 Color = MyModule.GetMyFavoriteColor

 ' Show the result in a Message box.
 MsgBox "Your favorite color is " & Color

If you're really clever, you can shorten this code to a single line and avoid using the Color variable
altogether:

 MsgBox "Your favorite color is " & MyModule.GetMyFavoriteColor

The GetMyFavoriteColor function's particularly simple because it doesn't use any arguments. But
there's no reason you can't get a little fancier. Consider the following custom function, which takes
two argumentslength and widthand calculates the total area by multiplying them together:

 Function Area(Length, Width)
 Area = Length * Width
 End Function

The two parameters are defined in the parentheses after the function name. You can add as many
parameters as you want, as long as you separate each one with a comma.

Here's how you call this function and show the result. In this example, fixed numbers are used for the
Length and Width parameters. However, there's no reason you can't substitute a field name,
variable, or property that you want to use with the Area function instead.

 MsgBox "The area of a 4x4 rectangle is " & Area(4, 4)

This displays the message "The area of a 4x4 rectangle is 16."

Neither the GetMyFavoriteColor() nor Area() function shows you anything particularly impressive.
But in the next section of this chapter, you'll build a much more powerful custom function that tests
credit card numbers.

POWER USERS' CLINIC
Using a Custom Function in a Query

Once you've created a function, you can use it anywhere in your database to build queries and
validation rules. The only requirements are that your function must be in a custom module that
you've added (not a form module), and it can't include the word Private in the declaration. If your
function meets these rules, then you can call upon it just as easily as a built-in Access function.

You could create a query with a calculated field like this (assuming the query includes two fields
named LengthOfRoom and WidthOfRoom, respectively):

 RoomArea: Area(LengthOfRoom, WidthOfRoom)

Or, you could build a table validation rule like this:

 Area(LengthOfRoom * WidthOfRoom) < 10000

See Chapter 7 for some more ideas about using functions in calculated fields, and Chapter 4 for more
information about validation rules. And if you want to see this specific example in action, check out
the MyHouse database that's included with the samples for this chapter.

17.1.5. Putting It All Together: A Function for Testing Credit Cards

Now that you've made your way around the Visual Basic language, it's time to wrap up with an
example that demonstrates everything you've learned about VB (and a little bit more).

In this example, you'll consider a custom function called ValidateCard that examines a credit card
number. The ValidateCard function returns one of two results: True (which means the card number's
valid) and False (which means it's not).

It's important to understand that a valid credit card number's simply a number that meets all the
not-so-secret rules of credit card numbering (the box in Section 17.1.5 tells you more). This number
may be attached to a real credit card, or it may not. The ValidateCard function's just smart enough to
catch inadvertent errors and not-so-bright computer hackers. Truly sneaky people can find programs
that let them generate potentially valid credit card numbers.

Here's the full code for the ValidateCard function. Each code statement's numbered so you can break
it down one piece at a time (a line-by-line explanation follows the code):

 1 Function ValidateCard(CardNumber As String)

 ' This is the running total (created using Luhn's algorithm).
 2 Dim SumOfDigits
 3 SumOfDigits = 0

 ' This keeps track of whether you're at an odd or even position.
 ' You start on an odd number position (1).

UP TO SPEED
The Luhn Algorithm

The ValidateCard uses something called the Luhn algorithm , which was developed by an IBM
scientist in the 1960s. The Luhn algorithm works because credit card companies follow its rules. In
other words, they issue only numbers that are considered valid according to the Luhn algorithm.

For a complete explanation of the Luhn algorithm, check out
http://en.wikipedia.org/wiki/Luhn_algorithm . Here's the Reader's Digest version of what it does:

Starting at the end of the end of the credit card number, double the value of every second digit.
Leave the even-numbered digits alone. For example, 1111 becomes 2121.

1.

If this doubling process produces a number larger than 9, add the two digits in that number
together. For example, 1166 becomes 2136. The second-to-last number 6 was doubled (to 12)
and the digits (1 and 2) were totaled (to make 3).

2.

3.

4.

http://en.wikipedia.org/wiki/Luhn_algorithm

2.

Add all these digits together. If you're currently left with 2136, then calculate 2+1+3+6 (which
makes 12).

3.

If the total ends in 0 (or, put another way, if the total's divisible by 10), the number's valid.
Otherwise it's not.

4.

The Luhn algorithm checks to see if the number you've supplied is a possible credit card number.
However, the Luhn algorithm can only do so much. It can't catch a credit card number that's
technically valid but not actually hooked up to an account (and it obviously can't determine whether
someone's credit card account's in good standing and has the required purchasing limit).

 4 Dim OddNumbered
 5 OddNumbered = True

 6 Dim i
 7 For i = Len(CardNumber) To 1 Step -1
 8 Dim CurrentNumber
 9 CurrentNumber = Mid(CardNumber, i, 1)

 10 If OddNumbered = False Then
 ' Double the digit.
 11 CurrentNumber = CurrentNumber * 2

 12 If CurrentNumber >= 10 Then
 ' If this number is two digits, add them together.
 ' This is the wacky part, because you need to use
 ' string conversion functions.
 13 Dim NumText As String
 14 NumText = CurrentNumber
 15 CurrentNumber = Val(Left(NumText, 1)) +
 16 Val(Right(NumText, 1))
 17 End If
 18 End If
 ' Add the number to the running total.
 19 SumOfDigits = SumOfDigits + CurrentNumber

 ' Switch from odd to even or even to odd.
 ' This line of code changes True to False or
 ' False to True
 20 OddNumbered = Not OddNumbered
 21 Next

 ' If the sum is divisible by 10, it's a valid number.
 22 If SumOfDigits Mod 10 = 0 Then
 23 ValidateCard = True
 24 Else
 25 ValidateCard = False
 26 End If

 27 End Function

Here's how it works:

Line 1 declares the function. Notice that the function takes one parameter, which is the text
with the credit card number. This parameter's explicitly identified as a string with the As String
clause. This way, you avoid errors where someone might try to pass in an actual number.

Lines 23 create the variable that stores the running total during the whole process.

Lines 45 create the variable that keeps track of whether you're on an odd number position or
an even number position. Remember, all second numbers must be doubled.

Lines 67 start a For/Next loop. This loop looks a little different from the ones you saw earlier,
because it has the Step -1 clause at the end. This clause tells the loop to subtract 1 from the
counter after every pass (rather than adding 1, which is the standard behavior). You can work
your way from the end of the number to the front.

Note: The For/Next loop uses another trick. The lower limit's set using the Len function (Section 7.2.5), which gets the length of a piece

of text. In other words, if the credit card is 11 digits, this code runs 11 times (once for each digit).

Lines 89 grab the number at the current position, as indicated by the loop counter. The Mid
function lets you snip out a single digit. (You learned about the Mid function in Section 7.2.5 .)

Line 10 checks if you're on a second number.

Lines 1117 run only if you're on a second number. In this case, the number needs to be
doubled (line 11). If the doubled number has two digits, these digits must then be combined
(lines 1315).

Line 19 adds the current number to the running total. If you were in an even-numbered
position, then the number hasn't been changed. If you were in an odd-numbered position, then
it's been doubled and combined.

Line 20 makes sure that if you just processed an even-numbered position, you're switched to
an odd-numbered position (and vice versa).

Line 21 returns to line 6 and repeats the loop for the next digit in the credit card number.

Lines 2226 check the final total. If it's divisible by 10, it's valid. To find out, this code uses the
Mod operator, which performs division, and then gets the remainder. (If there's no remainder
when you divide a number by 10, you know it divided evenly without a problem.)

It may take some time to work through the function and figure out exactly what's going on, but in
the end it's all about VB basics like conditions, loops, and variables. If you really want to study this
example, you can watch it in action, using the debugging techniques that are covered in Section
17.2.1 .

Once you've finished creating a function like ValidateCard, you can call it to test whether a credit card
checks out. Here's an example that reacts when credit card information's entered into a text box

named CardNumber:

 Private Sub CardNumber_BeforeUpdate(Cancel As Integer)

 If ValidateCard(CardNumber) Then
 MsgBox "Your card is valid."
 Else
 MsgBox "Your card is invalid. " & _
 "Did you forget a number, or are you trying to cheat us?"
 Cancel = True
 End If

 End Sub

To try it out, run this code and supply one of your credit card numbers in the CardNumber field, as
shown in Figure 17-3 . Or send your credit card numbers to the author so he can conduct his own
extensive testing.

17.2. Dealing with Trouble

It would be nice to pretend that Access always sails through your code without the slightest hiccup.
But the truth is, errors do occur, and they occur often. This fact shouldn't frighten you. After all, one
of the reasons you're using Visual Basic code instead of ordinary macros is so that you can detect
and respond to errors gracefully.

Figure 17-3. This form shows the ValidateCard function at work on the AddCreditCard form in the Boutique Fudge database.

Whenever the CardNumber field's changed, a subroutine checks if it's valid, and cancels the change if it isn't.

You'll face two types of errors with your code:

Mistakes . These errors are coding errors that you introduce accidentally. Usually, you catch

these while testing your database. (If you're lucky, the Visual Basic editor spots the problem as
soon as you type it in, and then warns you with a message.)

Unexpected limitations . These errors arise under specific circumstances that you may not
have anticipated. Say you create two forms: Order, and Order_ Subform. Order_Subform's
designed to be used as a subform in Order, and it includes code that accesses the controls in
Order. However, if someone opens Order_Subform directly, the Order form isn't available, and
this code fails.

As a conscientious programmer, it's your job to correct all your mistakes and deal with unforeseen
limitations in the best possible way. Visual Basic gives you two tools to help out. You can use
debugging to diagnose bizarre problems and fix them, and you can use error handling code to catch
unexpected problems, and alert other people.

17.2.1. Debugging

Debugging's a nifty feature that lets you walk through your code, watch what it does, and spot
errors. Code debugging's similar to macro debugging (Section 15.1.3) in that it lets you run your
logic one statement at a time. However, code debugging's much more powerful, because it lets you
make your way through complex routines, loops, and conditional statements. It even lets you see
what's currently stored in your variables.

Tip: Debugging's real benefit is that it helps you test your assumptions . Every programmer has assumptions about how a piece of code

works. However, if code did exactly what you expected, you wouldn't ever have an error. With debugging, you can find the exact point

where code does something that you don't expectwhen a calculation provides a strange result, a conditional statement sends you the

wrong way, a loop's repeated one time too many, and so on. Then you can correct the mistake.

The easiest way to perform debugging's to set a breakpoint a special marker that tells Access where
you want to start debugging. When Access reaches a line of code that has a breakpoint, it pauses
your code. Access then lets you step through the code at your own pace, one line at a time.

Here's how to use a breakpoint:

Find the first line in your code that you want to debug .

If you want to debug an entire routine, start with the opening Sub or Function statement. If you want
to look at a specific section of your code, go there.

1.

Click the margin on the left to place a breakpoint on this line (Figure 17-4) .

Each breakpoint's a signal that tells Access you want to start debugging here .

Some lines can't accommodate a breakpoint. These lines don't contain executable code, line blank
spaces, comments, and variable declarations. Everything else is fair game.

2.

Figure 17-4. Every breakpoint looks like a red circle. You can remove a breakpoint by clicking it. In this example, the breakpoint

(circled) is placed at the beginning of the ValidateCard function.

Note: When you close your database and open it later, all your breakpoints disappear.

Trigger your code .

You can get your code to run in the normal way. If you're debugging an event handler for a button
click, open the appropriate form, and then click the button.

When Access reaches your breakpoint, it pauses and switches into break mode . Everything in your
application's put on hold.

3.

Once you're in break mode, you have several options:

You can single-step through your code . That means you run one statement at a time, pausing

after each statement. To try this out, press the F8 key. This action runs the current statement (which
is highlighted with the yellow arrow), moves to the next executable statement, and then pauses again
(Figure 17-5). You can continue for as long as you want, pressing F8 to run each line of code.

Tip: Single-step debugging lets you follow how your code works. If you try it with the ValidateCard function shown earlier, you'll see how

Access moves through the loop several times, and how it branches into different conditional sections depending on whether it's processing

a number in an odd or even position.

Figure 17-5. In this example, the breakpoint stopped the code at the beginning of the ValidationCard function. Then, the person

debugging this code hit F8 a few times to move on through the code. Right now, the code's paused at the beginning of the For/Next loop

(circled).

You can stop running your code . Press the Stop button (it looks like a square) in the Visual Basic
toolbar to shut your code down.

You can make changes . If you find what's wrong, you can edit your code, and then keep running
with the new changes. Of course, there are certain types of edits that force Access to stop debugging.
If you make one of these changes, then you see a Message box that warns you that "This action will

reset your project." If you click OK, then Access stops your code just as if you had clicked the Visual
Basic toolbar's Stop button.

You can see what's stored inside a variable . To do so, just hover over the variable name
somewhere in your code (Figure 17-6).

Figure 17-6. By hovering over the CurrentNumber variable, you can see that it's currently storing the number 4. You can hover

over variables on any line in your code, not just the current line. However, you'll see only the current contents of the variable. If you use F8

to single-step through your code, then you can watch a value change as you perform operations.

You can resume normal execution . If you've found the source of your problem and you don't want
to keep debugging, just hit F5 (or click the Visual Basic toolbar's Play button). Access runs the current
line, and then continues on its merry way (at least until it meets another breakpoint).

Tip: You can pull off a wacky trick with the yellow arrow. You can use it to run code in a completely different place. Just drag the yellow

arrow to the line you want to run next, and then hit F5 to switch out of debug mode, and resume running your code normally.

The Visual Basic editor has many more debugging tools. However, breakpoints are really all you need
to start exploring what's taking place under the hood when you run your code.

17.2.2. Error Handling

Some errors occur through no fault of your own. Perhaps you're trying to perform a task with
information someone else gave you, and that information just isn't valid. Imagine what happens if
someone calls ValidateCard and passes in a credit card number that contains letters and punctuation!

Although this sort of error can occur as a result of somebody else's carelessness, it's up to you to
deal with it in the best way possible. You need to explain the problem with a helpful Message box,
and end the current task (or jump ahead to the next step). You can take care of this job with error
handling code.

Tip: The best way to perfect a piece of code's to use debugging to find and fix all its problems. Once you've finished this process, you

can add error handling code to deal with the unexpected problems. If you add error handling code earlier, then you may find it a bit

harder to debug your application.

Ordinarily, when Access encounters an error, it jumps to the offending code, enters break mode, and
shows you an error message. This behavior's helpful if you're planning to debug the problem, but it's
a bit traumatic for the ordinary people who may be using your database. Not only have they never
seen code before, they're in danger of changing it and introducing a new problem.

Instead, you need a way to deal with the error the way you want, using code. Visual Basic has a
special statement that tells Access how to deal with errors. It's the On Error statement.

The On Error gives you several options. You can tell Access to skip over any errors and try to run the
next line of code like this:

 On Error Resume Next

This option's almost always a bad idea. If one error's occurred, more are likely to follow. At worst,
this could cause your program to do something you don't intend it to do.

You can also tell Access to jump to a specific place in your code. Here's an example:

 On Error Goto ErrorHandlingCode

This example tells Access to jump to the section named ErrorHandlingCode as soon as it encounters
any problem. You need to identify this section by adding the section name, followed by a colon (:) on
a separate line, like this:

 ErrorHandlingCode:
 ' If an error occurs, Access starts running your code here.

You can most easily understand how this error handling system works when you consider how you
can use it in the ValidateCard function:

 Function ValidateCard(CardNumber As String)

 On Error Goto ErrorHandlingCode

 ' (The code for Luhn's algorithm goes here.)

 Exit Function

 ErrorHandlingCode:
 MsgBox "Oops. Did your credit card number have letters?"
 ValidateCard = False

 End Function

Here are several important details. First, the On Error statement's placed at the very beginning of the
code routine, so you can catch mistakes in any of the code that follows. Second, notice that after the
number-checking code finishes, an Exit Function statement ends the routine. That statement
prevents Access from drifting into the error handling code that follows if an error hasn't happened.
Finally, the error handling code shows a Message box that explains that something went wrong, and
returns a result that clearly indicates the problem. People most often handle errors this way. Just
remember to always use an Exit Sub or Exit Function statement to make sure you don't run your
error handling code by accident.

Note: As written, the person using the AddCreditCard form may get two error messagesone explaining the letters-or-punctuation

problem, and the second stating the obvious fact that validation failed. If this message seems like unnecessary punishment, then you

can move the error-handling code out of the ValidateCard function and into the On Update event handler code, which is where it really

belongs. That way, the On Update event handler can choose exactly how to deal with the problem. To see the slightly rear-ranged code,

check out the downloadable samples for this chapter.

You have only one other option for handling errors. You can tell Access to stop immediately and enter
debug mode using this statement:

 On Error Goto 0

Of course, this behavior's already the standard error handling behavior. You need to use this
statement only if you're switching back and forth between different error handling approaches in the
same routine.

17.3. Deeper into Objects

There comes a point in every Access programmer's life when you realize you've learned enough
about the VB language to get by. From that point on, you spend most of your time learning about
different objects , which is a much larger task.

Access has several dozen built-in objects which, taken together, make up what programmers call an
object model . Along with the control and form objects you know so well, it has objects representing
queries, projects, reports, smart tags, printers, and much more. You can't cover all these objects in a
single chapter. Even if you could, you'd find that many of them just don't interest you. However, you
need to know enough so that you can hunt down the features you need when you're tackling a
particularly sticky VB challenge.

You can explore the Access object model in several ways:

You can use the Access Help. (See Section 16.4 for instructions about where to look.)

You can use the online VBA (Visual Basic for Applications) reference that Microsoft provides.
(Surf over to http://msdn.microsoft.com/office/reference/vba .)

Even if you work your way through the sprawling Access object model, there are still many more
objects out there. If you're a black belt VB programmer, then you may choose to create your own
objects. And even if you aren't, you may decide to use another component that gives you even more
objects to play with.

Note: In programmer-speak, a component's just a file that has some objects you can use in your code. The file acedao.dll has the

objects you can use to interact directly with your database (see Section 17.4.5).

Later in this chapter, you'll learn how to use DAO (the data access objects) to interact with your
database. DAO's such a common part of Access programming that most people treat it as a built-in
part of the Access object model. But technically, DAO consists of a set of objects provided by a
separate component, which Access provides. Many more components are waiting for you to discover
them.

To use a new component, you need to add a reference to that component in your database. To do so,
in the Visual Basic editor's menu, choose Tools References. You'll see the References dialog box
shown in Figure 17-7 .

Figure 17-7. To add a reference to a component you want to use, find it in the list, and then place a checkmark next to it. The

currently referenced components appear at the top of the list. Here, you can see the objects that are automatically referenced in every

databasethe objects built in Visual Basic, those that come with Access, and the data access objects you can use to read and edit the

database directly (Section 17.4.5).

The References dialog box's problem is that you need to know exactly what component you want to
use. The Available References list's full of neat-sounding components that aren't designed for use in
Access, and won't work right with your code. Among the components you can use are ones from
Microsoft that let you interact with files, show Web pages, and interact with other Office applications.
However, you won't get far experimenting on your own. Instead, you'll need to find sample code
online or in the Access Help.

FREQUENTLY ASKED QUESTIONS
Launching Other Windows Programs

How do I open Word (or Excel, or Notepad, or Dance Dance Revolution)?

Visual Basic includes a function named Shell that lets you launch another program. To use the Shell
function, you need to supply the complete path that points to the program file. Here's an example
that runs the Windows Calculator

 Shell "C:\Windows\Calc.exe"

When you use Shell, Windows launches the program you asked for, and your code keeps running.
However, your code doesn't have any way to actually interact with the program. You can't force it to
do something or find out if it's been closed.

Shell seems like a convenient function, but it has a major problem. In order to use the Shell function,
you need to know exactly where a program's located. You can't just say, "Launch Microsoft Word" or
"Open this document." Instead, you need to dig down deep into your hard drive to find the program
file you need (which is usually somewhere in the Program Files area of your computer). Even worse,
once you get the Shell function working on your computer, there's no guarantee it'll work on
someone else'safter all, the same program could be installed somewhere completely different.

So what can you do instead? You could use a hyperlink (Section 13.2.5), which launches the right
program automatically when it's clicked. But some programs, including the other members of the
Microsoft Office family, give you a much better option. They provide their own objects that you can
manipulate in Visual Basic code. With these objects, you can use these programs without worrying
about where they're installed. You can also do way more with them by setting different properties
and calling various methods. You can tell Word to open a document, add some text to it, send 10
copies to the printer, and then quit.

The objects that make this process work are beyond the scope of this book, but here's a very simple
example that launches Word, shows the Word window, and then loads up a document that's named
GothicWedding.doc:

 Dim Word As Object
 Set Word = CreateObject("Word.Application")
 Word.Visible = True
 Word.Documents.Open CurrentProject.Path &
 "\GothicWedding.doc"

If this technique intrigues you, check out Word's Help, where you can learn much more about the
Word object model. Another helpful resource is Microsoft's Office Developer Center at
http://msdn.microsoft.com/office .

17.3.1. The DoCmd Object

The DoCmd object is the single most useful object in the Access programming world. It provides one-
stop shopping for a variety of tasks, like opening forms and reports, launching other programs,
finding records, and running macros.

Unlike the objects you've seen so far, the DoCmd object doesn't have any properties. Instead, it's
made up of methods that perform different actions. If you want to open a form named
ProductCatalog, you can use the OpenForm method like this:

 DoCmd.OpenForm "ProductCatalog"

http://msdn.microsoft.com/office

Like most of the DoCmd methods, OpenForm can use several optional parameters. Visual Basic
prompts you by showing the list of possible parameters as you type. Here's an example that skips
over the second and third parameters (note the commas with no values in between) but supplies a
filter in the fourth parameter, and a data mode in the fifth parameter.

 DoCmd.OpenForm "ProductCatalog", , ," ID=5", acFormReadOnly

This command opens the ProductCatalog form, applies a filter to show only the record with the ID of
5, and uses read-only mode to prevent any changes.

Note: This example uses a acFormReadOnly, which is a constant . Constants are numeric values that are given more helpful names. So

instead of remembering that the number represents read-only mode, you can use the more readable acFormReadOnly constant. Any

time you see a variable that starts with ac or vb and you haven't created it yourself, the odds are that it's a constant. Of course, you still

need to know the constant names to use them, but IntelliSense can help you out, as shown in Figure 17-8 .

Figure 17-8. When you get to the data mode parameter, the Visual Basic editor pops up a list of all the valid constants that

you can use. To find out what they really mean (if it's not obvious), you need to consult the Access Help.

If the OpenForm method looks familiar, that's because you've already seen the same functions with
the OpenForm macro action (Section 15.3.1). In fact, all the methods of the DoCmd object line up
with the macro actions you learned about in Chapter 15 . Table 17-1 lists the most useful ones.

ApplyFilter

Applies a filter to a table, form, query, or report, to focus on the records you're interested in.

Beep

Makes some noise. Usually, you use this to get attention if a problem occurs.

Close

Closes the current database object (or a specific one you indicate).

CopyDatabaseFile

Gives you a quick way to make a database backup.

FindRecord, FindNext, and GoToRecord

Gives you different ways to search for the record you want.

Hourglass

Switches the hourglass mouse pointer on (or off). You can use this method to let someone know
there's a time-consuming task underway, and she should chill.

OpenForm, OpenQuery, OpenReport, and OpenTable

Opens the appropriate database object, in whatever view mode you want, with filter settings and
other optional details. As you learned in Chapter 15 , you can also use OpenReport to print a report,
and OpenQuery to run an action query.

PrintOut

Offers one way to print the data from the current database object.

Quit

Exits Access.

RunCommand

A fill-in-the-gaps command that lets you run various Access commands available on the ribbon. You
just need to supply the right constant. Section 17.4.4 shows an example where someone uses Run-
Command to save the current record immediately.

RunMacro

Runs a macro.

RunSQL

Executes a raw SQL statement (see Section 6.2.3). You can't use this command to get information
out of your database. Instead, it lets you run commands that change records or tables.

ShowAllRecords

Removes the current filter settings so you can see all the records in a table, form, query, or report.

Table 17-1. Useful Methods of the DoCmd Object

Method Description

17.3.2. Converting a Macro to VB Code

If you want to learn a little more about Visual Basic and the DoCmd object, then you can take an
existing macro and convert it into a pure code subroutine. Here's how:

In the navigation pane, select the macro you want to use .1.

Select Database Tools Macro Convert Macros to Visual Basic. (You can also
convert the embedded macros in a form by opening that form, and then choosing
Database Tools Macro Convert Form's Macros to Visual Basic.)

A window with two options appears (Figure 17-9).

Figure 17-9. You see this tiny window if you ask Access to convert the FindHayEater macro.

2.

If you want to add basic error handling (as described in Section 17.2.2), then make
sure "Add error handling to generated functions" is turned on .

A little bit of error handling's always a good idea.

3.

If you want to turn your macro comments into VB comments, make sure "Include
macro comments" is selected .

If you've taken the time to add some explanatory text, it's worth keeping it around.

4.

Click Convert .

Access creates a new module for the converted code, and gives it a name like Converted Macro-
[YourMacroName]. Inside the module, Access creates a function with the same name as your
macro. If you convert a macro group (Section 15.4), Access adds one subroutine for each

5.

macro in the group.

Once the conversion process is complete, Access opens your module in the Visual Basic editor
so you can review the code.

The following example shows the result of converting a macro from Chapter 15 (shown in Section
15.3.1) which searches for specific text in the AnimalTypes table:

 Function FindHayEater()

 On Error GoTo FindHayEater_Err

 DoCmd.OpenForm "AnimalTypes", acNormal, "", "", , acNormal
 DoCmd.GoToControl "Diet"
 DoCmd.FindRecord "=""hay""", acAnywhere, False, , _
 False, acCurrent, False

 FindHayEater_Exit:
 Exit Function

 FindHayEater_Err:
 MsgBox Error$
 Resume FindHayEater_Exit

 End Function

You'll notice that the converted code makes heavy use of the DoCmd objectin fact, almost every line
uses the DoCmd object. First, it uses the OpenForm method to open a form, then it uses the
GoToControl method to switch to the Diet field, and finally it looks for the first record that has the
text "hay." This line looks a little weird because it doubles up its quotations marks (""). Quotations
marks have a special meaning to Visual Basic (they show where text begins and ends). If you
actually want to insert a quotation mark in your text, you need to put two quotation mark characters
in a row. Strange, but true.

The code ends with an error-handling routine named FindHayEater_Err, which simply shows the
problem in a Message box, and then ends the routine.

Note: When you convert a macro into code, Access always generates a function (Section 17.1.4), not a sub-routine. However, the

function doesn't return a result, so it's not really necessary. (Presumably, Access works this way to give you the flexibility to decide later

on that you want to return a value.)

17.4. Using VB to Run a Better Business

Over the last 16 chapters, you've come to know and love the Boutique Fudge data-base, which
demonstrates a practical sales database that tracks customers, products, and orders. However,
although the Boutique Fudge database stores all the information you need, it still doesn't integrate
seamlessly into company life. And before you can fix it, you need to understand why it comes up
short.

Most people who work in a business like Boutique Fudge aren't thinking about tables and data
operations (like inserting, updating, and deleting records). Instead, they're thinking about tasks , like
placing an order, shipping an order, and handling a customer complaint.

Many tasks match quite closely with a data operation, in which case you really don't have a problem.
The "register a new customer" task's clearly just a matter of opening the Customers table, and then
inserting a new record. You can take care of it with a simple form. However, the "place an order"
task's a little trickier. This task involves inserting records in more than one table (the Orders and
Order-Details tables), and using data from related tables (the Products and Customers tables) to
complete the order. You can create an ordinary form to do the job, but the form doesn't quite work
the way salespeople want (see Figure 17-10).

The same's true when it comes to the "ship an order" task. This task requires several stepschanging
the status of the order, logging the shipment, and updating the units-in-stock numbers. You could
deal with this task as several separate data operations, but it's a lot nicer if you create a single form
that takes care of the whole process.

Now VB's truly useful. With the right code, you can design an intelligent form that fits the way people
work. An intelligent form isn't just a way to add, edit, and insert records in a tableit's a tool that helps
run your business.

Figure 17-10. This form lets you insert records into the Orders and OrderDetails tables. However, it lacks a few frills people

expect in an order formlike a way to automatically fill in the price of each product you're ordering, the ability to calculate totals as you go,

and an option to add a new product on the fly.

In the following sections, you'll consider how to build better forms with some code-powered features.
The following forms are covered:

PlaceOrder lets you create a new order. It works in conjunction with the PlaceOrder_Subform,
which lets you add individual items to the order.

AddProduct lets you create a new product. You can use it directly from Place-Order form to
add a product in mid-order.

ShipOrders lets you update an order with shipment information. It also works with a form
named ReviewOrderDetails to show the items in the order.

You can check out the final result with the downloadable databases for this chapter (Section 3.4.2.3
).

Tip: It's always a good idea to name your form according to the task it performs (placing an order, shipping a task, and so on), rather

than the table it uses. This design helps you remember who's using each form, so you can tailor it to the right audience.

17.4.1. Keeping a Running Total

Few souls are brave enough to place an order without knowing exactly how much it costs. A typical
order form shows how much each line item costs (by multiplying the price and quantity information)
and the ever-important grand total (Figure 17-11).

Figure 17-11. The PlaceOrder form, with subtotals and a grand total.

Note: The PlaceOrder form also introduces a few refinements you already know about, like putting customer address information on a

separate tab, moving the automatically generated fields (the order ID and the order date) to the bottom of the window where they won't

distract anyone, and setting their Locked property (Section 13.2.2) to Yes to prevent changes. The form also has its Data Entry property

(Section 12.3.6) set to Yes, so you start creating a new order as soon as you open the form.

The line total's the only detail that doesn't require code. In fact, you can solve this problem by adding
a text box that uses the following expression to the PlaceOrder_Subform:

 =Quantity * Price

This expression works because the information you need (Price and Quantity) is located on the same
form as the calculate field. However, the grand total isn't as straightforward.

To be even a bit nicer, you can combine this with the Format function (Section 7.2.5) to make sure
you get the right number of decimal places and a currency symbol ($):

 =Format(Quantity * Price, "Currency")

In order to calculate the grand total, you need to use the Quantity and Price information in the
OrderDetails table. Unfortunately, the PlaceOrder form doesn't have any easy way to get this
information. Not only is this information shown somewhere else (in a subform), but it also involves
several separate records. Even if you retrieve the Quantity and Price information from the subform,
you can get only the values for the current record, not for the whole list of ordered items.

To solve this problem, you need to use a specialized Access function called a domain function . A
domain function can process an entire table and return a single piece of information. (To learn more,
see the box below.)

UP TO SPEED
Become a Master of Your Domain (Functions)

The domain functions are like the grouping functions you use in a totals query (Section 7.3). These
functions take a range of records, and then perform a calculation or lookup to arrive at a single
value.

Access includes eight domain functions:

DSum calculates the sum of multiple values. You can use it to calculate an order's total price.

DAvg calculates the average of multiple values. You can use it to calculate a product's average
price.

DCount counts the number of matching records. You can use it to count the number of items in
an order, or the number of orders a customer made.

DMin and DMax find the smallest or largest value in a series. You can use this function to find
bargain-basement or top-priced products.

DFirst and DLast extract the first or last value in a series. If you sort a list of orders by date,
then you can get the oldest or most recent order.

DLookup finds a value that meets specific criteria. You can use it to hunt through a table and
find thr product name for a given product ID.

All the domain functions take the same three parameters. The first parameter's the field (or
calculated expression) you want to retrieve or use in your calculation. The second parameter's the
table or query you're using. The third parameter contains any filter conditions you want to use to
narrow down the number of rows. If you're trying to find the average price of all the beverages sold
by Boutique Fudge, then you use the Price field (as the first parameter), Products table (the second
parameter), and filter it to include just those products in the Beverages category (the third
parameter).

To calculate the total of all the items in an order, you use the DSum function. The information you
need's in the OrderDetails table, but you want to select only those records where the OrderID field
matches the current order. Finally, you need to add together the cost of each item. And as you know
from before, you calculate the cost of a line by multiplying together the Price and Quantity fields.

With this information in mind, you can create the following calculated field:

 =DSum("Price*Quantity","OrderDetails","OrderID=" & [ID])

The first argument's the calculated field that you're taking from each record. The second argument's
the name of the table you're using. The third argument filters out just those records that match the
current order. If the current order has an ID of 455, then the final parameter matches all
OrderDetails records where OrderID=455 . Once again, you can wrap the whole thing with the
Format function if you want the final number to look like a currency value.

This calculated field does the trick, but you need one more enhancement. Ordinarily, Access
computes calculated fields the first time a record's shown. However, you need to make sure that the
grand total's recalculated every time you make a change in the list of ordered items. To accomplish
this, you need to call the Form. Recalc method when an OrderDetails record's inserted, updated, or
deleted. Here's the code that does the trick:

 Private Sub Form_AfterInsert()
 Forms("PlaceOrder").Recalc
 End Sub

 Private Sub Form_AfterUpdate()
 Forms("PlaceOrder").Recalc
 End Sub

 Private Sub Form_AfterDelConfirm(Status As Integer)

 Forms("PlaceOrder").Recalc
 End Sub

Now you can create and fill out an order, without wondering how much it's going to cost.

17.4.2. Getting Price Information

As you learned in Chapter 5 , sometimes a table needs to store point-in-time datainformation that's
copied from one table to another because it might change over time. A good example is product
prices, which evolve over time. ("Evolve" is a polite way to say, "increase relentlessly.") So a
product's current isn't necessarily the price at which you ordered it last week. In order to keep track
of how much you owe the company, the selling price of a product needs to be stored in the
OrderDetails table.

However, this system creates a headache when you fill out an order. Choosing an order item's easy
enoughyou just need to select the product from a lookup list. However, the lookup list sets the
ProductID field only for the OrderDetails record. It's up to you to figure out the correct price, and
then copy it from the Products table to your new record.

Fortunately, you can make this much easier. You can react to the On Change event in the ProductID
list, which is triggered every time a product's selected. Then, you can use the DLookup domain
function to find the corresponding price, and insert it in the Price field automatically. Here's the code
that does it:

 Private Sub ProductID_Change()
 Price = DLookup("Price", "Products", "ID=" & ProductID)
 Quantity = 1
 End Sub

This code also sets the Quantity field to 1, which is a reasonable starting point. If necessary, you can
edit the Price and Quantity fields after you pick your product. Or, to create a more stringent form,
you can set the Locked property of the Price control to Yes, so that no price changes are allowed (as
in the Boutique Fudge database). This way, when you create an order, you're forced to use the price
that's currently in affect, with no discounting allowed.

Note: You can use the same technique to fill in other point-in-time data. You can grab the address information for the current customer,

and use that as a starting point for the shipping address. And you can even use the DLookup function to create more sophisticated

validation routines. You could use this technique with the Cacophoné Music School database, to look up prerequisites and maximum

class sizes before letting a student enroll in a class.

17.4.3. Adding a New Product During an Order

Boutique Fudge is a customer-driven company. If someone wants an innovative product that's not
yet in the product catalog (like fudge-dunked potatoes), the company's willing to create it on

demand.

Ordinarily, the ProductID lookup list doesn't allow this sort of on-the-fly product creation. If you try to
type in a product that doesn't exist, then you get a stern reprimand from Access. However, adding
new list items on the go is a common Access programming technique, and dedicated event's
designed to help you out: the On Not In List event.

If you type in a product that doesn't exist and you're using the On Not In List event, then Access
starts by running your event handling code. You can create the item if you want, show a different
message, or correct the problem before Access complains.

The On Not In List event has two parameters: NewData and Response. NewData is the information
that was typed into the list box, which isn't found in the list. Response is a value you supply to tell
Access how to deal with the problem.

Here's the basic skeleton of the subroutine that Access creates if you choose to handle the On Not In
List event for the field named ProductID:

 Private Sub ProductID_NotInList(NewData As String, Response As Integer)
 End Sub

When the On Not In List event occurs, you should first ask the person using the form if they meant to
enter a product that doesn't exist. You can take this step using the familiar MsgBox function in a
slightly different way. First, you need to add a second parameter that tells Access to create a
Message box with Yes and No buttons. Then, you need to get hold of the return value from the
MsgBox function to find out which button was clicked:

 Dim ButtonClicked
 ButtonClicked = MsgBox("Do you want to add a new product?", vbYesNo)

This code creates a variable named ButtonClicked, and then shows the message. When the person
closes the Message box (by clicking Yes or No), Visual Basic puts a number into the ButtonClicked
variable that tells you what happened. The number's 6 if Yes was clicked, or 7 if No was clicked. But
rather than deal directly with these numbers and risk making a mistake, you can use the helpful
constants vbYes (which equals 6) and vbNo (which equals 7).

Here's the partially completed code for the On Not In List event handler. It shows the message
asking if a new item should be added (Figure 17-12), and then cancels the edit if the person using
the form chooses No:

 Private Sub ProductID_NotInList(NewData As String, Response As Integer)

 ' Show a Yes/No message and get the result.
 Dim ButtonClicked
 ButtonClicked = MsgBox("Do you want to add a new product for " & _
 NewData & "?", vbYesNo)

 ' Visual Basic gives you hand vbYes and vbNo constants
 ' that you can use to find out what button was clicked.
 If ButtonClicked = vbNo Then

 ' Cancel the edit.
 ProductID.Undo

 ' Tell Access not to show the error message.
 ' You've already dealt with it.
 Response = acDataErrContinue

 Else
 ' (Put some code here to add a new product.)
 End If

 End Sub

Then you supply the code that adds the new product. In this example, it doesn't make sense for your
code to add the product completely on its ownafter all, a product needs other information (like price
and category details) before it's considered valid. Instead, you need to show another form for adding
products. The DoCmd.OpenForm method's the key:

 ' Tell Access not to worry, because you're adding the missing item.
 Response = acDataErrAdded

 ' Open the AddProduct form, with three additional arguments.
 DoCmd.OpenForm "AddProduct", , , , , acDialog, NewData

Figure 17-12. Fudge-Dunked Potatoes is not a currently offered product. When you type it in, and then hit Enter, your code

asks whether you really intend to add this product.

The two additional arguments you use with the OpenForm method are quite important:

acDialog opens the form in dialog mode, which means Access puts the code in the
ProductID_NotInList on hold until the AddProduct form's closed. That step's important because
once the adding process is finished, you'll need to run more code to update the PlaceOrder
form.

NewData takes the newly typed-in information, and sets it in the AddProduct. OpenArgs
property. That way, the AddProduct form can retrieve this information when it starts up, and
then adjust itself accordingly.

Here's the code you need in the AddProduct form to copy the newly entered product name (the value
you passed using the NewData variable in the previous code snippet) into the ProductName field

when AddProduct first loads:

 Private Sub Form_Open(Cancel As Integer)
 ProductName = Form.OpenArgs
 End Sub

Figure 17-13 shows what this form looks like.

Once you finish entering all the product information, you can close the Add-Product form. At that
point, a little more code runs in the ProductID_NotInList subroutine. This code's placed immediately
after the DoCmd.OpenForm statement. Its job is to update the new order item to use the product
you've just entered:

Figure 17-13. The AddProduct form lets you supply the rest of the information for the new product you want to create. Notice

how the form opens as a pop-up form, and Access automatically assumes you're inserting a new record (not reviewing existing

products). Access acts this way because the Pop Up and Data Entry properties of the form are both set to Yes.

 ' Cancel the edit. That's because you need to refresh the list
 ' before you can select the new product.
 ProductID.Undo

 ' Refresh the list.
 ProductID.Requery

 ' Now find the ProductID for the newly added item using DLookup.
 ProductID = DLookup("ID", "Products", "ProductName='" & NewData & "'")

Note: This code works even if you cancel the new product by hitting the AddProduct form's Esc key. In this case, the DLookup function

can't find anything, so it returns a null (empty value) to the ProductID field. As a result, you get the familiar Access warning message

telling you the product you picked isn't in the list.

There's one more detail. By the time the On Not In List event occurs, the On Change event's already
taken place. So you just missed your chance to run the code you used earlier to insert the
corresponding price into the Price field in the list of order items.

Fortunately, you can solve this problem quite easily. You just need to add one more line of code that
tells Access to go ahead and run the event handler (the ProductID_Change subroutine) again:

 ProductID_Change

To see the complete code for this example in one place, refer to the sample Boutique Fudge database
for this chapter.

17.4.4. Managing Order Fulfillment

Now that you've perfected the ordering process, you can turn your attention to what happens next.

In the Boutique Fudge database, every record in the Orders table has an Order-Status field that
keeps track of the, well, status. Newly created order records have a New status. In the stock room,
the warehouse workers look for orders with the New status, and pick one to start working on. At that
point, they change the status of this order to In Progress, so nobody else tries to ship it at the same
time. Finally, when the order's complete, they change it to Shipped, and then record the exact time
in the ShipDate field.

Logically, this model makes sense. However, it's a bit tricky using ordinary tables and forms. In order
to follow this workflow, the warehouse staff needs to modify the status of an order record several
times, remember to record the ship date, and avoid changing other details. If they miss a stepsay
they never put the order into In Progress statusit's possible that more than one employee could try
to complete the same order.

The solution's to create a ShipOrders form that guides the warehouse workers through the right
steps. Initially, this form shows a list of orders with minimal information (Figure 17-14).

Figure 17-14. The list of orders is sorted so that the oldest orders (which should be processed first) appear at the top of the

list. Each field's Locked property's set to Yes, so nobody can edit any data. However, next to each order is a Process button that starts

the order fulfillment process. (You could also add filtering to this form, so that you see only orders with certain statuses.)

When someone clicks the Process button, several steps need to take place. Here's a step-by-step
walk-through of the code, one chunk at a time.

First, your code needs to refresh the record. That step catches whether someone else has started
processing the order on another computer:

 Private Sub ProcessOrder_Click()

 Form.Refresh

Next, your code needs to check the record's status. If it's anything other than New, that order isn't
available for processing:

 ' The StatusID for New is 2.
 If StatusID <> 2 Then
 MsgBox "This order is not available."

Otherwise, you need to switch the status to In Progress and save the record right away, to make
sure no else tries to get it:

 Else
 ' The StatusID for In Progress is 3.
 StatusID = 3

 ' Save the change.
 DoCmd.RunCommand acCmdSaveRecord

Note: It's extremely important to save the record (using the DoCmd. RunCommand method, as shown here) in this sort of situation.

Otherwise, the order record remains in edit mode, and the new status isn't saved in the database. Other people might start processing it,

because they have no way of knowing that you've changed the status.

Now it's time to launch the ReviewOrderDetails form, which displays a read-only view of all the items
in the order (Figure 17-15). The form's opened in dialog mode, which locks up the ShipOrders form
until the order fulfillment process is complete:

 DoCmd.OpenForm "ReviewOrderDetails", , , _
 "OrderID =" & ID, , acDialog
 End If

 End Function

The ReviewOrderDetails form gives the warehouse staff two choices. If they click Ship, then Access
changes the order status to Shipped, and the process is complete:

 Private Sub Ship_Click()
 ' Close this form.
 DoCmd.Close
 ' Switch back to the ShipOrders form.
 DoCmd.OpenForm "ShipOrders"

 ' Update the order.
 ' The StatusID for Shipped is 4.
 Forms("ShipOrders").StatusID = 4
 DoCmd.RunCommand acCmdSaveRecord
 End Sub

Figure 17-15. You don't need to include pricing details in the ReviewOrderDetails form. It's simply designed to give the

warehouse people the information they need as efficiently as possible. The ReviewOrderDetails form also uses a query join to get some

related data, like the PartNumber, from the Products table.

In the ReviewOrderDetails form, the properties Control Box and Close Button are both set to No. That
way, the window doesn't give the warehouse staff any way to close it except to click the Ship or
Cancel buttons. (If you don't use this approach, then you need to write extra code that resets the
order's status if someone clicks the X icon in the top-right corner to close the ReviewOrderDetails
form.)

Tip: This spot's also a good place to use DoCmd. OpenReport to print out a report that creates a shipping insert with a list of all the

products in the order.

But if they click Cancel (perhaps because they've discovered they don't have the right items in
stock), similar code's used to return the order to New status:

 Private Sub Cancel_Click()
 ' Close this form.
 DoCmd.Close

 ' Switch back to the ShipOrders form.
 DoCmd.OpenForm "ShipOrders"

 ' Update the order.
 Forms("ShipOrders").StatusID = 2
 DoCmd.RunCommand acCmdSaveRecord
 End Sub

This part completes the code you need to coordinate order processing. Like the forms you learned
about in Part Four of this book, the forms in this example draw all their information from your
database's tables. But unlike those Part Four examples, these use code to perform some of the work
automatically. This difference changes your forms from mere data-entry tools into supercharged
workflow tools.

Tip: You could also create a special status value to denote orders that have been attempted but couldn't be completed (like On Hold or

Waiting For Stock). That way, the warehouse employees would know not to keep trying the same orders. If you take this step, then make

sure you modify the code in the ProcessOrder_Click subroutine, so people can process orders with this status.

17.4.5. Updating Stock Numbers

Thanks to the ever-so-smart ShipOrders form you saw in the previous section, business is running
smoothly at Boutique Fudge. However, one day the warehouse employees come to senior
management with a complaint. Although orders are sailing through without a hiccup, the product
inventory information isn't keeping up. No one remembers to adjust the UnitsInStock information, so
it's becoming increasingly useless.

A truly automated solution would automatically update the UnitsInStock information whenever an
order ships. And after all, isn't that what Access is designed to do best?

This challenge is entirely unlike the other problems you've solved so far, because it forces you to
make a change in a completely different set of recordsrecords that aren't being displayed in any
form.

You already know that you can use the domain functions (Section 17.4.1) to retrieve information
from other tables. But unfortunately Access doesn't have a similar set of functions that lets you make
changes. Instead, you need to turn to a completely new set of objects, called the data access objects
(or just DAO for short).

DAO lets you perform any data task you want, independent of your forms. However, DAO is a bit
complex:

You need to use DAO in a very specific way . If you use the methods in the wrong order or
leave out a step, then you run into an error. Often, it's easiest to start with an example that

works (like the sample code included with this chapter), copy it, and then alter it as needed.

DAO doesn't use query objects . Instead, it forces you to write SQL statements. You learned
how to write a basic SQL command in Chapter 6 (Section 6.2.3).

DAO involves two essential techniques. First, there's the CurrentDb.Excecute method, which lets you
run a direct SQL command by supplying it in a string:

 CurrentDb.Execute MyUpdateCommand

This method's a quick and dirty way to make database changes, like sweeping update, delete, or
insert operations.

The second essential technique's to retrieve records using a specialized object called the Recordset .
To use a Recordset, you must begin by using the CurrentDb. OpenRecordset method, and supplying a
string with an SQL select command:

 Dim Recordset
 Set Recordset = CurrentDb.OpenRecordset(MySelectCommand)

The Recordset represents a group of records, but it lets you access only one at a time. To move from
one record to the next, you use the Recordset. MoveNext method. To check if you've reached the
end, you examine the Recordset. EOF property, which stands for end-of-file. When this property's
True, you've passed the last record.

You most often use a Recordset in a loop. You can use Recordset.EOF as the loop condition, so that
the loop ends as soon as Access reaches the end of the Record-set. Inside the loop, you can retrieve
field values for the current record. At the end of each pass, you must call MoveNext to move on:

 Do While Recordset.EOF = False

 ' Display the value of the ProductName field.
 MsgBox Recordset("ProductName")

 ' Move to the next record.
 Recordset.MoveNext

 Loop

With these bare essentials in mind, you can make your way through the following code, which adjust
the product stock values based on a recently shipped order. (A line-by-line analysis follows the code.)

 1 Sub UpdateStock()

 ' If an error occurs, jump down to the DataAccessError section.
 2 On Error GoTo DataAccessError

 ' Create a SELECT command.
 3 Dim Query
 4 Query = "SELECT ProductID, Quantity FROM OrderDetails WHERE OrderID=" & ID

 ' Get a recordset using this command.
 5 Dim Recordset
 6 Set Recordset = CurrentDb.OpenRecordset(Query)

 ' Move through the recordset, looking at each record.
 ' Each record is a separate item in the order.
 7 Do Until Recordset.EOF

 ' For each item, get the product ID and quantity details.
 8 Dim ProductID, Quantity
 9 ProductID = Recordset("ProductID")
 10 Quantity = Recordset("Quantity")

 ' Using this information, create an UPDATE command that
 ' changes the stock levels.
 11 Dim UpdateCommand
 12 UpdateCommand = "UPDATE Products SET UnitsInStock = UnitsInStock-" & _
 13 Quantity & " WHERE ID=" & ProductID

 ' Run the command.
 14 CurrentDb.Execute UpdateCommand

 ' Move to the next order item (if there is one).
 15 Recordset.MoveNext

 16 Loop

 ' Time to clean up.
 17 Recordset.Close
 18 CurrentDb.Close

 19 Exit Sub

 20 DataAccessError:

 ' You only get here if an error occured.
 ' Show the error.
 21 MsgBox Err.Description

 22 End Sub

Here's what takes place:

Line 1 declares a new subroutine. Because this code's fairly complex, it makes sense to put it in
a separate subroutine, which you can call when the Ship button's clicked and the order's
shipped.

Line 2 tells Access to head down to the end of the subroutine if an error takes place. Errors are
always possible with data access code, so it's good to be on guard.

Lines 34 create the SQL command you need to select the OrderDetails records for the current
order. (See Section 6.2.3.1 for more about SQL SELECT commands.)

Lines 56 execute that command, and get all the matching records in a Recordset.

Line 7 begins a loop that moves through the entire Recordset.

Lines 810 get the ProductID and Quantity fields for the current OrderDetails record (the first
one in the Recordset).

Lines 1113 use this information to build a SQL UPDATE command. The command subtracts the
number of items ordered from the total number in stock. A sample completed command looks
like this: UPDATE Products SET UnitsInStock = UnitsInStock-4 WHERE ID=14 . This subtracts 4
units from product 14.

Line 14 performs the update.

Lines 1516 move to the next record and repeat the update process (until no more order items
remain in the Recordset).

Lines 1718 perform cleanup.

Line 19 exits the procedure. If you made if here, congratulationseverything worked without a
hitch!

Lines 2022 are only processed if an error occurs somewhere. In this case, the error
description's shown in a Message box.

This code's a fair bit more ambitious than anything you've seen so far. However, it builds on all the
skills you've honed over the last three chapters. Once again, the best way to get comfortable with
this code is to download the sample database, see it in action, and try changing it. Happy
experimenting!

NOSTALGIA CORNER
DAO vs. ADO

In an effort to make life more confusing, Microsoft introduced a second data access technology
named ADO many moons ago. Both DAO and ADO let you perform data tasks using handy objects.
The key difference between them is that Microsoft designed ADO to be an all-purpose data access
technology that works with other database products, like SQL Server, while DAO's a strictly Access-
only affair.

Some Access programmers think (incorrectly) ADO's the successor to DAO, and a better choice when
writing code for an Access database. (In fact, Microsoft may even have said that at one point, but
they've destroyed all the evidence.) Today, the official story's that DAO's the better way to go,

because it's fine-tuned for Access. That means DAO's easier to use, and offers better performance in
most cases. The only people who use ADO are seasoned VB programmers who already know how it
works, and don't want to bother learning DAO, or people who need an exotic feature that ADO
provides but DAO doesn't.

Part VI: Sharing Access with the Rest of
the World

Chapter 18: Sharing a Database with Multiple Users

Chapter 19: Importing and Exporting Data

Chapter 20: Connecting Access to SQL Server

Chapter 21: Connecting Access to SharePoint

18. Sharing a Database with Multiple Users
Now that you've created the perfect database, you'd probably like to share it with friends and
colleagues. In the hands of a single person, Access is a top-notch tool for managing information. But
when you share the love with a group of people, it becomes an even better way to work together.

Sharing databases is particularly important if your database plays a behind-the-scenes role in an
organization. Imagine you create a database that tracks company projects and their due dates.
(Often, a database like this starts out as a timesaving convenience in the hands of an Access fan with
a little too much free time.) Before long, other departments want in so they can keep track of their
own projects. And the possibilities don't stop there; if you share the database with a wide enough
audience, you can link together all sorts of related tasks. Employees can log the hours they work on
each project. Product testers can submit outstanding issues that affect a project. Team leaders can
identify time-taxing projects, head honchos can calculate salary bonuses, and the CEO can get a
bird's eye view of all the work that's taking place in the company. Before long, it becomes difficult to
imagine life without your Access database.

In this chapter, you'll learn how to share your database with a small team. You'll consider the
potential pitfalls, and you'll learn what you need to do to keep everything running smoothly.

18.1. Opening Up Your Database to the World

When you decide to share your data, the first decision you need to make is whether or not other
people need to change any of the information. As you'll see, passing copies of your database around
is easy. But getting people to work on the same database file at the same time is a trickier
proposition.

Overall, you can take four basic approaches to get your data out to the masses:

Export your data. You can take the data in your database and export it to another format (like
an HTML Web page or an Excel spreadsheet). This is the way to go if the people who need to
see your data don't have Access. You'll learn how to export data in Chapter 19.

Copy your database. You can give others a copy of your database. For example, if Uncle Earl
has a copy of Access, you can email him your list of family addresses. The limitation with this
approach is that there's no easy way to sync up the changes in different copies. If Uncle Earl
adds a few new people to your database, your original remains the same. If you change the
original, Uncle Earl's copy is out of date.

Switch to a server software. You can move your data to an industrial-strength sever product
like SQL Server or SharePoint. Once you do, a virtually unlimited number of people will be able
to get at the data. Each person uses his or her own copy of Access to connect to the server that
has the central repository of information. The obvious drawback to this approach is
complexitysetting up either of these products is an ambitious task even for technically savvy
people. You'll try two of the best options in Chapter 20 (SQL Server) and Chapter 21
(SharePoint).

Use the multiuser features in Access. You can place your database in a shared location (like
a network drive) so several people can use it simultaneously. This way, everyone's working with
the same set of data (and Uncle Earl's changes don't get lost). With this method, Access has to
keep everyone's work coordinated. If your group is smallsay, with no more than 40 people using
your database at oncemultiuser sharing should work. But if your group is large, Access isn't the
best choice. Instead, you need a server product that's built from the ground up for high volume,
multiuser access. (The next section gives you a handy checklist to help you decide if this
approach is for you.)

This chapter focuses exclusively on the last item in the listthe multiuser support that's hardwired into
Access. But before you get started, it's important to understand the limits you'll face so you can
assess whether or not Access sharing can meet your needs.

18.1.1. How Access Sharing Works

The database sharing features in Access are easy to understand. First, you place your database file in
a location where everyone can get to itlike a folder you're sharing on your computer, or (better yet) a
spot on a server computer on your company network. Now, anyone who wants to use the database

simply needs to open the database file.

Sounds easy, right? Not so fast. Before you rearrange your entire company around a single database
file, you need to crunch a few numbers. Here are some indications that suggest Access sharing will
work for you:

No more than 40 people use the database at once. The key part is how many people are
using the database at once. You're free to share the same database with hundreds of users, so
long as they don't all open it at the same time.

Note: This number (40) is a sensible recommendation, not a set-in-stone rule. Some Access gurus have designed databases

that can withstand 90 to 100 simultaneous users. However, without some serious (and complex) optimizations, you're likely to hit

a brick wall much sooner.

No more than 15 people change the database at the same time. Reading the database is
easy, but updating it presents some serious challenges. One obvious problem occurs if more
than one person tries to change the same record at the same time, but in different ways. And
because of the way Access is designed, even changes that shouldn't clash with one another can
slow down your overall performance. You'll tackle this issue later in this chapter when you
consider locks (Section 18.3.3).

Note: This number (15) is just a conservative guideline. If different people are making changes in completely different tables, you

may be able to squeeze in more updates at once. Conversely, if everyone wants to change the same few records, you may run

into trouble even earlier. If in doubt, try it out.

The structure of the database changes infrequently. In other words, you don't expect to
regularly redesign your tables, add new fields, or tweak relationships. Ideally, you'll perfect all
your tables before you share the database. And for best results, only one person should have
the role of Chief Table Designer and be responsible for changing the database structure when
needed.

Different people tend to work with different tables. If everyone who uses the database is
performing the same task (and accessing the same table), you've got a problem. But if one
person maintains the product catalog, five more enter orders, and another six log shipments,
you're in a much better situation. Even though everyone's using the same database at once,
their work doesn't overlap.

Your database isn't mission-critical. Data is always important. But if you're running an e-
commerce company with a Web site that's live 24 hours a day, you can't afford even a
momentary glitch. Unfortunately, Access can't guarantee that kind of stability. Although it's
rare, a sudden network problem or a computer failure that happens while someone's in the
middle of making a change could conceivably damage your database.

Note: All Access fans should perform regular database backups throughout the day. You can use a scheduling tool (like Windows Task

Scheduler) to automate this process.

It's no exaggeration to say that shared Access databases are the backbone of many small

companies. But if you've reviewed the limitations of Access sharing and decided that Access can't fill
your needs, it's time to step up to a more powerful product like SQL Server. (Don't panica free
version is available, and you can manage your data in the familiar Access interface.) You'll learn
about SQL Server in Chapter 20 and SharePoint Server in Chapter 21.

On the other hand, if Access does fit your needs, congratulationsyou're moments away from
transforming your lonely, single-person database into a resource your entire company can use. Just
read on.

18.2. Preparing Your Database

If you've made it this far, you've decided that the multiuser features in Access are everything you
need. However, before your database goes public, you may want to make a few changes. The most
important of these is splitting the database a critical but often overlooked step that gives your shared
database extra reliability.

Note: When you're sharing your data, it's essential to use a split database. Sharing an ordinary database can lead to all sorts of odd

quirks that will make your database go wonky.

18.2.1. Understanding Split Databases

A split database is a database that has its objects divided into two separate files:

The back-end database contains the raw datain other words, the tables and nothing but.

The front-end database contains everything you use to work with the tables. This includes all
the other types of database objects, like queries, reports, forms, and macros.

Once you've split your database, you place the back-end database in a shared location (like a
network drive). However, the front-end database works a little differently. You copy it to every
computer that's going to use the back-end database. Figure 18-1 shows how it works.

Split databases offer several advantages:

Performance . When you use a split database, each client has a copy of the objects they need
to uselike formsready and waiting on their computer. That means you don't need to retrieve the
same information from the shared database, which would take more time (and generate more
traffic on your network). Instead, the only thing you need to get from the shared database is
the data you want to work with.

Easier updating . It's relatively safe for people to change the data in a shared database, but
Access isn't as good at sorting out the confusion if multiple people try to change the design of
your database objects. A split database avoids this problem, because the objects that need to
be tweaked most often, like queries, reports, and forms, are located in the front end. If you
want to modify these objects (or add new ones), you can safely change the front end on one
computer, and then distribute it to everyone who needs it. This approach isn't just easierit's also
more reliable, because there's no chance of an unsettling phenomenon called database
corruption occurring (Section 18.4).

Figure 18-1. In a system with a split database, you have one back end, which centralizes the data, and several front

endsone for each person connecting to your database.

Different people, different front ends . When you use a shared database, you can create
different front ends for different types of peoplefor example, the marketing department needs
reports that show sales information, and the warehouse people need a form that shows
outstanding orders. You can even use this approach to make sure people don't see forms,
reports, and tables that don't apply to them, which reduces the risk of minor errors (like when
the CEO accidentally wipes out the entire product catalog). But don't go too wildthe more front
ends you create, the more you'll need to maintain.

Note: Technically speaking, you won't make your database more secure by giving people less capable front ends. After all, savvy

Access users could just create their own front ends and use them to get unlimited access to the back-end database. However, even

though the front end can't stop a malicious attacker, it can minimize the danger of a careless or overly curious user.

You have two ways to split a database. You can use a wizard, or you can do it by hand using the
importing and exporting features in Access. The next sections describe both methods.

WORD TO THE WISE
Finding a Home for Your Database on the Network

Before you split your database, you should know where you want to place the back-end database file.

One (somewhat risky) option is to share it directly from your own computer. All you need to do is
drag your database to the Shared Documents folder or create a new shared folder. The exact process
differs depending on your version of Windows and the way your computer is configured, but these
instructions do the trick on most Windows XP boxes:

Fire up Windows Explorer.1.

Find the location where your database is stored, right-click that folder, and then choose
Properties.

2.

Switch to the Sharing tab, and then choose Share this Folder.3.

Optionally, configure an alternate name that will be used for the folder, and then set a limit on
how many people can access the folder at one time.

4.

Click OK.5.

Now other people can get to your computerand your databaseby browsing through My Network
Places.

If this process seems a little too easy to be true, well, it is. The problem is that your computer isn't
an ideal network server. If you turn off your computer to go on vacation, everyone is abruptly locked
out of your database. Similarly, if you're busy running Revenge of the Demon Spawn Legion Part IV
while other people are trying to use your database, their database performance (and your gaming
experience) suffers. An even more serious problem occurs if you reboot your computer, at which
point everyone who is currently using the database is rudely disconnected. This is guaranteed to lose
somebody's work, and it may even cause database corruption (Section 18.4).

For all these reasons, it's strongly recommended that you place your database on a server computer
. A server computer isn't necessarily any different from your computerin fact, it may just be an
ordinary Windows computer that's plugged into the network. The difference is that no one uses this
computer directly. Instead, it's left alone so it can concentrate on the important job of doling out data
to everyone who needs it.

18.2.2. Splitting a Database with the Wizard

The easiest way to split a database is to use the handy wizard that Access includes for just this
purpose. The wizard creates a new back-end database and moves all the tables out of the current
database and into the back end. The current file is left with all the other database objects, and so it
becomes the front end.

Here's how to use the wizard:

Open any database that has both tables and some other objects (like queries, reports, or1.

forms) .

You can try these steps with the Boutique Fudge and Cacophoné Studios databases you used in
previous chapters.

1.

Before you begin, it's a good idea to make a database backup .

Hey, you never know when something could go wrong. To make your backup, just copy the Access
database file to another folder (or choose Office button Manage Back Up Database to get
Access to do it for you).

2.

Choose Database Tools Move Data Access Database .

The first window of the Database Splitter wizard appears (see Figure 18-2).

Figure 18-2. The first step of the wizard is fairly unremarkable. It describes how the wizard works and reminds you to make

a backup before you go any further.

3.

Click Split Database .

A window appears that prompts you to pick a location and file name for the back-end database.

Remember, you need to choose a location that everyone in your company or organization can
access. (See the box "Pointing to a Network Location" in Section 18.2.2 , for some tips.)

Note: Alternatively, you can save the back end on your computer for the time being, and then move it to the shared location later on (at

which point you'll need to update the table links, as described in Section 18.2.3).

4.

5.

Choose a file name for the back-end database, and then click Split (Figure 18-3) .

Access begins exporting the tablesin other words, copying them from the current database to the
new back-end database file. This could take some time.

When Access is finished, it shows the message "Database successfully split." It has successfully
created the back-end database. The database that you started with (the one that's currently open)
is now the front-end database. It no longer contains the tables with all the data; instead, it has a
set of table links that let you pull the data out of the back-end database. (You'll learn how these
table links work in the following section.)

Figure 18-3. Access recommends adding_be to the end of your database's file name to identify the back end. For example,

JoesTaxidermy.accdb becomes JoesTaxidermy_be.accdb.

UP TO SPEED
Pointing to a Network Location

You have two ways to point to a place on a network. The first option is to use a mapped network
drive , which takes a network location and gives it a drive letter on your computer. Mapped network
drives look just the same as ordinary drivesfor example, you can have a drive C: that represents
your hard drive, a drive D: that represents your CD-ROM, and a drive F: that represents a place on
the network.

The problem with mapped network drives is that they may be configured differently depending on

5.

the computer. For example, the drive you think of as F: may appear as drive H: on someone else's
computer. As a result, the front-end database that works on one computer won't be able to find the
back-end database it needs on another. Fortunately, this problem is easy to fix. You just need to
point the front end to the appropriate back-end location, as described in Section 18.2.3 .

If you want to avoid this confusion altogether, you can use a UNC path instead of a mapped
network drive. UNC (universal naming convention) is a standard way to create paths that point to
locations on the network. The advantage of UNC paths is that they don't vary from one computer to
the next. In other words, the UNC path that works on one computer will also work on any other
computer on the network.

You can recognize a UNC path by its starting characterstwo backslashes. Here's the basic form:

 \\NetworkedComputerName\SharedFolderName

An example of a UNC path is \\SalesComputer\Database . When you browse to a computer through
My Network Places, Access creates a UNC path that points to the location you choose.

Some Access experts report better results when they use UNC paths to tell Access where to find a
database. In rare, difficult-to-reproduce situations, using the mapped network drive syntax can
cause Access to give a "too many users" error when you attempt to open a shared database, even
when you're well within the maximum user limit (a theoretical 255 users).

Now it's time to distribute the front end to everyone who needs to use the database .

It's up to you how you want to share your front end. You could email it, burn it on a CD and hand it
out, or just pop it in a shared location. However, it's important that everyone understands they
need to copy the front end to their computer before they use it.

6.

Note: If you distribute the front end by placing it on the network, you run the risk that people will launch the front end straight from the

network, without copying it to their computers first. Left unchecked, this introduces all the problems of ordinary (non- split) databases,

like hampered performance and greater risk for errors.

FREQUENTLY ASKED QUESTION
What About Old Versions of Access?

What happens if some of my coworkers have older versions of Access?

In an ideal world, everyone has a copy of the latest and greatest version of AccessAccess 2007. In
the real world, you're likely to find low-tech renegades who still love Windows 95.

If you support Access 2003 lovers, you need to store the back end in the Access 2003 format. (See
Section 1.2.2 for information about how to save a copy of your database in a different format.) As for
the front end, you'll probably want to keep two versionsone for the Access 2007 club and another for
Access 2003 folks. You'll lose out on some features in the Access 2003 format, but you don't need to
lock the technologically challenged out of your database.

18.2.3. How Linked Tables Work

The concept of a split database seems straightforward enough. One file (the back end) stores the raw
data, while another (the front end) gives you the tools for working with it. But there's one detail that
you haven't considered yetnamely, how does the front end get access to the tables in the back end?
The secret is table linking .

Linking lets one database see a table in another database file. You can use linking in any databasein
fact, you can choose to use it even if you won't be sharing your database. For example, you can
divide your tables into two or more database files to get around the size limit (which is 2 GB, or
gigabytes, per database file). Or, you can use it to help you organize a sprawling database with
dozens of tables. Finally, you may also find it helps you separate public information from supersecret
details. If you put the tables with the secret information in a separate database, you're free to share
copies of your main database without worrying about sensitive data getting into the wrong hands.

Thanks to linking, all the back-end tables still appear in the front-end database (see Figure 18-4).
However, the actual data is in a separate file. When you open or otherwise interact with a linked
table, Access heads to the linked file to get the information you need.

Figure 18-4. These tables have an arrow icon next to them, which indicates they're linked tables. They aren't actually stored in

the current database file, but Access knows where to find the information when it needs it.

The only disadvantage to linked tables is that there's always a chance Access will go looking for a
linked table in another database file, but not be able to find it. This happens if the back-end database
file is moved to another folder or if it's renamed.

Note: If your database has a bad link, when you attempt to open the table (or another object that uses the table, like a query or a report),

you get a message informing you that Access can't find the file you need.

Fortunately, it's easy to update your links. Here's how:

Choose Database Tools Database Tools Linked Table Manager (or right-click
any linked table, and then choose Linked Table Manager) .

The Linked Table Manager window appears, with a list of all the linked tables in your database
(Figure 18-5).

1.

Place a checkmark next to each link you need to change .

If you need to update all your links, click Select All.

Figure 18-5. This database has eight linked tables. All the links point to the same back-end database, which is

common but isn't required.

In most cases, all your links will point to the same database file. But if you need to point your
tables to different files, then select "Always prompt for new location."

2.

Click OK .3.

Access pops open the familiar file selection window. Browse to the database file that has your
linked table, select it, and then click OK.

If you choose "Always prompt for new location," Access shows a separate file selection window
for each link. Look at the window title to find out what table you're updating. If you didn't
choose "Always prompt for new location," you can update all your links in one step.

3.

TROUBLESHOOTING MOMENT
The Mysterious "File Already in Use" Error

Now that you've created a shared database, you expect it to support a whole crowd of people. That's
why it comes as quite a shock when you get the cryptic "file already in use" error. After all, aren't
shared databases supposed to remain available even when someone else is using them?

This error occurs because someone has already opened the database in Exclusive mode . Exclusive
mode (discussed in Section 18.3.4) lets a single person tie up the database and lock out everyone
else. The trick is that under certain circumstances, Access can use Exclusive mode even when you
don't tell it to.

The most common problem occurs when someone doesn't have the correct permissions for the
shared folder where the shared database is stored. (Permissions are a Windows security concept that
determines how users are allowed to use files and folders.) Specifically, a problem occurs if you are
the first person to open the database, and you don't have permission to create new files . In this
situation, Access can't create the .laccdb file that tracks locks (see Section 18.3.3). With the .laccdb
file, Access has no way to coordinate multiple users. Instead, it quietly switches to Exclusive mode,
which freezes out everyone else.

The obvious solution is to identify everyone who needs to use the database, and then make sure
they're allowed to create new files in the shared folder. Of course, this problem wouldn't be nearly as
confusing if Access could warn you when it's not able to open a database normally and needs to use
Exclusive mode.

18.2.4. Manually Splitting a Database

You don't need to use the wizard to split your database. You can move tables into a separate
database file on your own, and then create links by hand. The main reason that you'd use this
approach is because you want to split your database into more pieces for example, you want one
front end and four-back end files.

There are some good reasons for subdividing your back end. They include:

Better reliability . Essentially, if one file is damaged, the others will still live on unaffected.

Better security . Using the tools of the Windows operating system, you can control who can
open a specific file. You can use this to your advantage with split databases to lock people out of
parts of the back end where they don't belong.

Leaving room to grow . As mentioned earlier, Access limits databases to 2 GB. If you plan to

store large amounts of records with attachments (like pictures), it's a good idea to make sure
plenty of space is available now and for the foreseeable future.

To split a database by hand, you need to use the importing and exporting features in Access. The
following steps show you how to split the Boutique Fudge database into three separate pieces so you
can keep the credit card information separate from the rest of the data. (If you want to follow along,
you can find the database with the sample content on the "Missing CD" page at
www.missingmanuals.com .)

Create the back-end databases that you need .

In this example, you need two back ends: one for the credit card details (call this
BoutiqueFudgeSecrets_be.accdb) and one for all the other details (named
BoutiqueFudge_be.accdb). Before you go any farther, create both of these databases in Access
and place them in the shared location, but leave them empty for now.

1.

Open the back-end database file .

The next task is to add the correct tables to each back-end database. You do this using Access's
importing wizard.

Start with BoutiqueFudgeSecrets_be.accdb. It's easy because it requires just a single table.

2.

Choose External Data Import Access .

The Import wizard begins (see Figure 18-6).

Note: In this example, you're importing the tables you need into the back end. You could also try the same trick in reverse, by

exporting the tables out of the front end. However, export operations are more limited than import operations, because they let

you transfer only a single table at a time.

3.

Figure 18-6. In the first step of the Import wizard, you choose the file that has the tables you want to import, and then

you decide whether to copy the tables or just create links.

Specify the location of your front-end database in the "File name" box .

In this example, that's BoutiqueFudge.accdb, which currently contains the whole shebang
(tables, queries, forms, and reports).

4.

Choose the first option, "Import tables … into the current database."

The second option lets you create linked tables. You'll use it later in this process.

5.

Click OK .

The Import Objects window appears, with a list of everything in your database (see Figure 18-7
).

6.

Select the tables you want to import, and then click OK .

The BoutiqueFudgeSecrets_be database needs just a single table: CreditCards.

Once you click OK, Access copies the tables into your database. You can now close the database
file.

7.

8.

Repeat steps 2 to 7 for any other back-end database files .

In this example, you need to open BoutiqueFudge_be.accdb, and import all the tables except
CreditCards.

Once you've finished transferring the data to your back ends, its time to update the front end.

Figure 18-7. The Tables tab lists all the tables in your database. Select the ones you want to import by clicking them

once.

8.

Open the front-end database .

In this example, that's BoutiqueFudge.accdb.

9.

Delete all the tables .

Don't be shyafter all, you've already copied them to their new homes in the back-end files. Once
you're finished, it's time to take the last step and create the links you need in your front end. If
your tables are linked together, start with the child tables first.

10.

Choose External Data Import Access .11.

12.

The Import wizard starts again.

11.

Point the import wizard to your first back-end file, choose "Link to the data source,"
and then click OK .

Start with the BoutiqueFudgeSecrets_be.accdb file.

12.

Choose all the tables, and then click OK .

Access creates the corresponding linked tables in your database. Each table appears with the
telltale arrow icon next to it in the navigation pane to let you know it uses a link.

13.

Repeat steps 11 to 13 for every back-end database .

If you started with BoutiqueFudgeSecrets_be, it's time to move on to BoutiqueFudge_be, which
contains all the other tables you need.

14.

If you've followed all these steps, you wind up with three database files that work together:
BoutiqueFudgeSecrets_be.accdb with the credit card information, BoutiqueFudge_be.accdb with the
rest of the tables, and BoutiqueFudge.accdb with the queries, forms, and reports. If you want to see
the finished product, check out the downloadable samples for this chapter. And jump ahead to
Section 18.5 to learn how you can apply different security settings to the different back ends.

18.2.5. Locking Down Your Front End

Before you let your database out into the wild, you need to think about what can go wrong. In the
hands of less savvy Access users, your lovingly crafted forms and reports can get scrambled. It's a
common complaint with multiuser Access databases: Sooner or later, a curious or careless person
changes something that's better left alone, and that person's front end stops working.

Although you can't watch over everyone's shoulder, you can prevent mischief by locking down your
front end. That way, other folks won't be allowed to modify the design of forms and reports. (Of
course, they can still use the front end to review and edit data.)

The secret to locking down your front end is to change the front-end database from an .accdb file to
an .accde file. Although there's only one letter of difference, the .accde format restricts people in
several ways:

They can't modify forms or reports. In fact, they can't even open these objects in Design view.

They can't create new forms and reports.

They can't rename existing forms and reports (although they can delete them).

They can't edit or even look at your VBA code and macros. In fact, all code is compiled , which
means it's converted from the code statements you learned about in Chapters 16 and 17 to a
shorthand that only the computer can understand.

Note: Access gives you the same feature for the older .mdb database format. To lock down changes in an .mdb, you create an .mde file.

Making an .accde file is as easy as can be. Just follow these steps:

Open your front-end database .1.

Make sure that your database is running in full trust mode .

If you haven't opened it from a trusted location (Section 15.2.4), you need to click the Options
button in the security warning message bar, choose Enable Content, and then click OK. Section
15.2.2 has more on this procedure.

2.

Choose Database Tools Database Tools Make ACCDE .

The Save As dialog box appears.

3.

Supply the file name for your .accde file .

Access won't change your original databaseinstead, it makes a copy in the new format.

4.

When you create an .accde file, make sure you keep the original .accdb in your hands. That's
because sooner or later you'll need to make changes. Access doesn't give you any way to change an
.accde file back to its original format, so your only choice is to go back to the original format, make
your changes, and then export a new .accde file.

Note: If you lose your original .accdb file, there's no way to change your forms and reports. You're stuck with a database that's frozen in

time. However, as a last resort, you can try the Web, where other companies provide utilities that can (usually) transform an .accde file

back to an .accdb file.

FREQUENTLY ASKED QUESTION
When Not to Use an ACCDE

Is the .accde format for front ends only?

You can turn any database into an .accde file. However, you should think twice before you use
anything other than a front end. That's because it's difficult to update an .accde file that has data.

To understand the problem, imagine you create an .accde file for an all-in-one database that sells
discount hair care products. This database includes all the raw datacustomer lists, available services,
and invoicesand it contains the forms and reports that make your life easier. There's no division
between the back end and front end.

A few weeks later, you decide to add a new report that shows customers subgrouped by the color of
their highlights.

Of course, you can't edit the .accde file directly, so you polish off the report in the original .accdb file,
and create a new .accde. But waitthere's a problem. Your original .accdb file still has the old data.
You're now stuck with two incomplete files: an .accde with the new data but the old forms and
reports, and a new .accde with the right forms and reports but the wrong data. To remedy this
situation, you need to perform a time-consuming import operation, as described earlier (Section
18.2.4).

To avoid these data synchronization headaches, use the .accde format the way it's intended to be

usedto lock down front ends that don't have any tables.

18.2.6. Sharing a Database with People Who Don't Own Access

Wouldn't it be nice if people could work with your data and use your forms and reports without
needing the full Access software on their computers? It may seem like just a dream, but there's a
way.

Microsoft provides a scaled-down version of Access that's called the Access runtime engine . Rather
than buying a separate copy of Access for each person who needs to use your database, you can give
them all a copy of the Access runtime engine. Then, they can use the runtime engine to load up your
database and use its forms and reports to review and edit data.

The Access runtime engine doesn't have the full features of Access. Notably, it doesn't include the
ribbon or the navigation pane. In fact, it doesn't provide any way for people to change the
configuration or design of the database. (That's a job for you, the database designer.) The only thing
you can do with the Access runtime is use the forms and reports that you've included in your front
end.

Note: When using a well-designed front end with the Access runtime, people may not even realize that they're running Access.

So how can you get your hands on the Access runtime engine? At the time of this writing, it wasn't
yet released. However, Microsoft has promised to make it available in early 2007 (and unlike Access
2003, Microsoft promises that the Access 2007 runtime engine will be available on their Web site, and
not bundled with their Visual Studio programming tool). To get the latest update on the status of the
Access runtime engine, click over to the "Missing CD" page at www.missingmanuals.com .

In the meantime, you can take a look at what a database looks like when it's in the hands of the
runtime engine. Here's how:

Open your database and make sure it has a startup form (Section 14.2.2) .

The Access runtime engine doesn't have a navigation pane, so you need to have a startup form
in order for the user to be able to do anything. That startup form will probably be a switchboard
(Section 14.2.1) with buttons that lead to other forms.

To set the startup form, choose Office button Access Options. Pick the Current Database
section on the left. Finally, set the Display Form setting to the form you want to show
automatically when the database is opened.

1.

Rename your database's file extension from .accdb to .accdr . (Presumably, the r
stands for runtime.)

2.

Double-click your database to run it in runtime mode. You'll see your startup form,
but no ribbon or navigation (Figure 18-8) .

Don't worry. You can rename your Access file to .accdb to get it back to normal.

3.

Tip: The Access runtime engine is a truly useful way to share your databases without buying a zillion Access licenses and confusing

people with all the features of the full Access user interface. If you're using Access to coordinate life in a small business, check it out.

Figure 18-8. This .accdr file uses the fancy switchboard you saw in Section 14.2.3.2 .

NOSTALGIA CORNER
The Death of Data Access Pages

Access 2003 had a feature called data access pages for creating a Web page front end to your
database. The idea was a powerful oneusing these Web pages, anyone could review information in
your database or make a change, even without the Access software.

Unfortunately, Access and the Web have a troubled relationship. As you've already learned, Access
can handle only so many simultaneous users at one time. The Web has no such limitation. In fact,
just putting a database on the Internet is an invitation for hordes of people to try to use it at the
same time. For this reason, as well as for several others (such as the difficulty in customizing data
access pages and the lack of compatibility with other browsers), Microsoft discontinued the feature in
Access 2007.

If you still want a Web face for your database, Access doesn't have many tools to help you. Your best
bet is to move your database to a server product like SQL Server, and use another development tool
to build your Web page. Serious coders love ASP.NET (see www.asp.net), an all-in-one Microsoft
toolkit for building the simplest to the most sophisticated Web sites.

18.3. Playing Well with Others

Multiuser access is a perpetual juggling act. If all people want to do is read information, life is easy.
But some significant challenges appear the moment people want to make changes. For example,
what happens when two people try to change the same record at the same time? Or when you try to
change a record while someone else tries to delete it? Or, if you want to read the latest information
while an update's in progress?

Clearly, Access needs a way to manage the chaos. In this section, you'll learn what Access does to
keep everything under control, and how you can adjust its settings. You'll also learn how to stave off
the dangers of data corruption.

18.3.1. Seeing Changes As They Happen

Picture the following scenario. You're on the phone with a big-spending customer of Boutique Fudge.
Using your trusty Access database, you run through the products that are available, giving your
customer the price of each one. But unbeknownst to you, the head chef is looking at the same table
at the same timeand raising the prices on the most popular dishes. The question is this: When do you
notice the price increase?

Access deals with situations like this using automatic refreshes . Once every 60 seconds, Access
checks the back-end database to find out what's changed. Access then updates the corresponding
information on your screen, whether you're looking at a form, a query, or directly at a table. In the
Boutique Fudge example, the new prices appear the next time Access performs a refreshand no later
than 60 seconds after the changes are made.

There are a few exceptions to the refresh rule:

When you start editing a record (by clicking inside one of the fields), Access
immediately refreshes just that record . This ensures that you always start with the most
up-to-date copy of a record before you begin making changes.

If you can't wait 60 seconds, and you're getting nervous that something's changed
since the last refresh, you can trigger an immediate refresh using the Home
Records Refresh All command . And, if you click the downward-pointing arrow part of
this button, you can choose to refresh only the current record where your cursor is positioned
(choose Refresh instead of Refresh All).

Reports don't use automatic refreshes . If you run a report, wait, and then decide you want
to update your results, you have two choices. You can close the report and reopen it, or you can
use the Refresh button.

If you don't like the 60-second rule, you can fine-tune how often Access performs its automatic
refreshes. To do so, choose Office button Access Options. In the Access Options window, choose
the Advanced category of settings, and then scroll down the list until you see the " Refresh interval"

box (Figure 18-9).

Note: The refresh interval is an Access setting that affects all the shared databases you open on that computer. If you want everyone to

use the same refresh interval, you need to tell them all to update their Access settings.

The shorter the refresh interval, the faster you'll see other people's changes. However, shorter
refresh intervals also create more network traffic. Most Access fans find they can safely lower the
refresh interval without a problem, unless they're using a slow network.

Figure 18-9. The refresh interval controls how often Access checks a shared database for changes. You can choose a value

(in seconds) from 1 to 32,766.

18.3.2. Dealing with Editing Conflicts

Shared databases are a bit of a free for all. Ordinarily, Access doesn't impose any limits on multiuser
changes. If you're lucky, people will make their changes in an orderly fashion, one after the other.
But sooner or later, changes will overlap, with potentially frustrating consequences.

Here's an example that shows what happens when two changes overlap:

You open a query that shows all the products in the Boutique Fudge database.1.

You find a recorda top-selling cheesecake known as The Chocolate Abyssthat needs changing.
You click inside the Description field to start your edit.

2.

At the same time, Bill Evans in the sales department fires up a form that also uses the Products
table. He browses to the same record, andrealizing the potential for better profitsstarts to
change the price. Now two people are currently working with the same record. What happens
next depends on who commits their change first.

3.

Assume Bill gets the job done first. Quick as a flash he raises the price, and then heads on to
another record.

4.

Back on your computer, you've finished touching up the Description field. You move to another
record. Ordinarily, this is the point where Access commits your edit, saving it to the back end
database. But in this case, Access notices a conflictnamely, the version of the record you're
working with isn't the same as the version that's currently in the database.

5.

Access warns you about the problem, and gives you three options (see Figure 18-10).6.

Figure 18-10. Between the time you started the edit and the time you tried to apply it, someone else made changes. Access

lets you choose how you handle the conflict.

You have three ways to resolve a conflict:

Save Record is the easiest and most reckless option. If you choose it, Access overwrites the
record in the database with your version. The problem is that this option obliterates the changes
that the other person made. In the previous example, the new description will be saved in the
database, but the price change will be lost because Access reapplies your old, out-of-date price.

Drop Changes cancels your edit. Access will refresh the record to show the most recent
information, and then you can try making your change all over again. This option is reasonable
if you can repeat the edit easilyit's not as good an option if you've finished a detailed revision of
a large text field.

Copy to Clipboard cancels your edit, just like Drop Changes. However, the values you
changed are copied to the clipboard, which makes it easier to reapply them, as shown in Figure
18-11 .

Figure 18-11. If you copied your last edit to the clipboard, you need two steps to put it back into place. First, paste it into

another program (like Word, shown here). Then, select just the data you want to use, and copy it back to the clipboard by pressing

Ctrl+C. Finally, switch back to Access, head over to the field you want to change, and then paste the new value by pressing Ctrl+V.

The best of the three choices is usually to copy changes to the clipboard and try to repeat the edit.
Unfortunately, you can't force people to do the right thing. Lazy workers may choose the quicker
Save Record option, which quietly wipes out someone else's work. Worst of all, the person who made
the original change has no way to know it's been thrown away. If you have a high number of
overlapping edits in your organization, you'll need to spend a good bit of time teaching everyone the
right way to handle it.

Note: Access fans often wish they had a way to merge changesthat is, to update only the fields you changed. In the previous example,

this option would let you apply a new description without disturbing the previous user's price change, because both updates affect

different fields. However, Access doesn't provide this option. One reason is that there's no way to know if the two sets of changes will be

consistent . And there's nothing worse than having a record that contradicts itself.

POWER USERS' CLINIC
Splitting Tables for Safer Edits

One way to reduce the number of overlapping edits is to split tables into smaller pieces. The basic
idea is to take a single table that has lots of fields, and divide it into two smaller tables, each
containing only some of the fields. For example, you can take a Customers table and divide it into a
CustomerAddress table and a CustomerFinancial table. Every record in CustomerAddress is linked to
a single record in CustomerFinancial using a one-to-one relationship (Section 5.3.1). You'll need both
records to get all the customer information.

The best time to split a table is when you know that a typical edit will involve the fields in just one
table. Maybe you know that customer service often needs to update address information, while the
billing department works with the financial information, splitting the table is a great idea. The
customer service department will use the CustomerAddress table almost exclusively, and the billing
department will use the CustomerFinancial table. The chance of overlapping edits is greatly reduced,
because the work is split between two tables.

18.3.3. Using Locks to Stop Overlapping Edits

If overlapping changes are causing too many headaches, you have an option. You can use a software
trick called a lock to prevent overlapping edits.

Essentially, a lock uses the same concept that protects two people from ending up in the same
bathroom stall. When one person enters, he or she switches on the lock, and everyone else has to
wait until the deed is done. Similarly, when a person attempts to change a record, Access starts by
grabbing a lock on that record. Anyone else who wants to make a change is forced to wait until the
first operation is finished.

The easiest way to use locks is to switch them on through the Access settings. To do so, choose
Office button Access Options. Then, choose the Advanced category, and look for the "Default
record locking" setting. You have three choices:

No locks is the standard setting in Access. When you use this option, Access won't use locking
at all, and overlapping edits are possible.

All records tells Access to lock the entire table whenever someone begins editing a record. This
setting is extremely rare. Because it locks every record, it prevents anyone else from working
with the table when just one edit is taking place. This limitation can bring any organization to a
grinding halt.

Edited record locks individual records as they're being edited. This prevents overlapping edits.

The last option is the most common locking choice. When you use individual record locking, Access
won't let you begin editing a record if someone else is currently modifying it. When you try, Access
displays an icon that indicates the record is locked, as shown in Figure 18-12 .

Figure 18-12. The don't-go-there symbol warns you to wait rather than edit a record that's already in use. If you still try to

type in the field, Access stubbornly ignores you.

Locks prevent your database from becoming a mess of scrambled information, but they impose other
headaches. It takes extra work for Access to keep track of every-one's lockit has to play the role of
an overworked washroom attendant who doles out the washroom keys. Access keeps track of locks
by creating a .laccdb file. For example, the first time someone opens the shared database
BoutiqueFudge_be. accdb, Access creates a file named BoutiqueFudge_be.laccdb . (The l stands for
locking.) When the last person closes the database, Access removes the locking file.

Tip: If you look in the shared folder and don't see a .laccdb file, you know that no one is currently using the database, or someone's

opened it in Exclusive mode (Section 18.3.4).

Locks also slow other people down, forcing them to wait for the information they want. A careless
user can tie up a record indefinitely, leaving it in edit mode.

Note: If you head out for a lunch break, you may end up tying up the entire company without even knowing it. Even worse, although

other would-be editors will see that the record is locked, they have no way to know who the culprit is. Their only recourse is to wait…and

wait.

If you decide to use locking, it's a much better idea to apply it through individual forms rather than
switch it on for every database using the Access options. You could use the standard "No locks"
setting for your entire database, but configure all the forms that use a particularly important
tablesay, Invoicesto use locking. To change the way a form works with locking, open the Property
Sheet and look for the Record Locks property. It supports the same three settings: No Locks (the
default), All Records, and Edited Record.

Note: This trick leaves an open back door. If someone decides to make a change by directly opening the table, they'll bypass the locking

that you've implemented in your forms. As always, it's easy to guide people to the right path but harder to force them to stay on it.

18.3.4. Opening a Database in Exclusive Mode

One of the limitations of shared databases is that you can't change the design of your tables while
other people are using the database. Before you can make more radical alterations, you need to open
the database in Exclusive mode .

Exclusive mode temporarily restricts a shared database to a single person. While you have the
database open in Exclusive mode, no one else will be able to access it, no matter what front-end
database they use. You have a few precious moments to make the more radical changes that you
wouldn't normally be able to do.

Here's how to open a database in Exclusive mode:

Tell everyone else to close the database .

You can't open a database in Exclusive mode if it's currently in use. In a big company, this is the
hardest part. System administrators sometimes resort to mass emailing to let everyone know
that it's time to shut down. Another choice is to teach the people who use your database to
close it every night before they leave, which lets you slip in a late-night update without
disruption.

1.

Choose Office button Open .

The Open window appears.

2.

Select the database file you want to open, and then click the drop-down arrow on the
Open button .

A list of specialized options appears for opening your file, as shown in Figure 18-13 .

3.

Choose Open Exclusive .

Access opens the database. You can now make changes with no restrictions. But work fastthe
longer you keep the database open in Exclusive mode, the longer other people will need to wait
to get on with their work.

4.

Note: You can configure Access so that it always tries to open every database in Exclusive mode. However, you rarely have a good

reason to use this setting, because it defeats the purpose of database sharing.

Figure 18-13. If you open a file in Exclusive mode, no one else can open it until you close it. If you open a file in read-only

mode, you can't make any changes.

18.4. Data Corruption

Data corruptionthe term strikes fear into the heart of the hardiest Access guru. Hopefully, the people
who use your database will be well behaved, the network it sits on will remain reliable, and your
database will never be in danger. But just in case life isn't as kind to you, it's important to be
prepared.

Data corruption is a catch-all term that describes what happens when part of a database file is
damaged. Imagine Jessica Baxter is in the middle of applying a large update when a power failure
hits (or an office prankster pulls out her network cable). The back-end database will be left in an
invalid state, because only part of Jessica's information will have been successfully received. As a
result, the record she was working with may be scrambled beyond recognition. And if you're
particularly unlucky, the problem can affect more than one record or even make the whole database
act a little odd.

18.4.1. Diagnosing (and Fixing) Corrupt Databases

Every Access expert should have basic data corruption survival skills. First, you need to be able to
spot when a database has gone bad. Here are some telltale signs:

Cryptic error messages that appear for no good reason, like "out of memory." (Keep in
mind that you shouldn't confuse this with the always-common category of cryptic error
messages that appear for a legitimate reason, like the "file already in use" error described in
Section 18.2.4.)

Rows that contain gibberish, like ### or ???. Often, you'll find these values in the last few
rows of a corrupted database, which indicates that the rest of the data is probably kosherit's
just the new additions that ran into trouble.

A complete inability to use the database. If you get the dreaded "unrecognizable database
format" error, you know disaster has struck.

Once you identify that a database is corrupted, it's time to nurse it back to health. The first resort is
always the compact and repair feature, which cleans up a host of problems and shrinks large, bloated
databases back to more reasonable sizes. To try out this feature, open your database in Exclusive
mode (Section 18.3.4), and then choose Office button Manage Compact and Repair
Database. The process could take some time, particularly with a large database.

The compact and repair feature fixes only tables, not forms or reports. However, if you've been
sensible and have created a split database, the back end won't have any of these types of objects
anyway.

Note: Before you try to fix a corrupt database, make an immediate backup. That way you can try several repair strategies.

Sometimes, the compact and repair feature won't solve the problem, or it may just partly rehabilitate
your database file. At this point, it's time to take over with other repair techniques. If the remaining
problems are relatively minor (like a few rows with suspicious data), you may be able to simply
delete the offending information and recreate it. But sometimes Access refuses to show corrupted
records without bombarding you with error messages. If this is the case, select all the good records
and copy them to another table. Then, delete the table with the corrupt data and rename your copy
to take its place.

As a final resort, you can create a new blank database, and try to import the tables from the back
end, using the importing technique described in Section 18.2.4. This forces Access to recreate each
object and rebuild every index. Even if this doesn't work completely, you may find that you can
import most of the tables.

As a last resort, you'll need to revert back to the last backup. You do keep backups, right?

18.4.2. Preventing Corruption

As scary as data corruption is, following a few guidelines can ensure it remains a rare occurrence:

Stick to the sensible defaults described in Section 18.1.1. If dozens of people try to make
changes at once, you multiply the chance of a problem.

Always split your database (Section 18.2) to lighten the load on your back end and to keep
forms and reports out of harm's way.

Use a reliable network. If your network connection isn't dependable, an update can get
interrupted, which is a prime cause of data corruption.

Teach users to close the database when they're finished using itor even when they're taking a
lunch break.

Use the compact and repair feature on your back-end database regularly (choose Manage
Compact and Repair Database from the Office menu). As more and more people make changes,
database files grow larger and more disorganized. The compact and repair command rearranges
your database to be more efficient, smaller, and less likely to run into trouble.

Make backups as often as possible. Depending on how quickly you make changes, a daily
backup may be sufficient. But there's no reason you can't make a backup every hour or even
more often if needed.

Tip: Make sure you keep a collection of the most recent backups. If you keep only a single backup file, you run the risk that you may

back up a database that's already corrupted, and you won't have an older copy to fall back on.

18.5. Securing Your Database

In most shared databases, different people perform different tasks. The easiest way to keep
everyone on the right track is to create several distinct front ends, one for each group of people. This
lets you gently guide people along in the tasks they perform.

However, customizing the front end doesn't restrict the abilities of a determined troublemaker. In a
large company that relies on a multiuser database, you don't just think about guiding peopleyou also
worry about restricting them.

Sadly, Access 2007 provides a limited security model. You have the ability to lock strangers out of a
database with a password, but you don't have the more finegrained features you need to restrict a
single user from using certain tables or performing certain actions. As you'll see in the following
sections, there are possible workarounds, but none works as well as the security provided by a
server-side database product like SQL Server.

Tip: Once again, Access gives you just enough to make shared databases work, but not much more. It's up to you to decide whether

Access works for your organization. Small outfits are likely to find that it's perfectly fine, while large organizations may want a server

product.

18.5.1. Password-Protecting Your Database

The password protection feature in Access offers simple, no-frills security. You choose a single
password for your database, and from that point on it can't be opened without the password. Even
better, the data in your database file is scrambled using a key that's generated from your password.
This ensures that even if high-tech hackers peer directly into your database file with a specialized
tool, they won't be able to retrieve any data.

NOSTALGIA CORNER
Workgroup Security Gets Locked Out

Old-hand Access experts may remember that previous versions of Access included a
much more useful form of userlevel security called workgroup security. With workgroup
security, Access keeps a separate file that identifies what each user and group is allowed
to do with the database. Workgroup security is easier to implement than file-based
security, and a lot more flexible. In fact, it seems like the perfect solution.

Unfortunately, workgroup security was never truly secure. Well-published workarounds
could be used to circumvent it. Most of the time, this wasn't a problem because Access
experts weren't really worried about stopping skilled hackers. Instead, they were more
concerned with keeping ordinary people under control.

However, in recent years Microsoft has become increasingly obsessed with security.
When Microsoft prepared Access 2007, it decided it could no longer support a security
feature that wasn't truly secure, especially when better options are available in other
products, like the free version of SQL Server (see Section 20.1.2). For that reason,
Microsoft removed support for workgroup security in .accdb files. You can still use
workgroup security if you use older .mdb files (see Section 1.2.2 to learn about the
difference), but that's only a good idea if you need to keep supporting a database that
you designed with an older version of Access. New databases should always be created
as .accdb filesafter all, Access has earmarked it as the database format of the future.

Note: In Access 2007, password protection gets serious. Now, Access uses state-of-the-art encryption to ensure that skilled hackers

can't crack open your files with specialized toolsat least not unless they're willing to devote a huge amount of time to the task.

It's ridiculously easy to apply a password. Here's how:

Choose Office button Open.

To apply a password, you need to open your database in Exclusive mode. This step is necessary
because Access can't encrypt a database while it's in use.

1.

Select the file you want to open, click the drop-down arrow on the Open button, and
then choose Open Exclusive.

Access opens the database in Exclusive mode.

2.

Choose Database Tools Database Tools Encrypt with Password.

Access asks you to supply a password (Figure 18-14).

3.

Enter your password, and then click OK.

To ensure that your database is secure, you need to choose a strong password. Good
passwords are long (ten letters or more), can't be found in the dictionary (because attackers

4.

use dictionaries to launch automated attacks), use mixed case, and include special characters
(like numbers, punctuation, and other symbols). The password hellodata is a poor choice, while
w0nDER_wh@t_32 is much more reliable.

Figure 18-14.
Just to be sure, Access

asks you to enter the

password twice.

Access uses the password to encrypt your database, and then saves the modified database
automatically. Now, the next time you open your database you'll be asked to supply the
password first.

If you decide that you don't need password protection later on, click Remove Database
Password and Encryption.

4.

18.5.2. Passwords and Split Databases

It's fairly obvious how passwords work with ordinary databases, but a few interesting quirks are at
work with shared databases. First, you always use the password to protect the back-end
databaseafter all, it's the data that you need to protect, not your forms and reports. But here's the
interesting bit: When you create a front end that links to a password-protected back end, Access
quietly stores the password in the front end. That means that as along as you use the right front end,
you don't need to supply the password at all.

Note: In order to successfully use a password with a back-end database, you must apply the password before you split the database.

Otherwise, Access won't store the password in the front end, and the linked tables won't work.

Technically speaking, this model doesn't provide industrial-strength security, because a crafty hacker
could steal the password by digging through the front-end database file. However, as long as you
make sure your front ends don't get into the wrong hands, you have some interesting possibilities:

You can keep the password secret, which prevents people from accessing the back
end directly. Instead, they'll need to rely on the front end you distribute, which has the
password embedded.

You can protect the front end with another password. That way, a sneaky hacker who
steals your front end will still be locked out of the database.

You can split the back-end database into separate files (as described in Section
18.2.4). That way, you can give each file a separate password and prevent people from
accessing the wrong tables. Unless their front end has a link to the back-end database they
need, they won't be able to use its tables.

18.5.3. Using Windows File Security

Password protection isn't your only security choice. You can also use Windows security to specifically
set which users and groups can access a file.

In order to make this work, you need to split your back end into more than one file, as described in
Section 18.2.4. Then, once the files are in the shared folder, you can configure exactly who is allowed
to access each one. Hopefully, you have a network administrator to help you out. The basic process
works like this:

Using Windows Explorer, right-click the database file you want to protect, and then
Choose properties.

The Properties window appears, with several tabs of information about the file.

1.

Choose the Security tab (Figure 18-15).

Windows keeps track of people in two waysit identifies them uniquely by user name, and it
categorizes entire groups of people by group name. For example, you can log in as MarkHamlon
and be a member of several groups, including Users, Administrators, SalesDepartment, and so
on. That gives an administrator the ability to change the security settings for a single individual
or for a whole crowd of people with one rule.

2.

Figure
18-15.
The Security

tab lists all the

people (and

groups) who

are allowed to

use this file,

and it

indicates what

they're

allowed to do.

In this

example,

every user

and group

name is

preceded by

the term

FARIA\

because the

name of the

computer

where the

user accounts

are defined is

FARIA.

To change what a person or group can do with the file, select them in the list, and
then change the Allow or Deny options (Figure 18-16).

Say you don't want the people in the Users group to be able to use this file; select the Users
group in the list, and then place a checkmark in the Deny column next to each permission.

Note: The Deny options always take precedence. For example, if a person is a member of two groups, and one group is allowed

to use a file but the other isn't, the Deny setting overrides everything else.

3.

Figure
18-16.
If the

checkbox is

grayed out,

that's

because the

setting is

inheritedin

other words,

it's based on

the folder that

contains this

file. For

example, you

can't change

the Allow

settings of the

Users group,

because

they're

inherited.

However, you

can add Deny

settings (as

shown here

with the user

named

RemoteUser).

The Deny

settings

always

overpower

the Allow

settings.

If you want to add a new group or person to the list, click the Add button, fill in the
user or group name, and then click OK.

You may decide you don't want to lock out an entire group but you want to single out a specific
person.

4.

Windows file security gives you a very basic level of security. It isn't really designed to work with
Access databases. In order to use it at all, you need to split your database into smaller and smaller
pieces, which can be difficult to manage. You also can't control what actions a person is allowed to
performthe file security either locks people out entirely or gives them full control to add, delete,
update, and redesign the information in your database.

If you need real user-level security, you're better off with a server product like SQL Server. However,
if you just need the ability to keep some sensitive information out of reach, the file-based security
features can help you out.

19. Importing and Exporting Data
An Access database is like a carefully built fort. It takes strictly organized and error-tested
information, and locks it up tight. Very few programs guard their data as protectively as database
software does. Word processors and spreadsheet programs accept just about any content and let you
build your document structure on the fly. Databases aren't nearly as freewheeling.

Most of the time, databases live in an independent world. But every once in a while, you need to
bridge the gap in one of two ways:

You want to take the information from another program and import itbasically, stuff it into your
database.

You want to take some of the information in an Access database and export it, so you can work
with it in another program.

Access has several different options for transferring information. You can use the lowly clipboard,
sophisticated import and export features, or the ever-popular XML standard. In this chapter, you'll
learn about all your options, including one new and pretty nifty trick: how to let people email you
their updates to a database. This isn't your father's Access.

19.1. Case for Importing and Exporting

If you haven't thought much about importing and exporting, it's probably because you don't need to
use these featuresyet. Many databases are completely happy living a quiet, solitary life. However,
importing and exporting might come in handy for a few reasons. Sooner or later, one of these
reasons will apply to you.

19.1.1. Understanding Exports

Exporting's the easier part of the equation. Exporting's simpler than importing, because it involves
moving information from a stricter storage location (the database) to one with fewer rules (another
type of document).

Note: Exporting's a way to transfer a copy of your information to another location. The original copy always remains in Access. There's

no point in changing the exported copy. Instead, if you need changes, make them in the database, and then perform the export operation

again.

Here are some of the most common reasons people decide to export information:

You want to email some information to a friend. You don't want to send the Access
database because your friend doesn't have a copy Access, or you want him to see only somenot
allof the data

You're creating a presentation in PowerPoint. The easiest way to dazzle and convince your
peers is to show them some impressive information from your database.

Tip: Access stores huge volumes of information, which is often more than other programs can handle. You'd never be able to

copy a table into a PowerPoint presentationat most, a slide can fit a handful of records. However, you might choose to show the

results of a totals query (Section 7.3) that uses grouping to boil down the results to a few subtotals.

You want to analyze the information in Excel. Access is great for storing and managing
your data, but it doesn't give you the tools to help you figure out what it all means. If you want
to crunch the numbers with heavy duty formulas and slick charting features, it makes sense to
move it to Excel.

Some programs are intelligent enough to pull the information out of an Access database all on their
own. One example's Word, which provides a mail merge feature that lets you take a list of names
and addresses from a database, and then use them to create mailing labels, personalized forms, or
any other sort of batch paper-work. When using this feature, you don't need to perform any
exportinginstead, you can just point Word to your Access database file. (For more information about
Word's mail merge feature, see Word 2007: The Missing Manual.)

19.1.2. Understanding Imports

You need importing whenever there's information outside your database that belongs inside it.
Suppose you create a state-of-the-art e-commerce database for your buffalo farm. However, some of
your sales associates still fill out forms using an old Excel spreadsheet. Now, you need a way to get
the information out of the Excel spreadsheet and into your database.

Tip: Your sales staff has let you down. They really shouldn't enter data into a document for another program. Instead, they should use a

form that's designed for logging sales, as described in Chapter 12.

Import operations have two key challenges. The first's making sure the data fits the database's strict
requirements. As you learned in Chapter 1, databases are rule-crazy, and they rudely toss out any
information that doesn't fit (for example, text in a date field). The second challenge is dealing with
information that doesn't quite line upin other words, its representation in the database doesn't match
its representation in the external document. This headache's more common that you may think.

In your database, you might use status codes (like 4302), while the spreadsheet you want to import
uses status names (like High Priority). Or, you may need to break the information you're importing
into more than one linked table, even though it's stored together in a single document. The customer
order spreadsheet for your buffalo farm could include customer information (which corresponds to
the Customers table) and order information (for the Orders table). Sadly, you don't have any easy
way to solve these problems. If the external data doesn't match the representation in the database
exactly, you'll need to change it by hand before or after the import operation.

Experts occasionally try to solve problems like these by writing Visual Basic code that reads the data
and creates the appropriate records. (To do this, you'd need to use the DAO objects described in
Section 17.4.5.) While the code approach is infinitely flexible, it can quickly become a nightmare to
write and maintain, so avoid it if at all possible.

UP TO SPEED
SQL Server and SharePoint: Two Special Cases

You won't consider two programs in this chapter.

SQL Server's the high-powered server-side database product described in Chapter 20. If
your Access database is growing exponentially, you may decide to move your data to
SQL Server. However, you don't use the ordinary export feature to do it. Instead, Access
has a specialized "upsizing" tool to help you out, and you can learn about it in Chapter
20.

SharePoint's another industrial-strength server product that stores large volumes of
information. But unlike SQL Server, SharePoint's designed to help teams of people share
information and collaborate over networks or the Web. If you want to move information
into (or out of) a SharePoint list, you'll need to take a look at Chapter 21.

19.2. Using the Clipboard

Anyone who's spent much time using a Windows computer is familiar with the clipboarda behind-the-
scenes container that temporarily stores information so you can transfer it from one program to
another. Using the clipboard, you can copy a snippet of text in a Word document, and then paste it
into a field in an Access table, or vice versa. That much is easy. But you probably don't realize that
you can copy an entire table of information.

Tip: Almost all Windows programs respect the same shortcut keys for the clipboard. Use Ctrl+C to copy information, Ctrl+X to cut it

(copy and delete it), and Ctrl+V to paste it.

Before you try this trick out, you need to understand two key facts about the clipboard:

The clipboard can store many different types of information . Most of the time, you're
using it to copy plain text. However, depending on the program you're using, you could also
copy shapes, pictures, tables, and more.

Some types of information can convert themselves to other types . If you copy a
selection of cells in Excel, then you can paste it as a formatted table in a word processing
program like Word or WordPerfect. Of, if you copy a diagram in Visio, then you can paste it as a
picture in Paint. In both examples, you copy a specialized type of object (Excel cells or a Visio
diagram) to the Windows clip-board. However, this object can downgrade itself when it needs
to. You can paste a full-fledged copy of the object in the original program without losing
anything, or you can paste and convert it to something simpler in a less powerful program.

This flexibility's the secret to transferring data to and from Access. The following sections explain how
it works.

Note: The clipboard approach is simpler than the import and export features in Access. As a result, it's a faster choice (with fewer

steps). Of course, it also gives you fewer choices and doesn't work with all programs.

19.2.1. Copying a Table from Access to Somewhere Else

Access lets you copy a selection of rows or an entire table to another program, without going through
the hassle of the Export wizard. Access copies these rows to the clipboard as an intelligent object that
can convert itself into a variety of software-friendly formats. You can paste them as Excel cells, HTML
text (the formatting language of the Web), or RichText (a formatting standard created by Microsoft
and supported by all major Word processors). Since HTML and Rich-Text are so widely supported,
you'll almost never have a problem copying your rows into another program when you use this
technique.

Here's how to try it out:

1.

If you want to copy an entire table, then, in the navigation pane, select the table. If you
want to copy only a few rows, then select them in the Datasheet view, as shown in Figure
19-1 .

You're not limited to copying tables. You can also copy a query's results. Just select the query in the
navigation pane. You can't copy reports or forms, however.

When you copy rows or an entire table, Access takes your column hiding settings (Section 3.1.4) into
account. If you've hidden a column so it doesn't appear in the datasheet (by selecting it, and then
choosing Home Records More Hide Columns), Access doesn't copy it to the clipboard.
This technique helps you leave out information you don't want to copy.

Figure 19-1. When selecting rows in the datasheet, click the gray margin just to the left of the first row you want to select. Then,

drag down to select as many rows as you want. If you don't want to take your hand off the mouse, then you can copy these rows by

holding down the Ctrl key, and right-clicking one of them. Then, from the pop-up menu, choose Copy.

Note: You can copy only a contiguous selection of rows, which is a fancy way of saying you can copy only rows that are right next to each

other. If you have 10 rows in a table, then you can copy rows three to six, but you can't copy just the first and last rows. (Of course, you

can use several smaller copy operations to get the stragglers.)

1.

Hit Ctrl+C to copy your selection .

This action places the records on the Windows clipboard. You can now paste it inside Access or in
another program.

2.

Switch to the program where you want to paste your information .3.

If you're just trying this feature out for the first time, then take a whirl with Excel or Word (shown in
Figure 19-2).

3.

Hit Ctrl+V to paste your selection (see Figure 19-2) .

Access pastes the rows from your selection, complete with column headers. If you've applied
formatting to the datasheet (Section 3.1), then most of that formatting comes along.

Depending on the program where you paste your records, you might see a smart tag icon appear at
your newly pasted content's right-hand corner. In Office applications, you can use this smart tag to
change options about how the data's pasted (for example, with or without formatting).

4.

Figure 19-2. Using cut and paste, you can transform a database table into a table in a Word document (shown here). Once

you've pasted the content, you may need to fiddle with column widths to make sure it all looks right.

Note: Copying text, numbers, and dates is easy. However, some data types don't make the transition as well. If you copy an attachment

field, then the pasted content shows the number of attachment fields, but the files themselves are left out.

TIMESAVING TIP
Copying from One Database to Another

You can also use the copying trick described in Section 19.2.1 to copy data from one Access database
to another Access database that's open in a separate window. However, it works only if you're
copying a complete table (or other object), not a selection of rows.

To try it out, right-click the object you want in the navigation pane, and then choose Copy. Then,
switch to the second Access database, right-click in the empty space in the navigation pane, and then
choose Paste. Access asks you what you want to name the pasted table, and gives you three pasting
options:

Structure creates the table structure, but leaves it empty.

Structure and Data creates an exact duplicate of the table, with all the data.

Append Data to Existing Table doesn't create a new tableinstead, it adds the data to the
table that you specify. For this to work, the table must have the same structure as the one
you've copied.

This trick also lets you create a duplicate copy of a table (or other object) in the same database.

19.2.2. Copying Cells from Excel into Access

You can copy information from Access into another program easily enough, but you probably don't
expect to be able to do the reverse. After all, a database is a strict, rigorously structured collection of
information. If you try to copy a table from a Word processing program, then you'll lack vital
information, like the data types of each column. For that reason, Access doesn't allow it.

However, Access makes a special exception for everyone's favorite spreadsheet program, Excel. You
can copy a selection of cells in Excel, and then paste them into Access to create a new table. This
procedure works because Excel does distinguish between different types of data (although it isn't
nearly as picky as Access). For example, Excel treats numbers, dates, text, and TRUE/FALSE values
differently.

Here's how to use this feature:

In Excel, select the cells you want to copy .

If your spreadsheet includes column titles, then include those headers in the selection. Access
can use the titles as field names.

Note: It doesn't matter what version of Excel you havethis trick works with them all.

1.

2.

Hit Ctrl+C to copy your selection .2.

Switch to Access .3.

Click anywhere in the navigation pane, and then press Ctrl+V .

Access notices that you're trying to paste a group of Excel cells, and it tries to transform them
into a table. First, it asks if the first row in your selection includes column titles.

4.

If you selected the column titles in step 1, then choose Yes. Otherwise, choose No .

If you choose Yes, then Access doesn't need to create random field namesinstead, it can use
your headers.

Access creates a new table to deal with the new data. This table's named after the Excel sheet.
If your sheet's named Sheet1 (as so many are in Excel), you now have a Sheet1 table.

Once Access finishes the paste, it shows a confirmation message to let you know everything's
finished successfully.

5.

Click OK .

Now you can refine your table to make sure the data types and field names are exactly what
you want.

6.

19.3. Import and Export Operations

Although the clipboard cut-and-paste approach is neat, it doesn't always work out. If you need to
export data to a file and you don't have the corresponding program installed on your computer (or
you just don't want to bother running it), then you need a different way to transfer your information.
Similarly, if you're downloading data from the Web or fetching information from a program that
doesn't support Windows cut-and-paste, you need the full-fledged Access import feature.

When Microsoft designed Access 2007, they spent a fair bit of time making the import and export
features clearer and more straightforward. Nowadays, you can do all the importing and exporting you
want from a single ribbon tab, which is named External Data (Figure 19-3).

Figure 19-3. The External Data tab's Import section lets you pipe data into Access using a variety of formats. The Export

section does the reverseit takes your table, and exports it in a bunch of different flavors.

Note: The Import and Export sections have easy-to-access buttons for the most popular file formats. If you don't see what you want,

then click the More button to see an expanded list of choices.

Whether you're importing or exporting data, the process is essentially the same. You answer a few
questions about what file you want to use and how you want to make the conversion, and then
Access does your bidding.

Once you finish performing an import or export operation, Access gives you the option of saving all
your steps. If you do, you can reuse them later on (see Section 19.3.7). This method's a great way
to save time if you need to perform the same export or import process again (like if you need to
import some data every day, or export a summary at the end of every month).

19.3.1. Importable File Types

Most of the time, you'll import data that's in one of these five common formats:

Access . When you use this option, you aren't performing a conversion. Instead, you're taking
a database object from another Access database file, and copying it into the current database.
You used this option in Chapter 18 (Section 18.2.4) when building a front-end database.

Excel . Pulls the data from an Excel spreadsheet.

SharePoint List . Pulls the data from a list that's hosted on a SharePoint server. You don't
need to import SharePoint information in order to work with it. Youcan also edit SharePoint lists
directly in Access. Chapter 21 has much more about getting Access and SharePoint to work
together.

Text File . Pulls the data out of a plain text file. Typically, plain text files use some sort of
character (like a comma) to separate field values. This universally understood format's
supported by many programs, including just about every piece of spreadsheet software ever
written. When using this option, Access takes a look at the text file as it tries to figure out how
it's organized. However, you get the chance to confirm or correct the hunch before you import
any data, as described in Section 19.3.4 .

XML File . Pulls the data out of a structured XML file. XML is a cross-platform format used to
represent any type of information. However, you can't successfully import all XML filesfor the
import feature to have any chance of success, the XML file must use a table-like structure. You'll
learn more about this option in Section 19.4.6 .

Using the More button, you'll find several other, more exotic import choices:

ODBC Database . Grabs information from just about any database product, provided it has an
ODBC driver. This option works particularly well if you need to get data out of a high-end
server-side database like Oracle, SQL Server, or MySQL.

HTML Document . Extracts information from a list or a table in an HTML Web page. Since
HTML's a standard that's notoriously loose (and at times down-right sloppy), you should try to
avoid this option. You're likely to have importing problems.

Outlook Folder . Pulls information out of a folder in Outlook or Outlook Express.

dBase File, Paradox File, and Lotus 1-2-3 File . Pulls information out of a file created with
one of these Paleolithic programs.

19.3.2. Importing Data

No matter what type of data you want to import, you'll go through the same basic steps. Here's an
overview:

In the ribbon's External Data Import section, click the button that corresponds to the type
of file you want to import .

When you choose a format, Access launches the Import wizard (Figure 19-4).

1.

Enter the name of the file you want to import .2.

If you don't remember the file path (or you just don't want to type it in by hand), then click Browse, and
then navigate to the right place in the File Open window. Once you find the file, double-click it.

Figure 19-4. No matter what format you choose, the Import wizard's more or less the same, although certain options may be

restricted. In this first step, you choose the source file name, and the way Access inserts the information into your database.

2.

Choose where to place the imported content in your database .

You have three possible choices for placing your data. Depending on the file format you're using, all these
may not be available.

Create a new table . This option creates a fresh new table for the data you're importing, which
saves you the headache of worrying about conflicting records. However, if a table of the same name
already exists in the Access database, then this option wipes it out.

Append to an existing table . This option takes the rows you're importing and adds them to an
existing table. In order for this option to work, the structure of the data you're importing must

3.

match the structure of the table you're using. For example, the field names much match exactly.
However, the data you're importing can leave out fields that aren't required (Section 4.1.1) or have
default values (Section 4.1.2).

Create a linked table . If you use this approach, then Access doesn't actually transfer the
information into your database. Instead, every time you view the linked table, Access checks the
original file to get the most recent information. The neat thing here's that your linked table always
shows the most recent information. With any other option, the imported table's left untouched if you
change the original file. However, linked tables are also risky, because you don't have any
guarantee that the file won't travel to another location on your hard drive (where Access can't find
it). You used linked tables to create a split database in Chapter 18 .

Note: Linked tables are a good way to bridge the gap between different Access databases or other databases (like SQL Server). However,

they don't work well with other more limited formats, like text files.

Click OK .

A wizard launches that collects the remaining information that Access needs. If you're importing an Excel
file, then Access asks you which worksheet to use. If you're importing a text file, then Access asks you
how the fields are separated.

4.

Answer all questions in the wizard to tell Access what it needs to know about the structure of
the data you're importing .

Once you're finished with this stage, Access asks you its final questionwhether or not you want to save
your import steps.

5.

If you want to perform this import again later on, then select "Save import steps". Then, click
Close .

Section 19.3.7 shows how to reuse a saved import.

6.

Note: If Access finds any errors while importing your data, then it creates another table with the same name as the table you're importing

to, with_ImportErrors tacked on the end. Access adds one record to that table for each problem. If you try to import a bunch of

information into a table named SalesData, and Access can't convert the values to the data type you want (for example, there's text in a

column that should only hold numbers), you get a table named SalesData_ImportErrors.

The following sections walk you through the specifics for two common data formats that need a few
extra steps: Excel workbooks and text files.

19.3.3. Importing from an Excel File

In order to import from an Excel file, your data should be organized in a basic table. Ideally, you
have column headings that match the fields in your database. You should trim out any data that you
don't want to import (like other cells under the table that aren't a part of the table). You should also
remove values calculated using Excel formulas. (As you learned in Section 2.5.5 , you shouldn't store
calculated values in a table, because they introduce the risk of inconsistent data.)

Note: Earlier in this chapter, you learned how to take Excel data, and cut and paste your way to an Access table. However, when you

perform a full-fledged import, you get the opportunity to change field names, fine-tune data types, and use indexing.

Once you have a cleaned-up table of data in an Excel file, you're ready to start the import process:

Choose External Data Import Excel, choose your Excel file, and then specify how you
want to add the imported information to your database. Then, click OK .

You learned how to make these decisions in steps 1 to 3 in Section 19.3.2 .

UP TO SPEED
The Danger of Duplicates

If your import's adding (otherwise known as appending) records to an existing table, then you're in
danger of every importer's worst nightmare: duplication .

Quite simply, Access has no way of telling whether or not it's already imported the same information. If
you've set Access to automatically fill in an autonumbered ID value for each record, then it cheerily adds
the same data several times, with a different ID value each time. On the other hand, if you aren't using
autonumbered ID values and the data you're importing contains the primary key, then Access can't
import the new data at all. Obviously, neither outcome's ideal.

If you're in the import business for the long term, then the only solution's to be very careful. Here are
some tips:

If you want to reuse a file after you've imported the data it contains, then make sure you delete all
the information you've already imported right away.

If you suspect you might have imported the same information twice, then use a query to check. You
can create your own, or you can use the Find Duplicates query that the Query wizard creates
(Section 6.2.2).

Perform small updates frequently, rather than less frequent large updates. That way, you'll catch
mistakes faster, and have an easier time tracking them down.

If you really need a more robust solution, then you need to build it yourself. You can use Visual
Basic code to control exactly how Access transfers data (which is a lot more work).

1.

Choose the worksheet that houses your data (Figure 19-5) .

Excel files, or workbooks , begin with three worksheets. Most people plop their data on the first one,
which is initially named Sheet1. If you're an Excel expert, then you might have designated a section of a
more complex worksheet as a named range . If so, you can pick that named range from the list.

2.

Click Next .3.

If your Excel data has a row with column headings, then choose First Row Contains Column
Headings .

4.

These headings become the starting point for your field names. If you don't choose First Row Contains
Column Headings, then Excel treats the first row as an ordinary record.

4.

Click Next .

If you're creating a new table for your imported records, then Access asks you to configure the fields
you're creating. If you're appending the records to an existing table, then skip ahead to step 7.

5.

For each field, you can choose a field name, the data type, and whether or not the field should
be indexed (Section 4.1.3). Then, click Next .

Access makes some intelligent guesses based on the data that's there, but it's up to you to fine-tune the
details. For example, if you have a column with whole numbers, you may want to change the data type
from Double (which supports fractional numbers) to Integer, as shown in Figure 19-6 .

Figure 19-5. This Excel workbook file has the standard three worksheets: Sheet1, Sheet2, and Sheet3. When you make a

selection, you see a preview of the data.

6.

Figure 19-6. To configure a field, select it in the preview, and then adjust the settings. If you decide you don't want to import a field

at all, then you can choose "Do not import field" (circled) to ignore it altogether.

Choose whether you want Access to create the primary key .

Choose "Let Access add primary key" if you'd like Access to create an autonumbered ID field (which is
generally a good idea). If the data you're importing already includes a field you want to use as a key,
then select "Choose my own primary key", and then pick the right field.

7.

In the Import to Table text box, type the name of the table you want to create or add your
records to .

8.

Click Finish to finalize your choices .

Once the import's complete, you can choose whether or not to save your import steps for reuse.

9.

You'll find some potential stumbling blocks when importing data from Excel. Blank values and fields,
the commonest problems, occur when the Import wizard assumes there's data in a part of your
worksheet that doesn't contain any information. (This could happen if there's a cell with just a space
somewhere on your worksheet, or even if you have a cell that used to contain data but has since

been deleted.) After you perform your import, you may need to clean up your table to fix problems
like these by deleting empty fields and records.

19.3.4. Importing from a Text File

Text files are the lowest common denominator for data exchange. If you're using a program that
creates files Access can't import, then plain text may be your only avenue.

Once again, you start by choosing your file, and then choosing how you want to add the information
to your database. Then, the Import wizard takes you through a few more steps:

Specify the type of text file .

Access can import from two types of text files:

Delimited text files use some sort of separator to indicate where each field ends. For example,
Joe,Piscapone,43 is a line of text you may find in a delimited text fileit's three field values separated
by commas.

Fixed-width text files separates a record into separate fields by position. Each field has a certain
number of characters allocated to it, and if you don't use them all up, then Access fills the remaining
space (up until the next field) with space characters.

Note: Delimited text files are commoner and more flexible than fixed-width text files (because they can accommodate data values of vastly

different lengths).

1.

Click Next .

If you're importing delimited text, Access asks you what character's the delimiter in other words, what
character separates the fields (Figure 19-7). Commas and tabs are common delimiters.

If you're importing fixed-width text, Access lets you set the field boundaries by dragging column lines to
the right position in the preview window.

2.

Figure 19-7. In this example, fields are separated using tabs.

Complete the wizard .

The rest of the wizard unfolds in exactly the same way as it does for Excel data.

If you're creating a new table to hold your imported data, then the next step asks you to configure the
fields you want to create by setting their names, data types, and indexing options (Figure 19-6). Once
you've finished this part, you can choose whether or not you want Access to create an autonumbered ID
field, and then use it as the primary key.

Finally, in the last step, you need to enter the name of the table you want to create or add to. You can
then click Finish (and, optionally, choose to save your import steps for later reuse).

3.

19.3.5. Exportable File Types

Just as you can import information from other files and pop it in your database, you can also take the
existing information and ship it out to another format. You'll most often undertake this step to let

some other person or program get their hands on your information without needing to go through
Access.

When exporting your data, you can use all the same formats that you can use in an import operation,
plus a few more. Here's a rundown of the most popular choices:

Access . Transfers the Access table (or a different type of object) to another Access database
file. This feature isn't as powerful as importing Access objects, because you're limited to one
object at a time. For that reason, people don't use it as often.

Excel . Puts the data into the cells of an Excel worksheet. Perfect if you want to use Excel's
tools to analyze a sales trend or plot a profit chart.

Word . Puts the data into a Word document, separating each column with tabs and each line
with a hard return. This format leaves a lot to be desired, because it's difficult to rearrange the
data after the fact in Word. (A nicer export feature would put the report data into a Word table,
which would make it far easier to work with.)

PDF or XPS . Creates a print-ready PDF file with the exact formatting and layout you'd see if
you sent the table to your printer. Unlike Excel or Word documents, you can't edit a PDF
fileyou're limited to reviewing the report and printing it out.

Note: The PDF or XPS option appears only if you've installed a free add-in for Office. Section 10.2.3 describes how to get it.

HTML Document . Creates a web-ready HTML Web page that you can post to a Web site or a
company intranet. The HTML format that Access generates looks remarkably like your real,
printed report.

Text File . Dumps the data into a plain text file, with tabs and spaces used to arrange the data.
You lose colors, fonts, borders, and other formatting details. This format isn't very usefulthink of
it as a last resort to transfer data to another program if none of the other export options work.

XML File . Saves the data in a text .xml file, without any formatting. This option makes sense if
you're using some sort of automated program that can read the exported XML file and process
the data. (See Section 19.4.3 for more information about XML and detailed export steps.)

19.3.6. Exporting Data

To perform an export operation, follow these steps:

In the navigation pane, select the table you want to export .

Unfortunately, you can't export more than one table at once. However, you can export just a portion
of a table. One way to do this partial export is to open the table, and then select the rows you want to
export. (Once you start the export process, you see an option that lets you export just the selected
rows.) You can also create a query that gets just the rows you want. You can export the query results
by selecting the query in the navigation pane instead of the underlying table.

1.

2.

Click the button that corresponds to the type of file you want to export .

When you choose a format, Access launches the Export wizard (Figure 19-8).

Figure 19-8. The Export wizard varies depending on the export format you're using. But the first step's always to pick your file,

and then set the export options shown here.

2.

Enter the name of the file you want to create .

Access creates this file during the export operation. In some cases, you may have a choice of file
format. For example, if you're exporting to Excel you can use the newer XML-based spreadsheet
format (the .xlsx standard), or the older .xls standard that supports older versions, like Excel 97.

3.

If you want to keep the formatting that's in your database, then choose "Export data with
formatting and layout" .

If you've tailored the datasheet with fancy fonts and colors (as described in Section 3.1), Access
preserves these details in the exported file. Obviously, this option doesn't work for all formats. For
example, simple text files can't handle any formatting.

4.

5.

If you want to double-check your exported document, then choose "Open the destination
file after the export operation is complete" .

It's always a good idea to make sure you got the data and the formatting you expect. If you use this
option, then Access launches the exported file, opening it in the program that owns it (Excel for
spreadsheets, Notepad for text files, and so on). Of course, this method works only if you have that
application on your computer.

5.

If you've selected only a few records in a table, then choose "Export only the selected
records" .

This way, Access exports the current selection, not the entire table or query.

6.

Click OK to perform the export .

Access may ask you for additional details, if it needs any more information about how to create the
exported file.

Once you're finished this stage, Access asks you its final questionwhether or not you want to save your
export steps.

7.

If you want to perform this import again later on, select "Save export steps". Then, click
Close .

The following section explains how to use a saved export.

8.

GEM IN THE ROUGH
Exporting Reports

Tables and queries aren't the only database objects you can export. Access also lets you export your
reports. If you choose to keep the formatting and layout, then Access tries to make sure the
exported file looks just like the printed report.

This choice is great if you want to pass along a report to someone who doesn't have Access. If you
simply want to share the report data, then you can use Word. If you want to preserve the formatting
exactly so that it can be printed later on, then the PDF format makes more sense. Section 10.2.2
discusses how to export a report in detail.

Access also lets you export a form, but you probably won't get the results you want. Access uses the
formatting and layout from the Datasheet view. Most forms use a carefully laid set of controls in
Form view, and rarely use the Datasheet view. However, when Access exports a form, it ignores the
Form view altogether.

19.3.7. Reusing Import and Export Settings

In some situations, you'll find you need to perform regular import or export operations. You may
need to dump the data from an Excel spreadsheet into your database once a week. Or maybe you
need to produce a monthly PDF report with a sales summary. In these cases, it's quite time-
consuming to go through the entire wizard. This is especially true if you're performing an import,

because you might need to choose which columns you want to import, set the appropriate data
types, and then adjust other settings the exact same way you did the first time you performed the
operation.

Fortunately, Access has a solution for times like these. You can save all the settings you chose in the
Import or Export wizard and store them in your current database. Then, when you need to repeat the
process, you can use these settings to do it with just a couple of clicks (with no brainpower needed).

To save your steps, just turn on the "Save import steps" or "Save export steps" checkbox at the end
of the process the first time you import or export your data. You'll need to choose a descriptive name
for your settings, as shown in Figure 19-9 , and then click Save Import.

Tip: If you're saving an import operation, think carefully about whether you choose to create a new table or append to an existing table

(Section 19.3.3). If you create a new table, then every time you run the import, Access overwrites that table with a new table that has all

new data. But if you append to an existing table, Access adds the new data to whatever data you've already got. (In this case, you need

to be on the lookout for duplicate data; see the "The Danger of Duplicates" box in Section 19.3.3 .)

Figure 19-9. Here, an import process is being saved for later use. You can fill in an optional description for this operation to

help you remember what it's all about. And if you're using the popular Microsoft Outlook email program, then you can choose Create

Outlook Task to create an automatic reminder that tells you when it's time to perform your import or export.

At some future point, you can rerun your import or export operation. If you want to repeat an
import, then choose External Data Import Saved Imports. To repeat an export, choose
External Data Import Saved Exports. Either way, you get to the Manage Data Tasks dialog
box (Figure 19-10), at either the Saved Imports or Saved Exports tab. These tabs lists the import
and export operations you've saved for this database.

Here's what you can do in the Manage Data Tasks dialog box:

Run the operation again . Select it in the list, and then click Run. Access warns you if it needs to
overwrite an existing table (in an import) or file (in an export). Other than that, the whole process
happens in a flash.

Delete your saved operation . Just select it, and then click Delete.

Create an Outlook Task for the operation . You can use this feature to remind yourself to perform
this operation at some future scheduled time (or at regular intervals). To do so, click Create Outlook
Task to create the task, and then find and configure that task in Outlook. When the reminder occurs, it
includes a handy Run Import button that you can click to launch the import operation in Access right
away.

Figure 19-10. In this example, a single import operation has been saved. By clicking on the file name, you can change it to

another file, but you'll have to type in the new path by hand.

Change some aspects of your operation . You can modify the name, the description, and the file
name by clicking the appropriate detail in the Manage Data Tasks dialog box (Figure 19-10). This way,
you can start out importing c:\My Documents\FancyFiles\WildExpenses.xlsx , but then use the same
settings to import d:\HankSmith\EvenMoreExpenses.xlsx . You can't change any other details, like the
source or destination table in Access, or the field data types.

When you're finished using the Manage Data Tasks dialog box, click Close to get back to Access.

19.4. Access and XML

One of the hottest buzzwords in the computer world is XML (the extensible markup language), an all-
purpose way of exchanging information between different programs. Access 2007 supports XML with
its import and export features, where XML shows up as just one more supported format. However, if
you really want to understand how the Access XML features workand whether or not they really add
anything newyou need to dig a little deeper.

19.4.1. What Is XML, Really?

XML alone sounds pretty modest. People often describe it as a format for storing information. For
example, instead of saving data in Word documents, Excel spreadsheets, or ordinary text files, you
can save data in an XML file. This simplicity's deceiving, and two factors make XML really special:

XML is flexible . You can tailor XML to store pretty much any type of information: pictures,
product catalogs, invoice data, receipts, catalog listings, the maintenance specs for every Dodge
Minivan ever built, and on and on.

XML is widespread . Computer applications written in different programming languages (like
Java, Visual Basic, or C++), or running on different operating systems and computer hardware
(like Windows, Mac, or Linux), can all use XML in exactly the same way. That quality makes XML
a perfect solution for exchanging information between people, companies, and even computers
that have been programmed to send data to one another automatically (it's features like this
last one that cause supply-chain management types to start drooling when they talk about
XML).

Contrary to what many people believe, XML is not a data format (like HTML, the format used to
create Web pages). If XML were an ordinary data format, it wouldn't be nearly as useful because, no
matter how good a format is, it can't suit everyone. For example, even though almost every
company needs to create invoices, most companies wouldn't be happy with a generic format for
storing invoice information. One company may need to track customer names, while another might
track customer ID numbers. The bottom line is that most companies need to store slightly different
data in slightly different ways. That means a one-size-fits-all solution is pretty much always doomed
to failure.

So if XML isn't a data format, what is it? Technically, XML is a meta-language , which is a fancy way
of saying that XML is a language for creating other languages. XML does this creating by setting out a
few simple rules that let you build your own data format that's just right for your data.

For example, Acme Company can build an XML format for invoices, and call it AcmeInvoice.
Meanwhile, Budget Company can build its own XML invoice format and call it BudgetInvoice. Even
though both these formats are designed to store invoice information, they can contain completely
different kinds of data. XML's flexibility is its strength.

At the same time, XML's flexibility can create problems. Suppose a bank named Worldwide Green
sets up a system to automatically process XML invoices in a specific format. The system works
smoothly until Acme Corporation sends along its own homegrown invoice. Even though Acme's
invoice uses XML, it doesn't conform to the XML that the bank expects, and so it gums up the bank's
automated invoice-processing application. Suddenly, XML doesn't look so useful.

The bottom line is: XML holds the promise of universal data sharingbut if you don't create some rules
and follow them, then you're left with a bunch of incompatible formats.

Note: XML is really quite simple. However, there are a slew of other standards with names like XML Schema and XSLT that work in

conjunction with XML and provide solutions for validating XML, searching XML, transforming XML, and so on. These other standards are

quite complex and aren't discussed in this book. For more information, refer to a book like Learning XML by Erik Ray (O'Reilly), or the

Web site www.w3schools.com/xml .

19.4.2. Three Rules of XML

To get a better understanding of how to configure Access to handle XML, look at a simple example.
Technically, you don't need to know what XML looks like in order to use the XML features in Access,
but the more you understand, the less confusing life will be. In this section, you'll learn the three
most important rules that shape all XML documents. If you already know a little about XML, feel free
to skip ahead.

By the way, good news before you even start: XML is written in a text-based, human-readable
format. So you can use a program like Notepad to crack open an existing XML file, and get a basic
idea of its format and structure. You can even write an XML file from scratch using Notepad. You
can't do the same with the average Access database, because it's stored in a binary format that you
can read only when you're looking at the data in Access. (If you try to open a database in Notepad,
you'll see a jumble of indecipherable symbols.)

19.4.2.1. The prolog

All respectable XML documents start with something called a document prolog . This bit simply
announces that what you're looking at is an XML document. It can also indicate the encoding of the
document, which sometimes specifies that the document uses a special character set (like a non-
English alphabet).

Here's a typical document prolog, indicating that this document uses Version 1.0 of the XML standard
(the most prevalent version):

 <?xml version="1.0" ?>

If you're creating an XML document by hand, then you should make sure you place the document
prolog as the very first line of the file.

19.4.2.2. Elements

The basic building block of any XML document is the element . Elements are information containers.
For example, if you wanted to store a person's name, you could create an element called Name. (For
more on the infinite variety of elements that anyone can create, see the box in Section 19.4.2.3 .)

A typical element's composed of a start tag and an end tag. The actual information goes between
these two tags. You can easily recognize start tags and end tags because they use angle brackets
<>. Here's one possible start tag:

 <Name>

This tag marks the start of the Name element. The end tag looks almost identical, except it begins
with the characters </ instead of just <. Here's what you need to end the Name element:

 </Name>

To actually store some information in an XML document, you just insert the content between the
start and end tag of an element. Here's how you might store someone's name in an XML document:

 <Name>Patrick</Name>

You could create a list of names by putting one <Name> element after the other, or you could add
other elements that store different types of information, like address, title, employer, and so on. You
put all these tags together in a file to make an XML document.

UP TO SPEED
A Closer Look at Tags

Tags follow fairly strict naming rules. Tags can be of any length, are case-sensitive, include any
alphanumeric character and hyphens (-), underscores (_), and periods (.). You can't use other
special characters, including spaces, and the tag name must start with an underscore or letter. XML
documents also support characters from non-English alphabets.

The most important thing you should understand about tags is that it's up to you to create them. If
you decide that you need to store a list of names, you may create an XML format that uses a
<Name> tag. Meanwhile, someone else may decide to track name information by creating another
XML format that uses elements like <firstName> and <last-Name>. These two elements may store
the same type of information as your <Name> element, but they're different, and a document
written with the <firstName> and <last-Name> tags isn't compatible with your documents.

Since there are so many possible XML formats, a lot of intelligent people have invested a lot of time
and energy in trying to create ways to define and manage different XML formats. Also, companies
and organizations have come together to define specific XML standards for different industries. If you
search on the Internet, you'll find predefined XML formats for law, science, real estate, and much

more.

19.4.2.3. Nesting

So far, you've seen examples of XML elements that contain text. You can also create an element that
contains one or more additional elements. This is a basic principle for organizing information in XML.

Suppose you want to keep track of several people's names and ages. The following format isn't
especially clear because it's hard to tell which person connects to which age:

 <Name>Lisa Chen</Name>
 <Age>19</Age>
 <Name>Bill Harrison</Name>
 <Age>48</Age>

A better solution is to group the <Name> and <Age> elements together for each person, and put
them inside another element. Here's an example:

 <Person>
 <Name>Lisa Chen</Name>
 <Age>19</Age>
 </Person>

 <Person>
 <Name>Bill Harrison</Name>
 <Age>48</Age>
 </Person>

Here, the two <Person> elements each represent a distinct individual. Information about each
person's stored in <Name> and <Age> elements that are nested inside the appropriate <Person>
element.

There's no limit to how many layers deep you can nest information, making this method of organizing
information extremely flexible. In fact, it's part of the reason that XML can work with so many
different types of data.

XML imposes one more rule. Every document must start with a single element that you place right
after the document prolog. You place all the other content inside this element, which is called the root
or document element . So far, the examples you've seen are only excerpts of XML. The following
listing shows a complete, valid XML documenta list with information about two peoplethat starts off
with the document element <PeopleList>:

 <?xml version="1.0" ?>

 <PeopleList>
 <Person>
 <Name>Lisa Chen</Name>
 <Age>19</Age>
 </Person>

 <Person>
 <Name>Bill Harrison</Name>
 <Age>48</Age>
 </Person>
 </PeopleList>

You could enhance this document by adding more <Person> elements or different elements to track
additional information about each person.

You've probably noticed that these XML examples indent each level of elements. That indentation
makes the overall structure easier to read, but it's not required. In fact, applications that read XML
(including Access) ignore all the white space between elements, so it doesn't matter if you add
spaces, tabs, and blank lines. In fact, as far as computers are concerned, the document above is
exactly the same as the following, much less human-friendly version:

 <?xml version="1.0" ?>
 <PeopleList><Person><Name>Lisa Chen</Name><Age>19</
 Age></Person><Person><Name>Bill Harrison</Name><Age>48
 </Age></Person></PeopleList>

19.4.3. XML Files and Schemas

As you've already learned, a file's one place you can store XML documents. But you can just as easily
place XML documents in databases or other storage locations. In fact, sometimes XML data isn't
stored anywhereinstead, people just use it to send information between applications over the
Internet. However, when you use XML with Access, you're always using XML files (unless your
company has created a custom solution using the heavy-duty programming features in Access).

Most XML files have the extension .xml. For example, it makes perfect sense to take the person list
document shown earlier and place it in a text file named PersonList.xml.

Another type of XML document's extremely important: XML schemas . Schemas are designed to solve
a common problemnamely, defining the rules for a specific XML-based format. For example, a
schema indicates the element names you can use, how you can arrange the elements, and the type
of information each element can contain. An XML-friendly application can use the schema to verify
that an XML document uses the right structure and contains the appropriate content. In an ideal
world, every time a company created an XML format, they'd write an XML schema that defines it.
(You probably won't be surprised to learn this doesn't always happen.)

In order to use a schema, you simply need to have a copy of it in a file. (Schemas themselves are

complex and ugly and beyond the scope of what a typical office needsor wantsto learn.) Usually,
schema files have the extension .xsd.

Note: For a more comprehensive beginner's introduction to XML and XML schemas, check out the excellent online tutorial provided by

W3 Schools at www.w3schools.com/xml .

19.4.4. The Access XML Story

XML is a great way to exchange data between different computer programs. But what does that have
to do with Access, which already has its own perfectly good way of storing data? Here's the deal:
More and more companies today use XML to pass data back and forth. When companies exchange
business orders, for instance, or news organizations post stories, or real estate firms list properties
for sale, chances are they're using an XML-based format. If you want to send your Access data to
these systems, then you need a way to take it out of the specialized .accdb database format, and put
it in clear-as-a-bell XML.

Unfortunately, the XML support in Access is still quite limited. The problem's that Access doesn't let
you pick the XML format you want. Instead, it creates a custom format that closely matches your
table. Consider the table in Figure 19-11 . (When exporting XML, you always export a complete
table.)

Figure 19-11. Some sample data, ready for a new life in XML format.

When you export this table, Access creates an XML document that looks like this:

 <dataroot>
 <Product>
 <ProductID>371</ProductID>
 <Name>Thin-Jam Hex Nut 7</Name>
 <ProductNumber>HJ-7161</ProductNumber>

 <SafetyStockLevel>1000</SafetyStockLevel>
 <ReorderPoint>750</ReorderPoint>
 </Product>
 <Product>
 <ProductID>372</ProductID>
 <Name>Thin-Jam Hex Nut 8</Name>
 <ProductNumber>HJ-7162</ProductNumber>
 <SafetyStockLevel>1000</SafetyStockLevel>
 <ReorderPoint>750</ReorderPoint>
 </Product>

 …
 </dataroot>

No matter what table you export, Access always follows the same rules:

The document's root element is named <dataroot>.

Access creates a separate element for each row in the table, using the table name. In this
example, that system means you end up with one <Product> element for each record.

Inside each record, Access creates a separate element for each field. In this example, you end
up with fields like <Name>, <ProductNumber>, and so on.

There's nothing particularly wrong with structuring XML in this way. However, since you can't change
the structure, you'll run into trouble if you want to use another program that expects XML in a
different format. For example, your program may expect the root element to be named
<ProductRecords> instead of <dataroot>, or it may assume a slightly different nesting. Minor
quibbles like these can completely derail an XML-processing application.

Sadly, there's no way around this problem. In order to use Access XML, you must specifically design
a program that recognizes this structure, or you must use another tool to convert the XML to the
standard you really want. Access's XML export feature's enough to get you started, but it doesn't
take your data all the way.

Note: If all you need to do is filter out records or fields that don't interest you, or give fields different names, then you can solve the

problem with a query. Just create a query that presents the information the way you want it, and then export its results (rather than the

whole table).

The same limitations appear when you import XML content. Access expects to find XML content in the
rigid table-like format it expects. If you try to feed it a different type of XML, then you get an error.

19.4.5. Exporting to an XML File

Now that you've learned about XML and considered its limitations in Access, you're ready to try it out
for yourself. The following steps lead you through the process:

1.

Choose External Data Export More XML File .

The familiar export process begins.

1.

Supply the name of the file you want to create, and then click OK .

Access suggests you use the table name. For example, if you're exporting the Orders table, it
recommends an XML file named Orders.xml.

2.

Choose what file types you want to create (Figure 19-12) :

Data (XML) creates the XML file that has the actual content from all records in your table.

Schema (XSD) creates a .xsd schema file. The schema doesn't contain any data, but it
stores a concise definition that describes your table and the fields it contains. The schema
has two purposesyou can pass it along to expert programmers so they know what type of
XML to expect from Access, or you can use it to create a new, empty table in another
Access database (see Section 19.4.6).

Presentation (XSL) creates a .xsl transform file. This file defines how a browser can
convert the raw data in the XML file into an HTML Web page suitable for display in a
browser. When you choose this option, Access also creates an .htm file that uses the .xsl
file. For example, if you're exporting the Products table, you wind up with a Products.htm
Web pageopen this in your browser, and it uses the Products.xsl file to display the data in
Products.xml.

Figure 19-12. Usually, you'll want to create the XML file that stores the actual data from your table. In addition,

you can create two more support files.

3.

If you want to export related tables in the same XML document, then click More
Options .

An Export XML window with additional options appears. Most of these options are best left for
XML gurus. However, the Data tab's more interestingit lets you export related tables (Figure 19-
13).

4.

Figure 19-13. The Data tab shows a tree that starts with the table you're exporting, and branches out to other related

tables. If you want to include the data from these related tables, simply add a checkmark next to each one.

For example, if you're exporting the Orders table, you have two options:

Export other child tables . You could also export the OrderDetails records for each
order. Access nests the OrderDetails elements inside the corresponding Orders element in
the XML.

Export the related records from a parent table . You could, for instance, also export
records from the OrderStatus and CreditCards tables. These records appear under the
heading [Lookup Data] because they provide more data that's linked to an order (in this
case, the current status of the order, and the credit card used to pay for an order).

Note: When you export parent tables, the records aren't nested in the XML, because that could lead to duplication (for

example, if more than one order has the same status or uses the same credit card). Instead, they're added after the main

table you're exporting.

Click OK .

Access creates the files you chose in step 3.

5.

If you want to repeat the export process another time, then choose "Save export
steps."

6.

Click Close to return to Access.

6.

19.4.6. Importing from an XML File

Access makes it just as easy to import XML data, provided it's in the structure Access expects. To try
it out, take the table you just exported, and then reimport it into a new database. Here's how to do
it:

Choose External Data Import XML File .

The familiar import process begins.

1.

If you're creating a new table and you have a schema for your data, then supply the
schema file's name. If you already have the tables that you want to use, or you don't
have a schema handy, then jump straight to step 6 .

You can import straight from the XML file, but it's always better to use the schema if you need
to create the table for the first time, because the schema stores information about each field's
data types. This information ensures that the table you create is a closer match to the original
table you exported.

2.

Click OK .

Access scans the schema, and displays the structure of the tables it'll create (Figure 19-14).

Figure 19-14. In this example, Access correctly identifies that your schema file defines the structure for the Orders,

OrderDetails, OrderStatus, and CreditCards tables. You can expand each table to see what fields it contains.

3.

Click OK .4.

Using the schema information, Access creates a new, blank table with the correct structure.
Now you're ready to fill it with data.

Note: If a table already exists with the same name, Access adds a number to the end to distinguish it (such as Products1,

Products2, and so on).

4.

Click Close to return to Access .5.

Choose External Data Import XML File .

Now that you've created your tables, you're ready to import the actual data.

6.

Supply the name of the XML file that has the data you want to import, and then click
OK .

Access shows the structure of the table, based of the XML data in your file. This structure should
exactly match the structure of the table you want to create or add to.

7.

Choose one of the three import options:

Append Data to Existing Table(s) tells Access to find the table with the same name,
and then add all the data to this table. Use this option if the table you're using already
exists.

Structure and Data creates the table, and then fills it with all the data.

Structure Only creates the table if it doesn't already exist, but doesn't import any data.

Note: If you need to create a new table as part of your import process, it's always best to use the schema file to create the table

(as described in steps 1 to 5), because the schema file has more precise information about data types.

8.

Click OK .

Access fills the tables with data from your XML file.

If you want to repeat the export process another time, then choose "Save export steps".

9.

19.5. Collecting Info by Email

There are many more dedicated email users than database mavens in the world. So it would be
pretty nifty to have a way to get data from other people by just having them send you an email. The
designers who work on Access think so too. They've added one other way to pull data into Access
from other sources: You can collect it by email.

Here's how it works:

You pick a table that needs information.

You pick a bunch of people who can provide that information. (You need a list of email
addresses, which you can either type in by hand or pull out of a table in your database.)

Access sends an email message to all of them with a form they can fill out. The form lets them
fill in the data for one record's worth of information (although a recipient can fill out the same
form multiple times if necessary). To see a quick preview of what this email message might look
like, jump ahead to Figure 19-19 .

The results of that form get emailed back to you.

For each email you receive, Access inserts a record in your table.

Often, this collect-by-email feature is used to get information about people. For example, you may
have a table that has a list of contacts. You can send each person an email message and get them to
supply their personal information (address, phone number, and so on). Of course, you can also use
the feature to collect other types of information, like a list of items people want to bring to the
company potluck.

The collect-by-email feature has a few ground rules:

You need to use Microsoft Outlook 2007 (the email software that's included with
Office 2007) to send your message and receive the responses . So if you haven't
configured Outlook yet with your email details, then you should do that before you go any
further. Your recipients can use whatever kind of email program they want.

You can only insert information, not update it . (There's one exception. You can update a
table if each record has the recipient's email address in a field, because Access can figure out
which record to update by matching the email address of the responder to the email address in
the table.)

If people fill in the wrong data (for example, putting text in a numeric field), Access
can't create the record . It's then up to you to figure out what went wrong, and correct the
problem.

You'll probably need to spend some time reviewing the data other people have
submitted . People are notoriously careless when filling out forms on a computer. They may
type their names completely in lowercase letters, leave out important information, make
spelling mistakes or off-color jokes, and so on.

In the following sections you'll see how to create the email message you need, and then get the data
into your table.

19.5.1. Creating an Email Message

The first step (assuming you've already installed Outlook and configured your email account in it) is
to identify the table where you want to insert data. In the following example, you'll see how to add
prospective candidates to Dating Service database's Bachelors table. If you want to try this out with
your friends, you can find the Dating Service database on the "Missing CD" page at
www.missingmanuals.com .

Here's how to do it:

Choose External Data Collect Data Create E-mail .

A wizard appears. The first step lists all the steps you need to go through to get your data.

1.

Click Next to move on .

The second step lets you pick the type of form you want to use.

2.

Choose "HTML form", and then click Next .

This choice tells Access to use HTML tags in its email message. Using these tags, Access can create a
form with attractive formatting and text boxes where the recipient can type in information.

The only other option (Microsoft Office InfoPath form) is turned off unless you have the InfoPath
application installed on your computer. InfoPath is only included in certain editions of Office, and it's
most commonly used by big companies. Although it's a great program for filling out forms, it has one
serious drawbackin order to use an InfoPath form, all your recipients need to have the InfoPath
software installed on their computers. For that reason, the HTML option's usually better.

3.

The next step asks whether you want to collect new information or update existing
information. Choose an option, and then click Next .

Usually, you'll choose "Collect new information only". This option's the one to use in the Dating Service
database, because you want to get the information that you need to insert a record in the Bachelors
table for each recipient.

If you choose "Update existing information", your table must include the recipient's email addresses.
For example, you can use this approach if you have a set of records in the Bachelors table that you
want to update. Each bachelor will receive an email that they can use to change their current details.

Tip: You can also use the update option if you have the email addresses in another table that's related to the table you want to fill. For

example, you could update a Projects table with the current status of every project if it includes a ProjectManagerID field that points to a

4.

record in a ProjectManagers table, which in turn contains the email address.

Pick the fields you want to collect (Figure 19-15) .

To add a field, select it in the "Fields in table" list, and then click the > button. Or, click the >> button
to transfer all the fields in one go.

Figure 19-15. You can collect as few or as many fields as you want. But Access forces you to include all the table's required

fields, which appear with an asterisk (*) in front of them. (In this example, that's FirstName, LastName, and PhoneNumber.)

Note: You don't see your ID AutoNumber field in the "Fields in table" list. Access knows it needs to generate that number itself, so it

doesn't bother asking anyone to supply a value. You also don't see multivalue fields or attachment fields, because Access can't create

forms for these types of data.

5.

6.

Optionally, provide clearer names for your fields .

For example, the label "Your favorite food is" might be clearer than the field name FoodPreference. To
change a label, select it in the list, and then change the text box that appears underneath.

You can also turn on the Read-only checkbox so that people can't change a field value. This option
makes sense only if you're getting people to update records. In this situation, there might be some
information you want them to see in the form but not change.

6.

Optionally, rearrange the order of your fields .

To move a field, select it in the list of included fields, and then use the up or down arrow buttons.
When Access creates the email form, it puts the fields in the same order.

7.

Click Next .

The final step appears (Figure 19-16).

Figure 19-16. Figure 19-16 : In the next step, you pick the location where Access stores the replies, and you choose whether

8.

they'll be processed automatically.

Choose the folder where Access stores the reply messages once it's processed them .

Ordinarily, Access stores replies in an Outlook folder named Access Data Collection Replies. However,
you can use any folder you want. To change the folder, click the Access Data Collection Replies link.
Outlook launches, and shows you a Select Folder dialog box where you can pick any existing folder (or
click New to create a new one.) Once you've picked the folder you want, click OK.

Tip: If you plan to perform more than one import operation for different tables, it makes sense to use different folders.

9.

If you want to use automatic processing, then turn on the "Automatically process replies"
checkbox. If you want to use manual processing, then skip to step 12 .

If you use automatic processing, then Outlook communicates with Access whenever it receives a reply.
Access then adds or updates the corresponding record right away. This system works as long as your
database file remains in the same location, has the same name, and isn't password-protected.

Manual processing's more work, but it's actually a safer choice. That way, you can review every reply
before you add the record. You also know exactly how many replies you've received, and you can
check for errors before the data gets into your table. For these reasons, manual processing's the best
bet.

10.

If you're using automatic processing, then click the "Set properties to control the
automatic processing of replies" link to show the Collecting Data Using E-mail Options
dialog box (Figure 19-17). Choose the settings you want, and then click OK .

11.

Figure 19-17. If you choose to process replies automatically, then you can control a number of settings in this dialog box.

You can control the following settings:

Discard replies for those to whom you did not send the message lets you ignore
messages if they're sent from people that you didn't email.

Accept multiple replies from each recipient lets recipients respond as many times as they
want. Each time Access receives a message, it adds a record to the table. This makes sense if,
say, you're collecting a list of items your friends want to sell at a group garage sale. It doesn't
make sense if you're compiling the personal information of a bunch of bachelors, because each
person gets just one record.

Allow multiple rows per reply works only if you're using InfoPath. With InfoPath, you can fill
in the information for more than one record in the same form (if this setting's switched on).

Only allow updates to existing data works only if you're performing an update (see step 4).
If you are, then you can use this setting to prevent people from adding new records. Again, this
setting's an InfoPath-only option.

Number of replies to be processed lets you stop processing after you reach a certain number
of replies. From that point on, Access ignores all replies (unless you choose to process them
manually, as described in Section 19.5.2).

Date and time to stop lets you halt processing on a certain date and time. Replies that come in
late are ignored, although you can process them manually.

Click Next .

The next screen asks how you want to supply email addresses.

12.

Choose an email option, and then click Next .

Choose "Enter the email addresses in Microsoft Office Outlook" if you want to type in the email
addresses for your recipients (or pick them from your Outlook address book). Then skip to step 15.

Choose "Use the email addresses stored in a field in the database" if you want to pull the email
addresses out of a table.

If you're performing a table update, then you don't see this step. You always need to get email
addresses out of a table.

13.

If you're supplying email addresses from a table, then you need to tell Access what table
and field to use. Then click Next to continue .

You can pull email addresses out of a current table (if you're performing record updates) or another
linked table (which works if you're performing record inserts or updates). If you're updating the
information in the Bachelors table, you could use the Email field in that table. Or, if you're creating a
list of projects, each of which is linked to a project manager record, you can pull email addresses out
of the ProjectManagers table, and let people create related records in the Projects table.

14.

15.

Fine-tune the email message that you're sending, and then click Next .

You can modify the text in the subject line and introduction (Figure 19-18).

15.

You've reached the final step. Click Create to fire up Outlook, and get ready to send your
message .

When you click "Create", Access creates the form and loads it up in a new message that's just itching
to be sent (Figure 19-19).

If you chose to pull email addresses out of a table, then you see those addresses appear in the To, Cc,
or Bcc lines. Otherwise, the To line's empty and it's up to you to fill in the right addresses. (Add as
many as you want, separated by semicolons.) If you're an Outlook whiz, feel free to throw a mailing
list into the mix. You can also perform any last minute edits to your message.

16.

Once you have the correct recipient email addresses, click Send to send the message on its
way .

That's it. Your work's done (until someone gets the message and fires back a response).

17.

Figure 19-18. This example shows the standard subject line and text that Access fills in. You can add something that's more

meaningful to your recipients.

To fill out a reply, the recipient simply needs to click Reply, type the values in all the text boxes, and
then click Send to send the completed form back to you.

19.5.2. Processing Replies Manually

If you opted for manual processing, then you need to check your Outlook inbox periodically to look
for replies. When you find a reply, right-click it, and then choose Export Data to Microsoft Access.
This option appears only if you right-click a message that Outlook recognizes as a completed Access
form (see Figure 19-20).

If Access successfully imports the message, then the email moves to the Access Data Collection
Replies folder (or whatever folder you set up in step 9). Outlook shows a confirmation message
telling you that all's well.

If you find a message that Access can't process, then you get to decide how you want to handle it.
Possible problems include values that break field validation rules (Section 4.3), values that duplicate
a value that's already in the table when duplicates aren't allowed (Section 4.1.3), and values that
break data type or field length restrictions.

Here are some possible strategies for dealing with messages that Access can't process:

Delete the message and forget about it . You could use this approach if you spot a message
that's obviously wrong, or one that duplicates a record that's already in the table.

Figure 19-19. Here's part of the form for the Bachelors table. You'll notice that Access automatically identifies the

required fields, and fills in some details about the acceptable data types for each form.

Ask for a correction . Send the form to the recipient, and ask them to try again.

Enter the correct information by hand . If you can figure out where the data went wrong,
then you may be able to correct the problem yourself. In that case, use the datasheet in Access
to add the record that it should've created.

19.5.3. Processing Replies Automatically

If you chose to use automatic processing, then you don't need to take any more steps. As replies
arrive in your Inbox, Access adds the data to the table, without you even knowing that it's
happening. It's a good idea to check your table frequently to make sure the data that's being added
doesn't contain obvious errors. Also, you should review your Outlook inbox for messages that weren't
successfully processedlike those that contain bad data.

You'll know a message couldn't be processed if you see it in your inbox, and there's a red square or a
blank value next to it in the Categories column. In this situation, you can try all the solutions
described in the previous section to fix the problem.

Figure 19-20. Choose this shortcut menu option, and the current message goes to Access, which places it in a new record in

the Bachelors table.

Note: You can also try one other technique to remedy problematic emails. If the record wasn't processed because of a temporary

problem (for example, the database was open in exclusive mode at the time, or the drive where the database is stored wasn't available),

you can ask Access to try to process it again. To do so, right-click it, and then choose Export Data to Microsoft Access.

19.5.4. Managing Your Email Collection Settings

After you've sent your message, all the informationwhom it's been sent to, what it's asking for, and
so onis stored in your database. Access needs this info so it knows how to process replies.

You can do a few things to make sure everything runs smoothly. For example, you can send the
email to more people, switch automatic processing on or off, and remove the email information
altogether. To perform any of these tasks, choose External Data Collect Data Manage
Replies. This action shows the Manage Data Collection Messages shown in Figure 19-21 . (The name
of this commandManage Repliesis a bit misleading. You're not actually doing anything with the replies
here. Instead, you're tuning up your original email settings.)

Figure 19-21. Click Message Options to pop up the dialog box where you can switch automatic processing on or off, and

adjust how it works (Figure 19-17). Click "Resend this E-mail Message" to send your form out to another batch of people. Finally, click

"Delete this E-mail Message" when you're done receiving data, and you don't want to use this feature anymore.

Tip: Even if you're finished collecting data, there's no reason to delete your email settings. Instead, why not keep them around in case

you decide to collect data again, sometime in the future?

20. Connecting Access to SQL Server

In Chapter 18, you considered how you to share your prize database with other people. For some,
this is Access paradise. Teams of people can collaborate, businesses can take care of day-to-day
workflow, and everyone works happily ever after. But for others, database sharing is a big-time
headache, because Access just can't keep up with everyone who wants to make changes at the same
time.

In this chapter, you'll learn another approach, which lets you break through the limits of Access and
share your databases with much larger groups of people who can use it much more intensively. To do
so, you'll plug Access into SQL Server, Microsoft's hard-core, server-side database. (Flip back to
Section 3.1.2 for a refresher on the difference between client-side databases and server-side
databases.)

This combination gives you the best of both worlds. You get to use a supremely reliable database
engine (that's SQL Server), without giving up the friendly user interface that makes it easy to get
things done (that's Access). Best of all, you can start using a version of SQL Server without shelling
out a single cent.

20.1. Should You Switch to SQL Server?

As you learned in Section 18.1.1, there's no absolute rule that decides who can use Access's built-in
sharing feature successfully and who can't. You find extremesa Fortune 500 company with thousands
of workers probably can't use Access sharing, while a five-person interior design team won't face any
problemsbut for many people, many factors need to be considered. Successful sharing depends on
how many people need to make changes at once, how extensive their changes tend to be, how long
they keep their records in edit mode, and how much data you're storing (for example, ginormous
memo and attachment fields are much harder to manage in a multiuser database than plain text and
number fields).

Some factors are beyond the control of Accesslike a slow or unreliable company networkthat can
derail database sharing. Section 18.1.1 has some good guidelines that describe when sharing may fall
short. However, if you're setting up an Access database for a small business, you may need to test
out database sharing yourself.

If you go ahead with database sharing, some typical symptoms will alert you if it's not working out.
Here are some key danger signs:

Your edits often overlap with someone else's. In this situation, Access keeps asking you
what to do about the conflict (Section 18.3.2). This problem is one of the most common, and
while it won't crash your database, conflicting edits can lead to legitimate changes getting blown
out by someone else's work.

You can't edit the records you want. This problem occurs when Access uses locks (Section
18.3.3) to prevent simultaneous changes. Locks let Access dodge the overlapping edit problem
but at a price: Every other process that uses the record grinds to a halt. Again, this occurrence
isn't dangerousjust a triple-Aspirin aggravation.

Data gets corrupted. This occurrence is both the least common and the most serious. But
even though it's rare (and it gets rarer with each new release of Access), it can still happen.
You'll know you have a problem when garbled data appears in a field, or Access gives you a
bizarre error message (like "too many indexes") when you try to open a database object.
Section 18.4 explains the problem and gives some safety tips.

Note: Data corruption can happen through no fault of Access. For example, if Zoe loses her network connection while she's in the

middle of saving a change, Access can leave the shared database in an inconsistent state. The only way that you can prevent problems

like these is to have a powerful database program running on the server that does all the work. (That's the idea behind SQL Server.

When you use SQL Server, no one changes the database directly. Instead, people make polite requests to the always-running SQL

Server engine, which then does the work in a safe and controlled manner.)

So what can you do if you find that database sharing just doesn't work for you? One of the best
options is to use a high-powered server-side database product, like SQL Server. Using SQL Server
obviously adds more complexity (meaning you'll spend more time setting it up and making sure it's
running properly), but it gives you ironclad support for sharing data safely and efficiently.

20.1.1. How SQL Server Works

Before you prance into the land of SQL Server, you need to know a little bit more about how it works.
Figure 20-1 shows how SQL Server and Access interact. In this example, there are several people
using the SQL Server database at once, each with their own copy of Access to help them out.

Note: This is actually how any server-side database works, including competing database products like Oracle and DB2. However, other

server-side databases don't have the nifty Access integration that you'll learn about in this chapter, so clients need to use another front-

end (usually, a custom-built application).

Figure
20-1.
SQL

Server

hosts the

database

with its

tables (and,

optionally,

some

queries).

Access

runs the

front end,

which

contains all

other types

of objects

(reports,

forms,

macros,

and code

modules).

This figure just may look familiarafter all, this is more or less the same way that database sharing
works. Each person gets a copy of the front end with the forms and reports, and the back end (which
actually stores the data) is placed on another computer (the server) and made available to all.

However, there's also a significant difference here. In SQL Server Land, the individual front ends do
less work. Instead of modifying the database on their own, they contact SQL Server (which is really
just a Windows program that runs in the background on the server computer). Essentially, you've
given Access a demotion. It's now responsible for eye candy, macros, and printouts, but it doesn't do
the heavy lifting (like inserting, updating, and deleting records) anymore.

20.1.2. A Cheaper SQL Server

At this point, you're probably wondering how much that part in the center of Figure 20-1the SQL
Server database engineactually costs. Microsoft sets the price using a complex licensing scheme that
ratchets up the cost depending on how many people use the database at once. Usually, it runs into
thousands of dollars, and it's not uncommon for a big business to shell out $20,000 or more annually.

UP TO SPEED
The Top Reasons to Switch to SQL Server

You have a lot of reasons to like SQL Server. But when diehard Access fans switch over,
they usually have one of the following reasons in mind:

Lots and lots of people. As you've learned, Access doesn't do so well if you need
to share one database file with a few hundred people.

Lots and lots of data. Access doesn't let you make a database bigger than 2 GB
(gigabytes). The full version of SQL Server lets you create databases that swallow
entire hard drives whole.

Performance. As your database grows, you'll probably find that it doesn't retrieve
your data quite as speedily as it used to. Although indexes can help to a certain
extent (see Section 6.2.2), SQL Server is able to do much more. It keeps recently
used information in a vast pool of memory, and doles that information out to
whomever needs it. This technique alone saves oodles of time.

Real security. As you learned in Section 18.5, Access doesn't offer a fine-grained
security model that lets you lock specific people out of specific database objects. (It
used to, but Microsoft pulled that feature out of Access 2007 because it wasn't
secure enough.) But SQL Server has bulletproof security that can be as fine-
grained as you want.

Transactions. In complex database systems, many tasks consist of several
separate database operations that happen one after the other. For example, a
money transfer of $500 involves two correlated actionsone account gets a $500
credit, and the other gets a $500 debit. SQL Server lets you put this sequence of
steps in a transaction, which ensures that if any one of these actions fails, the
whole shebang is cancelled. In other words, even if lightning strikes and your
server reboots in the middle of its work, SQL Server can restore the system to the
moment just before the account transfer (and you'll never wind up with $500
winking out of existence).

Although these features are great, most of them are beyond the scope of this book. To
learn more, you need to track down a dedicated book about SQL Server. One good
choice is Beginning SQL Server 2005 Programming by Robert Vieira (Wrox). (Don't be
put off by the word "programming," as this book covers the essentials of database
design, optimization, and maintenance.)

But before you skip this chapter in disgust, there's something you should know: A completely free
version of SQL Server is out there waiting for you. Amazingly enough, it's almost as powerful as the
one that costs thousands of dollars and requires you to pledge your first-born child to Microsoft.

This version is called SQL Server 2005 Express Edition, and you'll learn how to download and install it
in the next section. If you compare it with the full version of SQL Server, you'll find it has three
limitations:

It supports just one CPU (computer processor). More CPUs make for more powerful
computers, and this limit prevents SQL Server Express from being quite as powerful as its big
non-Express brother.

It can use only 1 GB of RAM memory. If your server has more, use it for something else.

Each database you create tops out at 4 GB. No problem hereAccess itself tops out at 2 GB
database files. If you avoid storing pictures and other large content in the database, you'll be
good for a while.

What's more noteworthy is all the stuff that isn't left out. SQL Server Express is a full-fledged version
of SQL Server, with exactly the same high-powered engine under the hood. If you need to upsize
your Access database, it's a great deal.

Note: SQL Server Express also leaves out fancy tools to help you create tables and manage your databases. Although you can

download a free management tool from Microsoft (see Figure 20-2), Access has already got you covered. It's a capable front end that

can help you do everything you need to do.

FREQUENTLY ASKED QUESTIONS
Can You Trust Microsoft?

Why would Microsoft give anything away for free?

Savvy computer users are suspicious of anything that seems too good to be true.
They're worried that Microsoft's SQL Server deal may be a crafty bait-and-switch tacticin
other words, just enough to entice you to use SQL Server but not enough to meet your
needs.

Fortunately, you have no reason to worry. If you decide to use SQL Server Express, you
can stick with it happily for years without ever finding a reason to upgrade to the retail
version.

So why does Microsoft offer a product they can't make any money on? It's simplethey're
after the big fish. They know that a small company may start out with SQL Server
Express and then grow into a large enterprise that's happy to pay the extra money to
get a version that's even more powerful. This is particularly true if that company is using
SQL Server to power a so-called Web application (an online shopping site, for example).
If that Web site becomes the next eBay, the company running it will need some serious
database horsepower (like a server computer that has multiple CPUs and a ton of
memory). To support this hardware, they'll need the full version of SQL Server.

Finally, offering a free version of SQL Server helps Microsoft by enticing more people to
design fancy database systems using SQL Server. A techie may come to know and love
SQL Server Express, and then recommend the full version to a big-pocketed company.

20.2. Getting Started: SQL Server 2005 Express

Before you can start using SQL Server Express, you need to install it. This process is fairly
straightforward, but it's long and it involves downloading some very big filesone that's 22 MB
(megabytes) and another that's 54 MB. If you're still using a dial-up connection, it could take you a
few mind-numbing hours.

Note: Everything you learn in this chapter about Access and SQL Server Express also applies to the full version of SQL Server.

However, if you have that version, you obviously don't need to follow the down-load steps described hereinstead, you can pop in your

setup DVD and get going right away.

20.2.1. Installing SQL Server Express

You install SQL Server on the computer where you plan to place the shared database. Typically, this
is a computer on the network that no one uses for anything else. (If someone's using the computer,
there's the risk that they'll shut it down, restart it, tie it up with other work, or do something else
that will affect everyone's ability to get the information they need.) You don't need to install SQL
Server on the computers that run the Access front end, although obviously they all need to have a
copy of Access.

However, if you're still in the process of designing and fine-tuning your database, you may decide to
try it out on your own computer first. In that case, you install SQL Server right on your own PC.
Then, when you're ready to start sharing, you install SQL Server on the server computer and move
your database there (as described in Chapter 21). In fact, if you're new to SQL Server it's probably
best if you try it out on your computer first . That's because you need to tweak a few finicky settings
in order to let other people access SQL Server from other computers. You'll probably prefer to see
how everything works before you start messing around with those details.

The system requirements for SQL Server are pretty modest. (Shockingly enough, they're less
stringent than the requirements for running Access.) You can find the exact specifications at
www.microsoft.com/sql/editions/express/sysreqs.mspx . You'll find that any relatively modern
computer can run SQL Server, but you may need to make sure your operating system has the latest
updates and service packs. For example, Windows XP computers need Service Pack 2.

Tip: To make sure a computer has the latest updates, click the Start button, and then choose Windows Update.

Once you've decided where to install SQL Server and you've verified that the computer can handle it,
here's what you need to do:

Open your favorite Web browser and go to the .NET download site .1.

Before you can install SQL Server, you need to install a component that SQL Server uses: the
.NET Framework 2.0. You can find it by heading to http://msdn.microsoft.com/netframework
and searching around. Or, better, use the secret shortcut URL http://tinyurl.com/drj86 .

Note: If you have Windows Vista, you already have the .NET Framework 2.0. And even if you don't have Windows Vista, another

application may have already installed it on your computer. If you suspect it's there, head to the Control Panel, go to the

Administrative Tools section, and look for an icon named Microsoft .NET Framework 2.0 Configuration. If you find it,

congratulationsyou can skip straight to step 4.

1.

Once you find the .NET Framework 2.0, download and install it .

The setup file is pretty big: about 22 MB.

2.

Once you finish downloading the setup file, run it, and click through all the steps in
the setup wizard .

Don't worryyou don't have any decisions to make.

3.

When the setup is finished, head to www.microsoft.com/sql/editions/express .

This page has plenty of information about SQL Server Express. Hunt around for a link that lets
you download SQL Server Express, and then click it. (It was last spotted with the text "Get SQL
Server Express.")

4.

Click away to find the SQL Server Express download (Figure 20-2) .

Along the way, Microsoft will ask if you want to register with Microsoft. If you register, you'll get
news from Microsoft (which is handy if you want to know about the latest SQL Server update).
However, it's purely optional.

5.

Figure 20-2. You have options. Not only can you download SQL Server 2005 Express (the circled link), you can also

get a slick management tool called SQL Server Management Studio (underneath), some samples, and the information-packed

help file reference that's known as the SQL Server 2005 Books Online (at the bottom).

When you find the download link for SQL Server (Figure 20-2), click to download and
install it .

The SQL Server download is a whopping 54 MB.

6.

After you finish downloading the setup file, run it .7.

Before the setup starts, you need to go through a few simple steps. Here's what to expect:

Before installing anything, the setup performs a system configuration check . The
setup program examines your computer, and then reports to you whether it's SQL-Server-
worthy (Figure 20-3).

Figure 20-3. This computer can run SQL Server, but a warning message appearsits aging Pentium III

processor is a bit underpowered if you expect optimum performance.

You're asked to fill in your name . This part is pretty typical, but keep the "Hide
advanced configuration options" checkbox turned on to avoid the low-level settings you
don't want to change.

You're asked to pick the features you want to install . Keep the standard
optionsthey install everything you need.

You're asked if you want to automatically send error messages to Microsoft . No,
don't expect them to help you out. This feature is designed solely to help Microsoft
improve future versions of SQL Server by determining what problems are currently
afflicting its users.

7.

And the end of all this, you get to one tricky part. SQL Server will ask you what type of security
you want to use.

Choose your authentication mode (Figure 20-4) .

You have two options:

Windows Authentication Mode means that SQL Server decides whether someone's
allowed to use a database based on that person's Windows user account. This approach is
the best and most secure. Unfortunately, it also means you need to do a bit of extra work
later on to make sure other people are allowed to use your database (Section 20.2.2).

Mixed Mode means that SQL Server lets people use the database if they have the right
Windows account (as described above) or if they can supply a user name and password
combination that you've defined. If you choose Mixed mode, you need to supply a
password for a special SQL Server account known as sa (system administrator). Anyone
who logs in with this user name and password is given complete control of every database
on the server. Mixed mode saves you the hassle of doing any extra configuration, but it's
not as secure. (For one thing, you need to pass this informationthe user name and
password you want people to usearound the office.)

Note: If you aren't familiar with concepts like Windows users and groups, and you don't have a network administrator to help you

out, you'd better choose the Mixed mode option. It's not a very secure approach, but it's the only easy way that you'll be able to let

other people log in to the database (Section 20.2.2).

8.

Figure 20-4. Windows Authentication Mode gives you the best security. However, it also means you need to do a bit of

configuration to tell SQL Server who it can trust.

After this point, the installation is long but straightforward. Now's a good time to
grab a cup of coffee .

Once the setup is finished, you should run Windows Update again (click the Start button, and
then choose Windows Update). That's because SQL Server Express has two service packs (at
the time of this writing), and the Windows Update feature installs them automatically.

Note: The SQL Server Express service packs are critical for Windows Vista users. Without them, the super-strict Windows Vista

security model will stop you from doing just about anything with your SQL Server databases.

Once you've finished this last round of updating, you're finally ready to get to work. If you
decided to install SQL Server on your computer, you can start using it right away. Jump ahead
to Section 20.3.3 to return to the welcoming arms of Access.

If you decided to install SQL Server on another computer, you still have more setup steps to
finish. The next section has the details.

9.

20.2.2. Putting SQL Server on the Network

When you first install SQL Server, it's usable only from the current computer that is, other computers
can't log in to the server and use any of its databases.

At first glance, this appears to defeat the whole purpose of using SQL Server. (On second glance, it
does too.) However, Microsoft knows that if they release a product that's wide open to the rest of the
world, with its hackers, crackers, and all-around computer bad guys, someone somewhere will shout
at them. For that reason, SQL Server takes the safest approachit limits itself to the current computer
until you give it the go-ahead to accept outside calls.

To open up SQL Server to the outside world, you need to change two configuration settings. If you're
using Windows XP or Vista, you also need to configure the Windows firewall so it lets SQL Server get
through. You can find the latest setup instructions in a Knowledge Base article at
http://support.microsoft.com/kb/914277 .

Once you've made these changes, other people will finally be able to contact SQL Server and try to
log in. However, the party's not on yet. SQL Server may still refuse them. That's because it won't let
anyone in that it doesn't trust.

So who does SQL Server Express trust? Here's the lowdown:

When you first install SQL Server, it's set up to trust anyone who's an administrator of the
computer where SQL Server is installed. (Technically, being an administrator means your
Windows user account is a member of the Administrators group.)

If you configured SQL Server to use Mixed mode authentication (Section 20.2.1), it also lets in
anyone who supplies the user name sa and the password you specified during the install.

If you want SQL Server to trust more people, you have some extra work to do. Usually, you make
sure that everyone who needs to use SQL Server belongs to a single Windows group (a group is a
collection of users and has a descriptive name, like Guests, Administrators, DatabaseLovers, and so
on). This job is a Windows setup task, so consult your network administrator to get it done. Once
you've done that, you need to tell SQL Server to trust your group. You can use several approaches to
take this step, but the easiest is to download the free SQL Server Management Studio tool (shown in
Figure 20-2). For more information, check out the SQL Server Management Studio Help (which is
fairly technical), or look for a dedicated book about SQL Server administration.

Note: By this point, you're probably wondering why SQL Server makes life so difficult. The reason is because SQL Server is designed to

be extremely flexible. Its security model seems ridiculously complex when you're just trying to let people use your database, but it's

indispensable if you need to control exactly what different people are allowed to do.

http://support.microsoft.com/kb/914277

20.3. Creating a SQL Server Database

You've suffered through the long and grueling installation process. Now it's time to reap the rewards
of your labor and create your first SQL Server database.

Access gives you two ways to create a SQL Server database:

You can take an ordinary Access database and upsize it. Access creates the tables you need and
transfers all your information to SQL Server.

You can use Access to create a new SQL Server database from scratch.

Generally, upsizing a database is easiest because it lets you design your tables using the tools you're
most familiar with, and then transfer your data. (As you'll see, creating a SQL Server table in Access
is a similar, but subtly different process from creating an ordinary Access table. It's a bit like you'd
feel if you got up in the morning and found someone had swapped your sock drawer with your CD
collection. Everything's therejust not where you expect.)

The direct-creation approach also has its advantages. Most importantly, it gives you more control
because you don't have a conversion step. Access databases don't line up exactly with SQL Server
databases (for example, the field data types that you use are similar, but slightly different). If you
create your database in SQL Server from the start, you'll dodge any potential conversion issues.

It the following sections, you'll learn about both approaches.

20.3.1. Upsizing a Database

Access has a handy Upsizing wizard that can convert any Access database into a SQL Server
database. The Upsizing wizard is similar to the database splitter (Section 18.2.2)when you're finished,
you'll have a front end and a back end. Your front end is an Access file that contains your forms,
reports, macros, and code. Your back end is the data (and usually the queries), which are in SQL
Server's capable hands.

Here's how to take the Upsizing wizard for a whirl:

Open the database you want to upsize.

Choose Database Tools Move Data SQL Server.

1.

The first window of the Upsizing wizard appears (Figure 20-5).2.

Figure
20-5.
Usually,

you'll use

the

Upsizing

wizard to

take the

information

from an

Access

database

file and put

it into a

shiny new

SQL

Server

database.

2.

Choose "Create new database," and then click Next.

If you've already created a SQL Server database in your SQL Server computer (for example,
using another database management tool), you could choose "Use existing database" to
transfer your Access tables into that database. However, it almost always makes sense to
create a new database. After all, a database engine like SQL Server can store a virtually
unlimited number of databases.

3.

In the next step (Figure 20-6), you need to tell Access where to find your database
server. First, supply the server name in the box at the top of the window.

The server name consists of the name of the computer that's running SQL Server, followed by a
backslash, followed by the word SQLEXPRESS. So, if the computer that's running SQL Server is
named FudgeServer, you'd find your database at FudgeServer\SQLEXPRESS. If you're
connecting to the full version of SQL Server (not the Express edition), you usually don't need
the second part, so just FudgeServer would do. Consult with your database administrator for
help.

Note: To find out the name of your computer, find the My Computer icon (on your desktop or in Windows Explorer), right-click it,

and then choose Properties. Then choose the Computer Name tab. You'll see the name of your computer and a handy Change

button you can use to modify it.

4.

Figure
20-6.
Here Access

is about to

connect to a

computer

named

MYSERVER,

which is

running SQL

Server

Express.

Keep the Use Trusted Connection checkbox turned on.

This action tells Access to connect using your Windows account. However, if you need to supply
a different user name and password connection, clear the checkbox, and then enter this
information in the text boxes below.

5.

Enter the name for your database, and then click Next.

Use the same rules you follow for naming database objectsbe short and leave out spaces and
other punctuation.

Note: When you create a database, SQL Server doesn't tell you the name of the actual database file (and actually, it's usually

more than one file). That's because the file names are just not that important. Instead, all you need to know is the name you've

anointed your database with (BoutiqueFudge, for example). Behind the scenes, SQL Server stores your data in the appropriate

files, so you don't need to worry about it.

6.

Choose the tables you want to transfer to your database (Figure 20-7), and then click
Next.

Access doesn't let you pick the queries you want to transfer. Instead, it transfers all the queries
that are related to the tables you pick. Other objects, like forms and reports, are never
transferred.

7.

The next steps lets you control how SQL Server creates your tables (Figure 20-8).
Change any options you want, and then click Next.

8.

In Chapter 2 you learned about indexes, and in Chapter 4 you learned about default values and
validation rules. Usually, if you've taken the time to define these ingredients in Access, you also
want them in the exported SQL Server tables, so leave the checkboxes turned on. Here are the
other options you can use:

Figure
20-7.
Click > to

move a

single table

to the

"Export to

SQL

Server" list,

or >> to

move them

all.

8.

Figure
20-8.
If you're

intimidated

by all the

options in

this step,

just click

Next to

breeze on

by. The

standard

settings are

usually

what you

want.

Table relationships. Keep this checkbox turned on, because it ensures that the
relationships you've defined between your tables are enforced by SQL Server. You have
two options here. "Use DRI" is short for "use data relational integrityin other words, the
standard practice of making sure you can't create child records that link to a nonexistent
parent (Section 5.2.3). "Use triggers" tells SQL Server to use the less common cascading
deletes and cascading updates features (Section 5.2.3.1).

Add timestamp fields to tables. This setting lets you create a timestamp fieldan extra
field whose only purpose is to record each time a change is made. The timestamp field is
sometimes used to prevent clashing edits, because it lets you check if someone else has
made changes to a record since the last time you looked at it. Usually, you won't add any
timestamp fields. Instead, you'll add them to specific tables later on if you decide you want
this feature.

Only create the table structure. With this option you can create all the tables in SQL
Server, but leave out the data. This option is useful if you've been using the Access
database file for testing and it's full of fake data.

The last step asks you what to do with the original Access file. Usually, you'll choose
"Create a new Access client/server application."

Here's what the three options mean:

Create a new Access client/server application. This option creates a special type of
Access file called an Access project. You'll recognize the difference because every Access
project file has the file extension .adp. This file is a front end that has all your reports,

9.

forms, and code, and has a special set of links that lets you interact with your tables that
are on the server. (The original Access database file remains, but you'll probably just
delete that now that all your data is in SQL Server.)

Link SQL Server tables to existing application. This option is similar to creating an
Access project, except it modifies the current database to become the front end. All the
tables that have just been transferred are renamed by adding the word "local" at the end
(so the Products table becomes Products_ local). In addition, you'll have a new set of
linked tables that use the original table names. Each linked table lets you access the
corresponding table in SQL Server. Once you've verified that these links work, you'll
probably decide to delete the "local" tables so you don't get confused. (For more about
linked tables, see the box "Access Projects vs. Linked Tables" in Section 20.3.2).

No application changes. With this option, the data is transferred, but your Access
database isn't modified. That means you'll be left with two sets of dataone in your Access
database file, and one in SQL Server (which you can't see or modify in Access). This result
usually isn't what you want.

Click Next.

If you're creating an Access project (as described in the previous step), Access asks if you want
to open the new project front end right away or keep the old database open. Usually, you'll
want to open the new file so you can get to work.

10.

Click Finish to start the upsizing process.

Access connects to SQL Server and starts transferring all the data. As it works, you see a
progress indicator (Figure 20-9).

When Access is finished, it shows a report that summarizes how the whole process went. You
can print it, or choose Print Preview Close Preview Close Print Preview to return to your
database.

11.

Figure
20-9.
Depending

on the

amount of

data you

have, this

upsizing

process

may take a

bit of time.

The conversion process usually runs without a problem. However, not everything can survive the
switch. Here are some ingredients that will be lost:

Hyperlink fields. They become ordinary text fields.

Attachment fields. They become ordinary text fields, but the only thing the text field stores
are the names of the files that you originally put in the attachment.

Multivalue fields. You're left with a semicolon-separated list of values. This result gives you
the right information, but not in a way that SQL Server can use. Any relations and queries that
use this information are out of luck.

If you're creating an Access project (rather than just linked tables), your queries are also converted.
As a result, you'll lose the following ingredients, because SQL server doesn't support them:

Action queries (Chapter 8) that use parameters (Section 7.4).

Crosstab queries.

Queries that reference values on a form. (The form is in your front end, so once you transfer
the query, it has no way to access that information.)

Nonstandard queries that were created in SQL view rather than in Design viewfor example,
union queries (Section 6.2.3.2).

Tip: Want to go back the other way, and transfer some data from SQL Server into Access? If so, the trick is the import and export

features in Access, which you learned about in Chapter 19.

Once you've finished the upsizing process, you can continue to work with your tables as you did
before. For example, you can open your tables in the datasheet, edit records, and use your forms
and reports. The difference is that now your copy of Access is communicating with SQL Server to get
the information it needs and make changes.

When editing data and using forms and reports, you won't notice any difference between the new
upsized database and your original database (except for the fact that it may perform more slowly).
However, you will notice a difference when you create a new table or query, or when you modify the
design of an existing table or query. That's because tables and queries are actually stored in the SQL
Server database, and SQL Server databases are designed differently than their Access counterparts.

UP TO SPEED
Access Projects vs. Linked Tables

Access projects and linked tables sound like two similar options. They both let you
create Access front ends that work with data in a SQL Server database. However, here
are some important differences:

Updatability. Although you can use both approaches to modify data, you can't
modify the design of a linked table. So if you want to add fields, set up
relationships, and so on, you need to use an Access project.

Query processing. When you create an Access project, your queries are
converted to SQL Server objects and stored on the server. When you create a
linked table, your queries remain in the front end. It's hard to say which option is
better. Usually, Access projects have better query performance, because the
server does more work. (This is particularly true if you're running a query that
filters out a few records from a large table.) However, linked tables let you keep
using the familiar Access query designer, and they remove the possibility of query
conversion errors.

File type. You place linked tables in an ordinary Access database. (You can even
put them alongside ordinary tables.) However, an Access project must always be
stored as a special .adp file.

You learned about linked tables in Chapter 19. The rest of this chapter assumes you're
creating an Access project.

You'll start looking at the differences in Section 20.3.3. But first, it's worth considering how you can
manage the SQL Server database you've just created.

20.3.2. Managing Your Database

In Access Land, it's easy to delete, move, or back up a database. All you need to do is find the
corresponding .accdb file and use a file management tool like Windows Explorer.

SQL Server doesn't work this way. As you learned earlier, it handles files behind the scenes, without
revealing their file names. And even if you know where to find the database files, you can't
accomplish much with them. For example, if you want to move a SQL Server database from one
server computer to another, a simple cut-and-paste operation in Windows Explorer won't work. The
original server will keep looking for the database you moved, and the destination server will keep
ignoring it.

If you want to perform management tasks like thesedeleting, moving, and copying a databaseyou
need to work with SQL Server so it can move the files and update its database catalog. One option is
to download the free SQL Server Management Studio tool (see Figure 20-2), which helps you out
with a wide range of administrative tasks. (For example, it's the tool you'll need to use if you get

really ambitious and start configuring SQL Server's security settings so it allows some people and
rejects others.) However, you can also perform the most common management tasks right inside
Access. The secret is using the Office button Server menu (which appears only when you have
an Access project open).

Your options there include:

Connection. Pops open a Data Link Properties dialog box where you can change the connection
settings for your Access project file. Usually, you head here if you have a problem connecting to
your SQL Server database. For example, if someone's moved or renamed the SQL Server
database, or they've changed the user name and password you need to log in, this window is
where you can update your settings. Just supply the new server, database name, or password
information, and then click OK to reconnect.

Tip: If you open an Access project file but you don't see any tables, and the word "disconnected" appears in the title bar, Access

wasn't able to connect to your database. If the name of the database or server has changed recently, choose Office button

Server Connection to fix the problem.

Server Properties. Shows a dialog box with a few basic details about your database, including
the product you're running (SQL Server), its version (SQL Server 2005 is version number 9),
the server location, and the current database. You can't change any of the information here.

Link Tables. Lets you add one or more linked tables to your current Access project. Usually,
the idea here is to add links to the tables in another database (or even another database
server), so you can see everything using one Access file.

Back Up SQL Database. Creates a backup of your SQL Server database in a .dat file, which
you can choose to place anywhere you want (on the server computer or your computer). SQL
Server gurus generally prefer to use a tool that lets them make automated backups, like SQL
Server Agent (which is only included with the full version of SQL Server).

Restore SQL Database. Takes a .dat file that you created with the Office button Server
 Back Up SQL Database command and recreates the corresponding SQL Server database.

Transfer Database. Lets you move a database from one computer to another. (Both
computers need to have the SQL Server software.) Access stores the new server location in
your project file so you can keep using the database in its new location. This feature is handy if
you've been testing a SQL Server database on your computer and now you want to move it to a
network server where everyone can access it.

Copy Database File. If you're running SQL Server on your computer, this option lets you
create a copy of the database file that you can take to another computer. (If you're connected
to a copy of SQL Server on another server, this command won't work.) Generally, the Office
button Server Transfer Database command is easier to use because it gets everything
done in one step.

Drop SQL Database. Removes the database from SQL Server and deletes it.

Set Logon Password. If you're using Mixed mode authentication (Section 20.2.1), this option
lets you change the SQL Server password.

20.3.3. Creating a SQL Server Database from Scratch

Access also lets you create a new SQL Server database with nothing in it, and then add the tables
you want. Here's how to do it:

Choose Office button New (or just launch Access without opening a database file
and click Blank Database).

The Getting Started page appears.

1.

On the right side of the window, click the folder icon next to the database file name.

The New Database dialog box appears.

2.

In the "Save as type" list, choose "Microsoft Office Access Projects (*.adp)."3.

Pick the folder where you want to place the front end (the .adp file), type a name
into the "File name" box (like ZooAnimals.adp), and then click OK.

Access returns you to the Getting Started page, with your information in the New Project pane
on the right side of the window.

4.

Click Create to seal the deal.

Access asks if you want to use an existing SQL Server database.

5.

Click No to create a new one of your own.

A window appears that asks you where your server is and what database you want to create.
You've seen this step before in the Upsizing wizard (Figure 20-6).

6.

Enter the location of your database server and the name of the database you want to
create, and then click Finish.

Access creates the blank SQL Server database (and your .adp project file). After a short delay,
the Access window appears with an empty navigation panel.

7.

When you're ready to create your first table, jump ahead to the next section.8.

20.4. Adding Objects to a SQL Server Database

The nicest thing about the SQL Server support in Access is that it lets you work inside the familiar
Access window, even though you're dealing with a very different database engine. However, you pay
a price for this convenience. As you'll see in the following sections, creating database objects for SQL
Server isn't quite as intuitive as creating them for Access.

20.4.1. Creating a Table

You can create a table in any Access project (.adp file), whether it's a new database you created
from scratch or an existing one that you're working with. Either way, the process is the same.

First, choose Create Tables Table Design. You can't create a SQL Server table in Datasheet
view. Instead, you always need to start in Design view. You can also edit an existing table in Design
view in the normal way. Just right-click it, and then choose Design View.

When the Design view appears, you'll notice that it looks a bit different than the Design view for
ordinary Access tables. Fortunately, it still works essentially the same way. You add a list of fields
from top to bottom, and configure the name, data type, and size of each one. (SQL Server calls them
columns instead of fields, but there's really no difference.)

Each field has five columns of information (Figure 20-10) for you to fill out:

Column Name . This column identifies the field (just as it does in a normal Access table). To
avoid headaches, don't use spaces or special characters.

Data Type . This column indicates what type of information the field can store (just as it does
in a normal Access table). However, the set of field types that SQL Server provides is different
from the set that Access usesmore on that issue in Section 20.4.1.1 .

Length . This column corresponds roughly to the Field Size property in Access (Section 2.3.1.1
). For a text-based data type, the length is the number of allowed characters. But for most data
types, the field size is for information only; it shows the number of bytes of space that the field
uses, but it can't be modified.

Allow Nulls . This column corresponds to the Required field property in Access (Section 4.1.1).
If a checkmark is in this column, you're telling SQL Server that blank values are acceptable,
which means the database user can leave this field empty.

Description . This column gets a plain-English description of your field. Fill it in, or notit's up to
you.

When designing a SQL Server table, you also need to specify the primary key (Section 2.4). Usually,
you'll use a field that stores an automatically generated ID number. To designate a field as a primary
key, click to select the field, and then choose Table Tools | Design Tools Primary Key. You'll

see a key icon appear at the far left of the row.

When you're done working with your table, close it. Access prompts you to save the table and pick a
name. Then you can start entering data in the familiar Access datasheet, which hasn't changed a bit.

Figure 20-10. This example shows the Design view for the familiar Customers table from the BoutiqueFudge database, SQL

Server style.

Note: You'll probably notice that Access projects are slower than ordinary Access database files. That's because Access needs to

communicate with SQL Server behind the scenes, asking it to create tables, perform data operations, and so on.

20.4.1.1. SQL Server data types

It would be nice if SQL Server and Access used exactly the same set of data types. However, these
applications come from different backgrounds and sometimes their differences show.

Fortunately, there's a close mapping between most data types. That means most Access data types
have a corresponding SQL Server data type that matches pretty closely. (And when you upsize a
database, Access is usually able to pick a good match.) Table 20-1 shows the SQL Server data types
that you get for various Access data types.

Note: SQL Server has still more data types that aren't shown in this table and don't map directly to Access data types. However, the data

types shown here are by far the most common.

Text

nvarchar (which can hold up to 4,000 characters, unlike the Access Text data type, which tops out at
255 characters)

Memo

ntext

Number (with a Field Size of Integer)

smallint

Number (with a Field Size of Long Integer)

int

Number (with a Field Size of Single)

real

Number (with a Field Size of Double)

float

Number (with a Field Size of Decimal)

decimal

Number (with a Field Size of Byte)

tinyint

Number (with a Field Size of ReplicationID)

uniqueidentifier

Date/Time

datetime

Currency

money

AutoNumber

int (with Identity set to Yes)

Yes/No

bit

Hyperlink

nvarchar

Attachment

nvarchar (but only the file name is kept)

Table 20-1. SQL Server and Access Data Types Compared

Access Data Type SQL Server Equivalent

20.4.1.2. AutoNumber fields

You may have noticed that SQL Server doesn't have an AutoNumber data type. But don't let that fool
you into thinking that there's no way to get this insanely useful feature (Section 2.3.9) in SQL
Server. You just need to set it up a bit differently:

When creating an ID field, give it the int data type .1.

In the Columns tab underneath the field list, set Identity to Yes .

An identity value is the SQL Server name for an AutoNumber field. It's a value that SQL Server
assigns for you automatically, and is guaranteed to always be unique.

2.

You can also set the Identity Seed and Identity Increment properties :3.

Identity Seed is the starting value. This property is a sorely missed feature in Access,
which always starts its AutoNumber values at 1. (You may remember the complex
workaround in Section 8.3.2 .)

Identity Increment is the amount SQL Server increases in between values. For example,
if the Identity Increment is 5, you may see numbers like 1, 6, 11, 16, and so on. Of
course, SQL Server is free to skip over a number for a variety of reasons, just like Access
does.

3.

20.4.1.3. Lookups

The SQL Server Design view lacks the convenient lookup wizard that Access uses. Instead, you need
to select the field where you want to place the lookup, click the Lookup tab at the bottom of the
design window (Figure 20-11), and then fill in all the lookup information. Here are the key settings
you need to create a lookup:

Display Control should be set to Combo Boxthat's the drop-down list that lets you pick the value
you want.

Row Source Type should be set to Tables/Views/Functions if you want to create a lookup that uses
the data from a related table. (If you just want to supply a list of values, you would use the Value
List option instead.)

Row Source provides the data for the lookup. If you're drawing your data from another table, you'll
use a SQL SELECT command (Section 6.2.3) that pulls out two fieldsthe field with descriptive
information, and the field with the ID value. For example, you could use the command SELECT
ID,ProductName FROM Products ORDER BY ProductName to create a lookup list that gets the ID and
the name of each product in the Products table, sorted by product name.

Figure 20-11. Here's a completed lookup for the CreditCardID field in the Orders table.

Tip: If you don't want to write the SELECT statement on your own, click in this box, and then click the ellipsis button to open a query

window where you can pick your table and fields. This query window is a bit different from the Access query designer you've used so

farsee Section 20.4.2 for a quick tour.

Bound Column identifies which column (from the Row Source) should be inserted in the field when
you pick a value from the lookup. For example, if the first field in your SELECT statement is the ID
value (as in the previous example), you would set this value to 1.

Column Count sets the number of columns that show up in the lookup list. Usually, this option is set
to 2 (which shows both columns), but the width of the first column with the ID number is given an
infinitesimally small size so you don't actually see it.

Column Heads determines whether titles are at the top of the columns in the lookup. Usually, this
value is set to No. However, if you create a lookup that shows several pieces of related information,
you can use column heads to make it easier to tell what's what when you're reading values in the
lookup list.

Column Widths sets how big each column is in the lookup list. You separate each value (in inches)
with a semicolon. For example, a setting of 0";1" shrinks the first column out of sight and makes the
second column one inch wide.

Unfortunately, creating a lookup doesn't create a relationship between the two tables. If you want a
relationship, you need to create it yourself, as described in the next section.

Note: When you upsize a database, Access is nice enough to keep all your lookups.

20.4.1.4. Relationships

As you learned in Chapter 5 , every respectable database has lots of table relationships. In Access,
you have two speedy ways to build a relationship: using the database diagram tool, and creating a
lookup on a field. But in an Access project, neither one of those features are available. Instead, you
need to define the relationship by hand in the design window for your table.

Here's how to do it:

Open the child table in Design view .

This table has the field that links to the parent table. (For example, Products is in the child table
of ProductCategories. The tip-off is the ProductCategoryID field that appears in the Products
table.)

1.

Choose Table Tools | Design Show/Hide Property Sheet .

This action pops open the Properties dialog box (Figure 20-12), which looks nothing like the
Property Sheet you've used before with Access databases.

2.

Figure 20-12. Here's a completed relationship that links the OrderDetails table (as the child) to the Products table (as

the parent). In each record in the OrderDetails table, the ProductID field points to the product that was ordered.

Click the Relationships tab .3.

Click New to define a new relationship .4.

In the list box under the heading "Primary key table," pick the parent table .5.

In the first row underneath, pick the unique field in the parent table .

(You have several rows here because it's possible to create relationships based on several fields,
although it's rarely done.)

6.

In the list box under the heading "Foreign key table," pick the child table .

In the first row underneath, pick the field in the child table that points to the linked parent
record.

7.

8.

If you want to verify that existing data lives up to this relationship, turn on the
checkbox for "Check existing data on creation ."

If you don't want to check your existing records to make sure they live up to the rules of this
relationship, (Section 5.2.3) leave this checkbox turned off. If you don't have any data in the
table yet, it doesn't matter what you choose.

8.

Turn on the checkbox next to "Enforce relationships for INSERTs and UPDATEs" if
you want to enforce relational integrity when adding and changing records .

Doing so prevents you from breaking the relationship rules (Section 5.2.3) when adding or
updating records. For example, you won't be allowed to insert a child record that points to a
non-existent parent record. If you choose not to use relational integrity, you can use one of the
options below to switch on cascading updates or deletes (Section 5.2.3.1).

9.

Close the window when you're done .10.

20.4.2. Understanding Queries

Tables of data aren't the only database object that's stored in a SQL Server database. Your SQL
Server database can also hold queries, those endlessly useful routines for finding (and changing) the
records you want.

The objects that Access fans call queries have a whole different existence in SQL Server. Where you
see queries, SQL Server sees three different types of objects:

View . A view is roughly equivalent to a select queryit grabs records (possibly from related
tables) and displays them in a datasheet.

User-defined function . A user-defined function is similar to a select query that takes
parameters . (As you learned in Section 7.4 , parameters let you ask the user for a piece of
information just before running the query. You can then use that information to filter records or
perform a calculation.)

Stored procedure . A stored procedure is the heavyweight of SQL Server database objects. It
can perform a whole batch of tasks, like selecting records, committing updates, and running
transactions. You won't use most of that power when you create a stored procedure in Access.
Instead, you use stored procedures to create the SQL Server equivalent of an action query
(Chapter 8) that commits a single update, insert, or delete operation.

In the following section, you'll try your hand at creating a basic view.

20.4.3. Creating a View

Creating a view is a lot like creating a classic Access query that selects a bunch of records. The
following steps show you how to create a view and equip it with all the essentials, including sorting,
filtering, and expressions:

Choose Create Other Query Wizard .1.

The New Query dialog box appears, which offers to help you create a variety of SQL Server
query types. In this case, you simply want to create an ordinary query that extracts some
useful data.

1.

Choose Design View, and then click OK .

The Add Table dialog box appears.

2.

Choose the table (or tables you want to use), and then click Add to include it in your
query. When you're finished, click Close .

The query designer appears. Conceptually, it works more or less like the Access query designer,
with the same features. However, it looks a bit different (Figure 20-13).

Figure 20-13. When you add more than one table to a query, and these tables have a relationship defined in the

database, the query designer includes the join lines (Section 6.3.1). In this example, the query is showing a list of ordered items,

with extra product information from the Products table.

3.

Choose the fields you want to include in your query results .4.

To include a field in your results, place a checkmark next to the field. Each field is added to the
list at the bottom of the window in a separate row (Figure 20-14). This is similar to the Access
query designer but flipped around. (Access creates one column for each field in a query.)

At this point, you have a fully functional query. But you may also want to add sorting, filtering,
and calculated expressions, as described in the following steps.

4.

If you want to sort on a field, choose Ascending or Descending in the Sort Type box .

If you want to sort by more than one field, set the Sort Type of every field you want to use.
However, you also need to fill in a number in the Sort Order column to tell the query designer
which sort to perform first. For example, if you want to sort a batch of names by last name and
then first name, you would use the number 1 for the Sort Order of the LastName field and the
number 2 for the FirstName field.

Tip: If you want to use a field for sorting or filtering but you don't want it to appear in the results, just clear the checkmark in the

Output box.

Figure 20-14. This example shows four fields, all with a checkmark in the Output column, which means they'll be

shown in the results table.

5.

6.

If you want to use filtering, set a filter expression in the Criteria box next to the
appropriate field .

Performing this task is easy enough for numeric values, because the filter expressions are
exactly the same as in Access. You can use the same operators (like the +, -, /, * signs to
perform calculations, and the =, <, and > signs to compare numbers). However, if you want to
work with text or dates, make sure you review the syntax differences between SQL Server and
Access in the "Syntax Differences box in Section 20.4.3 .

You can apply filtering to as many fields as you want. If you want to define several different
criteria, and show records that match any of these criteria, you can define additional filter
expressions in the Or column, as shown in Figure 20-15 .

Figure 20-15. This field matches any prices that are under $10 or over $50.

6.

If you want to use a calculated field, add it to the bottom of the list by filling in the
Column and Alias boxes (Figure 20-16) .

The syntax for creating a calculated field is a bit different in the SQL Server query designer.
Rather than using the ColumnName: Expression syntax, you put the column name in the Alias
box, and you put the expression in the Column box.

Although you can type in your expression using simple field names, the query designer converts
them to three-part names automatically. Figure 20-16 shows what you'll see if you type in the
simple calculated expression Price*Quantity , which calculates the cost of one line in an order.

If you want to create a calculated expression that uses text or dates, make sure you review the
syntax differences between SQL Server and Access in the "Syntax Differences" box below.

7.

Figure 20-16. You'll notice that the field names use strange three-part names (so Price becomes dbo.OrderDetails.

Price). This name indicates that the Price field is in a table named OrderDetails, which was created by the database owner (dbo).

SQL Server uses these names in expressions to prevent possible ambiguity. But don't worrythe query designer changes ordinary

names into three-part names automatically.

WORD TO THE WISE
Syntax Differences

When you create a query using an Access project, your query is actually a SQL Server database
object. It's SQL Server that stores it, and it's SQL Server that runs it. This point is important
because the variation of SQL (the structured query language; see Section 6.2.3) that Access
uses is slightly different from the flavor you find in SQL Server. This minor differences can trip
up the most well meaning query writers.

Fortunately, you can avoid many headaches just by being aware of a few key differences:

Text values use single quotes, not double quotes. So to search for a product record by
name, use 'Maple Magic ' not "Maple Magic ".

Dates also use single quotes, not number signs. So search for orders placed before
'1/30/2008 ' not #1/30/2008 #.

When joining two pieces of text together, use the + symbol, not the & symbol. So to get a
full name in a calculated expression, use FirstName + ' ' + LastName , not FirstName &+ "
" &LastName .

You can't use Access functions. SQL Server has its own library of functions, and while many of
them are the same or similar to the Access functions you know and love, differences abound.
The safest approach is to search for the function you want to use in the SQL Server Books
Online reference (Figure 20-2 shows how to download it). That way you can check the function
and see if it works the same as its Access counterpart.

When you're finished designing your query, right-click the tab title, and then choose
Datasheet View (or choose Function & View Tools | Design Tools Run) .

8.

Access will ask you to save your query. Once you do, you see your results in the familiar
datasheet, just as you do when you run a query in an Access database. You can then print or
edit the results.

8.

21. Connecting Access to SharePoint
Even in the most dysfunctional companies, people need to get along. Businesses that have efficient
ways to share informationwhether it's meeting agendas, high-priority tasks, or interoffice gossipare
more successful than those that keep quiet.

It may have occurred to you back in Chapter 18 that you can use Access to share this sort of
information. All you need to do is create a suitable database, put it in a shared location, and make
sure everyone has Access installed on their computers. However, you don't need to go through any
of this work if you use SharePoint, a Microsoft product that's explicitly designed for office teamwork.
Best of all, if your company owns Windows Server 2003, it already owns the basic version of
SharePoint, which is all you need. (A beefed-up version of SharePoint with extra Office features is
also sold under the name Microsoft Office SharePoint Server 2007, or MOSS for short.)

Note: If you don't own a copy of Windows Server 2003, and you'd rather plunk down the near-$1,000 sticker price for an all-inclusive

beach vacation, stop reading right now. You're better off designing your own databases for collaboration (see Chapter 18) or using the

free version of SQL Server (see Chapter 20).

SharePoint works perfectly well without Accessin fact, all you need is the Internet Explorer browser.
Using your browser you can log in to your team's SharePoint site, review the latest information,
upload documents, and edit lists of data.

For most SharePoint users, this is more than enough. But if you happen to have a copy of Access
handy, you get two more options. You can:

Transfer data into and out of SharePoint. This trick is useful if some people in your
company use Access and others use SharePoint. Of course, it's up to you to make sure you
keep everyone's data up to date.

Use Access as a front end for SharePoint. This is the same technique you used in Chapter
20 to interact with SQL Server. It lets you work with tables of information in the familiar Access
environment but store these tables on the SharePoint server. The advantage is that your data is
available to much larger numbers of people at once, and for those who don't have Access, it's
available through the Web pages on your SharePoint site.

In this chapter, you'll learn a bit more about SharePoint, and you'll try out both of these techniques.

Note: Unlike Access, the SharePoint server can handle a practically unlimited number of people. That's because it uses SQL Server

under the hood, which is the same high-powered database software you explored in Chapter 20.

21.1. Understanding SharePoint

No, it's not hipster slang for the latest knitting technique. SharePoint is a server-based program that
helps groups of people collaborate , letting them share information and documents through a
centralized Web site.

SharePoint is a bit of an oddity: Even though it's one of the fastest growing products in Microsoft's
history, most ordinary people have never heard of it, and even its longtime fans have a difficult time
describing what it actually does. Fortunately, the basic idea behind SharePoint is pretty
straightforward. First, your team gets together and sets up a SharePoint Web site. This site is hosted
on a server computer on your company's network. As part of the setup process, you decide who is
allowed to access the site and what they'll be allowed to do.

Tip: Ordinarily, your SharePoint server isn't reachable over the Internet, but if you want people to be able to work from home, you can

change that toojust talk to an Internet hosting company.

Once your SharePoint site is set up, every team member can access it. The login process is
simplejust fire up Internet Explorer, and then surf to the team site. Ordinarily, you don't need to
supply user name and password information, because Internet Explorer automatically logs you in
using your current user account (whatever you used to log in to the network when you booted up
your computer and started the day). However, if you need to use a different user account to access
the SharePoint server, Internet Explorer will pop up a login box when you visit the site. (Network
administrators are a great help when sorting out issues like these.)

When you get to the site, you see a customizable page that summarizes recent news, upcoming
events, and useful links (Figure 21-1).

Figure 21-1. This example shows an ordinary SharePoint site without a drop of customization. You can navigate to the

different areas using the panel on the left, or you can use one of the "Add" links (circled) to create a new announcement, appointment, or

link. If you add items, other team members can log in and see them.

Note: Microsoft uses thousands of SharePoint sites to coordinate its own teams, including the one that created Access.

21.1.1. What You Can Do in SharePoint

It doesn't take long to pick up the basic features in a SharePoint site. You can browse around a
SharePoint team site as you would any other Web site.

Here are some things that SharePoint lets you do:

Keep an eye on important dates using the team calendar.

Post messages on a team discussion board.

Share Office documents in the Document Library (like reports you've written in Word and
spreadsheets from Excel). Different people can supply edited versions, and team leaders can
reject ones they don't like.

FREQUENTLY ASKED QUESTION
SharePoint Confusion

What's the deal with these other versions of SharePoint?

The version of SharePoint that's included with Windows Server 2003 is technically known as
Windows SharePoint Services (that's WSS for the acronym lovers among us). You may have
also heard about two products that seem suspiciously similar to Windows SharePoint Services:

Microsoft Office SharePoint Portal Server (called SPS by those in the know). This is a
non-free product that extends what SharePoint Services is able to do. Its key features are
ways to integrate different team sites, the ability to host personal sites for each team
member, and its support for another Microsoft product, BizTalk, which can automate
workflow in huge companies.

Microsoft Office SharePoint Server 2007 (or MOSS). This is an update to SharePoint
Portal Server. It plays the same role in life, but it has a little razzle-dazzle. It also adds the
functionality that was previously sold separately as Microsoft Content Management Server.

This chapter focuses squarely on the SharePoint Services, which provides all the features that
you'll use in Access.

Assign tasks to different people and find out when they're finished.

See a list of everyone who's on your team and send out emails.

Share links to useful Web pages.

Create and edit lists that store miscellaneous data (Figure 21-2). For example, you can use a
list to store top customer complains that need to be addressed or the food items that employees
are bringing to the company potluck.

Figure 21-2. This example shows a SharePoint list that duplicates the infamous Dolls table from the Bobblehead database.

The last task is where Access comes into the picture. Even though you can create and manage a list
of information in SharePoint through your browser, you may want to use that list in Access. Maybe
you have a form, query, or code routine that needs to take that information into account. Or perhaps
you're just more comfortable editing data in the familiar Access interface.

A SharePoint list is analogous to an Access table . Although both names refer to the same thing, a
SharePoint list is more limited than an Access table. It doesn't support huge amounts of text or
validation rules. And although it allows lookups, it doesn't let you use relationships to safeguard data.

What this means is that a SharePoint site doesn't provide a good place to store critical business
information, like customer lists, product catalogs, and invoices. But it's well suited to informal lists
and ad hoc scraps of information that you need to pass between colleagues. For example, SharePoint
lists are fine for keeping a list of office phone numbers or a signup sheet for the company baseball
team.

UP TO SPEED
Installing SharePoint

Before you can create a SharePoint site, you need to make sure you have the SharePoint Services
software properly installed. The full setup process is beyond the scope of this book, so if you want to
try it out, make sure you get the help of your friendly neighborhood network administrator.

Here are few guidelines to help you get ready:

The first thing you need to use SharePoint is a computer that's running Windows Server 2003. If
you've got the latest edition (known as Windows Server 2003 R2, for release 2), you already
have all the bits you need.

If you don't have the latest release of Windows Server 2003, fear notyou're entitled to a free
add-in that installs SharePoint Services. Point your web browser to
www.microsoft.com/windowsserver2003/technologies/sharepoint to get the download you need.
This site is also a great place to start if you need more information about SharePoint Services,
or if you're troubleshooting a wacky problem.

The easiest way to install SharePoint is to run the Configure Your Server wizard, and choose the
SharePoint Services role. This sets up your server by installing several key ingredients, including
IIS (the software that transforms the computer into a Web server), and ASP.NET (the software
that lets it run dynamic Web applications, like SharePoint sites). Additionally, if you don't have
the full version of SQL Server on your computer, the Configure Your Server wizard installs a
scaled-down version to use for storing SharePoint data.

If all this installation fiddling sounds like too much work (or if you don't have a company network to
use), you may be interested in paying someone to host SharePoint for you. Firms are out there that
will allocate a very small amount of space on a high-powered Web server to store your SharePoint
lists, documents, and so on. Paying for this service costs about as much as paying a Web hosting
company to host a business Web site. If it sounds tempting, you can sign up for a free 30-day trial
that lets you use all the SharePoint features described in this chapter; see
www.microsoft.com/technet/windowsserver/sharepoint/V2/techinfo/trial.mspx for the details.

21.2. Setting Up SharePoint

Now that you know what SharePoint is, you're ready to take it for a whirl. Every SharePoint server
starts out with one home site. Although you can use the home site for collaboration, most people
prefer to create additional sites for each separate team. (Your company can have as little as one
team site or as many as several thousand.)

Tip: You see the home site appear, in Internet Explorer, at the end of the setup process.

21.2.1. Creating a Team Site

Here's how you create a new team site:

Surf to your SharePoint home site .

Remember, SharePoint gives you the home site URL at the end of the setup process. Or, if you've
signed up for a hosted SharePoint site, the hosting company will give you the URL.

1.

Click the Site Actions button (see Figure 21-3), and then choose Site Settings .

The site management page appears, with a huge list of options you can change.

2.

Figure 21-3. The Site Actions button is located at the top-right corner of every SharePoint page. It gives you a quick way to

configure the site or create a new item (like a list or a Web page).

2.

In the Site Administration section, click the "Sites and workspaces" link .

A page appears that lists all the sites and document workspaces on your current SharePoint server.
(Document workspaces let people share files, like Word documents and Excel spreadsheets. Sites
have this feature too, but they also have additional frills, like lists of announcements and a shared
calendar.)

You can use this page to view one of the other sites or to remove it. Initially, the list of sites is
empty, because a new SharePoint installation starts out with nothing but a home site.

3.

Click Create to build a new site .

A page appears where you can configure your new site (Figure 21-4).

4.

Figure 21-4. Here's where you fill in the information for the new Office Temps team site.

4.

Fill in all the site information, and then click Create .

The Title and Description section determines how your site appears on the main page.

The Web Site Address section lets you pick the URL that people will use to get to this team
site. This address has two parts: the home site URL (which usually includes the server name),
plus a customizable bit at the end that identifies the team.

The Permissions section lets you choose how people are authenticated (in other words,
how SharePoint decides whether it should allow them in). Choose "Use unique permissions" if
you want to control exactly who can access this team site (which is the most flexible
approach). Otherwise, the permissions for your new site will be the same as the permissions
for the home site.

The Navigation section lets you choose whether a link for this site appears in the home site.

The Template section lets you choose a starting point for the layout of your site. The Team
Site template is a good choice. Once you've created the site, you can tweak it to your heart's
content.

5.

Click Create .

You see an "Operation in Progress" message while the site is being created.

If you chose "Use unique permissions" in step 3, SharePoint shows a new page where you can

6.

7.

choose the people who are allowed to use your site.

Choose the groups that are allowed to use the site (Figure 21-5) .

Three levels of people can use a SharePoint site:

Visitors can read information left by other people, but they can't change anything.

Members are a part of the team. They can edit information in existing lists, but they can't
create new ones.

Owners are super-members. They add and remove other users, create lists, and change site
settings.

To assign these different levels of permission to different people, you use groups . Groups are a
Windows security concept that lets you manage large numbers of people at once. The basic idea is
that a single group can contain as many people as you need. Best of all, groups are super flexible.
When someone new joins the company, you don't need to modify your SharePoint site settings.
Instead, you simply add that person to the right group, and SharePoint knows exactly what they
should be allowed to do.

Figure 21-5. If you already have a group for visitors, choose "Use an existing group," and then fill in the group name.

Otherwise, choose "Create a new group," and then supply a list of user names, separated by semicolons. In this example, a new group

named Office Temps Members is being created with four users.

Note: Getting the correct user names and group names is important; Once again, you may need to call in a network administrator. You

7.

probably need to indicate the computer or domain that each person uses to log in. So if user jpantalone logs in to the Sales domain,

you'd need to add the user name Sales\jpantalone to make that clear to SharePoint.

Once you've finished filling in the user information, click OK .

This completes the process. Congratulations! You have a brand new SharePoint team site to play
with (Figure 21-6).

Figure 21-6. Depending on the options you chose in the Navigation section (Section 21.2.1), your site may appear in the

mini tabs at the top of the SharePoint pages for quick access.

8.

Tip: You can create a new Windows user without leaving the SharePoint setup page. Just click the Create button under one of the user

lists. For added convenience, SharePoint can automatically send an invitation email to the lucky new team member, as long as you

provide the email address.

21.2.2. Customizing Your Site

SharePoint sites are ridiculously customizable. That's because they're actually built out of numerous
self-contained components, which Microsoft calls Web Parts. If you want to change the page, you
simply need to add new Web Parts, remove existing ones, or just move them around the page.

To try this out, head to the home page for your team site, and click Site Actions Edit Page. The
page switches into edit mode, as shown in Figure 21-7 .

Figure 21-7. In edit mode, you can clearly see the separate regions of your page and where each Web Part is placed. This

rather unremarkable page consists of four Web Parts.

Note: When you modify your site in this way, your changes affect everyone. Any site owner can configure a SharePoint team site.

You can change a lot in edit mode. You can:

Move a Web Part . Just click the title bar (for example, the text that says "Announcements"),
and then drag it to a new place on the page.

Minimize a Web Part . By minimizing a Web Part, only the title for the Web Part is shown on
the page, which saves considerable space. If people using the page decide to use that Web Part,
they can simply click the drop-down arrow next to the title to spring the section into view.

Remove a Web Part . Click the X icon at the top-right corner of the Web Part box to close it.
You can always add it back later.

UP TO SPEED
Five Fun Features to Try Out in SharePoint

The rest of this chapter focuses on the SharePoint features that work with Accessnamely, lists.
However, you don't need to stop your SharePoint exploration here. If you're still curious, be
sure to check out the following SharePoint features:

Book a meeting with the calendar . In the Calendar Web Part, click the "Add new
event" link. You can fill in the title, description, location, and time for your meeting. You
can even create a workspace to store notes.

Get immediate notifications with an alert . Alerts let you notify people when
something in SharePoint changes (whether it's a new event, an assigned task, an
announcement, or something else). For example, you can add an alert to the calendar.
Just click the "Calendar" title to open up the calendar view, and then choose Actions
Alert Me. You'll be asked to choose the type of changes you're interested in and the email
addresses that SharePoint should notify.

Share a document . Often, teams need to send specifications, reports, and other
business documents through a review chain. SharePoint makes it easy. Just click the
Shared Documents link in the navigation panel to head to the document center, where you
can browse what's already there and upload your own work.

Assign a task . When there's work to be done, it helps to have an efficient way to
coordinate who's doing what. In SharePoint, that means clicking the Tasks link in the
navigation panel to see the lists of outstanding jobs. You can create and assign new tasks
with a wealth of important tracking information (like priority, status, percent complete,
start date, due date, and even an attached file).

Share contact information . Does your team need to stay in touch with the same
people? SharePoint has a ready-made list, called Contacts, that's designed just for this
purpose. To take a look, click Contacts in the navigation panel.

If you'd like to learn more about SharePoint, you may be interested in a dedicated book on the
subject, like Essential SharePoint by Jeff Webb (O'Reilly).

Change a Web Part . Depending on the Web Part, you can tweak different options, including
the appearance of the Web Part, the included elements, its behavior, and so on. To modify a
Web Part, click the "edit" button at the top-right corner of the Web Part box, and then choose

Modify Shared Web Part. ("Shared" means that a whole team of people see this Web Part, so
change it at your own risk.) Figure 21-8 shows an example.

Add a Web Part . SharePoint has a library of useful Web Parts, as shown in Figure 21-9 . (And
it goes without saying that enterprising programmers can also create their own.) To pick a new
Web Part, click Add Web Part in the section of the page where you want it to appear.

Figure 21-8. When you modify a Web Part, a dashed border appears around it. The settings for that Web Part are shown in a

panel on the right. In this example, the Site Image Web Part is being outfitted with a new graphic.

21.3. SharePoint and Access

Now that you've seen the whole SharePoint product, you're ready to hone in on its list of features. In
a nutshell, SharePoint lists are designed to help you track any kind of miscellaneous information that
you need to share with your team. Some of SharePoint's key featureslike links, announcements
tasks, contacts, and even the calendarare actually premade lists.

Tip: To see all the lists on a team site, look for the Lists section in the navigation panel on the right. Click the Lists heading in the

navigation panel to see a more detailed list of lists (Figure 21-10).

21.3.1. Building a List

Creating a list using SharePoint's Web page interface is just as easy as building a table in Access.
Here's how to do it:

Choose Site Actions Create .

The site management page appears.

1.

In the Custom Lists section, click the Custom List link .

The list creation page appears.

2.

Supply a name and a description for your list .3.

Figure 21-9. Here, a Web Part is being added to the section named Left. Some of the Web Parts that ordinarily aren't

included on the home page for a team site include Site Users (which lists the team members and shows who is currently online), User

Tasks (which shows only the tasks that are assigned to the current user), and Team Discussion (which provides a message-board-

style forum for conversation).

3.

For example, you could create a list named CafeteriaMenuIdeas that lists the items people would
like to see for sale in the company canteen. Or, use DodgeballTeamAssignment to find out who's
going to square off against the boss.

Choose whether the list should appear in the navigation panel .

If you choose to place it in the panel, the list will be visible on every page. Otherwise, you'll need to
head to the lists section (click Lists) to find it.

4.

Click Create .

SharePoint creates the list and whisks you off to the list entry page, where you can start filling it
with information (Figure 21-11) or change its structure.

5.

Create the columns you need for your list .

Every list begins with three columns: Type (which SharePoint uses to distinguish between different
types of objects), Attachments (which lets you tack on any files that are related to an item), and
Title (a descriptive line of text). The first two are mandatory, but you can remove the Title column
(as you'll learn in step 7).

6.

Figure 21-10. This page shows all the lists on the site, the number of items in each one, and the last time a change was

made.

Figure 21-11. Every time you want to add information to your list or change the structure of the list (by adding or modifying

columns), you use this page.

Note: Every SharePoint list actually has several more columns that Access maintains behind the scenes. For example, each list item

has a unique, hidden ID, and columns that track who inserted an item and the last time a change was made to it.

To add a column, choose Settings Create Column. Fill out all the information for the new
column, including its name, a description, and the type of data (Figure 21-12). You can also set a
maximum length, supply a default value, and indicate if the field is required (and can't be left
blank).

Figure 21-12. The data types for SharePoint lists correspond to the Access data types for tables (although you don't have

quite as many choices as you get with Access). If you want to draw the values from another table, then create a lookup column and

indicate the list that you want to link to.

Note: SharePoint isn't as strict with relational integrity (Section 5.2.3) as Access. For example, if you create a lookup column that links

to another list and you delete that list, then Access simply clears all your linked values.

Optionally, you can modify your list settings by clicking Settings List Settings .

This step opens the list settings page (Figure 21-13), where you can perform a variety of useful
tune-ups.

7.

Figure 21-13. The first section of the list settings page has links that let you configure various options. Beneath that is a

section that lets you review the current columns, delete those you don't want, and add new ones. Finally, at the bottom of the page (not

shown here) is a section that lets you review the current views and create your own.

GEM IN THE ROUGH
SharePoint Views = Access Queries

In SharePoint lingo, a view is a customizable way to look at the data in a list. Views can show a
subset of the full range of columns, and they can use filters to cut down the list to just those rows
that interest you. You can also use sorting, grouping, and totals. In essence, a SharePoint view
plays the same role as the versatile Access select query that you mastered in Chapter 6 .

You can create new views for your list by choosing Settings List Settings while you're viewing
down the list. This shows a page chock-full of list options. Scroll to the bottom to see the current
lists and add new ones. Newly created lists have only a single view, called the default view .

When you create a new column, you also see an "Add to default view" checkbox. The default view is
the view you start in when you first open the list. If you don't add your column to the default view,
you won't see it at all (unless you create a new view that includes the column).

The most useful links on the list settings page are:

General settings lets you modify the list information you supplied in steps 3 and 4.

Advanced settings lets you control whether list users are restricted to reading and modifying
their own entries. You can also turn off the attachment feature (which lets users tack on their
own files with an item) and the folder feature (which lets users create subfolders to better
organize list items).

Delete this list does the obvious.

Permissions for this list lets you control who's allowed to edit the list and what they're
allowed to do. Ordinarily, team site owners have full control permission (meaning they can do
anything, including changing the list settings), normal members have contribute permission
(meaning they can add, edit, and delete items), and visitors have read permission (meaning
they can look only at the existing information).

Once you have the columns you want, it's time to enter your data .

To add a new record, click New New Item. SharePoint shows a page where you can enter
values for all your columns (Figure 21-14). You can also select an item to edit or delete it.

Note: SharePoint is designed for use by large numbers of people at once (also known as concurrency), so it's quite conceivable that

you won't be the only person editing a list. To see any recent changes and additions made by other people, choose Actions

Refresh Data.SharePoint's concurrency features are relatively weak. If two people edit the same list item at once, the one who tries to

save the change last gets an error message rejecting the edit. (The situation is better if you're using Access to make your edit, as

described in Section 21.3.6 .)

8.

Figure 21-14. Here's a new item for the CafeteriaMenuIdeas list.

GEM IN THE ROUGH
The Access Web Datasheet

If you want to see several list items at a time and edit them all at once in an Access-style grid, you
can use the Access Web Datasheet, a specialized browser plug-in that enhances SharePoint. The
Access Web Datasheet is available only if you have Office 2007 installed on the current computer,
unlike the other SharePoint pages. To try it you, choose Actions Edit in Datasheet from the list
view.

The Access Web Datasheet looks like an ordinary Access datasheet, embedded inside your browser.
You can move from row to row or column to column, making changes anywhere, drag columns from
place to place, and apply sorting using the drop-down arrows next to the column headers. You can
also quickly add or remove columns (again, by-right clicking the column headers). If you like
SharePoint but you miss the comforts of Access, the Access Web Datasheet will make you feel right
at home.

21.3.2. Exporting a Table to SharePoint

There's another way to build a SharePoint list. You can start with an Access table and export it to
SharePoint. The disadvantage of this approach is that a bit of conversion is involved to turn the
Access data types into SharePoint data types. Some of the finer points (like validation rules and input
masks) will be lost, so it's not worth customizing any of these details in Access. However, exporting a
table from Access is a great technique if you have some existing data that you need to transfer to a
team site so more people can use it.

The SharePoint export process is basically the same as the export process you learned about in
Chapter 19 for other data types. Here's how it works:

1.

Open your Access database file .1.

Select the table you want to export in the navigation pane .

If you export a child table, Access will also export all the linked parent tables automatically. For
example, if you export Products, ProductCategories comes along for the ride.

2.

Choose External Data Export SharePoint List from the ribbon .

The Export wizard starts (Figure 21-15).

3.

Enter the URL for the SharePoint team site, the title you want to use for the list, and
(optionally) a description .

These list settings are the basic ones you learned about in Section 21.3 .

4.

If you want to see the list in SharePoint when the process is finished, choose "Open the
list when finished ."

It's always a good idea to review your list after a transfer operation to make sure it worked as you
expected.

5.

Figure 21-15. In this example, Access is poised to copy the contents of the Customers table to SharePoint.

Click OK .

If you need a password to access your SharePoint site, you need to supply it now. Then, Access
creates the new SharePoint list and fills it with data. Your Access database is not modified in any
way.

If you chose "Open the list when finished" in step 4, Access launches a browser window to show you
the new list when the process is complete (Figure 21-16).

When the export is finished, Access asks if you want to save your export steps. If you do, you can
repeat the same export operation later on (presumably, to move the latest copy of your data to the
server). You learned about this feature in Section 19.3.7 .

Note: When you export your data to SharePoint, you create a copy of that data. That means if someone edits the SharePoint list, your

database won't get the change. Similarly, if you change the database, it won't appear in SharePoint unless you export it all over again.

If this isn't what you want, consider storing the data in SharePoint and managing it in Access through linked tables (Section 19.3.2).

The next section has more about this approach.

6.

21.3.3. Importing Data in Access

To import information into Access, you have two options. You can use the import process that you
learned about in Chapter 19 . This lets you save the import steps so you can repeat them later on.
However, there's another option that's more convenient, because it doesn't require you to supply the
SharePoint list URL. You can perform the export straight from the SharePoint team site.

Figure 21-16. Here's the exported Access Customers table, as a SharePoint list. When Access opens the list for you to

review, Access automatically uses the Access Web DataSheet view (Section 21.3.2), which makes it look more like the Access

datasheet interface.

Note: This option is available only if you have Access installed on the current computer. If you surf to the SharePoint Web pages on

someone else's computer and it doesn't have Access, you can't perform the export.

Here's how to do it:

Using the SharePoint team site, browse to the list you want to export .1.

Choose Actions Open with Microsoft Access .

A pop-up window appears that lets you choose the database and whether you're copying or
linking the information (Figure 21-17).

2.

Enter the name of the database you want to use .

If you specify a database file that doesn't exist, Access creates it. (This is the usual approach.)
If you specify a database that does exist, Access adds the table to it.

3.

Choose whether you want to import a copy of the list or create a linked table .

With a linked table, the data is always stored in SharePoint. You simply use Access to modify it.
That way, only one copy of the information exists, and everyone's changes are made in the
same place.

Figure 21-17. In this example, the CafeteriaMenuIdeas table is being exported from the SharePoint site. Access isn't

even open yet.

With a copy, you have two separate sets of data that can be changed independently (the
SharePoint list, and the table in your database). You can't synchronize these two pieces. The
advantage of this option is that you don't need to keep connecting to the SharePoint server to
apply your changes.

4.

When you're finished, click OK .5.

Access opens on your computer, with the database you picked in step 3. You may be prompted
to log in to SharePoint again. Then, the linked or copied table is created and appears in your
database (Figure 21-18).

5.

Figure 21-18. Now you can edit the Cafeteria Menu Ideas table right in Access. The "Online with SharePoint" message in the

bottom-right corner of the status bar indicates that all is wellyou can make changes, and they'll be saved on the server immediately.

Along with the table you picked (in step 1), SharePoint also exports a table named User Information
List, which appears in your database. This table lists the members of your SharePoint site. That's
important because every SharePoint list has two hidden fields (Created By and Modified By) that
indicate who created and last modified an item. You don't need to worry about these details, because
Access maintains them automatically (although you can see them in the datasheet using the Home

 Records More Unhide Columns command).

When you start using your database, you notice a "Publish to SharePoint Site" button in a message
bar at the top of your window (Figure 21-18). Click this button to save a copy of your Access
database file in the Document Library in the SharePoint site, where other people can download it.

Note: SharePoint doesn't support Access forms and reports. You can add these objects to your data-base, but people who use the

SharePoint Web pages won't have any way to use them. If you want to share your forms and reports, you need to hand out copies of

your linked database to other people who have Access, or use the Publish to SharePoint Site button. If you don't want to share your

database's front end, there's no reason to use this feature.

21.3.4. Move a Whole Database to SharePoint

Why stop at a single table? Using Access, you can convert an entire database to a set of SharePoint
lists. This is a great way to upsize your database. For example, if you have a successful database
that's being used in your company but you want to make sure it can handle more people (including
those who don't have Access), it makes good sense to hand it off to SharePoint.

You first saw how to upsize a database in Chapter 20 , when you used this technique to move Access
tables to SQL Server. You can upsize to SQL Server in much the same way using the Move to
SharePoint wizard, which does the following jobs:

Creates a backup of your database (just in case you want to get back to the original, non-
SharePoint version).

Creates a SharePoint list for every table in the database.

Removes your tables and replaces them with linked tables that get their information from
SharePoint. That way, all the data is in the capable hands of the SharePoint server.

Optionally uploads a copy of this converted database to the SharePoint site. Other Access users
may want to use this database if they need your queries, forms, reports, or code routines.

The following sequence of steps walks you through the whole process:

In Access, open the database you want to convert .1.

Choose External Data SharePoint Lists Move to SharePoint .

The wizard starts (Figure 21-19).

2.

Figure 21-19. This one-step wizard makes it easy to transfer a whole database worth of information to SharePoint.

2.

Enter the URL for your SharePoint team site .3.

If you want to give Access users the option to use your forms and reports, select the
"Save a copy of my database to the SharePoint site" option .

That way, other people can download your database and use the other objects it contains. You
have no synchronization problems here, because the uploaded database uses linked tables. That
means all the data is always stored on the SharePoint server, regardless of whether you're
modifying it in Access or through the SharePoint Web pages.

If you don't want to bother with this step (perhaps your database has only tables, or no one
else in your company uses Access anyway), clear the checkbox, and skip to step 6.

4.

Click Browse, and then pick where the uploaded copy of your database should be
stored .

If you haven't created any new document libraries just for this purpose, then you need to select
the communal Shared Documents section. Until you make a selection, the Next button will be
disabled.

5.

6.

Click Next .

If you need a password to access your SharePoint site, you need to supply it now. Then, Access
begins the transfer process, which can take some time for a large database. A progress
indicator will keep you up to date on how much of the job remains.

When Access finishes, you see a final confirmation window.

6.

Click Show Details to see exactly what Access did (Figure 21-20) .

If any problems occur during the conversion process, Access creates a table named Move to
SharePoint Site Issues. Each record in that table describes a problem and the reason why it
occurred.

Note: SharePoint doesn't support strict referential integrity (Section 5.2.3). If you publish a database that uses this feature, you

end up with a few warning messages in the "Move to SharePoint Site Issues" table.

Figure 21-20. In this example, Access generated eight lists, created a backup copy of the database, and published

the database to the Shared Documents location. Access also noted a few problems in the "Move to SharePoint Site Issues" table.

(These are simply warnings about SharePoint's lack of support for referential integrity; see Section 5.2.3 for details.)

7.

8.

Click Finish .

You'll notice that your database has been changed. All the tables have been changed to linked
tables that connect to the corresponding SharePoint lists. (The telltale sign is the yellow table-
with-an-arrow icon that appears next to each table in the Access navigation pane.)

8.

GEM IN THE ROUGH
SharePoint List Options

Access gives you easy access to a few common SharePoint settings. To see them, right-click a linked
table, and choose the SharePoint List Options submenu. You see commands that let you modify the
table, tweak its permissions, or set up alerts that notify you when certain data is changed. When you
choose one of these options, Access launches your Web browser, and points it to the appropriate
SharePoint page.

21.3.5. Editing Your SharePoint Data in Access

Whenever you commit a change in a linked table (for example, by making an edit and moving to
another row), Access sends the new values to the SharePoint server. The only thing you aren't
allowed to do is modify the design of the table. To do that, you need to use SharePoint. (One quick
way to jump to the right Web page is to right-click the table in Access, and then choose SharePoint
List Options Modify Columns and Settings.)

Tip: You can use the Home Records Refresh All command to show the latest information in your datasheet at any time.

If you're unlucky, you can modify a record at the same time that someone else is changing it. If you
complete your edit first, you won't be aware of the conflict. (Instead, the other person's change will
be rolled back.) But if you're caught on the losing side and you complete your change after the record
has already been modified by someone else, you'll get the message shown in Figure 21-21 , which
lets you decide what to do.

Figure 21-21. This message tells you that someone else has already modified the record you're using. You can click Save

Record to blindly overwrite the other person's changes (which is always a risky move), or Drop Changes to cancel your edits. But the

most interesting choice is Copy to Clipboard, which copies your values to the Windows clipboard and cancels your edit. You can then

look over the current record and paste back part or all of your changes.

Tip: When you use Copy to Clipboard, Access copies the entire row. If you want to paste just a couple values, you can paste the whole

selection in another program (like a text editor), and then copy only the value you need.

21.3.6. Making Offline Changes

One drawback when you're using linked tables is that you need to be able to connect to the
SharePoint server. If you need to make changes in a pinchfor example, when you're using a laptop at
home, or when an electrical storm wreaks havoc with your networkyou're out of luck.

Or are you? It turns out that SharePoint gives linked tables a boost with an extra feature for using
SharePoint even while disconnected . With this feature, you can use your linked tables offline, make
changes, and then apply them later the next time you connect.

To take your database offline, select External Data SharePoint Lists Work Offline. You've
now separated yourself from the server. You won't see other people's changes, and they won't see
yours.

When your table is offline, the editing icon remains next to each record you change (Figure 21-22).
That indicates that the table is still in edit mode, because the changes have yet to be applied to the
SharePoint server.

Figure 21-22. In this example, two new records have been added, and one has been changed. The ID value of each new

record is temporarily set to a negative number, because Access won't get this information until it connects to the SharePoint server and

asks it to generate a new value. The editing icons (circled) indicate that those three tables are still in edit mode.

In disconnected mode, you have three options to reconnect to SharePoint:

Choose External Data SharePoint Lists Synchronize to get the latest data and
apply any changes you've made. When the process is finished, you're still in disconnected mode.

Choose External Data SharePoint Lists Work Online to synchronize your
database, and then switch back into connected mode.

Choose External Data SharePoint Lists Discard Changes to abandon your
changes. You have two suboptions: Use Discard All Changes to simply toss out what you've
done, and use Discard All Changes and Refresh to discard your changes, and then get the most
recent information from SharePoint. Either way, you remain in disconnected mode.

When you reconnect to SharePoint, Access tries to apply all the changes you made while you were
disconnected, one at a time. This process works perfectly well until it finds a record that's already

been modified by someone else. This is a problem, because Access doesn't know if it should carry on
with your modifications and obliterate someone else's work, or leave the record in a potentially
inconsistent state.

Access handles this conflict in a nicer way than ordinary connected-mode conflicts (Figure 21-21).
Rather than just tell you that a problem has occurred, it actually shows you the values that conflict.
For example, in Figure 21-23 you can see that the current user removed the period from the end of
the Rationale field while another user added an "s" to the word "Chocolates." That leaves two fields
with conflicting values.

Figure 21-23. In this example, Access discovers a record that's already been modified by someone else. You have two

choices: Discard My Changes to keep the record as is, or Retry My Changes to apply your edits, even if they overwrite the most recent

edits.

Note: The disconnected changes feature works best if you use it for short periods of time only. That's because there's a risk that your

changes will clash with someone else's. Access catches these problems the next time you synchronize your database (Figure 21-23),

but resolving them isn't always easy. If possible, don't make changes while disconnected.

Part VII: Appendix
Appendix: Customizing the Quick Access Toolbar

A. Customizing the Quick Access Toolbar

In previous versions, Access let its fans move toolbars, rearrange buttons, and even scramble the
order of items in the main menu. Reckless customizers could transform Access so completely that no
one else would be able to use their computers, and the instructions in books like this one would be
useless.

Access 2007 clamps down on customization. Unless you're willing to get your hands dirty with a
serious programming language, the ribbon's off limits. Instead, Access lets you customize one tiny
portion of screen real estatethe Quick Access toolbar.

This limitation may sound like a major one, but it's actually a reasonable compromise. People who
love to tweak and refine their workplaces (you know who you are) get to add all the timesaving
shortcuts they need. Everyone else can relax. No matter what computer you're working on, the
ribbon's always there, with its comforting uniformity and carefully organized tabs.

Note: You can add a tab of your own to the ribbon. However, the process is definitely not easyin fact, it's aimed at experienced

programmers who aren't intimidated by serious code. The standard for customizing the ribbon is called RibbonX, and it requires a blend

of XML and a hard-core programming language like C#. Gearheads can get started with the introduction at

http://msdn2.microsoft.com/en-us/library/ms406046.aspx.

http://msdn2.microsoft.com/en-us/library/ms406046.aspx

A.1. The Quick Access Toolbar

You've already seen the Quick Access toolbar (known to Access nerds as the QAT). It's the micro-
sized toolbar that sits above the ribbon. The Quick Access toolbar has only icons, but you can hover
over a button if you want to see a label describing what it does.

When you first start out with Access, the Quick Access toolbar's a lonely place, with buttons for
quickly saving the current database object and undoing or redoing the last action (Section 1.3.1).
However, Access gives you complete control over this space, including the ability to add new buttons.
The quickest way to add buttons is by clicking the downward-pointing arrow shown in Figure A-1 .

Figure A-1. When you click the drop-down arrow on the Quick Access toolbar, Access shows a list of often-used commands

that you can add just by clicking them. These commands include ones for creating a new database, opening an existing database,

sending the current database object (the one that's selected in the navigation pane) to the printer with no questions asked, emailing the

data from the current database object, and firing up the spell checker. But to see all your possibilities, you need to choose More

Commands.

Note: If you don't like the Quick Access toolbar's placement, Access gives you one other option. Click the drop-down arrow, and then

choose Show Below the Ribbon to move your toolbar under the ribbon so your mouse has less distance to travel.

You can add buttons to the Quick Access toolbar for two reasons:

To make it easier to get to a command you use frequently . If it's in the Quick Access
toolbar, then you don't need to memorize a keyboard shortcut or switch to a different tab in the
ribbon.

To get to a command that the ribbon doesn't provide . Access has a small set of
unpopular commands that it lets you use but that it doesn't keep in the ribbon. Many of these
commands are holdovers from previous versions of Access. If you have a long-lost favorite
Access feature that's missing, it just may be available using the Quick Access toolbar's extra
buttons. (The next section shows you how to peruse the full complement of available buttons.)

Keyboard lovers can also trigger the commands in the Quick Access toolbar with lightning speed,
thanks to Access's KeyTips feature (Section 3.2.1). When you press the Alt key, Access displays a
number superimposed over every command in the Quick Access toolbar (starting at 1 and going up
from there). You can then press the number to trigger the command. So in the Quick Access toolbar
shown in Figure A-1 , Alt+1 saves the currently open database object, Alt+2 triggers the Undo
command, and so on.

Tip: If you want to add a command that duplicates something that's already in the ribbon, here's a shortcut: Find the command in the

ribbon, right-click it, and then choose Add to Quick Access Toolbar.

A.1.1. Adding Buttons

To add a button to the Quick Access toolbar, follow these steps:

Click the drop-down arrow on the Quick Access toolbar, and then choose More
Commands .

The Access Options dialog box opens and positions you at the Customize section (Figure A-2).

1.

Figure A-2. The Customize section of the Access Options window has two areas. The list on the left lets you choose the

command you want to add. The list on the right shows the commands that currently appear in the Quick Access toolbar.

Choose a category from the "Choose commands from" list .

The library of commands that you can add to the Quick Access toolbar is enormous. To make it
easier to find what you want, Access divides your choices into a collection of categories. Many of
the categories overlapAccess simply provides them to make finding what you want easier. Here
are the top choices:

Popular Commands gives you a short list of commands that Access jockeys love. If
you're trying to get quick access to a commonly used feature, you'll probably find it here.

Commands Not in the Ribbon provides all the leftoverscommands that Microsoft didn't
consider useful enough to include in the ribbon. This list holds some commands that are
superseded or partially duplicated by other commands, commands that are included in
other dialog boxes, and commands that were used in previous versions of Access and put
out to pasture in this release.

All Commands includes the full list of choices. As with the other categories, it's ordered

2.

alphabetically.

Macros shows all the macros in the currently open database. However, there's a problem
here: If you add a macro command to the Quick Access toolbar, it won't work in other
databases because they don't have the same macro. The solution is to use another Access
feature that lets you customize how the Quick Access toolbar appears in specific
databases. Full details are in Section A.1.2 .

Under these categories are several additional categories that correspond to the Office menu and
various tabs in the ribbon. For example, you can choose the Create tab to see all the commands
that appear in the ribbon's Create tab.

Once you've chosen the category you want, pick the command from the list below,
and then click Add .

The command moves from the list on the left to the list on the right, placing it on the Quick
Access toolbar (Figure A-3).

3.

You can repeat this process (starting at step 2) to add more commands .

Optionally, you can rearrange the order of items in the Quick Access toolbar. Just pick a
command, and then use the up and down arrow buttons to move it. The topmost commands in
the list are displayed to the left on the Quick Access toolbar.

Tip: If you've customized the heck out of your Quick Access toolbar and want to go back to a simpler way of life, just click the

Reset button.

4.

When you're finished, click OK to return to Access with the revamped Quick Access
toolbar .

Adding a Quick Access toolbar isn't a lifetime commitment. To get rid of a command you don't
want anymore, right-click it, and then choose Remove from Quick Access Toolbar.

5.

Figure A-3. In this example, the Export to Excel spreadsheet command is being added to the Quick Access toolbar, so you can

speedily export the contents of the current table without rifling through the ribbon.

Note: You may notice the tempting Modify button, which lets you change a command's name and picture. Unfortunately, it works only for

macro commands.

A.1.2. Customizing Specific Databases

Do you have a button or two that you're using incessantly, but just for a specific database? In this
situation, it may not make sense to customize the Quick Access toolbar in the normal way. If you do,
then you'll get your extra buttons in every database you use, including those where the commands
aren't useful.

Access has a great feature to help you out in this situation. You can customize the Quick Access
toolbar for an individual database. That way, whenever you open that database, the buttons you
need appear in the Quick Access toolbar. When you close it (or open another database in a separate
window), the buttons disappear.

Note: Customizing individual databases has advantages and disadvantages. The disadvantage is that you need to perform this task

separately for every database, which can take a lot of time. The advantage is that your customizations are recorded right in your

database file. As a result, they stick around even if you open the database on someone else's computer.

To customize the toolbar for a single database, you follow the same steps that you used in the
previous section. Start by clicking the Quick Access toolbar's drop-down arrow, and then choose More
Commands. However, before you add any commands, change the selection in the "Customize Quick
Access Toolbar" drop-down menu, which appears just above the list of commands in the Quick Access
toolbar. Instead of using "For all documents (default)", choose your database's name (as in "For
C:\MyFiles\SecretSanta.accdb"). This list starts off empty. Then, follow the normal steps to add
buttons.

When Access displays the Quick Access toolbar, it combines the standard buttons (as configured in
the previous section) with any buttons you've defined for the current database. Figure A-4 shows an
example.

Figure A-4. The database-specific buttons (circled) always appear after the standard buttons and have a slightly different

appearance (a darker background).

Customizing the Quick Access toolbar for a specific database is a useful trick. It makes great sense
with macros, because it lets you create a single database that has a useful set of macros and handy
buttons for running them. For example, you could create macros that show specific forms in your
database, and then add them to the Quick Access toolbar. That way, the user can zip around your
database without using the navigation pane.

Colophon

Sanders Kleinfeld was the production editor for Access 2007:The Missing Manual. Mary Brady and
Marlowe Shaeffer provided quality control. Lucie Haskins wrote the index.

The cover of this book is based on a series design originally created by David Freedman and modified
by Mike Kohnke, Karen Montgomery, and Fitch (www.fitch.com). Back cover design, dog illustration,
and color selection by Fitch.

David Futato designed the interior layout, based on a series design by Phil Simpson. This book was
converted by Abby Fox to FrameMaker 5.5.6. The text font is Adobe Minion; the heading font is
Adobe Formata Condensed; and the code font is LucasFont's TheSans Mono Condensed. The
illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand MX and Adobe Photoshop CS.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

- (hyphen) 2nd

" (quotation marks) 2nd

(pound sign)

#Error code

& (ampersand) 2nd

' (apostrophe)

() (parentheses)

 function parameters and

 functions and

 math operations and

 subroutines and

.(period)

 modules and 2nd

 XML tags and

* (asterisk)

 delete queries

 inserting records

 required fields and

 selecting fields for queries

 validating text

+ (plus sign) 2nd

… (ellipsis)

 conditions and

 Input Mask wizard

 ready-made masks

 Visual Basic editor and

3-D charts

: (colon)

; (semicolon)

 email addresses and

 input masks and

 SQL and

< (less-than sign) 2nd

<> (angle brackets)

 assignment statements and

 conditions and

 expressions and

 not-equal-to operator 2nd

 XML tags

> (greater-than sign) 2nd

? (question mark)

[] (square brackets)

 functions and

 spaces in field names 2nd

\ (backslash) 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Abs() function 2nd

.accdb file extension

 information in

 locking down front end

 multi-value fields and

 security and

.accde file extension 2nd

.accdr file extension 2nd

Access (Microsoft)

 exportable file type support

 importable file type support

Access Developer's Toolkit

Access Options window

 action query warnings

 Customize section

Access runtime engine 2nd 3rd

Access Web Datasheet

ACCWIZ folder

Action Arguments section

 editing macros

 filter expressions

 macro action information

 naming reports

action queries

 append queries

 delete queries 2nd

 find-and-replace feature vs.

 parameters and 2nd

 select queries vs.

 testing

 viewing without running

actions

 creating macros 2nd 3rd

 defined

 methods and 2nd 3rd 4th

 repeating with loops 2nd

 safe

 unsafe macro

 viewing list of macro

ActiveX control

acwztool project

Add New Record command

Add Table dialog box

add-ins

adding

 attachments

 buttons to QAT

 controls 2nd 3rd 4th

 controls to forms 2nd 3rd 4th

 controls to reports

 descriptions for fields

 fields between existing fields

 fields in forms

 fields in Layout view

 fields in pivot tables

 fields to end of tables

 fields to reports 2nd

 fields via Form wizard

 grouping levels in pivot tables

 label controls

 links to documents

 lookups to fields 2nd 3rd

 math operations for 2nd

 modules 2nd

 objects to SQL Server databases 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 pictures to reports

 records to forms

 Rectangle control

 references

 Web Parts 2nd

Adobe Reader 2nd

.adp file extension 2nd

AdventureWorks sample database 2nd

After Del Confirm event

After Insert event

After Update event 2nd

Alert Me action

All tab (Property Sheet)

Allow […] View property

Allow Additions property 2nd

Allow Deletions property 2nd

Allow Edits property 2nd

Allow Filters property 2nd

Allow Multiple Values option

Allow Zero Length property

Alt key

 macros and

ampersand (&)

anchoring

 controls 2nd 3rd 4th 5th 6th

 subforms and

And operator

 conditions and 2nd

 field validation

 filtering and

 table validation

apostrophe (')

Append or Make Table dialog box

append queries 2nd 3rd 4th 5th 6th 7th

Application category

ApplyFilter method (DoCmd)

arguments

 OpenForm method

 reading from forms 2nd 3rd 4th

arithmetic operators

arithmetic rounding

As keyword

As String clause

ASCII code

ASP.NET 2nd

assignment statement

 calling functions with

 example

Attachment control 2nd

Attachment data type

 description

 lookup support

 one-to-one relationships and

 showing pictures from databases

 SQL Server

attachments

 database considerations for

 SQL Server conversion and

Attachments column (SharePoint)

Attachments dialog box 2nd

authentication

 SharePoint

 SQL Server

Auto Center property

Auto Tab property

AutoCorrect feature 2nd 3rd

AutoExec macro

AutoFilter icon

AutoFormat feature 2nd 3rd

AutoFormat wizard

AutoKeys macro 2nd

automatic refreshes

automatic save feature

AutoNumber data type

 append query guidelines

 changing values in fields

 creating primary key field

 description

 filtering support

 forms and

 linking with ID number 2nd

 manipulating start values 2nd

 parent-child relationships and

 sorting options

 SQL Server

 validation support

Avery number

Avg option (Total)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Back Style property

Back Up SQL Database command

back-end databases

 Access versions and

 automatic refreshes

 naming

 passwords and

 placement of

 splitting with wizard 2nd 3rd 4th

BackColor property 2nd 3rd 4th

background color

backslash (\) 2nd

backups

 before action queries 2nd

 changing data types and

 corrupt databases and 2nd

 SharePoint and

 SQL Server databases

banker's rounding

bar charts 2nd

Beep method (DoCmd)

Before Del Confirm event 2nd

Before Insert event 2nd 3rd

Before Update event 2nd 3rd 4th 5th

binary format

blank fields

 preventing

blank values

 email addresses as

 empty text vs.

 functions and

 unlinked records

.bmp file extension

Boole

Boolean data type (VB)

Border Style property

borders

 controls with

 formatting for reports

 removing from text boxes

 reusing settings

Bound Column setting (SQL Server)

bound controls 2nd

Bound Object Frame control

Boutique Fudge tutorial 2nd 3rd

break mode 2nd

breakpoints

 using

British postal code mask

business tasks

 adding products during orders 2nd 3rd 4th

 managing order fulfillment 2nd 3rd 4th

 running with VB 2nd

 updating stock numbers 2nd 3rd

Button wizard 2nd 3rd 4th

buttons

 adding to QAT

 closing forms with

 command 2nd

 drawing on forms

 forms and

 OnClick event

 pictures on

 properties for

 selecting from Property Sheet

 spacing controls

 Windows XP support

Byte option (Field Size property)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

calculated fields

 crosstab queries and

 defined

 Expression Builder support

 functions and

 pivot tables and 2nd 3rd 4th

 simple math with

 SQL Server and

 text expressions 2nd

 text functions and

Calculation tab (pivot tables)

calculations

 expressions in forms 2nd

 grouping for subtotals

 pivot table support for

 queries performing

 reports and

calendar smart tag

Calendar Web Part

Can Grow property

Canadian postal code mask

CancelEvent action 2nd

capitalization

 case sensitivity

 spell checker and

Caption property

 Attachment data type and

 modifying text

Cascade Delete Related Fields setting 2nd

cascading deletes 2nd 3rd

cascading updates

categorizing

 database objects

 filtering and 2nd 3rd

 navigation pane 2nd 3rd

Character Map tool

Chart control

Check Box control

circular references

Clear All Sorts command 2nd

Clear Filter command

Clip Art

Close action

Close Button property

Close Form command

Close method (DoCmd)

Close Print Preview command

collect-by-email feature

colon (:)

colors

 background

 predefined names for

Column Count setting (SQL Server)

column fields (pivot tables)

column headers

 formatting for reports 2nd

 grouping and

 moving

Column Heads setting (SQL Server)

Column Width dialog box

Column Widths setting (SQL Server)

Columnar option (layouts) 2nd

columns

 default for lists

 exporting considerations

 filtering

 filtering pivot table

 hiding

 labels and

 layouts and 2nd

 moving

 naming

 ordering for reports

 picking right groups

 pivot charts and

 pivot table fields

 rearranging 2nd

 removing filters from

 resizing

 resizing for reports

Columns button

Combo Box control

 description

 list controls and

 navigating with 2nd 3rd 4th

Command Builder wizard 2nd 3rd

Command Button wizard 2nd 3rd

command buttons 2nd 3rd 4th

commands

 customizing QAT 2nd

 menu 2nd 3rd

comments 2nd

compact and repair feature 2nd

compacting databases

compound forms 2nd

compound indexes 2nd

Computer Name tab

Condition column 2nd

conditional formatting 2nd 3rd 4th

conditional macros 2nd 3rd 4th 5th 6th

conditions

 building 2nd

 making decisions with

 validating data with 2nd

Conditions column

Configure Your Server wizard

configuring

 navigation list 2nd 3rd

 trusted locations

constants

Contacts list (SharePoint)

Continuous Form view

contribute permission

Control Box property

control events

Control wizard

 adding controls

 creating links

controls

 adding 2nd

 adding to forms

 adding to reports

 anchoring 2nd 3rd 4th 5th

 arranging on forms 2nd 3rd 4th

 automatically resizing

 bound 2nd

 Design view support

 formatting 2nd 3rd

 forms support for 2nd 3rd

 gridlines and

 icons for

 layouts for

 methods for

 overlapping

 programming objects and

 properties for 2nd

 repositioning in tab order

 sizing

 spacing

 subform control 2nd 3rd

 tab 2nd 3rd 4th

 unbound

 useful properties

 validation rules in 2nd

 wizards for

converting

 information to other types

 macros to VB code 2nd

 negative numbers

 versions of databases

copy-and-paste operation 2nd

CopyDatabaseFile method (DoCmd)

copying

 as unsafe macro action

 attachments

 cells from Excel

 data types

 tables elsewhere

Count option (Total)

Created By field (SharePoint)

Created Date mode (navigation pane) 2nd 3rd

creating

 calculated fields 2nd 3rd

 calculated fields in pivot tables

 controls

 crosstab queries 2nd 3rd 4th 5th 6th

 custom functions 2nd 3rd

 customized subform controls

 databases 2nd 3rd

 email messages 2nd 3rd 4th 5th 6th

 expressions

 form layouts 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 forms 2nd 3rd 4th

 forms in Design view

 forms in Layout view

 labels 2nd 3rd 4th

 links

 links in fields

 lists 2nd 3rd

 lookups

 macros 2nd 3rd 4th

 menu commands

 one-to-one relationship

 primary key field

 projects

 queries 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 report headers/footers

 reports

 reports in Design view 2nd 3rd

 SharePoint team sites 2nd 3rd 4th

 simple reports 2nd

 split forms

 SQL Server databases 2nd 3rd 4th 5th 6th 7th

 switchboards 2nd 3rd 4th 5th

 tables 2nd 3rd 4th 5th 6th 7th

 tables while importing 2nd

 totals queries 2nd 3rd

 union queries 2nd

 variables

credit cards 2nd 3rd 4th 5th

Crosstab property 2nd

crosstab queries

 creating 2nd 3rd 4th 5th

 Crosstab Query wizard 2nd

 pivot tables and

 SQL Server support

 totals queries vs. 2nd

Crosstab Query wizard 2nd 3rd 4th 5th 6th

Ctrl key

Ctrl+" key combination

Ctrl+; key combination

Ctrl+Alt+Space key combination 2nd

Ctrl+C key combination

Ctrl+End key combination

Ctrl+F key combination

Ctrl+F1 key combination

Ctrl+Home key combination

Ctrl+K key combination

Ctrl+S key combination

Ctrl+V key combination

Ctrl+X key combination

Ctrl+Z key combination 2nd

Currency data type

 custom string

 sorting options

 SQL Server

 Visual Basic

Currency option

 Format field property 2nd

 Format() function

 formatting numeric fields

 Query Parameter dialog box

Cursor On Hover property

Custom Dictionaries dialog box

Custom mode (navigation pane)

custom spell check dictionary 2nd

cut-and-paste operation

 import/export and

 Windows Explorer and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

DAO (data access objects)

 importing and

data access pages

data corruption

 shared databases and

 split database and

Data Entry property

data fields (pivot tables)

Data Link Properties dialog box

Data tab (Property Sheet)

 calculations with expressions

 exporting tables

data types

 considerations when changing

 filtering support

 identifying for variables

 lookups support

 overview

 Required field property support

 SharePoint

 SQL Server 2nd

 text-based 2nd

data validation

 applying rules 2nd

 creating table rules 2nd

 Design view

 input masks 2nd 3rd 4th 5th 6th 7th

 lookups

 preventing blank fields

 preventing duplicate values 2nd 3rd 4th 5th

 setting default values 2nd 3rd

 writing rules 2nd

database catalog

database corruption

database design 2nd 3rd 4th 5th 6th

database diagram

 building relationships

 defined

database objects

 categorizing

 filtering 2nd 3rd

 front-end database and

 grouping

 hiding

 naming

 reports as

 security considerations

 types of

Database Splitter wizard 2nd 3rd 4th

databases

 blocked updates

 compacting

 consistency and

 copying 2nd

 creating 2nd 3rd

 creating in previous versions

 customizing

 data corruption in 2nd 3rd

 deleting

 dividing into files

 front end to

 linking

 managing

 moving

 moving to SharePoint 2nd 3rd

 on networks 2nd

 opening 2nd

 opening in Exclusive mode

 opening multiple

 opening previous versions

 password-protection feature 2nd

 planning

 preparing for sharing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 saving

 saving as previous version

 saving with different names/formats

 security and 2nd 3rd

 server-side

 shrinking

 tables and

 taking offline

 templates for

 transferring records to

 upsizing 2nd 3rd 4th

 using someone else's

Datasheet Find feature

Datasheet option (layouts)

Datasheet view

 copying rows in

 exporting and

 hyperlink support

 primary key and

 switching views 2nd

 tables and

datasheets

 Access Web Datasheet

 advanced editing 2nd

 customizing

 filtering records 2nd 3rd 4th 5th

 find-and-replace feature

 formatting 2nd

 forms and

 forms vs.

 moving around 2nd

 printing

 query results as

 searching records 2nd 3rd 4th

 sorting records 2nd 3rd 4th

 split forms

Date data type

 filtering support

 Visual Basic

date expressions

 queries and

 validation rules and

date functions 2nd 3rd 4th

Date() function

 current date and 2nd 3rd

 description

 filter condition with

 time information and

Date/Time data type

 custom formats

 SQL Server

date/time information

 arranging for reports 2nd

 calculations with

 date components 2nd

 expressions and

 Group

 sample mask for

Date/Time option (Query Parameter)

DateAdd() function

DateDiff() function

DatePart() function 2nd 3rd

DateSerial() function

DAvg function

Day() function

dBase

DCount function

debugging

 debug mode

 macros 2nd 3rd

 single-step 2nd 3rd

 VB code 2nd 3rd 4th

decimal numbers 2nd

Decimal option (Field Size property)

Decimal Places field property

default property

Default Value property 2nd

default values

 dynamic

 setting

 SQL Server and

default view

Default View property

delete queries

 saving

Delete Record command

DeleteObject action

deleting

 attachments

 cascading deletes 2nd

 commands from QAT

 controls

 fields 2nd

 fields from reports

 label controls

 records 2nd 3rd

 records from forms

 relationships

Design view

 accessing data types

 controls and 2nd 3rd 4th 5th 6th 7th 8th

 creating forms in

 creating queries 2nd

 creating reports in

 customizing forms in 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 data validation

 debugging macros in

 defining relationships

 field validation rules

 for forms

 lookup lists

 moving fields out of layouts 2nd

 ready-made masks

 report sections 2nd

 setting primary key in

 SQL Server

 switching to 2nd 3rd

 updates in

 viewing reports in

detail fields (pivot tables) 2nd

Detail section (Design view)

DFirst function

dialog mode

digital certificates

digital signatures

Dim keyword

Disabled Mode

disaster recovery

disconnected changes feature (SharePoint)

Display Control setting (SQL Server)

Display When property

Dividing Lines property

DLast function

DLookup function 2nd 3rd

DMax function

DMin function

Do/Loop block 2nd

DoCmd object

 converting macros to VB code

document element 2nd

document prolog

document workspaces

documents

domain functions 2nd

dot operator

Double option (Field Size property)

double-clicking

 collapsing ribbon

 Edit mode toggle

 launching queries

 opening tables

Down Arrow key

DSum function

Duplicate Record command

duplicate records

 importing considerations

 preventing 2nd

dynamic default values

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Edit Hyperlink window

Edit Message property

Edit mode

Edit Relationships dialog box 2nd

Edit Switchboard Item window

Edit Switchboard Page window

editing

 attachments

 conflicts in shared databases 2nd 3rd

 join query limitations

 locking records while 2nd

 macros

 overlapping changes 2nd 3rd 4th

 records 2nd 3rd

 records in forms

 relationships

 SharePoint data

 sorted columns

 special characters 2nd

 splitting tables

 tables

elements

 Access rules for

ellipsis (…)

 Input Mask wizard

emailing

 collect-by-email feature

 data 2nd 3rd

 exporting data

embedded macros 2nd

empty text

Enable Content button

Enable Referential Integrity option

Enabled property 2nd 3rd

encryption 2nd

End Sub statement

end tags

Enforce Referential Integrity option 2nd

Enter Parameter Value dialog box

EOF property

error handling

 relationships and

 types of macro errors

 Visual Basic and 2nd 3rd 4th

 Visual Basic with

error messages

 conditional logic and

 corrupt databases and

 debugging code and

 debugging macros

 SQL Server Express installation

Esc key

 adding records to forms

 editing records

 form controls and

evaluating the condition 2nd

event handlers

Event tab (Property Sheet)

 attaching macros to events

 connecting macros to forms

events

 control

 form 2nd 3rd 4th 5th 6th

 section

 subroutines and

Excel (Microsoft)

 Attachment data type support

 copying cells from

 exporting data to

 importing from 2nd 3rd

 special character support

exclamation mark icon 2nd

Exclusive mode 2nd 3rd

Execute method (CurrentDb)

exit condition

Exit Function statement

Exit Sub statement

explicit relationships

exponents

Export As dialog box

Export wizard 2nd 3rd

exporting

 basic steps for 2nd

 data 2nd

 file types supported 2nd

 reports 2nd 3rd

 reusing settings for 2nd

 tables 2nd 3rd

 tables to SharePoint 2nd 3rd

 to XML 2nd 3rd

Expression Builder 2nd 3rd 4th

Expression property

expressions

 actions and

 applying to different forms

 calculations in forms

 complex

 conditions and

 date 2nd 3rd

 defined

 domain functions and

 errors displayed

 Expression Builder 2nd 3rd

 filter 2nd 3rd 4th 5th

 filtering multiple fields

 macros and

 manipulating values

 operators and

 records and

 reports and

 SQL Server views and

 text 2nd

 validating numbers

expressions and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

F2 key

F5 key

F8 key

Field List pane

 adding fields

 creating reports

field properties

Field Properties section

 setting maximum length

Field Size property

 AutoNumber data types and

 Length column and

 Number data types and 2nd

 Replication IDs and

fields

 adding between existing fields

 adding/removing from reports

 as controls

 breaking down information in

 building expressions out of

 creating primary keys

 data types and 2nd

 defined

 hidden 2nd 3rd

 listing in Design view

 locking down

 lookups for

 matching

 moving in forms

 multi-value 2nd

 multiple layouts 2nd

 naming

 one-to-one relationship

 order of

 pivot table 2nd

 pointing to files

 removing from pivot tables

 renaming in queries

 selecting for queries 2nd

 sorting on multiple 2nd

 swapping content of

 timestamp

 writing validation rules

file already in use error

file extensions

file management tools

File New Database dialog box 2nd

file paths

 adding links to documents

 Shell function and

 UNC

file types 2nd

files

 embedding in databases

 Windows security

filter by condition 2nd 3rd

filter by form feature 2nd 3rd 4th

filter by selection 2nd 3rd

filter expressions

 building

 Criteria box and

 for duplicated values

 for unlinked records

 lookups and

filter fields (pivot tables)

Filter On Load property

Filter property

filtering

 crosstab queries

 database objects 2nd 3rd

 date functions and

 delete queries and

 DoCmd methods and

 filter by condition

 filter by selection

 for unmatched records

 forms and 2nd 3rd 4th 5th

 indexed fields and

 linked records

 navigation pane and 2nd 3rd

 null values and

 pivot tables 2nd 3rd 4th

 queries vs.

 query parameters and

 Query wizard and

 quick filters 2nd

 records in queries

 records in tables 2nd 3rd 4th

 removing

 reports

 saving operations

 top/bottom

 validation rules and

Find Duplicates Query wizard 2nd

Find feature

Find Unmatched Query wizard

find-and-replace feature

 action queries vs.

 Find and Replace dialog box 2nd

FindNext method (DoCmd)

FindRecord action

 example 2nd

FindRecord method (DoCmd)

First option (Total)

Fix() function

Fixed option

 Format() function

folders

 backups and

 changing access uses

 trusted locations

FontBold property

FontItalic property

FontName property

fonts

FontSize property 2nd

footers

 form

 Group

 page 2nd

For/Next block 2nd 3rd

Force New Page property 2nd 3rd

ForeColor property

form events 2nd 3rd 4th 5th 6th

Form Operations category

Form view

Form wizard 2nd 3rd

Format field property

 Currency data type and

 Date/Time data type and

 Number data type

Format Operations category

Format Painter

Format property

Format tab

 button properties

 control properties

 Property Sheet 2nd 3rd

Format() function

 description

 place an order task

FormatNumber() function

FormatPercent() function

formatting

 AutoFormat wizard

 borders

 columns/column headers for reports

 conditional 2nd 3rd

 controls and 2nd

 custom currency string

 custom number string

 datasheets 2nd

 Date/Time data type

 Design view and

 exporting considerations

 Format Painter tool

 gridlines 2nd 3rd

 Memo data type and 2nd

 numbers

 numeric fields

 pivot table fields

 Property Sheet settings and

 reports 2nd 3rd

forms

 anchoring controls 2nd 3rd 4th 5th

 attaching macros to

 AutoNumber fields in

 changing properties

 compound 2nd

 connecting macros to 2nd 3rd

 continuous

 controlling controls 2nd 3rd 4th 5th 6th 7th 8th

 controls supported 2nd 3rd 4th 5th

 creating

 creating layouts for 2nd 3rd 4th

 customizing in Design view

 datasheets vs.

 deleting records

 different parts of

 filtering 2nd 3rd

 formatting

 front-end database and

 hyperlinks in 2nd

 junction tables and

 layouts and

 linked records in separate 2nd 3rd 4th 5th

 linked tables and 2nd 3rd

 navigating with lists 2nd

 navigation controls

 navigation features in 2nd 3rd 4th 5th 6th 7th

 picture backgrounds for

 pivot tables in

 preventing corruption

 printing records 2nd

 properties 2nd

 putting code in 2nd 3rd 4th 5th 6th 7th 8th

 reading/writing fields on

 reference values on

 saving

 SharePoint support

 showing multiple records 2nd

 shrinking

 sizing controls 2nd

 sorting

 split 2nd 3rd 4th

 startup 2nd 3rd

 subform control 2nd

 switchboard alternatives 2nd 3rd 4th

 switchboards and 2nd

 tab control 2nd 3rd

 table relationships and

 text field size considerations

 types of

 validation rules

 viewing modes

free-floating windows 2nd

freezing columns 2nd

FROM statement (SQL) 2nd

front-end databases

 creating different

 for SharePoint

 locking down 2nd

 SQL Server and

full control permission

functions

 blank values and 2nd

 calling

 creating custom

 date 2nd 3rd 4th

 domain

 Expression Builder 2nd

 formatting numbers 2nd

 mathematical

 nested

 SQL Server

 summary 2nd 3rd

 testing credit cards 2nd 3rd

 text 2nd 3rd

 user-defined

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

General Date format (Date/Time data type)

General Number option (Format property) 2nd

getting started

 creating databases

 creating tables 2nd

 editing tables 2nd 3rd

 Getting Started page 2nd 3rd

 understanding tables

Getting Started page

 creating SQL Server databases

 live content from Web

 opening databases

.gif file extension

globally unique identifier (GUID)

Go To First Record command

Go To Last Record command

Go To Next Record command

Go To Previous Record command

Go to Switchboard command

GoToControl method

GoToRecord action

GoToRecord method (DoCmd)

gridlines

 controls breaking free from

Group 2nd 3rd 4th 5th 6th

Group By option (Total)

group names

groups/grouping

 crosstab queries and 2nd 3rd

 custom 2nd

 database objects 2nd 3rd

 Group

 join queries and

 macros and 2nd 3rd

 multiple

 pivot charts and

 pivot tables and

 queries and

 records

 reports and 2nd 3rd 4th 5th 6th 7th 8th 9th

 SharePoint

 totals queries 2nd

GUID (globally unique identifier)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

headers

 form

 Group

 orphaned

 page 2nd

Height property

hiding

 columns 2nd 3rd

 database objects

 groups

 pivot table details

 pivot table groups

 queries

Hour() function

Hourglass method (DoCmd)

HTML

 clipboard and

 exporting considerations

 importing considerations

Hyperlink control

Hyperlink data type

 SQL Server

hyperlinks

 forms and

 launching programs with

 to related data 2nd 3rd

hyphen (-)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

icons

 AutoFilter

 for controls

 Message box window

 navigation pane

 paper clip

 union queries

ID numbers

 AutoNumber and 2nd

 linking tables with

 lookups and

 related tables and

 SQL Server and

Identity Increment property

Identity Seed property

If block structure 2nd 3rd

Image control 2nd

Immediate window (VB editor)

implicit relationships

Import wizard

 importing from text files

 saving settings

importing

 basic steps for 2nd 3rd

 from Excel files 2nd

 from XML files 2nd 3rd

 linked tables vs. 2nd

 SharePoint data 2nd 3rd

 tables 2nd

Increment option (New Values field property)

Indexed field property

indexes

 compound 2nd

 performance and

 speeding up searches

Indexes window

InfoPath (Microsoft Office)

inner joins 2nd

Input Mask property

 prebuilt masks and

Input Mask wizard 2nd 3rd 4th

input masks

 creating

 mask list

 placeholders for 2nd

 special characters for

Insert Hyperlink dialog box

Insert Rows command

installing

 SharePoint

 SQL Server Express 2nd 3rd 4th 5th 6th

Instr() function

Int() function

integer division

Integer option

 Field Size property

IntelliSense (Visual Basic) 2nd

Internet Explorer browser 2nd

IP (Internet Protocol) address

Is Hyperlink property 2nd

IsNull() function

Item property

ItemsSelected property

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Join Properties dialog box

join queries

 groupings and

 modifying information via

 multiple joins

 parent-child relationships and

 relationships vs.

 tables in 2nd 3rd 4th

.jpeg file extension

junction tables

 multi-value fields and 2nd

 multiple joins and

Justified option (layouts) 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Keep Together property

keystrokes

 assigning macros to 2nd

 running macros via

KeyTips feature

 commands and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

label controls

 adding

Label wizard 2nd 3rd 4th 5th 6th

labels 2nd 3rd 4th

.laccdb file extension 2nd

Landscape option (Page Layout)

landscape orientation 2nd 3rd

Last option (Total)

Layout view

 for forms 2nd 3rd

 for reports 2nd 3rd 4th

layouts

 anchored controls and

 control limitations in

 creating for forms 2nd

 Form wizard options

 page 2nd

 report options 2nd

 tabular 2nd 3rd 4th

 using multiple 2nd 3rd

LCase() function

Left Arrow key

Left property

Left() function 2nd 3rd

Len() function 2nd 3rd

length

line continuation character

Line control 2nd

Link Child Fields property 2nd

Link Master Fields property 2nd

linked records

 cascading updates and

 controlling display of

 in separate forms

Linked Table Manager window

linked tables

 bad links in

 forms and 2nd 3rd

 importing vs.

 projects vs.

 split databases and 2nd

 SQL Server and 2nd

 with relationships 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th

27th 28th 29th 30th 31st

linking/links

 creating

 fields with relationships

 reports and 2nd

 to related data 2nd 3rd 4th

List Box control 2nd 3rd 4th 5th

list controls

 combo boxes and

List wizard

lists

 building

 modifying settings for

 setting options

 SharePoint 2nd

Lists section (SharePoint)

Locked property

locks

 editing records and

 for front-end database

 for overlapping edits 2nd 3rd

logical operators

logos

 arranging for reports

 forms and

Long data type (VB)

Long Date format (Date/Time data type)

Long Integer option (Field Size property) 2nd 3rd

Long Time format (Date/Time data type)

lookup lists

 relationships and

 sorting

Lookup wizard

 setting allowed values

lookups

 creating

 data validation 2nd 3rd

 filter expressions and

 primary key and

 refreshing

 relationships and

 SQL Server and

 table-based

 with fixed values 2nd 3rd

Lotus 1-2-3

Luhn algorithm

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

macro builder 2nd

macro groups 2nd

Macro tab (Action Arguments section)

macros

 assigning to keystrokes

 conditional 2nd 3rd 4th

 configuring startup

 connecting to forms 2nd 3rd

 debugging

 disabled

 editing

 embedded 2nd

 FindRecord action 2nd

 managing

 printing reports

 privacy options

 Quick Access toolbar and

 running 2nd

 security and 2nd 3rd 4th 5th 6th 7th 8th

 setting up trusted locations

 trust center and

 unsafe actions 2nd 3rd 4th

 VB programming and

mail merge feature 2nd

make-table queries 2nd 3rd 4th

Manage Data Tasks dialog box 2nd

many-to-many relationship 2nd 3rd 4th 5th

MAPI (Messaging Application Programming Interface)

mapped network drives

mapping SQL Server data types

margins

Margins option (Page Layout)

mask list

matching fields

math operations

 order of

 with numeric fields 2nd 3rd

mathematical functions 2nd

Max option (Total)

maximum length

 guidelines for

 Memo data type and

 text fields 2nd

.mdb file extension 2nd

Medium Date format (Date/Time data type)

Medium Time format (Date/Time data type)

menu commands 2nd 3rd

message bar

Message box window

 condition example

 debugging changes and

 error handling with 2nd

Message Text property

meta-language

methods

 control

 DoCmd object 2nd

Microsoft Corporation 2nd

Microsoft Office Developer Center

Microsoft Office InfoPath

Microsoft Office Security Options dialog box 2nd 3rd

Microsoft Office SharePoint Portal Server (SPS)

Microsoft Office SharePoint Server (MOSS)

Mid() function 2nd 3rd

Min option (Total)

minibar

Minute() function

Miscellaneous category

Mixed mode authentication

 security and

 SQL Server databases

Mod operator

modal dialog

Modified By field (SharePoint)

Modified Date mode (navigation pane) 2nd 3rd

modules

 adding

 calling code in 2nd 3rd

 functions and

modulus

monitor resolution

Month() function

MonthName() function

MOSS (Microsoft Office SharePoint Server)

mouseover effects 2nd

Move method

MoveNext method (Recordset)

moving

 columns

 controls

 fields

 fields in forms

 fields out of layouts

 Web Parts

MsgBox action 2nd 3rd

MsgBox command

MsgBox() function 2nd

MSysObjects system table 2nd

multifield indexes 2nd

multiple joins

Multiple-Record view

multiplication 2nd

My Computer icon

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Name field (system tables) 2nd

Name property 2nd 3rd

named range

naming

 buttons

 database objects

 events

 fields

 macros

 tabs

navigating

 around forms

 designating startup forms and

 form tab order and 2nd 3rd

 form-to-form

 forms capable of 2nd 3rd 4th 5th 6th 7th 8th 9th

 linking to related data 2nd

 print preview

 relationships 2nd

 with lists 2nd

 with Tab key 2nd

Navigation Buttons property 2nd

Navigation Options dialog box

 manipulating groups 2nd

 showing system tables

navigation pane

 browsing tables with 2nd

 configuring navigation list

 congestion on

 custom groups 2nd

 form modules and

 hiding objects

 organizing queries

 printing reports from

 running queries in

 searching navigation list 2nd

 sort options

 view options

Navigation section (SharePoint) 2nd

negative number values

 Number data type

nested functions

nesting XML elements 2nd 3rd

.NET Framework

networks

 databases on 2nd

 mapped drives

 SQL Server on

New Database dialog box

New Label dialog box

New Label Size dialog box

New Query dialog box

New Values field property

Normal mode

Notepad

Now() function 2nd 3rd 4th

Number data type

 Field Size property

numbers

 decimal

 in text fields 2nd

 negative 2nd

 random

 rounding

 validating

numeric fields

 formatting

 Group

Nz() function 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Object Dependencies box 2nd

object model 2nd

objects

 adding to SQL Server databases 2nd

 database objects and

 Visual Basic and 2nd 3rd 4th 5th 6th

 working with 2nd 3rd

ODBC

On Before Update event

On Change event

 example

 macro programming

 timing of

On Click event 2nd 3rd 4th 5th

On Close event 2nd

On Current event 2nd 3rd

On Dirty event 2nd

On Enter event

On Error statement 2nd

On Key Press event

On Load event

On Mouse Move event

 example 2nd

On Not In List event 2nd 3rd 4th

On Open event

On Undo event 2nd

On Update event handler

OnClick property

one-to-many relationships 2nd

one-to-one relationships

 cautions for

OnError action

Open Recent Databases section 2nd

Open Report command 2nd 3rd

OpenArgs property

OpenForm action

 child forms and

 OpenForm method and

OpenForm method (DoCmd)

 example 2nd

 OpenForm macro and

opening

 databases 2nd

 databases in Exclusive mode

 multiple databases

 multiple subdatasheets

 previous version databases

 tables 2nd

 Zoom box 2nd

OpenQuery method (DoCmd)

OpenRecordset method (CurrentDb)

OpenReport action

OpenReport method (DoCmd) 2nd

OpenTable action

 arguments to

 debugging

OpenTable method (DoCmd)

operators

 dot

 expressions and

Option Button control

Option Compare Database instruction

Option Explicit instruction

Option Group control

Or operator

 filtering and

Order By On Load property

Order By property

ORDER BY statement (SQL)

order of operations

Other tab (Property Sheet) 2nd 3rd

out-of-stock orders tutorial 2nd 3rd 4th

outer joins 2nd 3rd

Outlook (Microsoft) 2nd 3rd 4th 5th 6th 7th

overlapping

 changes 2nd 3rd

 controls 2nd

 edits 2nd 3rd

 fields

 windows

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Page Break control 2nd

Page Down key 2nd

Page Footer property

page footers

 description

Page Header property

page headers

 column headers in

page layouts 2nd

page numbers (reports) 2nd

Page Up key 2nd

paper clip icon

paper orientation

 landscape 2nd

 portrait 2nd

paper size

Paradox

parameters

 action queries and 2nd

 domain functions

parent-child relationships

 exporting tables and

 junction tables and

 navigating

 subform controls

parentheses ()

 function and

passwords

 split databases and

 SQL Server and

Path property

PDF files

 exporting reports as

 saving reports as

pencil icon

percent symbol (%)

performance

 indexes and

 indexes speeding up searches

 projects and

 split databases and

 SQL Server and 2nd

permissions

Permissions section (SharePoint)

phone number mask 2nd 3rd

Picture Alignment property

Picture property 2nd 3rd

Picture Size Mode property

Picture Tiling property

pictures

 adding to reports

 clipboard support

 form backgrounds and

pivot charts

 printing

 types of

pivot tables

 building 2nd

 creating calculated fields 2nd

 features of 2nd 3rd

 filtering 2nd 3rd

 forms for

 hiding/showing details

 manipulating

 pivot charts 2nd

PivotTable Field List window 2nd 3rd

placeholders

 Expression Builder and

point-in-time data 2nd

Pop Up property

Portrait option (Page Layout)

portrait orientation 2nd

PowerPoint (Microsoft) 2nd

Preview Report command

previewing reports 2nd

primary keys

 duplicate records and 2nd

 SQL Server tables

Print Current Form command

Print Preview mode

 changing page layouts

 forms and

Print Record command

Print Report command

printing

 changing settings for

 print preview feature 2nd

 records from forms

 relationships

 reports 2nd

 reports with macros

PrintOut action 2nd

PrintOut method (DoCmd)

private subroutines 2nd

procedures

Project window (VB editor)

 adding code to forms

projects

 creating

 creating queries via

 linked tables vs.

properties

 button control

 control validation rules

 default

 DoCmd object and

 field

 fine-tuning reports with 2nd 3rd

 form 2nd

 split form 2nd

 SQL Server

 subform controls

 tab order

Properties window

 relationships and

Property Sheet

 gridlines

 property names on

 split form settings

 subdatasheet settings

 table validation and

 tweaking settings with

public subroutines

Publish As PDF dialog box

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

queries

 analyzing

 append 2nd 3rd 4th 5th 6th

 based on queries

 calculated fields 2nd 3rd 4th 5th 6th

 delete 2nd 3rd 4th

 Design view and 2nd 3rd 4th 5th 6th 7th 8th

 filters vs.

 finding unmatched records

 flagging out-of-stock orders

 for system tables

 grouping and

 hiding

 join

 make-table

 pivot table limitations

 projects and

 Query wizard 2nd 3rd 4th

 reports based on

 select 2nd

 SharePoint views and

 SQL Server and

 SQL view and 2nd 3rd 4th

 summary 2nd 3rd

 totals 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 transferring tables and

 union 2nd 3rd

 update 2nd 3rd 4th 5th

 viewing top records 2nd 3rd 4th

 way to create

query functions 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

query parameters

 action queries

Query Parameters dialog box

Query wizard 2nd 3rd 4th 5th 6th

Quick Access toolbar

 customizing commands 2nd 3rd 4th

 Undo command

quick search feature

Quit action

Quit Application command

Quit method (DoCmd)

quotation marks (")

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

random numbers

Random option (New Values field property)

read permission

reading

 arguments from forms 2nd

Recalc method (Form) 2nd

Recent Document list (Office menu)

Record Locks property

Record Navigation category

Record Operations category

Record Selectors property 2nd

Record Source property 2nd

records

 AutoNumber data type in

 blank values for unlinked

 changing in shared databases 2nd 3rd 4th 5th 6th

 changing SharePoint

 copying in one step

 corrupted

 deleting

 editing 2nd

 filtering in tables 2nd 3rd 4th

 finding/editing in forms

 FindRecord action

 grouping 2nd

 identifying before deleting

 indicating changes in 2nd 3rd 4th

 linked 2nd 3rd

 locking while editing

 many-to-many relationships

 one-to-one relationships

 searching 2nd

 showing multiple

 sorting in queries

 sorting in tables 2nd 3rd

 updating

Recordset object

Rectangle control

 adding

 formatting

redundant data 2nd 3rd 4th

References dialog box

Refresh All command 2nd

refresh interval 2nd

Refresh method 2nd

refreshes

Regional and Language Options dialog box

related data 2nd 3rd

relational database management system (RDBMS)

relationship diagram

Relationship window

relationships

 Chocolate Store practice 2nd 3rd 4th

 defining between tables

 editing

 explicit

 lookups with related tables

 many-to-many 2nd

 Music School practice 2nd 3rd

 one-to-many

 one-to-one 2nd

 printing

 redundant vs. related data

 referential integrity 2nd 3rd 4th 5th

 SQL Server and

relationships and 2nd 3rd 4th 5th

Relationships tab

 defining relationships 2nd 3rd

Remove Filter command

renaming

 fields in queries

Replication ID option (Field Size property)

replication IDs 2nd

Report Name property

Report Operations category 2nd

report title 2nd 3rd

Report view (reports) 2nd 3rd

Report wizard 2nd 3rd

reports

 adding/removing fields

 adjusting settings

 creating 2nd

 exporting 2nd 3rd 4th

 filtering

 fine-tuning with properties 2nd

 formatting 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 grouping 2nd 3rd 4th 5th 6th 7th

 hidden fields in

 improving in Design view 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 labels as

 links in

 previewing

 printing 2nd 3rd 4th

 saving

 saving as PDF files

 views for 2nd

Requery action

Requery method 2nd 3rd

Require Variable Declarations option

Required field property

 Allow Nulls column and

 empty values and 2nd

 manipulating AutoNumber values

 support for

resizing

 columns in forms

 controls

 controls automatically 2nd 3rd 4th 5th

 report components 2nd 3rd 4th

 rows and columns 2nd

resolution

result

RGB function

ribbon (Access 2007)

 Alt key and

 collapsing

 formatting datasheets 2nd

 Print Preview mode

 Visual Basic editor

rich text 2nd

Right Arrow key 2nd

Right() function 2nd

Rnd() function

root element 2nd

Round() function

 calculated fields and

 nesting and

rounding numbers

row fields (pivot tables)

Row Source property 2nd

Row Source Type setting (SQL Server)

rows

 copying elsewhere

 formatting alternate

Run dialog box

Run Macro command

Run Query command

RunApp action

RunCommand method (DoCmd) 2nd

RunMacro action

RunMacro method (DoCmd)

RunSQL method (DoCmd)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

safe actions

Save As dialog box

Save As menu command

Save button (Quick Access toolbar)

Save Record command

Save Splitter Bar Position property

saving

 changes to clipboard

 database diagram

 databases

 export settings

 filters

 import settings

 macros

 report export settings

 reports

schemas

scientific notation

scrolling through tabs

searching

 forms and

 navigation list

 records 2nd 3rd

Second() function

section events

security

 database objects and

 databases and

 macros and 2nd 3rd 4th 5th 6th

 manually splitting databases

 SQL Server and 2nd

 VB code and

 Windows

SELECT statement (SQL)

 bound controls and

SendObject action 2nd 3rd

server-side processing

 shared databases and

 SQL Server and 2nd

service packs

Set Control Defaults button

SetFocus method

SetProperty action

setting up

SetValue action 2nd

shared databases

 approaches for 2nd

 changing records

 data corruption and

 editing conflicts

 without Access 2nd 3rd

Shared Documents folder

Shared Documents section (SharePoint) 2nd

shared folders

 permission considerations

SharePoint

 connection options

 creating team sites

 customizing sites

 editing data

 front end for

 fun features

 importable file type support

 installing

 offline changes 2nd

 sharing data with

 transferring data in/out

SharePoint support

Shell function

Shift key

Shift+F2 key combination 2nd 3rd 4th

Shift+Tab key combination 2nd

Short Date format (Date/Time data type) 2nd

Short Time format (Date/Time data type)

shortcut keys

 clipboard

Show Dialog box

Show Table dialog box

 adding tables

 creating append queries

 creating queries with parameters

 creating update queries

 Queries tab

ShowAllRecords method (DoCmd)

Simple Query wizard

Single data type (VB)

Single option (Field Size property)

Single-Record view

single-step debugging 2nd 3rd 4th

Site Administration section (SharePoint)

Site Users Web Part

Size option (Page Layout)

Snapshot Viewer program 2nd

sorting

 crosstab queries

 forms

 Group

 groups in pivot tables

 navigation pane options

 random numbers and

 records in tables 2nd 3rd

Source Object property 2nd

spaces

 adding between report rows

 control anchors and

 controls and

 property names and

 sort order of

special characters

 Access support

spell checking 2nd 3rd 4th 5th

Spelling window 2nd

split databases

 corrupt data and

 linked tables and 2nd 3rd

 manual process 2nd

 security and

Split Form Datasheet property

Split Form Orientation property

Split Form Printing property

Split Form Size property

Split Form Splitter Bar property

split forms

 properties for

SPS (SharePoint Portal Server)

SQL (Structured Query Language)

 analyzing queries 2nd

 DAO and

 text commands in

 union queries

 validation rules and

SQL Server

 firewalls and

 installing 2nd

 upsizing databases 2nd

 Web pages and

SQL Server Agent

SQL Server Books Online 2nd

SQL Server databases

 adding objects to

 backing up

 creating 2nd 3rd 4th 5th

 creating tables 2nd 3rd 4th

SQL Server Express

 limitations of 2nd

 Microsoft and 2nd

SQL Server Management Studio tool 2nd 3rd

SQL view 2nd 3rd 4th 5th 6th 7th

Sqr() function

stacked bar charts 2nd

stacked column charts 2nd

start tags

startup forms

 Access runtime engine

startup macros

StDev option (Total)

stored procedures

storing

 information in variables 2nd

 SharePoint sites and

String data type (VB)

string manipulation functions

Sub statement

Subdatasheet Expanded setting

Subdatasheet Height setting

Subdatasheet Name setting

subdatasheets

 adding and linking support

 changing settings

subreports

subroutines

 naming

 parentheses in

 private 2nd

 public

 writing simple 2nd

subtotals

 placing orders task 2nd

subtraction 2nd

Sum option (Total)

summaries

 crosstab queries and 2nd 3rd

 queries performing 2nd 3rd

summary functions

 pivot tables and

Switchboard Items table

Switchboard Manager 2nd 3rd

switchboards

 alternatives for 2nd 3rd

 building 2nd

syntax 2nd

system tables 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Tab (or Enter) key 2nd 3rd 4th

tab character

tab control 2nd 3rd 4th

Tab Index property

tab order 2nd 3rd

Tab Order dialog box

Tab Stop property

tables

 appending data to 2nd

 back-end database and

 bypassing locks

 combining related

 corrupted records in

 creating 2nd

 data types and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th

 database design principles

 Datasheet view

 Design view 2nd 3rd 4th 5th

 duplicate information in 2nd

 exporting 2nd

 exporting to SharePoint

 filter by selection

 importing

 joining in queries 2nd 3rd 4th

 junction 2nd 3rd 4th

 lists and

 many-to-many relationships

 one-to-one relationships

 ordering records

 primary key 2nd 3rd

 redesign cautions

 relationship diagram and

 Relationships tab and 2nd

 removal restrictions

 splitting

 switchboard

 system

 union query and 2nd

 validation rules for 2nd 3rd

tabs

 Access Options window

 setting order on forms 2nd 3rd

tabular layouts 2nd 3rd 4th 5th

Tabular option (layouts) 2nd

tags 2nd

tasks

 data operations and

 getting pricing information

 grouping around

 objects and 2nd 3rd 4th 5th 6th 7th

 placing orders

 shipping orders

 using objects 2nd 3rd 4th 5th

 Visual Basic editor 2nd 3rd 4th

Tasks link (SharePoint)

Team Discussion Web Part

Template section (SharePoint)

testing

 action queries

 assumptions

Text Align property

Text Box control

 anchoring

Text data type

 length considerations 2nd

 mask support 2nd 3rd 4th 5th

Text option (Query Parameter)

Text property 2nd

text-based information

 expressions with 2nd

 functions manipulating 2nd 3rd

 numbers in 2nd

 special characters in

timestamp fields

Title and Description section (SharePoint)

Title column (SharePoint)

To Widest command

Toggle Button control

Top property

top/bottom filtering 2nd

Total property 2nd

totals queries

 grouping 2nd

 joins in 2nd 3rd

transactions

TransferSpreadsheet action

TransferText action

Trim() function

trust center 2nd 3rd

trusted publishers 2nd

Try It text box

tutorial

Type column (SharePoint)

Type field (system tables) 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UCase() function

unbound controls

Unbound Object Frame control

UNC (Universal Naming Convention)

UNC path

Undo command

 form changes and

 moving fields between layouts

Undo method

Undo Record command

unfreezing columns

Unhide Columns dialog box

unhiding columns

UNION ALL statement (SQL)

union queries

 creating

UNION statement (SQL)

universal dates

Unrelated Objects category

unsafe macro actions 2nd 3rd 4th 5th

Up Arrow key

update queries 2nd 3rd 4th 5th

updates

 cascading

 Design view and

 linked tables

 modifying records 2nd 3rd 4th 5th

 shared databases and 2nd 3rd

upsizing databases

 SQL Server and 2nd 3rd 4th 5th 6th

Upsizing wizard 2nd 3rd 4th 5th

Use Control Wizards button

Use Trusted Connection checkbox

User Information List table

user names

User Tasks Web Part

user-defined functions

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Val() function

Validation Rule property 2nd

validation rules

 conditional logic and

 conditions and

 credit card example 2nd 3rd 4th

 date expressions

 expressions for numbers

 field 2nd 3rd 4th

 filters and

 for forms 2nd

 for text 2nd

 table 2nd 3rd

Validation Text property 2nd

Value property

Var option (Total)

variables

 debugging

 parameters as

 storing information in 2nd

 typos in

VBA (Visual Basic for Applications)

Vieira

views

 creating

 for forms

 SharePoint

 split forms

Visible property 2nd

Visual Basic editor 2nd 3rd 4th 5th

Visual Basic IntelliSense 2nd

Visual Basic language

 debugging with 2nd 3rd 4th

 error handling with

 macros and

 objects and 2nd 3rd

 reference help

 running businesses with 2nd

 types of errors 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Web Parts

 minimizing

Web Site Address section (SharePoint)

Webb

WeekdayName() function

Where Condition property 2nd 3rd

WHERE statement (SQL) 2nd

width

Width property

windows

 overlapping

Windows authentication mode

Windows Calculator

Windows environment

 buttons face-lift

 regional settings

Windows Explorer

Windows file security

Windows SharePoint Services (WSS)

Windows Task Scheduler

Windows Update

Windows Vista

 SQL Server and

 Windows XP facelift and

 XPS format

Windows XP

Wingdings font

wizards

 for controls

Word (Microsoft)

 launching

workbooks

workflow

workgroup

workgroup security

worksheets (Excel)

workspaces

writing fields on forms 2nd

WSS (Windows SharePoint Services)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XML (extensible markup language)

 Access support 2nd 3rd 4th

 exporting to 2nd 3rd

 importing from 2nd

 rules of 2nd 3rd 4th

 schemas and

.xml file extension

.xsd file extension

.xsl file extension

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Year() function

Yes/No option (Format)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Zoom box

 displaying column contents

 opening

zoom feature 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Zoom box

 displaying column contents

 opening

zoom feature 2nd

	Access 2007: The Missing Manual
	Table of Contents
	Copyright
	The Missing Credits
	Introduction

	Part I: Storing Information in Tables
	Chapter 1. Creating Your First Database
	Section 1.1. Understanding Access Databases
	Section 1.2. Getting Started
	Section 1.3. Saving and Opening Access Databases
	Section 1.4. The Navigation Pane

	Chapter 2. Building Smarter Tables
	Section 2.1. Understanding Data Types
	Section 2.2. Design View
	Section 2.3. Access Data Types
	Section 2.4. The Primary Key
	Section 2.5. Six Principles of Database Design

	Chapter 3. Mastering the Datasheet: Sorting, Searching, Filtering, and More
	Section 3.1. Datasheet Customization
	Section 3.2. Datasheet Navigation
	Section 3.3. Advanced Editing
	Section 3.4. Printing the Datasheet

	Chapter 4. Blocking Bad Data
	Section 4.1. Data Integrity Basics
	Section 4.2. Input Masks
	Section 4.3. Validation Rules
	Section 4.4. Lookups

	Chapter 5. Linking Tables with Relationships
	Section 5.1. Relationship Basics
	Section 5.2. Using a Relationship
	Section 5.3. More Exotic Relationships
	Section 5.4. Relationship Practice

	Part II: Manipulating Data with Queries
	Chapter 6. Queries That Select Records
	Section 6.1. Query Basics
	Section 6.2. Creating Queries
	Section 6.3. Queries and Related Tables

	Chapter 7. Essential Query Tricks
	Section 7.1. Calculated Fields
	Section 7.2. Query Functions
	Section 7.3. Summarizing Data
	Section 7.4. Query Parameters

	Chapter 8. Queries That Update Records
	Section 8.1. Understanding Action Queries
	Section 8.2. Update Queries
	Section 8.3. Append Queries
	Section 8.4. Delete Queries
	Section 8.5. Tutorial: Flagging Out-of-Stock Orders

	Chapter 9. Analyzing Data with Crosstab Queries and Pivot Tables
	Section 9.1. Understanding Crosstab Queries
	Section 9.2. Creating Crosstab Queries
	Section 9.3. Pivot Tables
	Section 9.4. Pivot Charts

	Part III: Printing Reports
	Chapter 10. Creating Reports
	Section 10.1. Report Basics
	Section 10.2. Printing, Previewing, and Exporting a Report
	Section 10.3. Formatting a Report
	Section 10.4. Filtering and Sorting a Report

	Chapter 11. Designing Advanced Reports
	Section 11.1. Improving Reports in Design View
	Section 11.2. The Report Wizard
	Section 11.3. The Label Wizard
	Section 11.4. Fine-Tuning Reports with Properties
	Section 11.5. Expressions
	Section 11.6. Grouping

	Part IV: Building a User Interface with Forms
	Chapter 12. Creating Simple Forms
	Section 12.1. Form Basics
	Section 12.2. Sorting and Filtering in a Form
	Section 12.3. Creating Better Layouts
	Section 12.4. The Form Wizard

	Chapter 13. Designing Advanced Forms
	Section 13.1. Customizing Forms in Design View
	Section 13.2. Taking Control of Controls
	Section 13.3. Forms and Linked Tables

	Chapter 14. Building a Navigation System
	Section 14.1. Mastering the Navigation Pane
	Section 14.2. Building Forms with Navigation Smarts
	Section 14.3. Linking to Related Data

	Part V: Programming Access
	Chapter 15. Automating Tasks with Macros
	Section 15.1. Macro Essentials
	Section 15.2. Macros and Security
	Section 15.3. Three Macro Recipes
	Section 15.4. Managing Macros
	Section 15.5. Connecting Macros to Forms
	Section 15.6. Conditional Macros

	Chapter 16. Automating Tasks with Visual Basic
	Section 16.1. The Visual Basic Editor
	Section 16.2. Putting Code in a Form
	Section 16.3. Understanding Objects
	Section 16.4. Using Objects

	Chapter 17. Writing Smarter Code
	Section 17.1. Exploring the VB Language
	Section 17.2. Dealing with Trouble
	Section 17.3. Deeper into Objects
	Section 17.4. Using VB to Run a Better Business

	Part VI: Sharing Access with the Rest of the World
	Chapter 18. Sharing a Database with Multiple Users
	Section 18.1. Opening Up Your Database to the World
	Section 18.2. Preparing Your Database
	Section 18.3. Playing Well with Others
	Section 18.4. Data Corruption
	Section 18.5. Securing Your Database

	Chapter 19. Importing and Exporting Data
	Section 19.1. Case for Importing and Exporting
	Section 19.2. Using the Clipboard
	Section 19.3. Import and Export Operations
	Section 19.4. Access and XML
	Section 19.5. Collecting Info by Email

	Chapter 20. Connecting Access to SQL Server
	Section 20.1. Should You Switch to SQL Server?
	Section 20.2. Getting Started: SQL Server 2005 Express
	Section 20.3. Creating a SQL Server Database
	Section 20.4. Adding Objects to a SQL Server Database

	Chapter 21. Connecting Access to SharePoint
	Section 21.1. Understanding SharePoint
	Section 21.2. Setting Up SharePoint
	Section 21.3. SharePoint and Access

	Part VII: Appendix
	Appendix A. Customizing the Quick Access Toolbar
	Section A.1. The Quick Access Toolbar

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

